CONFERENCE OF THE INTERNATIONAL GROUP FOR
THE PSYCHOLOGY OF MATHEMATICS EDUCATION

07-12 July 2019 Pretoria South Africa

Proceedings

43rd Annual Meeting of the International
Group for the Psychology of Mathematics
Education

VOLUME 2

Research Reporis (A-K)

Editors:
Mellony Graven, Hamsa Venkat, Anthony A Essien and
Pamela Vale






Proceedings of the 43" Conference of the International Group
for the Psychology of Mathematics Education

Pretoria, South Africa

7 —12 July 2019

Editors:
Mellony Graven
Hamsa Venkat
Anthony A Essien

Pamela Vale

Volume 2

Research Reports (A-K)




Psychology in Mathematics
Education
(PME) Conference
7-12 July 2019
University of Pretoria,
South Africa

Website: pme43@up.ac.za

Cite as:

Graven, M., Venkat, H., Essien, A. & Vale, P. (Eds). (2019). Proceedings of the 43"
Conference of the International Group for the Psychology of Mathematics Education
(Vol 2). Pretoria, South Africa: PME.

Website: https://www.up.ac.za/pme43

Proceedings are also available on the IGPME website: http://www.igpme.org

Copyright © 2019 left to authors
All rights reserved

ISBN (Volume 2, print): 978-0-6398215-2-8
ISBN (Volume 2, electronic): 978-0-6398215-3-5

Printed by Minute Man Press, Hatfield
Logo designed by GA Design



TABLE OF CONTENTS
VOLUME 2

RESEARCH REPORTS (A - K)

CHANGES IN PRIMARY MATHEMATICS TEACHERS’ RESPONSES TO

STUDENTS” OFFERS ..ot 2-1
Lawan Abdulhamid
DISCOURSE IN CLASSROOMS OF PD PARTICIPANTS ... 2-9

Reema Alnizami, Anna Thorp, Paola Sztajn

TEACHERS' KNOWLEDGE DEVELOPMENT AFTER PARTICIPATION IN
A COMMUNITY OF INQUIRY PROFESSIONAL DEVELOPMENT
PROGRAM ...ttt ettt e e e 2-17

Anabousy Ahlam, Tabach Michal

IMPLEMENTING INQUIRY-BASED LEARNING (IBL): OPPORTUNITIES
AND CONSTRAINTS FOR BEGINNING SECONDARY MATHEMATICS
TEACHERS .ttt 2-25

Judy Anderson, Una Cha

TAKING EACH OTHER’S POINT OF VIEW: A TEACHING EXPERIMENT
IN COOPERATIVE GAME THEORY ...ttt 2-33

Samuele Antonini

TEACHING FOR STRUCTURE AND GENERALITY: ASSESSING
CHANGES IN TEACHERS MEDIATING PRIMARY MATHEMATICS.......... 2-41

Mike Askew, Hamsa Venkat, Lawan Abdulhamid, Corin Mathews,
Samantha Morrison, Viren Ramdhany, Herman Tshesane

BUILDING 3D SHAPES FROM SIDE VIEWS AND SHADOWS — AN
INTERVIEW STUDY WITH PRIMARY SCHOOL STUDENTS ......cccccceeeineeee. 2-49

Daniela Assmus, Torsten Fritzlar

PRACTICALIZING PRINCIPLED KNOWLEDGE WITH TEACHERS TO
DESIGN LANGUAGE-ORIENTED MATHEMATICS LESSONS: A DESIGN

Arthur Bakker, Farran Mackay, Jantien Smit, Ronald Keijzer

PME 43 - 2019 2-1



Table of Contents — Volume 2

MATHEMATICAL KNOWLEDGE, INSTRUCTION AND LEARNING:
TEACHING OF PRIMARY GRADE CHILDREN .....ccoccoiiiiiiiiiiiieiieeee, 2-65

Rakhi Banerjee

CHANGE IN POSING OPPORTUNITIES TO LEARN IN THE CONTEXT OF
PROFESSIONAL DEVELOPMENT ....cooiiiiiiiiiiiiie ettt 2-73

Rinat Baor, Einat Heyd-Metzuyanim

LESSON STUDY IN PRIMARY PRE-SERVICE TEACHERS’ EDUCATION:
INFLUENCES ON BELIEFS ABOUT LESSON PLANNING AND
CONDUCGTION ...ttt ettt e e et e e s eabee e e sabeeeas 2-81

Maria G. Bartolini Bussi, Silvia Funghi

A STUDY OF JAPANESE PRIMARY SCHOOL TEACHER PRACTICES
DURING NERIAGE.......coiiiiii ettt 2-89

Valérie Batteau

TEACHER INTERRUPTED: HOW MATHEMATICS GRADUATE
TEACHING ASSISTANTS (DON’T) LEARN ABOUT TEACHING................. 2-97

Mary Beisiegel, Claire Gibbons, Alexis Rist

CHANGING TEACHER PRACTICES WHILE TEACHING WITH
CHALLENGING TASKS ettt et 2-105

Janette Bobis, Ann Downton, Sally Hughes, Sharyn Livy, Melody
McCormick, James Russo, Peter Sullivan

EYE-TRACKING SECONDARY SCHOOL STUDENTS’ STRATEGIES
WHEN INTERPRETING STATISTICAL GRAPHS. ... 2-113

Lonneke Boels, Arthur Bakker, Paul Drijvers

STUDENT TEACHERS’ USE OF MEASURABLE PROPERTIES.................. 2-121
Bruce Brown

VIMAS NUM: MEASURING SITUATIONAL PERCPETION IN
MATHEMATICS OF EARLY CHILDHOOD TEACHERS.............ccccoiiiiennn 2-129

Julia Bruns, Hedwig Gasteiger

INVESTIGATING MATHEMATICAL ERRORS AND IMPRECISIONS IN
CONTENT AND LANGUAGE IN THE TEACHING OF ALGEBRA .............. 2-137

Anne Cawley, April Strom, Vilma Mesa, Laura Watkins, Irene
Duranczyk, Patrick Kimani

2-1ii PME 43 - 2019



Table of Contents — Volume 2

DIALOGUE AND SHARED COGNITION: STUDENT-STUDENT TALK
DURING COLLABORATIVE PROBLEM SOLVING .......ccoocoiiiiiiiiiiiieenee 2-145

Man Ching Esther Chan, David Clarke

INTEGRATING DESMOS: A CASE STUDY ....ooiiiiiiieieeeeeeeeee e 2-153
Sean Chorney

A MATHEMATICS CURRICULUM IN THE ANTHROPOCENE................... 2-161
Alf Coles

RECONCILING TENSIONS BETWEEN LECTURING AND ACTIVE
LEARNING IN PROFESSIONAL LEARNING COMMUNITIES. .................... 2-169

Jason Cooper, Boris Koichu

SUBJECTIVE APPROACH TO PROBABILITY FOR ACCESSING
PROSPECTIVE TEACHERS’ SPECIALIZED KNOWLEDGE ........................ 2-177

Rosa Di Bernardo, Maria Mellone, Ciro Minichini, Miguel Ribeiro

TEACHERS AND STANDARDIZED ASSESSMENTS IN MATHEMATICS:
AN AFFECTIVE PERSPECTIVE ... 2-185

Pietro D1 Martino, Giulia Signorini

THE CO-EMERGENCE OF VISUALISATION AND REASONING IN
MATHEMATICAL PROBLEM SOLVING: AN ENACTIVIST
INTERPRETATION ... .ottt ettt et 2-193

Beata Dongwi, Marc Schifer

THE BODY OF/IN PROOF: EVIDENCE FROM GESTURE......ccccovveeeeeeeen. 2-201
Laurie D. Edwards

TEACHING TO CHANGE WAYS OF EXPERIENCING NUMBERS — AN
INTERVENTION PROGRAM FOR ARITHMETIC LEARNING IN
PRESCHOOL ...ttt et 2-209

Anna-Lena Ekdahl, Camilla Bjérklund, Ulla Runesson Kempe

ANALYSING LESSONS ON FRACTIONS IN THE MIDDLE PRIMARY

GRADES: FOCUS ON THE TEACHER.........coooiiiiiiiieeeee e 2-217
George Ekol

TRIADIC DIALOGUE DURING CLASSROOM TALK IN THE CONTEXT

OF PATTERN GENERALIZATION ...ttt 2-224
Rabih El Mouhayar

PME 43 - 2019 2 -1



Table of Contents — Volume 2

EXPLORING THE IMPACT OF PRE-LECTURE QUIZZES IN A
UNIVERSITY MATHEMATICS COURSE.......cceiiiiiiiiiiieiieeiieeeeee 2-232

Tanya Evans, Barbara Kensington-Miller, Julia Novak

DESIGNING CHALLENGING ONLINE MATHEMATICAL TASKS FOR
INITIAL TEACHER EDUCATION: MOTIVATIONAL CONSIDERATIONS 2-240

Jill Fielding-Wells' Vince Geiger, Jodie Miller, Regina Bruder, Ulrike
Roder, Iresha Ratnayake

THE INFLUENCE OF TEACHERS ON LEARNERS’ MATHEMATICAL
IDENTITIES ..ottt ettt sttt e ettt e e e e e e 2-248

Aarifah Gardee, Karin Brodie

THE IMPACT OF MONTESSORI EDUCATION ON THE DEVELOPMENT
OF EARLY NUMERICAL ABILITIES .....cooiiiiiiieeeeeeeee e 2-256

Marie-Line Gardes, Marie-Caroline Croset, Philippine Courtier

INTEREST DEVELOPMENT AND SATISFACTION DURING THE
TRANSITION FROM SCHOOL TO UNIVERSITY ..coooiiiiiiiiiiiieceiiieeeee, 2-264

Sebastian Geisler, Stefanie Rach

EXPLORING STUDENTS’ REASONING ABOUT FRACTION

MAGNITUDE. ... o e e, 2-272
Juan Manuel Gonzalez-Forte, Ceneida Fernandez, Jo Van Hoof , Wim Van
Dooren

HOW ENGINEERS USE INTEGRALS: THE CASES OF MECHANICS OF
MATERIALS AND ELECTROMAGNETISM ....ccooiiiiiiiiiiiiieiieeeeeeee 2-280

Alejandro S. Gonzélez-Martin, Gisela Hernandes-Gomes

DESIGNING EFFECTIVE PROFESSIONAL LEARNING PROGRAMS FOR
OUT-OF-FIELD MATHEMATICS TEACHERS ......ccooiiiiiiiiieceee, 2-288

Merrilyn Goos, John O’Donoghue

INTERROGATING EQUITY AND PEDAGOGY: ACCESS TO
MATHEMATICS IN AN INFORMAL LEARNING SPACE......c.ccccceiiniienne 2-296

Elena A. Contreras Gullickson, Lesa M. Covington Clarkson

DYNAMIC GEOMETRY CONSTRUCTION: EXPLORATION OF
REFLECTIONAL SYMMETRY THROUGH SPATIAL PROGRAMMING IN
ELEMENTARY SCHOOL......coiiiiiiiiiiite et 2-304

Victoria Guyevskey

2-1v PME 43 - 2019



Table of Contents — Volume 2

LEARNERS’ MATHEMATICAL MINDSETS AND ACHIEVEMENT........... 2-312
Lovejoy Comfort Gweshe, Karin Brodie

STUDENTS’ GENDERED EXPERIENCES IN UNDERGRADUATE
PROGRAMS IN UNIVERSITY MATHEMATICS DEPARTMENTS. .............. 2-320

Jennifer Hall, Travis Robinson, Jennifer Flegg, Jane Wilkinson

MAKING AND OBSERVING VISUAL REPRESENTATIONS DURING
PROBLEM SOLVING: AN EYE TRACKING STUDY .....ccooviiiiiiiiiiiiiieeeee 2-328

Markku S. Hannula, Miika Toivanen

STUDENTS' USES OF ONLINE PERSONAL ELABORATED FEEDBACK .. 2-336
Raz Harel, Michal Yerushalmy

THE CASE FOR SELF-BASED METHODOLOGY IN MATHEMATICS
TEACHER EDUCATION ....coiiiiiiiiietee ettt e 2-344

Tracy Helliwell

VALIDATION OF A DEVELOPMENTAL MODEL OF PLACE
VALUE CONCEPTS ...ttt et 2-352

Moritz Herzog, Annemarie Fritz

CONTRIBUTION OF ACADEMIC MATHEMATICS TO TEACHER LEARNING
ABOUT THE ESSENCE OF MATHEMATICS.........oooo e 2-360

Anna Hoffmann, Ruhama Even

PREPARING IN-SERVICE TEACHERS FOR THE DIFFERENTIATED
CLASSROOM ...t ettt e e 2-368

Lars Holzédpfel, Timo Leuders, Thomas Bardy

MENTAL COMPUTATION FLUENCY: ASSESSING FLEXIBILITY,
EFFICIENCY AND ACCURACY .ottt 2-376

Sarah Hopkins, James Russo, Ann Downton

CULTURALLY DIVERSE STUDENTS’ PERCEPTIONS OF
MATHEMATICS IN A CHANGING CLASSROOM CONTEXT ......ccccccuveeenee 2-384

Jodie Hunter, Roberta Hunter, Rachel Restani

WHAT IT MEANS TO DO MATHEMATICS: THE DISCURSIVE
CONSTRUCTION OF IDENTITIES IN THE MATHEMATICS
CLASSROOM ...t ettt e et e e 2-392

Jenni Ingram, Nick Andrews

PME 43 - 2019 2-v



Table of Contents — Volume 2

ON THE LEARNING OF GROUP ISOMORPHISMS ... 2-400
Marios loannou

PRINCIPLES IN THE DESIGN OF TASKS TO SUPPORT PRE-SERVICE
TEACHERS’ NOTICING ENHANCEMENT. ..., 2-408

Pedro Ivars, Ceneida Fernandez, Salvador Llinares

PRE-SERVICE TEACHERS’ NARRATIVES IN KINDERGARTEN TEACHER
EDUCATION. e e e 2-416

Pedro Ivars, Ceneida Fernandez, Miguel Ribeiro

PEDAGOGICAL CONTENT KNOWLEDGE FOR TEACHING
MATHEMATICS: WHAT MATTERS FOR PRESERVICE PRIMARY
TEACHERS IN MALAWI? ..ottt 2-424

Everton Jacinto, Arne Jakobsen

UNDERSTANDING OF WRITTEN SUBTRACTION ALGORITHMS: WHAT
DOES THAT MEAN AND HOW CAN WE ANALYSE IT? ..ccciiiiiiiiiiieenee 2-432

Solveig Jensen, Hedwig Gasteiger

NOTIONS, DEFINITIONS, AND COMPONENTS OF MATHEMATICAL
CREATIVITY: AN OVERVIEW ..ottt 2-440

Julia Joklitschke, Benjamin Rott, Maike Schindler

SECOND GRADERS’ FIRST MEETING WITH VARIABLE NOTATION ...... 2-448
Thomas Kaas

INDICATORS OF PROSPECTIVE MATHEMATICS TEACHERS’
SUCCESS IN PROBLEM SOLVING: THE CASE OF CREATIVITY IN
PROBLEM- POSING. ...ttt e 2-456

Tugrul Kar, Ercan Ozdemir, Mehmet Fatih Ocal, Giirsel Giiler, Ali Sabri
Ipek

EXPLORING RELATIONSHIPS BETWEEN NUMBER OF HOURS OF
PROFESSIONAL DEVELOPMENT, MATHEMATICS KNOWLEDGE FOR
TEACHING, AND INSTRUCTOR’S ABILITY TO MAKE SENSE OF
PROCEDURES ...ttt ettt et e e 2-464

Patrick Kimani, Laura Watkins, Rik Lamm, Irene Duranczyk, Vilma Mesa,
Nidhi Kohli, April Strom

BRIDGING THE COGNITIVE GAP - STUDENTS’ APPROACHES TO
UNDERSTANDING THE PROOF CONSTRUCTION TASK ......cccccceiiniieenne 2-472

Katharina Kirsten

2-vi PME 43 - 2019



Table of Contents — Volume 2

THE POWER OF THEIR IDEAS: HIGHLIGHTING TEACHERS’
MATHEMATICAL IDEAS IN PROFESSIONAL DEVELOPMENT................. 2-480

Richard S. Kitchen

TEACHING GRAPHING FORMULAS BY HAND AS A MEANS TO
PROMOTE STUDENTS’ SYMBOL SENSE ..o 2-488

Peter Kop, Fred Janssen, Paul Drijvers, Jan van Driel

TOWARDS COGNITIVE FUNCTIONS OF GESTURES — A CASE OF
MATHEMATICS ..ottt ettt s 2-496

Christina M. Krause, Alexander Salle

EXAMINING KNOWLEDGE DEMANDS FOR TEACHING CLASS
INCLUSION OF QUADRILATERALS ... 2-504

Ruchi S. Kumar, Suchi Srinivas, Arindam Bose, Jeenath Rahaman, Saurabh
Thakur, Arati Bapat

CLASSROOM SOCIAL CLIMATE IN THE CONTEXT OF MIDDLE
SCHOOL GEOMETRY ...t e 2-511

Ana Kuzle, Dubravka Glasnovi¢ Gracin

PME 43 - 2019 2 -vil












RESEARCH REPORTS (A - K)







CHANGES IN PRIMARY MATHEMATICS TEACHERS’
RESPONSES TO STUDENTS’ OFFERS

Lawan Abdulhamid
Wits School of Education, University of the Witwatersrand

This paper contributes to research looking into changes in primary mathematics
teachers’ responses to students’ offers, measured using an ‘elaboration’ framework.
The framework was developed in a context of teacher practices characterised by
absence of teaching that responds constructively to students’ offers. Findings from the
analysis of the teaching of one Grade 3 teacher across a two-year period revealed
differences in interactions among her students, and her being more responsive to
students’ offers in the classroom. I argue that these observed differences are markers
of changes towards incorporating practices that have been widely described in the
literature as markers of responsive teaching quality.

