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ENHANCING STUDENTS’ VISUAL SPATIAL SKILLS (VSS) AND 

GEOMETRY THINKING (GTL)  

USING 3D GEOMETRY TEACHING STRATEGY  

THROUGH SKETCHUP MAKE (SPPD-SUM) 
 

Abdul Halim Abdullah, Rohani Abd Wahab, Mohd Salleh Abu, Mahani Mokhtar and 

Noor Azean Atan 

Faculty of Education, Universiti Teknologi Malaysia 

 

Difficulty in learning geometry is generally associated with students’ weakness in 

visual spatial skills (VSS) and low level of geometry thinking (GTL). This study was 

conducted with the aim of achieving two objectives: (a) to develop a 3D Geometry 

teaching strategy through SketchUp Make (SPPD-SUM), and (b) to study the effects 

of SPPD-SUM in assisting students to elevate their VSS and GTL. This study was 

conducted in two phases; Phase I involved the design and development of SPPD-SUM 

to elevate students’ VSS and GTL. Meanwhile, Phase II involved studying the effects 

of SPPD-SUM towards students’ VSS and GTL. The development in Phase I was 

conducted based on ADDIE model of instructional design consisting of a five-phase 

cycle. The Analysis phase studied the fundamental information relating to students’ 

VSS and GTL. In addition, suitability and selection of selected Geometry topic 

contents were also being investigated in this phase. The Design phase involved 

establishing the structure, arrangement and design of the activities which integrated the 

components of VSS into the GTL according to van Hiele Model of Geometry 

Thinking. Meanwhile, the Development phase involved constructing learning 

activities in accordance to each van Hiele’s GTL and learning phase, as well as, the 

components of VSS. The Implementation phase comprised of two series of pilot study. 

It involved the implementation of SPPD-SUM upon 12 students for a span of three 

weeks. Data analysis obtained from the Evaluation phase was evaluated by seven 

experts in the mathematics field. They agreed that SPPD-SUM was expected to 

function well pedagogically. The study in Phase II involved quantitative data 

collection whereby descriptive and inferential statistical analysis was conducted by 

using single group quasi-experimental time series design. It was carried out for six 

weeks upon 34 Form Five students. Inferential statistics computed from the mean 

score of VSS and GTL suggested that the use of SPPD-SUM assisted the students to 

elevate their VSS and GTL with a significant difference of t = 35.5 and Z = -5.21, p = 

0.05 respectively, by comparing before and after the intervention. These findings 

showed that SPPD-SUM can be used to enhance students’ abilities in rotating, 

viewing, transforming, and cutting 3D objects mentally and hence concurrently 

elevating GTL in the aspect of recognising, analysing, making relationship and making 

formal deductions of geometry series and characteristics. 
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CURRICULUM EVALUATION FROM THE VIEWPOINT OF 

MATHEMATICAL LITERACY: 

A CASE OF ‘FUNCTIONS AND EQUATIONS III’ 

Yoshitaka Abe1, Tatsuya Mizoguchi2 and Koji Otaki3 

1Niigata University, 2Tottori University, 3Hokkaido University of Education 

In mathematised society, literacy to recognize implicit mathematics is required (cf. 

Chevallard, 1989/2007). For this, we demand to reform our curriculum towards 

competence-based one, which is required knowledge, competencies and affects 

through more comprehensive activities rather than multiple works as a means to 

acquire mathematical content as in the past. 

In this research, we analyse a curriculum of “Functions and Equations III” 

corresponding to grade 9 from the viewpoint of the mathematical literacy.  “Functions 

and Equations (F&E)” is an integrated curriculum developed empirically to improve 

teaching and learning of equations and functions in Japanese junior high school 

(Mizoguchi & Yamawaki, 2016). The first mathematical model in an unit is the graph, 

and this model is refined and modified while the student operates by using it. In a 

sequence of activities, students repeat mathematical modelling and argumentations for 

solving problems. So, it is described that the feature of this curriculum is “ability to use 

functions and equations as problem solving tools”. 

In this unit, F&EIII, the titles of sub-units are described by not names of concepts but 

of activities. These were labelled following developmental direction that the learning 

of mathematics is attained through mathematical activities. Indeed, in each section, 

different mathematical concepts could be constructed by students together with 

repeating mathematical modelling and argumentation as “core” of mathematical 

activities. So, each concept can be organized locally throughout the activity (Shinno et 

al, 2015). Such curriculum construction is expanding in the change of the prospective 

role and function for modern school education. 
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According to Self Determination Theory (Deci & Ryan, 2000), individuals have three 

psychological needs: autonomy, competence & relatedness. If these needs are 

satisfied, then, individuals are more intrinsically motivated and their well-being 

increases. To make students engaged and motivated in the mathematical tasks, is it 

possible to redesign tasks is such a way, they satisfy students’ basic psychological 

needs and therefore, their autonomous motivation is expected to increase? Available 

research points at a clear potential of this approach. For instance, Wæge (2009) showed 

that when students are given choices in tasks and to develop their solutions to 

mathematical problems, or to collaborate with peers and being presented with 

step-by-step approaches, they develop a better understanding and reflect higher 

mastery. Therefore, the main aim of the present study is to test the BSPN in quadratic 

equation (QE) tasks in classroom settings. Currently we redesign typical tasks to 

satisfy the BPN.  

Let be x2 – 6x + 8= 0 the quadratic equation. Traditional QE Task would be “Find the 

roots of the quadratic equation.” “Draw the parabola equivalent to this equation.” 

“Find the roots by using the discriminant formula.”  However, Need Supportive QE 

Task would be “Find the roots of the equation by using the questions below:” “What 

will you do in this task?” “What could be an easier quadratic equation to start with?” 

“You can choose either parabola, factorization or discriminant method.” “Create 

your own quadratic equation which has 2 different real roots.” “Discuss with your 

peer about your own equation by considering the following: Does your peer’s equation 

has real roots or not? You can compare your equations in terms of representative 

parabola, the discriminant and the roots”. By conducting a 6-week intervention study, 

we expect these tasks to make a significant difference on students’ autonomous 

motivation, their self-efficacy and hence their learning performance.  

The study is expected helping teachers to adopt this new approach to foster students’ 

learning performance. This study introduces a new perspective of mathematics 

education integrating self-determination theory to mathematical tasks.  
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A considerable amount of research is focused on students’ conceptions and 

misconceptions of ratio and proportion concepts and informal strategies for related 

problems. In addition, structural features of the ratio and proportion tasks have been 

the topic of study. However, the implementation and testing of this accumulated 

knowledge in real classroom contexts remains an unaddressed issue. In this study, we 

aim to propose an instructional sequence for improving the instruction of ratio and 

proportion by referring to the results of a classroom teaching experiment conducted 

with a 7th grade classroom. Theory of Realistic Mathematics Education was used to 

develop a hypothetical learning trajectory and horizontal ratio tables (HRT) and 

vertical ratio tables (VRT) were models that were used to create meaning with a 

context. For instance, for the problem “How many food fishes can be fed with 9 food 

bars if 1 food bar can feed 3 fishes?” the following HRT and VRT were used: 

 

 
 

Table 1. Horizontal ratio table                          Table 2. Vertical ratio table  
Within ratio is a ratio of two quantities in the same setting and between ratio is a ratio 

of two corresponding quantities in different settings. Throughout this teaching 

experiment, our goal was to support students’ reasoning with HRTs and VRTs and to 

explore whether their conceptual understandings of within and between ratios were 

enhanced as they engaged in instruction. Class sessions were both observed and 

videotaped, and field notes related to researcher’s reflections were taken. The 

transcriptions of the videotapes and field notes were analysed in terms of the cognitive 

processes of students (claiming, warranting, asking and answering questions, agreeing, 

disagreeing etc.) by an adaptation of Toulmin’s (1958) model of argumentation. The 

findings of our analysis suggest that using HRTs and VRTs for representing the 

proportional situations has a big potential for enhancing students’ understanding and 

structuring of within and between ratios.  
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Food bars 1 food bar 9 food bars 

Fishes 3 fishes x fishes 

Food bars Fishes 

1 food bar 3 fishes 

9 food bars x fishes 
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The quality of mathematics learning has been affected by many systemic issues in 

state-run secondary schools in India. These include a lack of resources, paucity of 

teachers, pedagogical practices that promote rote learning (obfuscating the intended 

curriculum), and low student motivation. This poster illustrates a curriculum for 

geometry learning developed by the Connected Learning Initiative (CLIx) project at 

the Tata Institute of Social Sciences, Mumbai. CLIx aims to address some of these by 

designing solutions that factor in the complexity and scale of the challenges, 

selectively using technology to do so. The curriculum is based on the van Hiele theory 

of geometric learning, and takes a blended learning approach by providing opportunity 

for learners to engage in digital and hands-on activities. A digital game ‘Police Quad’ 

forms a central part of the module. It encourages students to begin by looking at the 

properties of shapes and hence leveraging students’ insights from the initial level of 

geometric reasoning (visualization), further helping them to move towards the next 

level (analysis). The last level in the game facilitates an understanding of class 

inclusion among students. For every level, there are hands-on activities designed for 

students which involve classifying and describing geometric shapes. Pertaining to the 

third level (formal deduction), the game intends to help students understand 

conjectures, generalizations and value of proofs in mathematics. 

The core of the CLIx geometry module is a learning game, but other vital components 

include – classroom discussions that complement the gameplay, and activities (both 

hands-on and digital) where students construct shapes, reason with them, make and 

prove conjectures. The CLIx-mathematics curriculum provides an opportunity for 

teachers and students to engage actively with the subject using interactive tools. It has 

been found that the students collaborate extensively while engaging with the digital 

component, and learn while trying and correcting their own mistakes. While the 

curriculum will be implemented in schools, pre and post assessments and formative 

assessments will be conducted in order to understand the impact of the curriculum on 

teaching-learning. 
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Digital Diagnostic Testing Tasks (DDTA) can be characterised as adaptive digital 

sequences of items with a real time analysis of the entered answers. Based on this 

analysis the DDTA-tool is able to provide a content-related adaptive reaction. The goal 

of the DDTA-tool is an automatic supportive feedback for each learner by an 

individual clarification of mistakes.  

The diagnosis of Basic Mathematical Knowledge (BMK) aims on diagnostic 

information as detailed as possible. Both the learners and the teachers obtain this 

information as a basis to initiate suitable supporting measures. The automatic analysis 

of answers is based on diagnostic item-distractors in closed items (Winter, 2013), and 

works with a computer algebra system (Sangwin, 2013) to analyse open answer 

formats. If it is not possible by these means to identify the mistake behind a given 

answer, the learner is getting adaptive test-items with a content-related 

elementarisation of the diagnostic task (Feldt-Caesar, 2017, Bruder & Schmitt, 2016). 

Elements of DDTA are the  diagnostic task, the algorithm for automatic analysis of the 

answers, the adaptive sequence control inside of the DDTA, the decision tree to 

generate feedback, elementarisations of the  diagnostic task (if needed), and a parallel  

diagnostic task in case of an intended control of learning effects. 

DDTA allow one to present and analyse tasks with a high complexity of content and 

activities. The result of using DDTA is an individual analysis of mistakes and 

supportive feedback (Winter, 2013) for learners and teachers. 
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PLACE-VALUE CONCEPT PREDICTS CHILDREN’S 

MATHEMATICAL LEARNING 
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Place-value concept (e.g., 2 in “24” means 20) is challenging to many children (Chan, 

Au, & Tang, 2014). How important is it to early mathematical learning? Previous 

studies have already found various domain-general (e.g., working memory) and 

domain-specific abilities (e.g., subitization) underlying mathematical acquisition. On 

top of these abilities, does place-value concept still play a role in children’s 

mathematical learning? This study set out to fill this gap. We hypothesized that 

place-value concept – which is the syntactic knowledge in the symbolic number 

system – plays a unique part in children’s mathematical learning.    

Five hundred fifty-three children completed a battery of tasks in their first grade (phase 

1), and 510 of them completed them again in their second grade (phase 2). Tasks in 

phase 1 included an IQ test, word reading test, a place-value task and a series of 

domain-general (i.e., working memory, spatial working memory, and processing 

speed) and domain-specific tasks (i.e., approximate number representation, number 

line estimation, subitization, and number fact retrieval). In phase 2, children completed 

the place-value task and the domain-general and -specific tasks again. They also 

completed an arithmetic task. In both phases, children completed a mathematical 

achievement test. 

Using two-step hierarchical regressions, we found that first graders’ performance in 

the place-value task explained a significant, additional 4% variance in their concurrent 

mathematical achievement, over and above the control variables (i.e., IQ, word 

reading, all the domain-general and -specific tasks), and contributed a significant, 

additional 2% variance in their second year’s mathematical achievement, on top of the 

control variables. In Grade 2, children’s performance in the place-value task explained 

a significant, additional 9% variance in their concurrent mathematical achievement, 

over and above the control variables including the arithmetic task. Hence, place-value 

concept is a unique predictor of children’s early mathematical achievement. Such 

findings support our hypothesis that place-value concept taps into unique, syntactic 

knowledge of the number system – which is separable from the early cognitive abilities 

– thus highlighting its important role in early mathematical learning.  
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FRACTION TEACHING 
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Fraction is a difficult concept for most of the students, and teachers’ knowledges are 

important factors to affect students’ mathematics learning. Thus, the issue of teachers’ 

knowledges in fraction teaching becomes more critical. It is also found that some 

prospective teachers are not sure how to appropriately interpret the mathematics 

textbook and design plan in teacher education programs. Therefore, the purpose of this 

study is to explore a prospective teacher’s knowledges in fraction teaching. Depaepe, 

Verschaffel, and Kelchtermans (2013) made a systematic review of the way PCK is 

conceptualized in mathematics educational research and found that even though most 

authors refer to Shulman (1986) when they define PCK, there is no consensus in the 

literature about the components covered by it. Even so, grasping teaching materials 

and promoting students’ learning are two main aspects in this study to explore a 

prospective teacher’s knowledges in fraction teaching. 

The data of this study was collected from a prospective teacher, Priscilla; the method 

used is in-depth interview, and the interview problems include posing problems and 

interpreting textbook about some fraction units.  

Here are some discoveries of this study. First, Priscilla’s design of main problems 

doesn’t always meet the teaching goals of textbook. For example, the textbook uses 

hands-on activities to teach equal-sharing concept, but Priscilla uses graphic 

representation first. The textbook offers many problems with different equal-partition 

graphics and hopes that students can find equivalent fractions through observing those 

graphics, but Priscilla’s problem posing uses purely mathematical symbols, like  

, after one word problem. Second, when students can’t understand 

the meaning of the problems in textbook, Priscilla may help them by direct explanation 

and questioning, assisting after listening to their explanation of the problem meaning, 

and providing real life examples in relation to the problem. Third, when students meet 

difficulties in solving problems in textbook, she may help them by asking them to do 

actual operation, assisting the identification of fraction terms via living language and 

teaching tools, reviewing prior knowledge, and using graphic representation.  
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USING DIFFERENTIATED INSTRUCTION TO PROMOTE 

TEACHERS’ AND STUDENTS’ MATHEMATICS SELF-EFFICACY 
 

Chang Yu-Liang (Aldy) and Wu Su-Chiao (Angel) 

National Chiayi University, Taiwan 
 

Within the “multiple and heterogeneous” classrooms that have students with “academic and 

neurodiversity diversity”, the implementation of “differentiated instruction (DI)” is truly 

valuable and helpful in reaching the goals of considering both “individual differences” and 

“learning in the whole class environment” (Tomlinson, 2001).  Applying DI in elementary 

mathematics, it will be beneficial to the development of mathematics teachers’ professional 

knowledge, capabilities and efficacy beliefs, which in turn enhance the development of their 

students’ mathematics self-efficacy and mathematical learning outcomes (Banrura, 1997; 

Chang, 2015).  Based on the developing trend on the co-learning structure of 

“students-teachers-teacher educators”, we established and developed a mathematics teacher 

professional development (PD) program, which applies the differentiated mathematical 

instruction in enhancing targeted elementary students’ mathematics self-efficacy.  

Accordingly, we tried to reach these objectives: assisting targeted in-service teachers to 

design “differentiated mathematical instruction (DMI)” activities and implement the pilot 

studies within the support of the mathematics teacher PD program.  A single-case holistic 

design was employed in this two-year qualitative and “explanatory and descriptive” case 

study.  Elementary classrooms of higher grade levels of a public elementary school in Taiwan 

were selected.  Mathematics teachers were chosen to participate in the teacher PD program.  

Data were gathered through semi-structured observations, individual summative and 

follow-up interviews, and various kinds of documents, and then analyzed qualitatively by 

template and editing analytic strategies and narrative self-study approaches.   

Based on the research objectives and data gathered, the findings were as follows: First, at the 

beginning of this study (and before the implementation of the teacher PD), targeted teachers’ 

current teaching performance in mathematics and their mathematics teacher efficacy were 

analyzed.  Based on the research objectives and these teachers’ current status and needs, a 

series of teacher PD programs on the design and implementation of DMI, where the 

developmental process of the targeted teachers’ professional knowledge and capability about 

differentiated mathematics instruction and their efficacy beliefs is analyzed.  Thirdly, we 

analyzed the beginning status of targeted students’ mathematics learning profiles (focusing 

on students’ mathematics self-efficacy) in order to select special cases and further analyses 

while implementing differentiated mathematics instruction in the future.    Here we provide 

examples of how the targeted teachers employed the DMI to promote their students’ 

mathematical learning outcome and self-efficacy. 
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Enhancing mathematics teachers’ awareness of students’ mathematical thinking 

through learning is one major mission in teacher professional development (TPD), 

however, research on teachers’ learning focuses mainly on the investigation of 

teachers’ process reflection and collaboration of the community, rarely on the learning 

instruments used by teacher educators in the existing studies (Llinares & Krainer, 

2006). Teachers experience their activity in students’ activities with the mathematical 

tasks can promote the connection between theoretical knowledge and their teaching 

practices. This study aims to inspect the quality of one nationwide TPD in Taiwan by 

investigating mathematics teachers’ perspectives on tasks and activities they practice 

in the workshops via the developed questionnaires. 

The contexts of workshops in this study are within a nationwide project, Just Do Math 

(JDM), in Taiwan. This JDM project sets a goal to improve students’ motivation and 

cognition in learning mathematics, via several stages of TPD. The tasks for students 

learning and teachers utilizing in this project are all designed by mathematics teachers 

and reviewed by mathematics educators. Moreover, in utilizing the tasks, mathematics 

teachers need to attend workshops to learn the designed tasks and simulate students’ 

activities in those corresponding tasks in order to be a qualified ‘spreader activity 

teacher’. Since not all participated mathematics teachers thoroughly apprehend the 

missions born in the workshop but treat it as one opportunity for TPD, therefore, it is 

necessary to investigate their perceptions of the workshop to keep the quality of this 

type of TPD.  

The 5-point Likert scale questionnaires were developed for teachers’ self-evaluation 

on their perceived usefulness, ease of use, and acceptance on the tasks and activities of 

the TPD workshops. The preliminary questionnaires included 3 items for each 

corresponding task in three levels, and 22 items for teachers’ activities were devised 

with the support of 6 mathematics educators’ review and comments. After a pilot study 

with 66 mathematics teachers, the questionnaires were adapted to 6 items for each task, 

and 26 items for teachers’ activities. We therefore found that teachers value those 

designed tasks at their teaching and students’ mathematics learning, and such TPD can 

stimulate them to reflect on their present teaching (KMO = .913; N = 703). 
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PRESCHOOL TEACHERS’ KNOWLEDGE OF COUNTING 

STRATEGY 
 

Ching-Shu Chen 
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Childhood mathematics education is an important part of the curriculum for preschool 

teachers worldwide. The foundation for understanding mathematical concepts related to 

counting begins early in life, and early childhood classrooms can provide the roots for 

mathematical skills needed later in life. Regarding counting knowledge, Gelman and Gallistel 

(1978) outlined five principles of counting objects: one-to-one correspondence, stable order, 

cardinality, abstraction and order irrelevance. Several studies found that 6-year old students 

could use subgroups as a counting strategy (Newman, Friedman, & Gockley, 1987). Fennema 

& Frank (1992) addressed the important of teachers’ knowledge of student that influence 

students’ learning outcome. This study is to explore teachers’ knowledge of counting and 

counting strategy with subgroup on large number object-counting teaching children. In 

particular, after accepting base-ten lessons did teachers change their method of teaching 

counting? The research combined qualitative and quantitative methods. A total of 70 subjects 

came from different preschools. Four lessons related to base-ten strategy were implemented 

to help teaching counting. Questionaries about counting concept (five items haves five 

scores) and two tasks assess teachers’ mapping ability of counting strategy. The tasks consist 

of different numerical magnitudes: 48 chick, and 51 candies pictures which are randomly 

displayed on the size of A4 arrays; tasks include scenarios related to children’s real life 

experience for teachers to generate instructional strategies. Data analyses with statistical test 

and interview scripts coding were performed. The result indicated before invention, 

participants gained the score of counting concepts M(70)= 2.54. It was fewer for those using 

subgroup-strategy to count; there were 10.4% of participants who used base-ten strategy to 

count the objects. Most of them used one-to-one method to teach children counting, and some 

subjects preferred base-2 and base-5 as strategies for counting large number objects before 

intervention. When interviewed, participants interpreted that they liked the strategy of base-2 

because they thought many children had been taught odd and even, and they liked the base-5 

strategy because applying ”正” represents as a unit for five times counting. So, they preferred 

to use base-2 and bese-5 as subgroups to teach students count large number objects. However, 

after intervention the score of counting concept was M(70) = 2.70, but 74% of the participants 

applied base-ten counting strategy to solve problems. So, intervention promoted teachers’ 

concept and strategy of counting to teach students.  
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PROBABILITY-BASED JUDGMENT AMONG PRESCHOOLERS 
 

Ching-Shu Chen 

Tainan University of Technology, Teacher Education Center 
 

Probabilistic thinking is vital for daily life, especially when faced with uncertain situations 

that require decision-making. Probability has been a topic of research for many years; 

nevertheless, various opinions still exist regarding the ability of young children to make 

probability-based judgments. Previous research such as Piaget concluded that young children 

are unaware of the concept of chance, and thus cannot effectively estimate probability before 

the age of 7. However, many researchers have obtained different findings showing that 

children can perceive probability. Neo- Piagetian suggested that teachers should offer 

opportunities for students to discuss and predict outcomes for uncertain situations by using 

operations with various materials to develop efficient probabilistic intuition. Čadež and 

Škrbec (2011) also found that half of a group of children aged 4−5 years could make accurate 

predictions after teaching.  The present study examined children aged 4−5 years to determine 

whether their probability-based judgment performance could be improved through innovative 

teaching methods. A total of 28 children in a kindergarten class participated in the experiment, 

which involved 6 weekly 1-hour classes based on teacher-formulated questions related to life 

experiences, as well as group discussions, for practicing probability judgment. Relevant data 

were collected, organized, and displayed for analysis. To understand the efficient 

development of probabilistic thinking, six tasks were conducted for evaluation consisting of 

the following: two bags, one containing five red balls and one yellow ball, the other 

containing five yellow balls and three red balls; two boxes, one containing eight red candies 

and four blue candies, the other containing five red candies and five blue candies; and two 

bowls, one containing five red fish and two blue fish, the other containing four blue fish and 

two red fish. In the evaluation, the children were asked to predict the most probable outcomes 

for the six tasks. For a correctly predicted outcome on one task, a child would obtain one 

point. The results indicate that the childrens’ probability judgment performance improved 

over the course of the experiment. Performance levels varied significantly from pretest to 

post-test (pretest M = 3.28 and post-test M = 4.13; t(27) = 2.465; P = .001). The findings of 

this study are consistent with the conclusions of past researches that probabilistic thinking can 

be improved through instruction, a claim that was subsequently reinforced by Čadež and 

Škrbec (2011), who showed that children aged 4−5 years can make accurate probability 

judgments. In the present study, more than 70% of the participants made correct predictions 

on the probability judgment tasks. In summary, studying probability during early school years 

is necessary.  
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DECODING ORTHOGONAL VIEWS OF CUBES: 

ANALYZING AND ELABORATING STUDENTS’ BEHAVIORS  

 

Yun-Zu Chen and Fou-Lai Lin 

National Taiwan Normal University 

 

Representation of 3D objects and spatial structuring are two important parts in 3D 

geometry thinking (Pittalis, & Christou, 2010). Building and drawing solids made of 

cubes are beneficial for spatial visualization (Ben-Chaim, Lappan, & Huang, 1988). 

However, students face difficulties in coding and decoding orthogonal views of cubes 

because lack of coordination (Battista, & Clements, 1996).This raises the research 

questions: What do different kind of tasks influence students decoding behaviors? 

How do students construct their mental models of cubes?  

An assessment was developed by hypothetical learning trajectory (HLT) of orthogonal 

views of cubes, which comprised of 3 tasks: finding 3D corner views (given 2D 

orthogonal views), enumerating by the base and 2D orthogonal views, and finding 

compatible 2D orthogonal views. The sample consisted of 263 6th students. In order to 

investigate how manipulatives influence students’ performance. Students were 

separated into two groups. The first group decoded orthogonal views of cubes with 

concrete cubes; the second without. Semi-structured interviews were conducted to 

analyze students’ decoding behaviors. 

The findings were, the two groups had no significance difference in decoding. But the 

tasks were with different difficulties. The compatible task was the most difficult, while 

the enumerating task was of moderate difficulty. Among the compatible tasks, given 

top view was the easiest. Students’ behaviors in decoding were influenced by two 

modes of thinking: analytic and intuitive. Given the base, students of analytic thinking 

examined the number of cubes in each position; while students of intuitive thinking 

combined two views to construct a mental model. In conclusion, mental model of 

cubes was more likely constructed given the base or the top view. Students’ 

construction of mental models was influenced by their interpretations of one 2D 

orthogonal view. 
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WHAT MALAYSIAN PRIMARY SCHOOL PUPILS FIND 

IMPORTANT IN MATHEMATICS LEARNING: A PRELIMINARY 

ANALYSIS 
 

Hui Min Chia1, Chap Sam Lim1 and Wee Tiong Seah2 
1Universiti Sains Malaysia, Malaysia, 2University of Melbourne, Australia 

 

Pupils from different ethnic groups might value different aspects of mathematics 

education in different ways. To date, however, limited research has been conducted to 

explore the respective area (see Jerrim, 2014). This research aimed to find out what 

Malaysian primary school pupils have valued as important in learning mathematics 

and set up a suitable framework to analyse the open-ended responses in one section of 

the validated questionnaire used.  

Questionnaire data were collected from 370 Malaysian primary Five pupils, which 

involved three main ethnic groups in Malaysia: Chinese (158); Indian (14) and Malay 

(198) pupils. Analysis was conducted based on the value framework proposed by 

Bishop (1988, 1996) namely, mathematical values (relating to the discipline), 

mathematics educational values (relating to mathematics pedagogy), and general 

educational values (relating to the ethical and moral principles). 

The analysis shows that pupils thought of “food” as the most important element in 

learning mathematics, perhaps due to the nature of the questions. Furthermore, 15.06% 

of Chinese pupils had perceived “ability”, 13.33% of Indian pupils thought of 

“spiritual elements” and “knowledge and skill” while 17.36% of Malay pupils valued 

“effort” as important for learning mathematics. This research provides evidence that 

pupils from different ethnicities valued mathematics and mathematics learning 

differently. This has implications towards catering to the learning needs of pupils 

representing different ethnic groups in the society, and indeed, within a class too. 

Further research can be conducted to gather more insights about the cultural aspect that 

is hidden beneath each ethnics group. In addition, the coding categories for this section 

can be refined and used to analyse similar data of different grade levels. 
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SOLUTION OF WORD PROBLEMS BY MALAYSIAN STUDENTS: 

INSIGHTS FROM ANALYSIS OF REPRESENTATIONS 
 

Mohan Chinnappan1 and Munirah Ghazali2 

1University of South Australia, 2University Sains Malaysia 

 

The solution of word problems is an essential component of primary and 

early-childhood mathematics curriculum. Despite recent instructional advances, this 

area of learning continues to present considerable challenges to many children because 

multiple steps are involved in the solution process (Verschaffel et al., 2007). Children 

have to understand the text, identify key parts of the text that are relevant to decoding 

the problem and apply appropriate computational strategies. Research in the field 

showed that students’ use of computational strategies during the solution process vary 

according to the problem context and even within the same problem context, their 

choice of strategy could change on the basis of their prior earning experiences 

(Torbeyns et al., 2009). However such findings are not examined in Malaysian 

classrooms. Neither have we tackled the question of why children choose a particular 

strategy when it can be shown that they can access more than one. In the present study, 

we draw on the framework of representation to track how students negotiate selected 

word problems in Malaysian classrooms. Representations provide a powerful 

theoretical lens into not only children’s conceptual knowledge but also procedural 

knowledge. Computational strategies, we suggest are components of children’s 

procedural knowledge and that the nature of representation will affect the type of 

computational strategy used by children. The aim of our larger study is to document the 

range of and interplay between representations that Malaysian children construct thus 

permitting us to identify reasons for their choice of computational strategies. In this 

report we provide preliminary data about the representational range as a cohort of 

children attempted to solve two problems that involved 2-digit numbers. Data provide 

evidence that children in this study tend to work within a limited range of 

representations and computational strategies. We speculate on current Malaysian 

instructional practices as reasons underpinning this relatively narrow representational 

range. 
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THE DIFFERENCES AMONG MATHEMATICS ANXIETY 

GROUPS BY THE EEG MEASUREMENT IN RELATION TO THE 

MIDDLE SCHOOL STUDENTS’ FUNCTIONAL THINKING 

 

Sang Sook Choi-Koh and Byeongguk Ryoo 

Dankook University, South Korea 

 

There has been a lot of research focused on reducing the Mathematics Anxiety (MA) in 

Korea in accordance with the characteristics of Korean students (e.g. Jung & Whang, 

2013). However, most studies in the brain science were mainly dealt with arithmetical 

addition and subtraction of mathematics. This study was to investigate how 

mathematic anxiety (MA) of the students in the eighth grade could be reduced by 

comparing analytically their cognitive neuroscience as well as the test result after they 

completed a three-hour Complex Treatment Program (CTP) about the quadratic 

function of mathematics.  

In the summer of 2016, we collected data from the pre and post MA tests (Ko & Yi, 

2011) and from the percent of correct answers (PCA) and reaction time (RT) through 

event related potentials (ERP) of Electroencephalograph (EEG) based on 

computer-based functional tasks with one class of a regular middle school.  

The results indicated the program to be effective according to the test results. In 

specific, the results in RT demonstrated that group- higher mathematics anxiety 

(HMA) and group- low achievement (LA) took longer in all functional tasks than 

group- lower mathematics anxiety (LMA) and group- higher achievement (HA). The 

results in PCA, demonstrated that group LMA and group HA scored higher than group 

HMA and group LA in translating equation-to-graph (task F), but group HMA and 

group HA scored higher than group LMA and group LA in translating 

graph-to-equation (task G) by a help of CTP. The fact that CTP reinforced on task G 

was effective onto group HMA indicated that MA could be reduced through a 

well-designed treatment of this kind. 

References 
Jung, J. B., & Whang, W. H. (2013). An Analysis of the Effects of Reducing Mathematics 

Anxiety using Divided-note-method and Cornell-note-method. The Journal of Curriculum 

and Instruction Studies, 6(1), 37-65.  

Ko, H. K., & Yi, H. S. (2011). Development and validation of a mathematics anxiety scale for 

students. Asia Pacific Education Review, 12(4), 509-521. 



 

________________________________________________________________________________________________________________________

2-17 
2017. In Kaur, B., Ho, W.K., Toh, T.L., & Choy, B.H. (Eds.). Proceedings of the 41st Conference of the International 

Group for the Psychology of Mathematics Education, Vol. 2, p. 17. Singapore: PME. 

SINGAPORE PRIMARY FOUR PUPILS FIGURING OUT 

PATTERN POSITION: HOW WELL? WHAT STRATEGIES? 

 
   Bee Lang Michelle Choo1 and Boon Liang Chua2 

1Piece of Pi Pte Ltd,  
2National Institute of Education, Nanyang Technological University 

 

Understanding and recognition of patterns, relations and functions is emphasised 

through the use of pattern generalisation (PG) tasks throughout a Singapore pupil’s 

primary mathematics education. Lower primary pupils learn to identify and extend not 

only figural repeating patterns that vary in a number of attributes but also number 

sequences that involve common differences between consecutive terms in the 

sequences. Upper primary pupils encounter linear figural PG tasks. The importance of 

the teaching and learning of PG in mathematics is often stressed by many researchers 

including Kaput (2008) and Stacey (1989), as PG tasks are powerful tools in 

examining pupils’ ability to generalise and in determining their algebraic skills 

(Becker & Rivera, 2004). A typical linear figural PG task for primary pupils displays 

the first few terms of a pattern and asks for a particular term and the position of a 

particular term. In some tasks, pupils are even asked to establish the general term. This 

poster presentation reports on how 57 Singapore Primary Four pupils figured out the 

position of a given term in three linear patterns. Data were collected through 

administering a 75-minute written test and one-to-one interviews of nine selected 

pupils. Pupils’ responses and strategies used were obtained, coded and analysed. 

Undoing emerged as the top successful strategy for finding the position of a given term 

in all three linear patterns (56%, 20% and 14%). Strategies used by Singapore pupils 

and comparison with strategies used by pupils in other studies will be presented. 
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LESSON STUDY AS A CONTEXT FOR THE DEVELOPMEMT OF 

MATHEMATICS TEACHERS’ SPECIALIZED KNOWLEDGE 

 

Vanessa Crecci1, Miguel Ribeiro1,2 and Dario Fiorentini1 

1State University of Campinas – UNICAMP, Brazil; 2Research Centre for Spatial and 

Organizational Dynamics, University of Algarve (Portugal) 

 

The development of a Lesson Study (LS) is perceived as one of the contexts for 

promoting teachers’ professional development. In the context of an already stablished 

collaborative working group (Grupo de Sábado [Saturday Group]), a LS is being 

devised. It involves teachers from primary, lower and upper secondary, prospective 

teachers and researchers – in some moments working in three subgroups accordingly 

with the school level. The participants chose to focus on improving their practice by 

addressing the nature, kind and focus of the tasks they prepare and implement in their 

classrooms. Such choice allowed us to introduce the discussion around the 

development of the LS and the notions of Mathematics Teachers’ Specialized 

Knowledge (Carrillo et al., 2013) and Interpretative Knowledge (Ribeiro, Mellone, & 

Jakobsen, 2013) as a ground for promoting the participants’ professional development.  

Goals of two different natures are pursuit: studying the development of a LS as teacher 

education strategy in the Brazilian context and understand the critical elements 

promoting the participants’ professional development processes. Data collection 

concerns audio and video recordings of the working meetings (in the subgroups and 

large group); classroom practices; interviews to teachers; interviews to students after 

the implementation of the tasks; students’ productions when solving the tasks, and 

teachers’ narratives grounded on their own experience.  

We will present preliminary results pinpointing some critical elements for mathematics 

teachers’ professional development. Such elements emerged on the group’s process of 

conceptualizing tasks and discussing on students’ answers and productions. Such 

critical elements sustain some discussion on the role and development of the 

participants’ specialized and interpretative knowledge. 
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AHA! MOMENTS IN MATHEMATICS CLASSROOMS  

 

Bronislaw Czarnocha 

Hostos Community College, CUNY, NYC 

 

The aim of the work is to investigate facilitation of Aha! Moments on the basis of 

Koestler (1964) bisociation theory and  their detailed descriptions found in literature, 

which are modest in number. In agreement with the suggestions of reviewers the poster 

will start with the diagrammatic concept map presentation of theories of creativity used 

in Math Ed leading to the theory of bisociation, that is the theory of Aha! Moments. In 

words of Koestler, “bisociation is a spontaneous leap of inside which…connects 

previously unconnected frames of reference and makes us experience  reality at 

several planes at once”(p.45). These leaps of insight are further described as the 

process of unearthing “hidden analogies” between two or more previously 

unconnected frames of reference. The definition of bisociation suggests that the 

cognitive content of Aha! Moments is the construction of the schema of thinking in 

relation to the problem in question. 

Following this presentation, we will present and discuss two characteristic descriptions 

of Aha! Moments found in literature, which show two different methods of facilitation, 

through collaborative complex problems solved by students with the minimal help of 

the instructor and through student – teacher dialogues with the maximal involvement 

of the teacher. The discussion will address the significance of the circumstances 

leading to the insight of Aha! Moments, the role of the teacher and the assessment of 

the depth of knowledge (DoK) reached during the insight. DoK assessment will be 

conducted with the help of the Piaget and Garcia (1987) PG triad of conceptual 

development and the concept of “restructuring” of Gestalt theory (1994). We will show 

the existence of  two separate frames of reference which are connected during the 

insight by the “hidden analogy” as an application of Koestler theory. 

Finally, we will draw conclusions concerning methods of facilitation and present 

several new descriptions of Aha! Moments obtained during the pilot teaching 

experiment in the Spring 2017 conducted on the basis of the results discussed above. 
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PRE-SERVICE MATHEMATICS TEACHERS’ PREDICTIONS FOR 

STUDENTS’ ALGEBRAIC WAYS OF THINKING 
 

M. Gozde Didis Kabar and Rabiya Amac 

Gaziosmanpasa University, Turkey 

 

Numerous studies investigating students’ conceptions and interpretation of letters in 

algebra have reported students’ common misconceptions and difficulties by paying 

attention students’ inadequate understanding of letters (e.g., Stacey & Macgregor, 

1997). Recognition and anticipation of students’ common challenges/difficulties were 

an important pedagogical competency that teachers need to have. This study 

investigated to what extent pre-service middle school mathematics teachers (grades 

5-8) were able to predict students’ conceptions of letters in algebra. This study was 

conducted as a part of a comprehensive study where the investigation of PSTs’ 

predictions was the first step of this study. The data was collected in a methods course 

offered in a mathematics education program of a public university, and 44 third years 

pre-service mathematics teachers (PSTs) enrolled in the course participated to study. 

During the study, PSTs worked in a group of 4-5. For this study, the authors designed a 

test including 25 items by using Küchemann’s (1978) test items. Before this study was 

conducted, the student data were collected from almost sixty seventh grade students 

attending a middle school. For PSTs, the test items were purposively divided into three 

groups by authors, and then, each question group was presented to PSTs during three 

weeks of the course. Each week, before analysing students’ actual responses, PSTs 

were asked to predict about students’ possible solutions to the given questions, but 

particularly students’ possible common incorrect solutions/thinking ways. They were 

also required to write down their predictions in detail to the given documents. The data 

were collected through PSTs’ written documents. For the data analyses, initially, 

students’ common incorrect solutions for each item and students’ common mistake for 

the same items reported in research literature were identified. Then, PSTs’ predictions 

of students’ incorrect solutions on questions with students’ possible incorrect solutions 

were compared, and the data was coded accordingly. Initial analyses showed that in the 

first week of the study, the predictions of all groups mostly could not correspond with 

the student common incorrect responses. However, the data presented evidence that all 

groups’ predictions became diverse and consistent with students’ common incorrect 

thinking ways reported in research and in students’ actual responses. Implications for 

PSTs’ professional development will be discussed. 
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EDUCATIVE CURRICULUM MATERIALS: MODEL OF 

ANALYSIS OF CONTROL OVER THE SELECTION OF 

STRATEGIES TO SOLVE MATHEMATICAL TASKS 
 

Paulo Diniz 

Pedagogical University - Mozambique 

 

In this poster I present results of a research whose objective was to elaborate a model of 

analysis of control over the selection of strategies to solve mathematical tasks in the 

classroom, from the reading of four educative curriculum materials (ECM), elaborated 

by a collaborative group, in Brazil. 

Educative Curriculum Materials (ECMs) are designed to promote student and teacher 

learning (REMILLARD et al., 2014). The four ECMs referred to were analyzed using 

the framing concept of Basil Bernstein's theory. 

In solving a task, it may occur that: (case 1) only the pre-defined strategies in the task 

(PdE) have been used; Or (case 2) the PdE and classroom emerging strategies 

suggested by the teacher (EmEP) have been used; Or (case 3) has been used the PdE, 

the EmEP and emerging strategies suggested by the student (EmES); and (case 4) only 

the PdE and EmES strategies have been used. 

With this assumption, I constructed a model of analysis of the selection of task 

resolution strategies, with the following components: the ECMi (i = 1,2,3, ..., n) in 

column 1 of a table; in column 2, there is the mathematic task of each ECM; in the 

columns 3, 4 and 5, there are the strategies (PdE, EmEP and EmES, respectively), with 

the indication of the words or phrases that reveal the strategies which can be read in the 

different links of the ECMs and, in column 6, I added the type of framing, determined 

by a certain decision criterion. 

Applying this model, one of the main conclusions is that the framing in the case of 

control over the selecting of task resolution strategies is strong (case 2) for two ECMs 

and weak (case 3) for the other two ECMs. Therefore, this research communicates that 

there is a gap between what ECM can suggest before its implementation in the 

classroom and what actually happens in the classroom, allowing ECM designers to 

reconsider the need to improve these materials. 
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A COMPARISON OF STUDENTS’ AND TEACHERS’ 

CONCEPTIONS OF THE USEFULNESS OF MATHEMATICS  
 

Tracy Dobie 

Northwestern University, USA 

 

Teachers often strive to help their students see mathematics as useful, as perceived 

usefulness can have positive benefits including improved academic achievement and 

enhanced interest (e.g. Hulleman, Godes, Hendricks, & Harackiewicz, 2010). 

However, we know little about the ways in which teachers and students think about 

what it means for mathematics to be useful. This research explores this issue by asking, 

How do middle school students conceptualize the usefulness of mathematics, and what 

is the relationship between students’ and teachers’ conceptions?  

Twelve seventh-grade students (ages 12-13) participated in interviews in which they 

viewed six images of students doing mathematics in different ways and with different 

people. The participants identified the images in which students were engaged in 

“useful” mathematics and “not useful” mathematics and explained why. Responses 

were coded using open coding to gain insight into the criteria students used to judge 

whether mathematics was useful. A comparable activity with teachers is underway. 

Students spoke about the usefulness of mathematics in two ways. First, they sometimes 

discussed whether mathematics content could be applied in various settings. Here they 

primarily considered whether the images portrayed students doing mathematics that 

might be used in jobs or in everyday activities. Second, they considered whether 

features of the learning experience were useful. In these cases, students tended to view 

math as useful when it involved collaboration or when students were actively engaged 

and able to show their thinking. For example, José viewed an image of students sitting 

at their desks with the teacher at the front of the room and said, “I believe this is not 

really useful ‘cause kids…want to…get up on the board and show ideas, but the kids 

are just sitting there and watching the teacher do the math.”  

Existing research focuses primarily on the usefulness of mathematics in terms of the 

applicability of content; however, students also considered usefulness in terms of the 

ways in which they learn mathematics – a new perspective that might be leveraged to 

enhance students’ perceptions of usefulness. Data from teachers will be examined to 

explore whether the same themes arise in teachers’ conceptions of usefulness.  
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MUTUAL CONSTITUTION OF MATHEMATICS, LANGUAGE, 

AND CULTURE: A MODEL 
 

Cris Edmonds-Wathen 

University of Melbourne 

 

A theoretical model was developed to describe the relationships between (first) 

language, (home) culture and mathematics (Figure 1). The purpose of the model is to 

help describe how cultural mathematics programs can utilise the affordances of diverse 

local languages and cultures. Drawing on both theoretical and empirical research, each 

pair of concepts is described as mutually constitutive, with each intersection being an 

affordance for developing cultural mathematics programs.  

Mathematics and culture: 
Mathematics is developed to fulfil 

cultural needs and also enables 

cultural development (Bishop, 

1988). By drawing on cultural 

activities, a mathematics program 

can utilise the interaction between 

culture and mathematics. 

Language and culture: Language 

both develops to enable and express 

the needs of a culture and influences 

cultural development (Vygotsky, 

1963). Utilising both first languages and home cultures in a mathematics program 

helps create and affirm cultural identity. 

Language and mathematics: Language is developed to express mathematical needs 

and also shapes the way that mathematics is developed (Barton, 2009). The interaction 

between language and mathematics is observed in the cognitive benefits of using first 

languages in mathematics teaching and learning. 

Language and mathematics are thus both cultural expressions and drivers of cultural 

development, but are also both drivers and expressers of each other in a mutually 

constitutive manner. A cultural mathematics program that includes students’ first 

languages can extract the embedded mathematics from cultural activities, and draw on 

the affordances provided by these intersections to benefit cognition and identity. 
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TECHNOLOGY BELIEFS OF NOVICE SECONDARY TEACHERS 
 

Ralf Erens1 and Andreas Eichler2 
1University of Education Freiburg, 2University of Kassel 

 

The appearance of portable technological tools has given rise to a growing body of 

research at various levels of mathematics education. It remains interesting how and 

why secondary teachers employ technological devices (e.g. graphing tools or CAS) in 

the teaching and learning of calculus at upper secondary level. According to the 

framework of Hannula (2012), belief systems and goals are parts of 

mathematics-related affect that consist of cognitive, motivational and affective 

aspects. As research has shown (Zbiek et al. 2007), the role of technology in 

mathematics teaching requires an assiduous distinction between technical and 

conceptual mathematical activity. The function of technology in learning mathematics 

effectively is thus a central question for the teaching practice. Results from a 

qualitative study with 20 preservice and teacher trainees will be discussed centred on 

how their beliefs on technology correlate with pedagogical and mathematical beliefs 

on calculus teaching. Data were collected by two semi-structured interviews within a 

time span of 15 months and analysed by qualitative coding close to grounded theory. 

After finishing their university education beginning teachers mention the use of 

technology as a visualization instrument in several parts of the interview. The majority 

of teachers see the key advantage of using technology in the possibility of visualizing 

mathematical objects so that students can form a mental picture of functions. With 

respect to the teaching of calculus, using technology as a learning tool is a belief that 

serves as a means to an end for many teachers. Beyond the advantage of visualizing 

mathematical objects, many teachers see the possibility to incorporate more complex 

modelling tasks as well as to further their students´ heuristic competence. Taking into 

account the variation in our results, our data yields the emergence of two antithetical 

belief clusters on the integration of technology in upper secondary calculus courses: a 

rejectionist and a supportive stance. Assuming that technological tools and 

mathematical tasks do not automatically lead to learning, teachers´ beliefs about the 

meaningful integration of technology are determining factors for the what, the how and 

the why in understanding teachers´ objectives and goals. However, the challenge of a 

meaningful integration of technology into calculus teaching needs further studies and 

more insight into relationship between teachers´ beliefs and actual classroom practice. 
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HARNESSING COMPLEXITY: A FRAMEWORK FOR 

TEENAGERS’ IDENTITY AS LEARNERS OF MATHEMATICS 
 

Osnat Fellus 

University of Ottawa  

 

Learners’ identity in the context of mathematics education is not a simple concept to 

explore especially given the dynamic and ever-changing notions of—inter 

alia—autobiographical identity, socio-culturally available selves, discoursal identity, 

authorial identity (Ivanič, 1998), and actual and designated identities (Sfard & Prusak, 

2005). While Ivanič’s (1998) work is situated within the field of academic writing, her 

framework provides a helpful tool in illuminating the complex nature of learners’ 

identity in mathematics education. Both frameworks were thus used in a study on 

newcomer teenagers’ identity in mathematics. However, questions relating to the 

interconnectedness, and system-like emergent nature of identity-associated constructs 

that collectively shape learners’ identity remained open.  

These questions emerged during the analysis phase of data that were collected through 

a three-part-interview design—comprising a family interview (FI), a one-on-one 

interview (ID), and an all-parent and all-teenager focus groups (FG). Seven newcomer 

families who moved to Canada with their teenage children reached out to participate in 

the study. Twenty-seven interviews—seven FIs, 16 IDs, and four FGs—which lasted 

90 minutes each, yielded about 40 hours of research data. 

While each of the analytical frameworks mentioned above highlights different areas of 

identity work, we were looking for a framework that will push forth and bring forward 

the idea that these notions may be distinct but they are not at all separate. Treating these 

notions separately not only unduly demotes the role of teenagers’ identity as learners of 

mathematics to the backstage but also distracts our attention from the bigger picture 

that shows how other—sometimes overlooked—notions are strongly linked to shaping 

a teenager’s identity as a learner of mathematics. Ergo, we use a set of vocabulary from 

complexity theory that includes, but is not limited to, agent, strategy, population, 

interaction, and copying to provide a networked perception of learners’ identity in the 

context of mathematics education.               
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A COMPARATIVE ANALYSIS OF STATISTICAL PROBLEMS 

BETWEEN JAPAN AND NEW ZEALAND 
 

Hiroto Fukuda 

Okayama University of Science, Japan 

 

The purpose of this paper is to elucidate the unique characteristics of Japan (JPN) and 

New Zealand (NZ) through a comparative analysis of statistics education textbooks. 

The theoretical framework to analyse is based on Bishop’s six universal mathematical 

activities(‘counting’, ‘locating’, ‘measuring’, ‘designing’, ‘playing’, and ‘explain- 

ing’)(Bishop, 1991, p.23). Additionally, the author transforms them into five 

mathematical activities to do for students: ‘numerical calculations and formula 

operations’, ‘approximation and measuring’, ‘designing and locating’, ‘making 

reasonable decisions’, and ‘explaining’. The subjects of the analysis are questions and 

practice problems in the first year of high school. It is five textbooks for JPN and one 

for NZ that the author analyses.  

84 problems from JPN and 322 problems from NZ are classified by the five activities.  

 JPN (84 problems) NZ (322 problems) 

Numerical calculations and   

formula operations 

59.1 (70.3%) 120 (37.2%) 

Approximating and measuring 0 (0%) 16 (5%) 

Designing and locating 14.7 (17.5%) 73 (22.5%) 

Making reasonable decisions 0.2 (0.2%) 16 (5%) 

Explaining 10.0 (11.9%) 97 (30.2%) 

Total number of activities 92.4 489 

Number of activities per problem 1.1 1.52 

(The proportion among all questions is indicated in parentheses. To facilitate a 

comparison with NZ, the average for one textbook is used for JPN.) 

Table 1: Classification result of problems 

 

As a result, the unique characteristics in JPN include the fact that it aims to form the 

statistical concepts. On the other hand, statistics education in NZ is characterised as the 

handling of statistical inquiry through the sorting of the necessary data, the 

transformation from this data into the necessary information, and the decision-making 

using explanations of the information. 
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A CASE STUDY ON STUDENTS’ CONSTRUCTION OF THE 

AESTHETIC QUALITIES OF MATHEMATICAL OBJECTS 

 

Hayato Hanazono 

University of Tsukuba, Japan 

 

BACKGORUND AND FRAMEWORK 

In mathematics, the aesthetic sensibility plays an important role (Sinclair, 2006). 

Nevertheless, it is hard to say that the school mathematics reflects the role of the 

aesthetic qualities. One of the main reasons for this situation, there is a consensus that 

the general students cannot identify the aesthetic qualities of mathematical objects. 

Dreyfus and Eisenberg (1986) found non–mathematician did not pursue and could not 

identify the aesthetic qualities which defined by authors.  

On the other hand, Sinclair (2006) used computer–based tasks and demonstrated that 

students focused on symmetry. The purpose of this study is to extend and complement 

the findings of Sinclair. In particular, this paper will show that students may focus on 

the aesthetic qualities of mathematical objects in non–computer environment. For this 

purpose, author analyzed the mathematical problem–solving process of high school 

students in Japan. 

This study defines the aesthetic qualities as feeling about unity from the “form” of 

mathematical objects. This “form” includes symmetry, proportion, etc. 

This study used the following problem related to the parabola. That is, to investigate 

the mechanism of parabolic antenna. The survey was conducted on 43 high school 

students belonging to 2nd grade (Grade 11). 

RESULTS AND CONCLUSION 

The students thought about the cross–section of the parabolic antenna. Then, they 

considered the figure that was expected to parabola on the coordinate plane.  

Students’ attention to the symmetry could be classified into the following 2 categories. 

First is symmetry with respect to the axis of the parabola. Second is symmetry with 

respect to the axis of the parabola and symmetry between the directrix and the focus. 

They obtained the standard form of the equation of the parabola using the symmetry. 

The results of analysis, this study clarified that computer environment is not necessary 

condition for construction of aesthetic qualities of mathematical objects by students. In 

addition, the importance of learning about the function of symmetry was suggested. 
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TRACKING VISUAL ATTENTION DURING COLLABORATIVE 

PROBLEM SOLVING 
 

Markku S. Hannula, Jessica Salminen-Saari, Enrique Garcia Moreno-Esteva, Miika 

Toivanen and Visajaani Salonen 

University of Helsinki 

 

Information in learning context is often visual. Gestures and diagrams are part of 

multimodal communication. The student cannot look at all possible sources of visual 

information at the same time, but one must choose what to attend to. In this poster we 

will present first results of the MathTrack project that uses mobile gaze-trackers to 

study students’ collaborative problem solving. The methodology is ground breaking, 

as we study visual attention of several persons in a natural learning context. 

The design of the gaze tracking device and the corresponding software were developed 

at the Finnish Institute of Occupation Health and released as open source (see, e.g., 

Toivanen & Lukander, 2015). We also used a video camera, which recorded students’ 

actions and utterances, recorded students’ work using smart-pens and screen capture 

video, and interviewed the students using the video recorded material as stimulus.  

We present a case study of how three mathematics education students visual attentions 

shifted as they step by step generated a solution for a geometry problem. The task was 

to find the shortest path connecting four cities located at the corners of a square. A 

group of four students (one was not wearing a gaze tracker) had first generated ideas 

individually, then worked in pairs, and we will describe part of the process as all four 

work together and find a better solution. We begin from the moment, when one student 

first sketched a solution of the right kind. We follow how the students’ visual attentions 

shifted as they first refuted the solution, later returned back to it, then moved to the 

smartboard to empirically test and refine the solution. 

In the poster we present our cutting-edge methodology and demonstrate the potential 

of this new type of data for research of classroom interactions. We will present the 

visual attentional processes of the three focus students and show the similarities and 

differences between the individuals. The results will give us insight on thinking of 

those students that appear not to participate actively in creating the solution but are still 

part of the group and engaged with the task. 
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IMPLICIT AND EXPLICIT VALUES OF A MATHEMATICAL 

CAMP FOR GIFTED STUDENTS 
 

Rachel Hess-Green and Einat Heyd-Metzuyanim 

Technion - Israel Institute of Technology  
 

In this presentation we examine the implicit and explicit values in a summer camp for 

mathematically gifted high-school students. This challenges the cognitivist framework of 

giftedness by studying processes in which the social identity of the gifted, as well as 

participation in a community, are related to the development of mathematical skills. The 

conceptual framework is based on Schein’s theory (2010), which characterizes organizational 

culture by layers, including hidden values and espoused values. Connecting Schein's theory 

with Sfard's (2008) commognitive approach, we searched for the ways in which the 

organizational culture of the camp supports certain mathematical identities and certain forms 

of participation in mathematical activity. This was done using discourse analysis to analyze 

and classify instructors’ stories about students as told in private staff meetings, problem 

solving episodes in the classrooms, and ideals of mathematical success as reflected in 

camp-leaders' talk during ceremonies. Three rounds of the two-weeks camp were studied, 

taking place during the years 2013-2015. All rounds were very similar in content and 

structure, focusing on number theory at a B.Sc. university level, and organized around groups 

of 4-5 students led by an instructor who usually had a B.Sc. degree or higher (the first author 

being one of the instructors). The staff was mostly uneducated in pedagogy of mathematics, 

thus the camp provided an opportunity to study teaching-learning interactions in a relatively 

"natural" or apprentice-oriented environment. Activities centered on individual problem 

solving, discussed in group "peer review" sessions led by the instructors. We found several 

explicit values prominent in the camp, including the importance of using accurate 

mathematical terminology both in written and in oral communications, and valuing 

persistence in the face of obstacles during problem solving efforts.  Explicit values thus 

highlighted malleable aspects of mathematical activity. In contrast, implicit values had more 

to do with stable characteristics of students such as their enjoyment of doing mathematics 

during free time, or their talent and creativity. Talent, specifically, was often judged based on 

implicit assumptions about background knowledge that students were supposed to have, 

despite this knowledge not necessarily being part of the school curriculum.  

A case of one student will be used to exemplify this tension between explicit and implicit 

values. This student made every attempt to align herself with the explicit values (by taking 

care to be precise in her writing, for example) but failed to exhibit the background knowledge 

and creativity expected according to the implicit values. As a result, she was both identified 

by the staff and by herself as relatively less successful than other students. 
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INVESTIGATING SECONDARY STUDENTS’ CONCEPT IMAGES 

ON DIVISION ALGORITHM AND RELATION BETWEEN THESE 

CONCEPT IMAGES TO EARLY LEARNING EXPERIENCE 
Chi On Ho and Oi-Lam Ng 

The Chinese University of Hong Kong 

 

It is observed that students in senior secondary levels (Grades 10-12) often have 

significant difficulties in utilizing topics that are closely related to the algebraic 

division (e.g. remainder theorem, factor theorem, partial fractions, etc.). Such topics 

are based on understanding of the division algorithm, which is covered implicitly, in 

junior levels. This paper investigates possible sources of these difficulties, in 

particular, secondary school students’ concept images (Tall & Vinner, 1981) of the 

division algorithm and how these concept images play a role in their thinking about 

more advanced topics. 

Selected students from Grade 7 and Grade 10 were asked to complete certain tasks 

related to multiplication, division and division algorithm for the purpose of analyzing 

their concept images towards the topics. In the first part, they completed a set of 

questions and engaged in  post-test interviews, where they were asked to explain their 

solution. In the second part, Grade 10 students are asked to try some questions on 

algebraic division, a topic they have not yet learnt in school. This part was intended to 

see if they could handle these unlearnt topics using their existing concept images. 

Results showed that although students are competent in the operation of multiplication 

and division, most of them had an incomplete or inaccurate concept image on division 

algorithm. In particular, these students’ conceptions were built with a lack of relations 

between multiplication and division, as evident in their written tasks and in the 

interviews. In the second part, when students were asked to solve questions on unlearnt 

mathematical topic (algebraic division), students who had previously shown a more 

complete concept image of division algorithm had a better performance in handling 

such advanced topics than those who are otherwise. 

This poster discusses possible explanations of students’ developed concept images 

from a pedagogical perspective. Moreover, we suggest that the structure and rationale 

of the mathematics syllabus may account for how these concept images evolve over 

time. This study sheds light on the teaching and learning of topics related to algebraic 

fractions in Hong Kong; in particular, it is argued that an emphasis on procedural 

understanding rather than a conceptual understanding on the topics of multiplication 

and division in early mathematics education, and the lack of discussion on the relation 

between them, play a role in the phenomenon observed. 
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INVESTIGATING BACKWARD TRANSFER EFFECTS 
 

Charles Hohensee 

University of Delaware 

 

I define backward transfer as “the influence that constructing and subsequently 

generalizing new knowledge has on one’s ways of reasoning about related 

mathematical concepts that one has encountered previously” (Hohensee, 2014, p. 136). 

My research on backward transfer extends Lobato’s (2006) actor-oriented transfer 

perspective on the transfer of learning. While there exists a long history of transfer of 

learning (or generalization of knowledge) research, backward transfer research has 

rarely been conducted in the context of mathematics education. 

In a new study, I examine backward transfer in real classrooms. My research questions 

are: (1) What changes in students’ previously-established ways of reasoning about 

linear functions are observed after students complete a quadratic functions unit, and (2) 

What classroom processes during the quadratics unit play a role in those influences? 

An NSF Early Career Grant supports this project. 

The participants for my study will be students and teachers from four Algebra 1 classes 

at two schools (i.e., two classes per school). All four classes will use a linear 

functions-quadratic functions instructional sequence. One school will use a traditional 

Algebra 1 curriculum and the other will use a reform Algebra 1 curriculum. Data 

collection will begin after the linear functions unit and before the quadratic functions 

unit. First, students will complete five linear function problems. Next, all four 

classrooms will be video recorded during their quadratic functions unit. Finally, 

students will complete another five linear functions problems, similar to the first set of 

problems. The pre- and post-test results will be used to answer the first research 

question. The video recordings will be used to answer the second research question. 

The following hypotheses guide this study: (a) students’ linear function covariational 

reasoning changed (became more or less productive) after the quadratics instruction 

(i.e., a backward transfer effect); and (b) focusing interactions (Lobato et al., 2013) 

during the quadratics unit play a role in changes in students’ covariational reasoning 

(i.e., a process underlying backward transfer). This research may reveal insights into 

important new instructional and curricular principles for minimizing unproductive 

backward transfer effects and promoting productive backward transfer effects. 
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A STUDY OF COGNITIVE DEMAND EMBEDDED IN RIGID 

TRANSFORMATION OF GEOMETRIC DIAGRAMS 

Hui-Yu Hsu1, Guo-Lun Huang2, Ying-Hao Cheng3 and Jian-Cheng Chen4 

1National Tsing Hua University, 2Chien-Hua Junior High School, 
3University of Taipei, 4Ming Chi University of Technology 

 

Researchers in psychology and mathematics education have stated that rigid transformations 

(flip, rotation, and slide) of diagrams require different level of cognitive demand. In this 

study, we created a survey instrument and used it to further investigate student performance 

on rigid transformation of geometric diagram. Specifically, we attempt to explore how rigid 

transformation influences students in recognizing the diagram properties and constructing 

mental images accordingly. In this regard, we first show students two similar triangles for 20 

seconds and take out one of the triangles. Then we ask students to construct the disappeared 

triangle themselves. 

We designed the survey not only to 

consider different kinds of rigid 

transformation, but also another two 

important factors: the degrees of 

rotation of the triangle (e.g., rotating 45 

degrees to right hand side), and the 

location relation of the two triangles. 

The four kinds of location relation of the two similar triangles are shown in the above table. A 

total of 38 items involving different rigid transformation, degrees of rotation, and location 

relations were included in the survey. Each participating student had to answer the survey 

individually but with different item sequences. Totally fifty 8th grade students answered the 

survey.  Regarding the three kinds of rigid transformation, the data analysis shows that 

students performed the best on recognizing the triangles and constructing the disappeared one 

when the two triangles involve slide transformation. Then is flip transformation. Students 

performed the worse on rotation transformation. Analysis also reveals the discrepancy of 

student performance on one kind of rigid transformation with different degrees of diagram 

rotation. For example, students performed better on recognizing and constructing the 

disappeared triangle when it is rotated to 45 degrees than that of 90 degrees. For location 

relation of the two similar triangles, data analysis also reveals that it significantly influences 

student performance. Student performance from high to low sequentially is the case that the 

two similar triangles are located by sharing a segment, then the case by sharing a point, then 

the case of the two triangles overlapped, and finally the case of being located separately. 

Those findings provide insights into the level of cognitive demand embedded in different 

kinds of rigid transformation as well as rotation degrees involved in the transformation, and 

the location relation. 
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THE DEVELOPMENT OF A GEOMETRIC REASONING BOARD 

GAME: A PILOT STUDY WITH SIXTH GRADERS IN TAIWAN 
 

Hui-Chuan Huang, Huei-Min Wu, Shyh-Chii Tzeng,  

Ting-Hua Chu and Pei-Chin Tseng 

Fo Guang University, Taiwan 

 

Board games can be enticing for children and can promote discussion and 

collaboration among students. The effect of board games on mathematics learning, 

however, is less certain, given the lack of research in this area. The purpose of this 

study is to evaluate a geometric reasoning board game entitled Shape Matchmaker. 

The study seeks to understand: (a) how this game is received by elementary school 

students and (b) how students articulate their thoughts while playing the game.  

The van Hiele model of geometric thinking (Clements & Battista, 1992) and de 

Villiers’ (1994) work on classification of geometric shapes were used to identify 

learning objectives and to guide the design of the game content. 

Shape Matchmaker is designed for four players to play simultaneously. The game 

contains a game board, 32 shape cards, and 12 statement cards. Each shape card has a 

polygon figure printed on a grid (the lengths of the sides are provided when necessary). 

Statement cards are descriptions of geometric properties. For example, a statement 

card may show the message “find shapes with at least one pair of parallel sides.” 

Players are required to match statement cards with shape cards individually in stage 

one. In stage two, players work together to figure out common properties among as 

many shapes as possible. Players in stage three are divided into two groups of two. The 

task in this stage is to categorize six shape cards into two groups and explain the 

underlying principle for the partition. 

Twelve sixth graders were organized into three heterogeneous groups of four based on 

mathematics ability. Interview data, field notes, and reflective essays were analyzed. 

Students felt that the game was fun because it encouraged discussions and stimulated 

thinking. Most indicated that they preferred a cooperative game mode (i.e., stages two 

and three) over a competitive one (i.e., stage one). A few students were able to offer 

coherent arguments for making meaningful connections among shapes. Most 

statements made by students regarding common properties, however, were superficial. 

In addition, it was found that property statements from students were more likely to be 

based on ideas they were most familiar with but which might be irrelevant to a shape 

from a conventional mathematical viewpoint. 
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THE COMPREHENSION OF RELATIONAL CONCEPTS (<, >, =) 

BY PRE-SERVICE AND PRESCHOOL TEACHERS 

Bat-Sheva Ilany1 and Dina Hassidov2 

1Hemdat Hadarom College, Israel, 2Western Galilee College, Israel 

Mathematical language is a language of symbols, concepts, definitions, and theorems 

that does not develop naturally like a child’s natural language, but needs to be taught 

(Ilany & Margolin, 2010). Preschool teachers often use the knowledge and experience 

they bring from daily life, meaning that they might not always give the correct 

mathematical importance to the symbol. If the teachers incorrectly understand the use 

of the symbol, they will subsequently pass this on to the children, leading to their 

incorrect use in the future. They don’t see a problem if the child writes: 5>5. They say: 

"We teach the child to use the sign > between two objects, in this case the size is 

important, in another case the length is important. It depends on the context." (Ilany & 

Hassidov, 2012). This research presents a quantitative and qualitative study comparing 

how pre-service and preschool teachers perceive the relational symbols (<, > and =). 
The study population comprised 71 pre-service teachers participating in a course 

dedicated to teaching and learning early childhood mathematics and 149 in-service 

preschool teachers. 

The data were collected through questionnaires and semi-structured interviews. The 

25-item questionnaire was designed by the authors as part of a larger study examining 

the perceptions of mathematical symbols. Four questions that address mathematical 

symbols between different types of numbers (fractions, identical numbers, different 

numbers, and mathematical expressions) were analyzed. In each question, there were 

differences in the sizes and thicknesses of the numbers. Respondents had to add one of 

the relational symbols between the two numbers or indicate “X” if they believed there 

was no appropriate answer. They were asked to give the reasons for their answers. A 

large proportion of the participants did not answer the questions correctly or give 

suitable reasons for their answers. There was a significant difference between the two 

groups, with the pre-service teachers giving a significantly greater number of correct 

answers and explanations. The conclusions arising from this study are that preschool 

teachers do not correctly comprehend the true significance of <, >, and =, and therefore 

do not teach them correctly. 
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RESEARCH ON PROBLEM IN EARLY OF PROBABILITY 
 

Tsutomu Ishii 

Bunkyo University, Japan 

 

Among the countries of East Asia, the students learn early probability at the 

elementary school. The purpose of this research is to clarify the conditions with which 

the problem should be equipped. At the 1st step, we arranged about the worth of 

teaching materials. Sriraman & English (2004) mentioned that there was hardly any 

topic which could improve the skills of pupils so extensively as combinatorics. As a 

result, we pointed out worth of permutation and combination. At the 2nd step, we 

surveyed about the method of the present instruction. As a result, we paid our attention 

to the relation between asking for the number of permutation and combination, and 

calculation. At the 3rd step, we considered the difficulty of the instruction. Szitanyi 

and Csikos (2015) concluded that college students often chose one of the algebraic 

expressions from their high-school repertory, and use it without sense-making of the 

problem. As a result, we pointed out that calculation was interfering with achievement 

of the purpose of the lesson. At the 4th step, we examined the method for the 

instruction to improve. As a result, we proposed the instruction which does not ask the 

number of permutation and combination (Ishii, 2016). At the 5th step, we carried out 

the lesson by the improved teaching problem. As a result, we recognized the 

importance of the problem. At the 6th step, we analysed the lesson qualitatively. As a 

result, we specified the effective problem. 

By all the steps, we clarified the following two points. The 1st point is not asking the 

number of permutation or combination. That is, it is important to ask how to put 

permutation and combination in order. The 2nd point is that the student searches for 

neither permutation nor combination by calculation. That is, it is important that the 

student sets up the problem which is not called for by calculation. When carrying out 

problem in early stages of probability, we need to fill these two points. 
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11th GRADE STUDENTS’ BELIEFS ABOUT THE SELF IN 

MATHEMATICS CLASSROOM 
 

Duanpen Jarujit, Narumon Changsri and Maitree Inprasitha 

Khon Kaen University 

 

Students’ beliefs have an important influence on learning process (Kloosterman, 

2002). The study of students’ belief by Op’t, Corte & Verschaffel (2002) found that 

belief about the self is another kind of students’ mathematics-related belief systems. 

Belief about the self is show the belief in the knowledge and ability to predict the 

result in solving mathematical problems. 

This study aimed to explore students’ beliefs about the self in mathematics 

classroom. Data collected from 223 eleventh grade students who are studying in the 

second semester of academic year 2016. These classroom focused on teachers 

describe the content and explain an example. Then the students will do the exercises 

to understand the content. The instruments of research consist of mathematics-related 

beliefs questionnaire (MRBQ) containing 20 items that are scored on a 5 point 

likert-scale. Data were analyzed by using basic statistics. 

The study result revealed that students’ beliefs about the self in mathematics 

classroom had average as following; 1) beliefs which have the average at partially 

agreement level containing; a belief that I would be to solve mathematics problem if I 

would learn all rules has the average at 3.56 and a belief that If I do more exercises 

enough, I can understand in more mathematics has the average at 3.84. 2) beliefs 

which have the average at uncertain level containing; a belief that I can understand 

the difficult topics in mathematics has the average at 3.13 and a belief that I can solve 

mathematics problem with my attempt has the average at 3.33. And 3) beliefs which 

have the average at partially disagreement level containing; a belief that I think, 

studying mathematics is a waste of time has the average at 2.23 and a belief that 

mathematics has no relevance to my life has the average at 2.15. 
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A STUDY ON CHINESE PRE-SERVICE TEACHERS’ SUBJECT 

KNOWLEDGE OF MATHEMATICS  
 

Haiyue Jin and Ping Yu  

Curriculum and Instruction Research Centre, Nanjing Normal University, China 
 

With the deepening of the reform and development of higher education in China, some 

normal universities have adopted the joint-cultivation mode of teacher education. That is, 

pre-service teachers of different majors are implemented by the unified enrolment and 

management of the college of teacher education, but they need to take courses for credit at 

both the college of teacher education and the relevant professional colleges. For example, the 

pre-service mathematics teachers should take educational courses at the college of teacher 

education and mathematical courses at the school of mathematics. Against this background, 

there is a debate that the level of pre-service teachers’ subject knowledge decreases since they 

can hardly see the use of the subject knowledge learnt in university for their teaching in 

primary or middle schools. In the present study, we investigated a class of pre-service 

mathematics teachers’ (n = 75) subject knowledge by asking them to construct concept maps 

for certain topics.  

 

RESEARCH METHODS 

The participants were the student teachers enrolled in one of the first author’s courses. Before 

the survey, the first author had introduced in class what a concept map is and how to construct 

a concept map to ensure that they acquired the basic concept mapping skills. At the end of the 

course, the participants were asked to self-select a topic in the middle school mathematics, list 

the relevant core concepts, and construct a concept map with the core concepts by referring to 

the knowledge system of the textbooks. The concept maps were then analysed qualitatively 

and a holistic score was assigned for each concept maps.  

 

FINDINGS 

First, the student teachers had a good grasp of the knowledge of mathematics in middle 

schools, but their subject knowledge was not improved with the increase of schooling stages. 

For example, few of them were able to relate the matrix transformation learnt in university to 

the solution of simultaneous equations learnt in middle schools. Second, the concept maps 

reflected individual difference in processing knowledge and a gap was detected generally 

between the student teachers’ knowledge structure, as reflected by their concept maps, and 

that of mathematics textbooks, which suggests that the student teachers were unfamiliar with 

the mathematics textbooks of middle schools. Third, the concept maps also showed that some 

of the student teachers lacked deep understanding or even held misconceptions of the 

mathematical concepts. For example, many preservice teachers indicated that a function can 

always be expressed by a general algebraic expression. The findings suggest that teacher 

educators should pay attention to the advancement of student teachers’ subject knowledge. 
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THE STUDENTS’ CREATIVE THINKING ABILITY  

THROUGH ELPSA FRAMEWORK  
 

Rahmah Johar and Nurhalimah 

Universitas Syiah Kuala 

 

Creative thinking as one of the competences needed to solve non-routine problems set 

in various real-world contexts at the Program for International Students Assessment 

(PISA). Meanwhile, Indonesian students’ mathematics performance at PISA has been 

at the lowest five countries in the last five assessment periods. Indonesia’s pedagogical 

practices restrict opportunities for creative problem solving (Johar, Patahuddin, & 

Widjaja, 2017). The ELPSA framework was introduced into Indonesian schools to 

encourage classroom teachers to focus on mathematics processes rather than direct 

instruction only. ELPSA contains five components within a learning cycle, such as 

Experience, Language, Pictorial, Symbol, and Application (Lowrie & Patahuddin, 

2015). ELPSA framework sees learning as an active process in which learners 

construct their own way in understanding a problem through the process of creative 

thinking leading to students learn mathematics meaningfully. This article investigated 

the development of students’ creative thinking abilities through the ELPSA framework 

in teaching transformation geometry.  

Data was collected over five lessons, two lessons for teaching the topic of reflection 

and one lesson for each topic of translation, rotation, and dilation. The teacher 

designed non-routine tasks that required divergent thinking for component A (app- 

lication) of ELPSA framework. Fifteen students from Grade 8 (14 years old) in a junior 

high school in Aceh participated in the study, with data from five students were 

analysed to ascertain their creative thinking abilities by test and followed by the 

interview. The participants were of varying mathematics ability. Creativity assess- 

ments were given to the students at the end of each topic, its called quiz 1, 2, 3, and 4. 

Students’ creative thinking ability was scored by using a rubric, level 1, 2, 3, 4, and 5.   

Results revealed the progression of students’ creative thinking ability, except for quiz 

4. However, there is no student who fulfils the originality level (level 5 of creativity). 

Indonesian students are unfamiliar with these kinds of expectations, so more sustained 

periods of engagement are required in order to foster students’ creative thinking ability 

through ELPSA framework.  
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TEACHERS’ EFFORT IN IMPLEMENTING 

DEMOCRATIC CLASSROOM IN MATHEMATICS LEARNING  

 

Rahmah Johar and Dian Patmawati 

Universitas Syiah Kuala 

 

The mathematics learning in Indonesia tends to be started by presenting abstract 

information such as definition, formula or standard algorithm. Teachers rarely give 

students opportunities to solve problems using their own way (Fauzan, Plomp, & 

Gravemeijer, 2013). Consequently, students do not have opportunities to give their 

opinion in solving problems, the learning is not interactive and students feel ‘being 

forced’ to accept the knowledge that is not meaningful for them. In order to solve this 

problem, teachers need to implement democratic classroom in the mathematics 

learning. The research problem is ‘what are teachers’ efforts in implementing 

democratic classroom in mathematics learning?’ 

Observations were conducted in one of the junior high school class in Aceh, Indonesia, 

one teacher was involved. The observation was conducted for two meetings. The 

teacher gave three open ended problems in the first meeting and two open ended 

problems in the second meeting. The lesson was recorded. A questionnaire about 

teacher’s perception of her efforts in implementing democratic classroom during the 

lesson was administered to the teachers after the lesson, followed by a short interview. 

The observation indicator of democratic classroom is adapted from Daher (2012). Data 

was analysed by video watching for several times, transcribing and re-reading the 

transcripts. Furthermore, the transcripts were compared to the field notes to gain 

deeper insights of teacher’s effort.  

The results show that teacher’s effort in implementing democratic classroom include: 

1) giving students freedom to present their opinions, ask questions, choose resources 

and discuss how to solve problems using their own way, 2) agreement on the 

conclusion, 3) being fair in treating the students and providing feedback and, 4) not 

interrupting students when they are presenting. The results indicate that a democratic 

class enable students to learn mathematics in a more engaging environment. 
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LIFELONG EDUCATION FOR ADULT NUMERACY: 

IMPLICATIONS OF PIAAC BY OECD 
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As Korean society is being transformed into an aging society, social interest in lifelong 

education is increasing. In particular, since numeracy is emphasized as one of the core 

competence for the 21st century, it is necessary to prepare educational interventions to 

enhance adults’ numeracy to their contribution to social development sustainable. 

When considering that only limited groups of people are benefited by quality of higher 

education, educational intervention for adult numeracy is concerned with equity and 

justice. In the perspective, we analysed the data from PIAAC to identify implications 

for the development of lifelong education program for adult numeracy. PIAAC is a 

Programme for the International Assessment of Adult Competencies conducted by 

OECD. It assesses the proficiency of adults from age 16 onwards in literacy, numeracy 

and problem solving in technology-rich environments that are relevant to adults in 

many social contexts and work situations, and necessary for fully integrating and 

participating in the labour market, education and training, and social and civic life.  

In this paper, we analysed descriptive statistics for numeracy by diverse backgrounds 

in order to assess Korean adults’ numeracy level and compare it with other countries. 

The analysis shows that the mean in the numeracy for adults of 16-64 years old is lower 

than the OECD mean. In addition, the age 16-19 group is the highest mean score 281. 

On the contrary, the mean of the age 60-64 group is 221, which ranks the 23rd among 

the 26 participating countries and the achievement gap between the two age groups is 

the biggest among the participating countries. Also, we found out the gap between 

groups of diverse social backgrounds within Korea. The groups of born in 

country(264), male(269), full-time employed(265), employee(267) show significantly 

higher mean score than the groups of born in regions other than country (231), 

female(258), part-time employed/unemployed(255), self-employed(256). This 

research implies that it is of essence to develop a lifelong education program to 

enhance numeracy for adults who are in a marginalized group in ages or social 

economic status in Korea.  
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A COMPARATIVE ANALYSIS OF MATHEMATICAL TASKS 

FOR GIFTED STUDENTS IN KOREA AND THE UNITED STATES  
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Ewha Womans University 

 

Korea and the United States have implemented different gifted education systems with 

different histories and culture. There are many previous researches on gifted education 

and it is still going on. However, in both countries, research topics on gifted education 

are concentrated on characteristics of students and curriculum (Min et al., 2011; 

Jolly&Kettler, 2008). In other words, there are relatively few comparative studies 

among countries. Therefore, the purpose of this study is to analyze the tasks of each 

country, see what and how they differ and find implications.  

There are two research questions; a) How much the cognitive demands are required of 

gifted students in Korea and the United states when they learn?, b) What are the 

characteristics of the two countries in gifted education tasks?  

The data are the tasks developed by one of the gifted education institutes in Korea and 

the Center for Gifted Students in USA, respectively.  

Although Korea and the United States have different gifted educational systems, a 

similar pattern is observed by Bloom's Taxonomy revised. According to Davis and 

Rimm(2004), gifted learners should be given more time for high order thinking; 

analyzing, evaluating, creating. As a result of analysis, both Korea and the United 

States are experiencing a considerable shortage of evaluating and creating. In addition, 

there were more geometric lessons with various manipulative materials than other 

areas. And the contents of geometry were weigh are weighted towards some.  

In conclusion, there are common aspects of task although they have different history 

and educational systems. Gifted learners should have opportunity to evaluate and 

create something with various experiences, improve their cognitive level, and to 

develop gifted education.  More specific field studies are needed.  
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PRE-SERVICE TEACHER REFLECTIONS                                              

ON PRACTICES OF ASSISTANT TEACHER 
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1Graduate School of Inha University, 2Inha University 

 

RESEARCH PURPOSE 

This study aims to investigate reflections of pre-service teachers through practicing as 

assistant teachers in mathematics classrooms. For the purpose of this study, two 

research questions on reflections are addressed; 1) What do pre-service teachers reflect 

on their assistant teacher practices? and 2) As times go by, how do the reflections of 

pre-service teachers on the practices shift? 

 

METHODS 

We designed a case study as a qualitative method. During 2015 spring semester, 

secondary pre-service mathematics teachers took a course designed for working as 

assistant teachers in regular mathematics lessons in a middle school. Eleven 

pre-service teachers took this course and participated as assistant teachers in 

mathematics lessons in the middle school. One or two pre-service teachers went to the 

lessons once a week and ten times in total. The pre-service teachers talked with 

students when a teacher gave time to his students for solving problem and waited 

sometimes when the teacher had time to explain things such as mathematical concepts 

and principles to his students. Whenever they participated in a lesson, the pre-service 

teachers made self-report of reflections on their practices. As a case study, two 

pre-service teachers were selected in this study. During the spring semester, data such 

as self-reports on their practices and videotapes of five meetings were collected. The 

self-reports as main data were analysed by four aspects of reflections. 

 

RESULTS 

As results, the reflections on assistant teacher practices of two pre-service teachers 

were examined in the four aspects such as teacher, students, mathematics contents, and 

themselves. We will show the different percentages of four aspects between the 

preservice teachers in a bar graph and show changes over time in a table. The assistant 

teacher practices were intended to extend the chance of field experiences for secondary 

pre-service mathematics teachers. In previous studies, pre-service teachers during their 

field experiences reflected more on themselves than other aspects in general, while this 

study found that most reflections on assistant teacher practices included reflections on 

teacher and students. This difference implied that preservice teachers could have 

different reflections according to the types of field experiences that they participated 

in. 
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STUDENTS' VALUES ABOUT MATHEMATICAL STORIES AND 

CONNECTIONS IN TERM OF LEARNING MATHEMATICS IN 

THE CONTEXT OF CLASSROOM USING OPEN APPROACH 
Khemthong Kotmoraka, Alisa Moonsri, Narumon Changsri and Maitree Inprasitha 

Khon Kaen University, Thailand 

 

This study aimed to explore Students’ Values about Mathematical stories and 

connections in term of Learning Mathematics in the Context of Classroom using 

Open Approach. The target groups were consisted of 640 students- fourth grade 

students in the second semester of 2015 academic year. The target groups were 

separated into 2 groups; 1) students who were taught by internship students, and 2) 

students who were taught by in-service teacher.  Both were used Open Approach as a 

teaching approach based on Inprasitha, 2011 as following; 1) posing open-ended 

problem 2) students’ self-learning 3) whole class discussion and comparison and 4) 

summing up by connecting students’ emergent mathematical ideas. Data were 

collected by using questionnaire students' values about mathematics (Seah, 2013) that 

divides opinion into five levels. The research findings found that two groups of 

students agree with all item as the following table. 
 

Students’ Values 

means ( X ) 

teach by internship 

students 

teach by in-service 

teacher 

connecting maths to real life 4.42 4.25 

hands-on activities 4.17 3.92 

using concrete materials to 

understand mathematics 

4.13 3.90 

students posing maths problems 4.12 3.90 

Table 1: shown the means of students’ values. 

The table above shows that the means of students’ values between the 2 groups who 

were taught by internship students and in-service teacher.  
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CONSTRUCTING THE HIGHER-ORDER MATHEMATICS 

COMPETING MODELS FOR JUNIOR HIGH SCHOOL 

STUDENTS IN TAIWAN 
 

Hsin-Yi Kung1 and Ching-Yi Lee2 

1National Changhua University of Education, 2Feng Chia University, Taiwan 
 

The focus of mathematics education has gradually transferred from content knowledge to the 

factors of affect, beliefs, motivation, and disposition. De Corte et al. (2004) proposed a theory of 

self-regulated mathematical learning and problem processes that incorporate affect, volition and 

cognition, and included five factors of domain specific knowledge, heuristics strategies, 

meta-knowledge, self-regulatory skills and mathematics beliefs. Although they provided the 

possible factors in this higher-order mathematics model, the relations among these factors 

remains unclear. The study aimed to construct three higher-order mathematics competing models 

and examine the model fit of these competing models. According to different perspectives, the 

first model which is the “integrated relation model” indicates that heuristics strategies, 

meta-knowledge, self-regulatory skills and mathematics beliefs correlate to one other and all 

jointly predict domain specific knowledge. The second model which is the “affect －

metacognition/meta-knowledge－cognitive-constructivist model” suggests that affect/belief is 

the primary factor to predict other self-regulatory factors and then influence domain specific 

knowledge. The third model which is the  “affect－volition－strategy－achievement model” 

conducts that meta-knowledge, self-regulatory skills, and strategies are the mediators between 

beliefs and domain specific knowledge. The research question is: Among these three competing 

models, what is the best model to represent the higher-order mathematics model for junior high 

school students in Taiwan?  Questionnaires were administered to 1,093 seventh grade students 

enrolled in middle schools of Central Taiwan. Structural equation modeling was utilized to 

examine three competing models. Based on model evaluation criteria of χ², CFI, TLI, RMSEA, 

critical N, and ECVI, the results indicated that the goodness-of-fit for the third model “affect－

volition－strategy－achievement model” fits the data well among three competing models. The 

results also suggested that there were several mediating effects, including the first mediating 

effects of meta-knowledge and self-regulatory skills, from mathematics beliefs to heuristics 

strategies, and the second mediating effects of heuristics strategies, from meta-knowledge and 

self-regulatory skills to domain specific knowledge. According to the results, the study suggests 

that an effective mathematical learning should value the influence of different factors on learning 

process. The mathematics belief factor is the primary factor, the meta-knowledge, self-regulatory 

skills, and heuristics strategies are the mediating factors and these factors predict achievement 

directly and indirectly. The study offers a reason for why a higher-order mathematics model is so 

important in explaining Taiwanese students’ mathematics learning; an intervening effect from 

the perspective of cultivating students’ affection, metacognition, and strategies should be taken 

into account.  
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MATERIAL BASED DEVELOPMENT OF MATHEMATICS 

TEACHERS’ KNOWLEDGE FOR TEACHING PROBLEM 

SOLVING 
 

Ana Kuzle 

University of Potsdam 

 

The (inter-)national educational standards have recognized the importance of problem 

solving in mathematics education and for that reason have strongly endorsed its 

inclusion in school mathematics. Nevertheless, mathematics problem solving 

continues to remain a challenge for many teachers for different reasons, such as limited 

knowledge for teaching problem solving (Chapman, 2016) and lack of practical 

teaching materials with didactical comments (Kuzle, 2016). Efforts to design, use, and 

do research on problem solving material for teachers in a real setting through 

collaborative work between researchers and practitioners may promote development 

of teachers’ knowledge for teaching problem solving and with it implementation of 

problem solving in school mathematics. 

In this poster presentation I demonstrate the possibilities for developing materials 

using design-based research (DBR) focusing on the development of mathematics 

teachers’ knowledge for teaching problem solving. In accordance with DBR, the 

design process was informed by theoretical basis with respect to models of teachers’ 

knowledge for teaching problem solving (e.g., Chapman, 2015, 2016). More 

concretely, I focus on the question: How does material informed by models of 

teachers’ knowledge for teaching problem solving foster or hinder the implementation 

of problem solving in mathematics? The results are based on eight DBR-cycles with 

four teachers through which I demonstrate how the theoretical ideas got implemented 

and what design elements fostered or hindered the implementation. On this basis I 

offer suggestions for how material related to development of teachers’ knowledge for 

teaching problem solving might be designed to support their diverse needs. 
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A STUDY OF DIFFICULTIES WITH SIMPLE ARITHMETIC 

WORD PROBLEMS 
 

Kwan Yuet Ling1, Wong Ka Lok2 and Ki Wing Wah2 
1The Education University of Hong Kong, 2The University of Hong Kong 

 

The study was to investigate why a group of 27 students were having much difficulty in 

handling simple word problems. The students in the study were aged 7 to 9, studying in 

the same school. Students were presented with three particular kinds of problems 

designed to reveal how they would approach the problems, what difficulties they 

would encounter and why. The first kind of problems was relatively simple, requiring 

the students to combine two known quantities to produce a total. The second kind was 

slightly more difficult and required the children to find a missing addend – the first 

addend and the total being known quantities. These two problems were based on the 

work of Riley, Greeno & Heller (1983) who had categorised change problems 

according to the unknowns to be found. The third kind of problem was a guessing 

game based on the work of Neuman (1987) where the total was known and the children 

had to work out different possible combinations of the two parts of the whole. 

The conceptual framework of the study has its central concern with the part-whole 

relationship of quantities as the core mathematical concept. The framework involves 

the interrelationship among word problems, mathematical tools and world 

experience – and their impact on the conceptual understanding of the part-whole 

relationship. 

Difficulties were identified in both procedural knowledge (inability to subitise, 

insufficient flexibility in the choice and use of arithmetic procedures, inability to use 

counting on, inability to count by grouping or regrouping) and conceptual knowledge 

(failure to understand the part-whole relationship). It also appeared that the students 

had little real-life experience that was directly relevant and applicable to the arithmetic 

problems encountered in the school context. They thus found it difficult to make sense 

of the arithmetic word problems.  

For teachers struggling to understand why their students are not succeeding as they 

would like, the study will help them identify particular difficulties on the part of the 

students and design appropriate remedial instruction. 
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SOLVING AND UNDERSTANDING MULTIPLE 

PROPORTIONALITY PROBLEMS 
 

Síntria Labres Lautert1, Analúcia D. Schliemann2 and Anna Barbara Barros Leite1 

    1UFPE, Brazil, 2Tufts University, USA 

 

Vergnaud’s (1983) analysis of multiplicative structures and of scalar and functional 

strategies for solving missing value proportionality problems led to a wealth of work 

on how different populations solve simple proportionality problems favoring one or 

the other strategy. These strategies, which focus on the relationships between the 

quantities in a problem, may constitute a sound basis for the meaningful learning of the 

rule-of-three algorithm to compute the fourth proportional. 

We analyzed how 16 high school students, who solved the following multiple 

proportion problem using the rule-of-three, considered scalar and functional relations 

among the quantities in the problem:  
“Marina is preparing a chocolate cake. The recipe states that, for each cup of milk, one 

should use 2 eggs. For each egg, one uses 3 cups of flour. How many cups of flour does 

Marina need to make a cake with 3 cups of milk?”  

Textbooks adopted by the students’ school emphasized scalar and functional 

relationships among quantities in verbal problems, before introducing the rule-of-three 

as a sequence of computational steps to find a solution. The students solved the 

problem in writing and, in individual interviews, explained how they did so.  

We found that the rule-of-three representation was set up by the students after 

considerations about the scalar and/or functional relations among quantities. These 

were depicted as data tables or as pairs of values, usually with referents and with 

arrows to indicate the scalar or the functional relationships between two elements in a 

pair. They also explained their solutions in terms of these relations. Only a few 

students represented the rule of three as an equality of two ratios and only a few 

showed the computational steps to reach the solution to the problem, perhaps because 

the numbers in the problem were small and results could be easily found by mental 

computation.   

Our data suggest that students’ understanding of relationships among quantities in 

verbal problems can in fact constitute a basis for their appropriation of algorithmic 

procedures.  In this process, it is helpful for students to consider pairs of physical 

quantities or pairs of numbers with their referents, rather than pairs of pure numbers, as 

they usually appear in the rule-of-three representation.   
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THE EFFECT OF ‘JUST DO MATH’ ACTIVITIES ON CHILDREN 

FROM A REMOTE AREA IN TAIWAN 

 

Hsiu-fei Lee1 and Chien-Pang Lee2 

1National Taitung University, 2National Kaohsiung Marine University 

 
The results of TIMSS (2015) showed that more than half of the 4th grade children possessed 

negative attitude toward math (56% disliked math and 60% had low confidence in math) 

although Taiwan ranked number 4 in mathematics. Additionally, the polarization of 

Taiwanese children’s math performance was extreme among the top 7 Asian economies. A 

new curriculum project called ‘JUST DO MATH’ (JDM) has thus developed to fix such 

problems (Lin & Chang, 2016). The theories for JDM are meaningful learning with game-like 

and hands-on activities tackling various mathematical concepts which are considered by 

teachers difficult for most children to learn. The activities are played before the concepts are 

officially introduced in class. The results shown in this paper were part of the JMD project of 

which children were from a remote area in Taiwan called Taitung. The 5th grade children were 

given math attitude questionnaires before and after playing the JDM activities before the 

geometry topics officially taught in class. Also, a math test was given to them before the test 

and at the end of the semester. The results of T-test (Table 1) showed that the differences of 

the mathematical scores was significant for all children at time 2 and between two ethnic 

groups (indigenous vs. nonindigenous). Although boys scored higher than girls, the 

difference was not significant. The improvement was not significant for the nonindigenous 

children; however, the improvement was evident for the indigenous group. On the other hand, 

the change of math attitude was not significant. The reason might be it needs more time for 

the attitude to change. 
Experiment Group 1 Group 2 p-value 

Test Time 1: 58.86 Time 2: 80 0.004* 

Ethnicity Indigenous: 63.67 Nonindigenous: 79.82 0.021* 

Gender Male: 71.74 Female: 66.10 0.492 

Cross-analysis 1 
The 1st test of 

nonindigenous: 73.17 

The 2nd test of 

nonindigenous: 87.80 
0.072 

Cross-analysis 2 
The 1st test of 

indigenous: 48.13 

The 2nd test of indigenous: 

76.10 
0.003* 

Table 1: The results of t-test for math test of difference groups 

 “*” denotes significant at α = 0.05 
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A COMPARATIVE ANALYSIS OF VISUAL REPRESENTATIONS 

IN ELEMENTARY MATHEMATICS TEXTBOOKS OF KOREA 

AND SINGAPORE: FOCUSED ON ADDITION OF FRACTIONS 
 

Jiyoung Lee1, JeongSuk Pang2 and 3Kyeonghun Kim 
1Paldal Elem. School, 2Korea National Univ. of Ed., 3Punghyang Elem. School 

 

Addition and Subtraction of fractions with different denominators are central to 

mathematical topics that are directly linked to quantitative reasoning with three levels 

of units (Steffe & Olive, 2010). As quantitative reasoning with units is not 

automatically developed, a variety of visual representations which help students be 

engaged in such reasoning process are employed in curricular materials. Given this 

background, this study compared and contrasted in what ways the visual 

representations of fraction addition are used in the textbooks of Korea and Singapore 

with a focus on reasoning with units.  The subjects for this study were current 

mathematics textbooks in Korea and My Pals are Here! Maths in Singapore. Analytic 

foci were three big ideas related to reasoning with units by Lee and Pang (2016): (a) 

fixed whole unit, (b) necessity of common measure, and (c) recursive partitioning 

linked to algorithms. The topics of analysis included equivalent fractions, comparison 

of fractions, and addition of fractions.  Although Korean and Singaporean textbooks 

had commonality in using various visual representations, there were differences in 

when to deal with the topics. More interesting differences occurred in why, how, and 

how often the textbooks used visual representations in relation to the big ideas. For 

instance, regarding recursive partitioning linked to algorithms, visual representations 

in Korean textbooks are used to show that the sizes of two fractions are the same by 

equi-partitioning each of two equal units. In contrast, Singaporean textbooks tend to 

subdivide the partitioned unit when making equivalent fractions or adding fractions 

with different denominators. However, it is necessary for both textbooks series to 

reconsider the use of visual representations which help students reason with three 

levels of units through recursive partitioning and link them with algorithms. This 

poster will include detailed examples of visual representations used in both Korean and 

Singaporean textbooks, followed by strengths and weaknesses of such representations. 

