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EXTENDING VALSINER’S COMPLEX SYSTEM: AN EMERGENT
ANALYTIC TOOL FOR UNDERSTANDING STUDENTS’
MATHEMATICS LEARNING IN PRACTICE

Mohammed Abdul Hussain, John Monaghan and John Threlfall
School of Education, University of Leeds, UK

This paper explores mathematics teachers’ views about the impact of an intervention
research project on primary mathematics teaching and learning. In order to account
for the perceived effects, an extension of Valsiner’s zones theory is proposed that
incorporates other components of the school setting. The extension is felt to be more
appropriate to understand the extent to which mathematics teachers constrain
students’ mathematics learning development. Prior to intervention, the mathematics
teachers in the study seemed to have created a narrow non dynamic system for
students. It is proposed that the intervention transformed/restructured the system only
when other parallel transformations occurred on a number of components of the
setting. Implications for qualitative transformation of student learning are drawn.

THE RESEARCH

Contemporary mathematics research paradigms call for espousing holistic and
naturalistic approaches that help in understanding the complexity of mathematics
teaching and learning (Kelly and Lesh, 2000). One of the most challenging research
dilemmas is related to studying the extent to which students’ learning is constrained,
and consequently understanding to what extent students become active or passive
participants within the teaching process (Mortimer and Scott, 2003; Nystrand, 1997).

This paper presents part of wider research examining the impact of implementing an
intervention on primary mathematics teaching and learning which was conducted in
primary Bahraini schools. The research methodology involved a design experiment
(Cobb et al., 2003; Kelly and Lesh, 2000) and “multiple-embedded” case studies
(Yin, 2003). A variety of data sources were used through one academic year,
including classroom observations, video and audio recordings and interviews.

For this paper qualitative data of one case study obtained from one interview at the
end of the intervention process will be presented. The interview was conducted with a
mathematics classroom teacher (Laila) and her senior teacher (Afrah). In Bahrain,
students of the second cycle (year 4 to year 6) are taught by mathematics specialist
teachers and the senior teacher supervises the mathematics teaching and learning. The
interview involves both teachers reflecting on the change that had taken place as a
result of the intervention, which was to promote inquiry approaches (Jaworski, 2006)
at both the classroom and the school level. To make sense of the statements made, an
analytic tool is needed that can account for the extent to which a teacher structures
and restructures constraints for students in the mathematics classroom. Initially

2009. In Tzekaki, M., Kaldrimidou, M. & Sakonidis, H. (Eds.). Proceedings of the 33rd Conference of the International
Group for the Psychology of Mathematics Education, Vol. 2, pp. 1-8. Thessaloniki, Greece: PME.
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Valsiner’s (1998 and 1987) zones theory is outlined and used to analyse the data.
Subsequently, Valsiner’s notions are extended in order to provide an integrated
interpretation of the presented data.

THEORETICAL ORIENTATION

In his study of the processes involved in child development, Valsiner (1987 and
1998) proposes two zones, the “Zone of Free Movement” (ZFM) and the “Zone of
Promoted Actions” (ZPA). The ZFM characterises the child-environment relationship
at a particular time and in a certain environment, by suggesting that his or her
“freedom of choice of action (and thinking) is limited by a set of constraints”
(Valsiner, 1987, p.97). The ZFM is a social construct that is created through mutual
cultural interactions between the child and the adult (Valsiner, 1987 and 1998) which
is set by, and based on, the adult’s ongoing understanding and analysis of the child’s
capabilities in that context. As a result, as Valsiner points out, a ZFM is not fixed but
is dynamic and can be altered when the adult feels it is appropriate (Valsiner, 1987
and 1998).

The second of Valsiner’s (1987, p.99) notions is the ZPA, which refers to the “set of
activities, objects, or areas in the environment, in respect of which the child’s actions
are promoted.” The ZPA is normally a sub-zone of the ZFM. However, a ZPA can
play a crucial role in development, as it can restructure a ZFM — by instigating a ZPA
at the edge of a students’ ZFM, the teacher’s actions can enable students to cross the
boundaries of their existing ZFM, thereby changing it.

Valsiner (1998 and 1987) contends that the two zones interact and form a complex
system which “canalizes” the actions of the child in a certain direction. Valsiner
(1987) gives an example of a very narrow ZFM/ZPA complex system in education,
wherein the teacher focuses on rote memorization and leaves few choices to students
other than doing and repeating what that teacher says.

These notions have been used in mathematics education. Blanton et al. (2005) used
Valsiner’s zone theory to interpret adults’ mathematics and science practices through
investigating classroom discourse. Goos (2005) employed the concepts of ZFM and
ZPA to investigate instructional practices and beliefs for pre-service and novice
teachers with respect to integrating technology in their secondary mathematics
classrooms. Valsiner’s notions allowed Goos to theorise teacher development as the
construction of identity.

The remainder of this paper presents and interprets some teachers’ articulations about
changes in a classroom with regard to ZFM/ZPA complex systems.
DATA AND A DISCUSSION OF DATA

Extracts from an interview with Laila and Afrah conducted at the end of a course of
study are presented and discussed (interpreted) below. Both were responding to an
open question to talk about their experience of the intervention. Part of the

2-2 PME 33 - 2009
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intervention strategy was to follow a collaborative learning approach that allowed
students to share their views and ideas in a whole class setting. In the following
extract Laila has focussed on collaborative learning and makes it the main point of
her comparison between the situation before and after the intervention.

1 Laila: I mean, at the outset I was not realizing that we can use collaborative

2 learning differently, for example (before) we give students exercises and

3 solve it, and the best group comes out and wins. We did not present their

4 work at all, this is the first time we do it, we present students’ work and

5 discuss. Presenting, only one group comes out and solve, and if there were

6 more than one solution, others say no we did not solve in this way, we

7 solved in that way and discuss. But for those groups who have wrong

8 answers they say we have incorrect solutions and that’s it. Not every

9 group comes out by itself whereas now every group comes out by itself

10 and discuss the very methods of solutions. I mean, there were interactions,

11 students by themselves as I told you, correct their mistakes, themselves

12 express their views, they wonder. During collaborative learning, they ask

13 questions, pose questions, before they ... might pose questions but during

14 the collaborative learning we direct them more. Now we provide them

15 with little help, I leave them to complete. Before when we had a

16 collaborative learning, I mean, we stay to assist the group itself we

17 provide assistance to arrive the solution...I Mean not just giving an idea

18 and leaving them alone to utilize it and solve in this way.

19  Afrah: Maybe I want to talk about group work... I understand about group work

20 after the explanation of the lesson, we employ it; we give them exercise as

21 group work and then an individual work as usual. Now... students started

22 learning... during the group work. Before ... I start with explaining the

23 concept or giving them a readymade concept. OK. Frankly speaking, I
feel

24 this is a big shift because the girl by herself forming the concept... hence

25 she is learning. She is wondering in order to attain the result...

30 Giving them free area for their learning. Mistakes let them make mistakes,

31 they will learn from their mistakes. Mistakes several times constitute a

32 spring-board for learning...

The above extract gives Laila’s account of the two different states, before and after,
of using collaborative learning in mathematics teaching. Laila’s words (lines 1-2)
indicate that in both situations, students were promoted to learn collaboratively. In
both cases collaborative learning was available for them, but with different structures.
In the prior situation, Laila set up narrow ZFMs, so that her students’ movement
within collaborative work was highly constrained compared to the latter situation.
More precisely, students’ freedom of choice in respect of mathematical actions and
thinking during ‘old style’ collaborative learning was limited by a set of constraints:
(i) restricting collaborative learning to solving exercises (line 2); (ii)) marrying
collaborative work with a competitive environment (line 3); (iii) not all groups
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presented their work, as only the “best group” presents its solution (lines 3-4); (iv)
other groups can only tell whether their solutions were similar or not (lines 5-7); (v)
groups with incorrect answers were not included in discussions (lines 7-8); and (vi)
intervening during group work interactions (lines 15-18).

Although the teacher-established boundaries of the pre-intervention ZFMs enabled
some student options in relation to mathematics learning during collaborative work,
these boundaries structured rigidly students’ means of accessing many of the aspects
of their environment. For example, students had a restricted range of choices about
new knowledge construction, suggesting a passive “epistemic role” (Nystrand, 1997)
for students. They also had limited opportunities to advertise or to share different
mathematical ideas, as well as being unable to negotiate or discuss their own solution
methods irrespective of their correctness. Furthermore, Laila provoked students to
compete with each other, which restricted student-student interaction.

Since each ZFM/ZPA system “canalizes” students’ immediate and future actions in a
certain direction, one can anticipate what sort of possible acts a student might
produce. In the above case, it is claimed that students’ participation in constructing
new knowledge was restricted. Also, there was no reported place for discussions or
for multiple perspectives within students’ learning processes.

Laila’s expression “I was not realizing that we can use collaborative learning
differently” (lines 1-2) indicates a recognition of the establishment, prior to
intervention, of some kind of ZFM/ZPA for her students, which, one might assume,
was stable over a considerably long period of time. Laila suggests, in for example
“we did not present their work at all” (lines 3-4), that there was little questioning or
negotiations between her and her students, or analysis of students’ capabilities as
proposed by Valsiner. Indeed, the establishment of the constraints did not appear to
be based on students’ actual or potential capabilities; instead, they appear to have
been based on teachers’ beliefs system (Pajares, 1992) about mathematics teaching
and learning and on school social and sociomathematical norms (Yackel and Cobb,
1996). Laila’s comments about student and teacher actions after the intervention
process was established (lines 12-18), however, suggest a transformation of her belief
system and a recognition of being able to restructure the ZFM/ZPA in a way that gave
students greater freedom.

We suggest that the intervention process led to an epistemological shift with regard to
suitable tasks for students. In an interview prior to the intervention Laila had been
asked about “drills for students” and responded ‘Sufficient drills are the most
important things in mathematics ... what is so important in mathematics is training’
(see also lines 19-24). We think that this prior perspective of Laila is important with
regard to constraints on collaborative learning in classes in Laila’s old regime;
exercises vary in their influence on knowledge construction (Watson and Mason,
2004) but drilling exercises are likely to be at the lower end of the knowledge
construction scale.
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To return to the interview, Afrah emphasized the transformation of functions and
purposes of collaborative learning. She commented that prior to intervention
collaborative work was based on exercises following teacher introduction (lines 19-
21). In the language of Valsiner this is a constraint, “giving them a ready-made
concept”; in the language of Mortimer and Scott (2003), students just listen to Laila’s
“authoritative” voice. After intervention, there was a “big shift” (line 24).

Both Laila and Afrah describe a different ZFM for the students after intervention.
They still claim to promote collaborative learning but many of the previous
constraints are perceived to have disappeared; and different areas and objects in the
environment are made available for students (wider ZFM). They claim that students
have more free movement to: (i) advertise and discuss their work and views (lines
9-10); (ii) correct their mistakes (line 11) and use “mistakes as spring-board for
learning” (lines 30-32); (iii) initiate different kind of discourse during, and after,
collaborative work (lines 10-13 and 25); and (iv) be more confident (lines 33-36) and
less dependent on teacher interventions during the collaborative work (lines 14-15).

This speaks of a restructured ZFM, and much that was constrained became available
to students. Multiple mathematical perspectives, experiences and individual/group
solution methods were transformed from being constrained to becoming objects for
discussions, negotiations and reflections for all students. As a consequence of this,
especially in empowering students to conduct reflection, students had opportunities to
correct and learn from their own mistakes. Moreover, within the new ZFM different
kinds and patterns of discourse occurred. Laila’s statement “there were interactions”,
and that students “wonder” and “ask questions” (lines 10-13), suggest that students
had repositioned themselves with regard to the mathematics of the class and gained
more freedom; in place of the control of knowledge there was, reportedly, greater
student freedom to initiate different patterns of discourse. Lines 7-11 concern
right/wrong answers in lessons prior and after intervention and suggest a perceived
transformation of the teacher involvement, from being with the group in order to
assist its members to get the right answer, to providing challenges for students when
the teacher reduced her intervention and allowed groups to make their own decisions
and accept the consequences — even if there were some mathematical mistakes; and
of these mistakes becoming objects for student discussion and reflection.

The interview evidence suggests that the intervention process qualitatively
transformed hitherto stable classroom environments and created new ZFM/ZPAs.
This points back to the issue of how these complex systems are restructured. Valsiner
(1987, p.99) states that ZFMs can be restructured by the adult’s (the teacher here)
understanding of children’s capabilities within the environment, but we suggest that
this does not take account of transformations in the adult/teacher. The restructuring in
this study appears to have occurred because Laila internalised new ideas that
reorganized her relationships with students and other mathematical objects in the
class and hence restricted her ongoing acts also — in other words her own ZFM. The
constraints on her were related to her system of beliefs about mathematics and
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mathematics teaching and learning as well as practices which were grounded in her
school setting. In that sense, analytically, Valsiner’s analysis fails to uncover how
this transformation happened because his notions were not proposed to understand
the development of the child in complex environments like school settings. We hold
that the ZFM/ZPA complex systems of Laila’s students were transformed because of
a parallel transformation in Laila’s ideas and her internalized ZFM. To clarify this
argument, we provide the following extracts and discussion.

70  Afrah: Regarding the strategies, the strategies as I said to you at the outset

71 it provide us a lot. We learned plenty. Starting from the way of lesson

72 planning, our lesson planning is getting changed. First, to sit with a team
73 and plan a lesson (collaboratively) this means it differs from previous

74 planning when I do it alone. Within our planning procedure we carefully
75 select the objectives, emphasising on high order objectives... For lesson
76 implementation we were keen upon everything... In case I introduce this
77 problem I anticipate what students will say to me, what I will reply to

78 them, I mean Laila is eager: Afrah if they say to me like this, what I shall
79 tell them, do you expect they will say? This means many, many things.
80 Sometimes she calls me (laughing) and says to me now I thought Afrah
81 that I gave them this problem and I asked them this way , if they tell me
82 such and such. Do you think we have to change the task... So we were

83 negotiating these issues. To be frank, this gives us a wide area to explore
84 our potentials that were hidden... OK. Also the lovely thing is after

85 lesson’s implementation . We sit and discuss this lesson. It happened to
86 change or modify something... Several times Mrs Laila says she prepares,
87 as a matter of fact, she prepares several learning tasks. For instance, when
88 she enters the class 6/2 and identifies this task to be inadequate, she goes
89 to the other class and uses the second one. This means she does not rely
90 on two or three tasks...

The teacher transformations reported in the above extract include: (i) lesson planning
became a joint collaborative act (lines 71-75); (i) mutual immersion in anticipating
possible consequences of proposed instructional actions and decisions (lines 76-83);
(iii) posing instructional conjectures, examining them in practice and then enacting
modifications (lines 85-90); (iv) conducting reflection sessions after lesson
implementation and exchanging observations and insights (line 84-85).

AN EXTENSION

The reported transformation of students’ ZFM/ZPAs complex systems at the
classroom level is interconnected with a parallel transformation at the teachers/school
level and these two levels interact with each other. This transformation cannot be
attributed to Laila alone without the presence of other “voices” in the school setting.
Indeed, students’ new ZFM/ZPA complex systems resulted from collective activities.
This proposed analytic extension suggests related socio-cultural components play an
essential role in creating new ZFM/ZPAs: mediational artefacts including teaching
methods which are considered to be appropriate by the senior teacher and the school
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management; implicit and explicit cultural norms; teacher networking procedures;
and instructional actions, decisions and tasks of practitioners who share responsibility
for student learning. From this perspective, teachers’ prior understanding of students’
capabilities and the above components interact with each other to structure and
restructure students’ complex systems which draw the boundaries of the constraints
on students’ mathematics learning. This extension to Valsiner’s notions can be
viewed as an analytic tool for understanding how complex classroom systems are
structured and restructured and, hence, understanding the development of students’
mathematics.

CONCLUSION

Laila and Afrah described two complex systems related to before and after the
intervention to develop an inquiry approach in the classroom in which emerging
activities transformed students’ learning. Afrah considered this to be a “big shift” in
mathematics teaching and learning because students’ participation had been
transformed qualitatively by gaining more “epistemic roles”, to use Nystrand’s
(1997) term. This evolution was successful for many reasons. One reason was Laila’s
endeavours in setting and examining pedagogical conjectures and modifying them
when necessary. Another was the development of teachers’ networking that utilizes
collaborative planning and collective reflections. Student activity and norms within
the mathematics classroom and between mathematics and senior teachers were also
transformed. Thus, students’ ZFM/ZPA complex systems were transformed through a
parallel transformation of several components. We have argued that the
transformation in student learning was interrelated with transformations in these other
socio-cultural components in the school, for example the development of the
teachers’ networking, and the cultivation of different norms for mathematics teaching
and learning. We feel that the qualitative transformation of students’ learning
depends on the extent to which all components are transformed.
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TEACHER EFFECTS ON THE PROBABILISTIC THINKING OF
PUPILS IN ENGLAND

Thekla Afantiti Lamprianou and Iasonas Lamprianou

Centre for Educational Research, Cyprus University of Manchester, UK and
European University, Cyprus

Multilevel Rasch measurement methodology was used to analyse data collected when
a 10-item instrument was administered to a sample of 754 pupils. A scale called
“ability to overcome the effects of the representativeness heuristic” (hence Ability)
was built to indicate the capacity of pupils to answer correctly to probability items. A
“tendency towards representativeness errors” scale (hence Representativeness
Tendency) was also built to indicate the tendency of pupils to exhibit answers
affected by the representativeness heuristic effect. This study investigates the
differential teacher effect on both Ability and Representativeness Tendency scales
and investigates whether there is differential teacher effect for different heuristics.
The class size affected the performance of the pupils on the Ability scale.

THE BACKGROUND OF THE STUDY

Researchers, like Williams and Ryan (2000), argue that research knowledge about
pupils’ misconceptions and learning generally needs to be located within the
curriculum and associated with relevant teaching strategies if it is to be made useful
for teachers. This involves a significant transformation and development of research
knowledge into pedagogical content knowledge (Shulman 1987). Pedagogical
Content Knowledge (PCK) “goes beyond knowledge of subject matter per se to the
dimension of subject matter knowledge for teaching” (Shulman 1986, 9). Pedagogical
Content Knowledge also includes the conceptions and preconceptions that students
bring with them to the learning. If those preconceptions are misconceptions, teachers
need knowledge of the strategies most likely to be fruitful in reorganizing the
understanding of learners. Many studies have found that teachers’ subject knowledge
and pedagogical content knowledge both affect classroom practice and are modified
and influenced by practice (Turner-Bisset 1999).

Hadjidemetriou and Williams (2002) found that some teachers harbour
misconceptions themselves. Godino, Canizares and Diaz (n.d.) conclude in their
research that very frequently teachers do not have the necessary preparation and
training in probability or statistics in order to teach efficiently; they also concluded
that student teachers may have various probabilistic misconceptions themselves and
this might affect their teaching.

Much research on pupils’ mathematical knowledge exists (e.g. Hill, Rowan and Ball
2005), however this normally refers to general mathematical ability using rather blunt
instruments, in comparison to a more focused test, like the one used in this study.
Other recent research has shown teacher effects of a magnitude of around half a
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standard deviation of pupils’ ability, but has also found a negligible correlation
between the performance of the pupils and class size (Nye, Konstantopoulos &
Hedges 2004). The main point is that there is much research that quantifies the so-
called ‘teacher effect’, especially in the context of ‘school effectiveness’ research,
however, very few — if any — research papers identify differential teacher effects on
heuristics.

Therefore, the authors carefully formulated a research design where nested data (i.e.
pupils nested within teachers, who are nested within schools) were collected using a
dedicated instrument (a test measuring the impact of the representativeness heuristic
on the probabilistic thinking of the pupils) and a specialized statistical method was
applied (i.e. generalized mixed effects models). What is mostly important is that the
responses of the pupils (and their teachers) on the same instrument were scored in
two ways: (a) right/wrong responses, and, (b) responses indicating that the
probabilistic thinking of the pupils was affected by the representativeness heuristic.

METHODOLOGY
The instrument and the dataset

Ten items were used to construct the instrument (reached at www.relabs.org). The
items identify four effects of the representativeness heuristic; the recency effect, the
random-similarity effect, the base-rate frequency effect and the sample size effect.
Most of the items have been adopted with slight modifications of these used in
previous research (Green 1982; Kahneman, Slovic and Tversky 1982; Shaughnessy
1992; Konold et al 1993; Batanero, Serrano and Garfield 1996; Fischbein and
Schnarch 1997; Amir, Linchevski and Shefet 1999). Other items were developed
based on findings of previous research.

The items were divided into two parts. The first part consisted of multiple-choice
answers. In the second part the respondents were asked to give a brief justification for
their choice (‘Explain why”). The Ability scale was built to range from 0 to 10 (where
0 indicates no correct responses and 10 indicate fully correct responses to all multiple
choice items). For the Representativeness Tendency scale 0 marks were awarded on a
question to indicate ‘response most likely not affected by the Representativeness
Heuristic’ whereas 1 mark means ‘response most likely affected by the
Representativeness Heuristic. Therefore, for the Representativeness Tendency scale 0
marks mean ‘no representativeness effect identifies” and 10 means “all responses of
the pupil seemed to be affected by the Representativeness Heuristic”.

The instrument was administered to 754 pupils from schools in the NW England. In
each case, the gender, the age, the Year group, the teacher’s name and the school’s
name of the pupil were recorded.

Data Analysis

Using the Ime4 package of the R software (http://www.r-project.org) we treated the
items as a fixed effect and the pupils and the teachers as random effects in a binomial
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model to construct multilevel Rasch scales (Doran, Bates, Bliese & Dowling, 2007).
Extending the single-level Rasch model (Wright & Masters, 1982) to accommodate
for the nesting nature of the data is increasingly becoming common practice in
educational research.

At first, an initial single-level Rasch model was fit on the data in order to compare
the results of the Ime4 package with the results of Bigsteps, a more ‘traditional’, also
free, Rasch package. The result was to reconstruct the Ability and Representativeness
Tendency scales mentioned in previous research using the same data (i.e. Afantiti
Lamprianou and Williams 2002, 2003; Afantiti Lamprianou, Williams Lamprianou
2005). Then, increasingly complex models were used in order to investigate more
subtle aspects of the issues under investigation.

Aims of the research

This research aspires to investigate whether there is a statistically significant and
practically non-negligible teacher effect on (a) a probabilities Ability scale, (b) on a
Representativeness Tendency scale. In addition, the effects of Age, Year group and
Gender are investigated under the light of multi-level Rasch models that account for
nested effects. The differential teacher effect on different heuristics is also
investigated.

RESULTS
Fitting an initial multilevel Rasch model

An initial multilevel Rasch model was fit on the data, using the Teachers and the
Pupils as random effects. In the case of the Ability scale, the teacher effect accounted
for a large proportion of the variance, equal to half of the between-subject variance.
However, for the Representativeness Tendency dataset, the Teacher effect appeared to
be very small. The standard deviation of the Teacher effect (SD=0.186) was the one
sixth of that of the Pupil effect (SD=0.767).

Modelling the Misconception Type by Year group interaction

Since the misconception (thus, ‘Misconception’ effect) addressed by each item is a
repeatable factor and of interest itself, we modelled it as a fixed-effects term. The
pupils, the teachers as well as the items are modelled as random effects. The Year
group (years 6 and 7) was also modelled as a fixed effect. The items are modelled to
be nested within teachers, since we are interested in identifying the main teacher
effect, but also to measure the magnitude of the interactions between teachers and
items (i.e. differential difficulty of items by teacher).

There seems to be a strong Teacher main effect (SD=0.496) since the variance
attributed to teachers is three quarters of the variance attributed to individual pupils
(SD=0.792). The variance of the teacher by item effect (SD=0.662) is twice as large
as the variance of the main teacher effect. All in all, the total variance from the
teacher main effect and the teacher interaction effects is larger than the variance
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because of pupil differential location on the scale. The item variance was 0.993
(SD=0.996). The results show that there is no statistically or practically significant
Year group by misconception type interaction effect.

However, when a similar analysis is run on the Representativeness dataset, the results
were, again, slightly different. The main teacher effect for the Representativeness
Tendency dataset is almost negligible (SD=0.228), but there is much variance
coming from the interaction between teachers and items (SD=0.709). In any case, the
main Year effect seems to be negligible on the scale. The pupil variance was rather
large (SD=0.799). One could also mention the Lilliputian main item effect
(SD=0.103).

The interaction effect between teachers and type of misconception

If the usual hypothesis that pupils’ learning is heavily affected by their teachers holds
true, then a teacher by misconception interaction effect is useful to model our dataset.
The aim of this analysis is to investigate whether the teacher effect is stronger for
some misconceptions but not for others. A teacher by misconception interaction was
added in the 3-level Rasch model.

Random effects:

Groups Name Variance Std.Dev.
pupil (Intercept) 0.604072 0.77722
teacher:misconception (Intercept) 0.509101 0.71351
teacher (Intercept) 0.042950 0.20724
item (Intercept) 0.967565 0.98365

Number of obs: 7043, groups: 1id, 754; teacher:misconception, 114; teacher, 29;
item, 10

Table 1: The 3-level Rasch model with interactions (Ability scale)

The teacher by misconception effect seems to explain almost as much variance as the
pupil effect. The main teacher effect is practically zero, although the item main effect
is still very large.

The following model investigates the way the variance is partitioned for the
Representative Tendency dataset. There is no ‘Teacher’ random effect and no ‘Year’
fixed effect because their presence in the model was not statistically significant in
any way.

Random effects:

Groups Name Variance Std.Dev.
id (Intercept) 0.62366 0.78972
teacher:misconception (Intercept) 0.73897 0.85964
item (Intercept) 0.06644 0.25776

Number of obs: 7043, groups: id, 754; teacher:misconception, 114; item, 10

Table 2: The 3-level Rasch model with teacher by misconception interactions
(Representativeness Tendency scale)

The most interesting comparison between the results of the Ability and the
Representativeness Tendency scales is the slightly increased teacher by
misconception interaction for the misconception scale, with a simultaneous very
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small variance due to item effects. This is difficult to explain, although one might
assume that all the item variance in the Representativeness Tendency scale is
absorbed by the misconception effect. Also, the Random-Similarity effect is not
significant for the Ability scale, but is highly significant for the Representativeness
Tendency scale.

When a three-way interaction Teacher:Misconce:Item was added in the model in
order to investigate whether it was possible to see where the item variance goes, the
results for both the Ability and the Representativeness Tendency scale were slightly
different. For the Ability scale, the interaction had a small, but non-negligible effect
(Table 3). However, for the Representativeness Tendency scale, the results were very
clear: there is no measurable variability between items within misconception.

Ability scale Representativeness Tendency scale

AIC BIC logLik deviance AIC BIC logLik deviance

5370 5425 -2677 5354 4776 4830 -2380 4760
Random effects: Random effects:

Groups Name Variance Std.Dev. Groups Name Variance Std.Dev.
pupil (Interc) 0.62933 0.79330 pupil (Interc) 0.623657 0.78972
teacher:misconc:item (Interc) 0.14685 0.38321 teacher:misconc:item (Interc) 0.000000 0.00000
teacher:misconc (Interc) 0.52951 0.72767 teacher:misconc (Interc) 0.738967 0.85963
item (Interc) 0.97624 0.98805 item (Interc) 0.066442 0.25776

Table 3: The 3-level Rasch model with teacher by misconception by item interactions

This indicates that pupils whom probabilistic thinking ‘suffers’ by the
Representativeness Tendency heuristic, tend to give uniformly right or wrong
responses to items that measure the same heuristic.

The effect of the actual class size

The effect of the size of the class was investigated by correlating the random effect
estimate of the classes with the number of the pupils in the class. The results were
strikingly different for the two scales. On the one hand, there was an unusually high
and positive correlation between the class size and the performance of the pupils on
the Ability scale (r=0.609, N=29, p=0.0001). On the other hand, there was a much
smaller and statistically insignificant correlation between the location of the pupils
on the Representativeness Tendency scale and the class size (r=-0.299, N=29,
p=0.115). It is reasonable for the second correlation to be negative, in the sense that
more Ability means fewer Representativeness errors in the responses and the reverse.

It was therefore assumed that including the class size in the multilevel Rasch models
as covariates might result in different variance component estimates for the teachers.
This was true for the Ability scale, where the introduction of class size reduced the
variance because of the teachers by 15% (from 0.49865 to 0.42312) but had no effect
on the Representativeness Tendency scale. It was thus, deduced, that although the
class size may have affected the general ability of the pupils to respond to probability
questions, it does not seem to affect their chance to give responses ‘suffering’ from
the Representativeness heuristic.
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DISCUSSION

This study used multi-level Rasch models in order to investigate (a) the contribution
of teachers on the variance of the Ability and the Representativeness Tendency
scales, (b) a comparison between the results for the two scales.

The teacher effect was indeed strong for both scales. In the case of the Ability scale,
the total teacher variance is practically equal to the pupil variance. In the case of the
Representativeness Tendency scale, the total teacher variance is just larger than the
pupil variance (0.68 to 0.62). This shows that being a pupil of a specific teacher may
be more important (or equally important) than who you are and what previous
knowledge or experiences you carry when you go to school.

The main findings of this research are in agreement with previous research, but in
this case, the teacher effect seems to be much stronger than usually. For example, in
a (typical) recent research (measuring general mathematical ability rather than a sub-
domain ability like the present study) Hill, Rowan, Ball (2005) found that teachers’
mathematical knowledge was significantly related to student achievement gains (in
both first and third grades). However, the school effect in this case was significantly
important than the teacher effect since for Grade 3 pupils the variance was 99.2 for
the school component compared to 77.4 for the teachers; for Grade 1 pupils the
variance was 24.4 for the school component compared to 79.3 for the teachers.

If one could consider the Ability scale to give a ‘raw’ measure of the
representativeness effect (one could give wrong responses for other reasons as well
as because of the representativeness effect), then the Representativeness Tendency
scale would show a substantially larger teacher effect, BUT only if teachers are to
blame for the persistence of the representativeness heuristics on the probabilistic
thinking of the pupils. In addition to this, if we could assume that some teachers have
a ‘magic touch’ that removes the representativeness effect from the probabilistic
thinking of the pupils (either because they have more pedagogical content knowledge
or more subject matter knowledge), then one would again expect a stronger teacher
effect on the Representativeness Tendency scale.

All in all, it seems that teachers might be blamed for increased — or to praise for
decreased — representativeness heuristic effect on the probabilistic thinking of pupils.
But is this the case? Threfall (2004) focused on the teaching of probability to primary
school pupils in England, and argued that

“primary aged children did not learn anything about probability that could be
reliably assessed, and so probability as a curriculum component did not contribute
to some of the purposes of the National Curriculum”. p1l

He suggests that the teachers actually had no significant impact on the pupils, as far
as the probabilities part of the curriculum was concerned. The results of this research
do not seem to agree with him: the teacher effect is dominant; does this mean that the
teachers ‘pass’ their misconceptions or errors to their pupils? Dole (2003) discussed
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the need to help pupils “unlearn’, in order to overcome errors and misconceptions in
mathematics. It is important to know whether the teachers unknowingly pass their
errors and misconceptions to pupils, but if this is the case, the new
pedagogical/teaching strategies are definitely needed to address this situation.

Also, although the main item effect (the variance component because of items) is
huge (dominant) in the case of the Ability scale, it is Lilliputian in the case of the
Representativeness Tendency scale. Why is that? This may indicate the strength of
the Representativenss effect. Once a pupil’s probabilistic thinking ‘suffers’ by the
effect, then the variance between items measuring the same effect is almost
negligible: responses to items measuring the same representativeness tendency effect
are of similar nature.

In addition to the above findings, it seems that class size may affect the responses of
the pupils on the ‘raw’ Ability scale, but not on the Representativeness tendency
scale. This contradicts the findings from previous research, such as Nye,
Konstantopoulos & Hedges (2004) who found class size to have negligible effect.
This might mean that in a smaller class, the teacher might be able to explain to pupils
how to avoid the most common general incorrect responses in a better way, or might
mean that the pupils were more motivated in smaller classes. But, when it comes to
de-coding the actual meaning of their responses in order to investigate the
representativeness effect, it means that the class size is not important because the
representativeness huristic can not be overcome by spending more time on each pupil
individually. Most likely, it is the teacher himself, and his teaching approach and
philosophy that counts, not how much time a teacher spends with individual pupils.

However, the elaborated methodology of this research has shown that the teacher
effect is so large compared to the pupil effect, that some teachers (in some way) are
certainly affecting pupils’ probabilistic thinking in England through their teaching to
a large extend. Also, waiting has actually shown no significant impact, as the
negligible differences between year 6 and year 7 pupils have shown. Therefore,
spending more resources on helping teachers teach probabilities may be wiser than
eliminating probabilities from the National Curriculum.
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PROMOTING CRITICAL THINKING ABILITIES VIA
PROBABILITY INSTRUCTION

Einav Aizikovitsh Miriam Amit
Ben-Gurion University, [srael

Our attempt to promote the development of critical thinking abilities among students
involved forty three subjects, who were exposed to teaching strategies designed to
encourage critical thinking in probability lessons, by applying mathematics to real-
life problems, encouraging debates, and planning investigative lessons. Prior to and
Jfollowing the experiment, students were asked to complete the Cornell Test of critical
thinking. Assessment of the results as well as interviews and evaluation of written
work collectively led us to the conclusion that critical thinking capabilities improved
during the course of the study. These results indicate that deliberate and consistent
encouragement of Critical Thinking is likely to improve these abilities among
students.

INTRODUCTION

In the last two decades, there has been international acceptance of the need to change
traditional methods of teaching. Developing different cognitive and metacognitive
skills is considered to be of the utmost importance, and curricula increasingly
incorporate skills requiring higher-order thinking, such as critical, deductive, creative
and inventive thinking. In education, mathematics has been considered a field of
thought which is suitable for promoting important educational skills, such as critical
thinking. In the real world, we constantly need to make personal decisions based on
complex situations. Hence, it is essential to instill in our students the ability to think
critically. Critical Thinking (CT) is used in every profession, and it allows people to
deal with reality in a reasonable and independent manner (Lipman, 1991).
Furthermore, c.t.is an essential part of the education of future citizens in a democratic
society, and if we want to prepare our students for life and not merely for their final
exams, we need to help them learn how to transform their knowledge and abilities
into positive, responsible actions and to make rational judgements in an era floded
with information (Feuerstein, 2002; Perkins, 1992; Swartz, 1992). Research has
investigated students’ developing of thinking tools such as: evaluating, checking the
truth of results, assessing a certain problem, comparing, generalizing, applying and
defining, solution strategies and such (e.g., Avital & Barbeau, 1991; Akbari-Zarin &
Gray, 1990). Our study, however, investigated students’ development of abilities
such as induction, deduction, value judging, credibility, assumptions, and meaning,
according to the taxonomy of Ennis (1987), which we will elaborate on later. The
purpose of our study is to determine whether critical thinking abilities can be
developed through probability instruction.
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THEORETICAL BACKGROUND
Critical Thinking Definitions

There are many varied definitions as to what exactly critical thinking is. According to
Schafersman, (1991) critical thinking is an ability that is learned . He claims that it
must not be left to develop of its own accord, nor can it be taught successfully to
students by an un-trained instructor. Both training and knowledge are necessary to
promote these abilities and he believes that math and science teachers are well suited
by their training and knowledge to carry out this task. Schafersman (1991) believes
that critical thinking involves inquiry, asking questions, offering alternative answers,
and questioning traditional and accepted beliefs. He suggests that because society
does not welcome people who challenge authority, critical thinking is not
encouraged. In his opinion "most people, therefore, do not think critically" (p.23).
Another definition is that critical thinking is the ability and readiness to evaluate
claims in an objective manner based on firm arguments (Wade & Tavris 1993). This
research is based on three key elements: CT taxonomy that includes CT skills
(Ennis, 1987;1989), The learning unit "Probability in Daily life" (Liberman &
Tversky 2002) and the Infusion Approach between subject matter and thinking skills
(Swartz, 1992).

Critical Thinking Skills by Ennis

Ennis defines CT as “a correct evaluation of statements". Twenty-three years later,
Ennis broadened his definition to include a mental element. The improved definition
is “reasonable reflective thinking focused on deciding what to believe or do” (Ennis,
1962;1987) .In light of this definition, he developed a CT taxonomy that relates to
skills that include not only the intellectual aspect but the behavioural aspect as well.
In addition, Ennis' (1987) taxonomy includes skills, dispositions and abilities. Ennis
claims that CT is a reflective (by critically thinking, one’s own thinking activity is
examined) and practical activity aiming for a moderate action or belief. There are five
key concepts and characteristics defining CT according to Ennis: practical, reflective,
moderate, belief and action.

Critical Thinking Abilities by Ennis Implemented in the Present Study

Seven aspects of critical thinking were considered as objective assessment criteria for
evaluating the incorporation of critical thinking in students' mathematical education
and they are induction, deduction, value judjing, observation, credibility,
assumptions, and meaning. Although aspects of critical thinking are listed separately,
overlap between them exists to a certain extent. For example, one might argue that
deduction is involved in much induction, calling for the listing under deduction of the
items listed under inductions. Similarly, one might also argue that observation and
credibility judgements call for the implications of principles, a deductive process and
should also be listed under deduction. Furthermore, one might argue that since basic
deduction is simply the meaning of words and statements, everything classified under
deduction could also be classified under meaning. This legitimate overlap is partially

2-18 PME 33 - 2009



Aizikovitsh, Amit

expressed by the items of the Cornell critical thinking of level Z (Ennis, Millman &
Tomko 2005).

The Teaching Unit ""Probability in the daily life"

In this learning unit, which is a part of the formal National Curriculum the student is
required to analyse problems, raise questions and think critically about the data and
the information. The purpose of the learning unit is not to be satisfied with a
numerical answer but to examine the data and its validity. In cases where there is no
single numerical answer, the students are required to know what questions to ask and
how to analyse the problem qualitatively, not only quantitatively. Along with being
provided with statistical tools students are redirected to their intuitive mechanisms to
help them estimate probabilities in daily life. Simultaneously, students examine the
logical premises of these intuitions, along with misjudgements of their application.
Here, the key concepts are: probability rules, conditional probability and Bayes
theorem, statistical relations, causal relations and judgment by representative
(Liberman & Tversky 2002) .

The Infusion Approach

There are two main approaches for fostering CT: the general skills approach, which is
characterized by designing special courses for instructing CT skills, and the infusion
approach which is characterized by providing these skills by embedding them in the
teaching of the set learning material. In according to Swartz (1992), the Infusion
approach aims for specific instruction of special CT skills during the course of
different subjects. According to this approach there is a need to reprocess the set
material in order to integrate the teaching of thinking skills into the conventional
instruction.

Abilities of Probability unit
Ennis' Taxonomy (Liberman &
(Ennis, 1987) T Tversky , 2002)

v
The Infusion Approach

(Swartz, 1992)

Diagram 1: The Infusion Approach

In this study, we will show how we integrated the mathematical content of
"probability in daily life” with CT skills from Ennis' taxonomy, reprocessed the
curriculum, tested different learning units and evaluated the subjects' CT skills. One
of the overall research purposes was to examine the effect of the Infusion approach
on the development of critical thinking skills through probability sessions. The
comprehensive research purpose was to examine the effect of developing CT by the
Infusion approach using the Cornell questionnaire (a quantitative test) and
quantitative means of analysis.
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OBJECTIVES AND METHODOLOGY

In our study we wanted to find out whether teaching conducted with the purpose of
promoting higher-order thinking skills, through probability instruction, would
improve the students' critical thinking abilities. The study was conducted over the
period of an academic year (eight months) and involved fifteen lessons, each lasting
ninety minutes. The teacher was one of the researchers.

Research Population

Forty-three children between the ages of fifteen and sixteen participated in an extra
curricular program aimed at enhancing thinking skills of students from different
cultural backgrounds and socio-economic levels. A teaching experiment was
conducted in which probability lessons were combined with CT skills. The students
who participated in this study were part of an after school program called
Kidumatica, (designed and headed by the second researcher). The students are high
achievers from diverse ethnicities and socio-economic background.

Data Collection and Method of Analysis

In order to assess the effects of the intervention, the Cornell Critical Thinking Test-
Level Z (Ennis & Millman, 2005) was administered both prior to and following the
study. In addition, the students were asked by their teacher to take tests, work on
projects, and do activities covering the specific critical thinking abilities. The
students' written products (papers, homework, exams etc.) were collected. Personal
interviews were conducted with randomly selected students. Five students were
interviewed at the end of each lesson and one week later. The personal interviews
were conducted in order to identify any change in the students' attitudes throughout
the academic year. All lessons were videotaped and transcribed. In addition, the
teacher kept a journal (log) of every lesson. Data was processed by means of
qualitative methods intended to follow the students' patterns of thinking and
interpretation with regards to the material taught in different contexts. In order to
check the development of the students’ critical thinking abilities, the Cornell Test
developed by Ennis and his colleagues was used (Ennis & Millman, 2005). The
Cornell Critical Thinking Test-Level Z was chosen in order to adjust to the level of
the group. The test includes general content with which most of the students would
be familiar and it assesses various forms and correlates of critical thinking, such as
induction, deduction, value judging, observation, credibility, assumptions and
meaning. In the process of critical thinking, there is an overlap of these various forms
as they are all dependent on each other. In the Cornell test, this inter-dependence is
evident in the fact that frequently an item is assigned to several different aspects. It is
important to note that both Observation and Credibility are evaluated according to the
same items in the test (items twenty-two to twenty-five). It is a multiple-choice test
with three choices and one correct answer. Although the test is meant to be taken
within a fifty-minute period, we predicted that the students in the group would be
unable to complete it within that time limit. For this reason we decided to give them
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eighty minutes in which to take the test.
Description of the Intervention Unit

As already mentioned, the probability unit combines CT skills with the mathematical
content of "probability in daily life" (Liberman & Tversky, 2002). This probability
unit included questions taken from daily life situations, newspapers and social
surveys, Each of the fifteen session that comprised the intervention had a fixed
structure. The lesson began with a short article or text that was presented to the class
by the teacher. A generic (general) question relating to the text was then written on
the blackboard. An open discussion of the question then took place in small groups of
four students. Ten minutes were allotted to the discussion and there was no
intervention by the teacher. Each group offered their initial suggestions about how
the question could be resolved. This group discussion provided an opportunity to
practice the CT skills. An open class discussion then followed. During the discussion,
the teacher asked the students different questions to foster their thinking skills and
curiosity and to encourage them to ask their own questions. The students presented
their different suggestions and tried to reach a consensus. The teacher referred to
questions raised by the students and encouraged CT, while instilling new
mathematical knowledge: specifically, the identification and finding of a causal
connection by a third factor and finding a statistical connection between C, A and B,
Simpson's paradox and Bayes’ Theorem. In general, the unit included critical
thinking skills (abilities and dispositions) and mathematical knowledge (probability)
using the infusion approach. Ennis made a clear distinction between abilities and
dispositions. This study focuses only on the development of the abilities. A future
study will deal with developing the dispositions. It is noteworthy that whereas
abilities pertain to the cognitive component of critical thinking, dispositions relate
mainly to the mental one. The mathematical topics taught during the fifteen lessons
were: Introduction to set theory, probability rules, building a 3D table, conditional
probability and Bayes theorem, statistical and causal connection, Simpson's paradox,
and judgment by representative. The following CT skills were incorporated in all
fifteen lessons: A clear search for an hypothesis or question, the evaluation of reliable
sources, identifying variables, “thinking out of the box,” and a search for alternatives
(Aizikovitsh & Amit, 2008). This reference also provides a full description of a
lesson where the intervention unit was implemented.

RESULTS

In order to assess the effects of the infusion approach in the development of the
students’ ability to think critically, the Cornell Critical Thinking Test-Level Z was
administered to the targeted students at the end of the intervention period. The two
components where an improvement can be demostrated are those of credibility and
observation. The former showed an increase from a pre-test mean of 0.257 to a
post-test result of 0.801 (t = 3.43 and p < .001). The observation mean showed an
similar increase. The parallel improvement in the credibility and Observation results
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can be clearly inferred from this histogram (Figure 1). Some improvement also
characterizes induction. In general, a pattern of increase in the post mean relative to
the pre-mean score characterizes all the separate components of critical thinking
abilities tested in this study. These differences should be considered carefully, in
accordace with the statistical significane of the findings. Whereas induction,
credibility and observation increased significantly, the remining finding should be
thought of more critically. The results of the pre-test and the post-test according to
the different abilities are presented in figure 1.

Abilities of Critical Thinking

0.8 -
0.6 @ pre mean
0.4 B\ post mean
0.2 4

04

Induction Deduction Credibility =~ Observation Assumptions  Meaning

Figure 1: Results of pre- and post-test means of Cornell tests
DISCUSSION

In some of the Critical Thinking literature, we see that there is no significant
improvement in most the sub-tests (Zohar & Tamir, 1993). This correlates with our
finding on the Cornell Test results. In the sub-tests we did see a significant
improvement in credibility and observation. This result can be explained by the
familiarity of the students with the representational form in which the problem was
posed. During this teaching unit, we repeatedly worked with tables and we therefore
came to the conclusion that the familiarity of the students with tables enabled them to
deal with the statements made and answer these specific questions more easily,
namely the method of presenting the question seems to have an impact on the studets'
understanding of the problem.The improvement in Induction was more difficult to
explain and at this stage of our research, we do not have sufficient data to explain
why there was an improvement at all, or why, if there was an improvement in
induction, there was not a similar improvement in deduction.

Implications for Teaching

This study has shown that it is possible to incorporate activities into regular schools
that will develop the students’ critical thinking abilities. The subject matter was part
of the high-school curriculum, therefore it would not take time away from the class
syllabus. It would also not take the teachers’ extra time or effort in order to prepare
the unit and no special training is needed to accomplish the goal. It is essential that
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the teacher understands the importance of developing the critical thinking abilities in
their students. To increase the generalizability of our results, we have expanded our
research to several other schools. In these schools, the same unit will be taught by
different teachers (and not by one of the researchers) to decide whether this study can
provide an instructional model, which will promote critical thinking, initially in
probability studies and perhaps in the future in other fields in mathematics.
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TRIANGLES’ PROTOTYPES AND TEACHERS’ CONCEPTIONS
Silvia Alatorre and Mariana Saiz

National Pedagogical University, Mexico City

During a workshop about triangles designed for in- and pre-service basic-school
teachers, a diagnostic test was applied. The conceptions that teachers have on the
subject are analysed using Hershkowitz’s construct about prototypical figures.

FRAMEWORK

Geometry has a very special place in the research about mathematical conceptions of
students and teachers, partly because the geometrical objects have a dual nature: they
involve information of two kinds, graphical (or figural) and theoretical (or
conceptual) (see e.g. Larios, 2007). This means that there are also sources of two
kinds for the possible misconceptions, and the studies about them usually consider
both.

Tackling this duality, Vinner and Hershkowitz (1980) have done research about the
prototypical examples in the teaching and learning of Geometry. They have
demonstrated that when a figure with certain characteristics is shown to the students,
the concept image that they build (i.e., the total cognitive structure that is associated
with a concept) is intrinsically associated with the figure (i.e., the figural component).
As an example, they mention the triangles with a horizontal side and the rest of the
figure “above” it, or that when speaking of the height of a triangle, the triangle used
has all of its angles acute and therefore all of its heights interior. In the case of the
triangle, the prototypical example is particularly significant, because the
misconceptions that arise from it are born too early and may last too long.

The prototypical examples lead to prototypical judgements, which happen when a
prototypical figure is used as a frame of reference. Two types are defined: Type 1 is
when the visual judgement applies to other instances; for example, when subjects
pretending to trace the altitude of a triangle draw an internal segment which is not a
height. Type 2 is when the subjects base their judgements in the characteristics of the
prototype itself and try to impose them to other examples of the concept
(Hershkowitz, 1990).

Geometrical misconceptions have been studied in students and, although Iess
frequently, in teachers. One such study has been thus summarized:

Hershkowitz and Vinner (1984) reported on a study that included comparing elementary
children's knowledge with that of preservice and inservice elementary teachers. They
found that the teachers lacked basic geometrical knowledge, skills and analytical thinking
ability (da Ponte & Chapman, 2006, p. 464).

2009. In Tzekaki, M., Kaldrimidou, M. & Sakonidis, H. (Eds.). Proceedings of the 33rd Conference of the International
Group for the Psychology of Mathematics Education, Vol. 2, pp. 25-32. Thessaloniki, Greece: PME.
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METHODOLOGY

Within the framework of a study about basic school teachers’ content knowledge on
Mathematics, a set of workshops on Basic Mathematics called TAMBA was designed,
one of which is about triangles. It has been given twice. In 2007 it was offered to 36
teachers at the Conference of the Mexican Mathematical Society in the city of
Monterrey (MR), and in 2008 it was offered to 31 teachers in a Teachers’ Centre in
Mexico City (MC). In both venues there were in- and pre-service teachers.

The workshop starts with a diagnostic evaluation, which consists of three items:

1. Four sets of three measures are given, and the participants are asked to say if a
triangle can be built with them and, if not, why. The sets are (in cm) a) 20, 5, 8;
b) 17,12,10;¢) 5,4, 3;and d) 15, 15, 40. c

2. Three figures are given for a triangle ABC and ‘
its heights AH, BJ, and CK, with measures for e
the sides and the heights, and the participants
are asked to say if the measures are possible or

not, and why. Figure 1 shows one of them. ot -

12em

3. A discussion is given between three girls who
must calculate the area of a triangle ABC (see
Figure 2), after which the girls are supposed to
ask the participant for his/her help, and the participant C
is asked to write down what s’/he would answer to
them. The discussion is:

Figure 1

Emma: The base has to be AC, because it is the # B

largest side. Figure 2
Fernanda:  No, the base is AB, because it is lying down.