INTRODUCTION

Eliciting and responding constructively to students’ offers are high-leverage practices
that have implications for students’ access to the power of mathematics (Hallman-
Thrasher, 2017; Hill et al., 2008; Mason, 2015). Such high-leverage practices are
lacking in many primary mathematics classrooms in developing nations, and in South
Africa in particular (Hoadley, 2006; Venkat & Naidoo, 2012). For example, in South
Africa, classroom practices characterised by an absence of evaluative criteria that
Hoadley (2006) have been described thus:

The teacher engages in other work in her space and is not seen to look at what the learners
are doing. She makes no comment on the work as it proceeds. No action is taken to
ascertain what the learners are doing (p. 23).

A teacher’s lack of interest in students’ actions results in her students not knowing if
what they are doing is mathematically correct, thus limiting their mathematical
learning. Importantly, Hoadley noted that this absence of evaluative criteria represents
a feature that has not been described as common in developed country contexts. In this
context, for over 8 years, a longitudinal research and development project — Wits Maths
Connect—Primary (WMC-P) — is developing and investigating interventions to
improve the teaching and learning of primary mathematics in South Africa. In the
course of this work it became necessary to have tools for examining differences in the
quality of mathematics teaching, working from the base of non-responsive teaching
described above, in order to understand the extent of improvement in teaching and its
development.

Due to the specificity of the problems noted in developing nations, imported
international theoretical frameworks (e.g. Hill and colleagues’ Mathematical Quality
of Instruction (MQI) (Hill et al., 2008); Rowland and colleagues’ Knowledge Quartet
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(Rowland, Huckstep, & Thwaites, 2005)) largely result in deficit analyses, as they
assume a baseline level of competence that is often not reached. Therefore, a language
of description from a home-grown analysis was needed as a means to offer ‘stages of
implementation’ (Schweisfurth, 2011) towards desired ends in relation to responsive
teaching. An ‘elaboration framework’ was thus developed (Abdulhamid & Venkat,
2018) by paying close attention to the nature of teacher’s responses in ways that moved
away from deficit characterisations based on absences, to staging point
characterisations directed towards improvement. The main question this paper thus
addresses is:

e What changes over time in quality of primary mathematics teachers’ responses
to students’ offers can be described through the lens of the elaboration
framework?

THE ELABORATION FRAMEWORK

The lack of responsive teaching noted in South Africa led to the development of the
‘elaboration’ framework, which emerged from a grounded theory approach through
analysis of 18 lessons taught by four primary mathematics teachers. Detail about the
development of the framework has been written elsewhere (Abdulhamid & Venkat,
2018). Here an overview is provided to put the results presented later into context.

The framework provides a means to identify teachers’ responses (and non-responses)
to students’ offerings in mathematics lessons and the extent to which these responses
create opportunities for extending or deepening students’ learning. The framework also
allows us to chart and examine differences in responses over time, within four broad
classroom situations where responsive teaching may be productive:

Breakdown — a situation of students offering incorrect mathematical answers or
responses;
Sophistication — a situation with the potential to encourage more efficient use of
mathematical representations and strategies;
Individuation — a situation where the teacher takes a group chorus correct
mathematical offer and uses it to assess individuals’ understanding; and
Collectivisation — a situation of opportunity for a teacher to ‘unpack’ an individual
student’s mathematical offer through sharing with whole class
A further crucial feature of the framework is hierarchies within the four situations that
elaborate differences in the quality of teachers’ responses. For example, in the case of
breakdown situations, teacher responses that focus on students’ offers are categorised
into two types: (1) teacher restating the students’ offer and questioning its correctness,
and (2) teacher probing students’ offers with follow-up questions. Fundamentally here,
at level (1), we have acknowledgement of the incorrect offer, but no elaboration
relating to how to go on to produce a correct offer, or to see why the given offer is
incorrect — thus reinforcing a way of being with mathematics that is concerned
primarily with the delivery of correct answers. The move, at level (2), is to probing
reasons for the incorrect offer, and is thus geared towards mathematical processes as
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well as their outcomes. Table 1 provides a summary of the hierarchical categories
where the teacher responded to students’ offerings, related to the focus of this paper.

Situations of Hierarchy of categories of teacher responses
elaborations
Breakdown L1 — Restates students’ offer and questions its correctness

L2 — Probes students’ offer with follow-up questions
Sophistication L1 — Offers a more efficient strategy

L2 — Elicits more efficient student offers

L3 — Interrogates students’ offers for efficiency
Individuation L1 — Confirms chorus offers with individual students

L2 — Interrogates chorus offers with individual students
Collectivisation L1 — Confirms individual student’s offer with whole class

L2 — Interrogates individual student’s offer with whole class

Table 1: Hierarchical categories of teacher responses within the elaboration
framework

DATA SOURCES AND METHODOLOGY

To illustrate differences in the quality of teachers’ responses to students’ offers, I share
data and analysis of one Grade 3 teacher, Thandi (pseudonym), teaching additive
relations across a two-year period (2013 and 2014). Between the two years, I engaged
with Thandi in a video-stimulated recall (VSR) interview. The aim of the interview
was to both understand Thandi’s rationales for classroom decisions, and to develop her
mathematics knowledge for teaching through reflection on practice. Prior to the lesson
observation, Thandi had attended a 1-year WMC-P ‘maths for teaching’ course in
2012. Thandi had more than 15 years of teaching experience.

I observed and video-recorded five lessons prepared and delivered by Thandi (2 in
2013 and 3 in 2014). Following the observations, I created verbatim transcripts that
captured all the teacher talk, teacher—student interactions and descriptions of the tasks
and representations that were produced and used by the teacher during the course of
the lessons. The analysis began with identification of situations of elaboration, which
form my unit of analysis. Each unit of analysis is initially examined as either the teacher
providing elaboration (i.e. responding to the students’ offerings) or not providing
elaboration (i.e. ignoring or acknowledging students’ offers and move on or pulling
students’ back to naive strategies or representations). The incidents where elaborations
are provided were then coded against the categories listed in Table 1 and allowed for
an exploration of differences in hierarchies of responsive teaching.

PME 43 -2019 2-3
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ANALYSIS AND FINDINGS

I provide a narrative account of selected incidents based on data extracts, and some
commentary relating to moves in quality of elaborations as highlighted in Table 2
below. These narratives qualitatively illustrate differences in responsive teaching that
the elaboration framework allows me to theorise as changes in the quality of teacher’s
responses to students’ offers.

Levels of Breakdown Sophistication Individuation Collectivization
TESpoOnses 7013 2014 2013 2014 2013 2014 2013 2014
Level 1 5 4 0 5 0 4 4 2
(71%)  (36%) (0%) (42%) (0%) (80%) (100%) (40%)
Level 2 2 7 0 3 0 1 0 3
(29%) (64%) (0%) (25%) (0%) (20%) (0%)  (60%)
Level 3 N/A  N/A 0 4 N/A°  N/A NA NA

(0%) (33%)
Table 2: Thandi’s summary of quality of elaborations across 2013 and 2014 teaching

For breakdown situations, in 2013, 29% of incidents of elaborations were at level 2 in
comparison with 64% in 2014. No sophistication and individuation elaborations were
seen in 2013 lessons, while widespread elaborations in 2014 were seen with some
moves to higher levels. For collectivization, in 2013 there was no incident of
elaboration at higher level in comparison with 60% in 2014.

Breakdown-quality difference

In 2013 lesson 1, in the context of the task 25=30-  involving using a number line to
find the missing subtrahend, Thandi invited learners to work out the problem on the
board. The following excerpt played out (L — student and T — Thandi):

285 L1: (Learner points at 25 on the number line and indicates a backward gesture
with her left hand and then pauses)

286 T: Where do you go from twenty-five?

287 LI: Backward

288 T: She says we start at twenty-five and go back. Does the sum say 25 minus?
No, it says 25 equals (Teacher invites another learner).

289 L2: (Learner points at 25 and demonstrates a backward gesture).

290 T: We are going backward, if we say twenty-five minus, then we move

backwards. But our sum does not say that. It says twenty-five is thirty minus
what? (Teacher invites another learner)

291 L3: (Learner starts at 25 and demonstrates a forward jump to 30)
292 T: What do we do next?

293 L3: We go back

294 T: Go and sit down (teacher work out the problem herself)

2.4 PME 43 - 2019
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Challenges with directly modelling this problem type have been noted in the literature.
In Carpenter, Fennema, Franke, and Levi’s (1999) categorisation, missing subtrahend
problems are harder to directly model as the number of jumps to make is not known.
Further there is an extensive literature base on children interpreting the equals sign as
a signal to operate, rather than to seek equivalence (Molina & Ambrose, 2008), making
problems with the operation on the right hand side more complex through being less
familiar.

Thandi’s response does not recognise this complexity, as in Line 288, she began with
a restating of the student’s offer (twenty-five and go back), and she went onto link this
offer with the problem ‘25 minus’ and questioned whether this was correct in relation
to the original question. Given this analysis, this incident was coded as ‘restates student
offer and questions its correctness’ — a level 1 category of the breakdown. The explicit
rejection of the students’ solution actions, without any further elaboration that
potentially elicits a correct solution action, appeared to result in a situation where the
mathematical object seemed not to emerge for many students.

In her 2014 lesson 1, in the context of a subtraction task 38-9, Thandi had earlier
introduced adding and subtracting ‘near 10’ numbers by using 10 as a benchmark. She
invited one student to work out the task on the board. The student drew an empty
number line, and marked 38 towards the end of the line. She then made a backward
jump of 10 and landed at 28. The following excerpt played out:

324 L: Twenty- eight

325 T: What do we do next? Yes?

326 L: Minus one

327 T Minus one; she says minus one, if we say minus ten and minus one how

much have we subtracted?
328 Class: Eleven
3290 T: But, our problem says minus nine not minus eleven

330 L: Plus one (learner responds quickly)

Thandi’s response to the student’s offer of ‘minus 1’ having already jumped back 10,
involved establishing that the student’s offer was actually taking away 11, not 9, and
was coded as an incident of ‘probing student offer with follow-up questions’. The
literature suggests that this kind of response has more potential for extending student
understanding than overt rejection of the offer (Brodie, 2007). In contrast to Thandi’s
2013 instances of elaboration in breakdown situations where there was a prevalence of
elaborations involving a restating of the student offer and acknowledging its
incorrectness (71%), in 2014 she probed students’ incorrect offers in 64% of her
responses by establishing the possible consequence of student’s solution actions
without explicit rejection of the offer.
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Sophistication-quality difference

In her 2013 lesson 1, upon completion of writing the 10s between numbers 0 — 100 on
a number line, Thandi asked learners to point to the position of 25. One learner pointed
at the mid-point between 20 and 30. Thandi accepted this offer and wrote down 25.
She then wrote down the following task: 25+5 = . Students raised their hands and
she invited one student (L) to work it out on the board using the number line. The
following excerpt played out:

260 L: (Learner starts at 25, already marked on the number line, and makes a
single forward jump of 5 and lands at 30) Thirty

262 T: Show us where we start and how we move. Draw the jumps

264 L: We start here and move five places (learner uses ruler to show movement
from twenty-five to thirty)

265 T: Show us on the number line.

267 L: One, two, three, four (uses chalk and makes four marks between twenty-five

and thirty marks while counting).

In the excerpt presented above, it was clear that the student involved could work out
25+5= by starting at 25 and making a single jump of 5. Thandi’s response was coded
as pulling back (within the ‘provides no elaboration’ category) given that the student
demonstrated a single jump of 5, while Thandi asked for counting on in ones. Thandi
did not comment on why she insisted on the student showing counting in ones in the
VSR interview, suggesting that the pulling back was not part of her immediate frame
of awareness. The move from counting in ones to flexible group counting is an
important one in developing sophisticated strategies for addition and subtraction
(Mcintosh, Reys, & Reys, 1992). This kind of ‘unstructured’ working in the context of
work with structured resources like a number line has been described in prior work in
South Africa (Venkat & Askew, 2012).

In her 2014 lesson 3, in the context of a similar addition task, 6+25 on a number line.
Thandi invited one student to facilitate working out the sum on the board with the
whole class. He drew an empty number line and marked 25 (in previous examples,
there had been discussion about the efficiency of starting addition with the bigger
number). Thus, my focus here, as in the previous incident, is on the ways in which she
dealt with the need to count on. The student asked the class what number to add first.
One learner offered ‘plus 1°. He made a forward jump of 1 and wrote down 26. Another
learner offered ‘plus 1’ again. He made another forward jump of 1 and wrote down 27.
Another learner offered, ‘plus 1°. At this moment, Thandi interrupted, and the
following excerpt played out.
294 T: (Teacher interrupts). It has to be easy. It just has to be easy for us. So we
take numbers that are going to make it easy for us to count. I am not saying
this is wrong, because I know that you were going to get the answer, but |

just want you to get your answers quickly and easily. Now we are going to
do that. We said six plus twenty-five, isn’t it?

297 C: Yes
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298 T: Now let’s look at twenty-five and say how many do we need to add to get
to the next multiple of ten? Mpho?

299 L: Plus five

300 T: Plus five, five and five is ten, so twenty-five and five is...?

301 C: Thirty

In the interaction presented in the excerpt above, Thandi encouraged learners into
flexible group counting by using ten as a benchmark (Mcintosh et al., 1992). This
response was coded as an incident of provision of elaboration characterised by
‘eliciting a more efficient strategy’. This marked a contrast to what was seen in her
2013 teaching where pulling back was the only sophistication-related response seen.
Thandi’s 2014 elaboration actions were constituted by 58% at higher levels in the
sophistication situation, and therefore indicated contrasts with teaching in South Africa

characterised by limited progression to more flexible mathematics working (Ensor et
al., 2009).

DISCUSSION

The finding that the directions of difference were broadly patterned towards ‘higher’
levels of elaboration within all the four situations in 2014 mirrored the findings in the
broader dataset across all four teachers (Abdulhamid, 2016). This suggests that it is
feasible to interpret these empirical differences as reflecting improvement in the
teachers’ responses to students’ offers. This claim is further supported by the broad
evidence of a strong ‘plan-orientation’ in 2013 — in which the teacher pushes for tasks
to play out with focus on her intended objectives, with no awareness seen of the need
to deviate from planned action (Rowland et al., 2005) or to establish balance between
scripted planning and improvisation (Sawyer, 2004) in her teaching.