As such, this poster is expected to elicit implications of constructing textbooks on 

fraction addition with different denominators. 
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EXPLORING HOW PROBLEM SOLVING STRATEGIES WERE 

TAUGHT AT ELEMENTARY SCHOOLS 
 

Shin-Yi Lee 

University of Taipei, Taiwan 

 

As mathematics is used in more and more technology and workplaces, mathematics 

teaching and learning has become a crucial part in today’s classrooms (National 

Governors Association, 2007). Problem solving plays an important role in 

mathematics teaching and learning (National Council of Teachers of Mathematics, 

2000; Schoenfeld, 1992, 2002). Literature indicated that problem solving strategies 

can be taught and need to be taught (Krulik & Rudnick, 1995). Little, however, was 

known about how problem solving strategies were taught at elementary schools in 

Taiwan. The purpose of the study was to explore how problem solving strategies were 

taught at elementary schools in Taiwan. 

Ten Taiwanese elementary-school teachers participated in the study. They received 

interviews on how they taught problem solving strategies in mathematics classrooms. 

The findings of the study indicated that the teachers didn’t specifically teach problem 

solving strategies such as working backwards in their problem solving instruction; they, 

instead, tended to merely use the strategies to solve problems when teaching problem 

solving. More studies need to be conducted with a larger group of participants to 

understand better how problem solving strategies were taught at elementary schools in 

Taiwan. It also would be worthwhile to investigate how to enhance teaching in 

problem solving strategies at elementary schools in Taiwan.  
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IMPROVING THIRD TO SIXTH GRADERS’ LEARNING 

EFFICIENCY BY MAKING MATHEMATICAL SENSE 
 

Lee Yuan-Shun 

University of Taipei, Taiwan 

 

The researcher had proposed making mathematical sense and diagnostic teaching to 

facilitate teachers’ professional development when PHD research. After 15 years’ 

research, the researcher (Lee, 2016) proposed content theory of mathematical sense as 

the knowledge system, applying the five core contexts (to give examples, to simplify, 

to draw picture, to ask why, and to recall) as the teaching strategies in the teacher 

education program and optimizing multiple teaching method. This research was to 

investigate the learning effectiveness (including cognition and attitude) for third to 

sixth graders after one-year participation in the teacher education program. 

The research method was experimental teaching. A total of 616 participating students 

were served as the experimental group, while the rest of 1485 non-participating 

students were served as the control group. The data collection included the four 

mathematics exams from two semesters (T1-Oct. 2015, T2-Jan. 2016, T3-Apr. 2016, 

and T4-Jun. 2016) and three questionnaires on attitudes (A1-Sept. 2015, A2-Jan. 2016, 

and A3-Jun. 2016). The questionnaire on attitude was mainly adopted from TIMSS 

2011, which was a four-point scale and consisted of 18 questions.  

In this research, using T1 as the covariate and T2~T4 as the dependent variables, the 

exam scores revealed significant differences between the experimental and control 

groups. The results showed that the experimental group was superior to the control 

group. Meanwhile, the mean differences between these two groups were 2.56, 3.98, 

and 5.09, respectively; this indicated the differences in score for the two groups began 

to widen. The Mean (SD) of three questionnaires on attitudes are 2.03(0.60), 

2.11(0.65), and 2.11(0.63). The paired-samples t-test showed significant differences 

between A1 and A2, and between A1 and A3; which indicated student didn’t perform 

very positive attitudes during the program. Nevertheless, no significant differences 

between A2 and A3 also indicated students’ attitude performance did not worsen.  

Making mathematical sense needed students to actively show the five core contexts; 

these were all novel learning experiences for them. When we asked students to do these 

at the very beginning of the research; they often felt pressured. That’s why students’ 

learning achievement improved significantly but their attitude performance did not. 

According to the above results, the researcher believed that once students could be 

aware of mathematical sense, their attitudes would change positively as well. 
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EXPLORING THE MATH CREATIVITY PERFORMANCE OF 

GIFTED ELEMENTARY SCHOOL STUDENTS 
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1National Taipei University of Education, Taipei, Taiwan 

2An-ho Elementary School, New Taipei City, Taiwan 

 

Deal and Wismer (2010) believed that math creativity can be developed through 

open-ended problems, while Stillman, Cheung, Mason, Sheffield Sriraman and Ueno 

(2009) believed that challenging tasks can help develop math creativity. The purpose 

of this study was to investigate gifted elementary school students’ math creativity 

performance through teaching both open-ended problems and challenging tasks. 

The researchers defined the math creativity of this study with the math creativity at the 

K-12 level proposed by Liljedahl & Sriraman (2006). The theoretical framework of 

math creativity curriculum design was based on Sriraman (2005) and Stillman et al. 

(2009). The research was conducted through class observation. The subjects were 20 

gifted fifth-graders. 11 two-hour courses were provides. The teaching material 

included: (1) open-ended problems, such as: among 2/3, 3/8 and 7/15, please explain 

how each number differs from the others; (2) challenging tasks, such as: please find the 

four graphs that five connected equilateral triangle constitute, choose three, and 

arrange them to form a line symmetric graph. 

With open-ended problems and challenging tasks as materials, the subjects were taught 

through group discussion, dialectics, the generalization of solutions, and affective 

support. This study found that gifted elementary school students’ math creativity 

performance was as follows: (1) they were able to produce various solutions; (2) they 

were able to think about and classify their solutions from different perspectives; (3) 

they were produce new solutions on the basis of those others had provided; (4) they 

were willing to try to produce unusual solutions. 
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A CASE TEACHER’S TEACHING OF MATHEMATICAL 

THINKING IN CHINA  
 

Na Li and Ida Ah Chee Mok 

Faculty of Education, The University of Hong Kong                            

 

Mathematical thinking (MT) is essential for learning and teaching mathematics. It is 

revealed that Asian mathematics teachers used to place emphasis on thinking and 

understanding in classroom teaching (Stigler & Perry, 1988). Especially in China, MT 

has been one of the “Four Basics” (basic knowledge, basic skills, basic thinking and 

basic activity experience) for Chinese mathematics education (Ministry of Education, 

2012). This study aims to examine the teacher’s teaching of MT by case study. An 

experienced female teacher was selected from a Beijing common school. Two 

questions are considered: a) how is the teacher’s lesson planning for MT, and b) what 

about her classroom teaching from the perspectives of teacher questions and oral 

statements? Relevant data (textbooks, lesson plans and videotaped lessons) were 

collected and analysed. Based on western and Chinese literature, a framework for 

major aspects (specializing, generalizing, conjecturing, convincing, categorizing, 

analogizing, thinking of symbolic-graphic combination, thinking of transformation 

(Huagui e.g. transfer a complex problem to one or several simple)) of MT was 

developed for analysing the selected tasks. For the first question, tasks selected from 

the textbooks and then analysed them in the teacher’s lesson plans to see the thinking 

demanding level. For the second question, the types and their frequencies of MT 

involved in the questions and oral statements were considered.  In this case, the teacher 

seemed like to raise the level of demand for MT in her lesson plans but lower it in 

classroom teaching for students. MT was easily involved in teacher questioning.  For 

instance, the teacher explained a task of equations in a very detailed way to guide the 

students to generalize the common characteristics. “Let’s look into the four group 

equations, what characteristics can you find? Did you notice them? We can observe 

the characteristics of the given expressions. Can we know how many items of the 

polynomial multiply the polynomial respectively of the left equations?” However, this 

possibly limited the opportunity for the students to express their own ideas and 

thoughts during the lessons. Results indicated the teacher had the intention to make 

MT in a higher demanding level than MT but failed in classroom teaching.   
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EMBEDDING QUESTIONS IN VIDEOS FOR A HYBRID COURSE  

 

Lim Kien Hwa and Ashley Wilson 

University of Texas at El Paso 

 

In flipped classrooms, content is delivered through online videos whereas “homework” 

and activities are done in class. Benefits include: (a) freeing up class time for 

meaningful activities and formative assessment; (b) increasing student engagement; 

and (c) allowing learners to re-watch any part of a video (Bergmann & Sams, 2012). 

Jensen et al. (2015) found that learning gains are due to active learning rather than 

flipped classroom. Active learning in class requires students to first learn the content at 

home. One way to engage students is to require students to answer embedded questions 

as they watch math videos. Questions can be embedded to (a) introduce a concept, 

(b) demonstrate a procedure, (c) explain why, (d) pose a challenging problem, and 

(e) illustrate using real-life scenarios (Lim & Wilson, in press).  

We conducted a study to investigate the use of embedded questions in math videos and 

their effect on student learning in a hybrid math course.  For the 50% on-line portion, 

students watched videos and answered questions that require them to explain what they 

had learned from the videos. Students still had to turn in weekly homework which 

consists of math problems. A treatment group (T) of 19 prospective teachers had to 

answer embedded multiple-choice question as they watch videos watched videos 

whereas the comparison group (C) of 22 prospective teachers watched the same videos 

but without any embedded questions. Data were collected across 6 weeks (out of 15) 

covering angles, conversion of units, area-perimeter, Pythagorean Theorem.  The 

pre-to-post improvement for group T was higher than group C (effect size of 1.60 vs. 

1.35) but not significant; the test items are substantially different from embedded 

questions.  Group C re-watched parts of the video more often than group T (1.4 times 

vs. 1.2 times) but not significant; T students took more time to watch the videos 

because of embedded questions.  In pre-post surveys, opinions of the course improved 

for C but not T students. The embedded questions were designed to elicit student errors 

so that students can learn from their mistakes; however, students’ confidence and 

video-watching experience might be negatively affected by wrong answers. This study 

suggests embedding questions must consider both cognitive and affective aspects. 
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CAN ACTION SUPPORT THOUGHT AND PROMOTE SPATIAL 

REASONING? 
 

Amy Lin  

Brock University, Ontario, Canada 

  

There are a growing number of research studies based on embodied cognition theories 

that support the idea that the physical manipulation of objects and the sense of touch 

affect thinking and learning (Barsalou, 2008). However, when teaching mathematics, 

often knowledge is still ideally expressed in verbal and written form and coming from 

the mind. Thinking has also been facilitated by direct actions on objects such as 

manipulatives and touchscreens showing actions that are directly connected to the 

thinking on a task will improve performance (Segal, Tversky, & Black, 2014).  In 

designing such tasks, the challenge is to prescribe bodily actions that directly support 

the targeted learning outcomes of the activity.  This study will explore the effect of 

gestures and gestural interfaces on children’s performance in math – in particular, 

spatial reasoning. The research questions are:  What types of gestures (iconic, deictic, 

metaphoric) emerge when children are solving spatial reasoning problems? Do 

gestures and gestural interfaces help promote a child’s understanding of spatial 

reasoning? 

Fifteen four- to six-year-old children were asked to perform spatial reasoning tasks 

involving the composition of shapes using different interfaces.  Firstly, children were 

given tasks with concrete shapes to form pictures. Children then used the developed 

iPad app to complete similar spatial tasks. Each child completed two culminating 

tasks, first combining pattern blocks in different ways to form triangles, followed by an 

open-ended spatial question. The children’s hands were videotaped and an analysis of 

the types of gestures produced, time to finish the task, and accuracy was completed for 

each child and each task.   

The results showed how various types of gestures revealed embodied knowledge.  

Representational and metaphorical gestures used, could be interpreted as physically 

linking mental processes to the physical environment to help give the child meaning. 

Children who used gestures such as slides, rotations, and reflections on the touchscreen 

to complete the task performed better on the culminating tasks. Combining the use of 

gestures with concrete materials and the use of gestural interfaces resulted in 

performing the best on the culminating tasks, supporting the claim that cognition is 

based on the body and that gestures promote spatial thinking.   
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PRESERVICE TEACHERS FOMAL AND INFORMAL 

SOLUTIONS IN DECIMAL OPERATIONS 
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Formal solution methods refer to strategies which are deeply based on symbolic 

knowledge or complicated algorithms that are explicitly taught in mathematics lessons 

so students acquire mathematics knowledge through formal classroom instruction such 

as precedence rules for order of operations. Informal solution methods refer to the 

strategies that are not acquired through formal classroom mathematics lessons 
(Baroody & Coslick, 1998; GroBe, 2014). We investigate what types of formal and 

informal solution methods they have been using, what solution methods produces 

higher responses on the decimal operation test. Then we identify what types of correct 

and incorrect solution responses between formal and informal responses they have 

been most frequently used.  

The participants were the students enrolled in a mathematics class in a teacher 

education program at a mid-western university. The DKT was specifically designed to 

measure preservice teachers’ knowledge of solving problems in different ways using 

decimal operations in areas related to: (1) addition (one item), (2) subtraction (one 

item), (3) multiplication (two items), and (4) division (two items).  

The result indicates that preservice teachers substantially produced higher formal 

solution responses on the decimal operation test. This implies that the majority of 

preservice teachers were heavily influenced by their previous lessons that are explicitly 

taught in mathematics classrooms. The findings also revealed that the majority of the 

preservice teachers demonstrated the most correct responses between formal and 

informal solution methods when using the standard algorithms method. Interestingly, 

they produced most incorrect responses between formal and informal solution methods 

using standard algorithms as well. Throughout this study, we found that preservice 

teachers demonstrated higher formal solution methods when computing decimal 

operations.  
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THE INVESTIGATION OF COGNITIVE COMPONENTS OF 
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Su-Wei Lin and Yi-Chun Cheng 

National University of Tainan, Taiwan 

 

The quality issues of an assessment for the test developers are not only concern the 

precise measure of student abilities, but also to help teachers achieve effective 

instruction by regulating teaching strategies and materials based on the feedback of the 

test information. Through item analysis, task difficulty is one of the significant issues, 

with cognitive component analysis can help test developers construct tests from the 

cognitive perspective to make the test constructing process more efficient and 

systematic (e.g. Embretson & Daniel, 2008). This study aims to develop an encoding 

framework of the cognitive component related to geometric achievement test. Item 

difficulty is concurrently calibrated under One-Parameter-Logistic Item Response 

Theory model of the response of 4800 participants from the sixth to eighth grade. In 

this research, geometry items (from the sixth to eighth grade) are used for coding, 

exploring how well it works for explaining the variety of item difficulty and describing 

the cognitive characteristics of different levels. 50 items are analysed; all items are 

coded with cognitive components, e.g. formula information, visualization, 

problem-solving steps needed, distractions, and novelty of context. Multiple regression 

analysis is conducted to calibrate the correlation between the components and item 

difficulty. The proportion of item difficulty variance explained is 54%. Dividing 50 

items into 3 item difficulty levels: based on the difficulty of item is less than - .5, 

between -.5 to .5, and greater than .5. We find items in different levels show a little 

difference on cognitive components. The Researcher hopes that the result is in 

expectation to make the task constructing procedure more simplify, to make the task 

difficulty under controlled within the desired extent; another, the cognitive 

components proposed in the present research will provide references for constructing 

geometry test items. 
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THE LATENT CLASS GROWTH ANALYSIS OF GOAL 

ORIENTATION AND MATHEMATICS ACHIEVEMENT 
 

Su-Wei Lin and Tai Wen-Chun 

National University of Tainan 

 

De Corte (1995) indicates that one of the characteristics of effective learning is 

goal-oriented learning, that is, learning goal which can lead students’ study behaviour 

is an important factor affecting learning performance. However, few studies have 

explored the relationship between changes in student goal orientation and learning 

performance changes. Therefore, this study aims to investigate the patterns of change 

of goal orientation and mathematical performance of students from sixth grade to 

eighth grade, as well as the association between this two patterns of changes. 

There are 1518 students participating in this three-year study. This study uses the 

Rasch model to estimate the student's math abilities and goal orientation scores in 

grades 6 through 8, respectively. This study further conducts the latent class growth 

analysis (LCGA) by using Mplus software to examine the students' optimal growth 

models of goal orientation and mathematics achievement, as well as conducts the 

corresponding analysis to examine the relationship between this two growth models 

finally.  The results show that the optimal model of LCGA of goal orientation is a four 

- class of models, that is, the changes of students' learning goal orientation can be 

divided into four groups. The change in the orientation of most students' math learning 

goals is the higher the grade, the more negative the goal orientation of mathematics 

learning. Only those students who initially have positive learning goal orientation will 

develop their learning goals positively. The optimal model of LCGA of students' 

mathematics achievement is five-class model. Based on the intercepts and slopes of the 

five groups, it shows that there is half of the students’ math achievement is progressing 

year by year, however, the math achievement of the low achiever, their mathematics 

achievement is not increasing year by year. Finally, the relationship between the latent 

classes growth of mathematics achievement and goal orientation is analyzed by using 

the corresponding analysis. The result shows that there is an association between this 

two growth models, it suggests that there is something close to a large effect size, χ2 

(12, n = 1518) = 313.469, p < .05, and Cramer's V = .262. Based on the above research 

results, it is shown that the change of mathematics learning goal orientation is related 

to the change of mathematics achievement. If the student's learning goal orientation is 

positively developed, the mathematics achievement would be improved. It suggests 

that teachers should not only focus on the instruction of the math knowledge and skills, 

but also pay attention to the development and cultivation of students' goal orientation. 
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Based on the implementation of the standardised final written examination in 

mathematics in Austria (“Matura”) a theory-based and empirically supported 

competency level model was developed. This model distinguishes three process 

oriented mathematical aspects, namely operating, modelling, and reasoning (O-M-A). 

The competency levels are described based on activity theory (Bruder & Schmitt 2016) 

and are formulated separately for every process oriented aspect. Basically, the first two 

levels represent different stages of complexity regarding pattern orientation. The third 

level adresses field orientation, i.e. to solve a task the student has to recognise a 

mathematical problem in a different context or to conduct an independent analysis. The 

fourth level includes field orientation as well as a high degree of autonomy and 

creativity (c.f. Siller et al. 2015 for the full model).  

The empirical evaluation of the Austrian Matura 2015 (n=17450) and 2016 (n=16919) 

is currently in progress. With regard to difficulty the analyses of the 2016 data show 

that out of the 24 tasks 9 were assigned to Level 1, 10 were assigned to level 2, and 5 

were assigned to level 3, which corresponds well with item difficulty.  

Exploratory models of the data so far do not suggest the three-factor solution O-M-A 

but a one-factor model. We assume that a focus on more homogeneous tasks will 

change the outcomes. Interestingly, we found that the distribution of the tasks varies 

from test to test: in the 2014 test run for the standardised Matura, the share of tasks 

concerning O-M-A was 62%, 20% and 18%. In the first standardised Matura 2015 the 

share was more balanced into 40% O, 44% M and 17% A. In 2016 this changed again 

to 42% O, 33% M and 25% A. Thus, the trend goes towards a more even distribution of 

the process oriented aspects. With the O-M-A-model, a tool is provided to check 

whether an examination addresses an array of mathematical processes or not.  
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RELATIONSHIPS BETWEEN TRAIT EMOTIONAL 

INTELLIGENCE AND BEHAVIORAL PROBLEMS OF CHINESE 

STUDENTS WITH MATHEMATICS LEARNING DISABILITY 

 

Di Liu1 and Frederick Koon Shing Leung2 

1East China Normal University, 2The University of Hong Kong 
 

Trait emotional intelligence (trait EI) has received much attention in the literature and 

generated intense demand for applications in educational settings (Petrides, Pita, & 

Kokkinaki, 2007). Trait EI concerns emotion related dispositions and self-perceptions 

measured via self-report.  Despite all this research, there has been few research on the 

relationship between trait EI and internalizing and externalizing behaviours in mathematics 

learning disabilities (MLD).The present study represents some further development in the 

study of assessment of trait EI and its relationship with problem behaviours of Chinese 

students with MLD. More specifically, it was hypothesized (H1) that there will be significant 

differences in global trait EI scores between two groups; (H2) that there will be different 

components of trait EI relate to problem behaviour in Chinese students with MLD.  

In the entire sample, 63 children met criteria for MLD (21 males), 75 children were classified 

as control group (44 males) (Table 1). They ranged in age from 8 to 12 years. The mean age in 

the MLD group was 9.60 years (SD = 0.97), in the control group was 9.59 years (SD = 0.96). 

We received the permission of all the students. The Trait Emotional Intelligence 

Questionnaire-Child Form and The Child Behaviour Checklist-Teacher’s Report Form were 

used. 

Analysis revealed significant individual differences in global trait EI, with non-MLD 

participants scoring higher in comparison to their MLD peers. While there were no gender 

differences in global trait EI scores and nine factors, further analysis revealed significant 

group differences on Adaptability, Emotion perception, Self-esteem and Self-motivation, 

with MLD participants scoring lower than non-MLD participants on all four factors. The 

result revealed a significant main effect of group on global trait EI scores.  For MLD group, 

Emotional Intelligence was significantly correlated negatively with Attention Problems and 

Thought Problems. The regression found that Social Problems and Thought Problems can be 

significantly predicted by Peer Relations. Attention Problems can be significantly predicted 

by Adaptability and Self-Esteem. Hyperactivity/ impulsivity can be significantly predicted by 

Emotion Expression.  Based on these results, we noted that personality traits are useful as 

long as they can help explain and predict relevant behaviours. If we can teach MLD students 

positive strategies for expressing emotion and the generation of new problem-solving ideas, 

then their socio-emotional well-being may be enhanced.  

Reference 
Petrides, K. V., Pita, R., & Kokkinaki, F. (2007). The location of trait emotional intelligence in 

personality factor space. British Journal of Psychology, 98, 273-289. 



 

________________________________________________________________________________________________________________________

2-61 
2017. In Kaur, B., Ho, W.K., Toh, T.L., & Choy, B.H. (Eds.). Proceedings of the 41st Conference of the International 

Group for the Psychology of Mathematics Education, Vol. 2, p. 61. Singapore: PME. 

THE INFLUENCE OF LESSON STUDY ON THE DEVELOPMENT 
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Inquiry-oriented learning is one of the mainstreams of education nowadays, as science, 

technology, and inquiry are crucial skills in the 21st century (NRC, 2010). Although inquiry 

teaching has been mostly heard in Taiwan for some time, the teacher-centred didactic teaching 

still dominates the teaching practice in Taiwan (Jang, Lee & Hsieh, 2013). As lesson study has 

been proven to be an effective model for promoting teacher's professional development (Suh & 

Seshaiyer, 2015), we try to investigate how lesson study influences a novice teacher who 

participates in a school-based professional learning community to learn inquiry teaching, and the 

effect on his students' learning of mathematics. The professional learning community [PLC] 

consists of four in-service, three pre-service teachers, and a teacher educator. Based on Yoshida’s 

model (2008), five cycles of lesson study are implemented as each cycle includes teaching 

activity preparation, classroom teaching and observation, and post-teaching discussion. One of 

the PLC members, John, who is a novice teacher, is elected as the research subject. Besides the 

five cycles of lesson study, John also invites other PLC members to observe his classroom 

teaching on every Friday. By means of the related qualitative data, the progress of John’s 

mathematical knowledge for teaching [MKT] (Ball et al., 2008, 2009) is analysed. In addition, 

John's students' term exam scores are compared with the other classes of the same grade.  The 

results are as follows. At the beginning, we noticed that John could not grasp students' prior 

knowledge and was not familiar with the sequence of the content in the textbook. Hence John often 

provided improper inquiry tasks for the students. So we integrated more inquiry theories in the 

stage of teaching activity preparation. By following with the classroom teaching observations 

and the post-teaching discussions, John's knowledge of content and student [KCS] and knowledge 

of content and teaching [KCT] had been clearly improved after a year of lesson study. In addition, 

we also find that John's students' learning achievements appeared to be closely related with John’s 

growth. At first, students' exam scores dropped a bit as John was struggling with inquiry teaching. 

However, they started to make progress as John could gradually grasp the strategies of inquiry 

teaching.  
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Calculation by hand is often seen as a dull, mindless activity. Thus, we tend to forget 

how powerful these algorithms are, and their importance in the history and present day 

of mathematics. Moreover, algorithms seem to offer a very special kind of 

mathematical experience, and provide a unique ways to conceive the discipline. How 

could we give students the opportunity to truly encounter algorithmic mathematics? 

In the 1990, many mathematics educators explored the possibilities of the teaching and 

learning of algorithms in school mathematics (see in Morrow & Kenney, 1998). An 

algorithm may be defined as “a set of rules to follow in order to obtain a certain result”. 

Unpacking this definition reveals the existence of different kind of algorithms. We can 

think of multiplication and “long division” techniques (of which there are many 

variations), but also need to consider formulas for example (like the one we use to 

solve quadratics), and more complexes procedures such as Newton’s method.  

One of the aspects surprisingly left behind in the study of algorithms is the 

epistemological dimension. As Morley (1982) once observed, mathematical ideas are 

“transformed through algorithmization, come to signify something different” (p.51). 

Finding the square root of a number means and demands something quite different if 

one uses a digit-by-digit algorithm, Heron’s method, a Taylor series, continued 

fractions or the reciprocal method. One important revelation from the study of the 

history of these algorithms is that developing techniques and concepts goes hand in 

hand (e.g. Chabert, 2012). Another is the constant interplay between precision, rapidity 

and simplicity. These are fundamental aspects of nature, the history and the practice of 

algorithms, but they are hardly appreciable without special attention (Berlinski, 2001). 

In this presentation, I will analyse the epistemological dimensions of algorithms in the 

case of root calculations, and discuss how offering students the occasion to play with 

such a variety of algorithms could present them (algorithmic) mathematics in a 

different light. I will share observations made with a group of in-service teachers, and 

questions relating to task design will ensue. 
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Moments of reflection within teacher training at university are regarded as being 

important parts of a pre-service teachers’ professional development. An instrument of 

professional role reflection encourages pre-service teachers to consider their beliefs, 

motivations and self-regulation as well as five central roles of a mathematics teacher. 

Those five roles referring to the model of teachers’ professional competence by 

COACTIV (cf. Kunter et al., 2013) are being an expert scientist in mathematics, an 

expert of subject teaching principles, a pedagogue, an organizer and a counselor. 

Focusing on the role regarding the principles of teaching mathematics, our aim is to 

answer the question, how pre-service teachers reflect those principles through 

categorizing the participants into different reflection groups. Reflection, therefore, is 

defined as a process of framing and reframing (Schön, 1987). 

A sample of pre-service teachers, who have not finished their bachelor’s degree, filled 

in an online questionnaire which consists of closed and open questions and covers the 

participants’ general perception of mathematics teaching principles. While some 

answers will be evaluated quantitatively, categories, based on the answers to the open 

questions, will be constructed through the method of inductive qualitative content 

analysis. The examined cohort has only had one lecture regarding the methodology of 

mathematics teaching before, so we expect that they have a vague concept of 

mathematical education and keep a student-centered point of view. Also, we expect 

that they take over a mathematical, pedagogical, psychological and/or educational 

perspective when talking about the principles of teaching mathematics. In the 

presentation, those expectations will be discussed by including the results and 

conclusions of the survey. The analysis of the obtained data can help to improve 

teacher training courses at university on the basis of pre-service teachers’ needs. 
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The study reported here, suggests a process for designing successfully, 

argumentation-based mathematics teaching sessions. Such sessions, aimed specifically 

for very young pupils, are an area that has not, so far, been given the appropriate 

attention in Mathematics Education research. At the heart of such a process is the 

creation of a research-practice nexus which provides the combination of a 

research-based background and a practice-based design and implementation.  

For the research-based part of the study, groups of pupils were formed and involved in 

guided discussions. The discussion data were then analysed by drawing on a method 

designed for an earlier study (Misailidou and Williams, 2004a and 2004b). The 

analysis produced tabular representations of pupils’ discourse which were labelled as 

‘Generalised Patterns of Changing Arguments’ (GPCA). These patterns indicated 

specific elements that aided the production of mathematical arguments. More 

importantly, they were designed with the intention of being a practical tool that could 

be easily communicated and then used by practitioners.  

The practice-based part of the study involved the communication of the research data 

(including the GPCAs) to a ‘Teachers’ Inquiry Group’ (‘TIG’). A TIG was a group 

consisting of teachers and researchers who worked together with the aim of developing 

effective teaching practice. The TIG members, having the research data as a guide, 

designed argumentation-based teaching, appropriate for a whole classroom.  

The teaching plans and tools developed by the TIG were firmly based upon the 

research data but aimed to address the practicalities of a school classroom as well. 

Consequently, the creation of the appropriate research-practice nexus is proposed as 

the necessary condition for the effective integration of mathematical argumentation in 

the usual teaching practice. 
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INTORODUCTION 

The Pythagorean Theorem is one of the most important theorems in the mathematics 

curriculum of middle school. Previous curriculum have viewed this theorem as to learn 

and to apply. However, I think that the Pythagorean Theorem has the educational 

values more than to apply the real world. The purpose of this paper is to explore the 

place of the Pythagorean Theorem in the mathematics curriculum. To achieve this 

purpose, I analyse the mathematics curriculum of Japan and the United States. 

 

METHOD 

The theoretical framework of this study is based on the ‘three domains of mathematical 

activity’ which consists of (i) the domain of concrete experience; (ii) the domain of  

formal procedures; (iii) the metadomain (Noddings, 1985). The first domain is to 

consider situations of the real world or concrete things. The second domain is to deal 

with formal procedures such as algorithms and deductive proofs. The third domain is 

to consider the second domain as the target in order to discuss formal procedures 

themselves. This paper uses this framework and presents the place of the Pythagorean 

Theorem in the ‘Course of Study’ and the ‘Common Core State Standards’; the 

standards of curriculum in these countries.  

 

CONCLUSION 

The results show that the curriculum of the United States is emphasized to learn the 

Pythagorean Theorem itself and to apply the theorem rather than the Japanese 

curriculum. It means that the curriculum focus on activities in the domain of concrete 

experience and in the domain of formal procedures. On the other hand, it is difficult to 

identify the activity in the metadomain, for example to organize theorems and to 

construct a system. Genuine mathematical activity should relate to all three domains. It 

is necessary to reconstruct curriculum from the perspective of metadomain. 
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EXPLORING MATHEMATICS EDUCATION IN TIMOR-LESTE 
 

Nagisa Nakawa1 and Koji Watanabe2 

1Tokyo Future University, 2Miyazaki International College 

 

This presentation reports the issues of mathematics education in the top university in 

Timor-Leste. During our fieldwork in March 2016, the authors conducted interviews 

based on the life history method for university staff and students in the department of 

engineering and administered questionnaires in order to reveal their thoughts about 

mathematics education and the relevant cognitive and affective aspects and the extent 

of their influence on mathematics. 

Firstly, targeting faculty members, the qualitative analysis for the university faculty’s 

life stories (N = 8) reveals differences between young and old generations in terms of 

the language usage in mathematics education due to political and historical influences. 

The interview also showed that the faculty members, particularly those who studied 

abroad, also recognised the low level of mathematics. They thought that the quality of 

primary and secondary mathematics education should be improved in terms of 

linguistic aspects and teachers' professional development. In the quantitative analysis 

by using questionnaire for the faculty members, the results revealed that younger 

generation have a higher personal belief on professional development and teaching and 

learning than the older generation by using t-test (N = 24).  

Secondly, targeting the university students, in order to clarify the relationship between 

students’ cognitive and affective aspect of mathematics, the authors conducted a four 

items mathematics test and questionnaire that have four affective aspects. The correct 

answer rate of test items was 0.74, 0.11, 0.19 and 0.15 respectively (N = 34). Grasping 

which aspect is more related to cognitive aspect to get correct answers, the logistic 

regression analysis was used as depended variable was the item which have 0.74 

correct answer rate and independent variables were four affective aspects. Applying 

backward stepwise selection, two variables such as “Interest in and enjoyment of 

mathematics” and “Anxiety in mathematics” were selected as well McFadden R2 was 

0.230. The result of logistic regression analysis shows that the students who not only 

have a similar degree of interest in and enjoyment in mathematics but also have less 

anxiety in mathematics are about 3.6 times more likely to get the correct answer than 

those who do not on the item. This implies that easing their anxieties is a pedagogical 

challenge.  

Consequently, the authors found out the followings: firstly, linguistic characteristics 

were identified among different age groups of faculty members. Secondly, young 

faculty members have a higher degree of personal beliefs about both professional 

development and teaching and learning than experienced members do. Thirdly, 

relieving anxiety in mathematics could be effective for university students to improve 

their cognitive aspects. 
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VISUALIZING 3D SOLIDS WITH 3D PRINTING TECHNOLOGY 
 

Oi-Lam Ng and Ting Hin Chan 

Chinese University of Hong Kong 

 

Research shows that young children have significant difficulties visualizing in 3D. 

While digital technology and manipulatives have been shown to support children’s 

visualization, the effect of 3D printing technology has yet to be examined in research. 

This exploratory study asks: what does 3D printing, i.e. “drawing in space”, afford in 

the visualization of 3D solids in the primary grades? 

A 3D Drawing Pen is a handheld 3D printing device that enables one to 

draw in the 3D space. As the pen moves along with hand holding it, a 

“3D drawing” is created at once (Figure 1). This enables children to 

explore 3D solids in ways that they could not traditionally with 

paper-and-pencil, the computer screen, nor physical manipulatives, as 

they could construct the 3D solids through their very hand movements. Adopting 

Chatelet’s (2000) theory which addresses the role of diagramming in mathematical 

thinking, we consider these hand movements, much like diagramming, as important 

processes that capture mathematical thought and gives rise to new ones. 

A teaching experiment involving two lessons was undertaken in a Primary 5 

mathematics classroom in Hong Kong. The lessons were designed with the aim to 

incorporate students’ 3D drawing processes into their learning of prisms and pyramids 

(we report here only the lesson on prisms). Upon drawing the solids with 3D Drawing 

Pens, the teacher led a class discussion on their various properties. Our results show 

that, interestingly, all students drew rectangular prisms in the same way, by drawing 

four edges vertically upward after drawing a rectangular base (square or rectangle). 

They finished off with drawing the opposite parallel rectangular base “in the air”. Most 

students employed a similar strategy for drawing triangular prisms. When asked to 

describe their drawing process, they expressed that they “pulled” the edge “up” from 

each of the vertices of the triangular base. In contrast, two students drew a lateral 

rectangular face rather than the triangular base first. Without the aid of their 3D 

drawings, the students determined the number of edges and vertices of the prisms by 

making gestures that imitate exactly their drawing processes. 

We conclude that, in contrast to the use of pre-made manipulatives such as sticks and 

nets, 3D drawings enabled students to construct 3D solids of varying sizes and in 

different ways. In addition, the construction process calls upon drawing a series “1D” 

lines (edges) and 2D shapes (such as rectangles and triangle), through which the 

decomposition from 3D solids into its 2D and 1D parts were facilitated.  

Reference 
Châtelet, G. (2000). Figuring space: Philosophy, mathematics, and physics (R. Shore & M. 

Zagha, Trans.). Dordrecht: Kluwer. 

Figure 1. 
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A SURVEY ON PRESERVICE-TEACHERS’ PROBABILISTIC 

EQUIPMENT 
 

Koji Otaki1 and Hideki Iwasaki2 
1Hokkaido University of Education, 2Hiroshima University 

 

In this presentation, we investigate the nature of preservice teachers’ probabilistic 

capacity. For this, we conducted a survey with a didactic and mathematical problem 

about probability as following: 

A student “A” answered 1/3 to the following problem: find the probability two coins 

coming up heads when you toss two fair coins at the same time. Conjecture this 

student’s way of thinking and explain problematic points of the way. 

This question was answered by 40 preservice teachers who are undergraduate students 

from at first to at fourth grade in mathematics teacher training course in Japan, and 

many of them may be going to become elementary school teachers or junior secondary 

school mathematics teachers.  The preservice teachers’ answers are analyzed in terms 

of the notions of praxeology and ostensive which are constructs within the 

Anthropological Theory of the Didactic (cf. Arsarello et. al., 2008). The praxeology is 

a general model of human activity which consist of two parts: know-how and 

knowledge. The ostensive is “material” entity in praxeology: symbol, gesture, voice 

and so on. The ostensive has a twofold function for praxeologies. First is the 

instrumental value, that is to say, ostensives are useful as tools of constructing 

something. Second is the semiotic value, that is to say, ostensives are useful as tools of 

representing something.  All preservice teachers could correct explicitly or implicitly 

the answer of the student A to “1/4” and explain reasons why the student A made a 

mistake. From viewpoints of praxeology and its ostensive dimension, their 

explanations have two characters. First, they focused on know-how part of the fictional 

answer by the student A, that is, how to construct all outcomes. In other words, they 

ignored reasons why construction of all outcomes by the student A is irrelevant, which 

could be explained in terms of “equally possible” and symmetric structure of coins. 

This character of the preservice teachers’ answers is interrelated to one more character 

of the answers. The second character is that they do not use terminology within 

stochastics even what they had already been taught “officially”: event, equally possible 

and so on. This fact shows that stochastic terminology has less instrumental value for 

the preservice teachers in this situation. 

Acknowledgement  
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ANALYZING AND CHARACTERIZING JAPANESE 

SEVENTH-GRADE STUDENTS’ IDEA OF CENTRAL TENDENCY 
 

Hiroki Otani 

Graduate School of Education, Hiroshima University 

 

Statistical educators should encourage children to develop the idea associating the two 

interrelated but complementary concepts of center and variation, which is called the 

idea of central tendency in this paper, in teaching statistics. However, in Japanese 

course of study, the two ideas are supposed to be taught separately, and measurement 

of center is highly emphasized. In the sixth grade, where quantitative data are handled 

for the first time, the concepts of average (center) and variation are taught, but their 

association is not explicitly. To what extent can children associate center with variation 

without explicit teaching? Clarifying the hidden outcomes can contribute to designing 

the teaching and curriculum which make it easier for children to develop such idea. The 

purpose of this paper is to explore the extent to which the Japanese seventh-grade 

students can associate center with variation. 

The performance task was developed to do so. In brief, in the situation where flying 

distance data (n = 20) of two ski jumping players were given in the histogram, students 

were asked to select one of the two players likely to jump farther while comparing data 

characteristics. It was implemented with total 71 seventh-grade students (13-year-old) 

in two classrooms of a lower secondary school attached to a national university in 

Japan in February 2016. They all had learned the concept of average (center) and 

variation, but their association had not been explicitly learned yet. Arguments which 

they made and described were analyzed and characterized by the following three levels 

with reference to Reading & Shaughnessy (2004): Level 1, neglecting variation and 

over-dependent on center; Level 2, ignoring center and focusing on variation; Level 3, 

balancing center and variation. 

As the result, 47.9% of the students were classified as Level 1, 39.4% as Level 2, and 

only 12.7% as Level 3. The findings suggest that about half of the students are 

over-dependent on center alone and that most students were not able to possess the 

desirable idea of central tendency to associate center with variation without explicit 

teaching. It seems to be the reason that they have not recognized the necessity of 

considering variation and the inappropriateness which only considers either center or 

variation. It is required to develop some didactic approach that encourages children to 

develop the idea of central tendency. 

Reference 
Reading, C., & Shaughnessy, J. M. (2004). Reasoning about variation. In D. Ben-Zvi & J. 

Garfield (Eds.), The Challenge of Developing Statistical Literacy, Reasoning and Thinking 

(pp. 201- 226). Dordrecht, The Netherlands: Kluwer Academic Publishers. 
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CLASSIFYING THE VARIETY OF STUDENT'S 

INTERPRETATIONS OF MATHEMATICAL STATEMENTS  
 

Shintaro Otsuka 

Keiai University, Japan 

 

To be a great mathematical problem solver or a better mathematical thinker, it needs to 

see mathematical statements from various perspectives, in which it needs appropriate 

interpretations for different purposes. However, not many students can select 

appropriate interpretations from various interpretations (e.g. Durand-Guerrier, 2008). 

Therefore, this research aims to examine how to interpret a mathematical statement for 

one's purpose. 

In order to assess students' interpretations, we analysed the result of national 

assessment on specific issues in logical thinking (NIER, 2013) that was intended for 

high school students in Japan. The survey items consist of two frameworks that are 

expression forms of items (mathematical or non-mathematical) and six practices of 

logical thought. In this analysis, we applied mathematical logic for describing students' 

interpretations, and distinguishes three contexts as students' sense of purpose; 

understanding, proving and utilising.  

Results focus on two different interpretations of a given equation “(x - m) + x + (x + m) 

= 3x” in the problem which is whether the equation can be applied in other cases. If 

some students regard the equation with availability, they should focus on integer “m”. 

If others do not regard it with non-availability, they should focus on integer “3”, and 

this interpretation produces a new equation “(x - n) + (x - m) + x + (x + m) + (x + n) = 

5x”. 

The findings indicate that mathematical statements which are interpreted in the context 

of understanding can be utilised within a broader range than an intended range. 

Another result is that mathematical statements which are the evidence can be proved 

within a narrower range than an intended range. The reasons seem to be common. That 

is, it seems that a mathematical statement which are interpret in the different contexts 

affects interpretations in the other contexts. 

Furthermore, a survey for undergraduate students is planed with the same test items. In 

the presentation, further results will be discussed in detail. 

References 
Durand-Guerrier, V. (2008). Truth versus validity in mathematical proof, ZDM Mathematics 

Education, 40, 373-384. 

National Institute for Educational Policy Research (NIER) (2013). Results of National 

Assessment on Specific Issues in Logical Thinking. http://www.nier.go.jp/kaihatsu/ 

tokutei_ronri/pdf/10_tyousakekka.pdf (March 1, 2017). 



 

________________________________________________________________________________________________________________________

2-71 
2017. In Kaur, B., Ho, W.K., Toh, T.L., & Choy, B.H. (Eds.). Proceedings of the 41st Conference of the International 

Group for the Psychology of Mathematics Education, Vol. 2, p. 71. Singapore: PME. 

CONSTRUCTING SIMILARITY CONECTIONS BETWEEN 

MATHEMATICS PROBLEMS: THE CASE OF "WEAK" HIGH 

SCHOOL STUDENTS 
Tikva Ovadiya 

Jerusalem College of Education  

A significant difficulty among high school mathematics students is their inability to solve 

new mathematics problems. One reason for this difficulty stems from their lack of effective 

strategies for organizing knowledge to make it available for implementation in new learning 

situations. Moreover, they have difficulty storing and organizing new knowledge over the 

long term to be used in the relevant context. Learning that incorporates mapping and 

constructing connections between problem concepts and between problem-solving strategies 

allows students to borrow and identify old knowledge and connect it to new knowledge 

(Lobato, 2014), thus prompting students to apply what they learned previously about problem 

solving to the new problem. Such a learning structure promotes the preservation and 

organization of information in long-term memory (Sweller, 2015).  The research questions 

are: (1) What types of connections between mathematical problems did the students identify 

at the beginning, middle and end of the intervention period? (2) How did the students' 

independent mathematical problem-solving skills develop over the course of the 

intervention?  The data consisted of 150 videotaped mathematics lessons, 36 one-on-one 

teaching experiments with twelve high school students (grades 11 and 12) at three different 

times during the intervention year and a researcher diary that documented the intervention 

period.  Analysis of the 36 interviews revealed three developmental profiles describing the 

shift in the students' strategies over the course of the three interviews, from constructing one 

simple type of connections (formulation level) to constructing a different and more advanced 

type of connections (heuristic level). The three profiles are as follows: (a) Tri-stage 

development of all connections: development in three stages, ranging from constructing 

similarities at the formulation level to the algorithm level to the heuristic level. (b) Bi-stage 

development in two stages, from algorithmic connections to heuristic connections. (c) 

Bi-stage development in two stages, from formulation connections to heuristic connections.  

Analysis of the 150 videotaped mathematics lessons and 36 one-on-one teaching experiments 

revealed three stages in the development of independent mathematical problem-solving. 

These stages describe the students' perceptions about the act of constructing similarity 

connections, their motivations for choosing the problem to be solved and the relationship 

between their approach and autonomy in problem solving.  

One practical contribution of this study is that it enables the formulation of intervention 

principles that can serve as a means for teaching classes of “weak” high school students. 

Another practical contribution is that it defines two sets of stages, one describing the 

development of heuristic literacy for problem solving and the other clarifying processes for 

developing self-sufficiency in solving problems. 
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THE PROGRAM DESIGNED FOR THE PROFESSIONALISM OF 

CHARACTER EDUCATION BY MATHEMATICS TEACHERS 
 

Mi-Yeong Park 

Hanyang University, South Korea 

 

This study is to foster practical competences of mathematics teachers who devote 

themselves to the education responsive to the social changes such as globalization, 

diversification, informationization, and conversion of knowledge through the 

cultivation of democratic character – the core competence of the future society 

(Partnership for 21st Century Learning, 2015). In that sense, this study aims to equip 

mathematics preservice teachers with competences to practice character education 

which is emphasized in the 2015 Korean national mathematics curriculum.  

For the purpose, this study is conducted as part of development research of a 

mathematics teacher education course ‘Mathematics Teaching and Learning’. Based 

on a comprehensive review of literature concerning the recent trends of educational 

reform, key competencies, and character education, this study identified the guiding 

principles and the methods of how to develop mathematics preservice teachers’ 

competences of embodied level to practice character education .  

Specifically, this study presents how to introduce flipped learning to expedite active 

reflective learning activities of preservice teachers Moreover, this study will  present 

learning activities for mathematics preservice teachers such as inquiry into curriculum 

based on the core competencies of character education, planning mathematics 

instructions for character education, developing mathematical tasks and materials 

based on real world context related to issues about democratic world citizenship, 

implementing teaching strategies, setting up educational environments, and 

developing leadership to achieve the goals of character education in mathematics class.  

Character education is an emerging issue of world-wide reform discourse. In this 

context, this study will contribute to the development of guiding principles and 

methods of how to prepare mathematics preservice teachers for character education. 

Specifically, this study will provide mathematics teachers’ competences for practicing 

character education by respecting the diversity of students. In addition, this study will 

offer instructional approaches in which students are encouraged to be active producers 

of mathematics by thinking about mathematics based on related issues of life. In the 

presentation, further results will be discussed in detail. 
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DUAL MODE PROFESSIONAL DEVELOPMENT RESOURCES 

FOR DISADVANTAGED COMMUNITY 
 

Sitti Maesuri Patahuddin, Indira Puteri Kinasih and Baiq Rika Ayu Febrilia  

University of Canberra, IKIP Mataram Indonesia 

 

The challenges of conducting professional development (PD) on a large scale and 

targeting sustainability are global issues. One common practice is to undertake ToT 

(Training of Trainers) so more teachers have an opportunity to attend PD sessions. 

However, in addition to demographic challenges, the enacted PD sessions are often 

mismatched with the intended sessions after the ToT. This necessitates an alternative 

form of delivering PD, particularly in “disadvantaged” or remote areas. 

The Internet allows for the flexible of delivery of PD sessions from anywhere and at 

any time. However, learning resources must be designed carefully to engage users and 

promote learning. This poster will describe the process of transforming face-to-face 

PD resources into a dual mode form. The term dual mode indicates resources, which 

can be utilised to conduct face-to-face PD as well as online PD. For the online PD, the 

teachers use the Internet to access learning materials, interact with the content, 

facilitators, and other teachers and seek support in the learning process. 

This development will be exemplified through the transformation of one face-to-face 

PD module called “Productive Questioning” into a dual mode design. The PD module 

aimed to develop teachers’ understanding of productive questions in mathematics 

lessons (Martino & Maher, 1999). Within this module, teachers are scaffolded to 

develop pre-planned questions, which promote mathematical thinking, facilitate 

classroom discussions about their students’ mathematical reasoning and to help make 

connections between and within mathematical concepts. The module includes text and 

videos of classroom practices with/without productive questions. 

To achieve quality learning from a dual mode system, the design of the PD resources is 

central. Our design is directed to focus on teacher learning and promote collaboration. 

It is designed to create a high interactivity between content, teachers and facilitators. 

The design is also directed to link theories and practices, cater for individual 

differences, provide feedback and encourage teacher reflections to acquire knowledge 

and build personal meaning. The dual mode design also provides opportunities for 

teachers to apply what they have learned into daily teaching practices. This poster 

presentation will also describe the challenges faced to develop the dual mode system 

and approaches used to resolve these challenges. 

Reference 
Martino, A. M., & Maher, C. A. (1999). Teacher questioning to promote justification and 
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IPADS IN GRADE 6 CLASSROOMS: EFFECTS ON STUDENTS’ 

CHOICE OF STRATEGY FOR COMPARING FRACTIONS 
 

Frank Reinhold, Stefan Hoch, Bernhard Werner, Jürgen Richter-Gebert  

and Kristina Reiss 

Technical University of Munich, Germany 

 

Fraction comparison tasks are known to be difficult for students. A frequently found 

misconception is not comparing the fractions but their components as natural numbers, 

which leads to incorrect answers in specific tasks (e.g. incongruent tasks). Research 

suggests that even expert mathematicians cannot overcome this natural number bias 

completely, despite reaching very high solution rates by applying a variety of strategies 

(Obersteiner, Van Hoof, & Verschaffel, 2013). Therefore, it seems reasonable to 

support students’ choice of appropriate strategies to compare incongruent fractions in 

classroom instruction. We studied whether this is possible using interactive teaching 

material on the iPad. 

To this end, 242 sixth grade students split into three groups participated in a four-week 

intervention. Group 1 (n = 80) worked with an iPad-assisted learning environment, 

group 2 (n = 100) received the same material as a regular paper-based book. To control 

for effects of the specifically designed material, group 3 (n = 62) used conventional 

textbooks. In a posttest, the participants were asked to explain how the size of fractions 

can be compared, given two incongruent problems. In item 1 (8/9 versus 7/6) the 

fractions had no common components, but one fraction was greater than one. In item 2 

(5/8 versus 5/10) the fractions had the same numerator and one fraction equalled one 

half. Feature-based strategies (i.e. drawing a picture, benchmarking to a third value, 

arguing using the size of the pieces) were coded with 1, rule-based strategies (i.e. 

expanding or reducing fractions to get the same denominator or numerator) were coded 

with 0, so that scores between 0 and 2 were possible. 

When the use of feature-based strategies was counted in both items, students from the 

iPad group in fact reached the highest score (M = 1.64, 1.52 and 1.02, respectively). A 

Kruskal-Wallis test showed a significant main effect of the treatment on the choice of 

strategy, H(2) = 23.79, p < .01. Indeed, both the iPad and the book group differed 

significantly from the control group, p < .01. However, no significant difference 

between the two treatment groups was found, p = .55. Our findings suggest that a 

flexible use of strategies for fraction comparison tasks can be encouraged with 

appropriate teaching material, but using the iPad has no additional effect.  

Reference 
Obersteiner, A., Van Hoof, J., & Verschaffel, L. (2013). Expert mathematicians’ natural 
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CHILDREN´S ESTIMATING COMPETENCES  

IN LENGTH AND CAPACITY 
 

Silke Ruwisch, Marleen Heid and Dana Farina Weiher 

Leuphana University Lueneburg, Germany 

 

In recent years, measurement estimation gains more attention in German classrooms. 

At the same time, it became obvious that little is known about the abilities of children 

in this field, especially on primary level. 

Since most research in measurement estimation is focused on lengths and mainly on 

older students and adults, we focused on younger children and included lengths as well 

as another–visual–measurement area. Our tasks were constructed with reference to 

Bright’s (1976) typology of requests in estimating length. In each measurement area 

and four types of requests five tasks were constructed, so overall 40 estimation tasks 

were presented. 46 (27 ♀; 19 ♂) 4th-graders from different schools solved these tasks in 

individual interviews which lasted about 15-20 minutes and were videotaped. 

The results concerning the strategies show that 4th-graders use all strategies known 

from literature (e.g. Hildreth 1983; Joram et al. 2005; Siegel et al. 1982), and that the 

strategies to estimate capacities are mainly the same as those to estimate lengths. A 

detailed categorical system was presented at PME 39 (Ruwisch et al. 2015).  

Even if the strategies are the same, the frequency and the precision in estimating 

measurement differ. The poster will present data comparing the frequency and 

accuracy in estimating lengths and capacity as well as in different magnitudes of the 

to-be-estimated objects (Heid 2016). 
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DIFFICULTIES OF FIRST-SEMESTER MATHEMATICS 

STUDENTS 
 

Insa Maria Schreiber 

Technical University of Darmstadt 

 

At the start of her studies a student of mathematics described that she had good skills in 

solving tasks and that she could remember all the materials of the last years. In the 7th 

week of lectures she answered on the same question (What is she good at in 

mathematics?): “At the moment actually nothing, maybe I’ll be ready to tell something 

in the next survey….” Apparently, the perception of her own mathematical competence 

has changed. 

High abandonment rates of university students in mathematics are nationally well 

known (Heublein et al, 2014). Theoretical studies indicate the differences between 

mathematics in school compared with mathematics at the university regarding to 

proving (Fischer et al, 2009.). In 2016 a digital questionnaire was developed, which 

intends to investigate the difficulties related with proving at the beginning of 

mathematics studies. The pilot of the questionnaire in autumn 2016 indicates a 

dwindling perception of mathematical competence (see the student above). Also 

student S described difficulties with a changed competence experience:  
“I have problems with not succeeding directly as it used to be in school. In mathematics 

and physics studies the moment of success usually remains absent and a feeling of failure 

occurs. Hence, you doubt about your abilities and finally on yourself. […]” 

The pilot study indicates a group of students with good grades in school but less 

experience in proving inside the classroom (8 out of 23). The assessments change with 

time (1st &2nd questionnaire) and by the exchange of the terms “reasoning” and 

“proving”. This points to a deliberately distinguish between the terms by the students 

and, furthermore, this might indicate different imaginations of “proving” in school and 

university. For this target group it seems promising to develop a concept to improve the 

proving competence in the period between school and university. So this is the 

long-term goal of the project.  
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ENGAGEMENT IN MODELING ACTIVITIES PROMOTING A 

CHANGE IN BELIEFS ABOUT MATHEMATICS AMONG 

PRACTICING MATHEMATICS TEACHERS  
 

Juhaina Awawdeh Shahbari 

Sakhnin College & AL-Qasemi Academy- Academic College of Education 

 

The aim of this study is to examine whether the engagement of mathematics teachers in 

modeling activities and subsequent changes in their views about these activities affect 

their beliefs about mathematics. The sample comprised 52 mathematics teachers 

working in small groups in four modeling activities. The data were collected from: (1) 

reports by the teachers on completion of each activity about whether or not the activity 

was mathematical and about both the mathematical and non-mathematical features; (2) 

interviews conducted after the intervention process; and (3) questionnaires on 

teachers’ beliefs following Stipek, Givvin, Salmon and MacGyvers (2001) with 27 

items used to examine traditional beliefs and 16 items to examine constructive beliefs. 

Internal consistency was calculated using Cronbach’s α which was .71 and .77 

respectively. The questionnaires was filled in both before and after the intervention.  

The main research findings indicated changes in teachers’ views about the modeling 

activities. Most of the teachers referred to the first activity as a mathematical problem 

but emphasized only the mathematical notions that appeared in the elicited model or 

the mathematical operations in the modeling process; only 13.5% of the teachers 

related to features of the whole modeling process. Regarding the fourth activity, 70% 

of the teachers referred to the modeling activity as a mathematical problem and 

emphasized features of the whole modeling process. The results of the interviews 

indicated that changes in teachers’ views can be attributed to four main themes: the 

structure of the activities, group discussions, the solution paths (modelling process), 

and the elicited models. These themes are considered the main features of the modeling 

activities and are not characteristic of the traditional problems in mathematics 

textbooks (English & Watters, 2004). In order to examine whether changes in the 

teachers’ views about the modeling activity were reflected in their beliefs about 

mathematics, a paired simple t-test was conducted. The results regarding traditional 

beliefs were (M = 3.34, SD = .41) before the intervention and (M = 3.24, SD = .40) 

after the intervention; the change was not significant. The results regarding 

constructive beliefs were (M = 4.50, SD = .50) before the intervention and (M = 4.78, 

SD = .74) after the intervention; the change was significant t(52) = -2.67, p < .05.   
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BIOLOGICAL BASES OF THE RELATIONSHIP BETWEEN ORAL 

VOCABULARY AND LATER MATHEMATICS ACHIEVEMENT 
 

Shuang Song, Kan Guo and Yiming Cao 

Beijing Normal University 

 

INTRODUCTION 

In order to predict mathematics achievements as early as possible, contributors before 

mathematics instruction were explored by researchers and educators. Since learning 

the symbolic number system of mathematics relied on verbal skills, children with 

better vocabulary knowledge should more easily understand concepts and solve words 

problems. Having a larger oral vocabulary has been proved to result in greater 

mathematics achievement (Morgan, Farkas, Hillemeier, Hammer, & Maczuga, 2015), 

but the biological bases underline the long-term relationship remained unknown. 

 

METHOD 

Totally 79 children in China were measured oral vocabulary at the age of 3. They 

attended a neuroimaging study to scan their brain structure at age 14 and forty-seven of 

them participated mathematics achievement test one year later. The association 

between early vocabulary and gray matter volume was explored and the significant 

region was used to predict mathematics achievement. 

 

RESULTS 

One cluster within the right anterior temporal lobe was found to significantly 

correlated with early vocabulary size. The averaged gray matter volume within this 

cluster can predict later mathematics achievement and mediate the effect of vocabulary 

in early childhood. 

 

DISCUSSION 

Right anterior temporal lobe was critical neural substrate for conceptual knowledge, 

and has been proved to specifically activated for a prodigy (Pesenti et al., 2001). Early 

vocabulary can influence mathematics achievement through shaping brain conceptual 

regions. 
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A METAPHORIC APPROACH TO BAYESIAN PROBABILITY 
  

Jorge Soto-Andrade1 and Daniela Díaz-Rojas2 

1Mathematics Department and CIAE, University of Chile, 2University of Oxford 

 

The relevance of metaphorising and enacting in mathematics education is increasingly 

acknowledged (Proulx, Simmt and Towers, 2009; Diaz-Rojas and Soto-Andrade, 2015, 

2016). We address here from this perspective Bayesian problems involving causal 

probability and argue that iterated metaphorising can significantly help especially not 

mathematically inclined learners to fathom causal probabilities and the involved causal 

network. More precisely, we point out that a Bayesian problem may first be metaphorised 

as a random walk (a 2-step one in a typical false positives problem), then solved thanks to 

a pedestrian metaphor (Diaz-Rojas and Soto-Andrade, 2015) and also metaphorised as a 

flow, that turns out to be stationary. An illustrative  paradigmatic example, that we have 

worked out with first year university students majoring in social science and humanities, 

is the following: A schoolgirl bikes downhill to  school in the south of Chile, where in this 

season it rains 2 days out of  3. On wet road, she falls from her bike 1 out of 4 times, 

instead of only 1 out of 10 on dry road. Bayesian question: If you know that she fell today, 

how likely is that it had rained? Bayes theorem may be dispensed with, by metaphorising 

as indicated above, to obtain the systemic flow in Fig. 1, that 

shows the causal relationships between Rain, Fall, No Rain, No 

Fall, both ways.  Learners notice that the flow is stationary and 

that a few data determine the remaining data, while solving the 

problem metaphorically or algebraically. So they construct in 

an elementary and metaphoric way a Bayesian network (Pearl, 

2000) that they can easily enact. 
                                                                    Figure 1. 
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   STUDENTS’ PERCEPTION OF CREATIVITY IN CONNECTION 

WITH CONTINUED PROJECT WORK 
 

Hannes Stoppel 

Westfälische Wilhelms-Universität Münster 

 

Creativity is at the heart of many mathematical breakthroughs. In order to enthuse 

students for this subject, experiences of independent project work, creativity, and their 

interconnections are worth exploring. 

Over a year 24 students of grade 12 worked on several projects about coding and 

cryptography. After projects in the middle and at the end of the school year, data was 

collected in semi-structured interviews. Beside statements concerning perception of 

mathematics, the interviews also covered students’ beliefs in creativity (Liu & Liu, 

2011). Furthermore students were encouraged to write a learning diary beside their 

project notebook. 

There are several definitions of creativity relevant for research (e.g. Wallas, 1926; 

Liljedahl & Sriraman, 2006). Students’ perceptions of creativity might differ from 

these definitions. According to Stoppel (2016), creativity can be divided into the two 

cases: Creativity 1, where students understand creativity as an extension of knowledge 

to reach more comprehension of mathematics looking out from their projects, and 

Creativity 2, where students consider creativity in connection with the topics treated. 

Similarly, the progressions of projects can be divided into two types. In Progress 1 the 

projects include applications of topics of the course processed before the beginning of 

projects. If students come to grips with new mathematical topics while editing their 

projects, the progression will be denoted Progress 2.  

Students’ perceptions of creativity and the changes therein in the course of a year seem 

to stand in relationship to the progression of their projects (Stoppel, 2016). The 

observations are underpinned by students’ notebooks and learning diaries. The 

development of these coherences will be illustrated with a poster using typical 

examples. 
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A STUDY ON DEVELOPING AND PRACTICE OF MATH 

CULTURAL MATERIALS FOR ELEMENTARY EDUCATION  
 

Yi-Wen Su 

University of Taipei 

 

Reading ability and lifelong learning are closely related. In recent years, countries are 

increasingly focusing on students’ reading ability. In order to understand students’ 

reading performance, a number of international assessments have been organized, such 

as PISA (Programme for International Student Assessment) and PIRLS (Progress in 

International Reading Literacy Study). Taiwan students generally stand out in 

international competitions. For instance, the 2015 TIMSS (Trends in International 

Mathematics and Science Study) reported that Taiwanese Grade 8 students were 

ranked third, and Grade 4 students were ranked fourth. However, when it comes to 

proper learning attitude and confidence, Taiwanese students are low.  

It is often said that mathematics is the “Mother of Science.” However, how can we 

draw the veil of mathematics such that its secret charm may be discovered by the 

learner? Making students value and appreciate mathematics have become the 

overriding passion of educators. This article attempts discuss methods to add historical 

reading material in mathematics teaching, to help students have a cultural perspective 

on mathematics. 

In the development of mathematics reading, we incorporate Jahnke’s(1994) 

hermeneutics cycle (text-context-reader) in our study and reflection. The present study 

consists of a team of researchers and teachers, discussing and interpreting the history 

of literature on mathematics, the origin of mathematical symbols, like multiplication 

and division, the development of the decimal system, as well as other related materials, 

and how all this can be incorporated into empirical classroom instruction.  

A total of 293 elementary students participated in this study. The result of this study 

and the use of cultural materials in actual teaching have been confirmed positively by 

both students and parents; thus, it is highly feasible that these materials can be used in 

teaching mathematics.  Furthermore, we propose the following principles in the design 

of these cultural materials: (1) the topic of the material must conform to the 

mathematical content; (2) the materials must be interesting and educational; (3) the 

learning unit should be arranged in modules and must employ digital media. It is hoped 

that the above principles can be used by different educational study groups, and this 

study may contribute to the store of cultural mathematical materials and be made 

available for the use of elementary school teachers. 

Reference 
Jahnke, H. N. (1994). The historical dimension of mathematical understanding: Objectifying the 

subjective. In J. P. da Ponte & J. F. Matos (Eds.), Proc. 18th Conf. of the Int. Group for the 

Psychology of Mathematics Education (Vol. 1, pp. 139-156). Lisbon, Portugal: University of 

Lisbon. 



________________________________________________________________________________________________________________________ 

2-82 
2017. In Kaur, B., Ho, W.K., Toh, T.L., & Choy, B.H. (Eds.). Proceedings of the 41st Conference of the International 

Group for the Psychology of Mathematics Education, Vol. 2, p. 82. Singapore: PME. 

DIFFICULTIES OF RECOGNIZING INDUCTION HYPOTHESIS 

IN THE PROOF BY MATHEMATICAL INDUCTION 
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Mathematical Induction (MI) is a mathematical proof technique used to prove a 

statement for the set of all natural numbers. Due to the complex nature, proof by MI 

has been known to be difficult for high school students for many decades (e.g., Ernest, 

1984). In the process of proof by MI, the validation of the first condition is called the 

induction basis and the validation of the second condition is called the induction step. 

Ron and Dreyfus (2004) identifies that the assumption used in the second condition, 

namely that the statement is true for k, is called the induction hypothesis. The goal of 

this study is to identify difficulties of recognizing the induction hypothesis.  

There are two types of propositions for induction hypothesis which are treated objects 

of proof by MI in the high school curriculum in Japan. One is expressed as a generally 

relational expression and the other is expressed as a recurrence relation. For example, 

the story of the Hanoi towers produces the recurrence relation. Because of learning 

about progression ahead of learning about proof by MI, learners get the satisfaction of 

struggling with finding of the general term when they are offered a recurrence relation. 

Dogan (2016) recommends that learners should be guided toward the discovery of a 

non-recursive closed formula, in turn the questioning of the validity of the closed 

formula for larger quantities may bring out the need for MI proofs, and the role 

deductive processes play in the proof of its components. In addition, it is said that one 

needs not just a model that provides geometric means, but needs a learning 

environment that effectively put into view the crucial role recursion plays at the  

inductive step. In order to address the issue, we propose a teaching experiment of a set 

of questioning about an isoperimetric and equivalent problem for secondary school 

students. 
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THE RELATIONSHIP BETWEEN MENTAL ARITHMETIC AND 

ACADEMIC SUCCESS IN UNIVERSITY MATHEMATICS 

COURSES 
 

Nicole Taylor-Buckner 

Zayed University 

 

Mental arithmetic is an early foundational mathematics skill that is taught during the 

elementary grades. Since early mathematics skills are one of the strongest predictors of 

later achievement (Duncan, 2007), it is crucial that students are capable in mental 

arithmetic. However, it is not uncommon for students to leave elementary school 

without being proficient in mental arithmetic due to the ubiquitous use of the calculator 

in the classroom. This leads one to question whether students are still able to be 

academically successful later on in life in their university mathematics courses. Thus, 

the research question is: What is the relationship between students’ mental arithmetic 

abilities and academic success in their university mathematics courses? 

The sample consists of 45 first-year and second-year female students (two classes) at a 

public university in the United Arab Emirates. The sample of students that participated 

in the study are essentially homogeneous, as the they are female, Emirati, 17 to 20 

years old, wealthy, and English Language Learners (ELLs). 

The data comes from two basic university statistics courses. Students were given 3 

minutes to complete a worksheet of 60 mental arithmetic questions, (e.g. 5  9, 20 + 4, 

16 – 3, 42  3). Their score was compared to their final grade which consists of the 

following components: a midterm (40%); a final exam (40%); a project (10%); and 

homework, classwork, and mini quizzes (10%). 

Mental arithmetic scores ranged from 10 to 49 (out of 60) and final grades ranged from 

60.66% to 101.7%. The mean mental arithmetic score was 30 and the mean final grade 

was 87.2%. The results of the study suggest that there is a slightly positive correlation 

between mental arithmetic capabilities and mathematics grades at the university level 

(r = 0.542 and p = 0.00012). The findings also indicate that for every additional correct 

answer on the mental arithmetic worksheet, there is a 0.52% increase in the final grade. 

Additional results will be included in the poster presentation, as current semester 

classes will be added, thus increasing the sample size. 
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REPRESENTATION AND TRANSFER IN EARLY ALGEBRA (K3) 
 

Felipe Tirado and Ana Medrano 

National Autonomous University of Mexico – Iztacala 

 

RESEARCH CONTEXT 

Mathematics education is a priority in Mexico, but gets very low levels in national and 

international assessments (Program for International Student Assessment). Counting 

appears to be dominant in children, over functional relationship of magnitudes. 

THEORETICAL FRAMEWORK 

It is use Vygotsky's (1980) mediation as representation in the development of the 

magnitude concept. Representations in arithmetic table, graphical and algebraic 

equations, are used as mediation to transfer understanding (Price and Fuchs, 2016). 

STUDY 

The study was conducted in a group of public school with 25 students (K3). To work 

collaboratively, students were distributed in 12 work teams. The teams manipulated a 

fixed magnitude of water (10 cm3 = constant = C), transferring different amounts from 

one container to another (variables = A and B). Quantities were transferred to an 

arithmetic representation in a table. Then, the table data were transfer to its 

representation in the Cartesian plane, and later into its algebraic expression (A + B = 

C). A test with seven items was applied to evaluate the transfer in algebraic thinking. 

RESULTS 

A reliability of 0.948 was obtained between two evaluators. The results show that 80% 

percent of the students performed the numerical functional relationship. 96% built the 

numerical table. 64% elaborated the graphical representation and 28% expressed the 

functional relationship in an algebraic equation. 

CONCLUSIONS 

Most of the children can transfer the observed phenomenon to 3 forms of 

representation (arithmetic, graphical and algebraic). But the finding is that as water 

magnitude is a continuum were children cannot count and must understand abstract 

order of magnitudes, just 28% could express in their own words the functional 

relationship of magnitudes in the algebraic equation (A + B = C). 

References 
Vygotsky, L. (1980). Mind in society: The development of higher psychological processes. 

Cambridge, MA: Harvard University. 

Price, G. R., & Fuchs, L. S. (2016). The mediating relation between symbolic and 

nonsymbolic foundations of math competence. PloS one, 11(2), e0148981. 



 

________________________________________________________________________________________________________________________

2-85 
2017. In Kaur, B., Ho, W.K., Toh, T.L., & Choy, B.H. (Eds.). Proceedings of the 41st Conference of the International 

Group for the Psychology of Mathematics Education, Vol. 2, p. 85. Singapore: PME. 

A PRELIMINARY STUDY OF THE INFLUENCE OF 

MANIPULATION-BASED REMEDIAL TEACHING ON FIFTH 

GRADERS' MATHEMATICS LEARNING 
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In Taiwan, because of the high student number in each class and teacher's pressure from 

the course progress, didactic teaching has been dominating classroom teaching practice 

for a long time. Even in the primary schools, teachers seldom teach mathematics by 

spending time for pupils’ manipulation, but we should still cherish the special need of 

children (Chang, Wu & Yang, 2012). In this presentation, we present a preliminary 

study which provides sufficient opportunities of manipulation for some low-achievers 

in the remedial teaching and investigates whether the participants’ learning improves. 

The research subjects are seventeen fifth graders from different classes who are all 

volunteers and are within the last 20% in their fourth grade mathematics learning. 

Besides the four usual mathematics classes each week, these seventeen students take an 

extra remedial class every week, which is all about the “hands-on” activities by using 

different manipulatives to help them learn mathematics.   
After a semester’s effort, most participants do make progress in their mathematics 

learning. The following table shows their PR values for the two term exams compared 

with all the fifth graders. Therefore, the manipulation-based remedial teaching seems 

to be effective for improving some low-achievers’ learning, since manipulating the 

concrete objects might be helpful for them to grasp some symbolic arithmetic concepts. 

However, they need time to adapt themselves to the new learning approach. 

 
 

 

Reference 
Chang, Y. L., Wu, S. C., & Yang, D. C. (2012). An exploratory study of first-grade teachers' 

awareness on disadvantaged students' mathematical learning. Journal of Education & 

Psychology, 35(3), p67-94. 

Code of Students 

PR 

PR: percentile rank 



________________________________________________________________________________________________________________________ 

2-86 
2017. In Kaur, B., Ho, W.K., Toh, T.L., & Choy, B.H. (Eds.). Proceedings of the 41st Conference of the International 

Group for the Psychology of Mathematics Education, Vol. 2, p. 86. Singapore: PME. 

THE USE OF GRAPHICS REPRESENTATIONS ON MUSIC 

COMPOSITION BASED ON MATHEMATIC IDEAS  
 

M. Alicia Venegas Thayer 

Pontifical Catholic University of Valparaíso, Chile 

 

During two weeks of the month of January an interdisciplinary course of music and 

mathematics was conducted, directed to students with potential of academic talent 

coming from different schools of the Metropolitan Region in Chile. The aim of the 

course was to introduce students to one of the practices of musical composition, where 

musicians rely on mathematical models and notions to create their works. The course 

was mainly based on the methods of composition developed by authors such as Iannis 

Xenakis, Michael Winter and Schönberg's twelve-tone technique (Arbonés & Milrud, 

2011; Xenakis, 1992). 

Among the works of these composers is the use of graphic representations to describe 

the musical variations of the work. These are used both for the overall description of 

the piece – the temporary organization –, and as punctual, that is, in the form that the 

height, duration and intensity of each musical note is determined throughout the work. 

That is why it was decided to incorporate this type of representation to the course. 

A positive reception was observed to the use of this type of representations. The main 

interest of the students was in the design of graphs, inspired on different geometric 

figures. Then, over these figures were added the musical parameters and the rules of 

variations. In addition, students also used visual representations to temporarily 

organize their compositions. Through these representations the groups could create 

rhythmic melodies and also serve as scores for their presentation in front of their peers. 

In general, graphic representations seem to be a meeting point between music and 

mathematics. Graphics, schemes, shapes and figures were an important part of the 

process of creation and coordination, both for composers and students. 

Acknowledgement  
To the National Doctoral Scholarship 2015 from the Training Program for Advance Human 

Capital. CONICYT, Government of Chile. (Folio: 21151503) 

References 
Arbonés, J. & Milrud, P. (2011). La armonía es numérica: Música y matemáticas. Villatuerta, 

España: RBA Coleccionables. 

Xenakis, I. (1992). Formalized Music: Thought and mathematics in composition (Sharon 

Kanach, compilación y edicion). Stuyvesant, NY: Pendragon Press. 

  
 



 

________________________________________________________________________________________________________________________

2-87 
2017. In Kaur, B., Ho, W.K., Toh, T.L., & Choy, B.H. (Eds.). Proceedings of the 41st Conference of the International 

Group for the Psychology of Mathematics Education, Vol. 2, p. 87. Singapore: PME. 

NON-INTELLECTIVE CHARACTERISTICS OF 

HIGH-EFFICIENCY MATHEMATICS LEARNERS 
 

Guangming Wang, Yueyuan Kang, Nan Zhang and Jiushi Zhou 

Tianjin Normal University, Tianjin, China 
 

Studies have shown that Chinese speaking students enhance their mathematics learning 

mainly by prolonging their study time in and out school (Hu, 2015). However, it seems that 

students from Chinese speaking areas have low efficiency in learning mathematics though 

they spend a huge amount of time on their studying. To know more about students’ efficient 

learning, this study aims to address the following questions: (1) What are the similarities and 

differences between students’ high-efficiency mathematics learning and their average or low 

efficient peers in high school? (2)How do non-intellective factors relate to high school 

students’ mathematics performance? (3) To what extent do non-intellective factors influence 

high school students’ mathematics performance? 

Participants 

The sample included 690 high school students from 10 schools of 5 cities: Beijing, Tianjin, 

Jiangsu, Fujian and Guangxi. 

Measures 

The students were required to respond to a self-report questionnaire that included 82 items on 

student motivation, emotion, attitude, willpower and personality. The questionnaire was 

developed by Lin’s non-intellective learning structure (Lin & Yu, 1994) and the Cronbach’s 

coefficient, split-half reliability and test-retest was 0.95, 0.80 and 0.86 respectively. We used 

SPSS to describe the data, and analyse the correlation between one’s non-intellective and his 

or her mathematics performance. AMOS was applied to show how non-intellective factor 

influences high school students’ mathematics performance. 

The results revealed high-efficiency mathematics learners of high schools were much more 

significantly than their average or low efficient peers. The first three have a direct effect on 

students’ high-efficiency mathematics learning, while personality has an indirect effect and 

there is no sign showing high-efficiency mathematics learning students’ willpower affects 

their performances. For high-efficiency mathematics learning students, their attitude towards 

studying has great influence on mathematics performance while emotion, motivation and 

personality show less influence. 

High-efficiency high school students scored higher in many non-intellective factors, such as 

attitudes, emotions, motivations, and personality, but not apparently for willpower. They 

were doing better in cognitive motivation, achievement demand, learning anxiety, learning 

efficiency and skepticism than the other two groups and didn’t show any difference in 

persistence. 
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DEVELOPING COMPETENCE IN TASK DESIGN IN A MATH 

TEACHER PROFESSIONAL DEVELOPMENT PROGRAM 
 

Ting-Ying Wang1, Ying-Hao Cheng2, Chia-Jui Hsieh1 and Fou-Lai Lin1 
1National Taiwan Normal University, 2University of Taipei 

 

The project Just Do Math was launched to address problems in mathematics education 

at the primary and lower secondary levels in Taiwan, including students’ lack of 

interest in mathematics and the unacceptable percentage of low-achieving students 

revealed in international comparative studies such as TIMSS and PISA. The project 

involved multiple levels of mathematics education, including teacher professional 

development (TPD) involving task design, which is an effective approach for 

cultivating teaching competence (Zaslavsky, 2008). The TPD program comprised five 

stages: theory learning, task evaluation, task design, teaching experiments, and 

reflection and refinement. The tasks, named grounding activity modules, were required 

to reflect the goals of Just Do Math, namely to increase students’ learning motivation 

and help them grasp the prerequisite fundamentals of a mathematics concept before 

learning it in regular class time. 

This ongoing case study explores teachers’ development of competence in task design 

during the TPD program, employing natural inquiry with intense fieldwork and 

interviews on five primary and six lower secondary mathematics teachers. Each 

version (ranging from initial to final) of the tasks they designed was collected. Content 

analysis was used to analyse the data in four aspects: identification of prerequisite 

fundamental mathematics ideas, arrangement of mathematics representations, use of 

sources of learning motivation, and sequences of learning activities.  

The initial findings included: (1) The teachers knew which concepts were difficult for 

students to learn, but they could not identify the prerequisite fundamental ideas of 

these mathematics concepts without help from the teacher educators. (2) The teachers 

employed various concrete representations such as real objects and graphics in their 

design, but their arrangements were not always appropriate. (3) The teachers used 

various sources of learning motivation in their design. Some teachers stressed intrinsic 

motivations such as challenge, curiosity, and control, and others focused only on 

extrinsic motivations. (4) The sequences of learning activities varied in quality, and the 

teaching experiments and reflection and refinement stages were critical for teachers to 

develop their pertinent competence. 
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IMPACTS OF PLANNING ON THE QUALITY OF A LESSON 

BASED ON MATHEMATICAL PROBLEM SOLVING  
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Open up Math problems are known for having many ways to solve them. Classes based 

on such problems are recurrently recommended by mathematical educators around the 

world. However, the unpredictability of these classes inhibits teachers for causing 

insecurity about the large number of solutions students can have, mainly. The Japanese 

method - Lesson Study - was used to minimize or eliminate factors that constrain 

teachers in such classes, and can give them more confidence and mastery in teaching. 

Thus, the research sought to know the impacts of a shared and reflexively constructed 

planning, foundations of the Lesson Study, of 16 Math teachers in an 8th grade class on 

the following problem: You have a full cup of coffee and a full glass of milk, about 6 

times the size of the cup. Take a spoon full of coffee from the cup and pour its content 

into the glass. Then, take the mixture with the same spoon and return it to the cup. Is 

there more coffee in the glass of milk than milk in the cup of coffee, the opposite, or the 

same amount? 

The authors analyzed the quality of the class with the instrument "Quality Assessment 

of Instruction in Problem Solving - QAISP" - built mainly under the assumptions of 

Hill et al. (2011) and Fernandez & Yoshida (2004) - which seeks to examine 46 factors 

that should be a concern in the planning of an open up Math problem lesson. 

Main results: there was concern with the familiarity of the context, level of difficulty of 

understanding and elaboration of resolution strategies; prediction of students’ 

reactions, doubts and errors; pertinent questions that have promoted progress on 

student reasoning; sharing of resolutions enriching repertoires of strategies, among 

other advantages. The QAISP also pointed out factors that deserved to be reformulated 

by the teachers: execution and evaluation of the looking-back, connection between 

mathematical representations/strategies, verification of knowledge of similar problems 

by students, association of mathematical content with the problem and use of incorrect 

mathematical procedure. The application of Lesson Study showed the potential for 

such class by providing teachers with details that minimized the unpredictability and 

insecurity inherent in the management of classes based on solving mathematical 

problems. 
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HOW STUDENTS WITH LOW AND HIGH ABILITY READ 

GEOMETRY WORKED EXAMPLES: EYE MOVEMENT STUDY 
 

Chao-Jung Wu 

National Taiwan Normal University 

 

Students commonly study worked examples while learning to solve geometric 

problems. Reading such worked examples is a complex process because they include 

reference text and figures to construct a mental model. Using eye movement data, Lee 

and Wu (2017) reported that adults’ reading of geometry examples was text-guided 

and heavily dependent on included figures. This study investigated how ninth-grade 

students with low- and high-ability read worked examples of geometry problems and 

their comparative patterns of eye movement. 

A geometric prior knowledge test (score ≤ 10) was administered to 226 ninth-grade 

students from two schools in Taiwan; 68 participants were selected and then separated 

into low- (score = 1–7, n = 34) and high-ability (score = 10, n = 34) groups. They 

studied three worked examples of geometric problem solutions and then completed 

comprehension tests and transfer tests. Their eye movements were recorded using the 

Eyelink 1000 eye tracker and categorized into five patterns. Most students in both 

groups read the text and examined the figures as they were mentioned (named 

text-directed). For the problem layout, low-ability students finished reading the text 

and then examined the figure significantly more frequently than the high-ability 

students (named text-first). For the solution layout, low-ability students were 

significantly less likely to show text-directed pattern and significantly more likely to 

show text-concentrated pattern (most time was spent focused on the text) than 

high-ability students. Thus, both groups of students used text and figures to understand 

the problems, but low prior knowledge students relied more heavily on text when 

reading solutions. The results imply that the literacy skills required to read a geometric 

figure are more difficult than read a geometric text for low prior knowledge students. 
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WHAT STUDENTS VALUE TO MATHEMATICAL SOLUTIONS 
 

Miho Yamazaki 

University of Tsukuba, Japan 

 

INTRODUCTION 

Values are important factors in learning mathematics because they relate to an 

individual’s motivation and will to act in particular ways. Students’ values are 

analysed in questionaries, interviews, lesson observations and so on (e.g., Seah & 

Peng, 2012). But they are not be tied up with each student’s mathematics learning. 

Therefore, I research students’ values with their actions. In this time, I focus on 

students’ reason for choosing a solution as representation of their values.  

METHODOLOGY 

I attempted to a questionary survey for 77 third junior high school students. First, they 

were proposed a 9/2-star polygon problem and 2 mathematical solutions and asked to 

choose the solution which they felt best. One was with a figure in static (type A) and 

the other was with a variable through some figures (type B). Next, they were proposed 

another solution with a table (type C) and asked how they thought about that. 

SUMMARY OF STUDENTS’ CHOICES AND REASON 

25 out of 77 students chose type A and said type C was good. 28 out of 77 students 

chose type A and said type C was not good. 12 out of 77 Students chose type B and 7 

out of 12 students said type C was not good. As the overall tendency, the students who 

chose type A reasoned from their own subjective feelings. The students who said type 

C was not good reasoned from mathematical contents in that solution. 

WHAT STUDENTS VALUE TO MATHEMATICAL SOLUTIONS 

When students choose a mathematical solution, they reason from their own subjective 

feelings and/or mathematical contents in the solution. In other words, those aspects of 

the solution are so valued that they have taken for a reason. It means they value 

subjective feelings and/or mathematical contents in choosing a mathematical solution. 

CONCLUSION 

Tendentiously, students valued type A more than type B according to subjective 

feelings and judged type C according to mathematical contents. Therefore, students’ 

values on those aspects need to be payed attention to. 
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A STUDY OF FIFTH GRADERS’ PERFORMANCE ON THE 

THREE-TIER NUMBER SENSE TEST 

 

Der-Ching Yang and Mao-Neng Li 

National Chiayi University, Taiwan 

 

To assess the strength of conceptual understanding or lack of knowledge on number 

sense, a three-tier number sense test was developed for 5th-grade students. The number 

sense three-tier test included a content-tier which assesses content knowledge of 

number sense; a reason-tier, which assesses a reason selected for the first-tier response; 

and the confidence-tier, which assesses how confident the students are in their answers 

to the first two-tiers. Earlier studies has showed that a two-tier test includes both 

quantitative benefit of collecting a lot of data without consuming much time and 

qualitative strength of assessing students’ thinking in terms of an explanation for their 

answer choice and possible causes of misconceptions (Authors, 2010, 2016). However, 

the two-tier test does not allow us to measure their confidence as to why they select 

their answer to the first two-tiers. A low level of confidence with low performance on 

the number sense will be treated as a lack of knowledge and A high confidence with 

low performance on number sense will be treated as a sign of significant 

misconception (Caleon, & Subramaniam, 2010; Pesman & Eryilmaz, 2010; Stankov & 

Crawford, 1997). A total of 819 fifth graders in Taiwan joined the study. The results 

showed that this test has good reliability and validity. Results indicated that many 

sample students performed poor on number sense but with extreme high confidence 

indicating that many students have significant misconceptions and some students may 

lack number sense. This study also confirmed that a third-tier (with confidence rating) 

number sense test can be used to mitigate the weakness of a two-tier test. Educational 

implications of the findings are discussed. 
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LEARNING GEOMETRY CAN BE FUN! ‒ DEVELOPMENT OF 

STORY-BASED REMEDIAL INSTRUCTIONAL MODULES FOR 

DISADVANTAGED STUDENTS  
 

Ru-Fen Yao 

National Chia-Yi University 

 

BACKGROUND AND PURPOSE 

Educational equity is a core element and principle for school mathematics. In fact, 

mathematics for all has been internationally considered a key issue of mathematics 

education as noted by the Ministry of Education in Taiwan in 2010. 

Geometry is fundamental to understand and to explain the physical environment. 

Enhancing geometric thinking is very important for high level mathematical thinking 

and in daily life. However, in Taiwan, many research findings indicated there was a 

lack of conceptual understanding of area for elementary students. They had an 

inadequate understanding of area and area measurement, and also commonly confused 

area and perimeter. 

The main purpose of this research was to develop story-based remedial instructional 

modules for elementary school students to learn area and perimeter. 

 

RESULTS 

Three elementary schools were involved in this research. And three story-based 

remedial instructional modules were designed for the participants, including “The 

Legend of Long-Hair Elder” for grade 3, “Annual Purdue Festival” for grade 4, and 

“Mission of solving Problem for School” for grade 5. The researcher tried to help 

students understand geometry could be useful and beautiful, and learning geometry 

can be fun.  

Through analysis of observation, interviews, tests, and related documents, the findings 

indicated that students enjoyed learning geometry through these "story-based remedial 

instructional modules", and their mathematics achievements were improved. 

Hopefully, this research could create appropriate and happy environments for 

disadvantaged students to learn area and perimeter. 

 

                     
Figure 1. Examples of the "story-based remedial instructional modules" 
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HIGHER ORDER THINKING, ENGAGEMENT AND 

CONNECTEDNESS IN LESSONS BASED ON STEM CONTEXTS 

Judy Anderson and Zenobia Katrak 

The University of Sydney 

 

Retention rates of students enrolled in calculus-based mathematics courses is 

declining in Australian secondary schools. Pedagogical practices, engagement, 

perceived relevance and usefulness of mathematics have been identified as factors that 

exacerbate this issue. Informed by a quality teaching framework, and using responses 

to surveys, interviews and lesson observations, this interpretive study sought to 

investigate whether using STEM context-based tasks supported higher order thinking, 

engagement and connectedness in two mathematics lessons. Students identified 

challenge, collaboration, open-endedness and connections as factors which enhanced 

their interest and engagement. Teachers noted increased student engagement and 

greater connectedness with the intention to use more STEM context-based tasks. 

INTRODUCTION 

Using mathematics tasks embedded in a context (real or imagined) has been promoted 

and investigated by researchers for some time (Hodge, Visnovska, Zhao, & Cobb, 

2007; Sullivan, Clarke, & Clarke, 2013) with findings suggesting their purpose is not 

always realised (Beswick, 2011). From promoting transfer of knowledge (Boaler, 

1994) to enhancing the relevance of mathematics (Vasquez, Sneider, & Comer, 2013), 

the use of context-based tasks has been advocated in curriculum and other policy 

documents. Most recently, the STEM (science, technology, engineering, and 

mathematics) education agenda in Australia has endorsed the use of tasks which 

connect the four subjects with the suggestion that such connections will further 

promote the study of STEM, address falling student achievement and poor attitudes 

(Marginson, Tytler, Freeman, & Roberts, 2013; Office of the Chief Scientist, 2016). 

With declining engagement in mathematics, particularly in the middle years during the 

transition from primary to secondary school (Martin, Anderson, Bobis, Way, & Vellar, 

2012), and with declining enrolments in senior school STEM subjects and in university 

STEM degrees (Kennedy, Lyons, & Quinn, 2014), there is a desire to implement 

approaches in secondary mathematics classrooms to address these declines. 

Based on a survey of mathematics teachers and careers advisers to investigate reasons 

for the falling participation of students in senior mathematics, McPhan, Morony, Pegg, 

Cooksey and Lynch (2008) identified poor pedagogical practices and lack of 

understanding of the usefulness of mathematics as key issues impacting students’ 

decisions. The study reported in this paper investigated teachers’ use of STEM 

context-based tasks to enhance students’ perceptions of the usefulness of mathematics 
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by collecting data on students’ and teachers’ reactions to the use of such tasks in lower 

secondary mathematics lessons and to investigate whether the tasks promoted higher 

order thinking, engagement and connectedness. These three quality teaching elements 

form part of a Quality Teaching Framework (QTF) which is a pedagogical framework 

based on a synthesis of solid and reliable research that empirically links these general 

qualities of pedagogy to improved student learning (Ladwig, 2009).  

LITERATURE REVIEW 

With teachers typically using teacher-centred approaches such as explanation of skills 

and procedures followed by extensive practice, many students find mathematics boring 

and uninspiring (McPhan et al., 2008). Mathematics questions or problems tend to be 

lower order, repetitive and decontextualized. Based on the TIMSS Video study of Year 

8 mathematics classrooms in Australia, Stacey (2003, p. 119) described the approach 

as a “cluster of features that together constitute a syndrome of shallow teaching, where 

students are asked to follow procedures without reasons”. The approach reinforces a 

disconnection between school mathematics and real-world mathematics which 

heightens students’ beliefs that mathematics is not useful and tends to reduce the 

potential for exploring and investigating rich, problem-solving tasks (Sullivan et al., 

2013). However, using task types which “provide appropriate contexts and 

complexity; that stimulate construction of cognitive networks, thinking, creativity, and 

reflection; and that address significant mathematical topics explicitly” has the potential 

to promote learning and engagement (Sullivan et al., 2013, p. 14). While Boaler (1994) 

suggested context-based tasks provide students with a familiar metaphor, motivate and 

promote interest for students, and enhance the transfer of mathematical learning 

through links between school mathematics and real world problems, much of the 

earlier research examined the use of context-based word problems. Based on her 

examination of the research investigating such word problems, Beswick (2011) argued 

the identified purposes for using them do not always match outcomes. 

A unique feature of this study is the tasks were not just context-based word problems 

but were more challenging inquiry questions which take longer to solve, have a STEM 

context, and are connected to students’ interests as judged by their teachers. Given the 

complexity of student learning and catering for individual differences, designing 

inquiry tasks which support a learning focus, promote self-belief and persistence and 

reduce anxiety is challenging (Martin et al., 2012). However, finding ways to enhance 

mathematics learning and improve student affect is critical if we are to improve 

achievement, attitudes and participation in mathematics (Sullivan, et al., 2013). 

Previous studies suggest students need to be provided with choice (Boaler, 1994), the 

task should not be overly simplified so that it becomes unrealistic (Sullivan et al., 

2013), the mathematics needs to be explicit and evident (Beswick, 2011), and the 

context needs to connect with students’ lives (Hodge et al., 2007). To further focus the 

investigation, the study examined the use of tasks which promoted higher order 

thinking (or challenge) (Sullivan et al., 2013), behavioural, cognitive and affective 
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engagement (Fredricks, Blumenfeld, & Paris, 2004), and connectedness (Ladwig, 

2009), all of which are elements of the QTF; the framework is comprised of three 

dimensions – intellectual quality, quality learning environment and significance. Table 

1 shows how each of the key elements under investigation is connected to the 

dimensions and provides a brief description of what each element might look to an 

observer in a classroom.  

QTF 

Dimension 

Element 

(one of six) 
What does it look like in classrooms? 

Intellectual 

Quality 

Higher-order 

thinking  

Students are regularly engaged in thinking, to organise, 

reorganise, apply, analyse, synthesise and evaluate knowledge 

and information.  

Quality 

Learning 

Environment 

Engagement  Most students, most of the time, are seriously engaged in the 

lesson rather than going through the motions. Students display 

sustained interest and attention.  

Significance Connectedness  Lesson activities rely on the application of school knowledge 

in real-life contexts or problems … 

Table 1: QTF dimensions and elements investigated in this study (NSW DET, 2003) 

The QTF is a model of pedagogy designed as an analytical framework for diagnostic 

development of classroom practice and assessment tasks (Ladwig, 2009); a QTF 

coding sheet has been developed to assist with the identification of the level of 

evidence for each element during classroom observations. Intellectual quality is 

described as the central to quality teaching but is not sufficient without attention to the 

other dimensions. Based on observations in more than 600 classrooms from 

Kindergarten to senior schooling and in all subject areas, Ladwig highlights the 

importance of connectedness which he suggests is rarely observed: 

… it is relatively rare to see links to other contexts or larger social purposes of what is 

being learned, such that the significance of a lesson or task is largely unarticulated. In 

short, the quality of pedagogy these studies have documented resembles much of what we 

all have probably experienced: reasonably warm, mundane schooling (p. 275) 

METHODOLOGY 

To investigate whether teachers’ use of STEM context-based tasks enhances students’ 

higher order thinking, engagement and connectedness, a small-scale study was 

conducted in two comprehensive secondary schools in a large metropolitan area. This 

paper includes data from an experienced mathematics teacher from each school who 

was teaching a year 7 and/or year 8 mathematics class. Both teachers had attended a 

STEM professional learning program and were keen to investigate their students’ 

reactions to the use of STEM context-based tasks, particularly those which promoted 

challenge (Sullivan et al., 2013) and inquiry-based learning (Marginsen et al., 2013). 

Teacher A, a Deputy Principal at a small independent coeducational high school, was 

teaching mathematics to a composite year 7 and 8 class. Teacher B, an experienced 

teacher at a Catholic girls’ high school, was teaching a top-stream year 7 mathematics 
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class. For the study, each teacher designed a STEM task that connected with the 

curriculum requirements from the mathematics program, and that would engage and 

challenge their students. Both tasks were open-ended and relied on specific 

mathematics knowledge and understanding for completion (Sullivan et al., 2013). 

