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Group for the Psychology of Mathematics Education, Vol. 4, pp. 1-8. Singapore: PME. 

REVERSE FRACTION TASKS REVEAL ALGEBRAIC THINKING 

Catherine Pearn, Robyn Pierce and Max Stephens 

The University of Melbourne    

Year 8 students from a Victorian secondary school completed two paper and pencil 

tests designed to ascertain their understanding of fraction concepts, their competence 

and fluency with fraction operations and evidence of algebraic thinking. This paper 

will examine their responses to three tasks which would be aided by algebraic 

thinking. Students were given the fraction, and the number of objects representing the 

fraction, and then asked to find the number of objects in the whole group. Analysis of 

the Year 8 students’ responses highlights both the range of methods used, and the 

difficulties experienced, by many students as they attempted these fraction tasks. While 

some students successfully applied algebraic thinking others were struggling to do so. 

 

INTRODUCTION 

Expanding students’ mathematical reasoning beyond arithmetic to generalised 

algebraic thinking is one of the key challenges for mathematics teachers (Mason, 

Stephens & Watson, 2009). Jacobs, Franke, Carpenter, Levi, and Battey (2007) 

emphasise the need to “facilitate students’ transition to the formal study of algebra in 

the later grades (of the elementary school) so that no distinct boundary exists between 

arithmetic and algebra” (p.261). Many researchers argue that a deep understanding of 

fractions is important for a successful transition to algebra. The National Mathematics 

Advisory Panel (NMAP, 2008) stated that the conceptual understanding of fractions 

and fluency in using procedures to solve fractions tasks are central goals of students’ 

mathematical development and are the critical foundations for learning algebra.  

Year 8 students (13-14 years of age and in their 9th year of compulsory schooling) from 

a large secondary school in Victoria, Australia fractions competence and thinking was 

assessed using two paper and pencil tests: the Fraction Screening Test (Pearn & 

Stephens, 2015) and an Algebraic Thinking Questionnaire (Pearn & Stephens, 2016). 

This paper reports on evidence for students’ development of algebraic thinking in their 

responses to three reverse fraction tasks (Figure 1) where they were given the fraction 

and the number of objects representing the fraction, and then asked to find the number 

of objects in the whole group. Responses to these three tasks were analysed to answer 

the following research questions: 

 What strategies do Year 8 students use to solve the reverse fraction tasks? 

 When a fraction, and the number of objects representing that fraction, change do 

the students’ solution methods or strategies also change? 
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 Do Year 8 students’ responses to the reverse fraction tasks show evidence of a 

successful transition to algebraic thinking? 

PREVIOUS RESEARCH 

Researchers such as Kieren (1980) and Lamon (1999) believe that much of the basis 

for algebraic thought rests on a clear understanding of rational number concepts and 

the ability to manipulate common fractions. According to Wu (2001) the ability to 

efficiently manipulate fractions is "vital to a dynamic understanding of algebra" (p. 

17). Particularly relevant to our research is the work of Lee and Hackenburg (2013) 

who showed that fractional knowledge appeared to be closely related to establishing 

algebra knowledge in the domains of writing and solving linear equations. They 

highlighted the importance of multiplicative operations to transform a known fraction 

to the whole. Such use of multiplicative methods will later be fundamental for solving 

algebraic equations. Empson, Levi and Carpenter (2011) suggest that some strategies 

students use to solve fraction problems “are motivated by the same mathematical 

relationships that are essential to understanding high-school algebra” (p. 410). 

Our research extends the research of Empson et al. (2011) by using reverse fraction 

tasks to investigate students’ capacity to establish an equivalence relationship between 

a given collection of objects and the fraction this collection represents of an unknown 

whole. In addition, we are investigating how students track successive transformations 

of the given fraction and the quantities represented.  

THE AUSTRALIAN CONTEXT 

According to the rationale given for the Australian Curriculum: Mathematics 

(ACARA, 2016) the mathematics curriculum: 

… focuses on developing increasingly sophisticated and refined mathematical 

understanding, fluency, reasoning, and problem-solving skills. These proficiencies enable 

students to respond to familiar and unfamiliar situations by employing mathematical 

strategies to make informed decisions and solve problems efficiently. 

The two content descriptors from the Australian Curriculum: Mathematics (ACARA, 

2016) in Table 1 suggest that Year 8 students are expected to use the four operations 

with rational numbers using “efficient mental and written strategies” and “simplify 

algebraic expressions”.  

Fractions & Decimals Patterns and Algebra 

Carry out the four operations with rational 

numbers and integers, using efficient 

mental and written strategies and 

appropriate digital technologies 

(ACMNA183) 

Simplify algebraic expressions involving 

the four operations (ACMNA192) 

 

Table 1: Australian Curriculum: Mathematics Content Descriptors (ACARA, 2016) 

http://www.australiancurriculum.edu.au/curriculum/contentdescription/ACMNA183
http://www.australiancurriculum.edu.au/curriculum/contentdescription/ACMNA192
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These descriptors do not contain any reference to the links between fractional 

knowledge and algebraic thinking as suggested as being important by researchers such 

as Kieren (1980), Lamon (1999) and Wu (2001).  

THIS STUDY 

As part of a current research project the Fraction Screening Test (Pearn & Stephens, 

2015) has been administered to more than 600 students from Years 5 – 8. The test is 

divided into three parts. Part A includes 12 routine fraction tasks such as equivalent 

fractions, ordering fractions and recognising simple representations. Part B includes 

five number line tasks. Part C includes tasks that require students to order four 

fractions from largest to smallest; match four fractions to their equivalent decimals; 

and two tasks which ask students to circle the one that does not belong e.g. in ¼, 25%, 

0.4 0.25. The three reverse fraction tasks require students to find the whole using less 

common fractions (see Figure 1).  

Reverse Fraction Task 1 Reverse Fraction Task 2 Reverse Fraction Task 3 

 

 

 

Figure 1: The three reverse thinking fraction questions 

Based on the research of Lee and Hackenburg (2013), these three fraction tasks 

specifically require students to relate a given fraction to an equivalent number of 

objects, and when transforming the fraction to make a whole to carry out 

corresponding operations on the number of objects. These tasks would be unfamiliar 

for most of these students and so test their conceptual understanding of fractions. 

In this paper results will be discussed for 117 Year 8 students who completed the 

Fraction Screening Test (Pearn & Stephens, 2015). However, the focus is on their 

responses to the three reverse fraction tasks given in Figure 1. Using a thematic 

analysis approach (Braun & Clarke, 2006) students’ responses were classified 

according to the specific methods they used in their written solutions to each of the 

three fraction tasks. 

RESULTS 

The number, and percentage, of correct responses for the three reverse fraction tasks is 

included in Table 2. Four students did not attempt to answer Reverse Fraction Task 1 

and six gave an incorrect response. For Reverse Fraction Task 2, which has no 

diagram, 24 students did not attempt to answer the question and 30 gave an incorrect 



Pearn, Pierce and Stephens 

_______________________________________________________________________________________________________________________

4-4 PME 41 – 2017 

response. Fourteen students did not attempt Reverse Fraction Task 3 while 18 

responded incorrectly. 

Reverse Fraction Task 1 Reverse Fraction Task 2 Reverse Fraction Task 3 

107 (91%) 63 (54%) 83 (71%) 

Table 2: Number of students with correct responses (n = 117) 

Solution method classification framework (SMCF) 

The Year 8 students’ written responses to the three reverse fraction tasks (Figure 1) 

were analysed to determine the types of methods these students were using to complete 

these fraction tasks. Six categories were established using the six step process of the 

thematic analysis approach suggested by Braun & Clarke (2006). These categories 

were classified as: Not Clear, Visual, Additive/Subtractive, Partially Multiplicative, 

Multiplicative, and Advanced Multiplicative.  

Not Clear refers to written responses that were incomplete or not attempted. Visual 

refers to the explicit partitioning of diagrams. The response given in Figure 2 shows 

how the student divided the drawing of the ten counters into two groups and then drew 

another five counters to get the answer 15. 

 

Figure 2: A visual method used to solve Reverse Fraction Task 1. 

Additive/Subtractive refers to the use of additive or subtractive methods without 

explicit partitioning of the given diagram, or creating a new diagram. Students find the 

number of objects needed to represent the unit fraction and then use counting or 

repeated addition to find the number of objects needed to represent the whole. In 

Figure 3 the student keeps track of the parts e.g. 5 = 15 means that five-sevenths of the 

original group would be 15 counters.  

 

 

 

 

Figure 3: An additive method to solve Reverse Fraction Task 2 
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Partially multiplicative refers to the use of both multiplicative and additive methods. 

The student in Figure 4 found the number of objects for one-third then added these to 

the two-thirds to find the appropriate number of objects needed to make the whole.  

 

 

 

 

 

Figure 4: A partially multiplicative method to solve Reverse Fraction Task 1 

Multiplicative refers to the use of fully multiplicative methods. Students find the 

quantity represented by the unit fraction using division and then multiply the quantity 

of the unit fraction to find the whole. Although the student in Figure 5 uses no verbal 

elaborations, and the recording is unconventional, the solution method is clear. The 

fraction four-sevenths is not stated explicitly but is implied in the division by four. In 

the second line the student states the equivalence between the number of objects and 

the fraction one-seventh while the third line shows the transformation needed to go 

from one-seventh to a whole without needing to refer to the fraction. This method 

anticipates how students would solve  

 

 

 

Figure 5: A fully multiplicative response to Reverse Fraction Task 2. 

Advanced multiplicative describes the more advanced multiplicative methods students 

use to solve the reverse fraction questions. These include the correct use of appropriate 

algebraic notation to find the whole, or a one-step method to find the whole by dividing 

the given quantity by the known fraction. In Figure 6 the student used division by the 

numerator and multiplication by the denominator to solve Reverse Fraction Task 3. 

 

Figure 6: An advanced multiplicative response to Reverse Fraction Task 3 
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Table 3 includes the number and percentage of correct responses for each of the six 

categories described above: Not Clear, Visual, Additive/Subtractive, Partially 

Multiplicative, Multiplicative, and Advanced Multiplicative. 

Response Type Reverse Fraction 

Task 1 (n = 107) 

Reverse Fraction 

Task 2 (n = 63) 

Reverse Fraction 

Task 3 (n = 83) 

Not clear 9 (8%) 1 (2%) 17 (20%) 

Visual 4 (4%) 4 (6%) 9 (11%) 

Additive/subtractive 11 (10%) 4 (6%) 0 (0%) 

Partially multiplicative 43 (39%) 5 (8%) 36 (43%) 

Multiplicative 39 (36%) 47 (75%) 18 (22%) 

Advanced Multiplicative 1 (1%) 2 (3%) 3 (4%) 

Table 3: Number of students in each of the six categories. 

Only 54% of these Year 8 students gave correct responses to Reverse Fraction Task 2 

compared to 91% and 71% for Reverse Fraction Task 1 and Reverse Fraction Task 3 

respectively. However, 17 students did not explain their solution method for Reverse 

Fraction Task 3 and nine students drew on the diagram to correctly solve the task. It is 

possible that without a diagram these 26 students may not have completed the task 

successfully. 

Eleven students used the same strategies for all three reverse fraction tasks. Two 

consistently used partially multiplicative strategies and nine used fully multiplicative 

strategies for all three reverse fraction tasks. Seven students used multiplicative 

strategies for Reverse Fraction Tasks 1 and 2 but used partially multiplicative 

strategies to solve the improper fraction in Reverse Fraction Task 3. Six students 

initially added the required fractional part for Reverse Fraction Tasks 1 and 2 then used 

the fully multiplicative method for Reverse Fraction Task 3.  

DISCUSSION 

According to the Australian Curriculum: Mathematics (ACARA, 2016) Year 8 

students should be solving rational number tasks and simplifying equations written in 

algebraic form. This research has demonstrated that there are many students who did 

not attempt any or all of these reverse fraction tasks, gave incorrect responses to those 

they attempted, could not explain their solution methods or needed a diagram in order 

to use a ‘guess and check’ method to solve one or more of the reverse fraction tasks. 

Students’ written responses for the three reverse fraction tasks have been summarised 

according to the SMCF which has allowed a comparison the strategies used for each 

task. Students who used partially multiplicative strategies demonstrated conceptual 

understanding by moving from the given fraction to the unit fraction. Scaling up the 

unit fraction and its related quantities to find a whole was then achieved additively by 
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relating successive fractions to the quantities they represent. Some of these students 

struggled with the task involving the improper fraction. 

Students who used fully multiplicative thinking transformed a given fraction to obtain 

the corresponding unit fraction. These students then successfully scaled up the unit 

fraction and its related quantities multiplicatively to find the whole. These 

multiplicative methods, which most clearly mirror the thinking needed to solve the 

corresponding algebraic equations, can be seen as evidence of algebraic thinking. 

Students using the advanced multiplicative methods were able to generalise. The size 

of the fraction and the size of the given number of objects representing that fraction 

appear to be irrelevant as their solution methods or strategies remain the same 

regardless of the fraction or the size of the group the fraction represents. 

CONCLUSION 

All responses were able to be classified using the SMCF. These Year 8 students’ 

responses have shown that the successful strategies varied from the concrete (visual), 

strictly arithmetic (additive, partly multiplicative) to the generalizable (multiplicative) 

and algebraic (advanced multiplicative). These students successfully responded to 

unfamiliar situations by employing a range of mathematical strategies as expected in 

the current curriculum (Table 1). 

Some students’ solution methods changed when a fraction, and the corresponding 

number of objects, changed. A few students using concrete or additive strategies were 

able to move to using multiplicative methods. Conversely, with a change of fraction 

and quantity some students were unable to successfully complete the task. Many 

students were successful with Reverse Fraction Task 1 because the diagram allowed 

them to proceed using visual methods but did not attempt, or gave an incorrect 

response, for the following fraction tasks. Students using multiplicative strategies for 

Fraction Task 1 used multiplicative strategies for all three fraction tasks. Some 

students were struggling to make the successful transition to algebraic thinking while 

others were able to generalise and use the same multiplicative strategies regardless of 

the size of the fraction or the number of objects the given fraction represented. 

Previous researchers suggested that the relational thinking required for some fraction 

tasks is a precursor to algebraic thinking. We have tasks that both support this 

contention and reveal where students are on a continuum from concrete to algebraic 

thinking. Based on these results, we suggest that it is important for teachers to include 

reverse fraction tasks in their teaching and that it is important that these include a 

variety of fractions and quantities in order for students to develop and see the value of 

generalised processes. This would allow students to recognise the commonality of the 

problems, think algebraically, and not tackle each task as a completely new challenge. 
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VALIDATING THEORETICAL SEEDING TO SUPPORT 

TRANSFORMATION OF MATHEMATICS TEACHING 

Miguel Perez 

Linnaeus University 

 

In this paper, the validity of “theoretical seeding” to support the transformation of 

mathematics teaching is studied in a case of professional development related to the 

design of learning activities supported by information and communication 

technologies (ICT). Theoretical seeding includes the use of a theoretical construct and 

teachers as agents of change of practice. The results suggest that the validity of 

theoretical seeding, with regard to the social consequences, is tentatively sufficient to 

consider it as purposeful and appropriate. Furthermore, the effects of theoretical 

seeding show a promising potential for future design efforts in terms of achieving 

theoretically underpinned and sustainable changes in teachers’ practices with ICT. 

INTRODUCTION 

What seems to be an everlasting issue is the problem of integrating information and 

communication technologies (ICT) in mathematics teachers’ everyday practice. One 

concern is that although teachers are both open to innovation and willing to use ICT, 

they tend to use ICT to sustain their current practices instead of beneficially 

transforming instruction (Monaghan, 2001; Ertmer, 2005; Trigueroz, Lozano, & 

Sandoval, 2014). These unintended outcomes suggest that in spite of the investments 

made and the efforts that teachers put into learning about new tools they may still be 

missing out on exploiting the full potential of ICT regarding support of learning 

processes.  

In the current project, the author has specifically involved the use of dynamic geometry 

software (GeoGebra) as a technological tool and the use of a theoretical construct, for 

the purpose of achieving transformed teaching practices that may provide improved 

learning conditions for students. The theoretical construct provides 

”models-of-thought” that addresses didactical issues from multiple perspectives. First, 

the theoretical construct is introduced to the teachers by the researcher. Thereafter, the 

technological tool is introduced with focus put on connecting the theoretical construct 

with the affordances of the tool rather than only considering the technical aspects of the 

software. It is this specific use of the theoretical construct that is referred to as 

“theoretical seeding”. In addition, theoretical seeding involves targeting teachers as 

agents of change and the adoption of a design methodology that supports collaboration 

between researchers and teachers. This approach allows the researcher to address 

complex educational problems in authentic settings and contributes to an 

understanding of how mathematical teaching practices may be improved.  
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What is at stake in this paper is the validation of theoretical seeding with respect to 

achieving transformation, as the declared purpose of theoretical seeding. Before 

continuing with presenting the concept of validity together with the research question, 

the theoretical construct, utilized for theoretical seeding, will be presented. 

THE THEORETICAL CONSTRUCT  

In a previous case study the researcher worked with three mathematics teachers on the 

design of an ICT supported learning activity. In short, the problem encountered was 

that in spite of the researchers efforts of providing professional development, the 

teachers were still not able to exploit the full didactical potential of ICT as discussed or 

even as proposed by the teachers themselves. One particular aspect that contributed to 

this discrepancy was the communication patterns used by the teachers (including those 

mediated by different resources) that did not seem to fully support the intended 

learning objectives (Perez, 2015). The theoretical construct was originally developed 

by the researcher to provide feedback to the three teachers on this matter.  

The theoretical construct (see Fig. 1) coordinates the three elements of the didactical 

relation, i.e. the teacher, the students and the knowledge taught. It is based on the IRE 

sequence (initiate, reply, evaluate), which is a typical pattern for teacher-initiated 

instructional communication. In a basic form, the teacher initiates communication by 

posing a question that he or she already knows the answer to, the student replies and 

the teacher evaluates by giving some feedback or evaluation (Mehan, 1979). 

Instructional communication can be interpreted in a wide sense to include 

orchestrations with technological tools as they can be used to both initiate and evaluate 

students’ responses to questions and tasks that are supported by the tool.  

Students: Constructive/Interactive Passive/Active
Stimulates

Teacher: High-level	evaluation Low-level	evaluation

Tend	to	put	focus	on
Knowledge: Logos Praxis

(The	"how"	and	"why") (The	"know	how")  

Figure 1: The three complementary components of the theoretical construct 

Within the IRE sequence, some evaluations are called low-level evaluation because 

they tend to engage students in a discourse where the attention is basically on the 

routine itself and the teacher’s pre-planned agenda of questions (Nystrand & Gamoran, 

1991). Calling upon other student or simplifying elicitation until the expected reply is 

provided are examples of low-level evaluations. Low-level evaluation can also be 

provided by the teachers through ICT, e.g. by using the computational affordances of a 

technological tool to help students to move on with a task but at the same time 

significantly reducing the complexity of the task (Perez, 2014). Furthermore, 

discourses that are dominated by low-level evaluations are likely to engage students 
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procedurally in the learning process as the routine is primarily used to control limited 

aspects of knowledge among students. In contrast, students may be engaged in a more 

substantial exchange. This is more likely to happen when teachers e.g. use follow-up 

questions, asks for clarifications, or gives hints in order to stimulate students’ thinking. 

Evaluations that stimulate a discourse where the unfolding conversation is built on 

students’ replies are called high-level evaluations (Nystrand & Gamoran, 1991).  

Additional support for the construct, but from the perspective of the students, can be 

found in the framework of Chi (2009). According to this framework, students can be 

engaged overtly as either passive, active, constructive or interactive when learning. In 

short, being passive is learning by paying attention or receiving instruction. Being 

active is learning by engaging with the learning material. When being constructive the 

student is, in addition to being active, producing relevant outputs that go beyond what 

is already available in the learning material. Finally, when being interactive the student 

is being constructive with others in a joint dialogue. Students being passive or active 

are comparable with what Nystrand and Gamorand (1991) refers to as procedural 

engagement and the teacher’s use of low-level evaluation. Students being constructive 

or interactive correspond to substantial engagement and high-level evaluation. 

Furthermore, Nystrand and Gamorand (1991) as well as Chi (2009) provide evidence 

that being interactive/constructive is better than being passive/active in terms of 

students learning outcomes. In this theoretical construct high-level evaluation is 

defined as teacher actions that afford students to be constructive and interactive. In 

comparison, low-level affords students being passive or active. This does not suggest 

that all evaluation should be high-level. In fact, an over-use of high-level evaluation 

may result in negative effects such as distal issues being addressed at the expense of 

the intended learning objectives (Perez, 2014). 

The last part of the theoretical construct is the notion of praxis and logos, which are 

two inseparable aspects of knowledge or a praxeology (Chevallard, 2007). In short, 

praxis represents the “know-how” while logos provides a discourse with the purpose to 

describe and justify the praxis (ibid.). Low-level evaluations, especially those who 

only put focus on right and wrong, tend to be unsupportive of the creation of a 

comprehensive mathematical praxeology with a well-developed logos discourse. In 

contrast, high-level evaluations stimulates mathematically valuable activities that 

more likely to support discussions on how and why “things” work as they do and the 

connection between them (Perez, 2015). 

THE CONSEQUENTIAL ASPECT OF VALIDITY 

The theoretical construct was originally an analytic tool, developed to assess certain 

aspects of teachers’ practices (Perez, 2015). In the current project it has advanced to be 

the basis of strategic action, i.e. theoretical seeding. The theoretical construct functions 

as a reference model, utilized together with teachers in the design of mathematical 

learning activities supported by ICT. As a reference model it tells how good or bad the 

ICT-tool is used, for the purpose of achieving transformation of the teachers’ practices. 
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In this sense, the theoretical construct resembles what psychometrics would call a test 

or a measure (Messick, 1987). 

Validity needs to be systematically addressed when any kind of qualitative or 

quantitative summary of performance or product is made and the results or scores are 

used for specific purposes (Messick, 1993). What needs to be validated is the meaning 

or interpretation of test scores along with the implications for actions that this meaning 

encompasses. Thus, validation means validating the use of the test in a specific context 

relative a specific purpose. Validity can therefore be quite high for one application but 

low for a different one. It can also change over time as new findings, new 

interpretations, or new inferences are made. In this sense, validity is an evolving 

property and a matter of degree (Messick, 1987). The basic validity question that needs 

to be answered is “To what degree if at all, on the basis of evidence and rationales, 

should the test scores be interpreted and used in the manner proposed?” (Messick, 

1993, p. 14). In particular, the social values and social consequences cannot be ignored 

in considerations of validity as the appropriateness, meaningfulness, and usefulness of 

score-based inferences is dependent on the social consequences of the testing. One 

way to consider the value implications and social consequences of test interpretation 

and legitimate test use is to study both the intended outcomes and the unintended side 

effects (Messick, 1987).  

The research question that will guide the judgement of validity of theoretical seeding 

for the purpose of achieving transformation is the following:  

What are the social consequences of theoretical seeding and how may these 

consequences inform future design efforts.  

RESEARCH SETTING AND METHOD 

Educational design research refers to a family of design methodologies with similar 

features. Although teachers may be involved in different way in the design process the 

typical situation is that “a research team assumes responsibility for a group of students’ 

learning” (Cobb and Gravemeijer, 2008, p. 68). In the current project the teachers are 

the ones responsible for designing and implementing principle-based teaching 

activities in their own classrooms as part of their professional development. This 

approach aligns well with the current Swedish context where teachers as professionals 

are expected to make use of both formal knowledge and practical knowledge when 

orchestrating lessons.  

The project encompassed three formal meetings. Many practical issues such as 

choosing and inviting participant were dealt by a representative of the central school 

administration and not by the researcher. The purpose of the three meetings, 

communicated to the teachers, was to 1) create opportunities for challenging routinized 

instructional behaviour, 2) plan and implement a learning activity supported by ICT, 

and 3) reflect on and share the experience. The project lasted for approximately one 
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semester and seven mathematics teachers from lower secondary and upper secondary 

schools participated in all three meetings.  

The theoretical seeding took place in the first meeting where the theoretical construct 

and the technological tool were introduced to the teachers. In the second meeting, the 

teachers continued by designing learning activities supported by the technological tool. 

The teachers were instructed to choose and prepare the learning objective for the 

second meeting according to their own individual needs. These two meeting lasted for 

3 hours each and were audio recorded and transcribed. 

In the beginning of the second meeting the teachers were interviewed (semi-structured 

group interview) in order to study the effects of the theoretical seeding on teachers’ 

practices (i.e. the effects between the first and second meeting). No specific 

instructions were given to the teachers prior to the second meeting in order to capture 

the teachers’ spontaneous responses. The second meeting was held approximately 

seven weeks after the theoretical seeding. In this paper, focus will be put on the 

empirical data from this interview.   

SUMMARY OF THE THEORETICAL SEEDING 

The theoretical construct was presented to the teachers as three interconnected tools 

that could be used to describe the actions of the teacher, what students do when 

learning, and the mathematical knowledge created in the classroom. The presentation 

also included a discussion on how the three tools could be used to plan, implement and 

evaluate teaching regardless of whether the technological tool is used or not. 

Furthermore, the researcher used several practical activities to exemplify the three 

interconnected tools. For example, when the teachers worked with a specific set of 

mathematical tasks, implemented in the technological tool, they also discussed 

different kinds of initiations (the I in IRE) and evaluations that could stimulate 

constructive and interactive processes, assuming their students were working with the 

same tasks. The purpose was to show how the technological tool could be used to 

support high-level evaluation. The introduction of the technological tool and the 

corresponding tasks were therefore used to further contextualise the theoretical 

construct. In addition, the teachers were provided with materials including a summary 

of the interconnected tools and several examples of learning activities implemented in 

the technological tool. The notions provided by theoretical construct were new to the 

teachers. However, some of the teachers had some experience in using the 

technological tool.  

RESULTS FROM THE INTERVIEW 

One of the teachers, Sue (all names are fictitious), described how she, a couple of days 

after the first meeting, conducted a lesson with a content that she was familiar with. 

The lesson was based on a classic optimization problem where you want to find the 

largest area of a rectangular shape when given the total length of three of its sides. She 

described her previous way of conducting the lesson as closed-ended in the sense that it 
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was she who was responsible for taking the first steps towards the solution. This time 

she decided to transfer the responsibility for some key activities to the students. By 

doing this, she observed that the students made new valuable experiences that she had 

not seen before. The researcher asked the teacher if she could use the notions provided 

by the tools to describe and compare her new way of conducting the lesson: 

Sue: Previously they [students] have been passive or active maybe because I 

have been in control and I have formulated the [mathematical] expression 

rather quickly. But I am not even sure that all students understand that 

different areas [rectangular shapes] are possible. /…/. Then it is not 

possible for the students to be constructive because they fail to grasp this 

very first thing. But by making them draw figures everyone understood, as 

a start, that there actually are different possibilities. 

A second teacher, Mark, mentioned his use of re-voicing, i.e. repeating a student’s 

reply as if the student was only talking to him and not to peers. He felt that he should 

not do that but at the same time he did it anyway in order to clarify to everyone else. 

Mark also described how he during the last three years has begun to change his 

pedagogical approach. On a regular basis he gives his students e.g. three tasks that the 

students first try to solve individually, then in pairs and after that in groups. He 

reflected that this work allows students to be, if not constructive, at least more active.  

Oliver, a third teacher, commented that he believed that it is necessary to combine 

different approaches because students are different. According to him, students are 

accustomed to a “low-level” discourse and that they need time to get used to doing 

things differently. 

A fourth teacher, Jane told that she has become more aware of her own teaching and 

the purpose her different lessons. She described that she previously, e.g. when making 

a whole-class presentation, used to pose more or less trivial questions only to make 

sure that all students where following her in every step she made. Jane recognized this 

as a very time consuming procedure and has decided to stop doing it. Furthermore, she 

described that she has told her students about the different learning modes in order to 

better communicate her objectives with different lessons and allowing her students to 

prepare for the demands of different activities that address different aspects of 

knowledge. In addition, Jane commented what Sue (her colleague and one of the 

participants) said about how easy it was to make important changes in the classroom.  

Jane: /…/ letting students draw different rectangles, which you do not do but this 

is actually the key. This is what helps students to gain knowledge of what is 

asked in the task /…/ 

A fifth teacher, Carol, reported that she also has begun to reflect about how she poses 

questions and how she evaluates students’ replies.  

Finally, a sixth teacher, Kevin, initiated a discussion about how to make use of 

students’ solutions to a task besides only presenting them on the board. The reason was 
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that he recently had experienced a learning situation where he wondered what he could 

do differently. It that situation he eventually decided to do as usual. 

SUMMARY OF THE EFFECTS OF THEORETICAL SEEDING 

The interview with the teachers can be summarized in the following way. The teachers 

reported on an increased level of awareness of their actions and performance with 

respect to the IRE sequence. They were also able to use the notions provided by the 

tool to analyse their current practices and to suggest improvement. This is consistent 

with the expected outcomes. What is more unexpected is the extent of self-initiated 

classroom experimentation that particularly two of the teachers (Sue and Jane) 

reported on. Their experimentation can be summarized as a change in distribution of 

responsibilities between the teacher and the students. Activities such as drawing 

figures are examples of constructive activities that the teachers initially did not 

consider as part of solving the mathematical task but what had to be done in order to 

organize students’ work with the task. Now the teachers had started encouraging 

students to draw pictures and reasoning about their mathematical features. Both 

teachers valued the impact that this transfer of responsibility had on their students’ 

understanding of the task. For one of the teachers, the transfer of responsibilities also 

included a meta-discussion with her students about learning processes. Finally, a 

concern of the researcher was if the dual nature of the tool, especially the words “high” 

and “low”, was going to be interpreted by the teachers as good and bad teaching but no 

such side effects were found. Instead there were clear indications that the teachers were 

selective in the way they implemented change in their existing practices.  

After the interview, the teachers continued by designing learning activities supported 

by the technological tool. In particular, the teachers were able to use the notion of 

passive/active and constructive/active to discuss didactical issues with the researcher 

and to negotiate about design decisions. The design of the learning activities were not 

completed during the second meeting but the work continued in additional meetings. 

CONCLUSION 

The results suggest that theoretical seeding has provided the teachers with increased 

possibilities to transform instruction. Two of the teachers were motivated to identify, 

implement, and assess some significant changes in their own regular practices. Such 

changes that are initiated by the teachers themselves are more likely to be sustainable 

(Guskey, 2002). In general, the teachers appreciated the theoretical construct as 

models-of-thought and utilized it for analysing their regular instruction as well as for 

designing mathematical instruction supported by the technological tool.  

So far the social consequences are both supportive of the purpose of theoretical 

seeding of achieving transformed teaching practices, and at the same time consistent 

with the teachers’ values. Thus it can be concluded that the validity of theoretical 

seeding, with regard to the social consequences, is tentatively sufficient to consider it 

as purposeful and appropriate.  
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The common language that had been rapidly established within the group facilitated 

the design process where the researcher was simultaneously involved in the design of 

six learning activities. Although the designed learning activities may be considered to 

be less innovative from a research perspective the effects of theoretical seeding on 

regular instruction show a promising potential for future design efforts in terms of 

achieving theoretically underpinned and sustainable changes in the teachers’ practices 

with ICT.  
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To contribute to the field’s understanding of the teachers’ role in using student 

thinking to shape classroom mathematical discourse, we developed the Teacher 

Response Coding Scheme (TRC). The TRC provides a means to analyze teachers’ 

in-the-moment responses to student thinking during instruction. The TRC differs from 

existing schemes in that it disentangles the teacher move from the actor (the person 

publically asked to consider the student thinking), the recognition (the extent to which 

the student recognizes their idea in the teacher move), and the mathematics (the 

alignment of the mathematics in the teacher move to the mathematics in the student 

thinking). This disentanglement makes the TRC less value-laden and more useful 

across a broad range of settings. 

Researchers (e.g., Fenemma et al., 1996) have found that teachers’ use of student 

thinking during mathematics instruction supports student learning of mathematics. 

Both researchers (e.g., Franke, Kazemi, & Battey, 2007; Van Zoest, Peterson, 

Leatham, & Stockero, 2016) and recommendations for mathematics teaching 

(e.g., National Council of Teachers of Mathematics [NCTM], 2014) assert that 

teachers’ use of student thinking undergirds features of effective mathematics 

instruction, such as classroom mathematical discourse. While the field benefits from 

research identifying how teachers may plan for and use written records of student work 

to facilitate whole-class mathematical discourse (Stein, Engle, Smith, & Hughes, 

2008), less is known about how teachers respond in-the-moment to instances of 

students’ mathematical thinking. We report here on a coding scheme designed to 

capture teachers’ in-the-moment responses to instances of student mathematical 

thinking. Such a scheme could contribute to better understanding the role of the teacher 

in shaping meaningful mathematical discourse in their classrooms. 

THEORETICAL PERSPECTIVES & RELATED LITERATURE 

Current thinking about effective teaching and learning of mathematics as put forth by 

NCTM (2014) suggests fundamental ideas related to productive use of student 

mathematical thinking. As discussed elsewhere (Van Zoest et al., 2016), we see 

embedded in this document four core principles of quality mathematics instruction: (1) 

mathematics is at the forefront, (2) students are positioned as legitimate mathematical 

thinkers, (3) students are engaged in sense-making, and (4) students work 
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collaboratively. These four principles form the basis of our theoretical perspective. As 

such they both provided a lens for examining existing research related to 

in-the-moment teacher responses to student mathematical thinking during whole-class 

interactions and informed the development of our coding scheme. 

We found three themes in the literature related to teacher responses to student thinking: 

(1) student engagement in classroom communication, (2) responsiveness, and (3) 

attention to mathematics. These themes suggest important components to attend to in 

teacher responses, yet existing research seems to foreground only one of these 

components at a time. For example, Franke et al. (2009) foregrounded engagement by 

analyzing the way particular types of teacher questioning moves engaged students’ in 

classroom communication. Bishop, Hardison, and Przybyla-Kuchek (2016) coded 

teachers’ moves and student contributions to analyze teachers’ responsiveness—the 

degree to which mathematical ideas in students’ contributions were attended to by 

teachers’ subsequent responses. Conner, Singletary, Smith, Wagner, and Francisco 

(2014) coded teachers’ actions (moves) in support of collective argumentation, 

foregrounding the mathematics in the teacher responses. In general, existing research 

measures teacher responses against the particular component the researchers are 

foregrounding by incorporating that component into their definition of “move.” In 

order to develop a more nuanced coding scheme, we disentangled these three 

components of a teacher’s response from the teacher move. This disentanglement 

allows us to measure teacher responses against the core principles of our theoretical 

perspective, and provides a structure for other researchers to investigate teacher 

responses from their theoretical perspectives. 

METHODOLOGY 

Data for this paper come from a larger project (see LeveragingMOSTs.org) and 

included 278 instances of high-potential student mathematical thinking during 

whole-class interactions identified in 11 videotaped mathematics lessons from 6-12th 

grade classrooms that reflected the diversity of teachers, students, mathematics, and 

curricula present in US schools (Van Zoest et al., 2017). In addition, we analyzed 43 

Scenario Interviews (Stockero et al., 2015) that involved teachers responding to a 

common set of eight instances of student thinking. 

First, we articulated the student mathematics and mathematical point for each instance 

of student mathematical thinking. Student mathematics (SM) is defined as “a clearly 

articulated statement of an inference of what a student has expressed mathematically in 

the instance” (Van Zoest et al., 2017, p. 36). A mathematical point (MP) is “the 

mathematical understanding that (1) students could gain from considering a particular 

instance of student thinking and (2) is most closely related to the SM of the thinking” 

(Van Zoest et al., 2016, p. 326). We define a mathematical understanding (MU) to be a 

well-specified statement of a mathematical truth. 

Next, we identified the teacher response to each instance of student mathematical 

thinking in our data. We define a teacher response as the collection of observable 
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teacher actions that begins as a given instance of student mathematical thinking ends 

and ends when that instance of student mathematical thinking is no longer the focus1 of 

the observable teacher actions. For coding purposes, a teacher response may be 

subdivided into a series of teacher moves, each serving different instructional intents.  

The resulting teacher responses in the videos and Scenario Interviews were the data 

for, and from, which our coding scheme was developed. We used constant 

comparative analysis (Glaser, 1965) to revisit and refine the codes until each response 

was authentically captured by the coding scheme.  

RESULTS 

Our disentanglement of the three themes in the literature from teacher moves led to the 

Teacher Response Coding Scheme (TRC). Figure 1 lists the TRC coding categories and 

their relation to the literature themes. In Figure 2 we provide an illustrative instance of 

student thinking, the inferred student mathematics (SM) and the related mathematical 

point (MP) of the instance, and four possible teacher responses to this instance. In the 

following subsections we make connections between the TRC coding categories and 

literature themes and use the teacher responses in Figure 2 to illustrate these categories 

and their codes. 

Category Coding Category Description Literature theme 

Actor Who is publically asked to consider the student thinking Engagement 

Recognition 
The extent to which the student who contributed the thinking is likely to 

recognize their idea in what is being considered 
Responsiveness 

Mathematics 
The extent to which the focus is on improving students’ understanding 

of the MP of the instance of student thinking 

Attention to 

mathematics 

Move What the actor is doing or being asked to do with respect to the instance of student thinking 

Figure 1: TRC coding categories and their connections to the literature. 

Context: While working on a problem that related the amount of money accumulated by saving both a one-time gift and babysitting money that was 

earned weekly, a student said during class discussion, "I put the money on the bottom and weeks on the side.”  

Instance: “I put the money on the bottom and weeks on the side.” 

Student Mathematics (SM): I put the money on the x-axis and weeks on the y-axis. 
Mathematical Point (MP): The placement of the variables on the axes of a graph is determined by what makes the most sense in the problem 

situation given the established convention of the x-axis representing the independent variable. 

Teacher Response Actor 
Recognition 

Math Move 
Actions Ideas 

1 
“Remember, we always put the 

independent variable on the x-axes.” 
Teacher Not Peripheral Peripheral Correct 

2 
“Did anyone label the axes a different 

way?” 

Whole 

class 
Implicit Core 

Cannot 

Infer 
Collect 

3 

[To same student] “Why is the amount 

of weeks dependent on the amount of 

money which you put on the bottom?” 

Same 

student 
Explicit Peripheral Core Justify 

4 
[To another student] “And what do I 

like to do first when I make a graph?” 

Other 

student 
Not Other 

Cannot 

Infer 
Literal 

Figure 2: Coding for teacher responses to an instance of mathematical thinking.  
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Actor 

To capture who is likely to be engaging in the intellectual work in response to student 

mathematical thinking, the Actor category answers the question, “Who is publicly 

invited or allowed to consider the instance of student thinking?” It does this with the 

following four codes: teacher, same student(s), other student(s), and whole class. To 

illustrate distinctions among these codes, consider the sample teacher responses (TR) 

to the instance in Figure 2. In order to respond the teacher is likely to first privately 

consider the instance on some level. However, in TR1, “Remember we always put the 

independent variable on the x-axes,” only the teacher engages in publicly considering 

the instance of student thinking. In contrast, TR2, "Did anyone label the axes a 

different way?" publically invites the whole class to consider the instance.  

Recognition 

To operationalize the responsiveness of teachers’ responses to student thinking, we 

considered the extent to which the student who provides the instance would recognize 

their idea in the teacher’s response. Through our iterative work in the data we noticed 

two distinct ways in which this recognition might occur in a teacher response: through 

attention to Student Action and attention to Student Ideas. The subcategory Student 

Action encompasses the exact, unique words a student has used (verbal), as well as any 

gestures or work provided by the student (non-verbal). The codes (explicit, implicit, or 

not) for student action capture the degree to which the teacher response uses the 

student action. To explore the subtle distinction between a response coded as implicit 

and one coded as explicit, consider TR2 and TR3. In TR3, the teacher uses language 

unique to that student instance (“on the bottom”). In contrast, in TR2 the teacher does 

not use this unique language, replacing “put,” “money,” and “weeks” with the verb 

“label,” and replacing “on the bottom” and “in the side” with the term “axes.” Hence, 

TR3 explicitly uses the student’s actions while TR2 implicitly uses the student actions. 

Responses that do not use the student’s unique actions or clear replacements (such as 

TR1 and TR4) are coded as not.  

The subcategory Student Ideas focuses on the mathematical idea(s) the student is 

putting forth in the instance. The codes (core, peripheral, other, cannot infer, and not 

applicable) for this category capture the extent to which the student is likely to 

recognize their idea in the teacher response. For example, TR2 focuses on the labelling 

of the axes, which is the core idea in the instance of student thinking. On the other 

hand, TR1 and TR3 start to veer from this main idea to a peripheral or related 

idea—the connection between the labels of a graph and the independent-dependent 

relationship between the variables. In contrast, TR4 focuses the actor on considering 

what the teacher likes to do first when they make a graph. This focus is not related, 

even peripherally, to the student’s idea and hence, we code TR4 as going towards an 

idea other than the core idea in the instance of student thinking. Responses that do not 

engage with the instance of student thinking (e.g., “Let’s not talk about that now.”) are 

coded not applicable.  
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Mathematics 

In order to gauge the extent to which a teacher response focuses on improving student 

understanding of the mathematical point (MP), the Mathematics category documents 

the alignment between the mathematical understanding (MU) that is the focus of the 

teacher response to an instance of student thinking and the MP of that instance. The 

codes are: core, peripheral, other, cannot infer, non-mathematical or not applicable. 

For example, TR2 and TR4 illustrate responses that are coded as cannot infer. In both 

of these responses, it is not yet evident what MU the teacher is pursuing. In contrast, in 

TR3 the MU seems to be the MP (see Figure 2) of the student thinking and hence the 

mathematics of the teacher response is core. TR1 focuses on the mathematical 

conventions of labelling axes, thus the MU may be articulated as, “By convention, the 

x-axis represents the independent variable and the y-axis represents the dependent 

variable.” Though this MU is contained in the MP, it focuses on following the 

convention rather than on deciding which variable is independent and which is 

dependent. Thus this MU is peripheral to the MP. When a teacher response has an MU 

that is not even peripherally related to the MP of the instance, it is coded as other. 

Teacher responses that do not address mathematics (e.g., “Nice work David!”) are 

coded as non-mathematical. An instance of student thinking for which an MP cannot 

be articulated (see Van Zoest et al., 2016) receives the code not applicable, because a 

match or alignment cannot be determined. 

Move 

We use move to capture what the actor is doing or being asked to do with respect to the 

instance of student thinking. We identified 14 moves (see Figure 3). Although many of 

these moves are recognizable from other literature, they differ in that their descriptions 

do not include the three components captured in our other categories.  

 

Move Description 

Adjourn 
The teacher either explicitly or implicitly indicates that the instance(s) will not be 

considered publicly at that time, but suggests the instance may be considered later. 

Allow The teacher invites or leaves space for students to respond to the instance. 

Check-in 
The teacher elicits students’ self-assessment of their reaction to or understanding of the 

instance. 

Clarify 
The teacher provides an interpretation and asks for verification that it reflects what the 

student meant, or asks the student to say what they meant (about a specific piece of the 

instance) without asking for elaboration. 

Collect The teacher requests or provides additional ideas, methods, or solutions. 

Connect 
The teacher asks for or makes a connection between or among representations, 

methods/strategies, solutions, or ideas that includes the instance. 

Correct 
The teacher describes or asks for a correct way of approaching, or thinking about, the 

instance. 

Develop 
The teacher provides or asks for an expansion of the instance that goes beyond a simple 

clarification. 
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Dismiss 
The teacher either explicitly or implicitly indicates that the instance(s) will not be 

considered publicly. 

Evaluate The teacher asks for or provides a determination of the correctness of the instance. 

Justify The teacher asks for or provides a justification of the instance. 

Literal The teacher asks for or provides brief factual information related to the instance. 

Repeat 
The teacher (verbally or in writing) repeats or rephrases the instance without changing 

the meaning or asks a student to repeat the instance. 

Validate 
The teacher says something about the instance to affirm its value and/or encourage 

student participation (e.g., thank you, good). 

Figure 3: Teacher moves and their descriptions. 

Figure 2 provides examples of four of these 14 moves. In TR1, the teacher corrects the 

student’s labelling, reminding the class of labelling conventions. In TR2, the teacher is 

collecting additional methods for labelling the axes from the class. In TR3, the student 

who generated the instance is asked to justify their choice of money as the independent 

variable and weeks as the dependent variable. TR4 asks a literal question to engage a 

different student in providing factual information about what the teacher likes to do 

first when they graph.  

DISCUSSION & CONCLUSION 

Our initial coding scheme was based on moves drawn from the literature, but as it was 

applied to the data, it was quickly seen that focusing only on those moves was 

insufficient to characterize teacher responses given our four principles of effective 

teaching. For example, in examining a teacher move such as develop, the nature of the 

move is very different if the teacher is expanding on what a student has said as 

compared to asking other students to expand on the instance of student thinking. This 

difference led to the development of the actor coding category, which describes who is 

being publicly invited to engage with the instance of student thinking. This category 

provides the means for measuring the degree to which students are being engaged in 

classroom communication across all moves. 

Another important aspect of the coding scheme is the degree to which the teacher 

response honors the mathematical ideas in what the student has said. For example, 

when a teacher uses an instance of student mathematical thinking as a launching point 

to discuss what they feel the students need to hear, the student who contributed the 

thinking in the instance might wonder what their idea has to do with the line of 

reasoning the teacher is now pursuing and feel that their thinking was not valued. The 

Student Actions and Student Ideas subcategories measure the degree to which the 

teacher appears to view students as legitimate mathematical thinkers.  

Franke, Kazemi and Battey (2007) suggested that a focus on student mathematics 

should be a critical element of mathematics classroom practice. The Mathematics 

category, by assessing the degree to which the MU of the teacher response is aligned 

with the MP of the instance of student thinking, provides a way to characterize teacher 

responses relative to this focus on student mathematics.  
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The TRC has several notable strengths. It is applicable across grade levels and 

mathematics content. It has descriptive power because it disentangles the teacher move 

from the actor, the degree to which the student thinking is honored, and the extent to 

which the response focuses on the mathematics of the student thinking. As a result, it 

paints a rich picture of the teacher response without being evaluative in nature. The 

researcher who applies this coding scheme decides which combination of codes might 

be more or less productive based on their own perspective. The flexibility of the TRC 

makes it useful for a broad range of researchers interested in better understanding the 

teacher role in shaping meaningful mathematical discourse in their classrooms. 

Our long-term goal is to better understand the teaching practice of building on 

high-potential instances of student mathematical thinking in the moment they occur 

during whole-class interactions. Such complex teaching practices are difficult to study 

and often require the practice to be decomposed in order to “articulate, unpack and 

study” (Boerst, Sleep, Ball, & Bass, 2011, pg. 2859) it. We anticipate that 

decomposing and studying teacher responses using the TRC will provide insight into 

teachers’ current responses to high-potential student thinking and contribute to better 

understanding the broader teaching practice of productively using student 

mathematical thinking.  

Endnote 

1Focus on an instance typically ends when the next instance of student thinking occurs. 

However, a teacher’s response may end prior to the next instance of student 

thinking—that is, prior to the end of the teacher’s conversational turn. 
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WHICH MATHEMATICAL PREREQUISITES DO UNIVERSITY 

TEACHERS EXPECT FROM STEM FRESHMEN?  
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In STEM degree programs, high dropout rates are observed and mainly attributed to 

missing mathematical preparation. However, in contrast to the normatively specified 

educational goals of secondary education systems, the prerequisites from the 

perspective of tertiary education are far less clear – especially in countries without 

entrance examinations like Germany. The aim of our study with 36 university teachers 

is to explore which mathematical prerequisites are considered necessary for STEM 

degree courses in Germany. Moreover, we analyze whether university teachers differ 

with respect to their specified prerequisites. 

INTRODUCTION 

The transition from high school to university is known to be difficult, in particular for 

freshmen taking mathematics courses in their first semester. Such difficulties are often 

due to fundamental differences between the learning of mathematics at school and at 

college (e.g. Hoyles, Newman, & Noss, 2001). Whereas school mathematics curricula 

in many countries focus on content, which is relevant for the application of 

mathematics as a tool, higher education courses often take a scientific perspective on 

mathematics and emphasize proving and formalism (e.g. Hoyles et al, 2001). These 

challenges are enhanced by other circumstances such as the increasing number of 

students entering higher education, which is accompanied by an increase in diversity 

of student (social) backgrounds, expectations and ability ranges (e.g. Appleby & Cox, 

2002).  

Concern about the mathematical knowledge of college entrants, especially in the 

STEM subjects, can be observed in several countries. For example, at universities in 

Germany, programs with STEM subjects face rather high drop-out rates compared to 

programs with other subjects. Often missing mathematical skills are reported as the 

main drop-out reason (Heublein et al., 2014). Similarly, in the UK, the National Audit 

Office (2007) found low retention rates in STEM subjects mainly caused by missing 

mathematical preparation of the freshmen. Cox (2001) compared the expectations of 

different university departments (STEM subjects) with the students’ actual capabilities 

and found a significant mismatch. Overall, the mathematical learning prerequisites of 

STEM freshmen seem to be a major challenge in the transition from high school to 

college, for both individuals and institutions. 
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THEORETICAL BACKGROUND 

An important question is which mathematical prerequisites should freshmen in STEM 

degree programs have in order to successfully master the transition from high school to 

university. In contrast to the educational goals of upper secondary education, which in 

many countries are normatively specified, the necessary prerequisites from the 

perspective of tertiary education are far less clear. Whereas in some countries this 

problem is partly covered by additional university entrance tests, in other countries like 

Germany the upper secondary school leaving certificate qualifies for all bachelor 

programs at all universities. Therefore the perspective of universities or rather the 

expectations of the university teachers concerning necessary mathematical 

prerequisites have to be explicitly described. This would be helpful for research on the 

transition from school to university. 

Until now only a few empirical studies investigated university teachers’ views on the 

required mathematical prerequisites for STEM programs. Sutherland and Dewhurst 

(1999) investigated the mathematical knowledge expected from undergraduates at the 

transition from secondary to higher education in the UK. For every subject area 

(STEM plus economics and business studies) the authors surveyed three departments 

representing high, medium and low average entrance qualifications. The questionnaire 

used represented the majority of common core AS and A-level mathematics including 

algebra, functions, geometry, proof, equations, differentiation, integration, vectors and 

matrices, complex numbers, statistics and mechanics. The authors reported the 

expected mathematical content and related mathematical skills for every department 

and subject area. Whereas the mathematics department representing high average 

entrance qualification requires all AS and A-level content but additional numerical 

methods and discrete mathematics (both A level), the Biological Science departments 

requires “only” basic mathematical knowledge and some AS-Level Pure Mathematics. 

In general, the expectation decreased with decreasing average entrance qualification 

and decreasing role of mathematics in the subject (from mathematics to chemistry and 

biological science degrees).  

Already more than 30 years ago, Heldmann (1984) conducted a study in Germany to 

identify individual characteristics for general (i.e. subject-unspecific) higher education 

readiness. The authors asked more than 1000 teachers from German universities for 

the relevance of pre-selected characteristics such as the willingness to learn or 

resilience. Additionally, a few subject-specific aspects for a wide range of subjects 

were included in the questionnaire. Concerning necessary mathematical skills for 

higher education readiness, skills and knowledge of some mathematical content areas 

were reported as relevant: computation, elementary functions, differentiation, 

integration, geometry, and statistics. However, these mathematical skills and 

knowledge aspects were not described in a more detailed way and remained quite 

unspecific. 
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Besides the above empirical studies, there are also results of several working groups 

which aim to provide lists of mathematical core knowledge and skills needed for the 

STEM university programs. For example, in the U.S. the College Readiness Standards 

list mathematical content and processes like reasoning and problem-solving as well as 

additional student attributes like paying attention to detail (Transition Math Project, 

2006). Similarly, the German project Cooperation High-School/College (COSH, 

2014) provides a catalogue with mathematical content areas, and illustrates the 

expected skills and knowledge by a list of sample tasks. This catalogue is 

supplemented by a few student attributes such as perseverance. A third example is the 

catalogue of the European Society for Engineering Education (SEFI, 2013). It defines 

the mathematical content (algebra, analysis and calculus, discrete mathematics, 

geometry and trigonometry, statistics and probability) as well as mathematical skills 

(e.g. thinking mathematically, problem solving, symbolism and formalism) that should 

be studied before entering an undergraduate engineering degree program. Moreover, 

SEFI emphasized the importance of adequate attitudes towards mathematics.    

The empirical studies and the theoretical work described above illustrate the 

importance university freshmen’s mathematical learning prerequisites have in 

different countries. Comparing the results of these studies, it becomes clear that there 

is no consensus of what kind of mathematical knowledge and skills university teachers 

expect from STEM freshmen. Whereas all studies point to several mathematical 

content areas which are relevant for STEM degree programs, there is a far less 

consensus concerning the extent to which knowledge and skills in these content areas 

are necessary. In addition, mathematical skills like problem solving, reasoning, or 

modeling are sometimes included and sometimes not. Similarly, the catalogues differ 

with respect to mathematics-related student attributes and aspects of subject-unspecific 

personal characteristics (intelligence, conscientiousness etc.) which are included in 

some but not all reports. For example, prerequisites concerning the perception of 

mathematics are mentioned only in the catalogue of SEFI (2013).  

RESEARCH QUESTIONS 

Based on the existing studies and reports, it is not clear whether there is a consensus on 

mathematical prerequisites university teachers expect from STEM freshmen. Taking 

into account the heterogeneity of mathematical bridging courses at different 

universities (for an overview about the German situation, for example, see Biehler et 

al., 2014) and the different expectations of different departments in the UK (Sutherland 

& Dewhurst, 1999), the question arises if such a consensus among university teachers 

for mathematics is possible at all. Accordingly, the present study addresses the 

following research questions:  

1) Which mathematical prerequisites are necessary for a successful transition into 

higher education in STEM degree programs from the perspective of university 

teachers for mathematics? 
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2) If university teachers do not agree: Which different types of university teachers 

can be identified with respect to necessary mathematical prerequisites for a 

successful transition into STEM degree programs?  

METHODS 

To analyze the expected mathematical prerequisites of higher education STEM 

subjects, we carried out an online survey with university teachers. The survey was 

anonymous to reduce group-effects. The participants’ views were collected through 

three narrative questions which addressed the same topic from different perspectives 

and which should stimulate detailed and comprehensive responses. First, the 

participants were asked to describe the characteristics of mathematical university 

readiness or rather what mathematical knowledge and skills STEM freshmen should 

acquire before starting the first semester. In the second question, the participants were 

asked which mathematical aspects should be included into a mathematical entrance 

examination for STEM programs. In the third question, they were asked about the 

differences between successful and unsuccessful STEM freshmen with a special focus 

on the mathematical prerequisites the students acquired before entering the university. 

In addition, background information on the teaching experiences was collected (e.g. 

university vs. university of applied sciences; years of teaching experience; course 

programs taught in; etc.).  

Sample   

The study involved university teachers from Germany who taught first year 

mathematics courses in STEM degree programs at universities and universities of 

applied sciences during 2010 and 2015. Based on a list of more than 2000 German 

university teachers for mathematics, 82 participants were identified and invited to 

participate in the study. The invited participants were selected to equally represent 

German federal states, STEM programs, teaching experience and type of university. 

Overall, 36 of the 82 university teachers participated in the survey representing the 

majority of German states and all subject groups of science, technology, engineering 

and mathematics. 

Analysis      

In order to approach the first research question, a qualitative content analysis was 

performed (cf. Mayring, 2014). First, the collected responses of all three questions 

from the questionnaire were split into single text passages. These passages were 

grouped with respect to their meaning, and categories of necessary mathematical 

learning prerequisites were inductively determined. For every identified category, an 

explicit definition, examples and coding rules were developed. All passages were 

assigned a category. 10% of the material was rated independently by two coders in 

order to investigate and ensure interrater reliability of the coding system. Sometimes, 

the participants referred to educational documents (e.g. the catalogue of COSH, 2014, 

mentioned before). In these cases we included all mathematical prerequisites listed in 
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the corresponding documents as well. This approach led to a catalogue of all 

mathematical prerequisites referred to by this sample of university teachers. To ensure 

the quality of the procedure with regard to completeness and correctness, the final 

catalogue has been compared to the original responses of the participants once more. 

To answer research question 2, whether there is a consensus among university teachers 

or whether different types of university teachers with respect to the expected 

mathematical prerequisites exist, we ran a cluster analysis (e.g. Aggarwal & Reddy, 

2015). The aim of the cluster analysis was to aggregate the participants to homogenous 

groups with regard to their expected mathematical prerequisites. For each 

mathematical prerequisite a dichotomous variable (1: stated; 0: not stated) was created 

for the 36 participants. If a participant referred to an educational document, all 

mathematical prerequisites listed in this educational document were taken into 

account. An agglomerative hierarchical approach was used to cluster the university 

teachers. Applying the Ward’s agglomeration with the Euclidean distance the resulting 

dendrogram and distance parameters have been analyzed to determine a satisfactory 

cluster solution (e.g. Aggarwal & Reddy, 2015).   

RESULTS 

Based on the qualitative content analysis, we identified 152 mathematical prerequisites 

as stated by the participants. These were structured into the four main categories 

mathematical content, mathematical processes, conception of mathematics and 

personal attributes. For the mathematical prerequisites in each main category we had 

satisfying to good inter-coder reliability (percentage agreement between .85-.97 and 

Cohen’s kappa between .60-.94). 

1) Mathematical content  

This largest category covers knowledge on several areas like basic concepts (in the 

area numbers, algebra, elementary function and geometry), calculus, vectors and 

matrices as well as statistical concepts including combinatorics, statistical 

distributions, and general concepts like propositional logic. In each sub-category there 

are several aspects. In the sub-category “calculus” for example, there are intuitive 

understanding of sequences and limits, continuity, differentiation, integration etc. 

2) Mathematical processes 

Freshmen are expected to have skills concerning mathematical processes of six 

different categories: basic skills (calculation, use of representations and technology), 

reasoning and proof, mathematical communication, mathematical definition, problem 

solving, and mathematical modelling. Each category comprises sub-processes 

addressing different cognitive levels, for example, “understanding and verification of a 

given proof” and “generation and formulation of a proof”. 
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3) Conceptions of mathematics 

This category covers meta-knowledge about mathematics. Examples are knowledge 

about the fundamental importance of proof in mathematics or the fact that there is an 

axiomatic structure of mathematics. 

4) Personal attributes 

This area includes attitudes and subject-unspecific cognitive and social skills. 

Examples are perseverance when faced with mathematical problems, openness 

concerning the learning of university mathematics and ability to work on his/her own. 

 

For research question 2, a hierarchical cluster analysis with Ward’s method indicates 

three different types of university teachers with respect to their expectations (categorial 

two-step cluster analysis using log-likelihood also result in a three cluster solution). 

Type 1 teachers (N = 8) expect solid knowledge of basic mathematical content (in 

terms of lower secondary mathematics covering functions, elementary algebra, 

elementary geometry, and functions). Every university teacher of this type stated all 

identified prerequisites of this basic mathematical content category as necessary for 

STEM freshmen. These teachers rarely mentioned advanced school mathematical 

content (including calculus, matrices and vectors, probability), mathematical processes 

and conceptions of mathematics. Also, only three personal attributes were expected as 

a prerequisite by four or more participants assigned to this type. Type 2 teachers (N = 8) 

expect knowledge of most basic mathematical content and a lot of prerequisites of 

advanced school mathematical content. In addition, they mentioned skills of many 

mathematical processes and ask for some specific personal attributes. Type 3 teachers 

(N = 20) consider only few prerequisites necessary. Even of the prerequisites of basic 

mathematical content only some were mentioned by the type 3 teachers. Similarly, 

these teachers consider only some of the aspects in the main category conceptions of 

mathematics as prerequisites for STEM degree programs.      

DISCUSSION 

The aim of this study was to (1) explore mathematical prerequisites for STEM 

freshmen which university teachers consider necessary and (2) analyze whether 

university teachers concur in these necessary mathematical prerequisites. By means of 

an anonymous online survey with 36 German university teachers for mathematics we 

identified 152 mathematical prerequisites in total. Comparing these with other 

catalogues of mathematical prerequisites (e.g., COSH, 2014; SEFI, 2013), we found a 

partial overlap of the prerequisites addressing mathematical content. However, our 

sample stated additional mathematical prerequisites for example the formal concept of 

differentiation and propositional logic. Besides, the responses of our sample covered 

skills for six types of mathematical processes which to this extent are only listed in the 

document of SEFI (2013). In contrast to the other catalogues, the university teachers in 

our study mentioned several concrete conceptions of mathematics the STEM freshmen 
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should exhibit (the SEFI framework just emphasized the importance of appropriate 

conceptions). Finally, the university teachers mentioned several ”personal attributes” 

which indicates the significance the teachers attach to this aspect. In the debate about a 

general university readiness a lot of these attributes are viewed as requirements. With 

respect to mathematics the TMP (2006) and COSH (2014) listed a few aspects of these 

attributes. The comparison of existing catalogues of prerequisites to our results 

implicates a common ground of necessary mathematical prerequisites for freshmen in 

STEM degree programs with respect to mathematical knowledge and skills. 

Differences are mainly found for prerequisites related to personal attributes and 

conceptions of mathematics. 

Based on a cluster analysis we identified three types of university teachers with respect 

to necessary mathematical prerequisites. Whereas teachers of the first type seem to be 

satisfied by solid knowledge of basic content, teachers of the second type additionally 

consider a lot of advanced school mathematics as necessary. A large proportion of 

participants of the third type stated only a few necessary mathematical prerequisites. 

This result could be due to missing motivation when working on the questionnaire. 

However, this interpretation seems rather unlikely because there is a lively discussion 

about insufficient mathematical prerequisites of freshmen within the scientific 

community and the participation in the survey has been voluntary. An alternative 

explanation might be that these university teachers were not used to explicitly and 

coherently describe the mathematical prerequisites they consider necessary. 

Discussions about freshmen’s mathematical prerequisite are often restricted to some 

examples and to the overall comment that the prerequisites are insufficient. 

The data basis of the 152 mathematical prerequisites identified in the present study is 

limited. Accordingly, there is need for a confirmation by a survey with a much larger 

sample. In the end such a survey can yield a catalogue of necessary mathematical 

prerequisites for STEM degree programs which represents the view of the universities. 

Moreover, a larger data base allows an analysis of the relevance of the identified 

different types of university teachers.  
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This paper aims at developing a model that intends to articulate diverse categories of 

mathematics teachers’ knowledge and competences that are necessary for the 

appropriate teaching of mathematics, based on the theoretical notions of the 

Onto-Semiotic Approach to mathematical knowledge and instruction (OSA) and its 

many contributions to the fields of teacher training. 

INTRODUCTION 

The study of the didactic and mathematical knowledge and competences that a teacher 

should have to appropriately manage the students’ learning process is a matter that has 

been largely researched, thus, generating several model designs that aim at 

characterizing such teachers’ knowledge and competences (e.g., Shulman, 1987; 

Rowland, Huckstep & Thwaites, 2005; Hill, Ball & Schilling, 2008; Schoenfeld & 

Kilpatrick, 2008). Based on the theoretical notions of the Onto-Semiotic Approach 

(OSA) to mathematical knowledge and instruction (Godino, Batanero & Font, 2007) 

and its many contributions to the field of teacher training, this work develops a model 

(called Didactic-Mathematical Knowledge and Competences model or DMKC) that 

intends to articulate the diverse categories of teachers’ knowledge and competences 

that are necessary for the appropriate teaching of Mathematics, and at the same time, 

refines the DMK model presented in Pino-Fan, Assis & Castro (2015).  

DIDACTIC-MATHEMATICAL KNOWLEDGE AND COMPETENCES 

MODEL 

A theoretical model of teachers’ mathematical knowledge (Pino-Fan, Assis & Castro, 

2015; Pino-Fan, Godino & Font, 2016) within the framework of the Onto-Semiotic 

Approach (OSA) to mathematical knowledge and instruction (Godino, Batanero & 

Font, 2007) has already been designed and is known as the DMK model. As stated by 

its authors, one of the perspectives of development of this model is the fitting of the 

notion of teachers’ knowledge and teachers’ competences. On the other hand, also 

within the framework of OSA, there have been other studies regarding Mathematics 

teachers’ competences (Rubio, 2012; Giménez, Font, & Vanegas, 2013; Seckel, 2016; 

Pochulu, Font & Rodríguez, 2016), which have also exposed the need of having a 

model of teachers’ knowledge to evaluate and develop their competences. These two 

research agendas have come together, thus generating the mathematics teachers’ 

didactic-mathematical knowledge and competences model (DMKC model) (Breda, 

Pino-Fan & Font, in press). 
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The notion of competence 

Mathematics teachers are expected to be able to address basic didactic problems 

related to the teaching of this subject through the use of theoretical and methodological 

tools, giving way to a series of specific competences. Thus, the two first key questions 

that arise, in order to be able to develop the DMKC model, are: What is understood by 

the notion of competence? What are the key competences that Mathematics teachers 

should have? According to Weinert (2001), competency-based approaches can be 

classified into three large groups: a) Cognitive approach; b) Motivational approach; 

and c) integral approach or action competence. According to this, the 

conceptualization of competence that we use in this model comes from the action 

competence perspective, considering it as a combination of knowledge, dispositions, 

etc., that allows an effective performance, within typical contexts of the profession, of 

the actions aforementioned in its formulations. In an Aristotelian way, it is about a 

potentiality that is updated in the performance of effective actions (competences).  

This formulation of the term “competence” has to be developed in order to be 

operational, and for that purpose it is necessary to characterize competence (definition, 

levels of development and descriptors) that allows its development and evaluation. 

According to Seckel (2016), we consider that the starting point for the development 

and evaluation of a professional competence has to be a task that generates the 

perception of a professional problem that needs to be solved, and for this purpose, the 

prospective teacher or in-service teacher has to mobilize skills, knowledge and 

attitudes in order to develop a practice (or action) that intends to solve the problem. 

Furthermore, we can expect such practice to be performed with more or less success 

(achievement) and, at the same time, it can be considered as evidence that the person 

can perform practices that are similar to the ones described by some descriptors of the 

competence, which is often associated to a certain level of competence. 

Mathematical competence and competence in analysis and didactic intervention 

Students’ mathematical competences are developed through the solving of 

mathematical tasks and, at the same time, evaluated through the mathematical activity 

performed in order to solve the assigned task. In the case of evaluation, the teacher 

assigns a task to the student, who solves it by performing a certain mathematical 

activity. Then, the teacher analyses the student’s mathematical activity and finds 

evidence of a certain level of development of one or several mathematical 

competences. In Rubio (2012), it is stated that, in order to evaluate their students’ 

mathematical competences, teachers must have mathematical competence. However, 

it is also stated that this is not enough, since the teacher must also be competent in the 

analysis of mathematical activity. While the first competence is not specific to the 

teaching profession (it is common in several professions that use mathematics, 

although each profession gives it its hallmark), the second one, as a matter of fact, is.    

The DMKC model considers that the two key competences of Mathematics teachers 

are Mathematical competence and Competence in analysis and didactic intervention, 
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which, at its core (Breda, Pino-Fan & Font, in press) consists of: Designing, applying 

and assessing sequences of one’s own learning and others’, through techniques of 

didactic analysis and quality criteria to establish periods of planning, implementation, 

assessment and outline suggestions for improvements. In order to be able to develop 

this competence, the teacher needs, on the one hand, knowledge that allows to describe 

and explain what is happening in the process of teaching and learning (didactical 

dimension of the DMK model, one of the components of the DMKC model), and on 

the other hand, needs knowledge to assess what has already happened and outline 

suggestions for improvements in future implementations −meta didactic-mathematical 

dimension of the DMK model, one of the components of the DMKC model (Pino-Fan, 

Assis & Castro, 2015). In this work, we will focus mainly on the latter. 

CHARACTERIZATION OF THE COMPETENCE IN ANALYSIS AND 

DIDACTIC INTERVENTION 

This general competence is formed by different sub-competences (Breda, Pino-Fan & 

Font, in press): 1) sub-competence in analysis of the mathematical activity; 2) 

sub-competence in analysis and management of the interaction and its effect on 

students’ learning; 3) sub-competence in analysis of norms and meta-norms; and 4) 

sub-competence in assessment of the didactical suitability of the process of instruction. 

Sub-competence in analysis of mathematical activity 

Rubio (2012) describes the design and implementation of a training period in the 

Secondary School Teachers Training Master Program of Universitat de Barcelona, in 

which teachers are first taught the technique for the analysis of practices, objects and 

processes proposed by OSA, and then, a technique for the evaluation of mathematical 

competences. The objective of this study was to corroborate (or not) the following 

hypothesis: the professional competence of teachers in the analysis of mathematical 

practices and mathematical objects and processes activated in such practices, is 

“in-depth knowledge” that allows to evaluate and develop the students’ mathematical 

competences. Rubio (2012) concludes that after all the experiments conducted, such 

hypothesis can be confirmed. Furthermore, it is stated that if teachers are not 

competent in the analysis of mathematical practices, processes and objects, they will 

not be competent in the evaluation of mathematical competences. Thus, the results of 

Rubio’s thesis (2012) point out a sub-competence of the competence in analysis and 

didactic intervention that mathematics teacher have to develop in order to develop and 

evaluate their students’ competences: competence in analysis of the mathematical 

activity, in other words, the analysis of the mathematical practices, objects and 

mathematical processes activated in them. 

This first sub-competence enables teachers to analyze mathematical activity. This type 

of analysis is important in the training of teachers and is a type of analysis that is 

somehow difficult for teachers and future teachers. For example, Stahnke, Schueler 

and Roesken-Winter (2016) carry out a revision of the empirical research conducted on 
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mathematics teachers and conclude that teachers have difficulty analyzing the 

mathematical tasks (and its educational potential) assigned to their students. 

As mentioned before, the lack of consensus over a paradigm that defines how should 

the analysis of mathematical activity be done in the field of mathematical education is 

a very problematic aspect. The DMKC model assumes that the theoretical tools of 

OSA (practice, primary and secondary objects emerging from the practices, meaning 

of a mathematical object in terms of practices, partial meanings, mathematical 

processes) allow such analysis in terms of practices, mathematical objects and 

processes. With these theoretical notions, when the meanings are understood 

pragmatically in terms of practices, one can, firstly, answer questions such as: What 

are the partial meanings of the mathematical objects that are intended to be taught? 

How are they articulated together? Later, an analysis of the primary mathematical 

objects and processes activated in such practices can be conducted. The identification 

by part of the teacher of the objects and processes involved in mathematical practices 

allows to comprehend the progression of the learning process, to manage the necessary 

processes of institutionalization and to evaluate the students’ mathematical 

competences. Thus, it is possible to answer the questions: What are the configurations 

of primary mathematical objects and processes involved in the practices that constitute 

the diverse meanings of the intended contents (epistemic configuration)? What are the 

configurations of primary objects and processes used by students when solving 

problems (cognitive configurations)? Mathematics teachers have to know and 

comprehend the idea of configuration of objects and processes activated in a certain 

mathematical practice and be able to use it in a competent manner in the processes of 

teaching and learning mathematics (Pino-Fan, Godino & Font, 2016). 

Sub-competence in analysis and management of the interaction and its effect on 

students’ learning  

The notion of didactic configuration has been introduced in OSA as a tool for the 

analysis of the interactions in instruction processes (Godino, Contreras & Font, 2006). 

It is about a theoretical construct to model the articulation of the performance of 

teachers and students regarding a specific task and content (a configuration of primary 

objects and processes) of teaching and learning, where knowledge arises from the 

interaction itself. Mathematics teachers have to be competent in the design and 

management of didactic configurations. It intends to answer the following question: 

What type of interactions between people and resources will be implemented in 

instructional processes and what are the consequences in the learning process? How 

can interactions and conflicts be managed in order to optimize learning? The teacher, 

therefore, should know the many types of didactic configurations (dialogic, etc.) that 

can be implemented and their effect on students’ learning, and also, how to design and 

manage these types of didactic configurations in specific instruction processes. 
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Sub-competence in normative analysis 

The different stages of the process of design and implementation are supported by and 

depend on a complex net of norms and meta-norms of different origin and nature 

(Godino, Font, Wilhelmi & Castro, 2009) that need to be explicitly recognized in order 

to comprehend the development of instruction processes and direct them towards 

optimal suitability levels. For example, when studying equations, there are rules 

regarding the way these should be written or the way these should be solved. Also, 

there are non-mathematical norms, such as the use (or not) of calculators, the method 

of evaluation, the way of participating in class, etc. Mathematics teachers have to 

become competent in the normative analysis of the processes of mathematical 

instruction in order to answer questions such as: what norms determine the 

development of instructional processes? Who, how and when are the norms 

established? What and how can these be changed in order to optimize mathematical 

learning? Etc. 

Sub-competence in the assessment of the didactical suitability of instruction 

processes 

The characterization of the competence in analysis and didactic intervention proposed 

above, needs tools for the description and explanation, as those described in Rubio’s 

research study (2012), for the analysis of mathematical activity and also tools for 

assessment, as those presented in the research studies conducted by Seckel (2016) and 

Breda, Pino-Fan and Font (in press). These research studies show that, even when the 

teachers do not know the didactical suitability criteria with all their components and 

indicators, if they are exposed to a situation in which they have to assess a proposal of 

didactic innovation that could somehow affect them, then they use them in an implicit 

way to organize their positive or negative assessment. 

For the assessment of instruction processes, OSA proposes didactic suitability as the 

essential tool. Once a specific topic has been selected in a certain educational context, 

the notion of didactic suitability (Breda, Font & Lima, 2015) helps to answer questions 

such as: what is the degree of didactical suitability of the teaching and learning 

processes implemented? What changes should be made in the design and 

implementation of the instruction process in order to increase its didactic suitability in 

future implementations? 

Didactical suitability of an instruction process is defined as the degree to which such 

process (or a part of it) gathers certain characteristics that enables it to be assessed as 

suitable (optimal or ideal) to attain the adaptation between the personal meanings 

achieved by the students (learning) and the intended or implemented institutional 

meanings (teaching), taking into account the circumstances and available resources 

(environment). The notion of didactical suitability can be separated into six specific 

suitabilities: 1) Epistemic suitability that makes reference to the mathematics taught as 

ideally be “good mathematics”. For that purpose, apart from taking the prescribed 

curriculum as reference, it also considers the institutional mathematics that have been 
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transposed into the curriculum; 2) Cognitive suitability, that expresses the degree to 

which the intended or implemented learning is within the students’ zone of potential 

development, and also the proximity of the attained learning to the learning intended or 

implemented; 3) Interactional suitability, that refers to the degree to which the modes 

of interaction allow to identify and solve conflicts of meaning and favor autonomy in 

learning; 4) Mediational suitability, the degree of availability and adaptation of the 

material and time resources necessary for the development of the teaching and learning 

processes; 5) Affective suitability or degree of implication (interest, motivation) of 

students in the process of study; and 6) Ecologic suitability, degree of adaptation of the 

process of study to the school comprehensive education plan, the curricular guidelines, 

the environment, etc.     

For each of these criteria, there is a system of components and indicators that can be 

rated on a scale (of 1–3, for example). It is about a system of rubrics that allows to rate 

(or auto rate) in a complete or balanced way, the elements that, together, make up a 

process of quality instruction in the field of mathematics. 

KNOWLEDGE OF MATHEMATICS TEACHERS 

Professional competences have to be developed in the training of teachers. For that 

purpose, the teacher trainer has the capacity of analyzing the professional practices of 

teachers (future teachers or in-service teachers) when they solve professional tasks 

assigned to them in a training period, and the didactic-mathematical knowledge 

activated in them, in order to be able to find indicators that justify the assignation of 

degrees of development of the professional competence that is being evaluated. 

However, a problem that we have in the field of mathematics education is that there is 

not a single model that allows us to analyze the professional practice and there is no 

consensus over a paradigm for the analysis of the didactic-mathematical knowledge 

activated by teachers in their professional practices.  

As discussed in the first section, there are several models and views worldwide 

regarding the knowledge that mathematics teachers should have in order to 

appropriately manage their students’ learning. Pino-Fan, Assis and Castro (2015) 

propose a model for characterizing didactic-mathematical knowledge (DMK) of 

teachers, which considers, among other aspects, the contributions and developments of 

several models of mathematics teachers’ knowledge, and the theoretical and 

methodological development of OSA. Thus, the DMK model suggests that teachers’ 

knowledge is organized into three dimensions: 1) mathematical; 2) didactical; and 3) 

meta didactic-mathematical. The first dimension, mathematical, refers to the 

knowledge that enables teachers to solve mathematical problems or tasks that are 

typical of the educational level in which they will teach (common knowledge), and link 

the mathematical objects of such level to mathematical objects that will be studied at 

higher levels (extended knowledge) (Ibíd., p. 1433).  

The didactical dimension of DMK proposes six subcategories of teachers’ knowledge 

(Ibíd., p. 1434-1436): 1) epistemic facet, that refers to the specialized knowledge of 
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mathematical dimension (use of diverse representations, arguments, procedures, 

partial meanings for a specific mathematical object…); 2) cognitive fact, that refers to 

the knowledge about cognitive aspects of students (difficulties, errors, conflicts, 

learning...); 3) affective facet, that refers to the knowledge of affective, emotional and 

attitudinal aspects of students; 4) interactional facet, knowledge of the interactions that 

occur in the classroom (teacher-student, student-student, student-resources...); 5) 

mediational facet, knowledge of the resources and means that can foster the students’ 

learning process, and the time assigned for teaching processes; and 6) ecologic facet, 

knowledge of curricular, contextual, social, political, economical aspects that may 

have influence on the students' learning process.  

The third dimension of DMK, meta didactic-mathematical dimension, refers to the 

knowledge needed by teachers to: reflect on their own practice, identify and analyze 

the set of norms and meta-norms that regulate the teaching and learning processes of 

mathematics, and assesses the didactic suitability in order to find potential 

improvements in both, design and implementation stages of such processes (Pino-Fan, 

Assis & Castro, 2015; Pino-Fan, Godino & Font, 2016). 

The three dimensions described above are involved in the different phases of the 

design of processes of teaching and learning of specific mathematical topics: 

preliminary study, planning or design, implementation and assessment (Pino-Fan, 

Godino & Font, 2016). 

FINAL CONSIDERATIONS  

This work has presented a theoretical model, the mathematics teachers’ 

Didactic-Mathematical Knowledge and Competences model (DMKC model), which is 

based on a series of empirical research studies that, on the one hand, have allowed its 

development and refinement and, on the other hand, have tested its theoretical 

constructs. Although the work that has been presented is basically theoretical, it is 

important to highlight that there have been a number of empirical research studies on 

the diverse components of the model, as can be seen in the section “Formación de 

profesores” (Teacher training) on the OSA website: 

http://enfoqueontosemiotico.ugr.es/. The DMKC model opens, therefore, a strong 

research program and development focused on the design, experimentation and 

evaluation of formative interventions that promote the professional development of 

mathematics teachers, taking into account the different categories of knowledge and 

didactic competences described in this work. 
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In this article, we present the results of a questionnaire designed to evaluate college 

students’ understanding of the antiderivative. Specifically, by civil engineering 

students when answering the questionnaire’ tasks, in order to identify and characterize 

the meanings on the antiderivative that are mobilized by them. In order to analyse the 

answers given, we used some theoretical and methodological notions provided by the 

theoretical model known as the Onto-Semiotic Approach (OSA) of mathematics 

cognition and instruction. The results show knowledge of antiderivative by the Civil 

Engineering students. Furthermore, the comparison between the mathematical activity 

of students provides information that allows concluding that the meanings that they 

mobilized might be shared among their communities. 

BACKGROUND  

In recent years, the mathematical education of engineering students has gained more 

attention from researchers in the field of mathematics education (Bingolbali, 

Monaghan & Roper, 2007). The reason lies in the fact that, nowadays, as pointed out 

by Gnedenko and Khalil (1979), mathematics has become more than just a calculus 

tool; it has become a powerful and flexible method for both science and engineering.  

In this regard, there have been several studies that have dealt with the issue of how to 

address different mathematical notions in engineering contexts (Sonnert & Sadler, 

2014). The suggestions given by these studies focus on the type of problems used to 

introduce mathematical notions, the impact of technological resources and textbooks 

for the teaching of mathematics to engineers, and even motivational factors. Other 

studies, focus on the study of the differences in the way of thinking mathematics 

between mathematics and engineering students (Jones, 2015).  

This article aims at identifying and characterizing the meanings that civil engineering 

students, mobilize in their mathematical practices in connection to certain tasks 

assigned to them. For this purpose, we applied a questionnaire to two groups of civil 

engineering students, one from a Mexican University and another from a Colombian 

University. The questionnaire was designed as part of another study (Gordillo, 

Pino-Fan, Font & Ponce-Campuzano, 2015), to assess the aspects of comprehension 

that university students have of such mathematical object. The analysis of the answers 

to the questionnaire show the meanings and preferences that future civil engineers 

assign to the antiderivative, and how these relate to the partial meaning that make up 

the holistic meaning of this mathematical notion (Gordillo & Pino-Fan, 2016).  
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THEORETICAL AND METHODOLOGICAL ASPECTS 

In order to conduct this study, we considered the theoretical model known as the 

Onto-Semiotic Approach (OSA) of mathematical cognition and instruction. This 

theoretical approach arises in the field of the research of Mathematics Education in 

order to articulate the diverse dimensions that are present in the processes of teaching 

and learning of mathematics (Godino, Batanero & Font, 2007). In OSA, the notion of 

systems of practices (or mathematical practices) plays and important role in the 

teaching and learning of mathematics. Godino and Batanero (1994) define a system of 

practices as “any performance or manifestation (linguistic or not) done by someone in 

order to solve mathematical problems, communicate the solution to others, validate the 

solution and generalize it to other contexts and problems” (p. 334). These practices can 

be personal or institutional, depending on whether these are done by one person or 

shared within the core of an institution.  

Besides, OSA assumes certain pragmatism when considering mathematical objects as 

entities that emerge from the systems of practices conducted in a field of problems 

(Godino & Batanero, 1994). In OSA, the meaning of mathematical objects is 

conceived from a pragmatic-anthropological perspective which considers the relativity 

of the context in which these are used. In other words, the meaning of a mathematical 

object can be defined as the system of operative and discursive practices that a person 

(or an institution) develops in order to solve certain type of situations-problems in 

which such object intervenes (Godino & Batanero, 1994). Thus, the meaning of a 

mathematical object can also be considered from two perspectives, institutional and 

personal.  

In order to conduct a ‘finer’ and more systematic analysis of the mathematical 

practices developed regarding certain problems, OSA introduces a typology of primary 

mathematical entities (or primary mathematical objects), that intervene in the systems 

of practices: situations-problems, linguistic elements, concepts/definitions, 

propositions/properties, procedures and arguments. These primary mathematical 

objects are related among themselves forming nets of intervening objects that emerge 

from the systems of practices, which in OSA are known as configurations. These 

configurations can be epistemic (nets of institutional objects) or cognitive (nets of 

personal objects).  

In this document, we use the notion of cognitive configuration to analyse the 

mathematical practices performed by civil engineering students regarding the solutions 

to the tasks of the questionnaire. 

METHOD 

This study uses the methodology of the mixed methods research (Creswell, 2009), 

since it is an exploratory study that considers the observation of quantitative variables 

(answers’ degree of accuracy: correct answers, partially correct answers and incorrect 

answers) and qualitative variables (the type of cognitive configuration connected to the 
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practices on antiderivative). For the study of the qualitative variable we adopted a 

technique of analysis known as semiotic analysis (Godino, 2002), which allows to 

describe in a systematic way the mathematical practices of students as well as the 

elements of cognitive configuration (linguistic elements, concepts/definitions, 

propositions/properties, procedures and arguments) which are activated in such 

practices, and their respective meanings.  

The questionnaire 

The questionnaire that we used to gather data was designed to evaluate the 

comprehension of the notion of antiderivative of university students and is composed 

of five tasks (Gordillo, et al., 2015). Each of these tasks is closely related to one of the 

four partial meanings of the antiderivative that were identified through a 

historic-epistemological study that aimed at reconstructing the ‘holistic meaning of 

reference’ for such mathematical object (Gordillo & Pino-Fan, 2016). Chart 1 shows a 

summary of the characteristics and goals pursued by each of the tasks.  

Chart 1. Summary of the characteristics of the tasks of the questionnaire 

 

The questionnaire was applied to two groups of Civil Engineering students. The first 

group was composed by 23 students of the Civil Engineering of the Universidad 

Distrital in Colombia. The second group was composed by 23 students of the Civil 

Engineering of the Universidad Autónoma de Querétaro in Mexico. An essential 

requisite for the selection of the students that participated in the study was that, at the 

moment of taking the questionnaire, they had taken Integral Calculus courses.  

ANALYSIS OF DATA 

In this section, we present the analysis of the answers given by the students of the two 

groups, Mexican and Colombian. For the analysis of the quantitative variable 

(‘answers’ level of accuracy). The first study that we conducted with the variable level 

of accuracy was to determine if there were significant differences between the 

Colombian group and the Mexican group. 

For the analysis of the qualitative variable we used the notion of cognitive 

configuration, which allowed us to describe in a systematic way the primary 

mathematical objects (linguistic elements, concepts/definitions, 

propositions/properties, procedures and arguments) that form the mathematical 

practices of the students, in connection to the tasks of the questionnaire.  
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Analysis of the answers of the Mexican and Colombian engineering students  

In this section, we present the results of the quantitative and qualitative analysis of 

each of the tasks of the questionnaire.  

Task 1: Meanings of the antiderivative 

Given the general nature of this first task, only correct answers (answers in which at 

least one of the partial meanings of the antiderivative was expressed in verbal/written 

form) and incorrect answers (answers in which any of the partial meanings of the 

antiderivative were enunciated) were considered. The students did not have difficulties 

for solving the task, answering 82,6% correctly. 