C

Emma: No, because besides that, you can draw the J

height from B to AC.
Fernanda:  No, the base is AB, also because that’s how A

the triangle’s name starts. The base is B

always AB. Figure 3
Gaby: You are both partially right. Fernanda is right in that the base must be AB

because it is lying down, and the height is as Emma says, the one that we
can draw, which is going out from B, like BJ (see Figure 3).

Note that in item 3, the conversation is planned as a catalogue of several prototypical
ideas and misconceptions. In particular, the stress on the horizontality of the base can
be linked both to Larios’s (2007) construct of geometrical rigidity (the inability to
mentally visualize a geometrical figure that is not in a standard position or to imagine
what happens when it is moved or changed), and to the result that as much as 91% of
children aged 11-12 draw a triangle with a horizontal base (Cutugno & Spagnolo,
2002). Also, Gaby’s reasoning is a Type 1 judgement (Hershkowitz, 1990).
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The teachers’ answers to the evaluation were analysed and classified according to
their correctness (for items 1 and 2) and the kind of geometrical criteria used. Some
misconceptions were identified, which will be presented in the following section.

TEACHERS’ ANSWERS. EXAMPLES AND ANALYSIS
Correct ideas

The correct answers to item 1 were all based on a correct use of the triangle
inequality. These are some examples of reasons given for the impossibility of a) and
d). (The coding for transcripts is MR or MC for the workshop’s venue, a 2-digit
number for each participant, and the item number after a dash).

MRO3-1: The sum of two sides must be larger than the other one.

MR10-1: [The sides] don’t close.
Some of the correct answers to item 2 were based either on the comparison of the
measures of perpendicular vs. non perpendicular segments or on the characteristics of
a right triangle. These are some examples (they all relate to Figure 1):

MR24-2: If the line that is perpendicular to JC measures 12, AB should be larger.

MR30-2: The height must be smaller than side AC.

MC10-2: The hypotenuse must be larger than any of the sides, and this is not true
for CK and BJ.

MR12-2: [...] The area is different if you calculate it considering AC or AB. [He
might have calculated 5x12/2=30 vs. 11x6/2=33].

As for item 3, the answers were not classified according to correctness, but many
teachers expressed correct ideas. Here are some examples:

MRO04-3: I would explain that each side of the triangle can be the base, and that
each side that you choose as a base will have a height.

MRO09-3: If we consider AB as the base, the height would be the opposite vertex
“C” [sic]; for this we must extend AB and trace a perpendicular from C in
order to know the height of the triangle. If we [...] take AC as base, the
opposite vertex would be B and the height would be BJ.

Misconceptions about the triangle inequality

The triangle inequality was needed to correctly solve item 1, and could not be used in
item 2 (because some measurements were not provided, as AK or CH in Figure 1).
Perhaps the most alarming misconception about this property was just a plain
ignorance about it (9 out of 67 participants):

MCO06-1: All [four triangles] are possible.

Some teachers applied the inequality but used it the other way around (as if the
property stated that “the sum of two sides must be smaller than the other one”):
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MR12-1 b and ¢ are not possible because the measure of the third side (the largest)
is not larger than the sum of the two shorter ones.

Some other misconceptions about the triangle inequality seem to arise from a vague
knowledge of the property and probably the prototypical image that
usually goes with its explanation, such as Figure 4; but it stays at a
qualitative level and the actual numbers are not used to verify the
property.
MC25-1: A triangle cannot be built with the measures in a, b, and d, because one
side is shorter than the other one.

Figure 4

MRO07-1: b is not possible because of the measure of its sides, since one measure is
too long to build the triangle.

The last of these examples can be linked to a result found by Cutugno & Spagnolo
(2002), in the sense that 48% of the children do not recognize triangles because “they
have a too long side”.

Misconceptions about the triangle’s base(s) and/or altitude(s): prototypes

Several teachers incur in the prototypical judgements put in the girls’ dialogue of
item 3. For instance some think that each triangle has only one base, which must be
horizontal; see the following examples:

MCO03-3: Fernanda is right; the base is AB [...].
MR21-3: The base is the straight [meaning horizontal?] line that is on a plane.

Other teachers do think that each triangle has three bases, but that the triangle must
be rotated, and only when a side is horizontal can it be called a base. Although this is
not exactly an error, it does show some degree of incomprehension about the nature
of a triangle’s base. This is a good example of geometrical rigidity.

MR14-3: To recognize the base: The base can be any 3 T
side; it depends on the perspective [...]. We . == "\ —"'—(i;’-'-:—;«
could cut the triangle out in paper and rotate .2 :
it; then we can name as a base each of its
sides in turn [she draws Figure 5].

i:igure 5

As for heights, there were several misconceptions. Some participants think that a
triangle has only one height (and at that, preferably a vertical one):

MRO1-2: [In Figure 1] the height is CK.

Some teachers think that it is not possible for a height to be “outside” the triangle, as
in the following examples, which give reasons for the impossibility of Figure 1:

MR35-2: The segments of the height are not on the correct side, particularly BJ.
MR16-2: CK, AH, and BJ cannot be joined.
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The previous instances show prototypical examples and geometrical rigidity. In their
study, Cutugno & Spagnolo (2002) found that 39% of the children marked a vertical
line for an altitude, and that 56% of the children marked the height inside the triangle.

Some think that an altitude is perpendicular to the base through one of its end points:

MC15-3: [The base is] AB [...] and the height could
start from B. [She draws Figure 6]. )

This teacher is making a Type 1 prototypical judgement |
similar to that quoted in the Framework: the drawing of an - ] s
internal segment different from the altitude. Yet, she uses Figure 6

the property of perpendicularity, and thus she is also
making a Type 2 judgement. She remembers that height has something to do with
perpendicularity, but her concept image imposes an internal and vertical height.

Some participants clearly confused the height with the median:

MR25-3: I would say that the answer is incorrect because the height goes from the
midpoint of the base, and here the height is traced from the vertex of the
base to the midpoint of a segment of the triangle.

MR36-2: [Figure 1] is not possible because the height cannot be measured from a
tilted side; you can from the vertex to the midpoint, but this one is not.

The confusion between height and median is a plain misconception that does not
stem directly from a prototypical example, but is reinforced by two prototypical
ideas: the one about internal heights, and the prototypical equilateral triangle used to
teach the special segments of the triangle (in turn, these two reinforce each other,
since in an equilateral triangle heights and medians coincide and are internal).
Children also make these mistakes: In Cutugno & Spagnolo’s (2002) study, 23%
marked as height a line that divides in two parts the base of the triangle.

Evidently, some teachers incur simultaneously in several of the misconceptions
mentioned above. See for instance the next case, where these prototypical ideas may
be found: 1) the base is only one; 2) it is horizontal; 3) the rest of the figure is above
it; 4) the height is internal. She also has the misconception of the height as a median.

MC04-3: Indeed, the base is AB because the figure is over it, and the height is JB
because it is at the midpoint.

An interesting case of a Type 2 prototypical —— e
judgement is that of teacher MR26:

MR26-3: The base is what supports the
triangle. The height goes from
one vertex to the midpoint of one Figure 7
of the sides of the triangle, and
that side is the base [She draws Figure 7].

MR26 states two prototypical ideas: the base is horizontal, and the height is internal,
which implies that it must be JB. Now she faces a conflict: If JB is the height, then
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the base must be AC and not AB. Apparently the only way to solve this contradiction
is rotating the triangle: now the height is internal, AC is the base, and it is horizontal.

Misconceptions about the Pythagorean Theorem

Seven of the participants tried to use the Pythagorean Theorem in the solution of item
1 (where it can only be applied in case c because it is the only right-angled triangle,
although no participants recognised it) or of item 2 (where it cannot be applied, even
though there are many right-angled triangles, because the three measures were not
provided). In some instances, the theorem was mistaken for the triangle inequality:

MRO6-1: a, b and d are not possible because the sum of the two smaller sides must
be larger than the third, to comply with the Pythagorean Theorem.

In other cases, teachers tried to apply the theorem with non-right-angled triangles:

MRO06-2: [Figure 1] is not possible, because it does not comply with the
Pythagorean Theorem. [She compares 25+121=146 with 15.4°=237.16].

Some teachers undertook the addition of the squares of the hypotenuse and one leg,
instead of the squares of both legs. In the next example this error could be put down
to the prototypical image of a right-angled triangle with one horizontal leg:

MR17-2: [Figure 1] is impossible, because 4.8x4.8=23.04 and 121+23.04=144.04.
Other geometrical misconceptions

Several teachers used a right-angled triangle terminology for a triangle that is not
right-angled, as in the following example:

MR15-2: [Figure 1] is not possible, because the hypotenuse BC is larger than the
sum of the legs.

Another mistake made by several participants seems to stem from the idea that given
a line and an external point, the segments joining the point with whatever point in the
line all measure the same, or, alternatively, that the only valid triangles are isosceles:

MC20-1: d is the only possible triangle, because it has two sides of the same size
and one unequal side.

Some teachers decided to solve the area problem of item 3 in two parts, separately
calculating the areas of the triangles ABJ and BCJ (see Figure 3). However, while
doing this they all took for granted that BJ is the height corresponding to base AB
(like the girl Gaby and like MC04-3 quoted in the previous page).

MR31-3: They should calculate the area according to the formula A= (bxh)/2. Why
over two? Because to be able to calculate [the area] we split the triangle in
two parts A= (AB)(BJ)/2.

Finally, in item 3 oftentimes the explanations given by teachers to the girls revealed
serious misconceptions. See the next example, as well as MR31-3 just quoted.

MC15-3: In the first place, the base must indeed be AB, because that is how you
start to calculate the area of a triangle [...].
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CONCLUSIONS

The expressions of teachers that we have quoted reveal both figural and conceptual
misconceptions. Some figural misconceptions are those about the triangle inequality
that involve a prototypical image (Figure 4), the idea that the base is necessarily
horizontal (with the rest of the figure “above” it) and the height necessarily vertical
and/or drawn from “the highest point”, the idea that triangles must necessarily be
isosceles, and the conception about altitudes needing to be internal. Some conceptual
misconceptions are the ignorance or misuse of the triangle inequality, the idea that
each triangle has only one base and one height, confusing the height with the median,
the use of right-angled triangles terminology with non-right-angled ones, all the
misconceptions about the Pythagorean Theorem and its applications, and the errors
with the formula for the triangle’s area. Evidently, both kinds of misconceptions can
interact, as in MC15-3 (Figure 6), or when the formula for the area imposes figural
misconceptions, or even when a figural misconception imposes errors on potentially
correct concepts (such as when teachers need to rotate the triangle).

However, among these two kinds of misconceptions the former may be considered
more critical, because when a prototypical image is present any conceptual aspect is
overridden by it. As Larios (2007) states this (writing about high-school students),
they use the figural aspect not as a heuristical resource but as a referential one.

With a slightly different perspective, Hershkowitz (1990) analysed the
misconceptions’ permanence. She identified several classes of misconceptions
present both among young students and pre- and in-service teachers: (a) those that
last from one grade to the next; (b) those that disappear with the acquisition of the
concept; and (c) those that increase as the students advance throughout their
schooling. Blanco & Barrantes’ (2003) coincide with her: they assert that pre-service
teachers repeat the misconceptions acquired during their schooling, and these
misconceptions become implicit, stable and resistant to changes across their studies.

With regard to their knowledge about triangles, most of the teachers who participated
in the two TAMBA workshops here reported behave like young students described in
the literature. Their misconceptions are similar to those reported by Cutugno and
Spagnolo’s (2002) in their study with young children, and they range from
Hershkowitz’s classes (a) to (c) (such as those about the Pythagorean Theorem and
the incorrect use of right-angled triangles terminology). Teachers also exhibit many
prototypical judgments of Type 1 and very little analysis of the properties involved,
and they use the figural aspect as a referential resource. The analysis of the
relationship between the categories of misconceptions and some of the teachers’
characteristics such as their gender, their teaching experience, and the educational
level and the city where they work, is reported elsewhere (Alatorre & Saiz, 2009);
however, it can be said here that although the 67 participants are in no way a
statistical sample, our experience in working with teachers leads us to consider them
as a fairly representative subset of the Mexican schoolteachers.
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In the last years there has been much discussion about what level of Mathematical
Content Knowledge the teachers should have. Da Ponte & Chapman (2006) suggest
that in order to conserve its meaningfulness, the research about teachers’ mathematics
knowledge should link it with other aspects of practice, more related to the
Pedagogical Content Knowledge. Our TAMBA workshops are directed to both kinds of
knowledge, as are also some elements of the diagnostic evaluation (such as item 3),
but with a stress in the mathematical aspects. We claim that the mathematical
knowledge is a sine qua non, and that the only condition under which it can indeed
come to a second level of priority is if teachers have a thorough understanding of, at
least, the contents they must teach. Most of the teachers who participated in the two
workshops here reported are not in this case; when the teacher training curricula
ignores the existence of misconceptions, as is the case in Mexico, Blanco &
Barrantes’s (2003) assertion about the permanence of misconceptions is also valid for
in-service teachers. When teachers have serious misconceptions, they not only
perpetuate but also aggravate the ones of their students, and even more so when
teachers incur in so-called explanations such as the last two quoted in this paper.

Therefore we sustain that the mathematical content knowledge of the elementary
schoolteachers is something that urgently requires consideration, diagnosis, and
attention, both in initial training and in professional development.
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THE ROLE OF DEFINITIONS IN EXAMPLE CLASSIFICATION

Lara Alcock Adrian Simpson
Mathematics Education Centre School of Education
Loughborough University Durham University

This paper reports an empirical study of students’ classification of sequences before
and after meeting explicit definitions of ‘increasing’ and ‘decreasing’. In doing so, it
explores 1) students’ interpretations of the definitions and 2) the appropriateness of
this apparently straightforward context for teaching students about the status of
mathematical definitions. In particular, it demonstrates that students’ spontaneous
conceptions in this context can be inconsistent with definitions, and it explores the
extent to which exposure to formal definitions influences these conceptions. The
results show an interesting pattern of modified classifications, which demonstrates
increased consistency with the definitions but shows problems with some pivotal
examples.

INTRODUCTION AND THEORETICAL BACKGROUND

Undergraduate students are often unaware of the status of definitions in mathematical
theory. They may be unable to state important definitions, even after a substantial
period of study, and many appear to reason about mathematical concepts using
concept images instead of definitions (Tall & Vinner, 1981). This can be particularly
problematic in Analysis, in which spontaneous conceptions, based on everyday use of
terms or informal experience with concepts such as /imit, can be at odds with the
formal definitions (Williams, 1991; Cornu, 1991).

For success in undergraduate pure mathematics, it is vital to learn to use definitions
correctly in making classifications and in constructing general proofs. It is therefore
important for mathematics educators to study ways to help students achieve this, and
this paper approaches the classification issue by analysing students’ responses to a
task that required them to classify examples spontaneously and then using
(previously unseen) definitions.

To design the task, we first identified a context in which there is likely to be disparity
between spontaneous conceptions (Cornu, 1991) and the extension of the formal
definition. In Analysis, the obvious place to start is with the limit concept, since this
is central in the subject and much work has been done in establishing common
misconceptions (Williams, 2001). However, limit definitions are logically complex
(involving three nested quantifiers) so any investigation of their use in classification
is likely be confounded by difficulties in understanding their logical structure (see,
for example, Dubinsky, Elterman & Gong, 1988). Thus, the research reported here
used the concepts of increasing and decreasing for infinite sequences of real
numbers. The definitions for these concepts are logically simple (they involve only

2009. In Tzekaki, M., Kaldrimidou, M. & Sakonidis, H. (Eds.). Proceedings of the 33rd Conference of the International
Group for the Psychology of Mathematics Education, Vol. 2, pp. 33-40. Thessaloniki, Greece: PME.
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one quantifier) and some classifications based on them are counterintuitive: for
example, constant sequences are classified as both increasing and decreasing and
sequences such as 0,1,0,1,0,1,0,1,... is classified as neither increasing nor decreasing.
Specifically, the research addressed the following questions:

RQI: To what extent are students’ spontaneous conceptions about increasing and
decreasing sequences inconsistent with definition-based judgments?

RQ2: When given a basic introduction to the definitions, can students work with
these and correctly revise their judgments?

If there are sufficient inconsistent spontaneous conceptions and evidence that
exposure to the definitions led to revisions, this simple context would arguably be
appropriate for raising students’ awareness of the way mathematical definitions are
used to resolve ambiguity or disagreement by precisely specifying a concept.

In theoretical terms one might say that this research sets out to investigate the
participants’ example spaces and their ability to modify the structure of these to
better mirror the conventional example space (Watson & Mason, 2005). Previous
research has tended to use example generation tasks: Zazkis & Leikin (2007), for
instance, considered what such tasks can reveal about the accessibility, richness and
generality of individual’s example spaces. However, in this case example generation
was considered unlikely to lead to interesting results because new undergraduates’
experience with sequences is likely to be limited to work with arithmetic and
geometric sequences. Since we wished to gain insight into students’ responses in
counterintuitive as well as ‘obvious’ cases, we used an example classification task
with the deliberate inclusion of examples such as those above. These examples were
expected to be pivoral for at least some of the participants, in the sense that they
might cause students to experience uncertainty and/or to recognise and question
initial assumptions (Zaskis & Chernoft, 2008).

METHOD

187 students completed the task as part of a regularly timetabled Analysis lecture
(within a standard lecture course not given by the researcher). All participants were
in the first term of their first year of a mathematics degree at a high-ranking UK
university. The entry requirements for the degree included grade A for both
mathematics and further mathematics A-levels (or equivalent), effectively the highest
possible pre-university mathematics requirement in the UK.

The task presented here was part of an intervention lasting approximately 25 minutes.
The students were informed that the task would help the researcher understand their
thinking, that they should work alone, that the responses would be treated as
anonymous and that their lecturer would be given a summary but that the tasks would
not influence their grade. They were also told that they could opt out by choosing not
to hand in their paper. In the spontaneous classification phase, the students were
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asked to fill in a table to indicate whether they would classify each of the sequences
in Table 1 as increasing, decreasing, both or neither, or whether they were not sure.

A:0,1,0,1,0,1,0,1,... F:13,2,4,3,546,...
B:1,4,9,16,25,36,49,64,... G:6,6,7,7,8,8,9.9,...

C:i,i 11111 H:0,1,0,2,0,3,0,4,...
D:1-12,-2.3,-34,-4.K 3 101.102,102,1025 102 K
E:3,33,3,3,33,3,... K:-2,-4,-6,-8,-10,K

Table 1: Classification task examples

The students were then shown definitions of ‘increasing’ and of ‘decreasing’, stated
in notation consistent with that used in their course:

A sequence {xn }:’:1 is increasing if and only if VneN, x,,, 2 x,.
A sequence {x, }:’:1 is decreasing if and only if VneN, x,,, <x,.

These definitions were accompanied by a brief verbal explanation. In the following
definition-based classification phase, the students were asked to fill in another table
to show, according to the definitions, whether each of the sequences was increasing,
decreasing, both or neither (without a ‘not sure’ option).

RESULTS

Spontaneous classifications

Table 2 shows the responses to the spontaneous classification task. The shaded cell
in each row indicates the response consistent with the definitions (of course, at this
stage it makes no sense to consider any responses ‘incorrect’).

Inc Dec Both | Neither | Not Sure
A 86 93 4
B 187
C 185 2
D 1 4 154 23 5
E 0 187
F 83 84 12 8
G 162 1 12 11
H 60 86 21 20
J 178 5 2 1 1
K 2 182 1 1 1

Table 2: Spontaneous classifications
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This shows that, in many cases, spontaneous conceptions were not consistent with the
definitions. Although it was the case that for sequences that are either increasing or
decreasing but not both (B, C, G, J and K) a substantial majority gave a response
consistent with the definitions, in all other cases, substantial numbers (often the vast
majority) gave a response inconsistent with the definitions. In particular:

o Every participant classified the constant sequence as neither.

e Approximately half classified the sequence A: 0,1,0,1,0,1,0,1,... as neither
(consistent with the definitions) and half as both.

e Only 23 participants classified the sequence D: 1,-1,2,-2,3,-3,4,—4,K as neither
(consistent), with a substantial majority classifying it as both.

e There was considerable difference of opinion regarding F: 1,3,2,4,3,5,4,6,... and
H: 0,1,0,2,0,3,0,4,.... Only 12 and 21 respectively gave the response neither
(consistent), with many more in each case selecting increasing or both.

It is worth noting that few students made use of the not sure option. It had been
anticipated that more would do so, but with hindsight it seems reasonable that
students who have not done much study of definitions and counterexamples would be
comfortable making classifications in the absence of precise criteria.

Definition-based classifications

Table 3 shows the responses to the definition-based classification task. Again,
responses consistent with the definitions are indicated by a shaded cell.

Inc Dec Both | Neither
A 1 54 132
B 187
C 1 186
D 1 65 121
E 6 86 94
F 9 57 121
G 143 7 37
H 2 57 127
J 181 4 2 0
K 186 0 1

Table 3: Definition-based classifications

This shows that there were noticeable changes towards responses consistent with the
definitions. Again, for the sequences that are either increasing or decreasing but not
both, a substantial majority gave a response consistent with the definitions. Exposure
to the definitions also meant that in all other cases but one, a majority responded
consistently with these. However, these majorities were not overwhelming so it is
not reasonable to say that the answer to RQ2 is an unqualified yes. In particular:
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e The number classifying G:6,6,7,7,8,8,9,9,... as increasing (consistent) dropped
from 162 to 143, with 37 participants now classifying this as neither. This could
be due to misinterpreting the inequality to mean ‘strictly less than’ or perhaps
becoming confused by the universal quantifier and believing the order relationship
has to be the same for each pair of consecutive terms.

e Just under half (86) classified the constant sequence E as both (consistent).
Almost exactly half (93) once again classified it as neither. Interestingly, 6 now
classified it as increasing. It is possible that the latter found that it did satisfy the
definition of increasing and assumed that this precluded being decreasing.

e For each of the four sequences A, D, F and H, approximately two thirds of the
participants gave the classification neither (consistent), with approximately one
third giving the classification both. The both response is in line with the most
common spontaneous classifications, so could occur when participants simply do
not change their minds. It is also in line with a misinterpretation of the universal
quantifier in the definitions, for example classifying 0,1,0,1,0,1,0,1,... as both
because it is true that for all n, either x,,, > x, or x,,, <x,.

n+l n+l

Individual responses

Analysis across all the participants shows that exposure to the definitions in this
context did lead to a marked (but far from complete) move towards classifications
consistent with the definitions. For each of the apparently counterintuitive cases
(except for the constant sequence), about two thirds of the definition-based
classifications were correct. Further examination of the individual participants’
responses allows us to examine the question of whether this means that about two
thirds of the participants ‘got the idea’ and gave entirely correct classifications. It
also allows us to discern some internally consistent interpretations of the definitions
that might indicate key misunderstandings. Table 4 summarises all the profiles of the
definition-based classifications. These profiles account for over 80% of the
participants and all the distinct profiles associated with four or more participants.

Response Profile n |Profile description
NIDNBN I N I D| 54 |Correct

N IDNNN I N I Dj| 30 |Correct except constant classified as neither

N I DNNNNN I D| 17 |Neither applied to all both and all neither

B I DBNB I B I D| 16 |Both and neither switched

B IDBNBNB I D| 9 |Both and neither switched; ‘steps’ classified as neither
B I DBBB I B I D| 12 |Both applied to all both and all neither

B I DBBBBB I D| 4 |Both applied to all both and all neither and ‘steps’

Table 4: Common definition-based response profiles
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This data tells us that it is not the case that two thirds of the participants fully “got the
idea”. In fact, only 54 (29%) gave a correct set of classifications, although a further
30 (16%) were correct for all except the constant sequence and 17 (9%) gave the
response neither for all both and all neither sequences (correct for all except the
constant and ‘steps’ [G: 6,6,7,7,8,8,9,9,...] sequences). In addition, it tells us that 41
(22%) either switched around both and neither or applied both to the majority of the
sequences. These latter profiles could indicate interpretations in which the universal
quantifier is misunderstood or ignored, or could indicate that participants were
thinking of sequences such as D: 1,-1,2,-2,3,-3,4,—4,K as two different sequences
(1,2,3,4,... as increasing and —1, =2, =3, —4,... as decreasing). This thinking would
be consistent with findings of Tall & Vinner (1981).

Because a relatively small number of participants gave fully correct definition-based
classifications, we also examine the profiles for the spontaneous classifications. This
allows us to investigate whether the students who gave correct definition-based
classifications were already mostly correct in their spontaneous classifications, or
whether some did reach a correct profile by making a substantial change in their
interpretation. This is more difficult to do, because (unsurprisingly) there was more
variation among the spontaneous classifications. Indeed, there were only two profiles
given by more than eight students; we discuss each of these here.

42 participants (22%) spontaneously gave the ‘both and neither switched’ profile,
suggesting that this is the most natural interpretation of combinations of the concepts
increasing and decreasing for sequences. It is also internally consistent: these
students apparently considered a sequence to be both if some terms are less than their
predecessors and some are greater, and neither if all terms are the same. Of these 42
participants, for the definition-based classification:

e 12 changed to CORRECT.
¢ 9 changed to correct except constant classified as neither.
¢ 9 remained with both and neither switched.

The second prevalent profile, given by 28 participants (15%), also shows some
internal consistency, although in a way that might not be recognised as such by a
mathematician accustomed to precisely formulated property specifications. These
participants classified sequences A:0,1,0,1,0,1,0,1,... and D:1,-1,2,-2,3,-3,4,-4,K as
neither, which is consistent with the definitions. They classified F:1,3,2,4,3,5,4,6,...,
G:6,6,7,7,8,8,9,9,... and H:0,1,0,2,0,3,0,4,... as increasing, perhaps indicating that
the presence of a general ‘upward trend’ was enough to gain this classification, and
without apparently experiencing the fact that H has infinitely many zero terms as
problematic. Of these 28 participants:

e 12 changed to CORRECT.
¢ 6 changed to neither applied to all both and all neither.
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This analysis of common spontaneous classifications gives some indication that there
is not a straightforward relationship between those who gave correct definition-based
interpretations and ‘almost correct’ initial responses. In particular, a sizeable
proportion of those who moved to correct classifications did so from substantially
different spontaneous classifications. We continue to analyse the data for patterns in
the responses to the ten separate sequences.

PEDAGOGICAL IMPLICATIONS

Exposure to a broad range of examples may be appropriate in and of itself, since
research indicates that at least some students do not spontaneously generate examples
in response to definitions (Dahlberg & Housman, 1997), that one reason for students’
difficulties with proof is that they do not have well-developed example spaces
(Moore, 1994) and that at least some successful mathematicians use examples
extensively to support their reasoning (Alcock & Inglis, 2008). A task such as that
used here provides exposure to a deliberately broad range of examples, with the
specific aim of including some for which there is likely to be conflict between
spontaneous and correct definition-based classifications.

With this in mind, a lecturer might use the outcomes of this study in several ways.
First, they might simply give extra attention to the issue of definition-based
classification, since even simple definitions may not be applied reliably by students
who are unaccustomed to this type of reasoning, and even an apparent move toward
correct definition use might mask underlying misconceptions that are resistant to
change. Second, this task could be used as an introduction to these concepts, with
subsequent discussion focused on the common misinterpretations. Third, one could
run a similar intervention in which students were allowed to confer with each other at
some stage. In this case, examples A: 0,1,0,1,0,1,0,1,..., F: 1,3,2,4,3,5,4,6,... and H:
0,1,0,2,0,3,0,4,... have particular potential as pivotal examples, since they seem to be
those for which there is considerable variation in initial classifications so that there
would likely be disagreements to be resolved among the class.

Such suggestions depend, of course, upon the generalisability of the results presented
here. It might be thought that because these students attend a high-ranking
institution, they would better at all types of mathematical tasks than is typical.
However, precisely because they are considered successful and capable, these
students study Analysis in the first term of their first year at university. At many
other institutions students do not study it until the second term or second year, and
thus come to it with more experience of learning university mathematics, and more
experience of working with definitions in subjects such as elementary set theory,
linear algebra, etc. Overall, we do not see a strong reason to believe that the
responses would be substantially different for those studying the same material at
other institutions, though obviously more research is needed to establish this.
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RESEARCH IMPLICATIONS

The main question of interest here is whether one or more interventions like this can
have a positive impact on students’ engagement with definitions in general and on
their eventual attainment. That is, does repeated exposure to challenges to one’s
spontaneous conceptions, and subsequent work with definitions, lead to an
underlying cognitive shift in the process of making classification judgements and
possibly in the use of definitions in mathematics more broadly? Further study would
be necessary to establish whether the changes observed in this study have a long-term
effect, even in this restricted context. This could be explored in two senses: whether
just this one exposure would have a lasting impact over a longer time frame or
whether further exposure to similar tasks in the same context would have increased
effect, even for those classifications that appear counterintuitive and resistant to
change.
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IMPROVING ELEMENTARY STUDENT TEACHERS’
KNOWLEDGE OF MULTIPLICATION OF RATIONAL NUMBERS
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The research results presented in this paper are only a small part of an action
research performed with the main aim of improving primary school student teachers’
understanding of mathematics. The re-teaching of mathematics was integrated with
the teaching of pedagogy by asking student teachers (STs) to perform children’s
activities which have the potential to develop relational understanding of the subject.
This paper presents some results concerning: (a) STs’ knowledge of multiplication of
fractions, (b) STs’ difficulties in relearning multiplication of fractions and decimals,
and some practical solutions proposed to ameliorate STs’ learning difficulties.

SOME RELATED LITERATURE

According to Skemp (1976), relational understanding involves knowing both what to
do and why it works, while instrumental understanding involves knowing only what
to do, the rule, but not the reason why the rule works. My initial experiences as a
novice mathematics school teacher and later as a teacher educator led me to think that
both mathematics STs and primary school STs do not have enough relational
understanding of the mathematics they are supposed to teach. The first student’s
question which made me aware that I did not have the kind of knowledge necessary
for teaching was about multiplication of fractions. After three months I started
teaching, an 11 year old was puzzled by the result of 1/2 x 1/3 = 1/6 and asked “1/6 is
smaller than 1/2 and 1/3. Why do we get a smaller result number when multiplying
fractions?”. 1 could present my students with correct procedures, but could not
answer most of their questions concerning the reasons for using certain steps in the
procedures. These experiences led me to undertake an action research with the main
aim of investigating ways of helping primary school STs to improve their
understanding of mathematics in pre-service teacher education.

Studies of primary school STs’ knowledge of rational numbers tend to show that it
comprises mainly memorising a large repertoire of rules and algorithms with not
much understanding of the underlying mathematical concepts and relationships (e.g.,
Graeber et al., 1989, Stoddart et al. 1993, Philippou and Christou, 1994, and Luo, Lo
and Leu, 2008). Primary school STs could perform correct calculations with
fractions, but many important connections seemed to be missing. This result was
even more evident with multiplication and division of fractions. With respect to
multiplication of decimals, Graeber et al. (1989) found that the misconception
“multiplication always makes bigger” was held by some STs. They also had
difficulty in selecting the appropriate operation to solve multiplication word problems

2009. In Tzekaki, M., Kaldrimidou, M. & Sakonidis, H. (Eds.). Proceedings of the 33rd Conference of the International
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involving decimal numbers smaller than one. Luo, Lo and Leu (2008) found that the
hardest item to both U.S. and Taiwanese primary school STs was about
multiplication of fractions.

Although multiplication of rational numbers is not used very often in everyday
contexts, it is an operation that has important relationships with topics such as
equivalence of fractions and proportion. Simon and Blume (1994) found that STs
have difficulty in recognising ratio relationships. Similar to school students, they tend
to select additive strategies when multiplicative strategies are appropriate. Some of
the difficulties faced by the STs seemed to be connected to their weak pre-requisite
knowledge about multiplicative structures (i.e., if the ratio is 3:2, the height is 1% or
1.5 times the length of the base). In order to help future school students overcome the
idea that “multiplication makes bigger”, STs need to acquire enough knowledge to be
able to teach operations with rational numbers earlier than is it is often recommended
by curriculum developers, with a focus on practical work and games (Amato, 2008).

In the literature about teacher education, there are other results about STs’ knowledge
of multiplication of rational numbers, usually followed by a set of recommendations.
However, I could only find two studies about teacher educators’ efforts to improve
STs’ knowledge of the topic. These studies are reported in Stoddart et al. (1993) and
Rule and Hallagan (2006). They both used multiple representations to improve STs’
relational understanding of multiplication. This paper presents some results
concerning: (a) STs’ knowledge of multiplication of fractions, (b) STs’ difficulties in
relearning multiplication of fractions and decimals, and some practical solutions
proposed to ameliorate STs’ learning difficulties within the time available.

METHODOLOGY

An action research was carried out as part of a mathematics teaching course
component (MTCC) in pre-service teacher education (Amato, 2004). The component
lasts one semester (80 hours), is the only compulsory component related to
mathematics offered to primary school STs at the University of Brasilia. There were
two main action steps and each lasted one semester. So each action step took place
with a different cohort of STs. The third and subsequent action steps were less formal
in nature, and involved less data collection. The main research question of the study
was: “In what ways can primary school STs be helped to improve their relational
understanding of the mathematical content they will be expected to teach?”.

A new teaching programme was designed with the aim of improving STs’ relational
understanding of the content they would be expected to teach in the future. In the
action steps of the research, the re-teaching of mathematics was integrated with the
teaching of pedagogical content knowledge by asking the STs to perform children’s
activities which have the potential to develop relational understanding. These
activities had four more specific aims: (a) promote STs’ familiarity with multiple
modes of representation for most concepts and operations in the primary school
curriculum; (b) expose STs to several ways of performing operations with
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manipulatives; (c) help STs to construct relationships among concepts and operations
through the use of versatile representations; and (d) facilitate STs’ transition from
manipulatives to symbolic mathematics. About 90% of the new teaching program
became children’s activities which are based on the notion that a deep understanding
of mathematics can be achieved by involving learners in “activities that embed the
mathematical ideas to be learned in five different modes of representation with an
emphasis on translations within and between modes” (Cramer, 2003, p. 462). These
modes will be referred as: (a) contexts (real-world situations), (b) manipulatives, (c)
diagrams (part-whole diagrams), (d) verbal (spoken languages) and (e) symbols
(written symbols). The main activities for multiplication in the actual programme are:

(1) Whole-class discussion about how to calculate %2 x V4.

(2) Translating from symbols to manipulatives (paper strips already divided into parts
with vertical lines). STs compare the sizes of ', V4, and the product 1/8. I describe my
own initial difficulties and frustration in teaching multiplication of fractions.

(3) [Included in the second and subsequent semesters] Translating from context and
verbal to manipulatives. STs cut two A4 sheets of paper (two “cakes”) into thirds and
show: (a) 6 portions of 1 third or 6 times 1/3, (b) 5 portions of 1 third or 5 times, [...], (f)
1 portion of 1 third or 1 time 1/3, and (g) half of a third or half time 1 third (1/2 x 1/3).

(4) Translating from context and verbal to manipulatives. STs fold and colour sheets of
A4 paper (rectangular “cakes”) to represent: (a) 1/2x1/4 (b) 1/4x1/2, (c) 3/4x1/2, (d)
1/4x2/3 and (e) 3/4x2/3. In the tenth and subsequent semesters four more sums were
represented in this way: (f) 0.8x0.1, (g) 0.4x0.2, (h) 0.2x0.4, and (i) 0.6x0.9.

(5) Translating from diagrams to verbal. STs were shown pictures drawn in A4 cards
(flash cards). Each card had one face showing a fraction of a square coloured in yellow.
The other face had the same picture, but it also included a fraction of the yellow part
coloured in green. The class verbalise the sum and the product.

(6) Translating from context/verbal to manipulatives (circular “pizzas” made with
plasticine). STs cut the pizzas to represent: (a) 1/3x1/4, (b) 1/3x2/4, (c) 2/3x3/4, (d)
1/4x1/3, (e) 1/4x2/3, and (f) 3/4x2/3.

(7) [Included in the second and subsequent semesters] Translating from symbols to
manipulatives (paper strips already divided into parts with vertical lines). STs colour and
draw horizontal lines to represent: (a) 4/5x1/2, (b) 3/4x5/8, (c) 0.3x0.1, and (d) 0.7x0.8.

(8) Exercises involving translations from symbols to square diagrams. STs colour a
fraction of a fraction with (i) vertical and (ii) horizontal cuts. In the third and subsequent
semesters STs were also asked to do similar exercises for a decimal of a decimal.

(9) Exercises involving translations from square diagrams for fraction of a fraction to
symbols. STs write the sum and the product. Similar exercises for a decimal of a decimal
will be included next semester.

(10) [Included in the tenth and subsequent semesters] Translating from context and
verbal to manipulatives (rectangle “walls” made with paper squares with area of 1 cm2).
Only halves and quarters are used because of the small size of the squares. For whole-
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class discussions similar rectangle “walls” made with paper squares with area of 1 dm2
are displayed on a board with the help of pins. Halves, thirds, quarters and fifths are used.

(11) [Included in the fourth and subsequent semesters] Exercises involving translations
from area diagrams (rectangles divided into unit squares with area = 1 cm2) to symbols
and vice versa.

Four data collection instruments were used to monitor the effects of the strategic
actions: (a) researcher’s daily diary; (b) middle and end of semester interviews with
STs; (c) beginning, middle and end of semester questionnaires; and (d) pre- and post-
tests. The questionnaires and interviews focused on STs’ (i) perceptions about their
own understanding of mathematics and their attitudes towards mathematics before
and after experiencing the activities in the teaching programme, and (ii) evaluation of
the activities within the teaching programme. The tests involved open-ended
questions, so that relational understanding could be probed through the context of
teaching children. Each page of the tests contained three questions. The same heading
was used for all the pages in the tests: “Answer the following questions as if you
were introducing the concepts involved to primary school children. Describe briefly
what you would do and say in each situation. Whenever possible draw pictures to
illustrate your ideas.” Question F5 was about multiplication of fractions: “How would
you explain the reason for the result of 3/4 x 1/2 (2/3 x 1/4 in the post-test)?”. Much
information was produced by the data collection instruments but, because of the
limitations of space, only some results concerning multiplication of rational numbers,
will be reported here.

SOME RESULTS

(a) STs’ knowledge of multiplication - Although the results presented in this section
are mainly concerned with the second semester question about multiplication of
fractions, the general patterns which emerged from the tests were similar in both the
first and the second semesters. The STs who presented some relational understanding
in the pre-tests were often those who had previously done a vocational teacher
education course at school level and were already qualified as primary school
teachers. They were seeking a second qualification at university level. The pre-test
median mark was 10% and the post-test median mark was 70% in the second
semester. The difference in the two medians indicates a considerable improvement in
understanding, as judged by the tests. However, operations with rational numbers
proved to be the most difficult topics to re-teach STs.

Only two STs showed a good relational understanding of multiplication in the pre-
test. Both provided useful written explanations and diagrams. Seven STs wrote that
they did not know how to explain the ideas behind multiplication of fractions. In the
pre-test some drew part-whole diagrams, but were unable to relate the diagrams to the
operation in any relational way. There were a number of unhelpful diagrams in both
tests. Some STs represented: (a) only the factors (% and %) with two separate part-
whole diagrams (pre-test frequency = 3 STs and post-test frequency = 1 ST); (b) the
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factors and the product (3/8) in a third diagram (pre = 3 STs and post = 2 STs); and
(c) represented only the product (pre = 2 STs and post = 2 STs). One ST expressed a
misconception in her explanation: “I would say that when multiplying fractions we
get a result which is even bigger than the addition of those two fractions”. The pre-
and post-tests responses of each ST were compared to investigate any changes in
relational understanding which could be attributed to the teaching programme. An
example of what I considered to be an improvement in relational understanding for
multiplication of fractions is:

ST203 (pre-test): I learned only as a rule.

ST203 (post-test): [Drew a useful part-whole diagram] It is important the verbalisation in
this case. Traditionally it would be said: 2 thirds times 1 quarter. What must be really
said is: I wish 2/3 of 1/4. I got 1/4 and cut it into three parts. I was asked for 2/3. If 1/4
was transformed into 3 parts, the same it will happen to the other 3/4, one by one, which
will give me a total of 12 parts (denominator). I take 2 of these parts.

The number of STs in the second semester was 44. More than half of the STs (n = 23)
who finished the second semester (three gave up in the middle of the semester) did
not show any changes in their understanding of multiplication of fractions. They
continued to rely only on writing the steps in the algorithm. Perhaps the algorithm
was too easy to need learning a new schema: ST216 (pre-test) “Multiplication [of
fractions] is the easiest operation. It is only normal multiplication”. Eighteen STs
provided both useful diagrams and good verbal explanations in the post-test. Two of
them had shown a good understanding in the pre-test. Four of them provided a
correct result, a helpful diagram, and a good verbal explanation, but they did not
answer the pre-test and so no comparisons could be made with the post-test. So, only
12 STs were considered to have had great improvements in their relational
understanding from the pre- to the post-test.

These results did not fit well with the results of the post-questionnaire about
understanding, where 81.6% of the STs said that the programme had improved their
understanding of multiplication of fractions. Addition and subtraction of natural
numbers were the topics which some STs reported not gaining much from the
programme, probably because they thought they already knew enough about those
topics before the MTCC. In another question in the post-questionnaire about
understanding, some STs said they still needed to improve their knowledge of certain
topics. As in the reconnaissance interviews with practising teachers (Amato, 2008),
the STs’ remarks were mainly about rational numbers, especially multiplication and
division of rational numbers.

(b) STs’ difficulties in relearning multiplication - Activity (4) (see list of activities in
the methodology) involved folding and colouring sheets of A4 paper. The class was
asked to represent 2 x 4 by: (a) imagining that the rectangle cake was baked for
lunch, (b) colouring in yellow 1/4 of the rectangle and imagining that the yellow part
was the amount of cake which was left from lunch, (c) colouring in blue 1/2 of the
yellow part and imagining that the part which became green was the amount of cake
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eaten later as an afternoon snack, and (d) finding out which portion of the whole cake
was eaten as a snack (1/8). Most STs did not have many problems in representing: (i)
1/2 x 1/4, (ii) 1/4 x 1/2 and (iii) 3/4 x 1/2. However, difficulties appeared when they
were asked to represent multiplications in which the second fraction had numerator
greater than one such as: (iv) 1/4 x 2/3 and (v) 3/4 x 2/3. Some STs could not
represent 1/4 of 2/3 with only vertical cuts. The line separating the 2 thirds (yellow
part) seemed to prevent them from imagining 1/4 of the yellow part. I suggested they
cover the line separating the two yellow thirds and imagine it did not exist (Figure 1).

I .
Figure 1 Figure 2 Figure 3 Figure 4 Figure 5

A ST suggested a second strategy which involves colouring 1/4 of each third (1/4 of
2/3 = 1/4 of 1/3 + 1/4 of 1/3 = 1/12 + 1/12) (Figure 2). Another ST suggested
representing the quarters in a different direction (horizontal cuts) from the direction
used to cut the thirds (vertical cuts) (Figure 3). When the class was asked to compare
the three strategies, many STs agreed that the “vertical/horizontal cuts”: (a) was
easier, (b) provided the product obtained by the symbolic algorithm (2/12), and (c)
the slices did not become too thin. I added that the vertical/horizontal cuts were
similar to the lines in the area diagram used before for multiplication of natural
numbers (Amato, 2005). I proposed STs represent 1/4 of 2/3 by hiding one of the
thirds behind the two thirds (Figure 4). In this way their attention would be more
focused on calculating a part of 2/3 and not on the initial whole “cake”. Some STs
also had problems in visualising the product. They thought that the result of 1/4 of
2/3 should be 2/8 and not 2/12 (Figure 3). They interpreted the yellow part (2/3) as
the unit and did not refer to the original unit (the whole cake).

Multiplication of fractions was revised with activities involving circular “pizzas”
made with plasticine (Activity 6). Again the cut separating the 2 quarters seemed to
prevent some STs from representing 2/3 of 2/4. As only cuts through the centre are
possible in order to get equal slices with circular units, the class agreed that
vertical/horizontal cuts were not possible. Only the first two strategies would work.
After the first semester I increased the number of activities for multiplication,
especially to sums in which the second fraction has numerator greater than one (e.g.,
1/4 x 2/3 and 3/4 of 2/3) and for decimals.

The paper strips used in activity (7) are already divided into parts with vertical lines.
The only exception is the strip divided into 100 parts which has both vertical and
horizontal lines (a 10 by 10 rectangle). ST241 jokingly commented after completing
the activity: “There are too many pieces. My brain has melted. I have done much
thinking”. The STs’ difficulties in colouring a decimal of a decimal were even greater
than with a fraction of a fraction. Therefore, activity (8) was also extended to
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decimals in the third and subsequent semesters. Later, in the tenth semester, the same
was done with activity (4). To save time in the case of decimals, I made copies of a
sheet of paper with all the margins divided into ten equal parts. With large classes it
proved to be difficult to have several activities involving different ways of
representing the same operation. In activities 1 to 6, STs represent multiplication
using cuts in the direction they wish. In the last activities (7 to 11) they are asked to
draw (i) vertical and (ii) horizontal cuts. This convention made communication easier
among the STs and helped them connect multiplication of fractions and decimals to
the area representation used for multiplication of natural numbers (Amato, 2005).

While some STs only needed a few activities to understand rational numbers, others
needed more activities. Some STs suggested increasing the teaching time for
operations with rational numbers because they were much more difficult than
operations with natural numbers (Amato, 2004). Besides, focusing more on
operations with natural numbers during the first semester proved to be uninteresting
for some STs. Apart from the difficulties in learning representations which were new
to them, multiplication of fractions was one of the last topics in the first semester
when STs missed more classes than usual in order to finish their end of semester
assignments of other course components. Therefore, I decided to start the activities
for operations with rational numbers earlier in the third and subsequent semesters.

With the short time available, the area representation for multiplication of fractions
(e.g., Chinn and Ashcroft, 1993, p. 155) in activity (10) proved to be a very powerful
and versatile representation. It provides STs with more experiences with
multiplication and it helps them make important connections among: (a)
multiplication and division of natural numbers, fractions, mixed numbers and
decimals, (b) measurement of perimeter and area, and (c) addition of fractions. For
example, through the “wall” in Figure 5, it is possible to visualise many related sums
connected to area (i) [bottom left] 3x5, 15+3, 155, (ii) [top left] 2x5, 2V4+5, 2V4+4,
(iii) [bottom right] 3xY, 1%+3, 1%4+Y%, (iv) [top right] Yax's, Ya+'s, (v) [whole
rectangle] 3%x5% = 15+2%+1%+Y, 19%+3%, 19%+5%, and to perimeter (vi)
2x3+2x5, 2xY2+2x5, 2x3+2xY4, 4xY4, 2x3Ya+2x5 Y.

SOME CONCLUSIONS

The strategic actions provided an appropriate solution to STs’ instrumental
understanding. They considered the children’s practical and written activities to be
important for their relearning (Amato, 2004). However, according to the practising
teachers in the reconnaissance stage (Amato, 2008) and to the STs in the action steps,
much more time in teacher education is needed to acquire the confidence and
cognitive structure they need to teach rational numbers well. The data collected
indicated that many STs improved their understanding of the topic, but operations
with rational numbers proved to be one of the hardest topics in which to improve
STs’ understanding. Ideally, the activities for this topic should be spread over a
longer period of time and more activities are needed. Therefore, another strategic
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action was to increase the teaching time dedicated to compulsory MTCCs, but such
action involved institutional changes which proved to be very hard to achieve.

STs’ difficulties were also related to “weaknesses in my teaching” and so my own
pedagogical knowledge was an important social factor affecting their relearning of
mathematics and pedagogy. Useful ideas for ameliorating unanticipated problems did
not come to my mind immediately after observing these problems. The literature
about teaching and learning mathematics does not always present solutions to very
specific problems. Discovering weaknesses in my own teaching proved to be a slow
process. As it may be noticed from the changes made in the programme, in some
cases insight only came after much effort and thinking.
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How do students, with different background knowledge in mathematics, read a
mathematical text? How do they perform the transformations between the different
representations (formulas, graphs and words) in order to grasp its meaning? We use
eye tracking to highlight the ongoing process of making sense of mathematical
representations during problem solving. Eye tracking is a method enabling a close
examination of how attention is directed at a stimulus. Its use in educational settings
is increasing because of its great potential in capturing various aspects of the
learning processes. Our data indicate quantitative and qualitative differences
between the novice and expert group. We discuss some implications for mathematics
education in general, and the design of mathematics textbooks in particular.

THEORETICAL FRAME AND ISSUES

Mathematical objects are peculiar: they are not accessible by themselves but only
through representations in suitable registers: “the only way to have access to them
and deal with them is using signs and semiotic representations” (Duval, 2006, p.
107). For example, a function is accessible through its analytic equation, its
numerical table, or its graph. This peculiarity has important consequences for
mathematical activities and for the students who learn mathematics. In fact, in order
to properly grasp and manipulate mathematical objects and their relationships, it is
necessary to acquire competences in transforming representations from one register
to another, and within the same register (Duval, ibid.).