Data were collected using researcher observations of each lesson, student surveys and 

teacher interviews after the lesson. A QTF coding sheet was used by the researcher to 

code the lesson for higher order thinking, engagement and connectedness with real-life 

contexts (Ladwig, 2009). Informed by a questionnaire used by Martin et al. (2012), the 

student questionnaire comprised 12 four point Likert scale items about students’ 

interest (“I like doing mathematics”), the value of mathematics (“Maths is useful for 

solving everyday problems”), and their reactions to the lesson (“Maths makes more 

sense when it is linked to the other STEM subjects”) to which they indicated their level 

of agreement from “Strongly Agree”, “Agree”, “Disagree” to “Strongly Disagree”. 

Two open-ended questions asked students to describe the differences between the 

STEM focused lesson and “usual maths lessons”, and how the lesson was more 

engaging than usual. An Excel spreadsheet was used to analyse responses to the Likert 

items and responses to the open-ended questions were coded to identify key themes. 

Teacher interviews sought their views on students’ levels of engagement and interest 

in the lesson, and how that differed to typical mathematics lessons as well as whether 

they would continue to use STEM context-based tasks. Triangulating the data from the 

QTF coding sheets, student responses and teacher interviews enabled each lesson to be 

analysed for evidence of higher order thinking, engagement and connectedness. 

DATA ANALYSIS AND DISCUSSION 

This section presents a brief description of each lesson and then links data from the 

lesson observations, the teachers and their students to highlight similarities and 

differences in higher order thinking, engagement and connectedness. In teacher A’s 

class, the lesson formed part of a STEM project entitled “My Kitchen Rules”. Students 

had been provided with a ‘challenge brief’ for the project indicating they needed to 

develop and make an entrée or dessert that must include an egg as one ingredient. After 

the project students were to submit the following as evidence of their learning: 

Submit the recipe with ingredients, equipment and method for a party of 20 people. 

Identify the physical and chemical changes that take place and describe the types of heat 

transfer used in the process. Submit a nutritional label informing the consumer of the 

ingredients in descending order of proportion. Submit a detailed folio of the processes, 

experiments, mathematical calculations and graphics used to prepare your signature dish. 

While mathematics and science formed key components of this project work, the 

mandatory technology curriculum was also evident as this task is classified as a “food 

design project” which “may result in food products, menus, food preparation systems, 

diets for special purposes, food presentation” (BOSTES NSW, 2003, p. 15). In the 

observed lesson, project-paired students were tasked with using an Excel spreadsheet 

to create a formula to show how the quantities of their ingredients would change, based 
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on the number of serves. Students were required to ‘think big’ to investigate how their 

formula for serving size could be applied to real-life to enhance the relevance of the 

mathematical findings they had discovered. For example, one pair of students chose to 

look at the relation between serving size and Recommended Daily Intake as presented 

on a government health website. 

In teacher B’s class, the lesson focused on the concept of optimisation, as students had 

to determine why beehives were hexagonal in shape. The lesson had three phases; 

during the first part of the lesson, students worked in small groups to calculate the 

maximum area of a rectangular enclosure that had a perimeter of 12 centimetres. This 

was followed by class discussion and teacher exposition on optimisation and its 

application in real-life contexts. The third phase of the lesson was framed by a video 

that provided stimulus for the students to further explore why beehives are hexagonal 

in shape. This lesson did not form part of a STEM project but the teacher indicated he 

was keen to use STEM contexts in as many of his mathematics lessons as possible. 

Using the QTF coding system, the researcher determined that in both lessons there 

were high levels of higher order thinking since students were continually analysing, 

assessing, evaluating and deconstructing the problem-based contexts through engaging 

in experimental practices; one class used technology to facilitate the investigation 

while the other used concrete materials. Within both lessons, most students adopted a 

'trial and error' approach to begin their task. In class A, there were multiple approaches 

to creating a formula which allowed them to interpret the problem in varying ways. 

Students having difficulty with their formula were prompted by the teacher to 

collaborate with their peers to uncover new ways of approaching their problem-solving 

task. For example, after discussing with two of their peers, one pair discovered that to 

find the relationship between ingredient quantity and serving size, they needed to start 

by converting the quantities of each ingredient into a percentage of the final product. In 

teacher B’s class, students were provided with paper cut-outs of hexagons to fit 

together to optimise the area covered within the rectangle (Figure 1).  

 

 

Figure 1: Sample of student solution to optimising the area covered with hexagons  

Students were observed questioning the way their peers had reached their conclusions, 

and tried different ways of fitting the hexagons together. When interviewed, teacher B 

commented that he was “surprised by some of the solutions the girls came up with”, as 

they were unique and demonstrated creativity in spatial reasoning. Further evidence of 

higher order thinking occurred when one student announced to her group that they 

should draw a four-sided shape with a side length of three centimetres to maximise the 

area of the enclosure, and another student responded with “that’s not a rectangle” thus 

providing an opportunity for a deep mathematical discussion about the properties of 

quadrilaterals.   
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In both lessons, collaborative work to problem solve was an integral part of the lesson, 

as students were required to work in pairs or small groups for each activity. Students 

questioned each other and challenged each other’s responses and mathematical 

justification was evident, particularly in teacher B’s class. There were clear indications 

of student engagement (behavioural, cognitive and affective) with the content, with 

most students working on the tasks for most of the lessons, students made substantial 

contributions during class discussions, and all contributions included strategies to 

solve the task under investigation (Hodge et al., 2007). 

However, there was evidence that some students in both classes were off task for a 

small proportion of the lesson. Both teachers were aware that some students were more 

dominant and inclined to ‘take over’, do most of the directing of activity, and ask most 

of the questions. Each teacher employed strategies to overcome this; B commented 

that: “there were a couple of girls as I went around that were letting the other girls do 

the work”, so he used questioning when the class regrouped, and selected students to 

explain and justify their mathematical reasoning who appeared to be less engaged. 

Noticeably most students could justify their answers when required demonstrating 

they had engaged cognitively with the task. Teacher A commented that some pairs 

appeared to disengage if they both reached a blockage in their solutions. However, 

they were observed self-regulating their behaviour and re-engaging with the lesson by 

working with another pair. For example, teacher A commented 

I was surprised that the boys down the front [of the classroom] were asking for help from 

the girls at the back. That was good because the boys usually don’t do that … 

Importantly in teacher A’s case, he acknowledged that establishing a problem with real 

world applications did not necessarily make mathematics more appealing, relevant and 

understandable for some students, and this may have been a contributing factor to one 

student’s disengagement. He commented: “the boy at the back of the classroom, his 

partner was absent, and he relies on his partner to do the work and explain it to him”.  

Despite this, 13 out of 17 students in class A and 19 out of 20 students in class B agreed 

that they felt more engaged with mathematics, and that they preferred learning 

mathematics in a problem-solving context, especially when the contexts were relevant 

to their lives. In the open-ended responses, students reported that the lesson was “more 

engaging as we had experimented with the actual problem we were solving” and that 

they could see real world applications. Students also favoured a “hands-on” approach 

to mathematics compared to a textbook approach, as they could “do something ...  we 

can actually see when we make mistakes and do things correctly”. Collaborative work 

was also cited by multiple students as a contributing factor to increased engagement in 

the observed lesson, as students could learn from each other and “work out the answer 

by listening to each other’s opinion”, and that working with peers is “definitely an 

opportunity to find out more answers”. The overall findings suggest that levels of 

engagement in mathematics classes are higher when open-ended problem-solving 
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tasks are used to teach mathematical concepts to students, and highlight the importance 

and usefulness of mathematics in real world contexts. 

Further evidence of connectedness occurred within teacher B’s class as he described 

how optimisation is used in other real-life situations such as packaging and 

manufacturing cereal boxes. Links to engineering and construction using optimisation 

were also made. His exposition created background knowledge for the next phase of 

the lesson, as students explored the link between why bees form beehives in hexagonal 

shapes, as this increases the area in a beehive while minimising the amount of wax 

needed. In both cases, most students were making progress in the problem-solving 

process, and students were connecting the problem solving with mathematical 

concepts; in B’s class, students could see the connection between perimeter and area. 

From the student surveys, several items examined whether students felt that the lesson 

demonstrated the relevance mathematics had in the real world. From A’s class, 16 out 

of 17 students agreed that mathematics is important and is used to solve practical 

problems in life, with all seeing the relevance mathematics had in the world from the 

lesson. B’s class followed a similar trend, with 19 out of 20 students connecting 

mathematical knowledge to problem-solving in a real-world context. Student 

responses justified their choice by explaining that the lesson allowed them to “learn the 

purpose [of maths] … most of the time math class is boring and pointless”, and that 

“maths lessons should be linked to how we can use it in real-life”. 

CONCLUSION AND IMPLICATIONS FOR FURTHER STUDIES 

Although the data from only two mathematics lessons form the basis of this paper, 

observations as well as student questionnaire responses and teacher interviews suggest 

that teachers’ use of STEM context-based tasks do enhance students’ engagement and 

interest in mathematics. These tasks allowed teachers to create lessons that provided 

students with open-ended, challenging experiences to explore mathematical concepts 

in a creative way, and forge a deeper understanding of how mathematics is relevant to 

real-world contexts. Students were less reliant on the teacher to help them through the 

tasks as they interacted with each other. The evidence reported here indicates that the 

tasks promoted higher order thinking, enhanced engagement and enabled 

connectedness. The study supports recommendations from Sullivan et al. (2013) and 

Hodge et al. (2007) but builds on earlier work by incorporating a STEM focus. The 

implications of this study could have profound effects on the pedagogical practices 

employed in classrooms by teachers; there may be a greater push to forgo traditional 

pedagogical practices for open-ended investigations with cross-curriculum 

connections, particularly with the other STEM subjects (Vasquez et al., 2013). Both 

teachers and students agreed such experiences would enhance mathematics lessons 

and might encourage more students to participate in the post-compulsory study of 

STEM subjects (Kennedy et al., 2014; Marginson et al., 2013; McPhan et al., 2008). 



Anderson and Katrak 

 

2-104 PME 41 – 2017  

References 

Beswick, K. (2011). Putting context in context: An examination of the evidence for the 

benefits of ‘contextualised’ tasks. International Journal of Science and Mathematics 

Education, 9, 367-390. 

Boaler, J. (1994). When do girls prefer football to fashion? An analysis of female 

underachievement in relation to ‘realistic’ mathematics contexts. British Educational 

Research Journal, 20(5), 551-564. 

Board of Studies NSW. (2003). Technology (mandatory): Year 7–8 syllabus. Sydney: 

BOSTES, NSW 

Fredricks, J., Blumenfeld, P., & Paris, A. (2004). School engagement: Potential of the 

concept, state of the evidence. Review of Educational Research, 74(1), 59-109.  

Hodge, L, Visnovska, J, Zhao, Q., & Cobb, P. (2007). What does it mean for an instructional 

task to b effective? In J. Watson & K. Beswick (Eds.), Mathematics: Essential research, 

essential practice (Proceedings of the 30th annual conference of the Mathematics 

Education Research Group of Australasia, Vol. 1, pp. 392-401). Adelaide: MERGA. 

Kennedy, J. P., Lyons, T., & Quinn, F. (2014). The continuing decline of science and 

mathematics enrolments in Australian high schools. Teaching Science, 60(2), 34-46. 

Ladwig, J. G. (2009). Working backwards towards curriculum: On the curricular implications 

of Quality Teaching. Curriculum Journal, 20(3), 271-286. 

Marginson, S., Tytler, R., Freeman, B., & Roberts, K. (2013). STEM: Country comparisons. 

Melbourne: The Australian Council of Learned Academies.  

Martin, A., Anderson, J., Bobis, J., Way, J., & Vellar, R. (2012). Switching on and switching 

off in mathematics: An ecological study of future intent and disengagement among middle 

school students. Journal of Educational Psychology, 104(1), 1-18. 

McPhan, G., Morony, W., Pegg, J., Cooksey, R., & Lynch, T. (2008). Maths? Why not. 

Canberra: Department of Education, Employment and Workplace Relations. 

NSW Department of Education and Training. (2003). Quality teaching in NSW public 

schools: A classroom practice guide. Sydney, NSW: DET. 

Office of the Chief Scientist. (2016). Australia’s STEM workforce: Science, technology, 

engineering and mathematics. Canberra: Commonwealth of Australia. 

Stacey, K. (2003). The need to increase attention to mathematical reasoning. In H. 

Hollingsworth, J. Lokan, & B. McCrae, Teaching mathematics in Australia: Results from 

the TIMSS 1999 Video Study (pp. 119-122), Camberwell, Vic.: ACER. 

Sullivan, P., Clarke, D., & Clarke, B. (2013). Teaching with tasks for effective mathematics 

learning. New York: Springer. 

Vasquez, J. A., Sneider, C. I., & Comer, M. W. (2013). STEM Lesson Essentials, Grades 3-8: 

Integrating Science, Technology, Engineering, and Mathematics. New York: Heinemann. 

 



 

 

   2-105 
2017. In Kaur, B., Ho, W.K., Toh, T.L., & Choy, B.H. (Eds.). Proceedings of the 41st Conference of the International 

Group for the Psychology of Mathematics Education, Vol. 2, pp. 105-112. Singapore: PME. 

REFRAMING TEACHERS’ VIEWS OF STUDENTS’ 

MATHEMATICS CAPABILITIES 

Glenda Anthony, Roberta Hunter and Jodie Hunter 

Massey University 

 

Reforms interventions are mediated to a large extent by teacher’s social construction 

of their students. Analysis of changes in teachers’ perceptions of students’ capabilities 

using a diagnostic and prognostic framework suggests that professional learning that 

includes opportunities for teachers to make sense of the reasons for student struggle 

through inquiry into practice can be effective in shifting teachers’ perceptions.  

INTRODUCTION  

Inequitable opportunities to learn associated with ability grouping, teacher deficit 

thinking, and impoverished curriculum-based expectations are frequently cited as 

sources of disparity student mathematical outcomes (Anthony & Hunter, 2017). While 

acknowledging the many factors that impact on learning outcomes, this paper focuses 

on the influence of teacher perceptions of students’ mathematical capabilities. 

Perceptions play out in expectations of achievement, assignment to ‘ability’ groups 

differential feedback, and opportunities to engage with challenging tasks, to participate 

in mathematical discourse, and the development of students’ mathematical identity 

(Jorgensen et al., 2014). And importantly for any reform interventions, policy 

coherence as intended by reformers ultimately “is achieve or denied in the subjective 

response of teachers—in teachers’ social constructions of students” (McLaughlin & 

Talbert, 1993, p. 248).  

In this paper, we explore how ambitious forms of teaching advanced in the Developing 

Mathematical Inquiry Communities (DMIC) project impacts on teachers’ perceptions 

of traditionally struggling students. Utilising complex instruction, DMIC focuses on 

the use of (a) groupworthy tasks connected to students’ cultural experiences and the 

learning of big mathematical ideas; (b) instructional practices that support respectful 

group norms and the development of mathematical argumentation; and (c) status and 

accountability structures that raise the participation and intellectual expectations of 

each student (Alton-Lee et al., 2011). DMIC’s ambitious teaching practices required 

that many teachers within the project school reorganise their vision of teaching and 

learning, including changes in their assumptions about how each student learns, the 

provision of mathematical activities, expectations for student participation, and norms 

of social interactions with and between students. As part of this learning journey we 

were interested to explore how teachers (re)framed their views of students’ 

capabilities, and to develop a sense of what might be influencing these changes.  
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CONCEPTUAL FRAMEWORK 

Teachers’ views of students’ capabilities are important in efforts to supports 

instructional reforms, particularly so in settings that serve students from economically 

impoverished communities (Jackson et al., 2017). However, despite policy initiatives 

in New Zealand directed at improving mathematics achievement outcomes for diverse 

learners, achievement outcomes for Māori and Pasifika remain consistently low. 

Related, are concerns re teachers’ deficit-oriented view of Maori and Pasifika students 

and their families and the communities in which they live (Turner et al., 2015) and the 

widespread practice of ability grouping in primary schools (Anthony & Hunter, 2017).  

In this paper, we adopt a lens of problem framing—an approach proposed by Jackson, 

et al. (2017)—to provide insights into our teachers’ views of their students’ 

capabilities in the context of the DMIC instructional reform efforts. Drawing on 

Goffman’s (1974) work on understanding how interactions are socially organised, 

frames are used to give meaning to an event or experience and enable people to answer 

the question “what is going on here”? (p. 8). Importantly, “the elements and processes 

assumed in reading of the activity often are ones that the activity itself manifests” (p. 

26). For example, Horn (2007) working with two high-school mathematics 

departments noted differences in the ways the teachers framed the problem of 

differential success—in terms of inherent traits of the students or learning 

opportunities provided in the classroom—and consequential instructional actions. In 

the former, when students were not engaged or struggled the teachers placed the blame 

on the students, in the second group teachers were more likely to consider how they 

might alter instruction. Horn argued that a key aspect of teachers’ substantial 

participation in ambitious instructional reform involved framing differential student 

success as a problem of instruction. Moreover, Horn conjectured that teachers’ 

problem framing linked to their views of mathematics, with the latter group aligned to 

views of mathematics as a web of ideas rather than a sequential ordering of topics.  

Bannister (2015) used two framing categories to provide insight into teachers’ views of 

students’ capabilities in relation to ambitious teaching reform efforts: diagnostic 

framing—identification of a problem and the attribution of blame; and prognostic 

framing—a proposed solution to the diagnosed problem that specifies what needs to be 

done. Linking frame analysis to the theoretical traditions of the communities of 

practice literature, Bannister argued that frames are co-constructed objects among 

group members that represent existing meanings in a group at a particular time. Hence, 

teacher framing of problems of practice has “the capacity to provide evidence of 

changes in teacher’ participation and reification patterns over time, yielding empirical 

evidence for learning with a community of practice” (p. 350).  

Jackson et al.’s (2017) study of 122 middle-grade mathematics teachers’ perspectives 

on reform efforts categorised varying levels (unproductive, productive, or mixed) of 

teachers diagnostic and prognostic framing. They found that nearly 30% of the 

teachers coded for diagnostic framing (n = 100) “attributed students’ difficulty solely 
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to inherent traits of students, and/or deficits in their families and communities” (p. 7). 

The most common prognostic response (70% of the sample of 74 teachers) was to 

describe a lowering of the cognitive demands of activities for students perceived as 

struggling. They also noted for those teachers categorised as expressing a productive 

diagnostic framing related to instructional opportunities, half did not describe ways to 

respond to those difficulties “in ways that would enable students to participate 

substantially in rigorous mathematical activity” (p. 8). These researchers urged that 

professional learning opportunities need to simultaneously attend to supporting 

teachers to make sense of differential student success and ways in which teachers can 

learn to support students facing difficulty that align to ambitious teaching goals. 

RESEARCH DESIGN  

The data consists of a series of semi-structured interviews, each approximately 25 

minutes in duration, with 17 teachers from one school. The school, located in an 

economically challenged community, comprised multiple ethnic groups and transient 

students. Questions related to struggling students: “Who are the strugglers in your 

class and why do you think they struggle?” and “How do you support students who 

experience difficulty in maths?” were woven into each interview about their ongoing 

experiences in the DMIC professional learning project. Analysis for evidence of 

changes in teachers’ perceptions of students’ capability and learning potential 

examined teachers’ reported instructional strategies associated with student 

engagement and participation patterns within each teaching group (organised into New 

Entrants (NE), Years1/2, Years3/4, and Year 5/6). Interviews were coded with regard 

to references to managing diversity and changes in instructional and participation 

patterns for students in their classes. In seeking evidence for changes in framings of the 

struggling student problem (adapted from Jackson et al., 2017) we coded against the 

diagnostic frame (see Table 1 for example coding) to understand how teachers 

conceptualised the struggling student problem and the (b) prognostic frame (likewise 

see Table 2) to understand how teachers conceptualised interventions related to the 

struggling student problem.  

P
ro

d
u
ct

iv
e Student performance is 

described as a relationship 

between student and 

instruction or opportunity to 

learn 

I guess [now] I figured anybody could do maths. …I 

have got children with very little English and 

children from pretty traumatic backgrounds and they 

come in and they believe they can solve the problem 

as well as anybody else and they give it a go. (Y5/6) 

M
ix

ed
 

Some but not all students’ 

performance is related to 

un/productive framing or that 

performance is a 

combination of factors. 

Generally those children are low in all areas. They 

have difficult homes. Maybe they haven't had 

breakfast. Maybe they've been up late, they're tired, 

they don't like maths. Their experiences of maths 

aren’t positive. Maths is boring. Maths is repetitive. 

Maths is pointless. (Y5/6) 
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U
n

p
ro

d
u

ct
iv

e
 

Student performance is 

attributed to an inherent 

property of students or their 

home or community. 

 

 

It's just home life. Pure and simple. It's those first 

five years and the moment we meet the families we 

can tell why the child is like they are (NE)  

Table 1: Diagnostic framing coding scheme 

 

P
ro

d
u
ct

iv
e
 Instructional support aimed 

at rigorous learning goals  

 

I look at three different ways some kids struggle to 

explain things through words or pictures or 

materials. I don't care how they explain it as long as 

it’s in some form. I know a lot of this is based 

around verbalising and talking. (Y1/2) 

M
ix

ed
 

Support aimed at supporting 

rigorous activity, but some 

actions lessen the cognitive 

demands. 

The constraints around it is that a lot of those kids 

that are less capable sometimes sit back a lot more 

and take a bit more—and often they don't like maths 

because they’re not good at it and because they don't 

like maths, they then don’t participate in the way 

that we would like them to but then you just ask the 

right question. (Y5/6) 

U
n

p
ro

d
u

ct
iv

e
 

 

Instructional actions aimed at 

lessening the cognitive 

demands of a task. 

 

 

I’ve usually been a teacher that's explained a lot and 

set it up for them just so they can figure it out a lot 

easier. (Y3/4) 

Table 2: Prognostic framing coding scheme  

FINDINGS 

Table 3 provides a visual summary of how teachers from each syndicate shifted into a 

more positive framing space over the year, with upward movements represented in 

both diagnostic and prognostic framing of struggling students. At the beginning of the 

year the teachers across most of the year levels focused on fixed student attributes and 

gave advice about changes students needed to make in terms of references to “bottom” 

or “top” students. Several teachers appeared taken aback with probes about why some 

students struggle. For example, a Y1/2 teacher responded: “I’m not sure why they 

struggle. I don’t have an answer for you” but later in the interview the teacher 

explained that prior to the project she was “a teacher that’s explained a lot and set it up 

for them just so they can figure it out a lot easier”. Mid-year, the teachers expressed 

greater awareness of how struggling students could participate—with many reporting 

examples of ‘surprises’ and increased expectations for their students. However, still 

concerned with filling gaps in basic knowledge, several teachers viewed the problem 

of managing diverse groups of students as being about getting the ‘weaker’ students to 

listen more to the ‘more able’ students. At the end of the year there was a noticeable 

decrease in teacher talk that labelled students by perceived ability. 
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P
ro

g
n
o
st

ic
 F

ra
m

in
g

 Productive   T5/6   

T1/2   T1/2   T1/2   

T5/6   T5/6   

T1/2  T3/4  T3/4 

T5/6  T5/6   

Mixed T1/2   T1/2    T1/2* 

T3/4*  T3/4 T3/4 

T1/2   T1/2  T3/4  

T5/6   T5/6  T5/6    

 

 

T1/2  T3/4 TNE  TNE  T1/2 T3/4   T3/4   

Unproductive TNE  TNE* T1/2   T3/4   

  Unproductive Mixed Productive 

 Diagnostic Framing 

Table 3: Shifts in framing from start (unshaded) to end of Year 1 (shaded) 

(Note: *assessed at mid-year interview)  

In the next section we discuss three key features of DMIC that we conjecture 

contributed to the positive shifts evidenced in Table 3.  

Making sense of the reasons behind differential success 

Helping teacher understand the reasons behind their students’ struggle involved 

challenging teachers’ views about who and how students participate in mathematics. In 

seeking to engage more students DMIC included a focus on developing teachers’ 

awareness of their students’ cultural backgrounds and interests. For many teachers 

they developed this awareness through partnerships with their students:  

we ask the kids to give us the information about their culture rather than us just assuming 

that we know about their cultures. It’s been a big learning curve; you have to change your 

mind-set. [Y5/6] 

A second significant feature of DMIC involved the whole-school change from ability 

grouping practices to using mixed-achievement groups, combined with changing the 

nature of student collaboration in group tasks. These embedded changes in groupings, 

combined with the establishment of new group norms and inquiry discourse practices 

challenged teachers’ perceptions of student agency:  

They are a lot more independent. You can give them a problem and obviously unpack it 

with them and then leave them to it. Last year working with the purple book and you would 

come across a question with a group in front of you they would sit there looking at you. 

Now they ask each other rather than asking us. This [inquiry group discourse] is starting to 

slowly transfer to the other learning areas now like in reading a boy nudged another boy 

and said “do you agree that this word is this”? [Y1/2] 

Supporting students facing difficulty in ways that maintain challenging goals  

More than challenging teachers’ views about who can do mathematics, DMIC 

provided teachers with productive strategies for supporting students who have 

traditionally struggled. While towards the end of Year 1 only two teachers (compared 

with 10) reported deficit views of their students, all teachers reported using some 

productive strategies to support students who struggled. This shift was supported by 
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changes in the opportunities to learn through the enactment of challenging 

groupworthy tasks, and by changes in the group participatory practices associated with 

mathematical inquiry. As a Y5/6 noted:  

So the whole structure of the way you do the groups making other people write and 

listening to other people feedback has just taken away the fear. If everybody in the room 

makes a mistake you quickly realise it’s okay to make a mistake. ….The mixed ability 

groups promote the risk taking, questioning and classroom culture is so important.  

As teachers persevered with the establishment of group tasks they noted that students 

were more confident and open minded, more independent of the teacher, and 

purposeful in their mathematics learning: 

The thinking and puzzling things through and discussing and justifying the thinking. And 

being able to say, “I’m going to try this way and show that to somebody else”. Sometimes, 

like with patterns, I’ve got this way in my head, but kids have a different way. …Those 

conversations and discussions, you can see little light bulbs go on in their heads, listening 

in on conversations you hear “oh I get that know” because they’ve asked “can you tell me 

that again cause I still don’t get it”. [Y5/6] 

Monitoring ongoing instructional improvement efforts  

However, equally important in supporting shifts in framing problems of practice, is the 

development of teacher disposition to inquiry into practice. Only when a teacher 

weighs up the evidence of learning, thinking about the impact of specific instructional 

moves can the teacher develop adaptive expertise that is needed to response to 

diversity in his or her classroom (Anthony, Hunter, & Hunter, 2015). Inquiry was both 

individual, in terms of teachers noticing what children in their own classroom could 

do, and collaborative in terms of planning and co-teaching experiences.  

Freed up from the role of explainer, teachers’ close listening to their students informed 

their learning: 

I’m listening more, I hope I was listening to them before but it’s definitely a lot more 

balanced out with them telling me, teaching me what they know. I’m learning more about 

their different thought processes, the conversation, and the reasoning behind the maths. 

[Y5/6] 

Teachers freely reported examples of ‘surprise’ at what their students could achieve 

with the support of others in their group, and with the stimulus of greater challenge 

with the permission to take risks:  

They are just more open minded and more problem solvers than they ever were. I taught a 

couple of these kids a few years ago and they really struggled with maths but now they are 

problem solvers and there is not one way of doing things. They really branch out and are 

willing to give things a go. [Y3/4] 

However, listening to and understanding children’s thinking was challenging for many 

of our teachers. As a Y1/2 teacher noted at the end of Year 1:  
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What I’m still finding a little bit hard is when I’m modelling something that a child has 

said and I don’t always model it the correct way cause of a fixed mindset of what I want 

them to do—and they use a different strategy and so I need to get out of that habit and think 

“what are they trying to say when they say that and model it so it’s representing what they 

said.  

Looking at the shifts in framing, we were struck by the commonality of the directional 

shifts in each syndicate. Consistent reports of the value of collaboration—be it through 

shared planning, teaching, whole-school development, or in-class mentoring—in 

supporting their learning was a feature of interviews. With the requirement to design 

culturally responsive tasks, rather than reliance an ‘ability group’ text, shared team 

planning involved pooling of ideas about how students might respond to the group 

problem. Reflecting a more productive way to support students, a Y3/4 teacher noted:  

[Before DMIC] we would think about the different stages the children were at and you had 

to find the worksheet to follow up for each stage. Now we are thinking about what are their 

needs, what can we write a problem about that is going to get them to think about it in that 

way and to come up with that themselves. So pre-planning what the kids are going to think 

and give them problems to get them to where you want them to go. 

Dynamic mentoring involving in-the-moment in-class discussions with the teacher and 

DMIC mentor (see Hunter et al., 2016) and co-teaching within shared teaching spaces 

also provided valuable opportunities for teachers to learn from and in. Working in a 

shared space with three teachers, a Y1/2 teacher noted: 

we have learned ideas off each other while we are teaching. If you are by yourself you don't 

get those moments of looking at what other people do. Sometimes we don’t agree with the 

way others teach but then sometimes we learn other ways to do something, ways to teach. 

DISCUSSION AND CONCLUSION  

Consideration of the impact of reform programs needs to look wider than student 

learning outcomes, typically measured with some immediacy through standardised 

testing regimes. Indicators of how teachers frame the problem of student struggle in 

mathematics could and should be an important indicator of reform efforts. Indeed for 

New Zealand, a country that currently exhibits one of the greatest disparities in student 

outcomes (Caygill et al., 2016), understanding current framings should be a central to 

designing and monitoring the impact of policy directions around raising achievement 

of priority learners. With the DMIC project, in this school and others, we have 

observed significant whole-school shifts toward productive diagnostic and prognostic 

framing of students’ capabilities, with a tendency for the nature of movement to be 

shared and localised within collaborative teacher syndicates. Exploratory analysis 

suggests that these shifts were occasioned by attending simultaneously to supporting 

teachers to critically understand students’ source of struggle and how they as teachers 

are can engage students in more equitable and culturally appropriate ways. Given the 

differential trajectories in teachers’ perceptions of the problem of struggle, more 

analysis is needed to explore how the impact of professional development 



Anthony, Hunter and Hunter 

 

2-112 PME 41 – 2017  

opportunities is mediated by teachers’ personal histories, and collective experiences 

and expectations within grade levels, and the impact of access to co-teaching and 

mentoring. 
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The research presented here is part of the Lexicon project whose aim is to identify and 

compare the naming systems available to and used by middle school teachers to 

describe mathematics sessions in classrooms. It compares the Czech and French 

national lexicons that have been produced in the first phase of the project, using the 

Anthropological Theory of the Didactic as main theoretical background. Through this 

case study are also developed and tested methodological tools that will contribute to 

the comparative dimension of the project. 

INTRODUCTION  

The research presented here is part of the Lexicon Project, a project involving nine 

countries (Australia, Chile, China, Czech Republic, Finland, France, Germany, Japan, 

USA), and in each country a team of mathematics education researchers and 

experienced mathematics teachers. In this project, we consider that our experiences of 

the world and reflection on those experiences are mediated and shaped by available 

language, and that the use of English as lingua franca for international communication 

substantially limits what can be expressed and shared. The goal of the project is thus to 

document and compare the naming systems employed in mathematics teacher 

communities in the nine countries to describe the objects and events in their 

classrooms, in order to expand on the variety of constructs available for the purpose of 

theorizing about classroom practice and for identifying the characteristics of 

accomplished practice (Clarke & Mesiti 2010), (Mesiti & al. 2016).  

The first two years of the project have been devoted to the identification and validation 

of the nine naming systems called national lexicons. For this identification, it was 

agreed that the voice of experienced teachers would be given a predominant role, and 

that all teams would use as a spur the videos of grade 8 classrooms produced in each 

country in the first phase of the project along with their English transcription. 

However, it was also agreed that each team had to develop a strategy adapted to the 

institutional and cultural specificities of the country. After a week of collective work in 

November 2015, the first drafts were revised and complemented, then submitted to a 

collectively agreed process of local then national validation. The research presented 

here initiates, in some sense, the comparative phase of the project. It involves two 
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countries: Czech Republic and France. Its aim is to identify similarities and differences 

between their national lexicons, and the possible origin of these. It is also to better 

understand the respective potential of the two lexicons, investigating how similarities 

and differences reflect in the way the Czech and French teams describe classroom 

sessions, in what they notice and are sensitive to. Finally, the research has also an 

important methodological aim: to develop comparative tools adapted to the specificity 

of the Lexicon project, to be used beyond this particular case study. In this paper, after 

presenting the theoretical background of the research, we detail the methodology we 

have developed; we then present and discuss the main results already obtained.  

THEORETICAL BACKGROUND 

As shown by the literature, comparative studies have exponentially increased in the 

last decade ((Gómez (2005) speaks about a “wave of comparative studies”), using a 

diversity of theoretical frameworks. For this particular research, we mainly rely on 

ATD, the Anthropological Theory of the Didactic (Chevallard & Sensevy 2014), and 

especially on two ATD constructs, the concept of praxeology used to model human 

practice and the hierarchy of levels of didactic codetermination, which potential for 

comparative research is well established today (see for instance the meta-study 

(Artigue & Winslow 2010)).  In its most elementary form, a praxeology is made of two 

blocks: a praxis block consisting of a type of task and of a technique for solving it, and 

a logos block consisting of a technological discourse (technology) describing and 

justifying the technique, and a theoretical discourse justifying the technological 

discourse (theory). Elementary praxeologies aggregate into local praxeologies sharing 

a same technology, then into regional praxeologies sharing some theory, to form 

mathematical and didactical organizations, mutually influencing each other. ATD pays 

specific attention to the conditions and constraints shaping what is actually taught 

(mathematical praxeologies) and how it is taught (didactical praxeologies), and to the 

fact that these depend on the institutional and cultural contexts. The hierarchy of levels 

of codetermination distinguishes 9 connected levels of conditions and constraints 

(topic – theme – sector – domain – discipline – pedagogy – school – society – 

civilization). Due to the general character of the Lexicon project, which does not enter 

into the vocabulary specific to the teaching of particular mathematical domains, we 

hypothesize that the main levels of this hierarchy influencing the national lexicons, and 

helping to understand their specificities, are to be looked at the discipline (here 

mathematics), pedagogy, school and society levels, and that the civilization level, 

considering conditions and constraints transcending the limits of a particular society 

should pay a more important role in the comparison of the national lexicons.     

METHODOLOGY 

In line with the research “problématique” presented in the introduction, the 

methodology for this study is two-fold. It combines a formal comparison of the Czech 

and French lexicons (CL and FL in the following), and an operational comparison of 

their use. Each national lexicon is made of a list of terms or expressions with a 
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description/definition complemented by some examples and non-examples. Terms are 

grouped into categories proper to each lexicon. Due to this format, the formal 

comparison of the two lexicons has been organized in three main phases: comparison 

of the structures of the two lexicons (categories and subcategories); comparison of the 

selection of terms and the terminology used; comparison of the term 

descriptions/definitions, of examples and non-examples. To facilitate this formal 

comparison, we used the English provisional version of CL and FL, but aware of the 

associated risks, we systematically checked the original meaning of the terms having 

close translations, and we also paid particular attention to the terms for which finding 

an English version had been difficult even through the use of a longer expression. The 

fact that one of the co-authors spoke the three languages was a substantial help.  

The operational description was developed from the coding template of the videos of 

the Czech and French mathematics classrooms produced by each team. This coding 

template had been proposed in the first phase of the project by the Australian team 

directing the project. It obeyed the following structure, with three additional columns 

for the expression in local language, not reproduced here: 

 

 Table 1: Lexicon template 

This structure was a priori appropriate to investigate how the respective lexicons 

oriented the views on mathematics’ classrooms, but the coding process resulted in 

several very long spreadsheets decomposing the session into a succession of small 

episodes. We thus decided to create a new methodological artefact in the form of a 

narrative of the classroom session based on the template. With this new artefact, in line 

with the use of narratives in education research (Clandinin & Connelli 2000), our 

intention was to make it visible again that, for each team, each video tells a particular 

story generated through the selection, arrangement and interpretation of events which 

contain meaning for the teller, without forgetting that the stories we produce are 

socio-cultural products. Introducing these narratives also allowed us to include the 

additional information about the sessions and their context in the description, that each 

team considered necessary to generate the story. As is the case for the templates, the 

narratives are a collective production of each team, agreed by both researchers and 

teachers. The analysis of these narratives is still under process and its methodological 

tools, partly inspired by narrative research, are also in development.  
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RESULTS 

We first present the main outcomes of the formal comparison of the two lexicons using 

the English provisional translation of categories, terms and definitions to save space, 

and some questions arising from this comparison. These have been particularly paid 

attention to in the analysis of the narratives that we evoke then more briefly.  

The formal comparison of the two lexicons  

A first obvious difference between CL and FL is their respective number of terms. CL 

is the smaller in size with currently 47 terms, while FL is among the biggest ones with 

115 terms. However, CL is not at all a subset of FL, as will be shown below. The two 

lexicons are respectively structured into 5 and 6 categories, as shown in table 2, some 

of these also including sub-categories. For instance, the 50 terms of the category 

Pedagogical and didactic management of the classroom in FL are distributed into three 

sub-categories: Organization with 17 terms, Interactions with 20 terms, and 

Exploitation and assessment with 13 terms.   

Czech lexicon categories French lexicon categories 

Stages of a lesson (9) Phases of a session (13) 

Organization forms of teaching (7) Forms of pedagogical organization (10) 

Type of problems (4) Nature of tasks (activities) (17) 

Teaching methods (23) Pedagogical and didactic management of the 

classroom (50) 

Use of didactic means (4) General terms (9) 

 Mathematical activities (16) 

Table 2: Categories and associated number of terms in the two lexicons 

The three first categories have very close titles, and one can expect also connections 

between the fourth categories. However, two categories in FL do not have their 

counterpart in CL, and reversely, one category in CL does not have its counterpart in 

FL. This does not mean of course that terms belonging to these categories are 

necessarily absent from the other lexicon, but these differences of structures are 

certainly meaningful. We will come back to this point later.  

Entering into the categories shows that, even for categories with similar names, 

important differences are observed. The comparison of the terms of the categories 

Stages of a lesson and Session phases, for instance, makes clear that the two lexicons 

make a different interpretation of these categories. The 13 terms of this FL category are 

related to the progression of the mathematics classroom activity (Recall phase, 

Research phase, Kneading-up, Institutionalization…), while the 9 terms of the CL 

category are mainly related to organizational matters (Students’ and Teachers’ 

organizational questions, Maintaining the discipline, Written record on the board…). 
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In FL, such terms, when present, belong to the category Pedagogical and didactic 

management of the classroom. As a result, the two categories about stages or phases of 

a session have very few common terms. Even when there is no such difference in 

interpretation, the distance between the two lexicons is evident. For instance, the 

category Types of problems in CL only includes 4 terms while the category Nature of 

tasks in FL is especially large with 18 terms; however, two of the terms of CL - 

Determining problem (a problem asking for the determination of a number or 

magnitude), Proof problem - do not have equivalent in FL. The two lexicons have 

nearly the same number of terms associated with assessment (4 and 5); however, once 

again the terms do not exactly point out the same characteristics.  

As mentioned above, two categories in FL do not have their counterpart in CL, 

Mathematical activities and General terms. We conjecture that this difference has deep 

cultural roots and shows the influence on the mathematics teachers’ professional 

discourse of the highest levels of didactic codetermination. In the Czech educational 

culture, indeed, the main lenses are not mathematical lenses but pedagogical lenses, in 

line with a tradition of general didactics, which can be traced back to the Didactica 

Magna by Comenius in the XIIe. The French educational culture is different, with the 

historical investment of leading mathematicians in educational issues, and the 

development of the didactics of mathematics as a genuine research field closely 

connected to mathematics, since the early seventies. The two categories mentioned 

above reflect the resulting importance attached to mathematical processes and 

activities in the professional discourse of teachers and classroom descriptions. It also 

reflects the fact that some terms and distinctions used in French didactic research have 

reasonably disseminated through teacher education. De facto, the General terms 

category of FL mostly includes terms and distinctions used in French didactic research, 

such as the distinction between the tool and object status of mathematical concepts, 

and the notion of mathematical setting due to Douady (1984), or the notions of register 

of representation and conversion between such registers due to Duval (2000). Beyond 

the sole General terms category, the influence of French didactic research is also 

visible through for instance the inclusion of terms coming from the theory of didactical 

situations (Brousseau 1997), such as didactic contract, devolution, institutionalization, 

milieu, action situation, etc. in other categories. The existence of the specific structure 

of the IREM (Institute of Research on Mathematics Teaching (www.univ-irem.fr/)) in 

France, functioning in mixed thematic groups close to math departments and playing 

an interface role between didactic research and practice, through the publications they 

produce and the Professional development institutions that they represent, contributes 

without doubt to explain why the research didactic discourse seems to have more 

disseminated in France than in Czech Republic, and is thus more present in FL. 

Other differences between CL and FL appear when considering the 

description/definition of terms. Some descriptions are quite close with differences just 

resulting from a change of perspective, reflecting the different categories the terms 

have been allocated. However, CL descriptions are generally short, in active form 
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expressing some teacher’s or student’s action; they describe actions but do not enter 

into their possible function. FL descriptions are more in nominal form, and quite often 

they make explicit the purpose of described actions, through the use of words such as 

“aim”, “goal” or “purpose”. The case reproduced below is a typical example: 

Summarization (CL): Recapitulating steps of the solution of the problem. 

Summary, synthesis (FL): Phase whose purpose is to present and to discuss students' ideas 

and productions after an individual work phase, or to identify important points to 

remember at the end of a session. 

Differences are also observed between the examples and non-examples of the two 

lexicons. Indeed, some terms in CL have many examples, the extreme case being 

Teacher’s controlled solving of a problem, with 9 associated examples describing 

different possible configurations and distribution of roles, while in FL, with a few 

exceptions, all terms have at most 2 examples. In fact, examples in CL are partly used 

to compensate the limitation of the agreed professional vocabulary to speak about 

common practices. 

In the limited space of this research report, we can neither enter into more details 

regarding the formal comparison of the two lexicons, nor fully develop the analysis 

initiated above of the conditions and constraints situated at different levels of the 

hierarchy of codetermination contributing to the differences observed. All the more 

that, beyond this formal comparison, our goal is to understand how these lexicons 

orient the vision and analysis of mathematics classrooms. For that purpose, as 

explained in the methodological part, we have developed a specific artefact in form of 

narratives of the Czech and French videos. We briefly present below the questions 

guiding their analysis and some first insights from this work in process. 

The analysis of the narratives 

For each video, the narrative artefact agreed by each team appears as a text based on 

the template’s episodes and terms, with the occurrences of lexicon terms 

systematically highlighted. Each narrative is first the object of a separate analysis, 

trying to capture the density of lexicon terms, their distribution in the whole lexicon 

and its different categories. We also investigate what the narrative adds that could not 

be captured through the lexicon naming system due to its general specification, for 

instance regarding the mathematics specificity of the lesson or the use of specific tools, 

but also due to the characteristics of each lexicon, trying to answer questions that 

emerged from their formal analysis. Do the Czech narratives, for instance, add an 

inferential dimension to the strict descriptive dimension of CL? If so, how? 

Considering the fact that the students’ perspective is under-represented in FL, is this 

limitation compensated in the narrative and if so, how? The second step is the 

comparative analysis of the two narratives produced for each video by the Czech and 

French teams, considering both the results of each local analysis and the two visions of 

the same lesson that emerge from these narratives.  
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The first analyses carried out show that the narratives make a substantial use of the 

respective lexicons, as shown by Table 3 below for the French case. 

Categories / 

Number of terms 

(occurrences) 

General 

terms 

Nature 

of 

tasks 

Phases 

of a 

session 

Forms of 

pedagogical 

organization 

Mathemati-

cal 

activities 

Pedagogical and 

didactic 

management 

Narrative of the 

Czech lesson  

6  

(8) 

3 

(3) 

8 

(19) 

4 

(7) 

4 

(5) 

31 :12-14-5 

(98 :34-52-12) 

Narrative of the 

French lesson  

2  

(2) 

5  

(9) 

11 

(37) 

4 

(12) 

8 

(10) 

33 :12-16-5 

(108 :45-47-16) 

Table 3: Number of terms and occurrences of FL by categories and sub-categories (last 

column) in the narratives of the Czech and French lessons 

Combining the two narratives, 72 terms among the 115 of FL are mobilized in the 

description of these two lessons, as such or with some variation due to the inscription 

in a text. Moreover, despite the evident differences between the two lessons in terms of 

content and management, interesting regularities are observed. Roughly speaking, the 

two narratives describe the classroom story mainly through the progression of the 

mathematical activity, and the respective roles of teacher, students in this progression. 

This is confirmed by the proportion of words offering precise information about the 

mathematics at stake, which represent about 27% and 26% of the respective 

descriptions.  

In the narratives produced by the Czech team, a substantial use of terms from CL can 

be also traced. For instance, 41 items from CL are mobilized in the narrative of the 

French lesson. However, 22 from them are not terms from CL but items used in CL as 

examples. In contrast with the French narratives and in line with CL characteristics, the 

narratives focus on pupils´ and teacher´s actions, without inferring about their purpose. 

We can see repeating sequences of CL items, which offer an opportunity to analyse the 

lesson from the perspective of didactic patterns. Also in contrast with the French case, 

mathematics items are very limited, representing less than 7% of the descriptions.  

DISCUSSION AND PERSPECTIVES 

From its start, the Lexicon project has been a very challenging project, notably because 

today still the teaching profession is not a full profession, with the socially agreed 

professional lexicons attached to these. During the two first years of the project, nine 

national lexicons have been produced. These are today reasonably stabilized and 

validated, opening the way to the comparative dimension of the project. The research 

presented here is just one form among many others that this comparative dimension 

can and will certainly take. Moreover, it only involves two countries. However, it has 

allowed us to identify dimensions that can contribute to the distance between national 

lexicons, and to link some of these to institutional and cultural characteristics; it has 
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allowed us to design and test, in a case study, methodological tools, the combination of 

which seems promising to support the comparative enterprise.    
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This international comparative study sought insights into students’ development of 

different conceptions of function from Years 9 to 12 using their written responses to a 

series of tasks. Forty high-achieving students from each country (ten per year level) 

were prompted to respond to several fictitious students’ views on what a function is, 

and then to provide their own definition. The data analysis examined the students’ 

responses for evidence of students’ meanings for the word ‘function’ as well as 

dominant and contributing conceptualisations. This paper discusses some of the 

similarities and differences found between the three cohorts, and shares some initial 

conjectures about the influences of curriculum and teaching approaches in each 

country on students’ concept image development. 

The idea of ‘function’ evokes varied meanings, interpretations, and representations 

across different areas of mathematics and for different people – students, teachers, 

mathematicians, and mathematics educators. Students’ mental concept images of 

functions may be different from mathematical definitions (Vinner & Dreyfus, 1989) 

and educators may hold different norms for what “students’ understanding of function” 

looks like. “We avoid speaking as if there is a standard, generally accepted meaning of 

function against which others should be compared” (Thompson & Carlson, 2017, p. 

421) but we can examine multiple meanings and conceptions to learn more about the 

different facets of function and how these might develop over time. Several studies of 

undergraduate students have shown that many bring limited meanings and concept 

images for function (Breidenbach, Dubinsky, Hawks, & Nichols, 1992). Since concept 

images are influenced by prototype examples (Schwarz & Hershkowitz, 1999) and 

examples to which students have been exposed at school (Vinner, 1983) it is 

reasonable to infer that curricular emphases and pedagogical approaches, used in a 

particular school context, influence the meanings students develop for function. This 

qualitative study sought to explore this influence with forty Years 9 to 12 students and 

their teachers from each of three different countries (n = 120) to gain insight into the 

nature and multiplicity of conceptualisations of functions the students had developed. 

This paper addresses the following research question: How might students’ 

conceptualisations and definitions of function relate to their experience of curricular 

and pedagogical emphases in their context?  
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BACKGROUND 

Theoretical perspectives on the concept of function 

The concept of function is of fundamental importance in the learning of mathematics 

and has been a major focus of research attention for several decades (e.g., Sfard, 1991; 

Vinner & Dreyfus, 1989). Various approaches have been offered to explore the 

concept in mathematics teaching and learning: action/process; point-wise/global; 

correspondence/covariation, with process, global and covariation being more closely 

associated with eventually understanding functions as objects. Two main approaches 

are correspondence and covariation (e.g., Confrey & Smith, 1995). The 

correspondence approach associates a unique y-value with an input x-value, thus 

building a connection between x and y. It is emphasised in teaching methods such as 

mappings and input-output models, and could be said to focus on a point-wise 

perception of functions as the emphasis for learners at first is on the relation between 

particular instances or subsets of the variables, either as numbers, objects or 

expressions. A covariation approach to functions involves understanding the manner in 

which a change in one variable is related to a change in another, or how those variables 

change together (Confrey & Smith, 1995; Thompson & Carlson, 2017). A dual view of 

functions as representing both correspondence and covariation allows the student to 

better understand actions performed on a function, such as a ‘shift’ translation (e.g., 

changing f(x) to f(x + 3)) or taking a derivative. 

Vinner and Dreyfus (1989) showed that students’ mental images of functions may be 

different from mathematical definitions. They are frequently based on a concept 

image, which refers to “the set of all the mental pictures associated in the student’s 

mind with the concept name, together with all the properties characterizing them” (p. 

356). Students have difficulty abandoning action and pointwise views of functions if 

that is how they first met them (e.g., Breidenbach et al., 1992). We are most interested 

in the effects of the formal introduction of the word ‘function’ at different stages in 

students’ mathematics. The essential role of the word in concept development, as sign, 

has been conjectured and studied since Vygotsky (1986). The association of concept 

images with the mediated role of the word early in the learning of functions may well 

facilitate richer connections and meaning during students’ development than an 

apparently fragmented set of activities building concept images that are associated by a 

unifying term later in the curriculum. Curricula are designed with a particular 

conceptual progression in mind, so it is not surprising if students display an order of 

learning similar to their curriculum. Thus curriculum, as well as teacher decisions, is of 

interest in any discussion about learning. 

Curriculum and teaching approaches on function in the three countries 

The following brief overview of the curricula on functions from each of the three 

countries were informed by content from curriculum documentation, typical textbooks 

used, and the perspectives shared by the teachers in the study on their pedagogic 

approaches for functions at different year levels. As a country with a centralised 
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educational system, the Israeli school curriculum is regulated and textbooks need 

official approval. The national curriculum on functions (Ministry of Education, 2009) 

introduces the word ‘function’ in the context of numerical functions and a variety of 

representations. It is defined as the matching of a unique number to each number we 

choose. The idea of ‘mapping’ to connect ordered pairs is not used. The rate of change 

of one variable in relation to the other is calculated using quotients of change on an 

interval, and can be constant, zero or changing; the change can be increasing or 

decreasing. Linear functions are presented as a special class of functions. Students 

discuss graphs and rates of change explicitly in the context of realistic phenomena. 

Function notation is introduced for 12 to 14 year olds, either before or during a formal 

treatment of linear functions.  

The curriculum in England (Department for Education, 2014) does not explicitly 

introduce the word ‘function’ and its notation until Years 11/12 with higher attaining 

students for transformations of linear and quadratic functions. Earlier introduction to 

functions is through generalising linear and quadratic sequences and studying 

mappings that connect domain values to range values. These mappings then give rise 

to data tables that can be used to plot graphs, starting with linear graphs. Mappings, 

sequences, and data tables might all be used to generalise an underlying sequential 

‘position-to-term’ rule. The teachers from England explained that students meet 

input-output models in Year 7, for example, ‘function machines’. The idea of mapping 

between sets is developed in Year 12. ‘Rate of change’ is discussed by older students in 

the context of non-constant rates of change for quadratics, and finding derivatives from 

first principles.  

As with the curriculum in England, the Australian curriculum also introduces 

functional concepts in a more informal way. In the upper primary years, students are to 

continue and create sequences, and describe the rule (Australian Curriculum 

Assessment and Reporting Authority [ACARA], 2014). Years 7/8 textbooks typically 

cover functional concepts within different topics, such number patterns, straight-line 

graphs, equations, and ratio and rates. The curriculum does not refer to the word 

‘function’ until the advanced Year 10 level and function notation is introduced in the 

higher-level Year 11 mathematics units. The Australian teachers explained that they 

expected younger students not to have developed a clear idea of function yet, and for 

advanced students at Years 10 to 12 to describe mapping concepts, with Year 12 

students holding multiple views of function. 

These generalisations provide a framework for analysing differences among Israeli, 

Australian and English students’ responses to our task. We posed the same questions in 

each country, and prepared these with input from teachers from both countries in order 

to ensure cultural validity and curriculum fidelity. The study aims to learn about school 

students’ conceptualisations of function as briefly described above.  
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RESEARCH DESIGN 

The task discussed in this paper was designed (as part of a larger survey; see Ayalon, 

Watson, & Lerman, 2015a,b) to prompt students’ thinking about a variety of 

conceptions of functions. We chose five meanings for function to reflect the variety of 

conceptualisations they might have met and constructed, according to the teachers, 

curricula and research (Watson, 2013):  

 Arthur said: I see functions as input-output machines, which receive some input and give an 

appropriate output. 

 Ruth said: I see function as a mapping of each element of one set to exactly one element of a 

second set. 

 Ian said: Functions for me represent relations between variables. 

 Naomi said: A function shows how one variable changes in relation to another variable. 

 Liz said: I see functions as expressions to calculate y-values from given x-values. For example, y 

= 4x + 7. 

Students were asked to read each of the five ideas, and to write their response to it in 

the following way (illustrated with respect to Arthur’s statement): 

Which one of the following statements reflects your thinking about Arthur’s description of functions? 

Mark your response and explain your choice. 

o All functions fit Arthur’s description. 

o Some functions fit Arthur’s description. 

o Arthur is wrong. 

Explanation: __________________________________________________ 

These ideas are not mathematically distinct, and the use of fictional characters to 

present them was intended to engage students in thinking about each description as 

they would if someone had said it in class. The second part of the task asked for the 

student’s idea of function: Now, after you have responded to the students’ ideas, write 

what is a function for you. 

The task was given in each of the to two relatively high achieving classes from Years 9 

to 12. Socio-economic backgrounds of all schools were similar relative to their 

national norms. The sample space was opportunistic, which is adequate for our 

exploratory research purposes. We use random anonymised samples of 10 scripts per 

class, which totalled 40 scripts from each country, 120 altogether. Our analysis was 

qualitative, designed to identify characteristics of student responses that might give 

insight into their understanding of functions. We analysed all their explanations for 

mathematical content and categorised the ideas they expressed. The analytical process 

was iterative and comparative, and required several passes through the whole data. 

Students’ explanations for their choices were often more informative than the choices 

themselves. The second stage of the analysis, which we report here, included a holistic 

view of the set of responses from individual students, taking into account their five 

reactions to the given ideas and their response to the second part of the task (i.e., 
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writing what is a function to her/him). This led to characterising an individual’s 

‘dominant’ idea, that is one that appeared most frequently in their response to the 

whole task, and other contributing ideas that occurred less frequently and either in 

tandem or separately from the dominant idea. Seven ideas emerged in our data set 

either as dominant or contributing ideas. Five of them were presented explicitly in the 

task (‘input-output machine’, ‘mapping’, ‘relations between variables’, ‘covariation’, 

and ‘algebraic calculation’). Two additional ideas were ‘patterns in outputs’ and 

‘domain’. ‘Covariation’, ‘patterns in output’ and ‘domain’ were found to be 

contributing ideas only.  

RESULTS AND DISCUSSION  

Figure 1 presents the data analysis for the ten students’ responses from each country 

and at each level (three tables side by side). Each table row of seven boxes represents 

one student with a dominant idea (if any) being shaded black and contributing ideas (if 

any) being shaded grey. Examples of students’ response will be presented at the 

conference as space prohibits their inclusion here. A noticeable feature of the Israeli 

students’ overall responses is that the students appeared to hold multiple views of 

function across the four year levels. The dominant idea was clearly ‘relations between 

variables’, although ‘input-output machine’ and ‘covariation’ were major contributing 

ideas. The English data showed a different pattern with most students holding one 

dominant idea and one contributing idea throughout the four year levels. For Years 9 to 

11, ‘input-output machine’ was the dominant idea and ‘algebraic calculation’ the 

contributing idea with very few exceptions. This pattern shifted in Year 12, with 

‘mapping’ becoming the dominant idea and ‘input-output machine’ the main 

contributing idea. Different again to the Israeli and English data, the Australian 

responses showed little noticeable development of any ideas about function in Year 9, 

and then a strong preference for the ‘input-output machine’ idea in Year 10. In Years 

11 and 12, the students’ responses then demonstrated multiple ideas about function, 

but no clear pattern of only one major dominant idea, and more similarity with the 

Israeli data than the English data. ‘Mapping’ at these two year levels was the most 

frequent dominant idea followed by ‘relations between variables’. 

It appears that the Israeli students have developed a more comprehensive conception of 

function at an earlier age than English and Israeli students. The English students seem 

to have developed input-output (dominant) and algebraic (contributing) conceptions 

side-by-side and hold to these with little variation until a shift to mapping (dominant) 

and input-output (contributing) conceptions in Year 12. This pattern matches the 

expectations of the English teachers based on their teaching approaches. The 

Australian responses showed that students’ understanding of the concept of function 

appears to be delayed, compared to both the Israeli and English students. It is not until 

Years 11 and 12 that they hold multiple views of function. A number of these students’ 

responses referred to ‘one-to-one’, ‘many-to-one’, and ‘one-to-many’ mappings and 

also the ‘vertical line test’. These concepts are explicitly outlined in the content for the 
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Year 11 Australian curriculum for the Mathematical Methods unit (ACARA, 2014) 

studied by the student participants and were also mentioned by the teachers.  
A

lg
e

b
ra

ic
 c

al
cu

la
ti

o
n

In
p

u
t-

o
u

tp
u

t 
m

ac
h

in
e

M
ap

p
in

g

R
e

la
ti

o
n

s 
b

e
tw

e
e

n
 

va
ri

ab
le

s

C
o

va
ri

at
io

n

P
at

te
rn

s 
in

 o
u

tp
u

t

D
o

m
ai

n

A
lg

e
b

ra
ic

 c
al

cu
la

ti
o

n

In
p

u
t-

o
u

tp
u

t 
m

ac
h

in
e

M
ap

p
in

g

R
e

la
ti

o
n

s 
b

e
tw

e
e

n
 

va
ri

ab
le

s

C
o

va
ri

at
io

n

P
at

te
rn

s 
in

 o
u

tp
u

t

D
o

m
ai

n

A
lg

e
b

ra
ic

 c
al

cu
la

ti
o

n

In
p

u
t-

o
u

tp
u

t 
m

ac
h

in
e

M
ap

p
in

g

R
e

la
ti

o
n

s 
b

e
tw

e
e

n
 

va
ri

ab
le

s

C
o

va
ri

at
io

n

P
at

te
rn

s 
in

 o
u

tp
u

t

D
o

m
ai

n

AustralianEnglish

Ye
ar

 9
Ye

ar
 1

0
Ye

ar
 1

1
Ye

ar
 1

2

Israeli  

Figure 1: Students’ dominant (black) and contributing (grey) conceptions of function (n = 120) 
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Overall these patterns demonstrate that not only that curriculum content and teaching 

approaches in a particular context can provide valuable insight into students’ 

development of mathematical ideas at different year levels, but also that students are 

capable of holding multiple views of function at Year 7. Even though the English and 

Australian curricula are considered similar in structure, these results highlight the 

noticeable differences in students’ development of conceptions based on the teaching 

approaches and language used in each context. It seems that the idea of an input-output 

function machine, which is more widely used in English schools than Australian 

schools, leads to students connecting this idea with ‘function’ even though they are not 

formally taught about functions yet. The Australian approach of introducing functions 

concepts across several topics but without reference to the word ‘function’ or the term 

‘function machine’ seems to result in students’ lack of any particular conception of 

function until much later. The Israeli curriculum is noticeably different, and from the 

students’ responses, it seems apparent that it is possible to develop students’ ideas 

about function more explicitly and connectively at an earlier stage. 

Our findings are not a claim about these students’ complete knowledge about 

functions, because all we have analysed is their responses and explanations to our 

tasks, and some of the context that has contributed to their concept images and 

responses. Nor can we generalise about countries on the basis of a small and 

opportunistic sample, probed qualitatively. Instead we believe that they provide one 

window into their understanding and suggest influences on their development. 

Vygotsky (1986) retained the idea that word is the beginning of cognition, in the same 

sense that pointing to or pointing out an object begins the development of sense and 

meaning. We might conjecture, then, that having a name, a label, in this case function, 

early in their learning, around which concept images are built over time, is a support 

for students in their learning and may well be critical in the early development of the 

more coherent structure of understanding as seen in general among the Israeli students 

than the English and the Australians. The word is the beginning of cognition, which 

then calls for all the work of the teacher and the resources to bring meaning, through 

concept images and activities, building towards sense. The findings have implications 

for any discussion of whether it makes more sense to name mathematical ideas 

formally after students have experienced them, or whether to name them before. The 

association of concept images with the mediated role of the word ‘function’ early in the 

learning of functions may well facilitate richer connections and meaning during 

students’ development than an apparently fragmented set of activities about functions 

that are not associated by a unifying term until much later, and only for students who 

continue on to study calculus. This is not a question of whether formal treatment has to 

precede exploration and elaboration, but of whether and how students are supported to 

make connections, through language, between various mathematical ideas.  
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SOCIALISATION IN FOUR SECOND-LANGUAGE 

MATHEMATICS CLASSROOMS 

Richard Barwell 

University of Ottawa 

 

There exist various situations in which mathematics is learned in a second language, 

including in the context of immigration, indigenous languages or immersion 

programs. Little research on this topic has examined mathematics learning across a 

range of such contexts. In this study, I collected ethnographic data in four different 

second-language mathematics classrooms. Drawing on a view of learning as 

socialisation and a Bakhtinian conceptualisation of mathematical discourse, I report 

on a number of socialisation situations that arise in these classrooms. The findings 

offer new insights into the nuances of learning mathematics in a second language in 

different contexts. 

INTRODUCTION 

The linguistic diversity of mathematics classrooms has been increasingly recognised in 

mathematics education research (e.g. Barwell et al., 2016). This work covers a wide 

range of contexts in which language diversity arises in mathematics classrooms. In this 

research report, I focus on second-language learners—students who are seen in the 

context of their school system as learning mathematics through a second or additional 

language. The objective of the research is to understand how learning in a second 

language influences the process of learning mathematics. 

Research on second-language learners of mathematics shows that in the right 

conditions, they can outperform monolingual students in mathematics (e.g. Clarkson, 

2007; Ní Ríordáin, & O’Donoghue, 2009). In other conditions, performance may be 

lower than expected (e.g. Clarkson, 2007). Research in a variety of contexts of 

language diversity, including second-language classrooms, shows that learners in such 

contexts make use of a wide variety of discursive resources to participate in and make 

meaning in mathematics. These resources include different languages (e.g., Setati, 

2005; Planas & Setati, 2009), genres (e.g., Barwell, 2005), narratives (Barwell, 2005), 

gestures (e.g., Moschkovich, 2008), and diagrams (e.g., Moschkovich, 2008). 

Learning and teaching mathematics in such contexts creates challenges for students 

and teachers, relating to, among other things, the use of students’ home languages 

(e.g., Adler, 2001; Parvanehnezhad and Clarkson, 2008; Setati, 2005), and the role of 

students’ informal mathematical language (e.g., Adler, 2001; Khisty, 1995).  

Existing studies have been largely situated within single linguistic contexts. Most 

classroom-based research has been conducted in single classrooms, or in a small 

number of similar classrooms, so that findings are limited to the particular linguistic 
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context in which they were conducted. In the study described in this research report, I 

included four different kinds of second-language mathematics classroom (described 

below). 

THEORETICAL FRAMEWORK: SOCIALISATION INTO 

MATHEMATICAL DISCOURSE 

Learning mathematics can be understood in terms of students’ socialisation into the 

discourse of mathematics, where this discourse involves various semiotic resources 

(words, symbols, diagrams, gestures, etc.) and forms of argumentation (posing 

problems, conjecturing, reasoning, etc.). Duff (2002), defines socialization as:  

the linguistic and interactional processes that mediate newcomers’ participation in routine 

cultural practices [...] and facilitate their developing competence and membership in 

discourse communities. (p. 290)  

Learning a second language can also be understood as a process of socialisation into 

the proficient use of the language practices of the classroom language. In addition to 

the teacher, students are also agents in the socialisation process, so that there is a 

reflexive relationship between the learning of individuals and the learning of the class 

as a whole (Duff, 2002).  

Mathematical discourse, however, is not simply a neutral medium for the expression of 

students’ ideas—discourse is itself a complex social phenomenon. To theorise the 

nature and role of discourse within the socialisation process, I draw on Bakhtin’s 

(1981) work and, in particular, his concept of heteroglossia. According to Bakhtin, 

every utterance involves a unique combination of words, accents, style and so on, and 

so contributes to the constant diversification of discourse. Busch (2014) distinguishes 

between three dimensions of heteroglossia: multi-discursivity, multi-voicedness and 

language diversity. Mathematical discourse displays multi-discursivity, in the 

discourses of different subdomains of mathematics, or in the differences in school, 

university and academic mathematical discourses. Multi-voicedness arises in 

mathematics classrooms through students learning to use words introduced by their 

teacher, the textbook, or the curriculum, so that multiple voices are present in each 

utterance. Language diversity refers to the presence and interaction of multiple 

languages.  

While heteroglossia is always present, so is the tendency of discourse to standardise, 

and, especially in the case of languages, to be seen as rule-governed. These two 

tendencies within all discourse creates a tension that shapes every utterance, as the 

utterance both conforms to the norms of the discourse and reflects the particularities of 

the context in which it is uttered (Bakhtin, 1981). This perspective on language is 

consistent with a view of learning as socialisation: 

Language is not a neutral medium that passes freely and easily into the private property of 

the speaker’s intentions; it is populated—overpopulated—with the intentions of others. 
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Expropriating it, forcing it to submit to one’s own intentions and accents, is a difficult and 

complicated process. (Bakhtin, 1981, p. 294) 

That is, we learn to use language through a process of coming to use the words of 

others. This view describes well the sometimes “difficult and complicated process” of 

learning mathematics in a second language. 

RESEARCH DESIGN AND METHODS 

The study involved the collection of ethnographic data in four different elementary 

school second-language mathematics classrooms in Canada (a country with two 

official languages, English and French): a mainstream class in which some 

second-language learners were present; a sheltered class for students considered to be 

learning English as a second language, who were mostly speakers of Cree, an 

indigenous Canadian language; a “welcome” class for new immigrants to Canada, 

from all over the world, where the main goal was for students to learn French; and a 

French-immersion class. All except the French immersion class were for students aged 

10-12 years; the immersion class was for students aged 8-9 years.   

Data collection drew on ethnographic methods, including classroom observation, 

including participant observation, as well as interviews, audio-recordings, collection 

of copies of students’ work and photos of classroom artefacts. Fieldnotes were made 

during observations and a short summary was prepared after each visit to three of the 

four classes (I did not introduce this practice until after the completion of data 

collection in the mainstream class, which was the first to participate). Observation 

periods varied according to the constraints of school timetables, access protocols and 

other factors. I visited the mainstream and sheltered classes each for most of an 

academic year, and the welcome and immersion classes each for 2-3 months towards 

the end of the school year.  

The main approach to data analysis consisted of reviewing summary reports and 

fieldnotes to identify situations in which the tension relating to heteroglossia and 

standardisation was particularly salient (see Barwell, 2014). These situations were 

important sites for the socialisation of students into the discourse of mathematics in the 

language of instruction (either English or French). In this report, I present the main 

socialisation situations that I identified across the four classes. 

RESULTS: SOCIALISATION SITUATIONS IN FOUR CLASSES 

I identified seven common socialisation situations. This set of situations is not 

exhaustive but represents the most common ones. I have organised them according to 

the three dimensions of heteroglossia, since for each situation, one of the dimensions 

was most significant, although there is overlap between the dimensions.  

Language diversity 

Multiple language use was observed in all classes and represented an important 

socialisation situation. In the mainstream class, other languages were rarely heard, and 
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never in connection with mathematics. In the other three classes, however, at least two 

languages were regularly used. In the sheltered class, the students often interacted in 

Cree to talk about mathematics, such as to explain ideas or show each other what to do. 

In the welcome class, students often asked to use another language, such as Spanish, 

although the request was always declined by the teacher. In the immersion class, where 

French was the target language, students routinely also used English, often mixing the 

two languages, as in the following examples from some work on mass (translation is 

shown in brackets and in italics): 

“I’m gonna go like this (lifts like a hand weight). I’m gonna toss it up in the air.” 

“Ça c’est deux grammes? Oooohhh!” [That’s two grams? Oooohhh!] 

 “Quatre pommes equals that?” (1kg) [Four apples equals that?] 

 “Est-ce que c’est ça le plus heavy?” [Is it that one, the most heavy] 

(Visit report, 3 May 2012) 

In the three classes in which more than one language was heard, the teachers explicitly 

requested students only to use the language of instruction. 

A second socialisation situation was the occurrence of non-standard accents, 

pronunciation or orthography. This situation was not observed in the mainstream 

class. In the sheltered class, I noticed that the Cree-speaking students spoke English 

with an accent, but this was never commented on. In the welcome class, the teacher 

actively corrected students’ pronunciation. In the following example, from a unit of 

work on geometric properties, a student answers that a particular shape is “convex”, 

but with a Spanish accent. The teacher then rehearses the pronunciation with him: 

Student 1: conbexe [conbex] 

Teacher N:  non: (.) convexe ok redis-le (.) non-convexe [non (.) convex ok say it again 

(.) non-convex] 

Student 1: non (.) con (.) bexe non-converse? [non (.) con (.) bex non-converse?] 

Student 2: non (.) con-vexe [non (.) con-vex] 

Teacher N:  non-convexe con (.) v (.) v (.) vexe [non-convex con (.) v (.) v (.) vex] 

Student 1: non-convexe? [non-convex?] 

Teacher N:  ouais c’est pas un B ah tu comprends? [yes it’s not a B ah you understand?] 

(Transcription from recording, 10 May 2010) 

In the immersion class, non-standard pronunciation was often revoiced by the teacher 

in a more standard way. 

These socialisation situations reflect the tension between the language diversity in each 

class and the expectation that only one language should be used. This tension was 

reflected in different ways, from the silencing of other languages in the mainstream 

class, to the mixing of French and English in the immersion class. Socialisation 
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practices included explicitly asking students to use English or French, explicitly 

forbidding them from using other languages, ignoring the use of other languages, and 

revoicing non-standard pronunciation or utterances in a non-official language.  

Multi-discursivity 

There were several socialisation situations relating to various discourses of 

mathematics. One situation was when students encountered genres particular to the 

mathematics classrooms, such as word problems, textbook explanations, definitions 

and mathematical questions. In the mainstream class, for example, students discussed 

three different definitions of a prime number and, at the suggestion of a student, wrote 

them in their “math dictionaries”. In the sheltered class, I noticed that the students 

struggled with text-rich word problems, in some cases not recognising the cultural 

context of the problem (Barwell, 2014). In the welcome class, the teacher took the 

students through a series of activities through which a definition of a polygon was 

introduced, given meaning and rehearsed. These activities included: 

 Informal sorting activities in which the class had to deduce the criterion used by 

the teacher. 

 Students sorted a set of mixed shapes and explained their criteria.  

 The teacher drew two groups of shapes on the blackboard—polygons and 

non-polygons—and asked students to deduce what criteria distinguished them. 

 A worksheet that included a formal definition of a polygon and a classification 

task using the definition. 

 Following review of the worksheet, the teacher asked a student to define 

polygon and another to define non-polygon. 

In these situations, students had to interpret and respond to standardised genres in 

appropriate ways. Their own less formal forms of expression of mathematical thinking 

were regularly corrected or reformulated or students were prompted to reformulate 

them. 

Additional socialisation situations relating to mathematical discourses involved 

explicit attention to features of mathematical discourse, such as vocabulary or 

morphology, and the use of gestures in mathematical interaction. In the mainstream 

class, during work on a complex problem about television schedules, the teacher 

initiated a class discussion about the meaning of consecutive, which was particularly 

crucial for the completion of the problem. The class and the teacher generated several 

examples and synonyms for this word. In the welcome class, the teacher devoted much 

attention to vocabulary during the geometry unit. Vocabulary items covered included 

polygon, convex, closed, curved, and the names of various shapes. The students often 

used informal alternatives, which the teacher revoiced using the standard terms. This 

teacher also responded to students’ frequent use of gestures by asking them to explain 

in words. At one point, she covered her eyes to encourage students to go beyond 
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gestures and pointing. In the immersion class, the teacher also highlighted important 

vocabulary, including kilogram, numerator, denominator, the names of fractions, right 

angle, acute angle, obtuse angle, horizontal, vertical, reflection, and rotation. In this 

class, I observed attention to other linguistic features, such as the word endings used in 

the names of fractions in French: 

“cinquième...est-ce que c’est un sur cinq ou cinq morceaux?” [fifth...is it one on five or five 

parts?] Students were unsure, and P explained : “-ième est toujours un sur quelque chose” 

[-th is always one on something] (Visit report, 9 May 2012) 

This teacher used gestures and physical movement on some occasions, such as during 

some work on geometric transformations. In these situations, standard vocabulary and 

students’ informal alternatives, including informal names for things and gestures, were 

all present. Socialisation practices included revoicing informal vocabulary with 

standard mathematical terms, prompting students to use these terms, opportunities to 

use common mathematical genres, and the use of prompts to interpret and respond to 

word problems or other genres. 

Multi-voicedness 

Two socialisation situations were related to the presence of multiple voices: occasions 

when students needed to explain their mathematical thinking, and moments of reduced 

participation. In the mainstream class, second-language learners sometimes struggled 

to articulate their thinking:  

Teacher L:  number two Darryl, where does it [the decimal point] go?  

Darryl:  (indicates where) 

Teacher L:  how do you know Darryl?  

Darryl:  I just know.  

Teacher L:  you know what if you write that on your exam, what do you get?  

(Fieldnotes, 10 December 2008) 

The teacher’s response represents a clear example of socialisation, invoking 

institutional requirements relating to assessment to underline the importance of 

elaborated explanations of mathematical thinking. In the sheltered class, I noticed that 

the students were generally able to solve word problems orally but struggled much 

more to complete written solutions to ‘show their work’. In both classes, students were 

often silent or participated minimally with single-word responses to the teacher’s 

questions. In the welcome class, students also expressed difficulty in explaining their 

thinking in a suitably mathematical manner in the language of instruction. For 

example, during the geometry unit, when the teacher asked another student ‘what is a 

parallelogram?’ she replied “I know but I don’t know how to say it” (Visit report, 17 

May 2010). In the immersion class, students were often called on to explain their 

thinking (in French); to do so, they often mixed English with their explanations, which 

the teacher would reformulate in French.  

In these situations, the expectation that students should explain their thinking in a 

particular language and using particular aspects of mathematical discourse was in 



Barwell 

 

PME 41 – 2017 2-135 

tension with their potentially wider range of informal forms of expression. In general 

where the requirements of a standard form of expression were stronger, the students 

were more constrained. Socialisation practices included requesting explanations, 

reformulating students’ explanations in more formal mathematical discourse and/or in 

the language of instruction, and citing the requirements of assessment tasks to justify 

and encourage more elaborated explanations.  

DISCUSSION AND CONCLUSION 

My analysis has identified a number of socialisation situations in which 

second-language learners of mathematics are socialised into mathematical discourse 

(and hence into mathematics) in particular ways that are directly related to their status 

as second-language learners. These socialisation situations include: occasions when 

students used languages other than the language of instruction, or used non-standard 

pronunciations or accents; occasions when students encountered genres specific to 

school mathematics, such as word problems and definitions; occasions when specific 

features of mathematical discourse, such as vocabulary, became a focus of attention; 

the use of gesture; the production of mathematical explanations; and occasions in 

which students’ participation was reduced. These situations arose at moments in which 

the tension between heteroglossia and standardisation was particularly salient. As a 

result, particular practices were deployed, often by the teacher, but sometimes by 

students, that socialised students into expected ways of talking about mathematics.  

Some differences were apparent in the various second-language classrooms. In 

particular, in the mainstream class, there was little explicit recognition of 

second-language learners’ other languages. In the immersion class, in contrast, 

students freely used both French and English, although the teacher was consistent in 

using French. In general, the welcome and immersion classes displayed more attention 

to language and to the discourse of mathematics than the mainstream or sheltered 

classes. 

These findings suggest that the learning of mathematics is influenced by students’ 

status as second-language learners, with a range of situations arising across different 

second-language contexts. These situations, however, played out differently in the 

different contexts, suggesting that the nature of the context has an impact on students’ 

learning. Second-language mathematics classrooms, and more generally, language 

diverse mathematics classrooms, are all different, and learning mathematics in such 

classrooms varies from one context to another. More research is needed to better 

understand these contextual influences. 
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This paper presents a 2-dimensional matrix for analyzing mathematical tasks. One 

dimension is the TIMSS’ levels of cognitive domains and the other dimension is the 

type of mathematical tasks in terms of number of answers (Isoda and Katagiri, 2012). 

The proposed 2-dimensional matrix may be used as an analytic tool for analyzing the 

distribution of mathematical tasks in a textbook as well as to compare the distribution 

of mathematical tasks among textbooks. It can also be used as a pedagogic tool for 

designing mathematical tasks in standardized exams. This paper also illustrates an 

example how to use the framework.  

INTRODUCTION  

It is widely accepted that textbooks have major influence on classroom practice 

(Valverde, Bianchi & Wolfe, 2002) and TIMSS studies show that textbooks are 

present in almost every participating country, regularly used in instructions, and 

considered by teachers as primary source of information (Houang & Schmidt, 2008). 

Statistically significant relationships have also been found between textbooks and 

classroom instruction (Schmidt et al., 2001). For these reasons, textbooks have gained 

the attention of mathematics educators and researchers.  

In a survey by Fan, Zhu, and Miao (2013), it was found that there have been a growing 

number of researches about mathematics textbooks in the past three decades. Most 

studies done involved the role of textbooks, textbook analysis and comparison, and 

textbook use. The textbook analysis and comparison was divided into the following 

categories: (1) mathematics content and topics; (2) cognition and pedagogy, gender, 

ethnicity, equity, culture and value; (3) comparison of different textbooks; and (4) 

conceptualization and methodological matters.   

Earlier textbooks studies focused on comparison about content, structure, and 

performance expectations; e.g Stigler (1986). Some of the latter studies involved 

examining how a topic is taught (Mayer, Sims, & Tajika, 1995), comparison of a 

particular concept (Powell, 2012), placement of topics (Fuson, Stigler, & Bartsch, 

1988), and discourse (Ronda, 2015). The most comprehensive comparative study 

about textbooks to date was done by TIMSS which compared the content, structure, 

and performance expectations of more than 400 textbooks from 40 countries which 
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participated in TIMSS (Valverde et al., 2002).  In the TIMSS study, textbooks were 

analyzed in terms of blocks. Blocks include narratives, graphics, activities, and worked 

examples. Although numerous studies have been done about content topics, less 

attention has been placed about the problems or tasks presented in textbooks (Li, 

2000). Thus, this study presents a new analytic framework for analyzing mathematical 

tasks. This framework aims to answer the following questions:  

(1) How can we analyze textbook tasks using the proposed framework? 

(2) How can we use the framework to compare the tasks on two or more textbooks?  

THEORETICAL UNDERPINNINGS 

A mathematical task is a set of problems or a single complex problem that focuses 

students’ attention on a particular mathematical idea (Stein, Grover, & Henningsen, 

1996). In the TIMSS video study, students in all the participating countries spend at 

least 80% of their time working on mathematical tasks (Hiebert et al., 2003). Since 

mathematical tasks influence student learning (Doyle, 1988), and many mathematical 

tasks used in the classroom are taken from textbooks, it is important to pay attention to 

their quality. As Doyle (1988) argues, "the work students do, defined in large measure 

by the tasks teachers assign, determines how they think about a curricular domain and 

come to understand its meaning" (p.1 67). 

Classifying Mathematical Tasks by Cognitive Demand 

Several frameworks have been developed for analyzing mathematical tasks in terms of 

cognitive demand. Stein et al. (1998), for instance, developed a framework for 

analyzing mathematical tasks using four levels: memorization, procedures without 

connections, procedures with connections, and doing mathematics. Porter (2002) 

developed a very similar framework but categorized tasks into four levels: memorize, 

perform procedures, communicate understanding, solve non-routine problems, and 

conjecture/generalize/prove. Porter’s framework, however, was not designed for 

individual tasks but rather for “descriptors of mathematical topics” (p.4).  

A more simplified framework was developed by National Assessment of Educational 

Progress (NAEP, 2009). NAEP classified tasks into low, moderate, and high 

complexity items. Low complexity items expect students to recognize concepts or 

procedures. Items under this category typically specify instructions that can be 

followed mechanically. Items in the moderate complexity category involve more 

flexibility of thinking and choice among alternatives than to those in the 

low-complexity category. The students are expected to decide what to do and how to 

do it. High-complexity items expect students to use reasoning, planning, analysis, 

judgement and creative thought. 

The TIMSS Cognitive Domain follows another classification of mathematical tasks 

which is very similar to that of NAEP’s. Over a period of 20 years, it has been 

simplified into three: Knowing, Applying, and Reasoning (Mullis et. al, 2009).  
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Knowing involves recalling facts, concepts, procedures; Applying involves 

application of knowledge and conceptual understanding to solve problems; and 

Reasoning involves solving non-routine, complex contexts, and multi-step problems 

which expect students to reason and justify their answers.   

Classifying Mathematical Tasks by Answers 

Mathematical tasks can either be multiple-choice or constructed response. Each has its 

own advantages and disadvantages. Generally, multiple-choice questions are efficient 

to use for a large number of test takers and automatic scoring can be employed 

(Dufresne, Lenard, & Gerac, 2002). On the other hand, constructive response items 

eliminate random guessing, unintended corrective feedback, and working backward 

(Bridgeman, 1992). In TIMSS, both multiple-choice and constructive response tasks 

were employed, however, there was no classification of mathematical tasks in terms of 

answers.  

Several frameworks were developed to compare mathematical tasks in terms of 

answers. Li (2000) created a framework with three dimensions. The dimensions are 

mathematical feature, contextual features, and performance requirements. In this 

framework, mathematical features and response type classified the tasks in terms of 

answers as single or multiple computation procedures. It also classified the response 

types as numerical answer only, numerical expression only, explanation or solution 

only.  

Bennett, Morley and Quardt (2000) presented three-response types for a 

computerized-adaptive admission test. In their framework for constructed response 

items, response types are categorized into mathematical expressions, generating 

examples, and graphical modelling. Mathematical expressions requires a single best 

answer, generating examples are tasks that can have multiple correct answers, and 

graphical modelling asks for graphical representations of which can have a single or 

multiple answers.  

Isoda and Katagiri (2012) classified mathematical tasks into three types according to 

number of solutions and answers. The tasks in Figure 1 illustrate this classification.  

 

Figure 1: Types of Mathematical Tasks by Answers 

A Type 1 task has one solution and one answer. Students who have already learned 

about area of a rectangle can calculate using the formula. A Type 2 task has various 
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solutions but one correct answer. As shown in Figure 2, students can solve the problem 

using addition (Solution 1 and 2) and subtraction (Solution 3) of areas.   

 

Figure 2: Multiple solutions for finding the area 

A Type 3 task has many answers and solutions. Since there are no measurements in the 

figure, students have to use a measuring instrument. In so doing, their measurements 

may be different so their answers will depend on their measurements. 

THE 2-DIMENSIONAL MATRIX  

From the frameworks discussed above, the author has developed a 2-dimensional 

framework for analyzing mathematics tasks. One dimension is the level of cognitive 

demand and the other dimension is the number of solutions and answers. In the levels 

of cognitive demand, among all the frameworks stated above, the author has selected 

TIMSS’ Cognitive Domain because of the following reasons: (1) it was “a consensus 

developed among many individuals and groups from around the world (TIMSS, 

1995)”; (2) it has been improved over two decades of revision and implementation; 

and (3) the domains have clear demarcations. In terms of the number of solutions and 

answers, the author has chosen Isoda and Katagri’s classification of mathematical 

tasks because of its clear demarcation.  

Using the TIMSS Cognitive Domains and Isoda and Katagiri’s 

classification of mathematical tasks, a 3 by 3 matrix can be 

created as shown in Figure 3. The columns of the matrix contain 

the cognitive domains namely Knowing (K), Applying (A), and 

Reasoning (R). The rows contain Isoda and Katagiri’s 

classification of mathematical tasks namely Types 1, 2, and 3. 

In this matrix, K1 tasks are generally the easiest (Knowing with 

one answer and one solution), while the R3 tasks are generally 

the most difficult (Reasoning with various answers and/or various solutions).  

In what follows, the author will demonstrate the use of the matrix. It will be used as a 

lens to give the reader a bird’s eye view of the comparison of the distribution of 

mathematical tasks between two textbooks.   

METHOD 

To illustrate the use of the framework, the author compared tasks from Japanese and 

Philippine textbooks in a lesson on division.  It should be clear that the purpose of this 

 

Figure 3 
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comparison is not to make conclusions about the textbooks but rather to demonstrate 

the use of the framework. In addition, we cannot make any generalization from the 

findings here because we only selected one lesson from one textbook from each 

country.  

The textbook used from the Philippines is the Math Learning Materials published by 

the Department of Education and used by Grade school students all over the country. 

The textbook used from Japan is the Study with Your Friends Mathematics for 

Elementary School Mathematics published by Gakkohtosho. This textbook is an 

English translation from a Japanese textbook.  All the tasks in both books were 

analyzed including developmental tasks as well as exercises. All tasks in both books 

are constructed response tasks.  

To facilitate the comparison, each task under division was coded independently by two 

coders.  In terms of the TIMSS Framework, the tasks were coded as Knowing (K), 

Applying (A) or Reasoning (R). In terms of Isoda and Katagiri’s (2012) Framework, 

they were also coded as Type 1, Type 2, or Type 3.  

DISCUSSION AND RESULTS 

In the task from the Japanese textbook shown in Figure 4, students should be able to 

make connections between the different sentences and link them to be able to create a 

problem. This is classified as Synthesize category under the TIMSS Reasoning 

domain. In addition, since multiple problems can be created from the text, it is also 

classified as a Type 3 problem. Therefore, this task is classified as an R3 task in the 

analytic matrix.   

 

Figure 4 

Figure 5 is an example of task from the Philippine textbook. In this task, students are 

asked to draw things to show a division situation.  This task is classified as Applying in 

the TIMSS Cognitive Domain. Since students can generate multiple models, it is 

classified as a Type 3 tasks. So, the task is classified as A3 task in the analytic matrix.  
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Figure 5: Sample question in Filipino textbook.  

Shown in Table 1 is the spread of tasks in the 2 dimensional matrix from both 

countries. At first glance, it can be seen that in division, the Philippine textbook has 

relatively more tasks than the Japanese textbook. The bulk of the task in the Philippine 

text book is in cell K1 and A1 and there is no task under the Reasoning domain. In the 

Japanese textbook, the bulk of the items are in cell K1 and there are more Reasoning 

tasks than Applying tasks.  

Type 
Philippines (N = 112) Japan (N = 41) 

K A R Total K A R Total 

1 62.5% 31.3% 0% 93.8% 56.1% 4.9% 2.4% 63.4% 

2 0.9% 0.9% 0% 1.8% 12.2% 2.4% 2.4% 17.0% 

3 0.0% 4.4% 0% 4.4%  9.8% 0.0% 9.8% 19.6% 

Total 63.4% 36.6% 0.0% 100% 78.1% 7.3% 14.6% 100.0% 

Table 1 

In terms of percentage, the tasks in the Japanese textbook are more “well-distributed” 

than the Philippine textbooks. In the Japanese textbook, 78.1% of the tasks are under  

Knowing, 7.3% are under the Applying and 14.6% are under Reasoning. In the 

Philippines, 63.4% of the tasks are under Knowing, 36.6% of tasks are under Applying 

and no tasks are under Reasoning.  In terms of number of answers, 93.8% are Type 1 in 

the test while 63.4% are Type 1 test in the Japanese textbook.  

CONCLUSION  

The result above shows that the matrix can be used as an analytic tool to examine 

mathematical tasks in mathematics textbooks and give a birds’ eye view of the 

composition of mathematical tasks. It can also compare the distribution of 

mathematical tasks between two textbooks.  Of course, the comparison can be scaled 

up to include more topics and more textbooks.  

Secondly, the matrix may be used in the future as a pedagogic tool for developing tasks 

in mathematics textbooks as well as standardized exams. Writers can use the matrix to 

determine the appropriate distribution of mathematical tasks in terms of cognitive 

demand and number of answers before writing the mathematical tasks in the textbooks 

or standardized exams.   

Translation:   

Activity 2. Draw things to show a 

division situation. Do this on your 

answer sheets 
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Again, it should be noted that the result does not mean to generalize the quality of 

mathematics textbooks from Japan and the Philippines since the analysis only involved 

one topic from a pair of textbooks.  
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UNDERSTANDING THE TRAJECTORY OF A TEACHER’S 

IDENTITY AS AN EMBEDDER-OF-NUMERACY 

Anne Bennison 

The University of Queensland 

Across the curriculum approaches to numeracy have shown promise but present 

challenges for teachers of subjects other than mathematics. This paper reports on an 

approach to understanding how teachers can be supported to promote numeracy 

learning in the subjects they teach. The findings illustrate a sociocultural approach to 

tracing the trajectory of a teacher’s identity as an embedder-of-numeracy that may 

allow affordances and constraints to strengthening this identity to be revealed.  

INTRODUCTION 

Being able to cope with the mathematical demands of life is important for individuals 

and countries in an increasingly globalised world (OECD, 2013). Numeracy (or 

mathematical literacy), the capacity to do so, encompasses more than proficiency with 

mathematics and needs to be developed beyond the mathematics classroom (Steen, 

2001). One way of promoting numeracy learning in schools that has shown promise is 

to take an across the curriculum approach (Geiger, Goos, & Forgasz, 2015) where 

numeracy is seen as the responsibility of all teachers. However, this approach requires 

teachers to identify numeracy learning opportunities in the subjects they teach, design 

appropriate tasks, and implement these tasks in their classrooms. Although research on 

professional development interventions that support an across the curriculum approach 

to numeracy is growing (e.g., Goos, Geiger, & Dole, 2014), research does not seem to 

have focussed on factors that influence how teachers interpret and translate learning 

from such interventions into their classroom practices. This issue was addressed in a 

study that sought to identify ways to support teachers to embed numeracy into subjects 

across the curriculum. 

The study had two aims: (1) to identify how a teacher’s identity influences his/her 

capacity to promote numeracy learning across the curriculum and (2) to investigate 

how a sociocultural approach could contribute to understanding how to support 

teachers in this endeavour. The second of these aims provides the focus for this paper. 

Specifically, the paper addresses the following research question: How can a 

sociocultural approach contribute to understanding the trajectory of a teacher’s identity 

in the context of promoting numeracy learning across the curriculum? 

BACKGROUND AND OVERVIEW 

The study was conducted in Australia in the context of the introduction of a new 

national curriculum that identified numeracy as a general capability to be developed in 

all school subjects (ACARA, n.d.) and professional standards for teachers that set out 
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what teachers need to know and be able to do to promote students’ numeracy 

development (AITSL, 2012). Although some pre-service teacher education programs 

in Australia have included courses that specifically address numeracy for some time 

(e.g., Groves, 2001), these have not been widespread. In this context, there is a need to 

find ways to assist practicing teachers to develop the capacity to exploit numeracy 

learning opportunities in the subjects they teach, especially if this was not addressed 

during their pre-service teacher education.  

Conducted in two interrelated phases (theoretical and empirical), the study developed 

and evaluated a sociocultural approach to understanding how teachers could be 

supported to develop the capacity to promote numeracy learning across the curriculum. 

Teacher identity, seen by many researchers as providing useful insights into the 

learning and practices of teachers, was employed as the analytic lens. However, 

identity is complex, situated, and changes over time (Wenger, 1998). Consequently, 

one of the challenges was to design an empirical study that captures both the 

complexity and dynamic nature of teacher identity. Using the situated nature of 

identity, it is possible to develop a framework that encompasses factors that seem 

particularly relevant in a given situation. Drawing on an extensive review of literature, 

this approach was used in the study to develop a framework for identity as an 

embedder-of-numeracy (Bennison, 2016). This framework is useful for guiding the 

design of empirical studies and provides a snapshot of a teacher’s present identity. 

However, it does not capture how contributing factors shape this identity nor does it 

capture the temporal nature of identity. Valsiner’s (1997) zone theory was employed to 

complement the identity framework thus overcoming these limitations. The way in 

which Valsiner’s (1997) zone theory could be used to understand how factors that 

contribute to a teacher’s identity as an embedder-of-numeracy interact to produce 

particular identities has been reported on previously (e.g., Bennison, 2015). This paper 

builds on this work by addressing the second limitation, that of capturing the temporal 

nature of identity. 

THEORETICAL FRAMEWORK 

The framework for identity as an embedder-of-numeracy (Bennison, 2016) developed 

in the study is organised by five Domains of Influence: Life History, Knowledge, 

Affective, Social, and Context Domains. These Domains include factors that seem to 

be particularly relevant for a teacher exploiting numeracy learning opportunities in 

subjects across the curriculum. The framework was developed through an extensive 

review of literature in the theoretical phase of the study then evaluated and refined 

iteratively during the empirical phase. 

Valsiner’s (1997) conceptualised development as the interactions between three zones: 

zone of proximal development (ZPD), zone of free movement (ZFM), and zone of 

promoted action (ZPA). The ZPD is the set of ways in which an individual could 

develop resulting from interactions with their environment and the people in it. The 

ZFM determines development allowed under existing conditions, whilst the ZPA 
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includes actions that are promoted. Valsiner considered these two zones as a 

ZFM/ZPA complex, with development taking place under successive ZFM/ZPA 

complexes. Structuring this complex allows development to be directed. This 

theoretical framework lends itself to understanding the developing identities of 

teachers because it is consistent with situated learning theories in which learning 

contributes to identity development (Wenger, 1988). The practices in which an 

individual participates occur under the influence of a ZFM/ZPA complex, the cyclic 

process of development under successive ZFM/ZPA complexes may provide a way of 

capturing the dynamic nature of identity. Furthermore, it is possible to accommodate 

the agency that an individual has in identity development by the freedom an individual 

has to accept or reject actions that are promoted. Valsiner’s zone theory allows insights 

into development through analysis of how an individual’s ZPD maps onto their 

ZFM/ZPA complex. Extending the approach taken by Goos (2013) who used this 

theoretical framework to understand teacher learning, factors included in the 

framework for identity as an embedder-of-numeracy were mapped onto Valsiner’s 

three zones. 

RESEARCH DESIGN AND METHODS 

Participants in the study were eight teachers from two secondary schools in Australia. 