A high percentage of Mexican students (13) as well as Colombian (11), answered that 

the antiderivative is “the inverse process of derivation”. This first general approach to 

the conceptions that students have of the antiderivative show that more than half of 

them (52,2%) think of the antiderivative as a procedure (operation) that allows to find 

the “original function” from which certain derived function comes from. Out of the 46 

students, only one student from Mexico answered that the antiderivative is a “family of 

functions”. The solutions that we have labelled as ‘absence of meaning’, that refer to 

incorrect answers from the point of view of the level of accuracy, are answers in which 

the students did not give any meaning to the antiderivative, providing answers of the 

type “the antiderivative is the area below the curve”, “the antiderivative is obtained 

from the fundamental theorem of calculus”, “the antiderivative is a function f of f=f’ ”, 

“the antiderivative is a mathematical form through which some real life problems can 

be solved”.  

Task 2: Graphic exploration of the antiderivative 

For this task, we only considered correct answers (in which the elements that belong to 

the family of the antiderivative were correctly identified and the way of finding them 

was justified), and incorrect answers (in which the graph provided did not correspond 

with the elements of the family of antiderivative for the function provided graphically). 

Task 3 has a higher level of difficulty for the students, with only 41,3% answering 

correctly. Among the mathematical practices that the students performed as part of 

their answers, we could identify three types of cognitive configurations.  

Of the three configurations identified, the most used by the students was the ‘particular 

function’ (34,8%), in which a symbolic expression for the function is obtained from 

the graph of the function, and through algebraic procedures, it is possible to identify (or 

try to identify) which are the graphs of the elements of the family of antiderivatives. 

The second more used type of configuration was the ‘tabular interpretation of the 

graph’ (30,4%), which refers to the answers in which a table of values that describe the 

function given originally is constructed from the graph of the function provided; from 

the table constructed (and the relations and properties that are established with it) it is 

possible to try to identify the elements that belong to the family of antiderivatives. The 

configuration that we have identified as ‘advanced’ was activated in answers which 
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were characterized by the use of procedures and justifications centred on the 

properties/propositions of derivation, specifically the criterion for the analysis of the 

characteristics and construction of graphs of functions, in order to identify graphically 

the member that belongs to the family of antiderivatives of the function provided.  

Task 3: Calculation of the primitive function 

Task three was composed of two parts. For the first part, part A, we considered as 

correct all the answers in which a valid symbolic expression was provided for f(x); 

while incorrect answers were all the answers that did not provide valid symbolic 

expressions for f(x). For part B, all the answers which provided a second expression for 

f(x), different from the one given in part A and with valid justifications, were 

considered as correct. All the answers in which it was explicitly or implicitly 

mentioned that it was not possible to find a second expression for f(x) were considered 

incorrect.  

The students did not have problems to provide a symbolic expression for f(x) in part A 

of the task, with 87% of them giving a correct answer. However, the students had more 

difficulties to answer part B of the task, with 50% (23) of them giving a second valid 

expression for f(x) different to the one provided in part A.  

We could identify two types of cognitive configurations from the answers provided by 

the students to part A of the task. The first type ‘graphic-technical’, refers to the 

answers in which, from the data given in the table, a graphic representation is provided 

from which the algebraic expression is obtained (graphic and symbolic linguistic 

elements, respectively) for the derived function. Subsequently, an expression for f(x) is 

found from the argumentations and procedures centred on the “rules” 

(properties/propositions) of derivation. The second type of cognitive configuration, 

“numeric-technical”, refers to the answers in which a pattern (property) that allows 

establishing the rule of correspondence that defines the derived function 

(concept/definition) is determined from the combination of the data provided in the 

table. Later, from the argumentations and procedures centred on the “rules” of 

derivation, an expression for f(x) is found.  

Regarding the cognitive configurations connected to the answers in part B of the task, 

we found three types. The first type, ‘wrong interpretation of the uniqueness of the 

derivative’, are answers in which the students show a wrong conception about the 

uniqueness of the derivative at a point and the derived function, providing answers of 

the type “it is not possible to find another expression for f(x) because for f’(x) there is 

one and only one f(x), and vice versa”.  The second type of configuration, ‘equivalent 

functions’ is related to the answers in which, explicitly or implicitly, by means of the 

use of equivalent functions (concept/definition), some algebraic operations are 

developed (procedures that serve as arguments) to show that it is not possible to find 

another different function. The third type of cognitive configuration, ‘advanced 

solution’, was activated in answers in which the procedures and their justifications 

explicitly establish a connection among concepts such as antiderivative, the 
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fundamental theorem of calculus, rules of integration, etc., to point out with the 

proposition “another expression for f(x) can be any member of the family of functions 

”, that it is, indeed, possible to find another expression for f(x). As we can 

observe, 50% of the students (12 Colombian and 11 Mexican), mobilized the third type 

of configuration to provide their answers. Regarding the antiderivative, the third type 

of configuration brings associated the meaning of inverse process of derivation.  

Task 4: Difference between integral and antiderivative 

Task 4 aimed at exploring whether the students conceived the integral and the 

antiderivative as different notions or not.  

The correct answers were those in which the students pointed out and justified which 

were the differences between both notions. Partially correct answers were those in 

which the students mentioned that there were differences, but, the differences were not 

pointed out, or no justification was given, or the justification was not valid (from the 

institutional point of view). Only 26,1% of the students pointed out that the 

antiderivative and the integral were the same notion and that the terms were synonyms 

(Hall, 2010).  

As shown above, the most activated cognitive configuration in the answers was 

‘definitions for the notions’, used by 67,4% of the students. Such configuration was 

activated in answers in which there were arguments regarding the difference between 

the concepts of antiderivative and integral, providing definitions (personal or 

institutional) for both notions. For example, “…are different because the integral is a 

number, while the antiderivative is another function”. The configuration ‘examples of 

use’ was the second most activated configuration (2 Colombian students and 6 

Mexican), and was activated in answers in which there were arguments regarding the 

difference between both notions by means of concrete examples (situations/problems) 

of their use or application, for example, “the integral serves to calculate the area below 

the curve while the antiderivative serves to obtain a function”. It is important to point 

out that the examples of use that were provided in this second configuration, made 

reference to the notions involved as process (or procedure) and not from a conceptual 

point of view. The third type of configuration activated was ‘particular-general’ (4 

Colombian and 3 Mexican students), in answers in which the arguments were oriented 

towards the distinction of the antiderivative as a general case of the definite integral, in 

other words, the antiderivative was seen as indefinite integral, which is similar to what 

was found by Hall (2010).   

Task 5: Solution of ordinary differential equations 

The main objective of this task was to explore the process followed by the students in 

order to find the antiderivative, by means of a problem in which they needed to 

describe how they obtain the solution of a first order differential equation. 

Additionally, by means of the descriptions of the students, it was also intended to 

explore the meaning that they give to the constant C, known as constant of integration, 
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in order to see if they comprehend the “inverse process” that finding an antiderivative 

implies.  

Needless to say that the students had serious difficulties to solve the task presented. 

Only 5 of them were able to describe, from a correct mathematical point of view, the 

process that they follow in order to find the solution to the differential equation 

presented. Twelve of them (26,1%) omitted the constant of “integration” in their 

solutions, so we labelled their answers as partially correct. 63% of the students did not 

answer or answered something ‘incongruent’ (not valid or senseless from a 

mathematical point of view). The main cause mentioned by this 63% of the students, 

either orally at the moment that the questionnaire was given or written in the box 

intended for the answer to the task, was that they did not remember or did not know 

how to solve a differential equation.  

Regarding the types of cognitive configuration activated in the answers, these were of 

3 types, and were classified according to the type of linguistic element used in their 

arguments. The first, ‘verbal’, is a configuration that was activated in answers in which 

the verbal-descriptive language to narrate the procedure that they had to follow in 

order to solve a differential equation, but without “developing” such procedures 

symbolically, in other words, there is a description of what should be done, but it is not 

actually performed. Only one student who activated this type of configuration gave a 

correct answer.  

The second type of configuration, ‘symbolic’ was activated in answers that centred 

their arguments on the procedure itself of calculation of the solution, in other words, 

they solved the differential equation symbolically without describing with words the 

process they followed. The third configuration activated was a mixture of the two 

previous configurations. Four students (two Colombian and two Mexican) described 

the procedure and the properties/propositions used in the calculation of the solution, 

verbally. Three of the students, who mobilized the third configuration, 

‘verbal-symbolic’, answered the task correctly.  

FINAL REFLECTIONS 

Partial meanings of the antiderivative such as tangents-squarings and elementary 

functions (Gordillo & Pino-Fan, 2016), were not activated in the answers of the 

students. Now the questions would be, why did the engineering students of our study 

activate, with difficulties, one of the four partial meanings of the antiderivative? The 

answer to this question leads us, on the one hand, to face one of the limitations of our 

study, the type of problems suggested, were they appropriate for engineers, for their 

practices and interests?  Although the questionnaire was designed to activate the 

different partial meanings of the antiderivative, and it aimed at exploring the 

comprehension that university students have of such notion (Gordillo, et al., 2015). On 

the other hand, the question brings to our mind the role of the educator of engineers. 

For this purpose, the educator of future engineers should be aware, first of all, of the 
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diversity of partial meanings of the mathematical object under study, in our case, the 

antiderivative (Gordillo & Pino-Fan, 2016). By comprehending the use of such partial 

meanings in the context in which he works, the educator would have opportunities to 

pose problems that mobilize such meanings and, at the same time, adjust to the real 

needs of the engineers in training.  
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GENERALIZATION IN FIFTH GRADERS WITHIN A 

FUNCTIONAL APPROACH 

Eder Pinto and María C. Cañadas 

University of Granada 

 

This article discusses evidence of fifth graders’ (10-11 year olds’) ability to generalize 

when solving a linear function problem. Analyzed in the context of the functional 

approach of early algebra, the findings show that students generalized both when 

solving specific problems and when asked to define the general formula. The results 

are described in terms of the type of questions in which students generalized their 

answers, as well as of the functional relationships identified and the types of 

representation used to express them. Most of the pupils who generalized did so based 

on the correspondence between pairs of values in the function at issue. 

 

INTRODUCTION 

Research interest is growing around elementary school students’ understanding and 

expression of notions about algebraic concepts (Blanton, 2008). Algebraic thinking 

plays a key role in research on school algebra, for it entails the development of the 

ability to analyze relationships between quantities, deduce general patterns and use 

symbols to represent ideas, among others (Kaput, 2008; Kieran, 2004). Functional 

thinking is the component of algebraic thinking focused on in this study. In particular, 

elementary school students’ ability to generalize is explored in the functional approach 

to algebraic thinking. Students may express generalization, the key to such thinking, in 

words or, given time, symbolically (Blanton, 2008). 

Functional thinking addresses the relationship between two (or more) variables: 

specifically, it involves the types of thinking that range from specific relationships to 

the generalization of relationships (Smith, 2008). Although such thinking appears to be 

beneficial for students, its application in in the lower grades has received scant 

attention (Blanton & Kaput, 2011). In Spain, functional thinking is a fairly recent area 

of research that has yet to be fully explored, although some of the findings in 

connection with early schooling have merited international interest (e.g., Cañadas & 

Morales, 2016). This study was preceded by research on fifth graders’ ability to 

generalize from contextualized problems and the systems of representation used to 

express such generalization (Merino, Cañadas, & Molina, 2013).  

Those studies revealed a need for further exploration of fifth graders’ ability to 

generalize when establishing relationships between variables. In addressing that need, 
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this paper focuses on the generalization displayed by such students when solving a 

problem involving a linear function.  

 

GENERALIZATION AND REPRESENTATION 

According to some researchers, generalization, the key element in algebra, is present 

when students intuitively perceive a certain underlying pattern, even though they are 

unable to represent it clearly (Mason, Burton, & Stacey, 1988). Generalization implies 

deliberate reasoning that builds on specific cases to identify inter-model, 

inter-procedural or inter-structural relationships (Kaput, 1999). Krutestskii (1976) 

identified two levels of generalization: (a) seeing what is general and known in a 

specific instance; and (b) seeing something general and still unknown in an isolated 

instance. 

Algebraic symbolism has been directly associated with generalization in different 

grades. Moreover, other types of representation, including verbal, numerical, pictorial 

and manipulative, are of interest in the context of early algebra (Kaput, 2008; Merino, 

et al, 2013). Stacey (1989) distinguishes two kinds of generalization: (a) near 

generalization, for questions “which can be solved by step-by-step drawing or 

counting”, and (b) far generalization, for questions “which goes beyond reasonable 

practical limits of such a step-by-step approach” (p. 150). 

In a recent study, Blanton, Brizuela, Gardiner, Sawrey and Newman-Owens (2015) 

explored lower grade students’ ability to generalize in problems involving linear 

functions. Their findings distinguished between students who identified a specific and 

those who detected a general relationship between variables, and related the distinction 

to the ability to symbolize. Students who established the relationship between 

variables for specific cases “did not yet have a representational means to compress 

multiple instances into a unitary form that could symbolize these instances” (p. 542). 

FUNCTIONAL THINKING 

Functional thinking is a “component of algebraic thinking based on construction, 

description and reasoning with and about functions and their constituents” (Cañadas & 

Molina, 2016, p. 210) that ranges from specific relationships to generalizing the 

relationships between two (or more) variables (Smith, 2008). In most countries, 

students are not introduced to functions, which comprise the core content of this type 

of thinking, until secondary school. The present study used the linear function 

f(x) = ax + b (with the domain and codomain limited to natural numbers) as a port of 

entry for early algebra to afford students the opportunity to explore variations in 

quantities (Blanton, Levi, Crites & Dougherty, 2011).  

The study focused on bivariate functions. Smith (2008) defined the functional 

relationships involving two quantities that co-vary to be: (a) correspondence, or the 

relationship between the pairs of values for the two variables (a, f(a)); and (b) 
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covariation, or the relationship that describes how changes in one variable affect the 

other.  

METHOD 

This study forms part of a broader teaching experiment on functional thinking in fifth 

graders in which the contextualized problem posed in each session revolved around a 

linear function. This article discusses the results of the fourth and final session, when 

student progress was greatest because they had already worked on a number of 

problems involving functions. 

Subjects and tools 

The 24 subjects were fifth graders (10- to 11-year-old) enrolled in a school in Granada, 

Spain, who were deliberately chosen on the grounds of school and teacher availability. 

In the first three sessions of the teaching experiment, the students worked with 

contextualized problems for which the functions were: f(x)=2x, f(x)=3x and f(x)=3x-7. 

The students had not worked on problems involving functions prior to these sessions.  

The research team consisted in the teacher-researcher who led the sessions and two 

researchers who recorded the videos and helped answer students’ questions. In the tiles 

problem posed to all students, the implied function was f(x)=2x+6. The problem and 

related questions are reproduced in Figure 1.  

A school wants to re-pave its corridors because they are in poor condition. The faculty 

decides to use a combination of white and grey tiles, all square and all the same size. 

They are to be laid as in the drawing. 

 

The school contracts a company to re-pave the corridors on all three floors. We want 

you to help the workers answer some questions before they get started. 

Q1. How many grey tiles will they need for a corridor with 5 white tiles?  

Q2. Some corridors are longer than others. So the workers will need a different 

number of tiles for each corridor. How many grey tiles will they need for a corridor 

with 8 white tiles?  

Q3. How many grey tiles will they need for a corridor with 10 white tiles?  

Q4. How many grey tiles will they need for a corridor with 100 white tiles?  

Q5. The workers always lay the white tiles first and then the grey tiles. How can they 

figure out how many grey tiles they need if they have already laid the white ones? 

Figure 1: The tiles problem 
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The questions posed involve: (a) specific instances (Q1, Q2, Q3 and Q4) and (b) the 

general case.  

The information gathered included the session videos and the students’ answers to the 

questionnaire. This article describes the results deduced from the students’ written 

responses. 

 

Analytical categories and data analysis 

Category construction was based on grounded theory, which deems that phenomena 

are not conceived statically (Corbin & Strauss, 1990). The theoretical framework, 

background and characteristics of the contextualized problem were applied to define 

some of the categories. Generalization was identified based on its presence or absence 

in students’ replies to the questions, with a focus on the answers where it was detected. 

Drawing from the ideas on generalization relevant to the conceptual framework of this 

study, a preliminary analysis of the data revealed two types of questions in which 

students exhibited generalization: (a) in Q1, Q2, Q3 and Q4, where they were asked to 

reply to specific (near or far) questions; and (b) in Q5, where they were (directly) asked 

to generalize. These two types of generalization were respectively labelled 

spontaneous and prompted generalization.  

Students’ generalization was described in terms of the functional relationship 

generalized (correspondence or covariation) and how it was represented (verbally, 

with algebraic notation or combinations of one or the other or both with other systems).  

Students were labelled as Si where i = 1, ... , 24. 

 

RESULTS AND DISCUSSION 

Of the 24 students, five gave direct answers only (i.e., only the numerical result), 

described how they counted the tiles or simply repeated the problem: no generalization 

could be attributed to these pupils. The other 19 answered at least one of the questions 

in a way that attested to generalization. Two profiles were identified: (a) three students 

exhibited both spontaneously and prompted generalization; and (b) 16 students 

generalized only when prompted (when replying to Q5). 

Two of the students who generalized spontaneously and when prompted (S5 and S8) 

used algebraic notation to represent their replies. S8’s answer to Q1 was: “formula: 

(x·2) + 6 = 16; x = number of white tiles.” Figure 2 shows how this student related the 

pairs of values (number of white tiles-number of grey tiles), given five white tiles. 
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Figure 2: Example of correspondence, S8 in Q1 

 

Figure 2 also illustrates S8’s use of algebraic symbols “(x·2)+6” to express the general 

relationship. In Q2, Q3 and Q4, this student simply answered the questions. That was 

interpreted to mean that the student used the same functional relationship for 8, 10 and 

100 tiles, relating the pairs of values (a, f(a)) for a = 8, 10 and 100 and correctly finding 

that the number of grey tiles needed would be 22, 26 and 206, respectively.  

S6, the third student who generalized spontaneously and when prompted, described the 

generalization in Q1 in the following words: “they need 16 grey tiles. For every white 

tile, there are 2 grey tiles, except on the sides, where there are 6. All the whites x2 + 6 

on the sides”. Hence S6 identified the relationship between variables as well as the 

constant number (six white tiles on the sides). This student used both verbal and 

numerical notation to express the relationship.  

This student’s answer to Q5 was: “multiplying the number of white tiles times 2 plus 6 

on the sides: x·2+6=x”. In other words, S6 used two types of representation: verbal and 

algebraic, exhibiting a transition from natural to a more general and abstract language. 

Note that the three students who generalized spontaneously deduced the general 

formula by identifying the correspondence relationship in the function f(x)=2x+6. 

Most of the 16 students who generalized when prompted (in Q5) expressed the general 

relationship between the pairs of values (correspondence) verbally. A few 

representative examples follow. 

The students identified the pattern from which they deduced the general formula in a 

number of ways. In one, eight students described generalization in terms of a rule that 

in algebraic notation would be represented as f(x)=2x+6. S14, for instance, answered 

“you get the answer by multiplying the white tiles times 2 and then adding 6”. In this 

case, as in the other seven, generalization was expressed verbally. Student S3, in turn, 

replied “multiplying the white tiles by two and adding three at the beginning and three 

at the end”. The pattern detected by this student would be represented in algebraic 

notation as f(x)=2x+3+3. S24 adopted a third approach, identifying the pattern to be 

f(x)=2(x+2)+2.  

One of these students, S1, used primarily verbal representation, although in 

conjunction with algebraic symbols. In Q5 the answer was “you need to use 2x white 

tiles +6”; i.e., verbal representation predominated, although with some elements of 

algebraic symbolism. The implication would seem to be that this student, who used 

some algebraic symbols sporadically when answering the previous questions, was en 

White tiles (x) Grey tiles (y) 

       5 

 

     16 
(x·2)+6 
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route to attaining a more natural and spontaneous use of algebraic symbolism to 

represent the relationship between variables. 

Lastly, the relationship was incorrectly identified by six students in a way that 

translated to algebraic notation would yield f(x)=2x+2. One representative example of 

this relationship between variables was provided by S9, whose answer to Q5 was 

“multiply the top and bottom rows by 2 and add 2”. Like the other five students, this 

pupil established a general, albeit mistaken, relationship between the variables. 

CONCLUSION 

This research supplements other studies focusing on lower grade students’ ability to 

generalize in the context of classroom algebraic functions (e.g., Blanton, Brizuela, 

Gardiner, Sawrey, & Newman-Owens, 2015). Here the emphasis was on 

generalization as deduced by fifth graders.  

The tiles problem affords the opportunity to explore students’ functional thinking, as it 

enables fifth graders to progress beyond recursive sequences. In fact, they generalized 

on the grounds of correspondence and covariation relationships that involved the 

values of a set of variables. 

The overall finding was the existence of two situations in which students generalize: 

(a) when answering questions about particular (near or far) instances; and (b) when 

specifically prompted to generalize. Three students generalized spontaneously, i.e., 

where the question could be answered without doing so. They consequently used 

generalization as a strategy to reply to questions involving specific circumstances. All 

the students who established a general relationship between the variables 

(spontaneously or when prompted) based their deduction on the correspondence 

relationship. 

The students who generalized spontaneously used algebraic notation and verbal 

representation to express the general relationship between variables. Representation 

was primarily verbal in students who generalized only when prompted. In line with 

Blanton, Brizuela, Gardiner, Sawrey, and Newman-Owens (2015), the present authors 

venture that using algebraic notation would enable students to visualize generalization 

in fuller detail. That is consistent with the fact that the students who used notation in 

addition to verbal representation to express relationships did so in questions where 

generalization was not necessary (spontaneous generalization).  

Moreover, the different ways in which students detected patterns in a problem 

involving a linear function (f(x)=2x+6; f(x)=2x+3+3; f(x)=2(x+2)+2; f(x)=2x+2) 

afforded the opportunity to interpret and understand their thought process when 

identifying a general relationship between variables. 

Lastly, the present findings are related to earlier research results on Spanish fifth 

graders’ ability to generalize (Merino et al, 2013), in which verbal representation was 

also observed to prevail. This paper describes the general functional relationships 

detected by students and the questions in which they were identified by functional 



Pinto and Cañadas 

_______________________________________________________________________________________________________________________

PME 41 – 2017 4-55 

thinking. These findings support the application of this approach to mathematics 

teaching in the lower grades, for its favors and enhances algebraic thinking (Blanton, 

2008). 
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UNPACKING YOUNG CHILDREN’S FUNCTIONAL THINKING 

Marios Pittalis, Demetra Pitta-Pantazi and Constantinos Christou 

Department of Educational Sciences, University of Cyprus 

 

Based on a synthesis of the literature, a model for young children’s (Grades 1-3) 

functional thinking was formulated. The major constructs incorporated in this model 

were recursive patterning, correspondence relationships and covariational thinking. 

The study involved three hundred and forty five students. Data analysis validated the 

hypothesized model and suggested a sequential effect between the three factors. 

Recursive patterning had a direct effect to correspondence relationships and the latter 

had a direct effect to covariational thinking. 

INTRODUCTION 

Initiatives worldwide have underlined the significance of early algebra in mathematics 

education and pointed out that to meet the goal of “algebra for all”, students in 

elementary school should be involved in activities that prepare them for algebra in later 

grades (National Council of Teachers of Mathematics, 2000). Thus, students in early 

grades should be encouraged to develop early algebraic thinking which will be 

expanded later. Developing such thinking could contribute to bridging the gap between 

arithmetic and algebra. This relatively new perception of early algebra has been 

gaining ground in mathematics education. A number of researchers (Drijvers, Goddijn, 

& Kindt, 2011; Blanton & Kaput, 2011) actually proposed the introduction of 

algebraic reasoning to students even before primary school.  

Functional thinking is considered to be a fundamental dimension of early algebraic 

thinking (Blanton & Kaput, 2011; Carraher & Schliemann, 2007; Drijvers, Goddijn, & 

Kindt, 2011; Smith, 2008) and an important unifying strand across K-12 curriculum. 

Functional thinking involves generalizing relationships between covarying quantities 

and representing and reasoning with these relationships through natural language, 

algebraic (symbolic) notation, tables, and graphs. Most studies on functional thinking 

were conducted in secondary education since it is believed that functions require 

abstract thinking. However, research on functional thinking with younger students is 

growing due to the significant role it appears to play algebraic thinking (Blanton, 

Brizuela, Gardiner, Sawrey & Newman-Owens, 2015). Thus, there is a strong need to 

further investigate the nature of young children’s functional thinking.  

In this study, we examined the structure of young children’s (Grades 1-3) functional 

thinking by empirically examining the validity of a theoretical model that synthesized 

research findings regarding the nature of functional thinking. In addition, we traced 

groups of students who exhibited different patterns of responses to functional tasks and 
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finally we investigated possible relations between different components of functional 

thinking.  

THEORETICAL BACKGROUND 

Curriculum developers, policy makers, and researchers explored the way in which 

elementary students should be involved in early algebraic activities (Carraher & 

Schliemann 2007; NCTM 2000). In most of these cases, early algebraic tasks are 

considered the tasks that bridge arithmetic to algebra by promoting (a) understanding 

of the function of operations, (b) generalization and justification, (c) extension of the 

number system and (d) notation with meaning. It is suggested that these types of 

activities could help students make the transition from arithmetic to algebra and also 

empower computational fluency. In addition, research studies showed that elementary 

school children, primarily in Grades 3 to 5, manipulate functions and explore 

recursive, covarying, and correspondence relationships (Blanton, Stephens, Knuth, 

Gardiner, Isler & Kim, 2015). Blanton and Kaput (2004) found that even kindergarten 

to Grade 2 students can be successful in activities that require the interpretation of 

functional relationships, express covariation and correspondence among quantities. 

Research indicated that children of this age can investigate relationships between 

quantities, and not only simple recursive patterns. They achieve this by creating 

t-charts and other representations as well as with the use of variable notation (Blanton, 

et al., 2015; Cooper & Warren, 2011). 

Functional thinking has been described as the specific type of thinking that focuses on 

the relationship between varying quantities and representing these relationships 

through natural language, symbols and appropriate representations. Smith (2008) 

proposed a framework to discuss the kinds of functional thinking found in classroom 

data. This framework includes three types of functional thinking: (a) recursive 

patterning: finding variation within a sequence of values, describing the pattern rule in 

words and using a rule to predict near data; (b) “correspondence relationship”: 

identifying a correlation between variables, using the function rule to predict far 

function values, finding the value of the independent variable, given the value of the 

dependent variable (c) covariational thinking: analyzing the way in which two 

quantities vary simultaneously and keeping that change as an explicit, dynamic part of 

a function’s description and. Research findings in the upper elementary grades showed 

that the study of recursive patterns was a necessary bridge for the development of 

children’s functional thinking since a student cannot understand a relationship between 

two quantities without first understanding variation in a single sequence of values 

(Blanton, et el., 2015; Cooper & Warren, 2011). 

Research findings in early childhood education underlined the importance of early 

patterning skills and the early development of structure in mathematical thinking 

(Papic, Mulligan, & Mitchelmore, 2011). By the term patterning skills we mainly refer 

to the capacity of conceptualizing replicable regularity. Patterns may occur within a 

single object, within an ordered set of objects or between two ordered set of objects in 
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the form of spatial structure patterns, repeating patterns and growing patterns (spatial 

or numeric) (Papic, et al., 2011). Recognizing the structure of a pattern is central to the 

notion of unit of repeat and the development of composite units and may contribute to 

the development of structure and generalization.   

 

THE PRESENT STUDY 

The purpose of the present study was to describe young children’s (Grades 1-3) 

capacity in functional thinking, through empirically validating a proposed theoretical 

model. In an attempt to provide a comprehensive, functional, flexible and dynamic 

description of functional thinking, we hypothesized that young children’s functional 

thinking captures three distinct, but correlated dimensions, as proposed by Smith 

(2008) and adopted by Blanton and Kaput (2011). We hypothesized that the first 

dimension can be conceptualized by a latent factor that models the key parameters of 

recursive patterning (Blanton & Kaput, 2011; Papic, et al., 2011; Smith, 2008). In 

particular, we hypothesized that recursive patterning is a second-order latent factor that 

consists of children’s capacity to extend repeated patterns, express in symbolic form 

the rule of a repeated pattern and extend growing patterns (geometric and numeric) by 

recognizing and isolating the repeated action. The second dimension can be modelled 

by a latent factor that corresponds to children’s capacity to notice the correspondence 

relation between corresponding pairs of variables, while, the third dimension by a 

latent factor that involves functional thinking; stating the rule based on which two 

quantities covariate with an emphasis on coordinating the underlying rate of change 

and the corresponding changes in the individual variables, when x increases by 1, y 

increased by 2 (Smith, 2008).  

Measures 

Four types of tasks were used to measure recursive patterning: (a) extending geometric 

repeated patterns (Tasks 1-3), (b) identifying the rule of a repeated geometric pattern 

(Tasks 4-6), (c) extending geometric growing patterns (Tasks 7-9), and (d) continuing 

numeric patterns (Tasks 10-12). In Tasks 1-3 students were asked to find the next three 

terms of repeated geometric patterns of the form ABAB, AABB and AAB. In Tasks 

4-6 students were asked to express with letters the rule of repeated geometric patterns. 

In Tasks 7-9 students were asked to extend geometric growing patterns (Papic, et al., 

2011). In Tasks 10-12 students completed the next three terms of a numeric pattern 

(e.g. 4, 8, 12,…). Nine tasks were used to measure correspondent relationships. Three 

of them asked students to express with symbols the correspondence relationship of the 

input and output value of three function machines (Tasks 13-15) and to find the input 

value of the machine, given the output value (Tasks 16-18). The rules of the function 

machines were simple additive and multiplicative relations (e.g. add 2, multiply by 3). 

In the other three tasks students were asked to express in words the rule of function 

machines (Tasks 19-21). Five tasks were used to measure covariational thinking. In 

Tasks 22-24 we adopted an activity suggested by Blanton and Kaput (2011) in which 
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students were asked to investigate the number of body parts of a growing snake and 

express the change in the length of the snake in terms of varying number of days. 

Finally, in Tasks 25-26 students were asked to analyse the change of the length of a 

plant compared to the change of days (presented in a graph).  

Participants, Procedure and Data Analysis 

Three hundred and forty five young children (171 males and 174 females) were the 

subjects of the study from two urban primary schools in Cyprus. One hundred and 

seventeen students were first graders, 115 were 2nd graders and 113 were 3rd graders. 

The tasks of the study were randomly split into two parts. Each part was administered 

in the form of a written test during one school period. The two parts were administered 

in two successive days. The instructions were provided in written and verbal form.   

Confirmatory factor analysis was used to examine the validity of an a priori model, 

based on past evidence and theory. CFA was conducted by using MPLUS (Muthén & 

Muthén, 2007). Latent class analysis was used to trace categories of students reflecting 

different patterns of responses in the factors of functional thinking. To evaluate model 

fit, three widely accepted fit indices were computed: The chi-square to its degrees of 

freedom ratio (x2/df should be <2); the comparative fit index (CFI should be >.9); and 

the root mean-square error of approximation (RMSEA should be <.08). The 

Cronbach’s alpha index of internal consistency was very good (a=.87). 

RESULTS 

Confirmatory factor analysis (CFA) was used to evaluate the construct validity of the 

model, by validating that the a-priori model matched the data set of the present study 

and determined the “goodness of fit” of the hypothesized latent construct. The 

Comparative Fit Index (CFI) of the three-factor model was .97, the ratio of χ2  to the 

degrees of freedom was 1.49 (χ2 =437.58 and df=292) while RMSEA did not exceed 

.04. CFA showed that the factor loadings of the tasks employed in the present study 

were statistically significant and most of them were rather large (see Figure 1). The 

factor loadings ranged from .40 to .97, giving support to the assumption that all latent 

factors were adequately measured by the observed variables. Thus, in accordance with 

our theoretical assumption, all functional thinking measures were clustered into one 

second order and two first-order factors in the expected factor loading pattern. These 

factors served as the latent structure of the functional thinking model. In particular, the 

second-order latent construct “recursive patterning” could accurately model students’ 

variances in extending and describing the rule of repeated geometric patterns, 

extending growing geometric and numeric patterns. The factor loadings of the four 

first-order factors (repeated geometric patterns extension, repeated geometric patterns 

rule, growing geometric pattern, number patterns) to the second order factor “recursive 

patterning” ranged from .53 to .72 (see Figure 1), showing almost equal contribution to 

the hypothesized higher order construct. In addition, the construct “correspondence 

relationship” could accurately explain students’ variances in identifying the relation 

between variables and use the function rule to predict far function value, and finally the 
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theoretical construct “covariational thinking” could adequately model students’ 

variances in stating the rule in which two quantities vary simultaneously. Significant 

correlations were found between the three factors. The correlation between recursive 

patterning and correspondence relationships was .71 (p<.05), the correlation between 

covariational functioning and correspondence relationships was almost identical 

(r=.72, p<.05), while the correlation between recursive patterning and covariational 

thinking was .78 (p<.05).  

Latent class analysis was used to trace categories of students that reflect categories of 

students with different patterns of responses. We applied a stepwise method to validate 

the model under the assumption that there were one, two, three, four or five categories 

of students. The best fitting model with the smallest AIC and BIC indices and the 

largest entropy was the one involving three categories of students. Table 1 presents the 

mean and standard deviation of the three categories of students. The first category of 

students (n=56) reflected students that fail in the correspondent relationship and 

covariational thinking tasks and just over exceed 50% in recursive patterning tasks. 

The second category of students (n=204) had a very good performance in recursive 

patterning tasks ( 88.x ) and failed in the other two types of tasks. The third category 

of students had almost a perfect performance in recursive patterning tasks ( 96.x ) and 

satisfactory performance in correspondence relationship tasks ( 64.x ) and 

covariational tasks ( 69.x ). Thus, the first category can solve successfully just half of 

the recursive patterning tasks, the second category can solve successfully almost 90% 

of the recursive patterning tasks, while the third category can additionally solve 

sufficiently the correspondence and covariational tasks. It seems that the distinguished 

characteristic of this category is the fact that they can manage both the correspondence 

and covariational tasks. All categories consist of students from all grades (e.g. 13% of 

category 1 are 3rd-graders while 5% of category 3 are first graders).  

 

 Category 1 Category 2 Category 3 

 Mean SD Mean SD Mean SD 

Recursive Patterning 

(n=56) 

.52 .12 .88 .10 .96 .05 

Correspondence 

relationship (n=204) 

.10 .12 .21 .16 .64 .19 

Covariational 

thinking (n=85) 

.05 .10 .16 .20 .69 .32 

Table 1: Means of the three categories of students. 
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Figure 1: The nature of young children’s functional thinking 

Taking into consideration the distinguished characteristics of the three categories of 

students, the correlations between the three factors and the research findings 

suggesting that recursive patterning is a necessary bridge in the development of 

children’s functional thinking, we examined the validity of a structural model to 

investigate the relations between the three factors of functional thinking, This model 

hypothesized the existence of direct effects between the three factors, representing 

individual differences in the three functional thinking factors. Thus, we tested the 

Correspondence 

Relationships 
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validity of a model where correspondence relationship factor was regressed on 

recursive patterning factor and covariational thinking factor was regressed on 

correspondence relationships factor. The fit of this structural model was very good 

(CFI=.96, χ2=467.78, df=293, χ2/df=1.59, RMSEA=.04). Figure 2 presents the 

sequential path between the three factors. The standardized solution of the model 

showed a statistically significant regression coefficient of recursive patterning to 

correspondence relationship (r=.79, z=10.63, p<.05) and almost an equal regression 

coefficient of correspondence relationship to covariational thinking (r=.76, z=20.76, 

p<.05). Thus, the adopted structural model supported the existence of a sequential 

effect between the three factors (Recursive Patterning→ Correspondence 

relationship→ Covariational thinking). 

 

 

Figure 2: The relation between the functional thinking factors. 

DISCUSSION 

The contribution of the study lies on the empirical evaluation of a theoretical model 

that unpacks the dimensions of young children’s functional thinking, based on a 

synthesis of the literature (Papic, et al., 2011; Smith, 2008). The results of the study 

showed that young children’s variances in functional thinking situations can be 

modelled by three distinct and interrelated latent factors. The first factor involves 

children’s capacity in recursive patterning tasks, the second factor in correspondence 

relationship situations, while the third factor reflects covariational thinking. In 

addition, the results showed that there is a sequential effect between the three factors. 

Young children’s capacity in recursive patterning directly predicts their capacity in 

correspondence relationships and the latter directly affects covariational thinking. This 

finding reaffirmed research findings suggesting that recursive patterning is a necessary 

bridge of children’s functional thinking development (Cooper & Warren, 2011). Thus, 

students’ advancements in recursive patterning might enhance their further 

development in correspondence relationships and covariational thinking by enhancing 

awareness of the structure of patterns and applying generalizations strategically. In 

addition, the study suggested that finding the correspondence relationship facilitates 

children’s covariational thinking. Children’s developments in recursive patterning and 

correspondence relationships make possible the qualitative change in functional 

thinking that could explain the successful manipulation of covariational tasks. 
Defining the components of young children’s functional thinking is important because 

mathematics teachers should have a deep understanding of the components of 

functional thinking and the specific type of tasks that can been taught to young students 

Correspondence 
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from Grade 1 to Grade 3. The results also suggest the existence of a possible learning 

trajectory for functional thinking from recursive patterning, to correspondence 

relationships and finally to covariational thinking. However, future studies can 

actually explore the impact of different teaching approaches on these types of 

functional thinking tasks.  
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MULTILINGUAL MATHEMATICS TEACHING AND LEARNING: 

LANGUAGE DIFFERENCES AND DIFFERENT LANGUAGES 

Núria Planas 

Autonomous University of Barcelona 

 

The reported research provides findings from the study of lesson episodes during 

student group work in multilingual mathematics teaching and learning. The 

theoretical lens of language-as-resource is taken to examine how certain uses of 

language and representations of speakers are voiced in ways that positively mediate 

the emergence and restoration of mathematics learning opportunities. This is 

illustrated with an example of analysis applied to an episode where language concerns 

are built up close to the communication of a mathematical idea for the resolution of a 

task. Overall, language is framed as a powerful resource in the classroom, whose 

resourcing for mathematics learning implies a multiplicity of languages (and hence 

discourses and voices) about language modeling and group identification.  

WHAT KIND OF RESOURCE IS LANGUAGE?  

In this report, the notions of social language and mathematics learning opportunities 

are examined under the theoretical lens of language-as-resource (Planas, 2014). This 

lens presupposes the ontological stance that language is not an actual resource unless 

someone uses it in a context of activity with particular tasks intended for some learning 

opportunity to emerge. It is therefore in the use that the potential quality of resource for 

a certain purpose can be realized and recognized (Remillard, 2013). Once language is 

put to use in context, it is also presupposed that numerous possible directions for the 

development of activity are present in a number of ways, each of them of value within 

specific discourses and for the resourcing of particular directions. In this framework, 

the issue of how teachers and students use language as they do during multilingual 

mathematics teaching and learning becomes fundamental.  

To examine this issue, in my classroom-based research I look at how social languages 

and mathematics learning opportunities work together in the understanding of small 

group work and whole class discussion. In the research completed so far with group 

work episodes in four lessons, the analysis shows discourses about uses of language 

and representations of speakers in interaction with the course of student mathematical 

activity. At this stage a case can be argued regarding the relationship between the 

creation and restoration of mathematics learning opportunities, on the one hand, and 

what is discursively built up and voiced in classroom discourse with the support of a 

variety of languages and their speakers, on the other.         
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Putting language into the social  

Previous work on students’ difficulties with languages has been decisive in setting a 

rationale for pursuing a profound understanding of language (diversity) in 

mathematics education research (Phakeng, 2016). Forms of speaking, varieties of 

languages, discourses and voices constitute a family of notions that have preceded and 

prepared adoption in the field of the notion of social language and, with it, the 

progressive move away from deficit-based arguments. In this respect, Barwell (2016) 

draws attention to how “natural” languages (i.e. normative vocabularies tied to abstract 

grammatical systems) weave discourses and voices together, and to how discourses 

and voices in turn weave representations of certain languages as “natural.” 

Mathematics teaching and learning is rarely about language in the broad sense in 

which we talk about using, e.g., Spanish, but rather about the “social languages” that 

recognizable groups of people use to carry out and voice their social practices. When 

we enter the mathematics classroom, we all navigate within, between and across the 

different social languages through which participants express their views and worlds.   

The notion of social language calls into question developmental views of language 

proficiency as a variable of time and individual effort, as well as essentialist views of 

language diversity that equate, e.g., one bilingual classroom with two distinct 

languages. The illusion of measuring language proficiency and labeling and counting 

languages indicates the underlying conceptualization of language as material, pure and 

unitary. Even though this may not be the standpoint taken in some research, exclusive 

expressions like bilingual classrooms and bilingual students are not rare. Languages 

may look more alike if they exist within a “single” labeled language, and indeed this is 

relevant in the understanding of the actual diversity of a classroom, but there is a more 

complex reality across the countless social languages – that often go under the rubric of 

a language – with a role in representing student (language/activity) proficiency.  

Situating language in mathematics learning 

The question of the social underpinnings of mathematics learning is not new. In their 

seminal work, Yackel, Cobb and Wood (1991) presupposed the availability of 

opportunities for the learner to learn mathematics; that is the existence of mathematical 

ideas and social conditions more or less ready to be grasped for the development of 

mathematics learning in a context of activity. The research design experiments that 

followed from that work aimed to introduce changes in the social conditions of 

teaching and learning in mathematics classrooms. These experiments were 

substantiated by three inseparable claims: learning cannot take place without learning 

opportunities being available, these opportunities are created by people, and they are 

made available in accordance with the social conditions and not only the personal 

insights of individuals. Since not all the opportunities created in a context of activity 

are tackled as such by everyone all of the time, a separate issue was whether or not they 

are exploited in activity conducive to individual learning.  
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Together with the readiness of favorable social conditions, Saxe (2012) relates the 

discussion of mathematical ideas to the creation, exploration and development of 

mathematics learning opportunities. He refers to the travel of ideas in his research into 

the ways in which mathematical ideas are produced and transformed over the course of 

discussion-rich interaction, hence enabling new ideas to emerge. The availability of 

opportunities to learn mathematics is thus posed in relation to the availability of 

resources to allow ideas to surface and travel. Making mathematical ideas travel 

implies in turn the availability of resources for participation in discussion-rich 

interaction, as well as the availability of opportunities to utilize these resources in 

classroom activity. This formulation supports the relationship between opportunities to 

learn mathematics and opportunities to resource mathematics learning. Given that 

language is critical for participation in discussions, we finally come to the connection 

between availability of opportunities to learn mathematics and availability of (social) 

language(s) in the communication and discussion of mathematical ideas.  

From a developmental approach, language availability is a long-term product that, 

once achieved by someone, implies durability. Accordingly, some learning 

opportunities are thought of as diminished or postponed in contexts of activity where 

there are participants who do not “own” such a product and, for this reason, are 

expected to contribute less than others. Within the framework of social languages, 

language availability – and the corresponding facilities to allow ideas to be expressed, 

collected and commented upon by multiple people – implies a different understanding 

(Planas, 2014). This availability is variously high or low for a number of reasons other 

than preconceived levels of proficiency in a given language. Thus, it is not a product to 

be achieved by individuals, but a dynamic feature of the context in which language is 

put to use by various participants to voice different discourses in the interaction. Under 

the basic assumption that language is not available all the time for all participants 

(Makoni & Pennycook, 2005), the opportunities to use it to make ideas travel can be 

(dis)encouraged by infused processes of assessment and (dis)placement of speakers 

who do not conform to standardized forms of speaking and acting.  

APPLYING LANGUAGE-AS-RESOURCE TO THE STUDY AND VIEW OF 

STUDENT MATHEMATICAL ACTIVITY    

The data in this report draw from a Grade 8 classroom of a school in a low-income 

zone of Barcelona, the capital city of Catalonia, a north-eastern region of Spain with its 

own language in education policy – Catalan is the official language of teaching and 

learning, although it is not necessarily the language of learning and thinking for all 

students. The teacher was a Catalan-dominant speaker who occasionally used a variety 

of Castilian Spanish in her lessons. Fourteen students were children from Latin 

American (Colombian, Ecuadorean and Peruvian) families who declared Spanish to be 

their home language, nine of whom were raised abroad; five students were children of 

Castilian Spanish-dominant families, two of whom were raised in Castilian-speaking 

parts of Spain; and four were Catalan-dominant speakers raised in Barcelona. Varieties 

of Colombian, Ecuadorean, Peruvian and Castilian Spanish, or combinations of these, 
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are not typical of the varieties of Spanish spoken by people raised in Catalan-speaking 

regions. There are differences in the sounds of some letters and in the conjugation of 

some verbs, among others. Students who begin to learn the language of instruction at 

school – mostly due to histories of immigration – are located in special lessons for 

some time to learn this language. When they finally enter the regular classroom they 

tend to speak varieties of Catalan with sounds, conjugations and words borrowed from 

their home languages; such varieties are marked as “poor Catalan” by groups who 

claim ownership of the language of instruction in the region.        

Local educational debates that occupy much of the current public discourse generally 

address the merits of the parallel system of special lessons for “latecomers” (Planas & 

Civil, 2008), rather than debating about how children learn and teachers teach in either 

system. Other important debates are motivated by ideological stances regarding the 

politics of language use at school. All these debates inform curricular decisions and 

pedagogic practices that often adhere to rigid conceptualizations about what counts as 

language – in theory and in classroom practice – and how language use is seen in 

relation to mathematics teaching and learning.  It is thus significant to explore how 

language is shaped by discourses and voices that make some mathematical ideas more 

likely to travel (and thus some mathematics learning opportunities more likely to 

emerge) when they are expressed in the standardized language of instruction by 

speakers who are represented as (more) competent in this language. Even if a student 

has the necessary school mathematics knowledge to discover and value a learning 

opportunity, she may fail to do so because there is limited access to certain forms of 

speaking and speakers in the context in which the opportunity arises.  

Lesson, task and methods 

Student work in three small groups was video-taped during a problem-solving unit of 

four lessons devoted to algebra. The groups had one or two Catalan-dominant speakers 

each and remained the same throughout the sequence. For this report, I take lesson four 

and the group with Maria and Ton, from Catalan-dominant families, and Ada and Leo, 

who were raised in Peru and attended classes for latecomers during Grade 6. The 

problem was a representation of the Fibonacci numbers starting at 1 and 2:  

In a house there is a staircase with ten steps. If we can go down the steps one or two 

at a time, in how many different ways can we go down the staircase?  

Transcripts of lesson data were produced regardless of shifts between the two labeled 

languages involved. Group work was coded under three main types: Language 

Modeling (LM), Group Identification (GI) and Mathematical Ideas (MI). LM was 

assigned to turns with visible references to vocabulary (LM-V), grammar (LM-G) or 

pronunciation (LM-P), whereas GI was assigned to turns with mentions of or allusions 

to speakers as members of groups, in some of which issues of vocabulary (GI-V), 

grammar (GI-G) or pronunciation (GI-P) were mentioned. Each coded turn was 

interpreted as a component part of the activity that was constituted during mathematics 

teaching and learning. The segmentation of talk into turns was followed by 
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segmentation into instances. In this study an instance is defined as a range of spoken 

turns, which are sequential but may not be consecutive, from a single sentence all the 

way to a lengthy interaction. After the detection of LM and GI turns and the 

construction of paired instances, the analysis went on with the focus on student 

mathematical activity. This stage was guided by the search for turns and paired 

instances with literal comments and implied allusions regarding ideas of relevance for 

the understanding and resolution of the problem. MI codes were named after topic 

identification in accordance with the central mathematical content to be kept for the 

development of the idea. From here, LM, GI and MI instances were related in the 

construction of episodes with one MI and at least one LM/GI instance as well as 

sufficient before-and-after-turns to understand what was being mathematically 

developed and how some language issues had been voiced in-between.   

For each episode and when feasible, relationships were elaborated between the 

availability of language and the availability of mathematical ideas. This was done by 

imagining “figured worlds” (Holland, Lachicotte, Skinner & Cain 1998) under two 

basic phenomenological standpoints: 1) any account of reality requires imagination, 

and 2) imagination is necessary to make any inference out of what appears. In the 

application of imaginative variation to each episode – any variation is a possibility –, 

the following dual question was posed: ‘Can language modeling and group 

identification be imagined as obstacles to/resources for mathematics learning?’ 

Answers originated from the examination of possible directions in the ways that 

discourses and voices (could) put language to use. This process served to imagine 

language within a cycle of diverse resourcing directions. Since many interpretations 

can be imagined, the variations considered were only those in which the new episodes 

lacked the coded language turns but kept the mathematical idea. The varying of 

language modeling and group identification was undertaken to explore how realistic 

the development of the corresponding mathematical idea was in the worlds imagined. 

“Minor” details taking on “major” importance 

In this section, we analyse an episode of group work in lesson four. The creation of 

certain opportunities to learn from the study of a simpler version of the given problem 

is associated with the voicing of some concerns about language modeling (LM-V) and 

group identification (GI-V). Language is interactionally worked out turn by turn in 

ways that model forms of speaking, represent groups of speakers, and allow the 

emergence of new ideas to be discussed. The transcript below shows how apparently 

“minor” details in language use can take on “major” importance in interaction. 

Language modeling and group identification are voiced, respectively in relation to the 

right meaning of the Catalan word for going down (“baixar” in [5]) and the name of the 

student at risk of interpreting the word wrongly (“Ada” in [6]). When it is later said that 

there is “too much to go down and jump” [9], mentions of the distinction between the 

two verbal actions are not taken up and a relevant mathematical idea for an approach to 

the resolution of the Fibonacci problem emerges instead. 
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1 Maria: Per què tens tot uns i aquí tot dosos? [Why do you have all ones and here 

all twos?] 

2 Leo: Puedes bajar sempre o saltar sempre. [You can always go down or always 

jump.] 

3 Maria: Sempre es baixa, no t’estàs parat. [You always go down, you don’t stand 
still.] 

4 Leo: Pero a veces no bajas, saltas. Y a veces solo bajas. [But sometimes you 
don’t go down, you jump. And sometimes you go down only.] 

5 Ton: Baixar no vol dir d’un en un. Mira, baixar és un a un, dos a dos, tres a tres, 
tot és baixar. [Going down does not mean one by one. Look, going down 
is one at a time, two at a time, three at a time, all this is going down.] 

6 Maria: Ada, tu ho tens clar?  [Ada, is this clear to you?] 

7 Ada: Sí, baixar. [Yes, going down.] 

8 Ton: Així et deixes de barrejar uns i dosos. [This way you miss combinations 

of ones and twos.] 

9 Leo: He empezado pero hay mucho que bajar y saltar. Al menos treinta. Si la 
escala fuera más corta… [I began but there is too much to go down and 
jump. At least thirty. If the staircase was shorter…] 

10 Ton: Umm… Si fos tres, seria: u, u, u; dos, u; u, dos… i dos, dos impossible. 
Ara ve quatre.  [Umm… If it was three, it would be: one, one, one; two, 
one; one, two… and two, two impossible. Now four comes.]        

There is some difficult mathematics involved in the resolution of the problem in this 

lesson. One can always determine the possibilities by counting them one by one, but 

this is not very manageable, as suggested by Leo in [9]. While it is easy to represent the 

extreme cases [1], when the combinations of ones and twos are considered in a 

classroom with students who are not familiar with combinatorial formulas and 

binomial coefficients, a process to represent the total of 89 possibilities is not easy to 

discern; it may occur that one possibility is counted twice or that some possibilities are 

missed during the counting. Nonetheless, there is a pattern embedded in the resolution 

whose exploration can be strategically approached by starting with staircases which 

have smaller numbers of steps (the 3-step and the 4-step staircases in [9-10]). Although 

the students from the group did not see a pattern, they foresaw the option of examining 

reductions of the problem and, hence, approached the challenge of solving the problem 

without adding up the total number of ways of going down ten steps. At the end of the 

lesson, the teacher presented the recursive pattern that relates the number of ways to 

get the 10th step to the number of ways to reach the 8th and the 9th, and successively 

until the dependence of the 10-step on the 1-step and the 2-step staircases.  

The mathematical idea introduced by Leo in [9] and taken up by Ton in [10] is 

preceded by two moments in which activity moves away from the task resolution 

toward language concerns. Maria and Ton model the acceptable meanings for a term in 

Catalan when Leo equates the movements of one step at a time with “baixar” (going 
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down) and two steps at a time with “saltar” (jumping). In [3] and [5] “baixar” is given 

an extended meaning that includes jumping, which is the common meaning in 

mainstream Catalan. Another mathematically critical moment comes when group 

identification is voiced in [6]. The suggestion that Ada may experience the same 

confusion with vocabulary, as she may be interpreting “baixar” like Leo, can be seen as 

an allusion to the qualities attributed to the group of people that Leo and Ada are 

seemingly placed in. References to shared backgrounds are echoed and the account of 

these students as poor users of the official language of teaching and learning is made 

visible. However, when the distinction between going down and jumping comes again 

in [9] during the proposal of the idea about shorter staircases, discourse moves away 

from the focus on language issues and goes back to mathematics.     

What we see in this episode is that language modeling and group identification are 

voiced in ways that momentarily interrupt the mathematical discussion in student 

group work. However, it is from here that another discourse emerges with the option 

for the students to unvoice vocabulary and group differences and explore a more 

sophisticated approach to the resolution of the problem. A primary representation of 

language as obstacle is thus difficult to imagine in this episode, as is a primary 

representation as epistemological resource for mathematics learning. By varying [5] 

and [6] and imagining an alternative episode without these turns, the possibility of the 

same mathematical idea emerging and traveling with the same intensity in student 

interaction is feasible. This said, important learning opportunities arise from the fact 

that the participation of Leo is facilitated and recognized in a discourse that follows the 

anticipation of language difficulties and differences among students.   

DIRECTIONS IN THE RESOURCING OF LANGUAGE  

In this report, by means of a short transcript, I have tried to illustrate the diversity of 

directions in the resourcing of language. The finding regarding the plurality of 

directions in the resourcing of language during student mathematical activity provides 

further understanding about the role of language in mathematics teaching and learning, 

especially as it intersects with a multiplicity of languages in the multilingual 

mathematics classroom. The discussion of social languages suggests that, far from 

assuming that language and mathematical difficulties reside in students, it is 

reasonable to consider that some of these difficulties as well as the possibilities of 

overcoming them primarily reside in discourse. In the data presented, Leo and Ada are 

immigrant children from lower income homes who have been taught a differentiated 

mathematics curriculum during their school year in the parallel system of special 

lessons for “latecomers.” They have little practice at home with school-based forms of 

language and interaction, and they are actually represented as poor speakers of the 

official language of instruction. Nonetheless, we have seen how Leo participates with a 

relevant mathematical idea in the middle of a discourse in which language difficulties 

and differences are voiced. Both the relevance of the distinction between ‘going down’ 

and ‘jumping’ and the relevance of Leo’s mathematical idea reside in discourse.  
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The learning of mathematics cannot be understood separately from the process of 

learning the social language that is characteristic of those who do well in the school 

mathematics of the local educational system. All children can effectively be introduced 

to the dominant social language of a given classroom. Nonetheless, this should not be 

done at the expense of reducing their participation in the creation of mathematics 

learning opportunities during the process of learning a language. In the teaching and 

learning it is not easy to juxtapose the primary languages with the newer languages so 

as to allow students to smoothly navigate across them for the primary purpose of 

mathematics learning. Hence, the importance of intentionally integrating in 

mathematics teaching the issue of focusing on the many mathematical ideas that can be 

communicated and discussed at the intersection of the social languages that students 

and teachers bring with them. It cannot be forgotten that the resourcing of language for 

multilingual mathematics teaching and learning rests not only upon the possibility of 

resourcing the emergence, exploration and development of mathematical ideas, but 

also upon the possibility of postponing the discussion of these ideas.  
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CONTENT- AND LANGUAGE-INTEGRATED LEARNING: 

A FIELD EXPERIMENT FOR THE TOPIC OF PERCENTAGES  

Birte Pöhler, Susanne Prediger and Philipp Neugebauer  

TU Dortmund University, Germany 

 

Supporting language learners requires content- and language-integrated instructional 

approaches to coordinate conceptual learning trajectories with systematically structu-

red language learning opportunities, so-called macro-scaffolding approaches. This pa-

per provides empirical evidence for their effectiveness under field conditions in regular 

mathematics classrooms. For this purpose, a field experiment was conducted with 

n = 108 students based on a macro-scaffolding intervention for learning percentages. 

The ANCOVA shows that after 15 sessions of intervention, the intervention group signifi-

cantly outperformed the control group (with comparable pre-knowledge) and medium 

effect sizes. This shows that teachers can foster language learners’ conceptual 

understanding when supporting their learning by necessary language means.  

 

BACKGROUND: FOSTERING LANGUAGE LEARNERS  

BY CONTENT- AND LANGUAGE-INTEGRATED APPROACHES  

Academic language proficiency in the language of teaching and testing has repeatedly 

been shown to influence achievement in mathematics (see Barwell et al. 2016 for over-

views). As a consequence, current design research activities have been focusing on 

developing and investigating content- and language-integrated instructional ap-

proaches for supporting students with low language proficiency (Gibbons 2002; 

Moschkovich 2013). In this paper, we contribute to these efforts by developing an 

instructional approach based on the design principle of macro-scaffolding (Gibbons 

2002; Smit et al. 2013). The main idea of macro-scaffolding is to coordinate a con-

ceptual learning trajectory with well-structured language learning opportunities in 

lexical and discursive dimensions. Although the general structure of language trajec-

tories from students’ everyday resources to academic registers and formal technical 

registers has been well described, its topic-specific realization for different mathema-

tical topics is still an urgent need of research as the general lines do not sufficiently 

guide teaching practices (Smit et al. 2013).  

Previous research has especially shown the high relevance of the discourse practice of 

explaining meanings of the mathematical concepts in view (Moschkovich 2013; Predi-

ger & Wessel 2013). For this, macro-scaffolding approaches can be supported by the 

design principle of relating registers and representations, according to which the gra-

phical and symbolic representations should be systematically related to the different 

verbal registers (the everyday registers, the academic school register, and the technical 
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register) forward and backward in order to achieve a deep and well-connected con-

ceptual understanding (Prediger & Wessel 2013). As some first empirical findings 

exist on the effects of topic-specific realizations of these instructional approaches and 

design principles (Gibbons 2002; Smit et al. 2013; Prediger & Wessel 2013; and 

others), further research can widen the approach to other mathematical topics and espe-

cially provide a wider base for quantitative empirical evidence for their efficacy. Since 

many of the existing studies on content- and language-integrated learning in mathe-

matics education have taken place in laboratory small-group settings, it is time for the 

next step of research: investigating the functioning and effectiveness in whole-class 

settings with regular teachers in field experiments, as requested by Burkhardt and 

Schoenfeld (2013). That is why the current study continues the research on a content- 

and language-integrated macro-scaffolding intervention on percentages which has so 

far only been investigated qualitatively in laboratory conditions (Pöhler & Prediger 

2015). The current step comprises a quasi-experimental field experiment in three 

classrooms with regular teachers and matching control students from other classes.  

REALIZING MACRO-SCAFFOLDING FOR PERCENTAGES  

In order to foster the conceptual understanding of students with diverse language back-

grounds, an intervention was designed in several iterative design research cycles (de-

scribed in detail in Pöhler & Prediger 2015). Based on general literature on students’ 

difficulties with and teaching approaches for percentages (Parker & Leinhardt 1995), 

the intervention follows the design principles of macro-scaffolding and relating regis-

ters and representations. It coordinates on six levels a conceptual learning trajectory to-

wards conceptual understanding and flexible use of percentages with well-structured 

language opportunities in a lexical learning trajectory (see Fig. 1). 

The intended conceptual learning trajectory towards percentages (see Fig. 1) was 

adapted from previous design research on percentages in the context of Realistic Math-

ematics Education (van den Heuvel-Panhuizen 2003). It starts with students’ everyday 

experiences and proceeds to constructing meaning for percentages. Students’ informal 

strategies for determining rates, amounts, and bases are then elicited and later elabo-

rated into calculation strategies for standard problem types. The conceptual learning 

trajectory finally aims at the ability to also flexibly use learned concepts and strategies 

in more complex and non-familiar situations. 

The intended lexical learning trajectory (see Fig. 1) sequences the discourse practices 

and language means required for the conceptual learning processes. It starts from stu-

dents’ everyday resources by discussing intuitive ideas, establishes the discourse 

practice of explaining meanings and supports it using the basic meaning-related 

vocabulary for rates, amounts, and bases (e.g., old price, new price, rate to be paid), 

and then introduces formal vocabulary (base, amount, rate) and relates it to the basic 

meaning-related vocabulary for reporting and justifying formal procedures. Finally, 

the vocabulary is widened to the so-called extended reading vocabulary necessary to 
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crack more complex percentage problems in non-familiar contexts. 

 

Figure 1: Dual learning trajectories towards percentages 

Both trajectories are mediated by a structure-based scaffold, the percent bar (van den 

Heuvel-Panhuizen 2003). The function of the percent bar changes on the levels of the 

dual learning trajectory, first functioning as a model for problem situations in the 

contexts of download bars and shopping, then as a model of the abstract mathematical 

concepts of percentages. Later, it serves as a strategic scaffolding tool for mathemati-

zing complex word problems.  

A sequence of 21 instructional tasks was developed for realizing the intended dual 

learning trajectory. Two exemplary tasks (in Fig. 2) illustrate how conceptual and lexi-

cal aspects are intertwined and how the percent bar can serve as a mediator. Students 

not only solve percent items, but are often encouraged to verbalize their structure. The 

vocabulary offered for these discussions is always bound to the percent bar, which al-

lows students to relate the vocabulary to its meaning.  

 

Figure 2: Tasks exemplifying the intertwinement of conceptual and language aspects 
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The functional use of these successive vocabularies for the different discourse prac-

tices (explaining meanings, reporting strategies, justifying strategies) is scaffolded by 

language frames, word banks, and repeated teacher prompts initiating students’ rich 

discursive practices. As the previous qualitative analysis of small-group teaching has 

reconstructed challenges for teachers to adaptively provide micro-scaffolding, a field 

experiment is required to test how regular math teachers can meet these challenges.  

RESEARCH QUESTIONS 

Previous design research case studies have qualitatively shown that the designed in-

tervention on percentages was beneficial for low-achieving students with limited aca-

demic language proficiency in small-group settings (Pöhler & Prediger 2015). In order 

to also extend the scope to regular teachers and to provide quantitative empirical evi-

dence for the effectiveness, the current study tested the effects of the intervention in a 

field experiment in whole-class settings with two research questions:  

Q1.  What are the learning outcomes of the intervention group compared to the 

control group?  

Q2.  What are the learning outcomes of intervention and control group for the three 

problem types (Find the base, find the amount, and find the base after reduction)? 

METHODS OF THE FIELD EXPERIMENT 

Research design. The research was conducted as a quasi-experimental field experi-

ment with a pre- and post-test design with seventh graders in urban schools in 

whole-class settings, taught by their regular teachers, all of whom had been sensitized 

to language issues in classrooms by professional development.  

Intervention forms. The three intervention classes were taught in approximately 15 

sessions of 45 minutes each by means of the described macro-scaffolding intervention 

program on introducing percentages with the dual learning trajectory. The control clas-

ses were taught according to the traditional program for percentages, which included 

the same mathematical content but did not follow the lexical and conceptual learning 

trajectory and the principle of relating registers and representations.  

Measures for control variables. For achieving comparability between intervention 

and control group, the following control variables were taken into account: 

(1) German language proficiency was assessed using a C-Test, offering economical 

and highly reliable measures, with Cronbach’s  = .774 (N = 1,122),  

(2) Mathematical pre-knowledge that is relevant for learning percentages (fractions, 

parts of whole, bar representations, etc.), measured before the intervention by a 

standardized test (from Prediger & Wessel 2013) with Cronbach’s  = .83 (28 

items, N = 1120), and  
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(3) General cognitive ability was assessed using BEFKI, with a focus on figural dimen-

sions of fluid intelligence, with Cronbach’s  = .76 (N = 1122).  

Measure for the learning outcome. The learning outcomes of the interventions were 

assessed using a standardized test on percentages that was optimized to assess 

conceptual understanding and flexible use of percentages. It consists of open items of 

the problem types “Find the amount,” “Find the base,” and “Find the base after 

reduction.” For each problem type, items varied in three formats: “pure format,” “text 

format,” and “visual format,” with percent bar representations (examples in Table 1). 

 

Table 1: Items in the percent test in different problem formats 

Sample. In order to achieve comparability in the quasi-experimental field experiment, 

each student of the intervention group was matched to a student from the control 

classes with respect to the control variables (see Table 2). In the variance tests, no 

significant differences appeared between the intervention group (n = 54) and the con-

trol group (n = 54) for the three control variables: language proficiency, mathematical 

pre-knowledge, and fluid intelligence (with p > .05 in the t-tests for all three variables). 

 Language  

proficiency 

(max. 60) 

m (SD) 

Mathematical 

pre-knowledge 

(max. 19) 

m (SD) 

Fluid  

intelligence 

(max. 16) 

m (SD) 

Socio-eco 

nomic status 

(max. 5) 

m (SD) 

Age  

in years 

 

m (SD) 

Intervention group  

(n = 54) 
41.17 (6.95) 11.89 (4.96) 9.11 (3.02) 2.69 (1.12) 12.53 (0.74) 

Control group  

(n = 54) 
 40.89 (7.2) 11.61 (4.28) 9.13 (3.82) 3.24 (1.12) 12.57 (0.66) 

Table 2: Description of the comparable subsamples 
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Methods for data analysis. As the pre-test measured a wider repertoire of pre- 

knowledge than the post-test did, with its specific focus on percentages, the analysis of 

the effects of intervention were calculated using a covariation analysis (ANCOVA). 

This allows comparison of the differences in the learning outcomes of the intervention 

and control groups by taking into account the control variables. The ANCOVA was 

conducted for the complete percent test as well as the subscales of different problem 

types (Find amount, find base, find base after reduction; see Table 1). While the qua-

litative data analysis of the videotaped teaching-learning processes will be documented 

in further publications, this paper focuses on the quantitative results.  

EMPIRICAL RESULTS AND INTERPRETATION 

Research question Q1 asks for differences in the learning outcomes between the 

intervention group (who followed the content- and language-integrated intervention on 

percentages) and the control group (who followed a traditional percentage course). The 

descriptive data for this research question presented in the second column of Table 3 

shows that the whole sample achieved an average score of 36.7. The intervention and 

control group (which were comparable with respect to the relevant control variables of 

language proficiency, mathematical pre-knowledge, and fluid intelligence) performed 

differently in the percent test after the intervention: The intervention group achieved an 

average score of 45.4, whereas the control group only achieved 28.0 (with similar stan-

dard deviations).  

 Complete 

percent test  

(max. 100) 

m (SD) 

Subscale Type 

“Find amount” 

(max. 33.3) 

m (SD) 

Subscale Type  

“Find base” 

(max. 33.3) 

m (SD) 

Subscale Type “Find  
base after reduction” 

(max. 27.8) 

m (SD) 

Whole sample 36.7 (25.7) 14.2 (8.9) 15.0 (11.0) 6.1 (9.1) 

Intervention group  

(n = 54)  
45.4 (26.4) 15.8 (8.5) 18.4 (10.0) 9.7 (10.2) 

Control group  

(n = 54) 
28.0 (22.3) 12.6 (9.0) 11.5 (10.8) 2.5 (5.8) 

Table 3: Group differences in the learning outcomes  

The covariation analysis for the complete percent test (reported in Table 4) shows the 

anticipated result that mathematical pre-knowledge is a significant predictor for lear-

ning outcomes (p < 0.01). When controlling for the language proficiency, mathemati-

cal pre-knowledge, and fluid intelligence, the independent variable of belonging to 

either the intervention group or the control group shows a significant difference bet-

ween the two groups (with F (4,103) = 14.7497, p < 0.0000). The effect size is captured 

by a partial eta squared of 2 = 0.141, which is considered a medium effect.  



Pöhler, Prediger and Neugebauer 

_______________________________________________________________________________________________________________________

PME 41 – 2017 4-79 

 

 

Variables 

Regression  

coefficient 

Standard  

error 
p-value 

Partial 2 (proportion  

of variance in percent test 

explained by variable) 

Intercept -1.454 2.212 0.512 0.004 

Language proficiency 0.096 0.057 0.097 0.027 

Mathematical pre-knowledge 0.343 0.097 0.001 0.109 

Fluid intelligence 0.177 0.126 0.165 0.019 

Intervention/control group -3.018 0.733 0.000 0.141 

R2 = 0.364, R2
Adj = 0.34, F (4,103) = 14.7497, p < 0.0000 

Table 4: Results of the ANCOVA for the complete percent test 

Research question Q2 asks for differences between both groups for the subscales of 

different problem types (Find the base, find the amount, and find the base after reduc-

tion). As the different means in Table 3 (columns 3 to 5) show, the intervention group 

outperforms the control group in all subscales. The differences are smallest for the 

most elementary problem type, “find the amount,” for which the intervention group 

reached a score of 15.8 and the control group of 12.6 (a difference of 3.2). For the 

inverse problem type, “find the base,” the scores of 18.4 and 11.5 differ by 6.9 points. 

For the most complex problem type, “find base after reduction,” which requires two-

step thinking, the scores of 9.7 and 2.5 differ by 7.2 points. The ANCOVAs for all 

three subscales provide evidence for significant group differences when controlling for 

language proficiency, fluid intelligence, and mathematical pre-knowledge:  

FFind amount (4,103) =  9.0898, p < 0.05,  2 = 0.04  (small effect size) 

FFind base  (4,103) = 10.6239, p < 0.001,  2 = 0.105  (medium effect size) 

FBase after red  (4,103) =  9.5627, p < 0.0001, 2 = 0.187 (large effect size). 

To sum up, the group differences in problem types of different varying and familiarity 

might be interpreted as indicating that the percent is a fruitful strategic tool for math-

ematizing, especially for complex problem types (find base after reduction) and for 

avoiding over-generalizations. These interpretations are supported by previous qualita-

tive analyses of small-group settings (Pöhler & Prediger 2015).  

DISCUSSION 

The larger design research project in which this field experiment is embedded aims at 

designing and investigating the functioning of content- and language-integrated ap-

proaches based on the design principles of macro-scaffolding and relating registers and 

representations. This research is specifically important in classes with diverse lan-

guage backgrounds (Gibbons 2002; Smit et al. 2013; Prediger & Wessel 2013). Pre-

vious qualitative analysis of the intervention has shown the principal transferability of 

these approaches to mathematical topic percentages (Pöhler & Prediger 2015). How-

ever, it has also shown the high relevance of micro-scaffolding by teachers, so it has 

been an open question as to whether the intervention would also be effective under 

regular classroom conditions.  
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In this paper, we provided empirical evidence that the intervention has had better 

effects on students’ conceptual understanding and flexible use of percentages than 

traditional courses. Many other studies have shown that such evidence is more difficult 

to provide under field conditions than under laboratory conditions (Burkhardt & 

Schoenfeld 2003): Whole-class settings with students’ regular teachers have a higher 

complexity and typical constraints for implementing research-based designs. Never-

theless, the ANCOVA results in a significant difference with high effect sizes: Stu-

dents who acquire conceptual understanding of percentages in a content- and lan-

guage-integrated intervention based on principles of macro-scaffolding and relating 

registers outperform students learning in a traditional course with the same content. 

The comparability between intervention and control group was controlled for the 

control variables of language proficiency, mathematical pre-knowledge, and fluid 

intelligence. The detailed analysis of learning outcomes on different problem types 

provided insights into the specific strength for non-routine problems. However, further 

qualitative analysis of the classroom video data will be necessary to understand the 

chances and limits in more detail.  
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CONFIDENCE AND COLLABORATION IN TEACHER 

DEVELOPMENT OF DIGITAL TECHNOLOGY TASKS 

Iresha Ratnayake, Mike Thomas and Barbara Kensington-Miller 

The University of Auckland 

 

This paper discusses the results of an intervention designed to enable richer digital 

technology (DT) task design by secondary school teachers. Working in groups of three 

the teachers designed their own tasks. They were then introduced to some theoretical 

design principles, following which they further developed their tasks. The results show 

that the intervention produced richer, more student-centred tasks. Some factors 

contributing to this improvement include a confident attitude to teaching with DT and 

the collaborative nature of the groups they worked in. 

BACKGROUND 

Many mathematics teachers claim to support the use of digital technology (DT) in their 

teaching, yet the extent to which it has been implemented in the classroom remains 

variable (Zbiek & Hollebrands, 2008). More recently, there has been a focus on 

supporting teachers in the design and implementation of their own DT tasks rather than 

those designed by researchers. This paper describes an intervention experiment of how 

groups of teachers were guided in their DT task production and implementation. The 

intention was that a well-designed DT task would provide opportunities for 

mathematical thinking, formulation and communication of new ideas, justification of 

procedures, and defence of reasonableness of answers (Cennamo, Ross & Ertmer, 

2014). Although a great deal of thought and effort is often put into researcher-designed 

tasks, carefully considering the constituents of the milieu and the pragmatic and 

epistemic value of the DT tools, etc, the teacher still has to adapt these tasks to fit their 

own pedagogical and epistemological perspectives and the needs of their students 

(Leung & Bolite-Frant, 2015). For example, a teacher with a participationist 

orientation may encourage students to participate in the construction of mathematical 

knowledge through shared experiences or discourses, while one with an acquisitionist 

view could favour exploration and discovery of established mathematical knowledge 

(ibid). Along with the purpose of the task, or the reason for engaging with it, tasks 

utility should be considered (Ainley & Pratt, 2002), whereby the designer may 

perceive future uses, but these may differ for the teacher-designer. In addition, the 

issue of teacher instrumental orchestration, comprising didactic configuration, 

exploitation mode and didactical performance (Drijvers, Doorman, Boon, Reed, & 

Gravemeijer, 2010) is highly relevant to DT task design and suggests it is important for 

the teacher to reflect on the configuration of artefacts in the teaching setting, how they 

will be employed to achieve goals and the decisions that will be made during 
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implementation. Thus, the relationship between the researcher, teacher, students and 

task development is complex and critical.  

Our framework employs the theoretical model of Pedagogical Technology Knowledge 

(PTK) (Thomas & Hong, 2005) as it places the enhancement of mathematical thinking 

at the centre of the task design and implementation processes. It presents intrinsic 

factors that influence teacher use of DT in their classroom, including a teacher’s 

orientations and the goals these give rise to (Schoenfeld, 2010), along with their 

instrumental genesis of DT tools and their mathematical knowledge for teaching 

(MKT). Our hypothesis is that to design rich tasks with epistemic value using DT, a 

teacher needs to use their MKT and align it with positive orientations and strong 

instrumental genesis. There is some research evidence that one crucial orientation is 

teacher confidence, with Thomas and Palmer’s (2014) research finding a significant 

correlation between measures of teacher confidence in using technology and their 

PTK, as well as their belief in the value of technology in teaching mathematics. This 

provided an impetus for a consideration of the role of teacher confidence and beliefs in 

task design in the study reported on here. 

METHOD 

The participants comprised 12 Sri Lankan secondary school teachers, eight females 

and four males, divided into four groups, diverse in age and experience. None of the 

teachers had completed a Master’s level degree and all of them had very limited, or no, 

experience in using DT for teaching mathematics. Their students were Grade 12 

(17-18 years old) studying Advanced Level (A-level) combined mathematics from 

boys, girls or mixed schools in urban or semi-urban areas. In this paper, we focus on 

Group C, from the Western province, whose members were similar in age and 

predominantly less experienced than the other groups (see demographics in Table 1). 

Teacher Gender Age Mathematics 

Qualification 

Years of 

teaching 

Use of DT 

in teaching 

C1 F 31-40 BSc <5  Seldom 

C2 F 31-40 BSc <5 Seldom 

C3 M 31-40 BSc 5-10 Never 

 Table 1: Group C Teacher Demographics. 

For their task, which was video- and audio-recorded, Group C used GeoGebra to work 

on the sign of the graph of  when the discriminant is negative. 

The research design involved three stages. The first stage began with a Likert-style 

questionnaire about attitude with five subscales: confidence in teaching mathematics; 

confidence using with DT; the value of DT in teaching/learning mathematics; attitude 

to teaching mathematics with DT; and confidence in task development with DT. Some 

examples of the questions addressing confidence in DT task development included: “I 

prefer to use digital technology tasks developed by other people”; “It is worth devoting 

time to task development with digital technology”: “I feel more comfortable in 
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designing tasks using digital technology with other teachers who are good at it”. 

Semi-structured interviews with the teachers followed to seek further clarification and 

then each group attempted their initial design of the task. The second stage, a task 

development intervention by the lead author, discussed some theoretical principles of 

rich DT task design (e.g., Kieran & Drijvers, 2006), what the criteria for a rich 

mathematical task comprised (Cennamo, Ross & Ertmer, 2014) and an example of a 

quality DT algebra task. The intervention also included instruction on planning a 

lesson using DT, based on Schoenfeld’s (2010) theory of the role of resources, 

orientations and goals (ROG). To assist the designing of a suitable task emphasising 

student thinking, a three-point framework for lesson planning, delivery and review 

(Choy, 2013) was introduced. This focused on key concepts, possible points of 

difficulty, and the proposed course of action. In the third stage, the teachers were given 

an opportunity to modify their task based on what they just learned and a group 

interview followed focusing on how they had planned their task, how it worked in 

practice, modifications they made and what factors influenced the process. One teacher 

implemented it in their classroom, observed by the other two and the researcher. A 

final discussion with the researcher was held and further modifications made if 

necessary. Copies of the tasks were collected for analysis and the teachers completed a 

final questionnaire.     

RESULTS 

Group C chose to design a task to help students understand how the variation of a 

graph of a quadratic function of the form  is related to the values 

of a, b, c and the discriminant, , and these constituted the key points of their task. In 

their initial attempt designing the task, the teachers did not really consider DT. Instead, 

it read like a set of teacher notes comprising the details of completing the square, to end 

up with . They concluded “When  

 is always positive. Then the sign of 𝑓(𝑥) will be the sign of a.” 

They did not present the case when . This was followed by the direction “Divide 

the class in 2 groups and guide them to observe the behaviour of the graph. Each group 

will get one condition given below [namely  or ].” and two sets with three 

explicit functions in each. No indication of how the students were to be guided or how 

they would “observe the behaviour of the graph” was given. The group’s final task, 

after the intervention and modification, is in Figure 1. Changes are apparent from the 

first line, specifying the use of GeoGebra and directing students to observe the graph as 

a varies. Although not mentioned in the written task the lesson plan showed that they 

expected students to use sliders to change the variable values to get the different 

graphs. Their final task now focused on understanding the mathematical ideas of the 

relationship between the sign of a and the concavity of the graph, the effect of the 

discriminant on the number of zeros, the effect of a on the sign of the function when 

 and use of the axis of symmetry. 
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Worksheet 

1. Draw a rough sketch of the graph of the function using GeoGebra 

2. Observe the variation of the graph when the value of a changes. 
3. How does the maximum and the minimum of the graph changes with the sign of a? 

4. Get the value of  for the values of  in the “Algebra view”. 

5. Change the values of a, b, c  and observe the sign of the discriminant and observe whether the graph cuts the 
x-axis or touches the  x-axis or neither cuts nor touches the x-axis. 
What is the sign of the discriminant when the graph cuts the  x-axis at two distinct points?  

6. What is the value of the discriminant when the graph touches the  x-axis?  
7. What is the sign of the discriminant when the graph neither touches nor cuts the x-axis?  

8. (a) Using the method of completing the square rearrange the equation of the function   to 

get the above results algebraically. 
(b) Draw the axis of symmetry using the input bar of Algebra view. 

(c) What is the sign of  for all real values of ? 

(d)  What is the sign of  for all real values of  when the sign of is 

negative? 

(e) Then, the sign of y changes according to the sign of a as: 

 When a is positive the sign of y is ______________. 

 When a is negative the sign of y is _____________. 

(f) Write down how the graph changes with ‘ ’ when Δ is negative. (Change the values of b and c to get 

negative values for Δ). 

 When Δ is negative: 

 Graph lies above/below the x-axis when a is positive. 

 Graph lies above/below the x-axis when a is negative. 
9. Fill the blanks using the observations of the graph and the results obtained from rearranged function. 

a. If ‘a’ is positive and  is negative then the function is __________ for all real values of .  

b. If ‘a’ is negative and  is negative then the function is __________ for all real values of .  

Figure 1: The final task produced by the group. 

A key difference post-intervention was that the instructions now explained how to 

investigate different graphs, observe any changes, draw conclusions and generalise 

them. Further, by hand work was carefully and meaningfully integrated with the DT 

work in the task. In Table 2, the scores for each factor in the Task Richness Framework 

(developed from Kieran and Drijvers, 2006, Leung and Bolite-Frant, 2015 and our 

own ideas) are presented with brief explanations of the reasons. The richness metric 

increased from 5/36 for the first task to 28/36 post-intervention. A paired sample t-test 

of the factor scores shows that there was a highly significant improvement in richness 

of the final task ( . We now consider factors that may have 

contributed to improved quality of the DT task the teachers designed. 

Seven factors were considered for analysis: confidence in teaching mathematics 

(CTM); confidence in using DT (CUDT); value of DT in mathematics 

teaching/learning (VDT); attitude to teaching with DT (ATDT); confidence in task 

development with DT (CTD); a teaching focus on the three key points; and group 

dynamics. The changes in the aggregate scores of the group’s attitudes measured using 
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Likert scales (1-5) are shown in Table 3. A Wilcoxon signed-rank test was applied to 

the individual scores in the five attitude subscales above. 

 

Principles of Rich Tasks 

First Task Final Task 

Evidence Score 

(0-3) 

Evidence Score 

(0-3) 

Focuses on mathematical 

ideas, e.g. epistemological 

obstacles 

Behaviour of the 

graph when is 

negative, completing 

the square, sign of the 

function 

 

2 

Good: Variation of the graph 

with the sign of a. Sign of the 

graph when is negative. 

Completing the square. 

 

3 

Considers the role of 

language & discourse 

Very little: 

‘behaviour’ without 

support 

1 Words such as 'discriminant'; 

'completing the square', 

'zeros' 

2 

Students written 

interpretations 

No evidence for 

students' 

interpretations 

0 Students’ are asked to fill the 

blanks in statements by 

observing the graphs 

3 

Goes beyond routine 

methods 

Observe behaviour of 

the graph  

1 Sufficient. Students are 

guided to think logically 

about the sign of 'y' when 

is negative and when a>0 

and a<0 

3 

Encourages student 

investigation 

No evidence 0 Students identify the sign of 

the graph of function by 

themselves. 

2 

Multi-representational 

aspects 

Involves graphs and 

algebra 

1 Very good. Graphs, algebra, 

filling the blanks. Observe 

the changes in the algebra 

view 

3 

Appropriate for student 

instrumental genesis 

No evidence 0 Students use sliders to get 

different graphs under the 

given conditions.  

3 

Instrumental feedback No evidence 0 Observe the graph's 

concavity and relative 

position to axes and relate to 

a and .  

3 

Integration of DT and 

by-hand techniques 

Not mentioned that 

students use any DT 

0 Good. Use GeoGebra to 

draw the graphs and observe 

the changes of . Complete 

the square and fill the blanks 

by hand. 

3 

Aims for generalisation No evidence 0 Good. Sign of 'y' when is 

negative depends on a. 

3 

Students think about 

proof 

No evidence 0 No evidence 0 

Develops mathematical 

theory 

No evidence 0 No evidence 0 

Table 2: Pre- and post-intervention task scores using the Task Richness Framework. 

Two of these increased significantly, namely, confidence in teaching mathematics 

(CTM) (N = 7, W = 0, p<0.05) and attitude to teaching with DT (ATDT) (N = 8, W = 0, 

p<0.05). Although the increments in confidence in using DT (CUDT) and confidence 

in task development with DT (CTD) were not statistically significant, it should be 

noted that Group C had the highest confidence scores of the four groups in these two 

areas, both initially and at the end. Our results suggest that confidence is likely a 
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critical factor for teachers designing and developing rich DT tasks and using them to 

teach mathematics. 

 CTM CUDT VDT ATDT CTD 

Pre-intervention 22.1 26.0 27.6 26.4 24.5 

Post-intervention 26.4 26.8 28.4 29.6 25.0 

Table 3: The groups’ attitudes scores pre- and post-intervention. 

Additionally, the teachers’ use of the three-point framework (the key, difficult and 

critical points) assisted them in making their final task more student-centred. For 

example, they put themselves in the students’ position to consider difficulties they 

might face engaging with the task and the measures needed to overcome or minimise 

these. One example of a difficult point was the challenge of getting a graph that 

touched the x-axis by changing the sliders for a, b, c. We see their discussion of this 

from a student perspective in this interchange, along with the critical point of 

increment size needed to overcome the problem: 

C2: Yes they will get the sign of the discriminant when the graph cuts the x-axis at two 
points. Then, ‘what is the value of the discriminant when the graph touches the 
x-axis?’ Then s/he can do that. 

C3: Either change c. Yes, and should get when it exactly touches. 

C2: It’s difficult. 

C3: Yes its bit difficult to get that point. That’s the problem. Little bit more. Down. The 
students might get the idea I guess. Because when the graph changes from positive 
to negative there should be a place it becomes zero. Students might get that idea.  

C2: Yes, it is bit difficult to get that. If we change this to 0.5s.  

C3: Ah yes the increments isn’t it?  [C2 & C1: Yes.] 

C3: Yes we have to design it. If it will be in small increments it will work.  

They also considered the difficulty that the graph might look as if it were touching the 

axis but in reality was not. Having tried it first, the teachers realised that the students 

would need to zoom out on the graph to understand this critical point. 

C2: But if a student sees this s/he will consider this as it is touching. 

C3: Yes but not it’s not touched exactly. 

C2: Yes. But it looks like it’s touching… 

C3: It can be seen if we zoom out this. … 

C1: Yes now you can see. Look it cuts the axis. If a student asks about the graph in this 
situation we can help them. We can show them it is not yet touching.  