In mathematics education it is not an easy goal to provide students with competences
in transforming representations. Many pitfalls and mistakes in students’ mathematical
performances are due to feeble or missing competences of this kind: for some
examples, see Duval (2006, pp. 115-124), or the notion of pseudo-structural students
in Sfard (1991). This weakness is particularly evident when considering the
differences between novices and experts in managing such transformations, for
example in problem solving activities (Schoenfeld, 1985).

In this project, we look at the differences between experts and novices in the way
they perform transformations between representations in different registers. This
research problem can be studied using a variety of methodologies (e.g. analysing
verbal or written productions). We use an innovative tool, namely eye-tracking, for
recording the eye movements of a subject involved in mathematical tasks. The eye

2009. In Tzekaki, M., Kaldrimidou, M. & Sakonidis, H. (Eds.). Proceedings of the 33rd Conference of the International
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movements can give us information on cognitive processes of the subject (Yarbus,
1967, p. 190). Our research question and the method we use require competences not
usually found in a single person. Therefore, our group consists of researchers in
mathematics education, statistics, cognitive science and eye tracking methodology.

Eye-tracking has been used in many fields. Studies focusing on mathematics include
students’ interpretation of motion graphs (Ferrara & Nemirovsky, 2005; Ferrara,
2006), learners’ interactions with multiple representations in a computer environment
(San Diego et al., 2006), and subjects solving geometry problems (Epelboim &
Suppes, 2001). To give an idea of how eye tracking can be used to highlight
differences between performances of subjects, we report some results from Epelboim
& Suppes (2001). They found that experts asked to find an angle on a diagram,
marked by a ‘?” (fig. 1a), tend to move their eyes so as to “fill” a geometric entity not
present on the diagram: namely, a triangle (fig. 1c). In comparison, novices seem to
consider only the objects already existing in the diagram (fig. 1b).

B

g the diagram b: fixations of a novice ¢ fixations of an gxpert

Figure 1. Epelboim & Suppes experiment.

From the patterns of fixations in fig. 1b and 1c, Epelboim & Suppes (2001) inferred
significant differences between the cognitive processes of novices and experts. The
fixations of the expert indicate that s/he imagines an element not present in the figure,
namely the triangle (tracing with the eyes the lacking side), whereas those of the
novice show that s/he only looks at the existing parts of the drawing.

In our study, we asked University students with different mathematical background to
match a certain mathematical text, formula or graph to another one. The eye tracker
was used to study their eye movements while solving the task; it provides us with
information over time of the subjects’ eye movements. Our overall aim is to describe
differences in eye movement behaviour between experts and novices by combining
both qualitative and quantitative analyses.

In this perspective, relevant questions for the research are: how do novices and
experts examine the mathematical representations and the alternatives? Is it possible
to outline different patterns in their eye movement behaviour?
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The remainder of the paper is divided into two sections. The next section describes
the experimental methodology and provides an initial analysis. The final part draws
some first conclusions from the research.

EXPERIMENT AND METHODOLOGY

We collected data from 46 Swedish participants, all university students, but with two
different knowledge background: 24 had no previous university studies in
mathematics, while 22 had one year of studies at an engineer faculty. We will refer to
the first group as “the novices” and to the second group as “the experts”.

Each stimulus is a multiple-choice item made of an input and four alternatives. For
each stimulus, the participants were asked to determine, among the four alternatives,
the one equivalent to the input (one and only one of them was correct). The stimuli
reflect the end of high school knowledge in advanced mathematics. Since we were
interested in relationships between diverse representations (see above), three types of
stimulus were taken into account: the input is a formula and the alternatives are texts,
namely contain only words (ft type N=15 items); the input is a graph and the
alternatives are texts (gt type N=12 items); and finally, the input is a text and the
alternatives are formulas (tf type N=16 items). The first stimulus of ft type (labelled
ft01) is shown in fig. 2a; the other types are similar in form as seen in fig. 2b and 2c.

VoK den verikala axen Ten fons Resaatetav 14 phs S, gingerresaltatetav 14 minus .
e e faun

14%14-8

1448%14-8

14+8%14+8

(14+8)*(14-8)

Figure 2. Examples of the stimuli: a) ft type, b) gt type, c) tf type.

The stimuli were different with respect to the number of steps required to solve them.
For example, some stimuli may require a match between different ways of writing the
same thing. Others may require multiple steps of reasoning for matching the correct
alternative with the input.

At the laboratory, participants received a written instruction prior to the experiment
and were then comfortably seated in the SMI HighSpeed eye tracker (fig.3).
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Figure 3. SMI HighSpeed eye tracker.

This eye tracker has a precise accuracy and a sampling frequency of 1250 Hz. Stimuli
were presented on a computer screen with the stimulus program called E-prime. In
order to calibrate the accuracy of the eye tracker, participants looked at 13 dots in a
specific pattern covering the whole screen. After completing the calibration, further
instructions followed: a practice block was presented in order to familiarize
participants with the test situation and the structure of the task. The task was to
determine which of the four alternatives is equivalent to the input; to choose an
alternative the subject had to click on it with the mouse. No paper and pencil were
given to the participants. All stimuli (ft/gt/tf) were presented to the participants in
random order. Each trial showed a mathematical representation (the input) for 5
seconds. Then all the alternatives were added to the screen for 40 seconds. After
giving their answers, participants rated how sure they were of their answer on a scale
from 0 (not sure) to 9 (sure), to control whether they guessed their answer or not (we
are not addressing the guessing practice in this paper, but in future analysis). At the
end, participants were asked if they could tell the purpose of the study. None could.
Thus, we assume that students behaved according to the instructions given, and not in
a way to strengthen or weaken our hypothesis by changing their behaviour
accordingly. Participants were debriefed and left with contact information to the
experiment leader.

As to our research questions above, we expect to find differences between experts
and novices in terms of eye movements. In the next section, we investigate our
expectations, analysing data by means of visualizations that illustrate processes over
time.

DATA ANALYSIS AND PRELIMINARY RESULTS

Eye tracking data can be visualised and analysed in multiple ways. In this discussion
we will use proportion over time graphs illustrated in fig. 4. Graphs show the
proportion of subjects in the group looking at the input and at each of the four
alternatives (on the y-axis) at a given time (time is on the x-axis). The input and each
of the four alternatives are represented as five separate lines in the graphs. Data in
this analysis contains the 40-second interval when both the input and the alternatives
are displayed on the computer screen, but graphs show only the first 25 seconds.
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Figure 4. Proportion over time graphs for novices and expert for stimulus ft01.

We will look at four characteristics: overall appearance, intertwining between the
input and the alternatives, temporal order, and highest peak. At a first glance on the
graphs, we can see differences in overall appearance between the groups. For
example, in the novice graph the overall appearance is fuzzy compared to the expert
graph. The fuzziness is represented by the fact that the lines are overlapping during
the majority of the time interval for the novices in fig. 4. Our interpretation is that
novices frequently alternate between the five areas (input and the four alternatives),
without any dominance for neither the input, nor the given alternatives. For the
experts the lines are more clearly distinguished, suggesting that there is a dominating
focus on one or a few areas represented by the input and the alternatives.

The second characteristic, intertwining, describes the relationship between the input
and the alternatives. We observe that for more difficult stimuli, experts are looking at
the input more than the novices. In the expert graph we can see that the line
representing the input is separated from the lines of the alternatives to a higher degree
compared to the novice graph. Our interpretation is that the experts are searching for
clues to the answer in the input, instead of searching among the alternatives as
represented by the overlapping pattern expressed by the novices.

The third characteristic is the temporal ordering of looking at the alternatives. For the
experts, the pattern of an increase and then a decrease for alternative A, followed by
an increase and a subsequent decrease in alternative B etc., suggests that the reading
of the alternatives is ordered. Our interpretation is that the experts are more
systematic than the novices, who do not show this pattern to the same extent. A final
noticeable characteristic is the highest peak among the alternatives, which for the
experts usually indicates the correct alternative; this is not the case for the novices.

To corroborate the qualitative analysis above, we used a statistical tool: the
autocorrelation function (fig. 5). Autocorrelation allows finding the correlation
between subsequent time intervals on the same line in the proportion over time
graphs. For each instant ¢, it gives the correlation (on the y-axis) between the
proportion of students looking at a certain part of the stimulus at ¢ and the proportion
of students looking at the same part at #+k (k is a natural number representing a lag
on the x-axis). It is a function of £.
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Figure 5. The autocorrelation function for stimulus ft01.
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The patterns in the proportion over time graphs (fig.4) are reflected in the
autocorrelation graphs in fig. 5. The many non-significant correlation peaks (close
and around x-axis) for the novices in fig. Sa signifies a random average viewing
pattern. Fig. 5d shows a clear and smooth decrease of the autocorrelation function (on
the y-axis) over increasing lags (x-axis). It indicates two things: first, a moderate
trend of simultaneous eye movements between areas among experts; secondly, a
slight tendency to periodicity in the proportion over time graph. This tendency is
shown by the dip of negative correlations (the region below the x-axis) in fig. 5d. Fig.
5b shows a similar but somewhat weaker trend compared to fig. 5d, while fig. 5S¢
shows such a weak trend that it borders to random noise (like in fig. 5a).

DISCUSSION AND OPEN ISSUES

The example presented above suggests that there are two overarching strategies for
the initial task: either spending a lot of time looking at the input, with excursions to
the alternative; or spending the majority of time on the alternatives, with quick visits
to the input. This provides an initial answer to the research question of how novices
and experts examine the mathematical representations and the alternatives. The
second research question concerns whether it is possible to outline different patterns
in eye movement behaviour: our initial data analysis shows that this is possible. We
want to further investigate whether this difference in strategies is characteristic of the
two groups, or whether it reflects a difference in difficulty of the particular task, or
the type of mathematical representation, or if it relates to whether the student gives a
correct vs. incorrect answer.

In the near future, we also plan to analyse the minute movements between areas, in
order to detect when in time overview looking on all areas occur, and when back-
and-forth comparisons between pairs of areas take place. These two types of visual
activities should be important indicators on phases in the cognitive processes.
Detailed pair-wise comparison indicates a deep processing of the areas looked at. It is
expected to be more common with experts, and also at later stages in the overall
process, when it is likely that all alternatives have been read. Another important
upcoming analysis looks at the visual behaviour just before a student has solved the
task. Students being certain that their answer is correct should have another visual
behaviour to areas just before giving it than students who give the wrong answer or
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happen to guess the right one. We expect to see long looks at the answer to-be-
selected, possibly indicative of self-confirmatory looking behaviour, or last minute
comparisons between alternatives of similar likelihood of being correct, that could be
evidence of uncertainty.

Our initial finding of different eye movement behaviours between novices and
experts has two direct didactic consequences. First, students have to learn sow to read
a mathematical task: they have to know where to direct their eyes in order to obtain
relevant information for the given task. But this competence must be taught: in fact
our data suggest that novices do not know how to read a mathematical representation,
because their eye movements are different from those of experts. The role of the
teacher with respect to this issue is fundamental. The competence of integrating
different representations needs to be emphasized as an essential skill in reading
mathematics. The relevance of such integrative competence is shown by Hannus’ and
Hyonéd’s (1999) study, in which low ability children did not look systematically
between a scientific text with the corresponding picture nearly to the extent as high
ability children. A second important consequence is that when teachers design
mathematical tasks, care should be taken to point out and support zow the task should
be read. The precise design of text and picture combinations is vital for reading and
integration, as shown by Holsanova, Holmqvist and Holmberg (2008): a serial
presentation of text and pictures resulted in a higher number of gaze transitions
between semantically related verbal and pictorial information, compared to a radial
presentation of the same content. A proper design thus facilitates readers’
construction of referential connections between text and illustration. Our initial
analysis points to the importance of not only teaching the proper mathematical
content, but also teaching sow to read all the representations of a mathematical text.
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We consider the role of gestures as a semiotic resource in the learning of
mathematics. Given the multimodal nature of communication in the classroom a key
issue concerns whether the various semiotic resources exploited in teaching produce
matching interpretations or not. In this study we used electroencephalography to
investigate the effect of gestures on brain activity related to semantic processing.
University students were presented with gestures followed by written words and
indicated whether there was a semantic match or not. Results show that
mathematical gestures produced similar brain activity to that elicited by other
gestures and language, demonstrating that they are semantically meaningful and
integrated into linguistic semantic processing. Possible didactical consequences for
the mathematics classroom are briefly considered.

BACKGROUND

Many recent research studies have highlighted the multimodal nature of people’s
general cognitive processes (for an overview see: Granstrom et al., 2002) as well as
of the learning of mathematics (Arzarello & Robutti, 2008). More precisely, analysis
of learning processes in the mathematics classroom identifies a variety of resources
utilised by students and teachers:

Words (orally or in written form); extra-linguistic modes of expression (e.g. gestures,
glances); different types of inscriptions (e.g. drawings, sketches, graphs,); various
instruments (from the pencil to the most sophisticated ICT devices), and so on. All such
resources, with the actions and productions they support, are important for grasping
mathematical ideas: in fact they help to bridge the gap between the worldly experience
and more formal mathematics (Arzarello et al., 2009).

In particular, gestures have been revealed to play an important role in thought
processes (McNeill, 2005). The psychologist Susan Goldin-Meadow and her
colleagues have analysed the relationship between gestures and thinking by
considering everyday conversations and sometimes mathematical arguments
developed by students and teachers (Goldin-Meadow, 2003). According to their
findings, gesture plays a role in cognition (not just in communication) since it is
involved in the conceptual planning of the messages. Therefore it is involved in
speech production because it plays a role in the process of conceptualization. Gesture
“helps speakers organize rich spatio-motoric information into packages suitable for
speaking [...] by providing an alternative informational organization that is not
readily accessible to analytic thinking, the default way of organizing information in
speaking” (Kita, 2000, p. 163). Spatio-motoric thinking (constitutive of what Kita
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calls representational gestures) provides an alternative informational organization
that is not readily accessible to analytic thinking (constitutive of speaking
organization). Analytic thinking is normally employed when people have to organize
information for speech production, since speech is linear and segmented (composed
of smaller units). On the other hand, spatio-motoric thinking is instantaneous, global
and synthetic, and not analyzable into smaller meaningful units. This kind of thinking
and the gestures that arise from it are normally employed when people interact with
the physical environment, using the body (interactions with an object, or an
instrument, imitating somebody else’s action, etc.). It is also found when people refer
to virtual objects and locations (for instance, pointing to the left when speaking of an
absent friend mentioned earlier in the conversation) and in visual imagery (for
example, gesturing in the air for drawing the graph of a function not present on
paper). Within this framework, gesture is not simply an epiphenomenon of speech or
thought; gesture can contribute to creating ideas:

According to McNeill, thought begins as an image that is idiosyncratic. When we speak,
this image is transformed into a linguistic and gestural form. The speaker realizes his or
her meaning only at the final moment of synthesis, when the linear-segmented and
analyzed representations characteristic of speech are joined with the global-synthetic and
holistic representations characteristic of gesture. The synthesis does not exist as a single
mental representation for the speaker until the two types of representations are joined.
The communicative act is consequently itself an act of thought. ... It is in this sense that
gesture shapes thought. (Goldin-Meadow, 2003, p. 178; see also McNeill 1992, p. 246).

Many studies have shown that gestures play an important role in supporting thinking
and communication processes, including in students who are learning mathematics
(for some examples and references see Goldin-Meadow, 2003; and Edwards et al.,
2009). In particular, Goldin-Meadow (2003) has pointed out the crucial role played
by matching and mismatching between gesture and speech, namely when gesture and
speech convey overlapping or non-overlapping information: “children who produce
gestures that ‘mismatch’ their speech at a certain point during their acquisition of a
math concept arrive at a deeper and longer-lasting understanding of that concept than
children who don’t” (Goldin-Meadow, 2003, p. 247).

A comparison between matching and mismatching semantic information is the basis
of a common effect studied in the field of electroencephalography (EEG), the N400.
EEG measures electrical signals generated by brain activity. The N400 is thought to
index semantic processing, and manifests itself in a difference in the brain response
to matching versus mismatching events. For example Wu and Coulson (2007a)
employed this methodology to show that iconic co-speech gestures modulate
conceptualization, enabling listeners to better represent visuo-spatial aspects of the
speaker’s meaning. Such studies concern mainly everyday conversation. As far as we
know, there have not yet been studies of this kind concerning mathematical concepts.
In this paper we present the results of an experimental study. They demonstrate that
gestures, whether representing relatively abstract mathematical concepts or more
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concrete actions, are semantically meaningful and influence the semantic network
accessed by written words.

The paper is divided in four parts: the first is the present chapter, which gives some
general information on gestures and thinking; the second describes the experiment;
the third its findings; the last one discusses the didactical consequences of our
findings.

EXPERIMENTAL EVIDENCE

The N400 effect exploited in the current study is an event related potential (ERP)
effect. Because the electrical signals generated by the brain are very noisy, the typical
response to a stimulus event is calculated by averaging electrical signals from the
brain over many presentations of the same type of stimulus. The N400 was first
demonstrated by Kutas and Hillyard (1980), who showed that the ERP in response to
reading the terminal word of a sentence was more negative approximately 400 msec
post-stimulus for semantically incongruent endings (e.g. “I take tea with milk and
dog”) than for semantically congruent endings (e.g. “He spread the warm toast with
butter”). This now well-studied effect shows a particular scalp distribution or
topography (maximal over central parietal regions, and larger over the right
hemisphere). A similar (possibly the same) N400 effect has since been found using
other stimuli, such as pictures (e.g., Barrent & Rugg, 1990; Hamm, Johnson & Kirk,
2002; McPherson & Holcomb, 1999) and words primed by gesture videos (Wu &
Coulson, 2007b).

In this study we examined the N400 to words which matched or mis-matched a
preceeding iconic gesture, either depicting a mathematical or an action concept. We
also included the classic N400 language task (Kutas & Hillyard, 1980, Johnson &
Hamm, 2000, Hamm et al, 2002), for comparison. If gestures activate a common
semantic system with words, then the topographies of the N400 effects in the
different conditions should not differ. If, on the other hand, the topography of the
N400 effect differs between conditions, we can conclude that the effects are
generated by different underlying neural mechanisms.

The 12 participants in the study (9 male; mean age 21 years) at The University of
Auckland were all right-handed, had English as their first language, and had a
minimum of the final year of high school calculus, with most completing or having
completed first year university mathematics. High density EEG (128 channel at a
sampling rate of 1000 Hz) was employed.

In the gesture task, participants were presented with a video clip of a gesture, which
lasted from 1500 to 2300 ms, followed by a probe word for 1000 ms, which either
matched or mismatched the gesture video. Finally the words “match” and
“mismatch” were displayed on the left and right of the screen in random order (to
prevent prior activation of a motor response), and participants pressed a
corresponding key to indicate the correct response.
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Blocks of either action or mathematical gestures were alternated. Only the hand and
torso was presented in the movie clips, which ranged in duration from 1580 ms to
2330 ms (see examples below).

<~ i\

Converging Perpendicular Lift Punch

Figure 1. Examples of stills from mathematical and non-mathematical gestures video.

The action gestures were based on previous research (Ozyurek, Willems, Kita, &
Hagoort, 2007): Drive, Drop, Give, Lift, Pull, Punch, Push, Stroke, Take, and Walk,
while the mathematical gestures corresponded to the concepts: Converging,
Decreasing, Diverging, Increasing, Linear, Maximum, Minimum, Parallel,
Perpendicular, and Quadratic. Within each experimental condition each of the 10
gestures was presented 12 times (6 congruent and 6 incongruent), giving a total of
120 trials. Within-category incongruent pairings were pre-selected by the
experimenters and remained the same throughout the experiment.

In the language task, sentences were presented at a rate of one word per second, with
the last word either matching or mismatching, and a response cue as for the gesture
tasks. There were 120 sentence stimuli (60 congruent, 60 incongruent) from Johnson
and Hamm (2000).

RESULTS

The Language, Mathematical gestures, and Action gestures conditions showed 71,
90, and 87 significantly different electrodes (respectively) for matching vs.
mismatching stimuli over the normal N400 time window (320-400 msec), confirming
an N400 effect (see Figure 2). The Global Field Power (GFP), a measure of field
strength, was used to investigate differences in amplitudes of waves. There was no
significant difference between the three conditions. A topographic analysis of
variance (TANOVA) showed no significant differences in the topography for the
different conditions. These results suggest that gestures activate a semantic network
similar to that accessed by visually presented words.

2-60 PME 33 - 2009



Arzarello, Thomas, Corballis, Hamm, Iwabuchi, Lim, Phillips, Wilson

-200 -100 0 100 200 300 400 500 600 700 800

Figure 2. GFP of the three conditions (Action and Mathematics gestures and
Language tasks).
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Figure 3. Topographies for language task, action and mathematical gestures.

Results should nevertheless be interpreted with caution because the amplitude of the
N400 effect is known to be modulated by the cloze probability of the stimuli (Kutas
& Hillyard, 1984) and stimulus repetition (Federmeier & Kutas, 2001), two factors
that were equated between the sentence and gesture conditions.

Opverall this study demonstrates that gestures, whether representing relatively abstract
mathematical concepts or more concrete actions, are semantically meaningful and
influence the semantic network accessed by written words. Hence, mathematical
gestures can semantically prime a written word, to produce an N400 effect, compared
with the standard priming of concepts via words. All of this leads to a clear indication
that gestures could be usefully employed to assist in the teaching of mathematical
subject matter. Possible ways in which this may be achieved are discussed below.

DIDACTICAL CONSEQUENCES

As indicated above, the complex activity of human communication in any form,
including classroom teaching of mathematics, is reflected in multimodal semiotic
resources that include gestures, classified by McNeill (1992) into beat, iconic, deictic,
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and metaphoric, with the final three roughly corresponding to the icon, index and
symbol of semiotic signs. While metaphoric gestures are similar to iconic gestures in
making reference to a visual image, the image pertains to an abstraction (Roth, 2001).
Since mathematics has a primarily abstract content replete with symbols one would
expect that metaphoric gestures would be commonly used. McNeill (1992) gives the
example of a mathematician holding one hand steady and moving the other hand
towards it until the two palms touch while discussing the concept of ‘approaching a
limit’. Hence, while the gestures used in this study may appear iconic, they can
become metaphoric in nature when presented in a mathematical context, giving them
a different referent. We may wonder though whether students can distinguish
between the two. The fact that the participants in this study were able to relate the
gestures to the words with precise, abstract mathematical meanings may support this,
as well as the theoretical positions Roth (2001, p. 373) describes:

Despite their differences, most current theories...suggest that iconic gestures emulate
from a visual cognitive component that is semantically related to a concept or unit of
discourse that corresponds to the gesture. It is this idea that remains paramount to most
educational research on gestures because it suggests that gestures might actually provide
some insight into the mind of the speaker.

How then might a teacher use gestures? While there is still limited research on the
role of gestures in teacher-student interaction, there are at least two possible
dimensions to this. Firstly, it may be that students who are in transition with respect
to a particular concept, and are thus in a state of readiness to learn, may be
identifiable because of mismatches between their gestures and speech (Perry et al.,
1988), giving a discerning teacher insight into the student’s thinking. However, it is
not clear how such a skilled teacher might identify when a student experiences such a
‘teachable moment’, or how they would decide what type of assistance to offer them
(Alibali et al., 1997). Conversely the student might employ the matching gesture and
speech of the teacher and compare it with their own expectation. Secondly, a teacher
might employ gestures as part of multimodal activity that can enhance
communication of abstract concepts, by giving students additional resources to
understand what the teacher is presenting. The teacher may use iconic (narrative
function), deictic (grounding function) and metaphoric gestures. For example, iconic
gestures can be used to add a perceptual dimension to a concept such as ‘circle’,
although the abstract figural-concept requires the overlaying of properties on the
image (Fischbein, 1993). Deictic gestures are a complementary resource too, possibly
distinguishing examples from non-examples, such as pointing to one of a number of
figures while saying ‘this rectangle’, or circumnavigating a circle on the board while
orally distinguishing it from a disc.

One specific didactic strategy in which a teacher reflects a student gesture has been
described as the ‘semiotic game’ (Arzarello & Paola, 2007; Arzarello & Robutti,
2008). In this game the teacher uses one of the semiotic resources shared with
students (gestures) in communication in order to encourage more formal learning.
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This activity has been observed and described by researchers, with Alibali et al.
(1997, p. 190) noting “...both teachers and undergraduates frequently produced
additions that could be traced to the gestures of the children in the vignettes. More
than a third of these traceable additions were expressed in speech by the adults; the
remainder were expressed in gesture.” Arzarello and Paola (2007, p. 23) describe the
possible nature of the semiotic game this way: “The teacher mimics one of the signs
produced in that moment by the students (the basic sign) but simultaneously he uses
different words: precisely, while the students use an imprecise verbal explanation of
the mathematical situation, he introduces precise words to describe it...or to confirm
the words.” While Alibali et al. (1997, p. 192) question whether “...teachers, in fact,
make different instructional choices after having implicitly acknowledged that a
strategy is part of the child's repertoire (by reproducing the child's gestured strategy
in their own gestures)”, they note that we can infer that the strategy is active in the
teacher’s thoughts and thus may influence their choice of material to be taught or
stressed, and hence this is a didactical strategy that may be explicitly pursued.
Certainly this study has confirmed that teachers (and students) are able to understand
the semantic meaning of the gestures they observe, and hence are thus in a position to
respond to them. The phrase ‘I see what you mean’ may take on a literal meaning.

This discussion does raise questions for further study, aspects of which may be
amenable to ERP methodology. For example, Can students distinguish iconic and
metaphoric gestures in mathematics? Under what circumstances, and to what extent,
do teachers use metaphoric gestures? How do these metaphoric gestures mediate
students’ construction of conceptual knowledge? Another somewhat unexplored area
is the role of gestures in students’ collaborative mathematical activity, where inherent
problems due to inconsistencies and time delays, raise questions such as: “How do
these inconsistencies mediate coordination and understanding within a group of
learners?...How do temporal shifts mediate the communication comprehension in
student-centred activity?” (Roth, 2001, pp. 380-381).
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In this paper we explore students’ views with respect to changes in their motivation,
in classroom culture and of how their motivation in mathematics could be enhanced
across the transition to secondary school. Eight students’ were selected for semi—
structured interviews, on the basis of the changes in their goal orientations across the
transition. The analysis of the transcribed interviews indicates that students with a
mastery orientation are more reflective about themselves, whereas students with a
performance orientation focus less on their own role in motivation. Performance—
approach orientation appears to be adaptive when a mastery orientation is also
espoused, whereas the performance—avoid orientation leads to maladaptive outcomes
such as psychological distress after the transition to secondary school.

BACKGROUND AND AIMS OF STUDY

The period surrounding the transition from primary to secondary school has been
found to result in a decline in students’ motivation in mathematics which appears to
be related to certain dimensions of the classroom culture (Athanasiou & Philippou,
2006). Most researchers have so far examined motivational change for students as a
whole group using a quantitative methodology assuming and inferring that the
transition affects all students the same way. However, recent research in the area of
students’ perceptions of their classroom environments (Urdan & Midgley, 2003)
supports the view that students perceive the same environment in variable ways
related to the concerns they bring to the situation. Previous motivation research has
not attempted to reconcile individual change with change of the group as a whole.

Very few studies examined motivational change of individual students through
interviews. In the study of Demetriou et al., (2000) students’ responses to the
interviews reflected the difficulties some students have in sustaining their
commitment to learning. Furthermore, after the transition students analysed
friendships in terms of academic achievement and knew that if they were not with
friends they would work better. Pointon (2000) examined the differences between
primary and secondary school classrooms; the students reported that they liked
moving from one classroom to another, but at the same time they complained that in
secondary school they felt they had no space for their own. Furthermore the students
reported that their mathematics room in secondary school was dense and stuffy and
that that was the reason they did not like mathematics.
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The study of McCallum (2004) examined motivational change across the transition to
secondary school using both quantitative and qualitative data. The quantitative
analyses indicated the general decline in motivation across the transition, whereas the
interviews indicated that students with different goal patterns focused on different
aspects of the transition. Students with task and ego goals mainly focused on aspects
about themselves and the students expressing social goals focused on issues
concerning relationships. One limitation of this study was the lack of consideration of
the approach-avoidance distinction in motivation. The literature reveals that a
dichotomous model of goals (mastery vs. performance goals) is not sufficient in order
to graph students’ motivation (Covington & Miieller, 2001).

In this paper the analyses of eight students’ responses to interview questions are
presented. This study is a part of a longitudinal project examining students’
motivational change across the transition to secondary school. The aim of the semi—
structured interviews was to explore students’ views of the change in their
motivation, of the changes in classroom culture across the transition and of how their
motivation in mathematics could be enhanced. Specifically, the main themes of the
interviews were:

1. Students’ motivational profiles in primary and secondary school and their
motivational change stories after the transition. Students were asked questions about
their motives during mathematics in both school contexts and about the change in
their motivation across the transition (e.g., “What were the students’ reasons for
engaging in math work in primary school?”’; “Did students perceive a change in their
motivation in mathematics after the transition to secondary school?”).

2. Students’ perceptions of the differences between primary and secondary school.
Students were prompted to highlight aspects that they thought were different across
the transition through questions such as “What differences regarding the teacher did
students perceive across the transition?”.

3. Students’ perceptions of how their motivation in mathematics can be enhanced
after the transition. The questions addressed to students aimed to explore their views
about how their self and the classroom environment should be in order their
motivation to be increased (e.g., “What dimensions of the classroom contexts and
activities do students perceive as enhancing their motivation?”).

METHODOLOGY

Participants in the interviews were eight students who experienced the transition from
primary to secondary school. The students were selected for the interviews on the
basis of their gender and according to the changes in their motivational goal
orientations as they were tapped by questionnaire data at two time-point
measurements (one prior and one after the transition). More specifically, four couples
of students were created which included one boy (B) and one girl (G) who
experienced increase in their: (a) performance-approach goal orientation, that is in
their performance in terms of demonstrating ability (B1, G1); (b) performance-
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approach and mastery goal orientations, that is in their performance perceptions and
in their value of motivation for learning (B2, G2); (c) performance-avoid orientation,
that is in their need not to demonstrate lack of ability (B3, G3); and (d) mastery and
social goal orientations, that is in their value of motivation and in their perceptions of
how much socially—oriented they were (B4, G4) after the transition to secondary
school.

The students were interviewed once, four months after the transition. This time point
was selected because it allowed the examination of motivational change as it
unfolded without the immediate effect of the transition on students’ motivation. A
suitable interview time was arranged and the interview was conducted individually in
aroom at students’ school. All interviews were audio taped and later transcribed.

RESULTS

The findings of the analyses of the students’ responses are presented in this section
for each of the four groups of students mentioned above. Characteristic extracts from
the interviews are presented in order to illustrate the contexts of change more fully

Students with a performance-approach orientation after the transition

Prior the transition to secondary school B1 and G1 expressed high mastery and social
orientations; they reported that they liked trying hard to improve their abilities in
mathematics and they enjoyed working with other students. After the transition they
expressed predominantly a high performance-approach orientation; they wanted to
perform well to impress others.

G1: I liked mathematics a lot when I was in sixth grade. I enjoyed learning new things.
It was fun, especially when working with my friends.

B1: Now I want my friends to recognize how smart I am. It is very important for me.

Both students experienced a decline in their mastery orientation after the transition
since they did not focus on interest and doing ones best. They thought that being
smart was the main ingredient for being good and getting high grades.

B1: I don’t want to study for a long time, unless I really have to. I think that I am
smart, so I don’t need to try hard.

After the transition B1 and G1 focused on the limiting aspects of the classroom and
the teacher-student contexts and highlighted the negative aspects of the transition.
Both students’ mentioned that the classroom goal structure in elementary school was
more mastery-oriented since the teacher emphasized trying and improvement
whereas in secondary school the classroom environment became more performance-
approach oriented since the emphasis was on getting good grades.

G1: The teacher now wants us to answer all questions correctly. And he is telling us
about our grades...In elementary school the teacher focused on improvement. And it
was ok when we made mistakes. She was always telling us that mistakes were part of
the learning process.
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The two students also reported that in secondary school there was less interaction and
support from the teacher, whereas there was much more press.

B1: When we do mathematics this year we never talk to the teacher or to each other
about anything else beyond mathematics. The teacher is not friendly. And sometimes he
is pushing us to get high grades.
Both students mentioned that the competition among students was higher in
secondary than in primary school. They reported that in seventh grade they actively
made comparisons of the grades between themselves and their classmates.

G1l: When we have a test in mathematics we compare grades with classmates. Our
teacher compares it so we do it as well.

B1 and G1 did not admit having difficulties in mathematics across the transition,
although they were not looking forward to going to secondary school.

G1: The transition was not so bad. I thought it was going to be worse. I was very
worried whether the teachers of mathematics would like me.

In order to be more motivated in mathematics the two students would like the
classroom organized in ways that enabled them to have status or impress particular
people. These students were less reflective about themselves, since they seemed to
think that teachers or the way the classroom was organized had the major role.

B1: Ithink that I would be more motivated in mathematics if the teacher recognized the
good work I do in mathematics. When we do team work, he could say to my classmates
that I will be the leader because I can do the best work.

Students with high performance-approach and mastery orientations after the
transition

Prior to transition students B2 and G2 endorsed a high mastery orientation;
According to their statements their success in mathematics was the result of working
hard. After the transition both students endorsed performance—approach as well as
mastery orientations showing that a tension was developed between looking good and
doing well with putting in too much effort.

G2: I enjoy working hard this year as last year because I like getting high grades. That
is why I am not thinking of anything else when I am solving problems.

The students expressed the differences between primary and secondary school in both
positive and negative terms. They reported that their new classroom was more
performance-oriented than in primary school, but they considered it as a
characteristic of the secondary school. They also reported that there was less
participation and interaction with the teacher but they emphasized the knowledge of
teachers and thought that their secondary school teachers explained things better.

B2: This year the teacher is telling us how important is to get good grades. In
elementary school we never thought of getting high grades just doing well. But I think
that when you go to secondary school it is pretty logical for that to happen. It is just the
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way things are anymore. We will have exams at the end of the year so we have to
perform well.

G2: We do not participate in class so much as in sixth grade. The teacher usually
lectures. But I know now that my teacher is an expert in mathematics, so I do not mind
listening to him when he teaches.

Both students reported that in seventh grade they were more competitive with their
classmates than in sixth grade, whereas they perceived that the increase in the
competition environment was contributing to working hard and trying to improve.

B2: I compare my grades with those of my friends. If my grade is lower, I am trying
harder because I want to succeed in mathematics.

The two students admitted facing difficulties during the transition and they expressed
them in terms of the self and their response to the new situation. Both students were
aware of the change in their motivation and described it in positive terms.

B2: The transition was a bit difficult. At first I did not know what the teacher expected
from me. I did not know how to study in mathematics.

G2: I know that this year I am thinking much more about my grades than last year. I see
it as a means of being more concentrated in order to succeed.

B2 and G2 students focused both on themselves and on the school and classroom
environment as possible means to enhance their motivation in mathematics.

B2: How could I be more motivated? By reminding to myself that I have to try hard.
G2: I think I would be more motivated if I could work much more with my friends.
Students with a performance-avoid orientation after the transition

B3 and G3 were the students that prior the transition endorsed high mastery and
performance-approach orientations since they reported that they demanded
challenging tasks and enjoyed mathematics. After the transition students’ orientations
changed dramatically since they endorsed high performance-approach and avoid
orientations. They wanted to perform well in order to gain social status yet at the
same time they expressed an intense concern about not appearing dump.

G3: I always liked mathematics in elementary school. It was so exciting... The time
went by so quickly.

B3: This year I want to be good at mathematics by getting good grades. But I am very
much afraid of failure, because I do not want my friends to get the impression that I can
not do mathematics.

The two individuals construed the achievement setting as a threat and tried to escape
the situation if possible. The prospect of failure elicited anxiety and disrupted
concentration and task involvement.

G3: Often I think of the problem as a monster I have to fight with and I must win to
look good. Most of the times I want to run away. I want to try but failure is in my mind
all the time and I cannot think of how to solve a problem.
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B3 and G3 were extremely critical of the teacher and the classroom environment after
the transition. They reported that the classroom goal structure in secondary school
was more performance-oriented than in elementary school, whereas they perceived
less interaction with the teacher and thought that the teacher was less friendly and
supportive in secondary school than in primary school.

G3: Our teacher is not friendly. She usually does not allow us to participate in class or
to express our ideas in mathematics... She is just pressing us to do good work and find
the correct answers but she does not help us.

The students mentioned that the classroom environment in secondary school was
more competitive than in sixth grade. The two students compared grades with other
classmates and expressed a relief when other students performed worse than them.

B3: This year the environment is more competitive...l usually see my classmates’
grades. And I am really happy when I am performing better than them.

The two students admitted facing difficulties over the transition to secondary school
although they both expressed that they kept them for themselves.

G3: Math is more difficult this year. There are a lot of new things that [ have a difficulty
understanding them. But I never told anyone that I had difficulties.

Both students were not thinking that improving their motivation in mathematics was
basically dependent on themselves, since they focused on what the teacher could do
for them and they wanted their teachers to motivate them in order to respond.

B3: I do not think that there is much that I can do to enhance my motivation. I think that
this is a task for the teacher. My mathematics teacher must motivate me.

Students with mastery and social orientations after the transition

Prior the transition B4 and G4 endorsed high mastery and social orientations; they
saw poor result in a test or their inability to understand the new material as a signal to
work harder and they enjoyed working with friends when solving problems.
Students” motivational profiles did not change after the transition since both
orientations predominated in seventh grade. Both students thought that improving
was basically dependent on themselves and were aware of the effort they applied.

G4: 1 was always thinking that trying is important in math. If I did not understand the
new material taught in class I studied harder. I knew that the hard work would
eventually help me understand... I liked working with my friends. We worked together
a lot in sixth grade, in investigations.

After the transition G4 and B4 reported that the two school contexts were different
and they expressed these differences in positive terms. The two students experienced
an incline in the performance-approach classroom goal structure but they reported
that the mastery goal structure was evident as well.

G4: I know that there is an emphasis this year to be good. But to be good you have to
try and work hard... These two aspects exist together anymore.
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The students focused on the positive aspects of the teacher-student interactions and
did not perceive the teacher to be less supportive and friendly, whereas they
emphasized teacher’s knowledge. They perceived the classroom environment in
seventh grade to be more competitive than in sixth grade but they reported that this
encouraged them to be competitive with themselves and not with others.

B4: I think that my math teacher this year is as friendly and supportive as the teacher I
had last year. When we need help he is always willing to help us.

G4: We show the grades we receive at the tests to the rest of the class. But I do not
compare them. I focus on myself and that is all.

Both students admitted having difficulties in mathematics after the transition
expressing them in terms of the self and their response to the new situations. They
believed that their motivation in mathematics can be enhanced by focusing primarily
on themselves and with working with friends.

B4: The transition was really difficult... At first I did not know what the teacher
expected from me. I did not know how I was supposed to work in mathematics. So at
first I tried really hard...Now I know.

G4: I am always willing to try hard in order to learn new things and be a good student.

B4: I believe that I could be more motivated in mathematics if I had the chance to work
with my friends a lot. By working together I think that I would be more concentrated
and try harder.

DISCUSSION

The main aim of this study was to examine the contexts of motivational change of
eight students with different patterns of goal orientations across the transition to
secondary school. The students grouped together according to their goal orientations,
responded in ways that would be expected from their goal orientation emphases,
without any differences according to gender. For students like B3 and G3 the intense
concern about not appearing dump was foremost, whereas for students like B2 and
G2 a tension was developed between looking good and doing well with putting in
effort. Finally B4 and G4 represented the mastery—oriented learners, whereas B1 and
G1 appeared to be the performance-oriented confident achievers.

All the students appeared to be aware of the changes in their motivation across the
transition, although they were not all willing to express them. Students with a high
mastery orientation were the only ones who admitted facing difficulties expressing
these concerns in terms of the self and their response to the new situation, whereas
students with a predominant performance orientation expressed an intense concern
about keeping the difficulties for themselves. Previous studies (e.g. MacCallum,
2004) yielded the same results since the students who endorsed ego goals actively
made comparisons between themselves and their classmates, whereas the students
who espoused mastery goals tended to focus on themselves and tried to find
strategies to work things out.
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Although the students mentioned the same differences between primary and
secondary school, they were not seeing them in the same light. More specifically,
students with a high performance orientation tended to be extremely critical of the
classroom environment, whereas students with a high mastery orientation expressed
the differences in positive terms. Also the students with a more dominant mastery
orientation tended to be more reflective about themselves and focused more on the
importance of their own role in motivation, whereas performance-oriented students
focused less on their own role in motivation. In the literature, mastery orientation was
put forward as the most adaptive form of motivation that could lead to a better quality
of learning (MacCallum, 2004). In the present study, mastery-oriented students
appeared to have learned how to make the most of any environment and had a better
fit in secondary school than the students with other predominant orientations.

Some studies have suggested that although a performance-approach orientation is
sometimes associated with maladaptive patterns of learning it may also be associated
with some positive outcomes especially when a mastery orientation is also high
(MacCallum, 2004). In contrast performance-avoid orientation is associated with
maladaptive outcomes with no evidence of positive effects (Covington & Miieller,
2001). This study provided evidence supporting the above findings since it showed
that the performance—approach orientation is adaptive for certain students when a
mastery orientation was also espoused. The results of the study also indicate the
maladaptive nature of the outcomes associated with the performance-avoid
orientation. Specifically, the students with a high performance-avoid orientation
showed a significant psychological distress - that was not gender exclusive - that lead
to less enjoyment of mathematics.
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ABSTRACTION THROUGH GAME PLAY
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This paper examines the computer game play of an 11 year old boy. In the course of
building a virtual house he developed and used, without assistance, an artefact and
an accompanying strategy to ensure that his house was symmetric. We argue that the
creation and use of this artefact-strategy is a mathematical abstraction. The results
add to knowledge on mathematical abstraction: of non-traditional knowledge;
without teacher intervention, through game play.

We examine the game play of an 11 year old boy, Costas, who built virtual houses in
the computer game The Sims 2. We focus on an artefact and an accompanying
strategy he developed to enable him to build a symmetric virtual house and argue that
the creation and use of this artefact and strategy is a mathematical abstraction in the
sense of Schwarz, Dreyfus and Hershkowitz’s (2009) model of abstraction in
context. Issues explored in this paper other than abstraction are learning without
teacher intervention, non-traditional mathematical content and learning through game
play. The paper is structured as follows: an integrated review of literature and
presentation of the theoretical framework; the setting and methodology of the study;
results pertinent to the focus of this paper; a discussion of issues arising.

LITERATURE REVIEW AND THEORETICAL FRAMEWORK

We review literature on abstraction, with special regard to abstraction in context and
to learners working without teacher intervention, and present selected literature on
learning through game play.

There are many schools of thought about what a mathematical abstraction is. Boero et
al. (2002) and Mitchelmore and White (2007) both provide summaries of different
accounts of abstraction but most accounts can be regarded as belonging to one of two
schools of thought, empirical and socio-cultural. Empirical views consider, with
various levels of refinement, that abstraction involves generalisation arising from the
recognition of commonalities isolated in a large number of specific instances. Socio-
cultural views consider, in various forms, the development of an abstraction, through
the use of mediational means and social interaction, from an initial rough idea to a
refined construction that can be used in doing new, for the abstracter, mathematics.
Abstraction in context is a socio-cultural account which views abstraction as
vertically reorganising (vertical in the sense of Freudenthal, 1991) previously
constructed mathematical knowledge through three nested epistemic actions:
recognising (familiar mathematics), building-with (elements of familiar mathematics)
and constructing (new mathematics). Familiar and new mathematics will depend on
the person — what is new to one person may be familiar to another. Three abstraction
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stages are posited: a need for new mathematics; the construction of new mathematics;
the consolidation of the new mathematics, i.e. its use in further mathematical activity.
Schwarz, Dreyfus & Hershkowitz (2009) provide a comprehensive review of
abstraction in context including many PME papers.

Socio-cultural education researchers view mediation as paramount. This can be
reflected in a view that teaching is essential for learning, e.g. “learning physics will
not happen without teaching and the mediation of adult and of sign” (Tiberghien &
Malkoun, 2009). The veracity of this statement, we feel, depends on what one means
by teaching. If teaching refers to a teacher, then we feel that this is almost always, but
not always, the case in classroom learning. If teaching means mediation, then we
agree with the statement and note that learning, as we argue in the case of Costas, can
be computer mediated. Two contrasting abstraction in context studies report on
learning without teacher intervention. Dreyfus & Kidron (2006) reports on a solitary
learner, an adult mathematician, solving a problem concerned with bifurcations in
dynamic processes that she had set herself and which required new, to her,
mathematics. Abstraction was assisted by books, internet resources and
Mathematica™. Williams (2007) reports on “spontaneous” learning by individual
school students in working on mathematics set by adults; Kerri, for example, worked
on a problem in a test on the equation of a straight line. In both studies the
abstractions concerned scholastic mathematics, i.e. mathematics that might be
formally taught. In Costas’ case his abstraction concerned a symmetry technique
specific to the task he set himself in a specific computer game. Such mathematics
may not be visible to all or publicly valued but it is, we claim, still mathematics.

Mathematics educators often recommend mathematical game play, “Mathematical
games can foster mathematical communication ... can motivate students and engage
them in thinking about and applying concepts and skills” (NCTM, 2004). An early
study on games in mathematics (Bright, Harvey & Wheeler, 1985, p.133) concluded
“games can be used to teach a variety of content in a variety of instructional settings
... there is no guarantee that every game will be effective ... But many games are
effective”. Bragg (2006, p.233), however, in a study of students’ perceptions of game
play concludes that “it appears that assumptions that students will see the usefulness
of mathematics games in classrooms are problematic”. It depends, to us, on the game,
the students and the context of game play. The Sims 2 (2006) is a popular life
simulation computer game that allows players to control the lives and relationships of
game characters and create houses and neighbourhoods for them. Building a house in
The Sims 2 requires virtual money. Prensky (2006) refers to how players in The Sims,
the precursor to The Sims 2, can learn how to resolve social and financial household
issues through game play. Although the game play we report on did involve financial
considerations the learning we report on is not primarily financial in nature.
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SETTING AND METHODOLOGY

This paper reports on an exploratory case study (Yin, 2003) of one 11 year old
Cypriot boy, Costas, who satisfied three a priori criteria: prior experience of
computer game play but not of The Sims 2; ability to read and understand English
(the language of the game); perceived willingness and ability to express himself to
the researcher (first author, a Cypriot). Costas was told that the game play was for
research purposes but was not informed of the mathematical focus until after data had
been collected. The study was conducted in Costas’ bedroom and on his computer;
case studies should be conducted “within its real-life context” (Yin, 2003, p.13). Five
meetings took place. The first was off the record and the other four were recorded
(procedures are explained below). Approximately three hours of data was recorded.
The intention was for Costas to build two houses: the first to be built without budget
constraints, the second to be built for a specific family and to a strict budget. The first
meeting, for which researcher’s post observation notes were the only data, was free
play familiarisation, assisted by the researcher, on any aspect of the game. At the end
of this meeting Costas, fortuitously, asked to build his own Sims house as his task.

A note on building a house in The Sims 2. Figure 1 shows Costas’ partially completed
second house with swimming pool. The player is constrained to work in a rectangular
grid and with predetermined building tools and extras (doors, windows, swimming
pool) but is free to choose how to assemble these. Floor space, wall units and extras
cost Sims money. Knocking down and rebuilding a part of a house costs money
because the refund on floor units (called “cubes” in The Sims 2 and, hereafter, in this
paper), wall units and extras is less than the original cost.

The next four meetings were recorded using
BB Flashback screen capture recording
software (http://www.bbsoftware.co.uk/bbfl
asback.aspx) which recorded all screen
activity and discourse; this formed the
primary data for analysis. The researcher
acted as observer participant but all
decisions regarding the house were made by
Costas, the researcher simply encouraged
Costas to express his thoughts and
occasionally helped him with purely
Figure 1. Central swimming pool technical matters. Costas built, at his

request, three houses; the first two without

constraints. He called the third house his
“dream house” for his family and he had a modest budget of 40 000 in Sims money
which he regarded as Cypriot pounds. He was extremely motivated — the house was
to be perfect and the meetings ended when he said, with satisfaction, “Seems good.
OK, I'm done. I think the family should take it from here.”
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Data analysis was conducted in three stages. The first author carried out the data
analysis and the second author conducted independent analysis on selected data. The
first stage produced open codes & 1a Strauss and Corbin (1998) with regard to Costas’
actions during game play. This, we felt, was useful starting point to see what
categories emerged. The second stage of data analysis, isolating problems, arose from
an observation in conducting the first stage analysis — a pattern of work was detected,
Costas usually planned to include a feature, e.g. a door, then executed his plan using
calculations and then considered the appearance of what he had done. We referred to
these sequences as mini-problems. Many of these mini-problems were nested. The
third stage of data analysis arose from a question in stage two, how were mini-
problems initiated and how did they end? In the course of addressing these questions
we looked at the goals Costas needed to accomplish to build his house. Some mini-
problems had a single goal but some had several goals.

RESULTS

We present selected results from the three stages of data analysis (selected to
illustrate results but also to prepare the reader for the Discussion section) and a
description of an artefact Costas created to ensure symmetry.