The study was conducted over a two-year period (2014-2015) within the context of a 

larger project (Numeracy Project) involving more schools and teachers. Changes were 

observed in the way Kylie (pseudonym) promoted numeracy learning and what she 

said about numeracy over the course of the study. For this reason, her case illustrates 

how Valsiner’s (1997) zone theory could be used to understand possible trajectories of 

a teacher’s identity as an embedder-of-numeracy. 

Teachers’ involvement in the Numeracy Project included participation in a series of 

professional development workshops that promoted engagement with Goos et al.’s 

(2014) numeracy model (where numeracy is seen as involving mathematical 

knowledge, context, tools, and dispositions embedded in a critical orientation) and 

provided opportunities for teachers to plan and share numeracy rich tasks in a range of 

disciplines. Thus, conducting the study in the context of the Numeracy Project meant 

that there was at least one known contributing factor to each teacher’s ZPA. 

On each of the six occasions Kylie was visited, she was observed teaching one or more 

lessons and interviewed. Content analysis of interview transcripts was used to identify 

aspects of her ZPD, ZFM, and ZPA. For example, comments about confidence in 

dealing with numeracy were coded as part of her ZPD because lack of confidence in 

this area may limit the ways in which she might develop. Her personal conception of 

numeracy and the tasks she used were analysed in terms of Goos et al.’s (2014) 

numeracy model, as has been done previously by these researchers. 
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THE CASE OF KYLIE 

Kylie was a qualified history and English teacher with a major in Ancient History. She 

had studied mathematics in her final two years of schooling and, although her 

university studies did not include any formal mathematics courses, she reported using 

mathematical knowledge, especially statistics, in some of her history courses. Her 

opportunities to learn about how to address numeracy in history had been limited. 

Kylie was in her second year of teaching when the study began. The findings presented 

here focus her identity as an embedder-of-numeracy when teaching history. 

Professional context 

Implementation of the Australian Curriculum (ACARA, n.d.) presented Kylie with 

some challenges throughout the two years of the study, particularly in relation to the 

amount of historical content to be covered. For example, she indicated that the amount 

of content to be covered would make it impossible for numeracy to be incorporated 

into a task where students wrote a newspaper article about a key aspect of Medieval 

life (e.g. by asking students to provide some data as evidence in their article): “We 

don’t have enough time at the moment and that’s what I am particularly concerned 

about (Year 1, September). Later in the study, Kylie noted how reduction in historical 

content would allow a greater focus on development of historical skills: 

I’ve really pushed, and a lot of other teachers have, to reduce the amount of content we 

teach and focus on the skills because at the end of the day a student can Google when 

Balboa found the Pacific Ocean but if they can’t read a timeline or read a map or construct 

a graph then, you know, they’ve lost significant skills. I would like to see the focus on 

skills more I think. (Year 2, October) 

Perceptions about numeracy 

Before her participation in the Numeracy Project, Kylie had seen numeracy as the 

responsibility of the mathematics teachers, perhaps indicating that she saw numeracy 

and mathematics as the same: 

I was probably one of those teachers who was like, “Numeracy, well I’m sure they’ll cover 

that in maths”. Um and like when I went to the [Numeracy] project if you do this and this 

and I thought well I do do this but it wasn’t explicit. (Year 1, September)  

This comment suggests that her ideas about numeracy were changing and she noted 

that it was becoming more recognisable in her teaching: “It [numeracy] has become so 

much more, not prevalent, but obvious in what I do” (Year 1, September).  

Kylie provided further evidence of changes in her personal conception of numeracy 

and her confidence of dealing with it in the subjects she was teaching when she 

described how she felt about the idea of numeracy across the curriculum: 

I’ve obviously seen an increase of just recognising how much numeracy there is. I think 

also though I noticed by coming into this, I felt much less like I would have two years ago. 

I would have freaked out at the thought of doing maths. I’m, like, I don’t know how to do 

maths or anything like that. I’m much more confident. (Year 2, June)  
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At the end of the study, Kylie noted how her views about the importance of numeracy 

had changed to the point where she saw numeracy as important as literacy: 

One thing I’ve realised over this time [the duration of the Numeracy Project], if you had 

asked me before the project, I would have said obviously numeracy is important but 

literacy is the most important … [now] I see it on a par with literacy … if you are 

innumerate, that’s on a level with not being able to read. (October 2014) 

Kylie’s comments indicate a changing personal conception of numeracy, and increased 

awareness of, and confidence with attending explicitly to numeracy.  

Numeracy and historical understanding 

Kylie could see benefits for students’ historical understanding in explicitly attending to 

numeracy learning opportunities. Throughout the study she described several instances 

of how numeracy could enhance learning in history. For example, she related the 

proportion of people who died to the same proportion of students in the class to help 

students understand the significance of the Black Plague: 

We looked at the Black Plague and how many were affected … we did how many people 

in the world would have been killed, one to two thirds, one to two thirds of the world, of 

Europe and then we looked at the school and then we looked at the classroom and decided 

who gets killed by the Black Plague … They just needed to understand how bad the Black 

Plague was. So it was a very easy concept to apply numeracy to … we said it was 

devastating and I think the problem was that they didn’t understand, like, they have a lot of 

difficulty identifying the concepts in the Medieval world … it was trying to build their 

understanding. (Year 1, September 2013)  

In one of the observed lessons in the second year of the study, Kylie implemented a 

timeline activity with more explicit attention to numeracy than she had in a lesson on 

the same topic approximately a year earlier. A teacher-led discussion about the 

important features of a timeline was used to introduce the task. Kylie asked questions 

that included: Why do you need to measure? How far apart in time were the events? A 

summary of the important features was provided and students were given time to 

construct their timeline. Kylie’s rationale for employing the timeline was to address 

difficulties students were having with the concept of time: 

Students are having trouble with the concept of time … the fact that there were actually 

multiple Spanish people moving at once … It wasn’t just like Columbus went and came 

back and then another one went and came back and then another one went and came back 

when really they were all just all over the place at once. So it’s about understanding the 

concept of time. (Year 2, October 2014) 

In this instance, she had used the timeline, an historical skill (ACARA, n.d.), to 

develop the time-related concepts of duration and concurrency. 

Kylie also described how more extensive use of maps in lessons on the Spanish 

conquest of the Americas could help students understand the historical concept of 

cause and effect (ACARA, n.d.), acknowledging that available time had prevented her 

from taking such an approach: 
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I think we could use some more mapping because there’s so many questions that arise … 

Where did they live? Why do they speak English here? Which is a very obvious question. 

We keep talking about Spanish, Spanish, Spanish, Spanish. Why are the Americans 

English or speak English or look English? So that’s a good cause and effects kind of 

question. If we had more time probably we could look into it. (Year 2, October) 

Planning for numeracy in history 

Kylie began the study reasonably confident that she could deal explicitly with the 

mathematical content in history lessons, even though some revision might be 

necessary: “Probably for me the mathematical knowledge needs a bit of a refresher for 

a lot of it. Once I look at it I can probably do it as long as it’s not too complicated” 

(Year 1, September). She expressed similar views towards the end of the study about 

confidence in her knowledge of mathematics: “I looked through the curriculum, like I 

felt confident with all of the mathematics I was presented with” (Year 2, October); and 

the need to revise some mathematical content prior to incorporating it into her lessons: 

Timelines, obviously, are old hat but … I had to double check I knew how to do the types 

of graphs but I mean I do that with most of my content if I haven’t taught it for like a year. 

(Year 2, October) 

Confidence does not indicate competency, but Kylie’s confidence with mathematics 

seems unlikely to prevent her from attending to numeracy in her history lessons. 

KYLIE’S IDENTITY AS AN EMBEDDER-OF-NUMERACY 

Drawing on data collected during the first year of the study, the analysis of Kylie’s 

identity as an embedder-of-numeracy represents her initial identity with respect to the 

time frame of the study. Her ZPD could be seen as including the possibility of 

developing her capabilities to effectively promote students’ numeracy learning 

through history. Her mathematical knowledge was probably adequate for the 

mathematics she was likely to encounter while teaching history and she expressed 

some confidence in her mathematical ability in this regard. Importantly, Kylie had a 

strong disciplinary background in history and was able to articulate how numeracy 

could support learning in history. However, her development could be constrained by 

limited opportunities for developing pedagogical content knowledge for numeracy.  

The ZFM/ZPA complex experienced by Kylie included a new history curriculum that 

promoted an across the curriculum approach to numeracy (ACARA, n.d.) but in an 

environment where there was pressure to content.  

There was evidence of a change in Kylie’s practice in the second year of the study (for 

example, her explicit attention to numeracy in the timeline activity described above), 

suggesting that her identity-as-an-embedder-of-numeracy had strengthened. This 

development appeared to be canalised by the zone of free movement/zone of promoted 

action (ZFM/ZPA) complex she experienced leading to an expansion in her ZPD. The 

Numeracy Project seemed to have been influential in raising her awareness of 

numeracy in history and may have led her to consider scale in addition to sequence 
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when representing historical events on a timeline: only sequencing of historical events 

is identified in the Australian Curriculum (ACARA, n.d.). Thus, it could be argued that 

her beliefs had changed and her pedagogical content knowledge for numeracy had 

increased, with consequent changes to her classroom practice. Other changes evident 

in some of the factors contributing to Kylie’s ZPD included more confidence in 

dealing with mathematical aspects in her lessons and increased recognition of the 

importance of numeracy, now considering it as important as literacy. While Kylie did 

not engage in any further formal mathematics learning, her increased confidence in her 

mathematical knowledge may be the result of being more familiar with the 

mathematics she was using in her history lessons and could indicate increased 

mathematical content knowledge. These changes could be seen as opening up more 

ways in which she could develop.  

There did not appear to be any significant changes to elements of Kylie’s ZFM/ZPA 

complex in the second year of the study that would impact on how she was able to 

promote numeracy learning through history. While she reported that she would like to 

see a reduction in the history content to allow greater emphasis on historical skills, she 

was able to manage the competing demands of explicitly addressing numeracy and 

covering content in the observed lessons. Overcoming this constraint in her ZFM could 

be a result of her changed beliefs and increased understanding of numeracy. 

When Kylie’s identity as an embedder-of-numeracy towards the end of the study is 

compared with that of the previous year it could be argued that this identity had 

strengthened. When analysed in terms of Valsiner’s (1997) three zones, there appears 

to be increased overlap when her ZPD was mapped onto her ZFM/ZPA complex. Her 

pedagogical content knowledge seemed to have increased and her beliefs about 

numeracy had changed, with consequent changes to her classroom practice. Some of 

these changes could be attributed to her growing experience as a history teacher but it 

could be argued that the Numeracy Project (as part of her ZPA) influenced the 

direction of this development. 

CONCLUDING REMARKS 

Debate about the best way to promote numeracy learning in schools is occurring 

amidst increasing recognition of the importance of numeracy (Geiger, et al., 2015). 

There are connections that can be made between numeracy and learning in subjects 

other than mathematics (e.g., timelines). However, across the curriculum approaches 

to numeracy present challenges for teachers who may not have the appropriate 

knowledge base or see numeracy as something extra to be added to an already crowded 

curriculum. Professional development interventions alone are insufficient to address 

teachers’ needs because of the many factors that influence whether and how they 

implement learning from such interventions into their classroom practices.  

Valsiner’s (1997) zone theory considers the influence of both cognitive and 

non-cognitive factors on development. The case of Kylie illustrates how teacher 

identity could be used in conjunction with this theoretical framework to follow the 
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trajectory of a teacher’s identity as an embedder-of-numeracy. This approach has 

potential to enable identification of affordances and constraints to strengthening this 

identity. One of the limitations of the study was that it was limited to a small number of 

teachers in two schools. Further testing of this approach is necessary and could be 

achieved by extending the study to more teachers and school subjects.  
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This paper reports on a par of an evaluation of the professional development program 

(PDP) Boost for Mathematics in Sweden. Around 200 mathematics lessons were 

observed, and the teachers were interviewed after each lesson. The findings indicate 

that the PDP has had a significant impact on the teachers’ knowledge about the 

mathematical competencies as they are presented in the national curriculum 

documents, and that the teaching practice had improved and now gives the students 

better possibilities to develop the competencies. The results also show that these 

improvements are still present one year after the program had ended. 

INTRODUCTION 

There is an international trend towards competencies (reform mathematics), and 

several professional development programs (PDPs) have been performed (e.g., Boesen 

et al., 2014). In Sweden, Boost for Mathematics (Sw: Matematiklyftet) was a 

professional development program carried out in the years 2012-2016. It was a large 

scale program, and about 80 % of all Swedish mathematics teachers in compulsory and 

upper secondary school (school years 1-12) have participated, a total of 33,580 

mathematics teachers. The two-folded aim was to develop the teaching culture and the 

professional development culture at schools. Four didactical perspectives guided the 

professional development program: 1) Teaching for the development of mathematical 

competencies, 2) Formative assessment, 3) Routines and interactions in the classroom, 

and 4) Classroom norms and socio-mathematical norms. The result of this PDP has 

been evaluated (Österholm et al., 2016). The evaluation was extensive, for example, 

including around 200 lesson observations, interviews with teachers and principals, 

observations of collaborative meetings, and document analyses. In this paper, we 

report on one part of this evaluation. 

Research studies on large scale professional development programs mainly use 

teachers’ self-reports as empirical data; “One limitation of the large-scale studies we 

reviewed is that they relied primarily on self-report data of teachers’ changing 

classroom instruction.” (Goldsmith et al., 2014, p. 24). In view of this large literature 

review, the evaluation presented here contributes to what is known in an important 

way, since the conclusions are based on observational data of changes in classroom 

instruction in a large scale professional development program. 

In this paper, we focus on how the teaching culture developed regarding the first 

didactical perspective, that is, teaching for the development of mathematical 
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competencies. The mathematical competencies here refer to the abilities the students 

are supposed to develop, according to the national curriculum, and include, among 

other aspects, problem solving and communication. 

In this paper, we aim to answer the following research questions: 

RQ1: To what extent has teachers’ knowledge improved concerning mathematical 

competencies when they participated in the PDP Boost for Mathematics? 

RQ2: To what extent has the teaching practice improved concerning teaching for the 

development of mathematical competencies, when teachers participated in the PDP 

Boost for Mathematics? 

The paper is arranged as follows. First, we describe the professional development 

program and the theoretical framework underpinning the evaluation. Thereafter, we 

outline the method, followed by results from the analyses. Finally, we discuss the 

implications for large scale PDPs in relation to implementation of reforms. 

DESCRIPTION OF THE PDP BOOST FOR MATHEMATICS 

The professional development program Boost for Mathematics conforms to research 

findings concerning quality of large scale in-service programs (see Boesen et al., 

2014). The main part of the program was supervised teacher collaboration and 

discussions, where web-based support material was used, which was developed by 

researchers and teacher educators at Swedish teacher colleges. As it is important that 

principals and school leaders are a part of a PDP (e.g., see Zehetmeier, 2015), 

professional development for them was also part of Boost for Mathematics.  

The support material for teachers consists of different modules that for compulsory 

school cover a specific mathematical content area (e.g., algebra or geometry), while 

the modules for upper secondary school cover a specific educational area, such as 

problem solving or teaching in accordance with the mathematical competencies. The 

quality of the material was monitored by appointed mathematics education 

researchers. The material is hosted by the Swedish National Agency for Education, and 

is still available for anyone to utilize, also after the program has officially ended. 

The modules contain didactical support material; scholarly texts, research articles in 

mathematics education, video, and audio, together with instructions for lesson 

activities and questions for collegial discussions. The modules framed, in a four-step 

model, how the PDP should be conducted at the schools; 1) individual preparation, 2) 

collegial preparation, 3) lesson activity, and 4) collegial follow-up discussion. The 

four-step model was developed in order to reach the program goals that the teachers to 

a higher degree should reflect on their decision-making in their mathematics teaching, 

as well as developing a wider range of teaching methods and teaching approaches, to 

be able to adapt to students’ different needs. 

There are also results from other evaluations of Boost for Mathematics. A large survey 

with participating schools and teachers show that the PDP mainly has been 
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implemented as intended (Ramböll, 2016). This survey also shows that the teachers in 

general are satisfied with the program. 

The evaluation of the professional development program Boost for Mathematics that 

will be reported on in this paper took place in the years 2014-2016. A project group of 

four researchers (the authors of this paper) developed tools for collection of empirical 

data (interviews, observations and questionnaires) and for analysis of development 

concerning the four didactical perspectives mentioned above. Eight specialists in 

relevant areas (mathematics education, assessment, statistical analyses, and 

evaluation) supported the project group in critical phases of the evaluation. Sixteen 

project assistants carried out the collection and preparation of data, together with some 

initial analyses. The main analyses and the reporting of the evaluation to the Swedish 

National Agency of Education (Österholm et al., 2016) was done by the project group. 

ANALYTICAL FRAMEWORK 

The framework guiding our analyses regarding teaching for the development of 

competencies takes its departure in the descriptions in the Swedish national curriculum 

documents for mathematics. Five competencies (Sw: förmågor) are common for 

school years 1-12: 1) problem solving, 2) conceptual understanding, 3) procedural 

competency, 4) mathematical reasoning, 5) mathematical communication. Two 

additional competencies exist only for upper secondary school (years 10-12): 1) 

mathematical modelling, and 2) the relevance for using mathematics.  

For each of the competencies, we constructed a tool that could be used to analyze 

whether a teaching activity could give the students the opportunity to develop that 

specific competency. The tool, based on Lithner et al. (2010), looked at two aspects: A 

cognitive aspect (to identify, interpret and so on), and a productive aspect (to carry out, 

use, choose and so on). Here we describe this tool in detail for only one competency; 

problem solving, as an example. 

Problem solving is defined as follows: “Mathematical problems are, in contrast to pure 

routine tasks, situations or tasks where the students don’t directly know how the 

problem should be solved” (Swedish National Agency of Education, 2016). 

For the competency of problem solving, we framed the cognitive aspect as 1) being 

able to identify different components of a problem, to see alternative solution 

possibilities, and to understand methods, tools and goals of problem solving, 2) being 

able to evaluate and assess solutions, strategies and methods, and 3) to judge the 

plausibility of the result in relation to the problem. We subsequently framed the 

productive aspect as 1) being able to use mathematics to solve problems arising in 

mathematics and other contexts, 2) being able to use and adapt problem solving 

strategies and methods, and 3) being able to formulate and specify different types of 

mathematical problems. 
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METHOD 

This paper focuses on the development of the teaching culture in the participating 

schools. We analyze changes in the classroom practice and in teachers’ knowledge, 

when it comes to teaching for the development of the mathematical competencies. 

Sample 

35 Swedish schools that participated in the professional development program were 

randomly chosen for the evaluation. At each school, three mathematics teachers were 

randomly selected, that is, a total of 105 teachers were selected. Half of the schools 

were visited before and during the PDP, and the other half were visited during and 

after the PDP. Since the same type of data was collected at all schools, and we had data 

from before, during and after the professional development program, we could 

examine changes in a direct way. Each school was visited twice, with a one-year 

interval, collecting data from the same teachers. If a teacher had left the school 

between the visits, a new teacher at the same school was randomly selected. 

The structure with two visits offered the possibility to explore changes in a direct 

manner. We could not visit all schools in all three stages (before, during and after the 

PDP) due to time limitations. However, all schools did not start the PDP the same year. 

In spring 2015, we visited the first half of the schools before the PDP, and the second 

half during the PDP. At the second visit, in spring 2016, the first half was visited 

during the PDP and the second half after the PDP. This made it possible to perform 

two different types of analyses; the same teachers are analyzed two different years and 

different teachers are analyzed the same year.  

Data collection and data processing 

For each teacher, we observed a mathematics lesson with audio recording of the 

teacher’s voice. The recordings were supplemented with copies or photographs of 

curriculum materials used during the lesson, and notes on what was written on the 

whiteboard and on what tasks the students were working with. After the lesson, a 

structured interview was conducted with the teacher. Each interview took about 75 

minutes. The same interview guide was used at both visits. 

The interview questions covered a range of issues for all four didactical perspectives. 

The following questions were used for the analysis presented in this paper: 

1. What did you want the students to learn during the lesson? 

2. The national curriculum documents describe different mathematical competencies. 

How do you think the competencies affect your planning of lessons in general?  

3. For each competency, describe the core of the competency and give one example of 

how you have worked during a lesson to give the students the opportunity to develop 

this specific competency. 

4. Sometimes learning goals are divided in content goals and competency goals. What 

is your view on this division? 
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5. Do you use learning goals directly from the national curriculum document? If so, 

from what part of the document?  

All interviews were transcribed and the lessons were described and divided into 

activities based on the working methods we could observe (e.g., teacher presentation, 

whole class discussion, group discussion, or individual work). 

Method of analysis 

Two result variables were constructed concerning the didactical perspective Teaching 

for the development of mathematical competencies. The first variable describes to what 

extent each teacher plans and reflects in line with the didactical perspective. The 

second variable describes to what extent the teaching of each teacher is in line with the 

didactical perspective. 

The analysis focused on three aspects: What knowledge do the teachers have regarding 

the competencies? What understanding do the teachers have for how classroom 

activities can give students opportunities to develop the competencies? What 

competencies are the students given the opportunity to develop? 

Several assessments were made for each aspect. The two first aspects were analyzed 

using 19 assessments of the interviews to form the first result variable. The second 

aspect was analyzed using 10-14 assessments (two for each of the 5 competencies in 

grades 1-9 and 7 competencies in grades 10-12) of each activity in the lesson 

observations to form the second result variable. The final score for each of the two 

result variables was calculated as an average of all assessments. 

All assessments were described very carefully to ensure the quality of the analysis. 

One assessment will here be presented in detail, but all assessments were done using 

similar tables and descriptions. 

Example: Assess to what degree the teacher shows knowledge and will to let problem 

solving affect the planning of lessons. 

Value Definition Example 

0 The teacher never spontaneously talks about 

the competencies in relation to the planning 

of lessons, and gives only short answers to 

direct questions. 

The students should of course develop 

their problem solving ability during the 

lessons. 

0.5 The teacher stresses the importance of the 

impact of the competencies on the planning 

of lessons, but only in general terms. 

I give the students many problems to help 

the students develop their problem solving 

ability. 

1 The teacher exemplifies how the 

competencies affect the planning of the 

lessons. The teacher mentions both the 

cognitive and the productive aspect. 

When we work with problem solving in the 

class we always discuss both different 

ways of attacking a problem and ways to 

specify the problem at hand. 

Table 1. Assessment of teacher knowledge in relation to the planning of lessons. 
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This assessment is connected to the second aspect above, and was based on the 

answers to two different interview questions, one concerning how the competencies in 

general affect the planning of lessons and what the core of each competency is. The 

second question concerned learning goals, and to what extent the teacher used learning 

goals directly from the national curriculum documents, since the competencies are 

described in those documents. The value of the assessment was decided using Table 1. 

We were able to analyze the change in both result variables, since we had data 

collected with a one-year interval from each teacher. Half of the schools were visited 

before the PDP and during the PDP, while the others were visited during the PDP and 

after the PDP. Statistical analyses through t-tests were used to identify significant 

differences, using p<0.05 as the limit for statistical significance. Two types of 

differences were analyzed, which increases the reliability of the results. In the first 

analysis, we compared the same group of teachers at different times, when they were at 

different stages of the PDP. In the second analysis, we compared two groups of 

teachers at the same time, but when the groups were at different stages of the PDP. 

RESULTS 

As a result of the professional development program Boost for Mathematics, the 

teachers plan and reflect to a higher degree in line with the competencies, see figure 1.  
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Figure 1. Changes in teachers’ planning and reflection on the one hand and teaching 

activities on the other hand, during different stages of the PDP (before, during, and 

after). * marks changes that are statistically significant (p<0.05). 

Figure 1 also shows that the teaching had changed during the PDP. The teachers work 

more in line with the didactical perspective Teaching for the development of 

mathematical competences. Furthermore, the right side diagram shows that there is no 

drop in how teachers work or plan one year after the PDP. This indicates that the 

effects of the program are stable.  

Figure 2 shows a comparison between different groups of teachers the same year, but 

at different stages of the PDP. The patterns are the same as in figure 1, with significant 

differences between before and during the PDP, showing that the program has affected 

both the planning and the teaching. Figure 2 also shows that there are no significant 

differences between teachers one year after the PDP and teachers during the program. 
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Figure 2. Differences between groups of teachers’ that are at different stages of the 

PDP (before, during, and after) concerning their planning and reflection on the one 

hand and teaching activities on the other hand. * marks differences that are 

statistically significant (p<0.05). 

In total, the results in figure 1 are the same as in figure 2, showing the reliability of 

these results. The effect sizes of the significant differences between before and during 

the PDP are medium to large, with Cohen’s d value of 0.56 for planning and 0.81 for 

teaching. 

What may the changes represent? 

Here follow two examples of teacher changes, the first concerning the teacher’s 

planning and reflections, and the second concerning activities in the classroom. 

As one aspect of teachers’ planning and reflections, we asked about the balance 

between content goals and competence goals. One teacher gave the following answer 

when interviewed before the PDP: “The competence goals are more of survival 

abilities. You practice them in all subjects. The content goals are the foundation the 

students should have.” When the same question was asked to the same teacher during 

the PDP, the answer was: “The mathematical competencies are connected to the 

content areas I choose to focus on”. In the first answer, the competence goals were 

clearly talked about as something outside the subject. In the second answer the teacher 

had changed to a balance between content goals and competence goals. The first 

answer was given the value 0 and the second answer was given the value 1. 

At the lesson observed before the PDP, no competencies at all were discussed, and the 

students were not given the possibility to develop the reasoning competency. The 

lesson during the PDP could be seen as a contrast to the first. The teacher started by 

talking about the reasoning competency and what it could be. Later in the lesson, in a 

group assignment, the students were given the task to explain to a classmate what the 

equal sign stands for. The students were also to asked to present and argue for their 

explanations to the rest of the class. Discussions where the students have to argue for 

their descriptions, are seen as central for the reasoning competency. 

CONCLUSION AND DISCUSSION 

After the change of the Swedish national curriculum documents in 2011, all schools in 

Sweden were given the opportunity to participate in the large professional 
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development program Boost for Mathematics. In this paper, we have shown that this 

large-scale PDP did in fact change the teaching culture concerning mathematical 

competencies. We argue that the reason for this change is that the teachers were given 

organized possibilities to develop their knowledge and abilities to teach in line with the 

new curriculum documents, as this result differs from previous change in curriculum 

documents in Sweden. For instance, Boesen et al. (2014) show in their study that the 

1994 curriculum did not have the desired effect. The teaching did not change in any 

significant way, and was still focused on procedural knowledge. The competencies 

were present in the curriculum documents to a large extent, but they were not clearly 

conveyed (Bergqvist & Bergqvist, 2016). But, the large scale PD-program following 

the 2011 curriculum change made a difference (Österholm, et al. 2016). 

References 

Bergqvist, E. & Bergqvist, T (2016). The role of the formal written curriculum in standards- 

based reform, Journal of Curriculum Studies, DOI: 10.1080/00220272.2016.1202323.  

Boesen, J., Helenius, O., Bergqvist, E., Bergqvist, T., Lithner, J., Palm, T., & Palmberg, B. 

(2014). Developing mathematical competence: From the intended to the enacted 

curriculum. The Journal of Mathematical Behavior, 33, 72–87.  

Emanuelsson, G., & Johansson, B. (1997). Kommentar till grundskolans kursplan och 

betygskriterier i matematik [Commentary to the national curriculum document for 

compulsory school]: Stockholm: Liber. 

Goldsmith, L. T., Doerr, H. M., & Lewis, C. C. (2014). Mathematics teachers’ learning: A 

conceptual framework and synthesis of research. Journal of Mathematics Teacher 

Education, 17(1), 5-36.  

Lithner, J., Bergqvist, E., Bergqvist, T., Boesen, J., Palm, T., & Palmberg, B. (2010). 

Mathematical competencies: A research framework. In C. Bergsten, E. Jablonka & T. 

Wedege (Eds.), Mathematics and mathematics education: Cultural and social dimensions. 

Proceedings of MADIF 7, the Seventh Mathematics Education Research Seminar, 

Stockholm, January 26–27, 2010 (pp. 157–167). Linköping: SMdF.  

Ramböll (2016). Slututvärdering. Utvärderingen av Matematiklyftet 2013 – 2016. [Final 

evaluation. Evaluation of Boost for Mathematics 2013 – 2016). www.skolverket.se. 

Downloaded 2016-12-15. 

Swedish National Agency of Education (2016). Commentary to the Knowledge Requirements 

in the Curriculum for Compulsory School. www.skolverket.se. Downloaded 2014-02-18. 

Zehetmeier, S (2015). Sustaining and scaling up the impact of professional development 

programmes. ZDM Mathematics Education 47:117-128.  

Österholm, M., Bergqvist, T., Liljekvist, Y., & van Bommel, J. (2016). Utvärdering av 

Matematiklyftets resultat: Slutrapport [Evaluation of the results from the Boost for 

Mathematics: Final report]. Umeå, Sweden: Department of Science and Mathematics 

Education, Umeå University. 

http://www.skolverket.se/
http://www.skolverket.se/


 

 

   2-161 
2017. In Kaur, B., Ho, W.K., Toh, T.L., & Choy, B.H. (Eds.). Proceedings of the 41st Conference of the International 

Group for the Psychology of Mathematics Education, Vol. 2, pp. 161-168. Singapore: PME. 

PARENTS’ AND TEACHERS’ VIEWS ON THE DISTINCT ROLE 

OF MATHEMATICS AS A SCHOOL SUBJECT 

Gizella Berze1 and Csaba Csíkos2 

1University of Szeged, 2ELTE, Budapest 

In this research we aimed to investigate the mathematical views of two different groups 

that both may have enormous impact on students’ mathematical achievement and 

attitudes, and on their future well-being as well. Elementary school teachers (N = 74) 

and parents (N = 955) filled in two analogous questionnaires concerning different 

aspects of learning mathematics. Data collection was done in a multilingual region of 

Europe. The results indicate that both in parents’ and teachers’ views Mathematics as 

a school subject has a distinct role in the system of school subjects. Differences 

between the two language-groups (Hungarian and Serbian) have been revealed in 

judging the pragmatic role of mathematics in several fields of future well-being. 

INTRODUCTION 

In the Western world, Mathematics as a school subject has always been an integral part 

of the curriculum since 1599. Baba, Iwasaki, Ueda and Date (2012) describe how the 

Western mathematical ideas changed even Japanese math education. During the 20th 

century, due to the IEA studies (FIMS, SISM and then the TIMSS-series), and 

especially with the advent of PISA-studies, its leading role has been reassured both by 

policy makers and educational researchers. The special role Mathematics fulfils in the 

system of school subjects can be described from several aspects. Kollosche (2014) 

claims that the mechanisms how mathematics teaching and learning take place in the 

classroom give power to those who are able to do mathematics. Similarly, Valero 

(2012) points to the role Mathematics and other STEM subjects may play when 

causing a gap between the two forms of subjectification (a Foucauldian term): in the 

mathematics classroom, the processes of subjectification are rather different that of 

other subjectification in other areas of social life.  

A study with 3rd grade students’ parents was conducted by Räty, Kasanen and 

Kärkkäinen (2006), and they revealed the special role Mathematics and Finnish 

(mother tongue) as two school subjects play in elementary schools. There is still much 

empirical research needed to reveal how Mathematics as a school subject is different 

from other subjects in the system of school subjects. 

Parents’ and teachers’ views on mathematics 

Why parents’ views should be explored and taken into account by policy makers is 

justified by the need of winning parental support when introducing new approaches in 

mathematics teaching and learning. This is especially true in educational systems (like 

in the region where the current research has been conducted) where parents are free to 
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choose the school where their children may receive mathematics education that fulfils 

parental expectations.  

According to Albersman and Rolka (2013), the topic of investigating parental 

mathematical beliefs is rather neglected (e.g., the seminal work by Pehkonen and 

Torner, 1996, deals with students’ and teachers’ beliefs and not with that of parents’). 

Recently Csíkos and Dohány (2013) explored parental beliefs about secondary school 

parents’ pragmatic values of mathematics and music, and Albersman (2015) conducted 

a research among the parents of 5th grade students about the pragmatic role of 

mathematics.  

Teachers’ mathematical beliefs have been more extensively explored in the last 

decades. Research ranges from case studies on philosophical values of mathematics 

education to large sample validation studies of questionnaires. E.g., FitzSimons, 

Bishop, Seah and Clarkson (2001) revealed that mathematics teachers are aware of 

rather different values mathematics teaching may explicitly or implicitly develop. 

Whereas Platas (2015) developed a questionnaire (MDBS, Mathematical 

Development Beliefs Survey) for pre-school teachers about early mathematics. 

Our current research intends to investigate both parents’ and teachers’ mathematical 

views with the same questionnaire, and within the same sampling procedure. 

According to Dede (2013, p. 703.), “institutional values play an important role in 

mathematics teachers’ decisions on classroom practices”, consequently the 

institution-based sampling procedure seems to be an important novelty. 

Cross-cultural considerations 

The extent to which the results of the current investigations may be generalizable calls 

forth the question of cross-cultural (or cross-linguistic) differences. Although there 

may be relevant differences between teachers’ explicit beliefs (see e.g., Andrews, 

2007), studies on students’ implicit mathematical beliefs (for a brief summary, see 

Csíkos, Kelemen, & Verschaffel, 2011) show a greater level of culture-independency. 

In the current study, parents and teachers from two ethnic groups within the same 

school system comprise our sample; consequently, our research design allows for 

exploring a level of cross-cultural differences or similarities. 

Aims and hypotheses 

In line with the literature review we proposed the following hypotheses. 

(H1) In the system of school subjects, mathematics is considered as having a distinct 

role in both parents’ and elementary teachers’ views. This role may be indicated by the 

fact that parents often ask their children about school marks (especially in 

mathematics) and teachers frequently talk to parents about students’ achievement in 

Mathematics. 
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(H2) Mathematics as a school subject is considered very important with regards to 

getting a job and earning high salary, but other aspects of well-being like sense of 

beauty and creativeness are less tightly associated with mathematics. 

(H3) There are no relevant differences in mathematics-related views between the two 

language groups. 

METHODS 

Sample 

The primary choice of sample units in our research were towns in Vojvodina 

(autonomous province of Serbia) where the language of instruction in primary schools 

is not only Serbian but Hungarian as well. Data on these schools is accessible in the 

database of the Vojvodina Methodology Center and can be found on the Hungarian 

Education Map of Vojvodina (http://vmoktatas.org.rs).There are 27 such towns in the 

province. The towns where the majority of the population is Hungarian are 

concentrated in the North Central regions of Vojvodina. We have chosen twelve of 

them, and nine school principals have permitted us to do the survey. We have asked 

Serbian and Hungarian teachers in grades one to four to hand out and to collect 

parental questionnaires, and also to fill out the teacher questionnaires. Participation 

was voluntary. This way, we received 1111 parental questionnaires. We left out 156 

parental questionnaires from the research as we could not match them with any teacher 

questionnaires. Eventually, 955 parental and 74 teacher questionnaires were analyzed. 

607 parents have filled out the form in Hungarian and 348 in Serbian. Out of the 47 

teachers whose first language is Hungarian and the 27 whose first language is Serbian, 

14 teach in grade one and 19-19 in grade two, three and four. One of them works in a 

composite class, teaching all grade levels. Out of the 74 teachers, only two are men, the 

rest of them are women. 

Questionnaires 

Two questionnaires were used in this investigation entitled “Parental questionnaire 

about learning” and “Teacher questionnaire about learning”. Both questionnaires have 

the same structure and items with the exception of the background items and some 

grammatical and syntactical adjustments. The questionnaires have the following 

sections:  

(1) General beliefs on learning – five-point Likert-scale on the level of agreement. 

(2) Importance of learning targets – five-level Likert-scale on the level of importance. 

(3) Importance of school subjects – five-level Likert-scale on the level of importance. 

(4) Frequency of discussion on school marks in different school subject – five-point 

scale on the frequency (not at all, monthly, weekly, several times per week, daily) 

(5) Frequency of discussion on the content of learning in different school subjects – the 

same five-point scale as in part (4). 

http://vmoktatas.org.rs/
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(6) The importance of mathematics with regard to students’ future well-being – 

five-point Likert-scale on the level of agreement 

Background questions covered demographic variables like age, level of schooling, 

type of settlement. 

Both questionnaires have two versions: Hungarian and Serbian. Respondents could 

choose any of them, so another background variable of this investigation is the 

language. 

Procedure and analysis 

The data have been coded as quantitative data in the SPSS software. Except for part (4) 

of the questionnaire, the Likert-scale variables are considered as interval scale 

variables, whereas part (4) variables were treated as of ordinal scale level. 

In the current phase of data analysis teachers’ and parents’ questionnaires are analysed 

separately. Nevertheless the data will enable for analysing connections between them, 

since parents’ data can be connected to the teacher’s data, and those parental 

questionnaires that cannot be matched to a teacher questionnaire have already been 

filtered out from the sample. 

RESULTS 

The place for mathematics in the system of school subjects (H1)  

Teachers’ and parents’ judgments on the importance of “developing mathematical 

thinking” showed an average of 4.86 (SD=.45) on the five-point Likert-scale which 

clearly shows to what extent parents agree upon the utmost importance of 

mathematics. The highest average went to the development of first language skills 

(4.96), while other areas were all considered rather important (all mean values were 

above 4.24).  

Part (3) of the questionnaire contained a list of all compulsory school subjects, and 

parents and teachers indicated how important each subject is in their opinion and in 

their child’s opinion. The subjects were listed alphabetically. Table 1 shows the Mean 

and SD values for each item for both samples. 

Comparing the mean values in each row, paired-samples t-tests indicated that teachers 

considered the school subjects significantly more important than – in their opinion – 

the students. There are only two exception: Information Technology and Physical 

Education. Parents, on the contrary, judge several school subjects less important than – 

in their opinion – their child does. Due to the large sample size, only the Technology 

and Lifestyles values are non-significantly different. As for mathematics, both parents 

and teachers considered it the second most important subject of the primary school, 

and according to their opinion, students may consider mathematics as even more 

important. 
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School subject 
Parents Teachers 

Own Child’s Own Child’s 

Singing and Music 
3.83 (1.03) 4.04 (1.00) 4.34 

(.69) 

3.62 

(.94) 

Religious Education 
3.90 (1.17) 4.00 (1.11) 3.68 

(1.27) 

3.27 

(1.06) 

Second Language 
4.84 (.51) 4.62 

(.68) 

4.66 

(.58) 

4.27 

(.77) 

Information Technology 
4.65 (.72) 4.60  

(.75) 

4.54 

(.74) 

4.47 

(.66) 

Environmental Studies 
4.75 (.54) 4.61 

(.68) 

4.78 

(.45) 

4.01 

(.74) 

Hungarian/Serbian Language 
4.89 (.42) 4.74 

(.58) 

4.97 

(.16) 

4.48 

(.67) 

Mathematics 
4.87 (.42) 4.79 

(.54) 

4.96 

(.20) 

4.63 

(.61) 

Drawing and Visual Education 
4.05 (.93) 4.29 

(.92) 

4.41 

(.66) 

3.93 

(.92) 

Technology and Lifestyle 
4.31 (.84) 4.30 

(.85) 

4.30 

(.84) 

3.76 

(.95) 

Physical Education 
4.77 (.55) 4.72 

(.63) 

4.81 

(.39) 

4.66 

(.69) 

Table 1: Mean (and SD in parentheses) values on the importance of school subjects as judged by 

parents and teachers.  

Interest in school marks  

Table 2: Median values of the frequency of discussing school marks and content issues in each school 

subjects. (1 = not at all, 2 = monthly, 3 = weekly, 4 = several times per week, 5 = daily) 

We hypothesized that parents discuss with their children their school marks and the 

content they learn in school frequently, and this might be especially true for 

Mathematics. The results are shown in Table 2. In the teacher questionnaire, the 

School subject 
Parents Teachers 

Mark Content Mark Content 

Singing and Music 3 3 3 3 

Religious Education 3 3 3 3 

Second Language 4 4 3 3 

Information Technology 4 4 3 3 

Environmental Studies 4 4 4 3 

Hungarian/Serbian Language 5 5 4 3 

Mathematics 5 5 4 3 

Drawing and Visual Education 3 3 3 3 

Technology and Lifestyle 4 3 3 3 

Physical Education 4 4 3 3 
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analogous items concerned the frequency of how often they discuss the school marks 

and the content issues with parents. 

There is no tendency revealed that school marks are more often discussed than content 

issues (neither in parents-child nor in teacher-parents relations). Nevertheless, a clear 

picture is seen in Table 2, i.e. Mathematics as a school subject is among the top two 

subjects where both school achievement and the content to be learnt are fairly 

frequently discussed. 

Why is mathematics important? (H2) 

The questionnaire offered eight aspects from which Mathematics as a school subject 

might be judged important for well-being in adulthood. Table 3 shows the Mean (SD) 

values of each item in the two questionnaires. 

Aspect of well-being Parents Teachers 

Getting to work 4.23 (1.05) 3.59 (1.18) 

Participation in social life 3.92 (1.15) 3.45 (1.09) 

High salary  3.70 (1.28) 3.31 (1.13) 

Balanced private life 3.21 (1.43) 2.92 (1.17) 

Openness in social interactions  3.14 (1.38) 2.96 (1.07) 

Creativity in work 3.97 (1.20) 3.84 (1.17) 

Successful problem solving 4.10 (1.20) 4.39 (0.96) 

Sense of beauty 2.29 (1.43) 2.41 (1.25) 

Table 3: Mean (and SD in parentheses) values on the importance of different aspects from which 

Mathematics is important as judged by parents and teachers.  

Table 3 indicates that with the exception of the aspect of problem solving and sense of 

beauty, parents generally overvalue mathematics as compared to elementary school 

teachers.  

As for the third hypothesis (H3), the possible differences between the two language 

groups have been checked for the mathematics-related items of each preceding 

analyses. In the teachers’ sample the only significant difference between the two 

language groups were found on the item about the role of mathematics in fostering 

creativity (t (72) = 2.25, p = .03). In the parents’ sample, due to the large sample size, 

several differences proved to be significant. The pragmatic role of mathematics is seen 

differently in “high salary”, “creativity in work” and “successful problem solving” 

items (p < .05). Similarly to the teachers’ questionnaire, Serbian questionees judged 

the role of mathematics in problem solving much higher; furthermore the Hungarian 

parents gave higher scores to the role of mathematics in creativity and in earning a high 

salary. 
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DISCUSSION AND IMPLICATIONS 

Main points 

Our research partly reassured our hypotheses. Parents and teachers seem to agree on 

the utmost importance of mathematics as a school subject. Mathematics is among the 

most frequently discussed school subjects both in parent-child and teacher-parent 

relations. Several aspects of well-being were unexpectedly undervalued (e.g. sense of 

beauty and balanced private life may and should be explicitly claimed as important 

aspects of making mathematics). In this respect it would be salutary to explore the 

opinion of another important group of stakeholders, namely, mathematicians. 

Novelty 

We would like to highlight two possible novelties of our research. First, we claim that 

investigating mathematical views in the framework of a systemic approach, i.e. 

mathematics is explored with an eye on the system of all school subjects, may bring 

new insights about the distinct role mathematics plays in the school. Second, the 

scarcity of research on parental views, and especially on a simultaneous enquiry on 

parents’ and teachers’ views indicates the need for such investigations. 

Limitations 

The usual limitations any similar study may face are to be mentioned here. One major 

point can be the issue of sampling and the selection of a multicultural region in Europe. 

We do not have enough information as to what extent our results might be 

generalizable concerning language and cultural boundaries. Another limitation factor 

is the typical indirect nature of the data collection when using questionnaires. In order 

to get the most possibly honest and objective answers, we aimed to use simple, 

straightforward items in closed-question format. 

Practical considerations 

Getting information on two key stakeholder groups concerning mathematics education 

provide a more comprehensible picture on the opportunity to meet with refusal when 

introducing new curriculum or instructional approaches in mathematics.  
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“THE BEST EVER”: MATHEMATICS TEACHERS’ 

PERCEPTIONS OF QUALITY PROFESSIONAL LEARNING 

Kim Beswick, Sharon Fraser and Suzanne Crowley 

University of Tasmania 

 

This paper reports on the responses of 109 Australian mathematics teachers to an 

online questionnaire designed to identify their perceptions of the characteristics of 

quality professional learning (PL). They were asked to consider the best PL that they 

had ever undertaken, rate possible contributors to its quality on 5-point Likert type 

scales, select five features of quality PL that most contributed to the PL being the best 

they had experienced, and nominate any other factors that they believed contributed to 

it being the best ever. Teachers most valued PL that they considered to contribute to 

improved teaching and improved student learning. Nevertheless, the PL nominated 

was not necessarily characterised by all of the widely accepted features of effective PL. 

Implications for the conceptualisation of quality PL are discussed. 

The importance of ongoing professional learning (PL) (we use the term professional 

learning to mean the same as is meant elsewhere by professional development) for 

teachers is widely recognised. For example, in 2012, participation in PL was 

considered a professional duty of teachers and in some way linked to promotion in 

most European member states (European Commission, 2012). In Australia the Teacher 

Education Ministerial Advisory Group (2014) highlighted both the importance of 

ongoing PL and the dearth of research on effectiveness of PL for student outcomes.  

The literature on PL typically refers to “effective” PL with improved mathematics 

learning by students the implied ultimate goal. Rigorous evaluation of PL, particularly 

at the level of impact on student learning is, however, a difficult undertaking and so 

claims of effectiveness are typically based on teacher self-reports of changed thinking, 

confidence or practice (e.g., Jacob & McConney, 2013); measures of teacher 

knowledge (e.g., Beswick, Callingham & Watson, 2012); or classroom observations of 

teacher practice (e.g., Scott, Clarkson & McDonough, 2012). Rarer attempts to 

measure PL effectiveness at the student level include that of Warren and Miller (2013) 

but the issue remains of linking positive results from such studies with the specific PL. 

In view of the difficulty of establishing effectiveness we use the term quality to 

describe PL that meets criteria typically associated with effectiveness in the literature. 

We contend that quality PL according to these criteria is likely to be effective but 

effectiveness cannot be claimed in the absence of rigorous evaluative evidence. 

TEACHER LEARNING 

The study was informed by a view of teacher learning in which reflective practice is 

central (Schön, 1983). Schön’s theory is underpinned by a constructivist view of 
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learning and incorporates notions of reflection-in-action and reflection-on-action. In 

considering PL, reflection-for-action (Killion & Todnem, 1991) by which teachers 

generate insights that will inform future actions and ongoing learning is also useful. 

Research on teacher learning has focussed primarily on pre-service teachers and, 

where in-service teachers have been the focus, has predominantly reported on the 

effectiveness of particular programs. The role of informal learning - the ways in which 

teachers learn from their daily professional activity - is under-represented in the 

literature (Jones & Dexter, 2014). In addition, although consideration of formal PL 

programs has resulted in consensus about the broad characteristics of effective PL 

programs (as described below in relation to quality PL), minimal attention has been 

paid to why particular initiatives are successful (Beswick et al., 2016) or to the 

processes whereby learning occurs in these contexts (Vrikki, Warwick, Vermunt, 

Mercer, & Van Halem, 2017). Based on detailed study of dialogic interactions in small 

groups of teachers engaged in lesson study, Vrikki et al. (2017) attempted to go beyond 

studies of PL that examine inputs and outputs but not the intervening processes. They 

concluded that teachers learn through group conversation (not confined to the context 

of lesson study) that involves building on others’ ideas and focussing on particular 

students, and that requires them to engage in reasoning to support their claims.  

Collaboration and teacher learning 

Consistent with the social aspects of constructivist views of learning, collaboration has 

been recognised as central to teacher learning (Jäppinen, Leclerc, & Tubin, 2016). 

Professional learning communities (PLCs) have been widely promoted as a means to 

facilitate collaboration and hence teacher learning (Jäppinen, et al., 2016). PLCs can be 

a context in which teachers have the kinds of conversations that stimulate reflection 

(Killion & Todnem, 1991; Schön, 1983) and contribute to learning in ways described 

by Vrikki et al. (2017). Jäppinen et al. (2016) identified five ways that apply across 

cultures and contexts, in which PLCs contribute to learning. Among these, was the role 

of supportive, not necessarily formal, leadership in providing a context and culture in 

which a PLC can flourish. 

Quality professional Learning 

The broad consensus about the characteristics of effective (or quality) PL has changed 

little over recent decades: Hunziker’s (2010) list of characteristics of effective PL is 

markedly similar to that of Hawley and Valli (1999), and Beswick et al. (2016) 

acknowledged the currency of these characterisations of effective PL. Characteristics 

identified include having a shared purpose; being connected to the teachers’ school 

contexts and sustained over time; attention to the explicit development of theoretical 

understandings and connections to practice that challenge and extend teacher 

knowledge through modelling; balancing individual learning needs within the 

development of a community of practice; and incorporating ongoing evaluation. 

At least one study (Clarke, Roche, Cheeseman & van der Schans, 2014/15), although 

small and not evaluated in terms of teachers’ actual use of strategies, described PL that 
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did not conform to accepted tenets of effectiveness. The authors reported positive 

changes in teachers’ awareness of teaching strategies likely to encourage students to 

persist with challenging mathematical tasks, as a result of observing a lesson designed 

to model such strategies and participating in a focus group on the same day. Clarke et 

al. noted that the teachers concerned were part of an existing active PL network. It 

could be that in such contexts, teachers can incorporate one-off PL experiences into 

their own ongoing ‘program’ of learning and hence be effective. Beswick et al. (2016) 

argued that more nuanced approaches to conceptualising the effectiveness of PL that 

take account of the particular context and aims of specific initiatives are needed. To 

inform such approaches the study reported here aimed to examine the views of 

recipients of mathematics PL regarding what characterises quality PL. It sought to 

answer the question, “What do mathematics teachers regard as the most important 

features contributing to the quality of the best PL that they have experienced?” 

THE STUDY 

Data were drawn from a larger study of quality PL for teachers of mathematics.  

Participants 

Participants were 109 teachers, of whom 78 (72%) were female. Just over half (56, 

51%) were qualified to teach mathematics. Most (88, 85%) were secondary teachers 

(Years 7-12). The teachers were mainly experienced with 74% having taught for more 

than 10 years and 71% having taught mathematics for this length of time. Fifty-four 

percent taught in government schools with the remainder who specified a school 

system, divided between independent (24, 22%) and Catholic (23, 21%) schools. 

Instrument and procedure 

An online questionnaire was disseminated by way of a link on the website of the 

Australian Association of Mathematics Teachers. The link was promoted through the 

association’s eNewsletter and the networks of individuals interviewed about the nature 

of quality PL as part of the larger project. Implementation Officers employed across 

the country for the larger project also promoted the survey through their networks. 

Relevant questions asked participants to: name the best PL for teaching mathematics 

that they had ever undertaken. In relation to their nominated PL they were asked to 

select from options in drop down lists to indicate the focus of the nominated PL 

(mainly mathematics content, mainly pedagogy, or a combination of mathematics 

content and pedagogy); the format (e.g., one-off workshop, presentation); the year 

level focus; the participants (e.g., year level taught, leadership or other role); the 

frequency, length and number of sessions. They were also asked to name the 

facilitator(s) and location of the nominated PL and then to rate on 5-point Likert type 

scales the contribution of each of 16 PL features to the PL being the “best ever” and 

could add anything else that they believed made a contribution. A later question asked 

participants to select up to five of the 16 PL features that they considered essential for 

quality PL. A further Likert type item asked participants to rate the impact of the PL on 
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students’ learning outcomes. The 16 features of PL were derived from the literature on 

effective (quality) PL as well as interviews conducted with PL experts as part of the 

larger study. The questionnaire did not define PL although some questions about the 

PL nominated, implied that the PL was a formal session or program of activities. 

RESULTS 

Seventeen teachers described best ever PL that was clearly not a formal program. 

Informal activities included interacting with or preparing workshops for colleagues, 

participating in duties beyond their classrooms such as marking examination papers, 

participating in moderation processes, or working on curriculum materials. 

The focus of the nominated PL was most commonly a combination of content and 

pedagogy (65% of the 106 who responded). Remaining responses were fairly evenly 

divided between Mainly pedagogy (19%) and Mainly mathematics content (15%). One 

respondent chose Other. In terms of format of the PL, 35% (n=98) indicated that it was 

a one-off workshop, 19% a presentation, 4% self-directed, and 3% online. The most 

frequently selected response was Other (39%). Table 1 shows the numbers and 

percentages of respondents selecting each option for the year level focus of, and 

participants in, the nominated PL. Respondents were able to select all options that 

applied, in relation to the year level of participants. A total of 295 options were 

selected by the 105 teachers who responded to this question. NA indicates that the 

option was not provided for that question. 

 Year level focus of PL (n=96) 

Number (%) 

Year level of participants (n=105) 

Number (%) 

Early childhood 0 (0) 13 (12) 

Primary 29 (30) 63 (60) 

Middle school 9 (9) NA 

Secondary 36 (38) 69 (66) 

Senior secondary 17 (18) NA 

School leaders NA 29 (28) 

Experienced teachers NA 54 (51) 

Beginning teachers NA 37 (35) 

Out-of-field teachers NA 17 (16) 

Teacher assistants NA 10 (10) 

Don’t know/not sure 0 (0) 1 (1) 

Other 5 (5) 2 (2) 

Table 1: Year level focus of PL and year level of PL participants 

The most commonly mentioned providers of the PL were professional associations and 

state education departments both nominated by 24% of teachers. Next most frequently 

named were private consultants (14%), university staff (9%) and school staff (8%). 
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The PL location was typically a provider venue (34%) or school (31%). 

When asked about the frequency of sessions of their best ever PL, 48 (46%), of the 105 

responses were that it was One-off, 14 (13%) selected Annually, 8 (8%) Monthly, 6 

(6%) Weekly, and 4 (4%) Fortnightly. Twenty-four (23%) selected Other and 1 (1%) 

Unsure/don’t know. Regarding the numbers of sessions, 75 (72%) of the 104 who 

answered selected One, 16 (15%) More than 10, 9 (9%) Two, 1 (1%) Other, and 3 (3%) 

Don’t know/unsure. One hundred and five teachers indicated the length of each 

session. Most frequently selected was One day (32, 31%) followed by One hour (19, 

18%), 2-3 days (17, 16%), Two hours (14, 13%), a Half day (11, 11%), Other (7, 7%), 

4-5 days (4, 4%), and Don’t know/unsure (1, 1%).  

Table 2 shows the means and standard deviations for each of the 16 possible 

contributors to quality PL, along with the number of times each was included in 

respondents’ five essential features of quality PL. The percentages relate to the 99 

respondents who answered this question.  

  No. of times in ‘top 5’ (%) Mean SD 

It contributed to improved teaching 73 (74) 4.51 0.86 

It focused on student learning 69 (70) 4.51 0.87 

It contributed to improving student outcomes 52 (53) 4.46 0.87 

It was immediately applicable 35 (35) 4.45 0.84 

It encouraged reflection on practice 34 (34) 4.15 1.2 

It was relevant to my context 33 (33) 4.59 0.82 

The deliverer modelled effective pedagogies 32 (32) 4.14 1.37 

It provided opportunities for collaboration 32 (32) 4.08 1.3 

It provided opportunities to apply new practice 31 (31) 4.04 1.4 

It was relevant to me 30 (20) 4.61 0.7 

It was evidence based 27 (27) 3.99 1.33 

It linked theory with practice 24 924) 4.08 1.29 

It linked to the Australian Curriculum 13 (13) 3.37 1.73 

It targeted the appropriate participants 10 (10) 4.26 1.09 

The venue was appropriate 4 (4) 3.77 1.49 

I found out where I could go to learn more 4 (4) 3.62 1.42 

Table 2: Characteristics of quality PL 

Table 3 shows the suggested additional features of the best ever PL that contributed to 

its quality that were mentioned at least twice by the 63 teachers who responded to this 

question. Qualities of the presenter included being engaging, enthusiastic, 

knowledgeable, and experienced. Suggestions mentioned once included such things as 

the mathematics content was rigorous, it was applicable to any year level, it provided 

personal and intellectual satisfaction, and the delivery was concise. 
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In relation to ‘providing opportunities for collaboration’, teachers mentioned 

collaboration with colleagues in similar (usually leadership) roles, from diverse 

geographic settings, teaching the same year level, from the same school, or being 

like-minded. One mentioned that they appreciated collaborating with a small group of 

colleagues who had participated in a series of separate PL events. Eighty-six (83%) of 

the103 teachers who responded to the relevant item indicated that the PL had a 

significant or very significant impact on their students’ learning.  

This was quality PL because … Number 

the presenter was expert, enthusiastic … 14 

it provided opportunities to collaborate 13 

it provided quality resources 6 

it was immediately applicable in my context 5 

it included tasks to complete between sessions 5 

there was an expectation that I would share with colleagues 3 

it was hands-on 3 

took place in a positive atmosphere 3 

examples were provided 2 

Table 3: Additional characteristics contributing to quality PL 

DISCUSSION 

The fact that the majority of the PL described was one-off is consistent with the finding 

of Reaburn, Kilpatrick, Fraser, Beswick and Muir (in press) from an audit of 

Australian PL available for teachers of mathematics, that 61% of programs on offer 

were either one-off or annual events. Such programs are clearly not sustained over time 

and are unlikely to be designed collaboratively with participants in order to establish a 

shared purpose. The frequency with which such programs were nominated may be a 

related to the fact that they dominated the PL on offer (Reaburn et al., in press) and 

hence reflect limited experience of Pl that is sustained over time and/or collaboratively 

developed. Other aspects of effective PL apparent in the literature are encompassed in 

some of the characteristics that contributed to the quality of the PL as indicated in 

Table 2. For example, the frequencies with which being “immediately applicable”, 

“relevant to my context”, providing “opportunities for collaboration”, “focused on 

student learning”, and linking “theory and practice” were selected among the most 

important contributors to the quality of the PL, suggest that the teachers’ views aligned 

with the literature in relation to these aspects of effective PL. Qualities of the presenter 

were also important and could be interpreted as ways in which presenters provided 

leadership, as described by Jäppinen et al. (2016) that allowed collaboration. 

Several of the additional characteristics of quality PL shown in Table 3 duplicate 

aspects listed in Table 2 (e.g., opportunities to collaborate, immediate). The fact that 

teachers mentioned these as additional features may signify their importance or, in the 
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case of collaboration at least, appeared to arise from a desire to specify the particular 

types of collaboration or the impacts that it had. Collaboration was valued as a part of 

both formal PL programs and informal PL. The importance of professional 

associations and state based education systems as PL providers is also noteworthy.  

Teachers overwhelmingly valued PL that helped them to teach in ways that enhanced 

students’ learning of mathematics and valued collaboration in achieving this end. 

Collaboration though, was not necessarily formally arranged nor part of the program 

nominated. Rather, PL can provide a site for teachers to meet and exchange ideas and a 

focus for conversation and reflection. Interestingly, given the high value placed on 

collaboration, no respondent described participation in a formal PLC or community of 

practice. This may mean that these are rare, that the teachers in this study who had 

engaged in a PLC did not rate it has highly as other PL, or that they did not recognise it 

as PL because it was not formally constituted. PLCs were similarly absent from the PL 

audit reported by Reaburn et al. (in press) possibly for similar reasons. 

One-off or regular but infrequent PL events such as annual conferences may serve this 

purpose if teachers structure their own learning such that PL events, in conjunction 

with informal learning from experience, constitute a ‘program’ that meets their needs. 

The extent to which teachers are aware of their needs, however, is not clear. Reaburn et 

al. reported data from PL experts that suggested more mathematics focussed PL is 

needed for early childhood and out-of-field teachers as well as teaching assistants. 

While this is consistent with the absence of PL focussed on these audiences cited by 

participants in this study (See Table 1) it is also relevant that these groups were 

unrepresented or under-represented among participants in this study.  

CONCLUSION 

Beswick et al. (2016) argued that more nuanced approaches to conceptualising the 

effectiveness of PL that take account of the particular context and aims of specific 

initiatives are needed. The findings of this study suggest that part of the context that 

needs to be considered by PL providers is the range of learning experiences and 

activities, both formal and informal in which teachers are engaged. The results also 

highlight the commitment of teachers to student learning and their desire to collaborate 

and thereby learn from one another. 

Acknowledgement  

This project was funded by the Australian Department of Education, through the Australian 

Mathematics and Science Partnerships Program. 

 

References 

Beswick, K., Anderson, J., & Hurst, C. (2016). The education and development of practising 

teachers. In K. Makar, S. Dole, J. Visnovska, M. Goos, A. Bennison, & K. Fry (Eds.), 

Research in mathematics education in Australasia 2012-2015 (pp. 329-352). Singapore: 

Springer. 



Beswick, Fraser and Crowley 

 

2-176 PME 41 – 2017  

Beswick, K., Callingham, R., and Watson, J. (2012). The nature and development of middle 

school mathematics teachers’ knowledge. Journal for Mathematics Teacher Education, 

15(2), 131–157. 

Clarke, D. M., Roche, A., Cheeseman, J., & Van Der Schans, S. (2014/15). Teaching 

strategies for building student persistence on challenging tasks: Insights emerging from 

two approaches to teacher professional learning. Mathematics Teacher Education and 

Development, 16(2), 46-70. 

European Commission. (2012). Commission staff working document: Supporting the 

teaching professions for better learning outcomes. Strasbourg: European Commission. 

Hawley, W. D., & Valli, L. (1999). The essentials of effective professional development. In 

L. Darling-Hammond & G. Sykes (Eds.), Teaching as the learning profession (pp. 

127-150). San Francisco: Jossey-Bass. 

Hunzicker, J. (2010). Characteristics of effective professional development: A checklist.  

Retrieved January 2017, from ERIC https://eric.ed.gov/?id=ED510366 

Jacob, L., & McConney, A. (2013). The Fitzroy Valley numeracy project: Assessment of 

early changes in teachers’ self-reported pedagogic content knowledge and classroom 

practice. Australian Journal of Teacher Education, 38(9), 94-115. 

Jones, W. M., & Dexter, S. (2014). How teachers learn: the roles of formal, informal, and 

independent learning. Educational Technology Research and Development, 62, 367-384. 

Jäppinen, A., Leclerc, M., & Tubin, D. (2016). Collaborativeness as the core of professional 

learning communities beyond culture and context: Evidence from Canada, Finland, and 

Israel. School Effectiveness and School Improvement, 27(3), 315-332. 

Killion, J. P., & Todnem, G. A. (1991). A process for personal theory building. Educational 

Leadership, 48(6), 14-16. 

Reaburn, R., Kilpatrick, S., Fraser, S., Beswick, K., & Muir, T. (in press). What’s happening 

in Australian mathematics professional learning? Paper presented at the 2016 annual 

conference of the Australian Association for Research in Education. Melbourne: AARE. 

Teacher Education Ministerial Advisory Group. (2014). Action now: Classroom ready 

teachers. Canberra, Australia: Australian Government. Available at 

http://www.studentsfirst.gov.au/teacher-education-ministerial-advisory-group. 

Schön, D. A. (1983). The reflective practitioner: How professionals think in action. New 

York: Basic Books.  

Scott, A., Clarkson, P., & McDonough, A. (2012). Professional learning and action research: 

Early career teachers reflect on their practice. Mathematics Education Research Journal, 

24(2), 129-151. 

Vrikki, M., Warwick, P., Vermunt, J. D., Mercer, N., & Van Halem, N. (2017). Teacher 

learning in the context of lesson study: A video-based analysis of teacher discussions. 

Teaching and Teacher Education, 61, 211-224.  

Warren, E., & Miller, J. (2013). Enriching the professional learning of early years teachers in 

disadvantaged contexts: The impact of quality resources and quality professional learning. 

Australian Journal of Teacher Education, 38(7), 91-111. 

https://eric.ed.gov/?id=ED510366
http://www.studentsfirst.gov.au/teacher-education-ministerial-advisory-group


 

 

   2-177 
2017. In Kaur, B., Ho, W.K., Toh, T.L., & Choy, B.H. (Eds.). Proceedings of the 41st Conference of the International 

Group for the Psychology of Mathematics Education, Vol. 2, pp. 177-184. Singapore: PME. 

LANGUAGE PRACTICES IN MULTILINGUAL MATHEMATICS 

CLASSROOMS: LESSONS FROM INDIA AND SOUTH AFRICA 

Arindam Bose1 and Mamokgethi Setati Phakeng2 

1Tata Institute of Social Sciences, 2University of Cape Town 

There is currently no comparative study that analyses language complexities in 

multilingual mathematics classrooms in developing countries with similar 

socio-cultural-economic milieu. This paper looks at similarities and differences of 

language practices in mathematics classrooms in India and South Africa and explores 

how such practices shape learners' mathematical communication. Analysis done using 

data transcripts of mathematics classrooms observed in both the countries indicates 

occurrence of complex factors that shape learners' mathematical communication and 

that the mere use of learners' home language may not be sufficient for building 

effective usage of mathematical language.  

 

INTRODUCTION 

Debates on which language(s) to use, why, how and when in multilingual mathematics 

classrooms are not new. Of note are studies that focus on how language can be used as 

a resource in multilingual mathematics classrooms (e.g. Moschkovich, 2002, 2007; 

Planas and Setati, 2009; Setati, Molefe and Langa, 2008). Language as a resource has 

been considered as an ideal orientation of language for multilingual mathematics 

classrooms over the two other orientations, namely, language as a right and as a 

problem (Planas & Phakeng, 2014). India and South Africa, emerging economies with 

a similar history and language infrastructure, offer valuable settings to provide insights 

on how language serves as a resource in different mathematics contexts. It is important 

to understand the complexities, commonalities and challenges emerging from such 

cross-country contexts. 

Four decades since inception of the PME conferences and with the world being more 

multilingual than ever before, it is pertinent to explore complexities of language 

practices used to support mathematics teaching and learning in different contexts. The 

purpose of this paper is to explore similarities and differences in language practices of 

teachers in multilingual mathematics classrooms in India and South Africa. We draw 

on classroom observation data from two primary mathematics classrooms - one in 

South Africa and the other in India - and specifically ask the following questions: 

 What are the similarities and differences in the language practices used in 

multilingual mathematics classrooms in India and South Africa? 

 How do the language practices used in these classrooms shape the learners’ 

communication of mathematics? 
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Why South Africa and India and why now? 

One of the aims of comparative studies in education is to improve the education 

systems of the respective countries by learning from other countries with similar 

educational situations and problems. In a world in which the research infrastructure is 

overwhelmingly concentrated in the North (see Altbach, 1982; Skovsmose, 2011), the 

vast majority of comparative studies in education are either between developing 

countries and developed countries or between developed countries. The potential of 

comparative studies between developing countries is a neglected field. Compounding 

the case for South Africa, in particular, is the current discourse in the country, which 

argues that given the similarities between the two countries South Africa can benefit 

from learning from India’s successes in mathematics education. The two countries 

have similar challenges of poverty, inequality and unemployment, which can be 

alleviated through the provision of high quality mathematics education. The long 

standing friendship between the two governments as well as a shared colonial history, 

struggle for liberation and the existence of contemporary multilingual societies makes 

this exploration even more important.  

Data shows that mathematics learners in India consistently perform better than those in 

South Africa in the International Mathematics Olympiad (IMO) and TIMSS. Thus 

India is ranked higher than South Africa on these international mathematics 

assessments. Unfortunately these rankings provide only a comparison of performance 

and not of what is done to produce the performance. Hence the importance of this 

exploration, which provides a comparative analysis of language practices in 

multilingual mathematics classrooms in both countries. 

The language context: Case of India 

India has adopted 22 languages (listed in the Constitution) as official languages 

collectively for its different states/provinces. Hindi is adopted as the official language 

of the Union. This list however does not include English, which functions as an 

"associate" official language. Soon after gaining independence from the British, there 

was a plan to gradually do away with English and replace it with Hindi. This plan 

however did not succeed. There are 100 other languages spoken in the country, 

classified as mother tongue spoken by 10,000 people or more, and 1635 dialects, which 

are referred to as rationalised mother tongue (Census of India, 2011). Different Indian 

states have one or two official languages, which may be entirely different from the 

regional languages of the neighbouring states. The language-in-education-policy 

(LiEP) for school education, prescribes a three-language formula, which comprises of 

the state's primary official language and two other languages. Multilingualism in India 

is visible at the official level where policy is formulated and also at the societal level 

where informal use of language occurs in addition to implementation of the policy. 

Sometimes languages used at the societal level are not even recognised as official even 

though an entire community speaks them. Being a populous country, the size of a 

population speaking a language is large compared to countries with lesser population. 
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Generally classroom interactions are much more formal than interactions that happen 

outside the formal learning contexts. Policy encourages acknowledging and drawing 

on learners' home languages during teaching and learning. 

Language Context of South Africa 

Linguistic diversity is an important feature of the South African nation, with eleven 

official languages and a Language-in-Education Policy that encourages 

multilingualism. According to this policy, not only can South African schools and 

learners choose their Language of Learning and Teaching (LoLT), but there is a policy 

environment supportive of the use of languages other than one favoured LoLT in 

school, and so too of language practices like code-switching. An additive model of 

multilingualism is encouraged. Under this model, learners are to add languages to their 

repertoire of linguistic resources for learning. An essential feature of the additive 

model is that the learners’ main language is maintained, developed and used in the 

teaching and learning situation as a LoLT, alongside other language(s) of learning. 

Language policies unfortunately have limitations - not all languages are equally 

‘powerful’. As Janks (2011) argues, ‘access’ is a double-edged sword (access paradox) 

– providing access to English, which in South Africa and India, is the language of 

power increases and entrenches its power. It is therefore not surprising that 

twenty-three years after the dawn of democracy, challenges with the implementation 

of the South African Language Policy remain as English continues to dominate and 

multilingualism is not as valued as was initially envisaged. Recent research suggests 

that most schools are not opting to use learners’ home languages as LoLT as parents 

demand access to English from the first year of schooling. It is thus timely to explore 

how South Africa’s experience in multilingual mathematics classrooms compares with 

that of India, which achieved its liberation almost 70 years ago.  

Teacher practices – a glimpse from the lesson transcripts 

In this section we present an analysis of carefully selected excerpts from our lesson 

observation data collected in multilingual mathematics classrooms in low 

socio-economic income areas in India and South Africa. Data in terms of teacher and 

student utterances were selected based on instances of code-switching and use of the 

mathematical register (Pimm, 1987) and social languages (Gee, 2005). These 

utterances were then analysed using Gee's framework to look for different 

"Discourses" and "intertextuality" where language is used to build "significance" or 

"connections" (Gee, 2005) that influenced learners' mathematical communication 

during classroom activities. 

Excerpt 1 below is drawn from a Grade 7 vacation teaching camp following a teaching 

design experiment aimed at charting a pedagogical approach to connect learners' 

out-of-school mathematical knowledge and school mathematics. The school was 

located in an economically active low-income settlement in central Mumbai, India. 

The numbers on the left indicate line numbers in the original transcript while “T” and 

“S” stand for teacher and student respectively. Excerpt 2 is drawn from a low 



Bose and Phakeng 

 

2-180 PME 41 – 2017  

socio-economic class in a township school west of Johannesburg in South Africa 

formerly officially designated for black occupation by apartheid legislation. 

In Excerpt 1 the teacher encouraged the students to come up with proper reasoning and 

justification and not to accept or believe any result without a justification. For 

example, the teacher used phrases like “hum kyun maane” [why do I accept] as a 

trigger to move towards a mathematically discursive practice. Such norms guided the 

classroom Discourse. 

Excerpt 1. 

152 T: kyun teen batte chaar ka matlab pauna hai? hum kyun maane? 
aap keh rahe hain to sahi hai to aap prove kijieye ki 
teen batte chaar pauna hai/ [why is three-quarter 
three upon four? why do I accept? if you’re saying 
it is correct then you prove that three by four is 
three-quarter/] 

155 S1: sir pauna hota hai to teen batte chaar hota hai/ [sir if it’s pauna 
[three-quarter], it’s three by four/] 

156 T: Kyun? [why?] 

158 S2: teen batte chaar/ [three by four/] 

160 T: yahan aake koi explain ker sakt hai ki kyun … pauna ko teen 
batte chaar kehte hain? [can anyone come here and 
explain why … pauna is called three by four?] 

163 S1: kyunki wo teen paav hai/ [because that’s three quarters/] 

167 S1: kyunki teen paav... do paav se aadha banta hai aur ek paav me 
pauna hai na isilieye teen... [Because three 
quarters … two quarters make a half and one 
quarter [more] gives pauna, isn’t it therefore 
three...] 

168 T: teen paav/ woh to bilkul sahi hai lekin teen batte chaar kaise aaya 
teen paav se? [three quarters/ that’s perfectly 
correct but how is three by four obtained from 
three paav [quarter]?] 

169 S2: ek paav/ ek paav ho gaya aur ek paav/ [one paav/ one paav done 
one paav more/] 

170 S3: ek batte chaar jama ek batte chaar jama ek batte/ [one by four 
plus one by four plus one by four/] 

171 T: Haan? [yes?] 

172 S1: (writes on board) 1/4 + 1/4 + 1/4 = ¾  

Students explained various strategies that they used to compute these multiples to their 

peers. This indicated their robust and confident awareness about decompositions of 

fractions (twice of 1½ [dedh] is the same as three; half of 1½ [dedh] is equal to ¾ 

[pauna], half of 2½ [dhai or adhai] is equal to 1¼ [sawa], etc.).  The current curricular 

policy for mathematics teaching and learning in schools in India emphasises that 
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learners' “home, communities, languages and cultures, are valuable as resources for 

experience to be analysed and enquired into at school” (NCERT, 2005: 14). However, 

in regular mathematics classroom practices, only formal mathematical language is 

used which are often alien to the learners who are usually more familiar with the 

informal registers as part of their "social language" (Gee, 2005) (for example, “pauna” 

in the above excerpt). The use of the Hindi/Urdu word “pauna” is interesting since 

unlike its closest English counterpart (which is three-quarters), this stand-alone term 

doesn't literally stand for a “three-quarters” but for “a quarter less than a whole” in a 

syntactic sense of the term. Interestingly, "pauna" is not part of the formal Hindi/Urdu 

or mathematical register. The learners had difficulty in moving from oral to written 

mathematics (formal representation) even though the classroom Discourse in Excerpt 

1 encouraged use of informal and everyday mathematical words. Such intertextuality 

as part of the language practice enabled connecting with the everyday discourse with a 

possibility to unpack in a better way the abstraction embedded in the mathematical 

phrases such as “teen batte char” or “three by four” to connect with "teen paav" or 

"three quarters". In spite of that, such cross-referencing to other mathematical registers 

did not enable learners towards effective mathematical communication, especially 

while using non-binary fractions or following the language of mathematics, for 

example, arriving at the decimal representation for "teen paav". 

Indian school mathematics curriculum places importance on moving from narrow 

goals to higher goals which necessarily includes communicating mathematically. The 

way in which learners in the excerpt above use the words “pauna” as “paav” added 

three times, once again indicates that the challenge they are facing is more about 

communicating mathematically. Our analysis shows that learners in South African 

classrooms share similar challenge as is emergent in Excerpt 2 below. 

Excerpt 2. 

130. T: We have to find out ukuthi [that] exactly how much is needed to add 

to this R5000 so that he can buy all his expenses. How are we going to find that 

out?  We want to find out how much the farmer needs, how are we going to do 

that? Yes Thokozani. 

131. L: Miss, nga khuluma ngesiZulu? [mam, can I speak in IsiZulu?] 

132. T: Yes. 

133. L: Miss, siya susa. [Miss, we subtract] 

134. T: Good, siya susa. Siya minasa, but what is that, that you are minasing? 

[Good, we are subtracting. We are subtracting, but what is it that you are 

subtracting?] 

135. L: Si minasa u five thousand no eight thousand five hundred and seven 

rand and one cent. [We subtract five thousand and eight thousand five hundred 

and seven rand and one cent] 
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136. T: Good, that’s very good.  We minus, in order for us to find the 

difference we say eight thousand five hundred and seven rands and one cent 

minus five thousand of the farmer.  The farmer has five thousand rands.  After 

minusing, we are going to find out exactly ifarmer idinga how much to add to 

his five thousand.  [The farmer has five thousand rands. After subtracting we 

are going to find out exactly how much the farmer has to add to his five 

thousand.]  

While multilingualism is encouraged by policy, learners in this classroom still ask for 

permission from the teacher to use their home languages, which suggests that there are 

limitations in terms of which language(s) can be used when and perhaps for what. In a 

context where multilingualism is valued and code switching is encouraged learners 

should not be asking for permission to use their home languages during mathematics 

teaching and learning especially when the teacher shares a home language with them. 

It is clear that language policies do not necessarily translate into unproblematic 

implementation in multilingual mathematics classrooms. 

The manner in which the learner in the Excerpt 2 above is using the home language is 

instructive as he uses two different isiZulu words – ‘susa’ and ‘minasa’- to indicate that 

the operation that they need to use to find the solution is subtraction. The word ‘susa’ 

when directly translated means remove and the word ‘minasa’ is a reformulation of the 

English mathematics word ‘minus’. Utterance 133 above suggests that while the 

learner is given permission to speak in IsiZulu, his challenge is not just fluency in the 

English language but also in mathematical language as he only indicates that what 

needs to be done is subtract without indicating the values that must be included in the 

operation. When probed further by the teacher the learner uses the logical connective 

‘and’ between the two values involved in the operation in his explanation (see 

utterance 135), which further indicates the challenge with mathematical language. 

Instead of saying we subtract “a from b”, the learner says “we subtract a and b”. What 

is at issue here is communicating mathematically and not just communicating in 

English. Communicating mathematically requires fluency in the LoLT as well as in the 

language of mathematics. Research shows that the challenge of communicating 

mathematically is faced by all learners including those who learn mathematics in their 

home languages. This is mainly because mathematical speech and writing have a 

variety of language types that learners need to understand in order to participate 

appropriately in any mathematical conversation. These are ordinary and mathematical 

language, or logical language and meta-language (Pimm, 1987; Rowland, 1995). One 

of the difficulties of learning to use mathematical language is that in its spoken 

(generally also in its written) form it is blended with ordinary language, and the 

distinction between the two languages is often blurred. In multilingual mathematics 

classrooms these difficulties are exacerbated by the fact that to communicate 

mathematically learners have to manage the constant interaction between home 

language, LOLT and language of mathematics.  
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Learning from similarities and differences 

The above excerpts from Indian and South African multilingual mathematics lessons 

show a high prevalence of code-switching as a classroom norm, which is encouraged 

by the teacher and seem to have facilitated the learners’ thinking and responses. It is 

also true that in both settings, teachers encouraged learners' formulation of sound 

mathematical justification. However, the use of learners' home language was not 

effective in improving their usage of the mathematical language. The learners' 

mathematical communication remained a challenge as learners struggled with the use 

of, for example, logical connectives. It is clear that while encouraging learners to use 

their home language is important, it is not sufficient to facilitate mathematical 

communication in these classrooms. 

It is not just the use of learners' home language, LOLT and the language of 

mathematics or a mix of them that is critical for facilitating effective mathematical 

communication – necessary for developing sound conceptual understanding. Different 

languages function differently at the interplay with mathematical language depending 

upon the language's intonation, syntax and diction. Hence, uniform policy formulation 

may not be effective in such multilingual mathematics contexts as South Africa and 

India.  

As emerging economies, South Africa and India have to deal with learners' identities in 

the classrooms that emerge from the language settings. The socio-economic statuses of 

these two countries are vastly different from the developed countries or other 

developing nations. The languages that learners use and how they use them during 

mathematics lessons often serve as an indicator of the social class they belong to or the 

social context they grew up in. This was visible in Excerpt 1 where learners' familiarity 

with everyday mathematical registers came from their exposure to the 

micro-enterprises around them. Their justification and reasoning revolved around their 

identities drawn from the work practices. On a similar note, in South African context 

learners' identities emerge from their racial identities. However, there is a dearth of 

research that explores links between identities and language use and how they 

influence learners' communication of mathematics. 

Learners' attempts to communicate mathematically saw their efforts to come up with 

different mathematical representations for the mathematical objects under discussion. 

Language practices juxtaposed between home language, work context language, 

LOLT and language of mathematics create and shape their mathematical 

communication. Above analysis from these two emerging economies provide us with 

different insights about language practices in mathematics classrooms and calls for 

revisiting a few older terrains to cover newer terrains. 
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Previous studies stress the importance of math-related competence for early childhood 

educators. Currents studies therefore take a closer look at the structure of this 

competence with different results. As one study examines prospective and the other 

in-service educators it could be assumed that the differences can be related to the 

samples. However, also the instruments differ greatly. Hence, we take a first step to 

examine systematically if the differences are related to the samples by examining a 

sample of in-service early childhood educators with a set of measuring instruments 

used on a sample of prospective educators in previous studies. Our results reveal no 

systematic difference in the competence structure of in-service and prospective 

educators indicating that previous studies measured different competence facets.  

MATH-RELATED COMPETENCE STRUCTURE OF EARLY CHILDHOOD 

EDUCATORS 

Empirical results indicate that children’s learning outcomes in mathematics depend 

essentially on support by early childhood educators (Bruns, 2014; Gasteiger, 2012; 

Klibanoff, Levine, Huttenlocher, Vasilyeva & Hedges, 2006; Peter-Koop & Grüßing, 

2008) and pre-school math quality (Lehrl, Kluczniok & Rossbach, 2016). Therefore, 

math-related professional competence of early childhood educators is of great 

relevance to foster children’s mathematical competence.  

Models of different disciplines describe professional competence of early childhood 

educators theoretically in their structure and their development (in general: 

Fröhlich-Gildhoff, Weltzien, Kirstein, Pietsch & Rauh, 2014, mathematics: Gasteiger 

& Benz, 2016; Jenßen, Dunekacke, Eid & Blömeke, 2015). These models include 

mathematical content knowledge (MCK), mathematical pedagogical content 

knowledge (MPCK) and affective-motivational aspects (e.g. math-related beliefs). 

At the moment, two research projects in Germany focus on early childhood educators’ 

math-related competence. Both projects come to different results concerning the 

structure of the math-related competence of early childhood educators as shown in 

figure 1. Dunekacke, Jenßen, Blömeke and colleagues examined i.a. MCK, MPCK and 

beliefs towards mathematics in general as a characteristic of the affective-motivational 

competence facet of prospective early childhood educators (Blömeke et al., 2015; 

Dunekacke, Jenßen & Blömeke, 2015; Dunekacke, Jenßen, Eilerts & Blömeke, 2016). 

They found a close connection between the two knowledge facets (MCK, MPCK) and 

one belief facet (process-related orientation) as well as between MCK and the 
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application-orientation. Furthermore, a direct effect of MCK on MPCK was found. 

The second project of Oppermann and colleagues (2016) examined MCK, MPCK and 

mathematical ability beliefs (self-efficacy, self-concept) as characteristics of the 

affective-motivational competence facet of in-service early childhood educators 

(Anders & Rossbach, 2015; Oppermann et al., 2016). They also found a relationship 

between MCK and MPCK in the linear regression model, however, the results of the 

mediation model showed that mathematical self-efficacy fully mediates the effect of 

MCK on early childhood educators’ MPCK (Oppermann et al., 2016). 

Figure 1: Comparison of research results concerning competence structure of early 

childhood educators 

As Dunekacke and colleagues (2016) examined prospective early childhood educators 

and Oppermann and colleagues (2016) early childhood educators in practice one might 

assume that the different results concerning the competence structure are related to the 

different samples. A closer look at both studies, however, also suggests differences in 

the measured competence facets as reason for the different results. Although both 

projects use the same terms to describe the examined competence facets (MCK, 

MPCK, beliefs), the underlying constructs and therefore, the measuring instruments 

differ greatly. Oppermann and colleagues (2016) define MPCK as the sensitivity to 

capture mathematical content in children’s play. As measuring instrument, they use a 

play-based scenario task developed by McCray and Chen (2012) and half-standardized 

questionnaires. Dunekacke, Jenßen und Blömeke (2015) on the other hand consider 

MPCK as the knowledge of fostering mathematical literacy in informal and formal 

settings, the knowledge about how children's mathematical literacy develops as well as 

how to diagnose and support this development. They measure MPCK using a 

standardized test. Concerning the construct of MCK both research group describe 

MCK as mathematics of the primary school from a higher point of view. However, the 

study of Oppermann and colleagues (2016) measures MCK with four items that have 



Bruns, Eichen and Gasteiger 

 

PME 41 – 2017 2-187 

been adapted from the TIMSS 2003 mathematical test while Dunekacke and 

colleagues (2016) use a standardized test with 24 items. Most obvious are the 

differences with regard to the affective-motivational aspects. Dunekacke et al. (2016) 

distinguished on the basis of Benz (2012) three facets concerning beliefs towards 

mathematics in general. As measuring instrument, they use a questionnaire. 

Oppermann and colleagues (2016) focus on math-related ability beliefs. Therefore, 

they measured early childhood teachers’ mathematical self-concept and mathematical 

self-efficacy using established scales from teacher research.  

In summary, it can be stated that it is not possible to reason based on the existing 

results that the competence structure of in-service early childhood educators differs 

from the competence structure of prospective early childhood educators. Even though 

both groups use the same terms it is also reasonable to assume that the different 

instruments actually measure different constructs. Though, to clarify if the different 

results regarding the competence structure are related to the samples or the 

measurements, a first step would be a study that uses comparable constructs and 

instruments to one of the presented studies but a sample of the opposite group. As 

research results concerning in-service early childhood educators have more relevance, 

since they provide information on the concrete situation in practice, this study should 

examine a sample of in-service early childhood educators using the same instruments 

as Dunekacke and colleagues (2016). 

RESEARCH QUESTION 

Following the presented argument this study focuses on the mathematics-related 

competence structure of in-service early childhood educators using the same 

instruments as Dunekacke and colleagues (2016). In particular, we pursue the 

following research question: How are MCK, MPCK and beliefs toward mathematics in 

general (process-related orientation, static orientation and application orientation) of 

in-service early childhood educators connected?  

To answer this question two different models are compared. Model A reflects the 

structure found by Dunekacke and colleagues (2016), model B the structure found by 

Oppermann and colleagues (2016).  

 

Figure 2: Model A (based on the results of Dunekacke et al., 2016) 
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Figure 3: Model B (based on the results of Oppermann et al., 2016) 

METHOD 

We examine our research question with a convenience sample of the 10 largest 

pre-schools (N = 453 pre-schools) in Berlin, Germany. The sample consisted of N = 99 

in-service early childhood educators. The average age of the study participants is 45 

years and 2 months. Only 5 participants were males. 

To measure mathematical content knowledge (MCK) and mathematical pedagogical 

content knowledge (MPCK), Rasch-scaled tests (Blömeke et al., 2015; Dunekacke et 

al., 2016) were applied. The MCK test consists of 24 items which are mainly multiple 

choice and partly in open format. Topics of the tests are: number and operations; 

measurement, quantity and relation; geometry; data, combinatorics and chance. The 

test measures MCK at a secondary school level. The MPCK test consists of 35 items. 

MPCK is tested in the following areas: fostering mathematical literacy in informal and 

formal settings, knowledge about development of mathematical literacy, diagnosing 

and promoting early mathematical skills. Most of the items are in multiple choice and 

some in open format.  

A questionnaire is used to assess beliefs towards mathematics in general (Dunekacke 

et al., 2016). It is based on a questionnaire developed by Grigutsch, Raatz und Törner 

(1998) and the study of Benz (2012) and distinguishes three beliefs facets: a static 

orientation (SO, e.g. “Hallmarks of mathematics are clarity, precision and 

unambiguousness”), a process-related orientation (PO, e.g. “Mathematics is an activity 

involving thinking about problems and gaining insight”) and an application-orientation 

(AO, e.g. “Mathematics helps solving everyday problems and tasks”). The 17 items (6 

AO-items, 7 SO-items and 4 PO-items) are rated on a 6-point Likert scale from 

“strongly disagree” to “strongly agree” (Dunekacke et al., 2016). 

To analyse the data, we used structural equation modelling with the R-package lavaan 

and compared the fit indices of model A and B. Due to our sample size we used item 

parcel rather than the individual items. 
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RESULTS 

While the model fit values of model A indicate a good fit to our data (²(44) = 50.620, 

p = .229, RMSEA = 0.039 [0.00,0.081], CFI = .987) the fit values of model B indicate 

a misfit of the model to our data (²(49) = 119.326, p = .000, RMSEA = 0.121 

[0.094,0.149], CFI = .861). Therefore, only the results of model A are presented in 

figure 4.   

Figure 4: SEM results model A. Solid lines represent significant coefficients (p > .05), 

dashed lines represent non-significant coefficients. 

The structural equation modelling results show a direct effect of MCK on MPCK while 

there is no significant relationship between the beliefs facets and MPCK. Furthermore, 

MCK is related to the application orientation but there is no significant relationship 

between MCK and the process-related orientation or between MCK and the static 

orientation. The beliefs facets are closely related. Even between the static orientation 

and the application orientation as well as between the static orientation and the 

process-related orientation a high positive correlation was found.  

DISCUSSION 

Previous research on the math-related competence structure of early childhood 

educators came to different results concerning the relationship of MCK, MPCK and 

the affective-motivational competence facet of in-service early childhood educators 

and prospective early childhood teachers. However, due to different constructs of 

MPCK and beliefs as well as different measuring instruments in each study the results 
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are not directly comparable. In order to examine whether the different results can be 

related to the different samples or the different measuring instruments, we first 

examined possible differences between the samples. Therefore, we used the 

instruments developed by Dunekacke and colleagues (2016) on a sample of in-service 

early childhood educators and tested to which competence structure found in previous 

research our data fits best. 

The results show that our data fits well to the model of Dunekacke and colleagues 

(2016) but not to the model of Oppermann and colleagues (2016). This indicates that 

the different results of the previous studies can be ascribed to the different instruments 

or constructs rather than the different samples. Looking at the instruments it seems 

reasonable to argue that Dunekacke and colleagues (2016) focus on a more cognitive 

facet of MPCK while the project of Oppermann and colleagues (2016) measures a 

more performance-related competence facet. Based on the different professional 

competence models (Gasteiger & Benz, 2016; Jenßen et al., 2015) this facet could be 

described as math-related perception. However, the professional competence models 

assume that the math-related perception is related to the MPCK as well as the MCK 

and the beliefs. In order to verify the assumption that the both projects actually 

measure different competence facets and that these facets are related as suggested in 

the competence models further studies should use the instruments of both studies and 

model the relationship between these measurements. 

Concerning the relationship of the competence facets our results show a direct effect of 

MCK on MPCK. This fits to the results of Dunekacke and colleagues (2016). Looking 

at the beliefs we found that AO, SO and PO of in-service early childhood educators are 

strongly correlated. This fits partly to studies looking at secondary school teachers, as 

for example Grigutsch and colleagues (1998) did. However, studies with secondary 

school teachers typically found a negative correlation between AO and SO or PO and 

SO whereas our results indicate a positive correlation between these facets. As these 

results fit to the results of Dunekacke and colleagues (2016) who examined 

prospective early childhood educators with the same instrument, it could be argued 

that early childhood educators hold a static, a process and an application orientation at 

the same time. Concerning the relationship of knowledge and beliefs we found a 

correlation between MCK and AO, but not between MPCK and the beliefs. These 

results do not fit to the results of the studies with prospective early childhood educators 

(Dunekacke et al., 2016), where a relationship between the process-related orientation 

and MPCK as well as between the application-orientation and MPCK was found. This 

can be seen as an indicator of differences between the competence structure of 

prospective early childhood educators and in-service early childhood educators even 

though the general assumption of model A could be confirmed. 

As a conclusion it can be pointed out that early childhood educators have rather 

undifferentiated beliefs towards mathematics in general. Perhaps the early childhood 

educators in our sample had unsystematic experiences with mathematics as a process 

or as applications and therefore are more likely to build up an undifferentiated beliefs 
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structure (see also: Benz, 2012; Wittmann, Bönig, Levin & Schuler, 2016). 

Furthermore, on the basis of our results it can be assumed that MCK is a precondition 

for MPCK for prospective early childhood educators as well as for in-service educators 

if it is measured with the described instruments. Assuming that these instruments 

actually measure MCK and MPCK, this result indicates that MCK is a relevant 

competence facet for early childhood educators that should be further studied. Overall, 

it can be stated that we still know too little about the math-related knowledge of early 

childhood educators to make reliable statements. This is also shown by the differences 

in the competence structure between prospective and in-service early childhood 

educators found in this study. Hence, in our further research we would like to look at 

the knowledge facets more closely by using different measurements and examining 

their relationship to early childhood educators’ performance. Thereby, we could also 

expand research results on the math-related competence structure to more performance 

related competence facets.  
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The aim of this research is to characterise how pre-service primary teachers notice 

students’ proportional reasoning. 83 pre-service teachers analysed students’ answers 

to 12 problems related to fractions, proportional and non-proportional situations and 

ratios in comparison situations. Students’ answers show different characteristics of 

proportional reasoning. Four profiles of pre-service primary teachers have been 

identified according to how they described and recognised students’ reasoning. 

INTRODUCTION AND THEORETICAL BACKGROUND 

Recent research has shown that being able to identify relevant aspects of teaching and 

learning situations and interpret them to take instructional decisions (Mason, 2002) is 

an important teaching skill (professional noticing) (Mason, 2002; Sherin, Jacobs, & 

Philipp, 2010). Jacobs, Lamb and Philipp (2010) characterise the skill of noticing 

students’ mathematical thinking as three interrelated skills: (i) attending to students’ 

strategies that implies identifying important mathematical details in students’ answers; 

(ii) interpreting students’ mathematical reasoning taking into account the mathematical 

details previously identified; and (iii) deciding how to respond on the basis of students’ 

reasoning.  

Recently, some studies have focused on characterising the skill of noticing students’ 

mathematical thinking in different domains such as pattern generalization (Callejo & 

Zapatera, 2016), derivative concept (Sánchez-Matamoros, Fernández, & Llinares, 

2016), early numeracy (Schack, Fisher, Thomas, Eisenhardt, Tassel, & Yoder, 2013) 

and ratio and proportion (Buforn, Fernández, Coles, & Brown, 2015; Son, 2013). 

These previous studies have shown that noticing students’ mathematical thinking is 

not an easy task for pre-service teachers, showing a complex relationship between the 

skills of attending to, interpreting and deciding and the different domains of 

pre-service teachers’ knowledge (Ball, Thames, & Phelps, 2008). 

Our study is embedded in this line of research and focuses on analysing how 

pre-service teachers notice students’ mathematical thinking in the specific domain of 

proportional reasoning.  

The development of proportional reasoning  

The development of proportional reasoning is complex since it implies the 

understanding of the fractional scheme, the interpretation of ratios in comparison 
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situations (both qualitative and quantitative), the ability to stablish multiplicative 

relationships between two quantities and extend this relation to another pair of 

quantities, and the discrimination between proportional and non-proportional 

situations (Kieren, 1993; Lamon, 2005; Pitta-Pantazi & Christou, 2011). 