Another difficult point the teachers raised was how students might think there should 

be a case when , since the graph changes from positive to negative and so must 

pass zero. Their strategy to overcome this was to have the values 

 ready during implementation as they had checked that  

for these. 
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Group C was homogeneous for age, experience, instrumental genesis and 

mathematical knowledge for teaching, which might have positively influenced their 

confidence in presenting their ideas to each other. Unlike the other groups, they easily 

worked collaboratively, with all three teachers contributing equally. While sometimes 

C1 played the role of an unofficial leader, at other times C3 took over that role. In the 

transcripts, the voices of all three teachers can be heard contributing equally to the 

design process. Thus the group dynamic of equal contribution by all three members 

may have helped them to develop a richer task. 

DISCUSSION 

The analysis above suggests that it is possible to improve the nature of the DT tasks 

that teachers construct through an intervention that stresses theoretical features of a 

rich DT task, lesson planning for implementation of DT tasks and a student-centred 

framework focussing on difficult and critical points. We have also identified some of 

the crucial factors that appear to be behind this richer task development. In a partial 

confirmation of the results of Thomas and Palmer (2014), two positive factors that 

significantly increased after the intervention were the teachers’ confidence in teaching 

mathematics coupled with their attitude to teaching with DT. We propose that the 

supportive nature of the intervention along with its theoretical basis contributed to an 

increased level of confidence and a more positive attitude to the DT. Secondly, the 

three point framework has been shown to be a practical means to promote productive 

noticing by directing teacher attention to the relevant mathematical details of critical 

incidents (Choy, 2013). Indeed, introducing the teachers to this framework encouraged 

them to develop a student-centred approach to their task. This took into account 

possible student difficulties that might arise in the implementation and helped them to 

generate targeted teaching strategies that could be employed to overcome them. 

Thirdly, the approach of forming small communities of inquiry, where teachers work 

collaboratively on task construction may be more productive in terms of rich DT task 

production if the group makeup is such that it enables interactions that give rise to 

equal contributions by each of the members. 

Finally, although the task the teachers developed after the intervention was richer they 

were still primarily employing DT as a partner (Goos, Galbraith, Renshaw, & Geiger, 

2000). Used in this way, DT provides access to new ways of approaching existing tasks 

to develop understanding and mediate mathematical discussion, but the teachers had 

not reached DT use as extension of self (ibid), where it is seamlessly integrated into the 

teacher’s mathematical and pedagogical activity. The group’s task design process also 

incorporated operational and pedagogical themes: Ambience enhanced; Restraints 

alleviated; Engagement intensified; Routine facilitated; Activity effected; Feature 

accentuated; Attention raised and Ideas established, as described by Ruthven and 

Hennessey (2002). We feel confident that further iterations of the design experiment 

would help the teachers to identify other themes and achieve use of DT as an extension 

of self.   
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EXPLORING THE POSSIBILITIES OF ONLINE ASSESSMENT OF 

EARLY NUMERACY IN KINDERGARTEN 
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2MTA-SZTE Research Group on the Development of Competencies 

 

The aims of the study are to develop an easy-to-use online test for early numeracy, to 

empirically validate the instrument and to examine the effects of ICT familiarity on 

early numeracy achievements. The research design comprised of online and 

face-to-face measures with 30 children from age five to six. The newly developed early 

numeracy and ICT familiarity tests were administered online. Face-to-face measures 

included basic counting and numeracy, and relational reasoning. Results revealed that 

the online early numeracy test was reliable and it was strongly correlated with the 

face-to-face measures. There was ceiling effect on the ICT familiarity test although it 

also correlates with early numeracy results. Findings of our study indicated that our 

online test can become a useful, easy-to-use educational tool to assess early numeracy 

and provide valuable information for teachers to design their teaching process. 

INTRODUCTION 

Mathematics achievement highly depends on the successful acquisition of early 

numerical skills therefore assessment of these skills in kindergarten is inevitable to 

diagnose difficulties in time and prevent children falling behind. However, carrying 

out testing on a regular basis in kindergarten is cost and time consuming since it has to 

be done by traditional face-to-face assessment methods. Technology-based assessment 

could be the solution to overcome these difficulties by providing the possibility of 

developing easy-to-use assessment instruments for kindergarten teachers (Csapó, 

Molnár, & Nagy, 2014). 

EARLY NUMERACY 

The construct of early numeracy comprises several basic skills and concepts (Jordan, 

Kaplan, Locuniak, & Ramineni, 2007). Number word sequence skills are an important 

basis of other early mathematical skills. The knowledge of the correct order (forward 

or backward) of number words is essential to the development of enumeration skills, 

and it has significant role in solving basic additions and subtractions (Aunio & 

Rasanen, 2015). Enumeration is also an important component of the early numerical 

skills. It is related to the cardinal meaning of numbers when children identify the last 

number of the sequence with the number of the element they counted (Aunio & 

Niemivirta, 2010; Aunio & Rasanen, 2015). Basic counting skills develop swiftly after 

children are aware of number word sequences and understand the cardinal number 
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concept. They are able to solve additions, subtractions and later they understand the 

part-part-whole concept as well (Fritz, Ehlert, & Balzer, 2013; Resnick, 1992). 

Another essential component of early numerical skills is the knowledge of number 

symbols. Numeral recognition and number identification are the two segments of this 

factor. At the beginning children learn Arabic numerals then they will be able to 

identify and read numbers. Establishing connections between Arabic symbols and 

quantities are also important basic skills of numeracy. Studies have shown the numeral 

knowledge as a strong predictor of later formal mathematical achievement (Purpura & 

Napoli, 2015). There are several standardised mathematical test batteries to measure 

the numerical skills of children from age four to eight (e.g., the Utrecht Test of Early 

Numeracy – ENT; Early Numeracy Test – WENT) (Aunio & Rasanen, 2015). In 

Hungary a diagnostic test battery called DIFER (Diagnostic System for Assessing 

Development for four- to eight-year-old children) is widely used to assess key skills 

for school readiness (Nagy, Józsa, Vidákovich, & Fazekasné Fenyvesi, 2004). These 

instruments share the same characteristics: they require resource and time consuming 

face-to-face test administration and the educators’ proper qualification is also 

necessary otherwise the objectivity of the measurement can be compromised.  

TECHNOLOGY-BASED ASSESSMENT IN EARLY CHILDHOOD 

Technology-based assessment is an umbrella term and it refers to use any 

technological solutions during the testing process. Online assessment is a narrower 

term where test administration and data processing is carried out on computers through 

internet (Jurecka & Hartig, 2007). Over the past decades there have been a growing 

interest for technology-based assessment in educational context due to its advantages 

over traditional assessment formats such as the opportunity to present more 

stimulating innovative items (e.g. using sounds, pictures and videos, interactivity), to 

apply automatic feedback and to manage data processes more effectively (Csapó, 

Ainley, Bennett, Latour, & Law, 2012). All of these features contribute to the 

implementation of testing young students and carrying out large scale assessments as 

well (Csapó, Molnár, & Nagy, 2014; Molnár & Pásztor, 2015). For instance, we can 

apply pre-recorded instructions and design items with the possibility of manipulation 

which is essential in the development of skills in young ages. In contrast with 

traditional face-to-face methods technology opens the way for testing more children at 

the same time. To conclude if the infrastructure is available (e.g. tablets and internet 

connection) we can provide easy-to-use assessment instruments for kindergarten 

teachers to identify children difficulties and to improve the quality of their teaching 

(e.g. fitting their teaching methods for the actual level of students’ knowledge and 

skills). However, there are many concerns as well regarding the validity and reliability 

of these technology-based instruments in early childhood. For example the relationship 

has to be explored between the results from using face-to-face assessment tools and 

online tests to ensure the validity of the online instruments (Csapó, Molnár, & Nagy, 

2014). In addition, the level of children ICT familiarity may influence the achievement 
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scores in the targeted construct. Therefore we have to ensure that children have the 

necessary ICT skills to provide the answers for the tasks (Molnár & Pásztor, 2015). 

AIMS OF THE STUDY 

The aims of the study are (1) to develop an easy-to-use online test for early numeracy 

and to analyse the psychometric properties of the test; (2) to empirically validate the 

instrument and (3) to examine the effects of ICT familiarity on early numeracy 

achievements. 

METHOD 

Participants 

Our assessment took place in two kindergartens with the participation of 30 children. 

The sample consisted of 15 boys and 15 girls between the age of five and six (M 

age=5.7 years SD=.22). Informed consent form about the research was given to the 

parents. 

Instruments 

In our newly developed online test children could solve the tasks through 

manipulation: they had to drag and drop objects or select the right solution by tapping 

on it. Items were designed with respect of range of interest of the targeted age cohort 

(see figure 1). Children listened to instructions through headphones, which were 

reviewed by experienced Kindergarten teachers. There were no letters to read on the 

task pages. Children could listen to the instructions as many times as they wanted by 

tapping on the speaker icon. The test comprised of 40 items and included five subtests; 

Basic counting, Number word sequence, Numeral recognition, Magnitudes and 

numerals and Relations. The Basic counting subtest contains manipulative tasks, 

addition, and subtraction of magnitudes, and tasks related to the part-part-whole 

concept. Within these tasks children need to add, take away or sort the right amount of 

magnitudes. The Number word sequence subtest measures whether children can 

recognize a correct forward or backward number word sequence. They hear a sequence 

of three numbers, then they can listen to three possible conclusions and they need to 

decide which is the correct one (Figure 1). In the Numeral recognition subtest children 

need to recognize Arabic numbers with one, two and three digits. They select the right 

card out of four that shows the number what they hear. In the Magnitudes and 

numerals subtest children manipulate magnitudes based on the number they hear or 

see. Tasks with smaller amounts are solved by drag and drop technique (Figure 1) but 

tasks with larger amounts can be solved by the selection of the right picture of three 

different magnitudes. Tasks of the Relations subtest measured whether children can 

compare number sets and find the larger, largest or smaller, smallest quantities. 

In order to provide possibilities for practising the tapping and drag and drop operations 

and to familiarize children with the test environment they also completed an ICT 

familiarity test before the early numeracy assessment. The instrument consisted of 16 
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items (Figure 1). To maximize the training effects children had a second chance to 

solve these items in case of failure.  

    

Figure 1: Sample items for the ICT familiarity and the early numeracy test (from the 

left to the right). ICT familiarity, instruction: ‘Drag the matchboxes to the shelf and the 

balls to the carpet.’ Number word sequence, instruction: ‘Help Pete decide which 

animal continues the counting correctly. Pete starts the counting every time. If you 

click on the speakers next to the animals you can hear how they continue the counting.  

Click on the animal which continues the counting correctly. Click on the speaker next 

to Pete and he starts the counting’. Magnitudes and numerals, instruction: ‘You can 

see a number on the card. Drag as many ducks into the lake as the card shows!’ 

To validate our online assessment we used two tests (counting and basic numeracy, 

relational reasoning) of the Hungarian DIFER test battery. The counting and basic 

numeracy skills test included 38 items. 14 items were intended to assess the knowledge 

of the number word sequence forward and backward (e.g., count up to 21), 11 items 

were related to manipulative counting skills (e.g., ‘Here are six sticks. Make it ten.’), 9 

items aimed to assess counting number sets (e.g., ‘Show me the card with five 

drawings.’), 4 items assessed the ability to read one, two and three digit numerals (e.g., 

3, 22, 118) (Nagy et al., 2004). The test was reliable (Cronbach’s alpha = .80). 

The relational reasoning test assessed the understanding of words which stand for 

relations between different objects, attributes or processes. It has four equivalent test 

versions; each of them contains 24 items of 24 relation words. We used the first variant 

of the test which had eight words connected to spatial relations (e.g., inside, in front 

of), four items determining quantity (e.g., few, many), four words indicating actions 

(e.g., step in, step on), four items related to time (e.g., night, afternoon) and four 

relational expressions (e.g., the longest, the same length) (Nagy et al., 2004). Verifying 

the reliability of the test two items were excluded from further analyses. For the 

remaining 22 items Cronbach’s alpha = .62. 

Procedure 

Data collection by the online early numeracy test and ICT familiarity test were 

administered through Internet via eDia (Electronic Diagnostic Assessment) online 

assessment platform (Csapó, Lőrincz & Molnár, 2012) on tablet computers. The tests 

were carried out in the kindergartens in groups of four or five children supervised by 

kindergarten teacher candidates. Their assistance was expected only in case of 
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technical difficulties. Face-to-face assessments of the DIFER test were also organized 

in separated rooms in the kindergartens. The DIFER test is usually administered by 

kindergarten and primary school teachers but in our research we trained kindergarten 

teacher candidates to carry out the assessments. 15 children completed the online tests 

first, the other half of the sample started with the face-to-face measurements in order to 

precede effects of which test they complete first. Assessments were carried out during 

the first two weeks of December 2016. Beside the quantitative measures we used video 

observation as well, the analysis of the data is still in progress. 

RESULTS 

Reliability and the average performance on the online early numeracy test and its 

subtests are listed in Table 1. Due to the low reliability value (Cronbach’s alpha < .3) 

of the Relations subtest we excluded its 6 items from further analyses. The test with the 

remaining 34 items proved to be reliable (Cronbach’s alpha=.88). The reliability of the 

subtests was still acceptable apart from the value of Numeral recognition. The average 

achievements on the online early numeracy subtests were over 50% except the Number 

word sequence where the mean score was the lowest (31.82 %p; SD=24.32; Table 1). 

Large standard deviations indicate that the test had good differential power and they 

also refer to large individual differences (Table 1). 

 

Subtests 
Number of 

items 

Reliability 

(Cronbach’s 

alpha) 

%p (SD) 

  Basic counting 11 .75 74.85 (20.21) 

  Number word sequence 11 .75 31.82 (24.32) 

  Numeral recognition 6 .66 60.00 (27.19) 

  Magnitudes and numerals 6 .77 77.22 (28.19) 

Early Numeracy Total 34 .88 58.73 (19.21) 

Table 1: Reliability and the average performance on the early numeracy test and its 

subtests 
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One-parameter RASCH analyses was also carried out in 

order to gain a more detailed picture about the behaviour 

of the items. The EAP/PV reliability was good: .91. Figure 

1 shows that in general the items were covering the 

different skill levels. However, the pattern is not balanced. 

In case of some skill levels further item analysis would be 

necessary. 

We found significant correlations between the 

achievements on the subtests which provide some 

empirical evidence for construct validity (Table 2). Further 

support for validity is the strong correlation between the 

face-to-face Counting and basic numeracy test and the 

online early numeracy test (r=.84). In addition, the online 

subtests are also connected to the face-to-face test results. 

The reliability of the ICT literacy test was low (Cronbach’s 

alpha= .40). Possible reasons for this might be the training 

(i.e. the second chance for solving the items in case of 

failure) or the ceiling effects (M=91.5% SD=7.6%; the 

lowest score was 75% and the highest was 100% in case of 

9 items out of 16). The high achievements indicate that 

children had no difficulties in handling the tablets and 

providing answers for the tasks. However, there are 

positive correlations between the early numeracy test 

results and the ICT familiarity scores. But this result has to 

be interpreted in the light of the finding that ICT 

familiarity also correlated with face-to-face test results. 

Measure 1 2 2a 2b 2c 2d 3 

1 ICT familiarity -       

2 Early Numeracy .47** -      

 2a Basic counting .48** .82** -     

 2b Number word sequence .32 .79** .46* -    

 2c Numeral recognition .51** .80** .65** .45* -   

 2d Magnitudes and numerals .18 .75** .49** .45* .57** -  

3 D. Counting and basic numeracy  .34 .84** .63** .49** .81** .84** - 

4 D. Relational reasoning .48** .60** .45* .51** .39* .51** .46* 

Table 2: Correlations between the measured constructs. Note. ** = p<.01; * = p<.05; 

D.= DIFER 

Figure 2: Person item map 

for the early numeracy test. 

Each 'X' represents .3 cases. 
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DISCUSSION 

The current study is part of a longer test development process. Our intention is to create 

an easy-to-use online test environment which grabs and maintains young childrens’ 

attention while provides reliable and valid information about the current state of the 

early numerical skills. The present version of our online early numeracy test proved to 

be reliable, even the subscales had acceptable reliability. However, items of important 

subscales such as Relations and Numeral recognition need to be revised. IRT analyses 

also showed the potential for further item development. 

The correlations between the subscales and also the relation of our online test results to 

the face-to-face test performances provided empirical evidence for validity. The strong 

correlation between the face-to-face counting and basic numeracy test and the online 

early numeracy test indicates that we succeeded to measure a nearly equivalent 

construct of early numeracy compared to the one in the face-to-face assessment. 

However, further item analyses and item to item comparisons between face-to-face 

and online measures are necessary to strengthen these claims.  

In addition, we have some concerns related to ICT familiarity which raise some 

questions regarding validity. In spite of the ceiling effect on the ICT familiarity test we 

still found positive correlations between early numeracy and ICT familiarity test 

achievements. This finding can lead to a conclusion that we have validity problems. 

However, the ICT familiarity test scores were also positively correlated with the 

face-to-face test results. This relation pattern could be interpreted in a way that ICT 

familiarity test measures not only ICT familiarity but something else as well. It might 

be related to social background or also attention or motivation of the students. Further 

research should focus on investigating these assumptions. In addition, the examination 

of the role of ICT literacy could be integrated with qualitative measures such as the 

analyses of the data from video observation. Nevertheless, our findings clearly 

represented the necessity of a prior ICT familiarity testing in early childhood in case of 

any online assessment. 

To conclude, by further improvements our online early numeracy test can become a 

useful, easy-to-use educational tool to assess early numeracy and to provide valuable 

information for teachers to design their teaching process. Even our current version is 

suitable for everyday use if the infrastructural background is given (e.g. tablets and 

internet connection). Our findings indicate that online assessment even in early 

childhood has many advantages. However we need to be very careful when carrying 

out the measurements and interpreting the results. 
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Research suggests that hands-on activities may support students’ acquisition of 

mathematical concepts. Understanding the use of iPads, which offer specific options 

for manipulating objects, was addressed in a research project on fractions. The project 

aimed at defining and evaluating a learning environment (iBook) based on students’ 

active manipulation of different representations of fractions. During a four-week 

intervention 474 grade six students participated in one of three groups. Both treatment 

groups (iPad, paper-based) scored significantly better in a posttest than the control 

group. However, there was no significant difference between the treatment groups. 

The results provide evidence that students could benefit from a manipulation-oriented 

learning environment but were not additionally fostered by using the iPad. 

INTRODUCTION  

There are numerous aspects which have proven to be meaningful for successful 

learning. Defining a learning environment asks for choosing among them in order to 

implement a coherent pattern. The learning environment for fractions presented here 

relies primarily on an approach, which takes students’ active participation in the 

mathematics classroom and their individual knowledge base into account.  

Understanding mathematics is seen to be based on students’ active engagement in 

mathematical activities. In particular, for young students concrete manipulations seem 

to be beneficial when they are asked to acquire mathematical concepts. However, there 

is a variety of ways how to perform concrete manipulations. In the last few years, 

mobile electronic devices gained importance as they allow for focused and systematic 

hands-on activities. Moreover, successful learning presupposes that concepts are 

integrated in a student’s prior knowledge. Accordingly, adaptive systems that regard 

this status should lead to better learning results than conventional textbooks. 

Fractions in the Classroom: Characteristics of a Learning Environment 

It is difficult for students to understand the concept of fractions. In the last decades, 

many research studies provided insights in students’ problems with this topic. The idea 

of a “conceptual change” turned out to be particularly fruitful: Students need to revise 

their concept of numbers – well-established with respect to natural numbers – in order 

to prevent overgeneralization. So Vamvakoussi and Vosniadou (2004) investigated 

ninth graders’ understanding of density as a structural property of rational numbers: 
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They could show that some students’ mistakes were based on their limitation of the 

concepts to discrete subsets of rational numbers. Furthermore, Obersteiner, Van Hoof 

and Verschaffel (2013) found out that a natural number bias did not only affect novices 

in comparison tasks. Their results show that even expert mathematicians needed more 

time to judge fractions with identical nominators (“incongruent” with respect to natural 

numbers) than with identical denominators (“congruent”), though in the end they gave 

the correct answers. 

Moreover, Winter (1999) identified misconceptions about rational numbers which 

could easily be assigned to concepts of natural numbers as they are provided in primary 

school mathematics, such as cardination (“numbers are answers to the question: how 

many?”), uniqueness of number and symbol (“one symbol represents exactly one 

number.”), and discrete order (“each number has a successor”). 

When educators wish to make students revise their established concepts, four 

conditions are beneficial according to Posner, Strike, Hewson, and Gertzog (1982): (1) 

students must struggle with tasks which cannot be solved using their established ideas, 

(2) the new concept must be intelligible, (3) using the new concepts must lead to 

solutions of not-yet solvable tasks, and (4) the new concept should be usable in a 

broader context. 

The conceptual change approach can be helpful in general to gain insights in how 

students’ difficulties with fractions can be assessed. However, theoretical 

considerations lead to specific aspects of fractions (“mental models”), which need to 

be taken into account. According to Padberg (2009) developing knowledge on 

fractions presupposes that students establish the aspects part of the whole (especially 

the equivalent meaning of “¾ of 1” and “¼ of 3”), expanding and reducing (in the 

meaning of: to refine or to coarsen a given division), and comparing the size of 

fractions (regarding an understanding of density on an elementary level, such as a 

fraction “having no successor”). According to Charalambous and Pitta-Pantazi (2005), 

in particular part of the whole plays a fundamental role in developing an understanding 

of fractions. Their study provided empirical evidence that fostering other mental 

models of fractions related to part of the whole. 

Moreover, fractions in the classroom should address the aspect of visualization 

(creating and modifying representations as well as changing between different forms 

of representation), and the aspect of calculation (applying mathematical definitions, 

rules and algorithms as well as solving mathematical tasks on a symbolic level) to 

foster the understanding of rational numbers (Padberg, 2009). 

The iPad as a Teaching Tool 

There are only few empirical findings on mobile electronic devices in mathematics 

education, however, some results encourage their use in the classroom. So, Blair 

(2014) reports on a better learning of the natural number concept in primary school. As 

another example, Black, Segal, Vitale, and Fadjo (2012) could show that first and 

second graders obtained better results in addition tasks after learning the rules of 
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addition on the iPad compared to students who worked with the same software on a 

computer. They argue that the difference in the learning outcome might be justified by 

how students handle the two different digital devices: Students operate the iPad by 

using natural gestures while the input via a mouse is more or less fixed. This 

argumentation follows the embodied cognition theory (Gangopadhyay & Kiverstein, 

2009). 

Besides that, students may benefit from diverse features when using digital devices in 

general: Software can be designed to give short and accurate feedback referring to the 

assignment immediately after completing the task (Hattie & Timperley, 2007), and to 

adjust difficulty of tasks adaptively to students’ individual skills, which has shown to 

be more effective than a non-adaptive increase of difficulty in computer games 

(Sampayo-Vargas, Cope, He, & Byrne, 2013). 

Study Overview and Research Questions 

The characteristics mentioned above were taken into account while implementing a 

learning environment for fractions (Hoch, Reinhold, Werner, Reiss, & Richter-Gebert, 

2016). In particular, this learning environment takes into account that students gain a 

deeper understanding of fractions when their need for revising established concepts 

about natural numbers is addressed directly. Furthermore, the mental models of 

fractions (part of the whole, expanding and reducing, and comparing the size) are 

integrated in this environment.  

The research described above suggests that the iPad is a good teaching tool to aid this 

process, as it allows to stimulate both the cognitive and the sensomotoric area of the 

brain simultaneously, to give students detailed feedback on their mistakes, and to 

change the difficulty of tasks adaptively. With this in mind, an interactive textbook for 

the iPad (iBook) was developed. The following research questions were addressed: 

1. Will the use of an iPad as learning environment and/or equivalent paper-based 

material enhance the students’ knowledge on fractions if compared to regular 

classroom instruction? 

2. Will the use of an iPad as learning environment and/or equivalent paper-based 

material support the development of visualization and calculation in sixth graders 

differently? 

It was assumed that both the iPad-assisted learning environment and the paper-based 

material would have a positive effect on the learning outcome. Furthermore, it was 

hypothesized that working with the iPad has an additional positive effect on the 

learning outcome in general and the development of visualization specifically. 

METHODOLOGY 

Participants 

A total of 474 sixth grade students (214 female, 260 male) from 19 classrooms took 

part in the study. Students were assigned to two treatment groups – the iPad group (n = 
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155) working with the learning environment on the iPad, and the book group (n = 182) 

working with equivalent paper-based material – and to a control group (n = 137) 

working with conventional textbooks. 

Material 

To investigate the influence of digital media in teaching fractions, an interactive 

textbook was created using iBooks Author (Apple Inc., 2017) as framework and 

CindyJS (The CindyJS Project, 2016) as programming language for the interactive 

content. The part of the book used during this study contained six topics, analogous to 

the curriculum for sixth grade mathematics: representing fractions with pictures and 

mathematical symbols, understanding fractions as a part of a whole, expanding and 

reducing fractions, fractions as marks on the number line, conversions between 

fractions and mixed numbers, and comparison of the size of fractions. Each topic 

consisted of an introductory part, a summary of the new content, and exercises to 

reinforce the material. Illustrative examples were used in the introductions, e. g. 

distributing pizza to three persons. New tasks were created via an adaptive algorithm. 

Levels of difficulty were defined for each exercise based on difficulty-generating 

characteristics (Eichelmann, Narciss, Schnaubert, & Melis, 2012). If a certain number 

of tasks in one stage was solved correctly the participant proceeded to the next level. In 

addition, mistakes were not only corrected, but revised with detailed feedback, stating 

what was wrong and how it would have been done correctly. Whenever possible, this 

feedback addressed mistakes not only at a symbolical level, but also at a graphical 

level. A total of 88 interactive exercises were used within the iBook. The paper-based 

version was created as an exact copy. For this softcover book, two to three tasks from 

each level of difficulty were chosen randomly for each of the 88 exercises. 

Two tests were designed and used in this study, both had been piloted before in a small 

study: the pretest made use of some items from a former test (cf. Padberg, 2009) and 

was presented to 142 students at the end of grade five, the posttest was presented to 257 

students at the end of grade six. The pretest on prior knowledge of fractions was found 

to be highly reliable (10 items; Cronbach’s  = .82). Posttest items were created 

according to the mental models presented above (part of the whole, expanding and 

reducing, comparing the size) and the mathematical competencies of visualization and 

calculation. The posttest as measure for basic knowledge on fractions was also found 

to be highly reliable (20 items,  = .82). For the analysis, this test was divided into two 

subscales on the competency dimension: the visualization subscale consisted of eleven 

items ( = .68), and the calculation subscale consisted of nine items ( = .72). As the 

items for these two complex constructs were designed on a profound theoretical base, 

these -values can be interpreted as acceptable for this study (Schmitt, 1996). Test 

scores and scores for the two constructs visualization and calculation are reported as 

solution rates between 0 and 1. 
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Procedure 

The study took place during the first four weeks of the school year in grade six. 

Referring to the curriculum a total of 16 lessons was targeted. In fact, the teachers held 

around 15 lessons during the intervention (M = 15.2, SD = 1.1). Teachers in the 

treatment groups (iPad and book) were requested to use only the learning environment 

provided in their classrooms. Furthermore, teachers in the iPad group were asked to 

use the iPad as their main teaching tool. Each participant in the iPad group worked on 

his own device during the intervention. Students and teachers in both treatment groups 

received a printed version of the teaching material. Students and teachers from the 

control group did not receive any additional material. 

Pretests (15 minutes) were executed at the beginning of the first lesson, posttests (55 

minutes) were executed after the last lesson. Both tests were presented as 

paper-and-pencil tests for all participants. Both pretest and posttest were coded 

independently by two persons.  

Different analyses were conducted using analysis of covariance (ANCOVA). The data 

sufficiently met statistical assumptions. Only homogeneity of variance was found to be 

violated, but as this assumption loses its relevance for big sample sizes and roughly 

equal sized samples (Glass, Peckham, & Sanders, 1972), it can be assumed that this 

will not alter the results of the ANCOVA to be described now. 

RESULTS 

There was a moderate, positive correlation between pretest scores and posttest scores 

using Spearman’s rank correlation, rs (472) = .57, p < .01. Therefore, the pretest score 

may be used as a covariate in statistical evaluations. 

The first question was whether the teaching material had a positive influence on the 

knowledge gained during classroom instruction on fractions. In particular, students 

from both treatment groups (iPad, book) should have higher posttest scores than 

students from the control group. As Table 1 reveals, this could be confirmed. A 

one-way ANCOVA was conducted to determine differences between participants who 

worked with the material on the iPad, with the material in a printed version, or with 

conventional material in a regular textbook in the posttest score. Pretest scores were 

used for control. A main effect of the treatment was found, F(2,470) = 7.95, p < .01, p
2 

= .033. This indicates the estimated effect of the teaching material. As can be seen in 

Table 1, participants from the iPad group had slightly lower posttest scores than 

participants from the paper-based book group. A post-hoc Tukey test showed that both 

treatment groups, iPad and paper-based, differed significantly from the control group, 

p = .01 and p < .01, though there was no significant difference between the two 

treatment groups, p = .70. So, it may be assumed that the teaching material supports 

sixth graders’ knowledge acquisition on fractions better than conventional textbooks. 

However, these results seem to contradict the hypothesis that students might profit 

better from using the iPad than from using equivalent paper-based material. 
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Since there was no significant difference in the overall outcome after four weeks of 

learning between the two treatment groups, it was controlled whether the iPad had the 

desired effect on fostering the competency of visualization in terms of fractions. Table 

1 shows that the paper-based treatment group had the highest scores. A one-way 

ANCOVA showed that there was a significant main effect of the treatment on 

visualization controlling for the pretest score, F(2,470) = 18.24, p < .01, p
2 = .072. A 

post-hoc Tukey test showed that both treatment groups, iPad and book, differed 

significantly from the control group, p < .01 and p < .01. Although there was no 

significant difference between the two treatment groups, p = .86. It may be assumed 

that the advantage of both treatment groups over the control group in terms of 

visualization arised from the teaching material, and not from the iPad used as a 

teaching tool.  

 

Group Pretest Posttest Visualization Calculation 

iPad .50 (.29) .67 (.17) .72 (.18) .62 (.20) 

book .50 (.29) .69 (.19) .73 (.19) .64 (.24) 

control .45 (.29) .60 (.21) .60 (.22) .59 (.25) 

total .48 (.29) .66 (.20) .69 (.21) .62 (.23) 

Table 1: Mean scores (and standard deviations) for different analyses 

 

This result leads to the question if working on the iPad has a negative effect on solving 

basic fractional computation tasks. As Table 1 reveals, the iPad group in fact had a 

slightly lower mean solution rate in calculation than the paper-based treatment group. 

However, a one-way ANCOVA showed no significant effect of the treatment on 

calculation controlling for the pretest score, F(2,470) = 0.63, p = .53. Hence, it may be 

concluded that neither the teaching tool nor the teaching material had an influence on 

the development of calculation. In particular, there is no negative influence of working 

with the iPad on calculation. 

DISCUSSION 

The findings suggest that an enriched conceptual change framework, where the 

necessity to revise established conceptions about natural numbers fostered in primary 

school is addressed by building up mental models for fractions step by step is a 

profound framework to teach basic knowledge about fractions, as students of both 

treatment groups achieved significant higher scores in the posttest than students of the 

control group. 

Furthermore, it is evident that these higher scores are due to significant better results in 

visualization tasks, but that there is no significant difference between the three groups 
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when only calculation tasks are considered. Since these visualization tasks were 

designed to address mental models directly these findings indicate that students 

working with the teaching material have gained deeper insights into fractions during 

the intervention than students that were taught using conventional material. Further 

investigation of this aspect will be done by taking two additional items from the 

posttest into account, in which the participants were asked for explanations. These two 

items were not yet used. 

However, the findings reveal that students did not benefit additionally from the iPad as 

a teaching tool. This result leads to new questions that need further investigation: as 

appropriate feedback as well as adaptive difficulties of tasks have shown to be 

beneficial for the learning process in different studies, one must ask why these aspects 

had no effect in the experiment. Regarding this, it can be asked whether students use 

feedback or whether they chose the next task immediately. It is planned to address this 

by looking at the data captured by the devices, as the period of time that feedback was 

displayed. 

Another aspect that might have influenced the outcome is the lack of experience both 

teachers and students had with iPads as an instrument for learning. Since none of the 

attending schools had their own devices, teachers as well as students worked with 

iPads in classroom for the very first time. Interviews with the teachers after the study 

and an evaluation of these interviews might give deeper insights in how the teachers 

used the devices and whether they were satisfied with their first teaching approaches 

using iPads in the classroom.  

Repeating the study in the upcoming school year with the same teachers in the iPad 

group and an initial lesson for the sixth graders about how to use the device right 

before the intervention could be one way to approach these open questions. 
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The Knowledge Quartet is a theoretical framework for the analysis and development of 

mathematics teaching. It focuses attention on classroom situations when the teacher’s 

knowledge of mathematics and of mathematics-related professional knowledge comes 

to the fore. The Knowledge Quartet was first developed some 15 years ago in empirical 

research in the context of pre-service elementary mathematics teaching in the UK. 

Some details of the theory have evolved since that time, in response to its application 

and testing by researchers in other contexts, and through communication between 

ourselves and those researchers. In this paper we describe that process of evolution 

and pose related questions about the ownership and development of theories in 

general. 

INTRODUCTION 

The Knowledge Quartet is a practice-based framework for the identification and 

discussion of mathematics teachers' mathematics-related knowledge as evidenced in 

classroom practice. It originally emerged in 2003 from intensive scrutiny of 24 

videotaped lessons, taught by novice teachers. This research, which began in 2002, 

was conducted in Cambridge UK by a team which included the two authors. The 

Knowledge Quartet is a ‘theory’ in the sense that it proposes a way of thinking about 

mathematics teaching in the usual institutional settings (lessons/classes), with a focus 

on the disciplinary content (mathematics) of the lesson. A prototype of the theory was 

outlined in Huckstep, Rowland and Thwaites (2003), and progressively more 

definitive versions announced in Rowland, Huckstep and Thwaites (2003, 2005). 

Since that time, researchers in several countries have used the Knowledge Quartet as a 

framework for the analysis of their own classroom data, and some have corresponded 

with us about their findings, and shared their experiences of the comprehensiveness of 

the theory in relation to their own data. In this paper, we describe a slow process of 

evolution of the Knowledge Quartet in response to this feedback, and conclude by 

posing some questions about the ownership and development of theories in general. 

But first, we outline the ‘state of the art’ where research into mathematics teacher 

knowledge is concerned, and the Knowledge Quartet in particular. 

THE KNOWLEDGE QUARTET 

The origins of the Knowledge Quartet were in observations of primary mathematics 

teaching, and grounded theory methodology (Glaser and Strauss, 1967), in the context 

of one-year graduate primary teacher preparation in England. A programme of 
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empirical research at the University of Cambridge, UK, investigated teachers’ 

mathematics-related knowledge, and the ways that this knowledge is activated and 

made observable both in their planning and in their teaching in the classroom. From 

this research, a practice-based framework for the observation, analysis and 

improvement of mathematics teaching was developed, with a focus on the contribution 

of the teacher’s mathematics-related knowledge. While Shulman’s distinction between 

subject matter knowledge and pedagogical knowledge underpins this consideration of 

mathematics teaching (Shulman, 1986), the Knowledge Quartet identifies three 

categories of situations in which teachers’ mathematics-related (‘foundation’) 

knowledge is revealed in the classroom: these categories, or dimensions, of the 

Knowledge Quartet are named ‘transformation’, ‘connection’ and ‘contingency’.  

Dimension Contributory codes 

Foundation: 

knowledge and understanding of mathematics 

per se and of mathematics-specific pedagogy;  

beliefs concerning effective mathematics 

instruction, the nature of mathematics, and the 

purposes of mathematics education. 

awareness of purpose; adheres to 

textbook; concentration on procedures; 

identifying errors; overt display of subject 

knowledge;  theoretical underpinning of 

pedagogy;  use of mathematical 

terminology 

Transformation: 

the presentation of ideas to learners in the form 

of analogies, illustrations, examples, 

explanations and demonstrations 

choice of examples; choice of 

representation; (mis)use of instructional 

materials; teacher demonstration (to 

explain a procedure) 

Connection: 

the sequencing of material for instruction, and 

an awareness of the relative cognitive demands 

of different topics and tasks 

anticipation of complexity; decisions 

about sequencing; recognition of 

conceptual appropriateness;  making 

connections between procedures; making 

connections between concepts; making 

connections between representations 

Contingency: 

the ability to make cogent, reasoned and 

well-informed responses to unanticipated and 

unplanned events 

deviation from agenda; responding to 

students’ ideas; use of opportunities;  

teacher insight during instruction; 

responding to the (un)availability of tools 

and resources 

Table 1: The Knowledge Quartet – dimensions and contributory codes 

Table 1 outlines these dimensions and their contributory codes, which arose from 

analysis of primary mathematics classroom data (Rowland et al, 2005). Each 

dimension is composed of a small number of cognate subcategories (codes) that we 

judged, after extended discussion, to be related. These codes capture observed 

teacher-actions in preparation and/or in classroom instruction. The 17 shown in 

‘normal’ font emerged in our analysis of 24 lessons in 2002-013. Those shown in 

italics are the subject of this paper. 
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In the years since 2002, there has been a process of refinement of the conceptualisation 

of the Knowledge Quartet, and enhancement of the constituent codes, both in response 

to additional classroom data and in the process of application (Weston et al., 2013).  

Conceptualising the Knowledge Quartet 

The concise conceptualisation of the Knowledge Quartet which now follows is a 

synthesis of the characteristics of its four dimensions.  

Foundation 

The first member of the Knowledge Quartet is rooted in the foundation of the teacher’s 

theoretical background and beliefs. It concerns their knowledge, understanding and 

ready recourse to what was learned in preparation (intentionally or otherwise) for their 

role in the classroom. Both empirical and theoretical considerations have led us to the 

view that the other three units flow from a foundational underpinning. We take the 

view that the possession of such knowledge has the potential to inform pedagogical 

choices and strategies in a fundamental way. The key components of this theoretical 

background are: knowledge and understanding of mathematics per se; knowledge of 

significant tracts of the literature and thinking which has resulted from systematic 

enquiry into the teaching and learning of mathematics; and espoused beliefs about 

mathematics, including beliefs about why and how it is learnt.  

Transformation 

The remaining three categories focus on knowledge-in-action as demonstrated both in 

planning to teach and in the act of teaching itself. At the heart of the second member of 

the Knowledge Quartet is Shulman’s observation that the knowledge base for teaching 

is distinguished by “ … the capacity of a teacher to transform the content knowledge 

he or she possesses into forms that are pedagogically powerful” (Shulman, 1987, p. 15, 

emphasis added). This category, unlike the first, picks out behaviour that is directed 

towards a pupil (or a group of pupils), and which follows from deliberation and 

judgement informed by foundation knowledge. The choice and use of examples has 

emerged as a rich vein for reflection and critique (Rowland, 2008).  

Connection 

The next category concerns the coherence of the planning or teaching displayed across 

an episode, lesson or series of lessons. Our conception of connection includes the 

sequencing of topics of instruction within and between lessons, including the ordering 

of tasks and exercises. To a significant extent, these reflect deliberations and choices 

entailing not only knowledge of structural connections within mathematics itself, but 

also awareness of the relative cognitive demands of different topics and tasks, and the 

implementation of strategies to remove (or lessen) obstacles to learning. 

Contingency 

Our final category concerns the teacher’s response to classroom events that were not 

anticipated in the planning. This dimension of the Knowledge Quartet is about the 
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ability to ‘think on one’s feet’: it is about contingent action. Whilst the teacher’s 

intended actions can be planned, the students’ responses cannot. The teachers’ 

response to students’ unexpected contributions is one of the most low-inference codes 

of the Knowledge Quartet.  

We have found that many moments or episodes within a lesson can be understood in 

terms of two or more of the four units; for example, a contingent response to a pupil’s 

suggestion might helpfully connect with ideas considered earlier. Furthermore, the 

application of content knowledge in the classroom always rests on foundational 

knowledge.  

THE EVOLUTION OF THE KNOWLEDGE QUARTET 

Since its initial development, the Knowledge Quartet has been put to the test as an 

instrument for mathematics lesson observation and analysis. This testing has taken a 

number of forms, including its application to various extents in doctoral studies, 

including the second author’s longitudinal study of the knowledge, beliefs and 

practices of early career elementary teachers (Turner, 2010). Although our experience 

to date indicates that the fundamental anatomy of the Knowledge Quartet is complete, 

we take the view that the details of its component codes, and the conceptualisation of 

each of its dimensions, are perpetually open to revision. This fallibilist position seems 

to us to be as appropriate for a theory of knowledge-in-mathematics-teaching as it is 

for mathematics itself. In grounded theory methodology, it is also inherent in the 

notion of ‘theoretical sampling’ (Glaser & Strauss, 1967), whereby the application of 

the theory exposes some shortcoming, and thereby lays it open to refinement, 

modification and possible improvement until (perhaps) it achieves saturation. 

As a consequence of this process, and the possibility of electronic global 

communication, four additional codes have been added to the original 17: these new 

codes are shown in italics in Table 1. Either the teacher behaviours captured in these 

codes were absent in our 2002-03 video data, or else we failed to note it in our analysis 

of that data. The names of the four new codes, the Knowledge Quartet dimension 

which they enrich, the year in which they emerged, and the researchers who brought 

them to our attention, are as follows: 

- teacher insight during instruction (Contingency). 2005, Dolores Corcoran - Ireland  

- (mis)use of instructional materials (Transformation), 2006, Marilena Petrou - Cyprus  

- responding to the (un)availability of tools and resources (Contingency). 2009, Libby 

Jared et al. - UK  

- making connections between representations (Connection). 2015, Abraham de la 

Fuente - Spain 

In the light of space limitations, we will proceed now to elaborate the first and last of 

these codes. Accounts of the other two are given in Petrou (2010) and in Rowland et al. 

(2011), respectively. 
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Contingency: teacher insight during instruction 

The first instance of this incremental process of enrichment is the case of Máire, a 

prospective teacher participant in the study of Dolores Corcoran, located in Ireland. 

Máire was observed teaching a lesson on whole-number division to a class of girls 

aged 9-10 years (see Corcoran (2007). She had written worksheets on division, set in a 

fantasy Harry Potter scenario. The first problem for one of the groups was as follows: 

Ron has 18 Galleons and a pack of cards costs 3 Galleons. How many packs can 

he buy?  

[Note: The Harry Potter novels by J. K. Rowling are well-known in Ireland. Galleons 

are the fictional currency in use at Hogwarts - Harry Potter’s school] 

There are two principal division problem structures, variously called partition (or 

sharing) and quotition (or measurement, or grouping). In the problem under 

discussion, the problem structure is quotition. Máire had provided butter beans as 

manipulatives, to represent the Galleons. One pupil, Rosin, read out the problem, while 

Megan volunteered to count out 18 butter beans.  

Máire offered a few words of explanation about the “wizard money”, then she asked: 

Máire: How many groups does she [Megan] need to break it into and can you tell 

me why? Hannah, what do you think?  

Hannah: Into three groups. 

Máire: Into three groups. Well done, and why? You can read the question again if 

you want.  

Máire’s query here about the number of groups, and not to their size, points 

inappropriately to a partition structure, and this is picked up by Hannah. Máire 

congratulates the child (“Well done”) on her inappropriate suggestion. Máire asks 

Hannah to explain (“and why?”), and the interaction then takes a different direction. 

Hannah: Because there’s three packs of cards.  

Máire: It’s not that there’s three packs of cards. But what is it about the cards?  

Hannah: It costs three galleons. 

Máire is pulled up short at this point. She knows that there are not three packs of cards. 

Máire has inadvertently directed the pupils to the wrong division structure, she realises 

that this is so, and she resolves to find a way out: 

Máire: It costs three galleons. […] You've got 18 and what are you doing?  

Máire is attempting to alter the direction of the discussion, but the child who answers 

has not altered course: 

Child: Splitting them up into three groups ...  

Maire responds with a direct correction, and her language is now correctly aligned with 

quotition/grouping 
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Máire: Ahh …? Into groups of three [she nods]. And how many groups do you 

have?  

Child: Six.  

Máire: So how many packs of cards could Ron buy?  

Child: Six. 

Máire: He could buy six packs of cards. Can everybody follow that? What 

sentence would you write to explain what we just did?  

This ability to change course as a result of reflection had not been noted in the lessons 

that were the data for our original study.  We see an instance of reflection-in-action 

Schön (1983) in this episode, and in what we would call a ‘contingent moment’. Máire 

could not have prepared (in her planning) for what she did at that moment, but what she 

did say and do brought about a significant and pedagogically important shift in the 

discourse and the cognitive content of the lesson. This was possible because Máire 

seems to have experienced a pedagogical insight of some kind. The Contingency 

dimension of the Knowledge Quartet was rooted, as it arose from the data in our 

original study, in the teacher’s response to children’s insights and misconceptions. In 

this instance we seem to have a moment where Máire herself suddenly realises that the 

problem, the child’s suggestion, and her approval, are in contradiction. Máire’s 

moment of insight is an instance where theoretical sampling found the existing 

Knowledge Quartet theory to be wanting, and caused it to be rethought and enhanced. 

Consequently, we added an additional code - teacher insight during instruction (TII) - 
to those previously associated with Contingency.  

Connection: making connections between representations 

Our second instance of theory evolution draws on the doctoral study of Abraham de la 

Fuente in Spain. The participants were mathematics teachers working in the first two 

years of the secondary stage. Specifically, this research aimed to understand how the 

teachers used their knowledge to help students to learn to use algebraic language in a 

problem-solving environment. In the episode described here the intention was that 

students would learn to solve simultaneous linear equations by engaging with iconic, 

algebraic and tabular representations of key information. For example, the equation 

3a+3b=12 was represented initially in a picture of 3 slices of pizza and 3 drinks costing 

12 euros. Various student responses included listing various prices of drinks and slices 

that would satisfy each of the two equations.   

After working on several problems like this, the teachers devised a ‘test’ for the 

students, consisting of three simultaneous linear equations problems. The second gave 

3x+y=55 and 2x+2y=62 in precisely that symbolic form; the first was isomorphic to it, 

but with an iconic form (involving two different types of ‘Star Wars’ figures and total 

costs in euros). The third was a different pair of equations in conventional symbolic 

form only.  
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After the students had spent 20 minutes or so working on the problems, the teacher led 

a whole-class discussion about solving the first two problems, drawing out the fact that 

problem 2 is the ‘same’ problem as problem 1.  

For further details and a Knowledge Quartet analysis of the lesson, see de la Fuente et 

al. (2016). On the basis of this analysis, de la Fuente proposed the additional code 

making connections between representations in the Connection dimension of the 

Knowledge Quartet.  

Once this code had been brought to light, Fay Turner (the second author) was able to 

identify instances of it in the data in her own doctoral study. For example, in a lesson 

on the comparison (or ‘difference’) subtraction structure with a Year 2 (pupil age 6-7) 

class, Kate began by comparing the heights of two towers of interlocking ‘multilink’ 

cubes. She then displayed two-dimensional representations of pairs of towers of cubes 

on the classroom interactive whiteboard, before showing pairs of lines numbered, 

respectively, to 5 and to 9, on the interactive whiteboard. In this way she made 

connection between enactive, iconic and symbolic representations (Bruner, 1974) of 

the difference between 5 and 9. 

Discussion and Conclusion 

The Knowledge Quartet is a theory in the sense that it provides a way of thinking about 

mathematics teaching in the usual institutional settings (lessons), with a focus on the 

disciplinary content (mathematics) of the lesson. In that sense it offers a framework for 

focusing in the relationship between what the teacher ‘knows’ – about mathematics 

and about mathematics didactics in particular – and what transpires when they set out 

to enable students to learn mathematics. At the outset, we did not know what kind of 

‘theory’ might emerge from our close scrutiny of our lesson videotapes. It might have 

been an explanatory theory of the kind “Because this teacher knew this, he or she did 

(or did not do) that in the lesson”. Alternately, it might have been a ‘lens’ type of 

theory – a new way of seeing classroom events from the perspective of teacher 

knowledge. In the event, the theory that materialised was more of the second kind. 

While the Cambridge-based originators of the Knowledge Quartet cannot possibly 

claim ‘ownership’ of the theory, we take a deep interest in proposals to develop it, of 

the kind described in this paper. Having said that, we think it only proper that such 

proposals be empirically-based outcomes of theoretical sampling as opposed to the 

result of speculations about what codes could be added to those (21 so far) that have 

emerged from focused analysis of classroom data, and the debate that followed from it. 

Altogether, this has given us rich and fascinating insight into generosity and 

collaboration in the worldwide mathematics education community. 
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In Germany, language competencies in mathematics lessons have received increasing 

interest in recent years. On the basis of national curriculum standards, argumentation 

should also be strengthened in primary school mathematics classes (KMK, 2005). 

Reasoning can be seen as a key issue in mathematical argumentation. Mathemat-

ics-textbook analyses are used to gather information about the importance of reason-

ing in primary schools. This study reports the results of the textbook analyses. It pre-

sents comparative data on requests for reasoning in textbooks for grade 3 and 4 pupils. 

Quantitative results are represented by the frequency of tasks with requests for reason-

ing in 2010 and 2016. Qualitative results discuss the different kinds of requests. 

REASONING IN EARLY MATHEMATICS LEARNING 

Early mathematical argumentation can be divided into four steps: detecting 

mathematical regularities, describing them, asking questions about them and giving 

reasons for their validity (Bezold & Ladel, 2014; Meyer, 2010; Bezold, 2009; 

Wittmann & Müller, 1990). The content base of argumentation is achieved through 

description of the detected structures or by reference to common knowledge 

(Krummheuer, 2000); reasoning, therefore, is necessary to acknowledge the described 

regularities as true (Toulmin, 2003/1958; Schwarzkopf, 1999). As a consequence, 

German curriculum standards require competencies in all four steps even at the 

primary level (KMK, 2005). 

The didactical value of reasoning in mathematics learning is to gain deeper insights 

into mathematical structures, which, in turn, develop one’s mathematical knowledge. 

In this sense, reasoning leads to questions about mathematical statements to ensure 

their correctness and to develop new mathematical connections (Steinbring, 2005). 

Two intertwined processes can be distinguished: one’s own understanding and the 

process of sharing this understanding with others. In most cases, these two processes 

do not occur separately, but are the response to cognitive–social needs (Harel & 

Sowder, 2007; Hersh, 1993). It follows that in its epistemic function, mathematical 

reasoning may be monologic in leading to deeper individual understanding; in its 

communicative function, where mathematical structures are explained and justified, it 

is dialogic and dependent on other people (Neumann, Beier, & Ruwisch, 2014; 

Ruwisch & Neumann, 2014). 

In primary classrooms, mathematical reasoning usually takes place in the oral 

communication between pupils, as well as in the interactions with the teacher. These 
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communicative processes have been studied extensively; from an epistemological 

perspective, the emergence of shared knowledge and its structures are described (e.g., 

Steinbring, 2005), and from a more interactionist perspective, the types and structures 

of argumentations in classroom interactions are traced (e.g., Krummheuer, 2015). 

Mathematical reasoning, in this sense, must be distinguished from reasoning in lan-

guage classes, especially at the primary level. While both are considered as concepts 

that develop out of situated everyday (“vernacular”) speech (Elbow, 2012), reasoning 

in language learning focuses more on self-evident facts and personal meanings than on 

provable structures in special content areas. It follows that argumentation in language 

learning leads to more addressee-oriented cognitivization (Krelle, 2007) because 

reasoning of this kind is much more about persuasion than about proving. Neverthe-

less, typical linguistic forms of reasoning are learned in everyday situations, and stu-

dents must learn how to use these in different content areas (e.g., Wellington & 

Osborne, 2001; Lemke, 1990). In mathematical reasoning situations, typical linguistic 

clues show the demand for reasoning, and special linguistic markers and forms should 

also be used by pupils to give reasons for the validity of the detected regularities. 

While most age-related studies on primary-level students focus on oral communica-

tion, experts in language learning emphasize writing as an important instrument to 

deepen individual understanding (Becker-Mrotzek & Schindler, 2007; Pungalee, 

2005; Galbraith, 1999; see also Wellington & Osborne, 2001; Morgan, 1998; Miller, 

1991). Although primary school children are not yet experts in writing, fourth-graders 

are capable of constructing expository texts with a relevant number of causes in 

elaborating a topic (Hayes, 2012; Krelle, 2007). Looking at their written 

argumentations, especially at how they offer reasons for mathematical regularities, 

may therefore be fruitful (Ruwisch & Neumann, 2014; Fetzer, 2007). At the same 

time, we need more information about the status of reasoning in mathematics lessons. 

Especially if we are interested in written reasoning, examining the textbooks of 

students might be relevant: Qualitative content analysis may give information about 

the linguistic forms of requests for reasoning. The frequency of tasks with a request for 

reasoning may serve as an indicator of the importance of reasoning in mathematics 

learning. 

REQUEST FOR MATHEMATICAL REASONING IN TEXTBOOKS 

Textbooks play a major role in mathematics classrooms, so they may serve as a source 

for gaining information about the frequency and type of reasoning in primary mathe-

matics. In implementing the national curriculum standards in Germany (KMK, 2005), 

reasoning should be given more attention in mathematics classrooms. 

Textbooks and teacher’s guides serve as important materials when teachers prepare 

their lessons. If reasoning in primary schools needs more emphasis, this could be seen 

in both books. Whereas textbooks are written with the intention of addressing students 

directly, teacher’s guides play an indirect role. Teachers may be asked to consider 
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more reasoning in their lesson discussions. In this sense, we first focus on students’ 

textbooks to analyze direct requests for reasoning. 

RESEARCH QUESTIONS  

1. Do German mathematics textbooks support mathematical reasoning through 

specific demands? Do textbook series differ in their demand for reasoning? 

⇒ Textbooks that contain more text ask for more mathematical reasoning than 

     textbooks that contain only little text. 

2. Do mathematics textbooks differ in the numbers and kinds of requests for 

reasoning over time or across different ages? 

⇒ The textbook series for fourth graders ask for more reasoning than those for  

     third graders. Newer textbook series ask for more reasoning than older ones. 

DATA AND METHOD 

Data sources 

In 2016, about 30 different primary mathematics textbook series were licensed in 

Germany. Because of the federal system, even different issues of the same textbook 

series were licensed in different states. For our study, we focused on 10 different 

series, which were selected through the following procedure.  Publisher–consortia 

were asked to name and rank their most common textbook series. In consideration of 

the size of the publishing house, the named and ranked series, and the number of states 

in which the textbook series is licensed, 10 textbook series were identified. We also 

want to focus on new data at the time of analysis, so the books included in the first 

analysis differ from those in the second one; five series are the same in both corpora, 

whereas five are different. 

A primary textbook series in Germany normally includes four packages, one for each 

grade. Aside from the main textbook or several smaller issues for every pupil, exercise 

books and worksheets, exercise books for special needs, and materials, such as cuise-

naire rods, can be bought. Teachers will also find a teacher’s guide, additional digital 

materials, and diagnostic and testing materials, among others. The additional materials 

offered differ from series to series, so the only materials included in our analysis are 

the main textbooks for grades 3 and 4 of the 10 selected textbooks series. We always 

used the version of the series that is licensed in north Germany. 

Method of analysis 

Qualitative categorization: Demands for reasoning in mathematics textbooks are made 

through language or specific symbols that reflect the meaning of a “reasoning request.” 

In the German language, requests for reasoning are often made through interrogative 

sentences. These sentences start with a so-called “W-question-word”, followed by a 

verb. Typical examples are “Warum gilt …?” (Why is … true?) and “Warum ist das 

so?” (Why is it like this?).  Aside from interrogative sentences, imperative sentences 

also ask for reasoning, such as the following: “Begründe” (Give reasons) or “Erkläre, 
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warum …” (Explain, why). In mathematics classrooms, we also ask for reasoning 

through more implicit questions and imperatives: “Woher weißt du das?” (Where do 

you know it from?) or “Wie bist du auf deine Antwort gekommen?” (How did you get 

your answer?).  These questions could be answered in a linguistically correct way by 

stating a name or saying “by thinking”. Questions, such as “Are you sure?” or “Can 

this be true?”, can also be answered by “yes/no”. “What did you recognize?” can be 

interpreted as asking for a description instead of giving reasons for the detected 

regularities. Nevertheless, in all these cases in mathematics lessons, we expect children 

to give logical reasons. 

All the questions and imperatives mentioned above are considered indicators for 

reasoning. We categorized them as explicit if “why”, “give reasons”, or “explain, why” 

is used. Otherwise, we categorized them as implicit. 

Quantitative indicators: The quantity of text is recorded indicated by three indicators: 

total number of words, total number of pages, and total number of problems. The 

frequency of requests for reasoning is the relation of requests to the number of 

problems. We also differentiated between explicit and implicit requests for reasoning, 

as well as the content areas, e.g., arithmetic, geometry, stochastics, and the rest. 

RESULTS 

Results and further questions of the first textbook analysis 

In 2012, we already presented an analysis of 10 German third-grade mathematics 

textbooks (Ruwisch, 2012). The main results can be summarized as follows: 

Overall, the number of requests for 

reasoning was very low (see Figure 

1).  On average, 6% of the tasks ask 

for reasoning. Only in two textbooks 

was the required reasoning more 

than 10%; in five textbooks, less 

than 5% of all textbook tasks asked 

for reasoning. 

The request for reasoning seems 

independent of the number of text. A 

textbook that seems to strengthen 

linguistic issues in mathematics les-

sons does not provide more 

opportunities for reasoning. 

Since the conduct of this first analysis, several questions have emerged. First, the 

textbooks that we analyzed were authorized for use in mathematics classrooms 

between 2004 and 2010.  The national curriculum standards came into force in 2005, 

so finding any requests for reasoning in these textbooks as answers to the standards 

might have been too early. Second, was this low frequency of requests for reasoning 

Figure 1: Total number of problems  

without  and with the request for reasoning 



Ruwisch 

_______________________________________________________________________________________________________________________

PME 41 – 2017 4-117 

caused by the fact that we analyzed grade 3 books?  In Germany, reading and writing 

skills are assumed to be acquired at the end of the second grade. Analyzing the 

textbooks of older students and hopefully finding more requests for reasoning may 

therefore be of more interest. These two questions lead to the assumption that 

nowadays, there might be more tasks that request for reasoning in fourth-grade 

textbooks. However, the requirements for inclusion during the past years (children 

with learning difficulties, as well as those with different language backgrounds) seem 

to strengthen another line of development, which can be characterized by more 

restrictive and directive mathematics classroom learning. The second question can be 

further divided into the following two sub-questions: 1) Do recent mathematics 

textbooks have more requests for reasoning? To answer this question, we will compare 

the previous third-grade textbooks with the new ones. 2) Do grade 4 textbooks have 

more requests for reasoning than grade 3 textbooks? This question will be answered by 

comparison of actual third- and fourth-grade textbooks. 

Results of the recent textbook analysis 

Textbook series Grade 3  Grade 4 
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Denk. u. Rech. 61/598 10.20 4.18 6.02  66/616 10.71 4.87 5.84 

Einstern 36/679 5.30 2.21 3.09  40/561 7.13 3.03 4.10 

Flex & Flo 84/777 10.81 2.83 7.98  59/650 9.08 4.62 4.46 

Mathebuch 22/663 3.32 1.06 2.26  45/580 7.76 2.76 5.00 

Mathefreunde 45/720 6.25 0.97 5.28  46/603 7.63 1.82 5.97 

Mathematikus 37/503 7.36 2.98 4.37  58/511 11.35 3.91 7.44 

Nussknacker 32/443 7.22 1.35 5.87  32/401 7.98 2.24 5.74 

Welt der Zahl 44/795 5.53 0.13 5.41  52/810 6.42 0.25 6.17 

Zahlenbuch 72/577 12.48 5.20 7.28  63/607 10.38 5.60 4.78 

Zahlenzauber 49/472 10.38 3.60 6.78  57/451 12.64 5.10 7.54 
          

Average  7.89 2.46 5.43   9.11 3.41 5.70 

Table 1: Requests for reasoning 

Comparison between the textbooks: Overall, about 8.5% of the tasks require reasoning. 

The textbooks differ considerably.  In the third-grade textbooks, we found that 3.32% 

to 12.48% of all problems ask for reasoning, whereas in the fourth-grade textbooks, the 

range is slightly smaller at 6.42% to 12.64% (see Table 1). Although the textbooks 
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seemed to show an increased demand for reasoning over time, the increase is so 

negligible that it could instead be an effect of the different textbooks.  

Explicit and implicit requests for reasoning: In nearly all textbooks, more problems 

ask implicitly for reasoning than explicitly. On average, more than double of the 

requests in third-grade textbooks are implicit (5.43%) than explicit (2.46%). 

Examining these two groups, we find a slight increase in explicit demands for 

reasoning from third to fourth grade; whereas, on average, 2.46% of all tasks ask 

explicitly for reasoning in the third grade, 3.41% of all tasks do so in the fourth grade. 

The average in implicit reasoning remains almost the same: 5.43% in the third grade 

and 5.7% in the fourth grade. 

Comparison between grades: The number of requests in the third and fourth grades 

does not differ significantly, although a small increase is shown in the fourth grade, 

especially in the textbook series, indicating a very small number of requests in the third 

grade. As already mentioned earlier, the range of requests in the fourth grade is slightly 

smaller than that in the third grade. No fourth-grade textbook contains less than 6% of 

tasks asking for reasoning, whereas three third-grade textbooks do so.  In both grades, 

only four textbooks contain slightly more than 10% of tasks asking for reasoning. 

DISCUSSION AND CONCLUSION 

Analysis of textbook tasks that require reasoning was used to obtain information on the 

importance of reasoning in mathematics classrooms. 

Qualitative analysis of textbook problems showed two different kinds of requests: 

explicit requests that directly ask pupils to give reasons and implicit requests that 

might be answered without giving reasons. In the latter, argumentation must be 

initiated in the classroom discourse, probably directly required by the teacher. We 

considered more implicit than explicit requests for reasoning, and we observed a small 

increase in explicit demands for reasoning across the ages, but what does this mean? If 

teachers and textbook authors think that implicit requests are not as formal as explicit 

requests are, they might prefer implicit forms for younger students. From a linguistic 

point of view, one might argue that explicit requests are much clearer and easier to 

follow, so these forms are necessary, especially in initiating reasoning. The data do not 

tell us anything about these assumptions. This might not be a conscious decision 

neither of the teachers nor of the authors. We also do not know how students of this 

particular age react to explicit demands versus implicit ones. The initial results of 

written reasoning in geometry show that the same students produce much more 

substantive sentences that indicate linguistic forms of reasoning if they are explicitly 

rather than implicitly asked for reasoning (Schmid, 2016). These results are only initial 

ones, so the question on whether children understand implicit demands as a 

requirement for reasoning remains; whether they need explicit demands and perform 

better with these demands has yet to be investigated. 
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The quantitative comparison between 2010 (Ruwisch, 2012) and 2016 shows no 

significant differences in the frequency of demands for reasoning in response to 

national standards. The identified amount of less than 10% of textbook problems does 

not show that teachers are supported by the textbooks if they want to strengthen pupils’ 

competencies in argumentation. Examination of the differences in the textbook series 

licensed in the same state shows that reasoning is seemingly not a key focus. Maybe 

textbook authors consider it only as a nice addition to a textbook series, or perhaps 

reasoning is seen as too demanding for most pupils, particularly the linguistic demands 

of writing down argumentation. Students are seemingly required to reason by their 

textbooks only by chance. Nevertheless, this does not mean that no requests for 

reasoning exist in mathematics lessons. Our own results on the written reasoning of 

pupils in the fourth grade show that most of them are capable of understanding explicit 

requests and of starting written argumentation even if they do not fully grasp the 

concept yet (Ruwisch & Neumann, 2014). 

If we want to deepen our understanding of the processes of reasoning and argumenta-

tion, which are expected as adequate answers to formulated tasks, we need to expand 

our research area. Even if teachers’ materials show much focus on reasoning, we need 

to know how students learn reasoning in both written tasks and classroom discourses. 

In focusing on written reasoning—requests of textbooks and teachers, as well as 

interpretations and implementation of the students—we hope to gather information for 

future and better formulations, which foster reasoning competencies (Krelle, 2007; 

Ruwisch & Neumann, 2014). 
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In this report, a case study with three teachers from Indonesia is presented. The 

purpose of this present study is to understand if and how teachers’ beliefs correlate 

with their practices of problem solving. The teachers were asked to teach the topic 

“problem solving” and the corresponding lessons were observed. Additionally, the 

participating teachers were interviewed to capture their beliefs regarding 

mathematics and problem solving. The analyses of the interviews and the observations 

show a correlation between the teachers’ beliefs and their actions in those lessons.  

INTRODUCTION 

Due to the bad performances of Indonesian students in all PISA studies since 2000, 

The Ministry of Education and Culture of Indonesia aimed at reforming the 

mathematics education by publishing a new curriculum. A closer look into these 

documents (Safrudiannur & Rott, 2016) reveals that the changes do not only affect 

mathematics contents but also the process-related standards: In the new curriculum, 

the learning standards emphasize more on problem solving. In contrast, solving 

problems was only an implicit goal of the mathematics education in the old curriculum. 

The reformation of the learning standards raises the issues of how Indonesian teachers 

implement problem solving in their teaching and, especially, how they teach to solve 

problems. As we know, many researchers have revealed that teachers’ beliefs affect 

the way how they teach in their classes (Thompson, 1992; Phillips, 2007). 

Furthermore, Rott (2016) has shown that teachers’ style in practicing problem solving 

often match with their beliefs of the nature of mathematics. Therefore, we are 

especially interested in the Indonesian teachers’ beliefs about mathematics and 

problem solving. 

To better understand how the beliefs correlate to teachers’ practices, we have carried 

out a qualitative study by asking teachers to involve problem solving in their lessons. 

The underlying research question of this present study is “how do their beliefs 

correlate their practices of problem solving in the Indonesian educational context?” 

THEORETICAL BACKGROUND 

Beliefs 

Beliefs play an essential role in learning and teaching of mathematics (Thompson, 

1992; Philipp, 2007). Philipp (2007) defines beliefs as psychologically held 
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understandings, premises, or propositions about the world that are thought to be true. A 

belief does not stand isolated from the other beliefs. They are interconnected. For 

example, beliefs about the nature of mathematics will affect teachers’ beliefs about 

mathematics teaching and learning.  

Ernest (1989a) states that there are three beliefs regarding the nature of mathematics: 

the instrumentalist view, the Platonist view, and the problem solving view.  

First of all, there is the instrumentalist view that mathematics is an accumulation of facts, 

rules, and skills to be used in the pursuance of some external end….. Secondly, there is the 

Platonist view of mathematics as a static but unified body of certain knowledge…… 

Thirdly, there is the problem-solving view of mathematics as a dynamic, continually 

expanding field of human creation and invention, cultural product (Ernest, 1989a, p. 250). 

Furthermore, he describes how those three views influence teachers’ practices. 

For example, the instrumental view of mathematics is likely to be associated with the 

instructor model of teaching, and the strict following of a text or scheme. It is also likely to 

be associated with the child’s compliant behaviour and mastery of skills. Similar links can 

be made between other views and models, for example: Mathematics as a Platonist unified 

body of knowledge – the teacher as explainer – learning as the reception of knowledge; 

Mathematics as problem-solving – the teacher as facilitator – learning as the active 

construction of understanding, possibly even autonomous problem-posing and 

problem-solving. (Ernest, 1989a, p. 251-252) 

Ernest’s theory will serve as a fundamental theoretical basis for interpreting the 

relations of teachers’ beliefs from the interviews and the observations in this present 

study. 

METHOD 

The method of our preliminary study is observation and semi-structure interview. We 

asked three mathematics teachers to conduct a lesson involving one or more math 

problem(s). Few days before those teachers conducted the lesson, a particular problem 

was chosen and discussed together with the teachers, but they had options to add or 

pose their own problems. The lesson of each teacher was observed and filmed. The 

coding system from TIMSS Videotape Classroom Study 1999 was used for 

interpreting the underlying lessons. One of the reasons for this choice was that the 

TIMSS video study was conducted in several countries worldwide, including 

Indonesia in 2010.  

We categorized the learning process of the entire lesson by applying the coding such as 

the classroom interactions (public, private, or mix) and the content activities (problem 

or non-problem segment). In this paper, we present only the problem segment.  

The problem segment is a segment containing the discussion of a mathematical 

problem. The segment starts when a teacher states or assigns the problem. The segment 

ends when solutions have been found or the discussion around the solution has been 

finished, whichever occurs in the final stage of the segment (NCES, 1999). The 
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segment is characterized by the problem statements, the processes of searching for a 

solution, discussion including the checking of the solutions, and others (transitions 

between them). 

At the end of each lesson, we interviewed the teachers in order to acquire more 

information about their beliefs of mathematics and problem solving. The analyses of 

the interviews were discussed with two colleagues from the mathematics education 

department of the Mulawarman University in Samarinda, Indonesia.  

This pilot study was implemented in three junior high schools in Samarinda. Three 

teachers (A, B, and C) voluntarily participated in this present study. They each have 

been mathematics teachers for more than ten years. Schools of teacher A and C are 

implementing the old curriculum (2006 curriculum) and school of teacher B is 

implementing the new curriculum (2013 curriculum).  

RESULTS  

Teacher A 

Observation: Table 1 represents the problem discussed in the lesson of teacher A and 

the activities during the problem segment. The duration of his lesson was 82 minutes 

and 54 seconds (82:54). The problem segment lasted for 42:40 (51.5%).  

Activities Duration 

Problem Statement 08:52 

The problem: O is the centre of the semi-circle. D and 

E are the tangent points of CD and FE respectively. 

|BCD| = |AFE| = 45o. If the length of OC is  

cm, find the total length of CD, DE, and EF. 

Process to find the solution 32:43 

Interactions during the process in chronological order:  

1. Public Interaction 1 (09:55) 

2. Private Interaction 1 (01:18) 

3. Public Interaction 2 (03:15) 

4. Private Interaction 2 (01:36) 

5. Mix interaction 1 (00:56) 

6. Private Interaction 3 (00:49) 

7. Public Interaction 3 (04:51) 

8. Private Interaction 4 (08:27) 

9. Mix interaction 2 (01:00) 

10. Private Interaction 5 (00:36) 

Discussion (Checking) on the solution 00:07 

Other  00:58 

Table 1: Activities during the problem segment of teacher A’s lesson. 

Table 1 shows that in this lesson, public interactions dominates the interactions during 

the process to find an answer. In the public interactions, teacher A helped his students 

by explaining not only the step how to solve the problem, but also the necessary 

concepts and formulas required to solve the problem. For example, in the first public 

interaction, he told his students to draw lines connecting points O and D as well as O 
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and E. He guided them to recognize that CDE was an isosceles right triangle, and he 

reminded them of the appropriate formula to find the length of CD and OD.  

All private interactions, in which the students worked on their own, were initiated by 

teacher A by instructing the students to do calculations. For example, in the first 

private interaction, teacher A asked the students to find the length of CD and DO by 

using the Pythagorean Theorem. Time of the first private interaction was limited due to 

increasing difficulties encountered by some students. Afterwards, teacher A continued 

to guide students applying the theorem in the second public interaction.  

Interview: For teacher A, a problem is a task that is difficult for students to solve. A 

student is successful in problem solving if the student gets the correct answer. To 

ensure that, he guided his students step by step in his lesson. He said that without his 

guidance, his students would not be able to find the answer. He assessed that his 

students in the current lesson had low mathematical abilities. 

The way he guided his students is harmonious with his beliefs about mathematics. He 

expressed that he somehow believes that mathematics is an accumulation of useful 

facts, rules, and skills. Students should know which mathematical formulas are 

appropriate to solve a problem and know how to apply them. Those expressions 

indicate that teacher A holds the instrumentalist view. Thompson (1984) argued that if 

a teacher holds this belief of mathematics, it is important that students are able to recall 

what the teacher taught and then apply it to obtain the correct answer.  

Teacher B 

Observation: Table 2 visualizes teacher B’s activities during the problem segments. 

The total time of his lesson was 80:58. He posed his own three problems regarding 

mean values. Time of the first, second, and third problem segment were 10:22 (12.8%), 

13:42 (16.9%), and 21:38 (26.7%), respectively, or 45:42 in total. 

Table 2 shows that private interactions and mix interactions dominate the process of 

obtaining a solution in all problem segments. The public interaction in second problem 

segment has occurred because teacher B explained the text of the second problem. He 

wanted to ensure that his students understood the problem.  

In contrast to teacher A, he did not give any clues to his students. In each problem 

segment, he repeatedly encouraged his students to create their own strategies. He 

emphasized that his students could use their own formulas.  

Interview: The problems posed by teacher B reflect what his beliefs about a 

mathematical problem. For teacher B, a problem should be the application of 

mathematics in the real world.  

The way he guided his students in problem solving is also influenced by his beliefs 

about the nature of mathematics. He released his students to create their own formulas 

because he strongly disagreed that mathematics is an accumulation of facts, formulas, 

or skills. It is not obligatory for students to memorize formulas. For him, mathematics 



Safrudiannur and Rott 

_______________________________________________________________________________________________________________________

PME 41 – 2017 4-125 

contents are not fixed but can change and are open for revision. From the interview, 

teacher B seems to hold the problem solving view. 

Activities Duration 

First Problem Segment: 

Problem Statement 

 

01:25 

The problem: The average height of eight volleyball players is 176 cm. After two 

players leave, the new average is 175 cm. Find the average height of the two 

players! 

Process to find the solution 05:56 

Interactions during the process in chronological order:  

1. Private Interaction 1 (02:42) 

2. Mix interaction 1 (03:14) 

 

Discussion on the solution 01:02 

Other  01:59 

Second Problem Segment: 

Problem Statement 

 

01:55 

The problem: The average weight of six futsal [a ball game] players is 65 kg. After 

a substitution, the new average weight is 63.5 kg. If the weight of the player who 

left is 64 kg, find the weight of the new player.  

Process to find the solution 09:15 

Interactions during the process in chronological order:  

1. Public interaction 2 (01:09) 

2. Private Interaction 2 (02:48) 

3. Mix interaction 2 (05:18) 

Discussion on the solution 01:37 

Other  0:55 

Third Problem Segment: 

Problem Statement 

 

01:17 

The problem: The math test average score of a group of students is 63. If a student 

whose score is 80 is included to the group, the new average score is 64. Find the 

initial number of the students in the group. 

Process to find the solution 14:54 

Interactions during the process in chronological order:  

1. Private Interaction 3 (11:20) 2. Mix interaction 3 (03:34) 

Discussion on the solution 03:07 

Other  02:20 

Table 2: Activities during the problem segments of teacher B’s lesson. 

Teacher C 

Observation: Duration of his lesson is 73:41 and the problem segment lasted for 24:38 

(33.5%). Before the problem segment, teacher C announced that his students are 

allowed to use their own strategies but the strategies should follow mathematical rules. 

Then he gave them two mathematical tasks. Both tasks were based on two 

mathematical facts respectively: the total size of three angles forming a straight angle 

is 180o and the total size of three angles of a triangle is 180o.  
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Activities Duration 

Problem Statement 00:40 

The problem: Find x! 

 

 

 

Process to find the solution 23:43 

Interactions during the process in chronological order:  

1. Private Interaction 1 (14:41) 

2. Mix interaction 1 (07:16) 

3. Private Interaction 2 (01:46) 

Discussion (Checking) on the solution 00:00 

Other  00:15 

Table 3: Activities during the problem segment of teacher C’s lesson. 

In the process to find a solution, private interactions dominated the process. During the 

private interactions, students worked individually and teacher C walked around and 

motivated them to show their works on the whiteboard. To assist his students, he gave 

a clue that students needed to draw an auxiliary line to solve the problem.  

In the mix interaction, there were two students showing their works on the whiteboard. 

After they finished writing their solutions, teacher C clarified their works by asking 

some questions. For example, one of the two students wrote the equation 

123+x+53=180 and teacher C asked him to explain how he got it. 

Interview: For teacher C, a mathematical problem is a task that is difficult for students 

to solve. To succeed in solving it, he said that his students needed his help. He gave 

clues consisting of concepts or ideas related to the problem, not how to solve it.  

For him, concepts are crucial for solving problems successfully. He said that the two 

tasks before the problem segments were his clues since the concepts in the two tasks 

would be useful and related to the problem. In addition to the two task, he also gave the 

students an idea by telling them to draw an auxiliary line which could help them to 

apply the concepts. He said that if there was enough time, he would draw it. 

He believes that mathematics contents are not fix but dynamics, can change over time, 

and are open for revision. He strongly disagrees that students should memorize 

formulas. Thus, he does not care how his students solve a problem as long as the 

approaches follow mathematical rules. From this interview, teacher C seems to hold 

the problem solving view.  

DISCUSSION 

The results show that the observed teachers’ beliefs of the nature of mathematics 

correlate with the way in which they involve problem solving in their lessons. We 

interpret this in the following way: the beliefs influence the teaching style.  

Teacher B who holds the problem solving view does not require his students to 

memorize and apply formulas that he taught. He encouraged his students to create their 



Safrudiannur and Rott 

_______________________________________________________________________________________________________________________

PME 41 – 2017 4-127 

own strategies or even their own formulas to solve problems. The coding of his lesson 

shows that private and mix interactions dominate the process to get an answer. In the 

private interactions, students work privately and he encouraged them to create their 

own formulas. In the mix interactions, one or two students show their works and other 

students can look at the works or still work on problems. These interactions indicate 

that he gave his students a lot of time to work. He did not disturb his students by giving 

clues what formulas are appropriate. He gave his students opportunities to work on 

their own.  

Contrastingly, teacher A shows a different style on teaching problem solving since he 

has a different view. He holds the instrumentalist view which mathematical formulas 

are very important. His view influences how he guides his students on problem 

solving. He tried to direct his students to solve the problem by reminding them of 

appropriate formulas and concepts and also guiding them how to apply the formulas or 

concepts. He did not encourage students to create their own strategies. He also did not 

introduce alternative ways to solve the problem. He believed that it would confuse his 

students. Apparently, it is enough for his students to copy his procedures. In the mix 

interaction, students’ products on the whiteboard were the applications of his clues. 

Teacher A and B’s actions show that their beliefs about the nature of mathematics and 

their style in teaching problem solving are related to each other. But, compared to 

teacher A, there is a gap between the way teacher C guided his students in problem 

solving and what he believes about mathematics.  

The interview indicates that teacher C holds the problem solving view. At the 

beginning of his lesson, he told his students that they can develop their own strategies 

to solve problems. But during the process to find the answer, he did not encourage 

them to express their own ideas. He gave clues which could lead his students to apply 

his clues. This can be seen from the example of a student who wrote his answer during 

mix interaction. This student tried to apply teacher C’s clues but did so incorrectly. He 

wrote down the equation 123+x+53=180. With this equation, he tried to follow the 

equations to find the answers of the two tasks that were posed before the current 

problem segment. In those two tasks, the equations needed to find the answers used the 

fact that the total size of three marked angles was equal to 180. 

Teacher C insisted that he wanted to free and encourage his students to create their own 

strategies but he was sure that they could not do that. He gave clues due to the low 

mathematical performance of his students, which led to the assumption that his 

students would not be able to develop strategies for problem solving. 

CONCLUDING REMARKS 

This present study shows that in the Indonesian educational context, teachers’ beliefs 

about the nature of mathematics correlate with their practices of problem solving. 

What they believe about mathematics can be matched with their style in teaching 

problem solving. However, there are factors which can make a gap between teachers’ 
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beliefs about the nature of mathematics and their way to teach problem solving in their 

lesson. One of them is students’ low abilities in mathematics. 

In the next study, we are going to develop a quantitative instrument to collect beliefs of 

a large sample of Indonesian teachers. This present study has shown that teachers’ 

beliefs of the nature of mathematics are an important factor to understand how teachers 

practice problem solving. Therefore, the theory about teachers’ beliefs about the nature 

of mathematics will serve as basis to develop the instrument.  

We also consider counting on students’ mathematics abilities in our instrument. This 

study has found that students’ mathematical abilities can explain a gap between 

teachers’ beliefs and their observed actions. We suppose that students’ mathematical 

abilities can be one of the social contexts which according to Ernest (1989a) can cause 

disparities between a teachers’ espoused and enacted model of teaching mathematics. 

By considering students’ mathematical abilities, we can better understand the disparity 

between teachers’ beliefs and their actual teaching especially in problem solving. 
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This article presents some preliminary results from a wider research that analyzes the 

practice of expert and novice teachers from a socio-cultural approach and the use of 

resources through the networking of theories. The data analyzed here correspond to 

the transcriptions of video recordings of two physics teachers of grade 11 (expert and 

novice), in original teaching settings. The discussion focuses on determining how the 

two teachers' practices are different from the other, based on the use of semiotic means 

of objectification and resources (physical and conceptual). The aim is to promote the 

awareness of conceptual meanings. The results show significant differences between 

the way in which the teachers produce meanings in the classroom and the use of 

resources. 

INTRODUCTION 

The motivation to carry out this research stemmed from placing ourselves in line with 

the interest of conceptualizing mathematics teaching and learning in a different way 

from those individualistic approaches that place the student in the center of the 

knowledge production process as well as from the constructivist paradigm in which 

students only learn what has been constructed by them and the teacher is relegated to 

play an auxiliary role. One of the theories based on the constructivist approach, 

focused on analyzing learning, is that of conceptual change (Appleton, 1997). 

According to this approach, learning takes place when previous beliefs and knowledge 

are changed by new [scientific] ones to be learned (Rolka, Rösken & Liljedahl, 2007). 

However, change does not come easily and resistance that hampers learning the correct 

ideas often arises (Bayraktar, 2009). Then, the teacher’s role is to find didactic 

teaching strategies to promote such change in the students. Indeed, it is important for 

the teacher to identify the students’ false ideas even though the reason or the 

importance of change is not identified (Gomez-Zwiep, 2008).  

BACKGROUND AND RESEARCH QUESTION 

Research regarding teaching practice has become the main focus of interest in the 

mathematics education field since the first years of this century (Sfard, 2005). Among 

these works is research that contrasts the practice of novice and expert teachers (e.g., 

Robinson, Even & Tirosh, 1994). Regarding the theoretical approaches, Vygotsky’s 
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work—and his notion of semiotic mediation—permeated and evolved in several 

research lines dealing with teacher’s practice, mainly since the 90s (da Ponte & 

Chapman, 2006). Two relevant characteristics in such notion are the ones related to the 

issue of meaning and the influence culture has on the production of those meanings. 

Thus, Moreno-Armella & Sriraman (2010) consider that the access to [mathematical] 

objects is through mediators (as language). Then, the relationship object-subject does 

not take place directly. This epistemological relationship is opposed to the one 

considered, since Descartes and Kant, in several approaches as a direct relationship 

without intermediaries (Radford, 2000). Therefore, we are able to develop our 

knowledge and culture through cultural mediators (artifacts and signs) that they have 

an historical development. Considering the role culture plays in the development of 

systems of scientific ideas is bringing forward the relevance of the historical process 

those systems have gone through. Particularly, Karam (2015) points that the fruitful 

and close relationship between physics and mathematics arises from a historical 

process. However, the picture is quite different in educational contexts. Students “have 

a hard time understanding where mathematical concepts come from and why physics 

has little to do with their experiential world.” (Karam, 2015, p. 487). 

We revisit the interest on the practice of expert and novice teachers and use a 

sociocultural approach to analyze the teachers’ practices. Therefore, we turn to the 

theory of objectification—TO— (Radford, 2008; 2014a) as a theoretical framework 

that provides us with an epistemology of the characteristics of knowledge (as 

awareness). The TO also allows us to identify the teacher’s role during the processes of 

meaning production. Thus, we pose the following research question: How does each 

teacher promote the objectification of physics concepts while teaching through 

semiotic means and the use of resources? 

CONCEPTUAL FRAMEWORK 

This research is supported by the TO (Radford, 2008; 2014a), which incorporates the 

notion of semiotic mediation by Vygotsky and the importance of the use of artifacts 

and signs in the processes of knowledge production. In the TO, knowledge mediation 

occurs through social labor; artifacts and signs are part of such labor (Radford, 2014b). 

Then, the concept of labor is the fundamental principle of the TO (Radford, 2014a). 

Unlike the approaches that consider knowledge as something that individuals possess, 

acquire or construct, knowledge is collectively produced by students and teachers in 

the TO as: “a dynamic and evolving implicit or explicit culturally codified way of 

doing, thinking, and relating to others and the world.” (Radford, 2014b, p. 7); that is, it 

is sheer possibility. It is the possibility of ways of doing and thinking. “Objects of 

knowledge [mathematical objects] (…) are social-historical-cultural entities” 

(Radford, 2015, p. 134). Therefore, learning takes place through the awareness of such 

ways of thinking and doing in the systems of scientific ideas. Then, according to the 

approach of the TO, learning is defined as a problem of awareness. Conscience is 

something concrete; it is a subjective reflection on the world and can be perceived 

through its manifestations: discourse, gestures, and the rest of sensual actions (Radford 
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& Roth, 2011). For awareness to be achieved, knowledge must take concrete (singular) 

shapes through specific activities.  

An important part of data analysis, corresponding to the use of resources by each 

teacher to promote awareness, takes place through the networking of theories. Kidron 

and Bikner-Ahsbahs (2015) state that such concept [networking of theories] is 

“essentially a methodological approach for theoretical and empirical research that 

connects different theories to broaden and deepen insight into problems” (p. 221). So, 

the approach on the use of resources through documentational genesis (Gueudet & 

Trouche, 2009) is added to the research to analyze the teachers’ practice. In 

documentational genesis, one of the aims is to consider the teacher’s activity as 

goal-oriented and conceptualize it as a social activity. Gueudet & Trouche (2009) use 

the term resource to emphasize the variety of artifacts they consider teachers use. 