The first stage of data analysis produced 14 categories. Space does not allow us to list
them all but mathematics related categories were: calculations (+, - , X, + and
counting); symmetry; size comparisons; money matters (275 pounds for a bar, no
way); mathematical terms. The second stage of data analysis isolated 42 mini-
problems. We illustrate the nestedness of many mini-problems with an important, for
Costas, episode in getting a door centrally placed. Mini-problem 11 was How fo put
the front entrance door in the middle? but the front side of the house was 15 cubes
long and the door took two cubes — he realised that a door in the middle was not
possible, so he put mini-problem 11 aside to tackle mini-problem 12, What can be
done to the front side of the house to allow a central door? He resolved mini-problem
12 by deleting a front cube but this cost money. These problems occurred in building
the second house and the loss of money was a reason it was discarded and for
designing the symmetry tool. The third stage of the data analysis isolated 55 goals.
The Sims 2 was important with regard to goals: seven goals started and 13 ended as a
result of its features and a further 44 started (34 ended) as a results of a combination
of The Sims 2 features, mathematics and social knowledge; for example the goal of
avoiding losing money by deleting cubes was initiated by the fact that the game did
not return the full money value of deleted cubes but this is only important if this
financial loss (mathematics) is regarded as important (social knowledge). With regard
to goals and the final house the experience of losing money by deleting cubes was
clearly important to him. His first mini-problem in building the third house was How
to build the foundations of the house? He had two goals: to make the foundation 18 x
18 cubes; to ensure that this would allow a centrally placed door. We use the term
episode to describe a set of related (including nested) mini-problems and goals.
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Thirteen of the 55 goals were related to making his house symmetrical. We report on
two episodes, the first where he created and used a tool to ensure symmetry, the
second where he used this tool again.

Getting the house in the middle of the plot (house 3)

Costas wanted to create a foundation of 18 x 18 cubes for his house. He also wanted
to know where the middle of the foundations would be in advance (to avoid deleting
cubes) so he created a two cube artefact and said: “the middle is the line between
those two cubes”. He used this artefact as a central point of reference to build the
foundations; he added a row of 8 cubes starting from the left of the artefact and
another row of 8 cubes starting from the right, so that he could get 8+2+8 = 18 cubes
overall, which was the length of the foundations that he wanted. In this way he had
marked where the middle of the house was.

Making the swimming pool in line with the middle of the house (house 3)

Costas wanted the swimming pool in line with the middle of the house and said:
“Since the other houses were too big when I added extra rows for the pool, I am
thinking of cutting the [unwanted] cubes differently this time. I think I will draw a
line in the middle like I did with the cubes [he meant the artefact] before, and then
start cutting from left and right”. He counted the cubes starting from left to right until
he reached the 9" cube and said: “the middle is the 9™ and 10™ cube together, because
it’s 18”. He then painted the artefact black, to see what to cut. He used the black
cubes as an outline of what he would cut, in order to get the swimming pool in the
middle of the foundation.

DISCUSSION

We first discuss the interplay of context, task ownership and social and scholastic
knowledge. We then argue that Costas’ construction of and use of his two cube
artefact is a mathematical abstraction in the sense of abstraction in context. We end
with a discussion of game play, non-traditional mathematical abstractions and
mediation.

The interplay of context, task ownership and knowledge

Our primary intention in writing this subsection is to provide evidence that Costas
took possession of the task and that no teaching took place. A secondary intention is
to view this appropriation of the task with regard to physical context and knowledge.

Although it was the researcher’s intention to ask Costas to build a house, at the end of
the familiarisation session Costas requested this without the researcher asking him to
do this. The researcher said that he could build a first house without financial
constraints prior to building a house to a given budget. Costas readily accepted this
and referred to the final house as his “dream house”. Costas abandoned (left
incomplete) two houses, not just one, in order to get his dream house perfect. We
regard the above as evidence that Costas appropriated the task of building his dream
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house to a budget as his own. The researcher introduced Costas to The Sims 2 and
occasionally suggested technical help but this, we feel, merely accelerated game play
as The Sims 2 is an internationally popular game that many children play with only
virtual assistance. The researcher provided no assistance on the direction of game
play or on any mathematics — and Costas was not aware, during game play, that the
researcher was interested in his mathematical actions.

The game was played in his house not in a classroom. We contrast this with
Monaghan (2007) in which students worked on a task that was set by a company
director and carried out in a classroom. Monaghan claims that the fact that students
were working in a mathematics class mattered, as students stated that they expected
to do school mathematics in such a classroom. Monaghan also claimed that students
did not address the company director’s task but transformed the given task. So we
feel that the physical context was important, that the task may have been appropriated
differently in, say, a school mathematics class physical context.

As noted in the Results, most goals were initiated and terminated as a result of a
combination of computer features, mathematics and social knowledge but this
interrelated combination went beyond just goals and permeated Costas’ work. We
present an extract from Costas in the building of the third house to illustrate. NB he
made an arithmetic mistake:

“What, 350 pounds for the door [Sims 2 glass-door] Oh ... that’s expensive... well...
there are more expensive ones, but... there are also cheaper ones... I want them to see
the pool from the living room. Well, it’s three doors for the lower floor and one for the
master bedroom upstairs... That’s up to 1500 pounds (he sighs). I guess it’s OK.”

The construction and use of the two cube artefact is a mathematical abstraction

Abstraction in context, as mentioned above, posits three stages: a need for new
mathematics; construction of new (vertically reorganised) mathematics; consolidation
(use in further mathematical activity) of the new mathematics. We attend to all three
stages in this subsection.

Costas was obsessed with the idea of making his house symmetric but this is not
absurd as the practice of building houses often involves symmetric shapes. His desire
to create the swimming pool in line with the middle of the house and the door in the
middle of the wall reveal aspects of his understandings of middle and of symmetry.
Costas could find the middle of an odd number of cubes (the middle of a five-cubed
wall was the third cube) but when he encountered an even number of cubes he had to
modify his strategy of finding the middle — he needed a cost efficient strategy for his
dream house. When the problem of placing a central door occurred in the second
house Costas deleted a column of cubes in order to have an even number of cube wall
he said that the door should be put after the seventh cube (presumably dividing 14 by
2). This was a small but important expansion of knowledge about the middle. It was
computer-game-play-mathematics knowledge expansion, he was dealing with cubes,
not numbers: the middle of 14 is 7 but the middle of the 14 cubes was “the line
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between those two cubes”, “the 7™ and 8" cube together”. This visual middle, the 7%
and 8™ cubes is a representation “...specific information is contained in
representations ... It is specific information that allows subjects to control for the
meaning and reasonableness of their answers in problem situations” (Nunes,
Schliemann & Carraher, 1993, p.147) — Costas’ understanding of specific
information was held in the representations, which in this case were the cubes. Costas
constructed his two cube artefact, together will a counting cubes mode of using the
artefact (his strategy) from these representations. Prior to using the artefact Costas
did count cubes from left and right but, as noted he experienced problems. Costas’
constructed artefact-strategy was a vertical reorganisation of prior knowledge. As the
second episode at the end of the Results section showed, he went on to use this
artefact-strategy to make the swimming pool in line with the middle of the house.

Need, construction and consolidation with regard to an artefact-strategy for cost-
efficient building of a house are all present in Costas’ actions. The artefact-strategy is
an abstraction in the sense of Schwarz et al. (2009).

Game play, non-traditional mathematical abstractions and mediation

Costas’ mathematical activity was greatly influenced by The Sims 2. The video
game’s features facilitated the interrelation of his mathematical and social knowledge
and the majority of Costas’ goals were initiated and terminated, at least in part, by
features of The Sims 2. The computer game was a means by which Costas’
mathematical ideas and meanings became visible to him. We do not make general
claims from this case and, indeed, believe that Costas may not have formed his
abstraction if the researcher present had said “it does not matter if you exceed your
budget” or if Costas had not been so intent on building his dream house.

The mathematical abstraction that Costas constructed and used in the course of game
play is not a part of scholastic mathematics — it is not privileged mathematical
knowledge. It is, however, to us, certainly mathematics in that he engaged with
relationships between objects (even if these object were, to him, cubes and not
numbers). Further to this we view that Costas engaged in vertical mathematisation in
the sense of Freudenthal (1991). With regard to claims that learning will not happen
without the teacher, we feel these may be best kept to learning privileged knowledge.
But Costas’ abstraction would not have come about without artefact (The Sims 2)
mediation, so we are happy with a claim that learning will not happen without
mediation by person or artefact.
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ARE THEY EQUIVALENT?
Michal Ayalon and Ruhama Even

The Weizmann Institute of Science, Israel

This paper examines the enactment of a written lesson, which centres on determining
and justifying equivalence and non-equivalence of algebraic expressions. It studies
the ways the main ideas in the lesson were offered to students (1) by two different
teachers, and (2) in two different classes taught by the same teacher. The findings
show differences between the two teachers, and between the two classes taught by the
same teacher, regarding the occurrence of each idea and its connections to the other
ideas, the extent to which the ideas were explicit, and the contributions of the teacher
and the students to their development. The differences illustrate the complex
interactions among curriculum, teachers and classrooms.

INTRODUCTION

Equivalence of algebraic expressions lies at the heart of transformational work in
algebra, providing students with theoretical foundations of their manipulative work
(Kieran, 2007), allowing the replacement of an algebraic expression by another when
solving a problem (Nicaud, Bouhineau & Chaachoua, 2004). School algebra has
commonly focused on learning procedures that preserve equivalence (e.g.,
simplifying expressions), without attention to conceptual understanding (Kieran,
2007). Recently, attention is given to developing students’ understanding of the
notion of equivalence, as reflected by carefully designed experiments that focus on
theoretical aspects of equivalence of expressions (e.g., Mariotti, 2005). Within this
trend, engaging students with proving equivalence and non-equivalence is
emphasized (ibid). Yet, missing are classroom studies that examine this in non-
interventional situations

The aim of this study is to examine the enactment of a written lesson, which centres
on determining and justifying equivalence and non-equivalence of algebraic
expressions. The study focuses on ways important mathematical ideas were offered to
students, the extent to which they were explicit in the lessons, and the contributions
of the teacher and the students to their development. Recent research suggests that
different teachers enact the same curriculum materials in different ways
(Manouchehri & Goodman, 2000), and that the same curriculum materials may be
enacted differently in different classes taught by the same teacher (Eisenmann &
Even, 2008). Thus, we chose to focus here on the ways the main ideas in the lesson
were offered to students (1) by different teachers, and (2) in different classes taught
by the same teacher. This study is part of the research program Same Teacher —
Different Classes (Even, 2008) that compares teaching and learning mathematics in
different classes taught by the same teacher as well as classes taught by different

2009. In Tzekaki, M., Kaldrimidou, M. & Sakonidis, H. (Eds.). Proceedings of the 33rd Conference of the International
Group for the Psychology of Mathematics Education, Vol. 2, pp. 81-88. Thessaloniki, Greece: PME.
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teachers, with the aim of gaining insights about the complex interactions among
curriculum, teachers and classrooms.

THE WRITTEN LESSON

The lesson appears in a 7" grade curriculum program developed in Israel in the 1990s
(Robinson & Taizi, 1997). The curriculum program includes many of the
characteristics common nowadays in contemporary curricula. One of its main
characteristics is that students are to work co-operatively in small groups for much of
the class time, investigating algebraic problem situations. Following small group
work, the curriculum materials suggest a structured whole class discussion aimed at
advancing students’ mathematical understanding and conceptual knowledge. The
curriculum materials include suggestions on enactment, including detailed plans for
45-minute lessons.

The lesson “Are they equivalent?” which is the focus of this paper, is the 6™ lesson in
the written materials. Prior to this lesson, equivalent expressions were introduced as
representing "the same story", e.g., the number of matches needed to construct a train
of r wagons. The use of properties of real numbers (e.g., the distributive property)
was mentioned briefly as a tool for moving from one expression to an equivalent one,
but it was not yet presented explicitly as a tool for proving the equivalency of two
given expressions. Three ideas are explicit in this lesson:

Idea 1: Substitution that results in different values proves that two expressions are not
equivalent (could be regarded as a specific case of refutation by a counter example as
mathematically valid).

Idea 2: Substitution cannot be used to prove that two given algebraic expressions are
equivalent (a specific case of supportive examples for a universal statement as
mathematically invalid).

Idea 3. This idea addresses the problem that emerges from idea 2: the use of
properties in the manipulative processes is a mathematically valid method for proving
that two expressions are equivalent.

These ideas are known as difficult for students (e.g., Booth, 1989; Jahnke, 2008).

The lesson is planned to start with small group work aiming at an initial construction
of Ideas 1 and 2. Students are given several pairs of expressions; some equivalent and
some not. They are asked to substitute in them different numbers and to cross out
pairs of expressions that are not equivalent. After each substitution they are asked
whether they can tell for certain that the remaining pairs of expressions are
equivalent. Finally, students are instructed to write pairs of expressions, so that for
each number substituted, they will get the same result.

Then small group work continues, asking students to write equivalent expressions for
given expressions. The aim is to direct students’ attention to the use of properties in
relation to equivalence of algebraic expressions, which is relevant to idea 3.
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The whole class work returns to ideal, and moves, through idea 2, to idea 3, aiming
at consolidating these ideas, by discussing questions, such as: How can one determine
that expressions are not equivalent? that expressions are equivalent? By substituting
numbers? If so, how many numbers are sufficient to substitute? If not, what method
is suitable? Finally, the teacher guide recommends that the teacher demonstrate the
use of properties for checking equivalence, and together with the students implement
this method on several pairs of expressions in order to check their equivalency.

Ideas 1, 2, and 3 are connected to three other ideas, none of which appears explicitly
in the first six lessons in the written materials:

Idea 4 justifies Idea 2: There may exist a number that was not substituted yet, but its
substitution in the two given expressions would result in different values, thus
showing non-equivalence.

Idea 5 justifies Idea 3: The use of properties of real numbers in the manipulative
processes guarantees that any substitution in two expressions will result in the same
value, thus showing equivalence.

Idea 6 is the underpinning for Ideas 1, 2, and 3, as well as for Ideas 4 and 5. It defines
equivalent algebraic expressions: Two algebraic expressions are equivalent if the
substitution of any number in the two expressions results in the same value.

METHODOLOGY

The data source includes video and audio tapes of the enactment of the written lesson
in four classes, each from a different school. Sarah taught two of the classes, S1 and
S2; Rebecca, the other two classes, R1 and R2. The talk during the entire class work
was transcribed. The transcripts were segmented according to focus on the three
ideas, yielding 3-4 more or less chronological parts in each class. Next, the collective
discourse in the classroom was analyzed by examining the contributions of the
teacher and the students to the development of the ideas in each enacted lesson. We
compared how the teachers structured and handled the ideas in each lesson in
different classes of the same teacher and in the classes of the two teachers.

THE ENACTED LESSONS

In both Sarah's and Rebecca's classes, the above three activities were enacted.
However, there were differences in the ways the ideas in the lesson were offered to
students between the two teachers, and between the two classes of the same teacher.

Sarah's classes S1 & S2

The treatment of the ideas in both Sarah's classes was similar, with one exception at
the end. In line with the written curriculum materials, the whole class work in both
classes included an overt treatment of Idea 1. However, contrary to the
recommendations in the written materials, both classes performed substitutions in
pairs of algebraic expressions from the first activity since the teacher requested them
to do so, and not as a way of addressing the problem of determining non-equivalency.
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When the substitutions resulted in different values, the classes concluded that the two
expressions were not equivalent. In both classes it was Sarah who eventually
presented Idea 1 explicitly, attending to the specific context of non-equivalence of
expressions, with no reference to the general idea of refutation by using a counter
example as mathematically valid.

After working on non-equivalence, the two classes proceeded to work on equivalence
of algebraic expressions. In both classes, Sarah presented Idea 2, that substitution
cannot be used to prove that two given algebraic expressions are equivalent. She
explicitly incorporated in the presentation of this idea its underlying justification that
there might exist a number that was not yet substituted, but its substitution in the two
given expressions would result in different values (idea 4). For example:

We saw that with substitution, it is always possible that there is a number that I will
substitute, and it will not fit. We can substitute ten numbers that would fit, and suddenly
we will substitute one number that will not fit, and then the expressions are not
equivalent... We have to find some way other than substitution, which will help us
determine whether expressions are equivalent.

Sarah presented Idea 2 as a motivation for finding a method to show equivalence, and
immediately proceeded to work on using properties in the manipulative processes as
a means to prove equivalence (Idea 3). Led by Sarah, SI and S2 searched for
properties that show that the expressions they produced were equivalent. Sarah then
stated that the use of properties is the way to prove equivalence, not substitution.

When introducing Idea 3 in S2, Sarah explicitly connected it with Ideas 5 and 6.
However, no such connections were made then in S1. Only later on, in her
concluding remarks in S1, when summarizing both ways of proving equivalence and
non-equivalence of expressions, Sarah explicitly proposed Idea 6.

Rebecca's classes R1 & R2

The treatment of the ideas in Rebecca's classes also had similar features, but more
differences were found between the two classes. Rebecca's treatment of Idea 1 in both
her classes was similar to that of Sarah’s: The students performed substitutions, and
when resulted in different values, the class concluded that the expressions were not
equivalent. Yet, when a student asked for the meaning of equivalent expressions at
the beginning of this activity in R1, the definition of equivalent expressions as
expressions that the substitution of any number in them results in the same value
(Idea 6) was introduced explicitly. As in Sarah's classes, it was the teacher who
eventually presented Idea 1 explicitly, attending only to the specific context of non-
equivalence of expressions, with no reference to the general idea of refutation by
using a counter example as mathematically valid.

After working on non-equivalence, the classes proceeded to work on equivalence of
algebraic expressions. Idea 2, that that supportive examples (i.e., substitution) cannot
be used to prove that two given algebraic expressions are equivalent was dealt with
differently from Sarah's classes. In general, in both classes Rebecca pressed on
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finding a method that works, rather than evaluating the method of substitution, which
does not work. However, the issue of substitution continued to be raised. In R1,
following students’ proposal, the initial focus was on rejecting substitution because of
the inability to perform substitution of all required (infinite number of) numbers. Idea
2 was not dealt with in R1. Rather, it seemed to be taken as shared. Repeatedly, after
substituting numbers in pairs of expressions and receiving the same value, the class
concluded that the pairs appeared to be equivalent but that it was impossible to know
for certain. For example,

T: So, does it mean that they are equivalent?
S: Yes. Ah, no, not necessarily.

T: Why? Do you have a counter example?
S: We don’t know that they are equivalent.

Still, there was no explicit rejection of substitution for proving equivalence. Instead,
Rebecca changed the focus of the activity to looking for a connection between the
two algebraic expressions in each pair, as a transitional move towards Idea 3.

In contrast with R1, R2 embraced the idea that substitution is a valid means for
determining equivalence of algebraic expressions. Unlike R1, where after several
substitutions that resulted in the same value, students claimed that they still could not
conclude that the two expressions were equivalent, in similar situations R2 students
claimed that the expressions were equivalent because all the numbers they substituted
resulted in identical numerical answers. This happened even after Rebecca offered
idea 4, that there may be a number, which was not yet substituted, but its substitution
in the two given expressions would result in different values. For example,

T: So, what do you say, what should I do, check all the numbers; maybe there is a
number that won’t fit here?... Or will it always fit?

S: Always.

T: Why are they equivalent? Why do I say that these are equivalent...?

S: Because we checked at least thirty.

T: Because you checked, but we said that maybe there is one number that you did not
check.

S: But we checked almost all the [inaudible].

Eventually, Rebecca changed the focus of the activity to looking for algebraic
expressions that are equivalent to given expressions, aiming at Idea 3. Thus, unlike
Sarah, who used the brief mentioning of Idea 2 (and 4) as a motivational transition
from Idea 1 to Idea 3, in R2, Rebecca did not motivate the search for a method
different from substitution.
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R1 started to work on Idea 3 by searching for connections between pairs of
expressions that were not crossed out as non-equivalence after several substitutions.
The class quickly embraced the discovery that by using properties, it was possible to
move from one expression to another and show equivalence. Rebecca then explicitly
introduced Idea 3. Like in S1, no connections were made to Ideas 5 and 6.

R2 had a different starting point for treating Idea 3 because the class was confident
that based on the substitutions they performed they could infer that the remaining
pairs of expressions were equivalent. Rebecca then asked the class to find new
expressions that would be equivalent to the given ones. Eventually, R2 embraced the
idea that equivalence can be determined by manipulating the form of expressions,
using properties. In R2, too, no connections were made with Ideas 5 and 6. Moreover,
Idea 6 was not proposed at all.

Figure 1 depicts the teaching sequences of the ideas as offered during the whole class
work, in the written materials, as well as in the four classes. The figure clearly
demonstrates that only Sarah explicitly proposed the sequence of the three ideas (1, 2,
and 3) that were explicit in the written lesson. Rebecca explicitly proposed only Ideas
1 and 3. Moreover, connections between these three ideas and the other three ideas
(4, 5, and 6), which did not appear explicitly in the written lesson, were made only in
Sarah's classes: Idea 2 was connected to its underlying justification, Idea 4, in both of
Sarah's classes, whereas Idea 3 was connected to its underlying support, Ideas 5 and
6, in S2 only. Rebecca offered idea 4 in R2 with no explicit connection to Idea 2, and
Idea 6 was offered in S1 (at the end of the lesson) and in R2 (at the beginning of the
lesson), with no explicit connections to other ideas.

FINAL REMARKS

Sarah and Rebecca taught the written lesson “Are they equivalent?” using the same
written materials, which included a detailed lesson plan. Thus, it is not surprising that
the mathematical problems enacted in all four classes were similar. However, the
ways the main ideas in the lesson were offered to students differed to some degree
from what was recommended in the written materials. There were also differences
between the two teachers, and between the two classes of the same teacher. One of
the main differences is related to offering Idea 2. This idea is central in the written
materials. However, Sarah only briefly mentioned it in her classes, just as a transition
to Idea 3. In R1 this idea was taken as shared, never made explicit. It was not made
explicit in R2 too, which strongly embraced the opposite idea. Another central idea in
the written materials is Idea 3. The way that the written materials deal with Idea 3,
without making Ideas 5 and 6 explicit, seemed to make teaching it a challenge.
Eventually, each teacher handled this idea somewhat differently in each of her two
classes.
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Figure 1: Teaching sequences of the ideas, as offered in the whole class work, in the written
materials, as well as in the classes
These differences seem to be related to differences in teaching approaches. Sarah
tended to make clear presentations of important ideas. Rebecca hardly made
presentations, but instead, attempted to probe students, expecting them to explicate
these ideas. Thus, some ideas were never made explicit, in one class more than the
other, because of differences in students’ mathematical behaviour and performance.

These findings illustrate the complexity of the interactions among teachers,
curriculum and classrooms (Even, 2008). Rebecca faced serious challenges in her
attempts to make students genuine participants in the construction of mathematical
ideas, as was recommended in the written materials — more so in one of her classes —
challenges that lie at the meeting point of the specific teacher, specific curriculum
and specific class. Sarah, who chose to make clear presentations of the mathematical
ideas, faced different challenges, even though she used the same materials.

The mere fact that different teachers offer mathematics to learners in different ways,
even when using the same written materials, is not entirely surprising, and has been
documented by empirical research (e.g., Manouchehri & Goodman, 2000).
Nonetheless, the nature of the differences is important because what people know is
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defined by ways of learning, teaching, and classroom interactions, as documented by
Boaler (1997). Consequently, Sara'h and Rebecca's students were offered somewhat
different ideas that are central to conceptualizing equivalence and to proving in
algebra and in mathematics in general. Furthermore, when instead of focusing solely
on the comparison between teachers, different classes taught by the same teacher
were also compared, important information was revealed about the interactions
among curriculum, teachers and classrooms.
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Literature on research in dynamic geometry environments (DGEs) addresses the
importance of the perception of invariants in open problem investigations. In this
paper, in order to analyse students’ processes during exploration, conjecturing, and
proving in DGEs, we introduce a framework that distinguishes different types of
invariants. Students’ interpretation of these invariants seems to be strongly rooted in
the processes of their discovery more than in the generality of theorems and proofs.

INTRODUCTION

The importance to mathematicians of visualization is widely recognized, and recently
the appearance of Dynamic Geometry Environments (DGEs) has led educators to
reconsider the issue of imagery in mathematics education (for example, Goldenberg,
1995; Presmeg, 2006). Certainly DGEs have revolutionized the approach to
understanding the complex relationship between images and concepts in Geometry
education. In particular, DGEs have been expected to enhance geometrical reasoning
in problem solving, promoting visual exploration and discovery (Dreyfus, 1993;
Goldenberg, 1995; Goldenberg & Cuoco, 1998). Laborde, speaking of a specific
DGE, Cabri géométre, states (Laborde, 1993, p. 56):

“The nature of the graphical experiment is entirely new because it entails movement. The
movement produced by the drag mode is the way of externalising the set of relations
defining a figure. The novelty here is that the variability inherent in a figure is expressed
in graphical means of representation and not only in language. A further dimension is
added to the graphical space as a medium of geometry: the movement.”

However, the complexity between spatial-graphical and geometrical aspects that is
intrinsic of geometrical reasoning, cannot magically dissolve. If one hand DGEs
seem to foster the development of a link between spatial-graphical and geometrical
aspects; on the other hand, they do not seem to foster achievement of the theoretical
control over the relationship between purely spatial-graphical properties and
theoretical properties of the figures represented (Duval, 1993; Laborde, 1993).

The intrinsic complexity of geometrical reasoning is nicely expressed by the notion
of figural concepts introduced by Fischbein (1993). Geometrical figures are mental
entities that simultancously possess both conceptual properties (general, abstract
relations, deducible in the Euclidean theory) and figural properties (shape, position,
magnitude). In solving geometrical tasks, the interaction between figural and
conceptual components of external representations (drawings) may explain
productive reasoning leading to correct solutions, but it may also explain mistakes

2009. In Tzekaki, M., Kaldrimidou, M. & Sakonidis, H. (Eds.). Proceedings of the 33rd Conference of the International
Group for the Psychology of Mathematics Education, Vol. 2, pp. 89-96. Thessaloniki, Greece: PME.
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and difficulties that could be due to an incomplete fusion between the two
components (see, for example Mariotti, 1993; Mariotti & Fischbein, 1997). In the
case of tasks to be accomplished in a DGE, figures, that is drawings produced
through a sequence of commands chosen by the user, are drawings with their own
intrinsic logic. The geometric properties defined by the commands control the
appearance of invariants under dragging, so the intrinsic logical dependency among
the elements of the dynamic figure may affect the interplay between the figural and
the conceptual components involved in the solution of a task.

This study is part of a greater project in which we analyse some cognitive processes
that students activate when solving open problems requiring the formulation of a
conjecture in a DGE. The study involves students in grades 9, 10, and 11 who have
been using a DGE in the classroom for at least one year. During clinical interviews
the students work in pairs or singularly while being audio and video recorded. The
paper aims to propose a classification of different types of invariants that seems to be
powerful for analysing and explaining some difficulties encountered by the students.

GEOMETRICAL INVARIANTS

In the literature on research in DGEs, the terms “invariants,” ‘“geometrical
invariants,” “invariant properties” of a figure have been used to refer to certain
properties (e.g. Yerushalmy et al., 1993; Goldenberg et al., 1998; Hadas et al., 2000)
that are maintained when some transformations on the figure are performed. As

Laborde describes it:

9

“A geometric property is an invariant satisfied by a variable object as soon as this object
varies in a set of objects satisfying some common conditions.” (Laborde, 2005, p. 22).

In the work we have so far accomplished for the study, we have noticed recurring
student-behaviours that are not consistent with a correct mathematical interpretation
of the situation. As noticed by other researchers (for ex. Laborde, 2005), we also are
finding that students encounter difficulties in dealing with dependency relationships
of points and interpreting invariants of a figure. In order to analyze students’
behaviours, we find it useful to distinguish different notions of invariance. In order to
define them, in a more precise manner, we first focus on the dragging of points, and
make the distinction between base-points and constructed points. A base point is a
point constructed freely, or semi-freely (for example, a point chosen on a
circumference, which can therefore only be dragged along the circumference itself)
on the screen, upon which other objects of the construction depend. A base point is
also a free point, in that it can be dragged anywhere on the screen (or freely along the
curve it is linked to). On the other hand, dependent points are points built as the
intersection of constructed objects, and consequently they cannot be dragged directly.

We call construction-invariant a geometrical property of the figure which is true for
any choice of the base-points. In Cabri an invariant of the construction is a property
that is maintained for dragging of any base-point (which is also free) of the figure. It
is useful to consider the set of all construction-invariants, which we will call /.
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We may also consider a geometrical property that is true for any choice of one
particular base-point of the construction, while the other base-points are fixed. In
fact, only one point at a time can be dragged, so students actually perceive properties
as being invariant for the dragging of the specific point they are dealing with at the
moment. In this case we have a point-invariant. If the particular base-point
considered is P, we will call such invariant a P-invariant. It is useful to consider the
set of all P-invariants, which we will call /p. It is clear that / is contained in /p for
every base-point P of the construction.

For example consider the following
construction. Let A, M, K be three base-
points, and construct B as the symmetric
point of A with respect to M, and
construct C as the symmetric point of A
with respect to K. Construct the parallel
line / to BC through A, and the
perpendicular line » to / through C. Let D
be the intersection of / and 7.

It is easy to prove that ABCD is a right
trapezoid for any choice of A, M, K. By

Fig 1: A, M, K are base points and free in construction DA~ lies on /, which is
this construction; “ABCD is a right parallel to BC, and CD lies on r, which is

trapezoid” is a construction-invariant; Perpendicular to /. Consequently, r is also
“the length of BC™ is an A-invariant. perpendicular to BC (for a known theorem

of Euclidean geometry). Therefore the fact
that ABCD is a right trapezoid is a construction-invariant. Moreover, the fact that BC
is twice MK and parallel to it is also a construction-invariant. This is because the
triangles AMK and ABC are similar with ratio of proportionality 1:2 (since AC is
twice AK, and AB twice AM). However, the fact that the length of BC is constant is
not a construction-invariant because, for example, choosing a different M (or
dragging M) leads to a variation of it. Instead, the length of BC is an A-invariant,
because for any choice of A (or movement of A through dragging), MK is fixed and
therefore the direction and length of BC are constant (even if the points B and C
change as a consequence of the new choice of A).

We will now show how the notions of construction-invariants and P-invariants,
together with that of figural concept, can be efficiently used in our analysis. In the
following we consider the representative case of a pair of students engaged in the
solution of an open problem.

ANALYSIS OF A TRANSCRIPT: THE CASE OF GIULIO AND FEDERICO

Below are some excerpts from the transcript of an interview of two students, Giulio
and Federico. The task is based on the configuration of the example above. After
accomplishing the construction, the students are asked the following: “As points A,
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M, K vary, formulate conjectures on the types of quadrilaterals that ABCD can
become, trying to describe all the ways in which it is possible to obtain a certain
quadrilateral.” Giulio and Federico are in the second year at an Italian high school
(grade 10) and have used dynamic geometry in class during their previous year.

The two students have been looking at the screen while Federico has been dragging
point A randomly. In the excerpts below, I indicates the researcher.
Excerpt 1

1 F: Good, so we can say that the quadrilateral, as A varies, uh, we always
have a trapezoid.

...aright trapezoid.

It’s a trapezoid.

a right one.

a right one! Yes, it is a right trapezoid.

AN L W
mmo T Q

Ok, it’s even a right one.
7

While Federico is dragging point A, the two students observe that ABCD is “always”
a right trapezoid. Therefore, we can say that they conjecture that the property “ABCD
is a right trapezoid” is an A-invariant. This also emerges from Federico’s words
every time he formulates the conjecture (“as A varies” (1), “dragging A (7)).

e

So, dragging A...it’s a right triangle...yes.

In the following excerpt the students are involved in the production of the proof of
the conjecture.

Excerpt 2

13 F: Yes, let’s prove it. Let’s prove this one [conjecture] right away. So, by

hypothesis we have that CD is perpendicular to AD.
[...]

16 G: Yes, and we also have that by hypothesis AD, since it lies on line /, is
parallel to CB.

17 F: Yes...

18 G: uh, yes, because it’s written [referring to the text of the problem].

19 F: Yes.

20 G: Construct line / parallel [G rereads the text to F] to BC.

21 F: Good, so...

22 Gt So we know that ...[speaking together]

23 F: Well, we have that AD e BC are parallel exactly by hypotheses.

24 Gt So ABCD is a trapezoid. ...immediately.

25 F: Yes and ABCD is a trapezoid, exactly! Then we already said this, AD

[indicating with the pointer] is perpendicular to CD, but AD is parallel to
BC, so AD is perpendicular to DC, but BC is also perpendicular to DC.
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26 It Yes...

27 F: So, it’s a theorem!

28 L. you don’t need to prove the theorem [smiles]

29 F: uh, we did it [in class].

30 Lt What is it that the theorem says?

31 F: Uh, that if there are two parallel lines...

32 I Yes...

33 F: uh, if we draw a perpendicular to one of them...

34 G uh, there are alternate interior angles...in the end

35 F: Exactly.

36 G: Because these two have to be supplementary.

37 L there we go, supplementary. I agree.

38 G: Yes, therefore. ..

39 F: uh, it has to be that if one is 90, the other, too, has to obviously be 90. Ah,
so then it is proved, so it is a right trapezoid.

40 L. Alright.

Giulio and Federico prove their conjecture correctly without making use of the
dragging tool and, in fact, while the proof is produced, the figure remains static on
the screen. Moreover, no reference to a particular choice of the base-points appears in
the proof and its generality is assured by the theory of Euclidean Geometry.
Therefore, the students have proved that “for any base points A, M, K ABCD is a
right trapezoid”. According to the notions of invariants proposed above, we can say
that Giulio and Federico proved that the property “ABCD is a right trapezoid” is a
construction-invariant. After the proof one would expect that the 4-invariant should
have changed its status for the students, becoming a construction invariant. However,
from a cognitive point of view, the generality of the proof does not seem to have such
effect on Federico’s interpretation of the invariants, as the following excerpt shows.

Excerpt 3
41 F: Now let’s try something else...Let’s do free dragging...
42 I Try to see if it can be something else...like other quadrilaterals.
43 F: Still dragging A?
44 I Well, it says as A, M, K vary. So you can drag...
45 F: So A, M, K [looking at them on the screen]...also M and K?
46 L Also M and K.
47 F: th’s try...dragging M [F drags M freely] they all vary...yes, all the ...the
sides...
48 L uh huh...
49 F: Let’s see...what can we say?...[he continues to drag M]...well, it seems

to be again a trapezoid.
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Federico proposes the same conjecture they have already proved as if it were a new
property. In fact, even if this conjecture is now a mathematically proved proposition,
we claim that for Federico this is actually a new conjecture (49: “It seems to be again
a trapezoid”): according to our framework, he is saying that the property “ABCD is a
trapezoid” is an M-invariant. We know that every construction-invariant is a point-
invariant but, for Federico, this property does not seem to be a construction-
invariant, even if a general proof has been constructed. For him, the property is only
an A-invariant and therefore it might not be a P-invariant for other points P. For this
reason the fact that it is an M-invariant is surprising to him. In the last part, Giulio’s
different interpretation of the invariant appears:

Excerpt 4
50 G Well, it is always anyway a trapezoid.
51 F Always a trapezoid, exactly.
52 G because by hypothesis, basically.
53 F It seems to always be...

Giulio is convinced that “ABCD is a trapezoid” is a construction-invariant (“it is
always anyway a trapezoid”), therefore it is obvious for him that it is an M-invariant.

During the whole interaction, between Federico and Giulio there seems to be an
underlying non-complete understanding that can be explained by the different way in
which the two students treat the property “the quadrilateral is a right trapezoid.”
Federico treats it as an A-invariant, while Giulio treats it a construction-invariant. In
this regard, we can notice the expressions that the two students use to talk about the
conjecture: while Federico specifies that the quadrilateral is a trapezoid “as A varies”
or “dragging A”, Giulio never associates the claim of the fact with dragging point A
(or any other), and in 50 he probably tries to underline his belief by adding “always
anyway” [in Italian: “sempre comunque”] to his statement. Giulio seems to be
convinced of this fact from the beginning of this sequence (after the initial dragging
of point A that Federico does), even before he and Federico prove it.

Moreover, the interaction between the two students can also be explained well
through the different interpretation that Federico and Giulio give of the observed
invariant: their different interpretations of invariants lead to the astonishing (to us)
exclamation of Federico (“It seems to be again a trapezoid”) and to the, almost
irritated, answers of Giulio (“It is always anyway [sempre comunque] a trapezoid”).

CONCLUSIONS

As described elsewhere (Laborde 1998, p. 190) in the case of construction-tasks, the
dynamic possibilities of Cabri may introduce a new level of complexity due to the
possible variations of the given elements of the problem and their interrelations. Of
course this consideration applies to other explorations. The previous examples show
how such complexity emerges in the solution of an open problem and may affect the
heuristic phase. The classification of invariants we have proposed seems to be a
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useful tool to describe and explain such complexity. On one hand exploring by
dragging may lead to noticing an invariant, but the geometric interpretation of the
invariant may be strongly linked to the dragging process that lead to its discovery,
thus it will be conceived as a point-invariant. On the other hand, the production of a
proof may have different effects with respect to the generality of the geometric
property related to the observed invariant. While Giulio seems to have grasped the
generality of the theorem (the property for him becomes a construction- invariant),
Federico does not. The link between the dragging process and the interpretation of
the invariant is so strong that not even the production of a correct mathematical proof
can induce Federico to change the status of the observed invariant. It may not be a
chance that Giulio is the one who shows awareness that the invariant is independent
of the dragging of any point, because he was not doing the dragging. It might be that
the difference in the perception of the figure could depend on the type of control that
each student has over the figure itself. Further research is needed to explore this idea.

Thus it seems that the basic claim that “spatial location and muscular movement in
space are linked to variance and invariance, which lies at the heart of awareness of
generality” (Mason & Heal, 1995, p. 298), has to be refined. The frame of Figural
Concepts helps us to articulate the complexity of this process. Consider the
geometrical interpretation of the observed invariant: the figural aspect is linked to the
invariant spatial properties that are perceived under the constrains of the dragging
experience. Thus it is not surprising to find out how persistent the effect of the
dragging action might be. It is worth noting that the contribution of perception has to
be considered in its complexity, “spatial location and muscular movement”.

In line with findings of previous studies (for instance, Fischbein, 1982; Balacheff,
1988; Chazan, 1993) in a traditional paper and pencil setting, our students encounter
difficulties in capturing the “generic” in a proof. According to our interpretation,
once the proof is produced a new relationship between the figural and the conceptual
component has to be elaborated. In the interpretation of the invariant, the point
dependence of the property has to be overcome in order to achieve the generality
stated by the proof. It may happen that such new elaboration is not accomplished and
the generality of the property is not recognized. In terms of figural concepts there is a
break between the figural and the conceptual aspect that needs to be recomposed.
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LEARNERS VOICES ON ASSESSMENT FEEDBACK

Sarah Bansilal Angela James Magiembal Naidoo
University of KwaZulu-Natal

In this article we report on learners’ understanding of teacher (educator) assessment
feedback. The study was conducted with five Grade 9 mathematics learners. Data
was generated from interviews, seven journal entries and video taped classroom
observations. The learners identified several purposes of assessment feedback that
teacher should provide and displayed strong feelings about the manner in which the
feedback should be communicated to them

INTRODUCTION

The purpose of this article is to describe and share our findings about a classroom
based study which explored 5 learners’ meaning of educator assessment feedback in a
Grade 9 mathematics classroom in KwaZulu- Natal in South Africa.

In 1994, educational reform in South Africa was heralded by the introduction of the
new curriculum framework, Curriculum 2005 (C2005) with its Outcomes Based
approach. This approach aimed “to equip all students with the knowledge,
competence and orientation needed for success” after schooling (Pretorius, 1998). As
part of the reform process, it became necessary for assessment techniques to be
reviewed. In analyzing the relevant curriculum documents (DoE, 2002a; DoE, 2002b;
DoE, 2005) it is clear that the curriculum policies endorse that the assessment of
learners’ performance should enhance individual growth and development and
facilitate learning. Mathematics assessment is a mechanism for the construction of
learners’ mathematics understanding. Educator feedback to learners is a crucial
component of this mechanism, and it is on this aspect of assessment that the study is
focused.

FOCUS AND RELATED LITERATURE

Magieambal Naidoo, one of the authors, was concerned that the issue of educator
feedback did not feature strongly in the policies. Her concerns about the effectiveness
of educator feedback, stemmed from observed instances of learners repeating their
mistakes in several tasks; even though feedback on how they could remediate their
mistakes was provided. Her experience is supported by Sadler’s (1989) observations:
“...when feedback is given, it is often ineffective as an agent for improvement.
Students seem to show the same weaknesses again and again”, (p.73). The authors
also speculated about why learners keep making the same error despite educators’

2009. In Tzekaki, M., Kaldrimidou, M. & Sakonidis, H. (Eds.). Proceedings of the 33rd Conference of the International
Group for the Psychology of Mathematics Education, Vol. 2, pp. 97-104. Thessaloniki, Greece: PME.
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best efforts. We were adamant that any research that focuses on assessment feedback
needs to explore learners’ understanding of it. The above comments lead us to ask,
what do learners consider as helpful? It is for this reason that the research question of
the project, that is reported in this article is: What are learners’ views about educator
assessment feedback?

It is necessary to clarify our understanding of the term “feedback”. The Wordsworth
Concise Dictionary defines feedback as a “response or reaction providing useful
information or guidelines for further development” (1998, p.354) which we think
encompasses the main ideas in this study in a succinct manner.

Wiggins (1998) explained the purpose of feedback as addressing discrepancies in
knowledge that learners display, namely the difference between their current status
and the desired end and “providing feedback in the middle of an assessment is
sometimes the only way to find out how much a student knows” (p.60) in terms of
the ‘desired end’. Wiggins’ views are similar to that of Vygotsky’s (1978) Theory of
Cognitive Development, where the gap between actual development and potential
development, that is, between what a child can do unaided by an adult and what
he/she can do “under adult guidance” (p.86) is termed the zone of proximal
development (ZPD). Through feedback processes, the “hints and prompts that help
children during assessment could form the basis” (Slavin, 2003, p.48) for children to
work in their ZPD. This intervention (feedback) assists learners in crossing their ZPD
(Clarke, 2000).

In a small-scale quantitative research project that looked at students’ responses to
feedback, Young (2000) drew attention to the emotional impact of receiving marks.
His research focused on how students react to feedback and he found that there are
“psychologically vulnerable students” in all classes (Young, 2000, p.409). From
Young’s study (2000), there emerged a relationship between how students responded
to feedback received and their self-esteem (judgement of self-worth). Students with a
high self-esteem displayed acceptance of feedback received. Those students with low
self-esteem were vulnerable to unfavourable judgements.

METHODOLOGY

The research reported here formed part of a larger study for Naidoo’s (2007) Masters
degree in Education. This study was conducted at a co-educational secondary school
in KwaZulu-Natal with an enrolment of 1107 learners. The five Grade 9 participants
in the study were Riva(male), Cleme ( female), Edi(female), Chri (female) and Mabu
(male). Pseudonyms are used to protect the identity of these learners. The learners’
socio-economic backgrounds range from lower to upper middle class.

A naturalistic inquiry was used as it has an emphasis on interpretive dimensions
where the goal of the researcher is to understand reality (Cohen, Manion & Morrison,
2000). A qualitative case study approach provided the opportunity to concentrate on a
specific instance or situation (Cohen et al., 2000), namely the learners’ meaning of
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educator feedback. Seven journal entries of each participant were analysed. Through
journal writing, students “are encouraged to think freely in writing ... in their own
words” (Mett, 1987, p.534). An additional source of data was from a group interview
conducted with the 5 learners because we were mindful of the words by Cohen et al.
(2000) that “group interviews of children might also be less intimidating for them
than individual interviews” (p.287).

RESULTS
Riva

Riva is a fifteen year old male learner whose home language is English and has an
above average mathematical competence. He stated that “feedback refers to a
teachers report back on any kind of work that is done”. “Report back” suggests that
he sees it as the teacher’s responsibility to respond to the learner’s work. Riva also
made a comment about the importance of the teachers’ attitude. He said that he
prefers feedback that encourages learners and not negative feedback that belittles
learners. In his words: “I like feedback that is encouraging and motivating...not [to]
ridicule or mock you”

Edi

Edi is a 15 year old female learner, whose home language is isiZulu and has a very
good command of English. Her mathematics ability ranges from average to above
average. She defined feedback as when an educator has given learners a task then
he/she “will mark the work and will point the mistakes” to the learners. Edi’s
definition of educator feedback focused on the identifying of mistakes. Edi also noted
that through feedback once the educator identifies learners’ mistakes, the educator
explains “what [the learner should] look out for when given a task™. To her, through
feedback, learners are conscience of not repeating their mistakes. She explained that:
“feedback helps the student to recognize their mistakes and where they tend to go
wrong and they rectify the mistake the next time they do a task”. So Edi sees the
teacher as identifying the mistake, so that the learner can then correct her mistake.
The idea of feedback identifying mistakes was extended to the educator “giving
advice or guidance on how you’re doing ... she’ll give [advice or guidance] on how
to correct your work”. A comment that is of concern was that the teacher should not
embarrass the learner when offering verbal feedback. She commented in the
interview that “it is good ...when the teachers won’t embarrass you...” by making
comments such as “you’re so stupid”. She remarked, “if the teacher explains the
maths...its okay...it must not be personal”

Cleme

Cleme is a 15 year old male learner whose home language is English and he was
considered to be a high achiever in mathematics. In his first journal entry his
perception of feedback reads; “feedback is saying something from the teacher’s point

PME 33 - 2009 2-99



Bansilal, James, Naidoo

113

of view”. The phrase “... saying something ...” was elaborated upon when he added
that feedback “... is also a good way to communicate”. The reason that Cleme
provided for this was for “people [to] know what the teacher really wants”. Feedback
was portrayed as means of communication of the teacher’s view in order to learn
what the educator requires. This perception was further elaborated on during the
group interview. Although he maintained the notion of feedback being a form of
communication, he accepted different forms of how feedback was being aligned to
communication because “rings, crosses ... [are] a form of communication with the
student”. Cleme places great importance on the teacher’s point of view and the need
for the learner to know what the teacher is looking for so that the learner can align
himself with the teacher’s expectations. Cleme seemed to be concerned about shy
learners who would be afraid to ask the teacher for help. He said that there were some
learners “that are afraid to ask the teacher [for] help”.

Chri

Chri is a 14 year old female learner whose home language is English and could be
viewed as an average achiever in mathematics assessments. In her first journal entry
Chri recorded her definition of feedback as a teacher’s task of informing learners of
their performance. She wrote, feedback “is a task that the teacher does to inform us of
how we performed”. She stated two purposes of feedback as “to ensure that we do
good and understand” and “it also tells you where you went wrong...what to do to
get better...ways you can improve your working ability.” According to Chri, the first
purpose of feedback is to ascertain that learners understand the work and do well.
The second is to reveal to learners errors so that they can identify where they went
wrong and hence establish ways to improve their ability. During the group interview,
she maintained “it [feedback] makes you a better person ... meaning in your
schoolwork”. The importance of the individual in learning, is clearly illustrated in
this comment. This importance in improving learning was reiterated in her journal
entry and during the group interview.

Chri also saw feedback as providing a challenge. This was evident from her interview
when she stated, “... feedback is also very challenging”, and her journal entry where
she wrote “it is very challenging”. The explanation that she gave for the challenging
nature of feedback was linked to “when a teacher comes to you...say that you need to
do better; you need to improve”. She perceives the challenge posed through feedback
as inciting competitiveness amongst learners. “...You want to compete with your
friends”, “...I like competing with my friends. It is quite fun...” Chri was also
concerned about shy learners being sidelined because they were scared to ask the
teacher questions. “People that are shy ... do not like to ask the teacher questions
about maths.”

Mabu

Mabu is a 16 year old male learner, whose home language is isiZulu. He is reserved
and works mostly by himself. His mathematics competence is average. Mabu
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understood feedback as checking and reporting on work as evident in the following
“The work...is checked and a report that’s feedback is given”. Mabu’s journal entry
also stated “when you don’t understand something...the teacher explained it back to
you she/he is doing the feedback to you”. From the former statement, it is apparent
that he perceives feedback to serve as remedial teaching. In addition, during the
group interview he stated: “if...there’s something...I don’t understand...she will
point it to you. She’s giving you feedback”.

Mabu articulated a concern about sometimes getting lost because of the language
used by the teacher. In his interview he stated, “...maybe the teacher can say the
higher language...the mathematical language that I won’t understand”. He further
stated that although he “can understand ...even mathematical words” in its written
form, sometimes “I get lost I...in mams language sometime”.

ANALYSIS

The results of this study indicate that learners have developed meaningful perceptions
of the concept of ‘educator feedback’. There are three points, about the learners’
perceptions about the role of the teacher in providing feedback, which we wish to
make in this discussion. Firstly the learners’ understanding of educator feedback
conveys a broader perception of the meaning of the term ‘educator feedback’ and
they show insight into the value and purposes of feedback. Interestingly, none of
these learners described educator feedback as the marking of answers right or wrong.
Riva stated that “feedback refers to a teacher’s report back on any kind of work”.
Mabu’s definition of feedback was boarder than Riva’s. Mabu perceived educator
feedback as more than a mere report. To him educator feedback is when “work [is]
checked and a report ... [is] given”. The word checked suggests that the work should
undergo some scrutiny or inspection before being reported on.