The fractional scheme consists of five sub-constructs: fraction as part-whole is defined 

as the relationship between the number of congruent parts in which a continuous 

quantity (or a set of discrete objects) is partitioned and the whole; fraction as a measure 

can be considered as a number which conveys the quantitative personality of rational 

number, its size; it is also associated with the measure assigned to an interval (the 

number line can be used as a representation of this measure assigned to an interval); 

fraction as quotient can be seen as a result of a fair share; fraction as operator is seen as 

a function applied to a number, object or a set. Finally, reasoning up and down that can 

be seen as the cognitive mechanism of representing a fraction from other fraction 

given.  

Ratio comparison situations (both qualitative and quantitative) imply the ideas of: 

covariance that determines the relationship between two quantities in such a way that 

when one quantity changes, the other also changes (covariance) in a particular way 

with respect to the first quantity, ratio as a comparative index and unitizing process as 

the cognitive process of mentally chunking or restructuring a given quantity into 

familiar or manageable or conveniently sized pieces to operate with that quantity 

(Lamon 2007). 

Furthermore, previous research has shown that proportional reasoning implies not only 

understanding the multiplicative relationship between quantities in a proportional 

situation, but also the ability to discriminate proportional and non-proportional 

situations (Cramer, Post, & Currier, 1993; Van Dooren, De Bock, Janssens, & 

Verschaffel, 2008). Therefore, students should be able to solve missing-value 

proportional situations and discriminate between missing-value proportional and 

non-proportional situations. 

Our research question is: 

 How do pre-service teachers recognise characteristics of students’ proportional 

reasoning? 

METHOD 

Participants and the task 

The participants were 83 pre-service primary teachers (PTs) in the third year of an 

initial teacher education program at the University of Alicante (Spain). In previous 

years, pre-service teachers had attended a subject focused on numerical sense (first 

year) and a subject focused on geometrical sense (second year). In the third year, they 

were attending a mathematics method course related to the teaching and learning of 

mathematics in primary school. One of the units of this course was about teaching and 
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learning of the fraction concept and proportional reasoning. The aim of this unit is to 

focus pre-service teachers’ attention on primary school students’ fractional and 

proportional reasoning. Data were collected after this unit.  

Pre-service teachers had to interpret three primary school students’ answers to 12 

primary school problems related to the fractional scheme (6 problems), the 

discrimination between proportional and non-proportional situations (2 problems) and 

the interpretation of ratios in comparison situations (4 problems). Students’ answers 

show different characteristics of fractional and proportional reasoning. Pre-service 

teachers answered two questions related to the problem and students’ answers (Table 

1). 

Questions Aim 

a) About the problem: What mathematical 

concepts should a primary school student know 

to solve this problem? Explain your answer. 

Identifying the mathematical 

elements of the problem 

b) About students’ answers: What are the 

characteristics of students’ mathematical 

reasoning involved in each answer? Explain 

your answer. 

Recognising characteristics of 

students’ mathematical reasoning 

Table 1: Questions for pre-service teachers 

Figure 1 shows the three students’ answers to the parte-whole problem and the 

reasoning up and down problem. In the part-whole problem, the answer 1 shows the 

idea of fraction as parte-whole; the student of answer 2 uses the fraction as operator to 

obtain how many spots are 2/3 of 18 spots; and the student of answer 3 has difficulty 

with the part-whole relationship. In the reasoning up and down problem, the student of 

answer 1 does not recognise the whole (three small rectangles); the student of answer 2 

recognises the whole but he does not obtain the fraction that represents 4 small 

rectangles; and the student 3 recognises the whole and obtains the fraction that 

represents 4 small rectangles. 

Analysis 

Data of this study are pre-service teachers’ answers to the two questions (Table 1). The 

answers to each question were analysed individually by three researchers and 

agreements and disagreements were discussed. We focused on the mathematical 

elements of the problem identified by preservice teachers (the identification of the 

mathematical element was coded with a 1, and when the element was not identified 

with a 0). With regard to the second question, we focused on how pre-service teachers 

interpreted students’ reasoning: if they used the mathematical elements of the problem 

to describe the students’ answers and recognise characteristics of students’ 

mathematical reasoning (it was coded with a 1) or if they provided general comments 

based on the correctness of the answer (it was coded with a 0). We carried out a Cluster 

Analysis using the SPSS. From this analysis, we have inferred four profiles of 

pre-service teachers that differ in how they had identified the mathematical elements 
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involved in each problem and how they had used these mathematical elements to 

describe and recognise students’ reasoning (Figure 2).   

 

Figure 1: Students’ answers to the part-whole and reasoning up and down problems 

RESULTS 

From the four profiles of pre-service teachers inferred (Figure 2), we can underline two 

main results. Firstly, the relationship between identifying the mathematical elements 

and recognising students’ mathematical reasoning is not linear. Secondly, the 

mathematical elements implied in proportional reasoning were not identified by 

pre-service teachers in the same way and this influenced how they described and 

recognised students’ reasoning. 

Only 70 out of 82 pre-service teachers were grouped in the four profiles inferred from 

the Cluster Analysis. Thirty-six out of these 70 pre-service teachers had difficulties in 

recognising characteristics of students’ reasoning (Profiles 0 and 1) and provided 

general comments based on the correctness of the answer such as: “answer 1 is 
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correct; answer 2 is correct; answer 3 is not correct, the student doesn’t understand 

the concept”. Sixteen out of these 36 pre-service teachers identified the mathematical 

elements of the problems related to the fractional scheme (except reasoning up and 

down) and started to recognise some characteristics of students’ fractional reasoning 

(Profile 1). For instance PT008 identified the mathematical elements involved in the 

problems of the fractional scheme (except reasoning up and down) and recognised 

characteristics of students’ reasoning in the part-whole problem: “Answer 1: he uses 

the fraction as a part-whole because he identifies 2 groups of the set. Answer 2: he uses 

the fraction as operator and it is correct because he interprets that 2/3 is what is 

required and he has 18 spots. Answer 3: he doesn’t consider the whole”. The 

characteristics of profile 1 suggest that identifying the mathematical elements of the 

problems is not enough to recognise characteristics of students’ reasoning. 

Figure 2: Profiles of pre-service teachers inferred from the Cluster analysis 

However, the characteristics of profiles 2 and 3 suggest that identifying the 

mathematical elements of the problems let pre-service teachers recognise 

characteristics of students’ reasoning. For instance, a pre-service teacher of the profile 

2 (PT025-Table 2) identified the mathematical elements related to the fractional 

scheme and the discrimination between proportional and non-proportional situations 

and also recognised the characteristics of students’ reasoning related to these 

problems. However, this pre-service teacher did not identify the elements related to the 

interpretation of ratios in comparison situations and did not recognise characteristics of 

students’ reasoning in these problems, providing general comments based on the 

correctness of the answer (see the answer to the ratio problem in Table 2).  

Profile 0 (20 PTs) 

Pre-service teachers 

who did not identify 

the mathematical 

elements and did not 

recognise 

characteristics of 

students’ reasoning 

 

Profile 1 (16 PTs) 

Pre-service teachers 

who identified only 

the mathematical 

elements of the 

fractional scheme 

(except reasoning 

up and down) and 

started to recognise 

some characteristics 

of students’ 

reasoning related to 

the fractional 

scheme 

 

Profile 2 (18 PTs) 

Pre-service teachers 

who identified the 

mathematical 

elements of 

fractional scheme 
and the 

discrimination 

between 

proportional and 

non-proportional 

situations and 

recognised 

characteristics of 

students’ reasoning 

related to these 

problems 

Profile 3 (16 PTs) 

Pre-service teachers 

who identified the 

mathematical 

elements of 

fractional scheme, 

discrimination 

between 

proportional and 

non-proportional 

situations and 

ratios meaning in 

comparison 

situations and 

recognised 

characteristics of 

students’ reasoning 

related to these 

problems 
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Problem PT’s answer 

Reasoning up 

and down 

“a) Whole and unit fraction 

b) Answer 1: the student recognises the whole and the unit fraction, 

so then, he can represent and recognise the fraction that represents 

4 rectangles. Answer 2: the student recognises the whole and the 

unit fraction, but he cannot represent the fraction of 4 rectangles. 

Answer 3: the student doesn’t understand the problem, he cannot 

recognise the whole” 

Missing value 

proportional 

problem 

“a) Proportionality […] relationship between quantities. 

b) Answer 1: he solves the problem using external ratios because he 

relates multiplicatively the screws of both machines. Answer 2: the 

student uses a building-up strategy because he adds 120 for each 40 

screws of machine R until getting how many screws will have the 

machine J if R has 200. Answer 3: the student doesn’t recognise the 

problem as a proportional problem […] he solves it using an 

additive strategy.” 

Missing value 

non- 

proportional 

problem 

“a) It is not a proportional situation. It is an additive situation. 

b) Answer 1: he understands the problem and he solves it identifying 

the difference between both companies. Answer 2: the student 

calculates the difference in company A, and then this difference is 

added to the first quantity of company B. Answer 3: the student 

solves the problem through a multiplicative strategy (double) so, the 

interpretation and the result are incorrect.” 

Ratio “a) Ratios between quantities 

b) Answer 1: he interprets correctly the relationship between 

quantities. He compares and gives the correct answer. Answer 2: he 

interprets correctly the relationships between quantities. Answer 3: 

The answer is correct.” 

Table 2: Answers of PT025 (PT of the Profile 2) 

Our results also provide evidence that pre-service teachers identified the mathematical 

elements involved in proportional reasoning and recognised characteristics of 

students’ reasoning differently. In fact, the mathematical elements of fractional 

scheme (except reasoning up and down sub-construct) were identified easier than 

those related to the discrimination between proportional and non-proportional 

situations and, the identification of the mathematical elements involved in ratio 

comparison situations was a difficult task for pre-service teachers. 

DISCUSSION AND CONCLUSION 

The four profiles describe how pre-service teachers recognise characteristics of 

students’ proportional reasoning. Profile 1 shows that pre-service teachers can identify 

the mathematical elements in the fractional scheme problems but cannot recognise 

characteristics of students’ reasoning in these problems. Furthermore, profiles 2 and 3 
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suggest that when pre-service teachers identify the mathematical elements of the 

problem, they are able to recognise characteristics of students’ reasoning. This data 

points out that identifying the mathematical elements of problems is necessary but not 

sufficient to recognise characteristics of students’ proportional reasoning, suggesting 

that the relationship between the skills of identifying and recognising is not linear, and 

showing preservice teachers’ difficulties in recognising characteristics of students’ 

reasoning. Our result is in line with previous research showing the complex 

relationship between the knowledge of mathematics and the knowledge of 

mathematics and students (Callejo, & Zapatera, 2016; Sánchez-Matamoros et al., 

2015). 

Furthermore, our results show that this complex relationship could be linked to the 

specific mathematical elements of the domain in this case, proportional reasoning 

since these elements were not identified and recognised by pre-service teachers in the 

same way. In fact, there were pre-service teachers who only identified the 

mathematical elements and recognised some characteristics of the students’ reasoning 

in problems related to the fractional scheme (Profile 1); pre-service teachers who 

identified the mathematical elements and recognised characteristics of the students’ 

reasoning in problems related to the fractional scheme and the discrimination between 

proportional and non proportional situations (Profile 2); and pre-service teachers who 

identified the mathematical elements and recognised characteristics of the students’ 

reasoning in problems related to the fractional scheme, the discrimination between 

proportional and non-proportional situations and the interpretation of ratios in 

comparison situations (Profile 3). These profiles suggest that recognising 

characteristics of students’ reasoning is more difficult in ratio comparison situations 

than in the discrimination between proportional and non-proportional problems. 

Finally, recognising characteristics of students’ reasoning of fractional scheme was the 

initial step in recognising students’ proportional reasoning.  

This information provides data to conjecture a pre-service teachers’ trajectory of 

noticing students’ mathematical thinking of proportional reasoning that can be useful 

for teacher education programs. 
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Abstract 

This paper characterises the use made by Prospective Preschool Teachers (PPT) of a 

learning trajectory for length as a magnitude and its measurement, in order to 

interpret the characteristics of learning displayed by Early Years Education pupils 

and to take appropriate decisions and action. A total of 64 PPT enrolled on a teaching 

module about length and its measurement in Early Years Education were asked to 

analyse the responses of various children to a task. The results show that only 23 PPT 

were able to identify the understanding of one or more pupils. Of these, only 10, 

displayed a structured perspective on the responses of the Early Years Education 

pupils, by proposing activities based on inferred understanding. 

THEORETICAL FRAMEWORK 

This paper examines the professional perspective of prospective preschool teachers 

with regard to using a learning trajectory for length as a magnitude and its 

measurement. Various studies have examined this issue from the perspective of the 

pupil (Sarama & Clements, 2009; Van den Heuvel-Panhuizen & Buys, 2005), but few 

have done so from the perspective of the teacher (O’Keefe & Bobis, 2008). 

Research into the professional development of mathematics teachers has highlighted 

the importance of the teaching competence of analysing the teaching and learning of 

mathematics from a professional perspective (Mason, 2002; Jacobs, Lamb & Philipp, 

2010). The development of this teaching competence is one of the learning goals of 

teacher training programmes and an important strand of recent research dedicated to 

the teaching of mathematics. Jacobs, Lamb and Philipp (2010) characterise this 

teaching competence using three interrelated skills: (a) identifying relevant elements in 

pupils’ responses; (b) interpreting pupils’ understanding; and (c) deciding which 

actions should be developed in class. Some research has used learning trajectories to 

develop this competence, focusing on different topics (Fernández, Llinares & Valls, 

2011 for problems of addition and proportions; Sánchez-Matamoros Fernández & 

Llinares for derivatives; Schack et al., 2013 for the study of early arithmetic; Wilson, 

Mojica & Confrey, 2013 for equal partitioning), but none of them has examined the 

topic of length and its measurement. These studies have shown the potential of 

learning trajectories to develop the three skills encompassed by the professional 

perspective. 
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Sarama and Clements (2009) described a learning trajectory for length and its 

measurement in Early Years Education. This trajectory consists of: (a) a learning goal; 

(b) progression in the learning described based on relevant elements of length as a 

magnitude (recognition of length, conservation and transitivity) and the measurement 

of length (equal partitioning, unit of measurement, uniqueness, iteration, 

accumulation, universality of measurement, and the relationship between the number 

and the unit of measurement) and the transitions between the different levels of 

learning (one particular note is the inclusive nature of these levels); (c) instructional 

activities over the course of the sequence. A professional perspective on pupils’ 

mathematical thinking supported by a learning trajectory implies having a structured 

perspective on this trajectory that entails: identifying the relevant elements, 

interpreting pupils’ understanding within the framework of progression in learning, 

and finally, making instructional decisions in accordance with the inferred 

understanding.  

Within this framework, the research questions tackled here are as follows: Which 

relevant elements do Prospective Preschool Teachers (PPT) identify in the responses 

of pupils (5-6 years old) in an activity about length and its measurement? To what 

extent do PPT have a structured perspective on pupils’ responses? 

METHOD 

The participants were 64 PPT enrolled on the subject ‘Learning of Geometry’, in the 

sixth term of the ‘Teacher Training Degree for Early Years Education’. One of the 

modules on the subject was the study of “Length and its measurement in Early Years 

Education”. The PPT were given a theoretical document with the learning trajectory 

adapted from Sarama and Clements (2009) (Figure 1) and they were set professional 

assignments that involved analysing teaching situations related with the three skills 

encompassed by the professional perspective: identifying relevant elements, 

interpreting the understanding shown by the children, and proposing decisions and 

actions to allow the children to further their understanding. This paper focuses on how 

the participant PPTs in this study analysed the responses given by 5 and 6-year-old 

children in an activity involving making necklaces (Figure 2). 

Level Development progression 

1 

● Recognise the concept of length as a magnitude: 

- Identify the qualities of length. 

● Make direct comparisons, considering length intuitively.  

2 
● Recognise the conservation of length: 

- Make direct comparisons through the displacement of objects.  

3 

● Use the transitive property to:  

- Make indirect comparisons 

- Order objects. 

- Measure lengths. 
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4 

● Make equal partitions of objects.  

● Identify a unit and make iterations of it: 

- Recognise the property of accumulation.  

5 

● Recognise the universality of the unit of measurement.  

● Recognise the relationship between number and unit of measurement. 

● Start to make estimations 

Figure 1: Progression in the learning of length and its measurement (adapted from 

Sarama and Clements 2009) 

 

Figure 2: Responses given by Early Years Education pupils in the necklace-making 

activity  

The data from this research are the responses given by PPT to the following questions: 

Question 1. Indicate the mathematical elements that, from the teacher’s perspective, 

are necessary in order to compete the task.   

Question 2. At which level of understanding would you place each of the children in 

the dialogue? Give reasons for your answer based on the characteristics shown and 

provide justification using the children’s interventions. 

Question 3. Imagine you are Alicia. Decide which child you consider to have the 

lowest level of understanding, and which child you consider to have the highest level of 

understanding, and then suggest an activity to further their respective understandings 

of length and its measurement. 
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The characteristics of the children’s responses and the goal of the activities that might 

be proposed to advance their learning are given in Figure 3.  Mario and Almudena are 

at the lowest level of progression (level 1) and Luis and Elena are at the highest level 

(level 4). 

By means of an inductive process, we were able to identify certain characteristics in 

the responses of the PPT by applying the method of constant comparison (Strauss & 

Corbin 1994). To ensure the validity and reliability of the analysis, a group of five 

researchers first analysed a small sample, on the basis of which they discussed the 

encodings and their relationships with the evidence, in order to create several 

categories. Once they reached an agreement, new data were added with a view to 

verifying the system of categories created initially and confirming its validity. 

Children Level Characteristics Learning goals 

Mario  

1 

There is evidence that they 

  DO NOT understand the conservation of length (magnitude).  

 DO NO consider the uniqueness of the quantity taken as a unit  
Appreciate the 

conservation of length  

Almudena 

There is evidence that they 

 DO NOT understand the conservation of length (magnitude).  

 DO consider the uniqueness of the quantity taken as a unit 

 DO NO consider the iteration of the unit of measurement 

Luis 

4 

There is evidence that they 

 DO understand the conservation of length (magnitude).  

 DO consider the uniqueness of the quantity taken as a unit, along with 

iteration and accumulation. There is no evidence that they establish a 

relationship between number and measurement  

There is evidence that they 

 DO NOT make use of the inverse relationship between number and 

measurement  

Acquire the universality 

of the unit of 

measurement  

 

Establish the relationship 

between the number and 

the unit of measurement  
Elena 

There is evidence that they 

 DO consider the uniqueness of the quantity taken as a unit, along with 

iteration and accumulation. There is no evidence that they establish a 

relationship between number and measurement  

Figure 3: Characteristics of the children’s responses and learning goals  

Analysis of the PPTs’ responses to the three questions asked was divided into three 

stages. The first stage involved analysing questions 1 and 2 together, and verifying 

whether the PPT identified the relevant elements in the learning progression of length 

as a magnitude and its measurement. This stage identified four groups of students 

according to whether they identified the relevant elements or not, and whether they 

were related with magnitude, measurement, or both. The second stage analysed 

whether the PPT from each of the groups used these elements to interpret the 

understanding of Early Years Education pupils (question 2). The third stage analysed 

whether the PPT who had interpreted the learning characteristics of any of the pupils 

had proposed instructional decisions based on inferred understanding (question 3).   

 



Callejo et al. 

 

PME 41 – 2017 2-205 

RESULTS 

This section describes (1) the relevant elements identified by the PPT to interpret 

understanding, and (2) the interpretation of understanding and instructional decisions 

proposed on the basis of the understanding identified.  

Relevant elements identified to interpret understanding  

17 of the 64 PPT did not identify any relevant elements or simply named them or used 

them incorrectly. The remaining 47 participants identified relevant elements pertaining 

only to length as a magnitude (group 1), only to the measurement of length (group 2), 

or both to length as a magnitude and its measurement (group 3). The most frequently 

identified elements were ‘conservation’, ‘uniqueness’ and ‘iteration’, followed by 

‘accumulation’.  

Group 1 comprised 8 PPT. The common characteristic of this group was that they only 

identified the element ‘conservation’ of length as a magnitude. These PPT should be 

able to interpret the understanding of Early Years Education pupils with the lowest 

level of comprehension (Mario and Almudena), since there is evidence that these 

pupils do not understand the conservation of length (Figure 3). To identify the 

understanding of the other pupils, they would need to use relevant elements of 

measurement. Six of them interpreted the understanding of Mario and/or Almudena 

(Table 1). 

Group 2 comprised the 29 PPT who identified elements of measurement. Their 

common characteristic was that they identified the elements ‘uniqueness’ or 

‘iteration’: 20 identified both elements, 2 the element ‘uniqueness’, and 7 the element 

‘iteration’. 11 participants identified ‘accumulation’. These PPT should be able to 

interpret the understanding of Early Years Education pupils with the highest level of 

understanding (Luis and Elena) who have acquired these elements, but not those with 

the lowest level of understanding, because they have not identified elements of 

magnitude. Two of them interpreted the understanding of Luis and/or Elena (Table 1). 

Group 3 comprised 10 PPT who identified elements of magnitude and of 

measurement. Of these, 8 identified the ‘conservation’ of length: 6 ‘uniqueness’ and 

‘iteration’, and 1 ‘iteration’. Other elements identified were the ‘recognition’ of length 

as a magnitude (4) and ‘accumulation’ (3). These PPT, with the exception of the 2 

participants who did not identify ‘conservation’, should be able to interpret the 

understanding of all the Early Years Education pupils in the task set. Nine of them 

interpreted the understanding of one or more of the pupils (Table 1), 3 interpreted the 

understanding of pupils with the lowest level of understanding (Mario and Almudena), 

2 interpreted the understanding of pupils with the highest level of understanding (Luis 

and Elena), and 4 participants interpreted the understanding of pupils with the lowest 

and the highest levels of understanding. 

Interpretation of understanding and instructional decisions  

Only 10 of the 23 PPT who identified the characteristics of understanding proposed 

activities that were coherent with the inferred understanding (Table 1). Regarding the 

activities proposed, the 3 PPT in Group 1 who proposed activities based on the pupils’ 
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understanding focused on the acquisition of the ‘conservation’ of length. The 2 PPT 

from Group 2 proposed activities related with ‘iteration’ and ‘uniqueness’. Of the 4 

PPT who interpreted the understanding of pupils with the lowest and highest levels of 

understanding, only 3 proposed coherent activities with the inferred understanding.  

 

 Correct interpretation of 

understanding  

Activities proposed based 

on understanding  

Group 1. Magnitude (N=8) Low level 6 3 

Group  2. Measurement (N=29) High level 8 2 

Group 3. Magnitude and 

measurement (N=10) 

Low level  3 1 

High level 2 1 

Low and high 

level 

4 3 

Total (N=47)  23 10 

Table 1: Students who interpreted the understanding of some of the Early Years 

Education pupils and proposed activities that were coherent with said interpretation  

Below we present two cases of PPT: one who did not propose activities that were 

coherent with the interpretation given and one who did. 

E2-8 (Group 2) identified characteristics of the understanding of Luis and Elena (high 

level of understanding) based on the elements ‘uniqueness’ and ‘iteration’, indicating 

that: “Luis carries out equal partitioning [referring to uniqueness], he chooses the same 

pasta tubes, so he’s at level 4”; “Elena always uses the same stars, so she knows how to 

carry out equal partitioning [referring to uniqueness] and also iterates correctly, 

without leaving any gaps”. However, the decision made regarding further instruction 

did not favour their progression (see Table 2): “For children with a higher level of 

understanding, which in this case would be Luis and Elena, I would work again with 

the beads, perhaps using a ruler so that they can see that not all the beads, lengths of 

string, and pasta shapes measure the same.” 

PPT E1-19 (Group 3), on the other hand, was able to identify the characteristics of 

Mario’s understanding based on ‘conservation’, indicating that: “Mario is at level 1, 

since he does not recognise conservation; he has not noticed the measurement of the 

lengths of string [different shapes and sizes]; he only focuses on the number of pasta 

tubes: ‘mines has more pasta tubes’”. For Mario, this participant proposes an 

instructional decision that would allow him to acquire conservation: “To work with 

Mario, I would make a direct comparison, both static and using movement, by varying 

them [the lengths of string of different shape and size], to recognise the importance of 

the length of the string and in order to work on the concept of conservation and 

transitivity. To do this, I would put the pieces of string in front of him [referring to the 

string used in the task]”  



Callejo et al. 

 

PME 41 – 2017 2-207 

Furthermore, E1-19 identified the characteristics of Luis’ level of understanding based 

on the elements identified: ‘uniqueness’, ‘iteration’, ‘conservation’ (level 4), 

indicating that: “Luis is at level 4, because he correctly understands equal partitioning 

[referring to uniqueness, since he has threaded the string with the same sized pasta 

tubes], with no gaps or overlapping [iteration]… he knows that the pieces of string are 

different lengths and that his is longer than Mario’s [referring to conservation] “it’s 

longer than Mario’s because the piece of string is longer”. He’s not guided by the 

accessories”. For Luis, the instructional decision proposed is that he should now 

acquire the relationship between number and measurement: “I would give them 

necklaces with different accessories and with the same ones, and I would see if they 

were able to count them like that and see that the measurement remains the same [even 

thought the number of beads does not]”. 

CONCLUSION 

In this study, the following questions were posed: Which relevant elements do PPT 

identify in the responses given by Early Years Education pupils (5 years of age) to an 

activity? To what extent do the PPT have a structured perspective on the pupils’ 

responses? 

Firstly, we should point out that the PPT found it easier to identify the elements of 

‘conservation’, ‘uniqueness’, and ‘iteration’, although on some occasions they used the 

term ‘equal partitioning’ to refer to ‘uniqueness”. Using these elements, 23 PPT were 

able to identify the understanding of one or some of the children. Of these, only 10 

demonstrated a structured perspective on the responses given by the Early Years 

Education pupils, since they were also capable to propose activities based on the 

inferred understanding. This structured perspective was either partial (4 PPT had a 

structured perspective on the first part of the trajectory referring to length as a 

magnitude, and 3 on the second part referring to measurement) or total (3 EPM). This 

seems to show that the learning trajectory is difficult to assimilate in its totality, and 

that PPT gradually learn it ‘bit by bit’. 

The PPT who had a structured perspective on the first part of the trajectory only, based 

on the element ‘conservation’, were capable to identify understanding and made 

adequate instructional decisions to a greater extent than those who had a structured 

perspective on the second part of the trajectory only and who had identified more 

relevant elements. This could be due, on the one hand, to the fact that interpreting the 

understanding of pupils with a low level of understanding requires the use of fewer 

relevant elements than interpreting the understanding of students with a higher level of 

understanding. On the other hand, it is easier to propose instructional decisions for 

Early Years Education pupils who have difficulty resolving the proposed activity than 

for those who did not have difficulties. 

Furthermore, the majority of the PPT (29 out of 47) only focused on the second part of 

the trajectory related with measurement, which shows that they have not perceived the 

inclusive nature of the different levels of learning progression.  
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The PPT found it easier to identify certain relevant elements, probably due to the 

characteristics of the task. For this reason, it is important to propose that PPT analyse 

the responses of children to different types of activities that show the diversity of 

elements involved in the understanding of length as a magnitude and its measurement.  

It is also necessary to emphasise the type of instructional decisions associated with 

each of the levels of understanding, given that the PPT found it difficult to make 

appropriate decisions based on inferred understanding, particularly for pupils with a 

higher level of understanding. 
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In this paper we interpret how a hypothetical learning trajectory (HLT) promotes the 

learning of spanning set and span. The focus of interest is an HLT in linear algebra to 

contribute to learning in this course. The theoretical basis of our research is based on 

the instructional design heuristic of emergent models (Gravemeijer, 1999) and 

mathematical modelling (Julie & Mudaly, 2007). The refinement of the HLT was part 

of a research design process of 3 cycles of experimentation. The results show the 

potential of our HLT to support the learning of these linear algebra concepts. 

INTRODUCTION 

In recent years, the research aimed at the development of learning trajectories has been 

the object of much attention (Weber & Lockwood, 2014). A learning trajectory, 

according to Confrey and Maloney (2015), is a conceptual model of how students 

transition from their informal knowledge to more sophisticated knowledge when they 

engage with a carefully sequenced set of tasks. For Simon (1995), a hypothetical 

learning trajectory (HLT) is composed of: the objective of the learning, the 

instructional tasks, and the hypothesis about the learning process of the students. 

Recently, there have been studies on HLTs for linear algebra. Trigueros and Possani 

(2011) have designed an HLT for the concepts of linear combination, linear 

dependence and linear independence, and they conclude that it contributes to their 

learning. On the other hand, Wawro, Larson, Zandieh and Rasmussen (2012) have 

presented a HLT on the concept of linear transformation and its relation with the 

multiplication of matrices. They show that it helps overcome the difficulties of the 

conceptual relationship between linear transformation and matrices. Considering the 

results of these studies, in this research, a HLT is designed and experimented for 

spanning set and span. These concepts are chosen because of their relationship with 

important contents of this course, such as: base and dimension (Stewart & Thomas, 

2010). 

The objective of this research is to interpret how an HLT, based on the heuristic of 

emergent models and mathematical modelling, promo learning of spanning set and 

span concepts. 

With this study, we intend to contribute in the design of HLTs for linear algebra to help 

to their learning. The intention is that this learning trajectory design supports teachers 

in creating models of thinking of their students. These will serve as a basis for seeking 
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pedagogical responses that will help students to transit to their learning in the realm of 

linear algebra. 

THEORETICAL BASIS 

The focus of interest is a HLT in linear algebra. The theoretical basis of our research is 

based on the instructional design heuristic of emergent models (Gravemeijer, 1999) 

and mathematical modelling (Julie & Mudaly, 2007). 

To initiate the intended learning, an initial task is chosen that is experientially real for 

the student (Gravemeijer, 1999). In our case, we chose a task within a real-life context, 

in which mathematical modelling serves as a tool to help the study of mathematics 

(Julie & Mudaly, 2007). We consider the modelling cycle proposed by Blum and Leiss 

(2007) to guide students in solving this task. 

Once the initial task is defined, tasks are designed or selected that will allow students to 

achieve learning. In this research, the design of the tasks is guided by the instructional 

design heuristic known as emergent models (Gravemeijer, 1999), that seeks to create a 

sequence of tasks in which students first develop models-of informal mathematical 

activity that later become models-for their more sophisticated mathematical reasoning. 

To progress from a model of informal mathematical activity to a model of formal 

mathematical reasoning Gravemeijer (1999) established four levels of activity: 

situational (interpretation and solution of the problem in a particular setting), 

referential (involving models, descriptions, concepts and procedures that address the 

problem of situational activity), general (developed through exploration, reflection and 

generalization as seen in the previous level but with a mathematical focus on the 

strategy without making reference to the problem), and formal (working with 

conventional methods and notations).  

METHODOLOGY 

The methodology for this study is the design research. This research aims to 

investigate the possibilities of educational improvement through the creation and study 

of new forms of learning (Gravemeijer & van Eerde, 2009). In the first phase, a HLT 

was elaborated that comprised the previous knowledge of the students (Simon, 2014). 

In the experimental teaching phase, three cycles were developed in which the initial 

HLT was refined. Of the participants in the third cycle, 3 students (18-19 years) were 

chosen who were representatives of an average level of the class, who had not 

previously worked with the mathematical modelling, nor had previously studied the 

concepts of spanning set and span. The objective of the learning was to understand the 

concepts of spanning set and span with an instructional design designed ad-hoc based 

on the heuristic of emergent models and mathematical modelling. The teacher guided 

the 3 students (S1, S2, S3) in the resolution of the tasks and, he led the discussion of 

topics that he considered relevant to favour learning. A synthesis of the HLT is 

presented in the Table 1. 
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Objective Major task features Major conjecture of learning trajectory 

Students use 

vectors and the 

modelling 

cycle to create a 

mathematical 

model. 

Task 1: create a 

generator password 

generator based on 

vectors. 

(1) Students read information from the 

secure passwords; (2) students created a 

generator password by following the 

steps of the modelling cycle and using 

vectors. 

 

Students 

identify 

features of 

spanning set 

and span; and 

they distinguish 

between them; 

 

Task 2: make an analogy 

table between their 

password generator and 

the concepts of spanning 

set and span. 

 

(1) Students find two sets from their 

password generator (one which has all 

the vectors that allow the generate 

numerical passwords to be generated 

and the other which contains the vectors 

that, after creating the linear 

combination, is obtained by the vector 

for each numeric password with them); 

(2) students identify common features 

between two sets connected to their 

password generator and the concepts of 

spanning set and span; (3) students 

distinguish between spanning set and 

span with the analogy table. 

Students 

deduce 

properties of 

spanning set 

and span. 

Task 3: Conjecture what 

the range of the array 

should be that has as its 

rows vectors of a set of 

R2 for that set to generate 

R2.  

 

(1) Students explore particular cases 

and identify some regularity; (2) 

students relate spanning set and span 

with other concepts; (3) students 

conjecture the number of vectors of a 

set to generate R2; (4) students 

determine that the number of vectors is 

not determinative to indicate if a set 

generates the span of R2. 

Students apply 

spanning set 

and span. 

Task 4: Indicate if the set 

C={(1,0,0,1),(0,1,0,0)} 

is a spanning set for span 

W={(x,y,z,w)/x=w}. 

Students to pose a solution: (1) they 

explore possible routes for resolution; 

(2) they find a spanning set or span 

(according to the resolution they 

decided); (3) they verify if the set C is a 

generator of W. 

Table 1: Synthesis of the HLT 
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RESULTS 

The results show the potential of our HLT to support the learning of these linear 

algebra concepts and how the mathematical modelling was a tool to support the study 

of mathematics, as posited by Julie and Mudaly (2007). 

Students' actual learning trajectory (ALT) was reconstructed, and their degree of 

matching with the HLT (see Table 1) was analysed to interpret their learning progress 

of spanning set and span. The following results are presented: the activation of 

previous conceptions of vectors, the requirement for a greater cognitive demand, the 

real context to progress towards a more abstract level and the application of the 

concepts of spanning set and span. 

The activation of previous conceptions of vectors 

In the task 1, the students’ ALT was a close match with the HLT (see row 1 in Table 1) 

because they were guided through the mathematical modelling cycle (Blum & Leiss, 

2007) to create their password generator. Also, they activated their previous 

conceptions of vectors to propose a mathematical model, given that the student S3 

asked to his companions "What operations are we going to do with the vectors? Are we 

going to add them up, multiply them or something like that?". Student S1 suggested "A 

number that multiplies each vector and then, add the vectors". That is, implicitly, 

student S1 proposes to make a linear combination. Then, student S3 asked about the 

number of vectors of his model to which student S2 responded "three vectors". The 

ideas proposed by the three students led them to propose a linear combination of 

vectors of the span of R3 as a mathematical model, a(1,0,1)+b(1,1,0)+c(0,1,1). This 

model allowed the students to relate to it, in the task 2, with spanning set and span. 

Specifically, we consider that mathematical modelling contributed to the 

understanding of spanning set and span because it activated the students' previous 

conceptions in the task 1. 

The requirement for a greater cognitive demand  

The analysis of task 2 shows that the ALT was a close match with the HLT (see row 2 

in Table 1) because they made a suitable analogy table (see Figure 1) between their 

password generator and the concepts of spanning set and span. 

Figure 1: Written answer to task 2, agreed upon by all 3 students 
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To respond to the relationship between the password generator and span, student S1 

indicated that the span "describes all the vectors that can be made". This comment 

from student S1 is very general because it does not specify what the purpose of those 

vectors is and does not mention the link with the passwords. Perhaps, for this reason, 

student S3 specified that the span "describes the operations to find the numerical 

vector that generates a password". Student S3 mentioned that the span describes 

operations. He linked this concept to the context of passwords when he specified that 

these operations served to find the numeric vector that generates a password. From the 

written response, agreed on by the three students, it follows that when student S3 spoke 

of operations, he referred to those that have a linear combination (addition and 

multiplication). The answer was the set {(a,b,c)R3:a(1,0,1)+b(1,1,0)+c(0,1,1)} that 

included his mathematical model, a(1,0,1)+b(1,1,0)+c(0,1,1), to generate passwords 

and associated it with span. These students did a similar process to relate spanning set 

to the context of the passwords (see Figure 1). 

The 3 students, through the analogy table (see Figure 1), linked the real context with 

the mathematical one. This required a greater cognitive demand regarding task 1, and 

was important to initiate the understanding of spanning set and span, since they made a 

first example of both, and established a distinction between these concepts when 

having to relate them to sets derived from a real situation. 

The task 2 corresponded to the level of referential activity (Gravemeijer, 1999). In this, 

we consider that not only should reference be made to the real context of task 1 (level 

of situational activity), as Gravemeijer (1999) points out, but it was also important that 

a greater cognitive request was demanded from the students to help with their progress 

towards the more formal reasoning of spanning set and span. 

The real context to progress towards a more abstract level 

It is made evident that the 3 students progressed towards a more formal knowledge of 

the concepts by the fact that they left the context of the passwords and made 

conjectures about the properties of spanning set and span. For example, in the task 3, 

they were asked to conjecture what the range of the matrix was by vector rows of a set 

of R2 so that it would generate the span of R2. For this, they were presented sets of R2 

(A, B, C y D) and the matrix whose rows were the vectors of each set (M1, M2, M3 y 

M4). This is shown in Figure 2. 

 

Figure 2: Written answer to task 3, agreed upon by all 3 students 
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Student S1 indicated that the range of the matrix M1 "is 1" and then, referring to the 

other matrices, noted that "this is also 1 (showing M2). Yes, this is 2 (indicating M3). 

One, one, two, two". When student S1 mentions one, one, two, two, he alludes to the 

ranges of the matrices M1, M2, M3 and M4 respectively, for that is what appears in the 

written answer (Figure 2). From this, the 3 students surmised that if the range is 2, the 

set can generate R2. From their response, it is inferred that they noticed that a spanning 

set of R2 can have more than 2 vectors (such as set D), but that the minimum must be 

two vectors that are linearly independent (such as set C). That is, it is not enough that 

the set has 2 vectors (such as set B). From this it follows that the students observed that 

the number of vectors is not determinant to indicate if a set is generating a span of R2, 

because apart from the fact that they are 2 vectors, they must be linearly independent. 

The analysis of task 3 suggests that ALT was close to HLT (see row 3 in Table 1). The 

formation of this conjecture was fundamental, because it made the 3 students relate 

spanning set and span with the concepts of the range of a matrix and linear 

independence. In addition, they identified a property that characterizes the sets that 

generate the span of R2. It served to allow them to progress towards a more abstract 

level of these concepts, as it was observed when they realized conjectures of properties 

of the concepts (see Figure 2). 

The application of the concepts of spanning set and span 

Task 4 presented a high cognitive demand for the 3 students, because it required their 

understanding of the concepts of spanning set and span. To solve it, they needed to: 

analyse it, resort to spanning set and span, explore procedures for their resolution, find 

a spanning set (or span) and verify if C was a spanning set of W. For example, they 

answered the question: indicate if C={(1,0,0,1), (0,1,0,0)} is a spanning set for the 

span W={(x,y,z,w)/x=w}. 

The 3 students agreed that "it is not a spanning set of W". To conclude this, they 

followed a process to determine a spanning set of W. Student S2 expressed (looking to 

the set W) that "condition x is equal to double v" and immediately, student S1 told his 

colleagues "we are going to replace it". Student S1 referred to substitution, the 

condition that was indicated by student S2, in the generic vector of the span W, since 

that was what they did and wrote the linear combination 

w(1,0,0,1)+y(0,1,0,0)+z(0,0,1,0). On seeing it, student S1 stated that the set 

{(1,0,0,1),(0,1,0,0)} is not a spanning set for W by "component z" and added that "this 

(indicating the set{(1,0,0,1), (0,1,0,0)}) is not a spanning set of this (showing W). Look 

(showing them w(1,0,0,1)+y(0,1,0,0)+z(0,0,1,0))”. Student S1 proposed to his 

colleagues that they compare the expression of the 3 vectors with the set that gave them 

2. From this, they concluded that it is not a spanning set of W. 

From the process followed by the 3 students in the task 4, it is inferred that they can 

find a spanning set for the span W and verify if the set C generated to W. This, 

approached the one posed in the HLT (see row 4 in Table 1). 
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Finally, the application of these concepts by the students corresponded with the level 

of formal activity (Gravemeijer, 1999), and allowed it to be inferred that they had 

understood them. Specifically, because they were able to solve a problem in the task 4 

where they showed that they were able to: distinguish between spanning set and span, 

to follow a process to obtain a span and to verify if a set was generating a certain span. 

The HLT proposed and used by the teacher gave the group of students the possibility to 

understand spanning set and span from a task that made sense to them, because it is 

within a real and everyday context: creating passwords. The goal was not to teach 

students strategies or techniques that had already been done but to help them develop 

their own methods to understand these concepts. 

CONCLUSION 

The THA proposed for the construction of spanning set and span stands out for being 

useful to teach this type of content because it provides a strategy to promote the 

understanding of spanning set and span. This strategy, provided by the HLT, allowed 

student S2 to activate his previous conceptions of vectors, since it suggested that the 

mathematical model to generate passwords had to have "three vectors". Meanwhile, it 

caused student S3 to relate the context of passwords with span by indicating that this 

set "describes the operations to find the numerical vector that generates a password". 

Later, it gave student S1 the opportunity to show his understanding of the concepts 

under study by having to verify if a set was generating a certain span (task 4). This 

strategy led student E1 to perform a process to find a spanning set, and then to compare 

its result with the information given in the task, to conclude that the given set was 

spanning set of a certain span. These events give indications that the designed tasks 

allowed the students to progress from their informal mathematical reasoning 

(associated with their previous conceptions) to a more formal mathematical knowledge 

(of spanning set and span). 

This HLT may have some implications for the design of tasks in universities, because 

it provides a way of designing a sequence of tasks for concepts which present difficulty 

in their learning due to their high level of abstraction, as is the case with, for example, 

those of spanning set and span studied here, or others of linear algebra. In addition, it 

addresses a question of equity because the sequence of tasks starts with a problem in 

context that is accessible to everyone and increases its level of complexity as students 

make progress in it. In this way, it made it feasible for students to construct the 

concepts. 

The results of this study show that this HLT contributes to the learning of linear 

algebra and is expected to serve as a guideline to design other trajectories that will help 

students to advance with their learning in this course. 
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MATHEMATICS PRESERVICE TEACHERS’ ARGUMENTATION 

Walter F. Castro-G1, Luis R. Pino-Fan2 and John H. Durango1 

1Universidad de Antioquia, Colombia, 2Universidad de Los Lagos, Chile 

This research deals with the preservice teachers’ dialogic argumentations when 

presenting geometry tasks to their colleagues, during discussion sessions previous to 

teaching to children. An argumentation analysis tool is used that complement 

Toulmin’s analysis proposal and that includes features related to mathematical logic, 

rhetoric and dialectic features. We propose both a representation for the dialogic 

argumentation and a way to identify its structural qualities.  

INTRODUCTION 

Due to the complexity of teachers’ argumentation in the classroom, that do not let 

‘uniquely’ follows the deduction rules of Aristotelian logic but recurs to ‘persuasion’ 

(Perelman, 1997), it is required diverse skills, specifically, to argue during teaching 

(Ufer, Heinze & Reiss, 2008). Several studies showed, that not only students have 

problems in this field (Reiss, Heinze, Kessler, Rudolph-Albert & Renkl, 2007), but 

also prospective and in-service teachers (Barkai, Tsamir, Tirosh & Dreyfus, 2002). 

The interest of the paper is to study preservice teachers’ argumentations when 

explaining geometry tasks. 

FRAMEWORK 

In this research ‘dialogic argumentation’ is assumed as “social and collaborative 

process necessary to solve problems and advance knowledge” (Duschl & Osborne, 

2002, p. 41). The dialogic argumentation is close related to ‘communicative acts’ that 

give and ask for reasons (Habermas, 1999; Toulmin, 2007) that includes not only 

logic-substantive features but rhetoric and dialectic put into play by preservice teachers 

while presenting geometry tasks to their fellow colleagues to explain, to teach and to 

convince. 

The dialogic argumentations are analyzed in regard to structural qualities: 

logic-substantive, rhetoric and dialectic (Habermas, 1999); for representing the 

structure, it is used Knipping (2008) proposal. The warrants used by preservice 

teachers are presented as: a priori, empiric, institutional and evaluative (Nardi, Biza & 

Zachariades, 2011). The argumentative sequence, either progressive or 

retro-progressive, (Van Eemeren, Grootendorst & Henkemans, 2006) considers the 

natural way in which teachers give and ask for reasons. 

CONTEXT AND METHODOLOGY  

The research context is the course ‘Teaching Practice’, offered to preservice teachers 

in the program of mathematics in the School of Education, Antioquia University, 
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Medellín, Colombia. This course spans for a year and a half. During the first year, the 

preservice teachers design and choose geometry tasks, solve and present them to their 

fellow colleagues, who criticized the presentations; in the remaining term, the teachers 

acted as teachers in the classroom. This paper informs about the first year. The 

preservice teachers were interviewed just after they presented the tasks to their 

colleagues. Interviews were recorded, transcribed and analyzed searching for: (1) 

formal argumentation structure (Knipping, 2008); (2) epistemological and pedagogical 

nature of reasoning (Nardi, Biza & Zachariades, 2011), and (3) argumentation 

sequences and interaction patterns (Clark & Sampson, 2008). 

ANALYSIS AND RESULTS  

We discussed two argument segments belonging to two preservice teachers who 

presented the solutions of two geometric tasks to their colleagues. The first argument 

responds to: How would you explain to your colleagues how to find the value of angle 

h? The second argument responds to the question: How would you teach the 

Pythagorean Theorem to ninth graders? In what follows the two preservice teachers’ 

arguments are presented, the first argument belonging to Jhoanne (J), the second to 

Maria (M). It is shown the questions (Q) and the ensuing answers. The first question 

includes the graph as data. The pieces of the argument are signaled with a numeral 

located to the left (L1 means line one corresponding to the argument segment).    

 

L1-L2 Q: How would you explain to your colleagues the way to find the value of 
 angle h? 

 

Figure 1: Graph for the question (Berg, Fuglestad, Goodchild & Sriraman, 2012, p. 

682) 

Jhoanne proceeds as follows:  

L3-L4 J: In order to find out the value of angle h, first I prolong the lines in such a 
way that cut in A and D, the parallel lines a and b. 

The argumentation motivated by the questions requires geometry knowledge 

organized in a sequence with the intention to explain. Figure 1 presents some data: the 

values of angles, two parallel lines and the nomination of the angle whose value is to be 

found. These data underline geometric knowledge that Jhoanne must know. In L3 

Jhoanne uses an argumentative indicator -first- followed by a narrative in first person. 

Additionally, uses the modal qualifier: in such a way that (L4-5), uses the apriori 

epistemological warrant to extend the lines toward A and D. Next Jhoanne affirms:  
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L5-L7 J: Then by the properties of angles among paralell lines, I look for the 
angles alternate-interior as A and F, D and B, by the property of the sum of 
the measures of the internal angles of a triangle, which is 180°. 

In this segment Jhoanne uses two a priori-epistemological warrants (Nardi, et al., 

2011) corresponding to a property: alternate-interior angles among parallel lines and a 

theorem: the sum of the measures of internal angles in a triangle is 180º. Jhoanne uses 

an argumentation indicator -then- (L5), and a modal qualifier -which is- (L7). She 

proceeds:  

L8-L9 J: We find the measure of angle C by the definition of plane angle we have  

  that C°+ h°= 180° where C°=103° thus h = 77°. 

  

 

 
 

Figure 2: Ilustration and computing proposed by Jhoanne 

Jhoanne uses manifold argumentation indicators: we have that, where and thus (van 

Eemeren, et al., 2006). When passing from L5-L7 to L8-L9, she uses an ilustration as a 

rhetoric resource (Perelman, 1997), and the procedure to find the unknown value is 

algebraic in nature. The second argumentative segment, corresponding to Maria, refers 

to the design of a class related to the Pythagorean Theorem.  

L10 Q: How would you teach the Pythagorean Theorem to ninth graders? 

Maria says: 

L11-L15 M: What I understood […] is that I have to, more or less, propose a draft 
about planning an activity with ninth graders to teach them the Pythagorean 
Theorem, then I planned the activity as a guide, then I proposed a puzzle 
[tamgram like], […] and to arrive […] to the formal features of the 
Theorem. 

In this segment, Maria first establish her argument conclusion, that deals with the 

teaching the Pythagorean Theorem to ninth graders (9º) using a puzzle, then she states 

the objective about discussing ‘formaly’ such Theorem. The sentence ‘What I 

understood…’ -first person- supposess a communicative understanding and an action 

as well (Habermas, 1999). Additionally, she uses ‘more or less’ -a modal qualifier- and 

assumes her proposal as ‘possible’ and not as a definite statement.  

L16-L20 M: […] Initially, as Carlos did, I would begin with some history, even 
though they [the kids] are in ninth grade, a story can be told to them about 
the Pythagorean Theorem […] because it is believed that Pythagoras 
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discovered the theorem, but it was also known to ancient civilizations in 
Babylon and Egypt, the Pythagorean triads were also known to them… 

In this segment, Maria says that she took into consideration her colleague Carlos`s 

proposal that accounts for the use of a rhetoric resource as the model (Perelman, 1997). 

Additionally, L3 serves as intersubjective evidence that refers to meaning negotiation 

by their colleagues. Within the first reasons expressed by Maria, appears an apriori 

institutional warrant (Nardi, et al., 2011), because she uses the history of the Theorem. 

Additionally, she expresses the modal qualifier ‘though’ that refers to the likelihood of 

using a story as a resource to teach the kids. Telling a story is an evidence of the 

practical rationality or reasonableness (Habermas, 1999; Toulmin, 2007). The 

preservice teacher continues arguing: 

L21-L26 M: […] As it is said there, a man called Pythagoras discovered an amazing 
fact regarding triangles, if a triangle as a right angle, so to speak, an angle 
whose measure is 90º and a square is constructed on each one of its legs; 
then the biggest square [refering to the square constructed on the 
hypotenuse] has exactly the same area as the other two squares together 
[…]. The triangle’s biggest side is called hypotenuse.  

On one side, this segment manifests an a priori-epistemological warrant (Nardi, et al., 

2011), because it resorts both to the statement of the Pythagorean Theorem and to the 

definition of a right triangle. On the other side, it uses the modal qualifier ‘exactly’ 

(L25), because she is certain about her statement. Every fragment -L3 to L9- offers 

evidence on the use of the theoretical rationality in the dialogic argumentation 

(Habermas, 1999), which complements the practical rationality (Rigotti & Greco, 

2009), and links the actions that are epistemological, teleological and communicative 

(Habermas, 1999) to the future teachers’ argument.  

L27-L30 M: So, I would begin with some templates more or less …the handouts 
would be the templates, that they [pupils] have to cut and they themselves 
can verify if the two squares are ‘put togheter’; those that I constructed on 
the triangle legs, I would obtain the area [or the square constructed] on the 
hypotenuse. 

Maria begins her Pythagorean Theorem teaching proposal by using the puzzle to shape 

the rectangles over the legs and over the hypotenuse of a right triangle. The use of the 

puzzle puts into practice the practical rationality and manages to persuade her 

colleagues (Perelman, 1997), which links the puzzle activity to the Pythagorean 

Theorem. 

L31-L34 M: Just before finishing […] the work about what I just said, I would reach 
the formal definition, that I would do by showing them […] the triangle, 
thus the square’s area constructed on one leg plus the square’s area built on 
the other leg would be equal to the square’s area of the hypotenuse. 

Later she performs Pythagorean Theorem verifications for particular cases. Maria 

employs the examples as a rhetoric resource, which let her to generalize (Perelman, 

1997). 
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L35-L39 M: I would perform some verifications, if it works with an easy example, 
algebraically assigning numbers to the lenghts of both sides for the students 
to calculate the area with a simple operation, then one square measures 
three (3), the other square measures four (4), and the resulting square would 
measure five (5), there we show the solution.  

L40-L44 M: Why would it be useful? If we know the side lengths of a right triangle, 
the Pythagorean Theorem would help us to find the length of the third side, 
but I would make them notice that it is only true for right triangles, that it is 
not true for every triangle. Then I would write it as an equation and there 
we would perform algebraic procedures using equations, just as it is shown 
in Figure 3. 

 

Let’s see if 

the areas are 

the same: 

32 + 42 = 52 

Computing 

we get: 

9 + 16 = 25 

Yes, it 

works! 

 

 

 

 

 

 

 

 

a2 + b2 = 

c2 

Figure 3: Verification of the Pythagorean Theorem using an example 

The tasks are formulated using questions, whose structure responds to: how is it 

argumented, whom the arguments are directed to and what is argumented. It can be 

said that the preservice teachers argue in first person (Habermas, 1999), and assume 

the ‘leading’ role. The roles of protagonist and antagonist give account of the 

‘progressive and retrogressive’ arguments, based on ‘argumentative indicators’ (Van 

Hemeren, Grootendorst & Henkemans, 2006). On the other side, an advantage of the 

dialogic argumentation is that it favors solving the dichotomy between analytic and 

substantive argumentations (Toulmin, 2007), because preservice teachers not only use 

logic inference rules to communicate their knowledge but also rhetoric resources 

linked to illustrations, examples and models (Perelman, 1997). The latter can be seen 

between the first and the second segment of the arguments by the two preservice 

teachers which show ‘density’ in the dialogic argumentations that surpasses Toulmin’s 

model (2007). A drawback of this report is that preservice teachers’ dialogic 

argumentations, while teaching in the classroom to real pupils, are not discussed. On 

the other side, the argumentative indicators used let us to identify the warrants chosen 

by the preservice teachers. Table 1 shows the relationships among the argumentative 

indicators, modal qualifiers and warrants used by preservice teachers. When questions 

are used to generate a class planning, the preservice teachers use no absolute modal 

qualifiers, for instance: more or less, such as, even though, it does not work for every 

case. In terms of a pattern of interaction, we identify a protagonist role in Jhoanne 

dialogic argumentation, and the use of both explicit graphic reasoning (Figure 2) and 

verbal reasoning. The reasoning would not be explicit if logic-formal inference rules 
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would be applied in an analytic argumentation. In the segment corresponding to 

Maria’s argument, the argumentative sequence was not only accompanied by warrants 

linked to the geometric knowledge -a priori epistemological warrants-, but also by 

warrants linked to the history of the Pythagorean Theorem -institutional a priori 

warrant-.  

  Argumentation 

indicators 

Modal 

qualifiers 
Warrants 

Argumentative 

segment 1 

L3 First In such a  

Way 

 

A 

priori-epistemological 
L4 And 

L5 Then, I look for 

L6 And, by    

A 

priori-epistemological 
L7 

Which is 

L8 
We find, by, we 

have 

 

 

Where 

A 

priori-epistemological 

L9 Thus 

Argumentative 

segment 2 

L11  More or less A priori-institutional 

L13 Then 

L16 Initially Though 

 

 

Exactly 

A priori-institutional 

L22 So to speak 

L23 And 

L25  

L27  More or less Empiric-personal 

A 

priori-epistemological 
L30 

I would obtain 

L31 I just said  

 

Be equal to 

A 

priori-epistemological L32 Thus 

L34  

L35 
 If it work A 

priori-epistemological 

L41 But   

L43 And 

Table 1: Relations among argumentation indicators, modal qualifiers and warrants 

According to the relations, presented in Table 1, it can be stated that the first argument 

is devoted to explaining. The modal qualificators are sparse and express not only 

likelihood for the task proposed but also Maria’s confidence in her solution to it. 

Meanwhile the second argument uses manifold modal qualificators that express 

Jhoanne’ stance in regard to the likelihood for her solution to the task proposed. The 

auditorium was not an issue for the first argument, but it was for the second. In regard 

to the rhetoric resources, Jhoanne’s argument uses only the illustration, while Maria’s 
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uses: illustration, model and example. The first argument use only of a priori 

epistemological warrants, while the second use a priori epistemological, 

empirical-personal as well as a priori-institutional. Additionally, the argumentation 

indicators facilitate the identification of the Toulmin’s model components. If the 

question is linked to knowledge, Jhoanne’s argument case, the modal qualificators give 

account of a structure close to the formal logic, but if the question is guided by a 

teaching intention, Maria’s argument case, the modal qualificators point out to a doubt 

and establish a link to the reasonablennes.  
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LEARNING RESEARCH IN A LABORATORY CLASSROOM: 

ISSUES AND SOME RESOLUTIONS 

Man Ching Esther Chan and David Clarke 

The University of Melbourne, Australia 

 

This paper uses an international study of student collaborative learning to highlight 

and address methodological issues associated with conducting research in a 

laboratory classroom in which 10 built-in video cameras and more than 15 audio 

inputs recorded the interactions of intact classes of students and their teacher as they 

engaged in purposefully developed mathematical activities. Such laboratory 

classrooms offer possibilities for structured, rigorous, fine-grained investigation of the 

social aspects of mathematics learning. This paper discusses some of the issues raised 

by the use of these technologically innovative facilities and offers possible resolutions 

with the intention to inform the future use of such research facilities for investigating 

mathematics learning and its promotion in classroom settings. 

LEARNING FROM VIDEO-BASED CLASSROOM RESEARCH 

As a focus of educational research, learning and its promotion require investigation at 

dimensions that extend from the neurological to the sociocultural, in a variety of 

settings both institutionalised and personal, and with respect to all conceivable 

attributes, inclinations and skills, from aspects of recall within specific knowledge 

domains to strategies for self-regulation. Sophisticated research approaches and tools 

can help researchers to investigate the complex processes involved in learning in 

various settings. Janik and Seidel (2009) reported how video technology supports more 

sophisticated research designs, requiring complex theoretical frameworks modelling 

mediating processes between teaching and learning outcomes using multi-level 

analyses (Clarke, et al., 2012; Ulewicz & Beatty, 2001). 

The laboratory classroom at The University of Melbourne is able to record classroom 

social interactions with a rich amount of detail. It was purposefully designed and built 

to allow simultaneous and continuous documentation of classroom interactions using 

multiple cameras and microphones. The facility has been utilised by several research 

projects since its launch in March 2015, one of which is the Social Unit of Learning 

project, which aims to examine individual, dyadic, small group (four to six students) 

and whole class problem solving and learning in mathematics and the 

associated/consequent learning. This paper discusses the new insights and challenges 

that the laboratory classroom has provided with illustrative examples from the Social 

Unit of Learning project. A brief overview of the laboratory classroom and a 

description of the project are provided, followed by a reflection on the methodological 

issues. 
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Task 1 

Individual work 

Task 2 

Pair work 

Task 3 

Small group work 

Pair 2 

Student 3 

Student 4 

Student 1 

Student 2 

Group 1 

Pair 1 

THE LABORATORY CLASSROOM 

The laboratory classroom is a 129 sq. m. teaching space that resembles a typical 

classroom but is fitted with high definition audio-visual recording equipment and 

physically connected to an adjacent Control Room via a one-way window. Lessons 

given in the research classroom can be recorded through up to 16 high-definition video 

channels and up to 32 fixed and portable microphones. In the Control Room are screen 

monitors and computer equipment that allow a technical team to control and monitor 

the data generated by the recording equipment in the research classroom. Researchers 

can also observe the activities within the research classroom from the Control Room as 

the lesson progresses, either by direct observation through the one-way viewing 

window or on any of the monitors displaying the images recorded by the different 

video cameras and by listening to any of the audio channels. Observation is also 

possible via live streaming of selected video outputs to remote locations. The 

laboratory classroom affords a variety of collaborative research modes. 

THE SOCIAL UNIT OF LEARNING PROJECT 

The Social Unit of Learning project investigates the social phenomena that 

characterise learning processes in a mathematics classroom. The project uses the 

facilities of the laboratory classroom to record the interactions of an intact class of 

students (20 to 26 students per class) and their teacher as they engage in purposefully 

developed mathematical activities. A typical investigative session takes 50 to 60 

minutes, where students attempt tasks individually, in pairs, and in groups of four to 

six. Figure 1 illustrates one of the activity configurations utilised in the project. The 

sessions are designed to facilitate recordable (visible and audible) social interactions, 

necessitated by the obligation to solve content-specific, open-ended mathematical 

tasks collaboratively. 

 

 

 

 

 

 

 

 

 

Figure 1: Student grouping for three tasks within a single investigative session. 

The laboratory classroom allows the generation of continuous video and audio records 

of problem solving and associated learning for every student in the class in addition to 
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digitised copies of student written work from the activities. A team-based 

multitheoretic approach has been employed which involves parallel, complementary 

analyses of data generated by the facility as described above. 

As a general principle, technical innovation must be scrutinised for its methodological 

consequences and implications. The laboratory classroom provides a useful example 

because of the complexity and scale of the data generated. Four methodological issues 

are raised in this paper with suggested resolution. The issues include: the compromise 

between data prescription and claims of comprehensive documentation; the 

information provided by different data types and the challenge of their interconnection; 

the tension between authenticity and control; and the authority that may be claimed for 

any conclusions arising from such research. These issues are not unique to the 

laboratory classroom, and warrant the attention of all researchers in mathematics 

education, whatever methodology or design they employ. 

Data prescription and claims of comprehensive documentation 

Despite the richness of the records generated in the Social Unit of Learning project, we 

are very aware that the types of data being generated, the means of data generation, and 

the methods of analysis are predicated on the research design prescribed by the 

research team (Clarke, Mitchell, & Bowman, 2009) and can never claim to be 

comprehensive in any absolute sense. There is no intention to advocate either that more 

detailed records bring us closer to some spurious “classroom reality” nor that more 

detail is intrinsically better. Researcher choice is central. 

Issue: Data generation is a process of selection from available information, 

particularly when the data source is as rich as the laboratory classroom. This selection 

runs the risk of being self-fulfilling with respect to the research questions posed 

(Clarke, 2011). 

Resolution 1 – Juxtaposed Accounts. The same detail that demands these acts of 

selection, provides the opportunity for multiple parallel accounts that can then be 

juxtaposed for purposes of cross-validation and elaboration (Clarke, et al., 2012). 

Corollary: In studies where the data source is less extensive (e.g., a questionnaire, an 

interview, or a single camera observation), the process of selection just occurs earlier 

(e.g., at the point of instrument development). In the laboratory, those acts of selection 

are both more visible and able to be addressed more effectively, through the 

juxtaposition of “complementary accounts” (Clarke, 1998). 

Resolution 2 – Supplementary Data. In addition, analysis of classroom activity can 

often involve the attribution of intention and motivation to the participants. While 

classroom observation, via video or otherwise, is one way to examine a person’s 

intentions and motivation, other sources of information, such as video-stimulated 

post-lesson interviews, can also be employed to inform inferences of intention of the 

person from such observation (Clarke, et al., 2009). Such interviews offer insights into 

participant motivation and the participants’ interpretations of each others’ actions. The 

juxtaposition of different interviewees’ accounts of their actions and their 

interpretations of the actions of others can reveal important differences (and 
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similarities) between participants’ perceptions of the activities of the mathematics 

classroom, greatly assisting the interpretation of their documented actions. 

Connections between multiple data types 

The project has generated several forms of data: digitised copies of all written material 

produced by the students; copies of PowerPoint presentations and written instructional 

material used by the teacher; video footage of all of the students working individually, 

in pairs, in groups, and in whole class discussion during the lesson; video footage of 

the teacher tracked throughout the session; and transcripts of all teacher and student 

speech. Activities recorded in the laboratory classroom generate a great deal of 

information, potentially translatable into many types of data (e.g., visual, audio, or 

textual), with each data type offering a distinctive perspective.  

Issue: How can these multiple data types be connected in a coherent descriptive or 

even explanatory account of the phenomena being studied? 

Resolution 1 – Structured Interconnection to Facilitate Explanation. With access 

to these multiple data types, when examining a particular piece of written work from a 

group task, we can do more than just speculate about how the students constructed 

their response – we can also replay the video footage and study the discussions that the 

students engaged in during the task. Strategic use of individual and dyadic modes in 

the research design allows group interactions to be cross-referenced to pair and 

individual problem solving immediately preceding the group work, allowing the 

tracing of the processes that lead to particular learning products. This connective 

record can document the origins or development of a specific idea or intention of the 

students during a session and connect the group product to the established problem 

solving skills and inclinations of the participating students, whether acting individually 

or as dyads. 

Resolution 2 – Account Connection through Common Data. By selecting each 

element or combination of elements, the researcher foregrounds a particular aspect of 

the classroom activity, while relegating other elements to the background. It is possible 

to generate parallel data sets from the video (and other) records and to conduct parallel 

analyses of these data sets. In this way, the researcher generates complementary 

accounts (Clarke, 1998), each using a different theoretical lens and a different 

analytical approach (Clarke, et al., 2012). Since these complementary accounts relate 

to events in the same setting, possibilities are created for connections between both the 

accounts and the theories from which they were generated. Emergent commonalities 

and tensions between the complementary interpretive accounts raise questions about 

analogous commonalities and tensions between the underlying theories and the 

methodological assumptions arising from those theories. It is the detailed records 

generated through the laboratory classroom that make possible the parallel analyses of 

the common set of records of classroom activities and artefacts; parallel analyses of the 

same students engaged in the same mathematical activities at the same time in the same 

setting. 
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Tension between authenticity and control 

Since our focus was on recording and analysing student-student interactions with 

minimal distracting interruption, the teacher protocol minimised the teacher’s role, 

even though this reduced the extent to which the recorded practice replicated the 

group’s normal classroom behaviour. When designing the sessions for implementation 

in the laboratory classroom facility, care is required to balance the need for control in 

an experimental environment and the freedom for the participants to interact and 

behave as they would in a naturalistic classroom setting. Conscious decisions are 

required to specify the particular mathematical activities that the students are going to 

engage in and the kinds of responses and feedback that the teacher is permitted to 

provide to the students. In order to maximise the clarity of the documentation of the 

social interactions within the classroom, even specific seating arrangements are 

prescribed. Each instruction that is given to the teacher and the students by the research 

team essentially constrains some aspect of their freedom to behave and interact, but 

with the purpose of maximising the visibility of some valued behaviour. The 

distinction between experimental and naturalistic conditions will always be a 

consideration in an environment like the laboratory classroom, which must seem 

“artificial” from the perspective of the visiting teacher and students. 

Issue: We are studying student-student social interactions for the purpose of 

understanding social learning processes. This is a legitimate focus for an experimental 

research study. However, we would like the social processes recorded to correspond as 

closely as possible to the students’ usual practice, despite their occurrence in an 

“artificial” laboratory classroom; a delicate balance. 

Resolution – Maximise Engagement through Strategic Task Selection. Although 

the teacher and students seemed to be aware of the presence of the cameras and the 

microphones in the laboratory classroom and the one-way window adjacent to the 

room, rather than being totally inhibited, they appeared to be able to re-establish a way 

to interact and engage with the prescribed activities in this new environment drawing 

from existing social norms and patterns of behaviours. As indicators of this lack of 

inhibition, some students used inappropriate language during group discussion, while 

others spontaneously raised their hands to seek clarification from the teacher, and there 

was evidence of humour and lively spoken interaction (excerpt below). This suggests 

that the research design has not totally stifled behaviours and interactions that would 

be typical in their normal classroom environment. 

Natalie and Aruna were trying to work out the age of and the relationship between five 

members of a household if their average age were to be 25. 

Natalie: … 27, 5, 25. Twenty something - 20 something, okay. Twenty something, 

okay? Okay. How old should your brother be? Like … 

Aruna: My sister's younger than me. 

Natalie: I have three older brothers so my brothers - if I'm in Year 7, my brother 

could be like 16. My brother is 16 so - wait. You want a sister or brother? 
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Aruna: Any. 

Natalie: Okay. We'll just do brother. 

Aruna: There - I'm pretty sure they're the same except for the body parts. 

(Laughter) 

Natalie: Okay. You don't have to say that. 

(Laughter) 

The conversation between Natalie and Aruna illustrates the ease that the students 

displayed when completing the problem solving tasks during the investigative session 

while being filmed. In this particular case, student engagement with the mathematical 

tasks acted to minimise the distraction that might have been caused by unfamiliar 

elements in the environment. 

Authority claims 

Researchers in any research setting, experimental or naturalistic, need to be very 

careful when making claims that extend beyond their research studies. By its nature, an 

experimental study in a laboratory classroom cannot claim to replicate the activities 

and relationships that one might find in the students’ accustomed classroom at school. 

Questions regarding generalisability of findings might be asked of any clinical study 

where the focus of investigation is the identification of attributes assumed to be so 

innate to the functioning individual as to be generalisable simply from their repeated 

occurrence (e.g., clinical studies of brain function). 

Issue: To what extent can findings based on data generated from such a laboratory 

classroom facility be extrapolated beyond the research context? In other words, what 

warrant can the researcher claim for the legitimate extrapolation of their findings to 

other settings or other individuals? 

Resolution. Any claims of generalisability beyond the research setting must be aligned 

with the purpose of the research. If the purpose of the project were to characterise 

typical mathematics classroom practice as it occurs in schools in a given community, 

then the laboratory classroom would not serve such an exploratory purpose well. 

However, in the case of the Social Unit of Learning project, it is our claim that the 

particular phenomenon on which the study is focused (student social interaction) can 

be re-created in the laboratory classroom in ways that legitimately resemble those 

occurring in settings to which the findings might be extrapolated. 

In the case of the Social Unit of Learning project, the essential requirement is that the 

social interactions between students when engaged in the collaborative solution of 

mathematical tasks resemble those that would pertain in other settings, such as school 

classrooms. The physical similarity between the laboratory classroom and classrooms 

with which the students were familiar was quite high. The teacher has confirmed that 

the tasks were not ones that the students would find unusual. The people with whom 

each student must interact were all familiar: the student’s usual teacher and classmates. 
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The presence of these familiar elements encourages confidence that the function 

served by social interaction was highly similar to the students’ normal mode of social 

interaction. The lack of inhibition in the students’ behaviour provided further 

encouragement in the authenticity of their social interactions. 

On these grounds, it can be claimed that findings arising from the research project 

provide evidence of possible links between certain conditions that would afford 

particular learning processes and associated learning products. Only through repeated 

records of the same “chain of actions” for a variety of individuals and group 

combinations can we be confident of the claims being made (Makel & Plucker, 2014). 

Because of the capability of simultaneously documenting the activities of up to six 

groups of students responding to essentially the same stimuli (instructions, task and 

environment), the data generated through the use of the laboratory classroom 

immediately affords comparison of such chains of action across the different 

participant student groups. Repetition with other classes provides further confirmation 

or refutation of any emergent hypotheses. 

The use of the laboratory classroom provides the opportunity for a controlled 

re-construction or simulation of the phenomenon of interest, as it might occur in a 

“real-life” mathematics classroom. It can be readily acknowledged that other 

phenomena may occur very differently in the students’ normal classroom. The 

authority for the validity and utility of any findings rests on the validity claim 

specifically for the phenomenon of interest, in this case, student-student interactions 

when engaged in mathematical problem solving. Analysis of the successful 

re-construction of the phenomenon of interest generates speculation, hypotheses and 

insights into the function of social interactions in other classroom situations. This may 

in turn lead to testing of hypotheses in further experiments within the laboratory 

classroom or in brain-imaging facilities, or outside the research facility in 

naturally-occurring classroom settings. 

FINAL THOUGHTS 

It is a paradoxical aspect of the use of a laboratory classroom that its purpose is to 

accommodate the complexity of social phenomena, while limiting that complexity 

through the manipulation of the conditions framing the participants’ activities. 

Constraint on complexity at the macro (whole class, whole lesson, whole curriculum, 

whole school) level is accompanied by the need to replicate complexity at the “micro” 

level; that is, with respect to the phenomenon being studied, in such a way that its 

occurrence is a valid representation of the form it might take in other non-laboratory 

settings. It is precisely this balance between authenticity and control that has made 

learning research so difficult to undertake in “authentic” classrooms. 

A laboratory classroom offers possibilities for the structured, rigorous, fine-grained 

investigation of mathematics classroom practice. Its research use necessitates 

decisions concerning what to constrain and what to emulate within the laboratory 

classroom setting, and places in juxtaposition the availability of multiple data types 
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and the constraints inherent on the inferences possible from each data type. Our 

purpose in this paper has been to draw attention to the nature of some of these 

decisions. The challenges and possibilities identified in this paper require careful 

consideration if laboratory classrooms are to usefully contribute to mathematics 

educational research and to research on mathematics learning in particular. 
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The study aimed to improve Year 4 pupils’ proficiency in measurement formulae 

(perimeter, area and volume formulae) through the Concrete-Pictorial-Abstract 

(CPA) approach. The study employed the non-equivalent control group design and two 

intact Year 4 classes in a National School were randomly assigned to the experimental 

group (37 pupils) and control group (35 pupils). The experimental group learned 

measurement formulae through the CPA approach while the control group learned the 

formulae through the conventional approach for two weeks. The results of the one-way 

ANCOVA showed that there are significant differences in the post-test mean scores of 

proficiency in measurement formulae between the experimental group and the control 

group with the pre-test scores as covariates favouring the experimental group.  

BACKGROUND OF THE STUDY 

The study of measurement formulae is important because it offers opportunity for 

learning and applying other mathematical concepts and skills such as number 

operations, geometrical ideas, and notions of function (National Council of Teachers 

of Mathematics, 2000). As such, measurement formulae namely perimeter, area and 

volume formulae form an important part of the Malaysian primary school mathematics 

curriculum starting from Year 4 in which pupils begin to learn how to find the 

perimeter of squares, rectangles, triangles and regular polygons in the new Standard 

Curriculum for Primary Schools. They also begin to calculate the area of squares, 

rectangles and triangles using square grid and formulae as well as calculate the volume 

of cubes and cuboids using 1 cm3 unit cubes (Ministry of Education Malaysia, 2013). 

At the end of Year 6, primary pupils’ proficiency in measurement formulae is assessed 

in the Mathematics papers of the Primary School Achievement Test, which is a 

national examination taken by all pupils before they leave for secondary school.  

However, the Malaysian Examinations Syndicate (MES) reported that Year Six pupils 

lacked proficiency in measurement formulae as assessed in the national examinations. 

For instance, in calculating the perimeter of a whole diagram consisting of three 

congruent right-angled triangles with two of the triangles having a common 

hypotenuse to form a rectangle, the common mistakes of Year Six pupils were: (i) 

adding the common hypotenuse which is located inside the diagram; or (ii) calculating 

the perimeter of one right-angled triangle and then multiplying the perimeter by three 

(MES, 2005). In calculating the area of a shaded region consisting of two right-angled 
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triangles, the common mistakes of Year Six pupils were: (i) calculating the area of a 

triangle using the area formula of a rectangle; (ii) calculating the area of one of the two 

right-angled triangles; or (iii) calculating the perimeter of the shaded region (MES, 

2007). In calculating the volume of a cube with edges 6 cm long, the common mistakes 

of Year Six pupils were: (i) adding the length of 6 edges (6 + 6 + 6 + 6 + 6 + 6); or (ii) 

multiplying the length of 2 edges (6 x 6) (MES, 2010). In addition, Malaysian Form 2 

students' proficiency in measurement formulae was unsatisfactory in the Trends in 

International Mathematics and Science Study 2011. For example, for the released item 

(ID_M052084) on calculating the area of a square with a given perimeter of 36 cm, 

only 40% of Malaysian Form Two students were able to answer it correctly. As a 

result, their performance was ranked 27th and the percent correct was significantly 

lower than the international average of 47%. For the released item (ID_M042201) on 

finding the length of a rectangular box with a given volume of 200 cm3, only 42% of 

Malaysian Form Two students were able to answer it correctly. Consequently, their 

performance was ranked 23rd and the percent correct was slightly lower than the 

international average of 43%. For the released item (ID_M032116) on finding the 

perimeter of a square with a given area of 144 cm2, only 43% of Malaysian Form Two 

students were able to answer it correctly. As a result, their performance was ranked 

25th and the percent correct was slightly lower than the international average of 45% 

(Foy, Arora & Stanco, 2013).  

Hence, there is an urgent need to improve Malaysian primary pupils' proficiency in 

measurement formulae starting from the first year they learn the formulae that is Year 

4. One potential approach to improving their proficiency in measurement formulae is 

the Concrete-Representational-Abstract (CRA) sequence or Concrete-Pictorial- 

Abstract (CPA) approach which is based on Bruner's (1964) three modes of 

representation (enactive, iconic and symbolic). The CRA sequence has been reported 

to be effective with students who have difficulties with mathematics (Jordan, Miller, & 

Mercer, 1998), in remediating deficits in basic mathematics computation (Morin & 

Miller, 1998), in the teaching of place value (Peterson, Mercer, & O’Shea, 1998), and 

subtraction with regrouping (Flores, 2010). The CRA sequence has also been reported 

to have positive effect on low achievers in fractions (Butler, Miller, Crehan, Babbit, & 

Pierce, 2003), word problems (Maccini & Hughes, 2000), simple linear functions 

(Witzel, 2003) and advanced linear functions (Witzel, Mercer, & Miller, 2003). Apart 

from these studies, the CPA approach has been reported to be effective with students 

who have difficulties in quadratic factorisation (Leong, Ho, & Cheng, 2015; Leong, 

Yap, Thilagam, Karen, Quek, & Tan, 2010). According to Witzel (2005), the CRA 

sequence is beneficial for students with and without learning difficulties and from 

small-group settings to whole-class instruction. In addition, Fuchs, Fuchs, and 

Hollenback (2007) advocate the use of the CRA sequence to teach place value, 

geometry, and fractions for first and third graders. Moreover, according to Leong et al. 

(2015), the use of the CRA sequence to teaching mathematical concepts, particularly at 

the elementary level has been shown to be effective. But, to date research on improving 
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primary pupils' proficiency in measurement formulae based on the Mathematical 

Proficiency Model (National Research Council, 2001) through the CPA approach is 

sparse. 

Theoretical Framework 

The CPA approach is based on Bruner's (1966) three modes of representation namely 

enactive, iconic and symbolic representations. It is a three-stage learning process in 

which pupils learn measurement formulae through the physical manipulation of 

concrete objects, followed by learning through pictorial representations of the concrete 

objects, and ending with learning through abstract symbols. Proficiency in 

measurement formulae, which is based on the Mathematical Proficiency Model 

(National Research Council, 2001) consists of five intertwined components or strands: 

(1) conceptual understanding which refers to comprehension of measurement 

formulae; (2) procedural fluency which refers to skill in carrying out procedures 

involving measurement formulae flexibly, accurately, efficiently and appropriately; 

(3) strategic competence which refers to ability to formulate, represent and solve 

problems involving measurement formulae; (4) adaptive reasoning which refers to 

capacity for logical thought, reflection, explanation and justification of solutions to 

problems involving measurement formulae; and (5) productive disposition which 

refers to habitual inclination to see measurement formulae as sensible, useful and 

worthwhile, coupled with a belief in diligence and one's own efficacy.  

Objective of the Study  

The objective of this study was to improve Year 4 pupils’ proficiency in measurement 

formulae through the CPA approach. Specifically, this study aimed to answer the 

following research question:  

Is there a significant difference in the proficiency in (1) perimeter formulae of a square, 

rectangle and triangle, (2) area formulae of a square, rectangle and triangle, and (3) 

volume formulae of a cube and cuboid between Year 4 pupils who learned the 

formulae through the CPA approach and Year 4 pupils who learned the formulae 

through the conventional approach?  

Methodology 

The research design of this study is the non-equivalent control group design which is a 

quasi-experimental research design. Two intact Year 4 classes were randomly selected 

from a National School in Penang, Malaysia and each class was randomly assigned to 

the experimental group and the control group. There were 37 pupils in the 

experimental group and 35 pupils in the control group. A multi-strand test for assessing 

Year 4 pupils’ proficiency in measurement formulae was developed by the researchers 

based on the National Research Council's (2001) Mathematical Proficiency Model and 

the Malaysian Year 4 Mathematics Curriculum and Assessment Standard Document of 

the Primary School Standard Curriculum (Ministry of Education Malaysia, 2013). The 

multi-strand test consists of eight subtests, namely Perimeter Formula of a Square, 



Chew et al. 

 

2-236 PME 41 – 2017  

Perimeter Formula of a Rectangle, Perimeter Formula of a Triangle, Area Formula of a 

square, Area Formula of a Rectangle, Area Formula of a Triangle, Volume Formula of 

a Cube and Volume Formula of a Cuboid.  Each subtest comprises five items for 

assessing the five strands of proficiency in measurement formulae, respectively. The 

first, second, third, fourth and fifth items in each subtest assess the strands of 

conceptual understanding, procedural fluency, strategic competence, adaptive 

reasoning and productive disposition, respectively. In addition, the fifth item in each 

subtest consists of five sub-items for assessing the five aspects of productive 

disposition, namely sensible, useful, worthwhile, diligence and one's own efficacy. 

The test was validated by a panel of three experienced National School primary school 

mathematics teachers. The scoring rubric was subsequently developed by the 

researchers and it was validated by the same panel of experienced primary school 

mathematics teachers. The validated multi-strand test was then piloted in a National 

School to determine its reliability. Table 1 shows the values of Cronbach’s alpha for 

the subtests. The high values of Cronbach’s alpha indicate a high degree of internal 

consistency of the items in the subtests and suggest that they are reliable to be used in 

the actual study. 

 

Subtest Cronbach’s Alpha 

Perimeter Formula of a Square .97 

Perimeter Formula of a Rectangle .88 

Perimeter Formula of a Triangle .90 

Area Formula of a Square .83 

Area Formula of a Rectangle .84 

Area Formula of a Triangle .85 

Volume Formula of a Cube .89 

Volume Formula of a Cuboid .92 

 

Table 1: Values of Cronbach’s Alpha for the Subtests 

 

A workshop was conducted to train the Year 4 mathematics teacher in the 

experimental group to teach the measurement formulae using the CPA approach.  

Following this, a pre-test was administered to the pupils in both the experimental and 

control groups using the multi-strand test of proficiency in measurement formulae. 

After the pre-test, the experimental group learned measurement formulae through the 

CPA approach while the control group learned measurement formulae through the 

conventional approach for two weeks. Lastly, a post-test was administered to the 

pupils in both the experimental and control groups using the parallel form of the 

multi-strand test of proficiency in measurement formulae. 
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Results 

For the perimeter formulae, the results of the one-way ANCOVA showed that: (1a) 

there is a significant difference in the post-test mean scores of proficiency in perimeter 

formula of a square between Year 4 pupils who learned the formula through the CPA 

approach (M = 11.57, SD = 6.06) and Year 4 pupils who learned the formula through 

the conventional approach (M = 2.57, SD = 0.74) with the pre-test mean scores of 

proficiency in perimeter formula of a square as a covariate, F (1, 69) = 69.38, p < .05, 

partial 2 = 0.50; (1b) there is a significant difference in the post-test mean scores of 

proficiency in perimeter formula of a rectangle between Year 4 pupils who learned the 

formula through the CPA approach (M = 12.59, SD = 5.61) and Year 4 pupils who 

learned the formula through the conventional approach (M = 6.46, SD = 2.89) with the 

pre-test mean scores of proficiency in perimeter formula of a rectangle as a covariate, 

F (1, 69) = 14.00, p < .05, partial 2 = 0.17; and (1c) there is a significant difference in 

the post-test mean scores of proficiency in perimeter formula of a triangle between 

Year 4 pupils who learned the formula through the CPA approach (M = 10.43, SD = 

5.48) and Year 4 pupils who learned the formula through the conventional approach 

(M = 2.49, SD = 1.27) with the pre-test mean scores of proficiency in perimeter 

formula of a triangle as a covariate, F (1, 69) = 30.10, p < .05, partial 2 = 0.30.  

With regards to the area formulae, the results of the one-way ANCOVA showed that: 

(2a) there is a significant difference in the post-test mean scores of proficiency in area 

formula of a square between Year 4 pupils who learned the formula through the CPA 

approach (M = 14.54, SD = 5.21) and Year 4 pupils who learned the formula through 

the conventional approach (M = 7.74, SD = 1.99) with the pre-test mean scores of 

proficiency in area formula of a square as a covariate, F (1, 69) = 34.76, p < .05, partial 
2 = 0.34; (2b) there is a significant difference in the post-test mean scores of 

proficiency in area formula of a rectangle between Year 4 pupils who learned the 

formula through the CPA approach (M = 12.89, SD = 4.58) and Year 4 pupils who 

learned the formula through the conventional approach (M = 6.94, SD = 2.36) with the 

pre-test mean scores of proficiency in area formula of a rectangle as a covariate, F (1, 

69) = 20.64, p < .05, partial 2 = 0.23; and (2c) there is a significant difference in the 

post-test mean scores of proficiency in area formula of a triangle between Year 4 

pupils who learned the formula through the CPA approach (M = 13.32, SD = 5.78) and 

Year 4 pupils who learned the formula through the conventional approach (M = 4.51, 

SD = 2.45) with the pre-test mean scores of proficiency in area formula of a triangle as 

a covariate, F (1, 69) = 45.96, p < .05, partial 2 = 0.40.  

For the volume formulae, the results of the one-way ANCOVA showed that: (3a) there 

is a significant difference in the post-test mean scores of proficiency in volume 

formula of a cube between Year 4 pupils who learned the formula through the CPA 

approach (M = 14.38, SD = 6.90) and Year 4 pupils who learned the formula through 

the conventional approach (M = 4.91, SD = 2.61) with the pre-test mean scores of 

proficiency in volume formula of a cube as a covariate, F (1, 69) = 45.24, p < .05, 

partial 2 = 0.40; and (3b) there is a significant difference in the post-test mean scores 
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of proficiency in volume formula of a cuboid between Year 4 pupils who learned the 

formula through the CPA approach (M = 14.11, SD = 5.97) and Year 4 pupils who 

learned the formula through the conventional approach (M = 4.66, SD = 2.53) with the 

pre-test mean scores of proficiency in volume formula of a cuboid as a covariate, F (1, 

69) = 57.11, p < .05, partial 2 = 0.45.  

Discussion and Conclusion 

The results of this study showed that there are significant differences in the post-test 

mean scores of proficiency in measurement formulae (perimeter, area and volume 

formulae) between Year 4 pupils who learned the formulae through the CPA approach 

and Year 4 pupils who learned the formulae through the conventional approach, with 

the experimental group outperforming the control group in all cases. These results 

seem to provide further evidence to support the effectiveness of the CRA sequence as 

reported in previous studies (Butler et al., 2003; Flores, 2010; Jordan et al., 1998; 

Maccini & Hughes, 2000; Morin & Miller, 1998; Peterson et al., 1998; Witzel, 2003; 

Witzel et al., 2003) and the CPA approach as reported by Leong et al. (2010) and 

Leong et al. (2015).  

According to Bruner (1966), the process of moving through the three modes of 

representation (enactive, iconic and symbolic) in the CPA approach theoretically 

reflects the “usual course of intellectual development” (p. 49) of the pupils in acquiring 

higher proficiency in measurement formulae. In other words, the CPA approach seem 

to facilitate the experimental group pupils to comprehend the measurement formulae, 

carry out the procedures involving measurement formulae, solve problems involving 

measurement formulae, explain their solutions to problems involving measurement 

formulae, and see measurement formulae as sensible, useful and worthwhile, coupled 

with a belief in diligence and one's own efficacy. In sum, the results suggest that the 

experimental group pupils are more able to understand, compute, solve, reason and 

possess a productive disposition toward the measurement formulae as compared to the 

control group pupils. In addition, according to Bruner (1966), the CPA approach 

allows the experimental group pupils to “fall back” to the concrete or pictorial 

representations of the measurement formulae if they cannot understand the meanings 

of the notations in symbolic representation or if they cannot recall how to solve 

problems involving measurement formulae. 

In conclusion, the results of this study suggested for this sample of 72 Year 4 pupils 

from a National School that the CPA approach significantly improved their proficiency 

in measurement formulae. Because this study employed the non-equivalent control 

group design which is a quasi-experimental research design, we acknowledge our 

limitations in making any generalizations from the results of this study.  
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NOVICE TEACHER KNOWLEDGE ON FACTORIZATION 

Hyungmi Cho, Miyeong Na and Oh Nam Kwon 

Seoul National University 

 

This study examined how teachers utilize their college mathematics knowledge in the 

context of school mathematics. Focusing on the unique factorization domain (UFD) in 

college mathematics and polynomial factorization in school mathematics, we explored 

teacher knowledge of UFD and how teachers’ factorization concepts occur in the 

teaching context. We conducted semi-structured interviews with eight novice teachers. 

The interview tasks were developed to investigate how teachers deal with number 

factors when factorizing in school mathematics. The intentions of teachers who 

showed an appropriate UFD differed with regard to teaching polynomial factorization 

in the teaching context. Teachers who did not demonstrate an appropriate knowledge 

of UFD, could not explain the basis for their responses consistently. The result of this 

study can serve as a resource for teacher educators when teaching UFD in abstract 

algebra in the future. 

INTRODUCTION 

What role does college mathematics knowledge play as teacher knowledge for 

teaching mathematics? To answer this question, much research has been devoted to 

mathematics teacher knowledge (see e.g. Ball, Hill & Bass, 2005; Evens & Ball, 2009; 

Buchholtz et al., 2013). While these studies have been useful in providing us with the 

general features of mathematical knowledge for teaching, there is a lack of specific 

research on how college mathematical knowledge may contribute to teaching school 

mathematics. This study examined how teachers utilize their college mathematics 

knowledge in the context of school mathematics using the concepts that intersect 

between college mathematics and school mathematics. We focus on the concept of 

unique factorization domains (UFD) in college mathematics and polynomial 

factorization in school mathematics. We examine the understanding of polynomial 

factorization of novice teachers with relatively vivid advanced mathematical 

experience, in order to investigate what influence these teachers’ advanced 

mathematical experience has on their teaching of polynomial factorization. The 

research questions are as follows: How do novice teachers understand polynomial 

factorization from a college mathematics perspective? How do novice teachers’ 

polynomial factorization concepts emerge in a teaching context? 

THEORETICAL BACKGROUND 

Ball, Thames, and Phelps (2008) explored the different types of knowledge required 

for mathematics teachers and classified the domains of subject matter knowledge and 
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pedagogical content knowledge into three sub-domains each, as shown in Figure 1, to 

conceptualize six types of teacher knowledge.  

 

Figure 1: Mathematical knowledge for teaching (MKT) (Ball et al., 2008, p. 403). 

They explained the meaning of the six types of knowledge as follows. Common 

content knowledge (CCK) is the mathematical knowledge that well-educated people 

acquire. In order to do the work that teachers assign to their students, teachers need this 

knowledge. Special content knowledge (SCK) is mathematical knowledge that goes 

beyond that expected of any well-educated adult. It involves decompressing 

mathematical knowledge in order to make particular aspects of it perceptible to 

students or to identify the source of students’ difficulties. Horizon content knowledge 

(HCK) is knowledge about the way in which mathematical themes are related in 

mathematical curricula. Knowledge of content and students (KCS) is pedagogical 

content knowledge that compounds knowing about students and knowing about 

mathematics. For example, knowledge of an error typically derives from experience 

with students and knowledge of their thinking would be one aspect of KCS. 

Knowledge of content and teaching (KCT) is pedagogical content knowledge which is 

needed to teachers to know flows of particular content for teaching, and to decide 

which examples to start with and which examples to use to take students deeper into 

the content. Teachers need to evaluate the instructional advantages and disadvantages 

of the representations used to teach a specific idea. Knowledge of content and 

curriculum (KCC) is pedagogical content knowledge regarding how the contents of 

mathematical curricula are described and how to extend content throughout 

mathematical curricula. 

The vast majority of these studies (see e.g., Hill at el., 2004; Davis & Simmt, 2006) 

focus on teachers’ preparation and knowledge in elementary and lower secondary level 

mathematics, where the distance to university level mathematics is evident. In this 

paper, our focus will be on how college mathematics may contribute knowledge that is 

relevant to the task of teaching school mathematics. 
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METHOD 

Since we considered novice teachers with the most recent college mathematics 

knowledge to be the most suitable participants for understanding how related college 

mathematics concepts are being used to understand school mathematics concepts, 

eight novice teachers who have been teaching in Korea were selected as our research 

participants. Six participants’ teaching careers is four months, and the other two 

participants had less than three years of experience. The most participants work in high 

school, and only one teacher works in middle school.  

We presented novice teachers with polynomial factorization tasks shown in Figure 2, 

and then conducted semi-structured interviews for one to two hours each. All study 

participants provided informed consent. All interviews were transcribed, and teachers 

with the same responses were categorized. In order to ensure the validity of the 

analysis, three researchers crosschecked the categories of teacher responses. 

The following tasks are related to polynomial factorization.  

1. Considering the polynomial  as an element of the polynomial rin

g Z[x], where the coefficients are integers, factorize it. If we consider this pol

ynomial as an element of the polynomial ring R[x] of which the coefficients ar

e real numbers, does the result of the polynomial factorization change?  

2. If a middle school student has asked you to what extent he or she needs to fact

orize the polynomial, how would you explain it? 

Figure 2: Polynomial factorization tasks 

Tasks are developed by the researchers. Task 1 was developed to explore how teachers 

used their knowledge on UFD to solve a polynomial factorization task. Task 2 was 

developed to examine what kind of teacher knowledge about polynomial factorization 

is revealed in the teaching context, and to explore the linkage between their college 

mathematics knowledge and taught knowledge. In mathematically, the polynomial 

factorization depends on polynomial ring. However, in Korea, there are no clear 

descriptions of the domain of polynomial factorization in the curricula or textbooks. 

For a detailed analysis of curricula and textbooks, see the submitted manuscript by 

authors (2016). In the polynomial ring with integer coefficient (Z[x]), the number 

factor becomes an irreducible polynomial as it is not an invertible element. So, 

considering number factor, it is factorized to 2(x-1)(x+3) uniquely. In the polynomial 

ring with rational number coefficient (Q[x]) or the polynomial ring with real number 

coefficient (R[x]), because all constant except 0 are invertible elements, it is able to be 

ignored in uniqueness of factorization. So, both (2x-2)(x+3) and (x-1)(2x+6) are 

uniquely factorized in Q[x] or R[x].  
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RESULTS 

Teacher knowledge from a college mathematics perspective 

Novice teachers’ responses to task 1 were categorized into four groups, and teachers 

were classified according to their responses regarding factorization in each polynomial 

ring. These categories of teachers’ responses are shown in Table 1. 

Teachers’ responses to task 1 Teachers 

Different 
2(x-1)(x+3) in Z[x], and ‘2’ does not matter in R[x] Teacher 1, 2, 3 

(x-1)(2x+6) in Z[x], and 2(x-1)(x+3) in R[x]  Teacher 4 

Same 
(x-1)(2x+6) or 2(x-1)(x+3) Teacher 5, 6, 7 

2(x-1)(x+3) Teacher 8 

Table 1: Teachers’ responses regarding factorization 

Among the four teachers who answered that the results of factorization in two 

polynomials had to be different, three teachers answered using the definition of UFD. 