In Thandi’s 2014 teaching, there was evidence of substantial engagement with
students’ thinking in responsive ways (Franke, Kazemi, & Battey, 2007). These
differences suggest changes in her ways of being with mathematical knowledge (Coles
& Scott, 2015) in teaching, greater interactions among her students, and being more
responsive to students’ contributions, a practice that has been widely described in the
literature as a marker of responsive teaching quality (Hill et al., 2008; Sawyer, 2004).

CONCLUSION

The differences seen in the extent and quality of teacher responses to students’ offers
suggest positive changes in responsive teaching, which were made visible through the
lens of the elaboration framework. Given the South African evidence of gaps in
responsive teaching actions, exemplifying this nature and range of differences in
teaching are important developmentally in relation to attempts to improve students’
access to the power of mathematics.
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DISCOURSE IN CLASSROOMS OF PD PARTICIPANTS

Reema Alnizami, Anna Thorp, Paola Sztajn
North Carolina State University

In this study we examined the mathematical discourse in the classrooms of three
elementary teachers who participated in a professional development (PD) program
designed to support teachers in promoting high-quality discourse during mathematics
instruction. Analysis of classroom observations shows that the teacher with higher pre-
PD mathematical knowledge grew in classroom discourse at a greater rate than the
other two teachers with lower pre-PD mathematical knowledge.

INTRODUCTION

Orchestrating multi-directional mathematical discourse with students and among
students in classrooms has benefits for students’ mathematical learning (National
Council of Teachers of Mathematics, 2014). Researchers have recommended practices
that can enhance opportunities for mathematical discussions during instruction, such
as: asking students questions that support them in thinking conceptually (Ghousseini,
Beasley & Lord, 2017) and encouraging students to ask questions to each other and to
the teacher (Boaler & Brodie, 2004); sharing authority over mathematical ideas with
students (Tofel-Grehl, Callahan & Nadelson, 2017); and encouraging mathematical
explanation that consists of mathematical argumentation beyond procedural
explanation to help students conceptualize mathematics (Kazemi & Stipek, 2001).
However, communications observed in mathematics classrooms in the US are mostly
unidirectional—teacher to student—inhibiting students’ interest in mathematics
(Herbel-Eisenmann, Steele, & Cirillo, 2013). Despite significant efforts to promote
multi-directional conversations in mathematics classrooms, orchestrating rich
mathematical discourse continues to be difficult for many teachers (Gallimore, Hiebert,
& Ermeling, 2014; Kazemi & Stipek, 2001). Given the importance of orchestrating
high-quality mathematical discourse, professional development (PD) opportunities that
effectively support teachers in enhancing their abilities to promote high-quality
mathematical discourse in their classrooms are critical. To explore the value of
participating in such PD initiatives, we examined observation data to capture changes
in mathematical discourse that took place in classrooms of three teachers who
participated in the Project All Included in Mathematics (Project AIM) PD program.

FRAMEWORK ON CLASSROOM DISCOURSE

A key framework for this study and for the design of Project AIM is the Mathematics
Discourse Matrix (Sztajn, Heck & Malzahn, 2013). Based on literature on mathematics
discourse (e.g., Hufferd-Ackles, Fuson & Sherin, 2004; Willey, 2010), the Matrix
categorizes discourse into four types (correcting, eliciting, probing, and responsive)
across four dimensions: questioning, explaining, listening, and modes of
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communication. The four discourse types in the Matrix can be seen to represent levels
on a continuum of discourse richness from correcting (lower) to responsive discourse
(higher). When a teacher initiates the communication and students respond, with
authority residing solely on the teacher, this is considered correcting discourse.
Breadth increases with eliciting discourse when more students participate in discourse,
describing the what and how of their solutions. Higher in depth, probing discourse
involves deeper mathematical explanation, where the teacher’s discourse with students
pushes for mathematical explanation and justification. At the higher end, responsive
discourse is observed when eliciting and probing are maintained, as well as evidence
of making mathematical connections and students taking ownership of their learning.
It is considered that the different types of discourse may be appropriate for different
purposes during instruction. However, if the dominating discourse during a lesson is
correcting, the richness of the mathematics classroom discourse tends to decline.

RESEARCH QUESTION

This study explored the following question: How does discourse change in classrooms
of PD participants whose early-observed discourse patterns are mostly unidirectional?
More specifically, we conducted a retrospective analysis of change in mathematical
discourse in classrooms of three teachers who participate in Project AIM.

METHODS

This investigation is part of a larger design research study. In PD design research,
researchers design, implement, and analyse PD materials and activities for the purpose
of helping teachers develop well-researched instructional practices while also
generating knowledge and theory about PD design (Cobb, Jackson & Sharpe, 2017).
The cycles of PD design and implementation include ongoing and retrospective
analysis (Cobb, 2000). We report on a retrospective investigation of one
implementation of Project AIM.

Context

Project AIM is a 40-hour, year-long PD program designed to support elementary
teachers in promoting high-quality discourse during mathematics instruction. The PD
consists of a three-day Summer institute and seven after-school sessions over the
following school year. A main feature of the PD is the adaptation to mathematics of
strategies typically used to support discourse during literacy instruction.

Through several implementations, Project AIM has continually generated value for
teachers who participated in the PD, making it an appropriate context for retrospective
analysis. For example, using the Learning Mathematics for Teaching (LMT) measure
(Hill & Ball, 2004), the research team found significant increases from pre- to post-PD
in participating teachers’ mathematical knowledge for teaching (MKT). Data from a
project questionnaire (Sztajn, Heck, Malzahn & Dick, under review) also indicated that
participants increased in their perceived discourse-related practices from pre- to post-
PD. Results from Project AIM over the years are summarized in Table 1.
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Implementation LMT Questionnaire

2012-2013 Increase with Increase in all components of the
medium effect size questionnaire with effect sizes ranging
medium to very large

2013-2014  Increase with Increase in 6 of 8 questionnaire
medium effect size components with effect sizes ranging
medium to very large

2014-2015 Increase with Increase in 6 of 8 questionnaire
relatively small components with effect sizes ranging
effect size small to large

2016-2017  Increase with large Increase in 5 of 8 questionnaire
effect size components with effect sizes ranging
medium to large

Table 1: Project AIM Knowledge and Practice Results

During the 2012-2013 implementation, observation data were collected for 16 of 78
total participants. The sample was selected to be observed based on the levels of
participants’ responses to the pre-PD LMT measure and discourse-promoting practices
questionnaire using a stratified sampling approach, which resulted in four strata
combinations of teachers with higher and lower knowledge and practice levels.
Mathematical discourse in the classrooms of this sample was observed two consecutive
days at two time points—once early in the school year (Fall 2012) and again toward
the end of the school year (Spring 2013).

Respnonsive

Probing %
Eliciting : é

Case 3%
Case 2/
Correcting

Case 1

Discourse Quality

}
Fall Spring
Observation Time

Figure 1: Change in overall discourse from Fall to Spring.

In a prior study, we conducted a retrospective analysis of the observation data for 15
of these teachers to further understand change in PD participants’ classroom discourse
(Alnizami, Thorp & Sztajn, in press). Data for the 16th teacher was dropped due to a
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short time between the early and late data collection. Classroom observation protocols
were coded using the Mathematics Discourse Matrix (discussed above). For each time
point for each participant, a holistic discourse type was assigned, as seen in Figure 1.
This study showed that teachers’ pre-PD knowledge and practice levels did not define
change in classroom discourse from Fall to Spring. Further, we found that
mathematical discourse improved in most observed classrooms (Alnizami et al., in
press).

Participants

For the present study, we investigated change in mathematical discourse by analyzing
observation data, which is a data source suitable for learning about discourse quality
(Desimone, 2009). Given our question about what happens in classrooms of teachers
whose early observed discourse patterns are mostly unidirectional (i.e., correcting), we
selected three of the 15 participants represented in Figure 1 for further investigation.
These teachers’ early discourse levels were the least rich (below eliciting) among the
15 teachers. Based on the pre-PD knowledge and practice measures, case 1 and 2
teachers scored low on the LMT, whereas case 3 teacher scored high on this measure.
All three participants scored high on their self-assessments of their practice.

Data and Analysis

Twelve instructional lessons (four for each of the three teachers) were observed using
a classroom observation protocol, resulting in a written description of the discourse
that occurred during each lesson. The protocol specified that observers include
examples and verbatim quotes from the lesson whenever feasible, which resulted in
about eight-page long protocols for each timepoint.

Coding the classroom observation protocols was guided by the Mathematics Discourse
Matrix (Sztajn et al., 2013). A pair of two consecutive lessons for a given teacher from
the Fall or Spring time points was analyzed as one unit. For each pair of consecutive
lessons, two authors determined the discourse type within each of three of the Matrix
dimensions—questioning (teacher and students), explaining (teacher and students),
and communication patterns (a component of the modes of communication dimension).
Limitations imposed by reliance solely on field notes inhibited coding for discourse
types on the listening dimension and the remaining elements of the modes of
communication dimension. The two authors achieved more than 80% interrater
reliability on the dimension coding. The two coders were not part of the project at the
time of these lesson observations, hence they were not involved in the delivery of the
PD or in the observation process.

FINDINGS

As illustrated in figure 1, while the overall discourse observed in two of the selected
classrooms (cases 1 and 2) did not grow beyond eliciting, overall discourse in the
classroom of the third teacher (case 3) improved beyond probing.
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Case 1

There was no evidence of students asking questions of each other or of the teacher in
either early or late observations of case 1 (Figure 2). Students’ explanations declined
in the level of discourse (from around eliciting to around correcting) from Fall to
Spring. During the early observation, students’ explanations consisted of providing
their answers and how they found them in response to teacher’s questions. For
example, students shared their answers to a subtraction problem and explained how
they solved the problem using methods such as base-ten blocks. During the late
observation, students only provided short answers when asked questions by the teacher.
For example, the teacher asked a question about representing a fraction, and the
students answered with only yes and no. Changes in teacher questioning and teacher
explanation are somewhat parallel. Specifically, the teacher’s questions were below the
eliciting level at both timepoints—they were mostly closed-ended questions that
required short answers. The teacher’s explanations also were below eliciting at both
timepoints—she frequently explained step-by-step procedures.

Casel

Eliciting

—————————

Discourse Quality

Fall Spring

Figure 2: Change in discourse dimensions in classroom of case 1
Case 2

For case 2 (Figure 3), in both the Fall and Spring, teachers’ questions of the students
were mostly about how they found their answers (eliciting). The teachers’ explanation
increased some, but stayed within correcting. On the other hand, students’ questioning
and explaining were both above eliciting in the Spring. The higher level of increase for
case 2 was on students’ questioning. In the Fall, for example, students were given a
stack of questions to ask their small-group members, but they were not observed asking
questions on their own. In the Spring, some students asked discourse-rich questions of
each other. For example, during a whole-class discussion, a student asked another
student, / still have a question about why you didn’t cross out all of the tens?
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Case 2

Eliciting

______________

Discour se Quality

Fall Spring

Figure 3: Change in discourse dimensions in classroom of case 2
Case 3

Finally, for case 3 (Figure 4), the discourse levels increased by at least one level on all
of the five dimensions, with the greatest increase observed in student questioning,
which was even the greatest increase in dimensions across all three cases. In the Fall,
the only observed question that a student asked was posed to the teacher and sought to
clarify a portion of the task—whether the portion of the problem that talked about
getting 30 cents change was cents or money. In the Spring, students came up with their
own questions to ask other students to compare between data sets that were collected
by students.

Case 3

Discourse Quality
ul
s
=
L]
o
= ¥
) P
‘ /m
3
A

Fall Spring

Figure 4: Change in discourse dimensions in classroom of case 3

Among all three cases, all the dimensions of discourse that were coded (teacher
questioning, student questioning, teacher explaining, student explaining,
communication patterns) increased or remained the same, except for students’
explanations in the classroom of case 1. Change in discourse level for the
communication-patterns dimension was comparable across the three teachers; and
grew by one level. In the Spring, discourse levels for case 1 on the teacher components
and communication patterns are those that are bringing the overall level up whereas
the students’ components are bringing the overall level down. On the other hand, for
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cases 2 and 3, the students’ components of discourse in Spring are bringing the overall
levels up.

DISCUSSION

Change in discourse quality in mathematics classrooms requires change in both teacher
and students' components. A teacher might be asking great questions, but if the teacher
does not release some of the discourse authority to students, involving them in asking
questions and explaining mathematical ideas, then the discourse will remain low.
Discourse is not about just teachers’ contribution to the discussion, rather, it is about
what the teacher and the students contribute to classroom communications.

When taking into consideration teachers’ pre-PD knowledge and practice levels,
classrooms of the two teachers with lower knowledge (cases 1 and 2) did not grow
beyond the starting level—although their self-reported data indicate higher pre-PD
perceived practice levels. On the other hand, discourse in the classroom of case 3 (with
higher knowledge score) grew beyond probing. Among these specific cases, we
conjecture that teacher knowledge might have mattered to the observed changes in
classroom discourse. This result is in line with prior findings indicating that teachers
with more developed MKT find opportunities to engage in PD conversations in more
meaningful ways (Wilson, Sztajn, Edgington, & Confrey, 2014). Future large-scale
investigation is needed to examine change in discourse of teachers whose initial
discourse levels are comparable to learn if, for those teachers, initial MKT matters for
change in classroom discourse.

A note of caution is that the observations analysed here are not pre and post
implementation of the PD; rather, the Fall observations were conducted relatively early
in the school-year implementation stage of the PD and the Spring observations were
conducted towards the end of the PD implementation. Participants had already
completed the Summer PD institute when the early (Fall) observations were conducted.
These results therefore need to be interpreted with caution.
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TEACHERS' KNOWLEDGE DEVELOPMENT AFTER
PARTICIPATION IN A COMMUNITY OF INQUIRY
PROFESSIONAL DEVELOPMENT PROGRAM

Anabousy Ahlam, Tabach Michal
Tel-Aviv University

The current study aimed to assess whether teachers’ pedagogical technological
knowledge (PTK) differed significantly after they participated in a professional
development (PD) program based on Community of Inquiry (Col) practices. It further
sought to examine the effect of teachers' personal characteristics on the development
of their PTK components. Forty-two middle school mathematics teachers participated
in the study. Data collected using Thomas and Palmer's PTK questionnaire underwent
statistical analysis. The results indicate that teachers’ PTK components differed
significantly after they participated in a Col PD program, with the exception of the
content knowledge component. Background variables had an impact on the
development of some PTK components among the participants in the Col PD program.

LITERATURE REVIEW

The Community of Inquiry (Col) framework has been proposed for designing a PD
program aiming at promoting mathematics teachers' knowledge related to technology
integration (Thomas & Palmer, 2014). The present study seeks to examine teachers'
PTK development in the context of such a PD program by means of two core themes:
(1) teachers' knowledge and (2) PD program design. In the next section we examine
the literature discussing these two themes in light of technology integration.

Mathematics teachers' knowledge

Shulman (1987) proposed a professional knowledge framework that incorporates seven
domains of teaching knowledge. The category within this framework that
revolutionized researchers' thinking was the pedagogical content knowledge (PCK)
category, which links the knowledge bases of content and pedagogy. In particular,
Shulman's PCK domain influenced teachers' knowledge frameworks for mathematics
education. For example, Ball et al. (2008) proposed a model classified into six
categories focusing on Mathematics Knowledge for Teaching (MKT): common
content knowledge, specialized content knowledge, knowledge of content and
students, knowledge of content and teaching, knowledge of the mathematical horizon,
and knowledge of curriculum.

Shulman's PCK also influenced proposed theoretical frameworks for teachers'
knowledge with respect to integrating technology into classroom practice. One of the
most important of these theoretical frameworks is the technological-pedagogical
content knowledge framework (TPACK), defined as the comprehensive body of
knowledge and skills required for integrating technology in teaching (Koehler et al.,

2-17
2019. In M. Graven, H. Venkat, A. Essien & P. Vale (Eds.). Proceedings of the 43rd Conference of the International
Group for the Psychology of Mathematics Education (Vol. 2, pp. 17-24). Pretoria, South Africa: PME.