Edi’s definition of educator feedback related to when the teacher “will mark and will
point ... mistakes”. Her definition of educator feedback highlighted the role of
feedback as diagnostic. She further explained that the diagnosis of errors through
feedback result in learners “rectify[ing] the mistake the next time they do a task”.
Apart from diagnosis of errors, Edi expected educator feedback to provide “advice
and guidance on how ... to correct your work”. Chri also perceived feedback as
diagnosis of errors when she wrote; “it tells you where you went wrong”. Like Edi,
Chri also anticipated feedback to “tell you where you went wrong” and to suggest
“what to do to get better ... improve your working ability”. Furthermore, Chri
identified the effect of feedback that diagnoses errors and recognizes room for
improvement. According to her, this is when feedback presents a challenge to the
learner to improve. She also believes that this challenge urges learners to be
competitive. The diagnostic purpose of feedback was further reiterated by Mabu
during the group interview. He said if there was anything that he did not understand,
the educator “will point it [out]”. However, unlike Edi and Chri who expect guidance
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on how to improve, Mabu expects feedback to serve as remedial teaching. He wrote
when the educator “explained it back to you she/he is doing the feedback to you™.

Learners are insightful when they note that the purpose of feedback is a tool that can
improve their understanding. This is confirmed by Black, Harrison, Lee, Marshall
and William (2003) who stated that feedback provides information about ‘gaps’ in
learning. From the data there emerged a parallel view where learners believed that
feedback identifies or points out their errors. It is significant that learners meaning of
feedback have resonance with Vygotsky’s theory about the ZPD (Vygotsky, 1978),
which they most probably have not heard of, yet they display an intuitive
understanding of what is good for their learning experiences.

Secondly, one learner thinks that the purpose of feedback is to convey the teacher’s
point of view. Cleme sees the teacher as being right and that the learners’ job is to
figure out what the teacher is looking for. He portrayed feedback as communicating
the teacher’s view, by offering clues that would lead him to the teacher’s goal. The
learners who look towards the teacher’s feedback for clues about the teacher is
looking for, show that they see the teacher as being in control and who knows where
they need to go. In contrast, Clarke (2000) defined effective feedback as when “the
teacher must give feedback against the focused learning objectives of the task
(whatever the child was asked to pay attention to), highlighting where success
occurred against those objectives and suggesting where improvement might take
place against those objectives” (p.37).

A third theme that emerges from the data is the role that feedback plays in building or
breaking a learners’ self confidence. All the learners expressed a wariness, about shy
learners not being confident enough to approach the teacher and learners being
insulted by the teacher. In fact one learner used the words ““ you are so stupid” to
describe what she did not want to hear. The learners felt that the teacher may belittle
learners or cause certain learners to lose their confidence because of the teachers’
negative comments. On a similar note Moodley’s (2008) study on South African
learners’ self efficacy beliefs about mathematics reported that most learners felt that
their mathematics teachers displayed a negative attitude towards them. Her sample
consisted of 32 Grade 11 mathematics learners. For example 91% of her sample
indicated that the teacher ignored them when they asked questions and 93% indicated
that the teacher made them feel silly when they asked questions in the maths class.
Some of the learners’ comments that were made include: “He tries to be funny but he
doesn’t know that he actually embarrasses and hurts people” and “You know you
afraid to ask questions. Maybe the teacher will make you feel stupid” and further, “I
hate being looked down upon”. These comments support the contention made by the
learners in our study that some teachers sometimes make negative comments to
learners and when this happens, they get embarrassed and feel belittled by these
disparaging comments.
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These findings are supported by Young (2000, p.414), who explained that the “most
powerful and potentially dangerous dimensions of students’ feelings about feedback
is the extent it impacts on themselves as people”. In his study, verbal comments that
are derogatory are viewed as “absolutely annihilating” for the learner in the learning
experience (p.414).

CONCLUDING REMARKS

Although South African educational policies have been well received, a gap in the
policy is the provision of detailed guidelines on ways of providing feedback to
learners. The learners in this study have revealed that they have demanding
expectations from the teachers and they view the teachers’ role in assessment as
going beyond mere implementation of different techniques. They expect the teacher
to provide meaningful feedback to their work. They expect the teacher to diagnose
their errors and to show them how they could close the gap. They expect the teacher
to provide feedback which will improve their understanding. Furthermore they do not
welcome derogatory comments about their abilities from their teachers, they view
this as personal. The study has revealed that learners prefer teachers to provide
feedback that makes a difference to their understanding in a manner that is supportive
of them. It is vital for education authorities to acknowledge that the stipulation of
various assessment methods is not sufficient. Teachers themselves have to also
acknowledge the role they play in developing or annihilating their learners’
confidence. Opportunities for teachers to improve their skills and sensitivity in
feedback practices need to be made available in order to lead to sound reform of
assessment in South African education.

The study has also demonstrated the need for more research that focuses on learners’
voices on education - about what they view as important or not, what they value or do
not, what they need and what they do not need. Research that focuses on learners’
voices can help us identify the gaps between the vision of policy and the actual
classroom implementation of the policy.
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LINKING PROPERTIES OF DIFFERENTIABLE FUNCTIONS TO
GRAPHS: AN EXPLORATORY STUDY

Cristina Bardelle

Universita degli Studi del Piemonte Orientale “A.Avogadro”, Italy

The research in mathematics education highlights the role of visual reasoning in the
learning processes. In this frame the paper presents an investigation of the role of
graphs in the conceptualization of the derivative of real valued, differentiable
functions. The study is carried out with a sample of Italian Science freshman
students. The study displays a lack of coordination of the semiotic systems involved in
the representation of derivatives and in particular the occurrence of pragmatic
aspects related to the use of graphs.

INTRODUCTION

This work deals with role of visual representations (graphs) in the learning of
concepts such as monotonicity and derivatives of functions, which are generally
included in the curricula of introductory mathematics courses for freshmen of
scientific faculties. In particular I refer to examples of real valued, C' functions in
real domains. The main purpose of this paper is to highlight and interpret some
obstacles students meet when dealing with such topics, in an educational setting
where graphs are widely used both in teaching and in examinations, and to
understand if and how graphs could improve the teaching of introductory calculus. I
will show that graphs are a powerful tool in order to both verify and improve the
understanding of the notions above, although their use might create specific
obstacles, since research has shown a poor use of visual representations in the
teaching of mathematics (Presmeg 2006). In particular, as observed by Tall (1991
p.1) ‘Research into mathematics education shows that students have very weak
visualization skills in the calculus, which in turn leads to lack of meaning in the
formalities of the mathematical analysis’.

THEORETHICAL BACKGROUND
Semiotic systems and learning

First of all, I adopt A. Sfard’s claim that "learning mathematics may now be defined
as an initiation to mathematical discourse ...” (Sfard (2001, p.28), and so languages
are to be regarded not just as carriers of pre-existing meanings, but as builders of the
meanings themselves. From this perspective, the linguistic means adopted in
communicating mathematics are crucial also in the development of thinking. This
holds not only for verbal language but for other semiotic systems too. As the study I

2009. In Tzekaki, M., Kaldrimidou, M. & Sakonidis, H. (Eds.). Proceedings of the 33rd Conference of the International
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am reporting deals with the interplay between different semiotic systems (formulas,
verbal texts, visual representations), R.Duval’s framework' has proved appropriate.

According to Duval (1993) the cognitive functioning of human thought needs
multiple semiotic systems. We recall that sémiosis denotes the production of a
semiotic representation and noésis denotes the conceptual learning of an object. We
share Duval’s idea that there cannot be noésis without sémiosis. In this frame the
coordination of at least two semiotic systems is basic for the learning of a
mathematical concept. Duval makes a distinction between treatment of a
representation, which is a transformation (manipulation) within the same semiotic
system, and conversion (translation) between different semiotic systems. For example
computing the sum of two fractions is an example of treatment, whereas translating a
fraction into an equivalent decimal expansion is an example of conversion.
Moreover, conversion must not be mistaken for codification, which is a pointwise
transcription of a representation into another one by means of substitutions given by
specific rules. The fundamental difference is that codification does not require
knowledge of the internal rules of the target semiotic system, but only knowledge of
the rules of transformation. The literal transcription of a spoken text into a written
one is an example of codification which is not conversion, as the resulting text does
not comply with the usual properties of written texts.

Language and context

Although here I am not focusing on students’ verbal texts, I adopt some ideas from
pragmatics (and in particular, functional linguistics) applied to mathematics (see
Pimm 1987, Morgan 1998, Ferrari 2004). In particular I refer to the notion of register
as a linguistic variety related to use and to the basic pragmatic assumption that any
form of human communication requires some form of cooperation to achieve the
goals of the exchange. Ferrari (2004) argues that the registers customarily adopted in
mathematics share a number of features with literate registers and may be regarded as
extreme forms of them. In particular, mathematical registers systematically violate
cooperation principles. For example, denoting a square with the word ‘rectangle’ or a
straight line with the word ‘curve’ is mathematically correct but violates cooperation
principles, as the words ‘square’ or ‘line” would sound more appropriate.

The question of which pieces of information can be drawn from a graph is not a
simple one. A graph can represent a portion only of a function defined on real
numbers, and properties such as continuity, differentiability and many others, as they
cannot possibly be recognized by the graph only, should be either explicitly stated or
inferred by the assumption that the graph is cooperative. The use of graphs is possible
only recognizing that students generally assume they are strongly cooperative
(Ferrari, 2004). Some more examples are provided below.
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THE STUDY
Methodology

The participants were 123 Italian Science freshman students attending an
introductory Mathematics course focused on real functions and differential and
integral calculus. The research has been carried out at the Universita degli Studi del
Piemonte Orientale “A.Avogadro” in Alessandria. Contrary to standard teaching
practices in this course graphs have been largely employed, both in face-to-face
lessons and examinations. The data have been collected from students’ answers to
written tasks based on diagrams. The tasks were part of written midterm and final
examination tests. All the answers were to be explained by means of written verbal
texts. We have focused on students’ strategies, trying to understand the reasons for
their wrong answers. We have taken into account some linguistic properties (mainly
the register adopted) of the written texts provided as explanations.

Tasks

We present here a translation of four typical problems among those given to students:

X

+1
x4l

Consider the function f defined as f(x) =

a) Compute f'(x)

b) Compute f'(0)

c) One of the graphs A, B below does not correspond to the derivative of f.
Find it and explain your answer.

A Y B y

/\

2T

Table 1: Problem 1.

Consider the function % (a portion of)
whose graph is on the right.

4
3

One of the graphs A, B below does not // \ .
1t

correspond to the derivative of 4. Find | 5 5 |
it and explain your answer.
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A 4Ty B y
3
2 Xt /
1 | [ X

-3 -2

Table 2: Problem 2.

Consider the function g (a portion of) T Ty
whose graph is on the right. Consider
the statement: “g'(0)< g'(-1)” and tell
if it is true, false or you cannot tell. | ! ! . !

. —6 —4 -2 2 4 6
Explain your answer. -

Table 3: Problem 3.

Consider the function u (a portion of) y
whose graph is on the right. L
a) Consider the statement:
“u'(0)<u'(-1)” and tell if it is true or
false. Explain your answer.

b) One of the graphs A, B below does

not correspond to a derivative of u.
Find it and explain your answer.

-1.5 -1 -0.5 ‘ 0.5 1

Table 4: Problem 4.

All of the problems have been given in order to assess the learning of the connections
between differentiable functions, their derivatives and their graphs. This requires the
ability at gathering data from graphs. The graphical representations are of a
conceptual nature, but at the same time they have all the limitations of real drawings.
Let’s see an example. It is impossible to tell on a perceptual basis only if a given
graph actually passes through a point(x,,y,). If a graph looks like it passes

through(x,,y,), to infer that it actually passes through (x,,»,) some cooperation
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principle is needed. These remarks have guided the formulation of the questions of
the tasks. For example, we never ask to find the graph that corresponds to some
formula, but only those that do not, and so on. The use of graphs itself can be a
further source of errors. Students have to distinguish what they can and what they
cannot read in a graph i.e. they must distinguish the conceptual nature from the
perceptive (realistic) one. This difficulty can arise from a lack of coordination of
semiotic systems (in this case involved in the notion of derivative) or from the
misunderstanding of the construction rules of the representation.

RESULTS AND DISCUSSION?

First of all we notice that most students succeeded in solving Problem 1 (part a),b)
76%, part ¢) 55%) and Problem 2 (81%). Problems 3 (36%) and 4 (part a) 43%, b)
43%), on the contrary, proved more troublesome. The previous percentages of
successes takes into account the explanation of the answers (bad or missing
explanations are always classified as wrong answers). In what follows I present some
excerpts that represent some of the most common students’ behaviours. The errors
have been classified into two categories. The first category refers to errors due to the
concept of derivative and to the mental models students have developed on this topic.
The second refers to errors related to how students extract information from graphs
i.e. how the representation influences students’ answers. Anyway one must not
consider these categories as clearly distinct, but they influence simultaneously and
continuously each other. Our thesis is that both these classes of errors can be
explained as a lack of coordination of semiotic systems.

Knowledge and semiotic systems

Let’s start with Problem 1). The most common approach to question c) considers a
point (x,,y,) which belongs to graph A but not to graph B or vice versa and in

checking whether or not x,, y, satisfy the equationy = f(x). This approach is also used

by most of the students providing appropriate answers to questions a) and b). Very
few people exploited answers @) and b) to solve ¢). The prevalence of this kind of
answer is due to the fact that it consists in a codification in the sense of Duval (1993),
requiring no other knowledge on the relationships between the symbolic
representation of the function and its graph. The use of the derivative in 0, on the
contrary, requires a more global conversion process, involving the knowledge of
properties linking the symbolic semiotic system to the visual one. Indeed students
usually choose to compute f{x,) rather than to use the result available on f7(0).

Consider now the other problems. We want to explain why problem 2 has had a high
number of correct answers and the other two have not. In problem 2 students apply
the monotonicity test which connects the monotonicity of a function and the
stationary points with the sign of its derivative. These topics are understood well
enough to give correct answers to problem 2, sometimes to problem 3 and in a few
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cases to problem 4 too. Consider the following excerpt of an answer of student A in
problem 3 and notice that the same student succeeded in solving Problem 2.

A: One can not answer since in the problem there is neither the graph of the
derivative function g’ nor the values of the derivative g’ in points 0 and -
1.

Consider now the behaviour of student B. He answers to problem 2 correctly using
the above rule and succeeds in answering also to Problem 3:

B: In O the function is Thus g’(-1) is larger than g’(0) and the statement is
true.

But student B gives the following answer to point @) of Problem 4:

B: Since the function u is increasing u’(0) and u’(-1) take positive values. It
is impossible to determine which is the greater between the two.

Answers like A’s and B’s are very common in the whole group.

Another student C in Problem 3 tries to find a formula for ¢ satisfying the condition
g'(0)< g'(-1) but he admits that such formula does not represent the graph given. Also
this student succeeded in solving problem 2.

Behaviours like those of A, C denote that these students cannot link their knowledge
of the derivative of functions to the figural properties of the graphs. Their answers
explicitly show lack of coordination of different semiotic systems. The situation of B
is a little bit better since he can realize that there is a neighbourhood of the origin
where g is decreasing and then its derivative will assume negative values (exploiting
the monotonicity test) and hence also g’(0) will take a negative value. But also in this
case the student seemingly does not know what does g’(0) represent (i.e. the slope of
the tangent line for x=0). Behaviours like those of A, B, C mean that the notion of
derivative is considered as a global property i.e. a property referred to a whole
interval and not as a pointwise one. Given a function f{x) on a domainD, its
derivative f(x) is seen as a function that one can compute just having the formula of
f(x). In these cases the concept image (Tall & Vinner, 1981) evoked by students is not
related to any formal or informal concept definition, for example topics such as the
slope of the tangent of a curve or the limit of the difference quotient. These students
properly use the property which relates the monotonicity of a function with the sign
of its derivative i.e. they have learnt the codification increasing (decreasing) function
— positive (negative) derivative and that null derivative corresponds to stationary
points. It comes out that such properties are considered by students as rules which
allow them to solve problems like 2, and in some cases also like 3 but not like 4.
Moreover, very few students used the slope of the tangent line to solve the problems.

Notice that also the answers to problem 1 confirm that derivative is not seen as a
pointwise object. Here students who choose to use derivative arguments do not use
the derivative at point 0 computed to answer b) but they study the sign of the
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derivative or search stationary points exploiting the formula previously computed in
order to answer question a). Also in this case few students use the derivative at point
0 computed to answer b).

Pragmatics and semiotic systems

Some wrong answers can be ascribed to poor interpretations of the graph (regarded as
a representation in a semiotic system). Sometimes the students read from the graph
pieces of information that should not properly be read. This might be ascribed to
pragmatic factors: the students often implicitly assume that a graph (rather than a
piece of text or a formula) has to be highly cooperative. So from a graph like B of
problem 4, plenty of students are ready to learn that that function is increasing on the
whole real numbers. This behaviour is the consequence of the application of principia
that usually work in colloquial registers, since graphing a non-increasing function in
an interval where it looks as increasing would break cooperative rules. This is the
case of student S when solving Problem 4b):

S: Since 4 is an increasing function its derivative will assume positive
values. Graph A does not represent %’ since it tends to have negative
values.

Student S seems to assume that % is defined and increasing on all the reals.
Moreover, since 4’ is decreasing, he infers that it will eventually take negative values
even if this is not shown in the portion of the graph actually represented.

We found a similar behaviour in some students when addressing problem 1). They
use limits (x — o) to answer the question 15). Also in this case they seem to believe
that the graph represents the behaviour of the function on all the real line rather than
in a portion of it only. Look at the following answer to problem 2:

T: Graph B does not correspond for sure to the derivative 4’ because it does
not pass through the origin. In fact 4 has a maximum at (0,2). Moreover
in the interval [0,1] % is decreasing so #° must take negative values.

In this case the error could be interpreted as misleading perception. In the last three
kinds of answers the mistakes are due to the graphical system. Graphs hinder the
resolution of the tasks but anyway this would not happen if the students had a firm
grasp on the concept of derivative.

This research highlights poor visual reasoning skills related to the concept of
derivative in freshman students and points out their difficulty in connecting different
aspects of the same topic. It seems that the statement of a problem evokes some parts
of the related concept image and students do not mind to use other resources that they
could gather from that. In particular this seems related to poor skills in the conversion
of different semiotic representations. Indeed some errors occurring in the tasks are
due to the relationships of the graphs with the context. We think that problems like
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those presented in this paper can help students to improve the use of their concept
image and hence to develop links between their different cognitive resources.

'In contrast to Duval, I do not use the term ‘register’ to denote a semiotic system, as it is
more generally used to denote a linguistic variety related to use.

? Since the translation into English of a text written in another language (Italian in this case)
may affect some linguistic properties of the original text we report here the translation of
just a few parts of protocols in order not to change the features for the analyses of data.
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HIGHSCHOOL TEACHERS' KNOWLEDGE ABOUT
ELEMENTARY NUMBER THEORY PROOFS
CONSTRUCTED BY STUDENTS

Ruthi Barkai, Michal Tabach, Dina Tirosh, Pessia Tsamir, and Tommy Dreyfus
Tel Aviv University'

This study investigates changes in teachers' knowledge regarding their students’
construction of correct and incorrect proofs within the context of elementary number
theory, before and after a professional development course. Twenty high school
teachers were requested twice to suggest correct and incorrect proofs their students
might construct, at the beginning and at the end of the 15 week long course. The
suggested proofs were analysed according to modes of representation. Results
indicate that the teachers' suggestions of correct and incorrect proofs students might
construct increased both in number and variety.

THEORETICAL BACKGROUND

Recent reforms in mathematics education recommend including proofs as a key
component in school mathematics (Australian Educational Council, 1991; Israeli
Ministry of Education, 2004; National Council of Teachers of Mathematics, 2000),
because of the vital role proofs play for validation and for refutation in mathematics
(Aigner & Ziegler, 1998; Thurston, 1994). Different types of proofs require the use of
different methods. For a universal statement a general proof, covering all relevant
cases is necessary to validate the statement while a single counter example is
sufficient to refute such a statement. For an existential statement a single supportive
example is sufficient to prove the statement, while a general proof, covering all
relevant cases, is necessary to refute the statement. In addition, a proof may be given
in various modes of argument representation (Stylianides, 2007), such as verbal,
numeric or symbolic representation.

Teachers are responsible to incorporate proofs and proving in everyday school
practise. What are the types of knowledge a teacher needs to implement proofs in his
class? "Teachers' subject matter conceptions have a significant impact on their
instructional practices” (Knuth, 2002, p. 63), and hence, analysing teachers'
knowledge with respect to proof and proving is important. Knowing to verify valid
statements and to refute invalid ones is an essential component of teachers' subject
matter knowledge. Yet, it is not the only requirement. Hill, Ball, Sleep and Lewis
(2007) rhetorically ask "Is the knowledge mastered by someone who majors in
mathematics sufficient content knowledge for teaching?" (p. 112). Teachers need to
be able to evaluate students' suggested proofs to various statements. In addition,
teachers need to be familiar with the ways students correctly and incorrectly justify a
variety of statements. This latter type of knowledge is the focus of the present study.
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2-113



Barkai, Tabach, Tirosh, Tsamir, Dreyfus

What does the literature tells us about teachers' familiarity with the ways students
justify statements? Not much. We found several studies relating to secondary school
teachers’ evaluation of students’ given justifications (e.g., Dreyfus, 2000; Healy &
Hoyles, 2000). However, we did not find studies in which teachers were asked to
provide correct and incorrect justifications that students are likely to construct for
various statements.

Hence, we looked for studies related to students' knowledge of proofs and proving.
Studies have shown that students are not always aware of the necessity for a general,
covering proof when proving the validity of a universal statement for an infinite
number of cases (e.g., Bell, 1976). Healy and Hoyles (1998, 2000) found that 14-15
year olds have difficulties constructing a complete proof based on deductive
reasoning. Balacheff (1991) found that students relate to counter examples as bizarre
instances and do not always recognize a counter example as being sufficient to refute
a universal statement. Regarding the types of representations used by students when
constructing proofs, Bell (1976) found that none of the 36 high school students in his
study used an algebraic proof when proving a numerical, universal conjecture. Healy
and Hoyles (1998, 2000) found that students preferred verbal explanations over other
kinds of representations.

In the present study we ask two questions: (1) Are high school teachers familiar with
correct and incorrect justifications that students may construct for various elementary
number theory statements? (2) To what extent did a professional development course
contribute to teachers' knowledge of students' justifications?

SETTING AND METHOD

Twenty high school teachers participated in the study. All of them were studying
towards a master degree in mathematics education.

The participants participated in weekly meetings, two hours long, of a 15 week
professional development course. The course aimed at enhancing participants'
knowledge with respect to mathematical aspects of proofs and proving, as well as
with respect to didactical aspects of teaching proofs in secondary school. The course
included the design, by the participants of a learning unit (2-4 lessons), in the domain
of elementary number theory (ENT). The ENT context was chosen as the related
concepts were thought to be familiar to teachers and to middle grade students,
enabling the teachers to focus on proving the statements and minimizing difficulties
that may have arisen due to problems with the content domain and misunderstanding
of terminology. The participants implemented the unit they designed in their own
classes, and reported back on these implementations during the course sessions.

Tools

At the beginning of the course, a set of three questionnaires, consisting of six ENT
statements was administered to all participants (Table 1). The validity of each
statement is determined by a combination of the predicate (always true, sometimes
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true, or never true) and the quantifier (universal or existential). The teachers were
asked to answer a three part questionnaire: first to produce a proof (or a refutation)
for each of the six statements, which they consistently did correctly (part 1). Next, for
each of the six statements, teachers were asked to suggest as many correct and
incorrect proofs that, in their opinion, students would give for these statements (part
2). Finally, the teachers were presented with different, correct and incorrect
justifications for each statement (part 3). In this paper we limit the discussion to
teachers' answers to the second part. (A discussion on the findings relating to part 3

can be found in Tsamir, Tirosh, Dreyfus, Barkai and Tabach, 2008).

Predicate Always true Sometimes true Never true
Quantifier
Universal S1: The sum of S2: The sum of S3: The sum of
any 5 consecutive any 3 consecutive any 4 consecutive
natural numbers is natural numbers is natural numbers is
divisible by 5. divisible by 6. divisible by 4.
True False False
Existential S4: There existsa  S5: There existsa  S6: There exists a
sum of 5 sum of 3 sum of 4
consecutive consecutive consecutive
natural numbers natural numbers natural numbers
that is divisible by that is divisible by that is divisible by
5. 6. 4.
True True False
Table 1: Classification of statements
Data Analysis

All proofs presented by the teachers were categorized according to their modes of
representation (Stylianides, 2007). This analysis resulted in three modes of
representation: numeric, symbolic, and verbal.

RESULTS

We first present overall results about correct and incorrect justifications that the
teachers suggested as students’ constructs. We follow with an analysis of modes of
argument representation for the correct justifications with examples of teachers’
suggestions, and finally a similar analysis with examples for the incorrect
justifications.

At the beginning of the course, our participants suggested a total of 291 correct and
incorrect justifications that students may give to the six statements in Table 1. At the
end of the course, the total number of justifications had increased by 51%, resulting
in 440 justifications. At the beginning of the course, the teachers suggested 169
correct and 122 incorrect justifications and at the end of the course 255 correct and
185 incorrect justifications. Tables 2 and 3 present the numbers of correct and
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incorrect justifications (respectively) suggested by the teachers as possible
justifications that students will construct to each statement. Overall, it seems that they
found it easier to think of correct justifications that students will construct than of
incorrect justifications. A more detailed examination of the tables reveals, however,
that this is the case only for statements S2-S5; for statements S1 (universal, always
true) and S6 (existential, never true), on the other hand, the teachers provided more
incorrect justifications then correct justifications before the course. These two
statements require a general-cover proof. This is in line with research findings about
students difficulties with general-cover proofs (Bell, 1976). However after the course,
the number of correct and incorrect justifications in the case of these two statements
was almost the same.

S1 S2 S3 S4 S5 S6
---------- Universal----—--  -—————-Existential----—---

True  (Always) (Sometimes) (Never) (Always) (Sometimes) (Never) Total

Before 25 33 33 31 31 16 169

After 47 50 44 42 42 30 255

Table 2: No. of justifications teachers provided as students' correct justifications

The number of suggestions for incorrect justifications to statements S3 (universal,
never true) and S4 (existential, always true) was significantly lower than the number
of suggestions for the other statements, both before and after the course. The teachers'
common remark regarding S3 was that since any numerical example of the sum of
four consecutive numbers is not divisible by four, students will not err in this case.
Similarly, with respect to S4, teachers claimed that since the sum of any five natural
consecutive numbers is divisible by 5, students will not err in this case either.
Teachers' claims in these cases are in line with reports about students' tendency to
start with examples (Healy & Hoyles, 1998).

S1 S2 S3 S4 S5 S6
---------- Universal--—--—-—-- --——Existential -—----

True (Always) (Sometimes) (Never) (Always) (Sometimes) (Never)  Total

Before 29 33 10 5 24 24 122
After 46 43 17 9 37 33 185

Table 3: No. of justifications teachers provided as students' incorrect justifications

It is notable that the change from pre test to post test in the number of justifications
provided for each statement varied considerably. The largest change was found in
correct justifications for statements S1 and S6, which means that the participants
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could provide more correct general-cover proofs after the course. Also, the
participants could provide more incorrect proofs for statements S3 and S4.

We now turn to the modes of argument representation suggested by the teachers for
the correct justifications of each statement before and after the course (Table 4).

S1 S2 S3 S4 S5 S6
--------- Universal-----—--- -————-Existential--—--—---
True (Always) (Sometime (Never) (Always) (Sometime (Never)
s) s)
Before Before Before Before Before Before
After After After After After After
Symbolic 23 15 14 13 9 15
31 24 21 19 17 23
Verbal 2 0 0 0 0 1
16 3 4 0 0 7
Numeric 0 18 19 18 22 0
0 23 19 23 25 0

Table 4: Categorization of the correct justifications that teachers suggested as
students' justifications according to the mode of argument representation

In each mode of argument representation we can see an increase in the number of
suggested correct justifications. After the course the teachers suggested more correct
symbolic justifications; all the participants provided the symbolic justification where
x represents the first of the consecutive natural numbers for each statement, including
statements S2 — S5, for which supportive or counter examples suffice as proof. A few
other symbolic justifications were suggested — mainly after the course, representing
the middle element as x, using mathematical induction, or using the formula for the
sum of an arithmetic sequence. Many more verbal justifications were presented after
the course than before (30 vs. 3), especially for statements S1 and S6, which required
a general-cover proof. An example for a verbal justification to S1 before the course:
"One of five consecutive numbers is divisible by five. The other numbers, when
divided by five, will give the remainders 1, 2, 3, 4. The sum of these remainders is
ten, which is divisible by five". After the course, additional justifications were given,
many of them were of the kind: "I will check the sum of the first five consecutive
numbers: 1 + 2 + 3 + 4 + 5 = 15, divisible by five. The sum of the next five
consecutive numbers can be obtained by adding five to this sum (since each addend is
larger by 1, hence the sum is larger by five). In each step we add five to a number
that is already divisible by five; hence the sum is always divisible by five. The
statement is true". While twenty correct verbal induction type justifications were
presented after the course, only seven induction justifications were presented
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symbolically. With respect to numerical justifications, before the course the teachers
provided justifications which included one numerical example — either as a
supportive example or as a counter example. After the course, there was a general
small increase, especially in the category of several numerical examples (for
example, the student will choose a supportive example, and also a counter example as
justification). This is in line with research findings that indicate students' tendency to
use more than one example as justification (Bell, 1976).

The modes of argument representation in the case of incorrect justifications provided
by the teachers as their students' construction can be examined in Table 5.

S1 S2 S3 S4 S5 S6
--------- Universal----—---- -———-—-Existential--—-—---
True (Always) (Sometime (Never) (Always) (Sometime (Never)
s) s)
Before Before Before Before Before Before
After After After After After After
Symbolic 4 7 6 2 10 4
8 12 7 6 12 6
Verbal 4 2 4 2 2 3
1 1 3 1 1 2
Numeric 21 24 0 1 12 17
37 30 7 3 24 25

Table 5: Categorization of the incorrect justifications that teachers suggested as
students' justifications according to the mode of argument representation

For the incorrect justifications, as for the correct ones, we note an increase in the
number of the symbolic justifications for each statement. It seems that the
participants expand their repertoire of students' errors. Two categories of symbolic
lapses were identified in teachers suggested justifications. Generality lapses related to
cases were the symbolic representation of the consecutive numbers was wrong, like x,
X, .. or Ix, 2x ..., and hence the generality of the justification was violated; and
inference lapses like an invalid chain of inferences ("The sum of five consecutive
numbers: x + x+1 +x+2 + x+3 + x+4 = 5x + 10, 5x = -10, x=-2. There is a solution
and hence the statement is true"). In some cases the wrong inference was to
transform an expression into an equation, while in others the expression that
represents the sum of the consecutive numbers was given a wrong interpretation. A
decrease was found in the verbal mode of argumentation for all cases of incorrect
justification. This is not in line with the increase evident for the correct justifications
(Table 4). It seems that intuitive verbal justifications (like, "The sum of any five
consecutive natural numbers is divisible by five, hence the sum of any four
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consecutive natural numbers is divisible by four"), was abandoned by the
participants. With respect to the numerical mode of argumentation, we note an
increase for each statement. The teachers seem to have become aware of a variety of
errors with respect to numerical examples as justifications, like providing several
examples and concluding that a statement holds for all cases, or checking a "small"
numerical example and a "large" numerical example, and concluding that the
statement holds for all cases. This is in line with research findings about students'
incorrect justifications (Harel & Sowder, 2007).

CONCLUDING REMARKS

In the present study we asked two questions: (1) Are high school teachers familiar
with correct and incorrect justifications that students may construct for various
elementary number theory statements? (2) To what extent did a professional
development course contribute to teachers' knowledge of students' justifications?

As the range of teachers’ suggestions for correct and incorrect justifications suggests,
the participants in our study think that students' use of the symbolic mode of
argument representation is extensive. Also, it seems that at least some of the
participants showed no awareness of students' preference for the verbal mode of
argument representation. While the participants' tendency to suggest symbolic
justifications did not decrease after the course, their suggestions for verbal correct
justifications in the case of general cover proofs increased considerably.

The professional development course influenced both, the number and variety of high
school teachers' responses when asked to present students’ correct and incorrect
justifications to six ENT statements. In particular, we point to the increases in the
number of correct verbal justifications and the number of incorrect numerical
justifications; indeed, the literature indicates that students tend to use verbal
justifications for proving correct ENT statements, and numerical examples when
constructing an incorrect justification (Harel & Sowder, 2007). The participants also
expanded their repertoire of symbolic lapses, which may help them identify such
justifications when presented in their own classes.

Three factors may have contributed to the observed changes: The professional
development course itself has probably had an effect by means of its discussions on
various justifications for different types of statements. The learning unit, which the
teachers planned and implemented, may have provided opportunities for
confrontation with students' actual justifications and thus contribute to the teachers'
repertoire of justifications. Finally, it is possible that the test given at the beginning of
the course, which included suggestions for students’ justifications, influenced the
teachers' knowledge.
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IN SEARCH FOR THEORIES: POLYPHONY, POLYSEMY AND
SEMIOTIC MEDIATION IN THE MATHEMATICS CLASSROOM

Maria G. Bartolini Bussi
Universita di Modena e Reggio Emilia (Italia)

This theoretical report addresses the theme of the PME Conference (“In search for
theories in Mathematics Education”). The history of two interlaced research
programs (Mathematical Discussion and Mathematical Machines) headed by the
author is outlined, together with the merging of both, combined with studies on
information and communication technologies. They are the roots of the theoretical
framework of semiotic mediation after a Vygotskian approach (Bartolini Bussi &
Mariotti, 2008). May this framework answer the present needs of focusing cultural
historical issues and the teacher's role in the teaching-learning process within the
mathematics classroom?

INTRODUCTION

This theoretical report reconstructs the scientific and cultural roots of a theoretical
framework about the relationship between artifacts and signs in the classroom
process after a Vygotskian approach, with emphasis on the teacher's guiding role
(Bartolini Bussi & Mariotti, 2008). The narration outlines the development of two
research programs (called the Mathematical Discussion program and the
Mathematical Machines program) and offers an annotated bibliography of both. The
two programs, headed by the author, were developed independently from each other
for years before giving rise to a shared theoretical framework as a result of a dialogue
between empirical and theoretical issues. Mariotti is credited for joint elaboration of
this framework, mainly (but not only) thanks to her expertise in information and
communication technologies (ICT, e. g. Mariotti, 2002). All this was developed
within the paradigm of Research for Innovation in Mathematics Education, as
empirical-theoretical classroom research (Arzarello & Bartolini Bussi, 1998).

THE MATHEMATICAL DISCUSSION PROGRAM

In the 80s, the author and a group of mathematics teachers (grades 1 - 8) started to
study the conditions for realizing effective whole class interaction. Within the
European tradition of teaching and learning, we felt uncomfortable with the one-sided
focus on learners' activity and on peer interaction that characterized the constructivist
approach (dominant in those years in the field of mathematics education). We did not
consider this focus respectful of the cultural role of teachers: hence a cultural
historical perspective was assumed (Vygotsky, 1978, 1981).

Vygotsky: obucenie. The idea of obucenie, i.c. the bilateral process of transmission
and appropriation of knowledge, skills and methods, carried out by the teacher and
the learner together (Vygotsky, 1990, p. xx), was a warning against reductionist

2009. In Tzekaki, M., Kaldrimidou, M. & Sakonidis, H. (Eds.). Proceedings of the 33rd Conference of the International
Group for the Psychology of Mathematics Education, Vol. 2, pp. 121-128. Thessaloniki, Greece: PME.
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approaches. We were especially interested in the Vygotskian asymmetry between the
expert adult and the young children in the zone of proximal development and in the
process of internalization (Bartolini Bussi, 1998a).

Leontev: activity, actions, operations. We focused long term processes, which last
weeks, or even months. This depends, first, on the organization of the Italian school
system (where a teacher teaches the same classroom for three or even five years) and,
second, on the belief that many relevant changes can be observed only in the long
run. Leontev activity theory (1978) offered the distinction between the three levels of
activity (collective and directed towards an object-motive), actions (goal direct
processes) and operations (the way of carrying out actions in variable concrete
circumstances, Bartolini Bussi, 1996, p. 15ff). Because of the focus on the teacher's
role, actions and operations were studied mainly with reference to this acting subject.
As it is impossible to design a priori the complexity of interactional processes, the
study of teacher's on the spot improvisation was needed.

The Italian comedy of art: anticipated improvisation. To approach the issue of
teacher's operations, we considered the idea of improvisation, as emergent in the
Italian comedy of art (Fo, 1987). Actors do not always invent cues; rather they often
choose them in a repertory that has been studied diligently according to the different
situations which may occur. Hence, our effort was directed towards eliciting goals of
the teacher from specific classroom situations and towards collecting "constellations"
of communicative strategies (cues) which had shown effective empirically in
fulfilling the goal, in order to construct a repertory to be learnt (Bartolini Bussi,
1998b). A recent and more complete work has been carried out by Falcade (2006).

Bachtin: polyphony. The metaphor of polyphony (Bachtin, 1968) was adopted to
consider the system of utterances produced by students and teachers or by evoked
authors of texts (e.g. historical sources, textbooks). We used the word voice after
Bachtin to mean a form of speaking and thinking, which represents the perspective of
an individual, i.e. his/her conceptual horizon, his/her intention and his/her view of the
world (Bartolini Bussi, 1996).

The construct of Mathematical Discussion orchestrated by the teacher. After
some years of empirical work in the mathematics classrooms from grades 1 to grade
8, we described in a precise way the specific form of classroom interaction we were
working on, i. e. the Mathematical Discussion orchestrated by the teacher.

The Mathematical Discussion [orchestrated by the teacher] is polyphony of articulated
voices on a mathematical object (e.g. a concept, a problem, a procedure, a structure, an
idea or a belief about mathematics), that is one of the motives of the teaching-learning
activity (Bartolini Bussi, 1996, p. 16).

The recourse to musical metaphors was not accidental. Besides borrowing the words
polyphony and orchestration from Bachtin we wished to emphasize also the
importance of imitating voices in counterpoint. This position was very strongly
influenced by Vygotsky's emphasis on intellectual imitation as one of the basic paths
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of cultural development of the child (Vygotsky, 1978). In other words, we stated very
firmly that imitation is essential in the teaching-learning process and not opposed to
creative thinking (for a contrast with constructivist perspectives on mathematical
discussion see Bartolini Bussi, 1998a, p. 14 ff.).

Several experiments were carried out in the following years in grade 1-8 classrooms
(Bartolini Bussi, 2007; Bartolini Bussi & Boni, 2003; Bartolini Bussi et al., 1999,
2005, 2007). In parallel, Mariotti implemented systematically mathematical
discussions in ICT environments (e. g. Mariotti, 2002; Cerulli, 2004).

THE MATHEMATICAL MACHINES PROGRAM

Most of the research studies quoted at the end of the previous section concern
concrete artifacts taken from the history. This is consistent with one of the major
tenets of cultural historical school. Actually Vygotsky did not study only language
but also the role of artifacts in the cognitive development (Bartolini Bussi & Mariotti,
2008, p. 751) and suggested a list of possible examples:

various systems for counting; mnemonic techniques; algebraic symbol systems; works of
art; writing; schemes, diagrams, maps, and mechanical drawings; all sorts of
conventional signs, etc” (Vygotsky 1981, p. 137).

In the Laboratory of Mathematical Machines (www.mmlab.unimore.it) headed by the
author, more than 200 artifacts have been reconstructed drawing on the historical
phenomenology of geometry, from the classical age to the 20th century. A
mathematical machine is a tool that forces a point to follow a trajectory or to be
transformed according to a given law. The most common mathematical machines are
the pair of compasses (that forces the point with the graphite lead to draw a circle).
Since the 80s empirical classroom activity was carried out at high school level
(grades 9 - 13) by the members of the Laboratory team. In all the experiments, small
group work with a mathematical machine was realized before whole class discussion
of findings. The historic epistemological analysis was in the foreground whilst the
study of classroom organization and processes came later (Bartolini Bussi & Pergola,
1996; Bartolini Bussi, 2005; Bartolini Bussi & Maschietto, 2006).

Rabardel: artifacts and instruments. Rabardel’s instrumental approach (1995) is
based on the distinction between artifact and instrument: the artifact is the material or
symbolic object per se whilst the instrument is a mixed entity made up of both
artifact-type components and schematic components (utilization schemes). The
utilization schemes are progressively elaborated by the user during artifact use to
solve a task; thus the instrument is a construction of an individual, it has a
psychological character and it is strictly related to the context (Bartolini Bussi &
Mariotti, 2008, p. 748 ff.). The elaboration and evolution of the instruments
(instrumental genesis) can be articulated into two processes: instrumentalisation,
concerning the emergence and the evolution of the different components of the
artifact, e.g. the progressive recognition of its potentialities and constraints;
instrumentation, concerning the emergence and development of the utilization
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schemes. The two processes are outward and inward oriented, respectively from the
subject to the artifact and vice versa, and constitute the two inseparable parts of
instrumental genesis. Both analyses have been applied to mathematical machines
(Bartolini Bussi & Maschietto, 2006, ch. 4; Martignone & Antonini, in press).

Wartofsky: polysemy. Wartofsky (1979) analyses artifacts from epistemological
perspective. According to him, the term artifact has to be meant in a broad sense
(Bartolini Bussi & Mariotti, 2008, p. 760 ff.), including tools (primary artifacts),
representations (secondary artifacts) and theories (tertiary artifacts). Consider the
case of the pair of compasses. One may use it to draw round shapes (primary
artifact), to find a point at a given distance from two given points, according to
Euclid's definition of circle (secondary artifact) or to evoke the Euclidean geometry
(tertiary artifact). The introduction of an artifact in a classroom does not
automatically determine the way it is used and conceived of by the students (i. e.
polysemy emerges) and may create the condition for generating the production of
different voices. For each artifact, one may analyse a priori the semiotic potential that
links the meanings emerging from its use, aimed to accomplish a task, and the
mathematical meanings evoked by that use. This analysis suggests ways of starting,
monitoring and managing polyphony in classroom interaction.

Wartofsky's analysis offered an epistemological perspective, whilst Rabardel's
instrumental approach offered a cognitive perspective on the use of mathematical
machines.

SEMIOTIC MEDIATION: THE MERGING OF TWO RESEARCH
PROGRAMS

In the early years the didactical analysis in the field of experience of Mathematical
machines looked still weak, whilst in the Mathematical Discussion program it was
stronger. The merging of two programs aimed at deepening the construct of semiotic
mediation, as conceived by Vygotsky (1978, p. 39-40). Polyphony caught the
linguistic, whilst polysemy caught the instrumental aspects. Moreover the presence of
concrete artifacts emphasized the importance of other semiotic systems in addition to
language (e. g. gestures, drawings; Maschietto & Bartolini Bussi, 2009).

It is beyond the aim of this short report to present the resulting theoretical framework
(Bartolini Bussi & Mariotti, 2008), that encompasses all the issues above and
includes also ICT. Two schemes may recall and outline the framework. The first (fig.
1) represents the system of semiotic activity that hints at the teacher's roles; the
second (fig. 2) represents the didactical cycle that hints at long term processes.
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Figure 1: Artifacts in semiotic mediation. Figure 2: The didactical cycle.

The fig. 1 represents what happens when a student (or a small group of students) is
given a task, that, according to teacher's intention, is related to both a piece of the
mathematics knowledge to be taught and the use of an artifact (e. g. a pair of
compasses). A solution of the task, although correct, might be only a technical
solution (where the artifact is used as primary one), with situated "texts" (signs) and
without any awareness of mathematical meaning. On the right side of the diagram, it
is represented the teacher's aim to transform the above situated "texts" (signs) into
mathematical "texts" (signs) which might be easily related to the piece of
mathematical knowledge to be taught. The teacher's main roles are the following:
(left) to construct suitable tasks; (right) to create the condition for polyphony,
eliciting the polysemous feature of the artifact and to guide the transformation of
situated "texts" (signs) into mathematical "texts". In this way the teacher mediates
mathematical meanings, using the artifact as a tool of semiotic mediation. Without
teacher's intervention, there might be a fracture between learner/s (top) and culture
(bottom) planes, hence no learner's construction of mathematical meanings.

This is not a short term process. The fig. 2 shows the articulation of classroom
processes over time, from individual or small group solution by means of the artifact,
together with the individual production of "texts" (signs), to collective production of
"texts" (signs) in mathematical discussion orchestrated by the teacher (Bartolini Bussi
& Mariotti, 2008). Fine grain analysis of the teacher's role in this long term process
has been carried out by Falcade (2006) and is still in progress in specific situations.

As motives of activity include "existing" mathematical meanings (often expressed in
a crystallized form), a critical reader might object that such a teleological approach
contrasts Bachtin's idea of polyphony. On the contrary, we claim that, according to
the Vygotskian construct of internalization (1978, p 56), what is internalized by
students is not the crystallized result but rather the interpersonal process of
construction, that is truly polyphonic. There are always traces of polyphony in
students' protocols, which may involve other semiotic systems, e. g. gestures
(Maschietto & Bartolini Bussi, 2009). As authors end novels, teachers lead students

PME 33 - 2009 2-125



Bartolini Bussi

to construct/appropriate 'existing' mathematical meanings: it is not a finish but rather
a new start. As Vianna & Stetsenko (2006) claim, from a Vygotskian perspective:

Present generations never invent their world and themselves from scratch but inevitably
continue their past, even if by completely breaking away from it. However, it is also clear
that the past does not simply evolve in the present but is enacted by each generation of
people each time anew and in view of the present and the future (which is flexible too),
through innovative and bold contributions to it. This mutual interpenetration of past and
present can be well captured by the metaphor that the present without the past is blind,
but the past without the present is powerless (p. 100-1).

CONCLUDING REMARKS

The main contributions of this comprehensive framework concern the role of history
and culture and of tools (artifacts from both history and ICT) as mediators under the
guide of the teacher, and the study of teacher's asymmetric role (as a guide) in the
mathematics classroom.

When the Mathematical Discussion program was started, it was not easy to find
interlocutors in the scientific community, because the focus on teaching was mistaken
for neglecting learning. After more than twenty years the situation is expected to be
different. According to Sfard (2005), in the 21st century, from the era of the learner
we have entered the era of the teacher. Yet, is it real? Vianna & Stetsenko (2006)
have carefully analysed some research programs from US and UK and have found a
pivotal difference in views on the role of history and culture and of teaching in
development, in comparison with Vygotskian tenets. This difference seems to draw
on deep roots. As Clarke (2007) observed

Whether we look to the Japanese “gakushushido", the Dutch “leren” or the Russian
“obucenie”, we find that some communities have acknowledged the interdependence of
instruction and learning by encompassing both activities within the one process and, most
significantly, within the one word. In English, we seem compelled to dichotomise
classroom practice into Teaching or Learning (p. 23).

Yet, now the world of mathematics education communities is expanding and attitude
is changing: may the theoretical framework of semiotic mediation after a Vygotskian
approach, as developed by Bartolini Bussi & Mariotti (2008), be assumed as a useful
theory for research on teaching - learning in the mathematics classroom?
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MATHEMATICAL TASKS TO PROMOTE STUDENT LEARNING
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This paper examines teachers’ selection and resolution of function problems and
relates this to their students’ understanding of the concept. Focusing on the way in
which tasks are presented and resolved, the paper indicates that the models teachers
present to students to obtain solutions may lead to two contrasting outcomes. On one
hand the teacher’s emphasis may confine the students to a limited way of thinking
about the core ideas and contribute towards misconceptions. In contrast, a model
that emphasizes connections between the ideas and the representations can
encourage a conceptually rich knowledge of function and minimizes the occurrence
of misconceptions.

INTRODUCTION

Tasks shape the way students think about the subject matter and, thus, influence their
learning (Doyle, 1983; Stein & Lane, 1996). NCTM (2000) recognized the
importance of using worthwhile tasks in teaching mathematics suggesting that
“...tasks should be intriguing; with a level of challenge that invites speculation and
hard work” (pp. 16-17). Stein et al (1996) considered a ‘mathematical task’ as a
classroom activity with the purpose of engaging students with a concept or
algorithmic skill. They suggest that a mathematical task passes through three phases
until it becomes a learning outcome. The first is concerned with designing and
presenting the task as it appears in the instructional materials. The second, the set up
phase, entails the teacher’s introduction of the task in the classroom, whilst the third
stage, the implementation phase, embraces the process in which the task is performed
by the teaching-learning community. Stein et al (1996) discuss two dimensions of the
mathematical task: task feature and cognitive demand. Task feature may require
using more than one solution strategy or it might request recalling pre-presented rules
and procedures and applying them to the problem at hand. Cognitive demand entails
the thinking process within which the teaching-learning community engages when
implementing the problem (ibid).

Stein and Lane (1996) reported that there was an increase in the students’
understanding when the teachers engaged them with the conceptual tasks without
reducing the task demands. They call for new qualitative studies suggesting that these
studies should consider the cognitive processes set into the tasks and the quality of
teaching discourses that support or inhibit student engagement with them. This paper
contributes to a growing body of research in the field by examining two Turkish
teachers’ selection and implementations of function problems and relates it to their
students’ understanding of this notion. In this paper, ‘task’ refers to ‘function
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problems’ whilst ‘task condition’ refers to ‘teaching discourses’ that the teachers
displayed when solving these problems.