They considered that the polynomial factorization in Z[x] should be 2(x-1)(x+3), and 

that it is unnecessary to extract the 2 in R[x]. All three teachers considered whether or 

not 2 is invertible in polynomial rings. They revealed appropriate mathematical 

knowledge and skills that most people who have learned abstract algebra acquire. Ball 

et al. (2008) refer to the mathematical knowledge we would expect a well-educated 

adult to know as common content knowledge (CCK). Thus, we analyzed them to have 

appropriate CCK. 

The other teacher, teacher 4, said, “After factorization of polynomials in Z[x], it can be 

factorized more in R[x],” and considered that it is factorized to (x-1)(2x+6) in Z[x], and 

to 2(x-1)(x+3) in R[x].  

Teacher 4: If we factorize in the real number coefficient, we can further decompose the 
integer. (…) I think that “2” should be extracted in real number 
polynomials. (…) These elements need to be irreducible elements, but I 
don’t know whether it should be different or not. 

It is necessary to pay attention to teacher 4’s understanding of factorization in bigger 

rings. Teacher 4 considered that there might be more factors in the bigger ring (in our 

study R[x]), than in the smaller ring (in our study Z[x]). It seems that teacher 4 knew 

about the irreducible polynomial (non-constant), but made the mistake of treating 

constants as irreducible factors when factorizing in a larger domain. We analyzed that 

teacher 4 did not have proper CCK. Although a limited understanding of polynomial 

factorization is seen in teacher 4’s response, this teacher recalled the significance of 

irreducible elements, so we cannot claim that this teacher lacks knowledge related to 

college mathematics in factorization. However, we can explain that teacher 4 only 

vaguely recalls what was learned in college. It seems that teacher 4 relied on partial 

memory of college mathematics knowledge. 
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The three teachers who answered that the results of factorization in two polynomial 

rings is the same, said the factorization in these two rings does not need to be different 

because they are factorized as multiples of two linear expressions. It seems that they 

did not attempt to link the task with definitions of UFD. In this case, whether we can 

conclude that these teachers did not have proper CCK, or whether it was simply not 

revealed, is unclear. However, the results of interview with these three teachers found 

that they could not grasp compounded forms of KCS and SCK, which comprise the 

knowledge to deal with constants in factorization problems at the school mathematics 

level (KCS), and the specialized mathematical content knowledge that was required to 

teach when applying college mathematics UFD in a school mathematics context 

(SCK).  

Teacher 8, who answered that the result of factorization in two polynomial rings was 

the same as 2(x-1)(x+3), considered that the 2 is a factor and explained it as follows:  

Teacher 8: I think. (…) the 2 can also be a factor in Z[x]. I think we can also consider the 
integer as a factor, (…) I remember that the factor of the polynomial 
corresponds with the divisor in (natural) numbers.  

Teacher 8 considered 2 as a factor in Z[x]. Because he gave the result as 2(x-1)(x+3) in 

both rings, we can conclude that he considered 2 as a factor in R[x]. Teacher 8 naturally 

expanded the meaning by linking polynomial factorization with the prime factorization. 

The number 2 is a prime factor in prime factorization and he expanded the meaning in 

R[x]. This led to misunderstanding 2 as a prime element (irreducible element) in R[x]. 

Because it is known that polynomial factorization and prime factorization can be 

similarly expressed, it seems that teacher 8 revealed SCK. However, we were unable to 

examine understanding regarding the meaning of irreducible polynomials in 

polynomial rings. 

Teacher knowledge in teaching context 

Teachers’ responses to task 2 were divided into two groups, and Table 3 shows a 

comparison of the responses to task 2 and task 1. Specifically, teacher 3 in one group, 

who responded 2(x-1)(x+3) in Z[x] and that 2 does not matter in R[x], argued 

differently from the other teacher in the same group. Furthermore, his response shows 

that the result of polynomial factorization in a school context is different from the 

result at college level. This pattern, whereby different claims were given in relation to 

the given polynomial factorization between the school context and college context, 

also appeared for teacher 7. We mainly describe the group containing teacher 3 and 

teacher 7, who differed in their responses regarding the knowledge that emerged in a 

teaching context and the knowledge from their college mathematics perspective.  
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Teachers 1, 2, and 3 clearly understood the meaning of UFD, and shared the 

knowledge that the results of polynomial factorization depends on polynomial rings. 

First, teacher 1, who responded that students do not have to pull out 2, considered the 

polynomial ring in the school context as Q[x]; therefore, this teacher mentioned that 

there was no need to pull out the 2 on the basis of college mathematics. We can identify 

that he was aware of how the content of school mathematics is related to that of college 

mathematics knowledge, which is termed HCK by Ball et al. (2008). On the other hand, 

teacher 2 did not clearly explain the domain of factorization that is handled at the 

middle school level. From teacher 2’s response that “I don’t think that students have to 

factorize uniquely,” he seems to regard the polynomial ring in the school context as 

Z[x]. Thus, he explained that 2(x-1)(x+3) is mathematically correct. Although he knew 

the mathematically correct answer, he claimed that there is no need to pull out 2 in 

school mathematics. Teacher 2 argued that polynomial factorization in school plays a 

role as a tool to solve equations. The above results show that teacher 1 and teacher 2 

understood the polynomial ring treated in the school context as Q[x] or Z[x], 

respectively. We analyzed that this knowledge influenced their understanding of the 

curricula as KCC. However, KCC emerged differently for teachers, because there are 

no clear descriptions of the domain of polynomial factorization in the curricula or 

textbooks. Teacher 3, who explained that the given polynomial in task 1 was factorized 

differently in the two polynomial rings, did not clearly express the domain of 

factorization dealt with in school mathematics. Teacher 3 considered that students had 

to be taught to pull out the 2 on the basis that it made the problem-solving process 

easier for them.  

According to three teachers who had proper CCK, they have different intentions in 

teaching polynomial factorization in a school context; these include maintaining rigid 

mathematical knowledge, the instrumental characteristics of knowledge, and making 

Responses to task 2 Teachers Relationship Teachers Responses to task 1  

‘2’ does not matter in school 

mathematics → (x-1)(2x+6) 

or   2(x-1)(x+3), both are 

possible 

Teacher  1 

Teacher  2 

Teacher  4 

Teacher  5 

 

Teacher 1 

Teacher 2 

Teacher 3 

2(x-1)(x+3) in Z[x],  ‘2’ 

does not matter in R[x] 

Different 

Teacher 4 
(x-1)(2x+6) in Z[x],  

2(x-1)(x+3) in R[x]  

‘2’ should be considered in 

school factorization → only  

2(x-1)(x+3) is correct in 

school mathematics 

Teacher  3 

Teacher  6 

Teacher  7 

Teacher  8 

Teacher 5 

Teacher 6 

Teacher 7 

(x-1)(2x+6) or 

2(x-1)(x+3) 
Same 

Teacher 8 2(x-1)(x+3) 

※ If teachers’ responses to task 2 correspond to their responses to task 1, lines (—) are used; if not, dots (∙∙∙) are used.  

Table 2: Relation between responses that middle school students are required to 

factorize and teachers’ responses regarding factorization 
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the problem easier to solve. Three teachers identified pedagogical issues that affect 

student learning, and evaluated the instructional advantages and disadvantages of 

treating number factor 2 in polynomial factorization. According to the MKT 

framework, combined knowing about teaching and knowing about mathematics, 

which is KCT, were used by three teachers.  

Teachers 5, 6, and 7, who understand polynomial factorization as multiples of two 

linear expressions such as (x-1)(2x+6) or 2(x-1)(x+3) can be separated into two groups. 

Teacher 5 mentioned that it does not matter whether or not 2 is pulled out in school 

mathematics. Teachers 6 and 7 stated that 2 should be considered in school 

factorization. While teachers 5 and 6 did not explain the basis for their responses 

consistently and concretely, teacher 7 presented his reasoning as follows.  

Teacher 7: School exams test how well a student has learned; therefore, students should 
be taught to factor out integers. The fundamentals of factorization involve 
factoring out “m” from “ma+mb.” I think the reasons why students do not 
pull out 2 in the polynomial factorization are due to lack of understanding 
of the rule given at school.  

Teacher 7 responded that students must be taught to pull out the 2 in order to follow the 

procedure of explanation in mathematics textbooks. We analyzed that teacher 7 had a 

didactic intention that students should implement the rules given in school 

mathematics. Teacher 7 showed an understanding of polynomial factorization at the 

school mathematics level in task 1, while knowledge that interprets by connecting this 

to college mathematics could not be observed in this teacher’s response. He explained 

that the common factor is first taught in the topic of polynomial factorization in middle 

school textbooks. Thus, he argued that students must factorize by pulling out the 

common factor 2. Additionally, he mentioned that students often make mistakes in 

ignoring the common factor 2. We analyzed that he showed an understanding of the 

common factor and the pedagogical flow of textbooks. In terms of MKT, combined 

KCT are identified. Furthermore, we analyzed that he grasped mistakes derived from 

his experience with students, and anticipated what students are likely to think. In terms 

of MKT, KCS are identified. 

CONCLUSION 

In this study, we examined how teachers are utilizing their college mathematics 

knowledge in the context of school mathematics. We identified that the knowledge 

taught by each teacher differed due to their individual PCK and didactic intentions. We 

have shown that there is a difference between knowledge that teachers consider 

mathematically correct and knowledge that students require. Teachers who knew about 

polynomial factorization at the college-level explicitly did not simply follow this 

knowledge to teach polynomial factorization in the school context. They sometimes 

modified that knowledge to suit the level of secondary school mathematics, but 

recognized how they were treating number factors in explaining polynomial 

factorization in a school context. Based on the results, we identified that HCK plays a 



Cho, Na and Kwon. 

 

2-248 PME 41 – 2017  

significant role in understanding secondary school mathematics from a higher 

standpoint.  
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NOTICING AFFORDANCES OF A TYPICAL PROBLEM 

Ban Heng Choy and Jaguthsing Dindyal 

National Institute of Education, Nanyang Technological University 

Typical mathematics problems, such as examination-type questions, are often used in 

classrooms to develop students’ procedural fluency. In this article, we describe and 

analyse what a secondary school mathematics teacher noticed about the affordances 

of such a problem, as well as how she orchestrated a mathematically productive 

discussion using the adapted problem in class. The findings suggest that a teacher’s 

productive noticing of the affordances offered by typical problems can enhance the 

learning experiences of mathematics students. 

INTRODUCTION 

Using high cognitive-demand tasks is critical for orchestrating productive discussions 

(Smith & Stein, 2011) during lessons. However, besides the development of concepts, 

teachers are also mindful about the concomitant development of procedural skills to 

prepare students for tests and examinations. Hence, the practice of using 

examination-type questions with a more teacher-centred teaching approach is 

prevalent in Singapore classrooms (Foong, 2009; Ho & Hedberg, 2005). This 

preference for using typical problems—standard examination or textbook 

problems—may reflect teachers’ belief that it is “important to prepare students to do 

well in tests than to implement problem-solving lessons” (Foong, 2009, p. 279), a 

classroom reality that cannot be ignored. Given teachers’ strong preference for using 

typical problems in the classroom, it would be interesting to explore the use of such 

questions to orchestrate rich discussions. This paper is therefore framed by the 

following question: Whether, and if so, how typical problems, such as 

examination-type questions, can be used to orchestrate productive mathematical 

discussions? Drawing on our preliminary findings from a larger study, we present a 

case study of Ms. Alice, a proficient secondary school mathematics teacher, to 

highlight how her productive noticing of the affordances offered by typical problems 

could provide a mathematical learning experience, aimed at developing students’ 

understanding of matrices. 

THEORETICAL CONSIDERATIONS 

Orchestrating Learning Experiences 

With the aim of supporting teachers to plan for more skilful improvisation, Smith and 

Stein (2011) propose five productive practices—anticipating, monitoring, selecting, 

sequencing and connecting—as a way to make “student-centered instruction more 

manageable” (p. 7). Anticipating, which occurs during lesson planning, refers to 

predicting students’ likely responses to the tasks. The other practices pertain directly to 
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the actual work of orchestrating discussions after teachers set students to work on the 

task: monitoring students’ responses while circulating in the classroom, selecting 

particular students’ answers, and purposefully sequencing these selected answers for 

presentation. Last but not least, teachers support students in making sense of the 

mathematical ideas by connecting these responses to make a mathematical point. To 

enact these practices, teachers would need to draw on appropriate mathematical 

knowledge to interpret students’ responses during lessons, and make the necessary 

pedagogical moves for advancing students’ thinking (Smith & Stein, 2011).  

Mathematics Teacher Noticing 

According to Kilpatrick, Swafford, and Findell (2001),  mathematics teachers who are 

proficient at orchestrating discussions should be able to examine the mathematical 

possibilities of instructional materials, adapt them for different student profiles, 

analyse students’ reasoning, and respond to the different methods students use in their 

work. Doing this work of ambitious teaching requires developing a keen awareness of 

the mathematical connections and having a different act in mind (Mason, 2002). 

Therefore, developing teachers’ eyes to see and the mind to make sense of these 

mathematical connections is critical for orchestrating learning experiences. 

Mathematics teacher noticing is an emerging construct that lies at the heart of these 

components of teaching expertise. It refers to what teachers attend to and how they 

interpret their observations to make instructional decisions (Mason, 2002; Sherin, 

Jacobs, & Philipp, 2011). Many studies (e.g., van Es (2011)) on teacher noticing used 

video studies and investigated what teachers noticed without giving explicit 

instructional aspects for teachers to direct their attention; other studies (e.g., Goldsmith 

and Seago (2011)) used teaching or learning artifacts to focus teachers’ attention to 

specific features of instruction. More recently, Choy (2015) brings task design into the 

realm of teacher noticing and his findings suggest that an explicit focus for noticing, 

and an emphasis on pedagogical reasoning can increase the likelihood of teachers 

making instructional decisions which promote students’ reasoning. Building on the 

Three-Point Framework by Yang and Ricks (2012), Choy (2015) highlights 

mathematics concepts, students’ confusion, and teachers’ courses of action as critical 

foci to facilitate productive noticing.  

Affordances of a Mathematics Task 

A typical problem, as described earlier, can certainly be used very procedurally by a 

teacher but can it be used in a more productive manner? What kinds of affordances do 

such problems offer to the teacher? In this context, using the perceptual psychologist, 

Gibson’s (1986) ideas, we can emphasise that: (1) an affordance for using a typical 

problem exists relative to the action and capabilities of the teacher, (2) the existence of 

the affordance is independent of the teacher’s ability to perceive it, and (3) the 

affordance does not change as the needs and goals of the teacher change. Gibson also 

highlighted that affordances in relation to an observer could be positive or negative 

which in our context may lead to productive or less productive use of the problems in 
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class by the teacher. Hence, to perceive the affordances of a typical problem means to 

be able to notice the characteristics of the task in relation to the particular 

understandings of the related concept in order to adapt the task for use in classrooms. 

But what should a teacher notice about a task so as to recognise its affordances? In this 

paper, we adopt Choy’s (2015) notion of productive noticing to investigate what a 

teacher noticed about the affordances of a typical mathematics problem. 

METHODOLOGICAL CONSIDERATIONS 

The data reported in this paper came from a larger study on orchestrating learning 

experiences in a secondary school mathematics classroom in Singapore. The study 

followed a design-based research approach to develop a toolkit for teachers as a means 

of supporting their orchestration of learning experiences, as well as to develop a theory 

about teachers’ noticing in the context of orchestrating learning experiences. In this 

paper, we examine the practices of Alice (pseudonym), one of the three teachers who 

took part in the study. Alice is a Senior Teacher at Coventry Secondary School 

(pseudonym), which is a government-funded school performing slightly above 

average in the national examinations. As a Senior Teacher, Alice has a strong 

mathematical background and has been actively involved in mentoring novice teachers 

in her school.  

Data were collected and generated through voice and video recordings of the lesson, as 

well as voice recordings of a pre-lesson discussion and a post-lesson discussion with 

Alice. The findings were developed through identifying themes related to what Alice 

noticed about the content, her students’ confusion, and her own courses of action, with 

reference to the framework developed by Choy (2015). In addition, the lesson was also 

analysed by identifying segments which corresponded to Smith and Stein’s (2011) five 

practices. In this paper, we present our preliminary findings through snapshots of how 

Alice noticed the affordances of a typical problem, and how she deployed the problem 

in class to orchestrate a mathematically productive discussion. 

FINDINGS AND DISCUSSION 

In this section, we present our analysis of Alice’s lesson on Matrices for Secondary 

Three (Grade 9) students. Her students had learnt how to multiply two matrices prior to 

this lesson. The learning experience stipulated in the curriculum document was for 

students to apply matrix multiplications to solve contextual problems, and for them to 

justify if two matrices can be multiplied by checking the order of the matrices. During 

the introductory phase of the lesson, Alice used a modified version of a typical 

problem (See Figure 1 for the typical problem) and orchestrated a mathematically 

productive learning experience using students’ responses to the modified problem (See 

Figure 2). 
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Perceiving the Affordances of a Typical Mathematics Problem 

Alice selected a typical problem (See Figure 1) from a past examination paper as the 

source of the introductory problem to be used during the lesson. This is a typical 

examination-type contextual problem involving matrices. There are two parts to the 

problem: the first part requires students to perform a routine matrix multiplication that 

involves pre-multiplying a 3×1 matrix by a 2×3 matrix to obtain a 2×1 matrix 









184

185  as 

the solution; the second part requires them to explain the meaning of the product which 

in this context represents the total points gained by Theresa and Robert for the awards.  

 

Figure 1: The Typical Problem used during the Lesson 

Instead of presenting the problem as it was given, Alice made two modifications to the 

problem (See Figure 2). First, she provided information about the awards obtained and 

the points for each award within the stem of the problem instead of representing them 

in matrices as in the original problem. Second, she asked for the total number of points 

obtained by each person instead of finding the matrix product directly.  By doing so, 

Alice modified the problem in a way that required students to formulate their solution 

in terms of a matrix multiplication. Moreover, because the order of the matrices were 

not given, students had to decide on the order of the matrices before using the 

appropriate matrix multiplication to find the answer. In addition, the modified problem 

did not require students to use a matrix method, which then reduced the problem to a 

straight-forward arithmetic one. This provided opportunities for Alice to emphasise the 

connections between matrix multiplication and arithmetic which could potentially 

provide some meaning to matrix operations.  

Teresa and Robert attend the same school. They keep a record of the awards they have 

earned and the points gained. Teresa obtained 29 Gold, 10 Silver, and 5 Bronze awards. 

Robert obtained 30 Gold, 6 Silver, and 8 Bronze awards. They gained 5 points from each 

Gold award, 3 points for each Silver award, and 2 points for each Bronze award. 

Find the total number of points that Teresa gained. 

Find the total number of points that Robert gained. 

Figure 2: The Modified Problem used during the Lesson 



Choy and Jaguthsing 

 

PME 41 – 2017 2-253 

More importantly, Alice anticipated students might not use matrix multiplication, as 

intended in the original problem (Figure 1), because they had just recently been 

introduced to matrix multiplication. Instead, students could the answer by performing 

two separate matrix multiplications or they could use an arithmetic method. During the 

post-lesson interview, Alice revealed that she had considered students’ confusion and 

anticipated their answers based on her knowledge of the students: 

Why I choose this question is because most of the exam style questions are based on 

solving problems involving matrices. And this question will extend their thinking and help 

them to transfer their mathematical thinking into other representations. This is what I find 

challenging amongst some students… I will know that certain students will give this 

[answer], exactly which students I don’t know…  

Hence, we see how Alice’s reasoning for the modifications were made. These 

modifications afforded opportunities for her to build on students’ less-than-optimal 

solutions to reveal students’ reasoning, explain the procedure of multiplying two 

matrices, and connect students’ solutions to the intended one. 

Orchestrating Discussions with the Adapted Problem 

Alice demonstrated her recognition of the affordances offered by the modified task 

when she orchestrated discussions during the lesson. After setting her students to work 

on the problem, Alice moved around in the class checking students’ responses and 

helping out students who had queries:  

1  Alice: (Walks around the class and comes to Student S1.) Can you write this for 

me on the board? 

2 S1:  Ok. (Walks to the whiteboard and writes the following.)  

  T = 5 × 29 + 3 × 10 + 2 × 5 = 185 

  R = 5 × 30 + 3 × 6 + 2 × 8 = 184 [arithmetic solution] 

3 Alice:  (Walks around while waiting for Student S1 to finish writing.) Ok. Most of 

you have written what [Student S1] has written. 5 points for 29 gold, 3 

points for 10 silver and 2 points for 5 bronze. Most of you have written in 

this manner. The last few days, we have been talking about matrices, right? 

Would you like to convert this to a matrix problem?   

   (Student S2 raises his hands.) Have you written it in matrix form? (Student 

S2 nods and Alice goes over to take a look.) Okay. Can you write your 

answer on the board?  

4   S2: (Walks to the board and writes the following.) 

 
   [two separate matrix products] 

5   Alice: Any other answers from [Student S2’s] answer? (Walks around the class 

and selects Student S3’s answer) Can you write this on the board? 

6   S3: (Walks to the board and writes the following.) 

 [a single matrix produced] 
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7   Alice: Thank you all three of you. [Student S1] has written using an arithmetic 

method. Most of you have written in this manner. This one comes very 

naturally to you, ok? [Student S2] has written Robert and Theresa’s award 

separately. He has tried to use the matrix method, (points to Student S1’s 

solution.) Something like this, ok? Let’s check whether the order of matrix 

is correct or not.  

    (Alice goes through the method of matrix multiplication and gets the class 

to check the order of Student S2’s matrices.) 

  … Ok. Student S3 has written Robert’s and Theresa’s together so that you 

only write this matrix once (points to the column matrix [5 3 2]). Don’t 

need to write two times, correct or not? See. Over here. You have to write 

two times but here, [Student S3] only has to write it once. Let’s check the 

order again… 

Alice then asked the class why Student S3’s solution was better compared to the other 

two students. She led the class to see that Students S3’s method is a more economical 

process as the “points matrix” is written only once and that would be useful if there 

were, say, 100 students. She also highlighted the use of matrices to represent large 

amount of data. Following this, Alice initiated another short discussion: 

8   Alice: I would like to bring this problem a little bit further. Notice that Student S3 

presented the information this way. Is there another way to represent the 

same information? 

    (After some time, Student S4 highlights a possible way.) 

9   S4: Change column and row. (Student S4 goes up and writes a 3 × 2 matrix.) 

This response got students thinking about the order of the corresponding “points 

matrix”. Another Student S5 went up and wrote the correct matrix product as a 2 × 1 
matrix but pre-multiplied the 3 × 2 matrix to the 1 × 3 matrix. Alice then orchestrated a 

short discussion for Student S5 to realise his mistake, who then correctly wrote: 

 

In this short vignette, we see how Alice orchestrated a mathematically productive 

discussion using Smith and Stein’s (2011) five practices. Alice monitored students’ 

answers to the questions carefully when she was circulating the classroom. Even 

though she asked for volunteers to answer the questions, it was clear that she was 

deliberate in her selection and sequencing of students’ responses (See Lines 1 to 6). By 

beginning with an arithmetic solution, she was able to connect Student S1’s arithmetic 

operations to how matrix multiplications are performed through the sequencing of 

Student S2’s and Student S3’s matrix solutions. Alice also highlighted the different 

ways to express the given information as matrices (Lines 8 and 9), which was an 

important idea for the lesson, and gave the motivation for using a matrix approach.  

The reason for writing the problem as a product of two matrices (Student S3’s solution) 

was made explicit when Alice moved from Student S2’s solution to the solution 

offered by Student S3.  
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ALICE’S NOTICING AND AFFORDANCES OF THE TASK 

The two vignettes highlight how Alice went beyond solving the original problem 

procedurally and identified students’ experiences that could be enhanced. She 

modified a typical examination question to emphasise at least three key ideas in matrix 

multiplication during the classroom discussion. First, Alice used the arithmetic 

solution to write out explicitly how matrix multiplication is performed (See Line 2). 

Next, she emphasised the order of matrices and when matrices could be multiplied 

(Line 7). Lastly, she highlighted how contextual information represented in matrices 

could be captured in different ways (e.g., using 2 × 3 and 3 × 1 matrices or using 1 × 3 

and 3 × 2 matrices). Drawing from how Alice orchestrated the learning experience in 

class, we argue that she noticed the affordances of such a typical problem. More 

specifically, Alice attended to students’ possible confusion that there was only one 

way to represent information using matrices, and used her understanding of the 

relationships between arithmetic and matrix operations to modify the problem. 

Moreover, Alice’s orchestration of the discussion in class suggests she was more 

attuned to students’ particular solutions and thus she was able to sequence the 

presentation to enhance students’ learning experience.  

In many ways, Alice’s noticing can be classified as extended  in that she modified the 

problem based on her interpretation of content requirements, and attended to particular 

strategies offered by various students. Her strong content mastery could be attributed 

to the professional development activities, such as mathematics-related and general 

pedagogical courses she had taken in recent years. Alice’s use of the typical problem 

suggests that she was familiar with the syllabus requirements. Even though her 

post-lesson interview reveals a strong need to fulfil the requirements of the 

examinations, Alice tried to interpret and adapt the written curriculum to suit the needs 

of her students. She was reflective and was always ready to learn from her experiences 

with students. By “recognising possibilities” from her “three worlds of experiences” 

(Mason, 2002, p. 94), Alice was able to see beyond the given typical problem, had a 

different act in mind, and proposed another way to ask the question. Furthermore, 

given her focus on the concept, students’ thinking, and how she orchestrated the 

learning experience of her students, we also classify Alice’s noticing as productive 

(Choy, 2015) because she had recognised the affordances of a typical task that could 

potentially led students to gain new insights into the use of matrices.  

CONCLUDING REMARKS 

Despite a high-stakes examination-driven system, Alice’s noticing had enabled her to 

use a typical problem beyond drill-and-practice for examination to emphasise 

conceptual understanding. Being able to perceive affordances or “notice possibilities” 

(Mason, 2002, p. 94), as Alice had done, could therefore provide a way to negotiate the 

murky territory between procedural and conceptual fluency. Adopting a pragmatic 

approach, she moved in between the two, and capitalised on the affordances of a 

typical examination problem to (i) reinforce procedural skills, (ii) emphasise 
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examination requirements, and (iii) at the same time, develop conceptual 

understanding. Notwithstanding the limitations of our preliminary findings, Alice’s 

modification and use of a typical problem highlight the potential of noticing 

affordances of such questions, and how even typical questions can be used for 

orchestrating discussions. Given the prevalence of using such typical problems in 

classrooms, supporting teachers to unlock these problems’ affordances may hold 

promising implications for teaching and learning. It remains to be seen how we can 

support teachers to notice the affordances of tasks in our future work with them.   
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In this theoretical research report, we aim to consider what is done within  

professional development activity and how it may or may not approximate to what is 

done in a classroom. We draw on enactivism to analyse what shifts are needed for a 

teacher, after engaging in a professional development activity, to make new and 

effective distinctions in their classroom. Drawing on our own experiences of 

organising professional development, we consider a range of scenarios, including 

being offered activities for the classroom and seeing someone else teach your students 

in your classroom. We conclude that it is a helpful tool in designing activities to 

consider what is invariant and what varies in mapping what is done within 

professional development onto what is done in a classroom.  

INTRODUCTION 

The literature on mathematics teacher learning through professional development has 

been categorised (Liljedahl, in Brown and Coles, 2010, p.377) into three strands: 

content (of teacher knowledge or belief); method (on specific models of professional 

development); and, effectiveness (looking at changes in practice). In this theoretical 

report, we consider the possibilities for teacher learning across different kinds of 

professional development activity. In particular, we are interested in what is involved 

for a teacher in mapping what is done, within a professional development (PD) 

activity, into their own mathematics classroom practice. We look at a range of PD 

methods and consider, from a theoretical point of view, what kind of translation or 

transformation is needed for a PD session be effective. We ask: 

1. Who is doing what doing? 

2. How does the doing in the professional learning activity approximate the doing 

in the classroom? 

3. What is the role of the doer in the professional learning activity, compared to as 

a teacher in their own classroom? 

4. What is significant about what is invariant and what is the variant?  

ENACTIVISM  

We draw on enactivism (Reid and Mgombelo, 2015) to help us consider the learning 

and doing of mathematics teachers, when they are involved in professional 
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development activities, in relation to when they are teaching in their classroom. 

Enactivism is a perspective that is informed by systems thinking (Bateson, 1972), 

phenomenology (Merleau-Ponty, 1962) and a radical view of biology (Maturana and 

Varela, 1987) that all, in different ways, consider change and relationship as the basis 

of cognition. From the enactive perspective, the web of relations between components 

that constitute our being (including any tools we might use) is labelled our ‘structure’. 

Every interaction in the world alters our structure and one of the enactive insights is 

that humans are ‘structure-determined’ beings. In other words, when an event occurs 

which provokes a response, the response we give is not a function of the trigger but a 

function of our structure. Furthermore, overtime, we become ‘structurally coupled’ 

with those people and contexts with which we have recurrent interactions. Each 

moment of interaction alters, however minimally, my structure and the structure of 

who and what I am engaging with. 

So, in a PD session, each teacher is triggered by the other participants and the leader of 

the PD and the activities they undergo, changing their structure, making it possible (but 

not inevitable) for new behaviours to happen when they return to their own classroom. 

The cultural and the social are embodied in our very beings, in our structure. As a result 

of the history of our structural coupling, in most situations we make automatic 

responses, from driving a car to the small prejudices we may catch ourselves projecting 

onto others who are not like us. Skilled teachers have a vast array of automatic 

responses in their classroom, which can make it difficult for new behaviours to arise as 

possibilities unless those automatic responses come to be seen as ineffective for some 

reason (e.g., a change in school and therefore responses of the pupils, or the teacher 

becoming dissatisfied with the teacher they are becoming).  

Within enactivism ‘doing’, ‘knowing’, ‘being’ are seen as synonymous: ‘all doing is 

knowing all knowing is doing’ (Maturana and Varela, 1987, p.27). What it means to 

know something is to act in an effective manner in a context. There are echoes of 

behaviourism in this statement but for enactivists there is no denial of an ‘inner life’, 

rather a more radical collapsing of the distinction between ‘inner’ and ‘outer’.  

In one of Bateson’s famous examples (1972), he considered: where does the ‘mind’ of 

a blind man with a stick end? It seems clear that the blind man’s attention is at the end 

of the stick – not in his hand, where the stick’s vibrations are first ‘felt’ in the body. 

Our ‘minds’ do not stop at the edge of our skull, rather our whole ‘structure’ is 

embedded and enmeshed within countless arcs and patterns of interaction extending 

into the world. Learning is indicated by a shift in these patterns of interaction, by 

seeing differently, and therefore making new distinctions, in a particular context. In 

this report we look at varying professional learning activities through the lens of 

enactivism in order to consider the possible conditions of their effectiveness.  

LOOKING AT PROFESSIONAL LEARNING ACTIVITIES 

As we are adopting an enactivist lens our unit of analysis is activity and effective 

behaviour. In particular, we are interested in looking closely at what teachers can be 
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paying attention to within professional development activity, what distinctions are 

available to be made for these teachers, and how these distinctions could map onto the 

distinctions that are necessary in a classroom. The set of professional learning 

activities we have chosen to examine, then, is neither exhaustive nor hierarchical. 

Rather, they are teacher-learning activities that afford us varying distinctions between 

what happens during the activity and what might happen in the classroom of the 

teacher. All three authors have been involved extensively in offering professional 

development to teachers of mathematics over one or more decades. We came to write 

this paper, partly through comparing our approaches to PD, and we draw on our 

experiences to consider the following range of activities: attending a lecture or course; 

watching a video recording of another teacher, or yourself; seeing someone else teach 

your class; being given an activity to try out in your classroom; being given a structure 

and an activity to try out in your classroom; being given a structure for activities to try 

out in your classroom (action research). In the next section, we consider each scenario, 

focusing on the questions from the Introduction.  

PROFESSIONAL LEARNING ACTIVITIES 

We consider each activity in turn, starting with a fictionalised example of what a 

teacher did, and then considering the ‘doings’ and distinctions that are in play. 

Attending a lecture  

Maha attends a lecture during a conference in which she is told about teaching methods in 

East Asian countries. The lecturer discusses the use of ‘variation’ in teaching and learning 

new concepts. The intention is that Maha adopts new ways of working in her classroom as 

a result of being in the lecture. 

Maha is listening and attending to the distinctions and words of the speaker. Of course 

it is impossible we ever share the same meaning for words that categorise complex and 

multi-faceted elements of practice and observation (e.g., ‘variation’). Maha may 

recognise differences compared to her own practice, in what is being presented in the 

lecture. On one level, Maha cannot not change, however minimally, as a result of being 

in the lecture. But if she is to make new choices in her practice, after attending the 

lecture, she will need to recognise when there is an appropriate opportunity for making 

the distinctions offered. She will need to work to recognise in her own practice what is 

being discussed within the practice of someone else and perhaps work to ‘suspend’ 

(Varela and Scharmer, 2000) patterns of typical responses.  

Watching a video recording of another teacher, or yourself 

Pippa attends a ‘video club’ for teachers of mathematics, which involves watching video 

recordings of others teaching and showing others video recordings from her own 

classroom. The intention is that teachers will focus on using activities that promote student 

reasoning and learn about effective teaching strategies for promoting reasoning.  

There is significant interest at this time in the use of video in the context of teacher 

learning (e.g., to mention just a tiny sample: Sherin, 2007; Star and Strickland 2008; 
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Sherin and van Es 2009; Coles 2013). Typically, in a context of watching a video as 

part of a professional development course, there will be a facilitator who may guide or 

steer discussion. Teachers may be invited to share what they see in the video, in 

relation (or not) to a particular focus such as ‘mathematical reasoning’. Pippa is, 

therefore, given an opportunity to share distinctions she observes in the video, which 

may be distinctions between actions she sees done by the teacher on the video and her 

own expectations or routines. These distinctions, perhaps clashes of expectations, are 

reported in many instances to lead to judgmental responses from teachers (Jaworski, 

1990). It is reported that when discussion begins in a judgmental manner, it is hard for 

talk to be productive (Jaworski, 1990; Coles, 2013).  

In both watching a video and being in a classroom, a teacher can notice students’ 

actions and become aware of what they might do in that context, or (in a classroom) 

simply act. The video potentially allows the bringing into awareness of habitual ways 

of responding in one’s classroom and, potentially, the awareness of alternatives. 

Pippa may be involved in observing and evaluating other teachers as part of her job. In 

this case, there is a direct mapping from what is done in the video club to her 

evaluation role with other staff, i.e., in both cases she needs to observe another teacher 

and consider what to say about what she notices. If she is forced to observe in 

particular ways in the video club (e.g., following Jaworski (1990) and Coles (2013), 

she might have to start by just focusing on the detail of events and not any emotional 

judgments) there is the potential of her using a new way of observing in her 

observation work in school.  

Seeing someone else teach your class 

[This example is based on a real experience involving two of the authors.] Alf was 

teaching mathematics in a school in London and had a high attaining grade 8 class (aged 

12-13). Laurinda spent a day in his school and taught this grade 8 a lesson on algebra (on 

number sequences and algebraic rules), with Alf observing from the back. The topic was 

chosen by Alf and was what the class would have been doing had he taught them. 

Dick Tahta taught one of Laurinda Brown’s classes (in the 1970s) and Laurinda taught 

one of Alf Coles’ classes (in the 1990s) as described above; Alf has since taught 

lessons in other people’s classrooms, for example in the context of a primary school 

project (Coles and Scott, 2015). 

We identify two sets of distinctions available from watching someone else teach your 

class. Firstly, there may be distinctions available around how the students in class 

behave differently to normal. Alf wrote, at the time of Laurinda taking his class (see 

Brown and Coles, 2008), of seeing his children ‘thinking mathematically’ and ‘being 

algebraic’ in a manner that he had never experienced before (in his own class or from 

observations of others). This set of distinctions is around seeing possibilities, in terms 

of what students can do and how they can be, that may never have even been around as 

things a teacher realised was possible.  
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The second set of distinctions mirrors ones available in some of the earlier activities, 

and these are around particular teaching decisions ‘I would not have done that’. In the 

case of someone teaching your own class of students, there is a close fidelity to the 

situation in which you would be in the position of making those teaching decisions. 

Being given an activity to try out in your classroom 

Ben attends a professional development session on collaborative problem solving. During 

this session, the participants spend some time solving a mathematics problem posed by the 

facilitator of the session. The intention is that Ben will take this same problem and use it 

with his own class.    

Unlike the watching of a video, where the activity is to observe others (or yourself) in 

the third person, solving a problem is a first-person activity. That is, teachers working 

individually or collaboratively to solve a mathematics problem are living the 

experience that is intended for students. Within this activity, the participants may 

become aware of the distinctions between the strategies that can be used to solve the 

problem and between the types of mathematics that can be used. If there is an 

opportunity to debrief this experience within the session then more of the same type of 

distinctions may be acquired. These distinctions need to be translated not only to a 

teacher’s own classroom, but also from experiences as student to their role as teacher.  

Being given a structure and an activity to try out in your classroom 

Cathy attends a professional development session on collaborative problem solving. 

During this session, the participants are solving a mathematics problem in random groups 

working on wall-mounted whiteboards. After this the facilitator discusses his/her rationale 

for having them work in random groups and on whiteboards and the choice of task. After 

this they are given a new task to solve in new groups on whiteboards which is, again, 

debriefed. The participants are then told to try the same problem and the same structure 

within their own class.   

As with being given an activity only, the work in the PD session is one of being a 

student, trying out the activities to be offered in the classroom. However, the difference 

is that, through being offered a structure and rationale for the activities, the teachers in 

the session are forced to split their attention and, simultaneously, to be in the action of 

working on some mathematics, and making distinctions about how their activity 

relates to its stated purpose. Mason (2002) discusses the layered awarenesses needed 

for engaging in activity while also noticing one’s engagement in activity. 

As with the activity of watching someone else teach your own students, enacting an 

activity within a set structure affords the teacher the opportunity of behaving 

differently. This can allow the teacher to see the students being mathematical in a way 

that they may not normally be. As such, a set of distinctions is available around seeing 

what is possible, not only by the students, but by the teacher's own hand.  

Being given a structure for activities to try out in your classroom: action research 

Nima attends a course, run at a University, that supports her to undertake action research in 

her own classroom. She chooses to focus on what she can do to make her students more 
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resilient and independent. From her readings and course meetings, she decides to try out a 

range of new actions in her classroom and evaluates their success. 

Nima’s course sessions support the making of new distinctions in the classroom 

through provoking and encouraging new or different (from what had been done in the 

past) actions on the part of the teacher (Brown and Coles, 2011). In some sense, the 

learning of the teachers is not mediated by the course leader, in that no one else is 

observing what takes place in the classroom. The distinctions shared in course sessions 

are about individuals’ classrooms. Structure is provided by the action research model 

(e.g., Altrichter et al., 2003), which provokes Nima into experimenting with novel 

classroom activities and noting the reaction.  

VARIANTS AND INVARIANTS 

Looking across the scenarios that have been sketched above, and the consideration of 

the distinctions made both within the session and in the classroom, it is clear that there 

are some things that remain the same and some things that are different, in the move 

into the classroom. We summarise these invariants and variants below.  

PD activity  Invariant Variant 

Attending a lecture  Intention that teachers will 

make the same distinctions 

being made in the lecture 

From listening to acting (incl. 

recognising a context for a new 

distinction) 

Watching a video recording 

of another teacher, or 

yourself 

The classroom context and 

observations of student (and 

teacher) activity are shared 

From observing a classroom 

and responding to teachers to 

observing a classroom and 

responding to students 

Seeing someone else teach 

your class 

The classroom and the students 

stay the same 

From observing to acting 

Being given an activity to try 

out in your classroom 

The activity itself stays the 

same 

Moving from acting as a student 

to acting as a teacher 

Being given a structure and 

an activity to try out in your 

classroom 

The activity and structure stay 

the same 

Moving from acting as a student 

and (in parallel) as an observer 

of those actions to acting as a 

teacher and observer of student 

actions 

Being given a structure for 

activities to try out in your 

classroom: action research 

The focus of discussion is on 

distinction made by the teachers 

in their own classroom 

Teachers need to implement 

actions discussed in sessions or 

suggested from readings 

DISCUSSION 

In several PD scenarios there is a passive to active shift required, from session to 

classroom, of moving from listener to actor (attending a lecture), or from observer to 

teacher (watching a video; seeing someone else teach your class). In other words, the 

doing in the PD session is quite different to the doing in the classroom. In other 

scenarios the doing in a PD session mirrors the intended doing of students (being given 

an activity / being given an activity and a structure) and a different translation is 

required. One phenomena we recognise is the offer in a PD session of an open problem 
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to solve, which as a teacher we explore and solve in a particular manner – and the 

subsequent temptation to constrain the activity for students in the classroom to the 

particular method of solution we adopted, rather than the more open offer that we had 

received. If discussion in a PD session is focused on the distinctions of teachers (being 

given a structure for activities: action research) then the translation from session to 

classroom is one of noticing distinctions after classroom events to noticing them 

in-the-moment and using that awareness in acting differently. 

Teacher learning and teacher change, from an enactivist perspective, are linked to the 

development of new habits in the classroom. For a change to occur, the teacher must 

act in a novel way in a given kind of scenario. One significant variant-invariant occurs 

when a PD session involves or leads to activity in the classroom that results in students 

in the classroom acting in a novel manner. Of course, this may be the result of any form 

of PD. However, there are certain forms of activity where it is likely that changes in 

student response will occur. Seeing someone else teach your class, will inevitably 

result in an observation of novel student behaviour and, where that behaviour is 

valued, such an experience provides a strong motivation to work on developing one’s 

teaching. Seeing what is possible here and now with one’s students, can be powerful. 

Being given an activity to try out can similarly result in students acting in novel ways. 

If the activity is far outside students’ expectations and usual routines, it may be that the 

change is not perceived in a positive light. Being given an activity and a structure to try 

out, similarly can result in new student behaviours (for example, observing students 

working on wall-mounted white boards). Where the structure offered for the activities 

provides a rationale, that structure can provide a tool to allow a teacher to continue 

experimenting and exploring the possibilities of these new ways of organising the 

classroom. 

CONCLUSION 

If we accept the enactivist adage that doing is knowing, then the organisers of 

professional development need to pay attention to who is doing what, during a PD 

session and to the relationship between the doing now and the doing in the classroom. 

It is possible to approximate the classroom context in a PD activity in a range of ways, 

through: discussing it (attending a lecture); recording it (watching a video); being in it 

(seeing someone teach your class); making teachers the students (being given an 

activity and/or structure); and, by researching it (action research). Each approximation 

keeps some elements the same and changes others. Through each PD scenario, 

significant shifts occur when a teacher re-sees their context as offering new 

possibilities for acting and being in the classroom. It is clear to us that we cannot 

simply ‘give’ other people the distinctions we make. What we ‘see’ in a classroom is a 

result of our entire history of interaction. It is only through teachers articulating the 

distinctions they make (de-briefing after: watching a video; watching someone teach; 

engaging in an activity) that, as a leader of PD, we can become sensitive to those 

distinctions. We recognise that differences compared to expectations (e.g., what 
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another teacher does or other students behave) can be experienced as ‘wrong’. 

Effective behaviour, within PD, may necessitate a letting-go of evaluative judgments 

and a re-directing of attention towards alternative behaviours and ways of being. 
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Curriculum documents make a clear distinction between algebraic skills and algebraic 

reasoning, where the development of the former is far more readily articulated than 

the latter. While there are many studies of algebraic reasoning, these are usually topic 

specific and/or highly contextual. What are the big ideas of algebraic reasoning and is 

it possible to map their learning trajectory? This paper reports on the preliminary 

phase of a large national study in Australia which is designed to move beyond the 

hypothetical and to provide an evidence-based foundation for a learning progression. 

Using rich assessment tasks designed for middle years students of mathematics, this 

paper reports on the method of analysis used and some preliminary findings. 

INTRODUCTION 

This research is situated within the Reframing Mathematical Futures II (RMFII) 

Project (2014-2017) which is funded by the Australian Government through the 

Australian Mathematics and Science Partnership Projects. This competitive grant 

Project  followed on from the Reframing Mathematical Futures (RMF) Priority Project 

(2013) that aimed to improve multiplicative thinking and proportional reasoning in 

Years 7-10 using the Scaffolding Numeracy in the Middle Years (SNMY) resources 

(Siemon et al., 2006). All participating schools in the RMFII Project also participated 

in the RMF Project, although some did this after having joined the second Project. 

RMFII is aimed at building a sustainable, evidence-based, integrated learning and 

teaching resource to support the development of mathematical reasoning in Years 

7-10. The Australian Curriculum: Mathematics (Australian Curriculum, Assessment 

and Reporting Authority (ACARA), 2016) consists of three content strands (Number 

and Algebra, Measurement and Geometry, and Statistics and Probability) and four 

proficiency strands (Understanding, Fluency, Problem Solving and Reasoning). Three 

areas of mathematical reasoning, aligned to the content strands of the Australian 

Curriculum: Mathematics, were identified to be investigated. These areas were 

Algebraic Reasoning, Spatial Reasoning, and Statistical and Probabilistic Reasoning. 

This paper addresses the component of the Project that aims to identify and map the 

‘big ideas’ in algebraic reasoning. For the purpose of the Reframing Mathematical 

Futures II Project algebraic reasoning encompasses: 
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 Core knowledge needed to recognise, interpret, represent and analyse 

algebraic situations and the relationships and connections between them; 

 Ability to apply that knowledge in unfamiliar situations to prove that 

something is true or false, solve problems, generate and test conjectures, 

make and defend generalisations; and 

 A capacity to explain and communicate reasoning and solution strategies in 

multiple ways. 

Four Phases of the Project were identified (in each of the three areas of mathematical 

reasoning): 

1. Develop draft learning progressions from the research literature; 

2. Develop, trial and validate assessment tasks; 

3. Use the results to develop formative Learning and Assessment Frameworks 

(LAFs) and accompanying resources to support teaching and assessment; 

4. Trial the above with partner schools, and evaluate in terms of student 

learning and shifts in teacher knowledge. 

This paper will concentrate on the first and second Phases given above, that is, on the 

development of the draft learning progression (DLP) and the development, trialling 

and validation of the assessment tasks.  

DEVELOPMENT OF DRAFT LEARNING PROGRESSION 

The idea of developing a draft learning progression built on Simon’s (1995) suggestion 

of constructing hypothetical learning trajectories as mini-theories of student learning. 

This was seen as a useful place to begin, as learning trajectories assist teachers to see 

where on the continuum students are and hence provide a starting point for teaching 

(Siemon, Izard, Breed, & Virgona, 2006). It should be noted here that there was 

discussion around the nomenclature of the construct. It was decided that the term 

“learning progression” would be more clearly understood by teachers in Australia. The 

distinctions between learning progressions and learning trajectories made by Ellis, 

Weber and Lockwood (2014) were not considered, as there was no intention to get tied 

up with semantics.  

Although there has been much debate about the meaning and use of the terms learning 

progressions and learning trajectories, there are common elements of the varied 

interpretations and it is these commonalities that were used as the focus. One of the 

common elements is that learning takes place over time and effective teaching involves 

recognising where the learners are in their learning journey as a starting point to design 

challenging yet achievable learning experiences to support the students’ progress.  The 

second commonality is that learning progressions or trajectories are based on 

hypothesised pathways derived from a synthesis of relevant literature, the design and 

trialling of learning activities aimed at progressing learning within the hypothesised 

framework, and evaluation methods to assess where learners are on their journey. 
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In Australia, learning progressions have tended to take the form of learning and 

assessment frameworks such as the LAF developed and validated as part of the 

Scaffolding Numeracy in the Middle Years Project (Siemon et al., 2006). RMFII was 

designed along similar lines. By providing teachers with such a framework they are 

supported to recognise and understand students’ learning needs, know what learning 

aspects should be targeted and how to assist students in their mathematical learning 

(Siemon et al., 2006). It is expected that by identifying and explaining the ‘big ideas’ 

involved in algebraic reasoning, as well as working with teachers to recognise and 

interpret student learning needs, will assist to improve learning outcomes for students 

in Years 7-10. 

The process of developing the DLP for algebraic reasoning began with a 

comprehensive review of the literature about algebraic concept development and about 

learning trajectories and progressions. In this way, it was hoped to identify possible 

structures as well as for looking for what might sit within those structures. The first 

draft of the DLP was a synthesis of the research literature which was arbitrarily divided 

into eight zones of increasingly complex ideas and strategies. Although as researchers 

who actively work against pre-conceptions of what may be found so as not to influence 

what was found in the literature, inevitably when designing a DLP prior knowledge 

was used to group the ideas and strategies. 

Once the first draft was in place, a thematic analysis was carried out to determine the 

‘big ideas’ that were emerging. Five themes were identified: Pattern and Sequence; 

Generalisation; Function; Equivalence; and Equation Solving. There was a discussion 

about whether Equation Solving was part of the ‘big idea’ of Equivalence and it was 

decided to continue to separate them at that stage. The first draft was then examined to 

consolidate and condense the key ideas and then organised under the five ‘big ideas’. 

This became the second draft of the DLP. An example of the Generalisation ‘big idea’ 

is provided in Table 1. 

Zone Generalisation  Sources 

1 Explain a generalisation of a simple 

physical situation. 
 Carpenter, Franke, & Levi (2003); Panorkou, Maloney, & 

Confrey (2013); Perso (2003); Schliemann, Carraher, & 

Brizuela (2007); Watson (2009). 

2 Explore and conjecture about 

patterns in the structure of number, 

identifying numbers that change and 

numbers that can vary. 

 Blanton, & Kaput (2011); Carraher, Schliemann, Bruzella, 

& Earnest (2006); Mason (2008); Miller, & Warren 

(2012); Panorkou, Maloney, & Confrey (2013); Perso 

(2003); Warren, Miller, & Cooper (2011). 

3 Explain generalisations by telling 

stories in words, with materials and 

using symbols. 

 

 Blanton, & Kaput (2003); Mason (2008); Miller, & 

Warren (2012); Panorkou, Maloney, & Confrey (2013); 

Perso (2003); Tierrney, & Monk (2008); Warren, Miller, 

& Cooper (2011); Wilkie (2015). 

4 Explain generalisations using 

symbols and explore relationships 

using technology. 

 Carpenter, Franke, & Levi (2003); Panorkou, Maloney, & 

Confrey (2013); Perso (2003); Stacey, & MacGregor 

(2001); Wilkie (2015). 

5 Follow, compare and explain rules 

for linking successive terms in a 
 Kaput (1998); Kaput, Blanton, & Moreno (2008); Knuth, 

Alibali, McNeil, Weinberg, & Stephens (2005); Panorkou, 
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sequence or pair quantities using 

one or two operations. 

Maloney, & Confrey (2013); Perso (2003); Swafford, & 

Langrall (2000); Tierrney, & Monk (2008). 

6 Use and interpret basic algebraic 

conventions for representing 

situations involving a variable 

quantity. 

 Kieran, & Sfard (1998); Perso (2003); Stacey, & 

MacGregor (2000), Wilkie (2015); Yerushalmy (2000). 

7 Use and interpret algebraic 

conventions for representing 

generality and relationships 

between variables and establish 

equivalence using the distributive 

property and inverses of addition 

and multiplication. 

 Panorkou, Maloney, & Confrey (2013); Perso (2003). 

8 Combine facility with symbolic 

representation and understanding of 

algebraic concepts to represent and 

explain mathematical situations. 

 Panorkou, Maloney, & Confrey (2013); Perso (2003); 

Yerushalmy (2000). 

 Table 1: The ‘big idea’ of Generalisation from the second draft learning progression. 

The DLP was then used to select, modify and design a range of rich algebraic tasks 

which were trialled with 1550 students from Years 7-10 providing valid responses. 

The tasks that were designed contained some items that addressed one of the ‘big 

ideas’ while others addressed several of the ‘big ideas’ in a single task. Two 

assessment forms were designed containing only algebraic reasoning, two that 

included items of both algebraic and statistical reasoning and another two that included 

both algebraic and spatial reasoning. There were common items across all of the forms. 

Each of the assessment forms also included one of the validated extended tasks that 

had been used in the RMF Project, as a benchmark item. An example of a task, Trains 

(ATRNS) is shown in Figure 1. 

 

Figure 1. Trains question with rubric. 
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The task was designed to allow students fairly easy access at the start but to require 

explanation of reasoning in the latter parts of the question.  The rubrics were designed 

to value algebraic reasoning over correct answers being provided with no explanation. 

In the ATRNS2 task a student scores a 1 if incorrect but with reasoning showing some 

understanding of the pattern. A score of 3, however, required a multiplicative 

understanding of the relationship with appropriate explanation, which may be in 

words, symbols or a combination. 

RESULTS 

Using Rasch analysis of actual student responses to these three ATRNS items, it was 

possible to rank the assessment items into eight zones. For example, in Table 2 below, 

ATRNS1.2 refers to the item ATRNS1 with an achieved score of two points. Each of 

the seven scores given in Table 2 is then matched with its associated Rasch zone. 

ATRNS1.1 ATRNS1.2 ATRNS2.1 ATRNS2.2 ATRNS2.3 ATRNS3.1 ATRNS3.2 

Zone 1 Zone 1 Zone 3 Zone 4 Zone 6 Zone 2 Zone 4 

Table 2: Results of Rasch analysis on the above items 

Responses to the seven assessment scales shown in Table 2 were scaled using Rasch 

analysis. For this group of items, Rasch scales range from Zone 1 to Zone 6. 

Completing some of the pattern in the table was the easiest task at Zone 1. Providing a 

correct answer to item a) with either no or a descriptive (e.g. I counted) explanation or 

using an additive strategy was the easiest to achieve at Zone 1. Whereas extending the 

pattern to a larger train (ATRNS2.1) scaled at Zone 3 and giving the correct answer to 

the larger train, as well as providing a mathematical explanation using a multiplicative 

strategy, was more difficult for students and was scaled at Zone 6. The sections of the 

rubrics that required elaborated explanations involving algebraic reasoning, that is 

ATRNS2.3 and ATRNS3.2, were the most difficult for students being scaled at Zone 6 

and Zone 4 respectively. It is noticeable that it is when the students need to explain or 

provide reasons or even to give partial reasons for their answers that they have the most 

difficulty. Extending the experimental sample to include older students in the middle 

years may change these scores, but, even at this preliminary stage of data analysis, it is 

clear that many students lack confidence or experience when asked to provide 

explanations for their thinking. The challenge for teachers is to give more careful 

attention to supporting students’ development and articulation of mathematical 

reasoning. 

When analysing the data from the Rasch analysis and mapping it back to the DLP, it 

was decided that the distinction made between Equivalence and Equation Solving was 

unnecessary as was the distinction made between Pattern and Sequence and Function, 

as the Pattern work appeared to overlap with the lower echelons of the Function ‘big 

ideas’. As a result, the original five ‘big ideas’ were collapsed into three ‘big ideas’, 

those of Pattern and Function, Generalisation and Equivalence. Relating the data from 

the Rasch analysis for this question back to the DLP suggests that rather than the 
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students explaining the simple patterns at the lowest level they are really only 

identifying the pattern and for these students the explanations start much later in zones 

3 and 4. This indicates the need for the teaching of algebraic reasoning and not just 

algebraic procedure.  

A closer comparison of the zones from the Rasch analysis with the zones of the DLP 

shows some similarity and some difference. ATRNS1.1 and 1.2 required students to 

identify and complete, at least partially, a number pattern related to a real situation. 

This fits within the DLP zone 1 “explain a generalisation of a simple physical 

situation”. The second part of the question required the students to extrapolate the 

pattern to data beyond the figures provided in the table, which meant they needed to 

generalise and apply it. Doing this at a purely numerical level fitted into zone 3 while 

explaining it partially or additively equated to zone 4, which in the DLP was “explain 

generalisations using symbols”. The more sophisticated explanation involving 

multiplicative thinking was at zone 6 of the Rasch model, although it is a closer match 

to zone 5 of the DLP. This indicates that the Rasch data supports the DLP, at least to 

some extent, at the lower levels, but further data is needed for the higher zones. 

Limitations of the Rasch analysis data 

Although there were 1563 students in the database for algebraic reasoning, only 1550 

provided valid responses. One of the limitations of using Rasch analysis is that it relies 

on student responses to assessment items. What was seen from the data was that the 

items that students perceived to be more difficult were often not attempted which 

meant that the more challenging algebraic reasoning assessment items were not able to 

be ranked. More trialling will be necessary, perhaps with older students in the Years 

7-10 range, in order to incorporate the more challenging types of assessment items 

within the eight Rasch zones. As a result it would be expected that some of the data 

presented here would change zones once the upper zones include more challenging 

algebraic reasoning items.  

CONCLUSION 

The development of the DLP involved several stages. The first was an extensive 

review of the literature on algebraic reasoning and on learning progressions to identify 

both possible structures for the DLP and what might fit within those structures. 

Following the literature review a thematic analysis was carried out to identify the ‘big 

ideas’ that were emerging. Five ‘big ideas’ were identified and the DLP was structured 

around these headings. Appropriate algebraic reasoning tasks were found, modified or 

designed based on the DLP and then sent to schools all around Australia for trialling. 

Once the trial data were received and a Rasch analysis was applied, it was seen that the 

five ‘big ideas’ could reasonably be collapsed into three ‘big ideas’, those of Pattern 

and Function, Generalisation and Equivalence. It would appear that more extensive 

trialling of items that students perceived as difficult will be necessary in order to tease 

out the upper areas of the DLP. The results indicate a need for the teaching of algebraic 

reasoning and the encouragement for students to give explanations of their thinking. 
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As classrooms include more discussion and reasoning the results of such a Rasch 

analysis might move closer to the DLP which was initially proposed but at the moment 

there is a great need for targeted teaching of algebraic reasoning.   
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ERRONEOUS ADDITIVE OR MULTIPLICATIVE REASONING: 

THE ROLE OF PREFERENCE BESIDES ABILITY 

Tine Degrande, Lieven Verschaffel and Wim Van Dooren 

Centre for Instructional Psychology and Technology, University of Leuven, Belgium 

 

Previous research has repeatedly shown that children erroneously reason additively in 

multiplicative word problems, while others erroneously reason multiplicatively in 

additive word problems. The present study aimed to investigate to what extent this 

erroneous reasoning depends on children’s preference for additive or multiplicative 

relations, besides their abilities. A preference test, a word problem test, and a test 

measuring the (procedural and conceptual) additive and multiplicative reasoning 

abilities were administered to 246 third to sixth graders. Results revealed that a 

substantial percentage of the erroneous additive reasoners or erroneous multiplicative 

reasoners possessed all necessary abilities, and almost all of them had a more general 

preference for additive resp. multiplicative relations.  

INTRODUCTION 

Multiplicative reasoning and the erroneous use of additive reasoning 

Learning to reason multiplicatively is a pivotal goal in upper primary mathematics 

education. One important way of teaching multiplicative reasoning is by means of 

multiplicative missing-value word problems, which consist of three given values and a 

fourth one that has to be found by identifying the multiplicative relation between two 

given values and applying this relation to the third given value (Kaput & West, 1994; 

Vergnaud, 1988). For example, in the problem “A car of the future will be able to 

travel 8 miles in 2 minutes. How far will it travel in 4 minutes?” (Kaput & West, 1994, 

p. 267) the correct solution is “16” (i.e. 2×2=4, so 8×2=16). Despite the omnipresence 

of those multiplicative missing-value problems in primary education, multiplicative 

reasoning is not achieved easily. Especially children in the lower grades often 

erroneously reason additively in multiplicative problems (i.e. answer “10” in the word 

problem above, as 2+2=4, so 8+2=10) (Kaput & West, 1994; Van Dooren, De Bock, & 

Verschaffel, 2010; Vergnaud, 1988). This kind of erroneous additive reasoning has 

been interpreted traditionally as evidence for an additive phase in the development of 

relational reasoning abilities, which would then require a transition to multiplicative 

reasoning. This transition  has even been characterized as “one of the major barriers to 

learning mathematics” (Siemon, Breed, & Virgona, 2005, p. 1). 

However, this interpretation of erroneous additive reasoning in multiplicative 

problems in terms of lacking abilities has been recently questioned, based, among 

others, on studies indicating that kindergartners are already able to correctly detect the 
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multiplicative relations in a problem, and to follow through this way of reasoning in 

order to derive the correct multiplicative solution (e.g., Nunes & Bryant, 2010).  

The erroneous use of multiplicative reasoning 

Besides children’s additive reasoning in multiplicative problems, the inverse mistake 

has been repeatedly reported as well. Children in upper primary education massively 

respond multiplicatively (“24 laps”, i.e. 4×3=12, so 8×3=24) in additive missing-value 

problems such as “Ellen and Kim are running around a track. They run equally fast but 

Ellen started later. When Ellen has run 4 laps, Kim has run 8 laps. When Ellen has run 

12 laps, how many has Kim run?” (e.g., Van Dooren et al., 2010, p. 364). However, 

analogously to the erroneous use of additive reasoning discussed before, those upper 

elementary school children are assumed to possess all mathematical abilities necessary 

to correctly solve such additive missing-value problems. In particular, they should be 

able to correctly calculate the additive solution, since the arithmetical operations of 

addition and subtraction are taught and intensively practiced already in the first grades 

of primary education. Moreover, it seems unlikely that this kind of erroneous additive 

reasoning could be fully explained by children’s lacking ability to characterize the 

quantitative relations involved in the problems as multiplicative, particularly because 

previous research indicated that primary school children score rather well when asked 

to classify additive and multiplicative word problems, and certainly better than when 

asked to solve these problems (Van Dooren, De Bock, Vleugels, & Verschaffel, 2010).   

The role of preference for additive or multiplicative relations 

It seems that children’s erroneous use of additive or multiplicative reasoning does not 

merely depend on their ability to reason additively and multiplicatively. Resnick and 

Singer (1993) raised an additional explanation, by interpreting children’s additive 

reasoning in multiplicative word problems as possibly indicating a preference for 

additive relations. Likewise, children’s multiplicative reasoning in additive word 

problems may be based on a preference for multiplicative relations. The distinction 

between preference and ability is not new in the mathematics education literature (e.g., 

Bailey, Littlefield, & Geary, 2012; Pellegrino & Glaser, 1982; Resnick & Singer, 

1993). The term preference is used to refer to the way of reasoning that “has 

precedence over” the other in a certain problem (Pellegrino & Glaser, 1982, p. 310), 

rather than to certain abilities that a child may possess. Preference and ability thus do 

not fully correspond, even though a child’s ability may impact his preference, and vice 

versa, a preference may increase later ability (Bailey et al., 2012). In the present study 

too, preference and ability are hypothesized to be two interrelated but distinct 

characteristics that both impact children’s word problem solving behaviour. 

Although it has been suggested that a preference is at play in children’s missing-value 

word problem solving (Resnick & Singer, 1993), one can argue that those classical 

word problems may not be best suited to capture children’s preference, since they 

unmistakably contain an underlying additive or multiplicative mathematical model. Of 

course, children’s abilities to reason additively or multiplicatively in line with the 
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underlying model in the problem may be involved in solving those word problems too, 

apart from their preference. To validly measure children’s preference, we need 

problems that do not contain any indication that additive or multiplicative reasoning is 

required. Those problems are thus entirely open to both ways of reasoning, i.e., both 

are equally valuable and correct. Several authors have suggested the usefulness of such 

open problems for both research and teaching (e.g., Pellegrino & Glaser, 1982).  

The present study 

The major goal of the present study was to investigate the impact of children’s 

preference for additive or multiplicative relations – besides (lacking) abilities – on the 

erroneous use of additive or multiplicative reasoning in word problems. In doing so, 

both a procedural (ability to do the necessary additive or multiplicative calculations) 

and conceptual component (ability to analyse and characterize quantitative relations 

involved in problems as additive or multiplicative) of additive and multiplicative 

reasoning abilities (Nunes & Bryant, 2010) were measured, as well as children’s 

preference and their word problem solving behaviour. 

By administering those instruments, we aimed to replicate previous research results, to 

answer our first research question (RQ1): To what extent do children erroneously use 

additive or multiplicative reasoning in missing-value word problems, and how is this 

affected by grade? Second, and more importantly, we aimed to extend those results by 

means of our second research question (RQ2): To what extent could children’s 

preference for additive or multiplicative relations help in explaining their erroneous 

use of additive and multiplicative reasoning, besides abilities?  

METHOD 

Participants and instruments 

Four test instruments were administered to 246 children (68 third, 59 fourth, 58 fifth 

and 61 sixth graders; 128 boys and 118 girls) from three Flemish primary schools. To 

minimize the impact of specific problem characteristics, several versions of each test 

instrument, containing different numbers and word problem contexts, were used. The 

four instruments are presented below and illustrated in Figure 1. 

First, the preference test consisted of six schematic problems. In each problem (see 

Figure 1a), three numbers were given and a fourth one was missing, and two arrows 

pointed out the relational structure between numbers (which was the same as the one 

underlying the word problems used in the word problem test and conceptual reasoning 

abilities test). As Pellegrino and Glaser (1982) pointed out, such problems are open to 

“several relations” (p. 302) that are equally valuable and correct, including additive 

and multiplicative ones. Previous research showed that those schematic problems 

validly measure children’s preference (Degrande, Verschaffel, & Van Dooren, 2016). 

The second test instrument, the word problem test (WPT) consisted of six 

missing-value word problems (see Figure 1b), of which three were additive and three 
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were multiplicative. The additive and multiplicative word problems were similar in 

terms of context and numbers, but differed with respect to the underlying mathematical 

model. Those missing-value word problems were developed and extensively tested in 

previous studies (e.g., Van Dooren, De Bock, Vleugels, & Verschaffel, 2010). 

A third test measured procedural additive and multiplicative reasoning abilities. It 

consisted of the same six schematic problems as the preference test, but this time these 

schemes were accompanied by addition or multiplication signs (three items of each, 

see Figure 1c). Children had to do the required calculations to find the missing number. 

A fourth test, measuring conceptual additive and multiplicative reasoning abilities,  

contained the same six word problems as the WPT (three additive and three 

multiplicative ones). Children were asked which of both correctly completed solution 

schemes (additive or multiplicative) fitted the given word problem. 

 

Figure 1: Example of test items of each of the four test instruments. 

Procedure 

The four paper-and-pencil test instruments were collectively administered in the 

aforementioned order, but on two separate moments. This was done to avoid response 

tendencies across test instruments, and thus to warrant the validity of each instrument. 

The preference test and WPT were first administered, and one week later, children’s 

procedural and conceptual reasoning abilities were tested.  

Analyses 

Data were analysed by looking at children’s answer profiles across each test 

instrument, rather than at answers to individual test items. More specifically, patterns 
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of answers across at least 4 out of 6 open items of the preference test, and at least 2 out 

of 3 additive or multiplicative items on all other tests were distinguished. After that, 

logistic regressions were conducted to study the effect of grade on the occurrence of 

additive and multiplicative reasoners (RQ1) and the effect of preference on top of 

ability on the occurrence of additive and multiplicative reasoners on the WPT (RQ2). 

RESULTS 

We first report the distinct answer profiles on the WPT and their development across 

grades (RQ1). Only 7.3% of the children (see Table 1) reasoned correctly on the WPT, 

i.e., giving additive answers to additive word problems and multiplicative answers to 

multiplicative ones. Most children consistently gave multiplicative answers, which 

were correct in multiplicative but incorrect in additive word problems (48.4%). Other 

children consistently gave additive answers, which were correct in additive but 

incorrect in multiplicative word problems (26.0%). A final 18.3% did not belong to 

one of these three profiles, and was not considered  in our further analyses.  

In line with previous research, additive reasoning occurred most often in third grade 

(48.5%) and decreased across grades (8.2% in sixth grade, Wald χ²(3) = 36.353, p < 

.001, also see Table 1). The odds of third and fourth graders to reason additively were, 

respectively, 10.56 (p < .001) and 5.32 (p = .002) times larger than those of sixth 

graders, while the odds of fifth graders were only 1.54 times larger compared to sixth 

graders (p = .486). The occurrence of multiplicative reasoning, to the contrary, 

increased from 5.9% in third to 68.9% in sixth grade (Wald χ²(3) = 86.588, p < .001). 

The odds of fourth, fifth and sixth graders to reason multiplicatively were, 

respectively, 16.56, 45.87 and 35.37 times larger than those of third graders (all p’s < 

.001). In contrast, correct reasoning only rarely occurred in third (5.9%), fourth (5.1%) 

and fifth grade (1.7%). Even in sixth grade, only 1 out of 6 children reasoned correctly. 

 Grade 3 Grade 4 Grade 5 Grade 6 Total 

Correct 5.9 5.1 1.7 16.4 7.3 

Multiplicative 5.9 50.8 74.1 68.9 48.4 

Additive 48.5 32.2 12.1 8.2 26.0 

Rest 39.7 11.9 12.0 6.6 18.3 

Table 1: Percentages of third to sixth graders’ answer profiles on the WPT. 

Second, to answer RQ2, we now turn to the procedural and conceptual reasoning 

abilities and, finally, to the preference of children with distinct profiles on the WPT. 

The procedural additive and multiplicative reasoning abilities were acquired by most 

children: 85.5% mastered the procedural skills necessary for doing correct 

calculations. When splitting up based on the profiles on the WPT, all correct reasoners 

(100.0%) mastered the procedural skills, and this was the case for the vast majority of 

the multiplicative (97.5%) and additive reasoners (76.6%) too. Hence, procedural 
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ability could not be the crucial factor explaining children’s erroneous additive and 

multiplicative reasoning on the WPT. In order to fully exclude this explanatory factor 

(since our main interest was the impact of preference besides abilities), only those 

children who possessed the procedural skills were included in further analyses. 

In comparison to the procedural test, children experienced more difficulties solving the 

conceptual test. Among the students who mastered the procedural skills, only 38.4% 

also mastered the conceptual additive and multiplicative reasoning abilities. When 

considering this subgroup in relation to the way they solved the WPT, it becomes clear 

that 88.9% of the correct reasoners on the WPT had the required conceptual additive 

and multiplicative reasoning abilities, but this was also the case for a substantial 

percentage of the multiplicative (41.4%) and additive (26.5%) reasoners. For these 

students, it cannot be concluded that the conceptual abilities would explain why they 

consistently solved problems on the WPT additively or multiplicatively. 

It also seems valuable to take a closer look at the children who did not master these 

conceptual abilities, as some tended to systematically choose the multiplicative 

(30.8%) or additive (20.4%) solution scheme in the conceptual test instead. In 

particular, 47.4% of all multiplicative reasoners on the WPT systematically chose the 

multiplicative solution scheme in the conceptual test, whereas 38.8% of additive 

reasoners on the WPT systematically chose the additive solution scheme (see Table 2).  

  Conceptual Test 

  Correct Multiplicative Additive Rest 

Word 

Problem 

Test 

Correct 88.9 5.6 0.0 5.6 

Multiplicative 41.4 47.4 6.9 4.3 

Additive 26.5 12.2 38.8 22.4 

Rest 14.3 10.7 57.1 17.9 

  38.4 30.8 20.4 10.4 

Table 2: Answer profiles on the word problem test and conceptual test                                  

of children who mastered the procedural abilities. 

For the subgroups that mastered all required procedural and conceptual abilities, we 

can now link their behaviour on the WPT with their preference. Amongst the 

multiplicative reasoners on the WPT, 91.7% also showed a preference for 

multiplicative relations in the preference test. Likewise, 92.3% of the additive 

reasoners on the WPT showed a preference for additive relations on the preference 

test. Remarkably, there was no clear trend for the correct reasoners on the WPT: 56.2% 

seemed to prefer multiplicative relations, and 43.8% did not have a preference at all. 

A logistic regression wherein procedural and conceptual ability were included as first 

predictors, and preference as an additional predictor, confirmed that preference indeed 

has an added value to predict the occurrence of additive reasoning on the WPT (Wald 
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χ²(2) = 47.056, p < .001). The odds of children who had an additive preference to also 

reason additively on the WPT were 6.07 times larger than for children without a 

preference (p < .001), when controlling for both abilities. Likewise, another logistic 

regression confirmed the impact of preference on top of both abilities on the 

occurrence of multiplicative reasoning on the WPT (Wald χ²(2) = 49.767, p <.001). 

More specifically, the odds of children who had a multiplicative preference to  also 

reason multiplicatively on the WPT were 10.27 times larger than for children without a 

preference (p < .001), when controlling for both abilities. 

Finally, the majority of those children who possessed the procedural skills but 

systematically indicated the additive or multiplicative solution scheme to the 

conceptual reasoning abilities test, either had a preference for additive (52.6%) or 

multiplicative relations (85.5%), respectively. Apparently, those children’s preference 

was not only at play in word problems, but unexpectedly also in the conceptual test. 

CONCLUSION AND DISCUSSION 

Previous research has repeatedly shown that many children in lower primary education 

erroneously reason additively in multiplicative word problems, while many children in 

upper primary education erroneously reason multiplicatively in additive word 

problems. The present study aimed to replicate those results (RQ1) and to extend them 

by investigating whether a preference for additive or multiplicative relations could 

help in explaining their erroneous use in word problems – besides abilities (RQ2). 

Results regarding RQ1 revealed that almost half of all children – mainly in upper 

primary education – reasoned multiplicatively, and another substantial group of 

children – particularly in lower primary education – reasoned additively in all word 

problems, irrespective of whether the underlying mathematical model was additive or 

multiplicative. With respect to RQ2, almost all those additive or multiplicative 

reasoners possessed the necessary procedural abilities, while this was not the case for 

their conceptual abilities. Thus, children’s erroneous additive or multiplicative 

reasoning in word problems may – at least for a certain percentage of additive or 

multiplicative reasoners – be due to their lacking (conceptual) ability to determine the 

underlying mathematical model of the word problem. However, a substantial 

percentage of additive and multiplicative reasoners had acquired all necessary abilities 

(i.e., they were able to detect the underlying mathematical model and to correctly 

conduct the necessary calculations), and almost all of them had a preference for resp. 

additive or multiplicative relations. As expected, preference has an added value in 

explaining erroneous use of additive or multiplicative reasoning, on top of abilities.  

Although further research is needed to get a view on the nature and origin of children’s 

preference (i.e., How strong is it? To what extent is it deliberate and conscious? What 

processes underlie this preference?, similar to what  Obersteiner, Reiss, and Bernhard 

(2016) did for additive and multiplicative reasoning in contingency tables), these 

results already indicate that getting a view on children’s preference is indispensable to 

fully understand the development of additive and multiplicative reasoning, and to 
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improve current educational practices. Instruction might, in particular, aim at 

preventing the development and uncontrolled impact of such an undesirable 

preference, by avoiding a stereotyped offer of problems in mathematics curricula (e.g., 

solely multiplicative missing-value problems in upper primary education, never being 

interchanged with additive ones) that may shape children’s preference, and by using 

educational approaches wherein children discuss the considerations they make when 

deciding on the appropriateness of a solution method, especially in open problems.  
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ANALYZING DIALOGIC TALK DURING MATHEMATICS 

PROBLEM SOLVING IN SMALL GROUPS 

Javier Díez-Palomar 

University of Barcelona 

 

Language is a crucial aspect of learning. Children working in small groups use 

language to justify their answer to mathematical tasks when they interact with each 

other. But not all types of interactions lead to effective learning. In this paper, I use a 

methodological tool to analyse the interactional events happening when a group of 

four children were solving an open-ended mathematical task. This type of analysis may 

offer a few pointers for researchers and teachers to distinguish what type of 

interactions are the ones that would produce the context for deep and meaningful 

mathematical learning. 

INTRODUCTION 

In 2012, I visited a school near Chicago to observe how a teacher with extensive 

experience in mathematics teaching was conducting her class. Her instruction was 

grounded in a collaborative learning approach. During the lesson, the teacher split the 

children into small groups. All groups had to solve the same task: to reach the number 

twenty, or close to twenty, taking cards out from a deck. The children had to multiply 

the numbers coming out from the deck. I went close to one of the groups: a child got a 

card with five points; then, he got a card with three points. He clasped both cards in his 

hands and said: “Five times three, twenty; I won!” All children in the group looked at 

each other; but they said nothing. That statement shocked all the other children, 

because they knew that it was the wrong answer; however, nobody dared to contradict 

(correct) him.  

This episode illustrates the fact that not all interactions happening within the classroom 

lead to effective learning. Some interactions (e.g., the silence of the other students in 

response to the student’s claim that five times three is twenty) could reinforce 

erroneous concepts. Hence we need to identify which interactions are the ones that are 

more likely to produce real opportunities for learning. In this paper, I introduce an 

analytical tool to analyse social interactions among children as they solve an 

open-ended mathematical task, working in small groups.  

THEORETICAL FRAMEWORK 

Language (communication, speech acts, etc.) is a crucial aspect of learning. Drawing 

on a socio-cultural perspective, we can accept that language mediates learning in social 

settings. Vygotsky realized that when children talk with other [more capable] peers or 

with the teacher, sharing their thoughts about a particular task, the children are really 



Diez-Palomar 

 

2-282 PME 41 – 2017  

internalizing the (mathematical) concepts. This is due to the fact that in that moment 

they link the abstract meaning of the concept with the practical task that they are 

solving using the speech act as a mediating tool.  

Vygotsky (1978) coined the concept of Zone of Proximal Development (ZPD) to 

explain how this process of learning works. The ZPD highlights the guiding role of the 

expert in helping / supporting students to learn. Bruner later used the concept of 

scaffolding to explain the process of educational support between the “expert” adult 

and the child (Wood, Bruner, & Ross 1976). Bruner and his colleagues used problem 

solving to explore how children develop higher (cognitive) skills. He further 

developed this idea of scaffolding, which led him to focus increasingly on the 

inter-subjective aspect of interaction and talk (Bruner, 2012).  

Theorists such as Vygotsky and Bruner argued that language and communication are 

central aspects of learning. However, research in many countries suggests that teachers 

tend to talk more than their students when supporting them in their process of learning. 

In fact, previous researches have established what we know as the 

initiation-response-feedback (IRF) scheme. Many researchers have criticised this 

pattern (Littleton & Howe, 2010; Waring, 2009). Lobato, Clarke and Ellis (2005) 

posed the question of “how much information should a teacher tell his/her students 

when conducting his/her lesson?” The researchers reformulated the telling/not-telling 

dilemma in mathematics education in three ways, “(a) in terms of the function (…) 

rather than form of teachers’ communicative acts; (b) in terms of the conceptual rather 

than procedural content of the new information; and (c) in terms of its relationship to 

other actions rather than an isolated action.” (Lobato & Clarke, 2005, p. 101). Their 

work claims our attention to the fact that is important when to tell, but also what, why 

and how. 

More recently, Díez-Palomar and Cabré (2015), drawing upon previous work 

conducted by Soler and Flecha (2010), suggest that the crucial element in studying the 

learning process is to analyse how individuals use language to justify their statements. 

Teachers and/or students may use language to explain a particular mathematical idea 

using validity claims, or imposing their statements with coaction. Using one or the 

other opens up different opportunities for participants to learn. According to the 

researchers, not all interactions produce the same opportunities for learning: only 

interactions based on the use of validity claims by the participants would provide real 

opportunities for learning. In this paper I introduce an analytical tool to elucidate 

interaction in terms of dialogic/non-dialogic talk looking at the transcript of a video 

recording of a group of four students solving an open-ended task in mathematics.  

METHODOLOGY 

Data Collection 

The data of this paper came from the Social Unit of Learning project, lead by Prof. 

Clarke at the International Centre for Classroom Research (ICCR) at The University of 
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Melbourne. The members of the ICCR designed a protocol to conduct the experiment. 

They selected a school in the Melbourne area and invited intact classes of Year 7 

students (24 to 26 in a class) with their usual teacher to come to the university, and 

participated in a research experiment conducted within a laboratory classroom 

equipped with 10 built-in cameras and 15 radio microphones. In one configuration, the 

students were invited to solve a set of three problems: the first task was done 

individually, the second task in pairs, and the third task in small groups (four to six 

students in a group). The video data collected were transcribed and checked for 

accuracy. 

For the purpose of this paper, I selected recorded data corresponding to the third 

problem (Fred’s apartment), when the students were working in small groups.  

The problem was:  

Fred's apartment has five rooms.  The total area is 60 square metres.  Draw a plan of Fred's 

apartment. 1) Label each room and 2) Show the dimensions, length and width, of all 

rooms. 

My analysis focused on the interactions of one group with two girls and two boys. 

Data Analysis 

In order to analyse the data, I created an analytical tool (see Table 1) with the support 

of the ICCR members, grounded on the approaches of Soler and Flecha (2010), Mercer 

(2006) and Habermas (1984), to distinguish between dialogical (Type 3) and 

non-dialogical talk (Type 2) (Díez-Palomar & Cabré, 2015). 

I analysed how students create validity claims to justify their statements/answers when 

solving a problem given to them. I used two levels (layers) of analysis: (1) the analysis 

of the illocutionary force of the statement used by the participant in the interactional 

event (IE); and (2) the propositional content of the statement. Level 2 only applies to 

Type 3 (dialogic) interactions, because I want to elucidate the nature of the claims used 

by the participants to create their justifications to the mathematical task proposed. I 

define interactional event (IE) as the set of sentences in a dialogue between individuals 

acting upon one another. IE starts with a query and ends when participants provide 

their answer to that question. 

RESULTS 

The third task started with the teacher introducing the task. He informed the students 

that they had 20 minutes to work together in small groups. He emphasised that all 

members of the group needed to provide a single solution to the problem. He did not 

make any more public statements after he read out the problem for everyone.  

Anna (girl), Pandit (girl), John (boy), and Arman (boy) were in the same group. At the 

beginning, the boys were playing with the rulers that they had on the table. But after a 

couple of minutes, they started to focus on the task. The first thing they did was to 

decide on the shape of Fred’s apartment.  
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 Definition Example 

LAYER 1   

Type 1: 

Exchange of 

Information 

Shares, exchanges, particular 

information. The indicator of 

illocutionary force is neutral.  

Student: It’s 60 meters square.  

Type 2: 

“Power” 

interaction 

Makes a claim, a statement, or an 

assertion using his/her/their 

power position as a warrant to 

justify a claim. The indicator of 

illocutionary force is coercion. 

Student 1: Average is like the most 

likely.  

Student 2: Why? 

Student 1: Because I’m telling 

you.  

Type 3: 

Dialogic 

interaction 

Makes a claim, a statement, or an 

assertion using validity claims as 

a warrant to justify his/her/their 

claim. Validity claims include 

conjectures, reasoning, proof, and 

participants may draw on school 

skills or practical skills. The 

indicator of illocutionary force is 

consensus. It could be a 

particular case (solidarity chain) 

when more than one participant 

engages in a dialogue to supports 

each other in understanding, 

solving, the task.  

A conjecture: Fractions like 2/3, 

45/46, etc. (where the numerator is 

bigger than the denominator) are 

always less than 1.  

An elaborated justification: When 

you divide two numbers a and b, 

with a always smaller than b (a<b), 

you need to split a among b, so no 

one gets a full piece of a. For 

example, if you have 24 candies 

and you need to split them among 

25 friends, then no one would get a 

whole candy. You have to make 

them into bits and split them 

among your friends.  

Using a proof: a/b = c; c<1 if a<b; 

c=1 if a=b; c>1 if a>b.  

LAYER 2 (To understand the nature of Interaction Type 3) 

Analysis 

regarding the 

“content” 

Formal statement (formal math) a2=b2+c2 

Intuitive understanding Prime numbers are infinite. 

Particular example Five is prime number because you 

can divide it between 1 and itself. 

More than one particular example Five and seven are prime numbers 

because you only can dive them 

between 1 and itself. 

Table 1: Coding categories.  
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That was the first example of dialogic interaction. Anna made a suggestion to draw a 

square, but Pandit answered by asking, “why make it a square house?” Then, Anna 

re-thought her previous assumption about the shape for the apartment.  

During the next interactions, dialogic (Type 3), power (Type 2), exchange of 

information (Type 1) and other types of interactions (coded as “other”) took place back 

and forth. Table 2 summarizes the total amount of IE for codes 1, 2 and 3 (according to 

our coding categories). I only focused on interactions of type 1, 2 or 3; not on other 

type of interactions that can be happening during the session.  

 Number of IE % 

Interaction type 1: 

Exchange of information 

36 51.4% 

Interaction type 2: Power 

interaction 

23 32.9% 

Interaction type 3: 

Dialogic interaction 

11 15.7% 

Table 2: Distribution of the types of interactional events (IE) during Task 3. 

We can see that half of the time Anna, Pandit, Arman and John were involved in 

exchanging information.  

Pattern Definition 

Pattern 1 ( Ca; 

 ). Interaction 

Type 2 

A student takes the lead. S/he makes a claim. S/he does not 

justify his/her statement. His/her claim may either be a correct 

answer or a wrong answer.  

Pattern 2 (  D  

Ca;  D 

 Interaction 

Type 3 

A student questions someone else’s wrong answer. S/he asks or 

provides a different justification. In the end the pair or the 

group produces either a correct answer or a wrong answer 

(again). Justifications may be formal statements, intuitive, or 

particular examples.  

Pattern 3 (D  Ca; 

D ). Interaction 

Type 3 

Two or more students engage in the dialogue. They use validity 

claims. They may end with either a correct answer or a wrong 

answer. Justifications may be formal statements, intuitive, or 

particular examples. 

* D means “dialogic”;  means “non-dialogic”; Ca means “correct answer”;  means 

“non-correct answer.”  

Table 3: Types of patterns happening within the IE.  

This seems to be the most common interaction type between the members of the group 

while they are working to solve the task. During the session, the four students started to 
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try different possible solutions to the problem, while gaining greater understanding of 

the problem during the process, which involved several IE. I noticed several patterns of 

interaction emerging from the dialogues produced by the students during the session 

(see Table 3). For instance in the excerpt below, the four children are discussing which 

scale they will use to draw the blueprint of Fred’s apartment on the worksheet. Anna 

decides to use 2 cm2 = 1 m2. I coded this excerpt as a Type 3 interaction, because the 

children are negotiating whether the scale they are using is all right or they need to 

change it. Anna wants to change the scale; Pandit affirms that they cannot change it. 

Anna explains how to do it. But Arman claims that the sheet of paper is actually too 

small to use that scale. I consider the words “too small” as a valid claim that Arman is 

using to justify his position in this IE.  

Anna: Guys, let's actually change the scale. 

Pandit: We can't. 

Anna: Why not? 

Pandit: We're not allowed to change. 

Anna: You are.  Let's make two centimetre square equals one metre. 

Arman: (singing) Fred’s house. Do - do do - do - do - do… The paper is too small. 

Then Pandit complains that this is “so confusing”. However, Anna replies that she just 

wants to use that scale (although it is confusing for Pandit). She does not add any other 

explanation, nor justification, to her claim. Hence, I consider this IE as a Type 2 

interaction.  

Pandit: No, don’t do that. That’s confusing. 

Anna: Why not?   

Pandit: Why do you want to confuse? 

Anna: Because I want to. 

Pandit persists with her effort to ask for a valid justification, since she is not happy with 

Anna’s proposal. That forces Anna to move towards a dialogic interaction, since she 

has to justify her concept.  

Anna: Let's make two centimetre - guys, let's make the two centimetre square one 

metre square in this, okay? 

Pandit: Don’t – don’t. It's so confusing. 

Anna: Why not?  How is it confusing?  You just double it. 

Arman: Okay. 

Pandit: Why do you want to change?  Why can't you just make it one centimetre? 

Anna: Because it's going to be too small. 

Pandit: It’s okay. 
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In this excerpt we can see how Anna uses the idea of “doubling” to illustrate how her 

concept of scale works. Arman seems to be happy with her justification. However, 

Pandit is still not convinced. She asks again why not use “one centimetre” instead of 

two. This question forces Anna to further justify herself. She says: “because it’s going 

to be too small.” The back and forth questioning and justification between Pandit and 

Anna indicates that the group wants to reach a consensus when solving the task.  

Further along, the students decided to create a “square” that is 30 metres length and 20 

metres width. However, Anna claims that this “won’t work.”  

Pandit: This is… 

Anna: Wait.  Let's just say that's - no, Pandit, it won't work. 

Pandit: It does. It does. 

Anna: It doesn't.  We have to get a 30 there and then look, up to there is 30.  Do you  

have a brain? 

Pandit: (laughs) I have a brain. 

Arman: Oh wait, wait, wait. 

Pandit: No.  Wait, isn’t that has to times? 

Anna: Yeah. 

Pandit: Twenty times 30 is like 600. 

Anna: Six hundred. 

Pandit: It has to be 60. 

Anna: Yeah. 

Pandit: You did it wrongly. That’s why. 

They discovered that 20 times 30 is not 60, but 600, which was not the correct answer. 

In this case, the dialogic interaction leads them towards a wrong result; but the 

necessity to justify that result was also the way for them to realize that actually they 

were wrong. Eventually, they created a feasible solution for the problem.  

DISCUSSION 

One of the recommendations of the Institute of Education Sciences (IES) via “What 

Works Clearinghouse” (WWC) website is to “help students recognize and articulate 

mathematical concepts and notation.” This recommendation is based on evidence 

collected from previous studies. According to IES, “students will develop a better 

understanding of mathematical concepts when they are asked to explain the steps used 

to solve a problem.” (Woodward, 2012, p. 41) Furthermore, a recommendation was 

put forward to “use small-group activities to encourage students to discuss the process 

used to solve a problem.” (Woodward, 2012, p. 41) Teachers should guide students to 

make sense of the mathematical type of reasoning. However, this is not an easy task, as 

Lobato, Clarke and Ellis (2005) claimed more than a decade ago. It is difficult for 
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teachers to know what to tell their students, while not dampening their curiosity, and 

help them move forward. Looking carefully at the students’ justifications could be a 

way to better help students to succeed in their learning. Also, the effort that students 

need to make to justify their reasoning using valid claims that may be discussed and 

eventually accepted (or rejected) by their peers is also a good way for them to learn (or 

to consolidate their previous learning). The analytical instrument that I am using here 

to analyse the data collected may offer a few pointers for researchers and teachers to 

distinguish what type of interactions are the ones that would produce the context for 

deep and meaningful mathematical learning.  
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THE MATHEMATICS IN THE TASKSTEXT 

Anneli Dyrvold 

Umeå University, Department of Mathematics and Mathematical Statistics 

This study focuses on textual features that can be demanding in the reading of mathematics tasks. 

Two types of qualitative analyses are conducted on a few tasks to explore and evaluate what some 

previous statistical relations between particular textual features and the tasks reading demand 

stand for. First, the type of progression between the content represented as natural language is 

analysed. Second, the interaction between all semiotic resources of the text (i.e. natural 

language, mathematical notation, and images) is analysed. Preliminary results indicate that a 

reading demand that is unwanted in mathematics tasks seems to be related to features of the 

natural language but not to interaction between words and images or mathematical notation. 

BACKGROUND 

Today there is a substantial agreement in the description of mathematical proficiency as 

consisting of several competences (e.g., Niss & Højgaard, 2011; OECD, 2013) and also about 

mathematical communication as one such competence. The conceptualization varies but it is 

agreed that the communicative competence includes both to interpret oral or written mathematics 

and to express oneself about mathematics (e.g., Niss & Højgaard, 2011). The current study seeks 

to enhance the understanding of which textual features in a mathematics task that can be 

demanding for the reader and what role those textual features have in a mathematical language, 

since such knowledge is important from both an educational perspective and in relation to 

assessments. The mathematical language is expressed using several different semiotic resources, 

and therefore being able to interpret text consisting of a combination of natural language, 

mathematical notation and different types of diagrams is essential as part of a communicative 

competence. Such a communicative competence is also tested in large international assessments 

such as TIMSS (Mullis & Martin, 2013) and PISA (OECD, 2013). 

The aim to include aspects of a communicative competence in large assessments means that the 

reading and interpretation of the task text is part of what is assessed. This would however be the 

case independent of the aim of the assessment since the tasks are presented as printed text; the 

student must understand task text to solve the task. For a valid assessment it is important to avoid 

language demands in the task text that are irrelevant for the mathematics assessment. Several 

studies have revealed features of the task text that enhance the risk of the test to assess something 

else than mathematical ability. For example a study by Sato and colleagues reveal that linguistic 

modifications of mathematics test can make the mathematics task text easier to read to for second 

language learners without altering the mathematics that is tested (Sato, Rabinowitz, Gallagher, & 

Huang, 2010).  

There are earlier studies that in different ways investigate particular features that are typical for 

mathematics task text. For example Turner, Blum and Niss (2015) base their investigation of item 

demand on pre-defined features that are important within the different mathematical 

competencies. This method enables an analysis of to what extent the tasks calls for the activation 

of a particular competence. Other studies analyse particular textual features that are said to be 

part of the mathematical language with other approaches. For example Duval’s (2006) studies of 

difficulties that students experience when solving tasks with combinations of different semiotic 

resources such as mathematical notation and images is an important contribution to the field. 
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From an educational perspective however, it is also important to distinguish which textual 

features that are not part of the mathematical language managed as part of a mathematical 

proficiency. In mathematics tests such textual features can threaten the validity of the assessment 

if they affect the reading of the text. In conclusion, an enhanced understanding of both i) which 

features that characterizes the mathematical language and, ii) which features that do not 

distinguish the mathematical language is important from an educational perspective. The first 

category since it provides guidance for teaching and assessments and the second category since it 

is important knowledge in the development of valid assessments. In the current study the focus is 

mainly laid on textual features with the potential to threaten the validity of assessments by 

causing a reading demand that is inadequate in a mathematics test.  

PURPOSE 
The purpose of the study is to enhance the understanding of which textual features in a 

mathematics task that can be demanding for the reader and what role those textual features have 

in a mathematical language. The purpose is fulfilled based on statistical and qualitative analyses 

of PISA mathematics tasks that have a high non-mathematics specific reading demand. The 

combination of these two types of results adds value to the current study since the combination 

make is possible to draw conclusions that would not have been possible based on the separate 

analyses. 

METHOD 

The method is designed to enable a combination of two types of results, statistical and qualitative, 

for the same type of data with the same focus. Initially the statistical results from four previous 

studies are synthesized. Thereafter two types of textual analyses are conducted on a few tasks that 

have either very high or negligible demand on reading ability (DRA). Eventually both types of 

results are interpreted together with a particular focus on whether one type of results can 

contribute to the interpretation of the other type of results. Before the two qualitative text 

analyses are described the measure DRA is explained, since an understanding of what that 

measure encompasses is essential in the interpretation of the results of the current study. The four 

studies focused in the synthesis all present results based on statistical analyses of textual features 

in tasks in relation to the tasks DRA, and for thee studies also to task difficulty. Results in relation 

to task difficulty are included since the possibility to contrast the results for to those two measures 

is valuable.  