Ahlam & Tabach

2007), though it is not specific to mathematics education. The TPACK model describes
the interactions between the three main domains of teachers’ knowledge: content,
pedagogy, and technology. These interactions result in new types of teachers'
knowledge, namely PCK: technological content knowledge (TCK), technological
pedagogical knowledge (TPK), and especially TPACK.

Thomas and Palmer (2014) proposed a theoretical framework in parallel to TPACK to
describe teachers' knowledge with respect to 1ntegrat1ng technology into mathematics
classrooms—the pedagogical technology ~r——
knowledge (PTK) framework. According Knowledge
to these researchers, several factors

combine to produce PTK (Figure 1): ¥

MKT, which relates to pedagogical and Mathematical J ﬂ
. Knowledge for

Mathematical Content
Knowledge

mathematical content knowledge;
technology instrumental genesis; and -
personal orientations. The present study Personal Technology

Teaching

utilizes this framework tO measure PTK orientations instrumental ZCNesis
level and to examine whether this level 4

. o AR v L
differs significantly after participation in a ,
PD program based on Col design. In line |
with Thomas and Palmer (2014), personal
orientation includes confidence and value
of the use of technology.

>edagogical Technology Knowledge

Figure 1: A model of the PTK framework
(Thomas & Palmer, 2014)

Professional development program designs

In the absence of a "big" theory for teacher PD (Jaworski, 2006), researchers have
attempted to identify frameworks for the professional development of mathematics
teachers as well as types of PD programs. They identified two kinds of PD programs
that influence learning and development among practising teachers: those that focus on
content and process, and those that are strictly process-based (e.g., Simon, 2008).
Programs that focus on content and process aim to promote mathematical and
pedagogical knowledge, skills, and dispositions (ibid.). Process-only programs include,
for example, the lesson study (LS) method developed in Japan. The LS method enables
and encourages collaborative professional learning and sharing between teachers and
their educators. Jaworski (2008) proposed a PD design based on inquiry that is parallel
to the LS method and specifically geared for mathematics education. The inquiry takes
place in an inquiry cycle (IC) of planning, acting and observing, reflection and analysis,
and feedback.

Referring to PD programs aiming to promote mathematics teachers' integration of
technology, Thomas and Palmer (2014) contended that a PD practice is best
constructed around a supportive Col that gives teachers the opportunity to observe,
practice, and reflect on the use of digital technology in the classroom. They suggested
organizing small heterogeneous groups of teachers in which each teacher, in turn,
presents a prepared lesson incorporating technology. The lesson becomes the centre of
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community discussion and reflection. In this way, the community takes advantage of
those teachers who have a high level of PTK. The present study adopts this suggestion
and implements the entire IC: plan, act and observe, reflect and analyse, feedback.

Several studies have investigated the PD of mathematics teachers within a Col. For
example, Jaworski (2008) describes the inquiry component in a development project
in Norway titled Learning Communities in Mathematics (LCM): “inquiry was evident
in the planning process, in ways in which teachers took workshop ideas back to schools
and tried out ideas in classrooms and in the developing relationships between the
participants as activity progressed” (p. 318). She also described the central role of this
inquiry in sharing knowledge and expertise.

The current study continues the line of investigation from these previous studies while
considering teachers' practice in the context of technology integration. The study
adopts the suggestion of Thomas and Palmer (2014) and uses the IC to develop the
PTK of mathematics teachers who work within a Col.

Research questions

1. Do teachers' PTK scores differ significantly after they participate in a PD
program based on a Col framework?

2. Do background variables (seniority, previous technology integration level and
employment status) affect changes in the PTK components from pre- to post-
measurements among participants in the Col PD program?

METHOD

The research was conducted during the academic year 2017-2018. The participants
included 42 mathematics middle school teachers from several schools in average
socioeconomic areas in Israel. Twenty-three of the participants were enrolled in a
course titled Technology in Mathematics Education as part of their M.A degree in
teaching mathematics. The rest were enrolled in a PD program aimed at increasing the
level of technology integration in their classroom practices. The participants differed
in their seniority. Twenty-one had been teaching for 0-10 years, while the other 21 had
more than ten years of teaching experience. Moreover, the participants differed in their
previous level of technology integration. Eight reported a low level of technology
integration, 17 a medium level, and 17 a high level. Moreover, nine of the participants
were ICT coordinators.

We used a PTK questionnaire as the data collection instrument. The questionnaire had
two parts. The first part collected personal information, including seniority,
employment status, and previous technology-integration level. The second part was
composed of four scales: 1) personal orientation measuring two constructs—teacher’s
beliefs about the value of technology (26 items) and teacher’s confidence in using
technology to teach mathematics (7 items); 2) pedagogical knowledge (10 items);
3) technology instrumental genesis (5 items); and 4) content knowledge (6 items).
Some of the scales (personal orientations, pedagogical knowledge, and technology
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instrumental genesis) were borrowed from Thomas and Palmer (2014), while the
content knowledge scale was developed by Hill, Schilling, and Ball (2004). Note that
the scales by Thomas and Palmer were originally intended to examine teachers’
confidence in using graphing calculators. In the present study, the word “technology”
replaced “graphing calculators”. Participants indicated their responses on a 5-point
Likert scale, ranging from 1 (strongly disagree) to 5 (strongly agree). Because the
scales had been translated, they underwent face validity testing. In addition, the
reliability of each scale was analysed by computing its Cronbach’s alpha based on the
teachers’ scores on the PTK questionnaire. These computations yielded Cronbach
alphas ranging between .71 and .82, which are considered acceptable reliability scores.

In line with Thomas and Palmer (2014), the PTK levels for each teacher before and
after the PD program were computed as the average of the following components:
content knowledge, pedagogical knowledge, beliefs about the value of technology,
confidence, and technology instrumental genesis. The first research question was
analysed using paired-samples t-test. The second research question was analysed by
two-way repeated measures ANOVA tests. To this end, two-way repeated measures
ANOVAs were run with each of the background variables (seniority, previous
technology-integration level, employment status) as a between-subjects factor and the
PD program intervention as a within-subjects factor. The PD program intervention was
represented in SPSS by a within-subject factor (time) of the two values: 1 for pre-
intervention measurements and 2 for post-intervention measurements. Next, for the
interaction analysis we ran post-hoc tests in SPSS with Bonferroni corrections, using
the code 'EMMEANS=TABLES(A*B) compare(A) ADJ (Bonferroni)'. For example,
in examining the interaction between PD program intervention and seniority we used
the code: 'EMMEANS = TABLES (PD_time*seniority) compare (seniority) ADJ
(Bonferroni)'.

FINDINGS

We first discuss the findings for the first research question and then those for the second
question.

The effect of teachers' participation in a PD program based on Col on their
PTK level

To answer the first research question, we conducted a paired-samples t-test to compare
the teachers’ PTK and its components before and after PD program participation. Table
1 shows the means, standard deviations, and standard error means for the PTK
components of the participating teachers before and after the PD program. The table
indicates that the mean scores of the participating teachers after the PD program were
higher than those before the PD program for all PTK components. To discover whether
these differences are significant, we conducted a paired-samples t-test. Table 2 shows
the results, indicating that the PD program yielded significantly higher means on all
the components of the participating teachers’ PTK, except for the content knowledge
score.
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Knowledge Component M SD Std. Error M
Beliefs about the value of technology Before 3.58 S0 .08
After 4.05 Sl .08
Confidence Before 3.85 .60 09
After 4.33 .50 .08
Pedagogical knowledge Before 3.68 51 08
After 4.01 46 07
Technology instrumental genesis Before 3.69 .64 10
After 4.07 .63 .10
Content knowledge Before 4.00 44 07
After 4.04 42 07
Before 3.76 38 .08
PTK
After 4.12 37 .09

Table 1: Means, standard deviations and standard error means for participating
teachers’ knowledge components (N=42)

Knowledge Component Mean SD Std.  95% Confidence t df
difference Error Interval of the
M Difference
Lower Upper

Beliefs about the value of -.47 45 .07 -.62 -33 -6.75%*% 40
technology

Confidence -.49 46 .07 -.63 -.34 -6.82*%* 40
Pedagogical knowledge -.32 38 .06 -.44 -.20 -541%*% 40
Technology instrumental -.38 53 .08 -.55 -21 -4.57**% 40
genesis

Content knowledge -.04 16 .03 -.09 .01 -1.73 41
PTK -.35 25 .04 -43 =27 -9.17**% 40

*#p<.01

Table 2: Paired-samples t-test between participants’ scores before and after PD

program

Effect of interaction between PD program and background variables on
participating teachers' PTK components

Each PTK component that exhibited different levels of the background variables
(seniority, previous technology-integration level, employment status) was measured
before and after the PD program. Two-way repeated measures ANOV As were run with
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each of the background variables as a between-subjects factor and the PD program
intervention as a within-subjects factor.

The interaction between PD program intervention and the 'employment status'
background variable did not yield significant results for any of the different PTK
component scores (confidence: F(1,39)=.86, p=.36; pedagogic knowledge:
F(1,39)=.86, p=.36; technology instrumental genesis: F(1,39)=.77, p=.39, beliefs about
the value of technology: F(1,39)=.84, p=.31). Significant interactions between the PD
program intervention and the other background variables are reported below.

Effect of interaction between PD program intervention and seniority on PTK
components

A two-way repeated measures ANOVA was run, with seniority as a between-subjects
factor and PD program intervention as a within-subjects factor. The results revealed a
statistically significant effect of seniority on teachers' confidence (F(1,39)=10.11,p <
.01). Before the PD program, the confidence of teachers with seniority of ten years or
less was significantly higher than that of teachers with seniority of more than ten years
(mean difference=.91, p<.001). This mean difference decreased significantly after the
PD program (mean difference=.48, p<.001).

In addition, the analysis revealed that the interaction between the PD program
intervention and seniority had a significant effect on pedagogical knowledge (F(1,39)
=4.23, p <.05). Before the PD program, the pedagogical knowledge of teachers with
more than ten years seniority was significantly higher than that of teachers with ten
years or less seniority (mean difference=.33, p<.05). After the PD program, there were
no significant differences between the participants’ pedagogical knowledge (mean
difference=.11, p=.33).

Moreover, the analysis revealed that the interaction between the PD program
intervention and seniority had a significant effect on teachers' instrumental genesis
(F(1,39) =9.04, p <.01). Before the PD program, the instrumental genesis of teachers
with ten years or less seniority was significantly higher than that of teachers with more
than ten years seniority (mean difference=.80, p<.001). After the PD program, the
mean difference still showed higher instrumental genesis among teachers with ten
years or less seniority, but the difference had become lower and not significant (mean
difference=.32, p=.09).

Effect of interaction between PD program intervention and previous technology-
integration level

A two-way repeated measures ANOVA was run, with 'previous technology-integration
level' as a between-subjects factor and PD program intervention as a within-subjects
factor. The analysis revealed that the interaction between the PD program and previous
technology-integration level (F(2,38)=3.47, p<.05) had a significant effect on
confidence. Before the PD program, the confidence of teachers with a high level of
previous technology integration was significantly higher than among those with a low
technology-integration level (mean difference= .91, p<.05), and also significantly
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higher than among teachers whose previous use was at an intermediate level (mean
difference=.63, p<.05). After the PD program, the confidence of teachers with a high
technology-integration level and of those with a low technology-integration level did
not differ significantly (mean difference=.42, p=.18).

In addition, the analysis revealed that the interaction between previous technology-
integration level and the PD program intervention (F(2,38)=4.64, p<.05) had a
significant impact on pedagogic knowledge. Before the PD program, teachers with a
high level of technology integration exhibited significantly higher pedagogic
knowledge than teachers with an intermediate level of previous technology integration
(mean difference=.45, p<.05) as well as higher pedagogic knowledge than teachers
with a low level of technology integration, though the difference was not significant
(mean difference=.02, p=1.00). After the PD program, teachers with a high previous
technology integration level still showed an advantage in pedagogic knowledge over
those with a low level (mean difference=.04, p=1.00) and those with an intermediate
level of technology-integration (mean difference=.08, p=1.0), but this difference
became lower and not significant.

DISCUSSION

The first goal of the current study was to examine whether teachers’ PTK changed
significantly after they participated in a Col PD program. The statistical analysis
showed significantly higher means for PTK and all of its components after participation
in the PD program, except for the content knowledge component. These results support
the suggestion of Thomas and Palmer (2014) to design a Col PD program to develop
teachers' PTK. The results seem to indicate that most PTK components can be
influenced by experience related to technology integration, an interesting finding that
needs verification through more extensive research.

The second goal of the current study was to examine whether the development of PTK
components among participants in a Col PD program was affected by background
variables. The results for seniority revealed that teachers with more than ten years of
experience exhibited a more significant increase in their confidence and their
technology instrumental genesis than teachers with seniority of ten years or less. On
the other hand, teachers with ten years or less seniority demonstrated a more significant
increase in their pedagogical knowledge than teachers with more than ten years
seniority. This finding can be explained by the sharing of knowledge among the Col
members, in accordance with Jaworski (2008), who described inquiry as centrally
important in sharing knowledge to build new knowledge within the community.
Moreover, the teachers' confidence developed based on the support in technology

integration that those with less seniority provided to their more experienced peers
(Thomas & Hong, 2013).

The results for the background variable of ‘previous technology-integration level’
indicated that teachers with a low level of previous technology-integration showed a
significant increase in confidence as well as in their pedagogical knowledge regarding
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technology integration. These results indicate that conforming to the IC can support
teachers in their pedagogy, especially teachers with low PTK. This support is provided
by sharing technological knowledge among the Col members (Jaworski, 2008).

Finally, the findings of this study seem to indicate that PTK development was achieved
by taking advantage of high PTK among teachers whose participation is valuable to
the group (Thomas & Palmer, 2014).
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IMPLEMENTING INQUIRY-BASED LEARNING (IBL):
OPPORTUNITIES AND CONSTRAINTS FOR BEGINNING
SECONDARY MATHEMATICS TEACHERS

Judy Anderson, Una Cha
The University of Sydney

The purpose of this study was to determine the factors impacting beginning secondary
mathematics teachers’ implementation of IBL. A survey of 29 novices in their first three
years of teaching revealed most had a positive view about the benefits of IBL for
students’ learning yet struggled to implement IBL strategies effectively. While many
respondents indicated they were supported in their schools and encouraged to try new
strategies, they felt constrained by other factors including the lack of time and
experience needed to prepare IBL lessons, and the crowded curriculum with mandated
non-IBL assessment tasks. In-depth interviews with three teachers highlighted the
impact of workload, particularly administrative tasks and extra-curricular activities,
on beginning teachers’ efforts to design and use inquiry approaches.

INTRODUCTION

Given the evidence of benefits of inquiry-based learning (IBL) strategies for students
(e.g., Bruder & Prescott, 2013), teacher education programs in science and
mathematics have been promoting the implementation of IBL for some time but there
is little evidence of widespread implementation (e.g., Sullivan, Clarke, & Clarke,
2013). There is a rich history of research into IBL implementation, particularly for
science teachers (e.g., Dorier & Garcia, 2013) with findings suggesting the need for
quality professional learning programs and ongoing mentoring for new teachers. In
mathematics, rather than investigating IBL, research has focused more specifically on
the implementation of problem solving and modelling perspectives (Maall & Artigue,
2013) with recommendations to address teachers’ beliefs as key to successful
implementation (Anderson, 2014). While personal beliefs are an important
consideration, context specific factors impact the development of each teacher’s
professional identity, and their pedagogical practices (Peressini, Borko, Romagnano,
Knuth, & Willis, 2004). In mathematics education, the challenges for teachers to
change their practice is well documented but there is limited research into studies of
beginning mathematics teachers’ use of IBL teaching approaches.

Because of recent changes in the Australian context including a new national
curriculum (Anderson, 2014) and the promotion of integrated STEM education using
inquiry approaches (e.g., National Council, 2015), this study sought to investigate the
opportunities and constraints of implementing IBL for beginning teachers. The target
group of teachers had all attended the same university education program and were
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taught by the first author of this paper. During their undergraduate program, the
following definition was used to guide discussions and development of IBL tasks:

The term ‘‘inquiry-based learning’’ generally refers to student-centered ways of teaching
in which students raise questions, explore situations, and develop their own ways towards
solutions (Maall & Artigue, 2013, p. 780).