These researchers regard an artifact (whether physical or psychological) as a 

socio-cultural means provided by human activity (e.g., computers and language) and 

produced with specific purposes (e.g., problem solving). We consider that using 

resources is relevant for the teacher to intentionally use artifacts and gestures to 

promote awareness in the students.  

METHODOLOGY 

The research is qualitative and is conducted through a case study. The pilot study was 

carried out in a high-school (grade 11); with two physics teachers (expert: who has 

taught over 20 years and novice: 2 years). The instrument for data collection was the 

non-participative observation of the Physics I classes of each teacher where mechanics 

topics were addressed. Each class lasted two hours twice per week and one hour once 

per week. The observation time was different with each teacher since the objective was 

to obtain data of the topic dynamics, where the concepts of force, movement and 

cartesian graphs interpretation are included. We observed to expert teacher for 10 

sesions (16 hours); and to novice teacher for 12 sesions (20 hours). The data collection 

was carried out simultaneously with both teachers in different schedules. We used two 

cameras controlled by one of the researchers; one remained fixed and focused on the 

board while the other was moved to record the interactions during the students' 

participations. We also used a voice recorder placed on the teachers to have another 

audio element of the classes. After the data were collected, we watched the videos from 

the classes to identify moments when key concepts had been addressed. Once the 

moments (class segments-excerpts) were identified, we transcribed what occurred in 

those segments. Our analysis is based on those transcriptions. 

ANALYSIS AND DISCUSSION OF RESULTS 

To carry out the data analysis of each teacher’s practice (while they promote scientific 

concepts related to object movement), we defined two categories of analysis: (1) 

artifacts and cultural signs (gestures) as elements of the activity during teaching 
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practice, and (2) use of resources. In addition, for the purposes of data analysis, we 

named the novice teacher “Edgar” and the expert teacher, “Peter”.  

Analysis of Edgar’s practice 

From the video recordings of Edgar’s practice, we did not identify the use of resources. 

During the observation period, Edgar’s classes focused on having the students 

(organized in teams) solve kinematics exercises. We therefore directed our attention to 

the analysis of cultural signs used during his practice, particularly to the use of 

language and gestures as meaning carriers. Here, we analyze excerpts of the 

transcription of a moment during class in which a student (S1) has a question regarding 

the sign of a vector quantity [the sign of gravity acceleration, g] in a free fall problem 

where the students are asked to find the final velocity of an object. It is then that Edgar 

explains. 

L1  S1: Teacher, is gravity negative? (…)  

L2 Edgar:  Gravity, gravity will always be negative, right? … I’d told you that 
acceleration was a vector, right? Then, for example, if you want to speak in, 
let’s say, a vector manner, you must express gravity with its negative. 
Because it will always point down [makes a gesture; see Figure 1-Photo 1], 
right? But in this case, if you place it like this, in a scalar manner … we’re 
only looking at the magnitude of the gravity. Which would be 9.8. 

The free fall exercise set by Edgar demands the use of a reference system to find the 

solution. However, he does not address the concept of reference system in his 

discourse before the students start solving the exercises. Edgar establishes the sign of g 

from the type of movement and not as a mathematical object that allows the analysis of 

a phenomenon. The gesture he makes when pointing down using his finger reinforces 

this concept (Photo 1). The meaning given to the gesture is such that g will always be 

negative for Edgar because: “it will always point down” (L2) due to the characteristic 

of the phenomenon. Gestures are expressed as semiotic means when they are added to 

Edgar’s discourse to convey a meaning. They do not merely appear as an aid element 

in the discourse but are incorporated to promote awareness regarding the sign of g. In 

consequence, language and gestures expose the way in which Edgar makes the 

existence of the meaning of g sensible. However, Edgar’s explanation is ambiguous to 

the student. On one hand, Edgar is adamant when saying that g will always be negative 

and, on the other, he says the students might work with the positive sign, 9.8. Later, 

Edgar speaks again because the students were still uncertain. 

L3  Edgar: I’m telling you “g” will always be negative, right? Now, you will take a 
point of reference … If you take a point of reference here [see Figure 
1-Photo 2], guys. Here, it would be y, x, right? … we are only acting on y, 
then the value will always be zero at x. Then, if this [the stone] is falling 
towards here [simulates the fall of the object with respect to the diagram; 
see Figure 1-Photo 3]. That is why we have a negative value in y. Because 
y that goes down is negative. 
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Figure 1: From left to right, photos of gestures used by the teacher to represent: the sign 

of gravity (Photo 1), the origin of the system of reference (Photo 2), the motion of the 

object with respect to the system of reference (Photo 3). 

Edgar considered that the sign of g was determined by the nature of the phenomenon 

they were dealing with. However, he had yet to clarify the meaning of the negative [or 

the positive] sign to his students. Thus, Edgar had to incorporate the concept of 

reference system (L3). Still, the reference system is evidently subordinated to the free 

fall physics phenomenon and not as mathematical object to analyze object movement 

of which the students have to be aware. The way in which Edgar works with the 

concept of reference system makes the students unaware of the meaning of relativity 

regarding the sign of g. then, Edgar expresses the reference system is subordinated to 

the movement when he says: “Then, if this [the stone] is falling towards here. That is 

why we have a negative value in y. Because y that goes down is negative”. Still, Edgar 

fails to promote awareness regarding he meaning of the sign of g.  

Analysis of Peter’s practice 

Meanwhile, Peter’s practice was carried out in a different way, in the use of language 

and gestures and in the use of resources to promote awareness in the students. Peter 

even focused the content of his classes on the topic of dynamics. Here we present 

excerpts of the discussions that arose when talking about linear momentum in the 

context of collision of two objects. 

L4  Peter: Remember that velocity has a sign, right? On what does the sign of velocity 
depend? [It depends] on where it moves with respect to your frame of 
reference. (…) So, you’ll have to pay attention to several things: which the 
system is; but also which signs you’re going to associate from the frame of 
reference you’re providing. 

Linear momentum, a vector magnitude, is defined: p=mv, where v is the velocity Peter 

refers to (L4). Peter is aware of the relationship between the sign of v and the frame of 

reference. That is clear when he points that the sign depends: “… On where it moves 

with respect to your frame of reference” (L4). So, he sets the conditions for a later 

analysis of movement in which the relativity in the signs of the variables v and p must 

be taken into account. The sign will not be determined by the direction of the object 

movement since the reference system is not static; that is, it does not depend on the 

nature of the phenomenon nor is it restricted to the usual orientation of the system of 

coordinate axes (see what Edgar says in L3). As Radford (2014b) states on the concept 

as sheer possibility, the production of meanings concerning the reference system and 

the movement interpretation must be set in motion through the Activity. So, Peter adds 
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another semiotic registry, a Cartesian graph, to the Activity on collision analysis. His 

students will discuss about this the following class.  

L5  Peter: Well, you’re going to have a graph like this one [see Figure 2-Photo 1]. 
Here, what are you plotting? Time versus location. So, this point [see 
Figure 2-Photo 1] is the collision. Why? Why do I say this point is the 
collision?  

L6  S2: Because the velocity changes. 

L7  Peter: Because the velocity changes. How do you know the velocity of this graph? 
[points at the graph on the board] From the slope. 

When referring to the graph, Peter adds another element to the process of awareness, a 

sign that is a meaning carrier at the same time. Peter explains these meanings: “And 

then, this point is the collision.” (L5). However, Peter is aware that, for the students to 

achieve awareness on the meaning of this point in the graph, the meaning of the point 

must be sensible to them. Then, in the following class, Peter takes the analysis deeper 

by incorporating the use of software to analyze a video recorded by the students. In the 

video, two pellets collision.  

L8  Peter: Let’s see, where do they collision? [a student plays the video] Stop! [he 
says when the collision in the video is about to happen; see Figure 
2-Photo2] Rewind [he asks the students to rewind the video a little] There! 
Let’s see if you detect that the change of the momentum in the graph 
corresponds to this moment [he focuses his attention on the graph; see 
Figure 2-Photo3]. Do you see it? Then, this here is the collision [referring 
to the point in the graph he had spoken about the class before; Figure 
2-Photo1]. 

             
  

Figure 2: From left to right, photos of: graph representing the collision phenomenon 

(Photo 1), software analysis of a video recorded by the students on the collision 

phenomenon (Photo 2), graph obtained using software (Photo 3).   

The students have tried to provide a meaning to a graph made by Peter (L5), yet he 

considers this is not enough. He then incorporates the use of a resource (software). We 

can state that Peter uses the software as a resource., because this resource represents an 

artifact that influences the students’ knowledge production when trying to provide a 

meaning for the movement analysis during its use. The software is also a resource 

because of the intentionality and scheduling of its use. Using the software, the students 

manage to observe the phenomenon (Figure 2-Photo 2) and provide a meaning to the 

change of slope in the graph (Figure 2-Photo 3). The change of slope represents the 

change in velocity and, therefore, the moment of collision, as Peter said (L5). This is 

how Peter promoted awareness related to velocity change when two objects collide.  
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CONCLUDING REMARKS 

In this article, we analyzed how a novice teacher and an expert one promote awareness 

in their students regarding the analysis of object movement. The analysis, due to the 

cultural and historical nature of knowledge, reveals the importance of mediation 

though Activity –where the use of artifacts and gestures is placed–; as well as the use of 

resources in teaching practice to promote awareness in students concerning the 

meaning of concepts. We observed differences in the practices of the two teachers. 

Each addressed a different content: while Edgar focused on kinematics exercises, Peter 

dealt with dynamics phenomena where the concept of force (not discussed in this 

work) is essential. Piaget (1979) considers that, in ancient times, there was a lack of 

analysis on the notion of force (the core of Newtonian dynamics) to build rational 

kinetics and mechanics. We also observed that Peter kept on developing the Activity 

across several sessions. He revisited concepts previously discussed, which points to a 

continuity when promoting awareness, and even more when directed to awareness on 

the meaning of concepts. In contrast, Edgar focused on a more numerical matter by 

solving problems that were discusses only in one session. Finally, we must consider 

Peter’s use of software [artifact]. Radford (2014c) notes that digital artifacts are 

complex objects that carry historical meanings; they are more than providers of places 

to experiment. These artifacts deeply and distinctively affect the meanings the students 

create by suggesting defined ways of action and reflection. They also affect the 

potential lines of social and cognitive development.  
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MATHEMATICAL COMMUNICATION AND NOTE-TAKING IN 

DYADS DURING VIDEO-BASED LEARNING WITH AND 

WITHOUT PROMPTS 

Alexander Salle1, Stefanie Schumacher1, Mathias Hattermann2 and Daniel Heinrich2 

1Osnabrück University, 2Paderborn University 

 

18 pairs of novice teacher students from a German university learned with video 

tutorials in two different study settings, either with or without accompanying prompts. 

This paper focuses on the commonalities and differences in mathematical 

communication and note-taking behavior within the dyads while learning with the 

videos which dealt with descriptive statistics, i.e. measures of center and spread. The 

analyses of the coded videos reveal differences between the two groups with regard to 

the ‘density’ of mathematical communication and the taking of notes in different 

processing phases. 

LEARNING WITH MEDIA IN DYADS 

In the last years, more and more instructional media like video tutorials, podcasts, 

presentations were created to facilitate the transition from secondary school to 

university for students in mathematical courses and courses that need mathematics dur-

ing the first semesters (psychology, business administration, engineering, …) (Biehler, 

Fischer, Hochmuth & Wassong, 2014). Apart from their mere design, the successful 

implementation of such formats depends on several factors like the social form, 

supporting impulses and the learners’ prior knowledge and learning strategies, etc. 

(e.g. Lou, Abrami & d’Apollonia, 2001). 

Research has shown that the communication between the learners –– when learning in 

dyads –– is crucial for their learning benefit, e.g. that some dialogue-patterns are more 

beneficial for learners than others (Chi & Menekse, 2015; Lavy, 2006; Teasley, 1995). 

The role of prompts in collaborative learning sessions is not extensively investigated 

so far. Hausmann, van de Sande & VanLehn (2008) have shown in a worked-example 

setting that groups which are prompted to self-explain perform better than prompted 

single learners. Furthermore, an analysis of the protocols showed that pairs focus more 

on specific self-explanations in their communication than single learners (Hausmann, 

Nokes, VanLehn, & van de Sande, 2009). Further studies analyze the effects of 

prompts in video learning contexts for metacognitive processes (Moos & Bonde, 2016) 

or the outcome with respect to argumentation skills and knowledge (Schworm & 

Bolzert, 2014); however, the concrete learning processes are investigated seldom. 

Thus, it remains mostly unclear in how far prompts affect the communication behavior 

–– that is the ‘when’, ‘how’ and ‘what’ of the mathematical communication processes 

–– of groups.  
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Another part of the collaborative learning process that is rarely investigated is the 

learners’ note-taking behavior –– that is when, how and what learners write down 

during their learning phases. When students take notes, they write down information 

and filter, comprehend, organize, restructure and integrate it into their knowledge 

(Makany, Kemp & Dror, 2009; Anderson & Armbruster, 1986). Investigating the 

process of note-taking and working with notes in dyads has rarely been looked into so 

far. The few qualitative analyses underline the importance of inscriptions and 

materialities for face-to-face interactions (Streeck, Goodwin & LeBaron, 2014) and 

learning processes (Salle, Schumacher & Hattermann, 2016). It is not known how the 

learners’ note-taking behavior is structured when they learn with instructional media. 

Furthermore, the impact of prompts on this behavior is unknown. Therefore, our 

selected research questions are the following: 

- How long and when do the students of the prompt- and no-prompt groups 

communicate about mathematical aspects during their learning processes? 

- How long and when do the students of the prompt- and no-prompt groups take 

notes? 

- What are the differences concerning these aspects between the dyads working 

with prompts and those working without? 

METHODS 

Procedure  

The 36 teacher students were asked to work in dyads with video tutorials dealing with 

descriptive statistics in order to pass a post-test after having learned with the videos. 

Half of the dyads received prompts that are questions or short tasks asking for aspects 

of the instructional material, the other half did not. The questions addressed the 

common use of measures of center and measures of spread and the answers were typed 

with a computer keyboard. 

The media-intervention-phase with the instructional material lasted about 70 minutes 

during which the investigator left the room. The computer screen was captured in the 

meantime; the sound and the image of the two learners were videotaped. Moreover, 

students were allowed to take notes which were collected directly after the intervention 

and scanned for further analyses. 

Sample & Learning Material 

The whole study is conducted with five different instructional media formats (e.g. 

verbally annotated scripts, video tutorials) at four German universities (total: N = 300). 

Because of the still ongoing analyses and our interest in the collaborative learning part, 

we focus on the dyads of one location in this paper exemplarily. From the 42 students 

working in dyads at Bielefeld University, the video material of 3 dyads could not be 

further processed due to unusable data. The remaining 36 teacher students (32 female, 

4 male) who worked in dyads during the intervention are in their first semester. 
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Figure 1: Screenshot of the video explaining the median (translation by authors). 

The 36 students learned with two educational video presentations, both about 13 

minutes long. The first one focuses on measures of center (i.e. median, arithmetic 

mean, harmonic mean), the second one on measures of spread (i.e. range, variance, 

standard deviation). The video presentations explain statistical terms and concepts 

embedded in the context of an invented smartphone typing competition at school. Both 

presentations, which start with an introduction and end with a summary in each case, 

were organized into several subsections. On the left-hand side (Fig. 1), there was a 

menu item for each of those subsections. By clicking on a particular subsection, a new 

slide appears and a video concerning the topic could be started by clicking on the 

play-button. Each video builds up its content step by step, accompanied by matching 

verbal annotations. The students could pause, rewind and fast-forward the media.  

Analysis 

The learner interaction and the computer screen were captured and analyzed using 

video recordings. For the analysis, a time-sampling method was used and the videos 

were segmented into 10 seconds-units (Bakeman & Gottman, 1997; Petko, Waldis, 

Pauli & Reusser, 2003; Seidel, Prenzel & Kobarg, 2005). A coding scheme with three 

focal points was created based upon data from a pilot study and a literature review. 

This scheme was applied for each 10 seconds-unit: 

(1) Communication (Do the students communicate with each other about 

mathematical aspects of the intervention?): categories are “communication 

about mathematical aspects” and “communication not relevant for the study”. 

(2) Medium (i.e. which thematic section of the video presentation is present on the 

screen): exemplary categories are ‘Introduction’, ‘Arithmetic Mean’, ‘Median’, 

Harmonic Mean’, ‘Prompt template’, etc. 
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(3) Notes (whether or not students are taking notes; differentiated by students): 

categories are “Left student takes notes”, “Right student takes notes”. 

A 10-second-segment for (1) and (2) was coded, if 5 or more seconds could be 

identified as the particular category. (3) was coded, if the student used his/her 

pen/pencil on the paper even if only very short during the 10-second-segment. 

Intercoder reliability 

The coding of the 18 videos was conducted by four persons. To determine the 

intercoder reliability, two of the 18 videos were coded by all four persons (Lombard, 

Snyder-Duch & Bracken, 2002). The overall Krippendorff’s alpha was 0.77 for the 

coding of communication behavior and 0.91 for the coding of note-taking behavior, 

which are satisfying respectively excellent reliability values (Krippendorff, 2013).  

RESULTS 

The lengths of the intervention phases were nearly equal. On average, the 9 pairs of the 

no-prompt group learned for 3883 sec, sd = 341 sec (64:43 minutes, sd = 5:41), the 9 

pairs of the prompt group learned for 3906 seconds, sd = 665 sec (65:06 minutes, sd = 

11:05). On average, 1073 sec, sd = 452 sec (17:53 minutes, sd = 7:32) of this time was 

coded as ‘prompt template’. 

The analysis of the coding of communication about mathematical aspects shows one 

outlier in both groups – one dyad (in the prompt group) communicated about 2 and half 

times more than all other dyads and another one (in the no-prompt group) about 2 and a 

half times less. So, in the following analyses, 8 pairs in every group –– without the 

outliers –– will be compared. 

1. Differences between both groups in overall coding results  

A comparison of the average coding results concerning communication and 

note-taking behavior of both groups shows differences in the note-taking behavior 

(Tab. 1). Table 1 shows the percentages of coded segments compared to all possible 

segments. 

Category: Notes Prompts (n = 8) No Prompts (n = 8) 

Left student takes notes 
M = 31.6 % 

(SD = 11,5 %) 
M = 34.5 % 

(SD = 7.5 %) 

Right student takes notes 
M = 31.9 % 

(SD = 16.3 %) 
M = 36.3 % 

(SD = 7.8 %) 

Category: Communication   

Mathematical communication 
M = 18.9 % 

(SD = 4.0 %) 
M = 25.4 % 

(SD = 7.9 %) 

Table 1: Coding results for note-taking and communication. 

Overall, there is a non-significant difference between the note-taking behavior of the 

two groups: The no-prompt group took more time to create notes 

(Mann-Whitney-Wilcoxon Test, p=0.44). The no-prompt group communicated not 
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significantly (Mann-Whitney-Wilcoxon Test, p=0.65) longer about mathematical 

aspects than the prompt group. 

The reported results give only hints concerning the coding for the whole intervention 

time of both groups. It remains unclear, how the prompt time is distributed over the 

intervention phase and if several patterns can be identified there. Concerning the 

communication about mathematical aspects in the prompt group, it is not clear, if there 

are differences during ‘prompt template’-time and the time the video presentation is 

opened. The same remains unclear for the note-taking behavior. 

To give some insight into these uncertainties, we will investigate the coding of the 

intervention phase more detailed in the next paragraph. 

2. Codeline differences between both groups – mathematical communication 

Figures 2 and 3 show codelines from dyads in the prompt and no-prompt group. 

Math.-Com.

Medium

Note-Taking

(Prompt-Template open)

 

Figure 2: A codeline of a dyad in the prompt group (H5Z120). 

The rectangles in the upper corridor depict all segments coded as “communication 

about mathematical aspects”. The corridor in the middle depicts the medium 

categories. In this case, the prompt template is opened –– visualized as a horizontal bar 

after the vertical dashed line. The bottom corridor shows the coding of “left person 

takes notes” and “right person takes notes”. 

Math.-Com.

Medium

Note-Taking
 

Figure 3: A codeline of a dyad in the no-prompt group (H5Z008). 

All dyads in the prompt group showed the structure from the upper codeline (Fig. 2): 

First, they learned with the medium and then they answered the prompt questions. Two 

of the dyads opened the medium again during the prompt phase. In conclusion, a real 

prompt phase can be detected.  

A comparison of the codelines showed different distributions for the category 

“communication about mathematical aspects”. In the prompt group, the codings seem 

to clot during prompt phases. An analysis of the coding during different phases of the 

intervention revealed that the density of communication about mathematical aspects 

during prompt phases –– intervals coded as ‘communication about mathematical 

aspects’ divided by intervals coded as ‘prompt template’ –– is very high compared to 
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other phases (Fig. 4). Further, the no-prompt phases in the prompt group are 

comparatively free of communication about mathematical aspects. 

 

Figure 4: Average density of communication about mathematical aspects 

during phases of the intervention with standard deviation. 

Different structures could be observed in the codelines of the no-prompt group. 

Codings of some pairs’ communication showed clotting, others were spaced out 

evenly. A further, more detailed analysis cannot be given in this paper. 

3. Codeline differences between both groups – note-taking behavior 

All students of both groups take notes eagerly on most of the slides of the presentation. 

Dyads in the prompt group almost solely take notes when they do not work on the 

prompts themselves. Only 6 segments in total (of 2012 units coded as „person takes 

notes“) were coded during prompt-phases. That does not only mean that no new notes 

were created. Moreover, no notes were altered or corrected during the prompt phases 

either. 

Dyads working without prompts also show periods in which no note-taking is coded. 

This especially takes place during the “summary-slides” in the first and second video 

(see e.g. Fig. 3, sixth bar in the middle corridor). Due to lack of space, these and further 

analyses cannot be presented here in detail. 

CONCLUSION & PERSPECTIVES 

It could be shown that there are differences regarding the mathematical 

communication and note-taking in dyads with or without prompts. 

It seems as if the no-prompt group is more active regarding the mathematical 

communication, although prompt phases seem to foster communication about 

mathematical aspects in the current setting. We found a clear structuring of the 

intervention phase in the prompt group.   
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One reason for this clear structuring in the prompt group may be the concrete 

questions. To answer them, both video presentations must have been watched. It 

remains unclear if different questions, which e.g. require only one video presentation, 

would lead to a different structuring. In how far characteristic phases may be identified 

in the no-prompt group must be revealed by deeper analyses of communication 

behavior. Taken together with the note-taking behavior, one can identify phases with a 

lot of communication about mathematical aspects, but no note-taking –– maybe some 

kind of review phases during that students use their notes to sum up what they have 

learned. 

During prompt phases, no notes were created, corrected or altered. One reason is the 

use of the computer to answer the prompts. Nevertheless, it is interesting to recognize 

that no matter what is discussed during the prompt phases does not influence the notes. 

The presented findings are only a partial result of a larger study so far. Analyses are 

still ongoing and will be complemented by the samples from other universities with 

their specific instructional material. This should allow us to check if the higher 

girls-ratio in this course of study influenced the communication or note-taking 

behavior. Next steps will lead to looking into the corresponding contents and possible 

relations between the amount of time spent discussing or noting with regard to the 

topics covered at that moment. Moreover, looking into the data of the other samples in 

order to find similar schemes or patterns of communication and noting will be another 

issue to cover. With this knowledge, it may be possible to make some more general 

statements about the pros and cons of video learning with or without prompts. 
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CONCEPTION TO CONCEPT OR CONCEPT TO CONCEPTION? 

FROM BEING TO BECOMING 

Thorsten Scheiner1,2 

1University of Hamburg, Germany; 2Macquarie University, Australia  

 

Previous approaches to mathematics knowing and learning have attempted to account 

for the complexity of students’ individual conceptions of a mathematical concept. 

Those approaches primarily focused on students’ conceptual development when a 

mathematical concept comes into being. Recent research insights indicate that some 

students give meaning not only to states/objects that have a being but also to 

states/objects that are yet to become. In those cases, conceptual development is not 

meant to reflect an actual concept (conception-to-concept fit), but rather to create a 

concept (concept-to-conception fit). It is argued that the process of generating a 

concept-to-conception fit, in which ideas that express a yet to be realized state of the 

concept are created, might be better referred to meaning-making than sense-making. 

INTRODUCTION 

Consideration of mathematical concept formation has a long history in, and is certainly 

an important branch of, cognitive psychology in mathematics education (see Skemp, 

1986). Previous research has focused on the complexity of students’ conceptions and 

their conceptual development when a mathematical concept comes into being. 

Students have been regarded as active sense-makers in mathematical concept 

formation (von Glasersfeld, 1995), that is, students actively seek comprehensibility of 

a mathematical concept. Students might, in this process, develop conceptions (from 

Latin concipere, ‘to conceive’) of a mathematical concept that are construed by a 

researcher (or educator) as a way a mathematical concept is perceived (or regarded) as 

it seems to be (for a discussion on conception and concept, see Simon, 2017). Recent 

research, however, suggests that students not only activate conceptions to make sense 

of how they perceive (or regard) a mathematical concept that comes into being in a 

certain context but also to imagine (or envision) a mathematical concept that is yet to 

become. In those cases, conceptual development is not meant to reflect an actual 

concept, but rather to create a concept.  

The purpose of this paper is to clarify in which respects this act of creation differs from 

sense-making construed as an act of comprehension. In doing so, a theoretical 

background is briefly outlined that orients the general discussion of concept formation 

and sense-making. Afterward, key insights from recent research are summarized that 

foreground the act of creation in concept formation. Then, critical differences between 

two different states that a mathematical concept can have (‘making it being’ and 
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‘making it becoming’) are discussed which allow to conclude that the act of creation 

might be better understood as meaning-making than sense-making.  

THEORETICAL BACKGROUND: ON CONCEPT AND CONCEPTION   

The work presented here is framed in theoretical assertions made by Scheiner (2016) 

with regard to mathematical concept construction. In Scheiner’s (2016) view, the 

meaning of a mathematical concept comes into being in the ways that an individual 

interacts with the concept; or more precisely, in the ways that an individual interacts 

with objects that in a Fregean (1892a) sense fall under a concept. (A mathematical 

concept might be best described as an organic, multidimensional, structured gestalt, 

whose dimensions emerge from an individual’s interactions with it.)  As such, a 

concept does not have a fixed meaning. Rather, the meaning of a concept is relative (a) 

to the sensesF that are expressed by representations that refer to objects coming under a 

concept and (b) to an individual’s system of ideasF (the subscript F indicates that these 

terms refer to Frege, 1892b). Frege (1892b) revealed the fundamental distinction 

between reference and senseF as two semantic functions of a representation (an image, 

sign, or description): a reference of a representation is the object to which a 

representation refers, whereas a senseF of a representation describes a certain state of 

affairs in the world, namely, the way that some object is presented. Thus, it seems to 

follow that we may understand Frege’s notion of an ideaF in the manner in which we 

make sense of the world. IdeasF can interact with each other and form more 

compressed knowledge structures, called conceptions. A general outline of this view is 

provided in Fig. 1.  
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Fig. 1: On reference, senseF, ideaF, and compression  

(reproduced from Scheiner, 2016, p. 179) 
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There are several ways that individuals can make sense of a mathematical concept; the 

focus here is on extracting meaning and giving meaning (Pinto, 1998). Pinto and Tall 

(1999) stated with respect to sense-making of a formal concept definition, 

“Giving meaning involves using various personal clues to enrich the definition with 

examples often using visual images. Extracting meaning involves routinizing the 

definition, perhaps by repetition, before using it as a basis for formal deduction.” (p. 67)  

Tall (2013) explicated that these two approaches are related to a ‘natural approach’ that 

builds on the concept image and a ‘formal approach’ that builds formal theorems based 

on the formal definition. Scheiner (2016) broadened the original conceptualization 

provided by Pinto (1998), emphasizing that individuals can extract meaning from 

objects and give meaning to objects; or more precisely, extract meaning from their 

interactions with objects and give meaning to their interactions with objects. Further, 

extracting meaning was linked to the manipulation of objects and reflections of 

instances that appear in sensesF when objects are manipulated – a phenomenon often 

discussed in terms of reflective abstraction, that is, abstraction of actions on mental 

objects (see e.g., Dubinsky, 1991). Giving meaning was related by Scheiner (2016) to 

attaching meaning to instances of objects that appear in sensesF – a phenomenon that 

has been considered in terms of structural abstraction, that is, abstraction of “the 

richness of the particular [that] is embodied not in the concept as such but rather in the 

objects that falling under the concept […]. This view gives primacy to meaningful, 

richly contextualized forms of (mathematical) structure over formal (mathematical) 

structures” (Scheiner, 2016, p. 175). Scheiner (2016) offered a theoretical grounding 

for coordinating extracting meaning and giving meaning by putting in dialogue 

reflective abstraction and structural abstraction. Earlier, Tall (2013) discussed the 

relations of structural and operational abstraction and the natural and formal approach 

that evolve into a wider framework of the long-term development in mathematical 

thinking. (Structural abstraction focuses on the structure of objects, and operational 

abstractions on actions that become operations that are symbolized as mental objects 

(Tall, 2003).)  The research presented in this paper has built on these theoretical 

interpretations of extracting meaning and giving meaning, and the assumed 

relationship between them.  

RESEARCH BACKGROUND: GIVING MEANING REVISED 

Recently, Scheiner and Pinto (2017a, 2017b) reanalyzed students’ reasoning and 

sense-making of the limit concept of a sequence using theoretical innovation that 

involved contextuality, complementarity, and complexity of knowledge, plus 

knowledge development, and knowledge usage when giving meaning.  

In their case study, Scheiner and Pinto (2017a) discussed giving meaning as a 

sense-making strategy in which ideasF are activated to give meaning to instances of an 

object that are actualized in certain, or even new, contexts. They described that the 

context in which an object is actualized might trigger the activation of ideasF; however, 

it seems that it is not the context but the knowledge system that determines what is 
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activated. (This does not mean that a knowledge system determines the meaning of a 

mathematical concept nor the form of interaction with objects that fall under a 

concept.)  This is to say, it is not the context that determines the interpretation or 

meaning of an object, but the ideasF that are attached to instances of an object that 

orient an individual in giving meaning when making sense of certain contexts. As 

such, individuals do not construct a mental image of an ‘external reality’ that appears 

in the sensesF, but rather they give meaning to a senseF of an instance by attaching an 

ideaF to it. Scheiner and Pinto’s (2017a) analysis also suggests that this attachment is 

highly context dependent, that is to say, individuals might attach different ideasF to the 

same object that is actualized in different contexts.  

In a cross-case analysis, Scheiner and Pinto (2017b) foregrounded that the attachment, 

however, seems to take place in such a way as to create and maintain coherence in a 

student’s reasoning. However, the authors did not interpret coherence within the 

meaning of an established body of knowledge, but rather in the meaning of a student’s 

usage. As such, coherence is not so much an attribution of the interconnectedness of 

the pieces of a created knowledge system, but of activity: students, who give meaning, 

activate ideasF that are coherent with their reasoning. This suggests that what seems to 

matter are coherence in reasoning and functionality of an individual’s knowledge 

system, rather than any sort of correctness that mirrors a pre-specified ‘reality’ of the 

mathematical concept. This leads one to suppose that students are not concerned with 

creating a knowledge system that best reflects a given reality, but they are concerned 

with creating a reality that best fits with their knowledge system.  

The most remarkable issue, however, is that Scheiner and Pinto’s (2017a, 2017b) 

analyses point to the idea that students might even give meaning to states that are yet to 

become. This means though an object does not appear in a senseF, an individual might 

create an ideaF of a potential instance of that object. That is, students might give 

meaning beyond what is apparent. It is proposed that the creation of such ideasF is of 

the nature of what Koestler (1964) described as ‘bisociation’, and Fauconnier and 

Turner (2002) elaborated as ‘conceptual blending’.  

Koestler’s (1964) central idea is that any creative act is a bisociation of two (or more) 

unrelated (and seemingly incompatible) frames of thought (called matrices) into a new 

matrix of meaning by way of a process involving abstraction, analogies, 

categorization, comparison, and metaphors. More recently, Fauconnier and Turner 

(2002) elaborated and formalized Koestler’s idea of bisociation into what they called 

conceptual blending. The essence of conceptual blending is to construct a partial 

match, called a cross-space mapping, between frames from established domains 

(known as inputs), in order to project selectively from those inputs into a novel hybrid 

frame (a blend), comprised of a structure from each of its inputs, as well as a unique 

structure of its own (emergent structure).  

The point to be made here is that unrelated ideasF can be transformed into new ideasF 

that allow ‘setting the mind’ (see Dörfler, 2002) not only to actual instances but also to 

potential instances that might become ‘reality’ in the future. In those cases, conceptual 
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development is not merely meant to reflect an actual concept, but rather to create a 

concept (see Lakoff and Jonson (1980) on the power of (new) metaphors to create a 

(new) reality rather than simply to give a way of conceptualizing a preexisting 

reality:”changes in our conceptual system do change what is real for us and affect how 

we perceive the world and act upon those perceptions” (pp. 145-146.)). It is reasonable 

to assume that students transform ideasF to express a yet to be realized state of a 

concept.  

DISCUSSION: ON ‘MAKING IT BEING’ AND ‘MAKING IT BECOMING’  

The research insights outlined in the previous section assert construing two different 

states that a mathematical concept can have: (1) a mathematical concept is given and 

comes into being in the dialogue of extracting meaning and giving meaning (in short, 

making it being) and (2) a mathematical concept is created and comes into becoming in 

the process of transforming ideasF (in short, making it becoming).   
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Fig. 2: From being to becoming 

In making it being, extracting meaning and giving meaning can occur simultaneously: 

an individual might extract meaning by manipulating objects and reflecting on the 

actual instances of such objects, while at the same time an individual gives meaning to 

the instances that appear in the sensesF by activating and attaching ideasF (see Fig. 2). 

With respect to giving meaning, an individual might either activate already available 

ideasF to attach meaning to instances or an individual might create new ideasF in the 

moment by transforming ideasF to gain new insight that allows attaching new meaning 

to an object of consideration.  

In making it becoming, giving meaning means not only attaching ideasF to actual 

instances of an object but also creating new ideasF for potential instances. As such, 

ideasF can also be transformed in order to give meaning to instances that are yet to 
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become (see Fig. 2). This means an individual might set her or his mind to future 

possibilities in which the object might be realized. In such cases, the mind would shape 

the future in a way that individuals might work to move the present to an intended 

future. That is, rather than creating conceptions that reflect a seemingly given concept, 

individuals might create a meaning of a concept that best reflects their conceptions of 

the concept. That is, individuals might create new forms of meaning, suggesting that 

the meaning of a mathematical concept varies on its actual use and intentions, rather 

than having an inherent meaning. 

The differences between “making it being” and “making it becoming” can be 

discussed around at least three related issues:  

(1) Different states of the meaning of a mathematical concept  

In making it being, students treat objects that fall under a concept as states that have a 

being. Here students seem to understand the meaning of a mathematical concept as 

given. As such, an individual might extract meaning from manipulating objects and 

give meaning to actual instances of such objects. The meaning of a concept, then, 

emerges (from Latin emergere, ‘to become visible’) in the dialogue of extracting 

meaning and giving meaning.   

In making it becoming, students create new ideasF by transforming previously created 

ideasF that are directed to objects that are yet to become. They transform ideasF to 

create future possibilities. Here the meaning of a mathematical concept is created that 

is to say, the meaning evolves (from Latin evolvere, ‘to make more complex’) in 

transforming various ideasF.  

(2) Different functions of sensesF  

In making it being, sensesF are construed as bearers of actual instances of an object that 

seems to have a being prior to students’ attempts to know it. That is, the seeming 

‘objectivity’ of an object appears in such sensesF.  

In making it becoming, objects are not seen as preceding students’ attempts to know 

them. SensesF are not construed as bearers of instances of an object but rather as 

triggers to transform ideasF to create new, potential instances of an object.  

(3) Different directions of fit  

Making it being is meant to reflect the concept as it is actualized, suggesting a 

conception-to-concept direction of fit: students extract meaning that reflects the 

concept and give meaning that fits the concept as it is assumed to be.  

Making it becoming is meant to create the concept, suggesting a concept-to-conception 

direction of fit: students express a yet to be realized state of the concept, that is, they 

express a way that the concept can, or should, be. Students create the meaning of a 

concept that fits their conceptions.  
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CONCLUSION: ON SENSE-MAKING AND MEANING-MAKING  

Sense-making was discussed in this paper in terms of extracting meaning and giving 

meaning. Extracting meaning and giving meaning were construed as interactions with 

objects to seek comprehensibility of a mathematical concept when it is actualized. 

Individuals can make sense if their conceptions fit the concept as it is assumed, or 

pre-specified, to be. As such, sense-making is an act of comprehension that consists of 

creating conceptions that best reflect a given concept. 

Recent research, however, prompts one to rethink how students give meaning in the 

immediate context. In addition to attaching activated ideasF (already existing in the 

knowledge system) to actual instances of a mathematical concept, ideasF can also be 

transformed to attach new meaning to potential instances of a mathematical concept 

that, in this process, comes into becoming.  

While with respect to the former it is assumed that students might make sense of the 

objects that fall under a particular concept primarily within their existing knowledge 

system, the latter allows an individual to journey toward a new meaning of a concept. It 

is asserted that this might be better referred to as meaning-making.  

In consequence, sense-making is here understood as an act of comprehension, while 

meaning-making is construed as an act of creation. In a nutshell:  

(1) A student might intend to comprehend a meaning of a mathematical concept in a way 

that best reflects the concept as it is. The meaning of a concept emerges (comes into being) 

by a continuous dialogue of the sense-making of extracting meaning and giving meaning.  

 (2)  A student might intend to create a meaning of a mathematical concept that best fits 

student’s conceptions. The meaning of a concept evolves (comes into becoming) by 

meaning-making via transforming ideasF.   

It is hoped that this distinction better brings to light critical issues and underlying 

cognitive processes in students’ sense-making and meaning-making. The research 

insights outlined above and the theorizing provided here allow one to sharpen the 

distinction between making sense when the meaning of a mathematical concept comes 

into being and making meaning when the meaning of a mathematical concept comes 

into becoming. This nuance of sense-making and meaning-making might better 

highlight the critical differences of ‘making it being’ and ‘making it becoming’ with 

respect to the different states of the meaning of a mathematical concept, the different 

functions of sensesF, and the different directions of fit. 
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EYE-TRACKING AND ITS DOMAIN-SPECIFIC 

INTERPRETATION. A STIMULATED RECALL STUDY ON EYE 

MOVEMENTS IN GEOMETRICAL TASKS  

Maike Schindler and Achim J. Lilienthal 

Örebro University 

Eye-tracking offers various possibilities for mathematics education. Yet, even in 

suitably visually presented tasks, interpretation of eye-tracking data is non-trivial. A 

key reason is that the interpretation of eye-tracking data is context-sensitive. To 

reduce ambiguity and uncertainty, we studied the interpretation of eye movements in a 

specific domain: geometrical mathematical creativity tasks. We present results from a 

qualitative empirical study in which we analyzed a Stimulated Recall Interview where 

a student watched the eye-tracking overlaid video of his work on a task. Our results 

hint at how eye movements can be interpreted and show limitations and opportunities 

of eye tracking in the domain of mathematical geometry tasks and beyond. 

INTRODUCTION 

Eye-tracking—the process of capturing eye movements of persons when they are 

looking at stimuli at hand (Chen, 2011)—is a technology and research method 

increasingly gaining popularity over the last decade (Andrá et al., 2015; Salvucci & 

Goldberg, 2012). In the mid-1970s, commercial eye-tracking devices started to 

become available and since then eye-tracking became more accessible than ever before 

(Holmkvist et al., 2011). In particular, the recent advent of affordable portable 

head-mounted devices revived the promise of eye tracking and fuels an increased 

interest in this technology—also in the PME community as could be seen at PME 40. 

Eye-tracking offers various possibilities for mathematics education research (e.g., 

Andrá et al, 2015; Obersteiner & Tumpek, 2016), in particular it lends itself to 

“visually presented cognitive tasks, [where] eye movements are assumed to 

correspond to mental operations” (p. 257). However, even in geometrical or otherwise 

suitably visually presented tasks, the interpretation of eye-tracking data is non-trivial. 

It typically rests on the so-called “eye-mind” hypothesis (Just & Carpenter, 1980), 

which posits that a person’s eye movements are tightly related to their cognitive 

processes (Jang et al., 2014). The interpretation of eye-tracking data is challenging 

because (1) the eye-mind hypothesis does not always hold (Holmkvist et al., 2011) and 

(2) the interpretation of eye-movement data is not bijective (Hayhoe, 2004), and (3) is 

furthermore context-sensitive, in particular conditioned on the task (ibid.). The 

inherent ambiguity and uncertainty, which comes with the context-sensitivity can be 

reduced by narrowing down the interpretation of eye movements to a particular 

domain: “Although the mere presence of gaze at a particular location in the visual field 

does not reveal the variety of brain computations that might be operating at that 
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moment, the experimental context within which the fixation occurs often provides 

critical information that allows powerful inferences” (p.267).  

We therefore see the need to approach the methodological question of how to interpret 

eye-tracking data in the domain of mathematics education and its sub-domains. In 

particular, we focus on geometrical tasks, where eye-tracking data are perceived as 

especially beneficial (e.g., Schindler et al., 2016; Muldner & Burleston, 2015). We 

refer to a task set (geometrical creativity tasks, so-called Multiple Solution Tasks 

(MSTs)) and their corresponding entities (figures, lines, corners, etc.). Instead of 

relying on eye movement measures as common in mathematics education research 

(e.g., Muldner & Burleston, 2015; Obersteiner & Tupek, 2016), we focus on raw 

data—eye-tracking overlaid videos—thus avoiding a dependency on the eye-tracking 

device used or the actual computation of eye movement measures. This paper presents 

results from a qualitative empirical study in which we analyzed a Stimulated Recall 

Interview where a student watched the eye-tracking overlaid video of his work on a 

Multiple Solution Task and described and explained his according thoughts and 

strategies in detail. Results from the qualitative SRI data analysis hint at how and in 

what (different) ways eye movements can be interpreted (e.g., fixations on small areas, 

rapid eye movements). Beyond the directly considered domain of geometrical MSTs, 

our analysis also sheds light on opportunities and limitations of eye-tracking as a 

research method in the domain of mathematical geometry tasks and beyond. 

THEORETICAL BACKGROUND 

Eye-tracking 

First methods for eye tracking date back to the beginning of the 1900s and initial 

methods were obtrusive or even invasive (Jacob & Karn, 2003). Nowadays 

video-based systems dominate the market for eye trackers; either in the form of 

head-mounted devices such as eye-tracking goggles (as used in our empirical study) or 

remote devices attached to a computer screen to display the visual stimuli (Holmkvist 

et al., 2011). Eye-tracking offers various possibilities for mathematics education 

research. It is used, for instance, for analyzing students' strategies when comparing 

fractions (Obersteiner & Tumpek, 2016), for identifying highly creative persons 

working on geometrical creativity problems (Muldner & Burleston, 2015), and for 

investigating students' strategies when working on geometrical creativity problems 

(Schindler et al., 2016). In particular, in geometrical settings researchers focus on 

“how and which information students are attending to” (Andrá et al., 2015, p. 241).  

Interpreting eye-tracking data 

In order to reduce the effort for analyzing eye-tracking data, events—computed from 

raw eye-tracking data—are typically analyzed instead of the raw data itself (Holmkvist 

et al., 2011). This holds also true for eye-tracking research in the domain of 

mathematics education. In particular, fixations and saccades are used (Salvucci & 

Goldberg, 2012). Fixations are moments when the eye remains relatively still and 
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focuses—consciously or not—stably on certain focus point or a small area. Saccades 

are fast eye movements in between fixations (Chen, 2011).  

However, the interpretation of eye-tracking data is non-trivial—and this is one key 

reason that prevents eye-tracking technology to fully live up to its potential (Jacob & 

Karn, 2003). Interpreting eye-tracking data typically draws on the so-called 

“eye-mind” hypothesis, which “posits that there is no appreciable lag between what is 

being fixated and what is being processed” (Just & Carpenter, 1980, p. 331), meaning 

that “what a person looks at is assumed to indicate the thought ‘on top of the stack’ of  

cognitive processes” (Jang et al., 2014, p. 318). However, the eye-mind hypothesis 

does not always hold: people can, e.g., look at an object without registering it in their 

working memory and, conversely, they may also recall non-fixated objects (Holmkvist 

et al., 2011). A second difficulty is that the mapping of students’ eye movements to 

their attention and their cognitive processes is not bijective: “Although a given 

cognitive event might reliably lead to a particular fixation, the fixation itself does not 

uniquely specify the cognitive event” (Hayhoe, 2004, p. 268). Fixations can, for 

instance, indicate difficulty of information extraction and interpretation (Jacob & 

Karn, 2003) or cognitive attention on the aspect of a task looked at (Andrá et al., 2015). 

We hypothesize that it can even indicate other processes, such as staring because of 

tiredness or boredom, or else. Finally, the interpretation of eye movements needs to be 

context-sensitive: conditioned on the task, the internal state of the participant, and their 

“cognitive goals” (Hayhoe, 2004, p. 268). A comprehensive theory about how to 

interpret eye-tracking data is thus limited to rather general relationships, for instance, 

that “saccades are preceded by an attentional shift to the target location” (p. 267) and 

that “shifts in attention made by the observer are usually reflected in the fixations” (p. 

268). Notably, these general relationships do not relate to the semantics of the entities 

that caused visual attention. In order to reduce the inherent difficulty and ambiguity 

that comes through context-sensitivity, we suggest to investigate domain-specific 

interpretation (focusing on geometrical tasks) and take into account the corresponding, 

known semantics of visual entities in this domain (figures, lines, corners, etc.). 

Accordingly, we ask the research question: How can students’ eye movements be 

interpreted domain-specifically? We approach this question through a Stimulated 

Recall study (see below), which will also shed light on the questions of What 

opportunities does the analysis of eye movements offer over the analysis of simple 

videos in our domain? and What limitations does the analysis of eye movements entail? 

METHOD 

Setting the scene 

This study took place in the Swedish research project KMT (“kreativa matteträffar”), 

where mathematically interested upper secondary school students worked on 

multifaceted mathematical problems and were fostered in their mathematical creativity 

over one year. This paper focuses on a students’ work on a particular MST (Fig. 1)—a 



Schindler and Lilienthal 

_______________________________________________________________________________________________________________________

4-156 PME 41 – 2017 

geometrical MST, which had revealed itself rich and suitable for addressing 

mathematical creativity in prior work (Schindler et al., 2016). 

Task: Solve the following problem. Can you find different ways to  

solve the problem? Show as many ways as you can find. 

Problem: This figure is an equilateral hexagon: How big is the angle ε?  

Remember: In an equilateral hexagon, all sides have the same length  

and all angles have the same size, which is 120°. 

Figure 1: The hexagon-problem (Multiple Solution Task) 

The student participating in this study was an 18-year old Swedish student in his last 

school year, David. David was very interested, talented, and dedicated to mathematics; 

he read mathematics books in his spare time and furthermore went on studying 

mathematics six months after this study had taken place. David worked on the MST 

wearing eye-tracking goggles and then an additional SRI was conducted using the 

eye-tracking overlaid video of his work on the MST with a length of 17:30 min. 

The study described in this paper was carried out with the headset Pupil Pro (Kassner, 

Patera & Bulling, 2014). Though remote eye-trackers measuring eye movements on a 

computer screen can be advantageous in terms of accuracy (see Muldner & Burleston, 

2015), goggles allow portable, unobtrusive eye-tracking and are easy to set-up. They 

can be used in a natural setting (the student worked on the MSTs with pen and paper) 

and in a familiar room, avoiding biases through an artificial surrounding.   

Stimulated Recall Interview (SRI) based on eye-tracking overlaid video 

In our endeavor to illuminate what eye movements may indicate and how they can be 

interpreted, we conducted a Stimulated Recall Interview (SRI) using the eye-tracking 

overlaid video of his work on the MST. Stimulated recall is a research method that is to 

be understood as an introspection procedure “through which cognitive processes can 

be investigated by inviting subjects to recall, when prompted by a video sequence, 

their concurrent thinking during that event” (Lyle, 2003, p. 861). In our case, we 

wanted the student to describe and explain his thinking using the eye-tracking overlaid 

video. SRI avoids the disadvantages that a thinking aloud method may have (e.g., high 

levels of interaction, time constraints, or emotive contexts, see Lyle, 2003). However, 

it also comprises weaknesses that have to be taken into account when planning an SRI 

study (Lyle, 2003): For instance, we reduced anxiety through (a) creating a trustful 

personal relation between the interviewer and the teacher over the project time span, 

(b) conducting the SRI in an environmental context well-known to the student (the 

room regularly used in the project), and (c) avoiding judgmental utterances by the 

interviewer, who rather indicated interest in the student’s thought.  

In the SRI, the student and interviewer jointly looked at the eye-tracking overlaid video 

arising from the student’s work on the MST. The interviewer asked the student to 

comment on his eye movements. Both the student and the interviewer were able to stop 

the video and to go back. Also the student took the opportunity to explain his eye 

movements and thoughts. The SRI was taped by two cameras. 
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One important concern regarding SRI is about incomplete memories leading students 

to react to what they see on the video and accordingly rather re-construct their thoughts 

than recalling them (Lyle, 2003). David’s utterances (in which he mostly used present 

tense when talking about his proceeding) indicate that he could recall his original 

thoughts impressively clearly. We further think that the eye-tracking overlaid video, a 

clear and strong stimulus, helped the student recalling his thoughts.  

Data analysis 

This paper focuses on the video data from the SRI with David (approx. 76 min). In a 

first step, we transcribed the largest parts of the video: Passages were left out when the 

discussion did not address the student’s eye movements. We transcribed the student’s 

and interviewer’s utterances as well as the eye movements were addressed. 

The data analysis was conducted in an inductive manner, which was suitable as our 

research questions are explorative and descriptive in their nature. Following Mayring’s 

(2014) qualitative content analysis (focusing on the techniques of summarizing and 

inductive category development) and Beck and Maier’s (1994) category developing 

text interpretation, we conducted the following analysis steps (see Tab. 1 for an 

example) that aimed at handling the comprehensive transcript and at inductively 

working out categories (e.g., special patterns of eye movements and their 

interpretation). In a paraphrasing step, we paraphrased the content-bearing semantic 

elements in the transcript relevant for our research questions. In a transposing step, we 

generalized these entities to the defined level of abstraction and transposed them to a 

uniform stylistic level (see Tab. 1). In a category development step, we went through 

all data (transposes) and inductively assigned categories and according 

descriptions/definitions. In a category revision step, we revised the category system 

after having categorized all data and—based on the revised category system—went 

through all data again, partially re-categorizing if necessary. In a subsumption step, for 

every category we collected all instances matching this category. Thus, we found, for 

instance, for the category “looking outside the task sheet” all interpretations of this eye 

movement arising from our data. 

Transcript Paraphrase Transpose Category 

(D. looking outside the task sheet 

(saccade)) 
D: Now I’m just thinking and 

trying to remember how you 
calculate an interior angle in a 

regular polygon.  

Looking outside the task sheet 

(saccade): thinking and trying to 
remember a calculation.  

 

Looking outside the task sheet 

(saccade) indicates that he is 
thinking and trying to remember a 

calculation. 

Looking outside task sheet 

 

Table 1: Data analysis steps—examples 

RESULTS 

The analysis of the data from the case study gives hints on how eye movements can be 

interpreted and shows limitations and opportunities of eye tracking in the domain of 

mathematical geometry tasks. Below we summarize the categories of eye movement 

patterns and their interpretation and illustrate them with according instances. 
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Interpretation of eye movement patterns 

David’s SRI hints on how to interpret eye movements in different instances. In many 

cases, his visual attention matched his cognitive attention: When he was looking back 

and forth between two corners, he, for instance, thought “how can I use the fact that 

these two (angles, authors’ note) are equal to start determining how big they are?” 

When encircling a triangle with his eyes, he “was thinking if I should do something 

with this right triangle over here” [see link for both]. Here, the cognitive attention 

largely agreed with the visual focus of attention; however, it was not inferable in what 

way the visual focus was relevant for the ongoing cognitive process. Fixations on a 

corner of the hexagon indicated, that David was summing up the adjacent angles in this 

corner [link]. The attention was on the corner (in line with the eye-mind hypothesis), 

however, the process of calculating was hardly inferable from the eye movement. As 

this clip furthermore illustrates, some fixations indicated that David noticed a mistake 

he had made before: “After I calculated that, then I realized that my final answer down 

here [which he then fixated, authors’ note] was also wrong and so I must have made a 

mistake.” Here, the eye-mind hypothesis holds: the focus of visual attention was the 

focus of cognitive attention (the mistake). The SRI revealed further ambiguities in the 

interpretation of eye movements. E.g., the eye movement of looking along a line can 

indicate both: envisioning this line in his mind [see link for several instances] or taking 

into account or comparing the two adjacent areas [link] with peripheral vision.  

In other instances, the eye-mind hypothesis did not hold. In one instance, David 

explained that while fixating a point in the figure, he was calculating something else in 

his mind that did not have any connection to the fixated area [link]. Another eye 

movement pattern that David commented on seven times in the SRI was a quick 

saccade where he looked outside the task sheet [e.g., link]. This pattern always 

indicated that he was thinking or reflecting: how to proceed next, trying to remember a 

calculation, or conducting a mental calculation. He argued that this helped him to focus 

on a certain thought: “Then I look up and just think for a second. Because if I look at 

this (the task, authors’ note), I get distracted a little bit. So I just wanna follow the exact 

same trail of thoughts for a couple of seconds.” Furthermore, David commented on 

two instances where his eyes wandered around in the task rather “hectically”, with 

quick saccades, without fixating meaningful entities (such as corners or lines). He 

described that in these instances, he was “panicking a little bit”, because he had 

realized that he “had made a quite big mistake”. The eye-mind hypothesis held insofar 

as the saccades were interrupted by a fixation on the mistake on the task sheet [see 

link]). A related observation was that accelerated eye movements, where saccades and 

fixations get shorter, can indicate excitement, e.g. induced by time pressure or a new 

discovery. 

Opportunities and limitations of analyzing eye-tracking data  

Order of approaches. The SRI revealed that David’s eye moments reflected the order 

of strategies used even when this was not always reflected in his drawings, gestures, 

https://youtu.be/-j-v9dVqYFg
https://www.youtube.com/watch?v=RfOMWxsM_v8&list=PLUhntIUwBwHT25LVh9qtMyEcXyvo_MvJq&index=2
https://www.youtube.com/watch?v=6F1iCCyckNc&index=2&list=PLUhntIUwBwHT25LVh9qtMyEcXyvo_MvJq
https://www.youtube.com/watch?v=3w1B1opegfc&index=3&list=PLUhntIUwBwHT25LVh9qtMyEcXyvo_MvJq
https://www.youtube.com/watch?v=j4pxCnoCU84&list=PLUhntIUwBwHT25LVh9qtMyEcXyvo_MvJq&index=1
https://www.youtube.com/watch?v=rwadoY26DN0&list=PLUhntIUwBwHT25LVh9qtMyEcXyvo_MvJq&index=4
https://www.youtube.com/watch?v=mx5SN_Iv1S8&list=PLUhntIUwBwHT25LVh9qtMyEcXyvo_MvJq&index=5
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and writing. This indicates that the analysis of eye-tracking data has an analytical 

advantage over the analysis of pure, simple video data. 

Discarded approaches. Our analysis indicated that when working on the geometrical 

task, David went into several “dead ends” that he finally discarded. He describes such 

approaches five times in the SRI commenting on his eye movements; however, none of 

them expressed themselves in any gesture, drawing, or writing.  

Up-to-dateness. David’s eye movements in many instances preceded his writing, 

drawing, and gestures, e.g. pointing. The SRI indicated that he was already thinking of 

and envisioning a line-to-be-drawn 10 sec or even 30 sec before he then drew it. The 

up-to-dateness is a further advantage of eye-tracking analysis; which especially 

becomes significant if researchers or educators want to interact with students and 

immediately react to their problem-solving (giving feedback, support, or similar). 

Ambiguity. As outlined above, our results indicate that a bijective relation between eye 

movements and cognitive processes solving a geometrical task cannot be assumed. 

Emotional arousal. In the SRI, it appeared that in all instances where David mentioned 

emotional arousal (excitement, panicking), the reliability of the tracking was reduced. 

It is currently not clear whether this is an artefact of the eye tracker used in the study. 

DISCUSSION 

There is no doubt that eye-tracking offers various opportunities for mathematics 

education research. However the so-called “eye-mind” hypothesis is a rather vague 

guiding principle for analysis, especially because—as pointed out— eye movement 

interpretation can only be valid if the specifics of the domain and context are taken into 

account. Accordingly, we see the need to address the question of how to interpret eye 

movements in the context of mathematics education and of how closely eye 

movements are in fact related to students’ cognitive attention and processes. 

The results from our study confirm the power that eye-tracking data analysis holds in 

geometrical MSTs and relates to previous research (e.g., Muldner & Burleston, 2015).  

We found that in many instances cognitive attention agreed well with visual attention, 

eye movements indicated approaches that were not perceivable in gestures or 

drawings, and eye movements often allowed for immediate access to students’ 

cognitive attention. This relates to the perceived merit of eye-tracking “that we can 

examine how and which information students are attending to” (Andrá et al., 2015, p. 

241). However, in other instances, the cognitive attention did not go along with the 

visual attention. In these cases, the eye-tracking data are misleading and can thus easily 

be misinterpreted. Furthermore, many cognitive processes were not perceivable in the 

eye movements. What a student is thinking while fixating a point or looking along a 

line is not visible and is—in an analytical viewpoint—subject to interpretation. This 

confirms the bijectivity of the mapping of students’ eye movements to their cognitive 

processes (Hayhoe, 2004) also for the domain of geometrical tasks. 
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It is a challenge for future research to deal with the ambiguities and possible 

misinterpretations that our paper gives a glimpse on. We believe our case study to be a 

springboard for further discussion and research on the interpretation of eye-tracking. 
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ARE VALUES RELATED TO STUDENTS’ PERFORMANCE?  

Stanislaw Schukajlow  

University of Münster, Germany  

 

Values are believed to be important for students’ affect and achievements. In the 

present study, I administered task-unspecific and task-specific questionnaires to 

investigate a connection between students’ values and performance in solving 

problems with and without a connection to the real world. 192 ninth graders were 

randomly assigned to group 1 or group 2. In group 1, students reported their values 

after task processing; and in group 2, they reported their values before task 

processing. The main result was in line with expectations: Students who achieved 

higher scores on the performance test reported higher values, and students who valued 

mathematics and problem solving activities performed better on the tests.  

INTRODUCTION 

Values are an important part of affect. However, they are the least studied of the 

affective measures in mathematics education (Zan, Brown, Evans, & Hannula, 2006). 

Prior research on values has focused mostly on values in mathematics teaching, which 

are reflected, for example, in school text books (Bishop, Seah, & Chin, 2003) or on 

case studies that have demonstrated the importance of values for changes in students’ 

affect (Hannula, 2002). In education, a number of studies have been conducted to 

investigate the relation between values and students’ achievement. However, only 

some of them have focused on mathematics, and in doing so, they have often included 

course choices or grades but not students’ performance as indicators of achievement. 

In the present study, I examined whether students’ performance on problems with and 

without a connection to the real world would be found to be related to students’ 

task-unspecific and task-specific values, measured before and after task processing.  

THEORETICAL BACKGROUND  

Values and their relation to performance 

Values have been investigated in cultural, social, and psychological contexts (Bishop 

et al., 2003) and refer to the subjective importance of objects (e.g., mathematics), 

actions (e.g., problem solving), or outcomes (e.g., grade in mathematics) for human 

beings. Values are believed to be valuable appraisals of motivation and emotions. 

Research on values has often been embedded into motivational and emotional theories 

such as the control-value theory of achievement emotions. For example, students’ 

values were hypothesized to trigger their enjoyment, and positive changes in students’ 

values were found to be related to positive changes in their enjoyment (Buff, 2014).  
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Values can be traditionally categorized as intrinsic or extrinsic (or utility) values 

(Pekrun, 2006). Whereas persons with high intrinsic values ascribe high valence to 

mathematical activities per se, persons with high utility values do it because of the 

usefulness of these activities for their career, grades, or other indicators of success.   

Students’ high values are believed to influence their career-related choices, efforts in 

learning, persistence in achievement-related activities, and thus also to predict their 

learning outcomes such as performance (Guo, Marsh, Parker, Morin, & Yeung, 2015). 

In turn, the feedback students receive from their learning outcomes influences their 

responses to affective variables. Thus, higher performance in mathematics can trigger 

higher values with respect to mathematical activities (Simpkins, Davis-Kean, & 

Eccles, 2006). The hypothesized positive relation between students’ values and their 

achievements in mathematics has partly been confirmed in empirical studies. High 

values in mathematics were found to be related to higher mathematics grades in the 

10th grade but not to higher mathematics grades in the 5th grade (Simpkins et al., 2006). 

Intrinsic and extrinsic values were found to be positively connected to mathematical 

performance in Grade 8 (Guo et al., 2015).  

Characteristics of measures of values 

Solving mathematical problems is a complex process that is accompanied by different 

affective phenomena. Efklides (2006) distinguished between prospective, current, and 

retrospective affect measured before, during, and after problem solving activities, 

respectively. Students’ prospective values indicate the importance they ascribe to 

problem solving before they start the solution process. Students’ retrospective values 

indicate the importance they ascribe to task processing after it is completed. Both the 

prospective and retrospective valuing of problem solving activities are important for 

students’ performance and achievements (Schukajlow & Krug, 2014). 

Several calls in mathematics education have demanded that a variety of instruments be 

used to assess affect and to take into account the domain-specificity of affect (Zan et 

al., 2006). One way to heed these calls is to complement the well-known 

task-unspecific affective scales with a novel task-specific approach (Schukajlow et al., 

2012). The application of two different measures of affect further allow researchers to 

examine the stability of the correlations between performance and affective measures. 

A main difference between the task-unspecific and task-specific approaches is the 

level of object specificity (Schukajlow, 2015). Whereas task-unspecific measures 

describe the object more generally, in task-specific questionnaires, the object of 

interest is specified in more detail. For values, task-unspecific questionnaires typically 

refer to the value of learning mathematics, whereas task-specific questionnaires refer 

to the value of solving a sample problem such as 2x + 4 = 9. In the present study, I 

expected that the relation between students’ values and performance would be similar 

for task-specific and task-unspecific measures because the two types of questionnaires 

assess the same constructs.  
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Problems with and without a connection to reality 

Mathematical problems can be divided into two types of problems: problems with a 

connection to reality and problems without a connection to reality (or 

intra-mathematical problems) (Rellensmann & Schukajlow, in press). Problems with a 

connection to reality include modelling and “dressed up” word problems (Blum, 

Galbraith, Henn, & Niss, 2007). To solve modelling problems, students need to 

construct a situation model, which they then simplify and idealize before constructing 

a mathematical model. Further, students need to interpret and validate their results at 

the end of the solution process. “Dressed up” word problems present a simplified 

situational model, and thus, students can proceed with the mathematizing process 

directly after the task comprehension process. Moreover, they do not need to perform 

sophisticated interpretation and validation activities after calculating the mathematical 

results. Both types of real-world problems are important for learning mathematics 

(Schukajlow et al., 2012).  

As problems with and without a connection to reality are essential parts of the 

curriculum in different countries, we chose these problem types to investigate the 

connection between values and performance. In a previous study, we found that 

students valued very similar problems with and without a connection to reality 

(Schukajlow et al., 2012). However, to the best of my knowledge, no studies have 

previously compared the relation between values and performance for these two types 

of problems. As both types of problems are mathematical problems, I did not expect 

that there would be a significant difference in the correlation between performance and 

values when comparing problems with and without a connection to reality.    

PRESENT STUDY: RESEARCH QUESTIONS AND EXPECTATIONS 

The present study was embedded in a research project aimed at investigating 

task-specific affect and its relation to performance (Rellensmann & Schukajlow, in 

press; Schukajlow, 2015). In the present paper, I addressed the following questions: 

1) Is students’ performance in mathematics positively connected to their 

task-unspecific and task-specific values measured after problem solving? Are 

students’ task-unspecific and task-specific values measured before problem solving 

positively connected to their performance in mathematics? 

2) Is students’ performance connected more strongly to their task-specific than to their 

task-unspecific values measured after problem solving? Are students’ task-specific 

values measured before problem solving connected more strongly to their performance 

than their task-unspecific values are? 

3) Are correlations between performance and values measured after problem solving 

different for problems with and without a connection to reality? Are correlations 

between students’ values measured before problem solving and performance different 

for problems with and without a connection to reality? 
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On the basis of theoretical considerations, a positive relation between performance and 

values was expected; students’ performance was expected to be similarly related to 

task-specific and task-unspecific values; correlations between performance and values 

were expected to be comparable for problems with and without a connection to reality.  

METHOD 

One hundred ninety-two ninth and tenth graders from German middle track and 

grammar school classes (53.6% female; mean age=16.1 years) were randomly 

assigned to group 1 or 2. In group 1, students solved the problems first and afterwards 

filled out task-specific and task-unspecific questionnaires that assessed their values. In 

group 2, students first filled out both types of questionnaires and then solved the 

problems (Fig. 1).   

 

Fig.1: An overview of the study  

Example of problems with and without a connection to reality 

Sixteen problems with a connection to reality and seven problems without a 

connection to reality that could be solved by applying Pythagoras’ theorem and linear 

functions were selected for this study. These problems were used to assess students’ 

performance and their task-specific values. Sample tasks on the topic of Pythagoras’ 

Theorem are presented below (for more sample tasks, see Rellensmann & Schukajlow, 

in press; Schukajlow et al., 2012).  

 

Fig. 2: Problem with a connection to reality “Maypole” 
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Fig. 3: Problem without a connection to reality “Side c”  

Performance  

Students’ performance in solving problems with and without a connection to reality 

was measured with 16 and 7 problems, respectively. Cronbach’s alpha as a measure of 

reliability for the test of the ability to solve problems with a connection to reality was 

satisfactory (.77). The reliability for the test of performance on problems without a 

connection to reality was low (.52) but acceptable for the small number of items and 

the diversity of mathematical procedures needed to solve the problems. 

Task-unspecific and task-specific values  

Task-unspecific values were assessed via the intrinsic component with scales that were 

taken from other studies and consisted of 5 statements that were answered on 5-point 

Likert scales ranging from (1=strongly disagree) to (5=strongly agree). A sample item 

is “Mathematics is my favorite subject.” Cronbach’s alpha was .85. To assess 

task-specific values, each of the 23 problems was followed by a statement about the 

extent to which the students valued the processing of the task. The instructions were: 

“Read each problem carefully and then answer some questions. You do not have to 

solve the problems!” After task processing, the students in group 1 were presented the 

problems again and were asked to rate the extent to which they agreed or disagreed 

with the statement “I think it is important to be able to solve this problem.” Students in 

group 2 were asked before task processing to rate the same statement. A 5-point Likert 

scale was used to record their answers (1=not at all true, 5=completely true). One scale 

measured task-specific values for problems with a connection to reality and was 

formed across 16 problems (Cronbach’s alpha=.96). Another scale measured 

task-specific values for problems without a connection to reality and was formed 

across 7 problems (Cronbach’s alpha=.91).  

An implementation check indicated that students in group 1 solved the problems 

significantly more often than students in group 2 before they reported their values 

(Schukajlow & Krug, 2014). 

RESULTS 

The analysis of the relation between students’ performance and values assessed after 

task processing confirmed my expectations. Students who achieved higher scores on 

the tests valued mathematics and solving mathematical problems higher than students 

who achieved lower scores (see Table 1).  
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 task-specific values task- 

unspecific 

values 
problems with a 

connection to reality 

problems without a 

connection to reality 

performance problems with a 

connection to reality 

.386**   .500** 

problems without a 

connection to reality 

 .240** .233* 

Note: **p<.01; *p<.05; one-tailed; sample size N=100. 

Table 1: Pearson correlations between performance and task-specific and 

task-unspecific values after task processing (group 1). 

Similar correlations were found for the relation of values measured before task 

processing and performance (Table 2), indicating that students with higher values with 

respect to mathematics and problem solving activities before task processing achieved 

higher scores on the performance test. However, three of four correlations just missed 

the significance level of .05, and thus the results should be interpreted cautiously. 

 task-specific values task- 

unspecific 

values 
problems with a 

connection to reality 

problems without a 

connection to reality 

performance problems with a 

connection to reality 

.157a  .332** 

problems without a 

connection to reality 

 .149a .145a 

Note: **p<.01; *p<.05; ap<.10; one-tailed; sample size N=92. 

Table 2: Pearson correlations between performance and task-specific and 

task-unspecific values before task processing (group 2). 

To answer the second and third research questions, I compared the correlations with 

Fisher’s Z-scores and two-tailed significance tests (Steiger, 1980). In group 1, the 

correlations between performance and task-unspecific values did not differ from the 

correlations between performance and task-specific values. For example, the Z-score 

for the comparison between the correlations of .386 and .500 in Table 1 was 1.147 and 

was not significant (p=0.252). Similar results were found for the comparison of 

correlations in group 2 for problems without a connection to reality (.145 and .149) and 

for problems with a connection to reality (.157 and .332). The latter difference in 

correlations was found to be marginally significant (Z=1.726, p=.084) and indicated 

that students’ task-unspecific values tended to be more closely related to performance 

than students’ task-specific values for problems with a connection to reality.    

In investigating the third research question, I was interested in differences in 

correlations between two types of problems: problems with and without a connection 
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to reality. As expected, correlations between performance and task-specific values 

measured after task processing (.386 and .240) did not differ significantly between the 

two types of problems (Z=1.507, p=.132). However, the correlation between 

performance and values for problems with a connection to reality (.500) was higher 

than the same correlation for problems without a connection to reality (.233, Z=2.969, 

p=.003). Similar results were found for the relation of values measured before task 

processing and students’ performance. There was no significant difference between the 

two problem types in the task-specific correlations (.157 and .149), but there was a 

difference for the task-unspecific ones (.332 and .145, Z=2.057, p=.040). 

SUMMARY AND DISCUSSION 

The aim of the study was to investigate the relation between performance and values. 

To achieve this aim, students’ values were assessed before and after task processing, 

using task-specific and task-unspecific questionnaires and using problems with and 

without a connection to reality. As predicted by motivational theories (Guo et al., 

2015), performance and values were found to be related to each other. This result 

indicates that students’ performance might be important for the development of values 

and vice versa. The reciprocal relation between the two measures is an open question 

for future longitudinal and interventional studies. 

As expected, correlations between performance on problems with and without a 

connection to reality and values were comparable for task-specific and task-unspecific 

scales as task-specific and task-unspecific measures refer to the same affective 

construct. Similar results were found for assessments of how performance is related to 

boredom, enjoyment, and interest (Schukajlow, 2015; Schukajlow & Krug, 2014).   

The analysis of differences in correlations between problems with and without a 

connection to reality revealed that the type of problem is a significant factor that should 

be taken into account in future studies. Correlations between students’ performance on 

real-world problems and students’ task-unspecific values measured before or after task 

processing were higher than the respective correlations for intra-mathematical 

problems. Note that modelling problems were a significant part of the problems with a 

connection to reality used in this study. As these kinds of problems are not typical in 

mathematics classrooms, solving them might require a greater transfer of abilities than 

curricularly valid intra-mathematical problems. Because of this, the extent to which 

students value mathematics might be more strongly related of their performance on 

tasks with a connection to reality than on tasks without a connection to reality. A 

similar tendency was found for the relation between interest and performance on 

modelling and intra-mathematical problems (Schukajlow & Krug, 2014). Future 

studies are essential to investigate these findings further. 
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MULTILINGUAL STUDENTS’ DEVELOPING AGENCY  

IN A BILINGUAL TURKISH-GERMAN  

TEACHING INTERVENTION ON FRACTIONS 

Alexander Schüler-Meyer 

TU Dortmund University 

 

Multilingual students who are able to exercise agency – when they deliberately 

position themselves to contribute to shape the mathematical discourse – can activate 

their specific resources. In this case study, a five-session bilingual Turkish-German 

teaching intervention for promoting the conceptual understanding of fractions is 

investigated in regard to how students develop their agency. Whereas in the beginning 

of the intervention the students contribute to the development of the discourse, the 

students’ opportunities for exercising mathematical agency decrease over the course 

of the intervention. This might be a result of the discourse becoming more 

teacher-centered and the nature of the tasks. More research is needed to better 

understand this phenomenon.  

INTRODUCTION 

Multilingual students can activate their multilingual resources in the mathematics 

classroom, when classroom activities take multilingual experiences as starting point 

(Dominguez, 2011). Building on available linguistic resources and incorporating 

multiple modes and representations open pathways for multilingual students to 

participate in rich discourse practices (Moschkovich, 2015). Research on multilingual 

mathematics learning has started to investigate under which conditions multilingual 

students can activate their available resources in the mathematics classroom, where 

opportunities for students to exercise agency have been identified as a relevant 

condition (Langer-Osuna, Moschkovich, Norén, Powell & Vazquez 2016).  

Agency is associated with students contributing to the development of the 

mathematical discourse, for example with students taking the initiative for their 

mathematical understanding and for constructing meaning (Gresalfi, Martin, Hand, & 

Greeno 2009, p. 56), and with students developing their own ideas and extending 

existing ideas (Boaler, 2002). However, the affordances for exercising agency, as well 

as the development of agency have not yet been systematically investigated for 

multilingual students. This case study investigates the development of 7th grade 

multilingual students’ agency who, over the course of five weeks, participate in a 

five-session bilingual Turkish-German teaching intervention on fractions.  
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MULTILINGUAL STUDENTS’ AGENCY AND ITS DEVELOPMENT 

In general, the concept of agency is concerned with the ways individuals can act in a 

given social situation, and specifically, is concerned with how individuals act within 

this situation in independent and self-reflective ways in order to contribute to shaping 

the social situation at hand. In teaching-learning situations, students ideally participate 

as thinking agents, and this way contribute to the unfolding of the mathematical 

content (Boaler & Greeno, 2000). Accordingly, agency means more than being en-

gaged in the classroom, it includes the ability to make deliberate choices about how to 

participate (or to not participate) (Gresalfi et al., 2009). Here, a student’s mathematical 

agency is defined as his or her deliberate, self-conscious positioning to direct the 

ongoing discourse or to contribute to its development (Norén, 2015, Boaler & Greeno, 

2000). Mathematical discourses are ways of “combining and integrating language, 

actions, interactions, ways of thinking, […] using symbols, tools and objects to enact a 

[…] socially recognizable identity” as doers of mathematics (Gee, 2011, p. 201). They 

develop by the introduction of new definitions, routines, objects, tools, symbols etc.  

Agency is operationalized with positioning theory (Davies & Harré, 1990). Positioning 

theory states that individuals act based on their in-the-moment position in the 

conversation (Harré, Moghaddam, Cairnie, Rothbart & Sabat, 2009). The individual’s 

actions, and the associated positons, become intelligible and objectively and 

subjectively coherent through storylines. Storylines are culturally shared, but 

individually represented repertoires of how conversations develop, for example 

between nurses and patients (Herbel-Eisenmann, Wagner, Johnson, Suh & Figueras, 

2015). Storylines can belong to certain genera, or frames, for example the frame of 

school learning which comprises storylines that organize conversations in 

teaching-learning situations.  

Students exercise agency when they deliberately position themselves. When students 

deliberately position themselves in an ongoing conversation in the mathematical 

classroom, they stress their independency and their identity as thinking agent – in other 

words, they deliberately engage in the discourse to contribute to its development. For 

example, students can deliberately position themselves to present their perspective on 

the mathematics at hand and/ or what their course of action would be (cf. van 

Langenhove & Harré, 1999, p. 24). Deliberate self-positioning is complemented by 

forced self-positioning, where the initiative for a position lies with someone else. In 

mathematical classrooms, the teacher can force students to position themselves, as 

he/she acts as a representative of the institution school, and thus, his or her demands or 

his or her questions can exercise a strong force for students to take a certain position 

(cf. van Langenhove & Harré 1999, p. 26).  

While there are case studies on multilinguals agency (Norén, 2015), or suggested 

situations where especially multilinguals might be able to exercise agency 

(Langer-Osuna et al. 2016), there is no development model for agency in the 

mathematics classroom, according to the author’s reading of the current literature. A 

possible trajectory for the development of agency could be that students learn to 
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position themselves deliberately based on their previous experiences from forced 

self-positionings, where agency first exists in the interpersonal plane, and only later on 

the intrapersonal plane (cf. Vygotsky, 1986).  

Thus, in this study, the following research question is investigated:  

How does multilingual students’ mathematical agency develop over the course of a 

five-session multilingual Turkish-German teaching intervention on fractions? 

METHODOLOGY OF THE STUDY 

Research context of the study 

The study is part of the larger research project MuM-Multi, which is a learning process 

study on fostering multilingual students’ understanding of fractions in a 

Turkish-German teaching intervention, conceived as a randomized control trial with n 

= 139 seventh grade multilingual students. The teaching intervention consisted of five 

sessions with 90 min. each. The students participated in small groups of 2-5 students in 

the teaching intervention, each group was videotaped. The here presented study is one 

of several case studies within MuM-Multi. 

Data corpus 

From the data corpus that was generated in MuM-Multi, here the second and fourth 

teaching intervention sessions are investigated in regard to the development of agency 

over the course of the teaching intervention. The first and last sessions were not chosen 

as the students need time to adapt to the teaching intervention in the first session, and 

might participate differently in the fifth session knowing that it represents the last 

session of the intervention. As this study is of exploratory nature, only one teaching 

intervention group is investigated. This group of four students mostly worked in pairs 

in Session 2 (Ilknur and Akasya, Halim and Hakan) and as a whole group in Session 4. 

Accordingly, transcripts of 2x90 min. in Session 2 and 90 min. in Session 4 were 

analyzed. In their regular classroom, these students are educated monolingually in 

German. 

Methods of qualitative analysis 

The transcripts are analyzed employing qualitative content analysis (Mayring, 2016) 

with the categories of deliberate and forced self-positioning. Further categories were 

generated from the material. In a first passage through the material, segments were 

identified were students exercise agency based on their use of linguistic markers that 

indicate self-positioning (I, me, myself, my), where these linguistic markers allow a 

relatively good approximation of self-positioning (“lexical bundles”, 

Herbel-Eisenmann, Wagner & Cortes, 2008). In the second passage, these segments 

were analyzed in regard to the nature of the positionings and their frames. For 

investigating development processes, all segments for a student are ordered in their 

original order of occurrence. 



Schüler-Meyer 

_______________________________________________________________________________________________________________________

4-172 PME 41 – 2017 

EMPIRICAL RESULTS  

The multilingual students Akasya, Hakan, Halim and Ilknur exercise agency within 

different frames. Here I will only refer to the two dominant frames of private relations 

and of mathematical understanding. The frame of private relations encompasses 

storylines of ‘being brought up by a strict mother’ or of ‘solving conflicts in the friend-

ship’. The frame of mathematical understanding includes storylines that organize 

teaching-learning situations, for example ‘asking the teacher for assistance’. Only 

deliberate self-positionings within the frame of mathematical understanding are 

considered as candidates for mathematical agency.  

Ilknur’s agency in Session 2 

In the following episode, the student Ilknur is exercising agency within the 

aforementioned frame of mathematical understanding. This episode is located in 

Session 2 of the teaching intervention, in its fourth task (of 9). Previous to this episode, 

Ilknur and Akasya try to find fractions that are equal to 2/6 within the fraction bar 

board (Fig. 1), with which they have difficulties.  

  

 

Figure 1: Fraction bar board of Akasya (written inscriptions were added in later tasks)  

Turn Person Original 
(Turkish in black, German in grey) 

 English Translation 

(from Turkish in red, from German in orange) 

113 Ilknur Şimdi bu zwei Sechstel ya   [points at the fraction bar for 1/6] Now, since this there is 

two sixth  

 

119 Ilknur 

[...] 

Doch, das ist richtig! Guck zwei Sechstel, bak 

gel. 

 

Zwei Sechsteli aşağıya yaparsan bu zwei 

Sechstel  

Akasya, guck ma hier steht # Akasya, guck ma 

hier steht sieben Einundzwanzigstel. Das ist 

richtig.  

Guck, das ist doch zwei Sechstel. Baksana. 

Bak şunu şu Strich. Ey, zwei Sechstel  

 

Ey, ben yapamıyorum! Çok zor!  

  

[looks at the fraction bar board und puts her ruler on it] 

After all, it is right. Look, two sixth, come over, look.  

If you do two sixth downwards, this is two sixth [points at 

7/21]. 

[points at Akasya’s fraction bar board] Akasya, look, here 

stands, Akasya, look, here stands seven twenty-one. This 

is correct.  

[Ilknur compares Akasya’s fraction bar board with hers 

and puts her rules on Akasya’s board] Look, this is two 

sixth, after all. Look. Look at this line. Ey, two sixth. 

[inaudible]  

Ey, I cannot do this. This is hard.  
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After a discussion with Akasya, Ilknur has an idea how to find equal fractions. She 

explains her thinking to Akasya, directly addressing her (“Look”), and explains that 

7/21 has to be equal to 2/6. Above that, Ilknur comments on the correctness of her 

solution (“is correct”). In the end, Ilknur also addresses her difficulties with coming up 

with a solution. 

Ilknur exercises agency in taking a deliberate and self-conscious position as a learner 

who struggles to understand the mathematics at hand, and this way self-positions 

herself complementary to her coworker Akasya. At the same time, she brings the 

discourse forward in proposing a strategy of how to solve the task, and assesses that her 

solution is correct and should be taken up by Akasya. In summary, Ilknur is exercising 

agency as an equal student in a shared struggle for understanding.  

Ilknur’s Agency in Session 4 

The following episode from the first task in Session 4, the students Ilknur, Akasya, 

Halim and Hakan try to determine 5/7 of 21. For that, they were given the fraction bar 

with seven fields by the teacher (Fig. 2), on which the students now distribute 

sunflower seeds.  

 

Figure 2: Fraction bar in Task 4 

Turn Person Original 
(Turkish in black, German in grey) 

 English Translation 

(from Turkish in red, from German in orange) 

346 Halim Rechne ma richtig, nach Drei, Sechs, Neun, 

Zwölf, #vor Fünfzehn  

 Calculate right, after three, six, nine, twelve, # before 

fifteen [points at the respective field in the fraction bar for 

the denominator 7] 

347 Ilknur  

348 Akasya  

# Das war falsch. #Zwei  

Zwölf, Fünfzehn, #Achtzehn, 

Einundzwanzig, und was steht hier? 

 # That was wrong. Two. 

Twelve, fifteen, #eighteen, twenty-one, and what is here? 

[points at the green card where 5/7 is printed on]  

349 Halim                             #Achtzehn, Einundzwanzig                             #eighteen, twenty-one 

350 Akasya Einundzwanzig  Twenty-one 

351 Ilknur Ooh. Boah, dann hatte ich ja recht.   Oh. Wow, then I was right.  

 

Halim and Akasya come up with a correct solution, and try to explain their solution by 

counting how much sunflower seeds are added with each field in the fraction bar. After 

that, Ilknur expresses her surprise that she had been right about the solution.  

Ilknur takes up a position as learner who struggles to understand, but who is able to 

come up with a correct solution. In other words, she is positioning herself as competent 

learner. This time, however, Ilknur does not position herself deliberately, but in 

reaction to the others’ presentation of a solution. Also, she does not contribute to the 

development of the mathematical discourse, but instead claims a place in the ongoing 

discourse in the sense that she expresses her importance in the conversation. While this 
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position is important for Ilknur in order to secure future opportunities for mathematical 

agency, and to collaborate with the other students, it does not allow for mathematical 

agency in this situation. More general, in Session 4, there are only few instances where 

learners exercise mathematical agency, which indicates that there might be fewer 

opportunities to do so. 

Ilknur’s developing agency  

Over the course of the bilingual Turkish-German teaching intervention, opportunities 

to exercise mathematical agency seem to decrease (see Tab. 1). At the same time, the 

number of forced self-positionings increases. This goes hand in hand with the teacher 

taking more and more responsibility for the development of the discourse. In teaching 

intervention 2 students exercise mathematical agency deliberately and relatively 

independent of the teacher, and the students take positions as being equal to each other 

in a common struggle for understanding. In Session 4, the struggle for understanding 

remains, but the teacher takes the responsibility for the development of the 

mathematical discourse, e.g. by giving more direct instructions. At the same time, the 

students more often seem to take ‘forced’ positions, e.g. after being asked for help by 

the other students (as indicated in right column in Tab. 1), but also influenced by the 

teacher. 

 Deliberate 

self-positionings 

Forced self-positionings by other 

students 

 Session 2 Session 4 Session 2 Session 4 

Frame of private relations 5 7 0 6 

Frame of mathematical 

understanding 

8 3 0 14 

Table 1: Number of positionings of Halim and Ilknur  

(numbers for mathematical agency in italics) 

DISCUSSION 

The results presented here are a first step towards an understanding of the mechanisms 

how multilinguals’ mathematical agency can develop in a bilingual teaching 

intervention. In has been illustrated how a student’s mathematical agency decreases 

over the course of the intervention, developing from Ilknur taking a deliberate and 

self-conscious position as a learner who struggles to understand the mathematics, 

towards a position which Ilknur seems to take up to secures future opportunities for 

mathematical agency.  

The decrease of mathematical agency needs to be explained. The here presented results 

indicate that it cannot be assumed that mathematical agency develops ‘automatically’. 

Presumably, the development of mathematical agency depends upon multiple factors. 

Two factors at play here are the intersubjective nature of agency and the nature of the 

tasks in the teaching intervention.  
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 Agency is intersubjective, that is, agency is always shared and dynamically 

moves between multiple subjects (cf. Vitanova, Miller, Gao & Peters, 2015). 

Accordingly, as a consequence of the teacher taking the responsibility for the 

development of the discourse in Session 4, the students have less oppor-

tunities to contribute to its development – to introduce their own mathe-

matical definitions, routines, objects, symbols etc. (cf. Gresalfi et al., 2009). 