The quantitative measure for task demand on reading ability (DRA) 

In all four studies (Österholm & Bergvist, 2012; Dyrvold, Bergqvist & Österholm, 2015; 

Dyrvold, 2016; Dyrvold, submitted), all Swedish students results on PISA mathematics and 

reading tasks is analysed in a principal component analysis (PCA). PCA is a method that reduces 

the number of features used to represent data. The result of the PCA on the PISA data is two main 

components for which each reading and mathematics task has loading values. Based on the 

pattern for the loading values on the tasks those components are interpreted as a mathematical 

ability component and a reading ability component. Each task entered in the analysis obtains a 

loading value for both those components, values explaining the unique contribution of that 

principal component on the solution frequency of that task. The loading values of the reading 

ability component is given the name demand on reading ability, and since the loading values 

represent the unique contribution of the component on the tasks solution frequency this DRA do 

not include a mathematical reading ability. Since the DRA do not explain reading demand that is 

reasonable in a mathematics task value for the tasks DRA represent something unwanted (see 

also, Österholm & Bergqvist, 2012). 
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Analyses of task text 

Textual analyses are conducted on two tasks with high DRA and two tasks with negligible DRA. 

The tasks are chosen for analysis based on three criteria: very high or low DRA, includes several 

sentences and, have either expressions with mathematical notation or a diagram that is important 

for the solving of the task. Criteria two and three are used to ensure that the data is useful both to 

analyse important relations between several sentences and between different semiotic resources. 

The tasks are PISA mathematics tasks used in at least one of the years 2006 and 2012. The three 

criteria were not met for four tasks that are released and therefore the tasks are only described 

briefly in the bullet list. Odd numbered tasks are those with high DRA. Number of words in tasks 

is words not in images. Difficulty is (1– the fraction of all credits given on a task and all possible 

credits on that task), for all Swedish students who attempted to solve the task.  
Task 1: task difficulty is 0.11, has mathematical notation and 54 words 

Task 2: task difficulty is 0.78, has mathematical notation and 91 words 

Task 3: task difficulty is 0.22, has a bar graph and 57 words 

Task 4: task difficulty is 0.49, has four geometric diagrams and 47 words  

The first analysis is directed at patterns for progression between themes and rhemes in the task 

text. In Swedish the theme is always the beginning of a sentence or a phrase and the rheme is, 

simply stated, the rest. The theme serves as a starting point for the message and it is the theme that 

orients the clause in relation to the rest of the text. The theme is developed in the rheme, and new 

information are often given there (Halliday & Matteson, 2014).  

The analysis is chosen since a focus on natural language is reasonable based on previous results 

about both different aspects of vocabulary that can be difficult and aspects that has to do with 

meaning relations in the text. This choice means that the result of the analysis can add 

information to the previous statistical results since they concern similar but not the same features. 

The patterns for progression between the themes and rhemes give an understanding of how 

information given in phrases and sentences are tied together. The pattern illuminates where new 

information is introduced in the text and where some information earlier given is elaborated on. 

As illustrated in Table 1, the pattern for progression between the themes and rhemes can be 

categorized in three main types (see also, Danes, 1974). In linear progression the reader is gently 

lead through the text with new information given part by part. In progression with constant theme 

the same theme is elaborated on repeatedly in the subsequent sentences. In progression with new 

derived themes the new themes are derived from a superordinate item at the beginning of the text, 

for example if the first theme is quadrilaterals and the subsequent themes is rhombuses, 

rectangles and so forth. Linear progression is referred to as simple linear progression, and 

considered a logical means of creating text cohesion. 
Table 1: Three types of progression between themes (T) and rhemes (R). 

(1) Linear (2) Constant theme (3) New derived themes 

T1          R1      T1          R1        T1          R1 

T2          R2      T2          R2        T2          R2 

T3          R3      T3          R3        T3          R3 

The second analysis includes all semiotic resources of the text (i.e. natural language, 

mathematical notation, and images) and is about how the various semiotic resources function 

together. Such an analysis is justified since the study concerns the task text as a whole, and the 

different semiotic resources have different functions that together convey something that is not 

possible with the separate resources alone (Lemke, 1998). In the analysis, every sentence is 

divided according to three types of elements: participant (O), typically realized by a nominal 

group; process (P), typically realized by a verbal group; and circumstances (C), typically realized 
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by an adverbial group or prepositional phrase (Halliday & Matteson, 2014). Thereafter all 

instances in the text as mathematical notation or images are divided in the same way based on 

what is present in natural language. The O for participant refers to concrete or abstract objects. 

The type of relations between natural language and any other semiotic resource is analysed 

regarding type of element (Halliday & Matthiessen, 2014) and type of relation (O'Halloran, 2005; 

Royce, 2007). Relations between the elements has not been analysed in detail yet, the analysis is 

mainly directed to a separation between congruent or non-congruent relations. The relation is 

congruent if the type of element (O, P, C) is the same in both semiotic resources and the relation 

is the intersemiotic counterpart for synonymy or repetition, namely intersemiotic 

complementarity. The word complementarity is used instead of synonymy or repetition since a 

word cannot express exactly the same thing as for example an image. For example, the word 

angle can be represented in different ways visually and the relation between angle and all those 

visualisations is of the type intersemiotic complementarity. 

RESULT 

The synthesis of the results of the previous statistical analyses reveals that the features related to 

task DRA have an emphasis on the natural language. The reviewed studies are marked A-D in the 

reference list. In the studies where the measure for the textual feature is based on correlations the 

measure is called number in Table 2 and in the study where the results are based on t-tests the 

measure is called presence. 
Table 2: Textual features statistically related to task difficulty or task DRA. 

Study 

Measure of textual 

feature 

Textual features related to 

high task DRA high task difficulty 

A number word length, noun-verb quotient NA 

B number generally uncommon words - 

C presence - 
images in combination with other 

semiotic resources 

D number 
less of cohesive relations between 

represented objects 

more of cohesive relations between 

represented objects 

These statistical results indicate that different aspects of the vocabulary may play a role for how 

difficult the task is to read, but also that many cohesive ties between instances in the task text 

seems are more likely to be found in task with a low DRA. In study C-D natural language, 

mathematical notation and images are analysed.  

The analysis of progression between themes and rhemes reveals a rather complex pattern for all 

four tasks. In Table 3-4 the leftmost tasks are those with high DRA. Response options and units 

given where the answer are to be filled in are also included since they are essential in the reading 

of the text. Those words have different roles than words in sentences and are therefore placed in 

parentheses and the relations are marked with arrows. The arrows illustrate in what theme and 

rheme the subject in the response options are mentioned. The lines in the tables represent 

progressions between themes and rhemes. No dotted line is used in the diagram since in all four 

tasks the progression between themes is between a constant theme. 
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Table 3: Progression between themes (T) and rhemes (R) in tasks with mathematical notation but no diagram. 

Task 1 with high DRA  Task 2 with negligible DRA 

T1 R1, Rr1  T1 R1 

T2 R2  T2 R2 

T3 R3  T3 R3 

T4 R4, Rr4  T4 R4 

T5a 

R5  T5 R5 

   T6 R6 

   T7 R7 

   T8 R8 

   T9 R9 

    (R10) 

aTheme and rheme 5 is the question posed in task 1. 

Linear progression is not very pronounced in any of the tasks, especially not in task 1 and 3. The 

last theme and rheme in task 1 is the question posed and besides that question the progression is 

only between themes and between rhemes (constant theme repeatedly). In task 1 there is a 

complexity in that two themes have rhemes that function independently. The double rhemes in 

task 1 are coded as two since the first rheme can be interpreted in relation to the theme 

independent of the other rheme. In task 2 and 4 the progression between themes and rhemes in 

different sentences can mainly be found in interaction between themes and rhemes. Task 2 has 

more sentences than all other tasks and therefore some instances of repeated themes or rhemes is 

expected, otherwise the task would consist of a substantial amount of different content. 

Considering that, it can be concluded that there is a tendency for the tasks with negligible DRA to 

have more of linear progression, but not only in the direction from rheme to previous theme. 
Table 4: Progression between themes (T) and rhemes (R) in tasks with a diagram. 

Task 3 with high DRA  Task 4 with negligible DRA 

T1 R1  T1 R1 

T2 R2  T2 R2 

T3 R3  T3 R3 

 T4   T4 
R4 

 T5 R5  (T5)  

(T6) 
  

  

The results from the analysis of how the semiotic resources function together in the task text 

reveal that the interaction between the natural language and mathematical notation or some type 

of image is in several aspects more complex in tasks with negligible DRA. Tables 5-6 display two 
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types of differences. Since most of the tasks are confidential the analyses are presented as 

numbers, but the purpose is not to quantify the analysis. To give some richness to the data some 

example of relations in Table 5-6 is given after a presentation of the content in the tables. 
Table 5: Number and type relations between participants (O), processes (P), or circumstances (C) in natural 

language and mathematical notation in task 1 with high DRA and task 2 with negligible DRA.  

Natural language as 

Task 1 Math. notation as  Task 2 Math. notation as 

O P C  O P C 

O 10 - -  10 - 2 

P - - -  1 - - 

C - - 3  6 - - 

Table 6: Number and type relations between participants (O), processes (P), or circumstances (C) in natural 

language and a diagram in task 3 with high DRA and task 4 with negligible DRA 

Natural language as 

Task 3 Diagram as  Task 4 Diagram as 

O P C  O P C 

O 14 - -  13 - 1a 

P - 1 -  1 - - 

C - 1 7  - - 4 
a In this relation the second semiotic resource is mathematical notation. 

The relations between natural language and other semiotic resources in the task text are mainly 

obtained by relations between participants (O). The diagonals in table 5-6 represent congruent 

relations; that is relations between representations present as the same type of elements (O-O, 

P-P, C-C). In all cases in the analysis the relations in the diagonals (boldface) are of the type 

intersemiotic correspondence. That is the intersemiotic counterpart to synonymy or repetition 

(Jones, 2007). The number of relations that is not of the type intersemiotic correspondence is for 

task 1: none, task 2: eight, task 3: one, and task 4: one.  

Examples: The congruent relations in task 1 and 3 are mainly relations between nouns and the 

same element represented as mathematical notation or in the diagram. The diagram in task 3 

visualizes number of entities that have been sold. The substantial amount of non-congruent 

relations in task 2 (O-C) is descriptions given for particular criteria to be fulfilled (circumstance) 

something that in mathematical notation is represented as an object (participant as a variable). 

Preliminary results indicate that a reading demand that is unwanted in mathematics tasks seems 

to be related to features of the natural language but not to interaction between words and images 

or mathematical notation. This conclusion is however only preliminary since the last part of the 

analysis has not been fully completed.  

DISCUSSION 

The current study reveals several features of the natural language that can enhance the risk of a 

task to assess a non-mathematics specific reading ability (measured as DRA). Aspects of how 

different semiotic resources interact in the text are on the other hand likely to be part of the 

explanation to mathematical difficulty of the tasks. The last step in the analysis, where the 

statistical result is evaluated in detail in relation to the textual analyses has not been performed 

yet, and therefore the discussion focus mainly on the results of the textual analyses and some 

aspects of the method. Some tentative conclusions based on an interpretation of the synthesis of 

the studies and the textual analyses together are however discussed. 

Common for the textual features that characterize tasks with high DRA is that they regard the 

natural language. The analysis of how the semiotic resources interact in the task text reveals 

several aspects that are more complex in the tasks with negligible DRA. For example congruent 

relations are dominant in tasks with high DRA, whereas different non-congruent relations can be 

found in the tasks with negligible DRA. Since congruent relations are dominant in the tasks, the 

non-congruent relations are considered the distinctive feature. The synthesis of the statistical 
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results do also reveal aspects related to the natural language that potentially explains a high DRA. 

The measure DRA is obtained through a principal component analysis where results on all 

reading and all mathematics tasks from PISA are entered into the analysis. Therefore, it may be 

tempting to excuse the current results about natural language away, based on the knowledge that 

the measure DRA stems partly from results on reading tasks focusing on natural language. The 

reading tasks is however not a reasonable argument for such a result, since PISA reading tasks 

assesses also non-continuous texts with parts of the necessary information in images. 

Since the textual analyses are done on only four tasks it is important to reflect over the choice of 

tasks. The odd numbered tasks and the other tasks differ substantially in task DRA, which was an 

important criterion when the tasks were chosen. There are however also other properties of the 

tasks that differ. The task difficulty is higher for the tasks with negligible DRA, meaning that 

those tasks differ from the other two tasks from two perspectives; they do not demand a 

non-mathematics reading ability but they are more difficult to solve. This difference means that 

the textual features identified as pronounced in the tasks with high DRA may also be distinctive 

for task that are easy to solve. On the other hand, since the chosen tasks with high DRA are solved 

to a high frequency, that may mean the reading demand play a prominent role in those tasks since 

the DRA to a substantial extent contribute to the total difficulty. Task 2 does also consist of many 

more words than the other three tasks something that can add complexity to the text. The length 

of task 2 is evident in the analysis of thematic progression, but since number of words is 

presented the reader can take the length into account in the interpretation of the results and the 

length must therefore not in an inadequate way affect the conclusions.  

The criteria for which tasks to choose was judged important for the analyses to be meaningful, 

something that lead to a sparse presentation of the results of the textual analyses since it was not 

possible to find a sample that fulfilled the criteria and at the same time was not confidential tasks. 

The tasks and the results are described and examples are also given to prohibit possible 

difficulties to interpret the results.  

The synthesis of the statistical results will be further analysed in relation to the textual analyses, 

especially every textual feature presented in Table 2 will be evaluated in relation to the results of 

the textual analyses. Despite that this last analysis is still missing there is some educational 

implications of the results. There are some textual features identified in the tasks with negligible 

DRA that are valuable to focus on in teaching, especially since the analysed tasks have proven 

difficult to solve. Common for the results of the synthesis and both textual analyses is that if there 

is some intricacy in how the different constituents of the text is composed to a coherent whole, 

that may cause difficulties in the reading. The intricacy can be many meaning relations in the text 

(Table 2), or some complexity in the thematic progression between themes or rhemes (Table 3-4), 

or a complexity that have to do with whether there is congruence in how elements are represented 

in different semiotic resources (Table 5-6). Or, the interaction between these features may 

contribute to the complexity. Based on these results and previous research about difficulties 

related to how the text function as a whole (e.g., Duval, 2006) a focus on how the different 

constituents of the task text with different means interact to communicate the task is 

recommended in teaching. Apparently this recommendation is vague, and continued research is 

needed as a base for further educational guidance. 
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PROOF FROM AN EMBODIED POINT OF VIEW 

Laurie D Edwards 

Saint Mary’s College of California 

Mathematical proof and logical deduction are often seen as abstract and unrelated to 

everyday thinking and experiences. However, an analysis utilizing the framework of 

embodied cognition argues that these capabilities are grounded in physical 

experience, including perceptual and motor experiences going back to childhood. 

Constructs and tools from cognitive linguistics are used to analyze evidence from a 

variety of sources, including written texts and videotaped interviews with doctoral 

students in mathematics. The embodied foundations for proof and logical deduction 

are identified, as well as several metaphors, some with specific cultural 

characteristics. 

INTRODUCTION 

As one of the central practices of mathematics, proof and proving have been studied 

from many perspectives (see Hanna, Jahnke, & Pulte, 2010 for an overview; also 

Hanna, 1995; Harel & Sowder, 1998). Mathematical proof and logical deduction are 

often seen as abstract and unrelated to everyday thinking and experiences. The purpose 

of this paper is to consider the nature of mathematical proof when viewed from an 

embodied cognition perspective, and to make a link between everyday thought and 

experience and proof. That is, we consider the questions: What are the conceptual 

underpinnings of proof? How have human beings constructed the activity of 

mathematical proving based on more basic cognitive capabilities? What are the ways 

in which proof is conceptualized by different kinds of people who utilize it? This paper 

will first describe the theoretical perspective of embodied cognition (Varela, 

Thompson, & Rosch, 1991). An analysis of proof from this perspective will be 

presented, drawing evidence from written and spoken texts, studies in infant cognition 

and linguistics, and research carried out by the author. Existing research relevant to the 

questions above will be integrated throughout. 

EMBODIED COGNITION 

The theory of embodied cognition focuses on the bodily basis of thinking, that is, “on 

the ways in which complex adaptive behavior emerges from physical experience in 

biologically-constrained systems” (Núñez, Edwards, & Matos, 1999, p. 49). As it 

relates to mathematics, embodied cognition holds that mathematical ideas are either 

grounded in physical experience (via grounding metaphors), or built up from existing 

ideas via linking metaphors (Lakoff & Núñez, 2000). The analysis presented in this 

paper focuses less on mathematical content and more on the kind of argumentation or 

discourse that is considered acceptable within the community of mathematics 

practitioners, that is, on mathematical proof and formal logic. 
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One of the principles of embodied cognition has been labelled “continuity” by Mark 

Johnson (2007); it holds that all thinking is embodied, even the most abstract creations 

of the human mind, and that more complex kinds of thinking are built from the same 

basic conceptual building blocks as more mundane thought, including such elements 

as image schemata, metaphors and conceptual blends (M. Johnson, 1987, 2007; 

Fauconnier & Turner, 2002). Thus, if we are looking for the conceptual roots of 

mathematical proof, it makes sense to look at conceptually-simpler kinds of thinking 

that make proof possible, including images and processes derived from physical 

experiences.  

WHERE DOES PROOF COME FROM? 

Although there are different definitions of proof, we will begin by looking at two 

pieces of text that discuss proof, the first from a mathematics education researcher and 

the second from a mathematician.  

A proof is a transparent argument, in which all the information used and all the rules of 

reasoning are clearly displayed and open to criticism. It is in the very nature of proof 

that the validity of the conclusion flows from the proof itself, not from any external 

authority. (Hanna, 1995, p. 46)  

I’d like to spell out more what I mean when I say I proved this theorem. It meant that I had 

a clear and complete flow of ideas, including details, that withstood a great deal of scrutiny 

by myself and by others. (Thurston, 1994, p. 175).  

Both of these definitions contain an interesting phrase that points to the embodied 

nature of our ideas about proof. Hanna states that “the validity of the conclusion flows 

from the proof itself” and Thurston refers to a “flow of ideas” (emphasis added). The 

use of the word “flow” indicates the existence of a conceptual metaphor, one that is 

based in our knowledge and experience of physical phenomena (M. Johnson, 1987, 

2007). In the quotation above, Hanna also discusses the “source” of a conclusion’s 

validity, namely “the proof itself” rather than an external authority (see Harel & 

Sowder, 1998 for a discussion of undergraduate proof schemes, one of which appeals 

to external authority). Both excerpts draw on the reader’s understanding of the 

image/experience of “flowing,” which is a physical characteristic of rivers, heads of 

hair, and other bodies of connected, ordered elements moving in the same direction. 

Thus, the definitions evoke an unconscious metaphor of a proof as an entity that starts 

at a particular source and “flows” toward an end point. This metaphor is related to what 

has been called the A PROOF IS A JOURNEY metaphor (Edwards, 2010), which will 

be examined in more detail below. 

Logic and Causality: Evidence from Infant Cognition 

If we drill deeper into how proofs are conceptualized, we find that they are made up of 

sequences of statements that are connected and supported via deductive logic. The 

Free Dictionary defines a proof as “a formal series of statements showing that if one 

thing is true something else necessarily follows from it” 
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(http://www.thefreedictionary.com/ mathematical+proof). Yet even this definition is 

grounded in embodied experience, as seen in the use of the verb “to follow” (even the 

word “consequence” has the same base meaning: from Latin consequentia, from 

consequent- ‘following closely’). How, we might ask, does one thing “following” (or 

“flowing from”) another come to have the connotation of logical implication ("If A is 

true, then B is true")? 

From the point of view of embodied cognition, this mapping is based on physical and 

perceptual experiences of causality. The development of an understanding of causality 

has been investigated by both psychologists and cognitive linguists, and is observed 

even in very young infants (Gopnik & Schulz, 2007; Sperber, Premack & Premack, 

1996). For example, Leslie and Keeble (1987) found that 6-month-old infants who 

were habituated to a dynamic image of a causal sequence (one object apparently hitting 

another and causing it to move) paid attention longer to a physically-impossible 

version of that sequence than to non-causal stimuli. The ability to perceive the 

sequentiality of two actions is one step in constructing the notion of physical causality, 

along with the ability to note a recurrent pattern of an effect “following” a cause (the 

ability to construct such patterns is often called inductive reasoning). These abilities 

seem to develop over a period of time in infants, from around age 5 through 10 months 

(S. Johnson, 2003). 

Thus, from a very early age, we are capable of noticing that one event may follow 

another in time, and building the concept that it was caused by the prior event. From an 

embodied perspective, our understanding of logical deduction (that one statement 

“follows from” another) is constructed based on this early experience, via the 

mechanism of conceptual metaphor. To make this metaphor explicit, let us consider a 

basic element of a logical argument or mathematical proof, the simple implication “If 

A then B” (where A and B are logical/mathematical statements). Table 1 spells out the 

metaphorical mapping from physical causation to logical deduction. 

Logical Deduction IS Physical Causation 

Source Domain: 

Causation via Physical Forces 

"This action caused that effect" 

Target Domain: 

Logical deduction 

"If A then B" 

 Two entities 

 One is foregrounded or singled out 

(the "agonist" or target or effect) 

 The other is considered in terms of 

the effect it has on the agonist    

(the "antagonist" or cause) 

 Physical force 

 If the force of the antagonist is 

sufficiently strong, the result is 

motion of the agonist 

 Two declarative statements 

 One is foregrounded as the "conclusion"' 

(the truth of which is at issue) 

 The other ("premise") is considered in 

terms of the implication that it has for 

the truth of the conclusion  

 Logical necessity 

 If the logical necessity connecting the 

premise to the conclusion is valid, then 

the truth of the conclusion is established 

Table 1: The physical causation metaphor for logical deduction 
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Evidence from Cognitive Linguistics 

Linguists have analyzed multiple languages and discovered constructions that map the 

notion of physical causality to both social situations and logical statements (Dancygeir 

& Sweetser, 2005). These mappings are based on cognitive primitives called image 

schemas, specifically, schemas concerned with force dynamics (Talmy, 1988). Image 

schemas are "recurrent, stable patterns of sensorimotor experience...[that] preserve the 

topological structure of the perceptual whole [and have] internal structures that give 

rise to constrained inferences" (M. Johnson, 2007, p. 144). Thus, image schemas 

involving physical forces, actions, and reactions are the raw materials used in the 

metaphor LOGICAL DEDUCTION IS PHYSICAL CAUSALITY. Within cognitive 

linguistics, force schemas share certain properties, including the following: 

 Force schemas involve a force vector, i.e., directionality. 

 Force schemas have sources for the force and targets that are acted upon 

 Forces involve a chain of causality.  

(Evans & Green, 2006) 

These properties map to analogous properties within the discourse of mathematical 

proof, i.e.: 

 Logical propositions have directionality ("If A then B" is not the same as "If B 

then A") 

 Logical propositions have sources for the premises (previously proved 

propositions, postulates and/or axioms) and the conclusions (the premise and 

its sources) 

 Mathematical proofs involve a chain of logical deductions (see additional 

analysis below about the chain metaphor). 

Thus, from an embodied point of view, logical reasoning and proof are not constructed 

from a special kind of thinking; rather, they recruit conceptual capabilities that are 

deep-seated and based in physical experience (although of course additional 

constraints and requirements for acceptable proofs are added by the mathematical 

community). As Mark Johnson (2008) notes, "According to this view, we do not have 

two kinds of logic, one for spatial-bodily concepts and a wholly different one for 

abstract concepts. There is no disembodied logic at all. Instead, we recruit body-based, 

image-schematic logic to perform abstract reasoning" (p. 181).  

RESEARCH ON PROOF 

The analysis presented above will be augmented by results from a research study on 

proof carried out with a group of twelve doctoral students in mathematics. The students 

were videotaped in pairs for 90 minutes. The session had three parts: a general 

interview about their experience teaching and doing proofs; a 45-minute segment 

during which they worked together to prove a theorem (without the interviewer in the 

room); and a final segment during which they explained their proof and, if there was 

sufficient time, gave their opinion on whether a particular visual argument constituted 
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a proof. The videotapes were transcribed and the students’ speech as well as their 

gestures were analysed to look for evidence of how they conceptualized proof in 

general, as well as how they communicated through various modalities while 

constructing a specific proof. 

Evidence from Doctoral Students’ Words and Gestures 

When asked directly to describe what a proof is, and whether there are different kinds 

of proofs, the doctoral students offered characterizations similar to those presented in 

the textual evidence above. For example (emphasis added): 

AC:   It’s a set of logical reasoning that begins with a premise and leads to a conclusion. 

AW:  I would say it’s just, you know, a well thought out sequence of steps that nobody 

would refute… In practice, it’s just – it – a very, very solid argument in which each 

step proceeds logically from the last. 

AS:  A rigorous proof would be based on the axioms of mathematics that we’ve set 

up…And based on a logic system that we, as humans, have [laughs]…Actually, 

following it step-by-step so that your conclusion always follows from some kind 

of logical steps. 

These definitions include the idea of logical ideas which “follow” from previous ones, 

but the overall conceptualization goes further than this. The students’ definitions often 

imply or state explicitly that these “steps” are part of an overall “journey,” with a 

beginning, middle, and end. That is, a proof is understood in terms of the conceptual 

metaphor “A PROOF IS A JOURNEY,” as spelled out in Table 2: 

A Proof IS a Journey 

Source Domain: 

Physical journey 

Target Domain: 

 Mathematical proof 

 Starting point (source) 

 Destination (goal) 

 Steps 

 Possible sequences of steps 

(routes or paths) 

 “Dead ends” or wrong paths 

 Obstacles to finishing the journey 

 Premises (source) 

 Conclusion (goal) 

 Logical statements (“If A then B”) 

 Possible sequences of logical 

statements (path) 

 Sequences that don’t result in the 

desired conclusion 

 Obstacles to completing the proof 

Table 2: The journey metaphor for proof 

This metaphor is based on an image schema known as “source-path-goal” (M. 

Johnson, 1987), which is again based on embodied experience. In this case, the 

physical experience is again a very early one, that of moving oneself from a starting 

location to a destination, via a path. Terms consistent with this metaphor were used by 

all of the students, including the following representative sample: 
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“destination,” “the forward direction,” “walking it back,” “you want to end up over here,” 

“you get kind of bogged down,” “you get to a certain point,” “I don’t wanna go any 

further,” “we’ll try the other way,” “maybe I don’t know where I’m going,” “at some point, 

maybe I can, like you know, see the goal,” “there’s so many ways you could go,” “the 

better way to go”   

Interestingly, the term “step” is used in more than one way when talking about proof. It 

is used metaphorically to refer to a single step in a journey. But it is also used more 

generically to mean one element of a procedure, or one written line in a formal proof. 

This latter usage is based on a different visual image, that of a proof written on multiple 

lines of a paper or blackboard. For example, at one point in an explanation, a student 

stated “so let’s start back at the top” when referring to a written proof, referring to the 

way that proofs are traditionally written with premises at the top of the page. Another 

student displayed a gesture in which his hand was held palm down horizontally in front 

of the upper chest, and then moved iteratively downward while he said “And then the 

question is, well, can I fill in those steps that I have?” (Figure 1). 

Figure 1: A gesture for one line or “step” of a proof 

In this case, the gesture helps to clarify that the student is talking about filling in 

written lines in a proof, again moving from the top of the virtual page toward the 

bottom. This is an example of how a useful bodily-based image schema, that of taking 

a physical step with one’s foot, can serve as the foundation for multiple related 

concepts. 

The metaphor of a proof as a journey is not the only one utilized by the graduate 

students. They also discussed proofs as object or constructions which are made up of 

pieces or parts, as evidenced by the statements: “Sometimes you can show maybe two 

out of three parts” and “If it doesn’t hold, then everything falls to pieces.” A more 

specific version of this metaphor views proof as a building, with a foundation holding 

it up, and a certain degree of strength. Thurston (1994) exemplifies this metaphor when 

he states, “The kind of change I would advocate is that mathematicians take more care 

with their proofs, making them really clear and as simple as possible so that if any 

weakness is present it will be easy to detect” (p. 170; emphasis added). 

Yet another metaphor emphasized the logical connections between statements within a 

proof, utilizing the metaphor of a proof as a chain made up of connected links:  
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NE:  In a strict sense, I guess it's a chain of implications, from the hypothesis to the 

conclusion 

Thus, we see that an analysis of proof from an embodied point of view does not yield 

only a single metaphor or image schema grounding its understanding, but rather 

several different mappings that each highlight a different aspect of this complex 

product of the mathematical community. 

CULTURAL INFLUENCES  

As a final example of the richness of an embodied perspective on proof, we will 

examine the cultural influences on a physically-grounded metaphor. Although 

embodied cognition looks to our shared physical experiences, it does not overlook the 

fact that these experiences are always situated within particular social and cultural 

contexts (Evans & Green, 2006; Fauconnier & Turner, 2002). The proof that the 

doctoral students were asked to create during the study involved the infimum of one 

sequence and the supremum of another, with a desired value between the two. In 

discussing this proof, the three researchers found that they each utilized a metaphor 

with a different surface structure, but with the same underlying image schema based on 

physical experience. One researcher, from the United States, described the students’ 

solution as a “squeezing” proof; the second, from South America, used the metaphor of 

a sandwich; and the third, from Eastern Europe, called it a “policeman” proof, evoking 

the image of a prisoner held between two police officers. 

Thus, each metaphor preserved the underlying physical situation in which one entity is 

located or held between two others, with the entities on either side exerting pressure on 

the inner one. However, as the researchers were from three different countries, this 

image schema was “dressed up” in different surface metaphors. It seems quite possible 

that these different metaphors developed within the different mathematical and 

cultural communities within each country. 

DISCUSSION 

We have presented an investigation of mathematical proof and logical deduction from 

the perspective of embodied cognition, drawing from a variety of kinds of evidence. 

Such an analysis may be useful to mathematics educators in helping to clarify the 

conceptual underpinnings of this important practice, and perhaps in illustrating 

metaphors that might be effective in helping students learn about proof. There are two 

directions for future research. One would be to investigate whether an analysis of 

speech, gesture, and other modalities would reveal an inner structure to the proof 

process. A second set of questions addresses cultural differences and similarities in 

gestures related to both proof and mathematical content, across different cultures and 

languages. In either case, the analysis will utilize the theoretical foundation of 

embodied cognition, and the powerful tools of cognitive linguistics and gesture 

analysis. 
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TEACHERS’ FORMS OF ATTENTION TO STUDENTS’ WRITTEN 

RESPONSES IN PATTERN GENERALIZATION 

Rabih El Mouhayar 

American University of Beirut 

 

The purpose of this study is to explore teachers’ forms of attention to students’ 

responses in pattern generalization tasks. A survey consisting of ten students’ 

responses to different types of generalization tasks was developed and then given to a 

sample of ninety-one in-service mathematics teachers. Data analysis showed five 

forms of attention: inability to attend to a student’s response, gazing at the figural 

pattern, discerning details, recognizing relationships, and perceiving properties in a 

student’s response. The findings showed that the forms of attention were mediated by 

pattern generalization type. In particular, as the generality demands of the task 

increased, “discerning details” decreased whereas “recognizing relationships” and 

“perceiving properties” increased. The findings also showed that teachers 

predominantly used “discerning details” in near generalization tasks whereas they 

predominantly used “perceiving properties” in far generalization tasks. 

BACKGROUND 

Pattern generalization is a core area in mathematics that is characterized by more 

strategic knowledge than mathematical content knowledge (El Mouhayar & Jurdak, 

2015a, 2016). To date much of the research in the context of pattern generalization has 

focused on students’ strategies and less on teachers’ noticing of students’ responses. 

One direction was the study of teacher ability to explain student reasoning in pattern 

generalization in terms of identifying the elements which constitute a complete 

explanation (e.g. El Mouhayar & Jurdak, 2013). Another direction in the literature 

focused on the lenses through which the teacher views and analyzes students’ written 

responses in pattern generalization (El Mouhayar & Jurdak, 2015b). A third direction 

focused on teachers’ strategies and reasoning approaches in generalizing patterns 

(Rivera & Becker, 2007). Recently, researchers (e.g. Callejo & Zapatera, 2016) 

addressed a new direction that focuses on teachers’ noticing of students’ thinking in 

the context of pattern generalization. The findings reported that even though teachers 

may have the ability to identify elements of students’ strategies; however, this does not 

necessarily indicate that they have the ability to interpret and analyze students’ 

understanding (Callejo & Zapatera, 2016). 

The present study extends previous research on teachers’ noticing of students’ 

thinking. It attempts to identify and distinguish between different forms of teachers’ 

attention to students’ written responses in pattern generalization. Teacher attention to 
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students’ responses is one of skills of teacher noticing (Mason, 2011) and it is the most 

foundational (Star & Strickland, 2008). 

TEACHERS’ FORMS OF ATTENTION 

Attention “is both observation and the medium through which observation takes place” 

(Mason, 2002, p. 45). For example, if someone is gazing at a diagram and he/she 

notices something familiar about a part of the diagram, this may lead him/her to start 

attending to that part. Mason (2011) distinguished between five forms of attention:  

 “Holding wholes” is attending by gazing holistically at an object or a situation 

without discerning details. Gazing at a diagram is an example of holding wholes. 

 “Discerning details” is looking for specific details and discerning the details by 

distinguishing “this” from “that”.    

 “Recognizing relationships” is looking at relationships that exist between 

discerned details in a particular situation. 

 “Perceiving properties” is recognizing relationships that exist between specific 

details as particular cases of properties that could hold true in different situations 

 “Reasoning on the basis of agreed properties” is using agreed properties shared 

by many examples to assert that those properties are to be the defining 

properties, leading to reasoning based on axioms, rules and definitions. 

RATIONALE OF THE STUDY 

Attention to student work is expected to be enacted in a regular manner by teachers and 

attending to students’ mathematical reasoning is a key component of teaching 

expertise (Mason, 2002). There are few research studies in mathematics education that 

explore teachers’ ways of attending to students’ responses. Unpacking the forms of 

attention to students’ work is particularly important in pattern generalization because 

of the strategic nature of reasoning in the latter. This study extends previous research 

on teachers’ ability to explain students’ responses in pattern generalization in two 

directions. First, the present study aims at exploring teachers’ ways of attending to 

students’ written responses whereas previous research focused on exploring teacher 

ability to identify and explain student reasoning in pattern generalization in terms of 

the elements of student response (El Mouhayar & Jurdak, 2013). Second, the present 

study aims at exploring the impact of pattern generalization type on teachers’ forms of 

attention to students’ responses whereas previous studies addressed the influence of 

pattern generalization type on teacher-used lens to explain students’ responses (El 

Mouhayar & Jurdak, 2015b). 

RESEARCH QUESTIONS 

 What forms of attention do in-service mathematics teachers use to explain 

students’ written responses in pattern generalization tasks?  
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 How is teacher attention to students’ written responses influenced by pattern 

generalization type? 

METHOD 

Participants 

Ninety-one in-service school mathematics teachers from different grade levels were 

selected from twenty schools in Lebanon, particularly Beirut and its suburbs, to 

participate in the present study. The majority of the participants (75.8%) had five or 

more years of experience in teaching mathematics. Of the 91 participants, 79.8% were 

females and 20.2% were males. 

Instrument 

In the present study, in-service mathematics teachers filled out a questionnaire, in 

order to examine the ways that teachers use to attend to students’ responses in pattern 

generalization. A sample of students’ written responses were taken from a survey used 

in a previous study (El Mouhayar & Jurdak, 2015a) involving 1232 Lebanese students 

from grades 4 to 11. The survey consisted of 10 items representing different reasoning 

approaches and strategies used by students in near and far generalization tasks. Each of 

the items displayed the problem (a growing figural pattern showing the first four 

figural steps) and a student’s responses to: (1) near generalization (predicting step 5 or 

step 9) or (2) far generalization (predicting step 100 or step n). For each item, 

participants were asked to explain students’ responses by responding to the following 

question: "How did the student think to get the number of squares?”. For example, 

participants were asked in item 1 of the survey to explain student’s written response for 

a near generalization task step 9 (Figure 1). Participants filled out the questionnaire 

individually in the presence of the investigator in about 90 minutes. 

Data Collection and analysis 

The obtained data were subjected to a series of analyses. First, a constant comparative 

method of qualitative analysis (Glaser & Strauss, 1967) was applied to identify 

teachers’ forms of attention to students’ written responses. Two researchers coded the 

data independently and several meetings between them followed where the 

discrepancies in identifying and in coding teachers’ forms of attention were negotiated 

until consensus was reached. Second, frequencies and percentages were determined 

for each of the categories of teachers’ forms of attention to students’ written responses. 

Third, a cross tabulation of teacher attention to student response by pattern 

generalization type was done to explore the possibility of significant differences in 

teachers’ ways of attending to students’ responses across generalization type. Fourth, 

percentages of teachers’ forms of attention to students’ responses across pattern 

generalization types were presented by bar graphs in order to identify the highest 

frequency of teacher attention within each generalization type and trends of variation 

of teacher attention across generalization type.  
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Figure 1: Sample of a student’s written response in a near generalization task (step 9) 

FINDINGS 

Forms of teachers’ attention to students’ written responses 

Qualitative analysis resulted in five ways that the teachers used in attending to 

students’ written responses. The five forms of attention are as follows: 

• Inability to attend: The teacher did not attend to student’s response by 

expressing inability to explain student response. 

• Holding wholes: The teacher attended to student’s response by gazing at the 

figural pattern (gazing at the diagram) without particularly discerning details 

in student’s response. 

• Discerning details: The teacher distinguished details of a student’s response 

by attending to the student’s mathematical thinking in particular step(s) of the 

pattern. 

• Recognizing relationships: The teacher attention was directed towards 

relationships as objects that exist in particular steps of the pattern. 

• Perceiving properties: The teacher recognized relationships as instances of 

properties that are independent of particular steps of the pattern and that are 

related to general aspects of the pattern.  
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The findings showed that the majority of teachers attended to students’ responses by 

“discerning details” (48.8%) followed by “perceiving properties” (28.5%) followed by 

“recognizing relationships” (9.2%), Only 2.6% of teachers attended to students’ 

responses by “holding wholes”. 10.9% of teachers did not attend to students’ responses 

and 4.1% of the explanations were coded missing. The excerpts in Table 1 are 

examples of different forms of teachers’ attention to a student’s written response 

(Figure 1) in a near generalization task (step 9).  

Excerpt Teacher 

attention 

Sample teacher explanation 

1 Holding 

wholes 

Teacher: “In figure 1 there were 3 squares and they were 

increasing by 2. If we skip count by 2 we will reach 19.  

Steps:                       1-2-3-4-5 – 6 –7 –8– 9  

Number of squares: 3-5-7-9-11-13-15-17-19” 

2 Discerning 

details 

Teacher: “He added the cubes of the first row in figure 9 and 

the cubes of the second row” 

3 Recognizing 

relationships 

Teacher: “The student observed the pattern. He (she) counted 

the number of squares on the top and the one below. He 

noticed that we started by 2 squares up and 1 square down. We 

are adding 1 to the top and 1 square below. The number of 

squares in figure 9 is the same below and 9+1 = 10 above. He 

added 10 + 9 to obtain 19 squares” 

4 Perceiving 

properties 

Teacher: “The student compared the number of squares in the 

upper row and the lower row in all the figures. He found that 

in each step the number of squares is equal to the number of 

figure in the lower row and the number of squares in the upper 

row is equal to the number of figure + 1. Thus, the number of 

squares in figural step 9 is 9+10 = 19” 

Table 1: Different forms of teachers’ attention to a student’s written response  

Excerpt 1 is an example of “holding wholes” since the teacher generalized the pattern 

by gazing at different steps of the pattern without looking at the student’s response. 

The teacher found the number of squares in steps 1 to 9 by looking at figural step 1, 

counted 3 squares and then skipped counting by 2 until reaching 19 squares in step 9. 

Excerpt 2 is an example of “discerning details” where the teacher attended to particular 

details of student mathematical thinking by pointing out that the student added the 

number of squares in the top row to the number of squares in the bottom row in step 9. 

Excerpt 3 is an example of “perceiving properties” since the teacher attended to 

particular relationships that exist in the pattern. Those relationships are instances of 

properties that the teacher perceived in student response in step 9 but that could also 

hold in other situations (those relationships exist in all steps of the pattern). 
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Excerpt 4 is an example of “perceiving properties” since the teacher recognized 

relationships between parts of the figure and any step number of the pattern. 

Influence of pattern generalization type on teachers’ forms of attention to 

students’ written responses 

The teacher’s form of attention to students’ responses was mediated by the type of 

pattern generalization task. A cross tabulation of teachers’ forms of attention to 

students’ written responses by pattern generalization type (near and far 

generalizations) were done. Findings show that chi-squared was significant (χ2 (5) = 

87.76, p = 0.00) indicating that teachers’ forms of attention to students’ written 

responses were significantly influenced by pattern generalization type.  

Within generalization type, discerning details was most frequently used by teachers in 

near generalization tasks (60.3%) whereas perceiving properties was more dominant 

than other forms of attention in far generalization tasks (40%).  

Across generalization type, as the generalization demands increased, that is changed 

from constructing of a step-by-step solution to finding a general formula, teachers’ use 

of “discerning details” and “holding wholes” decreased whereas “recognizing 

relationships” and “perceiving properties” increased (Figure 2). Figure 2 shows that 

the teachers adopted discerning details (61.7%) and holding wholes (95.7%) most 

frequently in near generalization tasks whereas they used recognizing relationships 

(61.3%) and perceiving properties (70.3%) most frequently in far generalization tasks. 

 

Figure 2: Bar graphs representing the percentages of teachers’ forms of attention to 

students’ written responses 
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DISCUSSION 

One major finding in this study is that teachers predominantly used discerning details 

in attending to students’ responses; however, teachers’ forms of attention were 

mediated by pattern generalization type. The different ways in attending to students’ 

responses significantly differed according to the generalization type. The frequency of 

“holding wholes” and “discerning details” decreased with the increase in the generality 

demands of the task (from near to far generalizations); whereas, the frequency of 

“recognizing relationships” and “perceiving properties” increased with the increase in 

the generality demands of the task.  

The shifts in the structure of attention to students’ responses may be due to different 

factors. Of those factors is the nature of near and far generalization tasks. As the step 

number becomes larger in a far generalization task, recognizing relationships and 

perceiving properties are more efficient compared to other forms of attention since 

both forms involve attending to relationships and commonalities that could hold in 

different steps of the pattern. On the other hand, as the step number gets larger, 

discerning details becomes less efficient because of its local nature since it involves 

looking at the details of student’s response in particular step(s) of the pattern. 

Another plausible explanation may be due to the interrelationships between the 

features of the strategies used by the students and their relationship to the 

generalization process, on one hand, and the pre-dominant use of student lens in 

attending to student response by experienced teachers on the other hand. Previous 

studies (e.g. El Mouhayar & Jurdak, 2015a) suggest that as the step number becomes 

larger for a far generalization task, the strategies that the students use to generalize the 

pattern become more advanced compared to other strategies in the sense that the 

advanced strategies allow grasping and generalizing the commonality that exists in a 

pattern to all the terms of the pattern. On the other hand, the participants in the present 

study are in-service teachers such that the majority (75%) had five or more years of 

experience in teaching mathematics. Previous studies reported that experienced 

teachers showed ability in noticing their students’ thinking (Van Es, 2011) and in 

predominantly using students’ lens in attending to their responses (El Mouhayar & 

Jurdak, 2015b). 

A second finding of this study is that the teachers used “discerning details” more often 

than other forms of attention to students’ written responses in near generalization 

tasks; whereas, they predominantly used “perceiving properties” in attending to 

students’ written responses in far generalization tasks. Again, this may be may be due 

to the interrelationships between the structure of attention, the nature of the task (type 

of generalization) and the strategy being used to generalize the pattern. 

In conclusion, the area of studying the responsiveness of teachers to students’ work is 

underrepresented in the field of education of mathematics. It is hoped that more studies 

be carried out in this area in order to generate enough knowledge that may be 

incorporated in teacher education programs. 
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WHAT MATTERS IN MATHEMATICS EDUCATION?  

AN ANALYSIS OF AN INTENDED CURRICULUM IN AUSTRALIA 

Michaela Epstein1 and Wee Tiong Seah2 

Maths Pathway, Australia, The University of Melbourne, Australia 

 

The ‘intended curriculum’ is where decision-making about the direction of teaching 

and learning in an education system takes place. This research used a content analysis 

process, informed by grounded theory, to identify the underlying priorities in the 

Victorian Curriculum: Mathematics (VCM), an authoritative document within the 

intended mathematics curriculum in Victoria, Australia. Results highlighted tensions 

in the VCM’s messaging, regarding the purpose of mathematics education and how 

mathematics is expected to be taught and learned. The findings suggest the potential 

for confusion when using this component of the intended curriculum as a guide for 

teaching and learning. 

INTRODUCTION 

A curriculum provides the vehicle for expressing a society’s ideal, acting as an 

intermediary force between the community of decision-makers and those in schools 

(see Ditchburn, 2012). The ‘ideal’ encompasses what has been deemed successful in 

the past and what hopes are held for the future (see Wong, Zhang & Li, 2014). As such, 

the significance of the curriculum cannot be understated or removed from any 

conversation that considers the realities of schooling. 

The present research is concerned with what is described as the ‘intended curriculum’, 

which operates at the educational system level and is where strategic decision-making 

often takes place (see Travers & Westbury, 1989). Specifically, the analysis is focused 

on a prominent component of the intended mathematics curriculum in the state of 

Victoria, Australia, the Victorian Curriculum: Mathematics (‘VCM’) (Victorian 

Curriculum and Assessment Authority [VCAA], 2016). Aimed primarily at teachers, 

the VCM presents standards to assist with planning, monitoring and assessment. The 

intentions expressed through the document are accordingly interpreted and 

implemented by educators in schools. By presenting macro-level analysis of the VCM, 

this research therefore provides important insight into perceptions of mathematics 

education at a system level in Victoria.  

Analysis undertaken for this research was guided by three research questions (RQ): 

RQ1. Within the intended curriculum, what is the purpose of mathematics education? 

RQ2. How is mathematics learning framed by the intended curriculum? 

RQ3. How is mathematics teaching framed by the intended curriculum? 
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LITERATURE REVIEW 

The curriculum framework as outlined by Travers and Westbury (1989) has informed 

this research. It is underpinned by “the assumption that curriculum exists in different 

forms at different levels of the system” (Remillard & Heck, 2014, p. 706). Travers and 

Westbury’s curriculum framework comprises three levels: the intended, implemented 

and attained curriculum. It is via the intended curriculum that the curriculum in its 

entirety is shaped. The scope of the intended curriculum includes “course outlines, 

official syllabi, and textbooks” (Travers & Westbury, 1989, p. 6), in addition to the 

rationale or goals for learning (see Burkhardt, 2014).  

At its most extreme, what is laid out in the intended curriculum maps perfectly onto 

what gets taught and what is learned (see Wong, Zhang & Li, 2014). In reality, an 

interplay of factors, such as a teacher’s content and pedagogical content knowledge 

and a student’s readiness to learn, will impact the ability of students to demonstrate the 

expected skills, understanding and values. 

Furthermore, the intended curriculum is not a static, unchanging entity, but gets 

“reconstituted according to evolving social priorities and criteria” (Brown, Hodson & 

Smith, 2013, p. 41). These priorities and criteria may be derived from, for example, 

national or even global pressures and/or advances in pedagogical and assessment 

techniques. If this is the case, then why use the intended curriculum for analysis? The 

value of focusing analysis on this component of a curriculum system comes in viewing 

the intended curriculum as a snapshot in time that provides insight into the context in 

which analysis takes place. 

This research focussed on the intended mathematics curriculum in Victoria from the 

2015-16 period. Literature reviewed for this analysis encompassed the period 

commencing from 2008, when the Australian Curriculum, Assessment and Reporting 

Authority (ACARA) was formed under an act of Federal Parliament, up to 2016, the 

year of release of the VCM.  

The Intended Mathematics Curriculum in Victoria. 

Examination of literature in the field of mathematics education has indicated a lack of 

analysis or evaluation of the curriculum at a system level in Australia. This observation 

has been noted by Atweh and colleagues, who suggest that research in mathematics 

education “often seems to be more concerned with how we can introduce a concept to 

maximise learning rather than why and to what purpose such learning is useful” (2012, 

p. 5). Although micro-level research is useful, others (e.g. Pais & Valero, 2012) have 

noted a problem with such research focusing on fixated points, in isolation and without 

reference to broader socio-cultural discussions. 

By conceptualising mathematics education at a system level, it is possible to draw 

connections across and find meaning in specific aspects of the curriculum. Given the 

macro focus of this research, it is therefore important to consider the socio-political 
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climate during the 2008-2016 period and how this may have shaped the intended 

mathematics curriculum in Victoria. 

Indeed, as explained by Wong, Zhang and Li (2014) in reference to international 

testing programmes, “improving the position of one’s country/region in the 

‘international league table’ is still a major goal in the current trend towards 

mathematics curriculum reform” (p. 608; see also Brown, Hodson & Smith, 2013; Pais 

& Valero, 2012). Others, such as Savage (2016), have argued that Australia’s national 

education reforms have been driven by global economic needs and labour productivity. 

These positions highlight mathematics education as being the means for developing 

economic strength and international competitiveness, as opposed to existing for the 

primary benefit of its recipients: students (see also Ditchburn, 2012; Swan, 2014). 

Within Australia, each state and territory has historically held an autonomous and 

unique approach to the framing and operating of education. As such, nationalisation 

measures across the education system since the 1970s have sat alongside ongoing 

tensions in regards to state autonomy, combined with a blurring of lines of 

responsibility, as exemplified by the establishment of ACARA and subsequent 

development of the Australian Curriculum (AC) (ACARA, 2012). Where formerly 

states had had control over the strategic direction, writing and implementation of their 

own curriculum documents, an interplay of voices have since become involved.  

In the case of mathematics curriculum documentation, this has resulted in the 

nationally developed AC being re-badged and tweaked by some states, including 

Victoria, despite the inter-jurisdiction agreement that took place to produce it. In 2016, 

a state-wide version entitled the Victorian Curriculum was launched. As with other 

subject curriculum documents in Victoria, the VCM provides a source of guidance and 

consistent reference point for understanding student development. 

METHODOLOGY 

Given that no well-defined frameworks seemed to be available with which to conduct 

this analysis, a grounded theory approach to data analysis was adopted (see Glaser & 

Strauss, 1967). Grounded theory describes both a methodology and a set of processes 

that are undertaken by the researcher, with the aim being "to find a core category, at a 

high level of abstraction but grounded in the data, which accounts for what is central in 

the data" (Punch, 2009, p. 205). 

Data Source, Collection and Analysis 

Two subsections of the VCM – the Introduction to the curriculum (VCAA, 2016, pp. 

4–7) and the Content Descriptors within the Number and Algebra strand across the 

levels Foundation to 10A (pp. 8-68) – were analysed.  As with the work of Kilpatrick, 

Swafford and Findell (National Research Council, 2001), the subsections were used 

"to illustrate what might be done throughout the curriculum" (p. xv).  
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Using a content analysis process, and informed by grounded theory, textual data 

relevant to the three Research Questions was systematically collected from the VCM 

subsections. This process involved three stages of coding – open, axial and selective 

coding – which progressively pulled apart and made meaning of the data collected. 

Collected data was not compared to a pre-existing theory or framework, but to itself. 

RESULTS 

Open coding for the VCM Introduction resulted in 11 categories, which relate to 

broader aims of mathematics and the structure of learning. These categories were then 

clustered into three themes during axial coding. Theme A1, entitled ‘benefits for 

individuals’, consists of the categories: appreciation of mathematics; benefits for 

individuals; capacity for problem solving; further study; and other disciplinary 

benefits. Theme A2, ‘benefits for society’, includes one category of the same name. 

Theme A3, ‘structure of the curriculum’, includes the categories: curriculum as a 

continuum; curriculum caters to diverse learners; expectations for learning; learning 

happens in different ways; and structured nature of the curriculum. 

For the VCM Content Descriptors, open coding resulted in 13 categories, all of which 

are verbs to describe student action when learning mathematics. These categories were 

then clustered into five themes during axial coding. Theme B1, entitled ‘concept 

development’, consists of the categories: express and represent; introduce and define; 

and recognise. Theme B2, ‘concept comparison and classification’, includes the 

categories: compare and classify; and connect. Theme B3, ‘procedural thinking’, 

includes: apply; find and identify; graph; solve; and use. Theme B4, ‘higher order 

thinking’, includes: analyse; and create. Theme B5, ‘confidence’ includes a single 

category: develop confidence. 

Theme names were developed by considering the connections between categories in 

that theme. As an example, the categories in Theme B1 underlie concept development. 

This includes the introduction and initial understanding that students develop about 

mathematical concepts, where being able to define and represent a concept leads to 

recognition of that concept. Categories in this theme precede the conceptual work 

involved in Theme B2. 

Selective coding resulted in the creation of a core category to encapsulate the previous 

stages of coding. The core category was based on meaning underlying the categories 

and themes for both the Introduction and Content Descriptors, and is as follows. 

The VCM frames mathematics education in two ways, such that there is a discrepancy 

between the messaging of the Introduction and the Content Descriptors. The 

Introduction focuses on the broad benefits of mathematics education to individuals and 

to society. It further acknowledges that there is value in having a structured 

curriculum, with this structure presented as a means for supporting the diverse needs of 

students. The Content Descriptors include a range of levels of thinking, however with a 

focus on skills related to procedural thinking and conceptual development. So, while 
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axial coding themes are connected and to an extent build on one another, this same 

interconnectedness is not found in how the themes are distributed across individual 

content descriptors. 

DISCUSSION 

As the core category for the VCM has revealed, the intended mathematics curriculum 

in Victoria consists of competing perspectives. This may be indicative of the mediating 

influence noted by Remillard and Heck (2014) of “social, political, cultural [or] 

structural” (p. 714) factors that are present during curriculum development. 

Nonetheless, it is of concern that a prominent and highly utilised document such as the 

VCM contains contradictory messaging and is unclear in its articulation of the role of 

mathematics education. Indeed, themes from each section of the VCM are not easily 

synthesised and are presented below as if derived from distinct documents. 

RQ1: The Purpose of Mathematics Education 

So how is the purpose of mathematics education articulated across the VCM? The 

‘concept development’, ‘concept comparison and classification’ and ‘procedural 

thinking’ themes (B1, B2, and B3 respectively), which emphasise the attainment of 

discrete skills and concepts across multiple levels, indicate that the Content 

Descriptors present mathematics as a fixed body of knowledge. The remaining themes’ 

emphasis on higher order thinking (B4) and confidence (B5) show that mathematics 

education also includes opportunities to develop more complex skills and a positive 

disposition to learning. Mathematics education, in this way, exists for the development 

of individual students’ knowledge, skills and dispositions towards an end-point that is 

defined by the curriculum. 

While the Introduction also underscores the importance of mathematics education for 

students, it does two other things. Firstly, as indicated by Theme A1, mathematics is 

perceived as beneficial for students, not just within mathematics classes, but also more 

broadly. Secondly, Theme A2 suggests that mathematics education is advantageous 

for society due to its “fundamental role in… enabling and sustaining cultural, social, 

economic and technological advances” (VCAA, 2016, p. 4).  

It is therefore apparent that the Introduction espouses a vision of mathematics 

education, whereby its purpose exists beyond the immediacy of the classroom and 

even the student. Thus, becoming educated and gaining mathematical knowledge is not 

the end-goal. Rather, mathematics education has been discursively positioned as a tool 

for a better life and societal outcomes (see Pais & Valero, 2012).  This element of the 

intended mathematics curriculum in Victoria sits in conflict with the narrower purpose 

outlined by the Content Descriptors. 

RQ2: How Mathematics is Expected to Be Learned 

Across the VCM, two elements of learning were evident from the analysis: there is 

complexity to student learning needs, and to the content of what is then learned. The 
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‘structure of the curriculum’ theme (A3) in the Introduction and the structure of the 

VCM document itself highlight that diverse mathematical learning needs exist 

amongst students and that all needs should be catered to. Within the Content 

Descriptors, use of the term ‘level’ rather than ‘year’ to demarcate stages of progress 

implies that students are not expected to learn content that is matched to their year 

level. It is viable, for example, that a Year 6 student is learning Level 4 or even Level 

10 content. Moreover, the inclusion of additional content, namely Level 10A at the 

upper end of the curriculum, is evidence that the learning trajectory for all students is 

not regarded to be the same. As with education policy-makers, curriculum-writers and 

researchers since the late twentieth century who have embodied the ‘mathematics for 

all’ discourse (see Pais & Valero, 2012), the VCM has suggested that all students can 

learn and have success in mathematics. 

Despite this equity viewpoint, a one-to-one correspondence between the curriculum 

levels and school year levels is visible, rendering additional content as an add-on and 

deviation from the norm. The category breakdown of Theme A3 further highlights that 

set expectations for learning exist. So, in contrast to its messaging, the VCM via its 

structure appears to espouse a fixed notion of how student learning should progress. 

The onus thus rests with teachers to identify the need for – and implement – any 

differing levels of support for students beyond the year/curriculum level they are at. 

Similar concerns have been noted (e.g. Atweh, Miller & Thornton, 2012) in regards to 

the AC and the implications of its near-identical structure. 

Within the VCM, the complexity of mathematical learning is highlighted by the open 

coding category ‘learning happens in different ways’ (see Theme A3). This is 

reinforced by the Content Descriptor themes ‘concept development, ‘concept 

comparison and classification’, ‘procedural thinking’ and ‘higher order thinking’ (B1 

to B4), which exist across the trajectory of the Number and Algebra strand.  

Where the Introduction and Content Descriptors differ, however, is in the relative 

importance placed on different ways of learning. The Introduction has deemed four 

proficiencies – understanding, fluency, problem solving and reasoning – to be of 

equivalent value, noting that they “are fundamental to learning mathematics and 

working mathematically” (VCAA, 2016, p. 6). In contrast and as outlined by the core 

category for the VCM, there is an uneven distribution of Themes B1 to B5 across the 

Content Descriptors. Predominant weighting is given to conceptual understanding (B1 

and B2) and procedural fluency (B3) over higher order thinking (B4) and confidence 

(B5). As such, the potential complexity and nuances that underscore mathematical 

learning have not been coherently carried through in the Content Descriptors. 

Problematically, previous research (e.g. Burkhardt, 2014) has found that problem 

solving and higher order thinking are under-emphasised in Australian classrooms. 

Rather than addressing this issue, the VCM reinforces it, with the imbalance of skills in 

Themes B1 to B5 not made clear for teachers and others using the document. Thus, 
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while Theme A3 of the VCM presents an intention of mathematical learning as rich 

and multi-faceted, much of this work is left to teachers in their implementation. 

RQ3: How Mathematics is Expected to Be Taught 

Across the VCM subsection used for analysis, the sole reference to teachers is in the 

Introduction:  

The curriculum sets out what students are expected to learn and is designed as a continuum of 

learning. The curriculum is being presented in a scope and sequence chart to support teachers 

to easily see the progression and assist in planning. (VCAA, 2016, p. 7) 

The phrasing here suggests that successful curriculum implementation is achieved by 

the transfer of knowledge from the ‘scope and sequence’, also known as the Content 

Descriptors, to teacher to student. As the core category outlines, by adhering to this 

guidance, teaching practice would then emphasise the haphazard development of 

conceptual understanding and procedural thinking, over skills requiring higher level 

thinking.  

Furthermore, the absence of explicit reference to teachers places little value on the 

development of pedagogical content knowledge and best practice. As Swan (2014) has 

argued, this exclusion “dodges our responsibility to help teachers apply the wisdom of 

research to daily practice” (p. 632). For new or out-of-field teachers or even for 

experienced teachers who are grappling with the diversity of students in their 

classroom, separating what should be taught from how presents a serious challenge. 

CONCLUSION 

Mathematics teaching and learning does not operate independently of the curriculum 

intent. Through analysis of a component of the intended mathematics curriculum in 

Victoria, this research has demonstrated that while there are consistencies in the 

priorities underlying the VCM, contradictions also exist. The divergent messaging that 

this communicates is thus problematic for those using the VCM as a source for 

developing a mathematics teaching and learning program. Given this context, it may 

even be expected that a similar phenomenon exists for the entirety of the VCM, 

including the ‘Measurement and Geometry’ and ‘Statistics and Probability’ strands.  

The findings of this research present implications for those supporting teachers with 

mathematics curriculum implementation, including academics, school leaders and 

private service providers. Specifically, there is a need for professional development to 

focus on effective pedagogies underlying curriculum implementation, particularly in 

regards to areas that are typically challenging to teach. 

Finally, this research has broader implications for curriculum writers of mathematics 

and other disciplines. The inconsistencies within the VCM emphasise the importance 

of reflecting on the perspective and approach taken during curriculum development. 

Curriculum documentation must be written in recognition of its position in the 
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curriculum system: as an authoritative statement of what is valued in education and a 

source of guidance for teaching and learning. 
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TALKING ABOUT CONCEPTUAL KNOWLEDGE: CASE STUDY 

ON CHALLENGES FOR STUDENTS WITH LOW LANGUAGE 

PROFICIENCY  

Kirstin Erath 

TU Dortmund University, Germany 

 

More and more research in mathematics education points to the importance of the 

discursive level of language for the learning of mathematics. The presented study 

theoretically builds on combining an Interactional-Epistemological Perspective from 

mathematics education with the linguistic theory of Interactional Discourse Analysis 

to further investigate the role of explaining and arguing for the learning of conceptual 

understanding. A qualitative analysis in remediating small group courses on fractions 

shows that students succeed in describing observations but need a lot of support for 

accomplishing tasks on explaining meanings and connections.  

Large quantitative studies show repeatedly that students with higher language 

proficiency reach higher results in mathematics tests than students with lower language 

proficiency (Haag, Heppt, Stanat, Kuhl, & Pant, 2013; OECD, 2007). The role of 

language is a large field in mathematics education research that is considered from 

various perspectives (Barwell et al., 2016). Research focusing on the question how to 

foster language learners in mathematics classrooms point to the importance of 

considering the discursive level of language that goes beyond word and sentence level 

(e.g. Barwell, 2012; Moschkovich, 2013). The presented study aims at further 

unfolding how the learning of conceptual knowledge (Hiebert, 1986) is connected to 

the discursive level of language and to what extend students need help in 

accomplishing the challenging task of talking about meanings and connections. For 

this, theoretical background on the definition of discourse practices and their role in 

mathematics classrooms is presented, followed by presenting the research methods. 

The intertwined mathematical and linguistic challenges are exemplified in the 

empirical part by two excerpts from a remediate small group course on fractions in 

grade 7. The paper ends with a discussion of these insights and an outlook on further 

research.  

THEORETICAL BACKGROUND: THE ROLE OF DISCOURSE PRACTICES 

IN MATHEMATICS CLASSROOMS 

There is a broad consensus in mathematics education about the importance of 

participation in high level mathematical and linguistic practices for all students but 

especially for students who are still acquiring the language of instruction (e.g. 

Moschkovich, 2013). The basis of this consensus is a participationist perspective on 

mathematics classrooms (Sfard, 2008; referring to Vygotsky, 1978) that 



Erath 

 

2-322 PME 41 – 2017  

conceptualizes learning mathematics as “a process of enculturation into mathematical 

practices, including discursive practices (e.g., ways of explaining, proving, or defining 

mathematical concepts)” (Barwell, 2014, p. 332). In order to learn more about the role 

of discourse practices in mathematics classrooms, the Interactional-Epistemological 

Perspective (IPE) from mathematics education is enriched with the linguistic theory of 

Interactional Discourse Analysis (IDA) as introduced in Erath, Prediger, Heller, and 

Quasthoff (submitted). IPE focusses on knowledge construction and epistemic 

participation in the interaction of classroom microcultures (cf. Yackel & Cobb, 1996) 

and therefore investigates interactive processes while systematically bearing the 

subject in mind. Enrooted in the same ethnomethodological tradition (Garfinkel, 

1967), IDA provides theories on discourse practices and discourse acquisition that 

facilitate a deeper understanding on the intertwinement of learning mathematics and 

language. For the presented study, especially the distinction between different 

discourse practices (e.g. explaining, arguing, narrating, reporting, describing) is used: 

Following IDA, discourse practices are defined as interactively co-constructed, 

contextualized pattern in a speech community (e.g. a mathematics classroom 

microculture) that are functionally oriented towards particular genres (Bergmann & 

Luckmann, 1995). This means that different discourse practices are distinguished by 

means of different ‘problems’ they solve in a speech community. For example, 

explanations solve the problem of conveying and constructing knowledge while 

arguments serve to negotiate divergent validity claims.  

This way of differentiating discourse practices reveals why the practices of explaining 

and arguing have a special position in (mathematics) classrooms since these discourse 

practices meet the tasks of school: Knowledge needs to be constructed, connected, and 

demonstrated as well as for example different ways of thinking need to be argued.  The 

theoretically expected dominance of explaining and arguing in classrooms can be 

empirically confirmed by a study on grade 5 whole class discussions in Germany 

(Erath et al., submitted): Explaining is the most frequently identified discourse practice 

in the observed mathematics classrooms followed by arguing and reporting on solution 

pathways. Furthermore, the interdisciplinary team points out that the linguistic 

demands rise with advancing in the process of knowledge construction. This means in 

particular, that talking about meanings, mental models, connections and other aspects 

of conceptual knowledge (Hiebert, 1986) is challenging for all students but especially 

for those with low language proficiency. But how do students with low language 

proficiency and teachers deal with situations in which talking about meanings and 

connections is necessary? Did they develop ways of bypassing the linguistic 

challenges? These questions are further investigated in the presented study by working 

on the following research questions: 

Q1: Which discourse practices are used to talk about meanings and connections? 

Q2: To what extend do students need support to participate in discourse practices 

linked with mathematical meanings and connections?  
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METHODOLOGY AND METHODS: QUALITATIVE ANALYSIS OF 

MODERATED SMALL GROUP PROCESSES 

Methods of data collection. The presented data is part of the larger intervention study 

MESUT in which students’ conceptual understanding on fractions was fostered by 

means of stimulating discourse related to ‘pushed output’ and ‘relating registers’ (cf. 

Prediger & Wessel, submitted). 186 German grade 7 students (aged around 13 years, 

mainly from underprivileged urban quarters, with comparatively low language 

proficiency, and weak in mathematics) worked in groups of 3 to 6 students for 5 

lessons together with a teacher (researchers and trained student assistants). The 

analysis of this paper is based on video data and written products of 9 groups. 

Methods of data analysis. For this study, 4 tasks in Lesson 2 and 3 were selected for 

transcription. Selection criteria was that they had shown a high potential for eliciting 

discourse practices in a first rough analysis of the video material. The transcripts were 

intensively analyzed in the tradition of discourse analysis as introduced in Erath et al. 

(submitted): First, all episodes were identified in which an explanation or 

argumentation became necessary in the interaction. In a second step, these sequences 

were analyzed guided by the following questions: (1) which mathematical aspects 

were dealt with (meanings, connections, representations, procedures …)? (2) How do 

students verbalize their explanations and argumentations? If not successful: which 

discourse practice do they choose instead or do they switch to single words or half 

sentences? (3) How does the teacher guide and help the students in accomplishing the 

task? In this paper, translated and simplified versions of the transcripts and the related 

task (Figure 1) are printed. 

 

 

Figure 1: Task on portioning more coarsely and more finely 
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EMPIRICAL RESULTS: EXPLAINING MEANINGS AND CONNECTIONS 

AS MATHEMATICAL AND LINGUISTIC CHALLENGE 

Two episodes from different groups are presented as examples in this section. 

Previously, students were working on comparing shares in the context of downloading 

movies and deciding equitably who scores best in a football competition. The fraction 

bar (see Figure 1) is an important representation that is used systematically in the 

intervention. In the phase of systematizing, students are working on the task printed in 

Figure 1 and are asked to explain what is meant by the meaning related expressions “If 

I’m looking up, I’m portioning more coarsely!” and “If I’m looking down, I’m 

portioning more finely!” with reference to the fraction bars. Therefore, the episodes 

focus on a crucial and challenging moment in the process of knowledge construction: 

The task aims at talking about the new mental model of finding equal shares 

(portioning more coarsely/finely) by referring to the familiar representation. This 

especially means, that it is necessary to verbalize connections since the bars must be 

considered comparatively. 

Episode 1: Lowering linguistic and mathematical demands 

Group H-BP consists of four students (three male, one female) from a lower secondary 

school. The teacher (Te1) and the students Dennis (Den) and Rahmiye (Rah) are 

speaking in Episode 1, starting after the teacher asks the students to explain the 

expression “If I’m looking up, I’m portioning more coarsely!”: 

22 Den:  I’d like to say something else  

23 Te1:  W, What would you like to say?  

24   Den: The numerator has divided here, here is written eight and there four 

25 Te1: The numerator? 

26 Den: Or the denominator, no idea, down there, I don’t know what it’s called 

27 Te1: The denominator 

28 Den:  Yes 

In the first part of Episode 1 (#22-28), Dennis describes his observation of ‘divided’ 

denominators and succeeds in producing a description (#24), even though with a 

wrong term which is corrected by the teacher. In the second part (#29-38), the teacher 

builds on this observation by asking the students to connect it to the representation 

(#29/32/36) and thus making an explanation necessary that draws connections between 

denominators and fraction bars as well as between the two considered fraction bars. 

This seems mathematically and linguistically challenging for the students: 

29 Te1:  Exactly, and what..the denominator um divided by two, right so in half, and 
what does it with the bar? [points to the bar in the task, 8 sec. break] 
whereby do I see at the bar that down here, the denominator is eight and 
above four 

30 Den: Because above# 

31 Rah #It doubles 
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32 Te1: Yes what doubles? Explain it 

33 Rah: The denominator 

34 Te1: The denominator from, from top to bottom it doubles, well, and how do I 
see it at the bar? 

35 Den: Because the pieces are larger 

36 Te1: Exactly, how many pieces and this is related to your doubling or halving, 
how many pieces are then one piece? If I’m looking the bottom up  

37 Rah: Two 

38 Den: Two 

Rahmiye (#31/33) rephrases the observation without reference to the representation, 

Dennis (#35) comparatively refers to the size of the pieces but without explicitly 

drawing a connection between the two fraction bars and the denominators. The teacher 

supports the students in their verbalizations by asking clarifying questions that can be 

answered by single words (#36) and therefore simplifies the task linguistically (and at 

the same time lowers the mathematical requirements). This, as well as making explicit 

that an explanation (and not a description) is needed (#32) and constantly building on 

students’ previous utterances, helps the students to remain active parts of the 

conversation. However, they do still not succeed in producing the pursued explanation. 

At the end (#39), it is the teacher who merges the students’ observations in an 

explanation and makes the connections between the size of the pieces in the fraction 

bar and the meaning related expression of portioning more coarsely: 

39 Te1: Correct yes, two pieces, make one lar um, make one large and this means 
Kenan with ’if I’m looking up I’m portioning more coarsely’ […] 

On the one hand, the teacher’s explanation can be interpreted as keeping the students 

back from further attempts and hence learning opportunities regarding explaining 

meanings and connections. On the other hand, it can be seen as supportive since it can 

serve as a model for an explanation that also shows the expectations of the teacher. 

Episode 2: Preserving linguistic and mathematical demands 

Group M-SP consists of four students (two male, two female) from a middle secondary 

school. The teacher (Te2) and the students Cemil (Cem), Lorik (Lor), and Lisa (Lis) 

are speaking in Episode 2, starting after the teacher asks the students to explain the 

meaning related expressions printed in the task (see Figure 1): 

74   Cem: fine is, well, small and more coarsely is large 

75 Lor: Small but fine 

76 Te2: [To Cemil] How do you mean that exactly? 

77 Cem: Like just# 

78 Te2: #Can one describe that again differently? 

79 Cem: Yeeeeeeees, difficult [smiles] 
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In the first part of Episode 2 (#74-79) Cemil renames more finely and coarsely as small 

and large which the teacher asks him to explain in more detail, probably because small 

and large do not refer to comparatives (as smaller and larger). Also the students in this 

group struggle with verbalizing the required explanation as explicitly stated by Cemil 

in #79 while succeeding in describing observations regarding the printed shares: The 

second part of Episode 2 (#80-83) deals with Lisa’s observation that the same share 

can be expressed differently: 

80 Lis: [raises her hand] ..But I know how it is correct, because here the share is 
written [points to the task] so 6/8 and with the others it’s not written, it was 
then portioned by um different fractions, so ¾  

81 Te2: Mhm so I can express the shares differently, right? 

82 Lis: Yes 

This is marked as correct by the teacher who nevertheless navigates back to Cemils 

utterance from the beginning. The teacher in this group does not lower the linguistic 

and mathematical demands, but continuously asks clarifying questions that still require 

answers longer than half sentences (#76/78/83). 

83 Te2: That’s [true] in any case, and what was that with the more finely and more 
coarsely again?# 

84 Cem: #Yes for example this one here, um, which is larger [points to a piece in the 
bar of 4th] and that the finer, that two fit in there 

85 Te2: Ah okay! So this one piece becomes two, if I portion more finely and the 
other way round, if I make one out of two?  

In the third part of Episode 2 (#83-85), Cemil succeeds in producing an explanation 

that compares the two fraction bars and verbalizes the connection between the sizes of 

the pieces backed by deictical means. The teacher amplifies his explanation by 

connecting it to the expressions more coarsely/finely given by the material.  

DISCUSSION AND OUTLOOK 

The two episodes are examples of phenomena that can be recurrently observed across 

the five sessions of the intervention as well as across different groups. Talking about 

meanings and connections in mathematics is (from a subject perspective as well as 

from a linguistic perspective) challenging for the students. The latter is even addressed 

explicitly by the students: Dennis (Episode 1, #26) struggles on word level, Cemil 

(Episode 2, #79) admits the difficulty in enhancing his utterance towards an 

explanation. Furthermore, both episodes show how the teachers try to support their 

students in order to help them verbalize their ideas as well as guide them towards the 

mathematical learning goal. The analysis thus shows once again how language and 

subject matter cannot be seen as separated. Furthermore, Episode 1 demonstrates how 

students learn vocabulary while participating in discourse practices.  

Research question Q1 on which discourse practices are used for discussing 

connections and meanings in mathematics classrooms can be answered by pointing out 
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that the mathematical learning goal of understanding the meaning related expression 

on finding equal shares and connecting it to the familiar representation was only 

addressed by explications in the presented episodes. The offered descriptions were 

used as starting point by the teacher in Episode 1 and were marginally approved in 

Episode 2, but these discourse practices did not succeed in verbalizing the connections 

between the representations and between the fraction bars and the meaning related 

expression. Thus, the theoretical and empirical importance of explaining and arguing 

(see above) is affirmed and shown on a micro level in this study. 

The data shows that students need help to participate in the challenging practices of 

explaining and arguing in mathematics (research question Q2). Both teachers have to 

invest time and several moves in order to end the sequence with an explanation that 

meets the task. The two presented teachers deal differently with this challenge and of 

course adapted to their group and the ongoing interaction. From the data, we cannot 

conclude if staying on the initial high mathematical and linguistic level (e.g. also 

recommended by Moschkovich, 2013) would have also led to students’ explanations in 

Episode 1. However, since in both episodes, students offer descriptions, it can be 

assumed that it might be effective to find a way of keeping the linguistic and 

mathematical demands (i.e. staying on a discursive level) and at the same time jointly 

converting students’ descriptions to explanations. The question how this might work 

must stay unanswered here, but points to possible further research. 

So far, we know little about teacher moves that support students on the level of 

discourse practices (cf. Erath, submitted). More research is needed to identify ways of 

enabling all students to actively participate in demanding discursive and at the same 

time mathematical practices since they are closely linked to important learning 

opportunities. Given the identified connection between explanations and 

argumentations and working on conceptual knowledge, these practices need to be 

considered in particular. This is further supported by first quantitative results (based on 

9 groups) from the project MESUT (Nienhoff, 2017): The higher the share of 

explanation and argumentation in the total time of group discussion (excluding 

individual seatwork or working in pairs) the higher the gains in mathematical 

achievement. At the moment, this analysis is expanded to more groups. Nevertheless, 

it hints at a first quantitative support of the qualitative observation that including all 

students (especially the vulnerable) in these challenging discourse practices in 

particular means to offer important mathematical learning opportunities.  

Remark: The research project MESUT – Developing conceptual understanding by 

language support. Differential effects of language- and content-integrated 

approaches – is funded by the German Research Foundation (DFG; grant PR 662/14-1 

to S. Prediger). The author conducts it with Susanne Prediger and Lena Wessel. 
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This study characterizes children’s understandings of quadratic function from a 

variation perspective in the context of a quantitatively rich instructional setting. We 

studied middle grade (ages 12-13) students’ conceptions during a small-scale teaching 

experiment aimed at fostering an understanding of quadratic function as a growth 

situation with a constant difference in rate of change. We report five clusters in student 

thinking: (a) variation without coordination, (b) qualitative and/or implicit 

coordination of quantities, (c) explicit coordination of change in quantities, (d) 

attending to how change in quantities depend on other quantities, and (e) dependency 

relations and their symbolizations. This work contributes to an understanding of what 

students’ rich conceptions of functions can be. 

INTRODUCTION 

Why is research on students’ conceptual understanding of quadratic functions from a 

rates of change perspective important? Students often learn about quadratic functions 

through a method of finite differences, or by examining the steepness of a parabola 

through graphing (Ellis & Grinstead, 2008). In a parameter graphing approach there is 

often limited attention given to the meaning of the function rule—instead, the function 

rule is introduced as a way to connect symbolic, graphic, and numeric representations 

(Zbiek & Heid, 2008). Across these approaches, learning function can be introduced as 

calculation in the dependent quantity alone, or translation across representations, 

which can occur to the detriment of developing a richer conception of function as a 

relationship of coordinated change (Thompson & Carlson, in press). 

We seek to address these issues by contributing to an understanding of the nature of 

supports for students’ learning and the nature of students’ learning processes in the 

context in which it was supported (Simon & Tzur, 2004). We situate our work within 

the paradigm of design research (Cobb et al., 2003), with the aim to demonstrate 

qualitative differences in students’ changing conceptions of quadratic growth as they 

interacted with tasks to develop an understanding of function as a representation of 

co-varying quantities. 

BACKGROUND AND THEORETICAL FRAMEWORK 

A learning trajectory of children 

The notion of a hypothetical learning trajectory—“the learning goal, the learning 

activities, and the thinking and learning in which students might engage” (Simon, 
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1995, p. 133)—is a tool for supporting meaningful teaching and learning from a 

constructivist tradition. Hypothetical learning trajectories are hypotheses of intended 

students’ learning and targeted supports for shifts in students’ conceptions relative to 

mathematical goals and task-based activity. Others have elaborated the notion of a 

learning trajectory to include a path of students’ thinking as they interact with tasks 

during instruction (e.g., Clements & Sarama, 2004). In this study we focus on 

retrospective analyses of children’s activity during goal-directed instruction. 

Consistent with Steffe (2004) and as elaborated in Ellis et al. (2013), we take a learning 

trajectory of children to include students’ concepts, observable changes in those 

concepts, and the tasks that students solved as part of the learning situation. We 

inferred students’ conceptions from their speech, writing, gestures, and the 

representations they created and interpreted when solving problems. 

Learning functions: Rates of change 

In the symbolic forms of functions, a correspondence perspective is often championed 

wherein a function is conceived of as a relationship that maps an independent quantity 

to exactly one dependent quantity. An alternative way to introduce function is through 

covariation or coordinated change. Confrey and Smith (1994) introduced the notion of 

coordinated change in linked quantities as a sequential pairing of change from xm to 

xm+1 and ym to ym+1.  

Fonger, Ellis, and Dogan (2016) identified students’ modes of reasoning about 

functions that supported students’ abilities to symbolize function rules. They found 

that students conceived of function rules as representing both relationships of 

correspondence and relationships of coordinated change. In this paper we build on that 

initial study by identifying how students’ conceptions develop over time in relation to 

their interaction with tasks during instruction.  

METHODS 

Teaching experiment and context of learning 

We conducted a 15-session teaching experiment (TE) (Steffe & Thompson, 2000), 

each session lasting 1 hour, with 6 middle grades students (3 male and 3 female, ages 

12-13). Author3 was the teacher-researcher (TR) for all sessions. We used this 

methodology to gain direct experience with students’ conceptions of quadratic 

functions and how those conceptions changed over time; we tested and modified our 

hypotheses of students’ learning in real time while engaging in teaching actions. Thus, 

we created and revised new tasks on a daily basis in response to hypothesized 

second-order models of the students’ mathematics (Steffe & Olive, 2010). It is 

important to note that none of the students had experience with quadratic functions at 

the start of the TE, but had studied linear functions in their mathematics courses. 

The TR fostered a learning environment that encouraged students to make and test 

conjectures, to make predictions and generalizations, and to explicitly attend to 

quantities and their relationships. All tasks were grounded in a growing rectangle 
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context in which the height and length grew in a manner that maintained the 

proportional relationship between the sides. In this context, y = ax2 expresses the area 

of a rectangle (y) as a function of the height (x), in which a is the ratio of the length to 

the height of the class of proportional rectangles. Tasks and instructional supports 

encouraged students to reason with the quantities height, length, and area. Many of the 

tasks involved creating tables of height, length, and area values and to identify trends 

and patterns in the tables. Thus, several conceptions described below refer to the 

students’ attention to these changing quantities as instantiated in tables of coordinate 

pairs (or triples). Students were encouraged to refer to specific quantities and images of 

the growing rectangle context, as opposed to number patterns devoid of context. The 

participants often worked individually or in pairs before sharing with the group, and 

were encouraged to explain their reasoning and justify their solutions. 

Data Analysis  

All sessions of the TE were transcribed and enhanced to capture both the students’ and 

TR’s verbal conversation, as well as drawings on the board, student’s written 

predictions prior to discussion, and their gestures while talking. Pseudonyms were 

assigned to all participants. We followed a constant comparative method of analysis in 

that codes were discerned from our analysis of the data, not from an a priori scheme 

(Glaser & Strauss, 1967). Each co-author independently analysed each day of the TE 

before discussing and reconciling code decisions and subsequently revising the 

emerging coding scheme. When coding differences occurred we refined, omitted, or 

added new codes; these discussions also catalysed the organization of relationships 

among code categories. After coding all 15 days of the TE, we reached a stable coding 

scheme in which no new codes emerged.  

FINDINGS 

In this section we elaborate five clusters of students’ conceptual development as 

evidenced by their distinct ways of thinking while interacting with tasks in the 

aforementioned learning situation. For each cluster we highlight related conceptions, a 

sample task, and a data example. 

In Table 1 we present the first cluster of student conceptions related to variation in 

single or multiple quantities. Single-quantity variation conceptions were prominent for 

students interacting with tasks in which the independent variable, height, changed by 1 

(i.e., ΔH=1). For example, Jim focused solely on describing the second differences in 

the area of a growing rectangle as “going up by 18s” without attending to how the 

rectangle’s height was growing. Some students began attending to variation across 

multiple quantities as isolated patterns, conveying a conception of uncoordinated 

variation. This was particularly prominent in far prediction tasks for which the height 

grew by more than 1 (i.e., ΔH>1). For example, Ally conceived of the difference in 

length as “going up by eight” and noted that “It’s going up by 2s (in height)” yet did 

not attend to how the two quantities changed together. 
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Concept Definition Sample Task and Data Example 

Single-quantity variation. Student attends to a 

change in one quantity without coordinating 

this change with any other quantity change. 

Create a table relating height and area of a 

proportionally growing rectangle; describe 

the patterns you notice. Jim: “This one is 

going up by 18s.” 

Uncoordinated variation. Student attends to a 

change in more than one quantity without 

coordinating simultaneous change; variation 

is treated as isolated sequences. 

Given a table for the height versus the area, 

find the area a) when the height is 82; b) 

when the height is x. Ally: “I figured out it 

was going up by eight (in length)”. 

Table 1: Students conceive of single or multi-quantity variation without coordination. 

The second cluster is that of qualitative and/or implicit coordination. Specifically, we 

found that students initially conceived of coordinated change in quantities from either 

a qualitative or implicitly quantified stance (Table 2) before they were able to describe 

explicit coordinated changes (see Table 3). For example, Daeshim explained, “If 

length were growing, area will be bigger,” which is a qualitative description of both 

length and area becoming larger without quantifying how much larger. For implicit 

quantification, we discerned students’ conceptions relative to growth or a difference in 

the rate of growth in area (i.e., 1st or 2nd differences, respectively). For instance, Jim 

conceived of the rate of growth in area as an implicit coordinated change, which he 

described as “how many new squares it’s gaining every time it grows.” Using the 

phrase “every time” leaves the change in the height implicit rather than explicitly 

quantified (for instance, by identifying the change in height as a particular value, such 

as 5 centimetres). In another example, Bianca expressed the difference in the rate of 

change of the area as “the area of the amount added to the previous area.” Bianca 

understood that the second differences in area were linked to the first differences in 

area, yet both the amount of area and the change in area remained implicit. 

Concept Definition Sample Task and Data Example 

Qualitative coordination of change in two quantities. 

Student links the change in two or more quantities, 

understanding that they change together, without 

quantifying the change. 

What happens when the rectangle 

grows or shrinks? Daeshim: “Well, 

it's the length times height. If length 

were growing, area will be bigger”. 

Implicit coordination of change in two or more 

quantities. Students attend to growth in both quantities 

together, but the magnitude of change remains implicit 

for one or both quantities. 

What does the rate of growth refer 

to? Jim: “How many new squares 

it’s gaining every time it grows.” 

Implicit coordination of second differences with 

change in another quantity. Students coordinate the 

difference in the rate of growth of the area, but the 

magnitude of the change remains implicit for one or 

both quantities. 

Identify the rate of rate of change in 

a picture; what does it mean? 

Bianca: “It's the area of the amount 

added to the previous area.”  

Table 2: Students conceive of qualitative and/or implicit coordination of quantities. 
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Table 3 presents the third cluster of conceptions, students’ explicit coordination of 

linked quantities (i.e., numeric measures of magnitude of change). For example, 

Daeshim described how the rectangle’s length and area grew together by explaining, 

“Length will be growing 1 centimetre and area will be growing 3 square centimetres.” 

Students also quantified the second differences in area relative to differences in height. 

For instance, Tai explained, “Yeah, 20 and 5 would both work (for second difference 

in area) because we're going up by 2s (in height) and they're going up by 1s (in 

height).” In this example, Tai coordinated a change in height of 1 cm with a second 

difference in area of 5 cm2 (likewise for 2 cm and 20 cm2). We also found analogous 

student conceptions of explicit coordinated change in which one of the quantities was a 

multi-unit change (omitted here for brevity). It is also notable that in several cases, the 

explicit quantification of coordinated change emerged in relation to TR actions that 

encouraged students to clearly state the quantities and units in question. For instance, 

when a student would make a statement such as “each time it grows”, the TR would 

press the student to clarify what “each time” meant, such as an increment of 1 cm.  

Concept Definition Sample Task and Data Example 

Explicit coordination of two quantities. 

Student coordinates the change in two 

or more quantities together, and also 

quantifies the magnitude of both 

changes.  

Make a table comparing length and area; what 

pattern do you notice? Daeshim: “Length will be 

growing 1 cm—and area will be growing… 3 

square cm.”  

Explicit coordination of second 

differences with change in another 

quantity. A change in one quantity is 

coordinated with the difference in the 

rate of growth of the area. 

For a 2 cm x 5 cm rectangle, make a prediction for 

what the difference in the rate of growth will be. 

Tai: “Yeah, 20 and 5 would both work (for second 

difference in area) because we're going up by 2s (in 

height) and they're going up by 1s (in height).”  

Table 3: Students conceive of explicit coordination of change in quantities. 

The fourth cluster of students’ conceptions are shown in Table 4, which characterizes 

students’ developed recognition of how one quantity changing affects how the other 

quantity changes—we call this dependency relations of change. For example, when 

describing the difference in the rate of growth of area, Jim said, “You can go like every 

5 (in height), so your rate of growth can change no matter what.” In this example Jim 

expressed the idea that a change in height affects how the rate of growth changes, but 

he did not clarify how one quantity’s change affected the other. Later in the TE, Jim 

was able to clarify the nature of this influence, explaining, “But dirog (his term for the 

difference in the rate of growth of the area) divided by 2 is dil (his term for the change 

in length). So all you have to find is dil.” Jim understood that the increment by which 

the length (and height) grew determined the second differences in area according to the 

relation 2L = (A). 
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Concept Definition Sample Task and Data Example 

Recognition that change in one quantity 

determines change in the other. The magnitude 

of the change of one quantity determines the 

amount of change in another quantity. Student 

understands that there is a dependency relation 

without determining what that relation is. 

What is the difference in the rate of growth 

of the area? Why is that number the 

difference in the rate of growth? Jim: “If 

you're going like every other one (in 

height), you can go like every 5 or 

whatever, So your rate of growth can 

change no matter what.”   

Student conceives of the second difference as 

dependent on the other quantities OR on the 

change in other quantities (such as x).  

Why is the difference in the rate of growth 5 

for a 2 x 5 rectangle that grows by 1-cm 

increments in height? Bianca: “Hey, 2 times 

the original area of the rectangle equals the 

dirog.”  

Table 4: Students conceive of dependency relations of change among quantities. 

The final cluster of conceptions, summarized in Table 5, addresses students’ 

understanding of dependency relations and symbolized rules. In this cluster students 

made sense of the relations between quantities by constructing multiplicative 

comparisons, and eventually expressing symbolic rules. For example, Bianca 

expressed a dependency relation between x and y (in this case, length and area) by 

articulating “The length is a third of the area.” Jim expressed a quadratic rule for a 

rectangle with height n as 4.5n2 and explained, “I put n times … 4.5 is your length 

times n again because … is your area.” 

Concept Definition Sample Task and Data Example 

Dependency relation between x and 

y. Student conveys an 

understanding of a dependency 

relation between length, height, 

and/or area. 

Examine the growth of a rectangle on a dynamic 

sketch; what patterns do you notice? Bianca: “I found 

that the length is 1.5 times the height.”  

Quadratic rule. Quadratic growth 

can be represented with a function 

rule. 

Here is a table for the height versus the AREA of a 

rectangle that is growing in proportion: (e.g., 

Height=2, Area=18, ΔH=2); what is the area when the 

rectangle is n units high? Jim: “I put n times … 4.5 is 

your length, times n again…is your area.”  

Table 5: Students conceive of dependency relations and symbolize rules. 

Returning to the driving mathematical goal of the TE, we also see evidence of students 

coming to understand quadratic growth as a constant rate of rate of change. For 

example, in describing the difference in the rate of growth of the area, Bianca 

explained, “It’s going up by 2 between every time it’s going up by a different number, 

so that makes me think that it’s going up in a curve because it’s like, staired…it’s going 

up by the previous number plus 2.” Bianca has learned to imagine quadratic growth 
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from a rate of change perspective—she understood that the difference in the rate of 

growth is constant, making the graph of this function curved. This conception is related 

to students’ understanding of linear functions as having a constant rate of change. 

DISCUSSION 

We advanced five clusters of students’ conceptions of quadratic function from a rates 

of change perspective. These clusters characterize several key shifts in student 

reasoning. Firstly, students’ initial attention to variation was such that they did not 

coordinate change across quantities. Instead, they could only attend to variation in one 

quantity at a time, or, at best, they attended to two types of variation but only as a 

sequence of disconnected changes. The first shift occurred when students began to 

coordinate change in two quantities simultaneously. Their early forays into 

coordinated change occurred in a manner that was qualitative and implicit; often, 

change in one quantity was highlighted and quantified, while change in the linked 

quantity was backgrounded as something that happened “every time”. The second shift 

occurred when students began to explicitly quantify increments of change in both 

quantities. Once they were able to do this, the students could then begin to attend to 

how change in one quantity affected change in the other, which represents the third 

significant shift in their reasoning. The manner in which this final understanding 

develops is the subject of ongoing analysis. 

These shifts did not occur spontaneously. They were engendered by tasks and 

instructional actions deliberately engineered to foster and, ultimately, require students 

to explicitly identify the manner in which two quantities changed together. Effective 

tasks introduced multiple tables for the same rectangle, in which H changed across 

the tables, thus forcing attention to the manner in which H affected both A and the 

difference in the rate of growth of the area. The TR also had students create tables with 

different increments of growth. When the students argued about their conflicting 

answers, they realized that it was necessary to attend to how all of the quantities 

changed together. Non-uniform tables also encouraged students to become more 

explicit in their attention to multiple changing quantities and to identify the links 

between them. Our findings suggest that explicit attention to coordinated change is 

conceptually challenging for middle-grades students, but possible to attain with the 

proper instructional supports. Further, a rates of change approach to quadratic growth 

offers a conceptually rich foundation to foster a dynamic understanding of function, 

which is critical for success in calculus and higher-level mathematics. 
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AN INTERDISCIPLINARY APPROACH TO MATHEMATICAL 

MODELLING IN SECONDARY TEACHER EDUCATION 
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The purpose of this paper is to describe and analyse the nature of an interdisciplinary 

approach to the development of an online learning module designed for secondary 

mathematics Initial Teacher Education Students (ITES). In developing a module on 

mathematical modelling, team members crossed both disciplinary and institutional 

boundaries. Semi-structured interviews were used to gain insight into the perspectives 

of team members on the collaboration and analysed through the frame of boundary 

crossing. The analysis revealed the process of collaboration was advantageous in a 

number of ways but brought with it complexities that required accommodation. 

INTRODUCTION AND BACKGROUND 

The performance of Australian students in international comparative assessment 

regimes such as the Programme for International Student Assessment (PISA) and 

Trends in International Mathematics and Science Study (TIMMS) is a source of 

increasing concern government, educational jurisdictions and the public at large. For 

example, across 2003-2015 PISA results, Australia was ranked 20th for mathematical 

literacy in 2015, down from 19th in 2012, 13th in 2009 and 8th in 2006. Further, PISA 

results show that 22% of Australian 15 year olds did not meet the international 

proficiency Level 2 for mathematical literacy – indicative of the level of competence 

necessary to use mathematics effectively in real-life situations. These results are 

paralleled by falling participation in mathematics, science and technology in Australia, 

raising serious questions about Australia’s capacity to sustain a knowledge-based 

economy and society.  

In a response to a report aimed at providing a blueprint for turning around such trends 

(Office of the Chief Scientist, 2012), the Australian government providing funding for 

a number of initiatives including the Enhancing the Training of Mathematics and 

Science Teachers (ETMST) scheme (2013-2017). A fundamental principle for the 

funding of projects under this scheme was that mathematicians, scientists, 

mathematics educators and science educators be brought together to develop programs 

aimed at strengthening Initial Teacher Education Students’ (ITES) discipline 

knowledge. This principle was a challenging demand within the Australian context as 

there was little by way of existing culture related to this type of collaborative activity. 

 Under the umbrella of the ETMST scheme, Opening Real Science: Authentic 

Mathematics and Science Education for Australia (ORS) was developed and 

implemented over a period of 4 years through the support of seven universities and 

research institutions. The aim of the ORS project was to engage pre- and in-service 
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teachers with “real” science and its authentic practice — dynamic inquiry and 

subsequent action related to real world phenomena. In support of pre-service teachers’ 

learning, the ORS teacher education program developed 25 on-line learning modules 

across mathematics and science, eight of which focused on mathematics, that utilised 

authentic contexts and enquiry-based pedagogical approaches.  