In the Australian context, IBL as defined here is not typical in secondary mathematics
classrooms and is not evident in the types of tasks recommended in commonly used
mathematics textbooks (Vincent & Stacey, 2008). So, for those schools who rely on a
textbook as their guide for teaching, it is unlikely the students will be provided with
IBL opportunities (Maall & Artigue, 2013). This is potentially one constraint to the
implementation of IBL practices but are there others? As beginning teachers struggle
to familiarise themselves with school expectations, programs and assessment practices,
with a new school culture, with a full teaching load, with managing student behaviour,
and with accreditation requirements for teacher registration, do they have the time and
support to develop IBL practices? Given the right support and contexts, are there
opportunities which encourage and enrich beginning teachers’ efforts to implement
IBL in their classrooms? These questions form the basis of the research reported in this

paper.
LITERATURE REVIEW

Constraints to changes in practice for experienced teachers are well researched.
Teachers frequently teach the way they were taught; hence changing pedagogies
requires changes to deeply held beliefs about mathematics teaching and learning
(Anderson, White & Sullivan, 2005). Such changes take time and effort but teachers
also identify other issues constraining their implementation of new approaches to
teaching and learning mathematics — these include the crowded curriculum, insufficient
time for planning, few professional development opportunities (Anderson, 2014), lack
of resources (Sullivan et al., 2013), assessment practices which focus on lower order
skills and procedures, and students’ reluctance to engage with challenging tasks
(Sullivan et al., 2013). These issues are all important and can create barriers to change
but this situation is heightened for beginning teachers as they adjust to new work
environments (Feiman-Nemser, 2001; Hudson, 2012; Peressini et al., 2004).

Beginning teachers fight to “sink or swim" (Feiman-Nemser, 2001, p. 1014) in their
new profession and become tempted to use low maintenance practices that enable them
to endure teaching rather than choose the more time-consuming IBL practices. As
beginning teachers teach in potentially unfamiliar contexts, they are more likely to
revert to the way they were taught with a focus on teaching facts and procedures
through lower-order, repetitive tasks (Feiman-Nemser, 2001). In addition, beginning
teachers are learning to manage behaviour in classrooms (Hudson, 2012), find useful
resources (Sullivan et al., 2013), navigate an unfamiliar curriculum, and take on
administrative work (O’Brien, Goddard, & Keeffe, 2008). O’Brien et al.’s longitudinal
study into the issues of teacher retention and attrition identified beginning teachers’
additional workload from extracurricular and administrative duties such as marking
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and writing reports as overwhelming. To counter these issues, support from mentors
through school induction programs have been implemented but as Dorier and Garcia
(2013) suggest, beginning teachers may be exposed to observing traditional practices
by mentor teachers, thus reinforcing the traditional methods they experienced in their
own secondary mathematics education.

If we adopt a situative perspective, learning to teach evolves by participating in the
different contexts of university program, field experience, and early school placements
(Peressini et al., 2004). In their study of the learning trajectories of secondary
mathematics teachers from undergraduate program into the first two years of teaching,
Peressini et al. (2004) developed a conceptual framework with two related assumptions
— learning is situated and “teachers’ knowledge and beliefs interact with historical,
social and political contexts to create situations in which learning to teach occurs” (p.
68). They argue for a process of “recontextualising resources and discourses in new
situations” (p. 70) as beginning teachers develop their practice, and that discourse in
the inquiry mathematics tradition is very different to the school mathematics tradition.
Their framework informs this study as we used the task descriptions and inquiry
discourse practices identified in their paper to design data collection and to gain a
snapshot of beginning teachers’ current IBL classroom practices.

THE RESEARCH DESIGN

To identify the factors which influenced beginning secondary mathematics teachers’
implementation of IBL, particularly those that either provided opportunities or
constraints, data were collected using a questionnaire and interviews. The
questionnaire sought background information about the participants’ workplace, their
understanding and perceptions of IBL, their commonly used teaching practices, and
the factors that have either supported or hindered the implementation of IBL in their
current school contexts. Open-ended questions seeking information about influencing
factors were coded and compared to responses from the interviews which had been
transcribed verbatim. A convenience sampling strategy was used to recruit teachers at
a secondary mathematics teachers’ conference in the first half of 2018 — all 29
respondents were in their first three years of teaching and were alumni of the authors’
university. Three questionnaire respondents volunteered to be interviewed by the
second author. As background information, during the teachers’ five—year double-
degree program, research about the benefits of IBL was discussed (e.g., Bruder &
Prescott, 2013). They had opportunities to try sample IBL tasks, compare these to more
traditional textbook examples, and discuss curriculum implications of using inquiry
approaches. It was an expectation that they would develop and implement IBL tasks
during their field experience placements in schools, and this was accompanied by
opportunities for reflection on their experiences.

RESULTS AND DISCUSSION

All 29 novices who participated in the study were teaching in their first school
placement since graduating from the university. The sample included representatives
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from the three sectors of secondary education in Australia (Department of Education
[DoE] or public schools, Independent schools, and Catholic schools). Seventeen
participants were in their first year of teaching, seven in their second year, and five in
their third year. Interviewees included a female in her first year of teaching at a DoE
school (X), a female in her third year of teaching at an independent boys’ school (Y),
and a mature-age male in his second year of teaching at a DoE school (Z). This section
of the paper presents the results from both the questionnaire and interviews to connect
key themes from both sources of data.

From a list of commonly used teaching practices, respondents were required to
nominate the five practices they use most often in secondary mathematics classrooms.
From their responses, the most commonly nominated teaching strategies (with the
number of teachers who listed the strategy in brackets) included demonstration of
procedures (19), whole class discussion (16), practice from textbooks (16), practice
from worksheets (16), and individual practice (12). This set of strategies are typical of
teacher-centred practices, which focus on developing mathematical skills, indicative of
more traditional teaching (Bruder & Prescott, 2013), or the school mathematics
tradition (Peressini et al., 2004), rather than student-centred approaches. The least
frequently nominated practices included group work (8), real-world problems (5),
open-ended questions (4), unfamiliar problem solving (4), student developed questions
(1) and investigations (0), more usually associated with the inquiry mathematics
tradition (Peressini et al., 2004) or student-centred pedagogies.

To obtain information about beginning teachers’ beliefs, and further information about
their use of IBL, the questionnaire included an item with seven statements to elicit
participants’ level of agreement using a four-point Likert scale, from ‘strongly
disagree’ to ‘strongly agree’. Table 1 shows the seven items with level of disagreement
(strongly disagree and disagree) and level of agreement (strongly agree and agree)
combined.

Statements about Inquiry based learning (IBL) SD&D A&
SA
IBL is effective in teaching students’ mathematics 5 24
IBL is only effective with higher-achieving students 22 7
IBL has potential to motivate students 2 27
IBL only suits some students’ learning preferences 3 26
I would like to implement more IBL practices in my classrooms 2 27
[ already use IBL in some of my mathematics lessons 15 14
I need more support implementing IBL 2 27

Table 1. Beginning teachers’ level of agreement with IBL statements

The data from these statements indicate beginning teachers’ desire to implement more
IBL practices in their classrooms (27). Most agreed IBL is an effective mathematics
teaching method (24) and has the potential to motivate students (27). In terms of current
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implementation of IBL, about half of the participants agreed they already use IBL in
their lessons (14), but they would appreciate more support (27).

Identifying Constraints to IBL

From the questionnaire data, most teachers acknowledged the benefits of IBL but they
wanted more support. so the first real constraint appears to be lack of support. However,
during interviews, respondents indicated they felt supported if they wanted to use IBL
but that having enough time was the real issue. Z said, “the school’s very for it... it's
just that we don't have the time”.

To further explore potential constraints, the questionnaire asked teachers to list the
constraints to their implementation of IBL. The identified factors were: preparation
time (26), a crowded curriculum (25), not enough experience with IBL (24), struggle
to balance other school responsibilities (21), IBL not included in assessment tasks (15)
and poor student behavior (14). Those constraints listed by fewer teachers included
adjusting to a new school environment (9), colleagues not using IBL (11), IBL not
included in the recommended textbook (11), and mathematics department reluctant to
change practices (13). In this item on the questionnaire, only 8 listed lack of support so
it is possible some participants viewed lack of support as not enough time, or not
enough resources. The three most frequently identified constraints were further
explored during the interviews.

Lack of time - Since beginning teachers’ attention is divided between administrative
work and lesson preparation (O’Brien, Goddard & Keeffe, 2007), lack of time is a
significant factor in constraining IBL. Because the nature of IBL is more complex,
creating tasks and lessons which also align with curriculum requirements takes longer.
Y has been teaching for fewer than two years at an independent boys’ high school
where she lives in the school’s boarding house during school term. Her role as a teacher
extends beyond regular teaching hours with additional responsibilities associated with
being a Boarding House Tutor — “It's just that we don't have the time... there is not
much time I can spend preparing the resources and setting it up as well”. X detailed the
multiple responsibilities she had as a teacher which hindered her from preparing
enriching IBL lessons.

So last term I helped organise props for the musical, and then end of last term, beginning
of this term I’ve been co-coordinating our team for the Da Vinci Decathlon. And then
there’s marking exams/writing exams/writing reports... Not to mention (sigh) I haven’t
even started doing anything for my [teacher] accreditation yet. There are days where I
literally just prep 10 minutes before class because I don’t have the time

X raised the issue of the increased expectations required through the mandatory
accreditation process. This additional requirement places an extra burden on new
teachers. Data from both the questionnaire and interviews, highlighted the workload
and stress placed on new teachers as they begin their profession with an expectation
that they will ‘hit the ground running’ from the first day at school.
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Crowded curriculum - It was apparent in the interviews that beginning teachers
struggled to incorporate IBL in their lessons since their priority was to complete the
required curriculum outcomes. Y stated:

There's so much content to go through. If I were to use IBL in my classroom for one lesson,
they will be a whole chapter behind, because I still need to do questions from the textbook
to show that they have satisfied the requirements

Being concerned about curriculum coverage was noted in the Dorier and Garcia (2013)
study, where teachers who were focused on teaching for assessments and fulfilling
curriculum requirements were not implementing problem-based tasks. If students are
also focused on examination preparation and believe IBL is not as important as learning
for the tests, this adds more pressure on teachers (Dorier & Garcia, 2013). In one of the
interviews Y commented “[the students] will care if it counts to their mark...”. The
influence of what is assessed is well documented (e.g., Sullivan et al., 2013), and this
certainly appeared to be a factor for about half of the respondents in the questionnaire.
Having the experience to manage a crowded curriculum and understanding how IBL
can help students learn more than one concept at a time is an important skill for
beginning teachers and one they feel ill-equipped to handle.

Lack of experience - The noisy classroom, typical of IBL environments, can be
unsettling with new teachers feeling out of control. Allowing students the freedom to
investigate their own problems and their own solution methods leads to discomfort
(Anderson, 2014). It is challenging to provide the experience pre-service teachers need
to establish appropriate strategies for managing inquiry discourse (Peressini et al.,
2004) as well as access to suitable tasks. X noted:

I think the main problem is having to find these activities. Like, if there was an online
database which had an inquiry-based learning activity next to each syllabus dot point, ready
with worksheets which you could just adapt for your own classroom then I think a lot more
teachers would be implementing it in their classrooms. I personally think that the main
problem is spending the time to find these activities, and good ones I mean, is just way too
time consuming and we don’t have the time.

During professional experience placements, university programs rely on experienced
teachers and mentors to offer that support and allow the preservice teachers to
‘experiment’ with new pedagogies. This does not always occur and so for some, they
enter the teaching profession without any real experience.

Identifying Opportunities for IBL

From participants’ responses to the short answer question about opportunities which
would allow them to implement IBL practices more effectively, two new themes
emerged - school cultures and authentic practice. For a small number of participants,
they were encouraged to use IBL practices by more experienced colleagues — for them
the outcomes were rewarding and they could see the possibilities. Most of these
teachers were in their third year of teaching which suggests they had settled into their
school context and felt more confident to try new practices. While Y felt supported and
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was encouraged to “give it a go”, she was overloaded with administration and other
co-curricular tasks and responsibilities. Some respondents acknowledged they were
keen to try IBL practices but were worried about wasting valuable time — they wanted
the opportunity to practice the skills needed to manage inquiry discourse without fear
of judgement. Still others recognized that they were able to use IBL in some classrooms
and not others because of the experience and readiness of the students to engage in
inquiry by asking questions, exploring situations, and developing their own ways of
solving problems. These comments provide evidence of Peressini et al.’s (2004)
framework on a situative perspective to teacher learning but they raise further questions
about the support and development required to prepare new secondary mathematics
teachers for IBL practices.

CONCLUSION

The purpose of this study was to determine the factors which influence beginning
mathematics teachers’ implementation of IBL. Overall, most of the beginning
mathematics teachers in this study had a positive view about IBL strategies and
understood the benefits for students’ learning yet struggled to implement these
effectively. While many respondents indicated they were supported in their schools
and encouraged to try new strategies, they felt constrained by other factors including
the lack of time needed to prepare IBL lessons, the perception of a crowded curriculum,
and lack of experience in creating and using IBL. Considering this, there were useful
recommendations provided by study participants that require new approaches to
teacher education and new approaches to managing beginning teachers’ time and
responsibilities in busy, demanding schools.

Suggested recommendations to increase the implementation of IBL strategies for
beginning teachers included reducing administrative and extracurricular
responsibilities for beginning teachers, collating IBL resources, tasks and lessons
which are easily accessible and clearly connect to the content areas in the curriculum
documents; identifying good examples of IBL projects which connect more than one
concept or topic from the curriculum; considering new ways for pre-service
mathematics teachers to gain experience of teaching using IBL practices before they
enter the profession.

While this study involved a small number of participants from one university, the data
provide useful information for revising program approaches, re-examining
requirements during field experience, and supporting new teachers as they enter their
first appointment in schools. Beginning teachers should not be overburdened with new
roles and responsibilities and mentors of beginning teachers need to be able to model
the types of IBL practices we believe better support student learning.
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TAKING EACH OTHER’S POINT OF VIEW: A TEACHING
EXPERIMENT IN COOPERATIVE GAME THEORY
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This paper is drawn from a teaching experiment in the field of cooperative game theory
where different approaches are possible and a criterion for the validity of a solution
has to be formulated and justified in classroom. In particular, I propose an analysis of
the dynamic of different points of view and of argumentation produced by the students
in exploring and discussing a game theory problem. The analysis reveals that the task
and the social negotiation under the guide of the teacher promote a rich and intriguing
environment to develop a productive dialectic between different perspectives and
different argumentation.

INTRODUCTION

Since the great seminal book of von Neumann and Morgenstern (1944), game theory
has reached a wide dissemination and it has now relevant applications in many
branches of social sciences, economics, biology, and other disciplines. Game theory is
a field of mathematics dedicated to the study of mathematical models of interaction
between rational decision-makers (called players) that has provided mathematical
techniques for analyzing situations in which two or more decision-makers make
decisions that influence the outcomes. The players can either form binding
commitments or not. In the first case, the game is called cooperative; in the latter, it is
called non-cooperative (see, for example, Osborne & Rubinstein, 1994).

There is a large consensus that games can play a relevant role in learning mathematics
and many articles in mathematics education concerned games (Mousoulides &
Sriraman, 2014) as an environment to promote genuine problem-solving activities
(Martignone, 2007; Martignone and Sabena, 2014), activities of conjecturing (Soldano
et al., 2019) and modelling (Steiner, 1988; Scholz, 2007).

The assumption of game theory in studying interactions and decision-making is that
players make rational choices. However, some studies show that our mind and the
complexity of situations do not assure that human beings behave according to the
strategies developed in game theory (Simon, 1955, Camerer, 2003). From an
educational point of view, I think that this gap between the mathematical models set
up in game theory and the behaviors of human beings makes it interesting to investigate
processes involved in exploring a game and in managing the different perspectives of
the players.