 The main task of Session 4 limits the possibilities for the students to contri-

bute to the development of the discourse, as it aims to develop a routine. 

Accordingly, the students cannot exercise mathematical agency to a greater 

degree. 

The here presented study only shows first tendencies in the development of students’ 

mathematical agency, as it only investigates one group of students. In future studies, 

the development of agency within the different teaching intervention groups within 

MuM-Multi has to be analyzed comparatively to uncover examples where the 

opportunities for mathematical agency increases. Understanding how to support the 

development of mathematical agency could then provide new insights into how to 

foster multilingual students in engaging with mathematics from their own perspective 

and their own understanding of the mathematics (Gresalfi et al., 2009; Noren, 2015), 

especially in regard to the roles of tasks and teachers. Furthermore, the role of the two 

languages Turkish and German has to be investigated more systematically. 

Acknowledgment. The case study was conducted within the project “MuM-Multi: Fostering 
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TEACHERS’ DISCOURSE ON STUDENTS’ CONCEPTUAL 

UNDERSTANDING AND STRUGGLE 

Galit Shabtay and Einat Heyd-Metzuyanim 

Technion Institute of Technology 

 

We employ a communicational lens on the discourse of elementary mathematics 

teachers, asked to identify themselves with relation to vignettes describing four 

teaching types: high/low student struggle and high/low attention to concepts. Our goal 

is to examine the narratives that support low struggle or low attention to concepts.  

Data included interviews with four experienced elementary school teachers. Findings 

show that teachers had a coherent story for why they adopted or rejected each 

teaching type and that support of other-than-optimal teaching types was related to 

their conceptualization of “learning with understanding” as well as the ways in which 

they identify students of different “abilities”. 

BACKGROUND 

In a review of links between teaching practices and students’ learning, Hiebert and 

Grouws (2007) pointed to the importance of two aspects in teaching: explicit attention 

to concepts (EAC), defined as “the public noting of connections among mathematical 

facts, procedures and ideas" (p. 383) and students’ opportunity to struggle (SOS), that 

is: “students’ expending effort to make sense of mathematics, to figure something out 

that is not immediately apparent” (p. 387). Optimal teaching, they claimed, combines 

both EAC and SOS. Schoenfeld (2014) also concludes that such instruction, which 

lends students authority, as well as exposes them to important mathematical ideas, is 

the best for achieving robust learning.  

Yet studies show that such teaching, despite decades of curricular reform and 

professional development attempts, is still pretty rare (Resnick, 2015).  Moreover, 

changing teachers’ practice may prove to be a long and difficult process (Guskey, 

2002). In the present study, we offer to view this as a result of teaching practices being 

a part of a pedagogical discourse or discourse about teaching and learning. Similar to 

any other discourse (Sfard, 2008), it is made of certain key-words, narratives, and 

meta-rules. These dictate what to teach students, how to teach them and, often not 

talked about but still very important, who can learn (or not learn). This view is 

anchored in Sfard’s (2008) view of mathematizing as participating in a discourse about 

mathematical objects thus the pedagogical (the how and for whom) is closely 

intertwined with the what.  

Participation in pedagogical discourse is very much a matter of constructing a certain 

identity of oneself as a teacher (Goos, 2005). Thus, the story a teacher tells about 

herself is constructed on the web of narratives she endorses about teaching and 
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Figure 1: The Teaching Quadrants (according to Stein et al., 2017) 

learning. Examining the ways in which teachers identify themselves with relation to 

certain prototypical practices holds the potential to unearth the web of narratives 

teachers endorse as part of their “pedagogical frame” – the set of meta-rules 

determining what is effective teaching for them. 

Based on Hiebert and Grouws’ (2007) work, Stein and her colleagues (Stein et al., 

2017) have come up with a framework that divides teaching into relatively simple 

“types”. These are named “quadrants” and typify teaching according to high or low 

levels of the two aspects identified as most important for students’ learning: explicit 

attention to concepts, and students’ opportunities for struggle (see Figure 1). Stein et al 

(2016) developed a survey based on vignettes of a “typical lesson” of these four 

quadrants.  

 

 

These vignettes, which present relatively simple but sufficiently informative 

typification of the four teaching approaches, offer teachers an opportunity to identify 

with alternative forms to the “optimal” view of high EAC/high Struggle. The 

understanding of these alternative approaches is important for disrupting them and 

moving teachers towards instruction that is high both in EAC and in student struggle.  

Our question in this research was thus: what may the discourse of teachers around 

vignettes of “typical quadrant teaching” reveal about teachers’ identity and their 

reasons for adopting or rejecting high EAC and high SOS? 

METHOD 

Since our goal was to compare and contrast narratives about teaching, we chose four 

teachers that the first author, from her professional role as district instructor of 

mathematics, knew to be quite different in their teaching practices. All teachers held 

teaching certificates ranging from a B.Ed to M.Ed and had experience ranging from 11 

to 25 years of teaching mathematics. They were asked to answer Stein and her 

colleagues’ survey. The survey includes 6 vignettes depicting different types of 

teaching practices. Each vignette is constructed to describe a “typical” quadrant, 

without, of course, hinting which teacher is better or that there are, in fact, such 

“quadrants” underlying the vignettes. Following is a short description of each of the 

vignettes (the originals are around half a page): 
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All four vignettes describe a lesson dealing with the same subject: connecting 

fractions, decimals and percents.  The Q1, Q2, and Q3 teachers all use a similar task, 

which affords connections between an area diagram, factions, decimals and percents. 

The Q1 teacher - presents the topic for the lesson, then hands out the task for students 

to work on in groups. She then walks around and assists with specific questions 

tailored to advance students’ thinking. At the end of the lesson she invites two students 

who have found different solution paths to present and discuss their work.  She then 

draws students’ attention to the equivalence of the three representations (fraction, 

decimal and percent) as seen in the different diagrams. 

The Q2 teacher – starts the lesson similarly to Q1 but after most students apply one 

solution, she points to the equivalence of the diagram and the fraction, then elicits from 

students the equivalence to percents. She concludes by explaining the meaning of 

equivalence. 

The Q3 Teacher - starts the lesson similarly to Q1 and walks around students 

monitoring their work. When students make mistakes, she asks them to: "think harder" 

but does not guide their thinking. At the end of the lesson she invites a group to present 

their correct solution. Connections between fractions, decimals and percents are not 

made explicit at the end of the lesson. 

The Q4 teacher chooses a different task, which would provide opportunity for targeted 

practice on an efficient procedure for converting fractions, decimals and percents. She 

demonstrates the procedure and then gives students similar tasks to work on 

individually. 

After teachers completed the survey, they were individually interviewed on it by the 

first author. Each semi-structured interview lasted around 30-40 minutes and was 

designed to elicit teachers discourse around key pedagogical words such as 

“conceptual/procedural understanding” as well as teachers’ identity narratives in 

relation to the vignettes.  

Interviews were fully transcribed and first analysed in search of common issues and 

statements. Next, we paid attention to particular sentences and word use, for example, 

around “understanding” and “students”.  

FINDINGS 

Only one of the teachers identified herself with the Q1 teacher. The rest identified 

themselves as either between Q1-Q3, Q2, or “eclectic”. In what follows, we first 

describe the self-identifications of the teachers and their relation to their definition of 

“understanding”. We then move to present some commonalities in their discourse 

about students. 

 

 

 



Shabtay and Hey-Metzuyanim 

_______________________________________________________________________________________________________________________

4-180 PME 41 – 2017 

Hadar: Identifying with Q3 

Hadar hesitated at first between the Q1 and Q3 vignettes. She said: “I feel that at work 

I zig-zag between the two”, explaining: “one (Q1) gave complete freedom to students. 

Counted on them. The other moderated them a bit”. Eventually, she leaned towards 

Q3, explaining that that the Q1 teacher “gives too many hints”. She, in contrast, likes 

“that they (the students) struggle themselves and then I create a conflict, and only 

facilitate the discourse”. In that sense, it is clear that Hadar picked up the vignettes’ 

depiction of the Q3 teacher as letting students “struggle themselves”. However, she did 

not appreciate the Q1’s teacher explicit attention to concepts. Rather, she interpreted 

that as “giving too many hints”. We found Hadar’s discourse around “conceptual 

understanding” linked to this neglect of EAC:  

Conceptual understanding is when I know what can belong to a concept and what does not 

belong to it. Like, a square, I can define what is a square and what is not a square, so I have 

a definition of the square concept.  

We found this to be a rather constrained conceptualization of conceptual 

understanding. It does not mention relations between objects, between procedures or 

between different representations (graphical, numerical, etc.). Hadar was missing in 

the Q1 vignette an indication of “cognitive conflict”. Thus, for her, “understanding” 

seemed to be only facilitated by “conflict” not by other means of relating between 

different representations and procedures. 

Hila: Identifying with Q2 

 Hila identified herself with the vignette of the Q2 teacher. She explained:  

She works in a gradual way. She doesn’t send them straight into the lion’s den … (she) 

works with them step by step. She makes them understand together the complex task while 

not giving up on the difficulty of the task, like Sharon (Q4 teacher). 

 Even from this short excerpt, one can see Hila views student struggle very differently 

than Hadar. For her, such struggle is a threatening experience (“lion’s den”) that 

students should be protected from. “Student understanding” is achieved through 

“working with them together, step by step”. What such “understanding” means for 

Hila is revealed in her example of how she ensures her students will “understand”:  

For instance, when they study long division. So it’s important that they learn the way 

(procedure). And understand why and how to do each step. I connect it to DMSB (explains 

a Hebrew mnemonic for memorizing the steps of long division)… That way they have a 

good understanding of long division. 

Thus, Hila equates “good understanding” with the correct memorization and execution 

of procedures. She does not make links to mathematical objects or to connections 

between routines.  
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Dana: I’m a little bit of everything 

Dana insisted she could not identify herself with any particular type of teaching. She 

explained:  

My lessons really change a lot from lesson to lesson, according to what I feel. I really 

really think that I use everything. I can use the methods of Nitza (Q1), needing to give 

directions and hints, and there’s a lesson that I would actually use Sharon’s (Q4) 

technique. And there are periods, or days, or a year, that I would act otherwise.  

The insistence of Dana that she could not identify with any types of teaching 

represents, in our view, a narrative of itself: by claiming she uses eclectically different 

“methods”, Dana resists the idea that she should adopt a certain type of coherent 

instructional practice. She continues:  

So to say that I only do technique, that’s the least correct. To say that I only use tasks that 

are explored independently, that’s totally incorrect, and to say that I facilitate all the time – 

also incorrect. In short, it really really depends. 

Though she rejects identifying herself with any specific teaching style, the ways in 

which each of the vignettes is interpreted by Dana is pretty clear: Q1 “gives 

directions”, Q2, “constantly facilitates”, Q3 gives “tasks for exploring alone”, and Q4 

“does only technique”.  These rather shallow labels clarify that for Dana, none of the 

vignettes signifies a coherent teaching approach. Further explaining her choice of 

“method” Dana explains:  

When I open a subject and introduce students to a subject, I give them (the students) a task, 

and I say ‘take your time, and work alone, and inquire, and check’. It could take one day or 

two or three or even a week, and (I tell them) ‘explore on your own’ … I can open with 

such tasks that will lead them to insights, but at a certain point, you turn to technique and 

you direct (them).  

Thus, for Dana, “insights” are not connected with “technique”. “Independent 

exploration” is reserved for the slow process of “gaining insights” and is the luxury of 

“beginning a subject”. Once that luxury is over, she has to step in and “teach the 

technique”. This is connected, again, to her conceptualization of “understanding”. 

Explaining her insistence on “understanding”, especially in lower grades, she gives an 

example: 

I am now starting (with my 2nd graders) the numbers in the domain of 100. And I’m 

supposed to start in a short while long addition and subtraction. And since September I’ve 

been working on Digi (base ten) blocks, on units and tens, on composition, and on tens. 

And really put effort into their understanding. What composition actually means.  

Thus, Dana mostly equates understanding with a slow process whereby students 

engage with manipulatives to be able to “understand”, and eventually follow a certain 

procedure (composition). She never mentions connections between mathematical 

objects or a relation to a wider web of mathematical ideas. 
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Nira: Identifying with Q1  

Nira expressed her self-identification very clearly:  

I’m like Nitza (Q1), period. I give them challenging tasks, and then assist as much as 

needed and according to the difficulty that arises. And I give space for independent 

inquiry.... I don’t tell too much and I don’t give students unrealistic work.  

Thus, similar to the other teachers, Nira located herself between two extremes: “too 

much telling” and “unrealistic work” (or challenge). However, unlike the other 

teachers, Nira had a pretty clear vision of how this type of instruction connects to 

“understanding”, and in particular, to understanding of low-achieving students: 

She (Q1 teacher) can help them (the students). She can take them from the place they’re at 

and make them fully understand, deeply, any subject. She will work on connections to 

other subjects, and on different representations.  

Nira’s clear view of how students “independent inquiry” can lead to “understanding” 

was connected to her description of “conceptual understanding” which was, by far, the 

richest we received from our interviewees: 

(Conceptual understanding) is understanding the subject in any form it can be represented 

and also the relations between the concepts in that subject, … For instance, multiplication 

– understanding the relation to the area model, understanding the relation to repeated 

addition, understanding that it also belongs to proportional reasoning, and that it can be 

described by repeated jumps on the number-line.  

Teachers’ discourse about students 

There was one interesting commonality to all three teachers, except Nira: they all 

differentiated between their practices with students who have “different abilities”. 

Importantly, this issue was not raised by the interviewer, neither was it a part of the 

survey. Hila (Q2) talked about matching her regular instruction to the abilities of the 

“middle group” and about working differently with “low ability” (or “weak”) students, 

who “needed something more technical”.  A similar narrative was told by Dana 

(Eclectic), who said: “If it’s a student with difficulties that I know that has no choice, 

then I work on the technique”. 

Hadar (Q3) did not explicitly label students as being of a particular type, yet she still 

referred to students that deserve “other” types of instruction:  

There are kids that I know, for example, that showing them the algorithm, or explaining the 

procedure, the solution… I know that they won’t succeed in understanding, and I do want 

them to know, so I use it (Q4 instruction).  

Given the issue raised by the three interviewees, about differentiating teaching 

according to students’ “abilities”, we went back to Nira  (Q1) and asked her how she 

would teach “students with difficulties”. Nira reacted with some puzzlement to the 

question, answering immediately: “(I teach) regularly, why?” When hearing that other 

teachers thought it was an important factor, she added: 
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Look, for students with difficulties, it’s important to give scaffolds, manipulatives or 

anything that would help them work on the same tasks that are learned in the classroom, so 

they don’t feel behind.  

Still, she insisted that the Q1 teaching is the best for these types of students and in fact, 

“can help them the most”.  

SUMMARY AND CONCLUSION 

Our goal in this study was to expose the narratives underlying choices of teachers to 

identify with particular types of teaching, according to high/low EAC and high/low 

SOS. The findings show that each teacher had a coherent set of narratives for 

explaining her choice (or avoiding the choice) of a particular teaching type.  Thus, the 

vignettes were highly effective in eliciting teachers’ identity narratives and in helping 

them reflect on their teaching practice. 

Our findings also point to a possible relationship between teachers’ choice of which 

vignette to identify with, and their discourse on students’ “understanding”. Except for 

Nira (Q1), the three teachers’ discourse about “conceptual understanding”, or 

“understanding” more generally, was quite limited, and mostly referred to being able 

to follow and explain a given procedure correctly. There also seemed to be a 

disconnect between building on what students already know (seen in words such as 

“inquiry” and “gaining insights”) and having students carry out mathematical 

procedures (“the technique”). These differentiations went often together with the 

identification of who can “understand” and who can “only do the technique”. 

These findings, as initial and embryonic as they are, point to the possibility of there 

being a relationship between narratives about mathematics – being a set of rules to be 

followed or being an interconnected web of relations between mathematical objects – 

and narratives about students. In other words, it seems the narrative that certain 

students are “simply not able to understand so they need do the technique” is easier to 

endorse when “understanding” and “technique” are differentiated.  

Unfortunately, this pedagogical discourse may be, in part, responsible for the 

construction of learning difficulties to begin with. Previous research (e.g. 

Heyd-Metzuyanim, 2013) has shown how a teacher and a low-achieving student 

“co-construct” the students difficulties by both sticking to ritual rule following, in the 

face of the students’ ever-growing gaps vis-à-vis the curriculum. However, attempts to 

disrupt the common belief that low-achieving students should engage with cognitively 

demanding tasks are still rare.   

Another insight we gained is that none of the teachers interviewed on the vignettes 

actually related to the explicit attention to concepts in them. In fact, teachers judged the 

appropriateness of the practices almost solely based on the struggle aspect of the story, 

essentially placing all vignettes on one ‘struggle scale’ (roughly Q3, Q1, Q2 and Q4, 

from highest to lowest). This finding hints at the ubiquity of teachers’ discourse around 

students’ struggle (good or bad), at the price of discourse on attention to concepts, or 
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mathematical narratives, more generally. It also echoes Chazan & Ball’s (1999) 

well-known lament about teachers only being “told not to tell”, while what to tell (or 

not to tell) is not being explicated.  
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THE COMMOGNITIVE FRAMEWORK LENS TO IDENTIFY THE 

DEVELOPMENT OF MODELLING ROUTINES  

Juhaina Awawdeh Shahbari1 and Michal Tabach2 

1Tel-Aviv University & Al-Qasemi Academy, 2Tel-Aviv University 

Modelling abilities.are considered important for everyday life. The current study 

aimed at using the communicational framework to monitor the development of 

modelling abilities through constructing models. To this end, we monitored a group of 

five future teachers as they worked on two model-eliciting activities. Their work 

process was videotaped and transcribed. The participants' discourse was analysed to 

identify changes in their routines while they worked on the two model eliciting 

activities. We were able to trace changes in the participants' routines through eliciting 

models. Specifically, we identified a change from using a non-systematic routine to 

using a systematic routine and from routines focusing on choosing specific cases to 

routines focusing on eliciting criteria for making choices.  

INTRODUCTION 

Model-Eliciting Activities [MEAs] offer students opportunities to confront 

mathematical as well as everyday challenges (Lesh, Hoover, Hole, Kelly & Post, 

2000). Engaging in MEAs requires the learner to develop models to describe, explain, 

of real-word situations and refine those models in other situations (Doerr & English, 

2003). Several researchers (e.g., Shahbari & Peled, 2017) have described the 

modelling abilities involved in eliciting a model. Yet, more rigorous analysis is still 

needed to monitor the processes and abilities involved in eliciting models, extend and 

generalized in another situations. A good candidate for such an analysis is the 

commognitive framework (Sfard, 2008), which has been used to study mathematical 

learning on different mathematical topics at the micro level. The aim of the current 

study is to monitor the development of modelling abilities through constructing 

models at the micro level among a group of prospective teachers. Using the 

communicational perspective enabled us to closely monitor how their working 

processes unfolded and changed while they engaged in MEAs.  

FRAMEWORK 

Model Eliciting Activities 

MEAs involve partial, unclear or undefined information about a situation that needs to 

be  mathematized in ways that are meaningful to learners as they work in small groups 

(English & Watters, 2005). These activities are designed according to six principles of 

Lesh et al. (2000): model construction, reality, self-assessment, construct 

documentation, construct/ shareability/ reusability, and effective prototype. Engaging 

in MEAs lead to development of significant mathematical constructs through iterative 
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cycles, in which learners use mathematical and communicational competences, such as 

translation, simplification, construction, justification, conjecture, representation, 

quantification, organization, and prediction of outcome data and solution path (Lesh & 

Doerr, 2003).  

The Commognitive Framework 

The communicational framework (Sfard, 2008) is a socio-cultural perspective for 

studying the learning process. The framework suggests that mathematics is a type of 

discourse and that thinking is a certain form of self-communication. Sfard proposes 

four characteristics of mathematical discourse: 1) Words and their uses: Each 

discourse is characterized by its own keywords. 2) Visual mediators:  As mathematics 

is not about physical objects, in many cases communication is fostered by referring to 

visual realizations that are part of the communication. 3) Narratives: Narratives are 

sequences of utterances framed as descriptions of objects, relations between objects or 

processes with or by objects that can be endorsed or rejected. 4) Routines: Routines are 

repetitive discursive patterns characteristic of a specific discourse. According to the 

communicational framework, learning is a change in the individual's discourse, that is, 

a change in words and how they are used, in narratives endorsed or in routines used.  

Sfard suggested two types of learning: learning at the object level and learning at the 

meta-level. Object-level learning involves expanding the discourse by using new 

routines and expanding the assortment of endorsed narratives for a mathematical 

object. Meta-level learning involves changes in the meta-rules of the discourse. 

Research questions 

1. What routines can be identified in the participants' work on model-eliciting 

activities? 

2. What changes in routines can be identified while the participants worked on a 

sequence of two model-eliciting activities? 

METHOD 

We monitored one group comprising five prospective mathematics teachers in their 

second year of studies in the mathematics education track at a college of education. 

They had no previous experience with modelling activities. 

Model eliciting activities 

The authors designed two MEAs —the camp activity and the good teacher 

activity—based on the six principles designated by Lesh et al. (2000). In the first 

activity, the camp activity, the participants were asked to choose the most suitable 

camp/camps and to suggest a means of choosing suitable camps for the coming years. 

The camp activity was represented via four tables providing information about six 

camps, with each table referring to several components. The first table included the 

dates of each camp, as well as information on transportation, food and cost. The second 

table included types and number of entertainment activities at each camp. The third 
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table consisted of data from the previous year about number of participants and 

number of counsellors at each camp. The fourth table presented the parents' 

evaluations and rankings of the camps from the previous year, with the rankings 

ranging from one to five stars.  

In the second activity, the good teacher activity, the participants were asked to choose 

the most suitable candidate/candidates and to suggest a means of choosing suitable 

candidates for the coming years. The good teacher activity also comprised four tables 

that describe ten candidates for a teaching position. The first table included the 

candidates' age and their average grades in their B.Ed. studies. The second table 

included the candidates' ranking by their pedagogical instructors for their practicum 

work in the schools, with the ranking ranging from A+ to F over three years. The third 

table included the ranking of the candidates' performance in an interview, with the 

ranking ranging from "not at all acceptable" to "widely acceptable." The fourth table 

included the candidates' ranking on social initiatives, ranging from "did not participate 

at all" to "participated to a large extent." For each of the two activities, the participants 

were required to write a letter explaining their decisions.   

Research procedures and data sources 

The participants first worked on the camp activity and a week later worked on the good 

teacher activity. The main data sources were two video recordings of the group 

working on the two MEAs. These recordings were transcribed verbatim. We also used 

the group's reports and working drafts for the two activities as an additional data 

source. 

We analysed the data derived from the video recordings based on Sfard's 

commognitive perspective (2008). Of the four discourse characteristics, we searched 

for participants' uses of routines. We parsed the transcript into episodes according to 

sub-tasks the participants performed while working on the two MEAs. If during one 

sub-task the participants enacted two routines, we separated the participants' utterances 

into two episodes. In each episode we searched for participants' actions in order to 

identify routines employed while working on each MEA. For each identified routine, 

we searched for two defining parts: the when of the routine—when it began and later 

when it ended, and the how of the routine—the utterances between the opening and the 

closing of the routine. These utterances were classified as the routine procedure.  

FINDINGS  

Modelling routines in the first activity (camp activity) 

The participants' engagement in the first modelling activity can be separated into two 

phases. In the first phase, the participants tried to accomplish the activity by choosing 

specific camps among those listed [lines 1-200]. In the second phase of the camp 

activity, the participants tried to elicit a model for choosing specific camps [lines 

201-458]. In the following, we describe the first phase and then the second phase.  
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Choosing specific cases (camps) 

During the first phase, the participants discussed the components of the first table and 

chose three camps. They then tried to check their choice based on the information 

provided in the other three tables but without integrating the information from the four 

tables. The participants' engagement during this first phase was captured by Routine 1, 

which included two main sub-routines: 1.1 - Non-systematic comparison and 1.2 - 

systematic comparison that focused on subsets of cases. Each sub-routine consisted of 

two nested sub-routines: looking at all cases (LAC), looking at a subset of cases 

(LSSC), using average (UA) and using estimation and ratio (UER). Figure 1 shows the 

parts of each routine. These sub-routines appear in Episodes 1-5. Due to space 

limitations, we provide only the participants' discourse from the first episode.   

 

 1.1 Non-systematic comparison 1.2 Systematic comparison 

subset of cases 

Sub- Routine  Looking at all 

cases 

[Episode 1] 

Looking at a 

subset of cases 

[Episode 2] 

Using average 

 

[Episode 3] 

Using estimation 

and ratio 

[Episodes 4&5] 

 Opening:  

Choose      

  "perfect 

camp" 

Consider  

first table  

Consider  

second table  

Consider   

third table  

Consider  third 

and fourth tables  

 

Procedure: 

Comparing the 

camps in each 

table 

separately 

Non-systematic 

comparison 

focusing on all 

cases 

Non-systematic 

comparison 

focusing on the 

three chosen 

camps 

Using average 

to compare the 

three chosen 

camps 

Using ratio and 

estimation 

focusing on the 

three chosen 

camps 

 

Closing: 

Choosing 

camps 

Choosing three 

camps 

Endorsed three 

chosen camps 

Endorsed three 

chosen camps 

Endorsed two 

chosen camps 

Figure 1: Routine 1 - Searching for specific cases (camps) 

Episode 1 presents the participants' discussion immediately after reading the camp 

activity. 

Episode 1:  Non-systematic comparison with focus on all cases 

1 S1: [Reads the activity]  

2 S2:  Let's first consider the dates of the camp. The first one is from 2-10 July. 
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3 S3: All the dates are suitable. 

7 S2:  Let's compare camp A and camp C. What is the difference between them? 
Both of them offer transportation. The first one provides food and costs 
750. The third costs 900. 

8 S4: The first is better. 

9 S2:  True, C offers one more day but does not provide food and is more 
expensive. So, A is preferable to C. 

10 S4:  We can choose both A and H. 

23 S4: So the camps are A, D and H. 

Episode 1 shows the participants' discussion of the four components in the first table: 

dates, transportation, food and cost. (The participants' engagement in this episode is 

described by the LAC routine.) Opening the LAC routine was triggered by the call to 

choose a favourite camp\camps [1]. The procedure includes direct and non-systematic 

comparison [2-22]. The routine closed with choosing three camps—A, D and H [23]. 

As an example of the procedure, S3 [3] determined that the dates of all the camps are 

suitable without explicitly relating to the features of each camp, such as number of 

days or other components. S4 [8] determined that camp A is better but did not provide 

any justification. She considered only two components in the first table and did not 

consider the others.  

To summarize, analysis of the participants' discussion from utterances [1] to [200] 

indicates that they worked unsystematically. The participants focused on specific 

cases—three camps—and did not provide a model that satisfies the camp activity.  

Modelling routines for eliciting a model for choosing cases (camp activity) 

After about half of the total time allocated to the activity, the participants started 

thinking about the need for eliciting general criteria for choosing between the cases 

rather than choosing individual cases. The need to write a letter about their 

considerations and decisions triggered this change. By the end of the working time, 

after 92 minutes, the participants provided only a partial model and did not manage to 

write a letter about their suggestion. Based on their work in this second phase, we 

identified a second routine—Routine 2—that has two main sub-routines: Routine 2.1 - 

integration between the components, which includes the sub-routine for assigning 

relative weighting [ARW], and Routine 2.2 - systematic comparison, which consists of 

three sub–routines: quantification of numerical data [QND], defining range and 

grading [DRG], and quantification of qualitative data [QQD]. Figure 2 shows the need 

for using each sub-routine, the details of the procedures and the closing. These 

sub-routines appear in Episodes 6 – 9 of the participants' discourse. 
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Figure 2: Routine 2- Eliciting a model for choosing specific cases (camps) 

Modelling Routines in the second activity (good teacher activity) 

The participants' engagement in the good teacher activity was different than in the 

camp activity. The participants did not choose a specific candidate. Rather, they 

elicited a model and then weighed all the candidates according to their model. The 

participants adapted most of the sub-routines from Routine 2 (quantification of 

qualitative data [QQD], quantification of numerical data [QND] and assigning relative 

weighting [ARW]) and one sub-routine from Routine 1 (using average [UA]). In 

addition, the participants identified a new routine in the good teacher activity and 

implemented it in the elicited model [IEM]. We show the participants' discourse from 

utterances [1] to [201] parsed into six episodes, 10-15, in accordance to each routine. 

(Due to space limitations, we only show the participants' discourse from Episodes 10 

and 15.)  Episode 10 shows the participants' discussion about ways to scale numerical 

quantities. The participants used the QND sub-routine at the beginning of their work 

on the good teacher activity, while in the camp activity they used this sub-routine only 

in the second phase of their work.   

Episode 10: Quantification of numerical data in first table in the good teacher activity. 

1  S1: [Reads the good teacher activity] 

5 S2:  We can start with the candidates' averages. 

7 S1: The lowest is, 78, so the candidates' average is between 78 and 96… 
so we can say, whoever has 78 will have lower scores.  Do you 

 2.1 Integration 

between the 

components 2.2 Systematic comparison 

Sub-Routine  Assigning relative 

weighting 

[Episode 6] 

Quantification 

of qualitative 

data 

[Episode 7] 

Quantification of 

numerical data 

[Episode 8] 

Defining range 

and grading 

[Episode 9] 

Opening: 

choosing 

"perfect 

camp" 

 

The need for weighing 

tables by their 

importance 

The need for 

assigning 

values to 

quantities 

The need for 

assigning values 

to quantities 

The need for 

weighing  

numerical 

quantities 

Procedure: 

searching for 

general model 

 

Assigning relative 

weighting 

Quantification 

of qualitative 

data 

Quantification of 

numerical data 

Defining range 

and grading 

Closing: 

arriving at a   

partial 

Model 

Assigning values to the 

tables: 40%, 30%, 20% 

and 10% 

Assigning 

quantity to 

each value 

Assigning 

quantity to each 

value 

Assigning point 

for selected 

range: 15-20 get 

18 points 
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remember how the scores are used? For example, 78 will get 5 points, 
and if the average is higher, it will get more points.  

16  S4:  That means 70 gets one point, 71 gets 2 points, 72 gets 3 points…100 gets 
30 points. We should make better use of the range.  

28  S1:  There is no problem with the use of numbers, 95 gets 26 points, 82 gets 
13…  

Episode 10 demonstrates the QND routine. The routine opens with reading the activity 

and understanding the goal of choosing a good teacher [1]. S2 then suggests [5] 

starting with the candidates' averages. The procedure in the QND routine involves 

transforming the average to other quantities, as S1 [7] explains to her classmates. She 

asks them if they remember a past routine "Do you remember how the scores are 

used?" S4 [16] suggests using the DRG routine by saying "We should make better use 

of the range." Routine QND closes by assigning numerical values to the averages 

component [28].  

After the participants elicited a model for choosing a candidate, they began 

implementing this model. Episode 15 presents the participants' discussion about 

implementation of the elicited model. 

Episode 15: Implementation of the elicited model. 

193 S2: Now, we calculate the general score for each one. 

194 S1:  You calculate for these two candidates. 

197 S3: The general score for candidateⅠis 78.8 and for the other it is 63.88 

201 S4:  The highest score is for candidate Ⅲ, then candidateⅦ... 

Episode 15 depicts Routine 3, IEM—implementing the elicited model. The routine 

opens with S2 [193] requesting that they calculate the scores for each candidate. The 

procedure involves substituting values in the model [194-195]. The routine closes 

[197-201] with participants' answers about each candidate's scores.  

DISCUSSION AND CONCLUDING REMARKS 

Our findings indicate that through eliciting a model in the first activity the participants 

worked with Routines 1 and 2, but when they got to eliciting a model in the second 

activity they worked with Routines 2 and 3. We interpret this change in their use of 

routines as an indication that learning took place. Moreover, we consider this learning 

to be at the meta-level learning, because the participants learned the rule of how to 

work on MEAs beyond the particular activity. Let us elaborate: The participants 

noticed that working with Routine 1 in the camp activity did not provide a solution. 

Then they began working with Routine 2 in response to the need to develop a tool for 

choosing appropriate cases. Routine 2 was part of a modelling discourse that the 

participants previously lacked. During the second activity, the participants are able to 

work with the activity by replicating something they did in the first activity. After the 

opening, they decided to use the procedure of Routine 2. This indicates that the 

participants changed their own rules about how to start working on this type of 
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activities. Routines 2 and 3 involved dealing with multiple data tables; creating, using, 

modifying, quantifying and transforming quantities; and coordinating, organizing data 

and representing findings in visual and textual forms. As we mentioned earlier, these 

routines are considered an elaboration of modelling abilities.  

The communicational framework was used in this study as a tool for identifying the 

development of modelling abilities through eliciting models at the micro level. 

Describing the participants' actions according to routines served us as a magnifying 

glass for the modelling processes, allowing us to monitor when and how the modelling 

abilities developed. In addition, the communicational framework provided a tool for 

identifying when the learning occurred at the meta-level, as reflected by the learners' 

discourse. Finally, the routines emphasized the operationalization of the modelling 

abilities, while the description of the procedures for each routine allowed us to focus 

these procedures through the learning process. In conclusion, we recommend using the 

communicational framework to describe participants working in MEAs. To the best of 

our knowledge, this framework has not been used thus far to examine modelling 

abilities through eliciting model. 
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RECONSTRUCTING A LESSON SEQUENCE INTRODUCING AN 

IRRATIONAL NUMBER AS A GLOBAL ARGUMENTATION 

STRUCTURE 

Yusuke Shinno 

Faculty of Education, Osaka Kyoiku University, Japan 

 

The study clarifies some argumentative characteristics of a square roots lesson 

sequence introducing an irrational number in a ninth-grade classroom. It focuses on 

local and global argumentations in order to reconstruct classroom processes. There 

are two main findings: one is concerned with the transition between different 

argumentation streams, and the other is related to the types of argumentation 

structure. Implications for teachers’ practice are also discussed. 

INTRODUCTION 

The notion of argumentation has often been emphasized in relation to “reasoning and 

proving” in school mathematics (e.g., NCTM, 2000), and to “competencies” in 

international assessment (OECD, 2002). However, it is internationally well known that 

many students have serious difficulties with reasoning and proving. Therefore, 

argumentation, reasoning, and proving are crucial mathematical processes at all grades 

of school mathematics and have been studied as such. In the field of mathematics 

education, Toulmin’s model  (Toulmin, 1958) has been widely used for describing 

how argumentation may develop through classroom interactions (Krummheuer, 2007; 

Yackel, 2001), analysis of interview data with postgraduate school students’ 

arguments (Inglis et al., 2007), analysis of the relationship between argumentation and 

proof in individual proving processes (Pedemonte, 2007), and reconstruction of 

classroom proving processes (Knipping, 2008; Reid & Knipping, 2010). Since the 

model has been used in various ways for various purposes, it is important to mention 

how to use this model and for what purpose in the present study. 

The present study, based particularly on Knipping (2008), describes a model that 

allows us to understand some implicit but essential aspects underlying a series of 

mathematics lessons. Analysing the development of argumentation over time is a 

significant issue (Knipping, 2008). The target of the study is a lesson sequence on 

square roots that intended to introduce an irrational number in a ninth-grade classroom. 

As will be shown later, reconstructing the lesson sequence for the development of 

argumentation allows us to obtain a deeper understanding of the process by which 

students come to an understanding of the meaning of a new concept of number. The 

research questions in this paper are as follows: 1) How can the method of 

reconstructing local and global arguments reveal the characteristics of a lesson 
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sequence on square roots? and 2) What characteristics of the lesson sequence can be 

found through the analysis of the development of argumentation over time? 

THEORETICAL PERSPECTIVE 

Toulmin’s model of argument 

Toulmin’s model of argument is developed to be applicable to probable arguments 

rather than logical arguments in different fields (Toulmin, 1958). This model has three 

basic types of statements that investigate the function and structure of arguments. The 

claim (C) is a statement which is made to convince someone. The support or evidence 

one might give for the conclusion (claim) is the data (D). The warrant (W) refers to the 

rationale that may justify the connection between the data and the conclusion. Based 

on Knipping (2008)’s usage, in this study, the author also uses “claim” in cases “where 

data and warrants have not yet been provided, and “conclusion” when they have been” 

(p. 430). Although Toulmin (1958) mentions three other 

types of statement - the backing, qualifier, and rebuttal - 

only one of them will be considered in this paper. In case 

the warrant is doubted, the backing (B) is needed for 

providing further justification to support the warrant. 

Figure 1 shows Toulmin’s model of argument, which 

contains four elements to be considered in the study. 

Local and global argumentation 

Based on previous studies (Knipping, 2008; Reid & Knipping, 2010), there are three 

key notions that will be considered in this paper. First, local argumentation refers to 

each argumentation step where three or more elements of the argument are related to 

each other in the structure. Second, global argumentation allows us to describe the 

gross structure of the arguments. Third, “as the conclusions of some steps are recycled 

as data for others, these steps join up into [the] argumentation stream (AS)” (Reid & 

Knipping, 2010, p. 180). In terms of global argumentation, Knipping (2008) shows the 

scheme of reconstructing a global argumentation (Figure 2) and an example of the 

global argumentation structure (Figure 3). 

  

 Figure 2: Global structure                                Figure 3: A source-structure        

(Knipping, 2008, p. 435)                                     (Knipping, 2008, p. 437)    

Claim	(C)

sinceWarrant	(W)

account	of	Backing	(B)

Data	(D)

 

Figure 1: Toulmin’s model 
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Further, Knipping (2008) discusses two types of global argumentation structures: 

source-structure and reservoir-structure. Although Reid & Knipping (2010) also 

describe two other structures, these are not suitable for the present study. A 

source-structure is illustrated by Figure 3, which means that “arguments and ideas 

arise from a variety of origins, like water welling up from many springs” (Knipping, 

2008, p. 437). Meanwhile, the reservoir-structure means that arguments “flow towards 

intermediate target conclusions that structure the whole argumentation into parts that 

are distinct and self-contained. The parts that make up the argumentation are like 

reservoirs that hold and purify water before allowing it to flow on to the next stage” 

(ibid., p. 437). Knipping (2008) also recognizes the necessity of further research for 

identifying significant argumentation steps in both structures. Because global 

argumentation in classroom processes can be quite complicated phenomena, there is a 

room for further methodological and empirical elaborations on this topic. By 

reconstructing classroom processes as a global argumentation structure, the study aims 

to identify some argumentative characteristics involved in the structure. 

METHOD 

According to Knipping (2008), there is a three-stage process to the method for 

reconstructing arguments in classrooms (p. 431):  

 Reconstructing the sequencing and meaning of classroom talk (including 

identifying episodes and interpreting the transcripts) 

 Analysing arguments and argumentation structures (reconstructing the steps 

of local arguments and short sequences of steps that form “streams”; 

reconstructing the global structure) 

 Comparing local argumentations and global argumentation structures, and 

revealing their rationale. 

Although each stage is included in this study, the focus is on the second stage. 

Therefore, in this section, I will briefly illustrate the first stage of the observed lessons 

on square roots in a Japanese ninth-grade classroom. In the teaching of square roots, 

the teacher is responsible for introducing terms and symbols such as “square root,” 

“rational number,” “irrational number,” “radical sign,” and “√.” More often than not, 

proof by contradiction might be treated in this grade, for example, by showing the 

irrationality of √2, but this proof method is not the official teaching content of this 

grade (although it is the official content of the tenth grade). 

The sequencing of the 14 lessons of the square roots was observed (e.g., “L1” indicates 

the first lesson). The 14 lessons (each lasting approximately 50 min.) were videotaped 

by the author. This lesson sequence was designed by the teacher, who has more than 20 

years of experience of teaching in lower secondary schools in Japan. There were 39 

students who were 14 to 15 years old in the classroom. 

L1: Quadratic equation 

L2: Existence of square root 
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L3: A number that cannot be expressed as a ratio of integers (simple fraction) 

L4: Radical sign (√) 

L5: Ordering the square root of numbers 

L6: Magnitudes of the square root of numbers 

L7: Prime number and prime factorization 

L8: Multiplication and division of square roots (Session 1) 

L9: Simplifying expressions, including square roots 

L10: Rationalizing the denominator 

L11: Multiplication and division of square roots (Session 2) 

L12: Addition and subtraction of square roots (Session 1) 

L13: Addition and subtraction of square roots (Session 2) 

L14: Various calculations including square roots 

It is important to note that the term “square root” was introduced in L2, but other new 

terms and symbols (“rational number,” “irrational number,” “radical sign,” and “√”) 

were introduced in L4. I chose to develop and analyse the transcripts of the first four 

lessons, which are concerned with the existence of the square root of numbers (L1 and 

L2) and with introducing an irrational number (L3 and L4). Although the previous 

study conducted by the author (Shinno, 2016) focused on the latter parts of the same 

lesson sequence (L8 to L14), the theoretical and methodological approaches were quite 

different from the present study.  

In the next section, students’ and teacher’s utterances during the lessons were analysed 

by means of Toulmin’s model to reconstruct a local and global argumentation, which 

was developed in the classroom processes. In this analysis, like Knipping (2008), only 

utterances (and teacher’s writings on the backboard) that are publicly presented as a 

statement in the classroom were identified. This means that analysing the role of 

individual utterances and determining how they may influence the development of 

argumentation are beyond the scope of this paper. 

RESULTS AND ANALYSES 

In this section, I will first illustrate each argumentation stream in terms of local 

argumentations with Toulmin’s model, although the skeleton diagram and some of the 

transcripts that corresponds to argumentation streams will not be shown because of the 

limited space available. Then, these streams will be integrated into a global 

argumentation structure to reveal some significant characteristics of the lesson 

sequence. 

Reconstructing local argumentations 

Six argumentation streams (AS1 to AS6) are reconstructed from the episodes in the 

four lessons (L1 to L4). In Table 1, the references (e.g., <L1_38:28-38:52>) indicates 

the time elapsing within the lesson. I will illustrate AS1 and AS3 with the transcripts 
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but describe AS2, AS5, and AS6 with other data such as pictures of students’ or 

teachers’ writing on the blackboard. 

AS1: Solving the quadratic equation x2=10 <L1_38:28-3852> AS4: Representing a repeated decimal number as a simple fraction 

<L3_23:47-38:00> 

D: The solution of x2=10 is 3.1622777 

W1 (objection to a datum): Since the square of the last digit is not 0 but 

7×7=49, 3.1622777 is incorrect 

W2: “Even if the same numerals from 1 to 9 are multiplied by each other, 

it does not make 0” (utterance of S2) 

C: the decimal representation of the square root of 10 can be an infinite 

decimal number 

D: 0.1=1/9, 0.01=1/99, 0.001=1/999, … 

W: calculations by using the given patterns (e.g., 

0.121212…=12/99=4/33)  

C: any repeated decimal numbers can be expressed as simple fractions 

AS2: Constructing the geometric square having the area 10 

<L2_23:44-25:16> 

AS5: Proving the irrationality of the square root of 10 

<L3_44:45-48:20> 

D: the area of the geometric square is 10 

W: the way of constructing the geometric square having the area 10 

(explained by S4) 

C: the solution of x2=10 exists as the length of a square with the area of 10 

D: the decimal representation of the square root of 10 can be an infinite 

decimal number 

W: proof by contradiction (explanation by the teacher) 

C: the square root of 10 is a number that cannot be expressed as any 

simple fraction 

AS3: Representing a simple fraction as a repeated decimal number 

<L3_13:26-17:02> 

AS6: Introducing rational and irrational numbers <L4_05:14-09:22> 

D: 2/7=2÷7 (a form of long division) 

W: if the same remainder can be found, the quotient will start to be 

repeated 

C1: 2/7 can be expressed as repeated decimal numbers 

C2: any simple fractions can be expressed as finite or repeated decimal 

numbers 

D: the square root of 10 is a number that cannot be expressed as any 

simple fraction 

W: classification of rational and irrational numbers 

B: the domain of numbers, which the students already learnt, is rational 

numbers 

C: the square root of 10 is an irrational number 

Table 1: Argumentation streams in the classroom processes 

AS1 is identified when students are addressing the task “Find the solution of x2=10” 

through successive approximations with the calculator. A student gave “the solution is 

3.1622777” as a conjecture, but this will be refused by another student. S2 explains the 

reason that the decimal representation of the solution continues infinitely. 

 L1_38:28 T: Can you explain why it continues infinitely? 

L1_38:42 S2: Even if the same numerals from 1 to 9 are 

multiplied by each other, it does not make 0. 

L1_38:52 T: If it stops somewhere, the product should be 0. 

In L2, the mathematical context of the lesson changes from an 

algebraic equation to geometric construction. The claim of the 

next argumentation stream (AS2) is that the solution of x2=10 

exists as the length of a square with the area of 10. After students work individually, a 

student (S4) explains the reason that the constructed geometric square has the area of 

10 by referring to the drawing of the blackboard (Figure 4). In this situation, the term 

“square root” is officially introduced by the teacher. 
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D: 2/7=2÷7 (a form of long division)  

W: if the same remainder can be found, the 

quotient will start to be repeated 

C1: 2/7 can be expressed as repeated decimal 

numbers 

C2: any simple fractions can be expressed as 

finite or repeated decimal numbers  

D: the square root of 10 is a number that cannot 

be expressed as any simple fraction 

W: classification of rational and irrational 

numbers 

B: the domain of numbers, which the students 

already learnt, is rational numbers 

C: the square root of 10 is an irrational number  

Table 1: Argumentation streams in the classroom processes 

AS1 is identified when students are addressing the task “Find the solution of x
2
=10” 

through successive approximations with the calculator. A student gave “the solution is 

3.1622777” as a conjecture, but this will be refused by another student. S2 explains the 

reason that the decimal representation of the solution continues infinitely. 

 L1_38:28 T: Can you explain why it continues infinitely? 

L1_38:42 S2: Even if the same numerals from 1 to 9 are 

multiplied by each other, it does not make 0. 

L1_38:52 T: If it stops somewhere, the product should be 0. 

In L2, the mathematical context of the lesson changes from an 

algebraic equation to geometric construction. The claim of the next 

argumentation stream (AS2) is that the solution of x
2
=10 exists as 

the length of a square with the area of 10. After students work individually, a student 

(S4) explains the reason that the constructed geometric square has the area of 10 by 

referring to the drawing of the blackboard (Figure 4). In this situation, the term “square 

root” is officially introduced by the teacher. 

 

Figure 4: AS2 

 

Figure 4: AS2 
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The main task of L3 is to explore the question “what is the difference between the 

square root of 10 and numbers that the students have already learnt?” The students 

have already learnt decimal fractions and simple fractions, although they have not yet 

learned the expression “rational numbers.” Therefore, it is meaningful for them to 

clarify the conceptual relationship between decimal fractions and simple fractions. 

This process is reconstructed as AS3 and AS4.   

Data, warrant, and conclusion 1 in AS3 are identified in the following transcripts, but 

conclusion 2 is a generalized statement made by the teacher. S8’s explanation is 

supported by the teacher’s writing of the long division (Figure 5). Subsequently, the 

teacher suggests a conjecture that repeated decimal numbers can be expressed as 

simple fractions and encourages student to examine it by using facts such as 0.1
．
=1/9, 

0.01
．
=1/99, and 0.0

．
01
．
=1/999; for example, 0. 12

．．
=12/99=4/33. AS4 is the result of such 

a justification. 

L3_13:26 S7: In the case of 7, there are the seven (remainders) from 0 

to 6. If it is a repeated decimal number, the six numbers 

(remainders) would be found repeatedly, I think. 

[…] 

L3_16:43 T: Let’s consider a concrete example, say, 2/7, which is 2 

divided by 7. 2÷7. In writing this, in the form of long 

division … 

L3_16:55 S8: We get 20… 

L3_16:57 T: We get 20, then 7×2=14, so then… 

L3_17:02 S8: Then, keep going… 

Toward the end of L3, the irrationality of the square root of 10 is eventually proven by 

the teacher as shown in Figure 6. This proof is reconstructed as AS5. Because of the 

introduction of the new terms for rational numbers and irrational numbers in L4, the 

teacher enables the summarization of the relationship between number concepts as 

Figure 7 and finally introduces the radical sign (√). This process is reconstructed as 

AS6. 
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Figure 7: Teacher’s proving on the blackboard 
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repeated decimal numbers can be a simple 

fraction. Then, consider square roots of 10. OK, 

both positive and negative. ±3.1622776…. Is this 

a repeating decimal number? This is the problem 

at hand. I have to explain this within a few 

minutes. You might be convinced by this kind of 

explanation, let’s see…. . You know a “spider”. Is 

a spider a kind of “insect”? A (living) thing may 

be divided into either “insect” or “non-insect”.  If 

we assume that spider is an insect, then what do 

you say? 

They have six legs. 

Good. The insect has six legs. Actually, the spider 

has eight legs. Then, “six legs” is not equal to 

“eight legs”, is it? Therefore, the assumption was 

wrong. Do you understand this explanation? Now, 

I will adopt the same method. If the square root of 

10 can be a repeated decimal number, it can be a 

simple fraction. Now we represent the square root 

of 10 as b/a. b/a is a simple fraction. Then 

3.1622… is equal to b/a. This time, I’m only 

writing the positive square root, OK?  Square both 

sides. What do we get to the left side…? 

10. 

We got 10. Because it is the square root of 10. We 

squared this, so we got 10. Look at the right side 

of the equation - we got a-squared/b-squared. So, 

can you find anything strange?  A-squared/b-

squared means “a times a”/“b times b”. If so, can 

you simplify this? 

No, I can’t. 

We assumed that a/b is a simple fraction. So, we 

can’t simplify this (a-squared/b-squared) either. 

Therefore, it definitely can’t be 10, because a-

squared/b-squared can’t be simplified. This 

equation doesn’t hold. This means that the 

original assumption - the square root of 10 being 

represented by b/a - was wrong. That is to say, the 
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We	suppose	that	the	square	root	of	10	is	expressed	as	a	simple	fraction	

b/a.	(b/a	is	irreducible)

Square	both	sides.

Because is irreducible, is not true.

Therefore the supposition is wrong.

Therefore the square root of 10 is not expressed as a simple fraction.
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Figure 6: Proving of the irrationality of √10   Figure 7: Relationships between numbers 

 

 

  

The main task of L3 is to explore the question “what is the difference between the 

square root of 10 and numbers that the students have already learnt?” The students 

have already learnt decimal fractions and simple fractions, although they have not yet 

learned the expression “rational numbers.” Therefore, it is meaningful for them to 

clarify the conceptual relationship between decimal fractions and simple fractions. 

This process is reconstructed as AS3 and AS4.   

Data, warrant, and conclusion 1 in AS3 are identified in the following transcripts, but 

conclusion 2 is a generalized statement made by the teacher. S8’s explanation is 

supported by the teacher’s writing of the long division (Figure 5). Subsequently, the 

teacher suggests a conjecture that repeated decimal numbers can be expressed as 

simple fractions and encourages student to examine it by using facts such as 0.1
	
=1/9, 
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=1/99, and 0.0
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=12/99=4/33. AS4 is the result of such 

a justification. 

L3_13:26 S7: In the case of 7, there are the seven (remainders) from 0 

to 6. If it is a repeated decimal number, the six numbers 

(remainders) would be found repeatedly, I think. 

[…] 

L3_16:43 T: Let’s consider a concrete example, say, 2/7, which is 2 

divided by 7. 2÷7. In writing this, in the form of long 

division … 

L3_16:55 S8: We get 20… 

L3_16:57 T: We get 20, then 7×2=14, so then… 

L3_17:02 S8: Then, keep going… 

Toward the end of L3, the irrationality of the square root of 10 is eventually proven by 

the teacher as shown in Figure 6. This proof is reconstructed as AS5. Because of the 

introduction of the new terms for rational numbers and irrational numbers in L4, the 

teacher enables the summarization of the relationship between number concepts as 

Figure 7 and finally introduces the radical sign ( ). This process is reconstructed as 

AS6. 
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Reconstructing a global argumentation structure 

Here, it is possible to lay out the structure of the six argumentation streams as a whole. 

Figure 8 shows a global argumentation structure in the classroom processes. In this 

gross structure, there are two main findings: one is concerned with the transition 

between different streams, and the other is related to the types of the structure.  

D C	/	D

W1 W2

AS1

C	/	D C

D C1

W

AS4

C2

D C

W

AS3

AS5

W2W1 W

B

D C

W
AS2

AS6
Objection	to	data

C or C	/	D Intermediate	target	
conclusion	

C (Final)	target	conclusion	

Transition	from	one	to	
the	other	part(s)	of	the	
argument

 

Figure 8: A global argumentation structure 

Previous studies (Knipping, 2008; Krummheuer, 2007) have demonstrated that 

arguments can be chained in a way that an accepted conclusion can function again as 

data for a subsequent new argument. This characteristic is also illustrated in Figure 8 

(i.e., the transition between AS1, AS5, and AS6). In addition, Figure 8 also shows that 

an intermediate conclusion can function as a warrant or backing for a new argument. In 

other words, AS3 and AS4 can be considered as mathematical underpinnings for AS5 

and AS6. These statements are essential for students to understand the meaning of the 

proof of irrationality of √10. Although this proof is the teacher’s construction, these 

statements that are have been acquired through students’ explanations and 

examinations can be used for underpinning the proof. 

In terms of the types of structure, it seems that Figure 8 may well correspond to the 

reservoir-structure rather than the source-structure. As far as AS3 and AS4 are 

concerned, it seems that the reconstructed argumentation flows forward towards, and 

backward from, an intermediate and final target conclusion in AS5 and AS6. However, 

it seems that AS2 is distinct from any other streams, but it also contributes to the 

development of the global argumentation because it provides the geometric context. 

Therefore, the status of AS2 could be interpreted as a part of a source structure. The 

conclusion of AS2 might convince some students of the existence of an irrational 

number even after arriving at AS6. 

FINAL REMARKS 

Further research is needed for analysing the nature of the justification, because some 

ASs in the observed lessons are based on inductive generalization (i.e., AS3 and AS4) 

and some on deductive reasoning and proving. Moreover, students’ knowledge system 



Shinno 

_______________________________________________________________________________________________________________________

4-200 PME 41 – 2017 

also needs to be taken into consideration (cf. Pedemonte & Balacheff, 2016), because 

the number domain (see AS6) heavily relies on what they already know or do not 

know. Finally, let me mention an implication for teachers’ practice. The results of the 

reconstruction of local and global arguments may suggest that an intermediate 

conclusion occurring in a lesson could be taken up in later lessons when it fits into a 

warrant or backing of the other argument. This implies that taking a chain of arguments 

into account may help teachers to design and reflect on their instructions from a 

long-term perspective. 
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MATHEMATICS AND SCIENCES TEACHERS 

 COLLABORATIVELY DESIGN INTERDISCIPLINARY LESSON 

PLANS:  

A POSSIBLE REALITY OR A WISHFUL THINKING? 

Atara Shriki1 and Ilana Lavy2 
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The increasing interest in STEM education raised awareness of issues related to 

interdisciplinary approach to teaching. In secondary schools, such teaching is rare, 

mainly because teachers are often certified in one specific discipline. This implies that 

implementation of interdisciplinary approach to the teaching of mathematics and 

science necessitates the cooperation and collaboration of teachers from both 

disciplines in writing suitable learning materials. Our study aimed at examining the 

various aspects associated with such collaboration. The results indicate that 

mathematics teachers acknowledged the advantages of interdisciplinary teaching; 

however, they questioned the feasibility of the collaborative lesson planning and were 

concerned about their capability to implement the approach.    

INTRODUCTION 

The mathematics, science, and technology education communities are undergoing a 

major reform in curriculum design, instructional approaches, and assessment practices, 

thinking of how to integrate among disciplines (Berlin & White, 2010). These changes 

are reflected in the American national standards for teaching the disciplines: The 

Principles and Standards for School Mathematics (2000) recognizes the need to 

connect mathematics to other disciplines, particularly to science: “The opportunity for 

students to experience mathematics in a context is important. Mathematics is used in 

science, the social sciences, medicine, and commerce. The link between mathematics 

and science is not only through content but also through process. The processes and 

content of science can inspire an approach to solving problems that applies to the 

study of mathematics” (p. 66). Similarly, the National Science Education Standards 

(National Research Council, 1996) suggest that “The science program should be 

coordinated with the mathematics program to enhance student use and understanding 

of mathematics in the study of science and to improve student understanding of 

mathematics” (p. 214). However, school reality is different. Although there are 

problems that require the perspective of multiple disciplines, in practice, teachers 

rarely integrate mathematics and sciences [thereafter M&S], because they do not have 

sufficient didactic and content-related knowledge to integrate among these disciplines. 

Therefore, there is a need to identify ways to join forces in order to respond curricular 
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challenges that concern with integrated teaching and learning, and support teachers in 

taking a literacy stance to teaching (Berlin & White, 2010),   

Given the increasing interest in STEM education, which among others entails 

interdisciplinary approach teaching, and recognizing the benefits and challenges 

embedded in implementing an integrated approach to the teaching of M&S, we 

initiated an academic specialized course for secondary mathematics teachers and 

science teachers [thereafter MSTs] who attended M.Ed. program in a college of 

education. In the framework of this course, teachers worked in mixed teams to design, 

collaboratively, interdisciplinary lesson units. In our country, there is a mandatory 

mathematics curriculum, and to our best knowledge, there is no official program for 

teaching M&S in an integrative manner. Therefore, we were interested in examining 

the feasibility of such collaboration, and the study described in this paper was set in 

order to explore its benefits and limitations as perceived by the study participants. 

LITERATURE BACKGROUND AND CONTEXTUAL FRAMEWORK 

The natural philosophers of the Renaissance did not draw an explicit distinction 

between mathematics, the sciences and to some extent the arts (Sriraman 2009). In his 

paper, Sriraman explores the “connections forged by the thinkers of the Renaissance 

between mathematics, the arts and the sciences, with attention to the nature of the 

underlying theological and philosophical questions that call for a particular mode of 

inquiry” (p. 75), and concludes that today's education should move away from 

separating between disciplines and create bridges among them for the benefit of 

tomorrow’s innovators. Indeed, when confronting with problems in daily life, people 

seek out helpful information from all sources, which means that conventional school 

format operates in opposition to the brain’s natural way of thinking (Ronis, 2007).  

Our paper discusses issues related to integrative approach to the teaching of M&S. The 

research review carried out by Ann (2016) indicates that such integration has a long 

history in modern education. Previous studies examined the nature of the connections 

between M&S, related learning objectives, models for teaching, classroom practices, 

and more. Moreover, there is a large variety of terminologies, meanings and 

approaches. Among them: Integration can be modelled as multidisciplinary, 

interdisciplinary, or transdisciplinary; It can be classified according to 10 levels of 

integration (fragmented, connected, nested, sequenced, shared, webbed, threaded, 

integrated, immersed, and networked) or dimensions of integration (discipline 

specific, content, process, methodological and thematic) integration. Additionally, as 

indicated by Samson (2014), teachers face great challenges while trying to implement 

and integrated approach to the teaching of M&S, and most of the lesson plans 

[thereafter LPs] they develop present low level of integration and a lack of conceptual 

ground.   

Obviously, all these are only the ‘tip of the iceberg’; however, they indicate that the 

integrative approach to teaching involves a great complexity, even before discussing 

its benefits and limitations in terms of learning outcomes. Recognizing this 
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complexity, and acknowledging that secondary teachers’ knowledge is generally 

limited to a specific discipline, we were curious about the feasibility of designing 

integrative lesson units by mixed teams of MSTs. To that end, we planned an academic 

specialized course for secondary MSTs who attended M.Ed. program in a college of 

education. In designing the learning environment, the first step was to find out which 

terminology best serves are purposes. The research literature often relates to the 

integration in terms of “multidisciplinary” or “interdisciplinary”. The distinction 

between the two terms is well explained by Lederman and Niess’s (1997) metaphor of 

chicken noodle soup vs. tomato soup. According to the metaphor, multidisciplinary 

integration is like a bowl of chicken noodle soup, where each ingredient preserves its 

own identity, and together they constitute a whole; While tomato soup is comparable to 

the interdisciplinary approach, in which all ingredients merge into one another and 

cannot be separated or discern. For our purposes, we chose the interdisciplinary 

approach. In the case M&S, we also found it is useful to use Brown and Wall’s (1976) 

scale of ‘continuum of integration of M&S’ that concerns the relations between the 

disciplines as falling on a 5-point continuum: 1. Mathematics activities not involving 

science; 2. Mathematics concepts of primary importance with science concepts 

supporting mathematics concepts; 3. Balanced M&S, with no clear boundaries of each 

discipline; 4. Science concepts of primary importance with mathematics concepts 

supporting science concepts; 5. Science activities not involving mathematics. Point 3 

signifies a “true integration” between the disciplines, and thus reflects the 

interdisciplinary approach. The second step in designing the learning environment, 

concerned with selecting the methodology for teaching M&S in an integrative manner.  

For this purpose, we built on Nikitina and Boix Mansilla’s (2003) specification of three 

central approaches- essentializing (identifying core concepts that are central to two or 

more disciplines and bridging among them); contextualizing (connecting a particular 

discovery or theory to the history of ideas of that time); and problem-centered 

approach (recruiting the knowledge and modes of thinking in at least two disciplines 

to address problems, develop specific products, or propose a course of action). 

THE LEARNING ENVIRONMENT  

As mentioned, the learning environment was part of a specialized one-semester course. 

During Sessions 1-5 MSTs were exposed to a wide variety of information and research 

findings that concern with integrative and interdisciplinary teaching and learning of 

M&S, and to examples of suitable learning materials. Teachers were then divided into 

mixed teams according to the grade and level they teach. Each team included at least 

one mathematics teacher and one science teacher. During Sessions 6-11 teachers 

collaboratively designed integrative learning units and interdisciplinary LPs. Each 

group was allowed to formulate its own working procedures, while keeping the 

following guidelines: (i) The unit should include: description of learning objectives, 

issues and key concepts in M&S and their interrelations, and relevant prior knowledge; 

3-5 integrative LPs, where at least one of them should reflect the idea of “true 

integration”, interdisciplinary, as implied by Point 3; (ii) All the three approaches, 
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essentializing, contextualizing, and the problem-centred, should be expressed in the 

unit. In Sessions 12-14 each group presented its unit, and engaged the classmates with 

activities that were included in the LP they indicated as “true integration”. Subsequent 

to receiving feedback from peers, the units were modified in accordance.   

THE STUDY 

The study followed the experience of forty teachers, who worked collaboratively in 

mixed groups of MSTs to design integrative lesson units.  

Participant. Among the 40 teachers, 8 teachers teach only in middle school, 19 teach 

only in high school, and 13 teach in both grade levels. Twelve teach only mathematics, 

11 teach mathematics and physics, and 17 teach sciences (7 biology, 4 science- 

technology, 2 chemistry and physics, 2 computer sciences, 1 chemistry, and 1 biology 

and chemistry). On average, the teachers had 11.9 years of teaching experience. None 

of the teachers had prior experience with interdisciplinary teaching, and most of them 

were not even familiar with this idea. The teachers were divided into 11 mixed teams. 

Research questions. The study included three main questions: (1) What are the 

aspects and processes involved in a collaborative endeavour of designing integrative 

learning units and interdisciplinary LPs by MSTs?; (2) What is the effect of these 

processes on teachers' professional development in terms of pedagogical content 

knowledge and perceptions regarding interdisciplinary teaching and learning?; (3) 

How do the participants perceive the feasibility of ongoing collaborative work of 

mixed teams? 

Methodology, research tools, and data analysis.  The study was carried out through 

implementing qualitative research paradigm, focusing on processes and meanings as 

reflected in the eyes of the participants. Since we are not familiar with similar studies 

that took place in our constellation, the study bore the nature of a pilot study (Creswell, 

1994).  Data was collected by using the following research tools: (1) Pre- and post-test 

questionnaire that included open-ended questions related to teachers’ perceptions 

regarding integrative teaching of M&S, in general, and interdisciplinary in particular; 

(2) Teachers’ reflective journals in which they documented their experiences during 

the semester, described their insights, and reflected on them. One a week, the journals 

were e-mailed to the lecturers and received feedback and advices; (3) Open and 

participant observations carried out by the lecturers during the teams' work; (4) Open 

interviews were conducted after the end of the semester in order to deepen our 

understandings regarding participants’ perception of their experience; (5) The contents 

and approaches manifested in the learning used for figuring out teachers’ perceptions 

and interpretations of interdisciplinary teaching and learning. The data was analysed 

through a gradual process of content analysis (Krippendorff, 2013) in order to identify 

themes and typical patterns. Then, open and axial coding were employed to generate 

the main categories and sub-categories (Corbin & Strauss, 2008).  
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RESULTS  

First, it is noteworthy that the collaborative teamwork had different effects on teachers 

who teach only mathematics and on those who teach physics and mathematics or 

sciences teachers, and different perspectives arose as a result. This could be 

anticipated, because while science teachers have to integrate mathematics in their 

lessons, as requested by the nature of the scientific disciplines (mainly as point 4 on the 

continuum suggested by Brown and Wall, 1976), mathematics teachers may satisfy 

with teaching pure mathematics, as implied by point 1 on the continuum. Due to space 

limitation, in what follows we describe only partial results, focusing on the group of 12 

teachers who taught merely mathematics and present some of their typical assertions. 

Teachers’ main benefits from the collaborative process. As was evident from the 

teachers’ journal entries and the interviews, experiencing the collaborative work had 

three main general effects: (1) Acknowledging the advantages embedded in 

interweaving scientific contents in mathematics lessons, both from the teacher’s and 

the students’ perspective. From the teacher’s perspective: “As a teacher, I can enrich 

my math lessons by the beauty of science”; “science has the power to breathe life into 

mathematics. It refreshes the teaching”. From the students’ perspective: “teaching 

math in its biological or chemical context makes it more relevant for the students”; 

“Explaining mathematical concepts through examples taken from life itself, turns the 

mathematics into something more 'approachable' for the students”; “The integration 

makes it easy to explain to the kids what mathematics is for”; (2) Rediscovering the 

unique position of mathematics, thus feeling a ‘professional pride’: “Although M&S 

are inseparable, obviously science cannot exist without mathematics. It makes me feel 

some kind of a pride”; “the relations among math and sciences are not two-way. Math 

doesn’t need science approval for verifying statements!”; (3) Acquaintance with 

teaching methodologies they were not familiar with: “They [science teachers] are 

accustomed to problem-centered approach, and it is interesting to learn how they 

implement it.”; “The science teachers use the Internet and YouTube in their classes. 

We don’t do it in math lessons, and it is about time! It is so refreshing”;  

Teachers’ perceptions regarding the collaborative process. Teachers related to the 

advantages as well as to the limitations of the collaborative process. One of the 

prominent advantages was associated with the virtue of the teamwork and the peer 

learning. As for the teamwork: “This was a real lesson in teamwork. Since every 

teacher had to take responsibility for a certain component according to his discipline, 

everyone had the opportunity to contribute and to learn from one another”; “In order 

to explain to Nora [chemistry teacher] the idea of the derivative, I had to simplify it. 

When I thought of a way to show it to her, it suddenly occurred to me that I have 

misconceptions about continuity and derivatives”. Learning from their peers, teachers 

noted with satisfaction that “I found myself listening eagerly to the explanations of Shir 

[biology teacher]. I really enjoyed listening to her. I learned many new things I didn't 

even knew were existing”; “Not only students can benefit from integrative learning. 

This was also beneficial for me. I learnt a lot about the human body. If we could make 
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it a habit, we would enrich our scientific knowledge”. Nonetheless, the mathematics 

teachers were unanimous about what they regarded as the “imbalance of the mutual 

learning”, and perceived it as a limitation of the collaborative work: “Because science 

teachers must use mathematics, they knew what they needed, and in a sense they were 

those who ‘dictated’ the topic and structure of the unit”; “I sometimes had the feeling 

they don’t really need me in the group. While I was excited to learn more about the 

scientific aspects, they didn’t seem to be interested in deepening their understanding of 

math”; “there were moments when I felt that the science teachers were merely glad 

that I was there to do the ‘dirty math work’ for them”. This dynamic is well reflected at 

the titles and contents of the learning units: “as we could see at the presentations, the 

titles of all the units indicate the scientific content rather than the mathematical topic 

(The eye as a vision machine; Electricity in daily life; Genes and heredity…). This is 

probably a result of our kind of ‘marginal status’ in the group”; “After you mentioned 

it in class, I realized that actually the majority of the lesson plans correspond Point 4. 

For some reason we allowed this to happen”. Indeed, our analysis of the 11 lesson 

units designed (each included 3-5 LPs, on a total 48 LPs) indicated that 5, 6, 30, and 7 

LPs were characterized as corresponding Point 2, Piont 3, Point 4 and Point 5, 

respectively. It should be noted that every lesson unit was examined at least twice in its 

draft mode. We commented on it, and directed the groups how to change some LPs to 

better match Point 3 on the continuum. However, apparently, it was not easy for most 

groups to adjust their LPs to the constraints of Point 3. Interestingly, despite teachers' 

difficulties to design Point 3 LPs, they had no trouble in recognizing their peers' LPs as 

not corresponding Point 3.  

Teachers’ concerns. By the end of the process, teachers expressed their concerns. 

Some of the concerns pointed out to inadequate sense of self-efficacy to teach 

scientific contents: “Although I recognize the importance of teaching in integrative 

manner, still, for me, having to teach scientific topics would be like losing control”; “I 

don’t feel I have the confidence to teach even our own unit, not to mention those of the 

other teams”; “What if I’ll not be able to answer questions that relate to the scientific 

parts of our unit?”; Teachers were also concerned about the collaboration itself: “It 

seems that teachers who pertain to different disciplines are like people who come from 

different cultures. It is difficult to collaborate with someone who doesn’t speak your 

language”; “how can I trust someone I don’t even understand what he's talking 

about?”; “There were kind of arguments about many things. For example, how should 

students’ worksheet look like? Should they start from a mathematical problem? 

Scientific problem? We could not agree about it, and it seemed that although all the 

disciplinary Standards have similar titles, there are no real connections”.  

SUMMARY, DISCUSSION AND CONCLUSION 

STEM education is gaining a momentum around the world. One of its implications is 

the need to develop new learning materials, to change teachers’ patterns of work, and 

prepare for a partially interdisciplinary teaching. Given the considerable complexity 

embedded in preparing for and implementation of integrative teaching of M&S (e.g. 
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Berlin & White, 2010; Ann, 2016), we set up a study aimed at identifying the various 

aspects and processes associated with MSTs collaborative effort to design integrative 

lesson units and interdisciplinary LPs, and examine teachers’ perceptions regarding its 

feasibility. The idea of interdisciplinary teaching was new to all the study participants; 

therefore, we assumed from the outset that a one-semester experience is too short for 

assimilating the full meaning of interdisciplinary teaching. Indeed, as indicated by the 

results, the study participants had difficulties in developing interdisciplinary LPs 

(Point 3 on Brown and Wall’ (1976) continuity). Description of the nature and sources 

of these difficulties is not included in this paper. However, this is not surprising, since 

in order to be able to design such LPs, mathematics teachers should know enough 

science and science teachers should know enough mathematics (Samson, 2014). This 

is not the way teachers were taught in teacher training programs (Sriraman, 2009). 

Nevertheless, the teachers viewed positively the collaborative teamwork, and felt they 

had gained new knowledge in sciences, new didactic knowledge, and insights 

regarding the benefits of interdisciplinary teaching. This is the encouraging side of the 

coin. However, it is the feeling of imbalance mutual learning and the need to blindly 

trust science teachers that appear to bother mathematics teachers most, and perhaps 

cast doubt on the feasibility of such collaboration. These concerns were explicitly 

expressed by one of the teachers in the following manner: “I’m quite exciting about 

interdisciplinary teaching…It is only a matter of teachers’ good will to 

cooperate…there was something in the unbalanced group dynamics that bothered me, 

and I kept asking myself whether such teaching is a possible reality or merely a wishful 

thinking…I believe that either you add scientific contents to the various programs of 

math teachers or instead of just co-designing integrative lesson plans we should also 

co-teach”. Since in the near future, it does not seem to us likely that in our country 

teacher training programs will modify and become integrative, it appears that in order 

to enable mathematics teachers to teach in various levels of M&S integration (as well 

as integration of math with another disciplines), and provide them with tools that will 

allow them to independently develop teaching materials, professional development 

programs should enrich mathematics teachers’ scientific knowledge, and support their 

ability to design interdisciplinary LPs by themselves. Obviously, this necessitates the 

collaboration of mathematics and science teacher educators. Further studies are needed 

in order to examine math teachers’ needs for this purpose, and the required support.  
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DECOMPOSITION CONSIDERATIONS IN GEOMETRY 

Hadar Spiegel and David Ginat 

Tel-Aviv University 

 

We motivate and display primary considerations for analysing and designing 

geometry tasks, with respect to the utilization of the heuristic of decomposition and 

recomposition. The considerations are relevant for both proof tasks and calculation 

tasks. They involve an aspect of viewing geometrical configurations as compositions of 

generic structures in the forms of: concatenation, inclusion, and interleaving; and an 

aspect of fluency and flexibility notions in examining decomposition directions and 

resource manipulations. We display a study of 7th and 8th graders, and underline the 

importance of the close link between the stages of decomposition and recomposition of 

the heuristic, in solving geometry problems. 

INTRODUCTION 

One of the more dominant problem-solving heuristics in mathematics in general, and 

geometry in particular, is the heuristic of decomposition and recomposition. One facet 

of this heuristic is the decomposition of a task into subtasks and the recomposition of 

the subtasks' solutions. Another facet is the decomposition of a task configuration into 

subparts and the reconfiguration of the subparts. The heuristic is relevant in both proof 

and calculation tasks in geometry. 

Consider the following proof task and two calculation tasks. 

 

 
The proof task in Figure-1 involves two related stages: 1. Decomposition of the given 

configuration into the two triangles that are originally interleaved; 2. Recomposition of 

the obtained triangles into a congruence theorem, which yields angle equality. The 

calculation task in Figure-2 involves two related stages as well: 1. Decomposition of 

the configuration into a semicircle concatenated to a rectangle; 2. Recomposition of 

the computed areas of these two parts. The task in Figure-3 involves these stages in a 

somewhat subtler way (as will be shown below). 
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In our experience with 7th and 8th graders, quite a few students demonstrate difficulties 

with the required decompositions and recompositions. In the proof task, quite a few 8th 

graders focus in their decompositions on the small "atomic" triangles, rather than on 

the large interleaved ones. This leads them to dead-end directions in the recomposition 

stage. Their difficulties seem to stem from the less evident interleaved triangles. 

In the computation task of Figure-2, 7th graders recognize the two parts into which the 

configuration should be decomposed, probably since the two parts are concatenated, 

rather than interleaved. They properly conduct the decomposition, but face difficulties 

in the recomposition stage, in calculating the area of the semicircle. The calculation 

requires a series of manipulations: recognition that the rectangle width is the circle's 

diameter, division of this diameter by 2, calculation of the circle area, and division of 

this area by 2. The required flexible manipulations are challenging for some students. 

The computation task of Figure-3 illuminates an additional challenge to students. The 

configuration involves three interleaved squares, and may be decomposed in various 

ways. Some decompose it into these three squares and subtract overlapping sub-areas, 

but their subtractions are often erroneous. Others attempt decompositions into 

concatenated areas, which do not overlap, like those shown in the figures below. 

The left figure displays division into an elegant concatenation of a square and two 

rectangles; and the middle figure shows brute-force division into many "atomic" 

fragments. Many attempt divisions similar to that in the middle figure, and then yield 

erroneous summation. The right figure offers an inclusion perspective (of the original 

configuration in a large square), which is obtained from an auxiliary construction. All 

in all - a variety of decomposition alternatives from which to choose; and the selected 

alternative affects the complexity of the recomposition calculations. 

The above illuminates several essential geometry considerations: 1. Structural forms 

of geometric configurations - concatenation/inclusion/interleaving - are significant; 2. 

Concatenation is the simpler form; it is more natural to decompose into "atomic" 

substructures (with no lines inside them); 3. Interleaving is the subtler form; it may 

"mask" the relevant substructures on which to focus, in both proof and arithmetic 

tasks; 4. Decomposition and recomposition go hand-in-hand; in particular, one may 

need to carefully choose among the fluency of decompositions a suitable one, which 

yields an effective recomposition; 5. Recomposition may require flexible 

manipulations. 
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In this paper, we elaborate on the notions italicized above, and extend the perspectives 

of previous studies on problem solvers' behaviours in geometry. 

Previous studies in geometry offered a variety of perspectives, such as: Van Hiele's 

(1986) levels of geometrical thinking, Fischbein's (1993) study of internal tension with 

figural concepts, Gal and Linchevski's (2010) study of difficulties in recognizing 

substructures in a structure, and Duval's observations of "operative apprehension" 

(1995, 1998) and visualization aspects (2006). 

Van Hiele's (1986) levels focus on the linear progress in geometric thinking, from 

visualization to deduction and rigor. Fischbein's (1993) terms of internal tension with 

figural concepts are primarily focused on visualization, but without much emphasis on 

decomposition-recomposition processes. Such is also the case with Gal and 

Linchevski's (2010) study, which focus more on difficulties in identifying particular 

substructures and tendencies to relate unfamiliar structures to familiar ones. 

Duval examined the process of decomposition in several studies, including some that 

involve operative apprehension (e.g., Duval, 1995, 1998). He characterized (among 

other things) cases of novice decompositions of given configurations, which were 

oriented toward different goals, in various activities. Some of the goals that directed 

decompositions were related to the application of geometrical theorems. He noticed 

that when novices think of a theorem that was necessary, their operative apprehension, 

of progress with decomposed elements, was more successful. Nevertheless, novices' 

still tended to focus on the easier-to-identify subparts; and often followed a single 

decomposition path into subparts, even when it was unsuitable. 

Operative apprehension was more apparent and conversely less apparent, possibly due 

to triggering and inhibiting elements. These elements are related to convexity and 

complementarity of (sub)configurations, as well as to additional Gestalt aspects. We 

believe that Duval's perspective may be enhanced with elements such as those we 

indicated earlier, related to explicit structural forms, such as interleaving and 

concatenation, as well as to aspects of multiple decomposition alternatives and flexible 

recomposition manipulations.   

ENHANCED DECOMPOSITION/RECOMPOSITION CONSIDERATIONS 

The notions of decomposition and recomposition are relevant not only in mathematics. 

One additional domain is that of computer science. In computer science, solution 

approaches such as Top-Down design and Divide-and-Conquer encapsulate 

decomposition and recomposition of subtasks' solutions. In addition, a computer 

program may be viewed as composed of generic algorithmic templates, such as 

counting and searching, which are combined to form a whole program. 

Computer science educators specify three common composition forms - 

concatenation, inclusion, and interleaving (Soloway, 1986). Concatenation involves 

"gluing" of templates; inclusion involves the enclosure of one template fully inside the 

other; and interleaving involves merging of templates, such that some parts (but not 
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all) of one template are within the other. Concatenation is considered the simplest 

composition form, and interleaving is considered the more involved one (Muller et al., 

2007). 

We may adopt these terms and employ them in geometry, with compositions of generic 

geometrical structures, such as triangles and squares (as we have seen in Figures 1 to 

3). This perspective may offer us a means for classifying geometric configurational 

forms, according to their compositions from generic structures. Such a classification 

may hint at less challenging and more challenging configuration decompositions, and 

may be useful for explaining students' tendencies and difficulties. As we have seen 

earlier, interleaved forms may "mask" relevant substructures, and possibly draw 

attention to irrelevant "atomic" (no-inner-lines) substructures.  

In addition, multiple decomposition alternatives and non-immediate manipulations 

pose a challenge to problem solvers in geometry tasks. The multiplicity of options and 

the required manipulations may be tied to two essential notions in the domain of 

creativity - the notions of fluency and flexibility (Ginat & Spiegel, 2015). Fluency 

involves the number of responses, or ideas generated in response to a prompt; and 

flexibility involves shifts and alternations in the general responses (e.g., Torrance, 

1988). Creativity is studied in mathematics and geometry, but primarily with respect to 

solving "rich", intriguing tasks (e.g., Levav-Waynberg & Leikin, 2012). We propose 

borrowing these notions and examining them here somewhat differently. 

Thus, we tie the term fluency to the various, possible decompositions of a given 

configuration, which one debates upon examining a given configuration; and we relate 

the term flexibility to necessary manipulations that may be needed upon recomposition. 

Manipulations may include auxiliary constructions, segment addition/subtraction, 

arithmetic calculations, and more. Proper demonstration of both notions expresses the 

essence of suitable control in Schoenfeld's problem solving model (1992). In the next 

section we shed light on novices' geometry problem solving, through the enhanced 

decomposition/recomposition considerations displayed here. 

METHODOLOGY 

Sample 

The study’s sample included 151 7th and 8th grade students, from four junior-high 

schools. The 7th graders were all acquainted with fundamental geometry terms and 

calculations, such as circumference, area, angle calculations, segment subtraction, and 

more. The 8th graders practiced a variety of triangle-congruence proofs, using the very 

basic congruence theorems. In both years of geometry studies they have seen and 

practiced diverse tasks that required decomposition and recomposition. 

 

Tools 

The study involved two questionnaires. A questionnaire with 11 calculation tasks was 

posed to 68 7th graders; and a questionnaire with 12 proof tasks was posed to 83 8th 
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graders. The calculations questionnaire involved circumference and area calculations; 

and the proofs questionnaire involved triangle congruence proofs. The questionnaires' 

tasks required different levels of competence, which were designed following our 

suggested considerations. In particular, we varied: the amounts of generic structures in 

a configuration, the forms of their compositions, the resources needed for solutions, 

and the kinds of relevant, flexible manipulations. The table below displays the tasks' 

classifications with respect to the forms of substructure compositions. 

Calculation tasks – circumference and area  Proof tasks – triangles congruence 

Q1-Q3: Concatenation, 2 generic 

structures 

Q1-Q3: Concatenation, 2 generic 

structures 

Q4-Q6: Inclusion, 2 generic structures Q4-Q8: Interleaving, 2 generic structures 

Q7-Q8: Interleaving, 2 generic structures 
Q9-Q10: Concatenation, 3 generic 

structures  

Q9-Q11: Compositions of 3 gen- 

structures 

Q11-Q12: Compositions of 4 gen- 

structures 

 

The table below displays six of the 23 tasks we posed to the students (three additional 

ones were displayed in the Introduction). They represent tasks of different levels of 

complexity, with respect to the elements mentioned above. 
 

 

Process 

The students in both groups were given 90 minutes to solve the written questionnaires. 

Some students requested a time extension, and we let them work as long as they 
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needed. Following their written solutions, about 20% of the students, who 

demonstrated different levels of competence, were interviewed about their solutions. 

We analysed the solutions with respect to the considerations displayed in the previous 

section, while viewing fluency and flexibility difficulties as control obstacles in 

Schoenfeld’s perspective of problem solving (1992). 

FINDINGS 

The overall statistics in both questionnaires were similar - the average number of 

solved tasks was: 5.7 of the 11 proof tasks (52%) and 5.9 of the 12 calculation tasks 

(49%). Closer examination reveals several aspects of difficulty with both 

decomposition and recomposition in the various tasks. We display them with the 

solutions of the six tasks presented in the previous page. 

The task in Figure-4 was one of the simplest proof tasks. It involved two concatenated 

triangles that share a segment. The decomposition was trivial; but the recomposition 

was less so. Only 61% (51 of 83) of the students properly solved it. The solution is 

based on the Side-Side-Side congruence theorem; yet, in order to apply it properly one 

needs to add the mutual segment LN to those next to it (ML and NO). Students did 

select the relevant theorem, but some expressed "... a confusing thing here with the 

segments ...", and did not handle the little flexibility that was required. 

The task in Figure-5 was subtler, as it involved three concatenated triangles. Students 

did recognize the three triangles, but struggled with the decomposition-recomposition 

link. Only 39% of the students properly solved the task. Their main difficulties 

stemmed from the need to first map two triangles to one congruence theorem, and then 

map two additional ones to another theorem. Some mentioned that: "... I see all the data 

together and it is hard to tell which way to go ...". It seemed that the cognitive load 

derived from having three triangles interfered in the progress of hand-by-hand 

decomposition/recomposition, while mapping triangles to theorems. 

The task in Figure-6 was the hardest proof task. It involved the interleaving of four 

triangles. The main challenge was first and foremost with decomposition, and then 

with the decomposition-recomposition link. Only 11% of the students properly solved 

the task. There are several "atomic" triangles in the figure, and although two of them 

are necessary for the end result, one had to first turn to "non-atomic" ones. Many failed 

the latter. They indicated that: "... there are many parts and they are all mixed together 

...". The interleaving yielded a blurred picture of fluency alternatives. 

The task in Figure-7 was a calculation task that involved the inclusion of one triangle 

in another. Inclusion, like concatenation, is much simpler than interleaving, but still 

poses some challenge. It is suitable here to subtract the area of the "included" triangle; 

and 75% (51 of 68) of the students properly managed the subtraction. Yet, some did 

not handle the inclusion, and just argued that: "... we did not learn how to calculate the 

area of a trapezoid ...". Others attempted the inclusion, but failed the simple flexibility 
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required to calculate the side of the included triangle. One student said that: "... it is 

always hard for me to obtain data that is not directly given to me ...". 

 

The task in Figure-8 involves interleaving of two generic structures - a square and a 

circle. Yet, unlike the interleaving in Figure-6 (and earlier, in Figure-3) the 

interleaving here posed less of a decomposition challenge. The challenge was rather in 

the recomposition. Only 44% of the students solved the task. Many failed to properly 

calculate the area of the semicircle and subtract it from the area of the square. Some 

argued that: "... one half is inside and one half is outside ...", and "... it is complicated, 

you need to remove the piece of the part that goes in ...". The interleaving created a 

difficulty in flexibly manipulating the recomposition calculations. 