RESEARCH DESIGN

This paper builds upon a study (Bayazit, 2006) which investigated the influence of
classroom teaching on student understanding of the function concept. The
participants were two experienced teachers (Ahmet: 25 and Burak: 24 years) and
their 9" grade students. The study employed a qualitative inquiry (Merriam, 1988)
and used a purposeful sampling strategy to control teacher/student related factors
(e.g., students’ initial achievements). Teachers’ selection and implementation of
function problems was explored through classroom observation and document
reviews. Each teacher was observed teaching all aspects of the function concept.
Lessons were tape-recorded and field notes were taken. Students’ learning was
investigated through pre and post tests which encouraged them to provide reasons for
their answers. Clarification interviews with three students from each class were
carried out after each test.

Theoretical Frameworks and the Data Analysis

The methods of discourse and content analysis (Philips & Hardy, 2002) were used to
analyze the qualitative data. These methods aimed to discern meaning embedded in
the written and spoken languages and to construe them in the surrounding conditions.
Literature associated with the cognitive processing and teaching of the functions (see,
for instance, Breidenbach et al, 1992; Vinner, 1983) and the notions of ‘task feature’
and ‘cognitive demand’ (Stein et al, 1996) were used to analyze the task quality and
teaching discourses displayed during the task implementation. Initial codes were
assigned to a data base of 308 tasks presented to the students during the observations
(Ahmet: 158, Burak: 150). Since there was no difference in the teachers’ selection
and implementation of function problems using set-diagrams and ordered pairs, these
problems were not considered here. In the second phase of analysis the focus was
upon tasks with either an algebraic (Ahmet: 103, Burak: 115) or graphical form
(Ahmet: 40, Burak: 15). Codes such as ‘connection needs to be established...” and
‘addresses the univalence...” were established for each problem. Repeated on
different copies of the texts this eventually led to the creation of three major
categories: ‘procedural tasks’, ‘conceptual tasks’ and the ‘others’. Aspects of each of
these categories are illustrated in the result section. Concerning the teachers’ task
implementations, lessons were fully transcribed and considered line by line whilst
annotated field notes were used as supplementary sources. The first phase of analysis
produced 47 categories (Ahmet: 25, Burak: 22), for instance, Ahmet: ‘... always
refers to the concept definition’, Burak: ‘... does not establish connections between
the representations). Repetition of this process produced 6 major categories for each
teacher, and these are illustrated in the coming section as well.

Quantitative methods were used to provide descriptive statistics of the students’ test
results. The notions of action-process conceptions of function provided a framework
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to interpret the students’ understanding of the concept. An action conception entails
the ability to insert an element into an algebraic function and calculate its image
through step-by-step manipulations (Breidenbach et al, 1992). A process conception
is attained through internalizing actions associated with the previous step. It enables
one to think of a function process in terms of inputs-outputs (ibid) and to construe the
process in light of the concept definition. A possessor of a process conception
recognizes an ‘all-to-one’ transformation in the algebraic and graphical contexts. The
notions of action-process conceptions were also utilized to identify key features of
the teachers’ teaching discourses which could encourage their students’
understanding towards a process conception of function or confine it to an action
conception of function. Lastly, cross-case analysis (Miles & Huberman, 1994) was
used to establish the relationship between the cases. Instances where the students
displayed noticeable differences in their understanding of the function concept were
identified and cross referenced to corresponding variables in the teachers’ selection
and implementation of the function problems. This was also associated with a reverse
analysis — teachers’ selection and implementation of the function problems and
student learning.

RESULTS

An analysis of the data base indicated that the teachers differed considerably in their
tendencies to use conceptual or procedural tasks (Table 1).

Task profiles Ahmet Burak
Conceptual tasks 63 25
Procedural tasks 20 75

Others 60 30
Total (n) 143 130

Table 1: Task profiles used by the teachers.

Procedural tasks were implemented through the application of rules and procedures
and they had the potential that students could develop misconceptions such as the
notion that a function is an algebraic expression in an equation form (Vinner, 1983).
Conceptual tasks were considered to pose cognitive demands on the students and
engage them with the concept of function, its properties, and related sub-ideas. They
could encourage the development of a process conception of function. The problems
that fell into the category of ‘others’ did neither have a clear focus nor cognitive
demands as indicated above. Such problems could be manipulated procedurally or
they could encourage students’ conceptual understanding but this depended upon the
teachers’ approach. Table 1 illustrates that Ahmet prioritized conceptual tasks over
the procedural ones in the ratio 3:1 whilst Burak did the reverse in the same quotient.
For instance, all the graphs Burak presented to his students were smooth and
continuous lines or curves. This limitation is likely to cause, and did so, students to
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develop a continuity misconception. In contrast, Ahmet presented his students with
many problems that were conceptually focused and cognitively demanding, for
example partitioned graphs, and tasks that encouraged his students to spontaneously
reflect upon a function process and the inverse of this process without loosing the
sight of univalence. The distinction continued in the teachers’ task implementation
(See table 2).

Burak

Ahmet
Prioritizes concepts over the
procedures.
Establishes connections

between the representations
and between the ideas.
Implements procedural tasks in
a conceptual way.

Encourages students to
visualize the graphs of
functions. Enforces their

flexibility at shifting between
algebraic and graphical forms
of the function.

Attentive to the continuity and
consistency in  the task
demands performed one after

Prioritizes procedures over the
concepts.

Does not establish connections
between the representations
and the ideas.

Implements conceptual tasks in
a procedural way.

Makes interference: The
teacher diverted the students’
attention from the concept of
function and engaged them
with  procedures or other
mathematical ideas.

Does not care continuity and
consistency in  the task
demands performed one after

another. another.

e Displays multiple perspectives e  Oversimplifies the task
on a task (e.g., identifies demands (e.g., totally ignores
situations in which an algebraic the task demands and
or graphical relation did or did manipulates the functions like
not represent a function). an ordinary algebraic

expression).

Table 2: Key features of the teachers’ task implementation.

Irrespective of task quality Ahmet created task conditions that encouraged his
students to develop conceptually rich knowledge of function. His implementation of
tasks had six crucial aspects each of which acted as a scaffold promoting his students’
progress towards a process conception of function. Burak’s task implementation
included six constraints each of which caused reductions in the task demands and
apparently played a major role in confining his students’ understanding to an action
conception of function.

To illustrate this, an example is presented from each teacher. Ahmet (the teacher of
Class A) presented the following to his students:
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What are the values of ‘a’ and ‘b’ for which f: R—R, f(x)=(a-2)x2+(b+1)x+5 represents
a constant function?

After explaining with the aid of a set-diagram the idea that a constant function — an
all-to-one transformation — satisfies the univalence condition Ahmet continued
(Episode A):

Ahmet: This expression involves something that does not allow the transformation
of all the reel numbers to one and the same element. What should we do
so that this function produces the same element...whatever we put into the

x?

Student: The value of ‘a’ is 2 and the value of ‘b’ is -1.

Ahmet: How did you find out?

Student: The expression must involve just 5 so that it matches all the values of x to
5...

Ahmet: If the rule of a function involves an independent variable like x, that

function produces different outputs... We should fix the value of y, the
image. We ensure it as we remove the terms containing x’s. ... No matter
what put into the x, say -5, 0, 4..., all goes to 5 [under this function]...

Using the definition of the constant function Ahmet encourages his students to find
out the idea that the terms containing x must be removed form the expression so that
it transforms every input to one and the same output. Burak (the teacher of Class B),
when implementing epistemologically the same problem, brought an algebraic
description f{x)=a (a€R) to the students’ attention and repeatedly emphasized factual
knowledge — a constant function does not involve x — but he did not illustrate the
underlying meaning. His students were asked to:

Work out the precise form of the constant function f{x)=(4n-2)x+(2n+3b).
Burak explains (Episode B):

Burak: ... Let’s remember the algebraic form of the constant function; it will help
us so much. ...we represented it as f{x)=a, acR. So, could we say that a
constant function involves just a number... In this expression there are
two terms; one is the constant term, 2n+3, and the other is a term
involving x, (4n-2)x. ... So, first of all we should get rid of the term
containing x...if this is the constant function...it must not involve x. How
can we do that...?

Student: We would equalize the coefficient of x to 0.

Burak: ... This is what we must do... We should equalize the coefficient of x to
0...

Through these two examples we can see that Ahmet prioritizes the concept over the
procedure whereas Burak does the reverse.
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Learning Outcomes

Pre-test given to the students within each class indicated that there was almost no
difference in their informal knowledge of function: their conceptual understanding
(e.g., an understanding of dependence between two varying quantities) and their
procedural skill (e.g., manipulating algebraic expressions). Nevertheless, after
teaching the two groups displayed considerable differences in their understanding of
the function concept. To illustrate this we consider their responses to two of the tasks
presented to them.

1: Does the graph made up five discrete points represent a function? Give
your answer with the underlying reason.

2: Does y=7 represent a function on R? Give reason to your answer.

In response to Task 1, 61% of Class A students specified the domain and illustrated
the transformation over the graph. Only 30% of Class B students did this. The largest
group within Class B (44%) disclosed a continuity misconception by linking the
points with curves or broken-lines and then claiming that the graph they had sketched
represented a function. This misinterpretation was evident amongst only 14% of
Class A students. Interestingly, 82% of both classes provided a correct response to
the second question. However, here the similarity ended — concept driven
explanations dominated reasons given by Class A students (90% of correct answers)
and exceeded those given by the students of Class B in a ratio of 2:1. In the
interviews, two students from Class A (Okan and Demet) and one from Class B
(Aylin) displayed a strong process conception of function both in the algebraic and
graphical contexts. All three identified the circumstances where the graph did or did
not represent a function and they articulated the idea that a constant function
transforms every input to one and the same output. Okan’s response to Task 1 is
typical:

...if the domain contains only these five elements [marks the pre-images on the x-axis

and illustrates the transformation over the graph], this graph represents a function...

Otherwise it does not, because it leaves elements in the domain. ...

Erol (Class A) and Serap (Class B) appeared to be in transition from an action to a
process conception of function in the graphical situation. They rejected the graph
arguing that it did not meet the univalence condition, yet they failed to recognize the
function process defined on five split domains. Serap was moving towards a process
conception of function in the algebraic context. Although she construed y=7 as a
process doing a transformation, she could not recognize an ‘all-to-one’
transformation in the situation. Erol’s response to y=7 suggested that he had
developed a process conception.

...no matter what we give for x, it goes to 7...f of 1 is 7, f of 2 is 7... This function
matches all the elements in the domain to a single element [7]...

Belgin had an action conception in the algebraic and graphical situations. Although
she had an idea that a graph of function transforms elements from the x to the y-axis
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she could not illustrate how and why this transformation occurred. Acting with her
concept image she disclosed a continuity misconception: “...I have not seen any
graph like this. I must join them in some way...”. She recognized the expression y=7
from memory but displayed no understanding of the ‘all-to-one’ transformation that
the function does.

Table 3' summarizes the interviewees’ development of the function concept and
compliments the class difference identified through post-test questionnaire.

Representations Class A Class B
Okan Demet  Erol Aylin  Serap Belgin
Graphical task (1) P P A—P P A—P A
Algebraic task (2) P P P P A—P A

Table 3: Summary of the interviewees’ development of the function concept.

DISCUSSION AND CONCLUSION

The purpose of this paper was to illustrate the impact of the teacher’s task selection
and implementation on their students’ understanding of the function concept. The
findings suggest that procedural tasks, when implemented with little connection to
underlying meaning, are likely to confine students’ understanding to an action
conception of function and create misconceptions. Almost 50% of Burak’s students,
drawing upon his emphasis upon smooth and continuous graphs, revealed a
continuity misconception with their desire to link graphs formed from discrete points
with curves or broken-lines.

Tasks shape the way students think about the subject matter and, thus, can influence
their learning (Stein & Lane, 1996). Our evidence suggests that though they may
promote thinking, it is the conditions promoted by the teachers through their models
of implementation that are more influential in supporting student learning. We can
see in Episodes A & B that the two teachers implement epistemologically the same
problems but emphasized different things. Ahmet engaged his students with the
notion of constant function using the definition as a cognitive tool. Unlike Burak, he
does not set up an easily accessible goal (get rid of the terms with x from the
expression) but prompts his students’ thinking by providing concept-driven
explanations: “...there is something that does not allow the transformation of all the
real numbers to one and the same element”. In contrast, bringing f{x)=a (a€R) to the
students’ attention, Burak emphasizes factual knowledge, a constant function does
not involve x, but he does not encourage his students to establish the underlying
reason for such knowledge. We can see the impact of these differences on students’
learning. Although 82% of each class identified y=7 as a function, almost all of

'Abbreviations: A: An action conception of function; P: A process conception of function; A—P:
Transition from an action to a process conception of function.
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Ahmet’s students provided concept-driven explanations whereas less than 50% of
Burak’s students did so. This was complimented through the interviews in which
three students from Ahmet’s class indicated a full understanding of the
transformation in y=7 whilst only one from Burak’s class did so.

In conclusion, the evidence suggests that tasks should not be seen as a panacea. It is
the conditions associated with task resolution that engage students with the subject
matter and, therefore, may help them make progress in learning. In the context of
functions, these conditions appear to include using process-oriented language
consistent with the epistemology of the function concept, establishing connections
between the ideas and the representations, applying continuity and consistency in
successive task demands, encouraging students’ visual thinking, displaying multiple
perspective on a task, and using the definition of function as a cognitive tool when
resolving function problems.

References

Bayazit, I. (2006). The relationship between teaching and learning through the context of
functions. Unpublished PhD thesis. University of Warwick, UK.

Breidenbach, D., Dubinsky, Ed., Hawks, J., & Nichols, D. (1992). Development of the
Process Conception of Function. Educational Studies in Mathematics, 23(3), 247-285.

Doyle, W. (1983). Academic Work. Review of Educational Research, 53(2), 159-199.
Marks, R. W., & Walsh, J. (1988). Learning from Academic Tasks. The Elementary
School Journal, 88(3), 207-219.

Merriam, S. B. (1988). Case Study Research in Education: Qualitative Approach. London:
Jossey-Bass Publishers.

Miles, M. B., & Huberman, A. M. (1994). Qualitative Data Analysis (An Expanded
Sourcebook). London: Sage Publications.

National Council of Teachers of Mathematics (2000). Principles and Standards for
Teaching Mathematics. Reston, VA: Authors.

Phillips, N., & Hardy, C. (2002). Discourse Analysis: Investigating Processes of Social
Construction. United Kingdom: Sage Publications Inc.

Stein, K. M., & Lane, S. (1996). Instructional Tasks and the Development of Students
Capacity to Think and Reason: An Analysis of the Relationship between Teaching and
Learning in a Reform Mathematics Project. Educational Research and Evaluation, 2(1),
50-80.

Stein, M. K., Grover, B. W., & Henningsen, M. (1996). Building Student Capacity for
Mathematical Thinking and Reasoning: An Analysis of Mathematical Tasks Used in
Reform Classroom. American Educational Research Journal, 33(2), 455-488.

Vinner, S. (1983). Concept Definition, Concept Image and the Notion of Function.
International Journal of Mathematical Education in Science and Technology,14(3), 293-
305.

2-136 PME 33 - 2009



INTERPRETATION AND TEACHER IDENTITY IN
POST-SECONDARY MATHEMATICS

Mary Beisiegel
University of Alberta

Over a six-month period conversations were held with mathematics graduate
students exploring their experiences and perspectives of mathematics teaching. Using
hermeneutic inquiry and thematic analysis, the conversations were analysed and
interpreted with attention to themes and experiences that had the potential to
influence the graduate students’ ideas about and approaches to teaching. The
purpose of this research project was to uncover issues and difficulties that come into
play as mathematics graduate students develop their views of their roles as university
teachers of mathematics. It is hoped that this research will contribute to the
understanding of teaching and learning in post-secondary mathematics as well as
provide guidance in structuring post-secondary teacher education in mathematics.

INTRODUCTION

Within the field of mathematics teacher education, mathematics graduate students
have recently become subjects of investigation. While research tends to focus on pre-
service elementary and secondary mathematics teachers, and undergraduate
experiences in mathematics, little has been done to examine prospective university
teachers of mathematics and their understanding of its teaching and learning (Bass,
2006). As a result, the experiences of mathematics graduate students and the
development of their teaching practices are not well understood.

Almost seventy-five per cent of mathematics PhDs will become professors at post-
secondary institutions dedicated to undergraduate education rather than research
(Kirkam et al., 2006). Since much of their careers will be spent in the classroom,
attending to the manner in which mathematics graduate students develop their
teaching practices is crucial in preparing them for their future profession. Moreover,
as mathematics graduate students and professors represent the last models of
mathematics instruction for future elementary, secondary, and post-secondary
mathematics teachers, university mathematics teaching has a far-reaching influence
on teaching at all levels (Golde & Walker, 2006; Shulman, 2004).

The most recent research into mathematics graduate students’ teaching has examined
their classroom practices and possible connections between their practices and beliefs
about teaching and learning. Researchers concluded that newly acquired positive
attitudes and beliefs about teaching mathematics did not produce hoped for changes
to graduate students’ teaching practices (Belnap, 2005; Speer, 2001). Even when
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graduate students in mathematics could speak of teaching using reform-oriented
terminology (e.g., teaching for understanding, group learning), these students also
reported that they maintained a traditional lecture style form of instruction (Belnap,
2005). Other research has shown that enrolment in a course in pedagogy did not
produce expected changes to mathematics graduate students’ teaching practices
(DeFranco & McGivney-Burelle, 2001). Thus, as these studies have found that
informing mathematics graduate students of different approaches to pedagogy,
student learning, and curriculum reform did not change classroom practices,
something remains to be explored.

ORIENTATION OF THE RESEARCH

While previous research reports that mathematics graduate students receive very little
preparation for teaching, one could argue that they have essentially received years of
instruction in teaching mathematics through their experiences as students. As well,
through involvement in the routines of a department of mathematics, graduate
students’ views of the discipline and its teaching are shaped (DeFranco &
McGiveny-Burelle, 2001). Indeed, graduate students in mathematics encounter many
texts and contexts that have the potential to be interpreted as having implications for
how they should live their lives and convey their work as mathematicians (Austin,
2002). In addition to the experiences in departments of mathematics that have the
potential to interfere with graduate students’ teaching, their own ideas and beliefs
also appear to have an influence on their teaching (Speer at al., 2005).

Therefore, a more thorough investigation of graduate students’ lives in mathematics
is needed in order to understand the role each of these phenomena has in the
development of graduate students’ teaching practices. Within the graduate students’
lives in mathematics exists a complex and intricate interplay among the structures
that mathematics graduate students encounter, their feelings about mathematics and
themselves, their interpretations of the nature of mathematics, and their sense of their
new role as teachers. The bearing that these experiences have on mathematics
graduate students’ teaching practices must be explored in order to gain some
understanding of how teacher education for post-secondary teachers of mathematics
might approached and developed.

To this end, in an effort to inform teacher education programs for mathematics
graduate students, the intent of my research is to gain a deeper understanding of
mathematics graduate students’ experiences in mathematics and how these
experiences may be interpreted as having meaning for their teaching practices.

THEORETICAL FRAMEWORK

As my questions are concerned with various texts in mathematics (e.g., textbooks,
directions for producing mathematics), the structures that graduate students
encounter (e.g., department structure, teaching assistantships), and interpretations
within the lived experiences of graduate students and their teaching, I am drawn to
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hermeneutics as a way to seek an understanding of these phenomena. Hermeneutics
helps one to unearth the ways and the whys in which we understand life, and how we
can create and find meaning through experience and social engagement (Brown,
2001; Smith, 1991). Hermeneutics also recognizes the place of language and the
implied importance of text in human experience.

Hermeneutic inquiry also acknowledges the significance of non-textual phenomena
such as culture, human existence, and being itself (Gallagher, 1992; Ricoeur, 1976).
With this perspective in mind, the non-textual phenomena that mathematics graduate
students encounter include their professors’ teaching, departmental expectations, and
so on, all of which have interpretive implications for what graduate students make
important in their lives. As students’ knowledge of their future worlds develop “as a
consequence of their encounter with the department: semi-automatic, barely
conscious interpretations of what teachers say and do” (Gerholm, 1990, p. 264),
hermeneutics opens up a space for understanding interpretations within all forms of
interactions and experience.

For this research project, hermeneutics affords attentiveness to the questions: What
variety of experiences do mathematics graduate students encounter as they progress
through their graduate programs? Within their experiences, what in particular is
taken as having meaning for who and how they should be as mathematicians and as
teachers of mathematics? How are these experiences interpreted to have meaning for
how one lives a life in mathematics? Finding the answers to these questions will help
to deepen the understanding of teaching and learning in post-secondary mathematics
and provide guidance in structuring post-secondary teacher education in
mathematics.

THE RESEARCH STUDY

Graduate students in mathematics from an urban, doctorate granting university were
approached to be participants in this study. Six students agreed to participate. The
group was quite diverse in their backgrounds: three were master’s students and three
were doctoral students; they ranged from a first semester master’s student through a
final year doctoral student; four were men, two were women; their ages ranged from
22 to 33 years; and there were four nationalities among them. During their graduate
programs in mathematics, all of the participants had been assigned to teaching
assistantship duties such as tutoring workshops where they helped students one-on-
one with homework exercises, marking homework and exam papers, or one-hour
tutorial sessions during which they presented mathematical topics similar to those in
the affiliated lecture section of the course.

Carson (1986) and Van Manen (1997) propose conversation as a mode of doing
research within hermeneutic inquiry to explore and uncover one’s own and others’
interpretations and understandings of experience. In consideration of this, over a
period of six months, a series of five audio-recorded conversations were conducted
with the research participants. The first two meetings and the final meeting were
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conducted with each participant individually, each meeting lasting approximately one
hour. The third and fourth meetings were conducted with all participants present,
each lasting just under three hours. A recursive process was used in which the topic
of subsequent conversations was based upon themes from previous conversations.
Throughout the project, the research participants had the opportunity to review the
analyses in a collaborative effort to refine, augment, and improve the reporting of
their experiences.

Each conversation was transcribed by the researcher, who listened for the topics of
conversation and the language used by each of the research participants. Notes were
made of the congruence among the research participants. These similarities were not
limited to broad categories of their lives, such as how they each had to attend to their
teaching assistantship duties or their graduate level course work. Rather, it was
opinions and perspectives about various aspects of their experiences that appeared to
be in common. These similarities were grouped into themes using the guidelines of
thematic analysis described by Braun and Clarke (2006). The themes and the
participants’ comments within each theme were then assembled and analysed using a
hermeneutic, interpretive lens to understand what facets of their lives in graduate
school were taken as having meaning for their identities as mathematicians and
teachers of mathematics.

FINDINGS

There were several experiences and perspectives that the mathematics graduate
students voiced as having an influence on their teaching practices. These included
observable structures, such as their teaching assistant duties and the physical spaces
in which they worked. Some of the influences on their teaching were not as tangible;
for example, their views on the role of a professor. These and other influences are
described below.

The structure of their teaching assistant work

The time and physical structures of the graduate students’ work as teaching assistants
were said to prevent them from being able to engage in meaningful experiences with
undergraduates. In the tutoring centre, the number of students waiting for help and
the hours spent helping students repeatedly with the same questions quickly
diminished the graduate students’ ability to provide meaningful learning experiences.
The frustration and exhaustion within the tutoring centre was common among the
graduate students. There was also a sense of disappointment of how things took place
over time. In this regard, the graduate students weren’t able to observe the
undergraduate students’ progress and understanding of concepts over time, and so the
act of tutoring in the lab situation was felt as an unrewarding and tiring experience.
One participant described how the lab situations became “how fast can you turn them
over.” Rather than being able to provide the undergraduate students with an in-depth
learning experience, when there were many undergraduate students waiting for help,
it became “a lot faster to plug and chug.”
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Interpretations of undergraduates’ behaviour

One expected outcome for the research was that the mathematics graduate students’
teaching practices would be mostly shaped by their own professors’ teaching styles
and approaches to mathematics. However, what appeared to be most influential to the
graduate students’ interactions with undergraduate students was the interpretation of
undergraduate students’ behaviour. In particular, if an undergraduate student
approached a graduate student asking for quick help with a particular problem, their
actions were interpreted to have the following meaning — that the undergraduate
student was not interested in mathematics, not interested in graduate student and what
they had to offer, and that the undergraduate was not a motivated student in general.
These opinions were based on short interactions when helping students one-on-one in
the tutoring centre. This interpretation caused the graduate students to not engage in a
potentially educative moment by limiting their interaction with the undergraduate.
This limited contact consisted of providing students with brief communication,
showing only how to calculate answers rather than understand the conceptual
processes and meaning in the mathematics. The graduate students’ ideas of how
undergraduate students should learn and be in mathematics, a sense for ‘what it takes’
to be in mathematics, was one of the leading obstacles in understanding
undergraduates’ struggles with mathematics and embracing alternate modes of
engaging with learners.

The problem is in k — 12 mathematics teaching

During our conversations, the mathematics graduate students expressed frustration
about what they perceived as the low quality of learners in first year university
mathematics courses. They conveyed strong opinions about “fixing” teaching at
elementary and secondary levels; that if students were taught mathematics properly at
an earlier age, then teaching mathematics at the university level would become
unproblematic. When asked whether changes could be made to university level
mathematics teaching, the graduate students expressed a powerless to attempt new
approaches themselves because of a perceived set curriculum and expectations for
teaching at the university, which is reminiscent of oft-heard arguments given by
school teachers for not adopting reform-oriented practices. Moreover, when
discussing whether they could make changes to their teaching practices, the graduate
students expanded the issue from a local to a global problem — describing how one
would need to change the “entire system” (meaning the university, the provincial and
national boards of education, as well as k — 12 education) before they could enact
new ways of teaching mathematics at the university.

Calculus — How many ways can you skin a calculus class?

It is important to include calculus as one of the many structures graduate students
encounter in their first experiences in teaching mathematics. Mathematics graduate
students are most often assigned teaching assistantships in first-year calculus courses.
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While it may have been years since they were students in a calculus course, they have
fixed ideas of how to teach calculus. As one participant remarked:

It’s easy to keep teaching calculus like this. We’ve done it forever. We know exactly
what we have to do. Almost everyone does it the same way. I mean by the time you have
your PhD, you’ve probably been teaching calculus three or four times. You’ve taken it,
you’ve TA’d for it. [ mean, you know the problems, you know the classic examples. You
almost don’t even need a book. You can just walk up there and start teaching.

Another participant asked “How many ways can you skin a calculus class?” denoting
his view that there is only one way to teach calculus. There was the sense that there is
nothing left to learn about teaching calculus. In contrast to this, the participants also
described how “you have to teach these tools just because that is the way the course
is set up.” While the participants initially spoke of teaching calculus as something
effortless, here they recognized the imposition of the structure of calculus courses;
that in teaching calculus, they had to maintain the predefined structure. Finally, they
shared their frustration about how calculus had become representative of all
mathematics to those outside of the discipline and they expressed a desire to teach
other “flavours of mathematics.”

Teacher versus professor

The graduate students described a difference between teachers and professors, as well
as a difference between students’ roles in high school versus the university. They
held tightly to the notion that they were professors, not teachers. While they
described the expectation for a teacher to engage and guide students in their
kindergarten through grade twelve learning, they saw the role of a university
professor as solely presenting material with the students’ role being to teach
themselves. The professor’s task, then, was to provide the mathematics to their
students through lecturing. Beyond this, however, the professor had no responsibility
in assisting the students further, in helping students to understand the mathematics, or
in motivating students to learn.

CONCLUSIONS

In light of the recent research of teacher education programs for mathematics
graduate students (Belnap, 2005; Speer, 2001), the purpose of this research project
was to uncover issues and difficulties that come into play as mathematics graduate
students develop their views of their roles as university teachers of mathematics. It is
clear that there is an intricate and complex interplay of experiences and perspectives
that have the potential to work against teacher education programs in post-secondary
mathematics. In their initiations into teaching, both new experiences and previously
formulated ideas influenced their views about teaching and how they viewed
themselves as teachers.

The graduate students’ experiences in the tutoring centre and their opinions about
undergraduates’ behaviour shaped the images they were developing about
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undergraduates. Specifically, what was observed in the conversations with the
graduate students was the emergence of a disapproving and negative attitude toward
the students they were expected to teach. The tendency to view learners of
mathematics in these ways has the potential to be an obstacle for teacher education
programs in post-secondary mathematics. Specifically, because they viewed their
students as poorly prepared, the graduate students felt they should not have to assist
their students beyond a rudimentary level. If alternate modes of engaging with
learners of mathematics are not seen as useful or necessary, as a consequence, it is
unlikely that alternate modes promoted through teacher education programs will be
embraced. Further, these negative attitudes about undergraduates have the potential to
be carried forward into the graduate students’ future work as professors.

In the graduate students’ experiences as teaching assistants for first-year calculus
courses, they described teaching calculus as easy, something that could be and had
been predetermined. Not only did calculus represent their first experience with
teaching students mathematics and much of what teaching entails, such as creating
and marking exams and marking homework assignments, it also appeared to have a
large influence on how they felt about teaching. The sense that teaching was preset
extended to other courses as well with one participant remarking “we teach the best
possible scenario.” This perspective led to inflexibility in considering alternate
practices not only for calculus, but also for the courses they wished to teach when
they became professors. Thus, if teaching of mathematics is already fixed and does
not need to be changed, there will be resistance to learning alternate ways of teaching
mathematics offered in teacher education programs.

Within the graduate students’ positions that they are professors, not teachers, and the
view that issues in mathematics education rest solely in kindergarten though grade 12
education exists a disassociation from their role as teachers of mathematics. These
views represent a distancing from any responsibility or role they might have in the
teaching and status of mathematics. This perspective makes changes to teaching
practices difficult when one’s role is seen in this way — as one who presents
mathematics, but does not teach mathematics. Since the graduate students did not
view themselves as teachers, there would be little impetus for them to engage in new
ways of teaching or connecting with learners of mathematics.

To conclude, the mathematics graduate students encountered several issues in their
graduate programs, yet did not have a forum or support network to assist them in
understanding their experiences. In their attempts to understand these issues without
guidance, many of their pre-existing notions about learning mathematics and new
experiences had significant influence on their views of teaching. The understanding
of their experiences in this research report has the potential to inform university level
teacher education. In particular, this research can help to either establish new or
inform current teacher education programs in university level mathematics, as well as
offer support in developing mathematics graduate students’ teaching practices.
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A VERBAL FACTOR IN THE PISA 2003 MATHEMATICS ITEMS:
TENTATIVE ANALYSES

Ewa Bergqvist
Umeéa Mathematics Education Research Centre

This study uses a statistical method to identify verbal items among mathematical
items from PISA 2003. The verbal items are preliminary analysed and compared to
the non-verbal items concerning number of text lines, response types, cognitive level,
and competences measured. The results show that the verbal items, to a higher
percentage than the non-verbal items, measures the reproduction competency, are
straightforward, and of open constructed-response type. These results and proposed
further analyses are discussed.

INTRODUCTION

This report presents a study that is part of a larger research project. The purpose of
the overall project is to develop new knowledge of, as well as tools for, validation of
assessment in mathematics and science with a main focus on the importance of the
written language. One aim of the project is to identify and describe critical language
traits that have an impact on the tasks’ difficulty levels. The purpose of the study
presented in this paper is to identify PISA mathematics items for which student
performance is influenced by reading ability. The purpose is also to perform a few
statistical analyses in order to characterize these items in search for possible
explanations of the verbal factor. The study is an initial and preparatory study, as
further analyses of the verbal items will follow.

BACKGROUND

Most assessments of mathematical ability, in particular international comparative
studies, consist of paper and pencil tests. According to Messick (1989), a threat to the
validity of evaluations of educational achievement is all types of construct-irrelevant
variance. A source of potential threats to the validity of a written mathematics test is
therefore the readability of the language used to formulate the tasks. On one hand,
tests which are intended to measure achievement in mathematics should not measure
reading ability. In the framework for PISA it is written that: “The wording of items
should be as simple and direct as possible.” (PISA, 2006, p. 108). On the other hand,
the relation between reading and knowing mathematics is complex. You have to be
able to read and write in order to pass a paper and pencil test, and also,
communication is one of the competences brought forward within frameworks
describing school mathematics worldwide (e.g. NCTM, PISA). It is a matter of
judgment to evaluate the existence of improper or irrelevant language influence on
achievement in mathematics. A summary of existing research points at several

2009. In Tzekaki, M., Kaldrimidou, M. & Sakonidis, H. (Eds.). Proceedings of the 33rd Conference of the International
Group for the Psychology of Mathematics Education, Vol. 2, pp. 145-152. Thessaloniki, Greece: PME.
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linguistic features that might make mathematics items difficult. These features are
presented below.

Difficult vocabulary. The mathematical vocabulary is highly technical and includes
both mathematical words (sum, fraction) and words with particular meanings in
mathematics (borrow, product) (Mitchell, 2001; Schleppegrell, 2007; Shorrocks-
Taylor & Hargreaves, 1999). In order to read texts in mathematics it is necessary to
be able to recognise which category words belong to in order to be able to interpret
them correctly. Words with multiple meanings seem to cause difficulties for English
first language and second language learners, who confuse the meanings used in
different contexts (Wellington & Osborne, 2001, in Dempster & Reddy, 2007).

Multiple semiotic systems. One challenge in mathematical texts is the multiple
semiotic (meaning-creating) systems used within mathematics: symbols, oral
language, written language, and visual representations (graphs, diagrams). In a
written mathematics test the oral language is not used, but there are still at least three
semiotic systems that the students need to be able to interpret (Kress, 2003;
Schleppegrell, 2007).

Grammatical patterns. Another difficulty with the mathematical register is the
existence of various grammatical patterns. Liberg, Folkeryd et al. (Liberg, Folkeryd,
af Geijerstam, & Edling, 2002) state that a text is built using different forms of
connective markers and genre patterns, and these are important in order to make it
possible for the reader to build a cohesive, coherent understanding of the text. There
are some typical — and sometimes problematical — patterns for texts in mathematics.
One characteristic is the use of passive voice. A subject of a verb in the passive voice
corresponds to the object of the same verb in the active voice — “the ball was thrown
by John” (Dempster & Reddy, 2007). Another is the specific use of logical
connectives, such as if, unless, although, whenever, therefore (Dempster & Reddy,
2007; Schleppegrell, 2007). Students had in particular problem with items for which
“when” was used as a logical connective rather than to start a question (Dempster &
Reddy, 2007). A third pattern is the use of long dense noun phrases to construct
concepts (Schleppegrell, 2007). One other characteristic that has been identified as
problematic is nominalisation, the turning of a verb into a noun (Dempster & Reddy,
2007).

Other traits. Besides the properties mentioned above there are other characteristics of
texts that are important to consider when it comes to reading comprehension, e.g.
sentence complexity (Dempster & Reddy, 2007; Liberg, Folkeryd, af Geijerstam, &
Edling, 2002), the use of many qualifiers (adverbs, adjectives, and prepositional phra-
ses) (Dempster & Reddy, 2007), and the content of the text (Liberg, Folkeryd, af
Geijerstam, & Edling, 2002).
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PISA 2003

The Programme for International Student Assessment (PISA) is an internationally
standardised assessment jointly developed by participating countries and
administered to 15-year-olds in schools. PISA measures mathematical literacy,
reading literacy, scientific literacy, and problem solving. The mathematics items in
PISA 2003 are of five different types when it comes to the response the students
make: multiple choice (MC), complex multiple choice (CMC), short response (SR),
closed-constructed response (CCR), and open-constructed response (OCR) (PISA,
2006). Multiple choice items (MC and CMC tasks) give the students a number of
alternatives to choose their answer from. In the complex multiple-choice format
items, the students are required to select a response from given optional responses,
e.g. by marking true or false to each of a complex of statements. The SR tasks are
formulated so that the students are required to construct a short response in their own
words, often a single word or a calculated quantity. Constructed response tasks (OCR
and CCR tasks) require the students to construct a solution (and formulate an answer)
rather than select an answer. Open-constructed response tasks usually support more
than one solution process and a wider range of possible responses. A closed-
constructed response item is very much like traditional fill-in-the blank questions.
There is only one correct answer and the item usually requires simple recall of
information. About one third of the items in PISA are open constructed-response
items, one third are closed constructed-response items, and one third multiple choice
items. (PISA, 2006). The PISA mathematics items are also divided into three
competency categories: connections, reflections, and reproduction (PISA, 2006).

METHOD

The study consists of two parts. First, a statistical method is used to identify so called
verbal items for which the students’ reading comprehension abilities statistically
explain some part of the variation of the students’ results. Second, statistical analyses
of the differences and similarities between the verbal items and the non-verbal items
concerning number of text lines, response types, cognitive level, and competences
measured is performed.

Collection of data

The object of analysis in this study is the available data concerning all of the Swedish
versions of the mathematics items from PISA 2003. There are 84 items and 4624
Swedish students in the datafile. Each student has encountered much less than 84
tasks, but the items were distributed according to a statistical model in such a way
that so called plausible values of the students’ abilities could be calculated (PISA,
2006). In addition, the plausible values from the reading literacy part of the
assessment are used as a measure of the students’ reading abilities.
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Method of analysis

Each item was analyzed using an ordinal regression model with item score as the
dependent variable, and PISA plausible values (PVs) in both mathematics and
reading literacy as covariates. Items for which the reading covariate gives a
significant contribution (<0.05) to explaining the item difficulty, while subject-
specific achievement level is taken into account, were identified and subjected to
further analysis (Nystrom, 2008). More concretely this means that for the verbal
tasks, if a group of students had the same plausible values in mathematics, the
students with higher plausible values in reading literacy had a higher success rate on
the item. These items can therefore be said to measure reading ability to a higher
extent than other items. Since several items were on the border of having the reading
covariate giving a significant contribution, the items were divided into three groups:
verbal items, i.e. tasks for which the reading literacy plausible variable explained the
variation of the students’ performance to a significance level less than 0.03, non-
verbal items, i.e. tasks for which the reading literacy plausible variable did not
significantly explained the variation of the students’ performance (significance level
over 0.065), and borderline items, i.e. tasks for which the significance level is
between 0.03 and 0.065 (all borderline items had significance levels between 0.042
and 0.062).

When identified, existing statistical information of the items was used to compare the
verbal and the non-verbal items: the number of text lines in the items, the items
response type, their cognitive levels, and the competence measured according to the
PISA framework (PISA, 2006). The purpose of this comparison was to try to explore
possible explanations of the verbal factor of these items. Some of the items might
have a particularly complex sentencing or might contain very difficult words, but the
verbal factor might depend on other aspects of the items. In order to not jump to
conclusions on what is difficult for the students, it is important to systematically
examine the design, structure, and contents of the items. Therefore, the verbal items
were compared to the non-verbal items and to the set of all items (including
borderline items) from several aspects: the number of text lines in the item, the item
response types, the cognitive level of the item, and the competency measured by the
item. The item response type and the competence classes are defined within PISA
(see the section on PISA above). The number of text lines was counted and the
cognitive level was determined within a previous research project (Lindstrom,
unpublished). The cognitive level was defined as the number of steps required in
order to solve the item. The classification uses the following three categories:
straightforward application of learned material, application of a definition in one step
to make a conclusion, and application of one or several definitions in one or several
steps to make a conclusion.
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Results

In PISA 2003 there were 84 mathematics items and 19 of these (23%) were identified
as verbal items according to the method described above. There are also 6 borderline
items and 59 non-verbal items. The first statistical comparison between the verbal
and the non-verbal items was based on a calculation of the number of lines of text in
the items. Both verbal and non-verbal items had in average 3.8 lines of text, so this
first shallow analysis did not explain anything of the verbal factor in the items.

Response types

For each response type the percentage of verbal and non-verbal items varied. The
largest difference was between the percentage of verbal items that are open
constructed-response items (OCR), 37%, and the percentage of non-verbal items of
the same type (17%), see Figure 1. These verbal items of OCR type may have been
identified as verbal items not because they are difficult to read or to understand, but
because the students’ have to formulate their responses themselves. It is likely that
the students’ reading ability is closely connected to their ability to write and therefore
to their ability to formulate solutions. These items might still have a verbal
component in the sense that they are difficult to read, but when searching for verbal
traits in the formulations of the items it is necessary to be careful when drawing
conclusions.

Figure 1: Types of items (math)
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Figure 1: Distribution of verbal and non-verbal items over response types

The non-verbal items have however a higher percentage of the more complex
multiple choice items (CMC) and short response items (SR) than the verbal items. It
is difficult to determine why the CMC items are “less verbal” than other types.
Perhaps a third factor, e.g. some type of logical thinking, is more significant when it
comes to explaining the variation of the CMC items. Or perhaps the item authors
choose to use simple language when the item format is complex in it self. A closer
analysis of the wording and context of these items is necessary in order to find
possible explanations of this result. A closer analysis of the SR items is also
necessary.
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The regular type of multiple choice items (MC) and the closed constructed-response
(CCR) items are almost equally represented among verbal items and non-verbal
items. It seems that even if some items demands a higher level of reading ability,
there is no obvious inherent verbal factor in these items due to their format.

Competences and cognitive levels

The PISA mathematics items are divided into three competency categories:
connections, reflections, and reproduction. The verbal items are to a higher extent of
the category reproduction than the non-verbal items, see Figure 2.

Figure 2: Competences
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Figure 2: Distribution of verbal and non-verbal items over competence class

This is to some extent in line with the results concerning the cognitive levels, see
Figure 3. As mentioned in the method section, a classification of the items resulted in
a partition of the items into three groups: items with solutions containing a
straightforward application of learned techniques and/or methods, application of a
definition in one step to make a conclusion, and application of one or several
definitions in one or several steps to make a conclusion.

Figure 3: Cognitive level
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Figure 3: Distribution of verbal and non-verbal items over cognitive level

The verbal items are classified as straightforward to a higher degree than the other
items. It is difficult to explain these results without further analysis of the items.
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DISCUSSION

The purpose of this study is to identify PISA mathematics items for which student
performance is influenced by reading ability and to perform a few statistical analyses
in order to characterize these items in the search for explanations of this verbal factor.

Discussion of method

There are some weaknesses in the presented method of identifying verbal items. If
the students’ mathematics and reading abilities have a high correlation, the
identification of the verbal items is less reliable. The same is true for items that have
a very high or very low passing rate. Continued studies will further examine the
correlations and the passing rates in order to enhance the reliability of these results.
There is also a difficulty in the use of plausible values (PVs) to compare students’
abilities. The PVs (PISA, 2006) are meant to be used in order to compare groups of
students, not to measure individual students’ abilities. A few items were analysed
using the second PV for each student instead of the first (each student has five) which
resulted in the same statistics. This indicates that the PVs are possible to use for the
type of analysis produced here. Further work in order to confirm this is however
necessary.

Discussion of results

It is not surprising that verbal items are often found among the open constructed-
response items. Items for which the students are supposed to formulate a solution in
writing are probably more sensitive to the students’ reading abilities than e.g.
multiple choice items, since the ability to read is closely connected to the ability to
write. This will however make it difficult to identify language traits that make these
items difficult, since there might not be any. This is a general problem when it comes
to analysing test items.

For some items, there is an obvious limit between reading an item and solving the
task presented in the item. An example is the famous four colour map problem: How
many colours are needed in order to colour a (plane) map in such a way that any two
adjacent regions have different colour? This is a question that many people would be
able to read and to understand, but very few could solve. The problem of reading is
quite clearly separated from the problem of solving, in this case. In the following
task, the situation is different: If Anne was half Mary’s age, when Mary was 14, then
how old will Mary be when Anne is 50? The reading and understanding of this task is
much closer to the solving of it, than it is for the four colour map problem. In fact,
once we have read and fully understood it, the solution is right at hand. The
difference between these two tasks indicates that it is possible to analyse (and
perhaps even classify) mathematics items from this perspective: how closely reading
the item is related to solving the item.

Classifying the items into consistent and inconsistent items (Hegarty, Mayer, &
Green, 1992), or items demanding imitative or creative reasoning (Lithner, 2008)
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might also spread some light on the relation between reading and solving
mathematical tasks. Research indicate that students with a good ability to solve
consistent tasks (tasks that are possible to solve using a keyword procedure) but low
ability to solve inconsistent tasks (unsuccessful problem solvers) do not read the tasks
they encounter very thoroughly (Hegarty, Mayer, & Green, 1992). It is therefore
possible that unsuccessful problem solvers are less affected by verbal factors in items
than successful problem solvers. How this might influence the statistical
identification of the verbal items will be looked into within the project. The
consistent items presented by Hegarty et al. have a lot in common with tasks solvable
with imitative reasoning as presented by Lithner (2008). One possibility is that
imitative items are not identified as verbal at all, but that is not in line with the results
concerning the high percentages of verbal items that are of the type straightforward
and reproduction. Further analyses of the large quantities of existing data from PISA
are both possible and important.
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SCHOOL MATHEMATICS AND MATHEMATICIANS’
MATHEMATICS: TEACHERS’ BELIEFS ABOUT MATHEMATICS

Kim Beswick

University of Tasmania

There is broad acceptance that mathematics teachers’ beliefs about the nature of
mathematics impact the ways in which they teach the subject. It is also recognised
that mathematics as practised in typical school classrooms is different from the
mathematical activity of mathematicians. This paper presents evidence that some
mathematics teachers hold differing beliefs about nature of mathematics, as a
discipline and as a school subject and suggests possible implications for practice.

INTRODUCTION

Research aimed at describing teachers’ beliefs concerning the nature of mathematics,
as well as theoretical analyses of the same, have been based on the assumption that a
teacher's idea of what mathematics is will influence the way in which they teach the
subject (Sullivan & Mousley, 2001). Thompson (1992) quoted Hersh (1986, p. 13):

One's conception of what mathematics is affects one's conception of how it should be
presented. One's manner of presenting it is an indication of what one believes to be most
essential in it ...The issue, then, is not, What is the best way to teach? but, What is
mathematics really all about?

Since mathematics is what mathematicians do and create, answering Hersh’s
essential question demands a consideration of the mathematical activity of
mathematicians; activity that has been contrasted with that which typically occurs in
school mathematics classrooms (Burton, 2002).

SCHOOL MATHEMATICS AND MATHEMATICIANS’ MATHEMATICS

Ernest (1998, cited in Burton, 2002) suggested differences between mathematics
classrooms and the work of research mathematicians in relation to a) whether
knowledge is created or existing knowledge is learned, b) who selects the problems to
be worked on, ¢) the time frames over which problems are worked on, and d) the
purpose of the learning (for personal achievement or to add to public knowledge).
From a constructivist view of learning, such as taken in this paper and adopted by
Burton (2002), learning is inherently creative but the others differences remain.

Knoll, Ernest and Morgan (2004) described contrasts between the activity of pure
mathematicians and school classroom mathematical activity as “sharp” and assumed
that this should not be the case. In describing mathematical research, they drew
attention to its creativity and the use of strategies such as the search for examples and
counter-examples, cases and constraints, patterns and systems of rules, the use of
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justification and proof, and the framing of problems. These are all things that could
and arguably should be part of school mathematics. Burton (2002) identified features
of the practice of mathematicians that represent desirable commonalities with school
mathematics. These included the notion that both contexts constitute communities of
practice, the search for connectivities among mathematical ideas, an appreciation of
mathematical aesthetics, and the role of intuition in mathematical work.

One difference that appears beyond reconciliation relates to the purpose of
mathematical work in classrooms and for mathematicians. Ernest (1999) pointed out
that the community of mathematicians requires warrants of new mathematical
knowledge, whereas, in education, learners may justify their mathematical ideas, but
ultimately teachers require evidence that the student has in fact constructed the
desired knowledge (which itself is not contentious in this context). In essence,
mathematicians assess mathematics but educators assess learners.

In spite of this, it appears that the differences between school and mathematicians’
mathematics could be greatly reduced by an increased emphasis on the use of
practices associated with research mathematics in school mathematics classrooms,
and there appears to be consensus that this is a worthy goal. In Burton’s (2002, p.
171) words it is necessary for the “creation of a mathematically aware citizenry able
to appreciate the joys of mathematics, as well as its usefulness”.

TEACHER BELIEFS ABOUT THE NATURE OF MATHEMATICS

Reconciliation of school and mathematicians’ mathematics requires that teachers
must have an appreciation of mathematics that is akin to that of mathematicians.
Ernest (1989a) described three categories of teacher beliefs about the nature of
mathematics. The first is the Instrumentalist view that sees mathematics as, "an
accumulation of facts, skills and rules to be used in the pursuance of some external
end." (Ernest, 1989, p. 250). According to this view the various topics that comprise
the discipline are unrelated. The second is the Platonist view in which mathematics is
seen as a static body of unified, pre-existing knowledge awaiting discovery. In this
view the structure of mathematical knowledge and the interconnections between
various topics are of fundamental importance. Ernest’s (1989a) third category is the
Problem-solving view in which mathematics is regarded as a dynamic and creative
human invention; a process, rather than a product (Ernest, 1989).