In this paper, I propose an analysis of the dynamic of different perspectives emerging
when students explore a cooperative game, with focus on the different argumentation
and on the shift between various perspectives in an Italian classroom. The hypothesis

2-33
2019. In M. Graven, H. Venkat, A. Essien & P. Vale (Eds.). Proceedings of the 43rd Conference of the International
Group for the Psychology of Mathematics Education (Vol. 2, pp. 33-40). Pretoria, South Africa: PME.



Antonini

is that cooperative game activity can promote a rich and intriguing environment to
promote argumentation and to develop a dialectic between different perspectives.

THEORETICAL FRAMEWORK

The Italian National Curriculum Indications states that a middle school student should
be able to construct reasoning “formulating hypotheses, supporting his/her ideas and
sharing each other’s point of view”. (MIUR, 2012, p. 61, personal translation). The
importance of the sharing of points of view and of argumentation is underlined from
the first lines of these Indications: “the mathematics contributes to develop the ability
to communicate and discuss, to argue in a correct way, to understand each other’s
point of view and argumentation” (MIUR, 2012, p. 60, personal translation).

These excerpts underline a link between argumentative competencies and the sharing
of different points of view, and therefore, the social dimension of argumentation.
Mathematics educators share that argumentative competencies should be promoted
through mathematical activity in classroom including practice of production of
conjectures and meta-mathematical knowledge about the acceptability and the
rejection of claims (Yackel, 2001; Mariotti, 2006; Boero, 2011; Stylianides et al.,
2016). The social dimension has a crucial role in negotiating criterion of validity of
mathematical statements, solution of problems and, in general, mathematical
knowledge:

At school, the social dimension related to the community of mathematicians must be
coordinated with the social dimension related to the classroom community. The crucial
role of the teacher comes to the forefront, representing contemporaneously the guarantor
of the mathematics community and the guarantor of the classroom community. (Mariotti,
2006, p. 188).

The social dimension in the development of argumentative competencies and the focus
on the sharing of different points of view make crucial the role of the teacher both as
cultural mediator (between the classroom and the mathematical community) and for
managing the different perspectives of students within the classroom. The theoretical
notion of Mathematical Discussion (Bartolini Bussi, 1996) is a suitable tool to design
and to analyze teaching activities taking into account both these aspects:

Mathematical Discussion is a polyphony of articulated voices on a mathematical object
(e.g. a concept, a problem, a procedure, a structure, an idea or a belief about mathematics),
that is one of the motives of the teaching-learning activity. The term voice is used after
Wertsch (1991), following Bakhtin, to mean a form of speaking and thinking, which
represents the perspective of an individual, i.e. his/her conceptual horizon, his/her intention
and his/her view of the world. [...] A form of mathematical discussion is the scientific
debate that is introduced and orchestrated by the teacher on a common mathematical object
in order to achieve a shared conclusion about the object that is debated upon (e.g. a solution
of'a problem). In this case the teacher utters a voice that represents the mathematical culture
[...] (Bartolini Bussi, 1996, pp. 16-17)

In this paper, I present a teaching experiment in cooperative game theory, designed in
a framework of mathematical discussion, with the goal to analyze the emerging and the
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transition between different points of view and argumentation. In the following pages,
I use the terms “perspective” (“perspective of an individual” in the quotation by
Bartolini Bussi) and “points of view” (as in the National Indications) as synonymous.

METHODOLOGY

The teaching experiment involved four lessons of two hours in two classrooms, each
with about 20 students, of a middle school (respectively grade 7" and 8") of Northern
Italy and consists in exploring problems of cooperative game theory. Nobody of the
students have had some previous experience with game theory. Every problem was
explored in small groups of 4 or 5 students and in a whole-class discussion. The data
consists in video-recordings of the group activities and of the discussions. In this
article, I analyze the whole-class discussion in one classroom (grade 7™) about the first
task (for a mathematical analysis of this problem, see Patrone, 2006, p. 187):

Ada, Bea and Ciro are three musicians that have to play in an event. They can play alone,
in duet or in trio. Their profits are the following: 100 euros for Ada if she plays alone,
150 euros for Bea if she plays alone, 180 euros to Ciro if he plays alone, 600 euros for
all of them if they chose to play together. If they play in duet, the profits are the following:
400 euros for the couple Ada and Bea, 300 euros for Ada and Ciro, 420 euros for Bea
and Ciro. Putting yourself in the shoes of the musicians, try to discuss and explain how
Ada, Bea and Ciro could find an agreement. Justify your assertion!

For example, if the three musicians agree to play together, they earn 600 euros that
they have to share in some way. If Ada and Bea decide to play in duet, then Ciro can

only play alone: Ada and Bea have to share 300 euros how they want and Ciro earns
180.

The problem has been chosen because, as in other problems from cooperative game
theory, there is not, a priori, one procedure to determinate a solution and rather the
notion itself of “solution” has to be constructed; in other words, it is necessary to
understand that a criterion is needed to validate a proposal of division of the profit and
then a criterion, among many possibilities, has to be identified and justified.

ANALYSIS OF THE DISCUSSION

After the small group work, the students present their proposals to the class. It is
possible to identify three phases of the discussion of the whole class: discussion of the
proposals of the small groups, game of points of view and construction of a model.

Phase 1: Discussion of the proposals of the small groups
Initially, all the groups propose a simple solution. For example, Roberto says:

Roberto: if [the musicians] are friend, they share the profit in equal parts [...] [They
play together] because 600:3=200 euros that is greater than the profit they
would have playing alone.

Roberto proposes that musicians, if they are friends, share the profit in equal parts but
he also justifies the musicians’ decision to play together through an argumentation
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about the greater profit (I refer to argumentation like this with the label ‘greater profit’).
In considering the possibility that musicians are not friends, students propose other
arguments:

Flavio: Ciro earns more [than the others when he plays alone] [...]

Roberto: ... then he could say ‘why do we have to divide into three equal parts, if |
am worth more, I want more’ [...]

Flavio: But even dividing into equal parts he earns more than playing alone

Teacher: Yes, sure...this is an observation, but he could say ‘if I am worth more, I
want more’...

The argumentation formulated together by Flavio and Roberto is based on the
preserving of the order of the profit the musicians earn playing alone. I refer to this
argumentation with the label ‘monotonicity’: if X earns more than Y when they play
alone, then X has to earn more than Y when they play together and they share a
common profit. When Flavio comes back to the greater profit as a criterion to accept a
proposal, the teacher moves the focus on monotonicity to stimulate the students to take
into consideration different points of view and argumentation. Roberto, as other
students, on the base of monotonicity, proposes that the musicians play in trio and share
the profit according the proportion of the profit they would earn playing alone (that are
100, 150 and 180 respectively for Ada, Bea and Ciro). Considering that
100+150+180=430, Ada earns 100/430-600=139.53, Bea earns 150/430-600~=209.3
and Ciro earns 180/430-600=251.17. This proposal satisfies both the criterion of
greater profit and the criterion of monotonicity. Now, the teacher focuses on the
perspective of Ciro and then of all musicians:

Teacher: Is now Ciro happier? [...] are all happier?

The students think the musicians are now happier if they are not friends. So the teacher
asks a comparison between the two proposals (equal profit and proportional division):

Teacher: So we have two proposals... is there one better than the other?
Flavio: It depends on which way you look at it.

With the last two interventions, the teacher focuses on different perspectives in
different levels: the three perspectives of the musicians and the perspective of the
students about the proposals. Flavio answers that different perspectives are possible.
Unfortunately, the teacher does not ask Flavio to explain his thinking in details.

Phase 2: Game of points of view

I cannot present here all the solutions emerged in classroom and I just report that the
students proposed other ways to divide the profit, justified through the greater profit or
the monotonicity criterion. During the discussion, when a student proposed that Ada
and Bea play together, the teacher launches the game of standing in the shoes of the
musicians in order to force the students to look at the situation from different
perspectives and to promote the emerging of new argumentation and criteria:
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Teacher: Ada and Bea are forming an agreement...[..]...1s there anyone of you that
want to do Ciro? [..] Vincenzo, you are Ciro, what do you do?

Vincenzo:  Because I would earn more [...] I propose Bea to come with me so that she
earns more [...]

The change of perspective regards not only to consider directly the points of view of
the musicians, but also to move from accepting or not a proposal to consider the
possibility of proposing a new agreement acceptable from someone because more
convenient. For example, if Ada and Bea agree to play in duet and to share 400 euros
in two equal parts, Ciro can propose Bea to play with him, offering 225 euros to Bea
and 195 euros for him (the couple Ciro-Bea earn 420 euros and 420=225+195). This
proposal is more convenient for both Ciro and Bea. Now, Ada can propose a new
agreement with Bea, and so on.

The teacher’s intervention in the discussion are like the following: “okay [...] and now
I do Ciro”; “so let’s try to do other proposals... [to a student], do another proposal to

convince the two of them to play with you”; “and then, what do you [to a student] do?”;
“you [to a student] and Ada would earn...”

The students act the part of the different musicians, as we can see from the language
they use during the discussion: “they [Ada and Bea] say no, we are not interested”;

99, ¢

“so, I am Ciro and say...”; “to me [she is acting the part of Bea] is convenient...”; “I
[she acts as Ada] propose her to play with me”; “to me [she acts as Bea] it is convenient
to propose to play together because it is convenient for both”, and so on.

The focus on the musicians’ perspectives, evident in the students’ expressions (“I”,
“me”, “you”, etc. instead of “Ada”, “Bea” and “Ciro”), moves the attention on what
every musician thinks and, in particular, can do. Like in board games, every musician
can make a move, that, in this case, is a proposal of an agreement more convenient for
himself/herself and at least for another musician. The argumentations are now more
refined than argumentation of greater profit, when the better profit was related only to
the profit the musicians earn playing alone. During the discussion, the students play a
show in which they put on the shoes of the musicians, negotiating an agreement and
realizing that if a proposal is not accepted — then the negotiation is not stable - if one
musician can propose a new agreement more convenient for himself/herself and for

another musician. I call this criterion the ‘stability of negotiation’.
Phase 3: construction of a model

The teacher shifts the attention to the identification of a criterion to validate the
proposals. She is, now, the “voice” of mathematics, in particular of game theory, and
she requires identification of mathematical relations to set up a model.

Teacher: Now listen to me... my question is... are there any reasonable conditions
for which these proposals can be accepted?

After a discussion, in which a great tension between the criteria (greater profit,
monotonicity, stability) appeared, the students selected the stability of negotiation as
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their criterion of validity, with the awareness that other choices are possible. This leads
to the construction of the model that I shortly summarize: Ada, Bea and Ciro can decide
to play in trio if x(A), x(B), x(C) are respectively their final profits and:

1) x(A) = 100; x(B) = 150; x(C) > 180
2) x(A)+x(B) = 400; x(A)+x(C) = 300; x(B)+x(C) =420
3) x(A)+x(B)+x(C)=600

When these relations are satisfied, every musician neither has a greater profit playing
alone (because of the relations in 1) nor can make a proposal to play in duet with
another one that is convenient for both (because the relations in 2). Therefore, the
negotiation is ‘stable’. Of course, different solutions are possible. For example,
x(A)=170, x(B)=240, x(C)=190 or x(A)=120, x(B)=290, x(C)=190. The students
realize that the previous proposals do not satisfy this criterion. For example, in the
proportional division of the profit (139.53 to Ada, 209.3 to Bea and 251.17 to Ciro),
x(A)+x(B) =348.83< 400, then for Ada and Bea is more convenient to play in duet. In
fact, they would earn 400 euros and if they divide, for example, in 170 for Ada and 230
for Bea, both of them would earn more than what they get from proportional division.

DISCUSSION AND CONCLUSIONS

The cooperative game theory problems, as the game of the musicians, require the
managing of the different points of view of the players. The problem has not one
solution, rather the meaning itself of “a solution” has to be explored: then the task also
requires to manage different points of view of the solvers. This has forced the students
to suggest many possibilities supported with different argumentations.

The social interaction of students, orchestrated by the teacher, has been fundamental
for the emerging of the different voices and solutions, to promote the construction of
argumentation, and the listening and the comprehension of others argumentation and
perspectives. During the discussion, the argumentations become criteria for accepting
the proposals and the meaning of “a solution” is negotiated in the classroom. The
students have negotiated different points of view on two levels: they have to negotiate
a solution to a problem posed by the teacher about a negotiation of three characters (the
three musicians). In other words, the discussion in classroom, with voices of the
students and of the teacher, has as object the reflection about a game involving the
voices of the players (the musicians).

The role of the teacher has been to orchestrate the different perspectives:

- stimulating the students to express, to explain and to argue their own point of
view; to stand in the musicians’ shoes; to listen, to take into consideration and
to assume other’s point of view; to shift from one to another perspective;

- promoting awareness of how the different proposals are justified on the base of
different argumentation and criteria;

2-38 PME 43 - 2019



Antonini

- uttering a voice that represents the mathematical culture, in particular regarding
the knowledge of game theory, the logical aspects of argumentation and the
epistemological aspects related to modelling (identification of criteria and
translation in mathematical relations).

The results of this study are coherent with the entry “Mathematical Games in Learning
and Teaching” in the Encyclopedia of Mathematics Education, where we read:

[...] mathematical games help the teaching and learning of mathematics through the
advantage of providing meaningful situations to students and by increasing learning
(independent and at different levels) through rich interaction between players. There are
positive results, suggesting that the appropriate mathematics games might improve
mathematics achievement. (Mousoulides & Sriraman 2014, p. 384)

Concluding, the cooperative game theory and the mathematical discussion can promote
a rich and intriguing environment to develop a dialectic between different perspectives
and different argumentation, until the construction of a model, confirming the
hypothesis I have stated in the introduction. Moreover, the notion of mathematical
discussion is particularly suitable to design and to analyze activities in game theory
where different strategies are possible and the meaning of “solution” and the criteria of
validation have to be negotiated.
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From a sociocultural perspective that a teacher’s use of mediational means is central
to student learning, this paper presents an analysis of six teachers and their mediating,
across a two-three year time gap. Drawing on the Mediating Primary Mathematics
framework — developed to examine the type and quality of mediational means — we
propose two composite assessments of quality of mediation — extent and depth —that
indicate the extent to which teaching addresses mathematical structure and generality.
The findings reveal a range of differences in these two assessments for each of the six
teachers, but that all six teachers were more coherent in their use of mediational means
in the later lesson than in the earlier one. These findings have implications for other
schooling systems and researchers seeking to improve the quality of mathematics
instruction.

INTRODUCTION

The multiplicity of factors that shape learning make it difficult to track forward in any
direct way from teaching actions to learning outcomes. Yet studying changes in
teaching that might better support mathematical learning remains, in many ways, a holy
grail of mathematics education research, especially as research overviews continue to
point to the quality of teaching as among the most influential factors impacting on
learning outcomes (Coe Aloisi, Higgins & Major, 2014). Working, as we do, in
disadvantaged contexts in a developing country, classrooms often provide the only sites
of access to mathematical learning, and so understanding and improving the quality of
teaching is important. With models of effective teaching from the ‘global north’ often
assuming a baseline of quality in teaching yet to be established in less advantaged
contexts, these models fail to capture nuanced features that mark significant changes
in pedagogy. This paper presents findings from a context-sensitive framework for
assessing quality of teaching — the Mediating Primary Mathematics (MPM) framework
— that allows us to identify and track changes in teaching. The framework may thus be
helpful to other researchers working in similar contexts of poor performance and
imperatives to improve the quality of mathematics teaching.

BACKGROUND

Students’ dependence on counting strategies not only well into the upper primary years
but also into secondary schools has been widely written about in South Africa (Fleisch,
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2008). This continued dependence is fostered, on the one hand, by pedagogic practices
in which numerical tasks are recurrently treated from scratch and counting is taken, by
teachers and students alike, as the primary means of working out answers, and, on the
other hand, by a marked absence of didactical practices oriented towards building a
base of known results from which other results can be derived. In our work, we are
keen to change this dependence on counting and to encourage teachers to begin to
understand mathematics as a scientific discipline (Vygotsky, 1978) and adopt
instructional practices that focus on mathematical structure and generality.