The task in Figure-9 was the subtlest amongst the calculation tasks, as it involved three 

interleaved structures. The challenge was both in the decomposition's fluency and the 

recomposition's flexibility. One had to decompose the configuration into relevant 

subparts, and then recompose the calculated subparts data. Only 32% of the students 

provided the right calculation. Some said that: "... the structure is a mess, parts are one 

inside another ... and where is the rectangle? ...". Many failed to calculate the left 

subpart of the grey area. All in all, quite a few gave up already at the decomposition 

stage, and some who did advance further found the recomposition too challenging. 

DISCUSSION 

In examining the findings, we may notice that the kinds of structural forms - 

concatenation, inclusion, and interleaving - yielded different levels of challenge to the 

students. So was the amount of generic substructures within a given structure. 

The less competent students did not demonstrate major decomposition difficulties with 

concatenated structures; yet they did struggle in the recomposition stage, even with 

simple flexible manipulations. When it came to interleaved structures, many more 

students were challenged, due to multiple decomposition alternatives, that often 

"blurred the picture" to many and yielded only "atomic" subpart views. 

We regard the above difficulties as strongly tied to Scoenfeld's control component of 

problem solving (1992), with respect to the creativity notions of fluency and flexibility 

(Torrance, 1988). Decomposition requires careful fluency analysis, of possibly 

overlapping elements. Recomposition requires flexible manipulations with elements 

and resources (such as theorems and formulas). In addition, fluency and flexibility may 

be strongly tied together, as there are cases (such as in the task of Figure-3) in which 

the decomposition may directly increase, or reduce the recomposition complexity. 

Clements and Battista (1992) argue that one of the obstacles of students in geometrical 

problem solving is the students' very limited familiarity with task and configuration 

diversity. This may have been a primary reason for the student difficulties that we 

observed. We believe that in order to develop geometrical competence, teachers should 

demonstrate, and practice with students, tasks like those in our questionnaires, which 

take into consideration the elements listed above. In particular, teachers should be 
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aware of the explicit relevance of the various forms of generic structures, and of the 

notions of fluency and flexibility in geometrical problem solving. This awareness may 

enable teachers to plan the tasks they pose to students in an orderly fashion, according 

to suitable measures of challenge, in developing their students' competencies with the 

heuristic of decomposition and recomposition in geometry. 
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POETIC STRUCTURE CHAINING IN A PROBLEM-SOLVING 

CONVERSATION 

Susan Staats 

University of Minnesota, U.S.A 

 

Poetic structures are commonplace linguistic resources in which speakers repeat some 

of the grammatical structure and words of a previous comment. Poetic structure 

analysis allows us to trace key mathematical ideas through a conversation as they shift 

from speaker to speaker, to account for the growth of collaboratively-generated 

mathematical ideas. Analysing dialogicality with poetic structure chains reveals the 

level of collaboration, the robustness of seemingly trivial mathematical activities, and 

the complexity of referencing as speakers get closer to an answer. 

INTRODUCTION 

Students in a mathematical conversation must share bits of meaning through their 

discourse, but they must also deconstruct and reconstruct these meanings as they 

engage the task. Linguistically, one means of accomplishing this negotiation is through 

poetic structures. Poetic structures occur when a speaker repeats a prior comment, 

keeping some of the grammatical structure and some of the words. In a 2016 research 

report, I outlined a method for tracing the growth of mathematical ideas in 

conversation through poetic structures, by noticing the most recent prior statement that 

contains a grammatically and lexically similar statement about mathematics (Staats, 

2016, 2008). These poetic structures can facilitate significant mathematical activities 

such as associating one variable with another, generalizing, and shifting from verbal to 

written mathematical forms. However, if we can identify the most recent prior, similar 

mathematical statement in a conversation, then we can recursively apply the method to 

identify the prior statement of the prior statement.  The following report engages the 

idea that through poetic structure analysis, we can identify chains of related utterances 

in a mathematical conversation that track collaboratively-generated ideas. 

THEORETICAL FOUNDATION 

Analysis of poetic structure chains is based on the framework of dialogicality proposed 

by M. M. Bakhtin and V. N. Voloshinov (Bakhtin, 1981; Voloshinov, 1973). 

Dialogicality refers to the perspective that any linguistic expression carries with it the 

voices of others, voices from the past and those expected in the future: “Any 

utterance…makes response to something and is calculated to be responded to in turn. It 

is but one link in a continuous chain of speech performances” (Voloshinov, 1973, p. 

72). This heteroglossic dialogicality is present in all frames of speech, from a word to a 

genre (Bakhtin, 1981). Poetic structures are one way in which this interpenetration of 



Staats 

_______________________________________________________________________________________________________________________

4-218 PME 41 – 2017 

voice occurs. Repeating prior comments, with small changes, establishes a dialogic 

relationship with the past and offers a platform for future linguistic constructions. 

Barwell (2015) discusses three Bakhtinian orientations of dialogicality, 

multivoicedness, multidiscursivity, and linguistic diversity, as resources for learning 

mathematics. This report uses poetic structure analysis to decompose a 

problem-solving transcript into strands of mulitivoicedness, thematically connected 

comments in which students revoice and transform prior mathematical statements as 

they move towards a solution to the task. By identifying poetic structure chains in a 

concrete manner, this paper examines multivoicedness as a resource for learning. 

PARTICIPANTS AND TASK 

Two undergraduate students who had recently completed a university class in 

precalculus participated in a paid, audio- and video-recorded problem-solving session 

outside of class. Together, they found a formula for the perimeter of a string of n 

adjacent hexagons. The task is given in Wilmot, et al, 2011 (p. 287). The key issue in 

the task is that by arranging hexagons in a string, some sides occur inside the figure and 

no longer contribute to the perimeter. A correct answer for the perimeter of a string of 

n hexagons is given by p = 4n + 2.  The students’ answer after 90 conversational turns 

was #H(6) – 2(N – 1) =  , in which both H and N stand for the number of hexagons. 

METHOD 

Each of the first 90 turns of the conversation were analysed to determine whether the 

turn included a repetition of a previous statement (Staats, 2016). A phrase within a turn 

at talk counted as a repetition of a prior phrase if the two phrases had syntax in 

common and at least one word in common, to insure some continuity of topic instead 

of producing a purely abstract, grammatical mapping of the conversation. Each 

repetition, along with its prior phrase, was recorded in a spreadsheet. A repetition 

could be “internal” to one speaker’s turn at talk, or “across” two different turns at talk, 

either from the same or different speakers. These “across” repetitions most directly 

record the quality of dialogically in the conversation, and they are the focus of the 

current research report.  

In the first 90 turns, each turn at talk was distinct, with very little overlap between 

speakers’ voices. This fortunate happenstance means that each odd-numbered turn at 

talk was Joseph’s speech and each even-numbered turn was Sheila’s speech, which 

makes reading the summary table easier than it might be for other conversations. 

Because the spreadsheet recorded the connections between a student’s current 

comment and previous, similar ones, the relationships of repetition could be traced 

backwards through the conversation to reconstruct poetic chains of comments that 

pairwise share some grammatical structure and some words. Taken pairwise, there are 

similarities in the students’ comments, but over a long chain, the comments can 

transform substantially as students improve or modify their shared mathematical ideas. 
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These chains of poetic structures involved temporary, informal verbal signs that 

students used and shared as they collaborated on the task. 

For example, the following transcript shows a chain that starts at turn 14 with an echo 

or repetition of the word 6, and ends at turn 52.  In table 1, this is chain 14b to 52. The 

phrases that were identified as poetic structure repetitions of each other are highlighted 

in bold. This deconstructed transcript leaves out many turns of talk in order to focus on 

the poetic structure repetitions that grew from echoing the word 6.  

14b  S: 1, 2, 3, 4, 5, 6. 6. 

15 J:  6. So, this would be 1, 2, 3, 4, 5, 6, 7, 8, 9, 10. 10. 

40 S:  So that would be 6L. 

41   J: So our perimeter is 6L. But how did we find 6L? 

46 S:  Well perimeter is adding up all the sides. 

47   J: Right. But we wouldn’t need all the sides. You know what I’m saying? 
Cause these, these are the, these are on the inside of the square. And then 
the bases of these triangles are on the inside so we wouldn’t need those. We 
just need this hypotenuse of that triangle. So this is the inside of this 
triangle. 

52 S:  Complete the table showing the number of hexagons in 1 chain along with 
the perimeter. So then we’re counting all the sides, so it’d be 6L. For 2 it’d 
be 1, 2, 3, 4, 5, 6, 7, 8, 9, 10. 10L. 

In this chain, Sheila and Joseph both echoed 6 as they began to fill a table of values for 

the number of hexagons vs. the perimeter. The 6 was echoed as 6L, and Joseph 

associated it with perimeter in turn 41. Sheila transformed his comment with another 

elaboration of all the sides, which she used again in turn 52 to establish agreement that 

they needed to compute the external perimeter rather than the area of the figure. 

Space does not permit me to offer many examples of poetic structure chains, but they 

are all similar to this one (many turns at talk are presented in Staats, 2016). At any 

point in the conversation, we find the most recent prior phrase that has shared grammar 

and at least one word. Pairwise, the phrases are similar but the initial idea transforms 

gradually into a somewhat different idea. Here, echoes of 6 transformed into more 

generalized statements about perimeters. Poetic structure chains provide a view of the 

connectivity and referencing in a conversation as students transform prior 

mathematical comments during problem-solving. 

RESULTS 

This analysis identified 22 poetic structure chains in the first 90 turns of the 

conversation.  If we consider the length of the chain as its number of turns, then there 

were 10 turns of the minimal length of two, two turns of length three, and 10 turns of 

length five to nine. Poetic structures chains occurred throughout the conversation, from 

the earliest turn to the final turn at 90. Turns 14 and 62 were the origin of six and five 

chains, respectively. These turns originated chains that were highly influential in the 
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course of the conversation, and they are discussed below in more detail. Table 1 

summarises the poetic structures and the transformations that they facilitated.  

For the sake of readability, the table gives a slightly simplified view of poetic structure 

chains. Poetic structures were identified at the level of small phrases within a turn at 

talk, but the chains are identified in the table by their turn, not the phrase. When chains 

are identified with a letter, for example as 14a and 14b, it means that different phrases 

in turn 14 gave rise to different poetic structure chains.  Underlining indicates turns 

that are shared in more than one poetic structure based on the same shared phrase. For 

example, in the transcript above, the chain 14b-15-40-41 was shared by three chains, 

but each took a different pathway after turn 41 by transforming different phrases into 

different, small, mathematical ideas. 

Poetic Chains Repetitions and transformations in the chain 

1-3 Repetition about working in a girl scout camp 

9-11 Repetition about benches that seat two people. 

14a-15-17-19-21-24-26-

27 

14a-15-17-19-21-24-52-

62 

14a-15-17-19-21-24-56 

The 14a chains started with counting the sides of one 

hexagon, 1, 2, 3, 4, 5, 6.  Sheila’s data summary at 

24 was a branching point. Chain 14a to 27 

completed the data summary. Chain 14a to 62 

culminated in the first mention of minus for 

subtracting interior sides. Chain 14a to 56 involved 

reducing the interposed list into a list only of the 

y-values or perimeters. 

14b-15-40-41-44-45 

14b-15-40-41-46-47-52   

14b-15-40-41-44-52-62-

64 

 

 

The 14b chains started with echoes of the number 6 

after counting the sides of one hexagon. Chain 14 to 

45 explored the perimeter of one hexagon in terms of 

phrases 6L vs. 6 square. Chain 14 to 52 developed a 

generalized discussion of perimeters and all the 

sides. Chain 14b to 64 involved a series of echoes and 

brief comments involving 6, 6L, 6 square, and 6L.  

21-25 An echo of 18 after previous speaker counted to 18. 

29-45 Repetition of 2L plus while discussing how to 

calculate perimeter. 

31-32 Repetition of four triangles while drawing triangles 

inside the hexagons. 

42-43 Repetition of for one while discussing that one 

hexagon has 6 sides. 

62-64 

62-64-90a 

Turn 64 is a repetition and refinement of turn 62.   

Repetitions of 2, 4, 6, helped validate the final formula. 

62-64-72-74-76a-79-80-  

    -81 

 

 

Chain 62-(76a)-81 branched off at 74 with the phrase 

hexagons minus and involved discussion of whether 

there is a minus 2 or plus 2 in the formula. At 79, it 

rejoined other chains with a clarification about times 2 
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62-64-72-74-76b-78b- 

     -79-80-81 

 

62-64-72-74-76b-78b- 

     -90b 

 

62-64-72-75-78a 

or minus 2 at 79. 

Chain 62-(76b-78b)-81 involved a consolidation of 

commentary at 64 and 74 about total number of sides 

minus 2 and 4 hexagons, hexagons minus 2.  It also 

joined chains at 79. 

Chain 62-(76b-78b)-90b contributed to the validation 

of the n = 4 case through comments involving counting 

1, 2, 3 ,4, and about times 2.  

Chain 62-78a, involved comments on multiplying the 

number of hexagons times 6 ending with: number of 

hexagons would be 4 times 6 minus n minus 2.  

68-70 Echoing negative two. 

80-81-86 

 

84-85 

 

84-87 

Repetitions alternating between 24 minus 8 and 24 

plus 8, exploring a formula for the four hexagon case. 

Repetitions of it’d be 18 and it’d be 16, exploring 

subtraction in the four hexagon case.  

Repetition of 24 would be 18 and 22 would be 18, 

exploring subtraction in the four hexagon case. 

 

Table 1: Summary of poetic structure chains in the hexagon task. 

DISCUSSION 

Analysis of poetic structure chains reveals that the conversation was more 

collaborative than one might think from simply reading the transcript. Without close 

attention to shared discourse, it could seem as if Sheila was responsible for most of the 

insights. In turn 24, she articulated patterns linking the number of hexagons and the 

perimeter of the figure; in turns 62 and 64, she explored the number of interior sides 

that must be subtracted, and in turn 90, she conveyed the final method. Sheila used 

internal poetic structures extensively in each of these turns (Staats, 2016), but these 

internal repetitions do not show up in the current analysis of dialogicality. Both Sheila 

and Joseph spent about the same amount of time speaking, with an average of 12 words 

per turn for Sheila and 10 for Joseph, so both had opportunities to originate 

mathematical ideas that could become poetic structure chains. Accounting for 

duplicates chains in table 1, there were 27 unique repetitions that involved the same 

speaker, and 26 unique repetitions that involved a change in speaker.  This suggests 

that speakers were voicing the other person’s idea about as often as they were voicing 

one of their own prior ideas. Although Sheila seemed to be dominant, the conversation 

was quite collaborative. 

Analysis of poetic structure chains exposes several structural features of the 

conversation that are not apparent when reading the transcript line by line. First, there 

is branching behaviour in the conversation. If a student’s mathematical comment is 

later repeated in two different turns, then the chain breaks into more than one subchain. 
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This happens if different phrases in a comment need to be unpacked and discussed in 

different ways. These points of bifurcation in the conversation could indicate an 

influential moment, or a moment that raises several issues that need to be resolved. 

Another conversational structure is that students’ use of a prior mathematical idea can 

create reunions within the poetic structure chains. This happens if a later poetic 

structure coordinates two statements from the past into a new statement. A few types of 

poetic structures are likely to have this effect. Some poetic structures establish a 

contrast between two prior statements, some establish a comparison, and some 

consolidate two or more prior statements into a new statement (Staats, 2016). Circuits 

are possible, too, if a comment creates two issues that students wrestle with and then 

later coordinate, contrast, compare or resolve. 

Turns 14 and 62 created long poetic structure chains that involve some of these 

structures and that were influential in the students’ solution method of #H(6) – 2(N – 1) 

=  . I will use some of the terminology that I introduced in 2016 for different types of 

poetic structures, but I will incorporate more self-contained descriptions, too. 

Table 1 suggests that turn 14 was influential in the later discussion, because six chains 

emerged from it. The 14a chains started with counting, or “listing,” the sides of one 

hexagon: 1, 2, 3, 4, 5, 6. 6. Sheila and Joseph created a table of data for n, the number 

of hexagons vs. perimeter of a chain of n hexagons. Turn 24 was a branching point, 

when Sheila coordinated the number of hexagons with their perimeters in an 

“interposed list:”  …we’re just putting in the 1 to 6, 2 to 10, 3 to 14, uh, 5, 1, 2. Wait. 

From here, chain 14a to 62 incorporated or “consolidated” more side-counting back 

into the interposed list and culminated with the first mention of minus for subtracting 

an interior side. Chain 14a to 56 involved reducing the interposed list at turn 24 into a 

list involving only the perimeters: So this was 10L, 14L, 18L, 22L, right? Generally, 

the 14a chains helped students understand that they needed to subtract interior sides, 

and it helped them focus on the perimeters for which they needed a formula. 

The 14b chains emanated from revoicing or “echoing” the number 6 in 1, 2, 3, 4, 5, 6. 

6. Echoing 6 in various forms occurred deep into the conversation as the speakers 

returned to easier ideas in order to build harder ones.  For example, echoes of 6 and 6L 

helped Sheila begin her turn 62, a turn which itself launched several new poetic 

structure chains. At turn 62, Sheila began to focus on how to subtract the interior sides 

of the hexagon chains (for 1, 2, 3 and then back to 1 hexagons) with her comment: 

62  S: Uh, so this would be 6L. 6. And then this would be 10L minus 2. Minus 2. 
This would be 2, 4 minus 4. This would be 6. 18L. So the total number of 
sides minus 2 on this side. So it’d be, uh, 6. 6, and then this would be, uh, 12 
minus 2. So. 

Like turn 14, turn 62 was very influential in the problem-solving pathway because it 

gave rise to five poetic structure chains, all examining different facets of the issue of 

subtracting interior sides. Table 1 also shows us that the students’ referencing of prior 

ideas—their own ideas and the ideas of the other speaker—became rather complex 

after turn 62, as they got closer to their formula. The five poetic structure chains that 
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start at turn 62 include branches, reunions, circuits, and some contributed directly to 

the final method in turn 90. After turn 62, students had numerous issues to pursue, and 

they could not resolve them all in one or two speaking turns.   

Turn 74, for example, was a branching turn. Sheila had already mentioned total 

number of hexagons times six (turn 72), but she could not fully coordinate this 

multiplication with subtraction in her turn 74:  So total number 1, 2, 3, 4 would be 4 

hexagons, hexagons minus. Turn 74 became a branching point because Sheila 

continued to count hexagons with the phrase 1, 2, 3, 4 in turns 76 and 78 as she tried to 

decide how many interior sides are generated by a 4 hexagon string; and also, because 

her phrase hexagons minus was repeated through various transformations and attempts 

to write a formula that circled around whether it should have a minus two or a times 

two (chains 62 to 81 and 62 to 90).  

Turn 79 was a point at which two chains joined together. Joseph’s comment of Times 2 

or minus 2? was a “contrast” poetic structure in which he quoted Sheila’s phrases from 

turns 76 and 78, asking for clarification. 

For students to arrive at their solution #H(6) – 2(N – 1) =  , they needed to establish at 

least four ideas:  multiplying the number of hexagons by 6; subtracting interior sides; 

subtracting interior sides in pairs (the minus 2 of their formula); and that there are N – 

1 pairs of interior sides. Of these, all but the last item were facilitated rather strongly by 

poetic structure chains. The initial echoes of 6 in turn 14b led to echoes of 6L in 

Sheila’s critically important turn 62. The poetic structure chain 14a to 62 started with 

counting and ended with the first mention of subtraction, and many other chains 

involved commentary on subtraction. Considering the pairs of interior sides was 

handled through chains 62 to 90a; 62 to 90b, 62-(76a)-81, and 62-(76b-78b)-81.  

However, the precise moment of Sheila’s final insight at turn 90 that there are (N – 1) 

pairs of interior sides did not directly reference poetic structure chains. Instead, she 

used internal poetic structures to arrive at this result (Staats, 2016). Poetic structure 

chains across different turns at talk did not contribute directly to this key achievement. 

CONCLUSION 

A transcript of a mathematical conversation is typically read in a linear fashion, as it 

unfolded over time. Analysis of poetic structure chains offers a different way of 

navigating a transcript, and as one might expect, it has disadvantages as well as 

advantages. Disadvantages include generation of a great deal of detail, of literally 

focusing on the trees—the chains and branches—rather than on the forest, or the 

overall flow of the conversation. Important insights sometimes occur while one person 

is speaking, even if their insight draws upon the accomplishments of several poetic 

structure chains. No one would wish to read poetic chains instead of a linear transcript, 

if they were required to make a choice. 

Still, awareness of poetic structure chains can improve our understanding of 

collaboration in mathematical conversations in some important ways.  It helps us judge 
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the degree to which a dialogue is actually collaborative, because we can trace how 

often speakers shared phrases and ideas between them. This form of analysis yields a   

greater appreciation of how seemingly inconsequential statements like echoing or 

counting may be persistent and significant. Identifying poetic structure chains allows 

us to notice highly influential moments in a conversation: the initial statement of a long 

chain, a statement that branches into several issues that students grapple with and 

transform along separate chains, and moments in which different comments are 

coordinated into a comment that closes a circuit. Reading a transcript in a typical, 

linear manner obscures the complexity of collaborative student reasoning that poetic 

structure chaining reveals. 

For researchers interested in collaborative learning, it is not necessary to account for all 

the poetic structure chains in a problem-solving conversation as I have done here.  One 

could instead identify moments in a conversation that heuristically seem important, 

and reconstruct the poetic chains that formed this moment, and that emanated from it. 

Perhaps most importantly, analysis of poetic structure chains allows us to connect the 

concept of heteroglossia to students’ extended struggle to create detailed mathematical 

ideas. When students speak their way through a mathematical task, as Bakhtin 

predicted, their comments are densely inhabited with the voices of the past.   
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MATHEMATICAL KNOWLEDGE IN UNIVERSITY LECTURING: 

AN IMPLICIT DIMENSION  

Dhanya Surith 

The University of Auckland, New Zealand 

Mathematical knowledge in lecturing has an implicit dimension, which characterises 

the unarticulated mathematical knowledge. Interviews and lecture observations with 

eight research mathematicians revealed some of the reasons for withholding their 

mathematical knowledge in lecturing. Research mathematicians’ mathematical and 

pedagogical reasons gave evidence for the implicit dimension of mathematical 

knowledge in lecturing. Further, the implicit mathematical knowledge is found 

context-specific. 

INTRODUCTION 

Most of the past research (Ball, Thames & Phelps, 2008; Schoenfeld, 2011) focussed 

on teacher’s explicit mathematical knowledge in teaching and is conceptualised 

looking at real-time teaching practices. This is inadequate to represent teachers’ 

disciplinary knowledge of mathematics (Davis & Renert, 2014). Researchers (Kersting 

et al., 2016) maintain that teachers’ usable knowledge does not represent most of their 

mathematical knowledge in teaching. Teachers hold ‘largely unarticulated’ (Elbaz, 

1981) knowledge, which is implicit (Brown & McIntyre, 1993). This study focuses on 

the implicit dimension of research mathematicians’ mathematical knowledge in 

lecturing. Research mathematicians’ mathematical knowledge and their approach to 

teaching mathematics are acknowledged in relation to school teaching (Ralston, 2004).  

Petrou & Goulding (2011) suggest the need to understand the functioning of 

mathematical knowledge in lecturing regarding wider systems of mathematical and 

pedagogical considerations. In this paper, I extend the conceptualisation of 

mathematical knowledge in teaching to university lecturing looking at research 

mathematicians’ lecturing practices. The research question addressed here is what are 

the mathematical and pedagogical reasons underlying research mathematicians’ 

implicit mathematical knowledge in lecturing? 

THEORETICAL BACKGROUND 

Mathematical knowledge in lecturing  

Shulman (1986) proposed seven categories of teacher knowledge of which three relate 

to the content categories of teacher knowledge, namely Subject Matter Knowledge 

(SMK), Pedagogical Content Knowledge (PCK) and Curriculum Knowledge. 

According to Shulman (1986, p. 9), Subject Matter Knowledge (SMK) refers “to the 

amount and organisation of knowledge per se in the mind of the teacher”. Pedagogical 
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Content Knowledge (PCK) is “the particular form of content knowledge that embodies 

the aspects of content most germane to its teachability” (Shulman, 1986, p. 9).  

Following Shulman and colleagues, Hill, Rowan and Ball (2005) developed a 

practice-based theory of content-based teaching at primary levels. Ball et al. (2008) 

attempted to refine it with a model of Mathematical Knowledge for Teaching (MKT) 

based on empirical conceptualisation. The model has two major categories namely 

Subject Matter Knowledge (SMK) and Pedagogical Content Knowledge (PCK) with 

further subdivisions within each. SMK was subdivided into Common Content 

Knowledge (CCK), Specialised Content Knowledge (SCK) and Horizon Content 

Knowledge (HCK). PCK was subdivided into Knowledge of Content and Students 

(KCS), Knowledge of Content and Teaching (KCT) and Knowledge of Content and 

Curriculum (KCC). 

The MKT framework is based on school teaching. Adopting MKT construct to 

university mathematics lecturing needs to take into account the main variation between 

school and university setting, namely in relation to teacher qualifications and 

mathematics subject knowledge. Most university mathematicians will not have formal 

teaching qualifications or training in teaching (Wood et al., 2011). University research 

mathematicians are stronger in their mathematics content knowledge (Speer & 

Wagner, 2009) because of their advanced mathematical qualifications and their 

research knowledge. The implicit dimension of university research mathematicians’ 

mathematical knowledge is studied, considering these variations between school and 

university settings.  

Implicit mathematical knowledge in lecturing  

Researchers (Adler & Davis, 2006; Baumert et al., 2010) have been increasingly 

interested in the implicit dimension of teacher knowledge. Alder and Davis (2006) 

suggested that some parts of teachers’ mathematical knowledge are not easily 

accessible for scrutinising, and that significant parts of teachers’ mathematical 

knowledge are inert (Baumert et al., 2010). From a knowledge system perspective, 

Kersting et al. (2016) used teachers’ analyses of teaching video episodes. They 

concluded teachers’ usable knowledge represents “rather the subset of knowledge that 

teachers deem most relevant and essential” (p. 106). In a similar sense, research 

mathematicians’ enacted mathematical knowledge represents the relevant contextual 

knowledge. This suggests that some knowledge remains implicit or not articulated. I 

call the unarticulated, not revealed and not explicit mathematical knowledge the 

‘implicit’ mathematical knowledge. I follow Mason (1998) and conceptualise implicit 

knowledge as conscious. That is, a research mathematician may be conscious and may 

deliberately choose not to reveal some mathematical knowledge, which may have 

underlying mathematical and pedagogical reasons. I propose that the notion of implicit 

mathematical knowledge is context-specific. 
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METHODOLOGY 

This paper presents data gathered from eight research mathematicians at a university 

mathematics department in New Zealand, using a combination of semi-structured 

interviews and lecture observations. The eight research mathematicians (RM1, RM2, 

RM3, RM4, RM5, RM6, RM7, and RM8) are all research mathematicians with more 

than 15 years of experience. None of them had any formal teaching qualification. 

Research mathematicians were observed in class with interviews before and after each 

lecture observation. Classes observed were in undergraduate mathematics including 

calculus, linear algebra, number theory, mathematical modelling and statistical 

computing. I collected the data through video recordings of the lecture observations 

and audio recordings of the interviews. The interviews and lecture observations had 

the aim of understanding research mathematicians’ implicit mathematical knowledge 

and revealing possible reasons for it remaining implicit.  

Interviews were open-ended and semi-structured (Bryman, 2012). The researcher was 

a non-participant observer who did not involve in the events in the lectures. Aspects of 

implicit mathematical knowledge were identified in lecture observations and followed 

up in post-observation interviews. In this way, the inferences from lecture observations 

were validated with the research mathematician. Interview questions were based on the 

context of the observed lecture; however, the common question centred on the 

researcher asking the research mathematician about aspects of unrevealed 

mathematical knowledge in lecturing. Inductive thematic analysis (Braun & Clarke, 

2006) was used to analyse the data from the transcripts using ‘data sets’ and ‘data 

items’. This paper reports the ‘data set’ corresponding to the analytical theme of 

implicit mathematical knowledge. The ‘data items’ that formed the theme of implicit 

mathematical knowledge provided the underlying mathematical and pedagogical 

reasons for research mathematicians’ implicit mathematical knowledge. 

RESULTS AND DISCUSSION 

In what follows, I give instances of implicit mathematical knowledge. During 

interviews and lecture observations, research mathematicians talked about some of the 

mathematics content they will not explicitly use in lecturing. Brief quotes from 

research mathematicians illustrate this. Post-observation interviews uncovered some 

of the possible reasons why it remained not revealed in mathematics lectures. They are 

classified into (a) pedagogical reasons and (b) lecturer reasons.  

(a) Pedagogical reasons 

Ball et al. (2008) in their theoretical model describe pedagogical content knowledge 

consisting of curricular knowledge (KCC) and knowledge of student thinking and 

learning (KCS). In a similar way, pedagogical reasons include (i) curricular reasons 

and (ii) student learning reasons. 

(i) Curricular reasons 
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In the post-observation interview, RM8 was asked why he chose to hold back the 

knowledge of the rule of matrix multiplication, and did not explicitly make it clear to 

students, apart from a brief comment.  

RM8 replied:  

The rule of matrix multiplication is not in the syllabus. I will just give a hint because of the 

limited time and is not essentially in the syllabus. [RM8, Stage 2 course, Post-observation 

interview] 

RM8 withheld this knowledge in the lecture, and did not reveal due to the contextual 

factor of limited time to cover the syllabus. Another reason for not revealing some of 

his knowledge relates to the content being out of syllabus. 

 In a similar sense, RM3 did not emphasise polar coordinates in the lecture ‘because 

it’s not part of the syllabus’. 

The idea of polar coordinates is quite simple ... that’s all I want to say, don’t put too much 

stress on this because it’s not part of the syllabus. [RM3, Lecture 14, Stage 2 course] 

(ii) Student learning reasons 

These reasons mostly have the aim of assisting student learning. An example is RM5’s 

deliberate pedagogical intention of creating self-learning opportunities for students. 

RM5 is conscious of why he does that. 

For this class, I want them to go and think about other stuff. So I am deliberately not giving 

a whole series of examples. [RM5, Pre-observation interview] 

Another example is when RM2 suggests to students in the lecture that he will give a 

‘kind of an obscure hint’ for solving the exercise. This is taken as an indication of some 

mathematical knowledge hidden from students for them to work out. 

I won’t prove the second part of the exercise, I will give you kind of an obscure hint, which 

is the second bit, and you can actually follow it from the first bit. So the idea is that if you 

have some vector v, which is orthogonal to all of these ui’s, then it is also orthogonal to any 

linear combination of ui’s. [RM2, Lecture 1, Stage 2 course] 

 A further example where RM2 chooses to give an opportunity for students to think is:  

If we have a linearly independent subset of Rn, {u1, u2, ... un} in Rn is spanned by these 

vectors. Maybe I will leave that one for you to think about why that’s true ... Any basis for 

Rn has n vectors, so that’s how the argument goes, I leave you to think about that one and 

work it out yourselves. [RM2, Lecture 1, Stage 2 course] 

These examples are evidence of research mathematicians’ implicit mathematical 

knowledge. 

Pedagogical reasons are evident in RM4’s choosing a simple example in line with the 

goals of the lecture on Partial Differential Equations (PDEs).  

Researcher: What do those two equations mean in the physical world, is it possible to 

explain what the terms represent in the physical world? 
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RM4: Yeah, it is possible, those first order PDEs do come up within various models, but I 

just wanted to have it as a very simple PDE that they could see the method being used 

rather than anything else. Then I wanted to go onto a physical model with a more 

complicated PDE. So it was really just a very quick example just to show the mathematics. 

But there are other examples. I mean that is an example of a wave; you can get wave 

propagation from such PDE’s. But usually, wave propagation physically comes from 

higher order PDE’s. But there are complicated waves and traffic flows that arise from first 

order PDE’s like that, and students learn about those a bit in MATHS 363, a different 

course. But that model would have taken too long to discuss really (laughs) ... Anyway, the 

goal was really to give just a quick example showing, a quick and a simple example 

illustrating how Laplace transforms could be used. [RM4, Post-observation interview 1] 

This is another example illustrating the student learning reason. It also shows the 

context-specific nature of implicit mathematical knowledge in lecturing. For example, 

if RM4 did not have the goal of giving students a simple and quick example in this 

context, he would have made his knowledge of complicated PDE’s explicit in the 

lecture. 

Another possible reason for withholding some mathematical knowledge is that it might 

not be suitable to the current level of student learning. For example, RM5’s quote 

below: 

I will tell the class about the concept of infinity and things being bigger than other things. 

Infinite is an important concept, but I won’t go into any detail. I want to try [to] get them to 

understand that’s what I do [in my research] ... The whole idea of different sizes of infinity 

is an important one and so there are connections, but it can’t be too explicit I suppose. It is 

indirect at this level. [RM5, Pre-observation interview] 

RM1 shares the same line of thought:  

And it is not something that they would immediately connect with because it is 

undergraduate [lectures], you [students] don’t know enough to even think properly about 

how that will work. So I often tell them that one as an example of how do you do that. I 

don’t tell them the details, of course, that’s sort of several PhD’s, but I tell them the sort of 

things that are involved and why this is related to what they are doing. [RM1, 

Questionnaire] 

Again, this is a clear conscious decision of RM1. 

RM5 gives another student-related pedagogical reason to keep some mathematical 

knowledge implicit: so as not to distract students’ attention away from the key idea he 

was lecturing on, and avoiding unimportant details for their learning. 

I decided not to prove that because I think that would have obscured the point I was trying 

to make ... I wanted to keep the class focused always on the thought of these different kinds 

of numbers and how big are they and how many are they focusing on the big picture. And 

I didn’t want them getting distracted by exactly how I was doing the decimals or why that 

I put that there, why that I add on a 5 and 6 here. That’s all the details, which are not 

important. [RM5, Post-observation interview 1] 
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In summary, curricular reasons for withholding knowledge included ‘content not in the 

syllabus and ‘limited time to cover the syllabus’. Pedagogical reasons included 

‘creating a self-learning opportunity for students’ (this was sometimes done by giving 

an obscure hint to students), ‘to provide a simple and quick example’ thus avoiding 

complex examples, and ‘omitting mathematical content that is not suitable for 

student’s current learning levels’ (so not to distract student attention from the main 

point of the lecture). 

(b) Lecturer reasons 

Lecturer reasons for keeping mathematical knowledge implicit address flexibility and 

gaps in research mathematicians’ mathematical knowledge.  

RM5 mentions the flexible use of mathematical knowledge in lecturing when he was 

making a point about advanced mathematical knowledge.  

Yes, I think that is the point. You can use it in a flexible manner if the time arises and if the 

time doesn’t arise, you won’t necessarily use it, but at least it is there if you need to which 

I think is good. [RM5, Pre-observation interview] 

Mathematicians’ are aware of some gaps in their mathematical knowledge; for 

example, RM6 says that it is hard to find the purpose of certain lecturing topics and 

struggles when thinking about what to tell students.  

And over the years, I have struggled quite a bit with that fact that I don’t actually see the 

point in some of what we do. I struggled because you know; yesterday’s examples on the 

random walk, what can you use it for really... I have always found that a problem in my 

teaching [is] I can appreciate the results for what they are, but I can’t really see how much 

further or if indeed, they can bring us that much further. [RM6, Post-observation 

interview] 

RM6 says that such an awareness of missing knowledge is itself a great thing because 

it provides opportunities for further development of knowledge. If someone is ignorant 

of gaps in their mathematical knowledge, they will miss out further opportunities for 

further developing knowledge. 

Sometimes I want to clarify details in my own mind about why we have to worry about the 

other properties of continuous functions or limits, or that sort of thing. It’s not something I 

know a lot about, I guess I only know enough to know when I don’t know something, does 

that make sense? I think, that would be the real difference if you did not know very much, 

you wouldn’t even know that you are missing things, whereas I know enough to know that 

I am missing things (laughs), it can sometimes be helpful. [RM6, Pre-observation 

interview] 

RM6 is conscious of the way students see things different from their understanding, 

which sometimes might provide them with new insights into the topic. This is evidence 

of another aspect of gaps in RM6’s mathematical knowledge. 

I am perfectly sure that if I start teaching another new course, it will happen again that 

students will see things in a different way from anything that I have seen before and I will 

have to broaden my understanding. I am positive being in front of the class with the type of 
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material first time, there would definitely be times when I suddenly get taken off, I just 

haven’t thought about that before. [RM6, Post-observation interview] 

There are also certain mathematical topics for which explicit lecturing is difficult. For 

example, RM7 made the following comment. 

Error messages is another one, again it is very hard to explicitly teach the stuff. [RM7, 

Pre-observation interview]  

Comparing this to Ball et al.’s (2008) MKT construct, pedagogical reasons are part of 

PCK. In particular, curricular reasons align with Knowledge of Content and 

Curriculum (KCC), and student learning reasons connect to Knowledge of Content and 

Students (KCS). Further, lecturer reasons of ‘flexibility in knowledge use’ and ‘gaps in 

mathematics content knowledge’ relate to Subject Matter Knowledge (SMK) in 

mathematics.  

CONCLUSION 

This study gives evidence for the implicit dimension of research mathematicians’ 

mathematical knowledge in lecturing. During lecture observations, research 

mathematicians were seen not to articulate some parts of their mathematical 

knowledge. Lecture observations and interviews revealed the underlying mathematical 

and pedagogical reasons for research mathematicians’ implicit mathematical 

knowledge. Pedagogical reasons included both curricular reasons and student learning 

reasons. Curricular reasons included ‘mathematics content not in the syllabus’ and 

‘limited time to cover the syllabus’. Student learning reasons included ‘creating 

self-learning opportunities for students’, ‘omitting content not suitable for student’s 

current learning levels’, and ‘to give a quick and simple example’. Pedagogical reasons 

thus align with the PCK of the MKT construct. Lecturer reasons for implicit 

mathematical knowledge included flexibility in using mathematical knowledge 

according to the context of the lecture. Further, lecturer reasons included research 

mathematicians’ gaps in mathematical knowledge. These become mathematical 

reasons underlying implicit mathematical knowledge in lecturing. Mathematical 

reasons relate to SMK of the MKT construct. Research mathematicians are conscious 

of their implicit mathematical knowledge and can deliberately choose not to reveal it. 

They are also conscious of gaps in their mathematical knowledge. Further, implicit 

mathematical knowledge is context-specific. More study is needed to understand about 

other underlying reasons for the implicit mathematical knowledge. It has implications 

in designing professional development programmes, which can address the concern of 

gaps in mathematical knowledge in lecturing. 
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MATHEMATICAL LANGUAGE EXPOSED ONLINE  

Duncan Symons and Robyn Pierce 

The University of Melbourne, Australia 

Online discourse draws attention to students’ use of a “transitional mathematical 

register” prompted by the dialogic nature of language development. A Bakhtinian lens 

is used to examine a case study of the use of informal and formal mathematics registers 

by primary school students engaged in mathematical problem solving while working in 

a Computer Supported Collaborative Learning (CSCL) environment  

INTRODUCTION 

Communicating mathematical ideas requires students, over time, to gain facility with 

the use of a formal mathematical “register” (FMR) of words. Within teaching and 

learning the role of language has been acknowledged as both social and semiotic (see 

for example (Maybin, 1994). This social construction of knowledge takes place in a 

variety of contexts. It may occur in the physical classroom, or as is the case in this 

study, in an online environment that has become known as a Computer Supported 

Collaborative Learning (CSCL) environment.  

The purpose of this study is to examine evidence of students’ mathematical language 

development as they work on solving mathematical problems in a CSCL environment. 

We consider whether Halliday’s (1978) notion of informal and formal language 

registers is sufficient to guide teaching at the primary school level. The research is 

framed by Barwell’s (2012) application of the Bakhtin’s (1981) dialogic perspective 

on language development. Two excerpts from online discussions will be used as a case 

study to illuminate aspects of upper primary students’ language development. 

In the sections below we first provide some details of the ‘mathematics register’ then 

the theoretical framework that underpins this paper is outlined. Next details of the 

study are described followed by results, discussion, and implications for teaching. 

LITERATURE REVIEW 

Language use in Mathematics Education 

Halliday (1978, p. 195) describes registers as “a set of meanings that is appropriate to a 

particular function of language, together with the words and structures which express 

these meanings”. He lists various ways in which words come to be accepted and agreed 

upon for usage within a given register. For young students the informal register (IMR) 

encompasses everyday words such as “going” or “pointy,” while “multiply”, 

“equation,” and “median” lie in the FMR. 

The acquisition of appropriate language is a part of learning mathematics. Doerr and 

Lerman (2010) describe communication as the driving force behind all learning. Their 
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four year study provides insights into the role of speaking, writing and reading within 

mathematics teaching and learning. They draw on Herbel-Eisenmann’s 

(Herbel-Eisenmann, 2002) concept of a Transitional Mathematical Language (TML) 

when referring to teacher or student developed idiosyncratic language specific to a 

particular classroom and note the need, in time, for the use of official mathematical 

words. They emphasise that, if mathematical language is to be appropriated it is 

important for students to have opportunities to discuss mathematics with peers, to 

connect words to each other and to contexts meaningful to them. 

Language use in CSCL 

(Turvey, 2006) notes that when students share their ideas via virtual exchanges this 

creates an opportunity for learning to be observed. Sharing mathematics 

asynchronously online removes communication through facial expressions and gesture 

but enhances the opportunities for visual, graphic and tabular representations. (Lemke, 

2003) describes the difficulty some students experience trying to communicate their 

mathematical meaning when describing a pattern or relationship. Nason and Woodruff 

(2005) suggest that the use of multiple representations, some offering dynamic 

manipulation, “enable young children to communicate meaning via showing and 

telling rather than by merely telling (p.119)”(Nason & Woodruff, 2005, p. 119). 

However researchers point to the, superficial online talk that can be a result of lack of 

structure and lack of instruction with regards to what productive talk might constitute 

(Hong & Jacob, 2012; Mercer & Wegerif, 1999; Pifarré & Staarman, 2011). These 

authors, equate productive talk with critical thinking, reflective thinking and creativity. 

They believe well prepared student online interaction, with access to multiple 

representations, makes CSCL ideally placed to positively impact current pedagogies 

(Pifarré & Staarman, 2011; Wegerif, 2007).  

THEORETICAL FRAMEWORK 

This study draws on Barwell’s (2012) application of the Bakhtinian (1981) dialogic 

perspective as a means to expose the tensions that exist between informal and formal 

mathematical language. Barwell demonstrates that the FMR is privileged throughout 

international curricula by pointing to a tendency of these documents to accept informal 

mathematical language in the earlier years of schooling, whilst working towards the 

use of the FMR in later years. He argues that IMR and FMR are always required and 

always in tension. 

Barwell (2012) suggests that privileging the FMR is not ideal, because it places great 

importance on the ‘correct’ use of mathematical language at the potential expense of 

meaning making. Bakhtin’s (1981) view of language was that it is situated, dynamic 

and dialogic. He saw languages as being either unified (unitary) or to use his term, in a 

state of ‘heteroglossia’. The theoretically complete FMR can be seen as a unified 

language. Tensions exist within curricula, schools and society advocating for this 
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unified mathematics language. This centripetal force may inhibit students’ trialling of 

new words.  

In describing mathematical language Barwell identifies four inter-related tenets in 

Bakhtin’s work. We tag these B1, B2, B3 and B4.  

B1. Language is dialogic: This is observed when students engage in group 

conversations. Bakhtin suggests that utterances made in the present are also in 

dialogue with those made in the past.  

B2. Language precedes us: Bakhtin claims that utterances of the past inform present 

and future utterances.   

B3. Tensions exist between the unitary language and heteroglossia: For any given 

moment, a range of alternative modes of communication are possible. These various 

registers or languages compete with each other. The selection of these languages 

causes tension as for example, between the IMR and FMR.  

B4. Language is not unidirectional: Bakhtin emphasises the variety of routes that 

discourse and language take. This dialogic perspective conflicts with views promoting 

the movement from informal to formal mathematical language use as unidirectional. 

METHOD AND CONTEXT OF RESEARCH 

The present study forms part of a larger project in an Australian primary school. It 

focuses on excerpts from two separate problem discussions in a mixed ability group of 

1 girl and 3 boys (Year 5 students, aged 10-12 years, pseudonyms used). Over ten 

weeks the group investigated nine mathematical problems incorporating aspects of 

each content strand of the Australian Curriculum. The students were being introduced 

to the language of the FMR so we are particularly interested in the words that they 

chose to use in their online discussions. We anticipated that the asynchronous CSCL 

environment may encourage students to trial this new mathematical vocabulary. No 

online facilitator took part in the CSCL. This decision was taken in order to avoid 

discussion between students being prompted by an ‘expert’.  

The students did receive support. For each of the first 7 weeks an hour of standard 

classroom time was led by the first author of this paper: discussing appropriate 

approaches to online collaboration; reviewing the previous week’s solutions and 

discussing challenges that students perceived; and finally examining the following 

week’s problem. In the final two weeks students were expected to work independently. 

The excerpts analysed in this paper occurred in weeks three and six. 

FINDINGS 

Example One: Wallpaper Symmetry 

In ‘Wallpaper Symmetry’ students were required to demonstrate their understanding 

of symmetry by creating a piece of ‘digital wallpaper’. Students were asked to 
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represent line/ mirror symmetry, rotational symmetry and translational symmetry and 

then describe, in their online discussion, how symmetries were used in their wallpaper. 

In Figure 2 we see examples of students wanting to express their mathematical 

thinking, but struggling to do so. This is may be a result of an inner tension (B3) due to 

a desire to express mathematical thinking in the FMR but their understanding that they 

lack the words to do so. An example of this occurs in Olivia’s opening utterance when 

she says she does not have the specific formal mathematical words to describe the 

geometric feature to which she refers. Olivia’s use of language is disjointed, far 

removed from the FMR. However, when read carefully, we realize that Olivia is 

developing an understanding that when considering rotational symmetry, a shape will 

look identical when rotated on its axis the number of degrees corresponding to its order 

of rotation. She does not have the words to describe this accurately, however is able to 

make her meaning known. Olivia’s mix of formal and informal language to represent 

mathematical thinking evolves as a shared language through dialogue with other 

students in her group. Zander, for example, takes up her words when he says “… 

rotational symmetry means, depending on how many pointy sides …”  This 

development of shared language and meaning making exhibits aspects of B1, B2 and 

B4. 

Note also Zander’s statement, after you move it 4 times, it goes back to the same spot. 

If read literally this statement would make little sense but, given the context, we can 

see that Zander is making the accurate assertion that when rotated 4 x 90 degrees a 

cross will return to its original position. Again, mixed formal and informal language 

allows him and his group to make sense of his mathematical thinking.   

Olivia: i think to work this out we would need to choose a shape with the 

pointy sides (dont really know how to say it) so it would be 

easier with for us to do it does anyone agree with me? 

Olivia: when i mean the point sides something like the example Mr. Symons 

showed us a shape simillar to that. 

Chris: What shape is everyone deciding on. i was thinking of a hecsigon 

Olivia: I'm think of an shape that has a pointy side. ?? it also would be much 

easier if we do a shape that has a pointy side in my opinion . 

Does anyone agree with me?? 

Olivia: I'm also thinking about doing little key box and say what you did and 

also saying what we used and explain how we done it??and 

why we came up with the shape we are going to use ?? 

Anyone agree with me ? 

Olivia: i changed it i have done a triangle i created something like a fan 

so when it spins you could see the pattern and also it would 

never changes i have uploaded mine to edmodo. 

Zander: Mirror/Line Symmetry- line symmetry means when you have a 

shape or anything, and you cut it in half, it looks exactly the 
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same size and lining on every single thing as the other side. 

Zander: Rotation Symmetry- rotational symetry means, depending on 

how many pointy sides they have, say for example, i had a 

plus sign +, it has 4 pointy sides. So then, after you move it 4 

times, it goes back to the same spot. 

Zander: Reflection Symmetry- reflection symmetry means if you have a 

picture of your face, you keep drawing that, making look 

the same height, the same lengh, and etc. 

                           [Olivia and Igor list names of attached files] 

Zander: Good job. But there was a slight mistake. 

Zander: This is Week 3 homework. It isn't really my work. I just edited Igor's 

so it's better and it has more symmetry. [name of attached file] 

Figure 2: Uncorrected Discussion of Wallpaper Symmetry Problem 

Example Two: Shapes 

In ‘Shapes’ students investigated alternative shapes that could be made with four 

straight sides. They then provided discussion about the identity of the shapes they 

represented based on a definition that they developed and provided.  

Zander: This is the table that he showed us how to do it. If you have any 

comments please, I actually advise you to reply or comment 

on this. I have not finished it but if you have anything you 

would like me to change please reply. Haven't finished but 

please get some more shapes so I can finish it off. This is not 

my computer so please say anything if there is something 

wrong.                            [names of attached files] 

Olivia: I'm think of a square shape that have straight sides and a rectangle 

anyone else have a idea ?! 

Olivia: And they also have a straight length for the sides 

Olivia: And the square is 90 degree 

Olivia: And also the spyware [an image downloaded from the internet] is a 

right angle anyone agree with me? 

Zander: Sorry something going on with me and my dad important. So i have 

read your replies, I think we should do what you said. I agree 

with you. 

Olivia: With the table what shape are you planning to do on I know that a 

square and rectangle could be one what else do you agree??? 

Olivia: With the table that you have done it was good didn't it also have to 

only be with straight sides ?? Like you added a circle but it 

was still really good 

Zander: Don't know, but I'll add another bar so it will make for that one if 
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we were not supposed to do it. 

Olivia: Okay that is a good idea 

Figure 3: Uncorrected Discussion of Shapes Problem 

Figure 3 depicts further discussion between Olivia and Zander. Using conversation in a 

subsequent task between these two students shows some indication of how language 

use changed over time within the online space. 

Zander initiates the discussion by stating This is the table that he showed us how to do 

it. This is evidence of B2. The utterances and discussion that occurred within the 

classroom prior to students working in the online environment are being drawn upon to 

move discussion and thinking forward. 

Olivia responds by stating, I'm think of a square shape that have straight sides and a 

rectangle anyone else have a idea?! Her grammar is poor but her use of mathematical 

language allows us to infer that she understands that both squares and rectangles are 

examples of four sided shapes. The difficulty Olivia has communicating her thinking is 

evidence of tension (B3). A desire to communicate her ideas is in tension with her 

understanding that her use of language is disjointed and may cause difficulties for her 

peers’ understanding of her contributions. 

She continues; And they also have a straight length for the sides… And the square is 

90 degree. Her language use here, appears to fit between the IMR and FMR. We infer 

from the context that when Olivia refers to straight length for the sides she is 

attempting to convey her understanding that squares have sides of equal length. She 

uses the word straight rather than equal. We infer from her statement; the square is 90 

degree that she is aware that the four interior angles of a square are each 90 degrees. 

She does not yet have the FMR that allows her to express her understanding without 

interpretation, however by expressing herself in this way she does show her 

developing mathematical understanding. She uses language in a way that sits in 

between an IMR and FMR: evidence of the Transitional MR. The language here is 

representative of B4.  

The discussion between Zander and Olivia continues: 

Olivia: With the table what shape are you planning to do on I know that a square and 

rectangle could be one what else do you agree??? 

Olivia: With the table that you have done it was good didn't it also have to only be with 

straight sides ?? Like you added a circle but it was still really good 

Zander: Don't know, but I'll add another bar so it will make for that one if we were not 

supposed to do it. 

Olivia: Okay that is a good idea 

Here we see confirmation from Olivia that she understands that a rectangle and a 

square both fit the task of identifying shapes that have four straight sides.  
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She provides feedback to Zander when she states; With the table that you have done it 

was good didn't it also have to only be with straight sides ?? Like you added a circle 

but it was still really good. Olivia, correctly advises Zander that the inclusion of a 

circle in his table does not satisfy the requirements of the task. She exemplifies her 

understanding by highlighting a criterion that a circle fails to meet; the shape must only 

have straight sides. A level of tension is evident here. Tension is a product of Olivia’s 

understanding that Zander’s work contains a ‘mistake’ and highlighting this within the 

group may cause some degree of embarrassment for Zander. Olivia attempts to 

mediate this tension by phrasing her feedback as a question and also by adding that it 

was still really good. Olivia’s collaboration is evidence of the dialogic nature of 

language (B1). Tension is largely averted as Zander acknowledges that it may not have 

fitted the guidelines for the task and that he will update the work to reflect Olivia’s 

observations.  

DISCUSSION AND IMPLICATIONS 

The constraints of the CSCL discussion created a need for students to use 

mathematical words to describe their solution processes. The dialogue was not simply 

with each other (B1) in the online space but also with participants from the earlier 

classroom discussions (B2). The students showed benefit from being in dialogue with 

the language and understanding of their teacher, who in turn had acquired this 

knowledge through dialogue with their past peers and teachers (B2). Students’ written 

discussion, required in the CSCL environment exposed their struggles to use new 

terms along with common language (B3) allowing us to observe the to-and-fro 

between the IMR and FMR (B4). 

Year 5 is a ‘tipping’ or ‘bridging’ point in students’ language development. In 

mathematics, no longer are they only required to use the language of basic place value, 

the four operations, position and shapes. They must begin, at this juncture, to develop 

an understanding of more sophisticated notions; for example, those that require 

geometric, algebraic, proportional and relational thinking. Articulating these concepts 

requires the acquisition of aspects of the unified FMR. However, students can only 

make sense of their newly emerging understanding of this language through 

appropriating familiar informal language in combination with the newly discovered 

formal vocabulary. Like Doerr and Lerman (2010) we see that, together, the informal 

and formal use of language allows students to reason and communicate their emerging 

understandings. As students struggle to appropriate the unified FMR, they utilise 

elements of the FMR and along with words from their everyday register with some of 

these being assigned special meaning. We see this amalgamation as the ‘transitional 

mathematical register’ with features distinct from the IMR and FMR.  

The importance of the dialogic nature of language is highlighted in this study as we see 

evidence of students who have been exposed to, and contribute to, the co-definition of 

various established and ‘new’ mathematical terms try to use this vocabulary within the 

CSCL environment. The language is used with various degrees of precision. This data 
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supports Barwell’s (p. 279), contention that curricula-based and other societal tensions 

placed on students to use the FMR may be counterproductive in this context. We see 

the use of the transitional mathematical register as both being important to students’ 

meaning making necessary in the problem solving process, and also as forming a 

bi-directional bridge between the IMR and the FMR. Requiring students to work 

together in a CSCL environment supported the developmental TMR bridge by 

challenging them to communicate their evolving mathematical understanding.  
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CAN A REGION HAVE NO AREA BUT INFINITE PERIMETER? 
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In this report we present an analysis of 10 graduate mathematics students who were 

individually interviewed about the area and perimeter of the Sierpinski triangle (ST). 

The ST is a paradigmatic example of a paradoxical situation involving infinite limit 

processes. We use conceptual blending as a theoretical and methodological tool for 

analysing students’ reasoning. Our analysis documents the diverse ways in which the 

students reasoned about the situation. Results suggest that conceptualizing an infinite 

perimeter is more accessible to these students than is zero area and that when running 

the conceptual blend they resolve the paradox by considering the ST as ‘only a 

concept’ or by using metaphors for the perimeter. The analysis contributes to what we 

know about how students think about infinite limit processes and furthers the 

theoretical/methodological framing of conceptual blending as a useful tool for 

revealing the structure and process of student reasoning. 

INTRODUCTION 

The notions of area and perimeter of a geometric shape are learned extensively in 

elementary school, and are re-visited throughout middle and high school years. Yet, 

when encountering fractals some counter-intuitive situations regarding these two 

well-known notions might occur (Sacristan, 2001). An example of one such 

puzzlement of a region with zero area and an infinitely long perimeter was encountered 

by a class of master degree students in a chaos and fractals course when investigating 

the Sierpinski Triangle (ST). Several weeks after a lengthy discussion of the area and 

perimeter of the ST in small groups and whole class forums, ten students were 

individually interviewed. Based on the interview data, we address the following two 

related research questions: (1) How do students perceive area and perimeter of the 

Sierpinski triangle? (2) How do they "defend" their reasoning when confronted with a 

paradoxical situation? We use conceptual blending theory (Fauconnier & Turner, 

2002) as a theoretical and methodological tool for analysing students’ coordination of 

two infinite processes, one increasing and one decreasing, as seen in the construction 

of many fractals. 

THEORETICAL BACKGROUND 

The theory of conceptual blending (Fauconnier & Turner, 2002) is based on the notion 

of mental spaces, which are “small conceptual packets constructed as we think and 

talk, for the purposes of local understanding and action” (p. 40). According to the 
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theory, these mental spaces “organize the processes that take place behind the scenes as 

we think and talk” (p. 251). Conceptual blending is defined as the conceptual 

integration of two or more mental spaces to produce a new blended mental space. An 

important feature of this new blended mental space is that it develops an “emergent 

structure” that is not explicit in either of the input mental spaces (p. 42). This theory has 

been applied to the learning of mathematics by a number of researchers. For example, 

Lakoff and Núñez (2000) propose that most of the important ideas in mathematics are 

metaphorical conceptual blends. Alexander (2009) notes that conceptual blends in 

mathematics offer a distinct cognitive advantage in the mental compression that occurs 

when the blended objects are given their own identity and the inputs are “relegated 

behind the scenes” (Fauconnier & Turner, 2002, p. 13). 

To represent an analysis based on conceptual blending theory, a diagram with 

conceptual blending conventions may be used: circles represent mental spaces, the 

upper circles represent the input mental spaces, the lower circle represents the blended 

mental space and the lines show mappings between the spaces (see Figures 1 and 2). 

Inside the circles the researcher represents his or her interpretation of a person’s mental 

representation of those items. We use the same conventions in this paper. 

Given the nature of the ST, we expect that the input and blended spaces will involve 

infinite limit processes. Prior research (e.g., Quine, 1966; Mamolo & Zazkis, 2008) has 

investigated the historical and epistemological challenges that infinite limit processes 

pose. For example, Fischbein, Tirosh, and Hess (1979) claim that the concept of 

infinity (and specifically of infinite divisibility) is intuitively contradictory because 

finite interpretations tend to prevail and interfere with infinite processes. Moreover, 

Fischbein et al. reported that formal mathematics teaching does not modify students’ 

conceptions and intuitions of infinity. Paradoxical statements regarding the infinite 

stem from the seemingly impossible attributes of mathematical infinity, and tend to 

expose preconceptions that were once believed to be fundamental.  

METHODOLOGY 

The study took place in a graduate level mathematics course with 11 students (10 of 

whom agreed to participate in individual interviews). Students were either part-time or 

full-time secondary school teachers or community college instructors. Their master’s 

degree program required a substantial mathematics component, and the chaos and 

fractals course studied here fulfilled part of that requirement. The course was taught by 

one of the research team members. Data collected as part of a larger study included 

video-recordings of each class session, individual problem solving interviews 

conducted at the middle and end of the semester, and copies of all student work. The 

methodological approach for the larger study involves both Abstraction in Context and 

Documenting Collective Activity (Tabach et al., 2014), but in this report we focus only 

on an analysis of the 10 mid-semester individual problem-solving interviews.  

The following question from the mid-semester interview is the focus of this analysis: 
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In class, we discussed the Sierpinski Triangle (ST). How do you 

think about what happens to the perimeter and the area of the 

ST as the number of iterations tends to infinity? We followed up 

by asking students about their confidence regarding what 

happens to the area and perimeter (separately) and why, and we 

asked them to tell us what they thought about the following 

claim of a fictitious student, “Fred:” 

The computation shows that the perimeter goes to infinity because the perimeter is 

given by 3×(3/2)n which increases to infinity as n tends to infinity. But, the perimeter 

can't really be infinitely long, because there is nothing left to draw a perimeter around, 

since the area goes to zero. 

The question was structured so that we would first gain insight into the students’ 

reasoning about the area and perimeter of the ST, followed by an opportunity for them 

to engage in the hypothetical reasoning of another student. The basis for Fred's 

reasoning was actually expressed by one of the students during a whole class 

discussion that took place several weeks before the interview, and so was not entirely 

unfamiliar. 

The transcripts and student work produced during the interviews were coded and 

mapped as follows. Input mental spaces contain a student’s understanding of area 

process and perimeter process to be coordinated; A Generic mental space maps onto 

each of the inputs and contains infinite iterative process characterizations; Blend 

space, or “the blend,” is where the input spaces are “put together” to create a 

coordinated scenario. It does not contain every element of the input spaces, and 

contains some things that neither input space has; and finally, Running the blend, 

develops emergent structures that are not in the inputs. The blend can be “run” or 

“elaborated,” modifying it imaginatively and arriving at new conclusions which 

remain tied to the original input spaces. As expected, ideas related to infinite limit 

processes were prominent in students’ reasoning. 

FINDINGS 

We start by an overview of responses from all ten students, followed by a detailed 

analysis of four cases. All students agreed that the perimeter tends to infinity, but only 

six of them claimed that the area tends to zero. In fact, three students claimed that the 

area will not tend to zero (and a fourth one did not commit). The students were quite 

confident about their responses, always giving 7 or above. Also, with the exception of 

Carly, students were equally or more confident in their answer about the perimeter than 

about the area. For these students, we found that it is fairly intuitive to grasp the 

infinity of the perimeter whereas the area being zero was a counter-intuitive idea for 

some. All students were willing to engage in Fred’s reasoning. For some this involved 

hypothetical thinking and elicited thoughts about the "essence" of the ST – is it "real" 

or an "idea"? The four students selected for in-depth presentation were chosen as clear 

examples of the range of approaches taken by all 10 students. 
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Curtis  

We begin by discussing Curtis, whose response and conceptual blend (see Figure 1) 

are the most straightforward to describe. He takes a quantitative approach to reasoning 

about the infinite processes describing the area and perimeter of the Sierpinski triangle. 

While some students took decidedly different approaches to each, Curtis in both cases 

identified a multiplicative sequence and took its limit, reaching the conclusion that the 

area of the Sierpinski triangle is zero while the perimeter is infinite. His explanation of 

his thinking about the perimeter is particularly clear: 

After one [step], you've got another, half, so. If this [perimeter of outer triangle] is one 

whole, then this [perimeter of inner triangle] is half of that. And then, so, it's increasing by 

three-halves. And then, since each of these [three remaining triangles] is the same thing, 

the whole thing increases by three-halves at each stage. So, you can just say that's 

three-halves to the n gives you the perimeter at n, since you're looking at the limit as n goes 

to infinity that's equal positive infinity because that number is greater than 1. So, that's 

perimeter. 

The elements of Curtis’s mental space for the ST perimeter include the recursive 

nature of the Sierpinski triangle, the stepwise nature of iterative processes, a 

multiplicative conception of the rate of change (increase) of the perimeter as n goes to 

infinity, and how to deal with the limiting behavior of an infinite sequence. The 

recursive and stepwise nature of the infinite process by which the Sierpinski triangle is 

created are used by Curtis to justify the symbolic expression he writes down to 

quantify the perimeter at each step n, and then uses prior knowledge to explain that 

when the factor is greater than one, that sequence diverges and the limit equals infinity. 

Curtis’s explanation is less articulate when he describes the area of the Sierpinski 

triangle, but his mental space for ST area is constructed in a parallel way. Again, he 

touches on the recursive nature of the ST, the stepwise nature of iterative processes, a 

multiplicative conception of the rate of change (decrease) of the area as n goes to 

infinity, and how to deal with the limiting behavior of an infinite sequence. Again, he 

uses the recursive and stepwise nature of the infinite processes to quantify the area at 

each step n, and pulls from the same prior result to determine that the sequence 

converges to zero, this time because the factor is less than one. 

The blended mental space that Curtis develops for the ST as a whole contains many 

elements from each input space. This includes the idea that the perimeter increases to 

infinity at the same time that the area is decreasing to zero, and the fact that there is a 

final state at which these results co-exist. In running this blend, Curtis encounters the 

pseudo-paradoxical situation of an object with zero area and yet an infinite perimeter, 

which at this time he resolved by declaring that the ST is not bound by conventions for 

triangles, because one is “not physically drawing something like a perimeter, it's kind 

of just a concept.” 
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Figure 4. Conceptual blend diagrams for Curtis (left) and Elise (right). 

Elise 

Elise argues that the area of the ST goes to zero and that the perimeter goes to infinity. 

Her reasoning for both of these conclusions is strongly grounded in thinking of both 

area and perimeter as the result of a step-wise process of creation with an end at 

infinity. Unlike Curtis, however, who expressed a multiplicative relationship between 

stages, Elise thought of the relationship between stages in a more figural, additive 

manner. For example, she begins her argument for why the area is zero by stepping 

through the first three iterations in which chunks of area are taken out. She then 

imagines carrying out the process indefinitely, stating that “…if I keep doing this to 

infinity like, I'm looking at this little tiny black piece in here and like I'm going to get in 

that and then take out everything, so if I'm going to infinity I'm going to eventually take 

out everything so I don't think there is anything left.” The elements of Elise’s mental 

space for the ST area include an infinite decreasing process of area removal and a 

verbal limit of the process reaching zero. 

Similar to area, Elise’s reasoning about perimeter is grounded in what happens to the 

figure and even more strongly additive in nature. For example, she explains that in “my 

first iteration I've got my three side lengths [of] whatever, we'll call them a, so I have 

3a as my perimeter. And then in the next iteration I'm adding I think three-halves of a. 

Because each of these is a half of a and I'm adding three of them. And then the next 

iteration I'm adding now a fourth of a. But I'm adding nine of them.” As we see in this 

excerpt, one element of Elise’s mental space for perimeter is an infinite increasing 

process of adding more and more sides. As she continues her explanation we see two 

other elements of her mental space for perimeter, an increase at each stage of more than 

that at the previous stage, and a verbal limit of the process going to infinity. Elise 

proceeds to calculate, assuming the initial length of each side is a, that after the first 

step one is adding three-halves a (or 1.5a), then at the next step one is adding 9/4 a  (or 

2.25a), and so on. She concludes that “every time after the first iteration I'm adding 

more perimeter than I added before. So if I keep adding more then I think it's going to 

keep going to infinity because I'm just going to keep adding bigger and bigger.”  

The blended space (see Figure 1) that Elise develops for the ST as a whole includes an 

infinite process that finishes, decreasing and increasing amounts, and an end result of 

zero area and infinite perimeter. In running the blend Elise resolves the paradoxical 
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situation tendered by Fred by describing the ST as just a “skeleton.” As a metaphor, 

thinking of the ST as a skeleton is quite interesting if one thinks of area as flesh and 

bones as perimeter. 

Cathy 

Cathy (see Figure 2) was the only one of our four examples who did not bring “zero 

area” into her blended space, and so did not encounter the paradox with the same force. 

The elements of Cathy's mental space for area include the creation of the ST as an 

infinite process in which at each step some area is removed, and hence the remaining 

area decreases. The amount of area removed at each step becomes smaller and smaller, 

so much so that the removed bits become miniscule, and hence the area converges to 

some finite non-zero value. The elements of Cathy's mental space for perimeter 

include an infinite process, in which at each step additional line segments are added to 

the perimeter. Hence the perimeter increases, and therefore, according to Cathy, tends 

to infinity.  

The elements of Cathy's blended space are two infinite processes (potential infinity), 

one increasing to an infinite perimeter and the other decreasing to a non-zero area. 

Hence, when running the blended space, she does not run into the same paradox most 

other students do and explains that the perimeter can run infinitely tightly around the 

remaining area. However, she is capable of hypothetical thinking by assuming that the 

area tends to zero; even then, though, she considers Fred's reasoning as incorrect, 

explaining that the perimeter could "be just kind of wrapping around itself." While this 

is in response to the paradoxical situation, it is not part of her mental space surrounding 

the ST and so is not the result of running her blend. 

    

Figure 5. Conceptual blend diagrams for Cathy (left) and Carly (right). 

Carly 

The elements of Carly's mental space for area include the ST as the result of an infinite 

process of repeated removal of area, as a result of which the area tends to zero. Carly 

distinguishes the process from the final state, the ST, which has area zero (actual 

infinity): “so ok eventually the area gets to zero, but that's if you could do it infinitely 

many times.” In order to make the point that her conclusions are not outrageous, Carly 

makes an analogy to the rectangles in a Riemann sums and the notion of lower bound: 

“I was thinking about how there's analogies to calculus … Like, oh, what were those 
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called? Is it the.... lower, lower upper bounds? Superior upper? Sups and something. 

That kinda reminds me of that, like you get really really really close, like the biggest 

thing you can get to it without being there at the smallest thing. So kind of that type of 

thing with the area.” 

The elements of Carly's mental space for perimeter include a cumulative process of the 

perimeter growing to infinity by repeated addition of 3, then 9, then 27 etc. additional 

segments. Carly asks herself whether the totals of the added bits are increasing or 

decreasing, but argues convincingly that even if they are decreasing, their sum might 

still tend to infinity as in . She tends to think they are decreasing but is uncertain 

and later rejects decrease on the basis of Fred’s growth by a factor of 3/2. 

The elements of Carly's blended space (see Figure 2) are two infinite processes that 

eventually complete (actual infinity), one increasing to an infinite perimeter and the 

other decreasing to zero area. When running the blended space, Carly expresses her 

empathy with Fred: “I totally get Fred, because I felt the same way. And I was like, you 

can't have a fence around nothing. It just doesn't work.” Carly relates the paradox in her 

own terms: “those triangles are still drawn. They're still drawn there, like blocking off 

the not-there spaces”. She then goes about solving the paradox by starting from the 

calculus analogy: “there's nothing really left to draw a perimeter around" [pointing to 

Fred's argument], no there's not, but we're saying that there is, kind of in that, limits 

argument”. This leads her to make use of self-similarity: “I think once we started 

thinking about self-similarity, that helped a bit … we could like zoom in and keep 

seeing ok you can keep going, … eventually we're saying the area gets to zero, but 

where's this number going to stop if we can keep zooming in, there would be a spot 

where like ok we've zoomed in enough, so that's kinda why it can't be a number.” In 

our interpretation: Because of self-similarity, zooming can go on indefinitely, and 

hence, perimeter segments of any size, however small, will be added at the same time 

as more and more bits of area are removed.  

CONCLUDING REMARKS  

The four students we have discussed here represent a range of approaches to handling 

the creation of the ST through an infinite recursive process which changes its area and 

perimeter. Returning to our research questions, we note that all four students 

understood the infinite process of creation as one where the perimeter iteratively 

increases to infinity and the area iteratively decreases, and all four students included 

these elements in their blended space. Curtis was the only one of the four who 

perceived the area and perimeter of the Sierpinski triangle changing multiplicatively, 

while the others took an additive approach to the stepwise changes. Cathy, who 

believed that some amount of area must remain, did not encounter the same 

paradoxical situation as the others. When prompted, she provided a rationale for the 

possibility of infinite perimeter with no area, but this did not result from running her 

own blend. Curtis, Carly, and Elise all encountered the pseudo-paradox when 

developing their blended space due to their understanding that the area becomes zero, 
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leading to an end state “at” infinity where an object exists with infinite perimeter and 

no area, but defended this result in different ways. Curtis, the only student who 

approached area and perimeter multiplicatively, ran his blend and determined that the 

paradox could be resolved by declaring the ST to be a “concept” and not a real object. 

Carly and Elise encountered the paradox, but resolved it differently by stating that the 

“skeleton” or “fence” built by adding pieces of perimeter must remain, as at no step 

was it removed. Their additive approach may have contributed to this outcome. It is 

interesting to note that Carly’s conceptions of ST area and perimeter appear based on 

mathematical intuition rather than Elise’s more quantitative approach, and yet reached 

comparable conclusions when running their respective blends. The analysis 

contributes to what we know about how students think about infinite limit processes 

and furthers the theoretical/methodological framing of conceptual blending as a useful 

tool for revealing the structure and process of student reasoning. In particular, our 

work is significant in that we work in the context of fractals, an underutilized avenue 

for probing students’ underlying beliefs about mathematical objects. 
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As part of a mathematics teacher’s skillset, knowing what kinds of assessment, when 

and how to assess, and for what purposes, are important. Although there have been 

frameworks outlining the various facets of teacher assessment literacy, recent 

literature suggest that gaps exists on the theoretical underpinnings as well as in 

psychometric claims of the measures. A framework of assessment literacy is proposed 

in this paper, informed by the mathematics education literature: (1) knowledge about 

assessment concepts; (2) skills in applying the knowledge in actual assessment 

practices; (3) communication and action in providing feedback or changing 

instructional practices based on assessment information; (4) attitudes and beliefs 

about assessment and its role in mathematics teaching and learning; and (5) 

meta-cognition and self-regulation of teachers’ own assessment literacy. 

INTRODUCTION 

As a platform to provide feedback for follow-up instructional activities, it has long 

been recognised that assessment plays a pivotal role in the teaching-learning process. 

Although assessment literacy of teachers is an established field within the general 

education academic community (see Kahl, Hofman, & Bryant, 2013), it is still 

developing in mathematics education. Indeed, Santos and Cai (2016) provided a timely 

reminder on this in their chapter on Curriculum and Assessment in the Second 

Handbook of Research on the Psychology of Mathematics Education because there 

was no chapter on assessment in the first Handbook. Additionally, Lin and Rowland 

(2016) who reviewed several models of teacher knowledge in the studies presented in 

PME conferences and forums discovered that knowledge about what, when, and how 

to assess students was not raised as aspects of pedagogical content knowledge or 

mathematics knowledge for teaching. Whilst it is important for teachers to be literate 

on generic assessment issues such as validity and reliability, it is also crucial to help 

mathematics teachers develop a more in-depth understanding of assessment within the 

sensitivities of the subject matter knowledge. This paper presents a preliminary 

conceptual framework for mathematics teachers’ assessment literacy to help anchor 

future discussions on mathematics teachers’ assessment literacy. Implications of the 

framework for the wider international mathematics education community will be 

discussed. 
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LITERATURE REVIEW 

The word assessment literacy has been attributed to Stiggins (1991), who averred that 

assessment literates are able to “know what constitutes high-quality assessment” and to 

seek and use appropriate assessment methods “that communicate clear, specific, and 

rich definitions of the achievement that is valued” (p. 535). Knowledge of the 

importance of the sampling of performance information, the extraneous factors that 

can interfere with assessment, and the usability of the assessment data are critical 

aspects of assessment literacy (Stiggins, 1991).  

Assessment Literacy: Definition of Terms and Key Aspects 

Assessment literacy is multidimensional; its meaning changes with context (Stiggins, 

1991). Several issues and debates in concepts about assessment and measures of 

assessment literacy were raised in previous research. Taras (2010) argued that the 

dichotomy made between formative assessment (view of assessment as process and 

part of pedagogy) and summative assessment (view of assessment as product, with 

negative connotations) is problematic. An assessment strategy (a single process) can 

be used for formative or summative purposes (function), and formative assessment 

necessitates an initial summative evaluation followed by pedagogical action (for 

example feedback). In addition, Gotch and French (2014) conducted a systematic 

review of 36 assessment literacy measures from 1991 to 2012, and found that the 

psychometric support for the measures was weak. 

In the mathematics education community, related components of assessment literacy 

such as the use of formative assessment, providing quality feedback, the choice of 

tasks, and the statistical literacy of interpreting summative assessment data are 

on-going topics of concern and research in mathematics teacher education.  

Formative assessment, one in which the assessment information is used to improve 

teaching and learning, usually includes a myriad of assessment strategies (e.g., journal 

writing, diagnostic tasks). Santos and Cai (2016) described three aspects when 

considering assessment strategies: the conditions for creating a supportive 

environment for using an assessment that contributes to teaching and learning, 

characteristics of assessment strategies themselves, and the effectiveness of such 

strategies for mathematics learning. We summarise some main ideas of these aspects 

to highlight that they are important considerations for inclusion in our proposed 

framework for teachers’ assessment literacy. 

In creating the appropriate conditions of assessment for learning, a classroom culture 

that treats errors as “natural and inherent to the learning process (only one who is 

learning errs) and a fundamental source to access the different types of students’ 

reasoning” (Santos & Cai, 2016, p. 158) should be encouraged rather than abhorred. 

Moreover, as part of the classroom assessment culture, the assessment criteria need to 

be appropriated by students. This demands the teacher not just to declare the criteria, 

but also engage in a continuous process of communication and negotiation to create 

student ownership of the criteria. Past literature revealed that teachers found it 
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challenging to clearly define the assessment criteria themselves and create student 

ownership of assessment criteria. Teachers’ beliefs about nature of mathematics and 

mathematics learning are possible barriers to this (Santos & Cai, 2016).  

In considering the main characteristics of assessment strategies, Santos and Cai (2016) 

cautioned that regardless of the quality of feedback, its effectiveness is not guaranteed 

and a challenge is for teachers to assure that feedback is viewed and used as part of a 

dialogical process rather than a one way communication. Although formative and 

self-assessment can be used to promote student self-regulation, metacognition and 

problem solving skills, teachers would also need to be mindful of students’ cognitive, 

affective, and emotional readiness in order to create a positive environment for 

assessment to be effective. Furthermore, teachers’ appropriate use of technology in the 

assessment process is another avenue for further research as part of their assessment 

literacy.  

In the era of accountability driven education, research-based education practices are 

important and drive policy and practice. Within this context, student outcomes in 

large-scale assessment globally (e.g., Trends in International Mathematics and Science 

Studies) and nationally (e.g., Singapore’s Primary School Leaving Examination 

[PSLE], Australia’s National Assessment Program: Literacy and Numeracy 

[NAPLAN]) are often scrutinised and interpreted and results discussed in the public 

domain. Thus, to a certain extent, school leaders and teachers need some degree of 

statistical literacy to understand and interpret the results and findings from assessment 

practices. This means an understanding about sampling and assessment, descriptive 

statistics of assessment data (mean scores and standard deviation), and inferential 

statistics. Further use of statistics as part of teachers’ assessment literacy may involve 

comparing performance between different groups of students to investigate equity 

issues in teaching and learning.  

Studies on Mathematics Teachers’ Assessment Literacy 

Assessment literacy can be considered as one component of a teacher’s pedagogical 

content knowledge. Indeed, Kahl et al. (2013) called for the inclusion of assessment 

literacy in pre- and in-service teacher education courses. Recent research conducted 

within the PME community concur with the findings found in the general education 

community that teachers in general show a lack of declarative and procedural 

knowledge of assessment (Santos & Cai, 2016). Hoch and Amit (2013), on 139 

pre-service and beginning mathematics teachers in Israeli elementary and secondary 

schools, found that teachers lack knowledge even in basic concepts of assessment. The 

teachers sampled in their survey rated themselves moderately on their declarative 

knowledge of assessment concepts but answered poorly (4.4 out of 11 questions 

correct) on the extent they made use of assessment concepts in their work. Teachers’ 

extent of use of assessment concepts in their educational practice also correlated 

positively with their extent of declarative knowledge. Beginning teachers in secondary 

schools significantly used less alternative assessment tools and more tests and quizzes, 

compared to beginning teachers in elementary schools.  
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In Singapore, Koh (2011) compared the assessment literacy of teachers teaching 

elementary years 4 and 5 (aged 10 and 11) in two kinds of professional development 

courses on designing authentic classroom assessment and rubrics: those in a 

short-term, one-session workshop versus those in an ongoing sustained programme. 

Focusing on two aspects of assessment literacy (quality of classroom  assessment tasks 

and teachers’ conceptions about authentic assessment), it is not surprising that Koh 

found that teachers with on-going professional development sustained increased 

assessment literacy and better understanding of authentic assessment. Among the 

English, Science, and Mathematics teachers in his sample, Koh found that the quality 

of mathematics assessment only improved slightly compared to other subjects after the 

sustained professional development programme. He explained that “many 

mathematics teachers still believe that students’ mastery of factual and procedural 

knowledge is important for their conceptual understanding” (p. 272) and this is 

ingrained in their assessment practices.  

The studies cited above suggest that teachers’ beliefs about and attitudes towards the 

use of certain assessment tools (such alternative assessment or assessment 

technologies) are important issues impacting their assessment practices. Education 

context may well play a critical role shaping teachers’ beliefs and attitudes. 

Koh’s (2011) study indicated that on-going professional development and support 

helps teachers in developing their assessment literacy. However, the nature of 

professional development programme on teachers’ assessment literacy depends on the 

assumptions and approaches teachers educators take too.  

The two teacher educators Lee and Son (2015) had different expectations on the nature 

of pre-service teacher education on assessment literacy. One of them believed that it is 

important for pre-service teachers to learn from experience of designing their own 

assessment items from scratch, whereas the other emphasised the importance of 

critically selecting and modifying assessment items to suit the educational context. Lee 

and Son had made references to Kahl et al.’s (2013) generic framework on teachers’ 

assessment literacy to springboard their research. From analysis of their pre-service 

students’ written responses to a survey on both their beliefs about assessment as well as 

an item requiring them to critique a set of mathematics tasks, the teacher educators 

found that their students believed that assessment for learning (formative and 

diagnostic assessment) was the most important purpose of assessment, and that 

assessment requiring higher cognitive demand were better than those requiring routine 

computations. When asked to choose their most preferred mathematics task from a list 

of five different tasks on fractions, the sample in both groups led by the two educators 

were able to justify their choice based on cognitive aspects of assessment items in the 

critiquing task, citing cognitive demand, clarity, personal mathematical and 

pedagogical preference, mathematical complexity, format, and other issues. However, 

there were some differences in the pre-service teachers’ responses. In one sample, 

more attention was paid to visual representation of one of the mathematics tasks 

whereas the other revealed more cases of personal preference as a criterion for 
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evaluating assessment items. Lee and Son (2015) conceded that more research needs to 

be done to investigate the impact of teacher education courses on developing teachers’ 

assessment literacy and also on the professional development of teacher educators in 

order to improve their own practice in this area.  

Although documents from various teacher education institutes or government agencies 

(e.g., Australian Institute for Teaching and School Leadership, 2014; National Institute 

of Education, 2012) have outlined levels of teacher competencies in assessment 

practices expected from pre-service, beginning, and experienced teachers, these still 

need to be translated for mathematics teachers as part of their pedagogical content 

knowledge because of demands on the subject matter. Existing research in 

mathematics teacher education surfaced the lack of a coherent conceptual framework 

defining and connecting the various aspects of assessment literacy to guide 

mathematics teacher educators in their professional development programmes. Hence, 

we attempt to synthesise findings from existing studies to conceptualise a framework 

to describe teachers’ assessment literacy. 

TOWARDS A CONCEPTUAL FRAMEWORK FOR MATHEMATICS 

TEACHERS’ ASSESSMENT LITERACY  

Based on the literature reviewed, four aspects of assessment literacy were found: (1) 

knowledge about assessment concepts; (2) skills in applying the knowledge in actual 

assessment practices; (3) communication and action in providing feedback or changing 

instructional practices based on assessment information; and (4) attitudes and beliefs 

about assessment and its role in mathematics teaching and learning. Additionally, in 

reflecting about their own teaching and assessment practices for developing 

pre-service teachers’ assessment literacy, Lee and Son (2015) demonstrated the 

importance of reflection as a strategy for professional development (in their case 

professional development as teacher educators). Santos and Cai (2016) pointed to 

teacher reflection and teacher collaboration as professional development strategies for 

teachers to improve their assessment knowledge. From this, a fifth aspect can be 

considered: (5) meta-cognition and self-regulation of teachers’ own assessment 

literacy. 

Inspired by the Singapore mathematics curriculum framework (Ministry of Education, 

2012), the authors proposed a conceptual framework that includes five inter-related 

aspects to assessment literacy, shown in Figure 1. 
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Figure 1. Conceptual framework for assessment literacy. 

At the heart of the framework is the purpose of assessment. This can be pedagogical 

purpose, such as using assessment as part of classroom teaching and learning 

processes, or accountability purpose, such as the NAPLAN tests in Australia. In order 

to engage in the assessment process effectively, teachers need knowledge about the 

concepts in the field of education assessment, such as the different assessment 

strategies and their strengths and weaknesses, the suitability of tasks and questions for 

the mathematics topics assessed and possible student responses. The skills involved 

the assessment process includes knowing how a task can be used to promote 

mathematical understanding, when to implement a task, and the ability to design fair 

and inclusive assessment (Australian Association of Mathematics Teachers, 2008). 

Communication and action are important aspects of assessment literacy in order to 

create a positive assessment climate in the classroom (e.g., viewing errors as part of 

learning, providing feedback as part of dialogical process) and implementing 

appropriate and effective follow-up mathematical instructional activities. This 

includes communication about the mathematical focuses in the assessment tasks and 

students’ mathematical performances in them with various stake-holders such as 

students and parents. Teachers’ attitudes and beliefs about assessment play crucial 

role in driving their assessment practices. For example, an entrenched belief that 

mathematical knowledge is about mastery of skills may lead teachers to employ more 

of quick paper and pencil forms of assessment. Finally, metacognitive aspect includes 

self-awareness about assessment literacy, self-evaluation of own assessment processes 

and their impact on students’ attitudes and mathematics learning including on-going 

monitoring and regulation of their decision making process in selection or design of 

assessment tasks, and self-reflection of issues relating to assessment processes such as 

ethics and equity. The first three aspects of concepts, skills and communication relate 

to the cognitive and social dimensions, and the last two aspects relate to the affective 

and critical dimensions of assessment literacy. These aspects are interrelated and 

inextricably intertwined, and are closely related to teachers’ educational context and 

pedagogical content knowledge. For example, a secondary school teacher teaching in 

an environment with high stakes examinations might “feel an obligation to prepare 

their students for success” (Hoch & Amit, 2013, p. 71) and choose to use more tests or 
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quizzes and less alternative assessment strategies, despite having knowledge and skills 

in various forms of assessment. Alternatively a teacher may choose to carry out peer 

and self-assessment tasks to facilitate a culture of collaboration and encourage students 

to improve their own performance over time, believing that these strategies will lead 

students to become better mathematics learners and achieve better results in 

examinations. In another example, whether teachers choose to use technology in 

assessment as one of their strategies will depend on their beliefs and professional 

knowledge.  