Beswick (2005) presented Ernest’s (1989) categories of beliefs regarding the nature
of mathematics, an adaptation of his categories with respect to beliefs about
mathematics learning, and Van Zoest, Jones and Thornton’s (1994) categories of
beliefs about mathematics teaching as in Table 1. The rows comprise theoretically
consistent views whilst the columns have been regarded as continua by some
researchers (e.g., Van Zoest et al., 1994). It is recognised that few individual teachers
would hold beliefs about mathematics that fall neatly into a single category and hence
hold beliefs about teaching and learning mathematics that are described solely by one
of the corresponding categories. In addition, this paper presents evidence that some
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teachers view school mathematics differently from the discipline of mathematics and
hence have beliefs about teaching and learning mathematics that are not well
represented by those in Table 1 either alone or in combination. An elaborated
framework that accounts for this is proposed.

Beliefs about the nature of Beliefs about mathematics Beliefs about mathematics

mathematics (Ernest, teaching (Van Zoest et al., learning (Ernest, 1989)

1989) 1994)

Instrumentalist Content-focussed with an Skill mastery, passive
emphasis on performance reception of knowledge

Platonist Content-focussed with an Active construction of
emphasis on understanding understanding

Problem-solving Learner-focussed Autonomous exploration of

own interests

Table 1. Categories of teacher beliefs (Beswick, 2005, p. 40)

Adequate consideration of the context in which beliefs are articulated and/or enacted
is key to reconciling apparent inconsistencies among teachers’ beliefs (Beswick,
2005). Beswick (2005) included in context the individual’s entire system of beliefs
which can usefully be considered in terms of Green’s (1971) description of belief
systems. Of particular relevance here is the notion of clustering of beliefs. Disjoint
belief clusters are likely to develop when the relevant beliefs are formed in different
contexts (place or time) and may be contradictory since beliefs in separate clusters
are not, in the normal course of events, juxtaposed to highlight their inconsistency
(Green, 1971). In particular, teachers may hold beliefs about the discipline of
mathematics in isolation from their beliefs about the school subject.

Examples from the literature

With the notable exception of Thompson’s (1984) seminal study of the beliefs of
secondary mathematics teachers that influenced the development of Ernest’s (1989)
categories, relatively little attention has been paid to teachers’ beliefs about the nature
of mathematics, and there are few reports of teachers holding different views about
the discipline and school mathematics. This could be a consequence of the lack of in-
depth research in the area or because such inconsistencies are rare. It would be
reasonable to assume that the phenomenon would be uncommon among secondary
mathematics teachers if they are required to have study mathematics to a high level -
Moreira and David (2008) suggested a mathematics major is a usual requirement.
However, given the worsening shortage of mathematics teachers in many countries,
this is likely to become less and less the case. In the study from which the case
reported later in this paper is drawn, eight of the 25 secondary mathematics teachers
had studied mathematics to third year university level and, of these, just three
claimed to have majored in mathematics. Both instances found in the literature and
described below involved primary preservice teachers.
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Mewborn (2000) used Green’s (1971) ideas of beliefs systems to describe the beliefs
and practice of a preservice primary teacher, Carrie, progressing through her course.
According to Mewborn (2000), Carrie began with a fully integrated set of beliefs
about students, teaching and learning, but held negative beliefs about mathematics
and was consequently unsure of how she could teach that subject effectively. As a
result of working with an experienced teacher, Carrie realised that mathematics could
be taught in accordance with her beliefs about students, teaching, and learning and
hence was able to adopt mathematics teaching practices that were consistent with
them. Mewborn (2000) acknowledged that Carrie’s beliefs about mathematics as a
discipline did not appear to change but did not mention as problematic the continuing
isolation of Carrie’s beliefs about the discipline of mathematics.

Schuck (1999) found that many preservice primary teachers held beliefs about the
importance of making mathematics enjoyable, but did not believe that their own
mathematical knowledge was important to their ability to teach it well (Schuck,
1999). The belief that mathematical ability is not requisite for effective mathematics
teaching allowed them to maintain belief in themselves as effective teachers (Schuck,
1999). These teachers may have taught mathematics in ways superficially consistent
with a Problem-solving view of the discipline but from motivations having nothing to
do with an appreciation of the aesthetic appeal of the discipline or understanding of
what a mathematician might mean by doing mathematics.

THE CASE OF SALLY

Sally had been teaching secondary mathematics for 18 years. She had studied tertiary
mathematics for 3 years and had since completed an M.Ed. Some years earlier she
had spent 3 years as the district Senior Curriculum Officer (SEO) (Mathematics), for
the Education Department. Sally was currently teaching a grade 7 mathematics class
and a combined grade 9 and 10 class, in which the students were studying non-
compulsory advanced mathematics courses. Sally was a senior teacher with
responsibilities including providing leadership in mathematics.

Instruments and procedure

Data concerning Sally’s beliefs were collected using a survey requiring responses on
a five-point Likert scale, to 26 items, taken from similar instruments devised by
Howard, Perry, and Lindsay (1997) and Van Zoest, Jones, and Thornton (1994),
relating to beliefs about mathematics, its teaching and its learning, and also from an
audio-taped, semi-structured interview of approximately 1 hour’s duration. Among
other things the interview asked her to: describe an ideal mathematics classroom and
compare this with the reality of her own mathematics classes; and respond to 12
statements about each of the nature of mathematics, and the teaching and learning of
mathematics, based upon the findings of Thompson’s (1984) case studies. Those
about the nature of mathematics comprised four corresponding to each of Ernest’s
(1989) three views of mathematics, and the statements relating to the teaching and
learning of mathematics were representative of the corresponding views of
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mathematics teaching and learning shown in Table 1. Sally completed the beliefs
survey during the first few weeks of the school year. The interview was conducted
several months later.

Sally’s beliefs about the nature of mathematics and mathematics teaching

Sally’s responses to the beliefs survey suggested that she held beliefs consistent with
a Problem-Solving/Learner Focussed/Autonomous Exploration of Own Interests
orientation to mathematics and its teaching and learning, and there were no apparent
contradictions among her responses. For example, she (strongly) agreed with:

Effective mathematics teachers enjoy learning and ‘doing’ mathematics themselves.

Mathematics is a beautiful, creative and useful human endeavour that is both a way of
knowing and a way of thinking.

Justifying the mathematical statements that a person makes is an extremely important
part of mathematics.

and she (strongly) disagreed with such items as:
Telling children the answer is an efficient way of facilitating their mathematics learning.
Mathematics is computation.

Sally had been influenced by the reform agenda in mathematics, and by the 3 years
that she had spent as a district SEO. She described how during this time she had
presented workshops for primary and secondary teachers, and that this provided both
the stimulus and the opportunity to think about new ideas in mathematics education.

When asked what sprung to mind in response to the word “mathematics” Sally
answered in terms of the strands of the curriculum, describing this as much broader
than her own and the general view of mathematics in earlier times. She believed that
mathematics was now, “much more exciting and certainly less boring and academic”
than it had been before. Similarly, when responding to statements about the nature of
mathematics, Sally frequently answered in terms of school mathematics and had
difficulty considering mathematics as a discipline that extended beyond this context.
This was so even when she was prompted to consider the discipline as a whole and
not just mathematics taught in school. For example, in response to the statement,
“The content of mathematics is ‘cut and dried’. Mathematics offers few opportunities
for creative work”, she said:

... I disagree quite strongly I think ... I don’t think that the content of maths is cut and
dried. I think a lot of the professional development that’s gone on in the last 10 years ... I
think has opened up huge opportunities for creative work ...

Sally had difficulty conceiving of what mathematicians might do and was unable to
say whether the change in emphasis that she had described in school mathematics
better reflected their activities. In discussing the origins of mathematical content, she
was comfortable with the sciences and other practical needs as sources of
mathematics, but with regard to mathematics being self-generating she acknowledged
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that it could be so, but said, “I’m not really sure why, ... it’s a bit like a brain exercise
for some people”, and also spoke in the third person when she agreed that some
people enjoy mathematics, saying, “They enjoy it for itself”.

Sally agreed that, “Mathematics is a challenging, rigorous and abstract discipline
whose study provides the opportunity for a wide spectrum of high-level mental
activity”, and again related it to school mathematics, and particularly to what she
believed was an ongoing shift from pure to applied mathematics in that context. Sally
saw this change in emphasis as being most apparent in primary schools, and least in
senior secondary classes. For students not likely to study tertiary level mathematics,
she regarded mathematics as making fewer demands in terms of high-level mental
activity than it had in the past, because it was more “applied”.

Sally indicated that she suspected that the results of mathematics were not tentative
but rather in most cases they were “sort of law”. She agreed with the statements,
“Mathematical content is coherent. Its topics are interrelated and logically connected
within an organisational structure or skeleton”, and, “Mathematics is an organised
and logical system of symbols and procedures that explain ideas present in the
physical world”, adding that it was the logic of mathematics that appealed to her.

In responding to the statement, “Mathematics is a collection of skills and procedures
that are useful in meeting basic needs that arise in everyday situations”, Sally
indicated that this probably was true of what she described as “mathematics in a very
pure sense”, but that her understanding went beyond this. She said:

... I think if you’re talking about mathematics in a very pure sense then it probably is a
collection of skills and procedures that help you meet sort of basic needs. But if you try
and think about it in a broader sense then I can see it’s much more than that ...

And then, in elaborating on the distinction between numeracy and mathematics:

... I would see maths very much the pure maths part of it whereas once it becomes more
applied and how you use it everyday and how you justify what it is and whether you
know that the person who’s delivered your wood, whether they’ve given you the correct
amount, the ability to be able to work something like that out or, to me is a more
numeracy type of understanding than a mathematics one ...

Sally described students in an ideal mathematics classroom as engaged and
motivated, involved in practical problem solving investigations that originated from
their own interests and questions, and working either as individuals or in groups
perhaps for extended periods of time. The class would include a range of ability
levels and the tasks with which they engaged would be accessible to all. They would
have access to computers, and their activities would be characterised by
hypothesising, describing patterns, testing hypotheses, and discussing their ideas.

Sally was consistent in her disapproval of teaching procedures without meaning and
likened the use of rote-learned algorithms to the performance of a trick. She believed
that, “Students should not be satisfied with just carrying out mathematical
procedures; they should seek to understand the logic behind such procedures”. Sally’s
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responses revealed a firm belief in the importance of recognising that there could be
many appropriate ways to solve a mathematical problem and that the teacher should
neither prevent students from using alternative methods that were meaningful for
them, nor convey the idea that a particular way is necessarily the only way.

Sally described content arising from the students’ interests as more likely to “make
an impact” and agreed that, “The teacher should appeal to students’ intuition and
experiences when presenting material in order to make it meaningful”, describing this
as an important way of engaging them in mathematics.

Sally expressed quite student-centred views of mathematics teaching, but did not
believe that the teacher’s role was insignificant or passive. She said:

... the teacher has a fairly important role, to facilitate, or suggest to them, or guide them
in terms of reaching a solution or an answer, ... I think you have to have a balance ...
you can’t just be so open-ended that they never get there ...

IMPLICATIONS AND CONCLUSION

The cells in Table 2 suggest ways in which distinct clusters of beliefs about the
discipline and school mathematics could interact to influence beliefs about maths
teaching/learning.

Beliefs about the nature of mathematics (the discipline)
Instrumentalist Platonist Problem-solving

z School mathematlgs s Mathematics can be
w| = about learning basic skills .
IR . creative but you need to
=R . that will allow . .
5| g | No conflict . . have a set of basic skills
g understanding of higher .
S| 2 . : first. Mathematical
2| 2 level, more interesting creativity is not for school
g = mathematics later '
= School mathematics is School mathematics is a
i) a body of hierarchical body of hierarchical
2 interconnected interconnected knowledge
3 = | knowledge that needs  No conflict that needs to be learned so
g ’g to be learned so that it that the gifted few can
S| & | can be applied to eventually be
E A | practical situations mathematically creative
2| w Learner/process focus is
§ £ | Learner/process focus  aimed at motivating
< % is aimed at motivating  students so that they come
ks ; students to learn the to understand more of the  No conflict
g © | skills they need in body of hierarchical
@ everyday life interconnected knowledge
A that is mathematics

Table 2. Possible teaching/learning orientations resulting from different beliefs about
school and mathematicians’ mathematics.
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Unlike the cases reported in the literature (Mewborn, 2000; Schuck, 1999), Sally was
an experienced teacher with a relatively strong mathematics background albeit not a
mathematics major. She appeared to have a Problem-solving view of school
mathematics but, to the extent that she could conceive of the broader discipline, she
seemed to have Platonist view of it. A teacher such as Sally could teach in ways
consistent with a Problem-solving orientation according to Table 1 but not because
this is the way in which she views the discipline (See italicised cell in Table 2).
Further research, ideally involving classroom observations, is necessary to confirm or
contradict these ideas, but recognition that at least some teachers have different
beliefs about school and mathematicians’ mathematics may go some way to
explaining apparent inconsistencies among teachers’ beliefs about mathematics and
its teaching and learning. It also suggests that attempts to influence teachers’ practice
should address the both their beliefs about school mathematics and the discipline.
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CONTINUITY IN MATHEMATICS LEARNING ACROSS A
SCHOOL TRANSFER

Brenda Bicknell
Massey University

This paper reports on the school transfer of fifteen students identified as
mathematically gifted and talented. The results are drawn from students’, teachers’,
and parents’ perspectives pre and post school transfer. Some of the schools practised
fresh start’ and so there was no sense of mutual trust between sending and
receptions schools about information of students’ levels of achievement in
mathematics. Most students felt academically well prepared but for some there was a
lack of mathematical challenge in their new schools. Curriculum continuity, pastoral
care, and home-school communication were recognized as issues.

INTRODUCTION

Students face a variety of challenges and potential problems when they make a
school transfer. When students make a school transfer it is at two levels—the macro
level of the school’s physical structures and organization and at a micro level in the
classroom. This transfer at the micro level means a new mathematics teacher and a
teacher who may use different teaching approaches. School transfer coincides with
the formative adolescent years which can also be problematic.

The international literature on school transfer provides evidence of dips in student
progress at each point in transfer, primary to middle school or middle to junior high
(Anderson, Jacobs, Schramm, & Splittgerber, 2000; Galton & Morrison, 2000).
Noyes (2006) raised the issue, specifically using the context of mathematics, of
trajectories and how school transfer acts like a prism diffracting the social and
academic trajectories of students as they pass through it. According to Demetriou,
Goalen, & Rudduck (2000) students showed signs of anxiety and excitement at the
prospect of moving to a new school which is often a much larger school and some
students expressed difficulties with sustaining commitments to learning and in
understanding the continuities in learning. However, for the majority of students any
fears largely disappeared after the first term. The main problem that typically
remained was a lack of continuity across the curriculum. Students were faced with
revision and a lower level of task demand which led to boredom (Galton, Morrison,
& Pell, 2000), decline in motivation (Anderman & Maehr, 1994; Athanasiou &
Philippou, 2006), disengagement from school (Anderson et al., 2000). In a recent
PME paper, Athanasiou and Philippou (2008) highlighted the developmental
differences between the actual and preferred classroom environments in mathematics
as perceived by students, pre and post transfer.
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Transfer or transition is a difficult topic to address internationally because of both
terminology in the literature and the different systems that exist within countries.
However, there are likely to be commonalities in the challenges for students,
teachers, and parents in addressing students’ mathematics education pre and post
school transfer. In this paper the term transfer will be used to define the move from
one stage of schooling to another (Demetriou, et al. 2000). Anderson, et al. (2000)
suggested three major concepts for understanding and improving school transfer and
success. These concepts were preparedness, support, and transitional success or
failure (which is implicit). According to the writers, preparedness is multidimensional
and includes academic preparedness, independence and industriousness, conformity
to adult standards, and coping mechanisms. Support from others, be it informational,
tangible (resources), emotional or social, facilitates successful transfer. This support
may come from peers, teachers, or parents. Transitional success or failure can be
judged by factors such as grades, appropriateness of a student’s post-transfer
behaviour, social relationships with peers, and academic orientation. These indicators
are what are commonly commented on report cards namely: achievement, conduct,
and effort. This framework has been recognized as useful for addressing transfer
problems (Galton & Morrison, 2000).

The focus of this paper is on student placement, mathematical preparation and
expectations across school transfers, pastoral care, and home-school communication.
The paper presents findings from a variety of perspectives—students, teachers, and
parents.

METHODOLOGY

This paper is extracted from a larger study that examined how a school transfer was
managed for a group of students identified as mathematically gifted and talented. The
research paradigm that guided the research was essentially interpretive although
aspects of naturalistic inquiry were blended into the study. The main study was
designed using a case study approach and predominantly qualitative methods. These
included student, parent, and teacher interviews, documents (school policies, teacher
plans, student workbooks), and classroom observations. Data were gathered over a
two-year period in which 15 students (10 to 13 year olds) were tracked across school
transfers. The focus of the study was on the learning and teaching experiences in
mathematics. The students had been identified by their schools as gifted and talented
in mathematics (purposive sampling) and originated from three different schools. In
the second year of the study, the students transferred to nine different schools. Ten of
the students made the transfer from a primary school to an intermediate school (Years
7 and 8) and five students transferred from intermediate to secondary school.

The data for this paper are drawn primarily from the interview transcripts. The first
level of coding was based on the conceptual framework provided by Anderson and
colleagues (2000); these include the categories of preparedness, support, and
transitional success or failure. The next level of coding came from the common
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threads in the participants’ accounts such as the concepts of ‘fresh start” and ‘little
fish in a big pond’. Interesting points of difference were also noted as part of the
memoing process. Data were triangulated through the multiple perspectives
(students’, teachers’, and parents), documents, and classroom observations.

RESULTS

This paper focuses on aspects of the transfer process; these are: student placement,
academic preparedness and expectations, pastoral care, and monitoring systems in
mathematics. The findings are presented from the perspectives of students, teachers,
and parents.

The placement of students was a key part of the transfer process. The students faced a
change from being ‘at the top’ class level of their sending school to the ‘the bottom’
of the reception school. For most students there was also a change from essentially
one class teacher for all core subjects to a specialist teacher for a subject such as
mathematics. There was also a change for most of the students (n=11) to a bigger
school. Most of the students felt that they were prepared for the systemic and/or
organizational changes through school visits to the reception school, prospectus
information, or siblings answering questions. The students had to face the change of
different mathematics teachers and programs. Bear in mind that these students had all
been in special classes or programs for the mathematically gifted and talented and so
the previous teachers, parents, and students were keen to see if these abilities were
recognized by the new school. All of the teachers from the sending schools passed on
written information to the reception schools. It seems, however, that not all messages
from the sending schools were understood, trusted, or acted upon. One teacher
admitted that he had not looked at the mathematics records for the four students from
this study placed in his class. The teachers from the reception schools were, on the
whole, less interested in the transfer process and the student information than the
sending school although the majority of the reception schools conducted interviews
with teachers from the sending schools. Most of the students sat tests, either on their
visits to the school in the preceding year or early in the year at their new school. They
were then placed in classes based primarily on these academic results gained from the
new school. There was hope from the parents that, given the students had come from
extension/enriched/accelerated programs in mathematics, they would achieve ‘good’
results in any pre-selection tests, and that special teaching programs would ensue.
There was also an expectation from parents and teachers from the sending schools
that there would be an exchange of academic information between the schools and
this would aid in the transfer process. They expected this to include details about
their achievements in specialized mathematics programs for gifted and talented
students and results in mathematics competitions.

The issue of identifying mathematically gifted and talented students by the reception
schools was problematic for some students in this study. With limited identification
methods (most used tests only) for mathematics in the majority of the schools, some
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students did not experience a smooth transfer. Eric (pseudonym), for example, was
not selected for the gifted and talented mathematics program in his new school. This
school practised tabula rasa or ‘fresh start’ and did not refer to information from the
sending school. He had performed poorly in a school placement mathematics test and
so missed out on selection for the gifted and talented mathematics class. After several
months the parents raised their concerns because of Eric’s changing attitudes and
interest in mathematics. However, it was not until six months later and he had
performed exceptionally well in an international mathematics examination that Eric
was moved to a class for gifted and talented mathematics students. Eric’s parents,
like others in the study, expected a continuation of challenging programs, that their
children would be seen as high achievers, continue to grow in their mathematical
development, and not lose their love for mathematics.

So what were the students’ expectations? The majority of the students anticipated
with enthusiasm the prospect of being taught by a mathematics specialist teacher.
These students talked primarily about the subject, the teacher, and the level of
academic challenge. The students wanted a teacher who “knew tons of maths”,
enjoyed mathematics, and recognized their individual differences. Students
repeatedly mentioned flexibility, in relation to contexts such as time, organization,
responding to students’ needs and in the use of resources. They wanted a teacher who
appreciated and provided them with ‘“challenging mathematics”. Challenging
mathematics invariably meant “not too easy and not too hard”. One student explained
it as “outside the square, outside the octagon...to think in ways that you wouldn’t
normally think in”. Some of the students were concerned about subject continuity and
how well prepared they felt in certain topics such as algebra and geometry. A few
were not prepared for the feeling of being a ‘little fish in a big pond’. With a move, in
most cases, to a larger school, the students found themselves in a bigger pool of
mathematically gifted and talented students. This realization that they were one of
many high achievers was expressed by both the students and parents. Some of the
students were also challenged more in their knowledge and skills in mathematics; the
mathematics was not so easy. One student explained that it was quite a lot harder and
that she had gone from being in “the top group in the class” to a class where “I’m at
the bottom”. However, most of the students believed, academically, they were well
prepared, no gaps in mathematical knowledge had surfaced, and they were coping
well compared to other students in their classes.

The teachers from the sending schools had clear expectations for their gifted and
talented students including a continuation of advanced levels in mathematics, that the
level of mathematics would be suitably challenging, and the teaching approach
encourage open-ended investigations and opportunities for self-directed learning.
They understood that there would be an information sharing process so the reception
schools would know that the students had been identified as gifted and talented and
had been involved in special mathematics programmes. They therefore expected that
the students would be placed in appropriate classes. There was also an expectation
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that the students would be encouraged to take greater responsibility for their learning
and “keep on pushing themselves”. One teacher explained that she articulated to her
students that she expected them to be in accelerated programmes at secondary school
and that their pathway was to go on to university. Although Miss L saw her role as
giving her students a good grounding and kick start to secondary school, she believed
that these students had a vision for themselves “so that they can choose the pathway,
rather than have the pathway choose them”.

Seven of the parents acknowledged the positive support their children had received
from the reception school and in particular the students’ form class and/or
mathematics teachers. This support included helping students develop skills in setting
goals, maintaining consistent work standards, and clarifying expectations in
mathematics. The parents appreciated approachable, supportive teachers who
recognized their children’s talents. Not all of the parents felt that the school had aided
the transfer process. Two parents were not impressed with the level of pastoral care
and guidance provided for their children especially in relation to the accelerated
programmes. One father explained that although the students were “doing serious
level maths” they were “tender in years in maturation” and so maybe there should
have been more initial pastoral care to support the adjustment to secondary school.
Three parents recognized the pressure that their sons were now under at secondary
school; they were with “the cream of the cream” and were under pressure to perform
well and maintain their place in the top streamed accelerate class. These were
students who were used to getting very high scores in tests, and were very confident
in their abilities in mathematics. Suddenly, their numerical scores had dropped and
they were with a wider pool of gifted and talented students. Two parents, with
children from the same school believed that their sons were not well prepared in
mathematics for the year ahead. They felt that there were gaps in their children’s
mathematics education, particularly in algebra.

Once the students had settled in to their new schools the parents were interested in
monitoring their children’s academic progress particularly in mathematics. Parents
were questioned about how they were informed of their children’s academic progress
in their new schools and what communication there was between home and school.
The schools all had regular reporting systems. Early in the year, for most schools, it
was one-way information sharing, essentially a ‘meet the teacher’ opportunity.
Several parents commented that they felt comfortable about approaching the teacher
or school if they had concerns about how well their children had settled in to the new
school. Five parents, out of the fifteen parents in the study, were not impressed with
their children’s progress in mathematics at their new schools. They seemed reluctant
to step in and question this lack of progress and the level of challenge in the
mathematics programmes. They were not acting as ‘pushy’ demanding parents but
took a ‘wait and see’ approach. This ‘wait’ was usually for the interviews later in the
year where they felt they had an opportunity, supported by a written school report, to
raise their concerns. The concerns were based on their children’s attitudes, and
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decreased levels of effort, motivation, and enthusiasm for mathematics. A few of the
parents felt uninformed about their children’s progress and the mathematics
curriculum. The schools had systems in place to inform parents on a regular basis but
it would appear that the quality of information communicated about students’
progress and the mathematics curriculum was limited. Formal written reporting
occurred later in the year when teachers had accumulated a reasonable amount of
assessment data. The parents wanted earlier opportunities to communicate with
teachers and for this to be initiated by the school.

DISCUSSION

Students were prepared for this transfer in a variety of ways. The majority of the
students had been given information about their new schools and some had attended
an orientation visit. These visits, prospectuses, and discussions with peers and
teachers meant that the students felt reasonably well prepared for the organizational
aspects of the new school. The students knew to expect the systemic changes and
possibly different teacher expectations. All of these go some way towards enhancing
the transfer process (Simpson & Goulder, 1998).

The academic focus of ensuring curriculum continuity and the learning and
development of individual students in mathematics were not evident for all students
in this sample. The practice of ‘fresh start” was evidenced in three schools that based
placement on their own selection tests. Justification of this ‘fresh start’ policy has
been argued, according to evidence reviewed by Galton et al. (2000) on the reasoning
that a secondary school’s objectives are more academically specific and the
secondary specialist teachers can better ascertain a student’s ability in a subject such
as mathematics. Accordingly, previous school records were not always taken into
account. Galton and Hargreaves (2002) write that it is questionable therefore,
whether curriculum continuity is taken seriously and is an achievable goal.

There was an expectation, by the majority of the teachers in the study, that as gifted
and talented mathematics students they would be independent learners and therefore
programmes designed for these students would encourage independent work. Only
one of the teachers from the sending schools spoke specifically about helping
students develop skills in self and time management, studying, gathering, and using
information, communication, decision-making, and conflict resolution. There was
little evidence, in this sample of students, that they were specifically taught skills for
coping and being independent learners. These skills are recognized as making a
transfer across systems more successful (Schumaker & Sayler, 1995). This lack of
focus on preparedness by teachers concurs with Hawk and Hill’s (2001) study that
found “many teachers are so focused on curriculum coverage that they do not take the
time to incorporate these [self-management, time management, study skills etc.] into
the programme” (p. 31).

With their children moving to a new school, the parents wanted to monitor not only
their children’s social-emotional well-being but also their academic progress in
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mathematics. This is important given that the literature has shown that most students
experience dips in achievement post-transfer (for example Anderson, et al., 2000;
Galton & Morrison, 2000). Most parents found this difficult; there was limited
opportunity for communication and progress reports came later in the school year.
The parents were reluctant to be involved in the new schools for several reasons such
as time, adolescent independence, their own level of mathematics, and a belief that
they would be seen as ‘pushy parents’. Some parents expressed concerns about their
children’s attitudes, efforts, motivation, and levels of achievement in mathematics.
The provision of academic continuity in pupils’ experiences is viewed as a vital
component in a successful transfer (Simpson & Goulder, 1998) yet, it is disconcerting
how many of the students and their parents mentioned the lack of challenge in their
new mathematics programs. This result was also surprising given that the students
were taught post-transfer by teachers who had greater expertise in mathematics than
their previous teachers. There were expectations from the parents related to
identification and recognition of interest and abilities, a desire for a teacher who
continued to challenge their children, and to be informed of their children’s progress.

Students experience several transfers during their years of schooling; each one of
these is important. However, just because a student has successfully negotiated one
transfer does not mean that he or she will successfully negotiate the next one. The
nature and extent of change is dependent on many factors, some of which have been
outlined in this paper. For the many students in this study, the transfer was relatively
smooth and unproblematic although there are several implications to be considered
from the findings.

School transfer can be a daunting process for any student; these students showed that
they had high expectations in terms of teacher qualities and curricular challenge. Dips
in academic achievement commonly occur post-transfer but consideration needs to be
given to factors including those briefly outlined in this paper so that schools can
eliminate any hiatus in progress. If secondary teachers do not pay attention to
information from sending schools because they perceive them to be unreliable, this
implies a potential level of distrust. It gives rise to the question as to whether teachers
should spend considerable time and effort on compiling, improving, and refining
records when this study showed that many secondary schools could not offer
reassurance that they would use these records. Aspects related to pastoral care could
also be raised earlier in the school year rather than parents waiting until formal
reporting systems later in the year. Students also need to have opportunities to raise
their concerns in a safe and supportive environment early in their days at the new
school. Schools could also consider strengthening their contribution to students’
transfer with access to mentors and learning counsellors. An earlier three-way
conference (student-teacher-parent) might go some way towards capturing sooner,
concerns about students’ motivation, interest, and academic progress in mathematics
post transfer. If we are to help young people sustain, through primary and secondary
schooling, an enthusiasm for the learning of mathematics, confidence in them as
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learners, and a sense of achievement and purpose, then we should pay attention to the
transfer process.
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This is a philosophical essay on a phenomenological way to understand and to work
out Mathematics Education. Its philosophical grounding is the Husserlian work,
focusing on its key word “going to the things themselves” in order to keep us away
from the theoretical educational truth, took as the unique one. We assume the attitude
of being on the life-world with the students and Mathematics as a field of research
and practice that show and express themselves through lived experiences and
through language. We assume to be in search of understanding of education,
learning and Mathematics, as we take care, consciously, of what we are doing and
saying in the same movement of saying and doing it.

Key words: Phenomenology. Lived Experience. Mathematics Education.

A STATEMENT ABOUT THE PHENOMENOLOGICAL PERSPECTIVE ON
MATH EDUCATION.

It is important to clarify what the phenomenological approach pointed out in the title
of this essay is about, in order to defend this posture in Mathematics Education, being
seen from the perspective of its pedagogical practice and from a perspective of
researching on its own themes.

Perspective, within this context, is about a comprehensive view, assumed from a
position about a determined theme. In this case, the theme does not show itself as
being the phenomenology, but taken in a qualifying dimension, as it qualifies the
perspective.

Phenomenology', a philosophical school of thought, has got in its kernel the
meanings, whether physical or not, we build about things that are around us in the
life-world’s horizon. It is this search that makes difference and puts itself as
meaningful, especially in the Education’s context. In case of Mathematics Education,
there is difference between taking Mathematics as a fact, in other words, as data,
expressed in scientific terms and understanding the meaning of this fact or of what
was expressed.

' Phenomenology is a word composed by phenomenon + logos. Phenomenon means what shows itself, what turns up,
and Jogos is understood as thought, reflection, and articulation. Therefore, Phenomenology can be taken as the
articulation of the meaning of what shows itself, or as reflection on what shows itself.

2009. In Tzekaki, M., Kaldrimidou, M. & Sakonidis, H. (Eds.). Proceedings of the 33rd Conference of the International
Group for the Psychology of Mathematics Education, Vol. 2, pp. 169-176. Thessaloniki, Greece: PME.
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In the first case, it matters working with arithmetic and geometry, for instance, in
terms of language, propositions, methods of construction, inductive and deductive
ways of reasoning, ways of products’ creation, ways of operating their standard units,
possibilities of application and so on. In other words, it is important to teach contents,
operations and possible applications. This is a scientific posture, based on the way of
making science, in this case, Mathematics. The fact is the kernel. In the second case,
it is important to search for the meaning that arithmetic and geometry, within their
ways of being, does to the person and to the world-life where he lives, as well as to
the World of Mathematics and Science and technology in general.

That is the difference between what we name as a positivistic approach, or, in
Husserl’s words, naturalist, and the phenomenological posture. The positivistic
approach works with facts. That author names it as natural attitude because, in the
sample focused, it is not questioned what a mathematical operation is. It is just made.
In the phenomenological approach, the mathematical operation is perceived and can
be comprehended in the acts actualized in the consciousness’ movement, in an
attentive way, conscious or just in a passive synthesis (HUSSERL, 1998), by the
person who has done it. This synthesis says about the movements whose we articulate
perceptions without realizing it. It is previous to the perception of the perceived. As
Mathematics educators, we hope that what we work with students is meaningful.
Right, it is needed for us (teachers and students) to know what we are doing.
Therefore, we need to know the operations carried out, the discourse of the
mathematical text and its propositional language and technique, as well as its
applications. Furthermore, we chase the meaning that this knowledge does to us,
people present at the situation of learning and teaching, and at the scientific inquiring
region, in other words, the meaning that is revealed in the investigation of its
historical grounding.

PHILOSOPHICAL FRAMEWORK APPROACH

The philosophical framework of this essay is the phenomenological thought, whose
production was initialized by Husserl. His motto ‘going to the things themselves’
(HUSSERL, 1970; 1931) refuses to understand the world by means of scientific
theoretical lenses, revealing the phenomenon meaning and the radical criticism. By
using this reasoning, Husser]l aims to comprehend the European Science, doing a
criticism that covers different scientific enquiring regions, especially Mathematics
and Psychology. Within Mathematics, (HUSSERL, 1970, 2003; MILLER, 1982), he
interrogates the constitution of this science, and the persistence of its objectivity that
goes through the history of cultures, from a socially and geographically point of
view, although assuming that it had been created from evidences that happen in the
subjectivity sphere (HUSSERL, 1970; ALES BELLO, 1986).

Within Psychology, his criticism begins interrogating the Cartesian ego, as once it
had been found, it became completely forgotten, because Descartes and his pupils
started to work out just with the thought by the ego, looking only to the produced by
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the thinking (HUSSERL, E.1970, 1977). Maintaining himself in his line of thought,
he goes to the thing itself, what means, in this case, to leave out theories and
approach the phenomenon manifestations — the psychological. In this search, gets
close, as student, to Franz Brentano, who helps him to understand the meaning of
intentionality. Along his work, he expresses the psychological as one of a person’s
dimension (ALES BELLO, 1986).

During some time, he argues about the origin of arithmetic, as if it were constituted in
the psychological sphere (HUSSERL, 2003; MILLER, 1982).

Along his life, he gets through those theoretical obstacles, focusing his study on
questions about intentionality, which materializes the embodied body (BICUDO,
1991); on the constitution on subjectivity, intersubjectivity and objectivity, in a
different way from the naturalist attitude, assuming it phenomenologically; on the
life-world (HUSSERL, 1970); on the language (HUSSERL, 1970; MERLEAU-
PONTY, 1978); and on the horizon of comprehension (HUSSERL, 1970).

Intentionality, characteristic of consciousness, is understood as the movement of self-
expanding. It means way of being intentional. Intentional means to tend towards a
direction, to extend, to become attentive, to sustain, to give intensity, to assert
strongly. So, consciousness is not conceived as a physical place where the principles
of value are, nor a container where judgements are put in, etc. The consciousness is
like a point of convergence of human operations, which allow us to say what we are
saying or to do what we do with human beings (ALES BELLO, 1986). Due to its
characteristic, the intentionality is also understood as self-extending to something,
tying and bringing it to itself, in order to advance, through its acts, and to express
them by means of an articulated meaning. In that way, we have perceptive acts that
give us a first level of consciousness. They are like an opening for the meaning with a
possibility of a more elaborated and reflected comprehension, which could be opened
by reflective acts, understood in a second level. Those acts are done on the performed
action. It is an act that is done in an embodied way, in the materiality of the body that
is considered an intentional unit.

The consciousness, understood as convergence of human operations, is a movement
that actualizes and carries out the acts, articulating their meanings, in other words,
carries out the reflective process. It is the movement of getting award, of being
attentive to what one does and to what happens. It is a movement that ties the act of
perceiving, as well as the act of reflecting, opening space to reflect on itself, in other
words, on the human being and on the ways which the operations product of those
acts are communicated, i.e., about communication between people. It covers empathy
and language.

The statements above involve a net of arguments and of explicitations that also talk
about the subjectivity, in a net shape, bringing to its kernel the constitution of the
intersubjectivity and objectivity.
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Subjectivity is characterized it by presenting acts with differentiated qualities. There
is the embodied dimension, a first one, which is carnal and carries out movements,
experiencing the space and perceiving close and far locations and physical obstacles,
for instance. The ways of being embodied open themselves to the world, through
sensory acts whose touch allows us to register the limits of the own-body and the
others’ bodies, of people or not. The perception of having a body is based on the
analysis that we carry out. It conducts us to the psychical dimension, when it is
possible to focus on the psychical acts®, with psychological characteristic, opening a
huge field of investigation, which demand special attention. They are acts related to
registering actions, such as comparing, fantasising, abstracting, touching, listening,
and so on. Besides them, there are acts that also differentiate themselves from the
psychical ones and are still subjective as, for instance, the self-perception of
perceiving, in other words, the self-perception of being in action. That means there
are acts that reflect on the acts that have been being actualized. One walks, within
this thinking movement, to the dimension of reflective acts. The reflection experience
installs the act of getting award of us, of what we are doing, and carries out acts of
decision and of evaluation. This is the spiritual dimension. The spiritual acts are
carried out by the own-body, being, therefore, as already mentioned in this chapter,
embodied. In phenomenology, when one talks about subjectivity, one covers the
own-body dimensions, and the psychical and spiritual acts. The subjectivity,
however, throws itself and covers the neighbourhood of what is in the life-world,
including the other, the ‘not-I’ perceived as the other person, once it is not my body
that I perceive walking, feeling, acting. Not being closed in itself, the subjectivity
builds at self-expanding to the aimed and to the acts carried out that show themselves
as tentacles, which take and bring the perception and the perceived. The act that
actualizes other’s perception is called empathy or entropathy. As perceptive act,
empathy gives us the comprehension of other’s existence. It is not an act of feeling
affection, but of perceiving other human being, as a being who lives in the same
dimension that we live: as intentional consciousness. The empathy is the act that
opens us to intersubjectivity. That is a complex world: it is the world of culture and
history that opens itself. Empathy does not cover all the acts required by the world of
intersubjectivity. There is a demand of expressing the articulated within the
intentional acts, through a way of communication that is not limited by affective or
unpleasant acts, for instance, and that is enough structured to manage to keep the
communication in the cultural and historical dimension. This structured way is built
through experiences lived among human beings in a space of co-subjects, mates in
situations and that, through comprehensions and its well succeeded pieces of
communication, establishes ordinary ways of expressions and of communication. So,

2 The psychical acts are understood in the context of Franz Brentano’s classes, attended by Husserl, and basis to his
work about the importance of those acts in the constitution of arithmetical knowledge. Later, during his life, he
comprehends that arithmetic cannot be based just on those acts. He goes further, as we will see, with the
intersubjectivity and objectivity subjects, the abstractive acts, the idealities” constitution, in a way that he understands,
in a more elaborated and wider mode, the constitution of the number and of other mathematical idealities.
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the world of language opens, transcending the gestural and directive language,
getting into the language logical structures, in other words, the communication
sustained by a linguistic structure and by a propositional language. Empathy and
language are the communication’s kernel and, therefore, the possibility for the world
to keep the way it maintains all its history, its tradition, its culture, and that social
organization finds space and sustentation. Within language, the expression of
consciousness acts, through signal acts, finds ways to self-manifest. In that way, the
world of objectivity opens itself.

According to the phenomenological approach, the objectivity is build in the dialectic
subjectivity/intersubjectivity, whose movement happens in the life-world grounding,
which is historical, cultural and mainly based on the communication between co-
subjects. The canal of this communication is open in the perception of the other by
the empathic act, and the communicated is sustained in the linguistic structure. Being
a constituted objectivity, its interpretation occurs when one focuses on it consciously,
searching for meaning. It is an objectivity structured on comprehensions, and on
historical and cultural interpretation, that is maintained in the language, conducted by
the tradition.

REFERENCE TO RELATED LITERATURE

This is an essay arisen from studies that aimed to understand Phenomenology,
especially the Husserlian one, from the Mathematics Education perspective. In that
way, the literature related to this theme can be found in that own author and in those
who tried to interpret him and go ahead with ways of working Mathematics
Education phenomenologically. From this perspective, we have opted to mention
subjects and present relevant references.

The theme science, and in particular Mathematics, can be found especially in
Husserl” works (1970), Ales Bello (1986), Tierszen (1996), Bicudo (2000) and Kluth
(2005). The theme language can be found in Husserl (1970), Merleau-Ponty (1978)
and Bicudo (2000). The theme person and empathy is worked in Husserl (1970) and
Ales Bello (1986). Mathematics Education has got also many important works used
in this paper, such as Blair (1981), Ernest (1991), Bicudo (1999, 2000), and Bicudo
and Garnica (2001).

AUTHOR’S POSITION ON PHENOMENOLOGICAL MATHEMATICS
EDUCATION

We see the phenomenological approach assumed at doing and to do Mathematics
education as a turning point in the perspective from where one looks at the student, at
the school, at Mathematics and at ourselves as teachers. This change of focus is
related to clarity that one always sees and comprehends conceptions from a
perspective given by the position that we assume, in an embodied way in the world.
Comprehension that materializes in ways of acting and of addressing questions, of
self-perceiving existentially being in the life-world, grounding of lived experiences
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and those ones of science. Within this, the centre of the comprehensive view is my
own-body, however, never closed in itself, in the psychological subjectivity, but
always self-extending to what is around it. This view covering happens through the
effectuation of the intentionality that, at self-expanding covering the other, gives
itself to the other and, at the same time, brings the other towards. A relation between
the seeing and the seen is created. The turning point is the comprehension that
everything that is brought comes over under lenses used by who sees, and so, the
seen is never an empirically given fact, but always perceived. On the other hand, the
perceived is not isolated from a historical context, but is always perceived in a
grounding outlined as background of a figure that highlights. The other is given to me
in its materialization, manifestation of its own body that is there, in the spatiality and
in the temporality of the life-world, at the same time as an equal, because in this way
I recognize it by the empathic perception, and as a different, because it is not me that
is there, but the other, the alien. In the situation established in the actions of teaching
and learning, located in a specific context — we can think of the school, for instance -,
phenomenology shows us that we are there with the other, our students, and for each
of those, we are also an other, constituting figures and background that constitute
themselves in a dynamical flow of actions. Those actions are intentional and are
driven to a convergence, which is gradually outlined as educational. The background
gets gradually tied, in a way that constitutes a grounding of lived experiences. We
consider that this is the scenery where we should move around with students and with
Mathematics, when we have this science and its practice as the content to be worked.
We are not talking about a science that puts itself “above suspicion”, in other words,
like a shiny being sustained by a truth, which conducts all processes of thinking and
of producing knowledge. But as a science that says about the life-world, showing
some aspects that constitute it, and that is historical, showing itself in perspectives. It
does not mean that there is no common kernel in this science, expressed by means of
ways of saying — language -, by an structure that organizes what was said — logic -,
and by doing, based on procedures considered suitable — devices of construction and
of application of the constructed. On the contrary: there is. But it is not a rigid kernel.
It gets constituted by self-tying and self-untying according to the tentacles that it is
bowed by. For this reason, it is possible to see it under different perspectives. At the
same time, its comprehension does not happen just in a subjective and casuistic way.
There is a conducting line of the historical grounding that articulates the productions
and the intentionality of that one in position of questioning. There are others, mates
who one is with that can also question, opening oneself to the possibility of
comprehensive dialogues.

The work that has as background the phenomenological attitude assumed by the
teacher — and here we can also say by the school, when it is included in its
pedagogical project — is manifested in the respect and in the attention to the other, in
the preponderance of dialogues among co-subjects that become possible due to
empathic opening, in the language dimension.
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POSSIBILITIES OF FORWARD RESEARCHES

The phenomenological posture opens horizons of comprehension related to science,
of constitution of Mathematics, of encounters of comprehensive horizons, of history
and meta-comprehension of knowledge already produced or in process of production.
They are nuclear aspects for the educative action, which is expanded to teaching and
learning acts, always seen in a contextualized way.
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ASSESSMENT IN PRE-UNIVERSITY MATHEMATICS
EDUCATION

Yaniv Biton and Boris Koichu

Technion—Israel Institute of Technology

The goal of the presented study is to characterize the process of creating conditions
for adopting alternative assessment in a pre-university institution adhering to
traditional assessment in mathematics. In accordance with Roger's model of
decision-making during diffusion of innovations, we identified the needs of such an
institution that can be addressed using alternative assessment. We then explored
which types of research evidence can convince the academic staff to implement
alternative assessment. The most convincing evidence came from the statistical
analysis. It showed that some of the traditional exams used at the institution had low
predictive validity, and thus, could be substituted with alternative assessment tools
with no risk of decreasing the predictive validity of overall grades.

THEORETICAL FRAMEWORK

The study presented in this paper is part of an on-going research project aimed at
exploring various effects that incorporates alternative assessment on teaching and
learning mathematics at a pre-university centre of a technological university. The
idea of wusing alternative assessment in mathematics education is broadly
substantiated in the research literature (e.g., Brookhart et al., 2004; Topping, 2003). It
is well known that introducing alternative assessment in an institution adhering to
traditional assessment strategies is not an easy endeavour (e.g., Lesh et al., 1992;
Sullivan, 1997). Similarly to any other innovative idea, it may raise and fall
depending on many factors, and, in particular, on the readiness of the academic staff
to consider alternative assessment as a possible way for addressing limitations
inherited in traditional assessment practices (e.g., Watt, 2005).

The goal of this paper is to characterize the process of creating conditions for
adopting particular alternative assessment tools. We pursue this goal based on a
model of decision-making during diffusion of innovations suggested by Rogers
(1995). According to the model, the first stage in adopting an innovation is awareness
of the rising need for an innovative solution. Only when the awareness reaches some
critical point, the decision makers can advance to the second stage: assessment of
potential advantages of the suggested innovation. Next, only in the case of positive
assessment of the innovation, they enter the third stage: the decision to adopt and act
on the implementation of the innovation.

2009. In Tzekaki, M., Kaldrimidou, M. & Sakonidis, H. (Eds.). Proceedings of the 33rd Conference of the International
Group for the Psychology of Mathematics Education, Vol. 2, pp. 177-184. Thessaloniki, Greece: PME.
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The literature on alternative assessment in mathematics education corresponds
mainly to the second and the third stage of the Rogers' model. Indeed, there are many
publications describing positive effects of alternative assessment on students and
teachers. Many of them can be used to convince decision makers to assess the
potential benefits of alternative assessment in their institution and guide them when
(and if) the decision is made. For instance, we learn from the literature that
alternative assessment opens valuable learning opportunities for students and
encourages them to discuss, explain, listen and challenge each other (Topping 2003;
Zevenbergen, 2001; Zariski, 1996). We also learned that alternative assessment can
help students to increase responsibility for their own progress (e.g., Bedford & Legg,
2007; NCTM, 1995). In addition, it provides teachers with an excellent opportunity
to assess skills which are hard to measure by traditional tools (Stenmark, 1991; Watt,
2005) and opens a window into student mathematical thinking (e.g., Blumhof &
Stallibrass, 1994).

However, all these studies and projects are rather silent with the rules of engagement
of decision makers and teachers in alternative assessment, or, in terms of the Rogers'
model, are silent about how to pass the first stage in the process of diffusion of the
innovation. Moreover, there are studies that report high levels of satisfaction from the
traditional assessment in mathematics among teachers and decision makers (e.g.,
Watt, 2005). In retrospect, most of the studies reporting the benefits of alternative
assessment start from the point where the decision to welcome alternative assessment
is made in an institution, and do not explain how the decision makers come to the
decision. Our study elaborates on this important issue, and, specifically, addresses
two interrelated research questions:

1. What are the needs, related to mathematics education, of a pre-university
institution that can be addressed by incorporating alternative assessment tools?

2. What types of research evidence can convince academic staff of the institution
to act upon incorporating alternative assessment in teaching and learning
mathematics?

THE STUDY
The research field

In our study, the above questions are explored in the context of the Centre for Pre-
University Education (CPE) of the Technion — Israel Institute of Technology. Such
centres, sometimes also called preparatory departments, exist in many universities
worldwide. They serve to close gaps between students' knowledge and prerequisites
for academic study. They also serve as a channel for selecting the future students, in
addition to traditional application procedures. Typically, CPE students intensively
study mathematics during an academic year; their progress is systematically assessed
by "traditional" exams. Eventually, the CPE students' entrance to the university is a
function of their scores at various mid-term and final exams. The Technion is
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particularly interesting and challenging with respect to the possibility to incorporate
alternative assessment strategies since the Technion's CPE puts great effort in
developing high quality traditional exams.

The study at the Technion CPE is divided into three trimesters, and at the end of each
trimester the students are tested in mathematics. The teacher decides only 10% of a
student's final grade based on his or her impression from the student's effort and
ability expressed during the lessons. The rest of the final grade is determined by the
student's achievements in the trimester exams. Traditionally, the weights of the first
and second trimester exams are 20%, and of the third, final, one - 50%.

Sources

Members of the CPE academic staff and students' files were the data sources in our
study. Specifically, the data were collected from the head, the academic advisor and 6
out of 10 mathematics teachers of the CPE. In addition, we analyzed about 250
randomly chosen students' files representing about 600 files of students who had
studied at the CPE in the past and then were accepted to the Technion.

The power to make a decision about incorporation of alternative assessment in the
CPE was in hands of the head and the academic advisor of the CPE, who discussed
the topic with the teachers. The department head and the academic advisor are
referred to henceforth in this paper as "decision makers."

Method

The Decision Makers were interviewed using a conversational interviewing
methodology, and the teachers — using a semi-structured interviewing methodology
(Patton, 1990). These open-ended interviews were chosen as they appropriate to the
situation and fit our purposes: to learn about the needs of CPE academic staff related
to teaching and assessing mathematics and, by the end of the interviews, to deliver
initial information about the project and ways of alternative assessment. All the
interviews included the following questions:

What are the goals of trimester and final exams in teaching and learning of mathematics?
How are they prepared? How do the exams assist you in making teaching decisions? Are
you satisfied with the way the CPE assesses the students' knowledge and progress in maths?
How can the CPE help students to improve their learning skills? What are the roles of the
teachers' grades? How are they determined? Why do they constitute 10% (and no more or
less), of the final grade?