In addressing teaching for structure, we do not expect teachers to meet Freudenthal’s
(1983) high bar requirement of structure being the total network of basic and derived
properties and actions that can be associated with an initial relationship like a +b = c.
Instead, we take a more pedagogical position that learners’ awareness of mathematical
structure is as a network of basic and derived general relationships that expands over
time and follow Brown's (2011) position that concepts are structures that emerge
through noticing similarities and differences across tasks together with reasons that
might underlie these relationships. Such awareness of structure is central to learners’
engagement with mathematical generality, which we take to underpin the power of
mathematics. We, thus, see teaching towards (awareness of) structure and generality
as key in teaching in South Africa moving from the limitations noted above, but given
the wide gap between this vision and current practices there was a need for a tool that
can provide nuanced assessments of pedagogy that nudge in that direction.

To this end we developed the Mediating Primary Mathematics (MPM) framework for
analyzing the quality of instruction in mathematics, the detailed background to which
is written about elsewhere (Venkat & Askew, 2018). Here we present findings from
the application of the framework and analyse earlier and later teaching of six teachers
from six primary schools. This analysis allows us to characterize differences in the
nature of mathematics teaching across a variety of topics and suggests that the
differences can be interpreted as improvements in instruction in the direction of more
attention to structure and generality. Key questions addressed are:

Using the MPM framework, what differences, over time, in attention to
mathematical structure and generality can be seen in these teachers’ practices?
Can these differences be interpreted as showing improvements in teaching?

THEORETICAL BACKGROUND: TEACHING AS MEDIATION

Prior writing details the theoretical and empirical concerns underpinning our work
(Venkat & Askew, 2018); we therefore only overview that detail here. Our work is
based in a sociocultural view of instruction as mediational and directed towards
learning which focuses on mathematical structure and generality. Building on the
classic subject-mediational means—object triad, we find it helpful to consider four,
interconnected, strands of teacher mediation:

tasks and associated examples;
artefacts (physical equipment and manipulatives);
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inscriptions (images, diagrams, written words and symbols produced within a
lesson);
teacher talk/gesture (divided into three sub-strands):

o methods offered or accepted for generating/validating answers,

o mathematical connections made or accepted, and

o student-level connections offered and developed.
Tasks, and the examples accompanying these, form the base for mediation, which is
enacted through coordinated use of artefacts, inscriptions and talk/gesture. These
mediating means provided theoretical lenses for analysing lessons and led to the
development of the MPM framework. Working with recordings of a number of
baseline lessons in 2011/12 we parsed each lesson into a sequence of episodes and then
analyzed the bundle of mediating means used within each episode, with particular
attention to whether or not a teacher’s mediation was likely to move students from a
focus on simply succeeding at the task at hand, to beginning to develop a sense of
mathematical structure and generality. Empirical contrasts from episodes observed
were used, in conversation with the theoretical base, to construct levels of mediation
within each of the strands. Iteratively moving between the framework and applying it
to lesson episodes, led to a fine-tuning of the framework into its current form (Figure
1). With regard to instructional goals, Askew (2015, 2019) has examined ways in which
teachers have used all four mediating means in ways that may or may not support
moves to structure and generality. Here the framework is used to examine two aspects
of the quality of mediation; extent and depth.

DATA SOURCES

Working with ten previously disadvantaged primary schools, we gathered baseline
videos of mathematics lessons in 2011/12 with Grade 2 and 3 teachers. Returning to
these schools to video lessons in 2014 there were six teachers from six different schools
for whom we had both the earlier baseline and later lesson video-data: these six
teachers form the sample reported on here. Of these six teachers, four taught in
‘suburban’ schools and two in ‘township’ schools. All of the teachers had taught in
primary schools for more than five years, some for much longer. While all the schools
served historically disadvantaged student populations, the township schools had larger
school rolls and classes, and smaller classrooms than their suburban counterparts.
Between 2011 and 2014 the project team worked on professional development in these
six schools, more broadly focusing on supporting teachers in attending to the structures
and generalities underpinning ‘number sense’, hence our interest in whether we could
determine changes in teaching practices across the years.

METHODOLOGY FOR ANALYZING THE QUALITY OF INSTRUCTION

Analyzing the quality of instruction using the MPM framework required an approach
that enabled us to look both within and across a lesson’s episodes, to build a picture of
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MEDIATING TASKS.EXAMPLES (Listed)

MEDIATING ARTEFACTS

0

1

2

3

No artefacts or artefacts
that are problematic/
inappropriate

Unstructured artefacts used
in unstructured ways

(Bags of counters/tally
marks)

Structured artefacts used in
unstructured ways (Abaci,
100 squares, etc, used with
unit counting, and without
reference to structural
properties)

Structured artefacts used in
structured ways /
unstructured artefacts used
in structured ways
(Abacus, 100 square/place
value blocks/cards, number
lines, etc used with
reference to
structure/relations)

MEDIATING INSCRIPTIONS

0

1

2

3

No inscriptions or
inscriptions that are
problematic/ incorrect

Inscriptions that only
record tasks or responses

Unstructured inscriptions
(e.g. tally marks)

Structured inscriptions
(e.g. tables of ordered
bonds; structured/empty
number lines; inscriptions
underpinned by relations)

MEDIATING TALK & GESTURE

Method for generating/ validating solutions

(e.g. mixing of knowns and
unknowns)

generates the immediate
answer; enables production
of answers in the
immediate example space)

(provides a method that
can generate answers
beyond the particular
example space)

0 1 2 3
No method or problematic | Singular method/validation | Localized Generalized method or
generation/validation (provides a method that method/validation validation (provides a

strategy/method that can
be generalized to both
other example spaces AND
without restriction to a

incoherent treatment of
examples OR oral
recitation with no
additional teacher talk

from scratch

between examples or
artefacts/inscriptions or
episodes

particular artefact /
inscription)
Building mathematical connections
0 1 2 3
Disconnected and/or Every example treated Teacher talk connects Teacher talk makes

vertical and horizontal (or
multiple) connections
between examples/
artefacts/ inscriptions/
episodes

Building learning connections: explanations and evalua

tions - of errors/ for efficiency/ with rationales

0

1

2

3

Pull-back to naive methods
OR

No evaluation of offers
(correct or incorrect)

Accepts/evaluates offers
Accepts strategies or offers
a strategy OR

Notes or questions
incorrect offer

Advances or verifies
offers. Builds on,
acknowledges or offers a
more sophisticated strategy
OR addresses
errors/misconceptions
through some elaboration,
e.g. ‘Can it be ----?’
‘Would — this be correct,
or this?” Non-example

offers

Advances and explains
offers. Explains strategic
choices for efficiency
moves OR provides
rationales in response to
student offers related to
common misconceptions
OR provides rationale in
anticipation of a common
misconception

Figure 1: The MPM framework (Venkat & Askew, 2018, p.90)
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instructional quality. To this end we overlaid onto the MPM framework the constructs
of ‘extent’ and ‘depth’ of mediation for structure and generality. The ‘extent’ indicator
provides an assessment of the extent of mediation for structure and generality across
the lesson episodes, while the ‘depth’ indicator provides insight into the ways in which
mediational means were deployed coherently and responsively within episodes, in
relation both to the mathematical object of learning and to student offers.

The research team initially parsed lessons into episodes on the basis of tasks set and
their related example spaces. Within episodes, we noted whether or not students made
incorrect, and/or overtly inefficient, offers, as the absence of incorrect/inefficient offers
suggested such episodes functioned largely as rehearsal or revision of prior learning.
Low-level mediation in such episodes (no explicit instruction or simply recording or
acknowledging results) was, thus, interpreted in relation to this inference of
rehearsal/revision, and such episodes were not included in the lesson coding. Similarly,
smoothly run chorused counting episodes and individual seatwork episodes that did
not involve whole-class or small-group instruction were also omitted from the analysis.
In contrast, evidence of incorrect/overtly inefficient answers indicated a need for
responsive instruction that built connections with learning: to explain or remediate in
some way, so these episodes were the focus of the quantitative coding reported on here.

Teachers’ work in each episode was given a 0-3 score for each of the mediating strands,
creating a mediation ‘map’ of the lesson. Initial coding was done in groups: individual
team members coded teachers’ earlier and later lesson videos, convened to discuss and
agree on framework level summaries capturing the essence of mediation. Agreed MPM
‘maps’ of the earlier and later lessons were thus created for each teacher. For each of
these maps, extent and depth judgments were made as two distinct but complementary
ways of assessing mediating for structure and generality. Quantitatively, each cell of
the MPM map could attain a maximum score of 3: multiplying this by the number of
coded episodes and the teacher’s actual scores across the episodes, produced an
assessment of the extent of mediation across the strands of artefacts, inscriptions and
the three aspects of talk/gesture. For example, if a lesson had four coded instructional
episodes, there was a maximum score of 12 available for, say, use of artefacts. The
summed coding score (S) for use of artefacts in relation to this total provided an S/12
fraction for artefact-based mediation. Given that the talk/gesture strands focused on
three different dimensions of mediation, we produced proportional summaries for each
of these strands in each lesson. However, artefact and inscription scores were averaged
together to produce a single indication of the extent of use of the more structured,
relatively ‘permanent’ mediational forms in each lesson. Comparisons of proportions
for earlier and later lessons within each strand provides a lens for considering
differences in the extent of mediation for structure and generality across teachers across
years. Given the exploratory nature of this analysis, we set a relatively high bar (20%
point difference) for considering difference in extent of mediation to be substantive.
Depth arises from a ‘vertical’ reading of the coordination and coherence of mediation
within episodes. For example, in a lesson with, say, six coded episodes, we looked

PME 43 - 2019 2 -45



Askew, Venkat, Abdulhamid, Mathews, Morrison, Ramdhany & Tshesane

vertically for the number of episodes containing higher codes (2 or 3) across two or
more of the artefact/inscriptions and talk strands, producing another proportional score.

This coding for both extent and depth allowed us to see differences between earlier and
later teaching in terms of the teacher’s mediation for structure and generality. Table 2
shows the 2012 and 2014 scores for one of our teachers Ms M. In the findings and
analyses that follows, our focus is on patterns of shift towards greater attention to
mathematical structure and generality that help us to understand the kinds of mediation
underlying the differences in early number learning that we noted at the outset.

EXTENT 2012 (6 episodes) 2014 (5 episodes)
Artifacts & Inscriptions 4/18 & 5/18 (25%) 0/15 & 9/15 (30%)
Talk/gesture: generating solutions 3/18 (17%) 11/15 (73%)
Talk/gesture: mathematical connections 8/18 (44%) 13/15 (87%)
Talk/gesture: learning connections 5/18 (28%) 13/15 (87%)
DEPTH 2012 (6 episodes) 2014 (5 episodes)
Higher level mediation in two or more strands  1/6 episodes (17%) 5/5 episodes (100%)

Table 1: Scores of extent and depth in Ms M’s lessons
FINDINGS AND ANALYSIS

Figure 2 presents the differences in the extent scores for each of the six teachers across
the four strands of mediation. As can be seen, for two of the teachers, Ms M and Ms S,
there was a substantially greater extent of mediation in their later lesson compared to
their earlier lesson, with Ms M demonstrating the greatest difference. For Ms Mp there
is some change from the early lesson to the later, but it is not substantial as for Ms M
and Ms S. For Ms R and Ms D, the profile of extent is similar across both years, whilst
Ms B’s extent of mediation in 2014 looks somewhat weaker than in her 2011 lesson.

100%
90%
80%
70%
60%
50%

40%

30%

20%

= | ll 10l 00k BOF A b

0% 1
(6 (5 (4 (5 (4 (8 (1 5 (2 (5 (5 (7

episodes) episodes) episodes) episodes) episodes) episodes) episode) episodes) episodes) episodes) episodes) episodes)
2012 2014 2012 2014 2012 2014 2012 2014 2012 2014 2012 2014

Ms M Ms S Ms Mp Ms R Ms D Ms B

W Artefacts/Inscriptions m T/G: Generating solutions m T/G: Mathematical connections B T/G: Learning connections
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Figure 2: Differences in extent of mediation across teachers and years.

Using the 20% point difference, Ms M’s teaching indicated differences meeting this
criterion in 3 of the 4 categories (that is, across all of the talk/gesture strands). Ms S
met this criterion in 2: arefacts/inscriptions and talk/gesture for mathematical
connections with Ms Mp also meeting this criterion on talk/gesture for mathematical
connections. The three other teachers did not cross this threshold on any of the strands.

Table 2 presents the assessment of depth for the teachers in each of the years. This
shows that for all of the teachers, within the 2014 lesson, there were higher levels of
mediational means being coordinated within the teaching episodes. All episodes in Ms
M’s 2014 lesson showed a coordinated depth of higher-level mediation for structure in
two or more strands across all 5 episodes, with Ms S and Ms Mp achieving this in at
least 50% of their episodes in 2014. The other teachers demonstrated less difference
but given the lack of any coordination of mediating means in the earlier lesson, what
increased scores they did achieve indicate a difference in their teaching.

Ms M Ms S Ms Mp Ms R Ms D Ms B
2012 17% 50% 0 0 0 0
2014 100% 60% 50% 40% 40% 29%

Table 2: Proportion of episodes with coordinated mediation at level two or three
DISCUSSION

On the empirical side, we see broad differences in terms of extent and depth of
mediation for mathematical structure and generality employed across the 12 lessons
within this analysis, with more extensive differences across some teachers than others.
The theoretical derivation of the framework from Vygotskian notions of structured
networks of scientific concepts allows the patterned direction of differences — higher
scores in the later lessons — to be interpreted in terms of improved extent of mediation
for structure and generality. The variation in the extent of mediation ranges from
extensive change in extent across multiple strands — as in the case of Ms M — to lack
of substantial change in extent of mediation within any of the strands — as in the case
of Ms B. As Figure 2 shows, these six teachers essentially fell into two groups, those
teachers who expanded their work with structured mediation, and those who have
begun to introduce some structured mediation but not to the same extent.

A key commonality is the broad increase in depth of mediation for structure across five
of the six teachers. This points to more episodes exhibiting a coordinated orchestration
across mediational means. As our coding for depth involved looking for higher level
mediation scores (2 or 3) that point to moves beyond simply a coherent lesson towards
connection and generality, the increases in the depth indicator suggest, therefore, that
connected teaching was more in view in the latter lessons than in the former ones. Of
particular note is that substantial moves on this indicator were seen among teachers
working from a low base of mediation for structure and generality, suggesting that a
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focus on helping them to coordinate actions across mediational means may be a
particularly useful direction to follow in primary mathematics teacher development.

Our sense is that the central commitment to mathematical goals of structure and
generality are both important and pragmatic in a context where much recent writing
has noted that the lack of attention to specialized knowledge may be part of the problem
in relation to improving disciplinary instruction (Hugo & Wedekind, 2013). The
explicitness of mathematical goals in the MPM framework — structure and generality
— coupled with an openness on the pedagogic forms in which these goals are couched,
means that the MPM framework provides a lens for exploring primary mathematics
teaching in ways that are sensitive to the ground as well as being mathematically
ambitious in seeking to expand the spaces of productive mathematical working.
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BUILDING 3D SHAPES FROM SIDE VIEWS AND SHADOWS —
AN INTERVIEW STUDY WITH PRIMARY SCHOOL STUDENTS

Daniela Assmus, Torsten Fritzlar

Martin Luther University Halle-Wittenberg

This interview study examines how 2™ and 4™ graders use unit-sized cubes to build
shapes from two given side views or two given shadows. Besides the reconstruction of
the building processes in general, it will be investigated whether and to what extent
building from shadows differs from building from side views. In addition, the study
aims to empirically reconstruct difficulty factors for such tasks. First results show
differences between shadows and side views with regard to the resulting shapes, but
not with regard to the solution rates. The location of the highest cube tower was
identified as an important difficulty factor. Seven different types of building processes
could be differentiated.

THEORETICAL FRAMEWORK
The importance of visuospatial reasoning

After being neglected for a long time, visuospatial reasoning — which is also referred
to for example as spatial thinking or visualisation — received a strong interest in the
international mathematics education research over the last decade (see e.g. Sinclair,
Bartolini Bussi, Villiers, & Jones, 2016 with many references). This is fully justified
since many studies support a strong association between spatial and mathematics
abilities or identify early spatial skills as predictors for mathematics achievement (e.g.
Casey et al., 2015). Furthermore, spatial skills are related to academic performance in
various STEM fields (e.g. Wai, Lubinski, & Benbow, 2009).