CONCLUSION 

The paper attempts to propose a conceptual framework for mathematics teachers’ 

assessment literacy grounded in a critical review of current literature on assessment 

literacy by the mathematics education community.  It offers a lens by which 

assessment literacy of mathematics teachers might be explored for future professional 

development courses and in research. It also presents a more cohesive structure 

connecting the key aspects of assessment literacy for further examination of the role of 

assessment in a teachers’ pedagogical content knowledge. Future research may involve 

the validation of this framework in terms of its comprehensiveness in preparing pre- 

and in-service teachers in assessment literacy as well as using the components of the 

framework to develop instruments for the measurement of teachers’ assessment 

literacy in mathematics.  
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ENCHANCING TEACHERS’ REFLECTION THROUGH LESSON 

STUDY: IS IT FEASIBLE? 

Saw Fen Tan and Chap Sam Lim 

Wawasan Open University, Universiti Sains Malaysia 

 

This study aimed to explore the content and levels of teachers’ reflection as they 

engaged in Lesson Study (LS). However, this article only focuses on changes in 

teachers’ reflection from a LS group. This LS group was made up of six primary 

mathematics teachers and four knowledgeable others. They carried out five LS cycles. 

Qualitative data were collected through reflection sessions, participatory observation, 

collection of artefacts and interviews. Analysis of data revealed that there were 

changes in the teachers’ reflection. These changes included improvement in the depth 

of reflection about pupils’ learning, shift from teacher’s perspectives to pupil’s 

perspectives, anticipation of pupils’ responses and reflection from several 

perspectives. Thus, enhancing teachers’ reflection through LS is feasible.  

INTRODUCTION 

Reflection practices have increasingly been used to support teachers’ professional 

development (Suratno & Iskandar, 2010) because teachers would be able to recognize 

their own weaknesses and strengths through reflection (Boon, 2002).   Furthermore, 

through reflection, teachers would be able to understand better the complex nature of 

their own teaching and their pupils’ learning (Zeichner & Liston, 1996).  

In Malaysia, the practice of reflection was first introduced to in-service teachers in 

1999 (Ministry of Education, 1999). Teachers were required to reflect on to what 

extent they have achieved their teaching and learning outcomes. However, this 

requirement did not really encourage the teachers to reflect critically and deeply. 

Therefore, it was not surprise that a review of local studies (e.g. Siti Mistima Maat & 

Zakaria, 2010; Tee, 2007) reported that Malaysian teachers’ reflection was still 

descriptive and not in-depth. Reflection that is descriptive will not help teachers to 

fully understand, and thus improve their teaching. Hence, there is a need to enhance 

reflection practices among Malaysian teachers. 

To date, only a few studies have done on teachers’ reflection in LS. Review of 

literature (Tosa, 2014; Myers, 2013; Posthuma, 2012) showed that the teachers 

generally reflected about LS process, teaching, learning and physical set up of lesson. 

Tosa (2014) discovered that most of the teachers’ reflection which were at higher level 

focused on teaching strategy and pupils’ thinking. Posthuma (2012) reported that the 

teachers became more aware of the pupils’ needs after involving in LS.  
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Other studies (e.g. Chiew, 2009; Fernandez & Chokshi, 2002) found that LS could 

enhance teachers’ reflection. However, they did not study in detail how LS could 

impact teachers’ reflection. Likewise, studies from Tosa (2014), Myers (2013) and 

Posthuma (2012) did not show substantial evidences that LS improve the teachers’ 

reflection. Thus, this study aimed to explore changes (if any) in the teachers’ reflection 

as they engaged in LS process.  

THEORETICAL FRAMEWORK  

Two theories that underpin this study were Situated Learning Theory by Lave & 

Wenger (1991) and the framework of teacher reflection practices of LS (Suratno & 

Iskandar, 2010). According to Situated Learning Theory (Lave & Wenger, 1991), 

learning occurs through the learners’ legitimate peripheral participation in the activity 

of the community of practice. There are experts and novices in the community of 

practice. As the novices participate in the practice of community, they interact and 

collaborate with experts and other novices in the community. After an extended period 

of time, the novices internalise the culture of the community, change their beliefs and 

behaviour, and ultimately change to become experts of the community.  

Reflection was defined as “active, persistent, and careful consideration of any belief or 

supposed form of knowledge in the light of the grounds that support it and the further 

conclusion to which it tends” by John Dewey (1933, p. 9). According to Suratno and 

Iskandar (2010), reflection is the heart of LS. Teachers reflect when they are preparing 

the lesson plan (prospective analysis), teaching or observing the research lesson 

(situational analysis) and reflecting on the research lesson (retrospective analysis). 

However, in this study, only teachers’ reflection during reflection sessions were 

studied. During the reflection sessions, the teachers analysed the relationship between 

their teacher teaching and their pupils’ learning. They also compare the learning 

trajectory design (LTD) with the actual learning trajectory (ALT). They framed and 

reframed the problem analysed and developed alternative LTD for future lessons. 

Therefore, in this study, “reflection” was defined as the activity carried out by a group 

of teachers, who looked back into their pupils’ learning during the research lesson, 

analysed their pupils’ learning, identified the reasons of the incidents happened and 

explored alternatives to improve their pupils’ learning. The community of practice was 

the LS group. The teachers were not familiar with reflection when they first conducted 

the LS. As they engaged in LS, they interacted with the knowledgeable others and 

other teachers in the group. After several LS cycles, they internalised the way of 

reflecting and they became able to reflect like expert. The teachers were expected to 

attain a fruitful understanding and the ability to frame and reframe problem after 

several LS cycles (Suratno & Iskandar, 2010). 

METHODOLOGY 

This paper discussed the teachers’ reflection in a LS group, which was set up by six 

primary mathematics teachers. Besides, four knowledgeable others, who were 
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comprised of two university lecturers, a postgraduate student and a School 

Improvement Specialist Coach, also involved in the LS cycles. The LS group carried 

out five LS cycles. Each cycle consisted of four steps, namely, (1) identify and 

formulate goals; (2) plan research lesson collaboratively; (3) teach/ observe research 

lesson; and (4) reflect and refine lesson plan.  

Qualitative data were collected through participatory observation, reflection sessions, 

interviews and collection of artefacts. The artefacts collected were observation sheets 

written by the observing teachers and knowledgeable others during research lessons, 

research lesson plans, as well as pupils’ worksheets. All the research lessons observed 

and reflection sessions were video-recorded, and transcribed verbatim for data 

analysis. Then, the transcripts were divided into segments. A segment refers to part of 

the transcript which was related to a topic or theme of reflection. The segment ended 

when the topic changed. The length of the segment ranged from a phrase from a person 

to several utterances from different persons. Next, the segments were coded to the 

themes of reflection, like pupils’ learning, teaching strategy and instructional content. 

Triangulation of reflection transcripts, observation sheets and field notes were also 

carried out. Lastly, the coding was compared across the five LS cycles to explore any 

changes in the teachers’ reflection. 

FINDINGS AND DISCUSSION 

The findings revealed that there were four changes in the teachers’ reflection as they 

progressed from the first to the fifth LS cycles. These changes included: 

Improvement in the depth of reflection about pupils’ learning 

The teachers’ reflection about the pupils’ learning became more in-depth as they 

progressed to the fifth LS cycle. At the beginning stages, the teachers’ reflection about 

the pupils’ learning were superficial and general. They merely described whether the 

pupils “understand” or “able to calculate”. They did not elaborate further with 

evidences to show the pupils’ understanding or learning. For instance, during the first 

reflection session, a male teacher, John articulated,  

I think they did not understand the ‘Golden Hour’. Then, when talking about 72 hours, 

golden 72 hours is equivalent to how many days, they were able to calculate it. Next, one 

week is equal to how many hours, they need to know there are seven days in one week, so 

they faced problem in solving that question. After that I asked two weeks is equivalent to 

how many hours, they were able to calculate, but they need some guidance. (Reflection 

Session LS1) 

Comparatively, at the later stages, the teachers’ reflection about the pupils’ learning 

became more in-depth, as they were able to point out exactly the related pupils’ 

misconceptions. Figure 1 displays a question which most of the pupils answered 

wrongly during the fifth research lesson. The pupils were expected to write the 

improper fraction of the picture, which was . Teacher, Sophy found that the pupils 

were not able to answer this question correctly because: 
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The pupils did not know the way of identifying the denominator, they counted [the total 

number of portions], for example, there were three circles… the denominator should be 

six, but [the pupils] added up all the portions, [so their denominator became 18]. The 

pupils have not mastered the concept of denominator yet. (Reflection Session LS5) 

 

 

 

 

Figure 1. The question posed during the fifth research lesson 

This finding supported the findings reported by Hart and Carriere (2011) that the 

teachers’ reflection about the pupils became deeper after the LS process.  

Shifting of teachers’ reflection from teachers’ perspectives to pupils’ perspectives 

During the first two reflection sessions, the teachers tended to reflect and comment 

from the teachers’ perspectives. Their comments focused on the observed teacher’s 

teaching strategy, his/her personality and behaviour based on their own perceptions. 

For instance, 

I want to praise him for admitting his mistakes… because we, as teachers, after we design 

an idea, sometimes we change the idea on the spot, so got mistakes, he changed 

immediately, this is correct [attitude]. (Betty, Reflection Session LS1) 

The [induction set] was interesting, because teacher used a big dice. (John, Reflection 

Session LS2) 

Only the teacher was talking, the pupils did not talk, this is my weakness, I always forgot to 

give my pupils chances to talk. (Betty, Reflection Session LS1) 

These teachers gave comments based on their own perceptions of effective teaching. 

Betty perceived that the teacher should change immediately if there are any mistakes 

done during the research lesson and also get the pupils to involve actively. Whereas, 

John deemed that using the big dice made the lesson interesting.  

At the later stages of LS, the teachers started to reflected from their pupils’ 

perspectives. They reflected based on the pupils’ misconceptions, behaviours and 

problems faced during the research lessons. For example, during the fifth reflection 

session, the teachers discovered that the pupils have misconception in getting 

equivalent fraction. The pupils identified fractions with same denominator as 

equivalent fractions. Based on the pupils’ misconception, the teachers refined the 

lesson plan by giving example and non-example. As suggested by Sophy, “making 

comparison,  and  are equivalent, then show , [ask the pupils], are they 

equivalent? Although their denominators are the same, they are not equivalent” 

(Reflection Session LS5). 
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In addition, Betty also commented on the teaching strategy based on the pupils’ 

behaviour during the fourth reflection session, she articulated that “actually we don’t 

have to discuss the answers one by one, the pupils already felt bored” (Reflection 

Session LS4). Then, Fanny made suggestion based on the pupils’ behaviour, she said, 

“get the [four groups of pupils] to exchange their answers, and ask them to mark the 

answers written by other groups” (Reflection Session LS4). 

Furthermore, the teachers also reflected based on the pupils’ problems. The problem 

was raised up by John, “some pupils did not understand Mandarin” (Reflection Session 

LS4). But, the lesson was carried out in Mandarin. Thus, some of the pupils did not 

understand the lesson. Based on the pupils’ problem in understanding Mandarin, Betty 

suggested, “sometimes, teacher should speak some English in order to help the pupils 

to understand” (Reflection Session LS4). 

In sum, the teachers reflected purely from teachers’ perspectives at the beginning 

stages of LS. As they progressed to the later stages, they became more aware of their 

pupils’ learning problems and needs. So, they moved to reflect from the pupils’ 

perspectives.   

Anticipation of pupils’ responses 

The teachers became more aware of the pupils’ possible responses at the later stages of 

LS. They could anticipate their pupils’ responses when they were refining the lesson 

plan and the mathematical tasks. During the fifth reflection session, the teachers tried 

to change the mathematical task of matching mixed number with improper fraction 

which they found it was not suitable. John started by suggesting to give all the pupils a 

fraction.  Then, ask them to draw the picture of the fraction and find another friend who 

holds a fraction equivalent to their fraction (Line 1 in the transcript). Sophy anticipated 

the pupils’ answer, where they might be drawing different shapes (2). Betty also 

predicted that the pupils would draw different shapes and sizes. But, she perceived that 

the differences in shapes and sizes might cause confusion among the pupils (3). 

So, Sophy suggested to change the task to colour the boxes based on the fractions given 

and find another fraction equivalent to theirs. She proposed to provide more boxes than 

needed to make the task more challenging (7). But, Ashley predicted that the extra 

boxes would confuse the pupils (8). As the result, Betty suggested to refine the task by 

giving only the number of boxes as needed based on the fraction (9). 

In sum, the teachers became more aware of the pupils’ responses. They anticipated the 

pupils’ possible answers and confusions, and tried to eliminate the pupils’ possible 

confusions when they were refining the lesson. Previous literature (Fernandez & 

Chokshi, 2002) reported that anticipation of pupils’ responses occurred during the 

preparing lesson plan stage, but in this study, it was found that anticipation of pupils’ 

responses could also happen when the teachers were refining the lesson plan. It is 

important for the teachers to anticipate the pupils’ responses as this activity encourage 

the teachers to think in term of the pupils, which supports the teachers to develop 

knowledge of mathematics and pupils (Meyer & Wilkerson, 2011). 
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1  John: What about the teacher poses a fraction of 3/2 and asks the pupils to draw? 

2 Sophy:  They draw whatever shapes they like, then their friend [holding equivalent 
fraction] might be drawing different shape. But the main point is, both of 
them, have one full piece, and one half piece. 

3 Betty:  I think we should not ask them to draw by themselves. They might be 
confused if their shapes are different. I think, the pupils have not mastered 
the concept yet, they don’t know… because this is bigger, that is smaller, 
they are not equivalent, they will think like this? 

4 Ashley: It’s possible. 

5 Sophy: Or we ask them to colour. 

6 John: Colouring also can. 

7 Sophy: For mixed number, let’s say like this; give them three boxes without 
dividing lines and two boxes with dividing lines. Then  , they would 
colour, one whole box and half of the box. This is the colouring of mixed 
number. For improper fraction, give them all the boxes with dividing lines, 
give them more boxes than needed, like this, at least they can colour like 
this. Then, they would see one whole box and one half of the box, so they 
are equivalent. 

8 Ashley: I worried that the remaining boxes will make them confused. 

9 Betty: More confused. You give them two, all with dividing lines. Then they 
colour by themselves. 

Reflecting from several perspectives 

The teachers reflected from several perspectives at the later stages of LS. During the 

fifth reflection session, the teachers pointed that the pupils faced problem in 

determining the denominators for mixed number and improper fraction. Sophy 

elaborated that it was because  

[the pupils] counted [the total number of portions], for example, there were three circles… 

the denominator should be six, but [the pupils] added up all the portions, [so their 

denominator became 18]. (Reflection Session LS5) 

When they were analysing the causes of the pupils not being able to determine the 

denominator correctly, they viewed the problem from three perspectives, namely the 

pupils’ prior knowledge, the pupils’ learning during previous lesson and the 

instructional content delivered during the research lesson. Betty perceived that the 

problem was caused by the pupils’ prior knowledge. She suspected that “the pupils 

have not mastered the basic concept of the fraction” (Reflection Session LS5).  

However, her comment was rejected by Ashley and Sophy. Ashley argued that, “no, 

[the pupils] have mastered the basic concept of fraction” (Reflection Session LS5). 

Then, Sophy linked the problem with the pupils’ learning in the previous lesson which 

taught about the basic concept of proper fraction. She expressed, “could it be because 

the pupils confused with the concept taught in the previous lesson? Because in that 

lesson, we taught them to count all the portions” (Reflection Session LS5). But, again, 

this statement was rejected by Ashley, the teacher who taught the previous lesson. She 
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clarified that “I only used one paper at that time, I drew all the portions on the paper” 

(Reflection Session LS5).  

At the end of the discussion, the teachers believed that the misconception was caused 

by the instructional content delivered during that particular research lesson. Ashley 

explained that “[the teacher] did not emphasize that there are many pieces, but you 

should not count all the portions, you only count the number of portions in one piece” 

(Reflection Session LS5). The discussion among the teachers during the fifth reflection 

session showed that the teachers reflected the lesson from several perspectives. 

This result showed that the teachers have attained the ability of framing and reframing 

the problem discussed after engaging in LS (Suratno & Iskandar, 2010). Reflection 

from several perspectives is categorized as high level reflection (Lee, 2005; Ward & 

McCotter, 2004; Jay & Johnson, 2002), because by reflecting from several 

perspectives, the teachers would be able to understand the complex nature of teaching 

and learning in a holistic manner.  

CONCLUSION  

We acknowledge that analysing data from only a case of LS group which involved five 

LS cycle may not be sufficient to render the claim that LS process can enhance 

teachers’ reflection. However, in this case study, at least four observable changes in 

teachers’ reflection were noticed as they progressed from the first to the fifth reflection 

sessions. These changes include improvement in the depth of reflection about pupils’ 

learning, shifting the reflection from teacher’s perspectives to pupil’s perspectives, 

anticipation of pupils’ responses, and reflecting from multiple perspectives.  

Although the impact was not very obvious within the five cycles of LS, but there is 

definitely some gradual improvement in the teachers’ reflection observed as they 

conducted multiple LS cycles. Hence, enhancing teachers’ reflection through LS is 

feasible. Nevertheless, future studies are needed to explore the factors that could make 

teachers’ reflection in LS more effective, for instance, the role of knowledgeable 

others and the anticipation of pupils’ responses during the planning stage.  
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PSYCHOMETRIC EVALUATION OF A QUESTIONNAIRE 

MEASURING TEACHER BELIEFS REGARDING TEACHING 

WITH TECHNOLOGY 

Daniel Thurm 

University Duisburg-Essen 

Teacher technology related beliefs play an important role when integrating technology 

into the mathematics classroom. However, there are no empirically validated 

questionnaires available for quantitatively measuring teacher beliefs regarding 

technology use. In this paper the empirical validation of a questionnaire to measure 

teacher’s beliefs regarding technology use in the mathematics classroom is presented. 

Psychometric properties like reliability and factor structure are assessed with a 

sample of 180 in-service teachers in Germany leading to some adaptions of the item 

set. The resulting questionnaire provides researches with an instrument to more 

reliably and validly assess teacher’s technology related beliefs. 

INTRODUCTION  

Research shows, that the introduction of technology into the mathematical classroom 

can support student learning and that teacher beliefs play an important role in this 

integration process. Hence, research studies try to investigate teacher’s technology 

related beliefs and how, for example, these beliefs are linked to classroom practice. 

Whereas qualitative studies rely for example on interviews to determine teacher’s 

beliefs, quantitative studies usually assess teacher beliefs using questionnaires. 

However, so far there are no profoundly developed questionnaires to quantitatively 

measure technology related beliefs of teachers. Studies to this point use single-item 

measures (i.e. likert – items) to assess teacher beliefs regarding a specific topic. 

However, the problems associated with such types of measures are tremendous. As 

McIver & Carmines (1981) note: “The most fundamental problem with single item 

measures is not merely that they tend to be less valid, less accurate, and less reliable 

than their multi-item equivalents. It is rather, that the social scientist rarely has 

sufficient information to estimate their measurement properties. Thus their degree of 

validity, accuracy, and reliability is often unknowable.“ (McIver & Carmines 1981, p. 

15). Hence the validity of results gained from studies that are using single-item 

measures are highly questionable. As Blalock (1970) pointed out researchers may 

“remain blissfully unaware of the possibility of measurement [error], but in no sense 

will this make his inferences more valid” (Blalock 1970, p. 111). 

Therefore, there is a need for well-developed multi-item scales to measure teacher’s 

technology related beliefs and “more studies should focus on how to develop methods 

or instruments that can help in the rigorous identification and evaluation of teacher 

beliefs.” (Chen 2008, p. 74), 
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In this paper a detailed multi-item scale questionnaire assessing teacher beliefs when 

teaching with technology is presented. The questionnaire is based on the work of 

Rögler (2014, 2015) who developed a set of items by cycles of cognitive interviews 

with in-service teachers. In this paper, the psychometric properties and factor structure 

of the questionnaire are investigated using a sample of n=178 in-service-teachers in 

upper secondary school in Germany. The resulting questionnaire provides researchers 

with an instrument in order to reliably assess teacher beliefs. This may support future 

research in reliably answering the many questions that are associated with teacher’s 

technology related beliefs. 

THEORETICAL BACKGROUND 

Research shows that, digital technology can play an important role in enhancing the 

learning of mathematics (e.g. Zbiek et al. 2007). This can be achieved for example by 

supporting discovery learning, problem solving, modelling and more interpretative 

tasks in the mathematics classroom and by enabling a shift from a focus on procedures 

to more conceptual understanding. In particular, by providing easy access to different 

forms of representation and to multiple linked representations students can explore 

relationships between these forms of representations which is crucial in developing 

conceptual understanding.  

In the following the term “technology” is used for all digital tool affording the 

described benefits. These tools comprise for example graphing calculators (GC) or 

computer algebra systems (CAS).  

The successful integrating of such technology into the mathematics classroom depends 

on many factors and research has identified teacher beliefs as one such critical factor 

(i.e. Ertmer 2005, Chen 2008) suggesting beliefs to be “the final frontier in our quest 

for technology integration” (Ertmer 2005, p. 25). When using the term belief, we refer 

to the definition of Phillip (2007, p. 259) who characterized beliefs as “Psychologically 

held understandings, premises, or propositions about the world that are thought to be 

true”.  

However, despite the importance of understanding teacher’s technology related beliefs 

there are no psychologically profound developed empirically scrutinized 

questionnaires to measure such beliefs. For example, the studies of Dewey et al. 

(2009), Fleener (1995), Duncan (2010), Tobin et al. (1999), Milou (1999), Pierce & 

Ball (2009), Tharp et al. (1997) and Molenje (2012) all use single-items measures 

where each item is referring to a different aspects of teacher beliefs.  

Although the use of such items is easy, fast and provides a first access to teacher’s 

technology related beliefs it is well known that single-item measures are very 

problematic and that multi-item scales should be used instead. The reasons are that 

single-items measures lack reliability, precision and scope (Gliem & Gliem 2003). 

Reliability is generally low since single-item measures have a high measurement error. 

On the contrary, in multiple-item scales “Measurement error averages out when 
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individual scores are summed to obtain a total score” (Nunnally & Bernstein 1994, p. 

67). Precision of single-items measures suffers from the fact that single item measures 

can only roughly categories people into groups. For example, a question with a 5-point 

likert response format can only categorize people in five groups. In contrast, 

multi-item scales with summated rating scales can discriminate on a much finer level. 

Finally, scope is lacking in single-item measures, since “It is very unlikely that a single 

item can fully represent a complex theoretical concept or any specific attribute for that 

matter” (McIver & Carmines 1981, p. 15).  

Hence there is a need to develop reliable and valid multi-item measures to assess 

teacher’s technology related beliefs. Since single-items measures „should not be used 

in drawing conclusions“ (Gliem & Gliem 2003, p. 1) only by using multi-item 

measures we can expect to gain more valid answers to the important questions 

associated with teacher’s technology related beliefs.  

DEVELOPMENT OF THE QUESTIONAIRE 

The items of the questionnaire were developed in the work of Rögler (2014,2015) who 

used semi-structured interviews with in-service teachers to develop items covering 

different aspects of technology use. This items could broadly be categorized in seven 

distinct categories with each category being covered by 4-6 items: 

Beliefs that computations should be shifted to technology (S – Shifting): Items in this 

category refer to the belief that computations should be shifted more towards 

technology. This is an often mentioned benefit of technology since “Shifting the 

burden of computation to [technology] makes time available for students to 

concentrate on how to approach a problem, to delineate subproblems, and to consider 

alternatives, rather than spending most of the time routinely following one algorithm.“ 

(Small 1986, p. 145).  

Beliefs that technology supports discovery learning (D -Discovery learning): Items 

covering this category refer to beliefs about the support of discovery learning by the 

use of technology. This can be achieved for example when students use technology to 

generate many examples to explore the relationships between them.  

Beliefs that technology support multiple representations (R – Multiple 

Representations): Items in this category focus on teacher beliefs regarding the support 

of multiple representation by means of technology.  

Beliefs that technology is too time consuming (T – Time consuming): Items in this 

category cover the belief that technology use is too time consuming. This belief is for 

example reflected in the statement of one teacher in the study of Coffland & Strickland 

(2004): “We don't have time to teach the current curriculum; much less add time with 

technology.“ (Coffland & Strickland 2004, p. 358).  

Beliefs that technology has a negative impact on computational skills (S – Skill 

loss): This category of items covers the common concern that pen-paper-skills may be 

lost in the presence of technology.  
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Beliefs that technology leads to mindless working (M - Mindless working): Items in 

this category covers the belief that technology leads students to “mindless button 

pushing” (Mackey 1999, p. 3) and that working with technology is just a “substitute 

for thinking” (Mackey 1999, p. 3).  

Beliefs that students must master concepts and procedures prior to technology use. 

(Procedures first – P): Items in this category cover the belief that “calculators should 

be used only after students ha[ve] learned how to do the relevant mathematics without 

them” (Ballheim 1999, p. 4). This belief is strongly linked to the Black-Box / 

White-Box principle where the order of instructional use of technology is discussed 

(Drijvers 1995). 

Overall the seven categories cover many of the most relevant and widely researched 

aspects of teacher beliefs regarding technology. Not covered by these categories are for 

example affective components of technology integration like effects on student 

motivation. 

EMPIRICAL EVALUATION OF THE QUESTIONNAIRE 

Method 

To investigate the psychometric properties of the questionnaire the set of items 

developed by Rögler (2014, 2015) was administered to 167 in service teachers in 

Germany. Data collection took place within a large larger research study that was 

carried out in the federal state of North Rhine-Westphalia in Germany in November 

2014 (Thurm et al. 2015). In this German federal state, the use of technology (GC or 

CAS) is compulsory since the schoolyear 2014/15.  

The questionnaire was administered as pen & paper questionnaire with responses 

given from 1=”strongly disagree” to 5=”strongly agree”. Confirmatory factor analysis 

was used to test the seven-factor structure of the questionnaire. Overall model fit was 

evaluated by the chi-square-fit index (χ2/df), the root mean square error of 

approximation (RMSEA), the standardized root mean square residual (SRMR) and the 

comparative fit index (CFI). To evaluate the local model fit, indicator reliability, factor 

reliability, cronbachs alpha, coefficient omega, average variance extracted (AVE) as 

well as the Fornell-Lacker criteria (FLC) were used. The FLC is a measure for 

discriminant validity of latent variables. It holds if the AVE is higher than every 

squared correlation of the scale with other scales.  

Results 

The confirmatory factor analysis yielded a good overall model fit. However not all 

local fit measures were good. In particular, all items of the scale named “Shifting” had 

a very low AVE (<0.5) and hence could only explain less than 50% of the variance. 

Furthermore, one item of the scale “D” and one item of scale “E” had very low 

indicator reliability. Finally, the scales “S” & “M” did not fulfill the FLC.  
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These results led to the following adaptions: The scale “A” had to be complete 

discarded because of the low AVE of the items in this scale. In addition, the two items 

with low reliability from the scale “A” and “E” were discarded as well. Afterwards the 

model fit was reassessed using the truncated questionnaire. The model fit was still 

good with RMSEA=0.050, SRMR=0.046, CFI=0.961, and χ2/df=1.445 as literature 

reports the following as sufficient for a good fit: χ2/df < 3; RMSEA < 0.08; SRMR < 

0.11 and CFI > 0.9. All items now show good indicator reliability and the reliability of 

the scales are high with Cronbach’s alpha ranging from 0.85 to 0.93 (Table 1). 

However, the scales “S” & “M” still do not fulfill the FLC, due to the high correlation 

(0.83) between these two scales.  

 

 

Table 1: Local model fit (left) and correlation table (right)  

(α=Cronbach’s alpha, ω= coefficient omega, AVE=average variance extracted, M=Mean, SD=Standard deviation) 

Since the scales “D” and “R” refer to benefits of technology use whereas the scales 

“T”, “S” and “M” refer to problems associated with technology use one would expect 

these scales to be negatively correlated which is indeed the case as seen in Table 3 

providing support for the validity of the questionnaire.  

SUMMARY 

Reliable and valid instruments to measure teacher’s technology related beliefs are not 

yet available and studies so far use unreliable single-item measures. This paper 

presents the empirical evaluation of a multi-item questionnaire to assess teacher 

technology related beliefs. Psychometric properties like reliability and dimensionality 

of the questionnaire are scrutinized leading to some adaption of the questionnaire. The 

resulting questionnaire comprises six scales covering a broad range of teacher beliefs. 

It shows very good statistical properties supporting reliability and validity of the 

instrument. The questionnaire allows researchers and educational leaders to measure 

teacher’s technology related beliefs in different areas much more accurately than 

single-item measure can afford. The questionnaire can be used in many settings and 

can be easily adapted to focus on a specific technology (like GC, CAS or Geo-Gebra)  

However, the questionnaire should be further scrutinized in future research. Since 

modifications were made due to the results of the statistical analysis “one must realize 

that the analysis has moved from confirmatory to exploratory.“ (Schreiber et al. 2006, 

 α ω AVE M SD 
R – Multiple 
Representations .85 .86 .61 3.8 0.81 

D – Discovery learning .87 .87 .57 3.3 0.83 
T – Time consuming .91 .91 .78 2.6 1.22 
S – Skill loss .86 .86 .61 3.8 0.90 
M – Mindless working 

.88 .88 .60 3.4 0.93 

P – Procedures first  .93 .93 .77 3.2 1.24 

 R D  T  S M  

D .66 1    

T -.54 -.67 1   

S  -.37 -.57 .70 1  

M  -.45 -.62 .71 .83 1 
P  -.28 -.43 .44 .49 .57 



Thurm 

_______________________________________________________________________________________________________________________

4-270 PME 41 – 2017 

p.330). In this case the psychometric properties of the questionnaire should be 

evaluated with a new sample of teachers. Work may also be done on extending the 

questionnaire by including scales covering affective topics like student motivation.  

Only if reliable and valid questionnaires are used empirical based research can 

generate reliable results.  

APPENDIX: 

In the following the final questionnaire is given. The items were translated from the 

German version presented in Rögler (2015). When using the questionnaire, it is 

recommended replacing the word [technology] by the appropriate type of technology 

used in the given context (i.e. CAS or GC) to avoid ambiguity.  

 Multiple Representations 

R1 
An important advantage of [technology] is the opportunity to quickly change between forms of representations like 
algebraic expression, graph and table. 
 R2 [Technology] helps to link the different types of representations (i.e. Graph, table, algebraic expression). 
 R3 By the use of [technology] students can use different types of representations to solve problems or tasks. 
 

R4 
The use of [technology] helps students to better understand the link between algebraic expression, table and graph of a 
function.  
  Discovery learning 

D1 
By using [technology], it is possible to generate many examples, so students can realize relationships and structures (i.e. 
symmetries of a graph of a function). 
 D2 [Technology] supports tasks where students can explore new content on their own. 
 D3 [Technology] enables students to explore mathematical concepts (i.e. meaning of parameters) on their own. 
 D4 The use of [technology] leads students to actively acquire particular content on their own. 
 D5 The use of [technology] particularly enables students to explore open problems on their own.  
  Time consuming 

T1 The use of [technology] costs valuable time which is subsequently missing in the mathematics classroom. 
 T2 [Technology] should be avoided in the mathematics classroom since otherwise too much time is lost. 
 T3 The introduction of [technology] costs so much time that its use does not pay off. 
  Skill loss 

F1 By the use of [technology] students forget procedures and algorithms (or do not learn them at all). 
 F2 The use of [technology] leads to students mastering arithmetic techniques worse or not all.  
 

F3 
By the use of [technology], students loose essential basic skills (i.e. mental calculation skills, methods of fractional 
arithmetic or precise drawing skills). 
 

F4 
Essential skills (i.e. solving systems of equations, calculating matrices or differentiation of functions) are less mastered by 
students due to the use of [technology].  
  Mindless working 

U1 If [technology] is used, students think less and rely blindly on the output that technology provides.  
 U2 [Technology] misleads students to work on every task without reflection. 
 U3 If students have access to [technology] they think less. 
 U4 When [technology] is used, there is the danger that students just type command sequences without understanding.  
 U5 The output that [technology] provides is accepted uncritically as correct by students.  
  Procedures first 

P1 [Technology] may only be used if the mathematics is mastered by pen & paper. 
 P2 Students should know the mathematical procedures thoroughly before they are provided access to [technology]. 
 

P3 
Within an instructional sequence students should not work too early with [technology], but rather only if they understood 
the mathematics sufficiently.  
 

P4 
[Technology] may only be used to ease students procedural work if the procedures are already mastered without 
[technology]. 
 

Table 2: Overview of the items of the final questionnaire 
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THE RELATIONSHIP BETWEEN LANGUAGE COMPLEXITY 

AND MATHEMATICS PERFORMANCE 

Hartono Tjoe 

The Pennsylvania State University 

 

We investigated the extent to which number word structure might offer an insight to 

children’s development of early number sense. In conjunction with TIMSS Grades 4 

and 8 mathematics scores of 60 countries, we selected the transparency base-ten 

structure as a criterion for linguistic complexity of the 33 spoken languages in 

translating numeral symbols into number words. Our findings showed, to some extent, 

that languages with no transparent base-ten structure had an advantage over those 

with transparent base-ten structure at the initial stage of mathematics learning but not 

as significantly at the later stage. 

INTRODUCTION 

International studies comparing mathematics achievements of children in the U.S. and 

those in other countries, especially in East Asia, indicated a persistent significant 

difference (Stevenson, Chen, & Lee, 1993; Torney-Purta, 1990). Researchers 

attributed to such discrepancy a number of affective and cultural qualities including 

beliefs, motivations, and study habits (Fuligni & Stevenson, 1995; Leung, 2006; 

Newman et al., 2007; Wang, 2004). Little was known regarding the role of number 

word acquisition on young children’s mathematical understanding (Miller, Kelly, & 

Zhou, 2005). 

In this study, we examined the extent to which different languages might influence the 

development of early number sense. From a list of official languages of the countries 

participating in the Trends in International Mathematics and Science Study 2011 

(TIMSS 2011; Mullis, Martin, & Arora, 2012), we surveyed the number word structure 

that linked numerals and word names. We were interested in answering the question of 

whether learning a particular spoken language might be a predictor of a child’s success 

in mathematics learning. 

THEORETICAL BACKGROUND 

Kindergarten was one of the most prominent grade levels where students brought with 

them to school the most heterogeneous mathematics skills from informal contexts 

(Cross, Woods, & Schwingruber, 2009). Prior to formal education, young children’s 

counting skills in particular ranged widely from little exposure to word names for 

numerals to simple visual manipulations of objects via number decomposition or place 

value approach (Cross, Woods, & Schweingruber, 2009; Syrett, Musolino, & Gelman, 

2012). 
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Such a considerable variation had been seen in mathematical understanding, 

particularly the understanding of number words and number sense, of not only young 

children across the U.S., but also those in the U.S. in comparison with those in other 

countries, especially in East Asia (Stevenson, Lee, Chen, Lummis, Stigler, Fan, & Ge, 

1990). While the latter on the whole were more successful in a number of 

mathematical assessments than the former, some researchers pointed out that the 

substantial difference in mathematical competence might not be a direct result of 

formal schooling or the superiority of the curriculum (Geary, Bow-Thomas, Fan, & 

Siegler, 1993). Miller, Smith, Zhu, and Zhang (1995) indicated that this difference in 

mathematical performance might be more related to the differences in the 

number-naming system. 

The acquisition of word names using a certain language had been shown to accelerate 

particular counting strategies. Ho and Fuson (1998) observed that Chinese-speaking 

children were more adept than English-speaking children at operating the number ten 

as a benchmark when performing addition tasks. Geary and colleagues (1993) found 

that when unable to immediately recall addition facts, Chinese-speaking children 

applied more abstract fallback strategies such as the verbal counting method, while 

English-speaking children applied more concrete fallback strategies such as the finger 

counting method. 

To the extent that Chinese-speaking children were perceived more mathematically 

proficient than English-speaking children, earlier researchers, in addition to cultures 

(Leung, 2001), student self-beliefs (House, 2006), and parental beliefs and practices 

(Miller, Kelly, & Zhou, 2005), credited the persistent difference to the transparency of 

base-ten structure in Chinese language that was not immediately apparent in English 

language (Miller & Paredes, 1996). Unlike English language, Chinese language was 

noted to convey a more direct relationship between Hindu-Arabic numeral symbols 

and their corresponding number words as one might read them in a literal translation. 

Chinese language consisted of only ten unique number words associated with numerals 

from 1 to 10, the combinations or variations of which constructed all number words 

associated with numerals from 11 to 99. These 99 constructions were done using the 

literal translation of base-ten structure. For example, the number word “shí-yī” was a 

combination of the number words “shí” and “yī,” which literally translated into “ten” 

and “one.” 

On the other hand, English language introduced unique number words for numerals 11 

and 12, in addition to the ten unique number words associated with numerals from 1 to 

10. For example, the number word “eleven” for the numeral 11 was neither a 

combination nor a variation of the number words “ten” or “one.” In total, 

English-speaking children would need to memorize not only two additional unique 

number words compared to their Chinese-speaking peers, but also another seven 

number words, whose constructions made use of a modified word “teen,” for numerals 

from 13 to 19. 
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These seven number words were mostly learned through rote memorization by 

English-speaking children, resulting in many not fully comprehending how those 

number words might be connected to their base-ten constructions (Fuson, Richards, & 

Briars, 1982). Evidently, by the age of five years old, compared to Chinese-speaking 

children, English-speaking children were less capable of recognizing that the numeral 

13, for example, might be equivalently viewed as “10 + 3” (Ho & Fuson, 1998). Such 

lack of understanding of the base-ten structure in the Hindu-Arabic numerals might be 

considered to be comparable to the lack of association between number words and 

number concepts of any typical two-year-old children (Wynn, 1992). 

More generally, the base-ten structure was considered to be more consistent and 

transparent in Chinese language than in English language (Miller, Kelly, & Zhou, 

2005). For example, the numerals 16 and 60 were read in Chinese language as “shí-lìu” 

and “lìu-shí,” which literally meant “ten-six” and “six-ten,” or equivalently, “10 + 6” 

and “6 × 10,” respectively. On the other hand, these numerals were read in English 

language as “sixteen” and “sixty,” which were comparable to “6 + 10” and “6 × 10,” 

respectively. While Chinese language clearly operated under the natural base-ten 

structure sequencing each number word with its place value, English language 

reversed the natural order, especially, for some numerals from 11 to 19. 

METHODOLOGY 

We determined the classification of each official language of TIMSS participating 

countries according to the transparency of its base-ten structure in the manner in which 

numeral symbols were associated with number words. Out of the 50 and 42 TIMSS 

Grades 4 and 8 participating countries, respectively, 60 were identified as distinct 

countries that utilized 35 unique languages. With the exception of Danish and 

Georgian that did not follow either pattern, we identified two number-word-naming 

patterns from the 33 different languages. 

We recognized the evolution of number words from 1 to 10 to from 11 to 19 and from 

20 to 99. If the place value and word naming association of the Hindu-Arabic numeral 

symbols was naturally translated into a literal manner, then a language was categorized 

as the first word-naming pattern (e.g., Chinese language). If the place value and word 

naming association of the Hindu-Arabic numeral symbols was not naturally translated 

into a literal manner, it was categorized as the second word-naming pattern (e.g., 

English language). 

Based on the word-naming pattern of its language, each of the 60 distinct TIMSS 

Grades 4 and 8 participating countries was associated with either the first or the second 

group. We performed the Grubbs’ test at 0.05 level of significance to recognize any 

extreme value of the TIMSS Grades 4 and 8 mathematics mean scores of the two 

groups in each group. We then analyzed the mean scores of these two groups using the 

t-test for independent means at 0.05 level of significance. 
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FINDINGS 

We identified 42 and 16 countries that corresponded to the first and second group, 

respectively (see Table 1). Examples of TIMSS participating countries in the first 

group were Hong Kong–CHN and Yemen whose official languages were Chinese and 

Arabic languages, respectively. Examples of TIMSS participating countries in the 

second group were the U.S. and Spain whose official languages were English and 

Spanish languages, respectively. 

In the first group, 33 countries reported a TIMSS Grade 4 mathematics mean score of 

474.63 (SD = 80.32), and 33 other countries reported a TIMSS Grade 8 mathematics 

mean score of 465.09 (SD = 67.14). In the second group, 15 countries reported a 

TIMSS Grade 4 mathematics mean score of 525.07 (SD = 35.80), and eight other 

countries reported a TIMSS Grade 8 mathematics mean score of 480.25 (SD = 80.84). 

 First group Second group 

Language complexity 
Transparent base-ten 

structure 

Non-transparent 

base-ten structure 

Number of distinct 

countries 

42 countries (e.g., 

Hong Kong–CHN and 

Yemen) 

16 countries (e.g., the 

U.S. and Spain) 

Number of unique 

languages 

29 languages (e.g., 

Chinese and Arabic 

languages) 

6 languages (e.g., 

English and Spanish 

languages) 

Number of 

participating countries 

in TIMSS Grade 4 

33 countries 15 countries 

TIMSS Grade 4 

Mathematics mean 

score 

474.63 (SD = 80.32) 525.07 (SD = 35.80) 

Number of 

participating countries 

in TIMSS Grade 8 

33 countries 8 countries 

TIMSS Grade 8 

Mathematics mean 

score 

465.09 (SD = 67.14) 480.25 (SD = 80.84) 

Table 1: Language complexity and TIMSS Mathematics performance 

The Grubbs’ test showed that there was no outlier in each group at 0.05 level of 

significance. Children in the first group performed worse than those in the second 

group at Grades 4 and 8. The t-test for independent means showed that at 0.05 level of 
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significance, there was a significant difference between the groups at Grade 4 but not 

at Grade 8. 

ANALYSIS 

Our findings demonstrated that to some extent, children who learned number words 

using a language with a transparent base-ten structure did not necessarily have a 

linguistic advantage over their peers who learned number words using a language 

without a transparent base-ten structure. Indeed, the former did significantly more 

poorly than the latter at Grade 4. The trend persisted at Grade 8, although not 

significantly. 

To a certain degree, this result contradicted the findings by Miller and colleagues 

(2005), who suggested that Chinese-speaking children benefited from the consistency 

and transparency of base-ten structure in Chinese language. This result also indicated 

that being born in a certain country that used a more transparent base-ten structure 

language might not effectively guarantee an early mathematics performance. 

Restricting the TIMSS participants  to include only Chinese-speaking countries (e.g., 

Hong Kong–CHN and Chinese Taipei–CHN) and the U.S. as selected in the study by 

Miller and colleagues (1995) did show that the former group was at a greater advantage 

than the latter group in mathematical competence, confirming their findings. 

Nevertheless, the hypothesis by Miller and colleagues (2005), to some extent, did not 

appear to apply in general to children in the countries outside East Asia whose primary 

language was not Chinese language but had a similar transparent base-ten structure as 

Chinese language. 

One counterexample was Arabic language. Arabic language was the official language 

of nine out of 50 and 11 out of 42 TIMSS Grades 4 and 8 participating countries, 

respectively. These 13 distinct countries were among the very lowest performers in 

TIMSS Grades 4 and 8 mathematics assessments. For instance, children in Yemen, 

who used Arabic language as their primary language, scored 248, which was the 

lowest score in TIMSS Grade 4 mathematics. This score was significantly lower than 

that of Chinese-speaking countries (e.g., 602 and 591 for Hong Kong–CHN and 

Chinese Taipei–CHN, respectively). 

Likewise, their hypothesis did not generalize to children in the countries outside the 

U.S. whose primary language was English language. For instance, English language 

was the language of instruction for students in Singapore, which scored 606, the 

highest score in TIMSS Grade 4 mathematics. This score was significantly higher than 

that of the U.S. (541). 

In contrast to the studies by Miller and colleagues (1995; 2005), the present study 

suggested, to some degree, that children in the countries whose primary language had 

no transparent base-ten structure performed significantly better than their peers in the 

countries whose official language had a transparent base-ten structure. 
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That is, English language, despite its lack of transparent base-ten structure, might not, 

or at least not mainly, be the primary reason as to why children in the U.S. consistently 

fared less satisfactorily than their peers in the East Asian countries in early 

mathematics performance. Still, it should be noted that the dominance in mathematics 

performance, which was significant at the initial level (e.g., Grade 4), became slightly 

diminished at a later stage of mathematical development (e.g., Grade 8). 

CONCLUSION AND DISCUSSION 

The present study examined the relationship between language complexity and 

mathematics performance. It sought to understand the extent to which number word 

structure of a certain language might shape children’s trajectory in mathematics 

learning. 

To some extent, the findings showed that: (a) with the exception of its proximate 

variations (e.g., Japanese and Korean languages as the official languages for Japan and 

Korea, respectively), Chinese language was the only language with a transparent 

base-ten structure that delivered a positive advantage of early mathematics 

competence in comparison with English language or other languages with no 

transparent base-ten structure, and (b) languages with no transparent base-ten structure 

more generally had an advantage over those with a transparent base-ten structure at the 

initial stage of mathematics learning but not as significantly at the later stage. 

It could therefore be inferred that language did not appear to play as a critical role in 

the process of acquiring mathematical understanding. The substantial difference in the 

mathematical development of young children in East Asian countries and the U.S. 

might have been confounded by affective and cultural qualities as opposed to with 

linguistic aspects. 

PEDAGOGICAL IMPLICATIONS 

Pedagogical implications that examined young children’s various counting 

mechanisms and proposed an alternative counting framework that connected the 

concepts of numbers and numerals might be reconsidered based on the findings of the 

present study. For example, despite having been considered to be of superior quality, 

Singapore mathematics textbooks, when blindly approached, might not necessarily 

find an identical success in its adoption in the U.S. as one in its own natural 

implementation in Singapore (Ginsburg, Leinwand, Anstrom, & Pollock, 2005). 

Similarly, concrete presentations of the base-ten structure of number words, for 

instance, using manipulatives such as base-ten blocks, might not be as well grounded, 

or even counterproductive, in an attempt to ameliorate the perceived weaknesses of 

languages with no transparent base-ten structure as previously suggested (Miller et al., 

1995). 
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This paper reports on efforts to characterise levels of mathematical sophistication for 

students in collaborative mathematics problem solving. Using a laboratory classroom 

in Australia, data were captured with multiple cameras and audio inputs. Students 

worked individually, in pairs, and in small groups (4 to 6 students). We focused on 

investigating collaborative work, with the goal of studying the mathematical 

sophistications of students’ reasoning when solving problems. Drawing from two 

analytical frameworks to document the mathematical sophistication in students’ 

exchange, levels of cognitive demands and mathematical practices, this research 

highlights different aspects of students’ reasoning in solving these tasks.  

SOCIAL ENVIRONMENT FOR LEARNING 

In social settings, learning involves complex processes including teacher-student and 

student-student interactions. Research designs in such settings need to be sensitive to 

the multifaceted nature of learning (Clarke et al., 2012). During collaborative problem 

solving of open-ended tasks, students have to negotiate approaches to a task as a group, 

which obliges the students to articulate their thinking overtly and this can make visible 

the learning processes. This study is part of a bigger project that investigates social 

interactions in learning through a research design that focuses on collaborative 

problem solving in mathematics. Available research facilities in Australia capture 

different sources of data including videos and audios records, as well as student 

artefacts. This paper specifically focuses on applying two approaches for documenting 

mathematical sophistication in students’ reasoning in the classroom setting. The 

analysis reported in this paper addresses the research question: What are the levels of 

mathematical sophistication (in written product and in spoken interaction) displayed 

by individuals and groups in the social unit (pair and small group) as they solve 

open-ended mathematical tasks? 

RELATED LITERATURE 

Given the focus of this paper is on students working collaboratively on real-world 

mathematical problems, we have examined related works drawing on research on 

problem solving prior to 1990 including problem difficulties and characteristics of 

problem solvers (cf. Lesh & Zawojewski, 2007). One line of research exclusively 

focuses on features of tasks for students to solve in school. According to Lester and 

Kehle (2003), these task features include content and context, structure, syntax, and 

heuristic behaviour variables. Lesh and Zawojewski commented that still missing in 
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this line of research is the consideration of the interactions between task difficulties 

and the characteristics of the problem solver. In other words, how students respond to 

tasks as a result of their personal characteristics matters. When solving problems, tasks 

alone do not account for how problem solvers interpret the same task differently. 

Students’ interpretation of tasks depends not only on task characteristics (e.g., 

mathematical content, figurative task context, levels of cognitive demand), but also on 

characteristics of the learner and the class (i.e., cognition and affect) (Lesh & 

Zawojewski, 2007). A second line of research distinguishes between good and poor 

problem solvers. Lester and Kehle (2003) summarized that, (a) good problem solvers 

know more than the poor ones and their knowledge is well organised, not in discrete 

form but as a structured and connected network, and (b) the attention of good problem 

solvers is on the structure of the problems, while poor problem solvers focus on 

irrelevant information and the surface features of the problems. In this study, we did 

not aim to document task difficulties or to distinguish types of problem solvers in term 

of the novice-expert paradigm. Instead, we focused on what students do in the setting 

as they solve the problems and we documented evidence of their mathematical 

sophistication. Arguably, students’ responses are dependent on the task variables, 

therefore the focus of this paper lies in the interaction between the two lines of research 

identified above. 

Researchers such as Stein and Lane (1996) have emphasized the role of instructional 

tasks as catalysts for student learning. Stein and Lane conceptualise tasks as passing 

through three phases: (a) as represented in curriculum/instructional materials, (b) as set 

up by the teacher in the classroom, and (c) as implemented by students during the 

lesson. This study focused on what students do when they are working on problem 

solving tasks, therefore it could be considered as addressing the third phase of task 

implementation. Furthermore, tasks can be examined for their cognitive demand—the 

kinds of thinking processes that are required in solving each task. Stein and Lane found 

that the cognitive demand required by tasks influence student learning because they 

determine the ways students think about, develop, and use mathematics. Their 

framework presents four levels of cognitive demand: memorization, procedure without 

connection, procedure with connection, and doing mathematics. This framework was 

adopted in this study to focus on what students do when facing such tasks. From the 

perspective of the cognitive demand of tasks we could deduce what was required of 

students by each task and compare this to what the students actually did when 

attempting the tasks. For example, in the high level of doing mathematics, tasks require 

complex and non-algorithmic thinking to provide the opportunity for students to 

execute such thinking in the setting.  

An alternative way to look at mathematical sophistication is through documenting how 

different mathematical practices (CCSSI, 2010) or mathematical habits of mind 

(Cuoco, Goldenberg,  & Mark, 1996) are performed when students solve mathematical 

problems. Building on mathematical proficiencies (Kilpatrick, Swarfford, & Findell, 

2001) and National Council of Teachers of Mathematics (NCTM) process standards 
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(2000), eight standards of mathematical practices were formulated representing the 

process that mathematicians and students carry out when they are doing mathematics. 

These practices include: (a) Make sense of problems and persevere in solving them. (b) 

Reason abstractly and quantitatively. (c) Construct viable arguments and critique the 

reasoning of others. (d) Model with mathematics. (e) Use appropriate tools 

strategically. (f) Attend to precision. (g) Look for and make use of structure (h) Look 

for and express regularity in repeated reasoning. Further details for the practices could 

be found in CCSSI (2010). In this study, these eight mathematical practices were used 

to investigate what features of the practices are evident when the students were 

interacting with each other when attempting the problem solving tasks. Together, the 

two analytic frameworks provide complementary perspectives to capture the nuances 

of mathematical sophistications in students’ reasoning. 

METHODOLOGY 

The Setting 

The recent development of a laboratory classroom, the Science of Learning Research 

Classroom (SLRC) at the University of Melbourne has made possible research designs 

that provide a better approximation to natural social settings, while allowing 

researchers to retain some control over aspects of the setting. In the Social Unit of 

Learning project, which utilised the SLRC for data collection, students work 

individually, in pairs, or in groups with their usual teacher. Yet, researchers could 

control task characteristics, the level of intervention from teachers, and possible forms 

of social interactions. With 10 built-in video cameras and up to 32 audio channels, the 

SLRC has the capability to capture classroom social interactions with a rich amount of 

detail. The facility was purposefully designed to allow simultaneous and continuous 

documentation of classroom interactions. The Social Unit of Learning project 

collected multiple forms of data including student written products and high definition 

video and audio recordings of every student and the teacher in the classroom. Intact 

Year 7 classes were recruited with their usual teacher for the project in order to exploit 

existing student-student and teacher-student interactive norms. Each class participated 

in a 60-minute session in the laboratory classroom involving separate problem solving 

tasks that required them to produce written solutions. 

Problem Solving Tasks 

To make the meaning negotiation process of the students visible for observation, 

open-ended tasks were chosen to allow students to have multiple entry points and 

require students to interact. Such tasks also call for different representations including 

numerical, symbolic, and graphical. In addition, the tasks afforded connection to 

contexts outside the classroom in order to facilitate discussion. These tasks were drawn 

from previous research (e.g., Sullivan & Clarke, 1992) and have been found to create 

opportunities for students to reason and to articulate their thinking. In the session 

analysed in this study, the three tasks included content foci that were disconnected to 

avoid carry-over effects between tasks. Task 1 focused on students’ abilities to make 
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sense of information from an incomplete graphical display – a bar graph. Students need 

to interpret what it is about and create the story from the graph. In Task 2, students 

were given an average age of the people in a household for which one person's age is 

constrained but requires interpretation and were asked to figure out the age of the other 

people in the household as well as the relationship between them. For the last task, 

students were required to work out the plan for a five-room apartment, which has a 

total area of 60 square metres. The students attempted the first task individually (10 

minutes), the second task in pairs (15 minutes), and the third task in groups of four to 

six students (20 minutes).  

 The wording Task 2, used in this study is as follows: 

Task 2: "The average age of five people living in a house is 25. One of the five people 

is a Year 7 student. What are the ages of the other four people and how are the five 

people in the house related? Write a paragraph explaining your answer."  

Data Analysis 

Two frameworks were used for coding data: one related to levels of cognitive 

demands, and another to mathematical practices. The cognitive demand framework 

(Stein & Lane, 1996) was adapted to describe what students do when facing the 

cognitive demands of tasks. Next, specific observations related to eight mathematical 

practices (CCSSI, 2010) were undertaken to help guide the coding of transcript and 

student artefact data. Videos of students working on the three problem solving tasks 

and the associated transcripts were used as a primary source for data analysis. After 

watching the videos and reading the transcripts, we created a mathematical story line to 

document their problem solving process. The students' written work was referenced 

occasionally to help explain their talk in the transcript. After creating the story lines, 

we then mapped the students’ actions onto the two frameworks: levels of cognitive 

demand and mathematical practices. For levels of cognitive demand, which are 

hierarchical in nature, we observed what was going on in the discussion and how 

mathematical reasoning was developed during problem solving. A level was 

considered to have been attained if the student(s) illustrated at least one of the criteria 

appropriate to that level. Furthermore, when several levels were observed, the highest 

level was coded. For the coding of mathematical practices, each of the mathematical 

practices was documented when performed together with the time that the practice 

occurred.  

PRELIMINARY FINDINGS 

Initial observation suggests that when students work individually, barely any 

conversation happened and students rarely talked aloud. The main source of data for 

Task 1 (individual work) was their written work. Therefore, in this paper, we will 

illustrate how the coding was employed for a pair of students when they worked on 

Task 2 (pair work). This paper illustrates its key points by drawing on the written 

solutions, transcripts, and video record from one pair, two male students. John and 

Arman, working on Task 2. First, a mathematical story line, a narrative of student’s 
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mathematical reasoning when solving the task, was constructed by one of the 

researchers for John and Arman. John, an English language learner, had some 

difficulty understanding mathematical and non-mathematical words in the written 

task. This seemed to restrict his entry into the task. Notwithstanding, he asked about 

the meaning of the words related and average and strived to make sense of the task. 

The teacher explained to him the meaning of related, but not the meaning of average. 

When John approached his peer Arman, Arman provided different unclear descriptions 

of average. 

Arman: You know what average is?  Average is - average age of five people living 

in a house is... It’s like the maximum. 

John: Huh? 

Arman: Maximum age. 

John: Oh. What's it mean? Okay, okay. Is not - important but … 

Arman: Okay. Average is like the most likely so most of the people in the - so most 

of five people living in a house is 25. 

John was able to identify the age of the Year 7 student in the house as 12 years old, and 

tasked himself to find the ages of other four people. As he still had problems with 

understanding the concept of average, he also had difficulty elaborating what he was 

looking for: “Is five people the - which is together is 25 or each person is 25?” (John). 

He persisted with solving the task as he got more information from his peer. 

John: Yeah.  So you just guess the person of - no, it's a - how to say it? Just bigger 

than 13. 

Arman: Yeah. So 12 and 25, lower - lower - younger than 25 and older than 12. 

John: Are they same age or different? 

Arman: Okay. So one can be 17 … 

John: Yeah. 

Arman: … yeah? Another one can be 14, 15. 

John: I don't think so. 

Arman: Or it can be older. 

John: Oh… (moaning and groaning helplessly) Just - just don’t like to [inaudible] 

(laughs). 

Arman re-read the problem and picked out critical information from the task: what was 

the given information (one person was in Year 7), the household average age of 25 

years and that the Year 7 student was not 25 years old, “Year 7 student is not 25 years, 

right?”), and what was being asked (age of each of the five people and their 

relationship). Arman interpreted average as maximum and typical, “most likely” in the 

sense of mode – “most of the five people living in a house is 25, close to 25”. He then 

moved forward with the misinterpretation of average as maximum, and tried to find 
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three numbers between 12 (or later 13) and 25. In the end, he said the numbers cannot 

be more than 27 or 28. He tried to generate five numbers from 12 to 25, with the same 

gaps between two consecutive numbers, starting with a gap of three: 12, 15, 18, 22, 25; 

he realised that this did not work and then revised and proposed alternatives of 17, 19, 

21, 23; then 15, 21, 13, 18, 21 (“three years difference from two consecutive numbers, 

except for this one, it’s 7 years, right?”) – which was not consistent with the different 

interpretations of average that he had. As the time was running out, he rushed to the 

answer, and said to John, “just write something.” The pair ended up with 13, 15, 18, 21, 

28, and worked out the relationships between the five people as brothers and sisters. 

John jumped in to help figure out the relationships between the people based on their 

ages: “It’s a brother or father or brother or brother or friends?” Arman seemed to have 

created a mathematical model for the problem as finding five consecutive numbers 

with equal gaps knowing the minimum and maximum and assign the numbers to ages 

of people in a family and figure out the relationship. The focus of their attention was on 

their interpretation of the mathematics requirements. They then worked backwards to 

reconstruct the context. 

This line of reasoning was coded as a High level of doing mathematics as the pair 

engaged in several actions at that level, including:  

 Use of complex and non-algorithmic thinking 

 Explore and understand the nature of mathematical concepts, processes, or 

relationships 

 Self-monitor and self-regulate their own cognitive processes 

 Access relevant knowledge and experiences and make appropriate use of 

them 

 Analyse the task and actively examine the task constraints that may limit 

possible solution strategies and solutions (Stein & Lane, 1996). 

In terms of mathematical practices, we can observe that both students were involved 

in:  

 Making sense of the problems and persevering in solving them. Both students 

started by explaining to themselves the meaning of a problem and looking for 

entry points to its solution. They analysed givens, constraints, relationships, 

and goals for the task.  

 Constructing viable arguments and critiquing the reasoning of others. They 

understood and use assumptions, definitions (average), and established results 

in constructing arguments. They justified their conclusions, communicated 

them to others, and responded to each other’s arguments. 

 Modelling with mathematics. They applied the mathematics they know to 

solve problems. They were able to identify important quantities in a practical 

situation and mapped their relationships using such tools as diagrams. They 
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routinely interpreted their mathematical results in the context of the situation 

and reflected on whether the results make sense, possibly improving the 

model (CCSSI, 2010). 

As can be seen, the two frameworks (cognitive demands and mathematical practices) 

are conceptually disjoint, addressing entirely different aspects of mathematical 

sophistication with one framework hierarchical in nature and the other one does not 

assume any particular order. The juxtaposition of the two frameworks informs a more 

nuanced reading of the data. 

DISCUSSION 

The paper reports the use of two analytical frameworks to document levels of 

mathematical sophistications of students’ reasoning during collaborative problem 

solving.  The creation of the story lines appears to be useful for tracing the reasoning 

process of the students. It is a novel approach to apply the cognitive demands 

framework to document students’ mathematical sophistication when reasoning during 

collaborative problem solving rather than focusing only on task features. The 

framework appears to be useful for capturing the nuances of the students’ reasoning 

when working on the problem solving task. In addition, the application of the 

mathematical practices standards as a classificatory framework draws attention to 

student actions that are valued when solving mathematical problems. The applications 

of the two analytic frameworks could help advancing ways to examine collaborative 

problem solving. Furthermore, by applying these two frameworks, the researchers 

could examine the connections between each level of cognitive demand and the eight 

mathematical practices. The analysis is descriptive but not explanatory. It represents 

the first step in a research process directed towards the development of theory in 

relation to student collaborative problem solving and learning. Using the combined 

frameworks to identify student pairs or groups engaged in sophisticated mathematical 

activity, the video and transcript records of their activity can be examined to identify 

forms of interaction characteristic of such mathematically successful social groups. 

The analysis reported here focused on providing an overall evaluation of the reasoning 

processes of the students. Further analysis is anticipated to examine the finer-grained 

patterns in mathematical sophistication of the students' reasoning during the pair 

discussion. Chunking the transcript data into smaller units could reveal patterns of 

mathematical sophistication evident when the students were negotiating during 

problem solving. A possibility is to chunk the transcript data into the unit of 

negotiative events (cf. Clarke, 2001) as a further step to document the levels of 

mathematical sophistication at this grain size. Furthermore, it could be useful to 

associate the coding at this grain-size with the coding of other aspects of the student 

interactions (e.g., student dialogic talk and affect) and use other variables as a way to 

account for mathematical sophistication. The Social Unit of Learning project concerns 

the identification of regularities in the negotiative interactions of students and how the 

social interactions influence the mathematical sophistications of student reasoning 

during collaborative problem solving. Future work will involve combining the analysis 



Tran and Chan 

_______________________________________________________________________________________________________________________

4-288 PME 41 – 2017 

just described with other analyses of student affect, intersubjectivity, and discursive 

practice to identify factors of potential value to explain or account for students’ 

mathematical sophistications.  
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CONCEPTION OF NUMBER AS A COMPOSITE UNIT PREDICTS 

STUDENTS’ MULTIPLICATIVE REASONING: QUANTITATIVE 

CORROBORATION OF STEFFE’S MODEL 

Ron Tzur, Heather Lynn Johnson, Andy Norton, Alan Davis, Xin Wang, Michael 

Ferrara, Cody Jorgensen, Bingqian Wei 

University of Colorado Denver 

This study1 provides statistical analysis that corroborates a prediction implied by Les 

Steffe’s model: the strength of children’s conception of number as a composite unit 

predicts their ability to reason multiplicatively.  In individual clinical interviews, 33 

fourth graders (age ~10) correctly solved a 1-digit addition word problem (8+7). 

Students spontaneously used one of three strategies: counting-on, doubling, or 

break-apart-make-ten (BAMT).  Our statistical analysis revealed that students’ 

spontaneous use of BAMT largely predicted their ability to reason multiplicatively, 

counting-on predicted poor ability, and doubling fell in between.  We discuss 

implications of these findings for research and practice. 

INTRODUCTION 

We examine how a central element of Steffe’s (1992) model of children’s 

mathematical thinking—children’s conception of number as a composite unit—might 

help predict their extant ability to engage in multiplicative reasoning (MR).  Like 

Ulrich (2015, 2016), our study addresses Lamon’s (2007) call for research linking 

students’ additive and multiplicative structures.  It sheds light on a novel aspect of this 

link—the vital role students’ conception of number may play in developing more 

advanced concepts, such as fraction and ratio (Hackenberg, 2013). 

We argue that a child’s spontaneous use of an additive strategy (counting-on, doubling, 

BAMT) to solve a 1-digit addition word problem indicates the strength of the child’s 

conception of number.  Our focus is not on students’ potential to learn to reason 

multiplicatively.  Rather, we aim to predict students’ current ability to use 

multiplicative reasoning based on the additive strategy they spontaneously use.  We 

follow Kilpatrick’s (2001) assertion of the need for statistical corroboration of the 

predictive power bestowed by conceptually sound models.  Drawing on constructivist 

theory, researchers have used qualitative methods to develop conceptual models of 

students’ additive and multiplicative reasoning.  However, little work has been done in 

the field to test and corroborate such qualitative models.  Our study follows Norton and 

Wilkins’ (2009) lead, by providing new quantitative analysis to corroborate a central 

element of Steffe’s (1992) model of children’s mathematical thinking. 
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CONCEPTUAL FRAMEWORK 

The core of the constructivist framework for this study is the depiction of children’s 

conception of number as an abstract, symbolized composite unit (Steffe, 1992).  This 

conception allows a child to operate on a numerical symbol as a single “thing” and to 

decompose it into sub-parts. When reasoning additively, a child can mentally 

coordinate the same type of unit (e.g., 8 grapes + 7 grapes = 15 grapes). In contrast, 

when reasoning multiplicatively, a child can simultaneously coordinate different levels 

of units: items in each composite unit (1s), number of composite units, and a total 

number of 1s (Ulrich, 2015).  For example, consider the problem: “Sarah wants to put 8 

grapes into each of 7 baskets. How many grapes does she need?”  A child reasoning 

multiplicatively can distribute items of one composite unit (grapes per basket) over 

another composite unit (baskets) to find the total number of items (1s) in a collection of 

composite units (total of grapes).  Such a coordination requires conceiving of number 

as composite unit (Steffe, 1992; Ulrich, 2016).   

We sharply distinguish a child’s solution to a problem from conceptions that underlie 

her solution (Tzur et al., 2013; Ulrich, 2016).  A student may correctly solve a 1-digit 

addition problem (e.g., 8+7) by spontaneously using additive strategies such as: 

counting-all (1, 2, …, 14, 15), counting on (8; 9, …, 14, 15), doubling (7+7=14; 

14+1=15), BAMT (8+2=10; 10+5=15), or fact retrieval.  If we focus on the correct 

solution, any of these strategies would suffice.  Instead, we contrast them based on the 

strength of a child’s conception of number that we infer to underlie each strategy. 

Steffe (1992) used a criterion of number as a composite unit to claim counting-all does 

not indicate a conception of number.  We also claim that counting-on indicates a weak 

conception; doubling an intermediate conception; and BAMT a strong conception.  In 

each of those latter three strategies, a child could conceive of one addend as a 

composite unit.  Yet, a child using counting-on does not decompose numbers into 

sub-parts other than 1s.  Rather, she accrues, one after another, units of 1 that constitute 

the second addend.  In doubling, the child could decompose one addend to create easy 

fact retrieval (8 is 7+1), then add two composite units in their entirety (7+7=14), and 

finally ‘call-back’ the decomposed 1 (14+1=15).  In BAMT the child could both 

decompose one addend into units larger than 1 (7 is 2+5) and integrate them into 

another unit (8+2=10) as a means to add two composite units in their entirety 

(10+5=15).  A child’s use of decomposition indicates that she can operate on a number 

as a unit in and of itself, without constantly reconstituting it from 1s.  Because a child 

using BAMT uses decomposition into and integration of sub-parts that are themselves 

composite units, we argue that spontaneous use of BAMT indicates a stronger 

conception of number than does doubling.  

METHODS 

This study was part of a larger project focusing on promoting and studying upper 

elementary teachers’ shift toward a student-adaptive pedagogy (AdPed), and how such 

a shift impacts students’ learning and outcomes.  To this end, we developed and 
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validated a written measure for assessing students’ multiplicative reasoning (MR) 

(Hodkowski  et al., 2016).  The measure contains five word problems: one screener 

(1-digit addition) and four problems through which we intended to measure students’ 

multiplicative reasoning. Our team includes language experts who helped design word 

problems appropriate for students learning English as an additional language.  

In Problem #1 (screener), we intended for students to spontaneously use a strategy to 

add two 1-digit numbers (8+7).  In Problem #2, we intended for students to iterate a 

composite unit (e.g., a tower of 5 cubes) to determine if it could constitute a larger 

composite unit (e.g., a tower of 24 cubes).  In Problem #3 (MR), we intended for 

students to distribute items of one composite unit (3 cubes per tower) over another (6 

towers) to find the total number of items in a collection of composite units (total 

cubes).  In Problem #4, we intended for students to keep track of composite units (4 

teams of 5 players each).  We asked them to determine the correctness of a hypothetical 

student’s  (Joy) statement that, through ‘skip-counting’ by 5, she found there are 35 

players in all.  In Problem #5 (MR), given a total number of items (28 cookies), we 

intended for students to iterate one composite unit (4 cookies per bag) to determine the 

total number of composite units (bags) needed.  In each of the MR word problems 

(#2-5), we included sub-questions that required students to fill in blanks with key, 

given information. For example, in Problem #4, students had to fill a given in the 

blank: “In each team there are ___ players.”  We included these sub-questions, in part, 

to assess students’ comprehension of problem statements. 

Our initial analysis of the interviews revealed a novel correlation that extended beyond 

our initial design: the spontaneous additive strategy students used to solve a 1-digit 

addition word problem (8+7) seemed linked with their score on the MR measure.  

Thus, we designed a follow-up, quantitative study (reported here) to collect and 

analyze data to examine this novel correlation. 

Setting and Participants. 

Participants were 4th graders (age ~10) at an elementary school in a large urban school 

district in the western USA. A total of 43 students—roughly 50% of all 4th graders in 

that school—completed the MR measure during an individual, clinical interview 

conducted by the first author.  We excluded ten students from our analysis: 3 who used 

counting-all, 4 with no consent, and 3 who incorrectly responded to the sub-questions 

assessing students’ comprehension of the word problems. The study sample thus 

consisted of 33 students (15 girls), all mainstreamed for math instruction. Most (85%) 

participants identified as non-white, including 17 (52%) Latino/a and 11 (33%) 

African-American students.  Of the 33 participants, 45% were designated as English 

Language Learners, and three had Individual Educational Programs (IEPs). 

We have established three important commonalities for this sample. First, all 33 

students correctly solved Problem #1, using either counting-on, doubling, or BAMT.  

Second, 32 of them correctly responded to the sub-questions (fill givens in the blanks) 

intended to assess their comprehension of the problem statements.  Third, the actions 
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and time lapse between each student’s reading and answering Problem #1 (from 4 to 30 

seconds) indicated none solved 8+7 through fact retrieval.  

Data Collection and Analysis. 

The first author administered the MR measure to individual students, during clinical 

interviews lasting about 30 minutes. Each problem was first read out loud by the 

student or the interviewer. The student then solved the problem on her or his own, 

without assistance. After a student finished solving a problem, the interviewer asked 

follow up questions to gather further evidence of students’ thinking. As each student 

solved Problem #1, to increase the likelihood of accurate inference of the additive 

strategy each student used, during the interview, he made notes of the child’s actions 

and utterances—and the inferred additive strategy. 

Students used two forms of doubling: (a) 7+7=14; 14+1=15 and (b) 8+8=16; 16-1=15.  

No statistically significant difference could be found between those two sub-groups. 

We thus combined them into a single category (doubling). We classified three ordinal 

levels of the independent variable: 1=incipient/weak (counting-on), 

2=developing/intermediate (doubling), and 3=developed/strong (BAMT) conception 

of composite unit. We then conducted three tests. First, we used ANOVA to test 

whether means in solutions to MR problems (Problems #2-5) were significantly 

different for those three groups. Next, we used Kendall’s Tau-b, a test of correlation 

that does not assume normal distribution or equal interval scaling.  Finally, we used a 

t-test to compare between every pair of groups, supposing (based on the ANOVA) the 

comparison between counting-on and BAMT is the imperative one. 

RESULTS 

In this section, we present data analysis to substantiate our claim that the strength of a 

child’s concept of number as a composite unit, inferred from her or his spontaneously 

used additive strategy (independent variable), can help predict the child’s ability to 

reason multiplicatively (dependent variable).  We begin with statistical analysis of all 

participants (N=33), followed by between-group differences.  

Multiplicative Reasoning – All Participants. 

In Table 1 we provide percentages of students who correctly solved each MR problem.  

We observe two important results.  First, despite all 33 students solving 100% of 

Problem #1 correctly, they collectively solved less than 40% of each MR problem 

correctly.  We interpret students’ success on Problem #1 to indicate their ability to use 

additive reasoning and their difficulty with Problems #2-5 (MR) to indicate their lack 

of multiplicative reasoning.  This contrast between additive and multiplicative 

reasoning lends support to researchers’ theoretical predictions of a conceptual leap 

involved in shifting from additive to multiplicative reasoning (Hackenberg, 2013; 

Ulrich, 2015). 
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MR Problem 2 3 4 5 

Percentage of correct solutions 33% 18% 36% 39% 

Table 1: Percentages of students who correctly solved each MR problem. 

Second, students’ success rate was lowest (18%) in solving Problem #3. A 

paired-samples t-test comparing all students’ solutions to Problem #3 and to the three 

other multiplicative problems shows non-significant difference with Problem #2, a 

statistically significant difference with Problem #4 (t=2.25, df=32, p=.032), and nearly 

statistically significant with Problem #5 (t=1.88, df=32, p=.07).  

Between-Group Differences in Multiplicative Reasoning (MR). 

In Table 2 we show percentages of students who correctly solved each MR problem, 

disaggregating the data by the spontaneous additive strategy students used to solve 

Problem #1.  We found statistically significant differences among students when 

disaggregating by their spontaneously used additive strategy.  The percentages of 

students who solved all MR problems correctly were highest for BAMT (56%), 

midway for doubling (34%), and lowest for counting-on (17%).  ANOVA shows these 

differences are statistically significant (F=8.25, p=.001).  Further t-tests on success 

rates for the four MR problems showed nearly statistically significant differences 

between counting-on and doubling (t=2.04, df=22, p=.053) and highly significant 

between counting-on and BAMT (t=4.29, df=23, p<.0005), but not between doubling 

and BAMT, possibly due to the smaller n of these two groups. 

MR Problem 2 3 4 5 Across all 4 MR Problems 

Counting on 13% 6% 19% 31% 17% 

Doubling 50% 13% 38% 38% 34% 

BAMT 56% 44% 67% 56% 56% 

Table 2: Percentages disaggregated by students’ spontaneous additive strategy. 

A Kendall’s Tau-b (KTb) test of correlation further demonstrates the linkage between 

students’ additive strategy and the success rate on problems involving multiplicative 

reasoning (KTb= 0.5, p=.001).  Data in Table 3 further highlight this: a child’s 

spontaneous use of counting-on predicts a very low success rate on MR problems. Of 

students using counting-on, 94% correctly solved at most one problem. In contrast, 

No. of MR problems Solved Correctly 0 1 2 3 4 (All) 

Counting-on (N=16) 

Doubling (N=8) 

BAMT (N=9) 

37.5% 

12.5% 

11.1% 

56.3% 

62.5% 

11.1% 

6.2% 

- 

33.3% 

- 

25.0% 

33.3% 

- 

- 

11.1% 

Table 3: Percentages of students who correctly solved 0, 1, 2, 3, or 4 MR problems. 
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a child’s spontaneous use of BAMT predicts a much higher success rate on MR 

problems: 78% of students spontaneously using BAMT correctly solved at least two 

MR problems (33.3%, 33.3%, 11.1%) 

To examine the impact of spontaneous additive strategy on student success rate for 

each MR problem separately, we conducted ANOVA for between-group differences.  

Table 4 presents these results.  Group contribution to this variance, calculated using 

S-N-K post-hoc statistics and t-tests (Table 5), showed statistically significant 

differences between counting-on and doubling (Problem #2), and between counting-on 

and BAMT (Problems #2, #3, and #4). 

Problem No. 2 3 4 5 

ANOVA F=3.42 (.046) F=3.25 (.053) F=3.146 (.006) - 

Table 4: ANOVA of between-group differences for each MR problem. 

 

Problem No. 2 3 4 5 

Count-on vs. Doubling 

Count-on vs. BAMT 

t=2.1 (.048) 

t=2.49 (.021) 

- 

t=2.47 (.021) 

- 

t=2.61 (.015) 

- 

- 

Table 5: Independent samples t-test values of between group-pairs differences on each 

problem (equal variance not assumed; p-values in parentheses). 

Results presented in Tables 4 and 5 indicate two main points that, combined, support 

our claim that the strength of a child’s conception of number as composite unit holds 

predictive power for her current ability to reason multiplicatively.  First, we focus on 

responses to Problem #4, on which students who used counting-on were most 

successful. To solve Problem #4 correctly, students needed to (a) determine that Joy’s 

response is wrong (in 4 teams of 5 players each, there are not 35 players), (b) select an 

appropriate reason for Joy’s mistake, and (c) figure out the correct number of teams 

that Joy counted (35 players would make 7 teams of 5 players each).  Only three 

students (19%) who used counting-on could solve this problem correctly, seemingly 

by their ability to skip-count by 5s to arrive at 20.  The other thirteen (81%) students 

were unsuccessful.  Among those thirteen, ten students (63%) incorrectly selected “35” 

as the number of teams that Joy counted.  We interpret the students’ error to provide 

empirical evidence to support Ulrich’s (2015) claim that such students rely on 

operating on 1s—a reliance that may often be masked by their successful performance 

when iterating familiar numbers, such as 5. 

Students’ performance on Problems #2, #3, #4 provides further support of Steffe’s 

(1992) model.  In each of these problems, a child would have to carry out the 

simultaneous, coordinated monitoring of the accrual of both 1s and composite units. 

Among the 16 students who spontaneously used counting-on to solve Problem #1, only 

two (13%) could solve Problem #2, only one (6%) could solve Problem #3, and only 

three (19%) could solve Problem #4.  These data corroborate the prediction that 
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students with weak composite unit—solving addition tasks by adding 1s—are unlikely 

to reason multiplicatively.  In contrast, among the nine students who spontaneously 

used BAMT, five (56%) could solve Problem #2, four (44%) could solve Problem #3, 

and six (67%) could solve Problem #4.  These data corroborate the prediction that 

students with strong composite unit—solving addition tasks by decomposing the 

second addend—are more likely to reason multiplicatively.  

DISCUSSION 

We examined how an element of Steffe’s (1992) model—children’s conception of 

number—might help predict their ability to reason multiplicatively.  We provided 

analysis of the conceptual foundations of students’ spontaneous use of three additive 

strategies—counting-on, doubling, and BAMT.  Importantly, students’ use of any of 

these strategies provides evidence that they have constructed a conception of number.  

Our study corroborated Steffe’s model: the strength of a child’s conception of number, 

as evidenced by their spontaneous use of an additive strategy, can help to predict their 

extant ability to engage in multiplicative reasoning.  Specifically, a child who 

spontaneously uses counting-on is highly unlikely to engage in multiplicative 

reasoning.  In contrast, a child who spontaneously uses BAMT is likely to do so.  

Keeping with Kilpatrick’s (2001) assertion, our study thus contributes to the field’s 

knowledge base by testing a long-known and well-articulated conceptual model that 

links, developmentally, students’ additive and multiplicative reasoning.  

Implications for Research. 

We note three implications of this study. First, it opened the way for identifying 1-2 

tasks that can indicate a child’s likelihood for advanced ways of reasoning based on 

observable, lower-level solutions. A future, larger N study may confirm the predictive 

power of a child’s additive strategy.  Second, a related measure to the one we used 

could be developed to examine the linkage between a child’s comprehension of a 

realistic word problem and her or his conception of number and/or multiplicative 

reasoning.  Third, this study implies the need to carefully examine the design and 

findings of studies intended to determine the impact of an instructional intervention on 

student learning and outcomes.  Lack of impact of such interventions may be rooted 

not in the intervention per se (Woodward & Tzur, in press), but in students’ lack of a 

cognitive prerequisite that affords the intended learning (e.g., lack of strong enough 

composite unit; see Tzur, Xin, Si, Kenney, & Guebert, 2010).   

Implications for Practice. 

For practice, our study implies the possibility to use a quick measure (screener 

Problem #1) to assess the strength of each student’s conception of number.  In our 

current project, teachers are learning to use it so they: (a) link between a child’s 

additive strategy and her MR, (b) can conduct short, task-based interviews to elicit 

students’ strategies, (c) document the results of their assessments, and (d) adapt their 

subsequent instruction to meet the needs of students in each group.  Teachers with 
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whom we work seem to deeply appreciate the main goal for each student who uses 

counting-on and doubling: strengthen her or his conception of number as composite 

unit by learning to decompose addends into sub-composite units. 

References 

Hackenberg, A. J. (2013). The fractional knowledge and algebraic reasoning of students with 

the first multiplicative concept. The Journal of Mathematical Behavior, 32(3), 538-563.  

Hodkowski , N. M., Hornbein, P., Gardner, A., Johnson, H. L., Jorgensen, C., & Tzur, R. 

(2016). Designing a stage-sensitive written assessment of elementary students’ scheme for 

multiplicative reasoning. In M. B. Wood, E. Turner, M. Civil, & J. A. Eli (Eds.), 

Proceedings of the 38th annual meeting of the North American Chapter of the 

International Group for the Psychology of Mathematics Education (Vol. 1581-1587). 

Tucson, AZ: The University of Arizona. 

Kilpatrick, J. (2001). Where's the evidence? Journal for Research in Mathematics Education, 

32(4), 421-427.  

Lamon, S. J. (2007). Rational numbers and proportional reasoning: Toward a theoretical 

framework. In F. K. Lester (Ed.), Second handbook of research on mathematics teaching 

and learning (pp. 629-667). Charlotte, NC: Information Age. 

Norton, A., & Wilkins, J. L. M. (2009). A quantitative analysis of children's splitting 

operations and fraction schemes. The Journal of Mathematical Behavior, 28(2–3), 

150-161.  

Tzur, R., Johnson, H. L., McClintock, E., Kenney, R. H., Xin, Y. P., Si, L., . . . Jin, X. (2013). 

Distinguishing schemes and tasks in children's development of multiplicative reasoning. 

PNA, 7(3), 85-101.  

Tzur, R., Xin, Y. P., Si, L., Kenney, R. H., & Guebert, A. (2010). Students with learning 

disability in math are left behind in multiplicative reasoning? Number as abstract 

composite unit is a likely “culprit”. Paper presented at the American Educational Research 

Association, Denver, CO.  

Steffe, L. P. (1992). Schemes of action and operation involving composite units. Learning 

and Individual Differences, 4(3), 259-309. 

Ulrich, C. (2015). Stages in constructing and coordinating units additively and 

multiplicatively (part 1). For the Learning of Mathematics, 35(3), 2-7.  

Ulrich, C. (2016). Stages in constructing and coordinating units additively and 

multiplicatively (part 2). For the Learning of Mathematics, 36(1), 34-39.  

Woodward, J., & Tzur, R. (in press). Final Commentary to the Special Series. Learning 

Disability Quarterly. 

 



 

 

4-297 
2017. In Kaur, B., Ho, W.K., Toh, T.L., & Choy, B.H. (Eds.). Proceedings of the 41st Conference of the International 

Group for the Psychology of Mathematics Education, Vol. 4, pp. 297-304. Singapore: PME. 

ARE YOU JOKING? OR IS THIS REAL? 

INCREASING REALISTIC RESPONSES TO WORD PROBLEMS 

VIA HUMOR 

Wim Van Dooren, Hannelore De Wortelaer and Lieven Verschaffel 

Centre for Instructional Psychology and Technology 

University of Leuven, Belgium  

 

Research has shown that children have a strong tendency to exclude real world 

considerations when solving word problems. In this study, we investigated whether 

children would adapt their behavior when solving word problems in which realistic 

considerations are required (P-items) when these problems are embedded in a 

humoristic context as compared to when they are offered in a typical word problem 

solving context. 148 sixth graders solved 4 P-items in a humor condition versus a word 

problem condition. It was found that overall significantly more realistic responses 

were given in the humor condition, and this was the case for 3 of the 4 problems. 

Implications of these findings for further research and for classroom instruction are 

discussed. 

THEORETICAL AND EMPIRICAL BACKGROUND 

A major role for including word problems in the curriculum is that children should 

develop the skill to know when and how to apply mathematics in everyday life. For a 

long time, word problems have played this function without much critical concern, but 

during the last two decades, it has been shown that the current school practices do not 

at all foster in children a genuine mathematical modeling disposition. Apparently, as a 

result of their year-long participation in traditional mathematical word problem 

solving lessons, many children approach word problems in a superficial and artificial 

way. They just search or the mathematical operation(s) to perform with the given 

numbers, with little or no attention to the meaningfulness of their solution (Lave, 1992; 

Reusser & Stebler, 1997; Schoenfeld, 1991; Verschaffel, Greer, Van Dooren, & 

Mukhopadyay, 2009).  

For instance, in a seminal study by Verschaffel et al. (1994) fifth graders solved 

so-called problematic word problems (P-items), in which the correct solution cannot 

be found by simply performing the mathematical operation. Instead, the reality of the 

problem situation has to be taken into account. An example is the rope item: “A man 

wants to stretch a rope between two poles that are 12 metres apart. He has only pieces 

of rope that are 1.5 metres long. How many pieces does he need?” From a genuine 

modeling perspective, the solver has to conclude that 12 / 1.5 = 8 pieces are 

insufficient, because the man also needs to tie the pieces together and also needs extra 

rope to stretch around the poles.  
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Verschaffel et al. (1994) found around 15% of realistic answers to their set of P-items, 

a finding that was replicated many times across the world (for an overview, see 

Verschaffel et al., 2009). During the past 15 years several researchers have tried 

various manipulations to better understand the origin and development of this 

tendency, but also to counter it. Examples are studies in which pupils are alerted at the 

beginning of the test that some problems need careful consideration (Yoshida, 

Verschaffel, & De Corte, 1997) or are provided illustrations that represent the situation 

that is described in the word problem (see e.g., De Wolf, Van Dooren, Ev Cimen, & 

Verschaffel, 2014). At best, such manipulations had only minimal effects. The only 

significant improvements are obtained when children are confronted with more 

authentic formulations of the P-items (e.g., Palm, 2008), or when these P-items are 

transformed into performance tasks involving real-life goals and concrete materials 

(e.g., DeFranco & Curcio, 1997). However, these improvements did not transfer to 

word problems with realistic modelling complexities presented in a maths classroom 

context. So, improving children’s inclination to react realistically when solving word 

problems in a maths classroom context remains a great challenge (e.g., Van Dooren, 

De Bock, Janssens, & Verschaffel, 2005). In the current study, we tried to improve 

children’s tendency to react realistically to P-items that were used in previous research 

by means of a new manipulation, namely embedding them in a humoristic context 

rather than in the context of a typical word problem test.  