In order to check the reliability of the interview data, a multiple-choice questionnaire
based on a sample of the teachers' responses was constructed. The questions were
formulated in the format "To which extent you agree with the following statement..." This
questionnaire was filled in by four interviewed teachers and two additional teachers.
The questionnaire was not intended to be used as an independent research instrument
because of the small number of participants. Instead, it was used to check how many
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teachers support particular statements. In the rest of the paper, statements supported
by three or more teachers are referred to as "typical".

Next, the authors of this paper considered 10 randomly chosen students' exam
notebook to see how they are scored. This was followed by an observation of 10
mathematics lessons of an experienced teacher and a series of follow-up
conversations with the teacher. All the lessons were videotaped. These research
activities were needed in order to understand to which extent the lessons are directed
towards the preparation for exams, to which extent exams match what is taught and
how the teacher determines his 10% of the students' final grades.

Third, about 250 individual student files were statistically analysed in order to reveal
how trimester and final mathematical exams predict success of the students' study at
the Technion. This was decided based on the interviews with Decision Makers, who
emphasized that CPE assessment should support prediction of the students' success in
the Technion (see Findings Section). The data analysed consisted of background
information of the students (gender, 1Q, final high school grades, levels of
mathematic study when in high school), the full set of their CPE grades and their first
semester Technion grades.

Analysis

Five out of six interviews were audio taped and transcribed; the interview with the
head of CPE was documented immediately when it was finished. The interviews
were analyzed in accordance with the principles of grounded theory (Strauss &
Corbin, 1990). Namely, anything that seemed relevant or interesting was marked in
the interview protocols. Then the marked parts were clustered, and the clusters were
categorized by their content, with respect to the research questions.

The videotaped lessons were examined for patterns of interactions between the
teacher and the students (Dinur & Leikin, 2007) and for the types of mathematical
tasks taught in the classroom.

Students' files were analysed using backward step-wise regression analyses, with
several dependant variables: the final average grades of the first semester at the
Technion and the final grades in calculus and linear algebra, which are compulsory
first semester courses. The CPE grades and the quantified background info were
considered as independent variables. This was done since the regression analysis
enables the making of conclusions about the predictive power of every independent
variable, with respect to a chosen dependant variable (Guilford & Fruchter, 1973).

FINDINGS AND DISCUSSION

In this section we present, in some detail, findings related to the first research
question and outline findings related to the second question. The quotations from the
interviews with the teachers represent typical statements, in the sense described
above.
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What are the needs of a pre-university institution related to mathematics
assessment?

Five categories emerged from the data.
1. The need to deal with the gap between the exams and what is taught in class

All the teachers remarked that they had no part in writing/preparing the exams and
that this fact causes disparity between the exams and what had been actually studied
in class. In words of one of the teachers, "sometimes there are unfair exercises in the
exams ... [For example], there was a question about inverse trigonometry functions which
was at the margins of the material. There is no doubt that it [the question] does not reflect
their knowledge, but nonetheless it cost them 8-10 points." Another typical remark:
"Often we hear from students: 'but I know much more than what I got in the
exam'...Sometimes we believe the students [who say this], but we have no way of checking
it without giving more and more exams."

2. The need to have more information about students mistakes

The teachers remarked that the exam notebooks do not reach the teachers; they do not
check them so they receive the analysis of the results only from a third party. They
claimed that this analysis is not very useful in making decisions about how to refine
their teaching. One of the teachers said: "I know how many points they get, but not their
mistakes." This finding was supported by what was found in 10 randomly chosen
students' exam notebooks. Another teacher said: "In the trimester exams they do not
compile the common errors that occurred and there is no teachers' staff meeting from which
it would be possible to learn how the students reached the wrong conclusions."

3. The need to improve learning atmosphere, especially at the beginning of the

study at the CPE
The teachers remarked that difficult exams harm learning atmosphere in the CPE. As
one of them said: "Difficult exams at the beginning ... [cause] an atmosphere of

depression. It affects them greatly. Only the strong ones survive". A complementary
finding emerged from the interviews with the Decision Makers. They both were
concerned about drop-out level at the beginning of study at CPE, due to traditionally
low achievements at the first trimester exam. They were also concerned about the
learning atmosphere at the CPE and felt the need to strengthen the learners'
responsibility for their outcomes. The academic advisor said: "They [students]
gradually understand that they have to study by themselves...The intention is to reach the
situation where they are able to study by themselves. We don't really succeed in reaching it,
but I would have liked them to reach it gradually... This is the best thing we could teach
here." An apparent gap between students with stronger and weaker mathematical
background is an additional source of frustration for the weaker students. The lesson
observation data support this finding.

4. The teachers' need for taking more responsibility for the assessment
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Three teachers would like to consider raising the percentage of the teacher’s grade
from 10% to 20%. One of them expressed it in this way: "I think all the teachers here
are for increasing the percentage of the teacher's assessment, because they are the ones who
know them [the students] the best". However, two teachers were against raising their
part in the students' grades, just because they did not know how to assess students'
knowledge without exams. A complementary finding came from the Decision
Makers who expressed their interest in strengthening the teachers' responsibility for
the learning outcomes by raising the weight of the teachers' part of the grade.

5. The need to have assessment tools with high predictive validity

This need was strongly expressed by the head of the CPE. In particular, he said: "The
Technion is our customer, and we should let in only students who can succeed..." As to the
existing assessment tools, he noted: "I think that our assessments are good and genuine.
A proof is that our students [successfully] continue their studies at the Technion." The
teachers also felt that the CPE exams are good predictors. This finding is consistent
with what is reported by Watt (2005).

What types of research evidence can convince the academic staff to act upon
incorporating alternative assessment?

An innovation can be adopted only when it addresses truly important needs, and the
convincing strategy should be built accordingly (Rogers, 1995). Convincing the
decision makers is an especially important part (e.g., Fullan, 1998), and it is crucial
that they would be privy to the findings and conclusions at every stage.

We could convincingly argue in front of the Decision Makers that needs 1-4 (above)
can naturally be addressed by incorporating such assessment tools as peer assessment
and self assessment. Indeed, the literature sources mentioned in Theoretical
Framework section, as well as many additional sources, provided us with appropriate
arguments. However, we did not have arguments related to crucially important need
5, as we could not claim that peer assessment and self-assessment would also lead to
better (or at least, no worth) prediction of the students' future success at the Technion.
It was also clear that the Decision Makers could not put at risk the CPE students by
allowing us to conduct an experiment that, in case of success, would provide us with
the missing arguments. At this point, we decided to examine the existing quantitative
data about students' achievements at the CPE and at the Technion.

Briefly speaking, the regression analysis resulted in the following. First, the teachers'
grades are good predictors of the students' success. Second, the first trimester exam
does not predict any grades gained by students during the first semester of study.
Again, this exam is particularly discouraging for students. Third, the second and the
third exams are fairly good predictors of the students' success.

These findings were presented to the Decision Makers and teachers, along with the
findings from observations and interviews. The statistical findings were found
especially surprising, interesting and convincing as they destroyed the myth of "our
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assessments are good and genuine". Actually, it became evident that part of the
trimester exams did not achieve their goal as perceived, in spite of great investment
of resources and time in their development. Eventually, this (negative) result gave
support to incorporating alternative assessment.

The evidence that came from the teachers' interviews was helpful. The Decision
Makers were surprised to discover that the teachers were dissatisfied with the
traditional way of assessment. They were also surprised that some teachers were
interested in being more involved in CPE student evaluation processes.

It should also be mentioned here that the first author conducted many informal
conversations with the teachers, mainly in the teachers' room, whose aim was to
expose them to think how to implement alternative assessment in their classes. These
conversations played an important part in the convincing campaign, a fact that
became evident from teachers suggesting their classes to take part in our project. The
data from the lesson observations was not particularly convincing for the teachers and
the Decision Makers.

Eventually, the decision was to gradually change the assessment scheme. The first
step is to develop and try in selected classes a set of peer assessment activities based
on the CPE mathematics syllabus. The second step is to use peer assessment grades
instead of the first trimester exam grades in a computer simulation (regression
analysis) in order to see how this replacement would affect the predictive power of
CPE final grades. In case of success, peer assessment will actually substitute the first
trimester exam. It is also planned to increase the weight of the teachers' grades. The
optimal weights of different components of the final grade will be found by means of
computer simulations, and then the new assessment scheme will actually enter the
CPE.

SUMMARY AND CONTRIBUTION

According to the Rogers’ (1995) model, incorporating an innovation is an
organizational process in which innovation is diffused through various channels of
communication, over time, to the members of the organization. Incorporation of
alternative assessment in an educational institution is not an exception. This research
shows how this can be done in an institution of pre-university education centre with
strong traditions of traditional assessment. We believe that the described convincing
campaign is instructive and can be adapted to other institution. The major elements of
the process identified the needs that can be addressed by the alternative assessment
and provided the Decision Makers with research evidence about what can (and
should) be improved in their institution. The most convincing evidence came from
the statistical analysis. It showed that some of the traditional exams used at the
institution have low predictive validity, and thus, can be substituted with alternative
assessment tools that can address most of the identified needs.
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ALGEBRAIC LANGUAGE IN MATHEMATICAL MODELLING
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In this paper we consider the use of algebraic language in modelling and proving.
We will show how a specific adaptation of Habermas’ construct of rational
behaviour allows to describe and interpret several kinds of students’ difficulties and
mistakes in a comprehensive way, provides the teacher with useful indications for the
teaching of algebraic language and suggests further research developments.

INTRODUCTION

According to Habermas’ definition (see Habermas, 2003, Ch. 2), a rational behaviour
in a discursive practice can be characterized according to three inter-related criteria of
rationality: epistemic rationality (inherent in the conscious control of the validity of
statements and inferences that link statements together within a shared system of
knowledge, or theory); teleological rationality (inherent in the conscious choice and
use of tools and strategies to achieve the goal of the activity); communicative
rationality (inherent in the conscious choice and use of communication means within
a given community, in order to achieve the aim of communication).

In our previous research we have dealt with an adaptation of Habermas’ construct of
rational behaviour in the case of conjecturing and proving (see Boero, 2006; Morselli,
2007; Morselli & Boero, 2009 - to appear). In this paper we focus our interest on the
use of algebraic language in proving and modelling. Algebraic language will be
intended in its ordinary meaning of that system of signs and transformation rules,
which is taught in school as a tool to generalize arithmetic properties, to develop
analytic geometry and to model non-mathematical situations (in physics, economics,
etc.). In particular, for what concerns modelling (see Norman, 1993, and Dapueto &
Parenti, 1999) algebraic language can play two kinds of roles: a tool for proving
through modelling within mathematics (e.g. when proving theorems of elementary
number theory) - internal modelling; or a tool for dealing with extra-mathematical
situations (in particular to express relations between variables in physics or economy,
and/or to solve applied mathematical problems) - external modelling.

Our interest for considering the use of algebraic language in the perspective of
Habermas’ construct depends on the fact that our previous research (Boero, 2006;
Morselli, 2007) suggests that some of the students’ main difficulties in conjecturing
and proving depend on specific aspects (already pointed out in literature) of the use
of algebraic language, which make it a complex and demanding matter for students.

2009. In Tzekaki, M., Kaldrimidou, M. & Sakonidis, H. (Eds.). Proceedings of the 33rd Conference of the International
Group for the Psychology of Mathematics Education, Vol. 2, pp. 185-192. Thessaloniki, Greece: PME.
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In particular, we refer to: the need of checking the validity of algebraic formalizations
and transformations; the correct and purposeful interpretation of algebraic
expressions in a given context of use; the goal-oriented character of the choice of
formalisms and of the direction of transformations; the restrictions that come from
the need of following taught communication rules, which may contradict private rules
of use or interfere with them. In this paper, we will try to show how framing the use
of algebraic language in the perspective of Habermas’ theory of rationality: first,
provides the researcher with an efficient tool to describe and interpret in a
comprehensive way some of the main difficulties met by students when using
algebraic language; second, provides the teacher with some useful indications for the
teaching of algebraic language; third, suggests new research developments.

ADAPTATION OF HABERMAS’ CONSTRUCT OF RATIONAL
BEHAVIOUR TO THE CASE OF THE USE OF ALGEBRAIC LANGUAGE

Epistemic rationality
It consists in:

- modelling requirements, concerning coherency between the algebraic model and the
modelled situation: control of the correctness of algebraic formalizations (be they
internal to mathematics - like in the case of the algebraic treatment of arithmetic or
geometrical problems; or external - like in the case of the algebraic modelling of
physical situations) and interpretation of algebraic expressions;

- systemic requirements in the use of algebraic language and methods. In particular,
these requirements concern the manipulation rules (syntactic rules of transformation)
of the system of signs usually called algebraic language, as well as the correct
application of methods to solve equations and inequalities.

Teleological rationality

It consists in the conscious choice and finalization of algebraic formalizations,
transformations and interpretations, according to the aims of the activity. It includes
also the management of the writer-interpreter dynamics (Boero, 2001): the author
may write an algebraic expression under an intention and, after, interpret it in a
different goal-oriented way, by "seeing" new possibilities in the written expression.

Communicative rationality

In the case of algebraic language we need to consider not only the communication
with others (explanation of the solving processes, justification of the performed
choices, etc.) but also the communication with oneself (in order to activate the writer-
interpreter dynamics). Communicative rationality requires the user to follow not only
community norms concerning standard notations, but also criteria for easy reading
and manipulation of algebraic expressions.
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Some comments

We are aware of the existence of several analytical tools to deal with the teaching and
learning of algebraic language. In our opinion, Arcavi’s work on Symbol sense
(Arcavi, 1994) offers the most comprehensive perspective for the use of algebraic
language. With different wordings, it includes concerns for teleological rationality
and some aspects of epistemic rationality. Comparing our approach with Arcavi’s
elaboration, we may say that we add the communicative dimension of rationality. We
will see how it will allow us to account for: the possible tension between private rules
of communication in the intra-personal dialogue, and standard rules; and the interplay
between verbal language and algebraic language. Moreover we will see how our
distinctions between the epistemic dimension and the teleological dimension, and
between the modelling requirements and the systemic requirements of epistemic
rationality allow to deal with the tensions and the difficulties that can derive from
their coordination.

In order to justify a new analytic tool in Mathematics Education it is necessary to
show how it can be useful in describing and interpreting students’ behaviour, and/or
in orienting and supporting teachers’ educational choices, and/or in suggesting new
research developments. We will try to show it in the following Sections.

DESCRIPTION AND INTERPRETATION OF STUDENTS’ BEHAVIORS

The following examples are derived from a wide corpus of students’ individual
written productions and transcripts of a posteriori interviews, collected for other
research purposes in the last fifteen years by the Genoa research team in Mathematics
Education. In particular, we will consider three categories of students: (a) 9" grade
students who are approaching the use of algebraic language in proving; (b) students
who are attending university courses to become primary school teachers; (c) students
who are attending the third year of the university course in Mathematics.

A common feature for all the considered cases is that the individual tasks require not
only the solution, but also the explanation of the strategies followed to solve the
problem. Each individual task was followed by a posteriori interviews.

EXAMPLE 1: 9" grade class

The class (22 students) was following the traditional teaching of algebraic language
in Italy: transformation of progressively more complex algebraic expressions aimed
at “simplification”. In order to prepare students to the task proposed by the
researcher, two examples of “proof with letters” had been presented by the teacher;
one of them included the algebraic representation of even and odd numbers.

THE TASK: “Prove with letters that the sum of two consecutive odd numbers is
divisible by 4”.

Here we report some recurrent solutions (in parentheses the number of students who
performed such a solution; note that “dispari” means “odd” in Italian)
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El (4 students):  d+d=2d

In this case, we can observe how the systemic requirements of epistemic rationality
are satisfied (algebraic transformation works well), while the modelling requirements
fail to be satisfied (the same letter is used for two different numbers).

E2 (8 students):  d+d+2=2d+2

In this case, both the systemic and the modelling requirements of epistemic
rationality are satisfied, but the requirements inherent in feleological rationality are
not satisfied: students do not realize that the chosen representation does not allow to
move towards the goal to achieve (because the letter d does not represent in a
transparent way the fact that 4 is an odd number) and do not change it.

E3 (5 students):  d=2n+1+dc=2n+1+2n+1+2=4n+4 (or similar sequences)

We can infer from the context (and also from some a-posteriori comments by the
students) that "dc" means "dispari consecutivi" (consecutive odd numbers).

In this case epistemic rationality fails in the first and in the second equality, but
teleological rationality works well: the flow of thought is intentionally aimed at the
solution of the problem; algebraic transformations are used as a calculation device to
produce the conclusion (divisibility by 4).

EXAMPLE 2: University entrance, primary school teachers’ preparation
The following task had been preceded by the same task of the Example 1, performed
under the guide of the teacher. 58 students performed the activity.

THE TASK: Prove in general that the product of two consecutive even numbers is
divisible by 8

Very frequently (about 55% of cases) students performed (without comments) a long
chain of transformations, with no outcome, like in the following example:

E4: 2n(2n+2)=4n’+4n=4(n*+n)=4n(n+1)=4n’+4n=n(4n+4)

In this case, we see how both requirements of epistemic rationality are satisfied:
modelling requirements (concerning the algebraic modelling of odd numbers and
even numbers); and systemic requirements (correct algebraic transformations). The
difficulty is inherent in the lack of an interpretation of formulas leaded by the goal to
achieve, thus in teleological rationality. The student gets lost, even if the
interpretation of the fourth expression would have provided the divisibility of n(n+1)
by 2 because one of the two consecutive numbers n and n+1 must be even.

In the following case, both modelling and systemic requirements are not satisfied: the
same letter is used for two consecutive even numbers (note that “pari”’means “even”
in Italian) and the algebraic transformation is affected by a mistake.

E5: p*p=2p°, divisible by 8 because p is divisible by 2 and thus p” is divisible by 4.

The student seems to work under the pressure of the aim to achieve: having foreseen
that the multiplication by 2 may be a tool to solve the problem, she tries to justify it
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by considering the juxtaposition of two copies of p that generates “2”. Indeed in the
interview the student said that she had made the reasoning “p is divisible by 2 and
thus p” is divisible by 4” before completing the expression. In this case we can see
how teleological rationality prevailed on epistemic rationality and hindered it.

We have also found cases like the following one:
E6: p*(p+2)=p2+2p=8k because p2+2p=8 if p=2

Also in this case, from the a posteriori interview we infer that probably the lacks in
epistemic rationality depend on the dominance of teleological rationality without
sufficient epistemic control:

I have seen that in the case p=2 things worked well, so I have thought that putting a
multiple 8k of 8 in the general formula would have arranged the situation.

EXAMPLE 3: The bomb problem - Third year mathematics students

TASK: A helicopter is standing upon a target. A bomb is left to fall. Twenty seconds
after, the sound of the explosion reaches the helicopter. What is the relative height of
the helicopter over the ground?

The problem was proposed to groups of third year mathematics students in seven
consecutive years. Some reminds were provided about the fact that the falling of the
bomb happens according to the laws of the uniformly accelerated motion, while the
sound moves at the constant speed of 340 m/s. However no formula was suggested.

The problem is a typical applied mathematical problem, whose solution needs an
external modelling process. In terms of feleological rationality, the goal to achieve
should result in the choice of an appropriate algebraic model of the situation, in
solving the second degree equation derived from the algebraic model, and in
choosing the good solution (the positive one).

The difficulties that students meet consist: in the time coordination of the two
movements (it is necessary to enter somewhere in the model the information that the
whole time for the bomb to reach the ground and for the sound of the explosion to
reach the helicopter is 20 seconds); and in their space coordination (the space
covered by the falling bomb is the same covered by the sound when it moves from
the ground to the helicopter). Let us consider some students’ behaviours.

Most students are able to write the two formulas:
E7: s=0,5 gtz, s=340t

They are standard formulas learnt in Italian high school in grades 10" or 11", in
physics courses. About 20% of the students stick to those formulas without moving
further. From their comments we infer that in some cases the use of the same letters
for space and time in the two algebraic expressions generates a conflict that they are
not able to overcome. We can see how general expressions that are correct for each of
the two movements (if considered separately) result in a bad model for the whole
phenomenon. Teleological rationality should have driven formalization under the
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control of epistemic rationality; such control should have put into evidence the lack
of the modelling requirements of epistemic rationality, thus suggesting a change in
the formalization. In the reality for those students such an interplay between
epistemic rationality and teleological rationality did not work.

In other cases (about 10% of the sample) the coordination of the two times was
lacking, and the idea of coordinating the spaces (together with the formalization of
both movements with the same letters) brought to the equation:

ES8: 0,5 gt* =340t

with two solutions t=0, t=68 that some students were unable to interpret and use
(because 68 is out of the range given by the text of the problem). But other students
found the height of the helicopter by multiplying 340x68, with no critical reaction or
re-thinking, probably because it is normal that school problems are unrealistic!

Less than 60% of students wrote a good model for the whole phenomenon:
ty+t= 20 h=0,5gt,’=340t,

and moved to a second degree equation by substituting #,=20-#, or #,=20-t, in the
equation: 0,5gt,"=3401,

Many mistakes occurred during the solution of the equation (mainly due to the
management of big numbers). Once two solutions were got (one positive and the
other negative), in most cases the choice of the positive solution was declared but not
motivated. 4 posteriori comments reveal that the fact that a negative solution is
unacceptable (given that the other solution is positive!) was assumed as an evidence,
without any physical motivation.

In terms of epistemic rationality, three kinds of difficulties arose; they were inherent:
first, in the control that the chosen algebraic model was a good model for the physical
situation; second, in the control of the solving process of an equation with unusual
complexity of calculations (big numbers); third (once the valid equation - a second
degree equation - was written and solved), in the motivation of the chosen solution.

In terms of communicative rationality, we can observe how (in spite of the request of
explaining the steps of reasoning) very few students of both samples were able to
justify the crucial steps of the solving process. 4 posteriori interviews revealed that
most students who had been unable to justify their choices were sure about their
method only afterwards, when checking the positive solution and finding that it was
“realistic”, thus putting into evidence a lack in fteleological rationality (lack of
consciousness about the performed modelling choices). However a number of
solutions was quite realistic, even if got through a bad system. Many authors of the
correct solutions were not able to explain why the other solutions were mistaken.
This suggests that lacks in communicative rationality (as concerns verbal justification
of the validity of the performed modelisation) can reveal lacks in teleological
rationality (motivation of choices with reference to the aim to achieve) and even in
epistemic rationality (control of the validity of the steps of reasoning).
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DISCUSSION

As remarked in the second section, the usefulness of a new analytical tool in
mathematics education must be proved through the actual and the potential research
advances and the educational implications that it allows to get.

Research advances

In the frame of our adaptation of Habermas’ construct, the distinction between
epistemic rationality and teleological rationality allows to describe, analyse and
interpret some difficulties (already pointed out in Arcavi’s work), which depend on
the students’ prevailing concern for rote algebraic transformations performed
according to systemic requirements of epistemic rationality against the needs inherent
in teleological rationality (see E4). Moreover, the distinction in our model between
modelling requirements and systemic requirements of epistemic rationality offers the
opportunity of studying the interplay between the modelling requirements and the
requirements of teleological rationality (see E7); we have also seen that
formalization and/or interpretations may be correct but not goal-oriented (like in E2
and E4), or incorrect but goal-oriented (like in ES, E6 and ES8). Together with the
other dimensions of rationality, communicative rationality allows to describe and
interpret possible conflicts between the private and the standard rules of use of
algebraic language, and the ways student try to integrate them in a goal-oriented
activity (see E3).

Further research work should be addressed to establish what mechanisms (meta-
cognitive and meta-mathematical reflections based on the use of verbal language?
See Morselli, 2007) can ensure the control of epistemic rationality and the
intentional, full development of teleological rationality in a well integrated way.
With reference to this problem, taking into account communicative rationality (in its
intra-personal dimension, possibly revealed through suitable explanation tasks and/or
interviews) suggests a research development concerning the role of verbal language
(in its mathematical register: see Boero, Douek & Ferrari, 2008, p.265) in the
complex relationships between epistemic, teleological and communicative rationality.

Educational implications

We think that the analyses performed in the previous section can provide teachers as
well as teachers’ educators with a set of indications on how to perform educational
choices and classroom actions to teach algebraic language as an important tool for
modelling and proving. Some of those indications are not new in mathematics
education; we think that the novelty brought by the Habernas’ perspective consists in
the coherent and systematic character of the whole set of indications.

First of all, the performed analyses suggest to balance (at the students’ eyes,
according to the didactical contract in the classroom) the relative importance (in
relationship with the goal to achieve) of: production and interpretation of algebraic
expressions, vs algebraic transformations; and flexible, goal-oriented direction of
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algebraic transformations, vs rote algebraic transformations aimed at “simplification”
of algebraic expressions. These indications are in contrast with the present situation
in Italy and in many other countries: teachers’ classroom work is mainly focused on
algebraic transformations aimed at “simplification” of algebraic expressions. The fact
that algebraic expressions are given as objects to "simplify" (and not as objects to
build, to transform according to the aim to achieve, and to interpret during and after
the transformation process in order to understand if the chosen path is effective and
correct or not) has bad consequences on students’ epistemic rationality and
teleological rationality. As we have seen, many mistakes occur in the phase of
formalization (against the modelling requirements), and even when the produced
expressions are correct, frequently students are not able to use intentionally them to
achieve the goal of the activity (against the teleological rationality requirements).

A promising indication coming from our analyses concerns the need of a constant
meta-mathematical reflection (performed through the use of verbal language) on the
nature of the actions to perform and on the solving process during its evolution. At
present, the only reflective activity in school concerns checking the correct
application of the rules of syntactic transformation of algebraic expressions (thus
only one component of rational behaviour - namely, the systemic requirements of
epistemic rationality - is partly engaged).
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ARTIFACTS: INFLUENCING PRACTICE AND SUPPORTING
PROBLEM POSING IN THE MATHEMATICS CLASSROOMS

Cinzia Bonotto
Department of Pure and Applied Mathematics, University of Padova, Italy

In this report we present a teaching experiment on the relationship between everyday
mathematics, in particular the numerical culture children acquired outside the
school, and classroom mathematics, and the ways each can inform the other in the
development of abstract mathematical knowledge. The teaching/learning
environment designed and implemented in this study is characterized by an extensive
use of suitable artifacts, whose introduction into the classroom setting brings from
the outside world potential norms and ways of reflection, interactive teaching
methods and introduction of new socio-mathematical norms. It is focused on a
mindful approach toward mathematical modelling and a problem posing attitude.

INTRODUCTION

Tools, artifacts, and cultural representational systems are important components of
mathematical learning but do not directly determine ways of reasoning (Schliemann,
2002). Mathematical structures embodied by the tools and symbolic systems do not
transfer directly to the user’s mind and [‘cognitive activity is not limited to the use of
tools or signs’ (Vygotsky, 1978)]. The mathematical goals emerge for children not
only in relation to artifacts but even in relation to structure of activity, social
interaction and children’s prior understanding (Saxe, 2002).

Given the complex interaction between the use of the tools and the development of
reasoning and learning, the question that should concern educators is not how powerful
or effective cultural tools are in promoting learning, but rather what teaching practices
and classroom interactions can promote meaningful learning and understanding of the
mathematical principles and relations embedded in cultural tools and representations.
(Schliemann, 2002, p. 302)

The teaching experiment presented in this report is part of an ongoing research
project on the relationship between everyday mathematics, in particular the numerical
culture children acquired outside the school, and classroom mathematics, and the
ways each can inform the other in the development of abstract mathematical
knowledge. The project aimed at showing how an extensive use of suitable artifacts,
with their incorporated mathematics, a variety of complementary, integrated, and
interactive teaching methods, and the introduction of new socio-mathematical norms
(Yackel & Cobb, 1996), can play a role in order to create a substantially modified
teaching/learning environment. This environment is focused on fostering a mindful
approach toward realistic mathematical modelling and a problem posing attitude.

These socio-mathematical norms are constructed and continually modified through
the interaction between teacher and pupils, as well as by the artifacts, whose
introduction into the classroom setting brings from the outside world potential norms

2009. In Tzekaki, M., Kaldrimidou, M. & Sakonidis, H. (Eds.). Proceedings of the 33rd Conference of the International
Group for the Psychology of Mathematics Education, Vol. 2, pp. 193-200. Thessaloniki, Greece: PME.
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and ways of reflection that open lines of cultural conceptual development to the
children.

THEORETICAL AND EMPIRICAL BACKGROUND

About mathematical modelling

The term mathematical modelling is not only used to refer to a process whereby a
situation has to be problematized and understood, translated into mathematics,
worked out mathematically, translated back into the original (real-world) situation,
evaluated and communicated. Besides this type of modelling, which requires that the
student has already at his disposal at least some mathematical models and tools to
mathematize, there is another kind of modelling, wherein model-eliciting activities
are used as a vehicle for the development (rather than the application) of
mathematical concepts. The ‘emergent modelling’ approach (Gravemeijer, 2007) taps
into the second type of modelling, and its focus is on long-term learning processes, in
which a model develops from an informal, situated model (“a model of”), into a
generalizable mathematical structure (“a model for”).

Although it is very difficult, if not impossible, to make a sharp distinction between
the two aspects of mathematical modelling, it is clear that they are associated with
different phases in the teaching/learning process and with different kinds of
instructional activities (Greer, et al. 2007). However, in this contribution the focus
will be more addressed to the second aspect of mathematical modelling.

An early introduction in schools of fundamental ideas about modelling is not only
possible but also indeed desirable even at the primary school level. Further we will
argue for modelling can be seen as a means of recognizing the potential of
mathematics as a critical tool to interpret and understand reality, the communities
children live in, or society in general. Teaching students to interpret critically the
reality they live in and to understand its codes and messages so as not to be excluded
or misled, should be an important goal for compulsory education (Bonotto, 2007).

About problem posing

It is well recognized that problem posing is an important component of the
mathematical curriculum and, indeed, lies at the heart of mathematical activity
(English, 1998). Not surprisingly, reports such as those produced by the National
Council of Teachers of Mathematics (1989, 1991, 2000) have called for an increased
emphasis on problem-posing activities in the mathematics classroom.

Problem posing and problem solving are closely related. As Silver (1994) suggested,
problem posing could occur prior to problem solving when problems were being
generated from a particular situation or after solving a problem when experiences
from the problem-solving context are modified or applied to new situations. In
addition, problem posing could occur during problem solving when the individual
intentionally changes goals while in the process of solving the problem.

Despite its significance in the curriculum, problem posing has not received the
attention it warrants from the mathematics education community. Little is known
about the nature of the underlying thinking processes that constitute problem posing,
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and the schemes through which students’ mathematical problem posing can be
analyzed and assessed (Christou et al., 2005). We know comparatively little about
children’s ability to create their own problems in both numerical and non-numerical
contexts or about the extent to which these abilities are linked to competence in
problem solving. We also have insufficient information on how children respond to
programs designed to develop their problem-posing skills (Silver, 1994). Research on
these issues is particularly warranted, given the well-documented evidence that
young children’s creativity and open-mindedness in generating and solving problems
dissipate as they progress toward the higher school grades (English, 1998).

Problem posing has been defined by researchers from different perspectives (see
Silver & Cai, 1996). In this contribution we consider mathematical problem posing as
the process by which, on the basis of mathematical experience, students construct
personal interpretations of concrete situations and formulate them as meaningful
mathematical problems. It, therefore, becomes an opportunity for interpretation and
analysis of reality in different ways: 1) they have to distinguish significant data from
irrelevant data; ii) they must discover the relations between the facts; iii) they must
decide whether the information in their possession is sufficient to solve the problem;
and iv) they must investigate if numerical data involved is numerically and/or
contextually coherent. These activities, quite absent from today’s school context, are
typical of the modelling process and can help students to prepare to cope with natural
situations they will have to face out of school.

About artifacts

For some years now our research has been concerned with the following problematic:
1) how can we benefit from the numerical culture children acquired outside the school
while simultaneously avoiding the strengths and limitations that are typical of the
usual everyday mathematics, and ii) how can we design better opportunities for
children to develop new understandings about underlying mathematical concepts and
structures and their potential generalizability, in a way that preserves the focus on
meaning found in everyday situations.

The connection between students’ everyday mathematics and classroom mathematics
is not easy, because the two contexts differ is some significant ways. Just as
mathematics practice in and out of school differs, so does mathematics learning (see
e.g. Masingila et al., 1996). Although the specificity of both contexts is recognized,
we deem that those conditions that often make extra-school learning more effective
can and must be re-created, at least partially, in classroom activities. Indeed while
some differences between the two contexts may be inherent, many differences can be
narrowed by creating classroom situations that promote learning processes closer to
those arising from out-of-school mathematics practices (Bonotto, 2005).

That can be implemented in a classroom by encouraging the children to analyze some
mathematical 7acts’, which are embedded in opportune ‘cultural’ or ‘social’
artifacts; these mathematical facts’ can be seen as concrete extensions [in the logical
sense] of the mathematical concept, which have instead intentional nature [in the
logical sense]. The use of artifacts in our classroom activities has been articulated in
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various stages, with different educational and content objectives (for a description see
e.g. Bonotto 2005 and 2006).

Several educators (e.g. Vygotsky, 1978, Schliemann, 2002, Saxe, 2002) have noted
that is not the artifact (or tool) in isolation that offers support to the teacher — rather
the student use of the tool and the meanings they have developed as a result of the
activity. Artifacts take on mathematical meaning only in activity, as individuals
organize them as a means to accomplish particular mathematical goals. In his
emerging mathematical goals approach Saxe (2002) analyze the complex role that
artifacts play in processes of teaching and learning in collective practices. He
identifies four dimensions of children’s activities, considering the way in which each
is implicated in children’s emerging goals; the dimensions include activity structures,
social interactions, valued artifacts, and the prior mathematical understandings that
children bring to collective practices.

THE STUDY

There is considerable evidence from studies involving both school students and
adults that the system of decimal numbers is neither simple to learn nor generally
understood (e.g. Hiebert, 1985; Stacey & Steinle, 1998). A central problem seems to
be that few connections are made between the form students learn in the classroom
and understandings they already have (or could acquire quickly). Thus it is important
that teachers recognize the numerical culture acquired outside the school in order to
offer children the opportunity to develop new mathematical knowledge preserving
the focus on meaning found in everyday situations (Bonotto, 2005).

In this study we decided to use as artifact some advertising leaflets containing
discount coupons for supermarkets and stores in order to strengthen, in particular, the
percentage concept. It was found that all students were already familiar with this kind
of artifacts and had experience in supermarket or stores shopping.

The official logic-mathematics teacher of the class involved in this study had
previously worked together with the students on this mathematical content, focusing
in particular her activity on the application of percentages within traditional word
problems. Nevertheless the children understanding of the subject was rather poor and
superficial; they showed a certain amount of difficult especially in solving word
problems with more data and more questions.

Participants

The study was carried out in a fifth-grade class (children 10 years of age), consisted
of 18 pupils, in Desenzano del Garda, a lakeside resort in the north of Italy, by the
official logic-mathematics teacher, in the presence of a research-teacher. The official
logic-mathematics teacher of the classes involved in the explorative study use a
traditional teaching method.

Procedure
It was decided to subdivide the teaching experiment into two sessions, at weekly
interval; each session, lasted approximately two hours, involved, as artifact, different
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advertising leaflets. Each session was divided in the following phases: i) through
whole-class discussion the information and the numerical data present in the artifact
were investigated and interpreted; ii) each pair (chosen by the teacher so as to
stimulate reciprocal support and assistance) selected the problem’s data by extracting
it from the artifact provided; iii) each pair created a problem containing the
previously selected data: each problem had to contain a percentage calculation and
two questions; iv) each pair had to resolve a problem written by another group; v) the
results obtained were collectively discussed; eventual errors or incongruences will be
discussed; vi) the entire group was called upon to write collectively the final version
of some texts of some more complex problems, which were created by the group
itself after problem critiquing activity and suggestions made by some of the children.

Data

Data from the teaching experiment include students’ written work, fields’ notes of
classroom observations and audio recordings for all collective discussions. We used
qualitative methods of analysis to examine these data.

Research questions and hypotheses

The overall aim of the teaching experiment was to examine the relationship between
the mathematics incorporated in real-life situations and school mathematics, and the
ways each can inform the other in the development of abstract mathematical
knowledge; in this case the focus was on the understanding of rational numbers
considered as percentages, in order to foster what Hiebert (1985) calls site 1
(“symbols and their referents”), in a way that was meaningful and consistent with a
disposition towards making sense of numbers.

Furthermore, we hypothesized that, contrary to the practice of word-problem solving
documented in the literature (see e.g. Verschaffel, Greer & De Corte, 2000), children
in this teaching experiment would not exclude real-world knowledge from their
observations and reasoning (hypothesis II).

Finally we wanted to evaluate the impact of the problem posing activity it itself,
process that was unusual for the students, and to begin to investigate the relationship
between problem solving and problem posing activities. The idea is that there is a
connection between problem solving and problem posing: it is impossible to solve
any new problem without first having completely understood, in a way that was
meaningful and consistent with a sense-making disposition, the assignment, also by
raising new problems in a critigue way during the solution phase, just as it is
impossible to write the text of a problem without first having understood, in a way
that was meaningful and consistent with a sense-making disposition, the
mathematical area that is its foundation.

SOME RESULTS

The children had no difficulty translating typical everyday data into problems
suitable for mathematical treatment and all of the pairs succeeded in solving the
problems created by their classmates, except for one pair, which encountered
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difficulties because the data selected by their classmates required somewhat more
elaborate calculations. After the group discussion, it was decided to modify some of
the data in order to render the resolution of the problem more straightforward.

The problem posing activity was experienced as a new and positive procedure for the
children; this process, in addition to having created interest and motivation,
encouraged the children to create problematic situations that were both original and
sometimes complex, but nevertheless much more realistic than those present in
traditional word problems.

An example: the text created by Sofia and Giorgio was

A mother sees that in a drawer there that are several socks with holes and that all the
pyjamas are too small. The following morning she looks at a calendar and realised that it
is the start of the sales. She goes to a shopping centre and after looking long and hard she
decides to buy three pairs of pyjamas at a full price of € 11,90 but with a 20% discount.
How much will she spend on pyjamas? Subsequently she buys five pairs of socks that
cost € 4,90 a pair and that have a 50% discount. How much will she spend on socks? If
she has € 100,00 how much money will she have left?

When the classmates were invited to give their contribution by adding, enhancing or
changing the problem, the following questions emerged:

If the mother has run out of credit on her mobile phone and needs to call home urgently
because she cannot remember her sons’ sizes, will she be able to recharge her phone? By
how much?

If the supermarket’s car park costs € 1,50 per hour and the mother enters the supermarket
at 10.30 and leaves at 12.00, how much will she spend? Will she be able to pay with the
coins given to her as change from the supermarket or will she have to change banknotes?
When entering the shopping centre the mother sees that the following week all clothing
will be discounted by 50%. How many pyjamas and socks can she buy?

In these contributions children showed remarkable originality due to their wealth of
experience outside school, which involves different and complex aspects.
Furthermore a subsequent process of problem critiquing was set up whereby the
children attempted to criticize and make suggestions or correct the problems created
by their classmates or the results obtained.

When a pair of children crated the following problem

To celebrate his son’s birthday Mr. Gianni will go a supermarket during its sale period and
buy 9 boxes of ice cream treats that cost 2,99€ each, but with a 50% discount. How much
does he spend for the ice cream treats? In addition, he also buys 7 packages of “mini-
smarties” that cost 2,49€ each but with a discount of 20%. How much does Mr. Gianni
spend for the “mini smarties”? To conclude his shopping, he also buys 3 cartons of apple
juice that cost 0,99€ each, with a discount of 20%. How much does he spend in all?

a part of the class discussion regarded the result obtained, which was 29,775¢€:

Davide: You can’t pay that amount since there is no such coin as a 5 mil piece.
Teacher: What happen when the supermarket bill turns out that way?
Giovanni: You have to ay a little bit more, for example 29,80€.
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Filiberto: Yes, that’s true, but if you include the money you pay for the shopping bag to
carry the goods home (which one also pays for), it seems to me OK if you give them, let’s
say, ... 30€
and when a pair of children created the following problem related to the second
advertising leaflet
It’s sale week and Mr. Mario would like to renew his wardrobe. So he goes to the store
called “Always more”. He buys 8 pullovers of various colours at 42€ each. There is a
discount of 5% on the merchandise. How much does Mr. Mario spend in all? If he starts
with 350€ to renew his wardrobe, how much does he have after this purchase?
a part of the class discussion regarded the result obtained, which was 319,2€, and
show a problem critiquing attitude by children based on other realistic
considerations:

Michele: OK, but if I give 320€ it comes out the same, since I have to pay for the
shopping bag.
Filiberto: But if you go to clothing stores, you don’t have to pay for the shopping bag,
because you’ve already spent so much to buy the pullovers that they give you the
shopping bag for free.
These examples as many other of written works and discussions demonstrated that
the children have by no means ignored the relevant, plausible and familiar aspects of
reality in their observations and reasoning (hypothesis II confirmed).
By presenting the students activities that are meaningful because they involve the use
of material familiar to them, increased their motivation to learn even among the less
able ones. For this reason, even children with learning difficulties related chiefly to
linguistic problems are helped.
Yuri: This is not a problem. Problems are full of words and I can never do them because I
do not understand very much. I can do these though because anyone can read prices on a
flyer!
This confirms what “Roughly speaking using a receipt, which is poor in words but rich
in implicit meanings, overturns the usual buying and selling problem situation, which is
often rich in words but poor in meaningful references” (Bonotto, 2005).

CONCLUSION AND OPEN PROBLEMS

From the results it appears that the teaching experiment had a significant positive
effect on achieving learning goals, in particular enhancing the understanding of
rational numbers as percentages, in a way that is meaningful and consistent with a
sense-making disposition. In our view, the positive results can be attributed to a
combination of closely linked factors: (a) an extensive use of suitable cultural
artefacts; b) the application of a variety of complementary, integrated, and interactive
instructional techniques; c) the introduction of particular socio-mathematical norms;
d) an adequate balance between problem-posing and problem-solving activities.

In future research, we would like to look more deeply at the nature of the underlying
thinking processes that constitute problem posing, at the relationship between
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problem posing and problem solving, and between problem posing and creativity,
and at how children respond to programs designed to developed their problem-posing
skills on long-term.

References

Bonotto, C. (2005). How informal out-of-school mathematics can help students make sense
of formal in-school mathematics: the case of multiplying by decimal numbers.
Mathematical Thinking and Learning. An International Journal, 7(4), 313-344.

Bonotto, C. (2006). Extending students’ understanding of decimal numbers via realistic
mathematical modeling and problem posing. In J. Novotna et al. (eds), Proceedings of
the XXX PME (11, pp. 193-200). Prague: Prague Charles University.

Bonotto, C. (2007). How to replace the word problems with activities of realistic
mathematical modeling. In W. Blum et al. (Eds), Modelling and applications in
mathematics education (pp. 185-192). New ICMI Studies no. 10. New York: Springer.

Christou, C., Mousoulides, N., Pittalis. M., Pitta-Pantazi, D., & Sriraman, B. (2005). An
empirical taxonomy of problem posing processes. Zentralblatt fiir Didaktik der
Mathematik, 37(3), 149-158.

English, L. D. (1998). Children’s problem posing within formal and informal contexts.
Journal for Research in Mathematics Education, 29(1), 83-106.

Gravemeijer, K. (2007). Emergent modeling as a precursor to mathematical modeling. In
W. Blum et al. (Eds) Modelling and applications in mathematics education (pp. 137-
144). New ICMI Studies no. 10. New York: Springer.

Greer, B., Verschaffel, L., & Mukhopadhyay, S. (2007). Modelling for life: mathematics
and children’s experience. In W. Blum et al. (Eds), Modelling and applications in
mathematics education (pp. 89-98). New ICMI Studies no. 10. New York: Springer.

Hiebert, J. (1985). Children’s knowledge of common and decimal fractions. Education and
Urban Society, 17, 427-437.

Masingila, J. O., Davidenko, S., & Prus-Wisniowska, E. (1996). Mathematics learning and
practices in and out of school: A framework for connecting these experiences.
Educational Studies in Mathematics, 31, 175-200.

Saxe, B. G. (2002). Children’s developing mathematics in collective practices: A
framework for analysis, Journal of the Learning Sciences, 11 (2/3), 275-300.

Schliemann, A. D. (2002). Representational tools and mathematical understanding, Journal
of the Learning Sciences, 11 (2/3), 301-316.

Silver, E.A. (1994). On mathematical problem solving. For the Learning of Mathematics,
14(1), 19-28.

Silver, E. A., & Cai, J. (1996). An analysis of arithmetic problem posing by middle school
students. Journal for Research in Mathematics Education, 27(5), 521-539.

Stacey, K. & Steinle, V. (1998) Refining the classification of students’ interpretations of
decimal notation. Hiroshima Journal of Mathematics Education, 6, 49-69.

Verschaffel, L., Greer, B. & De Corte, E. (2000). Making sense of word problems, Lisse,
The Netherlands: Swets & Zeitlinger.

Vygotsky, L. (1978). Mind in society: The development of higher psychological processes.
Cambridge, MA: Harvard University Press.

Yackel, E., Cobb, P. (1996). Classroom sociomathematical norms and intellectual
autonomy. Journal for Research in Mathematics Education, 27 (4), 458-477.

2-200 PME 33 - 2009



ANTICIPATING TEACHERS’ LEARNING WITHIN THE
INSTITUTIONAL SETTING OF THEIR WORK

Ada Boufi Frosso Skaftourou
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In our recent effort to design a teacher development program, we decided to take into
account the institutional setting in which collaborating teachers work. This decision
has been necessitated by the particularities of our school system. The analytic
approach we adopted is based upon the notion of the ‘community of practice’. By
analyzing the interconnections between the ‘communities of practice’ we thus
identified, we delineate a hypothetical learning trajectory for the initial emergence of
a professional teaching community.

INTRODUCTION

The goal in our teacher development workshops used to be an effort to help teachers
revise their textbook-based teaching of mathematics. Teachers had to question the
effects of their traditional practices on students’ meaningful understanding. However,
many of them were reluctant to consider activities that were not included in the
textbooks. This situation did not fit well with the fact that in our country there is not
high-stakes testing. The lack of accountability measures should have facilitated the
reorganization of their ways of teaching mathematics. Thus the need to take account
of the institutional setting of their work became apparent. The same need was
apparent, when we collaborated with teachers to conduct teaching experiments in
their classrooms. Shortly after leaving their classrooms we noticed that they returned
to their traditional instructional practices. The change of these teachers’ way of
teaching mathematics was not as lasting as we assumed. In both examples, the
institutional setting was neglected when we first attempted to explain why teachers
defied efforts to support the reorganization of their practices. By that time, our
assumption was that teachers are autonomous agents in their classrooms.

Two years ago new textbooks in mathematics have been introduced to all the primary
schools in our country. The school system is centralized. The new textbooks were
meant to be the means to reform instruction. Teachers disparaged them and strongly
challenged the change of the old textbooks. Surprisingly, in a very short time, things
have settled down. Once more, the institutional setting comes to the front. Now it
seems to explain the teachers’ change of behaviour. They were constrained to adopt
the new textbooks. Though we had a hope for it, the weaknesses of textbooks did not
play out in this confrontation.

The explanatory power of the institutional setting, in the above examples, has come
to our attention, while we tried to organize a teacher development program. In
reviewing the relevant literature we came across several papers that point to the
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importance of the institutional setting in teacher development (Ball, 1996; Stein &
Brown, 1997). According to Cobb, McClain, Lamberg, & Dean (2003) the immediate
institutional setting within which teachers develop and refine their instructional
practices is constituted by the efforts of members of different communities of
practice, and whose enterprises are concerned with the teaching and learning of
mathematics. Research in mathematics education has started to view teachers’
instructional practices as situated in the institutional settings of the schools and
districts in which they work. The improvement of teachers’ classroom practices is
investigated in terms of the school and district structures.

By taking into account the relevant research and our prior experiences, in our current
teacher development program, we do not overlook the power of the institutional
setting. The goal of our program is focussed on sensitising the teachers in students’
reasoning and enabling them to support its development in their classrooms.
Analysing teachers’ learning as they develop suitable practices is necessary for the
success of our program. The design experiment methodology will be an appropriate
means for the eventual study of how teachers will improve their instructional
practices (Gravemeijer, 1994).

During the first phase of our research program, we attempted to document the
institutional setting within which the collaborating teachers work. Given the
particularities of the policy environment in our country (lack of standardized tests and
accountability measures, centralized school system), we viewed our attempt to be
indispensable for the design of a program adapted to the needs of the participating
teachers. This design will be effective to the extent that we conduct analyses of the
teachers’ ongoing learning. So, in this paper, we first present the results of analysing
the institutional setting within which teachers will develop and refine their practices.
On the basis of these results, we then delineate a conjectured learning trajectory
related to the means of supporting the development of a professional teaching
community.

THEORETICAL FRAMEWORK

Spillane, Halverson and Diamond (2001) in advancing a distributed perspective on
leadership claim that it is not simply a function of individual leaders. As they argue
leadership practice is distributed across leaders and their social and material
situations. In a similar way, we view teaching as a distr