The project’s approach focused on student-centred learning, employing problems in 

which students were genuinely interested, utilising investigative approaches, coupled 

with scaffolded applications of digital technologies.  

The purpose of this paper is to describe and analyse the nature of the interdisciplinary 

collaboration that was integral to the design and development of the learning module 

on mathematical modelling – Modelling the present: Predicting the future. In 

attending to this issue we address the following research questions: 

 Did the collaboration produce a quality outcome?? 

 What were the opportunities when collaborating across disciplines? 

 Were there any limitations associated with interdisciplinary collaboration? 

CONCEPTUAL FRAMEWORK 

In his analysis of groups involved in shared practices within and across trades and 

professions, Wenger (1998) developed the notion of communities of practice. Within 

communities of practice, group members come together for the purpose of a mutual 

endeavour within which they contribute to each others’ learning by engagement in a 

common activity. Wenger proposed three dimensions of collaborative pursuit within 

such communities: mutual engagement, joint enterprise and shared repertoire. He also 

described different ways of participating within communities of practice: 

 Engagement: doing things together, talking, and producing artefacts. 

 Imagination: constructing an image of ourselves, of our communities, and of 

the world, in order to orient ourselves, to reflect on our situation, and to 

explore possibilities. 

 Alignment: a mutual process of coordinating perspectives, interpretations, 

and actions so they realise higher goals. 

(Wenger, 1988) 

Communities, by their existence, are defined by boundaries that separate groups of 

participants and non-participants. Such boundaries can both divide and connect 

communities (Akkerman & Baker, 2011) but where it is advantageous, members of 

different communities will seek out opportunity for boundary encounters (e.g., Sztajn, 

Wilson, Edgington & Myers, 2013). Such encounters represent points at which 

coordinated and coherent shared action and interaction can be established.  

According to Akkerman and Baker (2011), the concepts of boundary crossing and 

boundary objects are central to describing the ways in which different communities 

can engage with learning sharing, coordinated action and gainful interaction. 
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Boundary crossing refers to the transitions of individuals across communities and their 

interactions with new and different ideas and cultural norms. Boundary objects are 

those artefacts that act as bridging mechanisms by which a crossing is affected. The 

concepts of boundary crossing and boundary objects are of interest within educational 

contexts because of the potential for learning at intersections between communities 

who create and value different types of knowledge. 

Suchman (1994) has argued that the term boundary crossing denotes the transition of 

an expert into an arena in which they are far less qualified. Such transitions have the 

potential for new learning and the development of new knowledge as those crossing 

boundaries must bring together their expertise with the unfamiliar knowledge and new 

ways of knowing and reasoning that exist within the community to which they have 

transitioned. 

Within mathematics and science education, the ideas of boundary crossing and 

boundary objects have been utilised to analyse one-way transitions of different types 

including: school to work (e.g. Wake, 2014) and teachers who are required to work 

“out of field” (e.g., Hobbs, 2013). Additionally, these concepts have also been used to 

explore bilateral exchanges including: collaborations between educational researchers 

and teachers in-service (e.g., Goos, 2013); mathematics teacher educators and teachers 

involved in teacher professional development (Sztajn, Wilson, Edgington & Myers, 

2013); and mathematicians and mathematics educators collaborating to strengthening 

initial teacher educations students discipline knowledge (Goos, 2015). Few, if any 

studies, however, have investigated how more diverse groups have collaborated on 

joint endeavors, such as in the case discussed in the sections which follow that involve 

mathematicians, scientists, mathematics educators and instructional designers.  

CROSSING BOUNDARIES TO DEVELOP THE MODULE 

Module development was carried out by a team of eight academics with backgrounds 

including biological evolution, financial mathematics, astrophysics and environmental 

science as well as mathematics educators with experience in the teaching and learning 

of mathematical modelling and instructional design. Members of the team either 

self-identified by responding to an expression of interest distributed to relevant staff 

(mathematicians, scientists, and mathematics and science educators) of participating 

universities or were invited on the basis of their expertise. 

The process of module development began with introducing team members to the 

framework used to guide the development of the every module in ORS the Biological 

Sciences Curriculum Study (BSCS) 5Es Instructional model approach (Bybee, 2009). 

The 5Es enquiry-based approach to science education consists of five phases: 

engagement, exploration, explanation, elaboration and evaluation. Each phase has a 

role in developing students’ understanding of scientific and technological knowledge, 

attributes and skills (Bybee, 2009). There were then four additional phases consisting 

of: selection of content, identifying structure, and planning for subsequent phases; 

initial case study development; draft case study review; and finalisation of the module 



Geiger and Mulligan 

 

2-340 PME 41 – 2017  

by linking of case studies. Case studies were based on authentic uses of mathematical 

modelling.  

In order to identify potential case studies the module leader asked members of the 

Module Development Team (MDT) to talk about their personal research interests and 

how these were connected to mathematical modelling – to provide ideas about content 

and to provide opportunity for team members to share aspects of the communities in 

which they typically worked. Presented topics were diverse and included: evolution 

and transmission of disease-causing agents (epidemiology), effect of market forces on 

the stock exchange in relation to investment and risk (financial mathematics), nature of 

eclipsing binary stars (astrophysics) and impacts of pollution in waterways 

(environmental chemistry). After a discussion of these topics in relation to the module, 

the group came to the conclusion that each could be authentically represented as a case 

study from which students could gain an understanding of the use of mathematical 

modelling. This decision led to a subsequent discussion of how to organise the case 

studies within the module in a manner consistent with the 5Es model and within the 

constraint of 36-40 hours of study over 4-5 weeks allocated for a module. The outcome 

of this deliberation was agreement that the module would consist of: an introduction; a 

case study mandatory for all students; a second case study chosen from three options; 

and a final reflection tied to a capstone assessment. Consultation with, and review by 

educational designers took into account the views of the larger project team and 

selected teacher education student representatives in a cycle of review and 

development.  

After the initial meeting, members of the Module Development Team (MDT) worked 

on developing draft versions of their case studies, some in teams and some as 

individuals, in collaboration with the instructional designer and the MDT leader. Draft 

case studies were presented at a second face-to-face meeting so that members of the 

MDT could provide critique and feedback. Comments and suggestions were 

accommodated into the existing drafts and then finalised.  

EVALUATION OF THE COLLABORATIVE PROCESS  

After the design of the module and trial with ITES, semi-structured interviews were 

conducted with each member of the MDT. The instructional designer, a member of the 

MDT, conducted six interviews within one month of the completion of the module. 

Interviews were digitally recorded and later transcribed by an independent researcher 

for the purpose of analysis.  

Interview Protocol 

Interviews were based on a protocol developed by the larger project team consisting of 

three core open-ended questions. Relevant to this report is Question 3 that included 

response eliciting prompts as set out below:  

Describe, from your perspective, the experience of working in a cross-disciplinary 

team to develop the module as a whole. For example:  
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 What do you believe was the value in including contributions from different 

disciplines? Describe advantages/disadvantages. 

 Are you satisfied/happy/impressed with the module as an outcome of the 

collaboration? 

 Outline the opportunities/advantages for educators/mathematicians/scientists 

working together in promoting STEM education. 

 Describe any limitation/constraints/barriers for educators/mathematicians/ 

scientists working together in promoting STEM education. 

The interviewer also made use of additional prompts when she saw it necessary to 

clarify a response or probes when seeking greater depth in a response. Interview 

duration was between 35 and 55 minutes. 

PERSPECTIVES ON THE EXPERIENCE OF INTERDISCIPLINARY 

COLLABORATION AND DISCUSSION 

Participants’ transcribed responses were coded through a process of constant 

comparison (Strauss & Corbin, 1990).) against the research questions and a frame 

informed by Wenger’s ways of participating in a community of practice and the 

concept of boundary crossing. While not all comments could be categorised against the 

elements of the model, all noteworthy episodes were documented. 

Did the collaboration produce a quality outcome? 

Participants were unanimous in their views that the outcome of the collaboration was 

of high quality: 

Leonard:  Yes I’m happy with it, I've spent most of my time looking at the binary stars 

and looking at the epidemiology. I'm quite happy with them, part of me, the 

mathematician in me would like to take them both a little bit further 

mathematically but at the level they're aimed at that would not be 

appropriate, I think we stopped at the right level. 

Martin:  I thought that the end product was fantastic…Whether you naturally 

attracted to maths or not, and the big problems on this planet, I don't think 

we can solve outside of, without modelling...We have to model to foresee 

the future and we are all resource limited.  

While most participants indicated they were pleased with the finalised module, they 

also viewed the product of the collaboration from the perspective of their own 

discipline – as in the case of Leonard, a mathematician, in the excerpt above, who had 

to hold back from arguing for the inclusion of more sophisticated mathematics. An 

exception was Martin who could see the value of bringing aspects of another discipline 

(mathematics) to her teaching of first year biology; via a collaboration with a 

mathematician that would complement his expertise as a scientist. 

Martin: You know I think if I do first year Biology, I will also need to bring in the 

mathematical expertise into it and it's not with me, it will be with someone 
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that comes and helps me develop the maths behind it. But I know what the 

context is in which the maths is needed. 

Participants’ comments indicate the module had acted as a boundary object that 

allowed team members from different disciplines to cross disciplinary boundaries, 

there was an understandable tendency to view the product of their collaboration from 

the perspective of the discipline in which they were expert. Thus, while boundaries 

were crossed during the process of module development most developers crossed the 

bridge back to their own discipline when viewing the final product. 

What were the opportunities when collaborating across disciplines? 

All six interviewees spoke about the advantages of the problem-based approach that 

embedded mathematical modelling and situated their disciplinary knowledge and 

practices in real contexts, satisfying a broader goal of solving real life problems.  

Many raised the challenge of knowing enough about other disciplinary knowledge but 

in some ways saw this as an opportunity rather than a disadvantage.  

John: The advantages…being able to use contexts that are really authentic and 

that they address real problems…[teacher] educators may not be quite okay 

with some of these current edge scientific problems such as the spread of 

disease if they haven't got an expert that can really help them inform how 

they should, or what datasets they should use and how they should be 

interpreting data.  

This comment makes it clear that teacher educators, at least, can be advantaged 

through the input of discipline experts. Others commented on the usefulness of having 

a teacher educator’s perspective on the implementation of teaching ideas within 

science or mathematics a discipline. 

James: So, I think we can do with a lot more learning support in academia 

[refereeing to science and mathematics disciplines] in general. I 

particularly liked that this module was collaboration, in the full sense, 

between scientists and educators. 

Another interviewee looked at the issue more broadly. 

Leonard:  There are certainly advantages for people to work together to promote 

STEM [Science technology Engineering and Mathematics]…I think we 

should take every opportunity to promote it. If people can work together, 

then perhaps we can create things that have more depth and breadth. 

These comments indicate that there was advantage to both teacher educators and 

mathematics and science experts by crossing discipline boundaries – both in a 

reciprocal sense but also for the broader STEM agenda. 
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Were there any limitations associated with interdisciplinary collaboration? 

Participants commented that the pressure to meet discipline-based content outcomes in 

their teaching limited the way that scientific disciplines worked together let alone 

looking for synergies with education.  

Martin: I think the limitations are if we think too specific and too small and if we go 

“we don't have room in our curriculum to link across because I need all my 

time to stuff it full of Biology knowledge”. 

John: Could this collaboration happen easily and effectively where there is no 

science or mathematics faculty attached to a university with a teacher 

education program? 

These comments indicate that there are institutional constraints that make 

collaboration between different communities of practice more difficult. Such 

restrictions need to be acknowledged and accommodated for it collaborative boundary 

crossing is a desired outcome. 

One respondent expressed concern about how students’ would receive the explicit 

embedding of mathematics in her discipline of environmental science. 

Irene: When I first heard about this, I thought, mathematics? Environmental 

chemistry? Ah, from my experience with dealing with classes both at 

university, high school and primary school, my experience is generally that 

the idea of doing the maths would turn students off straight away. 

Thus, not only was there risk associated with interdisciplinary collaboration in terms of 

mapping out new relationships and approaches to teaching but also in how the product 

of their collaboration was received by end users – their students.  This is a reminder 

that boundary crossing between two communities of practice is not a simple matter as 

the outcome may influence and have impact on other communities. 

CONCLUSION 

The means by which the MDT interacted in the development of the online learning 

module within the ORS was consistent with Wenger’s ways of participating within 

communities of practice. There was engagement as members of the MDT worked 

together to produce an artefact in the form of a module on mathematical modelling. 

The way in which MDT members represented their own disciplines while exploring 

the potential benefits (and risks) of interdisciplinary collaboration was consistent with 

the imagination mode of working within a community of practice. The outcome of the 

collaboration, the modelling module, required alignment of perspectives and actions to 

realise the goal of producing a quality outcome. Thus, representatives of different 

communities across mathematics science and education came together work as a 

community of practice for the purpose of a tangible outcome.  

While MDT members were unanimous in their view of the high quality of the product 

of their work together and acknowledged the advantages of interdisciplinary 
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collaboration, they also identified a number of constraints. These included disciplinary 

demands within their teaching roles that required attention to a large body of content, 

leaving little opportunity to include aspects of knowledge and practice from other 

disciplines. Such challenges are reminders of the complexities that must be 

accommodated when crossing boundaries in search of interdisciplinary collaboration. 

Thus, if interdisciplinary collaboration is seen as a priority in mathematics and science 

education, further research is needed into how to best enable the necessary boundary 

crossings in realising this goal.  
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TWO COGNITIVE DIAGNOSIS MODELS TO CLASSIFY PUPILS’ 

ALGEBRAIC SKILLS IN LOWER SECONDARY SCHOOLS 

Boris Girnat 

FHNW School of Teacher Education Northwestern Switzerland, Basel 

 

Cognitive diagnosis models (CDMs) are a relatively new technique to analyse pupils’ 

competencies. Two CDMs are presented to describe pupils’ algebraic skills: a stage 

model to locate a pupil’s skill profile on the steps from proto-algebraic thinking to 

formal algebra and a model to distinguish the use of different aspects of variables. The 

results are from a representative study with 636 participants in grade 8 and 9, 

indicating that both CDMs are empirically applicable and leading to some substantial 

results: Practically no gender differences are detectible; only 63.7% of the pupils 

reach the formal level of algebra; the learning effects are mainly located in syntactical 

skills; learning effects related to other aspects of variables (like inserting values or 

references to objects and real-world situations) remain in the background. 

INTRODUCTION: CLASSIFYING INSTEAD OF MEASURING 

International comparative studies like PISA have defined the standards of how to 

investigate and analyse pupils’ skills. The methods of choice are based on the item 

response paradigm, assuming latent metric variables – interpreted as the pupils’ skills 

or competencies – to be the unobservable causes of the pupils’ performance. They are 

measured on continuous scales and their values are used to compare countries, 

genders, or other subgroups of a study’s population (e. g. OECD, 2014, pp. 217ff.). 

For comparative studies, a metric approach might actually be the most adequate 

methodology. This could be different, if no comparative purpose is pursued or if the 

skills of interest are supposed to have a specific structure that refuses to be measured 

on metric scales. The latter may be the case, if there is evidence that a skill is of 

dichotomous nature: You either possess this skill (and then you are able to handle 

specific tasks) or you do not possess it (and then you are not able to handle the 

respective tasks). In such cases, it makes no sense to measure skills on continuous 

scales; it would be more advisable to classify each participant according to the skills he 

is supposed to have, given the results of his test. Exactly this is the purpose of cognitive 

diagnosis models (CDMs, cf. Rupp et al., 2010, pp. 31f.): For each item, the test 

designer declares what skills are necessary to solve it; and having conducted the test, 

the responses are used to assign individual skill profiles to each participant. 

In this paper, I will present two CDMs that were simultaneously used in one test to 

analyse the algebraic skills of 636 pupils of grade 8 and 9. The test was carried out in 

the canton of Aargau, Switzerland, in spring 2016. The school system of Aargau is 

non-comprehensive. It is separated in three different school types, so that type 1 
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denotes the lowest level and type 3 the highest one (cf. Department Bildung, Kultur 

und Sport, 2014, pp. 15f.). 33 classes of type 2 and type 3 schools were chosen 

randomly. The schools of type 1 were omitted, since algebra is no central part of their 

curriculum. Concerning schools of type 2 und 3, the test is representative. Three kinds 

of covariates were collected: gender, grade, and type of school. 

ALGEBRAIC SKILLS: THEORETICAL BACKGROUND AND TEST ITEMS 

Algebraic skills are not restricted to formal algebra. As the debate on early algebra 

shows (e. g. Kaput, 2008), algebraic thinking emerges, before formal aspects are 

introduced. The core concept of algebraic is seen in the ability to generalise: “it is the 

making of general statements that algebra has its key role” (Mason et al., 1985, p. 2). 

Following this idea, the first bundle of test items was invented to define a stage model 

to describe the transition from non-formal algebraic thinking to a formal or symbolic 

stage. The theoretical background is based on the concept of proto-algebraic levels 

(Aké et al., 2013). The authors introduced six levels of algebraic thinking. Four of 

them are relevant to school mathematics; the first two level (level 0 und 1) are 

considered as proto-algebraic; the third (labelled as level 2) and the following ones are 

described as properly algebraic. Since the first CDM is only focused on the question if 

pupils have reached the formal level of algebra, it is not necessary to consider the upper 

three level of this model. The lower three levels where this transition takes place are 

sufficient. They are described as follows: 

 Level 0: “Extensive objects, expressed by natural, numerical, iconic or 

gestural language, are involved. Symbols that refer to an unknown value can 

also intervene, but that value is obtained as a result of operations on particular 

objects” (Aké et al., 2013, p. 3). 

 Level 1: “Intensive objects, whose generality is explicitly recognized by 

natural, numerical, iconic or gestural languages, are involved. Symbols that 

refer to the recognized intensive objects are used, but there is no operation 

with those objects” (Aké et al., 2013, p. 4). 

 Level 2: “Indeterminate or variables expressed in literal-symbolic language 

to refer the intensive objects recognized are involved, but they are linked to 

the spatial or temporal information of the context” (Aké et al., 2013, p. 5). 

This stage model is operationalised by three similar items. Each item is based on a 

real-world situation; the tasks connected to this situation are designed to be answered 

successively on level 0, level 1, and level 2. One example is shown in figure 1. This 

item allows answers on all three levels described above (labelled with L0 to L2). 

According to the nature of a stage model, it is assumed that there is a hierarchical 

dependency between the levels: Level 0 deals with concrete objects; additionally, you 

have to understand the situation to answer the questions; level 1 adds an implicit or 

informal generalisation; and level 2 can be seen as a part of formal algebra. It is 

implausible that pupils can answer correctly on a higher level, if they were not able to 
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answer correctly on all the lower levels before. But this is only an a priori assumption 

and has to be validated empirically. 

 

Figure 1: One of the items to detect different levels of algebraic thinking (CDM 1) 

The second pool of items is intended to investigate different skills on the formal level. 

The background theory is adapted from Malles’s idea that the central concept of formal 

algebra is the notion of variables and that a profound understanding of variables is 

necessary to be algebraically successful. This “profound understanding” can be 

described by three aspects of variables (Malle, 1993, p. 45): 

 Object aspect: Variables are understood as unknown or unspecified 

numbers – both purely mathematical or with reference to (variable) real-life 

measures (like quantities, lengths, surface areas, or statistical data). 

 Insertion aspect: Variables are understood as place holders or blank spaces 

that can be replaced by numbers (leading to true or false statements). 

 Operator aspect: Variables are understood as meaningless symbols with 

which one can operate according to certain rules. 

Malle claims that pupils should be familiar with all three aspects; he also assumes that 

the object aspect is the basic one the other two should be built on; but he stresses that 

these are just normative postulates from a didactic point of view that may not be 

necessarily fulfilled empirically (Malle, 1993, p. 54f.). Hence, the second pool of items 

contains 34 tasks, each of them addressing exactly one of Malle’s aspects, not 

presuming any dependency or hierarchy among them. Figure 2 shows some of the 

items used in the second part of the test. 16 items are related to the operator aspect. 

They demand syntactic operations pupils typically have to manage in lower secondary 

schools – like simplifying and expanding algebraic expressions, including some simple 

binomial theorems. The 6 items of the insertion aspect are connected to equations. All 

equations are designed in such a simple manner that pupils do not need to use any 

formal manipulations. They can just insert the given value and calculate the other one. 

The 12 items of the object aspect are quite diverse. Some of them stress functional 

dependencies (like the first example). This is supposed to be a purely mathematical 

application of the object aspect (expressing dependencies between unspecified 

numbers). The other two examples, on contrary, include references to “real-world” 

objects underlining the physical interpretation of Malle’s object aspect. The last item is 
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related to a typical misconception which occurs in the context of algebra word 

problems (Clement, 1982): e. g. “twice as many apples (a) as bananas (b)” is often 

translated into the equation 2a = b instead of a = 2b. 

 

Figure 2: Selected items to detect Malle’s aspects of variables (CDM 2) 

METHODOLIGAL REMARKS 

CDMs belong to the non-metric part of the item response paradigm (cf. Rupp et al., 

2010): The output of a CDM analysis is not a metric value, but a skill profile for each 

test participant. This profile indicates what skills a participant possess (with a certain 

probability), given his responses to the test items. Insofar, the purpose of a CDM 

analysis is a classification of the participants, not a (metric) measurement of their 

skills. The skill profiles can be used for individual diagnosis and consultation or (like 

in this paper) for identifying subgroups containing pupils of the same skill profiles. A 

CDM analysis is defined by two theoretical constraints: 1) For each item, the 

researcher declares what skills are necessary to master the item (the adequacy of this 

assignment can be checked empirically, cf. de la Torre, 2008); 2) it has to be defined 

how the skills are interrelated. The latter is declared by choosing a specific type of 

CDM. In the present test, both CDMs are of the DINA type. The DINA model is 

defined by the assumption that all the skills attributed to an item are necessary to solve 
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it (Haertel, 1989). Concerning the first CDM, that means that a participant has to 

possess level 0 skills to solve L0 tasks, level 0 and level 1 skills to solve L1 tasks, and 

skills of the levels 0, 1, and 2 to solve L2 tasks – according to the hierarchic nature of 

this model. Additionally, the L0 questions are separated for each item, since all the 

three items are based on different situations and it is implausible that a pupil who can 

manage the first item related to matches (fig. 1) could necessarily managed the second 

item concerning a taxi driver and the third one concerning a candle. Hence, a skill 

profile of the first CDM consist of a sequence of five ones or zeroes like 11010, 

indicating that this participant could manage the L0 questions of the first two items, but 

not the ones of the third item and that he could answer the L1 questions of all the items 

he could solve on L0 level (the first and the second one), but not the questions of these 

items on L2 level. Overall, the sequence 11010 indicates that this person has reached 

level 1, but not level 2. The second CDM is much easier: Since there is no hierarchical 

dependency within the items, the items were just assigned to one of Malle’s aspects. 

But unfortunately, the CDM with three skills did not pass the empirical validation 

(according to de la Torre, 2008). There was evidence that the items concerning the 

“Clement error” form a skill on their own. Hence, a skill profile of the second CDM 

consists of four ones and zeros like 1110, indicating that this participant can manage 

items concerning the operator, the object, and the insertion aspect, but not those items 

related to the Clement error. 

The CDM analysis was performed using the CDM package (George et al., 2016) of the 

R environment (R Core Team, 2016). The fit indices of the first CDM are excellent 

(mean of RMSEA item fit: 0.037; max(χ²): p = 0.722; SRMSR: 0.030); the fit indices 

of the second one are solely acceptable (mean of RMSEA item fit: 0.070; max(χ²): p < 

0.001; SRMSR: 0.072) – according to current standards, which are still in flux (cf. 

George et al., 2015, pp. 196-198). 

RESULTS 

A general result is related to the two CDMs themselves: The first CDM passed the 

empirical validation without any changes. That indicates that algebraic thinking is in 

fact ordered in the hierarchical manner Aké et al. (2013) assumed. The second CDM 

had to be extended to a fourth skill, related to the Clement tasks. 

The skill distributions of the first CDM is as follows (all values has standard errors 

smaller than 0.035): 69.0% of the pupils can answer the first item on level 0, 81.1% the 

second item, and 86.3% the third item; nearly all of them (97.8%) are able to generalise 

the algebraic aspects on level 1 (concerning all three items); but only 63.7% of these 

pupils can express this generalisation on level 2. This is astonishing, since formal 

algebra is one of the most important subjects of mathematics in lower secondary 

schools and, additionally, since only schools of type 2 and 3 were chosen for the test as 

a positive selection. The pupils who have reached level 2 are assigned to class L2. This 

class is now investigated with respect to the three covariates gender, school type, and 

grade, using a χ² test to detect intergroup differences and applying Cramér’s V as a 
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measure of effect sizes, where a value of 0.1 is considered a small effect, 0.3 a medium 

effect, and 0.5 a large effect (cf. Liebetrau, 1983). Table 1 shows the results.  

aspect group 1 group 2 significance level Cramér’s V 

gender 62.0% (male) 65.3% (female) p = 0.44 0.034 

school type 31.8% (type 2) 75.9% (type 3) p < 0.001*** 0.410 

grade 64.4% (grade 8) 61.9% (grade 9) p = 0.42 0.035 

Table 1: Intergroup differences concerning algebraic levels (CDM 1) 

There are no gender differences. The difference between school type 2 and 3 is 

significant and has a medium to large effect. This is remarkable, since – according to 

the official curriculum – no difference concerning algebra is intended between type 2 

and type 3 schools. The most remarkable finding may be the observation that there is 

no significant difference between grade 8 and 9. That could imply the conjecture: 

Anyone who does not reach the formal level of algebra at an early stage will not reach 

it later. But this conjecture should be rechecked by testing the same pupils both in 

grade 8 and later in grade 9 (in this test, they were of different years). 

The skill distribution of CDM 2 concerning Malle’s aspects of variables is as follows 

(SE smaller than 0.038): 59.8% of the pupils master the operator aspect; 46.3% the 

object aspect; 77.6 the insertion aspect; and 28.9% the Clement tasks. It is remarkable 

that the insertion aspect is the “easiest” skill and that not even one third of all pupils 

can solve Clement tasks. A closer look on the skill pattern frequencies is interesting: 

pattern freq. pattern freq. pattern freq. pattern freq. 

0000 15.2% 0001 1.2% 0110 7.1% 1101 0.0% 

1000 2.9% 1100 1.5% 0101 0.0% 1011 3.3% 

0100 1.0% 1010 10.0% 0011 5.4% 0111 4.7% 

0010 15.1% 1001 0.5% 1110 18.2% 1111 13.7% 

Table 2: Skill pattern frequencies concerning Malle’s aspects of variables (CDM 2) 

A remarkable amount of pupils (15.2%) master none of all skills (0000). Only the 

insertion aspect appears in a notable number (15.1%) as one aspect that is handled 

independently of all others (0010) and, additionally, in all the other cases that occur in 

a relevant quantity (>3%), the insertion aspect is involved (patterns of the type **1*). 

That may indicate that – in an empirical sense – the insertion aspect is the basic aspect 

of variables and not the object aspect as Malle supposed. On the basis of the insertion 

aspect, the operator aspect (1010 with 10.0%) or the object aspect (0110 with 7.1%) or 

more likely both of them (1110 with 18.2%) can occur. The “Clement aspect” seems to 

play the opposite role of the insertion aspect: It appears mainly when all the three other 

aspects are mastered (1111 with 13.7%) or at least in combination with the object 

aspect (0011 with 5.4%, 1011 with 3.3%, and 0111 with 4.7%). That may lead to the 
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following conjecture: The “Clement aspect” presupposes the object aspect, and most 

of the time it is mastered only when the two other aspects are also present. This 

deliberation indicates a hierarchal dependency and could explain why the Clement 

tasks have the lowest solution frequency. Perhaps, the “Clement aspect” should not be 

considered as a separate aspect, but rather it seems to be that Clement tasks can only be 

solved if at least the object aspect is mastered and, additionally, if there is interplay 

with other, best all aspects. The covariates were analysed concerning the second CDM 

in a similar manner as in case of the first CDM. Table 3 shows the results. 

 aspect group 1 group 2 significance level Cramér’s V 

operator 

aspect 

gender 50.0% (male) 50.3% (female) p = 1.00 0.003 

school type 43.2% (type 2) 52.8% (type 3) p = 0.037* 0.086 

grade 27.3% (grade 8) 72.6% (grade 9) p < 0.001*** 0.453 

insertion 

aspect 

gender 71.2% (male) 77.5% (female) p = 0.084 0.072 

school type 51.7% (type 2) 83.0% (type 3) p < 0.001*** 0.321 

grade 72.4% (grade 8) 76.3% (grade 9) p = 0.295 0.045 

object 

aspect 

gender 55.7% (male) 43.1% (female) p = 0.002** 0.126 

school type 32.9% (type 2) 55.7% (type 3) p < 0.001*** 0.203 

grade 44.8% (grade 8) 53.9% (grade 9) p = 0.026* 0.091 

“Clement 

aspect” 

gender 29.7% (male) 27.5% (female) p = 0.590 0.025 

school type 11.9% (type 2) 35.0% (type 3) p < 0.001*** 0.228 

grade 28.9% (grade 8) 28.3% (grade 9) p = 0.974 0.006 

Table 3: Intergroup differences concerning Malle’s aspects of variables (CDM 2) 

Again, no significant gender differences are apparent – with one exception: in case of 

the object aspect, but only with a small effect (0.126). Two other observations are more 

interesting: 1) With respect to the school types, there is a significant, but nearly 

negligible difference in managing the operator aspect (0.086), but larger differences 

with respect to all other aspects (0.321, 0.203, and 0.228); 2) concerning the grade, the 

largest difference is located in the operator aspect (0.453), whereas no significant 

differences can be found with regard to all other aspects. These observations might be 

interpreted as two consequences of the same cause: The focus of teaching algebra 

could be set on syntactical techniques – on the one hand leading to the result that the 

learning effect between grade 8 and 9 is directed to this topic and that the difference 

between the school types can be minimised; on the other hand, no remarkable progress 

is afforded between grade 8 and 9 and between the school types with respect to the 

other aspects of variables. But this supposed causal link to the focus of teaching is just 

a hypothesis that has to be investigated. 
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FINAL REMARKS 

Both CDMs have led to new knowledge about algebraic abilities: The stage model 

could be validated and dependencies among the aspects of variables have been 

detected, suggesting the insertion aspect as being essential and the Clement tasks as 

demanding a bundle of aspects to be solved, at least the object aspect. These insights 

might be not detectible using a metric approach. Additionally, the classificatory nature 

of both CDMs allowed indentifying the class and amount of pupils possessing specific 

skills – mostly an amount less than expected –; and they helped to describe the learning 

effect – typically with an emphasis on syntactical operations. 
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MIND THE GAP: CONGRUENCY AND GAP EFFECTS 

IN ENGINEERING STUDENTS’ FRACTION COMPARISON 

David M. Gómez, Eduardo Silva, Pablo Dartnell 

Universidad de Chile 

 

Research on the cognitive processes and strategies underlying fraction comparison in 

mathematically-trained individuals has studied in recent years the role of congruency 

effects. Against this account, some works report higher accuracies for incongruent 

than for congruent items when the fractions to be compared have different numerators 

and denominators. Strategies such as gap thinking have been proposed as possible 

explanations for this unexpected outcome. We devised a fraction comparison task 

controlling for both congruency and gap and presented it to 57 Engineering students. 

Results confirmed a disadvantage for congruent items without common components 

and showed that this disadvantage may be accounted by gap effects, providing 

important constraints for models of the mental processing of fractions. 

INTRODUCTION 

The learning of fractions and rational numbers is an important milestone in middle 

school. But often these concepts are learned in a shallow manner, leading many adults 

to present misconceptions and difficulties in understanding and working with them. 

Nonetheless, to reach a deep understanding of how the mind works with fractions and 

rationals requires researchers to shed light not only on how challenged learners 

struggle with mathematical concepts, but also on how mathematically-trained 

individuals and experts work with them. 

An important aspect of mastering fractions is the acquisition of basic intuitions about 

them, in particular of their many facets and representations and not only of their 

associated algorithms and procedures (Forrester & Chinnappan, 2010). A number of 

research studies in Psychology and Education in the last decade have investigated the 

strategies that students use for working with fractions (e.g. Clarke & Roche, 2009; 

Gómez, Jiménez, Bobadilla, Reyes, & Dartnell, 2014; Pearn & Stephens, 2004; 

Stafylidou & Vosniadou, 2004) as well as their supporting cognitive and neural 

mechanisms (e.g. Barraza, Gómez, Oyarzún, & Dartnell, 2014; Gabriel, Szucs, & 

Content, 2013; Ischebeck, Schocke, & Delazer, 2009). 

Many studies about fraction understanding have considered comparison tasks that are 

performed mentally (i.e. without pencil and paper). One early and relevant finding was 

the variability in strategies that learners deploy depending on specific item 

characteristics. For instance, students use different strategies to compare fractions that 

have a common component (numerator or denominator) versus comparing fractions 

where numerators and denominators differ (e.g. Meert, Grégoire, & Noël, 2009). 
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Another aspect on which several studies have focused after the work of Ischebeck et al. 

(2009) is the match or mismatch relation between the magnitude of the fractions to be 

compared and the magnitudes of the natural numbers composing those fractions. 

Fraction comparison items where the larger fraction has also the larger numerator and 

denominator show a match between these dimensions and are called congruent (or 

consistent; e.g. 2/9 vs. 8/9, 1/3 vs. 5/7). In contrast, items where the larger fraction has 

the smaller numerator and denominator show a mismatch and are called incongruent 

(or inconsistent; e.g. 3/5 vs. 3/8, 1/3 vs. 4/9). A final category corresponds to items 

where one fraction has the larger numerator and the other the larger denominator, 

which are called neutral (e.g. 2/5 vs. 3/4). Table 1 summarizes and gives other 

examples of these item types. Research has shown that children’s and adults’ response 

accuracies and response times to fraction comparison tasks are modulated by 

congruency (e.g. DeWolf & Vosniadou, 2015; Gómez et al., 2014; Obersteiner, Van 

Dooren, Van Hoof, & Verschaffel, 2013; Vamvakoussi, Van Dooren, & Verschaffel, 

2012; Van Eeckhoudt, 2013). But evidence has not always supported the predictions of 

the congruency account. A re-analysis by Gómez and Dartnell (2015) of several 

fraction comparison datasets showed that when fractions have no common 

components it is more likely that the data do not support the congruency account, 

namely that congruent items are more difficult and take longer to answer than 

incongruent items. In a similar line, DeWolf and Vosniadou (2015) found groups of 

university students showing significant congruency effects in opposite directions. 

Most interestingly, this reversal of the congruency effect has been observed in high 

achieving children (e.g. Gómez et al., 2014, p. 189) as well as expert mathematicians 

(Obersteiner et al., 2013). This raises questions about the theoretical basis of 

congruency, and highlights the need to consider more complex explanations involving, 

for instance, some of the commonly used strategies for comparing fractions. 

 Congruent Incongruent Neutral 

With a common component 

  

 

Without common components 

   

Table 1: Examples of items of the five categories obtained by considering 

the presence or absence of common components as well as congruency. 

One possible strategy, documented in qualitative research (e.g. Clarke & Roche, 2009; 

Pearn & Stephens, 2004), is known as gap thinking. Its name stems from the 

conception of fractions as parts of a whole, and consists in comparing two fractions 

indirectly by reasoning how many parts each fraction lacks to complete the whole 

(their gaps), and declaring that the fraction with the fewer parts missing is larger than 

the other. For instance, gap thinking applied to the comparison of 1/3 vs. 4/7 would 

compare both gaps (2 and 3, respectively) and conclude that 1/3 is larger because its 
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gap is smaller. Whereas in this example gap thinking leads to the incorrect answer, 

there are many fraction pairs for which it leads to the correct one (e.g. 1/3 vs. 6/7) as 

well as cases in which it is uninformative because both fractions have the same gap 

(e.g. 1/3 vs. 5/7; although some children might conclude in this case that the two 

fractions are equal, see Pearn & Stephens, 2004). Further examples of these three cases 

are presented in Table 2. Interestingly, from the five item categories of Table 1, it turns 

out that gap thinking leads always to the correct answer in four of them: the only 

category for which gap thinking may lead to the incorrect answer or to no answer is 

that of congruent items without common components. We hypothesized that the use of 

gap thinking—whether explicitly or implicitly—may explain why congruent items 

without common components are associated to a worse performance than incongruent 

items in mathematically-trained individuals. 

Gap thinking 

leads to the correct answer 

Gap thinking 

leads to the incorrect answer 

Gap thinking 

is uninformative 

   

Table 2: Examples of items where gap thinking leads 

to the correct, incorrect, or to no answer. 

METHODS 

Participants 

This work is part of a larger project on the cognitive bases of fraction comparison. Here 

we present data from a sample of 57 undergrad students of Engineering (39 men and 18 

women; approximate ages between 18 and 25) recruited in Santiago, Chile. All of them 

gave informed consent prior to testing, and were paid for their participation. 

Fraction comparison task 

We designed a set of 180 pairs of fractions using numerators and denominators 

between 11 and 99. As in Obersteiner et al.’s study (2013), fraction pairs were divided 

into the five categories of Table 1 with 36 pairs each. All five categories were matched 

in terms of numerical distance between the fractions, and for each pair both fractions 

were always on the same side of 1/2 (either both larger or both smaller). In addition, we 

included (within congruent items without common components) items in which the 

use of gap thinking would lead to the correct answer, the incorrect answer, or be 

inapplicable (see Table 2). 

Procedure 

We used a standard fraction comparison task, where participants were presented with 

pairs of fractions on a computer screen and were asked to indicate which one is larger 

by using the keys Q (for the fraction on the left) and P (for the fraction on the right). To 

foster intuitive and conceptually-based answers, participants were not provided pencil 
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and paper, and were given a time limit of 10 s to answer each item (after this limit, the 

item was considered as omitted and the next item was presented). Items were randomly 

ordered so that all item types were presented in an interleaved manner, and grouped 

into three blocks with self-paced pauses in between. 

Data Analysis 

Statistical analyses were conducted using R v3.3.2 (http://www.r-project.org/). 

Repeated measures regressions were done using the packages lme4 v1.1-12, car 

v2.1-2, and lmerTest v2.0-33. The analysis of response times considered only the 

items that were answered correctly. 

RESULTS 

Three participants were discarded from analysis based on a Mahalanobis distance 

criterion. As a first analysis, we computed response accuracies and latencies for the 

five categories given by presence of common components and congruency. These 

results are presented in Table 3. 

A repeated measures logistic regression for response accuracies showed a marginally 

significant interaction between the presence of common components and congruency 

(χ2(1) = 3.15, p = .08). Planned comparisons revealed that there was no significant 

difference between congruent and incongruent items with a common component 

(OR = 0.0002, p = .99), in contrast to items in which fractions had no common 

components, where congruent items had significantly lower scores than both 

incongruent (OR = 0.43, p < .0001) and neutral (OR = 1.87, p < .0001) items. 

Histograms of response accuracy (Fig. 1) show no evident signs of bimodality in the 

data that could account for the lower results in the congruent with no common 

components condition, suggesting that participants responded to the task in a cognitive 

manner similar to one another. 

A repeated measures linear regression for response times showed a significant 

interaction (χ2(1) = 6.45, p = .01). Planned comparisons showed quicker responses for 

congruent than for incongruent items sharing a common component (b = 117, p = .02), 

whereas congruent items with no common components were answered significantly 

more slowly than their incongruent (b = -238, p = .003) and neutral (b = -558, 

p < .0001) counterparts. 

 Congruent Incongruent Neutral 

ACC RT ACC RT ACC RT 

With a common component 98% 2695 98% 2812   

Without common components 86% 4271 90% 4033 97% 3713 

Table 3: Average accuracies and response times for the five main item types. 

http://www.r-project.org/
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Figure 1: Histograms of accuracies per participant for the main five item types. 

 

Items in which gap thinking… ACC RT 

… leads to the correct answer 88% 4000 

… leads to the incorrect answer 85% 4469 

… is uninformative 86% 4393 

Total average 86% 4271 

Table 4: Average accuracies and response times for the three gap conditions. 

 

Case Variable B p 

(A) Only congruency Dummy [Incong-Cong] 

Dummy [Neut-Cong] 

-238 

-558 

.003 

< .0001 

(B) Congruency + gap Dummy [Incong-Cong] 

Dummy [Neut-Cong] 

33 

-287 

.76 

.009 

Table 5: Regression coefficients for the effects of congruency on 

the response times of items without common components, either 

considering only congruency or both congruency and gap as predictors. 

We then focused on congruent items without common components, the critical 

category where we could contrast the three gap-related conditions. A logistic 

regression for accuracies showed no significant effect of gap condition (χ2(2) = 2.26, 

p = .32). A linear regression for response times, in contrast, turned statistically 

significant (χ2(2) = 18.00, p = .0001). As shown in Table 4, responses to items in which 



Gómez, Silva and Dartnell 

 

2-358 PME 41 – 2017  

gap thinking leads to the correct answer were significantly quicker than both those 

where gap thinking leads to the incorrect answer (b = -469, p = .0001) or is 

uninformative (b = -393, p = .001). These two types, instead, did not differ from one 

another (b = 76, p = .52). 

As a final analysis, we explored whether the observed gap effects in response times 

could account for the observed differences between congruent and incongruent items 

without common components. Table 5 shows the regression coefficients associated to 

the factor congruency when explaining participants’ response times in two scenarios: 

(A) when congruency is the only independent variable, and (B) when both congruency 

and gap are independent variables (notice that congruency in this context has three 

levels, so it is associated to two predictors). Results show that the difference between 

response times to congruent and incongruent items—as measured by the coefficient of 

the corresponding dummy variable—lost statistical significant after entering gap as a 

predictor (b changed from -238 to 33, p = .003 [bootstrap test]), whereas the difference 

between response times to congruent and neutral items had a significant reduction to 

about half of its value (b changed from -558 to -287, p = .01 [bootstrap test]). This 

shows that gap effects accounted for all the difference observed between congruent 

and incongruent items, and partially accounted for the difference between congruent 

and neutral items. 

DISCUSSION 

We have investigated the relevance of the gap difference between fractions in 

mathematically-trained adults’ reasoning while performing a mental fraction 

comparison task. Their response accuracies based on common components and 

congruency showed a pattern that is reminiscent of what Gómez et al. (2014) found 

when looking at the group of highest achievers in a sample of 5th-7th grade children, 

where congruent items with no common components had lower accuracies than all 

other item types. Similar results were also obtained by DeWolf and Vosniadou (2015), 

who reported that Greek undergrads of Informatics and Mathematics departments 

performed better in the incongruent case. A study with expert mathematicians 

conducted by Obersteiner et al. (2013) also provided evidence in this direction: experts 

displayed an advantage for congruent items when fractions shared a common 

component, but this advantage reversed when they lacked it. This reversal has been 

replicated in several studies (see Gómez & Dartnell, 2015), although no possible 

explanations for it have been tested successfully so far. 

We had hypothesized that the gap thinking strategy might play a role in explaining this 

disadvantage for congruent items without common components, and the data 

confirmed this conjecture. Gap-related conditions affected significantly participants’ 

response times but, most importantly, their consideration as predictors for explaining 

response times reduced the differences between congruent and incongruent items to a 

non statistically significant figure. Moreover, the consideration of gap effects also 
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reduced the magnitude of the difference between congruent and neutral items by about 

50%. 

Gap thinking has been observed in studies with children (e.g. Clarke & Roche, 2009; 

Pearn & Stephens, 2004) and is thought to stem from a naïve reliance on the schema of 

fractions as parts of a whole, in which the gap would be thought of as the number of 

parts missing to complete the whole. It is highly likely, however, that 

mathematically-trained individuals use fractions representations that are not only 

correct but also richer, and so it is reasonable to assume that the observed gap effects 

occur at an implicit level rather than an explicit level. In this context, gap thinking 

might be seen as comparing each fraction’s numerator and denominator with a 

subtraction-based rule instead of the more complex, ratio-based one. This subtractive 

rule might arise as an intuition acquired with mathematical expertise (a secondary 

intuition in terms of Fischbein, 1987). 

Although we originally hypothesized gap effects to explain the difference between 

congruent and incongruent items without common components only, they turned out to 

partially explain the difference between congruent and neutral items as well. 

Nonetheless, gap effects did not fully account for the latter. We conjecture that this is 

due to the fact that neutral items may also be answered by noticing that in neutral 

items, the larger fraction has both the larger numerator and the smaller denominator, 

both elements supporting a quick decision on the part of mathematically-trained 

individuals. This strategy is fundamentally different from gap thinking, and might 

explain the remaining difference between congruent and neutral items. 

Altogether, these findings suggest that congruency is not the best predictor of 

mathematically-trained individuals comparing fractions. This does not mean that 

congruency is unrelated to performance (e.g. DeWolf & Vosniadou, 2015; Gómez et 

al., 2014; Obersteiner et al., 2013), but rather that it is a poor concept in terms of 

explanatory power at least for the reasoning of high achievers. Our data put forward 

gap thinking as a viable strategy that may partially explain the differences previously 

ascribed to congruency in some important contexts. 
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LEARNING STRATEGIES IN ENGINEERING MATHEMATICS – 

EVALUATION OF A DESIGN RESEARCH PROJECT  

Birgit Griese 

Paderborn University 

 

Like many other universities, Ruhr-Universität Bochum (RUB) has to deal with 

disappointing attainment in engineering mathematics and ensuing unnecessary 

dropout. A potential solution was identified in an interventionist project addressing 

first-years engineering students’ learning strategies. In accordance with its Design 

Research background, the project procedures were modified over the years, taking 

different theories of learning into consideration. More than 2,000 data sets collected in 

four project cycles confirm the adaptations and emphasize the importance of 

motivational rather than cognitive or methodical learning strategies. 

INTRODUCTION 

University courses related to a technical subject such as engineering require a 

knowledge of mathematics. Compared to other subjects, the gap between school and 

university mathematics seems high and causes difficulties (cf. Dreyfus, 1995; 

Gueudet, 2008). Some predictors for success in university mathematics have been 

found: Apart from the mathematics competence acquired at school (Rach & Heinze, 

2013), there is the use of learning activities offered by the university, cognitive 

activation, deep learning strategies, and motivation for or interest in mathematics 

(Blömeke, 2016; Trapmann, Hell, Weigand, & Schuler, 2007). The ensuing attempts 

to overcome the obstacles vary, and examples are numerous (Dunn, Lo, Mulvenon, & 

Sutcliffe, 2012; Hoppenbrock, Biehler, Hochmuth, & Lück, 2016). At RUB, a project 

for engineering mathematics, addressing learning strategies, was contrived (Dehling, 

Glasmachers, Härterich, & Hellermann, 2010). The idea was to support first-year 

students in their systematic learning, with the objective to use mathematics as an 

example discipline whose mastery would have an effect on other subjects. 

THEORETICAL APPROACH 

When describing changes in human behavior concerning understanding, i.e. cognitive 

development, the theory about its phases (Piaget, 1973) form a basis, concretized in the 

theory of the three worlds of mathematics (Tall, 2004). Both build on the rationale that 

knowledge has to be reconstructed by the learner. Apart from cognitive challenges, 

however, other factors are recognized, too (Gueudet, 2008; von Glasersfeld, 1991). 

Thus affective aspects have gained a growing role in the research on mathematics 

education (McLeod, 1992; Hannula, Evans, Philippou, & Zan, 2004). It is now 

generally accepted that “affect plays a significant role in mathematics learning and 
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instruction” (McLeod, 1992, p. 575). So the perspective seems promising to explore 

general and meta-level skills in terms of learning strategies, whose investigation 

allows for revealing both the cognitive dispositions as well as affective barriers and 

pathways. How to sustainably encourage learning strategies, to identify successful 

interventions, and to understand the influence of motivation needs to be further 

explored.  

As the aim of our project is to efficiently promote students’ learning outcomes, the 

choice of background structure fell on Design Research (Gravemeijer & Cobb, 2013, 

Brown, 1992), which combines two objectives: practically to design, conduct, and 

improve interventions, and theoretically to understand which interventions work and 

why that is the case. This approach fits our scenario, as it fulfills the conditions of 

being interventionist, iterative (the project is repeated in subsequent years, from 2010 

until the present), process-, utility-, and theory-oriented, and it involves practitioners 

(van den Akker, Gravemeijer, McKenney, & Nieveen, 2006; Plomp, 2013). The 

purpose is to support students to cope with the amount and depth of the mathematical 

contents they have to master in a given time. From appraisal of the literature on 

learning mathematics, it seems well-advised to design a learning environment that 

enables students to involve themselves with the subject matter in context (Dreyfus, 

1995) and to discuss their approaches with peers and teachers (von Glasersfeld, 1991), 

as well as to address selected affective aspects, namely beliefs, attitudes, and 

approaches to learning (Goldin, 2002). The choice of methods should include 

sufficient resources and alternative scenarios of the learning process (hence learning 

strategies), and likewise treat the learner as an autonomous being in control of possible 

outcomes (Deci & Ryan, 1990).  

This leads to two research questions, which address the evaluation of the project (for 

investigations of the specific design of the project and its development, see Griese, 

2016).  

RQ1 How does our project influence learning strategies (and motivation)? 

RQ2 Which learning behavior is connected with academic success? 

Project conceptualization and development  

Our project was initially planned to distinguish between participants enjoying close 

and personal support in preparatory tutorials, and participants mainly relying on 

e-learning (and being offered a revision course in compensation). Both groups had 

access to a helpdesk and were asked to fill in a learning diary. After the first project 

cycle, the interventions were re-designed, according to feedback from participants, and 

taking affective aspects into more serious consideration. From then on, project 

procedures were more numerous and more closely linked. The revised procedures 

included a weekly focus topic, a weekly workbook, a special project helpdesk, weekly 

group meetings, a revised e-learning course, a learning log, mentor students, use of 

social networks, and a revision course, all referring to each other. The intertwined 

combination of interventions enabled the project staff to gradually withdraw their 

support, so that ideally, participants would rely on their own and peer resources in the 
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long term. After the second project cycle, only minor changes were necessary, mainly 

concerning the digital tools. Because of the modifications, only data from the second to 

fourth project cycle was used for the calculations presented in this paper. 

METHODOLOGY 

LIST questionnaire 

The LIST questionnaire (Lernstrategien im Studium, Wild & Schiefele, 1994) is a 

widely-used German questionnaire assessing learning strategies independent of 

subject. It is based on the same classification as the MSLQ (Motivated Strategies for 

Learning Questionnaire, Pintrich, Smith, Garcia, & McKeachie, 1993) and captures 

learning strategies in twelve categories (scales): the cognitive learning strategies 

Organizing, Elaborating, and Repeating, the metacognitive strategies Planning, 

Monitoring, and Regulating, and the resource-related strategies Effort, Attention, Time 

Management, Learning Environment, Peer Learning, and Using Reference. Each 

category is operationalized in three to eight items that are rated on Likert scales (four 

points, very seldom to very often). For our purposes, the cognitive category Critical 

Checks was omitted. 

Data analysis 

Data was collected in a pre-post design, at the beginning and at the end of the first 

semester, during the mathematics lecture. Apart from the LIST items, there was 

demographic data, and a code that enabled matching the survey data to project 

participation, to the result in a test a few weeks after the beginning of the university 

course (variable Mini Test), and to examination outcomes (Written Exam). 

In order to have a sound basis for further calculations, the reliability of the LIST scales 

was tested via Cronbach’s α, and an exploratory factor analysis (EFA) was conducted. 

For each data set, the separate item scores belonging to the same scale were combined 

to yield scale scores (from 0 to 100) used for further explorations. These consisted of 

calculating correlations, multiple linear regression with the outcome variable Written 

Exam, as well as pre-post comparisons via dependent t-tests or Wilcoxon ranked sign 

tests (depending on assumption of normal distribution of difference scores). These 

computations were carried out separately for project participants and non-participants. 

RESULTS 

The internal reliability of the LIST scales is mirrored in their Cronbach’s α values, 

which should be >0.7 to be considered good, see Table 1. Together with the loadings 

observed in the EFA (orthogonal / varimax rotation, pairwise exclusion of cases, 

analogous results for oblique / direct oblimin rotation), where items from Planning 

loaded consistently on Time Management, and other metacognitive items loaded 

irregularly, the decision was taken to form a combined scale Time Management / 

Planning (α=0.790), and to omit Monitoring and Regulating (and one Attention item, 
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αAtt=0.858) in further calculations. This left nine scales for interpretation. Together, 

 

LIST scale α  LIST scale α LIST scale α  

Organizing 0.814 Monitoring 0.560 Time Management 0.756 

Elaborating 0.766 Regulating 0.539 Learning Environment 0.700 

Repeating 0.726 Effort 0.757 Peer Learning 0.783 

Planning 0.642 Attention 0.749 Using Reference 0.765 

Table 1: Cronbach’s α for LIST scales, data from three project cycles 

they explain 44.34% of variance, yield consistent loadings and show adequate fit 

(KMO=0.920, χ²(1830)=29763.560, p=0.000, KMO-values for individual items >0.8 

but for two exceptions >0.7, χ²/df≈2.49). 

LIST Scale Mean 

pre 

Mean 

post 

n 

pre; post 

t df Sig. 

(2-t.) 

Effect 

Size r 

Organizing 51.93 47.64 203; 207 2.811 170 0.006** 0.21 

Elaborating 57.22 47.19 202; 197 8.773 160 0.000*** 0.57 

Effort 64.29 59.79 203; 200 4.676 163 0.000*** 0.34 

Attention 56.83 44.36 210; 220 3.770 188 0.000*** 0.27 

Time Man. / Pl. 42.08 45.06 210; 221 -1.717 184 0.088 0.13 

Peer Learning 57.83 58.01 216; 201 0.705 174 0.482 0.05 

Table 2: Dependent t-tests, **p<0.05, ***p<0.001, Attention items are reverse-coded 

Regarding the development of learning strategies, only data sets that could be matched 

precisely (n=255) were used. The differences between the pre and the post scores were 

tested for normal distribution (Shapiro-Wilk test, values for skew / kurtosis, QQ-plots, 

distribution histograms with normal approximations). The scales whose difference 

scores could be classified as normally distributed (Organizing, Elaborating, Effort, 

Attention, Time Management / Planning, Peer Learning) underwent dependent t-tests, 

the others (Repeating, Learning Environment, Using Reference) were subjected to 

Wilcoxon signed-rank tests, see Tables 2 and 3. 

LIST Scale Median 

pre 

Median 

post 

n 

pre; post 

z Sig. (2-t.) Effect 

Size r 

Repeating 47.62 42.86 204; 216 -5.944 0.000*** -0.32 

Learning Env. 61.11 66.67 210; 216 -0.832 0.405 -0.04 

Using Reference 83.33 66.67 230; 232 -4.541 0.000*** -0.22 

Table 3: Wilcoxon signed-rank tests for paired data sets, ***p<0.001 
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When conducting these tests separately for project participants and non-participants, it 

emerged that non-participants showed stronger decrease in the use of learning 

strategies than participants. Concerning Time Management / Planning, participants 

even showed a significant increase (mean diff. =-4.84, effect size r=0.34*), as opposed 

to a general non-significant decrease (mean diff. =-1.76, r=0.09). In their use of Effort, 

project participants revealed no significant change (mean diff. =2.46, r=0.17), whereas 

non-participants report a significant decrease (mean diff. =5.78, r=0.39***). With 

regard to Attention (reverse-coded), participants (meanpre=51.59, meanpost=42.86) 

display a weaker decrease of concentration than non-participants (meanpre=58.04, 

meanpost=44.47) and report an altogether higher level of concentration. 

Concerning the influence of learning behavior on examination success, correlations 

(Pearson’s r) were calculated between the scale scores, Mini Test, and Written Exam. 

The biggest (and significant, p<0.001) was found between Mini Test and Written 

Exam, r=-0.643. When following up with multiple linear regressions in the forward, 

backward, and stepwise method of including or excluding predictors from a model 

with the outcome variable Written Exam, a model containing Mini Test (with 

standardized β=-0.611) allowed only one other predictor, Effort, albeit with less impact 

(β=-0.138). As mathematical skill at the beginning of the course cannot be influenced 

by the project procedures, Mini Test was left out of subsequent models. A model with 

two predictors emerged, see Table 4. The influence of learning strategies operates as 

expected; more effort and higher concentration are connected to better grades.  

Predictor b SE for b β  Sig. 

(Constant) 3.340 0.462  0.000 

Effort -0.013 0.005 -0.162 0.021** 

Attention 0.009 0.004 0.149 0.033** 

Table 4: Regression model with two predictors and outcome variable Written Exam, 

n=268, R²=0.074, Durbin-Watson 1.946, **p<0.05 

 

As a last step, project participation was tested for possible moderator qualities, i.e. it 

was investigated if project participation influenced the linear model predicting 

examination success. The results were weakened by the small numbers of data sets in 

these groups (npart=66, nnon-part=197), but nevertheless the calculations showed that the 

contribution of Attention vanishes for the project group, and shows no significance 

(standardized βpart=0.003, ppart=0.982, as opposed to βnon-part=0.190, pnon-part=0.020). 

DISCUSSION 

In relation to students’ learning strategies and their development (RQ1), the scales 

Effort and Attention are particularly interesting. They reflect the motivation items from 

MSLQ. The scores for these scales are lower in the post survey than in the pre survey, 



Griese 

 

2-366 PME 41 – 2017  

which means different things: For Effort, a lower score means less effort is made – or at 

the very least, that the students subjectively assess that they are making less effort, in 

comparison to an unspecified reference frame, which itself may have shifted due to 

experiences at university. The description is true both for the complete cohort and for 

the project participants, but project participants keep their level of Effort, whereas the 

average student’s score decreases. For Attention (reverse-coded), a higher score means 

more distraction or less concentration. The fact that the Attention scores are lower in 

the post survey means that students report a higher level of concentration at the end of 

the semester. The change of Attention is more distinct among the non-participants, but 

the project participants start at a higher level of concentration and end at roughly the 

same level as the non-participants. So for both scales connected with motivation, 

project participants show advantages over the non-participants. Three other learning 

strategies show a meaningful decrease in use (Elaborating, Repeating, Using 

Reference), which is less pronounced for the project group for Repeating and Using 

Reference. This can be interpreted as another success of the project, as memorizing 

techniques as well as referring to apposite additional material was covered in the 

project procedures. 

In view of the influence learning strategies can have on examination success (RQ2), 

different linear models were explored. They need to be viewed in connection to the fact 

that the LIST scales do not cover understanding, and our survey only asks how often a 

learning behavior is employed, and not how efficiently it is applied. When the variable 

Mini Test, which captures mathematical competence at the start of the university 

course, is entered into the model, the explained variance rises to over 40%. Other 

researchers, too, have found that the knowledge and skills students have acquired at 

school are a strong predictor for their success at university (Schiefele, Streblow, 

Ermgassen, & Moschner, 2003; Trapmann, Hell, Weigand, & Schuler, 2007). This 

serves as background to understand why learning strategies explain comparatively 

little variance. As our project aims at supporting mediocre or weak students, a little 

help may just be the assistance these students need in order to pass their examination in 

mathematics. The final model (Table 4) contains only the two predictors Effort and 

Attention. The importance of Effort is additionally stressed by the fact that it is the only 

remaining scale when restricting the model to project participants. The relevance of 

these psychologic aspects was not hypothesized in the conceptualization of the project, 

which has brought the insight that apart from the technical side of learning behavior, 

project procedures should be characterized by a focus on motivational aspects.  

The constraints of the findings presented are not to be withheld: there is no proper 

control group. At the conceptualization of the project, a control group was intended, 

consisting of students who had applied for project participation but were not accepted. 

As this group hardly appeared in the post surveys and staffing improved, a comparison 

group was established in later project cycles (consisting of students with similar 

starting conditions in mathematics, according to Mini Test) and used for comparisons 

concerning pass rates. The decision was vindicated when the sole relevance of 
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psychological aspects was realized. If the original control group had been retained, the 

experience of being expressly denied help might have influenced motivation 

negatively. Now that the relevance of motivation has become clear, we can conclude 

that this would probably have enhanced rather than diminished the differences to the 

project group, resulting in the opposite effect a control group should have. 

In sum, the conclusion that Effort and Attention are the central factors in mathematics 

for engineering students is also a reason for optimism, as this is something that can be 

addressed. This is exactly where a project like ours can act out its strengths, and a 

strong factor in recommending this kind of project work. 

Note: This paper presents selected findings from Griese (2016). 
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A PUZZLING MISCONCEPTION OR A LOGICALLY 

PERSISTENT WAY OF UNDERSTANDING? EXAMINING 

STRUCTURES OF ATTENTION 

John Griffith Moala, Caroline Yoon and Igor’ Kontorovich 

The University of Auckland 

 

We use Mason’s (2004) framework of structures of attention to offer an account of why 

a group of students continually posited a mathematically incorrect way of 

understanding (Harel, 1998) while working on graph theory task. Analysis suggests 

that despite continuous activity and discussion, certain aspects of the group’s attention 

did not change over time, and the overall structure of their attention did not so much 

shift (in the sense of a change in direction or focus) as it did expand (in the sense of a 

change in size). We propose that the group’s persistent attachment to the incorrect way 

of understanding is understandable in light of their structures of attention, and that a 

fine-grained application of Mason’s framework can offer sympathetic insight into the 

persistence of incorrect ways of understanding. 

INTRODUCTION 

Mason (2004) proposed that when new knowledge emerges, what changes cognitively 

is the structure of attention (i.e., what one attends to, as in the mathematical objects, 

and how these objects are attended to). Recent studies (e.g., Palatnik & Koichu, 2015; 

Yoon, 2015) showed that shifts in students’ structures of attention indicate radical 

changes in their mathematical thinking. Conversely, Mason (2015) posited that 

students get often stuck on a problem if they are unable to shift their attention beyond a 

way of understanding (Harel, 1998). We use ‘way of understanding’ to refer to the 

particular interpretation students give to a mathematical concept. In this paper, we 

apply Mason’s (2004) framework of structures of attention on a piece of data in which 

a group of students persistently posited an insufficient way of understanding as they 

worked on a graph theory task. Studies on insufficient knowledge that students often 

possess are abundant in the literature as evidenced by the numerous terms associated 

with ‘insufficient knowledge’: misconceptions, alternative conceptions, obstacles, and 

so forth. The inability to revise insufficient knowledge can be a major hindrance to 

learning (or making progress during a task). However, revising insufficient 

knowledge, is problematic particularly because of their persistence, as Brousseau 

(1997. p. 99-100) explains about ‘obstacles’: “[they] withstand occasional 

contradiction, and even after inaccuracy is recognized they continue to crop up in an 

untimely persistent way.” But such explanations are elusive on the matter of why and 

how insufficient knowledge persists. Further, it is often tempting to account for 

insufficient knowledge in terms of what students lack. Might a closer look at students’ 

thinking yield a more sympathetic and elaborate understanding about the intricacies of 
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students’ “insufficient knowledge”? Our aim is to understand why a group of students 

persistently posited an incorrect way of understanding. Given the aforementioned 

findings of Yoon (2015), Palatnik and Koichu (2015), and Mason (2015) we 

hypothesize that some aspects of the group’s structures of attention do not change over 

time, resulting in the persistence of the incorrect way of understanding. Our research 

questions are: what aspects of the group’s attention do not change throughout the task? 

And, how do these unchanging aspects lead the group to constantly posit the incorrect 

way of understanding?  

THEORETICAL FRAMEWORK––STRUCTURE OF ATTENTION 

The structure of attention (Mason, 2004) framework comprises both what one attends 

to, as in the mathematical objects––nodes, arcs, functions; and how these objects of 

one’s attention are attended to. The how refers to the forms of one’s attention. Mason 

proposed five different forms of attention: (1) holding wholes: the form of one’s 

attention when one gazes at whole objects (instead of particulars); (2) discerning 

details: the form of one's attention when one stresses particular aspects (that are almost 

always immediately apparent) of an object and ignores others (e.g., the number of 

nodes in a network, the number of arcs incident on a node); (3) recognizing 

relationships: the form of one's attention when one recognizes that certain objects are 

related (e.g., two nodes have an equal number of adjacent nodes); (4) perceiving 

properties: the form of one’s attention when one conjectures that an object always 

possesses a certain feature (e.g., in any network the number of nodes with an odd 

number of arcs incident on it is even); (5) deducing from definitions: the form of one's 

attention when one attempts to deduce a general result, beginning with a conjecture 

and providing justifications based solely on perceived properties. These different 

forms and objects of attention lead to the proposition (Mason, 2004) that mathematical 

thinking entails shifting back and forth among different objects and forms of attention, 

and that learning something (or the emergence of a new way of understanding) is 

indicated by certain shifts in the overall structure of attention.  

METHOD  

We report on the group work of Lome, Chad, and Gil, who at the time of data 

collection were enrolled in a university-bridging mathematics course, which covers 

secondary school level algebra. The group worked on The Jandals Problem, which 

begins with a story about a means of ranking Hollywood actors through the ‘Bacon 

number’ (similar to the Erdös number), which is the smallest number of movie-links 

between an arbitrary actor and prolific actor Kevin Bacon (e.g., an actor who has 

co-starred with Bacon has a Bacon number of 1). After reading this story, the group 

worked on warm-up questions regarding Bacon numbers, which familiarized the 

students with graph theory terminology (e.g., a node in the network represents a 

person, and an edge between two nodes represents a relationship (e.g., friendship) 

between the two people). Then, the group read the problem statement, which describes 

a situation in which Xanthe, an American exchange student in New Zealand, picked up 
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a number of colloquial New Zealand words, including “jandals” (equivalent to “flip 

flops” in the U.S). Upon returning home, Xanthe intends to spread the word, “jandals”, 

throughout her network of friends (shown below in Figure 1). The problem statement 

asks students to devise an algorithm to determine the first person with whom Xanthe 

must share the word, so as to reach everyone in the network in the smallest amount of 

time (assuming that two people are friends if there is an edge between them, and any 

person who hears the word will share the word with all of his/her friends in exactly one 

day). The problem also asks students to ensure that their algorithm would work for any 

similar friendship network. The group worked on the task for one hour in a quiet room 

in the presence of an interviewer, while being audio recorded and video recorded. The 

interviewer presented the task and answered clarification questions about the wording 

of the task, but did not give any mathematical hints about how to solve the problems. 
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Figure 1: Friendship Network 1 (FN1)       Figure 2: Friendship Network 2 (FN2) 

We used Mason’s structure of attention framework to analyze the group’s work, 

focusing on several questions: (i) What mathematical objects is the group attending to 

throughout the task? (ii) How is the group attending to the mathematical objects? (iii) 

Why does the group shift their attention from one object to another, or from one form 

of attention to another? The why question was addressed by inferring the particular 

goals towards which the group was working when their attention shifts. 

RESULTS AND ANALYSIS  

We present three episodes from the group’s work on The Jandals Problem, 

documenting how the group constantly advanced a particular incorrect way of 

understanding, tracing at a fine-grained level the interactions between their structures 

of attention. We attempt to identify unchanging aspects of the group’s attention that 

might explain the group’s constant advancement of the incorrect way of 

understanding.    

Episode 1: The starting person must have three friends 

The group begins by agreeing that in order to find the quickest starting person (i.e., the 

person from which the word would spread throughout the network fastest), they need 

to figure out how many days it would take for the word to spread from each person in 

the network, then choose the person that corresponds to the minimum number of days. 
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The group’s strategy for doing this is to pick a person, then identify the people that the 

word reaches on day one, day two, and so forth until all people have been reached. The 

group applies their strategy on C, D, E, G, H, I, J, L, M, finding the quickest to be H, 

which yields four days (aside: the group incorrectly applies their strategy on G and get 

6 days, but it actually only takes 4 days, making it another quickest starting person). 

The group then attends to the problem statement, focusing on the need for an 

algorithm: 

Lome: What is an algorithm? 

Interviewer: An algorithm is like a method 

Gil:  It’s like the way you got it. 

Interviewer: Yes, so that you can use it for any other network... You’ve got to explain it 
as well as you can so that Xanthe can use it on any network… 

After hearing this clarification about what an algorithm/method is, Gil focuses on H, 

notices that it has three friends, and subsequently proposes a method, henceforth 

referred to as M1: share the word with someone who knows three people: 

Gil:  So the algorithm would be...the person she tells first should tell three 
people, because if you told H, H would tell L, G, and J. 

There are three main things to note from this episode: (1) Gil’s focus of attention was 

person H (the quickest starting person); (2) the group was aware of the need to create 

an algorithm/method; (3) the group’s strategy behind M1 was to state a property of the 

quickest starting person. The property of person H that Gil perceived (the starting 

person has 3 friends) was the basis of M1 and the group’s way of understanding the 

concept of ‘the quickest starting person’. One can easily verify that this way of 

understanding is incorrect, as it does not always equate to the quickest starting person 

in any network. But, as we will see in the following episodes, the group maintains this 

way of understanding in all the methods that they propose.   

Episode 2: The group modifies M1 but the initial way of understanding persists 

After Gil proposes M1, the interviewer asks the group to re-read the problem 

statement. Lome then attends to FN1: 

Lome: So the method is to share it with someone who is connected to at least three 
people. But if she starts at L, L is connected to three people but it doesn’t 
work as fast [as H]. 

The group agrees that M1 is inadequate for FN1, and Lome proposes a modification: 

Lome: Maybe it [H] needs to be connected to three people [L, J, and G] but one of 
those three people [pointing to L] has to be connected to at least two other 
people [pointing to K and N]. That’s why this person [C] doesn’t work. It’s 
connected to four people, but none of those people is connected to two 
other people. So that’s an algorithm. 

Chad and Gil approve Lome’s proposal, and Lome writes down their new method 

(M2): share the word with a person who knows at least 3 people, and one of those 3 

people must know at least 2 other people.  
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Note M2 is merely the group’s initial way of understanding – the starting person must have 

three friends – plus another property of person H (i.e., one of its 3 friends must have at least 2 

other friends). So why does the group maintain their initial way of understanding in M2? At 

the beginning of the episode, Lome perceived that L (like H) also had three friends, which 

ultimately meant that M1 was inadequate. The group’s goal was then to modify M1. At this 

point the group was attending to: M1 (and its inadequacy); H (and its property of being the 

quickest starting person in FN1); and the need for a method. We note that although the group 

had deemed M1 inadequate, it neither changed the fact that H was the quickest starting person 

in FN1; nor changed the fact that H had three friends (this was a salient property of H). 

Furthermore, the group’s strategy for creating a method was to state (distinctive) properties of 

the quickest starting person, which in this case was H. So by focusing on person H and their 

strategy for finding the quickest starting point, the group naturally maintained the notion that 

the quickest starting node has three friends. Moreover, Lome later recognized a relationship 

between H and L (both had 3 friends but H was a quicker starting person than L) that 

necessitated M1’s revision. However, Lome shifted his attention from H and L to H and C, 

and perceived (differing) properties of these two people, from which he deduced M2. Note 

M2 also holds for L (which if noticed might have undermined M2) but the group did not 

notice this, as their attention had shifted from H and L to H and C. 

Episode 3: The group modifies M2 (twice) but the initial way of understanding 

persists  

After Lome writes down M2, the interviewer gives the group a second friendship 

network (FN2; see Figure 2), and asks them to show how their new method (M2) 

would work on this network. The group tries to find the quickest starting person in 

FN2, employing the same strategy used for FN1 (see Episode 1). They (incorrectly) 

determine that three days is the fastest it would take for the word to spread throughout 

FN2, with multiple quickest starting people: P, Q, R, S, T (aside: R and S, actually yield 

2 days). Gil then directs the group’s attention back to M2, and they try to apply it on 

FN2: 

Gil:  So she has to tell someone who knows three people, so Q and P know 3 
people. Q knows S, P, and O. P knows R, Q, and O. If you tell Q first, Q 
tells S, P, and O... Now, one person must know at least two other people. 

Gil then gazes at FN2 for a while, during which he has difficulty deciding whether one 

of S, P, and O actually know two other people (i.e., the second property in M2). After a 

while, Gil says: 

Gil:  I reckon the method should be to tell someone who knows three people. 

Lome: No, but if we use that on this one (FN1)... L knows three people, but if you 
tell L first... it’s a longer way...so that doesn’t work. 

Gil:  Yeah no, it [the method] should be start with someone who tells three 
people, and one of those three people must tell two people... 

Lome: No. Still if you tell L, one of these three people [L’s friends] does know two 
people. H knows two people. But L’s still a longer way... 
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The group agrees that M2 is inadequate, and they discuss how to modify it: 

Gil:  So for this one [FN2], if you start on T who knows three people, these 
people [R and S] tell someone that’s not in the same group...they don’t tell 
the same person. That’s why [points to FN1] L doesn’t work here because 
the two people they told (K and N) only know one person. So of the three 
people, each will have to tell a different person...like H. 

Lome: Okay. So out of the three people [that the first person tells], all three of 
them have to tell a different person. Can you write that down? 

Gil:  So you need to tell three people, with those three people telling a different 
person each time. So here [FN2], if you tell Q who knows three people… 

Gil then has difficulty deciding whether Q’s three friends each know a different 

person, so Lome makes a suggestion... 

Lome: P and S tell two different people... 

Chad : So can we say, at least two of the three friends tell different people? 

Gil:  I’m just thinking, if Q (in FN2) tells three people, and they each have to tell 
a different person... But O can’t tell anyone else. 

Lome: Yeah but P and S can tell different people. That does make sense, because 
for the networks we’re given, the starting person tells three people... 

Gil:  And at least two of them need to tell a different person. Okay, so share the 
word with someone who knows 3 people, and at least 2 of the 3 people need 
to tell a different person. 

In this episode the group maintained the notion that the starting person must have three 

friends through their modifications to M2. Again, we ask why the group did this? At 

the beginning of this episode the group had a goal to apply M2 on FN2, which Gil tried 

to do but he experienced difficulty––he readily perceived that person Q had three 

friends, but found the second property of M2 problematic (i.e., one of the 3 friends of 

the starting person must know at least 2 other people). Gil then resorted to M1, which 

Lome rejects as he did in Episode 2. Lome’s rejection of M1 shifted the group’s 

attention back to FN1. Gil then re-proposed M2, justifying it using person H. However, 

Lome perceives a property of person L (one of its 3 friends (H) knows at least 2 other 

people), rendering M2 inadequate (as it worked for L, but L was not a quickest starting 

person). After the group agreed that M2 was inadequate, they aimed to fix M2 using a 

simple strategy––keep what worked and change what did not work. Since it was the 

second part of M2 that did not work (when Gil tried to apply it on FN2), it is 

understandable that the group still considered the notion that the starting person must 

have three friends favorably despite M2’s inadequacy. Gil then perceived a property of 

person T (i.e., its friends R and S each shared the word with a different person) – a 

property that Gil recognized holds for H but not for L in FN1. Gil then proposed the 

method (M3): share the word with a person who knows three people, and each of those 

three people must tell a different person. The group then tried to apply M3 on FN2, 

starting with Q, but immediately experienced difficulty––again, they readily perceived 

that Q had three friends, but they could not verify the latter part of M3 (each of the 3 
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friends must tell a different person each). At this point, Lome and Chad perceived 

another property of person Q––at least two of its three friends share the word with a 

different person––which they had perceived was also a property of H in FN1.  The 

group then modified M3, again employing their strategy for fixing an inadequate 

method––keeping what worked (i.e., starting person must have three friends) and 

changing what did not work (i.e., each of the 3 friends must tell a different person) to 

two of the three people must tell a different person each. This yielded the group’s final 

method: share the word with someone who has three friends, at least two of which must 

share the word with different people. 

DISCUSSION AND FUTURE DIRECTIONS  

Our research questions were: (i) what aspects of the group’s attention do not change 

throughout the task? and (ii) /how do these unchanging aspects lead the group to 

constantly posit the incorrect way of understanding? Our analysis shows three 

unchanging aspects of the group’s attention that were influential in perpetuating the 

relevance of the incorrect way of understanding––the starting person must have three 

friends. These three aspects were: (i) person H (in FN1); (ii) the group’s strategy for 

creating a method, by stating relatively distinctive properties of the quickest starting 

person; (iii) the group’s strategy for fixing an inadequate method by keeping what 

worked and changing what did not work. How were these three unchanging aspects 

significant? We summarize their significance as follows: Person H was the quickest 

starting person in FN1 (and having three friends was an invariant, relatively distinctive 

and salient property of person H). Further, the candidates for starting person in FN2 

that the group focused on (P, Q, and T) all had three friends. So whenever a method 

was deemed inadequate, the group naturally, and by virtue of their aforementioned 

strategies, maintained that the starting person had to have three friends, while changing 

the other properties of the method that did not work. These unchanging aspects of 

attention suggest that, on the whole, the group’s attention did not so much shift (in the 

sense of a change in direction or focus) as it did expand (in the sense of a change in 

size). In other words, the group continually posited a particular way of understanding 

(i.e., ID) and added to it, by incorporating more and more information (even 

information that could potentially undermine it). This is reminiscent of Skemp’s 

(1971) notion of a self-perpetuating schema which “while may be the most effective 

organiser of existing knowledge, it’s very strength may be the source of it’s potential 

downfall; a tendency towards the self-perpetuation of an existing schema...becoming 

an obstacle to adaptability” (p. 41). The notion of obstacle (Brousseau, 1997) also 

comes to mind, when thinking about the persistence of the group’s way of 

understanding. An obstacle can be construed as a way of understanding that functions 

productively in a variety of situations, thus establishing it as a useful cognitive tool for 

interpreting some situations, but then breaks down and leads to errors in other 

situations. The defining characteristic of an obstacle is its persistence. Brousseau 

(1997) argued that an obstacle must be overcome (revised/modified) in order for 

learning to take place. But studies on obstacles (and overcoming them) in the 
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short-term context of a task are rare and, still without an analytical framework, the 

notion of obstacle seems metaphorical at this point. In this light, we wonder whether 

the incorrect way of understanding proposed in our paper be thought of as an obstacle 

with respect to a task? And furthermore, perhaps unchanging aspects of students’ 

attention are factors in the persistence property of obstacles?  Such questions warrant 

further inquiry.    

The main argument of this paper is that unchanging aspects of the structure of attention 

might cause the persistent advancement of an incorrect way of understanding. We have 

also shown, by examining at a fine-grained level their structures of attention, that the 

group’s persistent focus on this way of understanding was understandable. We thus 

believe that Mason’s framework has the potential to not only give us a more 

sympathetic outlook on the persistence of insufficient knowledge, but also gives us a 

more rigorous way of talking about the seemingly fortuitous persistence of students’ 

so-called “insufficient knowledge”.  
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EXPLORING THE RELATIONSHIP BETWEEN ACCEPTED 

WAYS OF REASONING IN THE CLASSROOM AND 

INDIVIDUALS’ WAYS OF REASONING 

John Gruver 

Michigan Technological University 

 

While social theories have offered powerful ways to explore how social interactions 

can support learning, researchers are still grappling with how to coordinate these 

insights with what is known about the nature of individual learning. This study 

explores this topic using the emergent perspective (Cobb & Yackel, 1996) to 

investigate students' individual variation from ways of reasoning that were accepted in 

their class community. The results show that students can reason in ways that are 

qualitatively different in mathematically significant ways from established ways of 

reasoning, even after instruction has ended, and even if they continued to intellectually 

engage in classroom interactions. Perhaps more importantly, the results offer an 

image of ways this variation can occur.  

INTRODUCTION 

In the late eighties, mathematics education research took what Lerman (2000) called a 

“social turn” (p. 19). This meant that researchers began to conceive of knowledge as 

inseparable from the social context in which that knowledge was developed, to explore 

the semiotic and cultural mediation of thought, and investigate learning as 

enculturation into practice (Brown, Collins, & Duguid, 1989). Thus, mathematics 

educators began to expand the unit of analysis beyond the individual to more 

thoroughly explore the social aspects of learning.  

However, as Lerman (2000) pointed out, while new theories advanced researchers' 

ability to study learning as it occurs in classroom contexts, it was not immediately clear 

how to account for the social nature of learning without losing nuances in individuals' 

ways of reasoning. He said, 

A major challenge for theories from the social turn is to account for individual cognition 

and difference and to incorporate the substantial body of research on mathematical 

cognition (p. 27). 

In particular, while social theories advanced educators' understanding of how 

particular interactional patterns among participants support learning generally, the 

interpretative nature of learning was downplayed and it was not clear how different 

students might differ in what they learn after participating in the same social 

interactions. 
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THEORETICAL PERSPECTIVE 

One possible way to meet this challenge is to further develop ideas from the emergent 

perspective (Cobb & Yackel, 1996). This theory combines aspects of symbolic 

interactionism (Bauersfeld, Krummheuer, & Voight, 1988) and constructivism (von 

Glasersfeld, 1983) to coordinate social aspects of the classroom microculture with 

psychological features of individuals who participate in classroom activities. In this 

approach, the social and individual planes have equal weight. 

The emergent perspective outlines three social aspects of the classroom—social 

norms, socio-mathematical norms, and classroom mathematical practices—and their 

individual psychological correlates. This study will focus on coordinating the last of 

these, classroom mathematical practices with its individual correlate, students’ own 

mathematical conceptions and activity. Classroom mathematical practices are 

mathematical ways of reasoning and operating that become taken-as-shared. This 

means that in the classroom community, participants assume that other participants are 

familiar with and understand the way of operating.  

According to Cobb and Yackel (1996) the relationship between individuals’ 

conceptions and mathematical practices is indirect and reflexive. This means that 

individuals’ ideas gives rise to classroom mathematical practices as individuals share 

and negotiate ideas. Then, as ways of reasoning become accepted in the community, 

they influence, but do not determine, students’ further reasoning and conceptions. 

Because participation in emergent practices is not deterministic of further ways of 

reasoning, classroom participants may not share identical conceptions. This diversity 

of student ideas is acknowledged through use of the metaphor that students participate 

differentially in classroom mathematical practices. However, little is known about the 

nature of this differential participation. 

EFFORTS TO COORDINATE THE SOCIAL AND INDIVIDUAL ASPECTS 

OF THE EMERGENT PERSPECTIVE 

Despite the promise of the theory to coordinate individual and social constructs, most 

of the research conducted by those who have worked from the emergent perspective 

has focused on fleshing out and investigating the social constructs of social norms, 

socio-mathematical norms, and classroom math practices. This is understandable, 

given the need to operationalize these constructs in classroom-based mathematics 

education research. Indeed, the emergent perspective provides a powerful way to 

conceptualize social aspects of the learning environment generally, and in particular 

the mathematical progress of the class at the collective level. Studies that characterize 

the mathematical progress of the classroom are compelling because this is how the 

teacher experiences the classroom. However, this underscores the importance for 

coordination with individual ways of reasoning since it would be useful for teachers to 

know how the mathematical progress of individual students might differ from the 

mathematical progress of the class as a collective. This is consistent with the original 

goals of the theory as Cobb (1999) himself called for “the need to clarify the relation 
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between individual students' reasoning and the collective practices in which they 

participate in” (p. 33). 

Although understanding the complex relationship between individual interpretations 

and normative ways of reasoning is in its infancy, a few relevant studies have been 

conducted (Rasmussen, Wawro, & Zandieh, 2015; Stephan, Cobb, & Gravemeijer, 

2003; Tabach, Hershkowitz, Rasmussen, & Dreyfus, 2014). The most comprehensive 

investigation was performed by Stephan, Cobb, and Gravemeijer (2003). They 

outlined how two first grade students, Nancy and Meagan, participated in the 

emergence of the classroom mathematical practices and how this participation affected 

their subsequent ways of reasoning. They found that while the students generally 

reasoned in ways that were consistent with the established practices, there were a few 

instances where Meagan’s mathematical conceptions were qualitatively different from 

an established practice. However, Meagan eventually reorganized her knowledge to be 

more consistent with the practices when her ways of reasoning became problematic for 

continued participation in the class. While this image provides a starting point in 

understanding the relationship between math practices and individual ways of 

reasoning, it is likely that the relationship described in this study is not the only 

possible relationship. Perhaps qualitatively different ways of reasoning can persist, 

even after instruction has ended. If unproductive ways of reasoning persist, under what 

circumstances does this occur? And how could this be addressed so a greater number 

of students reason in mathematically powerful ways? This gives rise to the research 

question addressed by this study: How are individuals’ ways of reasoning related to the 

progression of increasingly sophisticated ways of reasoning that function as if shared 

in the classroom? 

METHOD 

To answer this research question I studied a logarithm unit in a class of 26 prospective 

secondary teachers. An experienced mathematics education researcher taught this 

course and a wide variety of students regularly participated in classroom discussions. 

These discussions were the impetuous for the development of mathematical progress 

in the class. 

To analyse progress at the classroom level, I used the documenting collective activity 

(DCA) method (Rasmussen & Stephan, 2008; Cole et al., 2012). Using this approach, I 

identified changes in the structure of classroom arguments over time. These changes 

gave evidence that particular ideas had become accepted in the class community (for 

more details on the criteria used see Rasmussen & Stephan, 2008; Cole et al., 2012). I 

called these accepted ways of reasoning normative ways of reasoning (NWRs). 

Following Rasmussen and Stephan (2008) and others who have used their method 

(Cole et al., 2012), I then grouped related normative ways of reasoning into collective 

mathematical practices. For this study, I then focused on one math practice, the point at 

which students were transitioning from linear reasoning to exponential. I choose to 

focus on this practice because previous research has shown that this is difficult 
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transition for many students to make (Alagic & Palenz, 2006). As such, there was more 

potential for individual variation from the established practice. 

After establishing the emergent mathematical practices and identifying one to focus 

on, I investigated individuals’ ways of reasoning that were related to that practice by 

analysing clinical interviews administered after instruction to seven of the students in 

the class. When analysing their responses I used open coding and the constant 

comparison method from grounded theory (Strauss & Corbin, 1994) to develop and 

refine categories that described the students’ ways of reasoning. The results of this 

analysis revealed the nature and extent of individual variation from the normative ways 

of reasoning.  

INSTRUCTIONAL CONTEXT 

The unit I studied focused on deepening students’ understanding of exponential and 

logarithmic relationships. This centred on developing an exponential number line and 

then using that number line to explore exponential relationships. On the first day of the 

unit, the students were asked to create a timeline that represented the earth’s 

history—from 15 billion years ago until today—and place several historic events on 

the line (Confrey, 1994). Three distinct approaches were presented in class. The first 

was a linear approach. The second was a piecewise linear approach in which they used 

several different linear scales. The third approach was different than the first two in 

that it used an exponential structure at a macro scale, meaning there were equally 

spaced tick marks that increased by powers of ten. However, the segments formed by 

those tick marks were subdivided linearly. Given the macro exponential structure of 

this approach, the teacher further explored it in class to encourage the development of a 

fully exponential number line—meaning one that had the macro exponential structure, 

but was also subdivided exponentially. After considerable debate, the students realized 

their linear method of subdivision was not consistent with the macro exponential 

structure of the line. This led to the acceptance of exponential ways of reasoning to 

subdivide. 

RESULTS 

The analysis of the classroom arguments using the DCA method resulted in 

identification of five Math Practices. Math Practices 1, 2, and 3 centred on creating a 

fully exponential number line, while Practices 4 and 5 focused making sense of 

exponential and logarithmic relationships, including using the exponential number line 

to do so. This study focuses on Math Practice 2, which consisted of two normative 

ways of reasoning that describe ways to exponentially subdivide the segments of the 

line (see Table 1). The acceptance of these two ways of reasoning eventually led to the 

rejection of the linear way of subdividing considered earlier. 

The first of these, NWR 2.1: Reasoning Linearly About Exponents, is characterized by 

students focusing on exponents. Students would write the endpoints of the segment in 

the form ab, ignore the base, and reason linearly with the exponents. For example, if 
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they wanted to find the midpoint of 10 and 100, they would write two endpoints as 101 

and 102, and then focus on the exponents of 2 and 1 by thinking of the "halfway point" 

of 1 and 2. This would tell them that the midpoint should have an exponent of 1.5. In 

the second way of reasoning, NWR 2.2: Preserving Multiplicative Relationships, 

students extended the times ten pattern that existed between segments to within the 

segments by treating same size subsections as representing multiplication by a constant 

factor. Thus, to find the midpoint of 10 and 100 using this method, students would 

notice that there is an increase by a factor of 10 between the two endpoints, and then 

recognize that to preserve the macro pattern of constant multiplication, one needs a 

number that when multiplied by itself yields ten. This is the square root of ten, meaning 

the halfway point should be ten times the square root of ten. 

Math Practice 2: Subdividing the Segments 

NWR 2.1: Reasoning Linearly About Exponents 

NWR 2.2: Preserving the Multiplicative Relationship within the Segments 

Table 1: The component NWRs of Math Practice 2. 

It is important to note that even though both methods yield the correct answer, they are 

significantly different in terms of the conceptual understanding necessary to engage 

with them. In particular, it is possible to for students to proficiently use NWR 2.1, 

without engaging with exponential reasoning at all. These students could simply 

ignore the base and reason linearly. However, this method is useful to quickly 

determine placements on the number line. Thus, perhaps the ideal learning outcome for 

students would be that while they might use NWR 2.1 for efficiency's sake, they would 

also fully understand NWR 2.2 and its mathematical connections to NWR 2.1. 

The results of the individual analysis were striking, in that more than half the students 

interviewed reasoned in ways that were not fully consistent with Math Practice 2, in 

that these students did not intellectually engage with both of the practice's constituent 

NWRs. In particular, only the three students whose reasoning was coded in the first 

category captured important nuances of Math Practice 2, which are critical to 

developing deep conceptual understanding of the exponential number line. In Category 

1 were ways of reasoning in which students coordinated multiplicative relationships 

among the values on the number line with linear relationships that existed among the 

exponents. In contrast, a student whose reasoning was categorized in Category 2 was 

consistent only with NWR 2.1, meaning they reasoned solely about the exponents, 

with no connections to multiplicative relationships. Finally, reasoning in Category 3 

was characterized by students still struggling to abandon a way of reasoning 

considered early on in the unit, reasoning linearly about the actual values on the line. 

Two students' reasoning was coded as Category 2 and two students' reasoning was 

coded as Category 3. 

While the four students whose reasoning was coded as Categories 2 or 3 did not use 

multiplication to reason about what value lay at the midpoint, their ways of reasoning 
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were recognizable from class discussions. Those who used Category 2 reasoning 

reasoned in a way that was consistent with normative way of reasoning 2.1. This 

correct way of reasoning was accepted in class. However, in class discussion NWR 2.2 

was often used as a way of justifying the linear pattern. This means that in class, NWR 

2.1 and 2.2 were used in conjunction as students fully justified their labelling. Category 

3 was a way of reasoning that was discussed in class, though it was eventually 

abandoned as students pointed out the inconsistencies between the macro exponential 

structure of the number line and the linear subdivision. 

This means that the ways of reasoning expressed in the post-interviews were not 

idiosyncratic interpretations of what was expressed in class. Rather, the ways of 

reasoning expressed in the interviews were consistent with ways of reasoning 

expressed in class (see Table 2), but importantly four of the seven students did not fully 

understand how the ways of reasoning discussed in class were related to one another, 

in that one was eventually rejected (Category 3) and the other (Category 2) had deep 

mathematical connections to multiplication. 

Ways of Reasoning in Class Ways of Reasoning in Interviews 

Math Practice 2 Category 1: Multiplicative Reasoning 

Coordinated with Reasoning Linearly with 

the Exponents 

NWR 2.1 Subdividing Segments by 

Reasoning Linearly About Exponents 

Category 2: Reasoning Linearly with the 

Exponents 

An Early way of Reasoning: Linear 

Subdivision 

Category 3: Elements of Reasoning 

Linearly Among the Values 

Table 2: The relationship between ways of reasoning that appeared in class and those that 

appeared in the interview. 

DISCUSSION 

Cobb and Yackel (1996) always maintained that researchers should not expect 

individual classroom participants to reason in ways that were identical to ways of 

reasoning that had become accepted in the class. However, previous research on the 

relationship between individual ways of reasoning and normative ways of reasoning 

has not illuminated the nature and extent of individual variation from normative ways 

of reasoning that can persist after instruction. In fact, previous work seemed to suggest 

that even though individuals can vary from normative ways of reasoning, problematic 

ways of reasoning will eventually resolve themselves through continued class 

participation (c.f. Stephan et al., 2003). However, this study demonstrated that it is 

possible for students to reason in ways that are qualitatively different in 

mathematically significant ways from an established practice, even after instruction 

has ended. This was striking given the continued participation in the classroom of the 

four students whose reasoning was not fully consistent with Math Practice 2, including 
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giving arguments that contributed to subsequent mathematical development at the 

classroom level. This means that the way the teacher experiences the class, normally 

through the mathematical progress of the class as a collective, can belie students' 

individual understanding, even if those individuals are able to continue to productively 

participate in subsequent classroom interactions. 

To understand why students were able to participate without shifting their thinking, it 

is productive to recall the impetus for Meagan’s reorganization of knowledge in the 

study performed by Stephan et al. (2003). Importantly, Meagan ways of reasoning that 

were qualitatively different from established practices produced different answers than 

the accepted ways. This difference in outcomes caused problems for continued 

participation in class activities. This is in contrast to students who did not reason 

multiplicatively in this study, as reasoning linearly with the exponents yields correct 

placements on a number line. As such, it was possible for student to continue to 

participate without shifting their way of reasoning. However, these students did not 

seem to be able to coordinate the various ways of reasoning. 

Thus, in retrospect, one way the teacher may have been able to encourage more 

students to coordinate NWRs 2.1 and 2.2 as they reasoned individually is to have more 

explicit class conversations about this relationship. In particular, it may have been 

productive to establish a third normative way of reasoning, as part of Math Practice 2, 

that centred on this relationship. While this relationship was implied in the classroom, 

it was not discussed in a way that qualified it as normative. A greater explicit focus on 

this relationship may have made it more problematic for continued intellectual 

participation in the classroom for students who could only reason linearly. This may 

have encouraged them to think about multiplication and its relationship to their linear 

way of reasoning 

This study has provided insights into the nature of relationships that can exist between 

established practices and individual ways of reasoning. Exploring this topic further 

will yield more insights into the teaching-learning process in classroom environments. 

This greater understanding will in turn yield insights into how to structure classroom 

environments for students. For example, this study demonstrated that students could 

continue to participate in classroom interactions without engaging in multiplicative 

reasoning, because reasoning linearly with the exponents yielded correct answers. As 

such, it may be important for teachers to consider what conceptual understanding is 

necessary with various approaches to a problem and how to problematize ways of 

reasoning that may yield correct answers, but does not require deep conceptual 

understanding. This could be by encouraging students to think about relationships 

between ways of reasoning. This is just one example of how understanding the 

relationship between social and individual aspects of learning can inform teaching. 

More research is needed to fully understand the relationship and its implications for 

teaching. 
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