The literature on humor (e.g., Ivy, 2013; Nicewonder, 1994) points to many possible 

advantages of using humor in educational settings: It can reduce stress and tension, it 

attracts attention, it can motivate and change attitudes, and it may stimulate children to 

see the problem situation from a different perspective. It is this last advantage that 

seems most relevant for the current study: Children need to see the situation described 

in the word problem from a different perspective. This aspect of humor is elaborated in 

the Incongruity Theory of Humor (e.g. Attardo, 1997; Feyaerts, 2008), which focuses 

on the cognitive processing of humoristic situations. More specifically, it focuses on 

humor that originates when situations allow for two possible interpretations of the 

same situation which are incongruent. Only one of these two interpretations of the 

situation – namely the more plausible one – occurs in the listener/reader. The joke’s 

clue, however, is that the alternative, less plausible interpretation – the one the 

listener/reader did not think of – ultimately turns out to be true. The reaction to this 

unexpected experience of incongruity is one of laughter. 

RATIONALE AND RESEARCH GOALS 

The mechanism of incongruity leading to humorous experience as pointed out by 

Attardo (1997) and Feyaerts (2008) was used in our study. We specifically looked for 

jokes presented in the form of word problems involving two incongruent 

interpretations with respect to the acceptability and desirability to include real-world 

considerations into their solution. Our expectation was that by surrounding the P-items 

by jokes that specifically addressed the incongruity between sticking to the rules and 

norms of the mathematics classroom (= the more plausible interpretation) and using 
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real-world considerations (= the less plausible interpretation) children would be more 

inclined to reason realistically when solving the P-items.  

METHOD 

Design and materials 

148 sixth graders from four different schools in Flanders, Belgium were randomly 

assigned to a Humor Condition or a Word Problem Condition. Assignment to 

conditions happened on a random basis within classrooms. In both conditions, pupils 

solved four P-items adapted from Verschaffel et al. (1994). These 4 P-items, which can 

be found in Table 1, were offered in exactly the same way in both conditions. Figure 1 

illustrates how this was done for one P-item, i.e. the swimming item.  

The sheets containing these 4 P-items were embedded in a different booklet, 

depending on the condition children were assigned to:  

 In the Humor Condition, the pages containing the P-items were alternated 

with pages containing jokes showing cartoon characters from the Calvin and 

Hobbes series. Each of these pages contained two jokes addressing the 

incongruity between sticking to the rules and norms of the mathematics 

classroom versus using real-world considerations. Children had to indicate 

which joke they found most humoristic (see Figure 2).  

 In the Word Problem Condition, the pages containing the P-items were 

alternated with pages where pupils were asked to solve two word problems 

that would typically appear in a sixth grade mathematics textbook (except that 

they also contained the Calvin and Hobbes characters, see Figure 3). 

 

Coding 

In line with earlier studies using P-items (e.g., Dewolf et al., 2014; Verschaffel et al., 

1994), pupils’ reactions were coded as realistic (RR) whenever pupils gave some 

indication of making realistic considerations in their solution, either in their 

calculations or in their comments (e.g. by taking the realistic aspects into account in 

their calculations, by indicating that there is no correct numerical answer, or that the 

word problem is somewhat strange). When none of these elements were present in the 

answer and only straightforward arithmetical calculations on the given numbers were 

conducted, reactions were coded as non-realistic (NR). Interrater reliability of this 

scoring (based on a subset of 20% of all answers by the first and second author) was 

100%. (Further subcategories referring to specific types of RRs were distinguished 

while coding the answers, but these are not discussed due to space limitations.)  

A repeated measures logistic regression analysis was conducted to model the 

probability that a RR occurred. This was done using the GEE module in SPSS20, 

which allowed to correct for possible correlations due to the fact that four items were 

administered per pupil. We analysed the main effects of Condition (Humor Condition 
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versus Word Problem Condition) and Item (Item 1, 2, 3, or 4), as well as their 

interaction.  

 

Name Formulation Example of NR and RR 

Item 1 

Rope 

Calvin and Hobbes play badminton in 

the garden. As a net, they use a rope that 

is stretched between two poles that are 

12 m apart. They only have pieces of 

rope that are 1.5 m long. How many 

pieces to they have to tie together to 

stretch a rope between the poles?  

NR: “12 / 1.5 = 8 pieces of 

rope” 

RR: “More than 8 pieces 

because of the knots” / “You 

cannot know but more than 

8” 

Item 2 

School 

Calvin and Inge attend the same school. 

Calvin lives at a distance of 17 km from 

school, and Inge lives at a distance of 21 

km. How far do they live from each 

other?  

NR: “21 – 17 = 4 km”  / “21 

+ 17 = 38 km”  

RR: “It is not clear where 

they live” / “Between 4 and 

38 km” 

Item 3 

Swimming 

When Calvin goes to school, Hobbes 

sometimes takes a swim. His best time to 

swim 25 m is 20 seconds. How long does 

it take Hobbes to swim 500m?  

NR: “20 * 20 = 400 

seconds”  

RR: “Probably more than 

400 seconds” / “You cannot 

know as he will get tired” / 

“He can’t keep that pace” 

Item 4 

Christmas 

It is almost Christmas. Each year, 

Calvin’s mom buys a large Christmas 

tree. The man who is selling the 

Christmas trees told Calvin that he sold 

243 Christmas trees in December. How 

many do you think he will sell in 

January, February and March altogether?  

NR: “243 * 3 = 729 trees”  

RR: “Probably less than 

729” / “Impossible to tell” / 

“Not many!” 

Table 1: The P-items with examples of non-realistic (NR) and realistic (RR) reactions 

(items adapted from Verschaffel et al., 1994) 
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Figure 1: Illustration of the presentation of P-items (c.q. the swimming item) 

 

 

Figure 2: Exemplary worksheet included in the Humor Condition test booklet 
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Figure 3: Exemplary worksheet included in the Word Problem Condition test booklet 

MAIN RESULTS 

The number of RRs to the various P-items is given in Table 2. The GEE analysis 

indicated a main effect of Condition, Wald ChiSquare (1, N = 148) = 6.903, p = .009. 

While in the word problem condition, only 16.00% realistic answers were given, this 

was 28.08% in the humor condition. The interaction between Condition and Item was 

also significant, Wald ChiSquare (3, N = 148) = 11.504, p = .006, indicating that the 

effect of the condition was not identical for the four P-items. Additional pairwise 

 Item 1 Item 2 Item 3  Item 4 Total 

Humor 

condition (n = 73) 

6.85 13.70 28.77 63.02 28.08 

Word problem 

condition (n = 75) 

7.99 1.33 9.33 45.33 16.00 

Total 7.44 7.44 18.93 54.60 21.97 

p-value for 

pairwise 

comparison 

 

.789 

 

.004 

 

.002 

 

.041 

 

.009 

Table 2: Percentage of realistic responses to the four P-items, by condition  
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comparisons for Condition per item indicated that only for Items 2, 3, and 4 there was 

an effect of condition.  

So, as expected, embedding the P-items in humoristic learning materials had a 

beneficial effect, as pupils gave almost twice as many realistic reactions compared to 

the word problem condition. This is one of the first studies wherein such a large effect 

was found in a short term intervention wherein P-items were used in their traditional 

formulation, and within the actual mathematics classroom. The finding that pupils 

showed a significant adaptation of their word problem solving behavior in the humor 

condition, suggests that humor can be productively used to address their beliefs about 

the role of realistic considerations in mathematical word problem solving.  

CONCLUSION AND DISCUSSION 

In several previous studies, attempts were made to  enhance pupils’ tendency to make 

real-life considerations when solving word problems with realistic modeling 

complexities (P-items) (e.g., Dewolf et al., 2014; Yoshida et al., 1997). Typically, 

short-term interventions that stuck to offering such word problems without embedding 

them in more authentic contexts and/or offering concrete materials had little or no 

effect. In the current study, however, we found that eliciting humor by alternating the 

P-items with jokes was a succesful strategy in eliciting realistic reactions in pupils. 

Given the disappointing results of previous research, this is an important and 

promising finding.  

However, there are still several unclarities that should be addressed in further research. 

First, the impact of humor was different for the various P-items, and for Item 1 there 

was even no effect at all. The present study does not allow to understand why 

embedding the P-items in a humoristic setting seems to have a differential effect on 

different types of P-items. Further research could shed light on this, for instance by 

asking children to think aloud while solving the problems and by probing the possible 

realistic considerations they make during the different stages of the solution process. 

Second, this study investigated the momentaneous effect of humor on the number of 

realistic reactions, and did not look at effects in the long run. Further research could 

investigate whether transfer would occur, in the sense that also after working with the 

humor materials, when confronted with mathematical word problems involving 

realistic modeling complexities in a regular school setting, pupils would continue to 

give more realistic reactions. Further, it is worth investigating whether children’s 

attitudes towards solving word problems would change as a consequence.  

The current study focused on only one specific mechanism of humor that may be 

beneficial for stimulating children’s word problem solving. Various other potentially 

beneficial effects are suggested in the literature. If future research supports these 

results, the inclusion of humor at some points in classroom practice may become part 

of the range of instructional strategies for stimulating children to make use of their 

real-world knowledge when solving word problems.  
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NUMBER LINES: OBSERVED BEHAVIOURS AND INFERRED 

COGNITIONS OF 8 YEAR-OLDS 

Jennifer Way and Ciara Harding 

University of Sydney, Australia 

 

A number line is a mathematical representation that is widely used in early 

mathematics education, yet the mathematical meanings of its structure and 

conventions are ambiguous. The purpose of this paper is to explore how 8 year-old 

children use filled and empty number lines in the representation of their addition and 

subtraction strategies. Task-based interviews were used to observe mathematical 

behaviours and infer cognition. The findings highlight the challenges young students 

face in understanding multiple forms of number lines and integrating them with their 

own internal reasoning. 

INTRODUCTION 

The use of number lines is foundational in early mathematics education. Although 

ubiquitous in classrooms, there is not just one standard form of number line, but rather 

a variety of forms, with different conceptual bases, semiotic structures and conventions 

for their use, as presented in the analysis conducted by Teppo and van den 

Heuvel-Panhuizen (2014). Although various forms of number lines are potentially 

powerful tools for teaching and learning mathematics (Rivera, 2014; Steenpass & 

Steinbring, 2014; van den Heuvel-Panhuizen, 2008), developing children’s conceptual 

understanding across a variety of forms has been shown to be problematic (Deizmann, 

Lowrie, & Sugars, 2010). The depth of teachers’ understanding of the different forms 

of number lines has also been questioned (Bobis & Bobis, 2005).  

During the first several years of schooling, it is common to expect that children will 

understand two or more different forms of number line. Insufficient research has been 

conducted into the depth of young children’s understanding of these forms of number 

lines and the challenges they face in transitioning to new forms. The results of such 

research have the potential to assist in the development of improved pedagogy, and 

therefore improved student understanding. 

The purpose of this paper is to analyze the representational and conceptual ways in 

which 8 year-old students utilize both structured and empty number lines for basic 

addition and subtraction operations.  

THEORETICAL FRAMEWORK 

The epistemological framework of this study draws on the moderate constructivism 

espoused Goldin (1990, 1998) in which mathematics is not completely extrinsic - there 

being an element that exists mentally, through insightful processes unique to the 
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individual (Cobb, Wood & Yackel, 1991; Goldin, 1990). Representation plays a 

critical role for abstract thinking. Therefore, an understanding of the way students’ 

construct their own internal representations in relation to their mathematical thinking, 

is necessary to fully comprehend the formation of knowledge (Goldin & Shteingold, 

2001). Within this theoretical perspective it is helpful to think of ‘representation’ as a 

process rather than a product. A component of the representation process is the 

interplay between internal and external representations– including the external 

representations created by the child, and interactions with representations created by 

others (such as the teacher). The term interplay implies a two-way dynamic interaction 

between internal and external representation, which blurs the boundary between the 

two (Goldin, 1998).  

FORMS OF NUMBER LINES 

Teppo & van den Heuvel-Panhuizen (2014) explored the external form of the number 

line and constructed a rationale to categorize its various forms, arguing that the various 

number line structures depict different meaning. Their research identified a large 

variety of number lines and with each representation they compiled a classification 

framework categorizing; visual features, types of numbers used and how the numbers 

were represented within the number line. Their research addresses the semiotics of 

number lines and used Duval’s (2014) definition of “figural units” where 

understanding and conceptual knowledge is composed based on visual features within 

the representation. Of particular interest in this study are the categories of filled 

number lines and empty number lines, because these two forms are typically present in 

the mathematics curriculum for the first several years of schooling. 

Filled number lines (also called structured number lines) consist of a line, often 

including an arrow at either end, equidistant markings, the start point labelled with 0, 

followed by the sequence of whole numbers. Epistemologically, this particular form 

works as an external representation of the cognitive act of counting, and for young 

students acts as a visual catalyst for mathematical thinking and early additive 

calculation (Teppo & van den Heuvel-Panhuizen, 2014). Even though this form is a 

ubiquitous, traditional graphic, its mathematical meanings are ambiguous, resulting in 

individualized interpretations by children (Steenpass & Steinbring, 2014). For 

example, when children attend only to the point marks and not the interval between 

them (referred to as measurement-based thinking), conceptual confusion arises 

(Diezmann, Lowrie & Sugars, 2010). 

Empty number lines begin with no structural features, as their purpose is for children to 

translate knowledge from their own internal representations of mental arithmetic 

strategies into an external representation. In doing so, they have to create their own 

structure to order and position numbers, and use symbols such as arcs to depict 

operations. Children’s use of empty number lines has the potential to both support and 

reveal arithmetic reasoning (Bobis & Bobis, 2005; van den Heuvel-Panhuizen, 2008), 
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but only if the child engages in the dynamic interplay between internal and external 

representations through mathematical thinking. 

METHODOLOGY 

Task-based interview was selected as the most suitable approach for exploring 

children’s internal/external representation related to number lines. As internalised 

representation is enigmatic, research depends on the premise that it can be cautiously 

inferred from externalised representation processes, such as drawing and verbalising. 

Task-based interview has the dual purposes of observing mathematical behaviour and 

drawing inferences about the interviewee’s cognitions (Goldin, 1993), making it well 

suited to the aims of this study. 

The study took place in an Australian school in the suburbs of a major city. Six 

children, aged between between 7 and 9 years, from the same Year 3 class (4th year of 

primary school), where interviewed individually. Participant selection involved the 

teacher’s recommendation regarding comfort level in talking about number tasks, and 

aimed to a cover a range of mathematics achievement levels. The age level was chosen 

because, according to the mathematics syllabus (BOSTES, 2012), the children would 

have had substantial exposure to both structured and empty number lines, and would 

be beginning to use number lines to locate basic fractions. 

Five tasks were designed, requiring the addition or subtraction of one and two digit 

numbers and the use of structured/filled, empty and partially structured number lines. 

The interviews were digitally recorded for both vision and sound. The students were 

asked to explain each solution as soon as it was completed, and probe questions were 

used to elicit further explanation when needed. 

Analysis involved repeated viewing of the videos in conjunction with the students’ 

drawings, guided by three questions: a) What calculation strategy was used?; b) What 

number line structures and conventions were used?; and, c) What was the relationship 

between the calculation strategy and the external representation? 

This paper reports the results for only three of the children and for only three of the 

tasks (See Table 1). As all six children responded differently on every task, the three 

participants do not represent any commonality in the cohort, but rather serve to 

illustrate the diversity of responses. 

RESULTS 

Tables 1, 2 and 3 present the responses of three students to the three tasks, and include 

a commentary drawn from the videos of the children’s actions and audio of the verbal 

explanations. A discussion of the results occurs after all three cases have been 

presented. 
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The case of Harry 

Harry was considered by his teacher to be working beyond syllabus-level expectations 

in mathematics. Overall, his responses indicate harmony between his mental strategies, 

internal representations and external representations on number lines (see Table 1). 

   

Student’s drawing Commentary derived from video/audio 

 

Figure 1a: Task 1. (7 + 15), blank paper 

“Start at 15, then I’m breaking up the 7” 

Had a mental strategy that seemed to be 

leading (but almost simultaneous with), the 

steps in the drawing construction. Correct 

answer 22. 

 

 

Figure 1b: Task 2. (25 – 8), fully structured 

pre-drawn number line, 0 to 30 

Started at 25, marked jumps backwards by 

ones to give correct answer 17. “I wanted to 

make sure what I worked out in my head 

was correct”.  Then started at 25 again and 

drew jumps of 2,3,3. “I was just looking for 

another way to do it.” 

 

Figure 1c: Task 3. (14 + 23), blank line 

Started at 14. Labelled jumps and positions 

on number line as he went. 

“I’m breaking up the 23 on my number line, 

using tens…..”. Correct answer 37. 

Table 1: Results for Harry  

Harry had knowledge of the structure and conventions of number line use, though he 

did not bother to draw the actual line in Task 1 (Figure 1a). He was comfortable with 

only drawing the segment of the number line that was relevant to performing the 

operation – so didn’t need to mark 0, and only marked the numbers that were subtotals 

and totals in his calculation methods. Arcs were used to indicate the addition or 

subtraction of an amount. The size of the arcs (jumps) suggested the magnitude of the 

number being represented, that is, a large jump for 10, small jump for 1 (Figure 1c). 

Harry demonstrated flexible mental strategies in addition, using ‘bridging to the 

decade’ in Task 1, and place value knowledge in Task 3. He illustrated his mental 

strategies on the empty number lines as he progressed through the steps. For the 

subtraction (Task 2), Harry used a less sophisticated method of ‘counting back by 

ones’, but immediately looked for a more efficient method. Unlike the empty number 

line tasks, Harry began solving Task 3 using the number line as as a calculation tool, 
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rather than reasoning with a mental strategy. It appeared he may have been influenced 

by the presence of the fully structured and labelled line. 

The case of Mindy 

Mindy was considered by her teacher to be achieving syllabus-level expectations in 

mathematics. In her responses we see a disconnect between her mental calculation 

strategies, mental representations and the external representations of number lines (see 

Table 2). She does not comprehend how the external number line structures can be 

used to model her strategies for addition and subtraction. 

Student’s drawing Commentary derived from video 

 

 

 

Figure 2a: Task 1. (7 + 15), blank paper 

Locates end points of 7 and 15, then 

marked the midpoint, marked another two 

points either side. “I found out where the 

middle point was.” Thinking time, then 

labelled the midpoint 12½, then labelled 

10 and 13½. Described “jumps” of 3, 2½, 

1½ to “land on” 15. Did not calculate the 

addition.   

 

 

 

Figure 2b: Task 2. (25 – 8), fully structured 

pre-drawn number line, 0 to 30 

Read out the task said, “15 – 8, (pause) to 

8”. Put a mark on 8 then 25. Gestured 

counting back by ones from 25, then 

forward by ones from 8, to locate 16½ in 

the middle. Repeated similar procedure to 

locate 12½ and the midpoint between 16½ 

and 25, incorrectly labelled as 2½. When 

asked for the final answer, she counted 

back from 25, gesturing jumps of one, to 

get the correct answer 17. 

 

Figure 2c: Task 3. (14 + 23), blank line 

Drew and interval from 14 to 23. Marked 

in some jumps. Crossed it out, “there’s not 

enough room”. Redrew the interval, and 

drew 9 jumps. Labelled the landing points 

from 1 to 7 (not including the final one at 

23). Paused then wrote 37. When asked 

why 37, “I knew that 23 + 7 = 30, then I 

just added another 7”.  

Table 2: Results for Mindy  

Mindy has some knowledge of number line structure, recognising number sequence, 

and equal distance between numbers. She also understands that halves can be located 

between numbers. Mandy is focused on the length of the interval between the two 

numbers presented in each question and does not work beyond these upper and lower 
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limits on her number line. In Tasks 1 and 2 she is fixated on halving and quartering the 

distance (Figures 2a & 2b). 

Mindy did not use the number lines to reflect her calculation strategies. She did not 

calculate the addition at all in Task 1, apparently being completely distracted by 

constructing her number-line interval. In Task 2, when pressed for an answer, Mindy 

ignored her complicated number-line labelling and simply counted back from 25 by 

ones. Similarly, in Task 3, when asked for an answer, she abandoned her drawing and 

quickly used the efficient mental strategy of ‘bridging to the decade’. 

The case of Nina 

Nina was considered by her teacher to be working below syllabus-level expectations in 

mathematics. She appeared to lack mental calculation strategies and so used the 

external number line as a tool for reaching a solution. However, her limited 

understanding of the structures and conventions of number lines prevented her from 

effectively constructing her own number lines. (See Table 3). 

Student’s drawing Commentary derived from video 

 

 

Figure 3a: Task 1. (7 + 15), blank paper 

Drew line and labelled ends 0 and 25. “I 

knew the answer would be somewhere 

between 1 and 25”. Marked (but not 

labelled) the midpoint. Represented the 7 

and 15 by drawing 7 jumps from 0, then 

drew 15 more. Counted 4 jumps back from 

25 then labelled 21. Silently calculated the 

midpoint to be 12.5 and labelled it. 

 

Figure 3b: Task 2. (25 – 8), fully structured 

pre-drawn number line, 0 to 30 

Marked 15, then 25. “I wanted to find the 

middle between 0 and 30 so I could … I 

don’t know” (shrugged and smiled). 

Then counted back from 25 with jumps of 1, 

to give correct answer 17. 

 

Figure 3c: Task 3. (14 + 23), blank line 

Marked midpoint then labelled ends 0 and 

35. “Because I thought the answer would be 

between 0 and 35”. From 0, drew 7 jumps, 

paused, drew 5 more. Then drew 6 smaller 

jumps back from 35. Wrote 29. “I counted 

up to 14, which is about there (points to 

midpoint). From there I counted up to 23. 

Then I counted back 6 (from 35) and found 

myself at 29”. 

Table 3: Results for Nina  
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Nina comprehended a number line as an interval, starting at 0, with an upper limit 

labelled at the other end, and the midpoint marked. She found locating other numbers 

on a blank number line challenging. In Tasks 1 and 2, her jumps represented 

counting-by-ones (Figures 3a & 3b). However, in Task 3 the jumps represented 

counting-by-twos at first, then smaller jumps for counting-back-by-ones (Figure 3c). 

Nina did not demonstrate any mental addition strategies, although it is possible that the 

request to utilise number lines may have distracted her from attempting mental 

calculation. In Tasks 1 and 3 she represented the two separate addends, but did not 

combine them by ‘counting-through’ or ‘counting-on’, instead landing on an unknown 

position on the number line. To find out what the number at this position was, Nina 

counted back from her upper limit until she physically arrived on the spot where she 

had ended her forward count – ignoring the spatial/measurement inaccuracies of her 

drawing. She could not articulate a mathematical reason for doing this. Nor could she 

give the mathematical reason for locating the midpoint of her selected interval. Nina 

relied on her drawings of number lines to work out the answers, but was only 

successful when provided with the fully structured and labelled number line (Task 2, 

Figure 3.2). On an empty number line, Nina was unable to effectively visualise the 

missing equidistant, labelled points. 

DISCUSSION AND CONCLUSION 

On the whole, the findings of this study reinforce a conclusion reached by other 

researchers – that the number line is only a useful tool for a child’s mathematical 

activity if the child fully comprehends the meaning of its structural components and its 

function as a model for mathematics concepts (Steinpass & Steinbring, 2014). Harry’s 

task responses exemplify the dynamic interplay between internal and external 

representation of operations described by Goldin (1998). 

The findings of this study also highlighted that a child can possess the mathematical 

knowledge for effective mental (internal) calculation strategies, but be unable 

represent them externally using a number line, as illustrated by Mindy’s task 

responses. Mindy was able to externalise her mental strategies through speech, but the 

number line was not part of her representational system for operations.  

The preoccupation of two of the children with defining the structure of the number line 

as an interval with a midpoint, requires further investigation. This approach has 

received little attention in previous literature. A possible explanation is that the class 

may have begun learning about placing sequences of halves and quarters (as specified 

in the syllabus) on a number line. Mindy and Nina appeared to perceive their interval 

as being ‘a whole’, and mistakenly applied iterative halving to set up the structure of 

their number line. The implication is that teachers need to be aware of the conceptual 

pitfalls of changing to a new form of number line, and the complexity of reconciling 

the new form with ‘old’ forms. 



Way and Harding 

_______________________________________________________________________________________________________________________

4-312 PME 41 – 2017 

This study has highlighted the need to more thoroughly investigate children’s 

understanding of, not only structured and empty number lines, but also rational number 

lines. More specific advice to teachers about effective pedagogy is needed to maximise 

opportunity for children’s comprehension of different forms of number lines. The 

extensive confusion of children revealed in this small sample of 8 year-old students 

calls into question the wisdom of introducing a third form of number line at such an 

early stage in mathematics education. 
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This paper discusses Aspects and Basic Mental Models (“Grundvorstellungen”) in the 

development of basic concepts of calculus, the concepts of limit, derivative and 

integral. The focus is put on perspectives that are relevant, when these concepts are 

first introduced in high school or college. We distinguish between mathematically 

motivated Aspects and Basic Mental Models or “Grundvorstellungen” which are 

associated with the conceptual interpretation of these concepts that give them 

meaning. We will discuss (and clarify) both the differences and the relationships 

between these perspectives, which are central to the students’ understanding of the 

respective concept. Finally, we integrate these perspectives into a framework of a 

theory of concept understanding.  

ASPECTS AND BASIC MENTAL MODELS (BMMS) OF MATHEMATICAL 

CONCEPTS 

With respect to the concepts of calculus, there are numerous didactic ideas, suggested 

teaching methods, empirical studies and practical investigations within the framework 

of curricula and mathematical textbooks. Nevertheless, Rasmussen et al. (2014) come 

to the following conclusion:  

“While the past several decades of research in calculus has contributed to better 

understanding of mathematical thinking, learning, and teaching in areas such as 

limit, derivative, and integral, too much research remains isolated and 

uncoordinated.“ (p. 508) 

In the paper, we strive for a foundation to overcome this problem. To this effect, 

mathematical Aspects of limit, differentiation and integration are identified, together 

with associated BMMs or “Grundvorstellungen” (Hofe, v. et.al 2005), and the 

relationships between them. This structures the complex relationship, enabling these 

central concepts in calculus to be considered and studied from multiple perspectives 

with respect to mathematics education. 

The concepts of Aspects and BMMs  

Students’ BMMs of mathematical concepts have been discussed in German-language 

pedagogy and the didactics of mathematics for more than 200 years, for example, by 

Pestalozzi, Herbart or Kühnel. BMMs give meaning to content-based Aspects of a 

mathematical concept, providing relations to meaningful contexts. This is a crucial 
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prerequisite for working meaningfully with a concept. We define two expressions that 

are basic for the present article:  

 

 

 

 

 

The relation “Aspect – BMM” of a given mathematical concept is not one-to-one. An 

Aspect of a mathematical concept can provide a basis for several BMMs. Vice versa, a 

specific BMM can be developed with respect to several Aspects and give them 

meaning.  

The concept of BMM can be used in both a prescriptive and a descriptive sense (see 

Hofe, v. et al. 2005): BMMs as a prescriptive notion are the answer to the question: 

How should students generally and ideally think of a given mathematical concept? 

Supporting students in developing these BMMs is one of the objectives of 

mathematical teaching. Thus, they provide teachers with guidance for organizing 

lessons. In contrast, BMMs as a descriptive notion answer the subject-matter didactic 

question of how a given student actually thinks about a given mathematical concept. 

BMM in this sense are the result of individual learning processes.  

Relation to the idea “Concept Image – Concept Definition” 

BMMs of mathematical concepts can be considered within the theoretical framework 

of “Concept Image – Concept Definition”. These terms have been used in the didactics 

of mathematics since the early 1980s to distinguish between technical issues of a 

concept and the associated mental images (e.g. Vinner & Hershkowitz 1980; Tall & 

Vinner 1981; Bingolbali & Monaghan 2008, p. 31). “Concept Definition” refers to the 

formal or explicit definition of a particular concept. “Concept Image” refers to all 

individual mental images identified with the concept. A recurring problem is that the 

Concept Image associated with a given Concept Definition is very narrow. In addition, 

students are in danger of drawing conclusions about the Concept Definition by 

generalizing a Concept Image that focuses exclusively on certain special cases (Vinner 

2011, p. 248). This danger is particularly present in the basic concepts of calculus, 

given that in specific classroom environments and especially in exam assignments, 

there is a bias towards calculation-oriented exercises, which are easily practiced 

beforehand on a formal, symbolic level.  

The relations “Concept Image – BMM” and “Concept Definition – Aspect” can be 

described as follows: A Concept Image may contain several individual BMMs that 

conceptualize different perspectives of that concept. Individual BMMs are central 

components of a valid Concept Image. These BMMs give meaning to mathematical 

concepts that may be studied with respect to various Aspects. Each of these Aspects 

An Aspect of a mathematical concept is a subdomain of the concept that can be used 

to characterize it on the basis of mathematical content. 

A Basic Mental Model (BMM) or Grundvorstellung of a mathematical concept is a 

conceptual interpretation that gives meaning to it. 
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may be expressed by one of the various Concept Definitions that one reads in 

textbooks. Thus, a Concept Definition is a specific realization of an Aspect. These 

linkages are shown in Figure 1, which illustrates that the relation between Concept 

Definition and Concept Image is highly non-trivial. This relation may become more 

tangible by taking BMMs and Aspects and their relations into account. 

 

Figure 1: Relations between Aspect, BMM, Concept Definition and Concept Image 

In an educational process that is based on understanding the central mathematical 

basics of calculus, it is the aim to develop Aspects and BMMs of calculus in a way that 

makes it possible to proceed – later – to strongly formal notions. 

THE LIMIT CONCEPT 

(The concept is presented here only in a snapshot.  For more details see Greefrath et al. 2016).   

Dynamic and static Aspects and the BMMs “approach” and “neighborhood” 

Up to the 1960s, calculus lessons at German (and many European) high schools had 

been developed in close association with university mathematics. The sequence 

concept served as a basis for the limit concept and therefore, the “ - -definition” for 

the limit of a sequence. This strict approach to the limit concept in relation to the 

sequence concept, had been widely criticized and some different alternatives 

concerning the approach of calculus in high schools were developed; especially the 

“intuitive limit concept”, which is based on the college lessons of Serge Lang 

(1927-2005) und Emil Artin (1898-1962). Nowadays, the formal definition of the limit 

is only of minor importance in European high school curricula and the conception of 

the “intuitive limit concept” is emphasized (see Törner et al. 2014). The intuitive limit 

concept builds on dynamic ideas with alterable variables or values seen as “fluent” or 

successively discretely changing. Especially the gradual discrete approach to 

“infinity” is, in terms of “walking along” the natural number line, an intuitive and basic 

concept and a key term in the development of the limit concept. Perceiving the 

approach of the sequence values to a fixed value while the “ -values” are converging 

towards infinity, is the basic intuitive perception of a limit. We associate the dynamic 

Aspect of limit with the BMM approach. The BMM neighborhood associated with the 
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static or formal Aspect of Limit is based on the idea that all values of a sequence (or 

function) – starting with a special -value – are located in even the smallest 

environment of the limit value. 

THE CONCEPT OF DERIVATIVE 

Differentiation can be defined in various ways and we elaborate on this by defining 

two Aspects of this concept.  

The Aspects “limit of difference quotient” and “local linearization” 

There are two main Aspects of the concept of derivative. One Aspect is differentiation 

as the limit of a difference quotient, another Aspect stems from the fundamental idea of 

approximation and is called local linearization. (These two Aspects are well-known 

and we do not explain here in details.  See Greefrath et al. 2016.)  From a didactic 

perspective, these two Aspects of differentiation correspond to different concept 

images for students. The Aspect of differentiation as the limit value of a difference 

quotient supports concepts of speed and rates of change. The interpretation of 

differentiation as a local linear approximation helps students to understand the error 

between the optimally approximating linear function and the original function and 

about the opportunity of describing the function as linear in a small neighborhood—its 

graph appears as a straight line when zoomed in at one particular point. 

The BMMs “Local rate of change”, “Tangent slope”, “Local linearity” and 

“Amplification factor” 

(We  refer to these well-known perspectives quite generally.  For more details see 

Greefrath et al. 2016.)   

Local rate of change: The rate of change is an interpretation of the difference 

quotient. The local (or instantaneous) rate of change can be obtained as the limit of the 

difference quotient (first Aspect). The interpretation of the content of this Aspect 

(particularly by means of dependent entities), in case the differences are regarded as 

changes, is the BMM “local rate of change”. 

Tangent slope: Tangents are understood as lines that are locally tangential to the 

graph. In order to judge whether a line is a tangent or not, it is sufficient to look 

(graphically in the verbal sense, algebraically in a metaphorical sense) at an arbitrarily 

small interval around the point in question. The connection between this BMM and the 

associated Aspects is quite intricate. From the point of view of the developed 

mathematics, the derivative is the primary object and the tangent is defined only in 

terms of it. However, the genetic perspective of how mathematics develops, one may 

say that the tangent is an intuitive concept that can be modeled by either of the Aspects 

described above.  

Local linearity: Curves can be approximated by piecewise-linear curves. A 

comprehensive, explicit BMM of local linearity includes e.g.: ‘when zooming in very 

close to a point of the graph of a differentiable function, one sees an almost straight line 
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segment’ or ‘for small changes in argument, the function is essentially linear, so that it 

can be approximated with a linear model’. 

Amplification factor: If there is a functional relationship between (two) parameters, 

changes or uncertainty, such as errors in measurement, in the independent parameter 

induces changes in the dependent parameter. The BMM of amplification factor for 

small changes is that they are proportional.  

Overview: Aspects and BMMs of the concept of derivative  

The two Aspects and four BMMs are summarized in Figure 2, including the relations 

between the different Aspects and BMMs. The connecting lines indicate that the 

Aspect is a basis of the related BMM and that the BMM gives meaning to the Aspect.  

 

 

 

 

 

 

 

Figure 2: Aspects and BMMs of differentiation 

 

ASPECTS AND BMMS OF THE CONCEPT OF DEFINITE INTEGRAL 

The Aspects “Product sum”, “Antiderivative” and “Measure” 

Product sum: To define the definite integral in the sense of Riemann, you have to 

build product sums , with ti-1 and ti points of a partition of a given 

interval [a, b] and Mi the supremum or infimum of f on the subinterval [ti-1, ti].  

Antiderivative: Given a function  defined on an interval , we say that 

 is an antiderivative of , if  is differentiable and . By defining 

definite integrals as antiderivatives, it becomes clear that the operations of 

differentiation and integration are mutually opposing.  

Measure: Definite integrals are used to measure length, area and volume in the context 

of their measure Aspect, and are interpreted as a measure for certain representatives of 

these physical quantities. Measure theory and Lebesgue integral can be considered as 

the mathematical foundation of the measure Aspect of integration.  

These Aspects provide interpretations of three separate subthemes of the concept of 

definite integral. Whereas the product sum Aspect primarily emphasizes developing 

the concept of a definite integral from the Riemannian approach, the antiderivative 
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Aspect highlights the Fundamental Theorem of Calculus and thus underlines the link 

between integration and differentiation. The measure Aspect, on the other hand, 

illustrates the application of integration in making measurements and the link to the 

Lebesgue integral. Narrowing down viewpoints to one or more specific Aspects of 

integration is generally seen as questionable (Huang 2012, p. 167). 

The BMMs “Area”, “(Re)Construction”, “Average value” and “Accumulation” 

Area: The BMM of definite integrals as area, emphasizes one of the applications of 

definite integrals within the framework of its measure Aspect.  

(Re)Construction: By construction or reconstruction in the context of integration, we 

mean both the (re)construction of a quantity from the given information about rates or 

speed and the (re)construction of one of the antiderivatives of a given function. 

Examples: the reconstruction of distance travelled from velocity data or the 

reconstruction of the net amount of water left over, using data on inflow and outflow 

for a given container.  

Average value: The technical basis of the BMM of average values is the mean value 

theorem. This BMM is therefore associated with the idea of forming a rectangle with 

the same area as a given region delimited by a curve.  

Accumulation: The BMM of accumulation builds on a suitable interpretation of 

product sums that tend towards the definite integral as their limit. The intended 

meaning is the aggregation or cumulative summation of partial products to form a 

product sum. Example: the physical work as the scalar product of force and distance 

vectors product sum: . 

Overview: Aspects and BMMs of the concept of definite integral 

Figure 3 gives the links between Aspects and BMMs, which together describe the 

concept of definite integral from both technical mathematical and subject-matter 

didactical perspectives.  

 

 

 

 

 

 

 

Figure 3: Aspects and BMMs of integration 

The characterization of Aspects and BMMs for integration are not used consistently 

across the literature. In particular, there is often no differentiation between Aspects and 

BMMs. 
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ASPECTS AND BMMS IN THE CONTEXT OF CONCEPT 

UNDERSTANDING  

The Aspects and BMMs of limit, differentiation and integration are now classified 

according to the process of concept development. To describe the level of proficiency 

in more detail, we add four categories or levels of Concept Understanding based on 

Vollrath (1984).  The level of intuitive concept understanding enables us to use simple 

examples and to compare different representations. The level of subject matter concept 

understanding allows a concentration on properties and characterizations – in different 

representations – of the concept. The level of integrated concept understanding 

enables seeing relations to other concepts, as well as relations between properties of 

the concept. The level of critical concept understanding enables the indication of 

formal definitions, argumentations and proofs.  

Figure 4 shows the relation between Aspect and BMM (Grundvorstellung) in 

differentiation. This can be represented by a 2 x 4 matrix (with 6 non-empty cells). If 

the “dimension” of Concept Understanding is added for each of the 4 categories, this 

can be represented by a 3d-model.  

 

Figure 4: 3d-matrix representing Aspect, BMM and Concept Understanding for the 

concept of derivative 

 

Using this representation, the 6 x 4 “cells” can be characterized by the triple (Aspect, 

BMM, Concept Understanding). To emphasize a triple-perspective in classroom 

activities, special examples for each of these 24 cells have to be found. For instance, at 

the level of intuitive concept understanding, the characterization of the cell with the 

BMM of local rate of change and the limit Aspect encompasses the conception that the 

average rate of change stabilizes numerically, as the interval declines in size. 

CONCLUSION  

The aim of this article was to specify the concepts of Aspects and BMMs for basic 

concepts of calculus and to embed it into a model of understanding. The result is a 

representation in the form of a three-dimensional matrix, whose cells are described by 
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a triple (Aspect, BMM, level of concept understanding). This 3d-model can be used in 

several ways. On the one hand, it could support teachers in introducing this important 

topic of derivative. Thus, one has an overview of the BMMs and Aspects at the 

addressed level of concept understanding. On the other hand, this model can also be 

used for diagnostic intervention. Thus, one also has an orientation, while constructing 

examples for a certain test on–here–derivatives.  

The model also leads to a description of the expected competencies for each of the 

“cells” of the 3d-matrix. This 3d-matrix can be interpreted as the basis for a 

competency model, in this case of the concepts of limit, derivative and integral. 

Furthermore, this can be a first step towards an empirical evaluation of models of 

understanding on the basis of Aspects and BMMs. 
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ZOOMING IN AND OUT - ASSESSING EXPLORATIVE 

INSTRUCTION THROUGH THREE LENSES 

Merav Weingarden and Einat Heyd-Metzuyanim 

Technion – Israel Institute of Technology  

 

We examine the implementation of an identical task by two middle-school teachers. 

Both teachers underwent short professional development training according to Smith 

and Stein’s (2011) 'Five Practices for Orchestrating Productive Mathematics 

Discussions'. The different levels of implementation are examined through three 

analytical lenses: Instructional Quality Assessment tool, Accountable Talk coding, and 

commognitive analysis. Each of these three lenses provides a different resolution of the 

opportunities for explorative participation students had in the two classrooms. We 

discuss implications both in terms of benefits for research and in terms of usefulness 

for teacher training.   

Instruction that supports deep, meaningful learning is multifaceted: it involves certain 

mathematical activities, as well as a particular social structure to support it. As such, it 

provides a challenge for any researcher who wishes to examine the extent to which 

such instruction is implemented in the classroom. The need for such an examination 

has become urgent in the face of ever-growing attempts to improve mathematics 

instruction. Most assessments of effective teaching are usually done using a scale 

designed to measure certain “best practices” (e.g. IQA, Boston, 2012; TRU math, 

Schoenfeld, 2014). The use of a single scale may be unhelpful for teachers wishing to 

improve their instruction. It may either be too general, leaving teachers wondering 

what to change, or too specific, neglecting the whole picture of the lesson. We suggest 

to take a different approach: we first define the type of teaching we wish to see in the 

classroom – explorative instruction. Then, we examine what different analytical tools 

may tell us about the extent to which this instruction was observed in the classroom.  

THEORETICAL BACKGROUND 

We define explorative instruction as instruction that supports explorative participation 

in mathematical learning. Explorative participation (Sfard & Lavie, 2005) is 

participation for the sake of producing mathematical narratives to solve problems or to 

describe the world. Such participation is contrasted to ritual participation, which main 

goal is pleasing others and which is characterized by rigid rule following and 

endorsement of results as “correct” according to external authority. Explorative 

participation is linked more broadly to the view of mathematical learning as the 

process by which students gradually become able to communicate about mathematical 

objects. These discursive objects are a result of the “saming” of different realizations 

(Sfard, 2008). For example, connecting between different visual mediators such as: 
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graphs, tables and algebraic expressions, is central to the “saming” of the function 

object. A mathematical object can be visualized as a “realization tree” where complex 

objects are made of simpler ones.  

Given this view of explorative participation, instruction that supports it is 

characterized by several features. First, it provides tasks that afford multiple 

opportunities for “saming” different realizations, producing narratives based on 

different routines and enacting mathematical meta-rules such as conjecturing and 

proving. In the words of Stein, Grover and Henningsen (1996), such tasks are 

“cognitively demanding”. Second, explorative participation can benefit from 

instruction that constructs certain participant frameworks in the classroom (O’Connor 

& Michaels, 1993). Such participant frameworks allocate students and teachers 

appropriate roles and duties to carry out the construction of mathematical narratives, in 

the face of the initial uneven status where students are less experienced than the teacher 

in doing so. Accountable Talk (Resnick, Michaels, & O’Connor, 2010) provides a set 

of talk moves that can create such participation frameworks. In particular, it suggests 

talk moves for holding students accountable to each other (the community) and to 

rigorous reasoning. Both types of accountability are important for explorative 

participation. Accountability to reasoning encourages building narratives based on 

formerly established narratives; accountability to the community moves the authority 

structure from being solely based on the teacher, to being more equitably divided 

between him/her and the students.  

In the context of a professional program aimed at offering practical tools for teachers to 

improve their instruction, we thus asked: to what extent did teachers succeed in giving 

students’ opportunities for explorative participation? This question was divided into 

the following sub-questions: (1) Were teachers able to maintain the cognitive demand 

of a task? (2) To what extent did teachers encourage the accountability for reasoning 

and for the community during the lesson? (3) To what extent did teachers give students 

opportunities for saming different realizations of mathematical objects?  

METHOD 

Participants included four teachers of 7th and 8th grade mathematics. The teachers 

participated in PD training sessions that introduced the main components of the 5 

Practices for orchestrating productive mathematics discussions or 5Ps (Smith & Stein, 

2011). The 5Ps framework suggests a set of instructional practices that support the 

maintenance of high-cognitive demand of a task. These include anticipating students’ 

responses, monitoring their work, selecting solutions to be presented to the whole 

classroom, sequencing these solutions, and connecting between them. By giving 

teachers a road-map of steps that they can prepare in advance and during whole-class 

discussions, these practices have the potential for helping teachers to more effectively 

orchestrate discussions that are both responsive to students’ emerging understandings 

and emphasize important mathematical ides. As part of the PD, the teachers were 

asked to implement a lesson prepared according to the 5Ps. They were asked to give 
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Figure 1: The Hexagons Pattern 

their students an identical task, the Hexagon Task which asks students to describe the 

perimeter of a general “train” in a pattern of hexagon “trains” (See Figure 1): 

 

 

 

The task was used since it had previously been rated as a high cognitive demand task 

that is productive for teachers' initial attempts to implement the 5Ps 

(Heyd-Metzuyanim, Smith, Bill, & Resnick, 2016). We observed, video recorded, and 

transcribed all lessons. In addition, the teachers were interviewed before and after the 

lessons, and the lesson planning sessions were recorded.  

Data Analysis. According to the above explained conceptualization of explorative 

instruction, we used three analytical tools to examine: Cognitive demand, Accountable 

Talk, and opportunities for saming different realizations of mathematical objects. 

Cognitive Demand: Measuring the general level of implementation of the task was 

done based on Implementation rubric (AR2) of the Instructional Quality Assessment 

tool (IQA) (Boston, 2012). This rubric evaluates the cognitive demand of the lesson 

based on an observation of the recorded lesson. The rubric includes a scale from 1 to 4 

where 1 means students engage only in rote memorization and producing facts, 2 

means they engage in the application of procedures explicitly taught, 3 means 

cognitive demand is not lowered but mathematical reasoning is not sufficiently 

explicated, and 4 means full maintenance of  cognitive demand.  

Accountable Talk: For achieving a higher resolution of the lesson, and in particular, 

the participant framework supported in it, we used the Accountable Talk coding 

scheme (AT) (Resnick et al., 2010). This scheme codes classroom transcriptions on a 

line-by-line basis. It includes eight codes for teacher moves, where four codes measure 

accountability to reasoning and knowledge (press for reasoning, challenge, say more 

and revoice) and four codes measure accountability to the community (add-on, restate, 

agree/disagree, and solicit additional viewpoints). These moves track the number of 

teachers' attempts to make students' thinking public, help students reason 

mathematically, and hold them responsible for attending to the reasoning of others. In 

addition, the scheme codes students' moves (students' agree/ disagree, students' 

justification, students' press for reasoning and students' challenge). The two authors 

achieved 84% agreement on 50% of the data reported in this paper.  

Opportunities for objectification: For examining the opportunities for exploring 

mathematical objects given to students during the lessons we used the Realization Tree 

Assessment tool (RTA) (Weingarden, Heyd-Metzuyanim, & Nachlieli, 2017). The 

RTA can be used  both to assess the potential of the task to afford the “saming” of 

different realizations of a mathematical object, as well as the way in which these 

opportunities actually play out during implementation. It depicts the different 
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realizations of a mathematical object as nodes in a “tree” and then uses different shades 

to signify who articulated the realization – the teacher or students. 

Close-up analysis of opportunities for objectification: Excerpts that have been 

found to be particularly telling during the scanning of the lesson for RTA analysis were 

examined on a close-up word-by-word resolution to determine the precise moves used 

by the teacher to encourage students to articulate certain mathematical narratives. In 

particular, we looked for teacher questions that encouraged connections between 

different realizations of mathematical objects and for narratives raised by students and 

taken up or missed by the teacher. 

FINDINGS 

Due to space limitations, we restrict our exemplification of the analysis to two teachers 

who implemented the same task in different ways: Dani, a 7th grade teacher with 3 

years of experience and Sivan, an 8th grade teacher with 2 years of experience. 

Maintaining cognitive demand during implementation 

In Dani's lesson, cognitive demand was maintained and scored at the highest level (4). 

Scoring was based on observing that Dani did not lead the students towards any 

particular solution; multiple solutions were found and presented by the students; 

solutions were linked to each other both by the teacher and by the students; and there 

was no proceduralization of the task. In contrast, Sivan's implementation was scored as 

a 2. This, since she led students toward a particular solution (4x+2) that was not 

exemplified through the visual Hexagon’s representation, connections were not made 

with other algebraic expressions, and students seemed to be well rehearsed in 

producing a table, algebraic expression from it and a graph of that expression.  

Accountable talk 

Interestingly, the two lessons were quite similar in terms of Accountability to 

Reasoning as a whole, that is, aggregating “press”, “challenge” ,“say more” and 

“revoice” moves (Dani N=36, Sivan N=33). However, Dani’s talk included more 

“press for reasoning” (Dani N=23, Sivan N=14) requesting students to justify their 

claims. In accordance, student justifications in Dani’s lesson were higher than in 

Sivan’s (Dani 22, Sivan 11). Most important, moves encouraging Accountability to the 

Community were much higher in Dani’s lesson (12) than in Sivan’s lesson (1).  

Students’ talk aligned with these different demands. In Dani’s lesson, there were 20 

instances of students' agreement/disagreement with their friends mathematical 

narratives, while in Sivan’s lesson there were no such instances (0). Thus, the AT 

counts point to the participation framework in Dani’s classroom being more conducive 

for students’ authority to propose mathematical narratives than Sivan’s lesson was. 
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Opportunities for saming different realizations of mathematical objects 

Sivan's RTA (Figure 2a) and Dani's RTA (Figure 2b) show that as a whole, the 

classroom discussion made different realizations of the object “perimeter of a general 

train” accessible to students. 

 

Dani's RTA shows that his classroom discussion included more narratives about the 

perimeter object, especially of the algebraic type, than Sivan’s discussion.  Moreover, 

the dark colours of Dani’s RTA show that his students were more active in forming the 

narratives around these different realizations, while Sivan was mostly responsible for 

the narratives in her lesson, eliciting them from the students or simply presenting them 

on the board. Though Sivan did refer to different realizations of the perimeter (table, 

algebraic expression and graph), the ‘branch’ explored in Dani’s lesson provided an 

excellent opportunity to connect different algebraic expressions to a single visual 

mediator (the Hexagons), as there are various different algebraic expressions  that 

express the desired perimeter, based in how the hexagon-sides are counted and 

connected to the perimeter (referring to external sides only, all hexagon sides and then 

taking away inner sides, etc.). In contrast, Sivan took the Hexagons visual mediator 

only as a starting point and directed most of the discussion to realizations of a linear 

function, which were not directly connected to the Hexagon’s mediator. In that sense, 

Dani utilized the visual mediator to a much greater extent.  

Close-up analysis of instructional talk supporting the saming of different 

realizations 

The wide view of the mathematical narratives raised in the lesson, given by the RTA, 

show that Sivan’s lesson was more limited in its affordance for saming different 

realizations. However, this snapshot view is limited in its ability to lend any 

explanation as to why this restriction occurred, given the multiple affordances of the 

Figure 2a: Sivan's RTA Figure 2b: Dani's RTA 
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task. In fact, Sivan herself was aware of this restriction but did not know to explain 

why it occurred. In her post-lesson interview, she said: "If there was even one student 

who found another (expression), I would have asked him immediately to show it to 

everyone. But they just all came up with 4x+2". However, the examination of students’ 

discourse revealed otherwise. See for example an instance where a student was trying 

to explain why he came up with the expression 4x+2:  

51 Eitan The four is like the difference between each perimeter. Let's say, train 
number one has 6 and train number two has 10. 

52 T O.K. I’ll write like this, train number 1 is 6, train number 2 is 10… (writes 
up a table of values) and here, you saw what? (Draws arcs between the table 
rows) 

53 Eitan Plus four 

56  T O.K. So I found this (pointing to 4x) four… What’s the '2'? 

Taking Eitan’s explanation that related to the visual mediator (“train number one”, etc. 

[51]), the teacher transformed this narrative into a well-rehearsed visual mediator of a 

table with “arcs”. The fact that this was well known to the students could be seen in the 

fact that Eitan easily fit the appropriate “blank” in the teacher’s prompt “you saw 

what?”[52] with a “plus four” [53]. The teacher’s next question, “What’s the ‘2’?” [56] 

was more difficult for Eitan to see from the table. Thus, he hesitated while another 

student, Orit, asked to explain.  

61 Orit These two sides that seem to be connected and that we, like, don’t consider 
them in the drawing, there are always these two sides that get connected to 
form one side… so they get reduced from the perimeter, so that is the '2'. 

62 T So you say there are two sides connected, so instead of taking them off, you 
add them? … Why not to do minus two? Aren’t you taking them off? 

The teacher's question [62], which pertained to whether the ‘2’ should be added or 

removed from 4x, reveals that she was not seeing the visual mediator of the perimeter 

the same way Orit was suggesting. Thus, she missed a visualization that could have led 

to another narrative: 6x-2(x-1) which describes the visualization of all hexagon sides 

counted, then the double inner sides taken away. While Orit pondered around the 

teacher’s question, Eitan offered an explanation according to the tables of values: 

65 Eitan To reach 4 (probably means 6) we had to add two then we added the two. 

66 T Oh. So you just substituted, you saw it’s true. So is it always true? 

67 Eitan Yes. 

With this, Sivan left the issue of where the '4' and '2' “come from”. Once declaring the 

correctness of the 4x + 2 expression, she invited a student to draw on the board a graph 

depicting y=4x+2. The drawing of the graph was done according the algebraic 

expression by locating one point on the Cartesian plane according to the intercept  

((0,2)), and another point according to the rate of change ((1,4)) and stretching a line 

between them. In fact, the only reference back to the Hexagon’s occurred when Sivan 

asked the students “so when I have 0 hexagons, their perimeter is 2?!” which led to a 
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discussion of the domain and range of the function but was not implicated on the graph 

itself. In contrast, Dani offered many opportunities for students to connect between the 

different realizations, including the Hexagon’s perimeter, table of values and algebraic 

expressions. He pressed for these connections consistently. For example, when a 

student suggested the expression 2(2x+1) Dani said: “O.K., O.K., but why is this true, 

in relation to the trains?” and when a student suggested another expression (6x-2x+2), 

he asked: “but how do you explain it with respect to the drawing?” In addition to this 

insistence on relating expressions to the Hexagon’s perimeter, Dani also invited other 

realizations. He asked a student, who he had seen working on a table, to present his 

work. After the student’s presentation, he revoiced it:  

“Tom built a table… Tom built the placement and the number … once he did that, what did 

he actually do? He detached himself from the trains. He is no longer thinking about the 

trains. He only looks at the numbers and tries to find a pattern in the numbers, alright?”  

By revoicing Tom’s solution, Dani not only explained it in terms of “placement” and 

“number” (meaning number of sides), he also clarified that the table could have been 

related to the Hexagons (“he detached himself from the trains”). In addition to 

encouraging connections to the visual mediator, Dani also asked students to explain 

why 6x-2(x-1) was “true” “algebraically”, encouraging students to use algebraic 

manipulation routines to prove that 6x-2(x-1) = 4x+2. 

CONCLUSION AND DISCUSSION 

Our goal in this paper was to examine the instructional practices of teachers introduced 

through a short PD to instructional practices that can support explorative participation. 

The two contrasting cases afforded us the opportunity to better understand what each 

of our three different analytical lenses shows about the lesson. These three lenses 

cohere in showing that Dani's lesson gave more opportunities for explorative 

participation than that of Sivan. The IQA implementation measure gave the first, rather 

coarse indication, that  Dani maintained the cognitive demand of the task while Sivan 

lowered it; AT coding showed that Dani encouraged more accountability to the 

community and to reasoning than Sivan and that his students were more accountable 

for the community; the RTA showed that Dani’s lesson included more mathematical 

narratives about different realizations of the “general perimeter” object (which in later 

grades would be called “the general term” of a sequence) than Sivan’s lesson. Finally, 

the close-up analysis, of specific words and sentences, showed that Sivan missed some 

potential narratives relating the algebraic expressions to the Hexagon trains, and did 

not make attempts to links between representations and connect them to the visual 

mediators, while Dani persistently pressed for such links.  

The tools we used in this research are useful not only for their varying resolutions and 

foci, they also have different potential to help teachers improve their instruction.  

Measures such as the IQA’s general implantation rubric are good for assessing the 

successful implementation of a task. However, they are less effective in showing 

teachers where they actually could do things differently. Accountable Talk moves 
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provide a more useful tool, in our view, since they give teachers specific suggestions 

for what they can say in the classroom and give them a clear image of what they need 

to look for in students’ talk. Similarly, but focusing on the mathematical content, 

commognitive analysis can show teachers what specific talk moves may elicit the 

saming of different realizations. This, in addition to the RTA which can help teachers 

map the narratives they wish to elicit from students based on the mathematical task at 

hand. Our multifocal lens approach thus holds promise both for research purposes and 

for teacher training purposes. It is, however, only in its initial stages. Therefore, further 

studies will be needed to establish its coherence and usefulness.    
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EXPLORING STUDENTS’ APPROACHES AND SUCCESS WITH 

GROWING PATTERN GENERALISATION AT YEARS 7 TO 12 

Karina Wilkie1 and Michal Ayalon2 

1Monash University, 2Haifa University 

Although figural growing pattern generalisation is one approach advocated for 

developing students’ conceptions of a function, there is more to learn about how 

students’ choice of approach and success in reaching a full algebraic (symbolic) rule 

might develop over time as they experience other representations and concepts in 

algebra. This paper discusses an investigation of 215 Australian students’ responses to 

a pattern generalisation task to provide insight into their development across Years 7 

to 12. Implications for secondary school teaching approaches are discussed. 

A development in the past few decades, particularly in response to calls to reform 

algebra teaching and learning (Carraher & Schliemann, 2007; Kieran, 2007), has been 

the generalisation of figural growing patterns as a way of developing students’ 

understanding of functional relationships. Moss, Beatty, Barkin, and Shillolo (2008) 

argued that patterns “offer a powerful vehicle for understanding the dependent 

relations among quantities that underlie mathematical functions” (p. 156). These 

experiences of counting quantifiable aspects of items in figural growing patterns with 

repeated addition provide a foundation for understanding the simplest type of function: 

linear functions (Smith, 2008).  

Many studies have examined students’ strategies and difficulties with figural pattern 

generalisation (e.g., Carraher, Schliemann, Brizuela, & Earnest, 2006; Kaput, 2008; 

Stacey, 1989) but little is known about their progression in generalisation ability 

throughout the secondary years of schooling. A recent comparative project is focusing 

on English and Israeli students’ function concept development from Years 7 to 12, 

including pattern generalisation (Ayalon, Watson, & Lerman, 2015a, b). Such research 

is important for considering how curriculum and teaching approaches in different 

contexts might influence students’ development of algebraic reasoning. This paper 

discusses one subset of data collected on Australian secondary students as part of the 

larger project and which focuses on their figural pattern generalisation at different year 

levels. It addresses the following research question: What is the nature of Australian 

students’ approaches and success with pattern generalisation throughout the 

secondary years of school mathematics?  

BACKGROUND  

Two key theoretical perspectives were considered important for this study: covariation 

and correspondence approaches for learning about functions, and learning to translate 
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between different representations of functions. These are discussed in turn along with 

empirical findings from previous research in the literature. 

An early perspective on a covariation approach to understanding a functional 

relationship and based on ratio concepts is that two sequences are generated 

independently through a pattern of data values and are juxtapositioned. It is contrasted 

with a correspondence approach where a function is described as an algebraic rule 

relating two variables (Confrey & Smith, 1994). Another definition of covariation 

useful for rate-of-change concepts is that it involves coordinating two varying 

quantities (variables) while attending to the ways in which they change in relation to 

each other (Carlson, Jacobs, Coe, Larsen, & Hsu, 2002). The relationship between a 

quantifiable aspect of figural items in a growing pattern and the position of items in the 

sequence lends itself to both covariation and correspondence approaches for 

understanding a function. Figure 1 illustrates these two approaches using the task 

discussed in this paper, which asked the students to generalise a hexagonal chain 

pattern (the whole task will be shared at the conference and can also be found in 

Ayalon et al. (2015a) since space is limited here). 

 

Covariation – when the number of hexagons increases by 1, the perimeter always increases by 4 

units. The starting value is 2 (for the first and last sides in the chain), so t = 4n + 2. 

Correspondence – each hexagon has 4 sides that form the perimeter of the hexagon chain and then 

the first and last hexagons in the chain need a side each to complete the perimeter. To find the 

perimeter, multiply the number of hexagons by 4 and then add 2 (t = 4n + 2) 

Figure 1:  Approaches for generalising the figural growing pattern used in this study 

Confrey and Smith (1994) found that students preferred using a covariational approach 

with tables of values to using a correspondence approach with algebraic equations 

since they were “easier and more intuitive” (p. 33). They suggested that covariation is 

more powerful and also emphasises rate of change clearly. Yet in the context of 

growing pattern generalisation, some studies have found that a correspondence 

approach is more likely to lead to successful generalisation and an explicit rule (e.g., 

Lannin, 2005; Wilkie, 2016). An empirical study of US upper primary students found 

that they progressed from term-to-term to position-to-term approaches (Markworth, 

2010). Hershkowitz, Arcavi, and Bruckheimer (2001) found that colleagues and 

preservice teachers attempted a covariation approach when trying to generalise a 
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quadratic matchstick growing pattern (by creating a table of values) but were 

unsuccessful. Younger students (13 to 14 years old) could use a correspondence 

approach successfully for the same pattern to create an explicit rule, even for the more 

difficult quadratic function. Nonetheless, Küchemann (2010) argued that a 

term-to-term approach for exploring functions ought not be banished, since it is closely 

allied to the notion of gradient in graphs of functions. Rather, he emphasised that 

students need “to see how term-to-term and position-to-term approaches can 

complement each other” (p. 242). This study provided the opportunity to examine if 

students’ choosing to use a covariation or correspondence approach changes over time 

as they are exposed to these two views of function in other contexts at secondary levels 

of algebra.  

Mathematical ideas are made meaningful through translations between different 

representations, such as real-world situations, spoken symbols, written symbols, 

pictures (static figural models), and manipulative models (Lesh, 1981). “A 

mathematical representation cannot be understood in isolation. The representational 

systems in mathematics and its learning have structure so that different representations 

within the system are richly related to one another” (Goldin & Shteingold, 2001, p. 2). 

Lesh (1981) also emphasised that the ability to use an idea depends on the way it is 

linked to other ideas and to processes within an appropriate cognitive structure that 

integrates ideas with a system of processes. Functional relationships can be 

represented by tables of values, figural growing patterns, descriptions, graphs, and 

algebraic (symbolic) equations. Despite the recent focus on pattern generalisation for 

learning about functions, there is little in the literature on if or how students might 

develop in their approach and success at secondary levels of schooling. One large 

study of Lebanese students found an increasing level of reasoning in pattern 

generalisation across clusters of grade levels from Years 4 to 11 (Jurdak & Mouhayar, 

2014). This study provided the opportunity to investigate students at different year 

levels constructing or translating between different representations of the same 

functional relationship – a figural growing pattern, non-sequential pairs of values, 

description, and algebraic equation. 

RESEARCH DESIGN 

This article discusses one subset of data collected on Australian secondary students as 

part of a larger comparative project on function concept development (see Ayalon, et 

al., 2015a, b). Over 200 Australian secondary students in Years 7–12 from two 

middle-SES governments schools and their teachers participated – alternating year 

levels from each school to minimise school effects and reduce the burden on the 

teaching staff. The students completed a series of written tasks eliciting different types 

of functional knowledge and concepts, and their teachers completed a questionnaire on 

their expectations for different year levels and sequencing of concepts. This paper 

discusses the responses to one of these tasks in which the students were initially given 

the picture in Figure 1 and the perimeters for a chain of 1 hexagon and 3 hexagons, 
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then asked to find the perimeter for some other (non-sequential) chains. A tabular 

representation was deliberately excluded from the task to examine what types of 

reasoning and approaches the students might use without elicitation of term-to-term or 

covariation approaches. The students were then asked to explain how they could find 

the perimeter for 100 hexagons, and to construct an algebraic rule for finding the 

perimeter of any number of hexagons. This was an explicit request for a new 

representation and no direct support was given, but the prior questions were designed 

to direct students towards an explicit rather than recursive generalisation. They were 

then asked to justify their answer in words to elicit further insight into their approach. 

A scoring rubric (Table 1) was developed and refined collaboratively by the initial 

research team from the overall project (Ayalon et al., 2015a) and adapted slightly for 

the Australian responses. For example, an unclear approach category was needed for 

the students who gave an algebraic rule but did not explain or show how they found it. 

Illustrative scoring from the Australian data reported on in this paper will be shared at 

the conference. 

RESULTS AND DISCUSSION  

The following discussion focuses on three aspects: the students’ overall choice of 

approach and subsequent success in creating an algebraic rule for the hexagonal 

pattern (Table 1), their success at different year levels (Figure 2), and then students’ 

choice of approach (correspondence and/or covariation) and success with creating an 

algebraic rule at different year levels (Table 2). 

Table 1 presents the students’ choice of type of approach in generalising the hexagonal 

growing pattern (column 1) and their subsequent success in finding an algebraic rule 

for the linear function. 

 Level of generalisation Sub-total 

Score Approach No 

generalisation 

Descriptive 

rule 

Algebraic rule Algebraic rule 

explained 

0 No response 3.7% - - - 3.7% 

1 Counting 21.9% - - - 21.9% 

2 Correspondence 9.8% 12.1% 2.8% 18.6% 43.3% 

3 Covariation 11.2% 2.8% 0.5% 3.3% 17.7% 

4 Correspondence 

then covariation 

0.5% - - - 0.5% 

5 Covariation then 

correspondence 

0.5% 1.4% 0.5% 0.9% 3.3% 

unclear Unclear approach 0.5% 0.5% 6.0 variation % 2.8% 9.8% 

 Sub-total 47.9% 16.7% 9.8% 25.6% 100% 

Table 1: Approach and level of growing pattern generalisation (n = 215) 
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Just over half of the cohort overall found a correct explicit generalisation for the 

growing pattern expressed descriptively or algebraically, with 35% able to find a 

correct algebraic rule. The use of a correspondence approach was clearly the most 

likely to lead to successful generalisation, as over 20% of the students used this 

approach and subsequently developed a correct algebraic rule. This resonates with 

earlier findings from research on Australian students (Stacey, 1989), but is different to 

Ayalon and colleagues’ (2015a) finding that on the same task, the English students (n = 

120) were more likely to be successful with a covariation approach (but similar to the 

Australian data, one third of the English students overall found a correct algebraic 

rule). They also found that the Israeli students (n = 110) were highly successful with 

either approach, with three quarters overall able to find a correct algebraic rule (Ayalon 

et al., 2015b).  

Nearly 10% of the Australian students’ responses could not be allocated to a particular 

approach because they did not give an explanation, but most actually successfully 

generalised the pattern algebraically. A few students had drawn their own table of 

values for the pattern but their choice of approach was not clear. Many students simply 

wrote the algebraic rule, and often with an x rather than an n as prompted by p(n) in the 

task.  

Figure 2 presents the students’ generalisation success at each year level. 

 

Figure 2:  Percentages of levels of pattern generalisation within year levels (n = 215) 

The graph in Figure 2 shows surprisingly little progression across Years 7 to 11 in the 

proportion of students able to generalise explicitly. Within a particular year level 

(excluding Year 12) around half of the students were able to find an explicit 

generalisation, expressed descriptively or algebraically. This lack of progression is 

different to the patterns of progression found in both the English and Israeli data for the 

same task (keeping in mind the smaller data samples), with nearly all Israeli students 

able to generalise from Year 8 onwards (Ayalon et al., 2015b) and the English students 

demonstrating increased competence over time (Ayalon et al., 2015a). It seems that 

these Australian students’ exposure to different conceptions of function may not 

support their development of figural growing pattern generalisation and warrants 
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further investigation into differences between the three countries’ curriculum content 

and teaching approaches in this area. There is some sense of progression, however, in 

those students able to create a symbolic rule from Year 7/8 to Year 9/10/11 and then to 

Year 12, suggesting some development of the understanding of representing the 

variables from a growing pattern with pronumerals. 

Table 2 relates the students’ approach to pattern generalisation with their ability to find 

an explicit rule (no rule / descriptive rule / algebraic rule) within each year level. 

 Level of generalisation: % (No rule), Descriptive rule, Algebraic rule 

Score Approach Year 7 Year 8 Year 9 Year 10 Year 11 Year 12 

0 No response  (7), 0, 0 - (3), 0, 0 - (12), 0, 0 - 

1 Counting (12), 0, 0 (43), 0, 0 (17), 0, 0 (15), 0, 0 (18), 0, 0 (21), 0, 0 

2 Correspondence (19), 24, 14 (7), 11, 7 (5), 17, 25 (18), 4, 22 (6), 9, 22 (3), 3, 52 

3 Covariation (14), 2, 5 (16), 7, 0 (14), 5, 0 (8), 0, 7 (9), 0, 3 (3), 0, 9 

4 Correspondence 

then covariation 

(3), 0, 0 - - - - - 

5 Covariation then 

correspondence 

- - (0), 3, 0 (4), 0, 0 (0), 0, 6 (0), 0, 3 

unclear Unclear approach - (0), 2, 7 (0), 0, 11 (0), 0, 22 (3), 0, 12 (0), 0, 6 

 Total 100% 100% 100% 100% 100% 100% 

Table 2: Approach and levels of pattern generalisation across year levels (n = 215) 

The data in Table 2 highlights that the students appear unlikely to change to a different 

approach to pattern generalisation as they get older, as there are no noticeable shifts in 

the proportions of students choosing a particular approach. At each year level, a 

correspondence approach is more popular than covariation, which is similar to the data 

on the Israeli student responses (Ayalon et al., 2015b). The teachers of the Year 7/8 

students indicated that although they used pattern generalisation in their teaching, they 

expected that most students would most likely use recursive counting strategies and 

have difficulty creating an explicit rule. It is interesting that more of the younger 

students used a correspondence approach than expected, and more students generalised 

the pattern correctly than expected by their teachers, but with descriptive rather than 

algebraic rules. The teachers of the higher year levels expected most of their students 

to be able to complete the task successfully.  

CONCLUSION 

This study found that the students at each year level both preferred, and were more 

successful with, a correspondence approach to pattern generalisation than covariation. 

Unlike the Israeli and English students’ responses to the same task (Ayalon et al., 

2015a, b), a lack of progression was found in the proportion of these students able to 
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generalise a figural growing pattern with increasing year levels. This finding is also 

different from Jurdak and Mouhayar’s (2014) study of Lebanese students. Many of the 

Australian students, although not successful with creating an algebraic rule, were 

nevertheless able to use a correspondence approach to structure a descriptive explicit 

generalisation. Yet Radford (2006) argued that for thinking to be distinctively 

algebraic, it must: handle indeterminacy, in an analytic way, and designate its objects 

symbolically. Why did many in this cohort of students demonstrate descriptive rather 

than symbolic generalisation? 

Several examples of tasks with growing patterns made with matchsticks can be found 

in typical Australian textbooks at lower secondary levels, yet they ask students to 

describe the generalisation rather than create a symbolic rule. It seems likely that this 

type of task has been experienced by many students, but does not support students’ 

ability to develop algebraic representations in this context. This result resonates with 

recent research on Year 7 Australian students’ pattern generalisation, which found that 

a majority of students adopted a correspondence approach and 44% were able to find 

an explicit rule, approximately half with descriptions, and half with algebraic rules 

(Wilkie, 2016). We suggest that if students are not taught to represent pattern 

generalisations symbolically, they are missing an opportunity to develop algebraic 

thinking (Radford, 2006). They are also missing another opportunity to link algebraic 

equations to other representations of functional relationships, and to learn how they are 

richly related to one another, as emphasised by Goldin and Shteingold (2001). Since 

Australian lower secondary students already explore the use of pronumerals to 

represent variables in other contexts, there is the potential for them also to experience 

their use with creating algebraic rules for growing patterns.  
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This paper introduces a new framework to model the interactions of the processes of 

specialising and conjecturing when students engage in mathematical investigation. 

The framework posits that there is usually a cyclic pathway alternating between 

examining specific examples (specialising) and searching for pattern (conjecturing), 

instead of a linear pathway as in many other theoretical models. The framework also 

distinguishes between observing a pattern and formulating it as a conjecture, unlike 

most models that treat an observed pattern as a conjecture to be proven or refuted. I 

will then use the framework to analyse and explicate a secondary school student’s 

specialising and conjecturing processes while he attempted an open investigative task. 

INTRODUCTION 

There is quite a number of theoretical models developed by educators on the processes 

in mathematical investigation, e.g. Height (1989) and Bastow, Hughes, Kissane and 

Mortlock (1991). But many of these models remain theoretical in the sense that there 

are very few empirical studies on these processes in mathematical investigation despite 

a thorough search of past and current literature. Moreover, most of these models show 

a linear pathway from one process to another when in reality, based on empirical data 

such as those from Yeo (2013), many of the pathways are cyclic. Many theoretical 

models also oversimplify some of the processes, such as equating an observed pattern 

to a conjecture to be proven or refuted, when empirical data suggest that some students 

will go back to try more examples after observing a pattern in order to be more certain 

that there is indeed a pattern before formulating it as a conjecture. Therefore, there is a 

need for a more comprehensive framework to more accurately describe the interactions 

of the processes in mathematical investigation. 

This paper will describe a new framework called the Model for Cognitive Processes in 

Mathematical Investigation (or the Investigation Model in short), which was 

developed as part of my doctoral study (Yeo, 2013) to analyse and explicate the 

cognitive processes when secondary school students attempted open investigative 

tasks. In particular, this paper will focus on two of the processes called specialising and 

conjecturing. Specialising is the process of examining special cases or trying specific 

examples to search for patterns in order to generalise, and conjecturing is the process 

of searching for patterns and formulating conjectures based on the patterns observed. 

Specialising and conjecturing, together with justifying (conjectures) and generalising, 
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are the four main mathematical thinking processes identified by Mason, Burton and 

Stacey (2010). 

Some researchers (e.g. Clement, 2000) believe that one of the most important needs in 

basic research on thinking processes is the need for insightful explanatory models of 

these processes. This type of explanatory models is often iconic in nature and the 

purpose of the model is to give satisfying explanations for patterns in observations 

(Lesh, Lovitts, & Kelly, 2000). Schoenfeld (2002) explained that the descriptive power 

of a model will be high if the model can capture the essence of the phenomenon. 

Therefore, this paper will illustrate how the Investigation Model can be used to 

analyse, describe and explicate the processes of specialising and conjecturing in 

mathematical investigation. 

THEORETICAL FRAMEWORK 

Based on existing theoretical models of mathematical investigation in literature, I had 

modified and designed an explanatory framework to model the types and interactions 

of cognitive processes in mathematical investigation (Yeo, 2013), which is reproduced 

in Figure 1. The left side of the Investigation Model shows the three phases and eight 

stages of mathematical investigation. The right side of the model shows the types of 

processes (indicated by unshaded boxes) and outcomes (indicated by shaded boxes), 

and their interactions. It is necessary to include outcomes in the model because the 

processes do not just interact among themselves but they also interact with the 

outcomes. Most of the stages are named after the main process(es) in that stage. 

The process of specialising occurs in the stage of ‘Specialising and Using Other 

Heuristics’, but it is beyond the scope of this paper to examine ‘other heuristics’ such 

as deductive reasoning. The stage of ‘Conjecturing’ consists of the process of 

searching for patterns and two outcomes: ‘Observed Pattern’ and ‘Formulated 

Conjecture’. Many theoretical models usually show a single pathway from specialising 

(or trying examples) to pattern searching. But the Investigation Model on Figure 1 

allows for a cyclic pathway alternating between specialising and searching for 

patterns. Unlike other models, the Investigation Model also separates the formulation 

of a conjecture from the observation of a pattern because some students will go back to 

specialising some more after observing a so-called pattern because they are not sure 

whether there is really a pattern. Only after trying more examples and finding the same 

pattern will the students finally treat it as a conjecture to be proven or refuted. 

Although the focus of this paper is on specialising and conjecturing, it is necessary to 

consider what follows after a conjecture is formulated because one of the processes in 

the Justifying Stage, called naïve testing, looks rather similar to the specialising 

process when students go back to try more examples to be more certain of a pattern. 

However, naïve testing of a conjecture is different in the sense that there must be a 

conjecture first, and the students are supposed to try to justify or refute the conjecture 

by using either a formal proof (Tall, 1991) or a non-proof argument based on the 



Yeo 

 

_______________________________________________________________________________________________________________________

PME 41 – 2017 4-339 

underlying structure (Mason et al., 2010). But very often the students are not able to 

think of a proof or argument, so some of them will test the conjecture by trying to find 

if there are counter examples to refute it: this is called naïve testing by Lakatos (1976). 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Model for Cognitive Processes in Mathematical Investigation 
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METHOD AND ANALYSIS 

The Investigation Model will be used to analyse the cognitive processes of a secondary 

school student Ben (pseudonym) when he attempted the following posttest task: 

Choose any number. Add the sum of its digits to the number itself to obtain a new number. 

Repeat this process for the new number and so forth. Investigate. 

Ben was one of the students in my doctoral study (Yeo, 2013) who had undergone a 

teaching experiment on mathematical investigation consisting of six two-hour lessons: 

he had been taught how and what to investigate when given open investigative tasks, 

including cognitive processes such as problem posing, specialising, conjecturing, 

justifying and generalising. Ben was videotaped thinking aloud while he attempted two 

pretest and two posttest tasks. The verbal protocols were then transcribed and coded to 

identify the types of processes and their interactions. The following episodes were 

chosen to illustrate how the Investigation Model can be used to describe and explain 

Ben’s processes of specialising, conjecturing and naïve testing. 

Episode 1: Interaction between specialising and pattern searching 

Figure 2 shows the first portion of Ben’s working for the task. He started with the 

number 12345 and added the sum of its digits to itself to obtain 12360. Then he made a 

serious mistake in misinterpreting the task: instead of repeating the process for the new 

number 12360, he repeated the process for a completely new random number 242 and 

obtained 250. Despite him not recovering from his error throughout the investigation, 

the Investigation Model is still able to capture his thinking processes. 

 

 

 

 

 

 

 

Figure 2: First part of Ben’s working 

The following protocols continued from when Ben started trying the fifth number 75 

(this will be called Example 5) at the right end of Figure 2. Square brackets were used 

in the transcript to enclose the transcriber’s comments such as what the student was 

writing. An ellipsis was used to indicate a short pause of three seconds or less. 

20  03:43 If I try to use a small number like ... 75 [write: 75] ... 75 [draw an arrow 
from each digit of 75 downward] I add it together I have [write: 12] 12 … 
[continue writing in another line] 75 + 12 = 87 [stop writing] … 87 [draw 
an arrow from each digit of 87 downward] equals to 15 [write: 15] … 15 
which is 1 …[start writing] 1 + 2 [stop writing] ... added to 12 [write: 12] … 
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21 04:20  So 19 [point pen at 19 in Example 3] … is ... 

22 04:25  If I try with another, another two-digit number like [turn to new p. 2] … 27 
[write: 27] [draw an arrow from each digit of 27 downward] 27 equals to, 
add together is 9 [write: 9] 9 … [continue writing in another line] 27 + 9 
[stop writing] … will give me 36 [write: 36] 36 [draw an arrow from each 
digit of 36 downward]. If I add them together, I will still get 9 [write: 9]. 

23 04:50  There is no difference … 

24 04:54  If I try 50 [write: 50] … 50 [draw an arrow from each digit of 50 
downward] if I add it together, I will get [write: 5] 5 … [continue writing in 
another line] 50 + 5 = 55 [stop writing] ... 55 [draw an arrow from each 
digit of 55 downward] you add it up, you get a maximum of 10 [write: 10]. 

25   05:15 [Pause 4 seconds] 

In Line 20, Ben was trying Example 5 (specialising), and in Line 21, he was searching 

for patterns when he pointed his pen at the number 19 in his previous Example 3. After 

failing to find any patterns, Ben tried a new Example 6 (Line 22) and continued to 

search for patterns but to no avail (Line 23). Then Ben tried Example 7 (Line 24) and 

paused for four seconds, presumably to search for patterns. Thus Ben was alternating 

between specialising and pattern searching as illustrated by the Investigation Model in 

Figure 3. The numbers in the figure represent the line numbers in Ben’s transcript but 

with a difference. For example, Line 20 is coded as ‘Specialising’ and Line 21 as 

‘Searching for Patterns, but in Figure 3, it is more helpful to use the line numbers to 

indicate the pathways so that we can see that Ben moved from ‘Specialising’ to 

‘Searching for Patterns’ (indicated by 20), then back to ‘Specialising’ (indicated by 

21), and then to ‘Searching for Patterns’ again (indicated by 22), and so forth. 

 

 

 

Figure 3: Alternating between specialising and searching for patterns 

Episode 2: Difference between observed pattern and formulated conjecture 

The following protocols picked up from when Ben started trying Example 10 using the 

number 5000. 

40  09:05 If I try to add ... if I try example of an even number [write: 5000] 5000 ... 
5000 [draw an arrow from each digit of 5000 downward] if I add it 
together, I will have 5 [write: 5] ... If I try ... so [continue writing in another 
line] 5000 + 5 = 5005 [stop writing]  

41 09:32   which is an odd number [write: (odd no.)] ... So from an even number 
[point pen at 5000], I obtain an odd number ... 

42 09:44  Let me try an odd number now. [Write: 5001] 5001. [Draw an arrow from 
each digit of 5001 downward] If I add it all together, I will have 6 [write: 6] 
... [continue writing in another line] 5001 + 6 [write: 5001 + 6 = 5007]. 

43 09:56  It will still give me an odd number: 5005, 5007. 
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44 10:02  [Pause 5 seconds] 

45 10:07  I try five thousand [write: 5] and ... 5222 [write after the digit 5: 222]. 
[Draw an arrow from each digit of 5222 downward] It will give me [write: 
11] 11 [continue writing in another line] 5222 + 11 = 5233 [stop writing] 

46 10:28   which is still an odd number ... 

47 10:32  Every time I add them together [draw a big brace from 5005 to 5233], I get 
an odd number ... Is it the same for every single pattern? ... 

In Line 40, Ben was trying Example 10, and in Line 41, he observed a pattern that the 

next number was an odd number. Sometimes a student may observe a pattern 

immediately after trying an example, so it is not easy to distinguish the exact juncture 

between searching for patterns and observing a pattern. However, Ben was not sure 

whether there was really a pattern because he continued to try two more examples 

(Example 11 in Line 42 and Example 12 in Line 45) and he observed that it was still 

the same pattern (Lines 43 and 46). So he said, “Is it the same for every single pattern?” 

(Line 47) What he probably means is whether the pattern is the same for every single 

example. At this moment, Ben was more certain that there was a pattern and this was 

coded as when he formulated his conjecture. In other words, there is a difference 

between ‘observed pattern’ and ‘formulated conjecture’: Ben did not treat the pattern 

as a conjecture when he first observed it, but he went back to try more examples to see 

if the pattern could withstand the test of a few more examples before formulating it as a 

conjecture. Figure 4 shows the pathways of Ben’s processes and outcomes in Episode 

2 as modelled by the Investigation Model. 

 

 
 

 

 

 

Figure 4: Observed pattern vs. formulated conjecture 

Episode 3: Difference between specialising and naïve testing 

The following protocols showed what happened immediately after Ben formulated his 

conjecture in the previous episode. Instead of trying to think of a non-proof argument 

or a formal proof to justify his conjecture, Ben decided to test his conjecture by trying 

to find if there are counter examples to refute it. 

48  10:40 Write: 2987] 2897. [Draw an arrow from each digit of 2987 downward] If I 
add it all together, I get ... 26 [write: 26] ... [continue writing] 2897 + 26 = 
[stop writing] ... 2 ... 2903 ... 

49 11:12  2923 [write: 2923]. 
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50 11:14  [Pause 4 s] 

51 11:18  What if I try to... The main reason why I’m getting an odd number is 
because this is odd [circle 7 in 2897] ... and this is even [circle 6 in 26] ... If 
I put another odd number and odd number, or even number and even 
number like ... 

52 11:31  [Write: 2572] 25 ... 72. [Draw an arrow from each digit of 2572 downward] 
If I add them all up, I’ll get a total of ... [write: 16] 16 ... [continue writing in 
another line] 2572 + 16 [stop writing]  

53 11:47   will, should give me an even number 2588 [write: 2588]. 

54 11:55  So, therefore, this is an even number [write: (even no.)]. So it doesn’t have 
to be odd number all the time ... 

In Line 48, Ben tried Example 13 and found the same pattern (Line 49). Then he 

paused for four seconds. During this time, he was able to deduce the reason behind his 

conjecture, which he articulated in Line 51. The deductive argument led him to think of 

a counter example (Example 14 in Line 52) to ensure that the next term in the sequence 

was even instead of odd (Line 53), thus refuting his conjecture (Line 54). This kind of 

naïve testing in the Justifying Stage is different from trying more examples in the 

Specialising and Conjecturing Stages to be more certain that there is indeed a pattern 

first because naïve testing happened after the formulation of a conjecture at the end of 

the Conjecturing Stage. Figure 5 shows the pathways of Ben’s processes and outcomes 

in both Episodes 2 and 3 as modelled by the Investigation Model. It is beyond the 

scope of this paper to discuss what happens after a conjecture is rejected by naïve 

testing. 

 

 

 

 

 

 

 

 

Figure 5: Naïve testing of conjecture 

DISCUSSION AND CONCLUSION 

The power of an insightful explanatory model on thinking processes lies in its ability to 

capture the actual processes and explain the interactions accurately (Schoenfeld, 

2002). The analysis presented in the previous section has demonstrated how the 

Investigation Model is capable of faithfully depicting the interactions of the processes 

of specialising, conjecturing and naïve testing during mathematical investigation. The 
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empirical data from my doctoral study have suggested that the processes and their 

interactions are much more complex than those modelled by most theoretical 

frameworks. For example, some students often alternate between specialising and 

searching for patterns, and a more robust model should capture such phenomenon. 

Also, such a model should be able to discern between processes or outcomes that look 

similar, such as an ‘observed pattern’ and a ‘formulated conjecture’. Researchers can 

then use the framework to analyse other students’ cognitive processes at a fine-grained 

level while teachers can use the model to teach students how to think when engaging in 

mathematical investigation. Therefore, the Investigation Model can help to make 

students’ thinking processes visible to researchers and teachers. 
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