Although spatial skills are traditionally assumed to be innate and fixed, strong evidence
from research suggests that spatial skills can be taught and improved (Uttal et al.,
2013). Consequently, a stronger emphasis on visuospatial reasoning in mathematics
teaching is demanded by numerous highly influential organizations such as NCTM and
NRC (Davis et al., 2015).

How can visuospatial reasoning be described?

Thurstone (1938) described spatial ability as a primary intelligence factor. Since then,
spatial skills have been the subject of detailed psychometric investigations and several
models have been developed, for example by Linn and Peterson (1985). From a more
didactic perspective, spatial skills were also investigated and modeled, e.g. by Maier
(1999). However, there 1s no uniform understanding of processes or abilities in this
field (Uttal et al., 2013).

According to the National Research Council (2006, p. 5), spatial reasoning “involves
the location and movement of objects and ourselves, either mentally or physically, in
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space.” The extent to which it is possible and meaningful to separate from one another
the involved processes and aspects of perception and imagination, of action and speech,
is controversial. The approach of Davis et al. (2015, p. 5) seems promising: they are
less concerned to find unambiguous definitions but rather aim at a “working knowledge
that will support richer understandings of how children engage with / in their worlds.”
Instead of a somewhat reductionist approach of breaking spatial reasoning down into
the smallest possible and therefore exactly describable skills, they try to look at the
specific situation in its entirety. For its characterization, they use the typology
developed by Uttal et al. (2013), which has proven itself in various ways and by which
psychometric models and widespread spatial skill tests can be classified. This typology
differentiates between static and dynamic situations as well as between extrinsic and
intrinsic information to be processed. Extrinsic information refers to relations among
objects or relations between objects and an overall framework or their environment,
intrinsic information defines or describes an object. Building shapes from projections
with unit-sized cubes could then be categorized as dynamic-extrinsic. It is dynamic
because the cubes are moved and the shape is built step by step. It could be seen as
extrinsic because the cubes have to be positioned in relation to one another and in
correspondence to the given projections. But there are also intrinsic aspects if, for
example, a student visualizes the shape as one object based on the projections. This
exemplarily shows that spatial reasoning often involves several steps that move
between and span categories (Davis et al., 2015).

Building 3D shapes from side views and shadows

In this study we investigate how primary students use unit-sized cubes to build shapes
from two side views or two shadows. The projections are presented in upright frames,
on suitably arranged cards or on a “double card” with two projections; Figure 1 shows
eight examples.

Such activities are particularly appropriate to make important aspects of visuospatial
reasoning accessible to research. Especially plane representations of space and the
change between 2D and 3D are of enormous importance in everyday life. Previous
studies have shown that building shapes from various orthogonal projections is the
most difficult way of building from plane representations (compared, for example, to
building from the isometric or from numeric coded views). The particularly high
degree of difficulty results from the necessity to coordinate several projections
(Gutiérrez, 1996). For successful processing flexibility of thinking (Hasdorf, 1976), as
it is described from a psychological perspective, is therefore necessary. It is generally
understood as the ability to switch from one aspect of consideration to another or to
embed an issue in various contexts and to grasp the interrelatedness of facts and
statements. When dealing with tasks, flexibility of thinking can take the following
forms: restructuring the task or problem situation, reversing a train of thoughts,
changing assumptions or criteria, grasping and applying interrelatedness,
simultaneously considering several aspects. The coordination of both given projections
for building a 3D shape can be seen as the latter form of flexible thinking.
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In numerous teaching materials there are tasks in which objects are to be identified or
produced from given side views or shadows. However, how primary students deal with
these requirements has not yet been investigated. It is therefore unclear whether there
are systematic differences with didactic relevance between tasks with shadows and
those with side views. For example, students may have everyday experiences related
to shadows and side views, which in different ways partly contradict the mapping rules
of parallel projection, so that different abstraction processes have to be carried out.
Further differences could arise from the fact that the projection planes are arranged
once behind and once in front of the object.

Building shapes from projections can also be used to promote the development of
corresponding abilities in mathematics teaching. From a didactic point of view, the
different presentations of projections using upright frames (Fig. 1, tasks 1-4), suitably
arranged cards (Fig. 1, tasks 5, 6) or double cards (Fig. 1, tasks 7, 8) appear particularly
interesting because they could considerably vary the degree of the tasks’ difficulty.
Additionally, the use of upright frames and transparencies when building from side
views could also support the understanding of such tasks while maintaining the leading
idea of projection.

1)

Figure 1: Tasks from the interviews

RESEARCH QUESTIONS AND METHODS
With this study we are investigating the following research questions:

1. How do primary school students build 3D shapes from given side views or
shadows?

2. What are the differences in processes and products between building from side
views and building from shadows?

3. What are the differences in processes and products between building from
projections given in upright frames, on arranged cards or on double cards?

4.  Which difficulty factors concerning projections can be reconstructed
empirically?
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Data is collected through clinical interviews that are videotaped for later analysis. Each
participating student completes two approximately 25- to 40-minute interviews, in
which at first prefabricated shapes have to be checked for whether they fit a given pair
of projections and how they may be arranged. In the main interview phase, shapes made
of unit-sized cubes must be built according to both projections. A quadratic 5x5-grid
is provided for this purpose, its position makes it possible to work with two equivalent
projections (front left and front right, respectively rear left and rear right). These are
presented in upright frames, on suitably arranged cards and, finally, on double cards
(cf. Fig. 1). In the first interview, either shadow projections or side views are given
exclusively. The other type of presentation is used in the second interview, within its
last phase the student builds alternating from shadows and side views. The tasks for
shadows and side views correspond (by swapping the respective right and left
projections; cf. tasks 1 and 2 from Fig. 1) in such a way that both projections could
belong to the same shape.

The design of the tasks takes into account several non-independent aspects: Different
pairs of projections (asymmetric, axially symmetric, and equal) should be given, the
degree of difficulty of the tasks should vary and possible building processes should be
particularly informative.

Up until now, the interview study involved 6 second and 14 fourth graders from two
primary schools with different catchment areas concerning among others the socio-
economic background. Prior to the interviews, the participating students worked on a
compilation of tasks on spatial abilities (according to Thurstone) for which experience
has already been gained from other studies. Two students each from the same school
class and with comparable results formed a pair of test persons. In the first interview,
one of the two students worked on tasks with shadows, the other on corresponding
tasks with side views.

On the basis of the videotapes the building processes used by the students were
reconstructed and the created shapes were described by numbered plans (cf. Fig. 2).

RESULTS

For reasons of space, we will not present the results of the interviews in detail, but only
indicate a few aspects exemplarily.

Research question 4. As expected, the position of the highest (cube) tower (T) is a
factor strongly influencing the task’s difficulty. Thus, all tasks with the highest tower
positioned inside (near the intersection line of the projection planes) were very
successfully mastered by the participating students. This was shown, for example, in
tasks 2 and 7 from Fig. 1, which were correctly solved by all students and 19 students
respectively. On the other hand, task 1 was incorrectly processed by 9 students and also
task 8 was successfully solved by only 8 students. Due to the highest tower being
inside, the shape of task 2 or 7 can be built step by step from the far left to the far right
or vice versa. Only the intersection column (T) has to be considered, which the students
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did very easily. This approach is neither possible in task 1 nor in task 8, since the
highest tower 1s positioned outside or in the middle with regard to the projections.

Also difficult (6-9 incorrect shapes) were tasks such as no. 6 in Fig. 1 (three different
heights in both projections) and tasks on double cards (with the exception of no. 7).

Research question 2: As shown above, there were clear differences between the
corresponding shadow and side view tasks (with swapped projections) when in one
task T is inside and in the other T is outside. However, comparing the solution rates of
tasks with the same characteristics (i.e. e.g. side view tasks and shadow tasks with T
outside), there is no difference. The positions of the projection planes do not seem to
have any influence in this respect. The built shapes, however, differ considerably from
each other. Depending on details of the given projections (especially the position of T),
many students strove to build the shape as close as possible to at least one projection
plane. Thus, parts of the shapes built from side views are located further forward on
the basic grid compared to the shapes in corresponding “shadow tasks”. This is
particularly evident when T is positioned inside. Here, most students built the shapes
as close as possible to both projection planes. Exemplarily, Fig. 2 shows the most
frequent shapes built in task 5 (Fig. 1) and the corresponding ““side view task”. In both
cases, 12 out of 20 students built a shape according to Fig. 2.

Figure 2: Shapes built from shadows in task 5 (left) and built from corresponding
views (right)

Research question 1: Overall, the building processes of the students are very diverse.
Nevertheless, some typical procedures can be identified. Using task 4 (Fig. 1) as an
example, these are described in Fig. 3. Characteristic intermediate states are
summarized in one picture each with the grey fields indicating the cubes added in this
step. Usually these cubes are not added simultaneously — as the picture suggests — but
individually, so that variations in the building procedure can lead to subcategories that
are not shown here. So far, procedure 2 did not appear in task 4 but in other tasks and
was transferred to task 4 for easier comprehension.
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1. | Building a silhouette (a) | a)
and attaching missing
cubes (b)

2. | Building a silhouette (a), | a)
shifting (b), attaching
missing cubes (c)
(adapted)

3. | Layer by layer: Building | a)
the lower layer (a),
building the 2nd layer
(b), building the 3rd
layer (c)

4. | Building the fringe near | a)
to projection planes (a),
completing the tower (b)

5. | Vertical layers one by a)
one: Building a vertical
layer (a), a second one
(b), a third one (c)

6. | Concentric building a)
around the highest
tower: Building T (a),
attaching the neighbour
cubes (b)

7. | Building two connected | a)
silhouettes: Building the
1st silhouette (a),
building the 2nd
silhouette (b)

Figure 3: Building processes in task 4

Since all tasks require the combination of two different projections, it seems obvious
to start with one and then, after a change of perspective, add the missing cubes of the
other silhouette (procedure 1, 2 and 7). Depending on the characteristics of the
projections, this is more or less easy (see e.g. above: position of T). If the highest tower
is not inside, as in the task considered here, the positioning of the cubes or silhouettes
allows conclusions to be drawn about whether and when the two projections will be
coordinated, i.e. whether and when flexibility of thinking emerges. While in procedure
1 both projections will be coordinated from the beginning and the first silhouette is
immediately placed in the correct position, in procedures 2 and 7 the projections are

2-54 PME 43 - 2019



Assmus & Fritzlar

presumably considered one after the other. In procedure 2, the built silhouette is
subsequently moved so that it matches the second projection. If a student uses
procedure 7 — which leads to erroneous results for tasks with T not inside — it can be
assumed that s/he does not coordinate the projections, but rather views them in isolation
from each other. In very rare cases, a special form of procedure 7 occurs in which the
two projections are reproduced completely independently of each other and both
silhouettes do not contain any common cubes.

For procedures 5 and 6, it is necessary to consider both projections from the beginning.
Also, for procedures 3 and 4 it can be assumed that the projections will be considered
simultaneously early on.

In task 3 and 4, 15 (task 3) or 16 (task 4) procedures could be assigned to one of the
above categories. Almost the half of the students (task 3: 7, task 4: 9) used procedure
1. Procedure 3 was used by 4 or 3, procedure 4 by 1 or 2 students, and procedures 5-7
once each. Thus, it is shown that the students coordinated both projections to a large
extent from the beginning or at an early stage in the building process.

CONCLUSION AND OUTLOOK

Due to the small number of students, the results cannot be generalised. Nevertheless,
important information can be gained about how primary school students build from
two orthogonal projections. It does not seem to have any influence on the solution rate
or the understanding of the task whether shadows or side views are given to build from.
Based on this, both types of projections could be equally suitable for teaching.
However, it should be considered that side views usually contain more information
than shadows. (For shapes built with unit-sized cubes, the only difference is the number
of “visible” cubes, which can be easily reconstructed.)

Differences in the positioning of the shapes indicate that objects (3D) and projections
(2D) can be associated more easily if they are close to each other. This could explain
the high solution rates of tasks with T inside, since in this case striving to build close
to the projection supports the coordination of both given projections. The analysis of
the building procedures provides indications on whether and when both projections
will be coordinated, i.e. flexible thinking emerges. In further analyses, we will examine
whether there are connections to the results of the preceded spatial abilities tasks. The
planned expansion of the sample will allow the use of statistical methods for this
purpose. Furthermore, a detailed analysis of the building procedures’ frequencies for
all tasks is intended in future. Of particular interest here is whether there are differences
between shadows and side views or task- or student-related accumulations of specific
procedures. In addition, a larger sample enables us to investigate students’ age and sex
as possible factors influencing solution rates, used procedures and flexibility of
thinking.
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It has been argued that teachers need practical principled knowledge and that design
research can help develop such knowledge. What has been underestimated, however,
is how to make such know-how and know-why useful for teachers. To illustrate how
principled knowledge can be “practicalized”, we draw on a design study in which we
developed a professional development program for primary school teachers (N = 5)
who learned to design language-oriented mathematics lessons. The principled
knowledge we used in the program stemmed from the literature on genre pedagogy,
scaffolding, and hypothetical learning trajectories. We show how shifting to a simple
template focusing on “domain text” rather than genre, and “reasoning steps” rather
than genre features made the principled knowledge more practical for the teachers.

THE NEED FOR PRACTICAL PRINCIPLED KNOWLEDGE

On the one hand, knowledge generated in research is often not practical enough for
designers and teachers to use productively in their educational practice. On the other
hand, there is a need for principled knowledge that goes beyond local, situational, or
contextual heuristics. It is for these reasons that Bereiter (2014) made a call for
practical principled knowledge (PPK), knowledge that combines “practical know-how
and scientific theory”; it offers practical guidance but also “meets standards of
explanatory coherence” (p. 4). Research on what such PPK may look like is scarce
(e.g., Kidron & Kali, 2017), and studies on how to develop PPK are even rarer. Bereiter
suggests that design research could be extended to the creation of PPK, but this effort
should not be underestimated: Janssen, Westbroek and Doyle (2015) argue that what
researchers consider PPK is often not very practical in the eyes of teachers. To ensure
practicality, we involved teachers in making adaptations to a professional development
program. The research question addressed in the current paper is: What does
“practicalizing” principled knowledge with and for teachers look like? An answer
allows us to reflect on what supported this process.

The principled knowledge that we draw on comes from the literature on genre
pedagogy (Hyland, 2004; Martin & Rose, 2008), scaffolding (Gibbons, 2002), and
hypothetical learning trajectories (Simon, 1995). To create PPK that teachers consider
practical, the methodological approach we use is that of design research. Note that both
the theory of scaffolding informing our design approach and the methodological
orientation of design research are inherently adaptive, allowing for continuous

2-57
2019. In M. Graven, H. Venkat, A. Essien & P. Vale (Eds.). Proceedings of the 43rd Conference of the International
Group for the Psychology of Mathematics Education (Vol. 2, pp. 56-64). Pretoria, South Africa: PME.



Bakker, Mackay, Smit & Keijzer

monitoring of the practicality of knowledge from the literature and responsiveness to
teachers’ needs.

DESIGN RESEARCH

Design research has grown out of the need to bridge the aforementioned theory—
practice gap (Bereiter, 2014; Janssen et al., 2015), and to move beyond the typical
emphasis of educational research on description, explanation, comparison, and
evaluation (Bakker, 2018). It aims to realize and study education as it could be rather
than as it was or currently is. The type of knowledge that design researchers are after
is actionable knowledge about how something can be realized (e.g., achieving
particular educational goals) or how particular problems can be solved. To do so, a
design approach to mathematics education seems more appropriate than basic research
(Wittmann, 1995). Design research adopts an iterative and adaptive stance by using
and developing theory and using this to do real work (Cobb et al., 2003).

A useful methodological and design instrument, one often used within mathematics
education, is Simon’s (1995) notion of hypothetical learning trajectories (HLTs). An
HLT specifies the starting point, the learning goals, learning activities, and hypotheses
about how these learning activities help students achieve the desired goals; the
hypotheses are based on practical experience and refined after scientific analysis. Being
informed by educational research and practical experience, HLTs thus serve as an
intermediary between theory and practice.

PRINCIPLED KNOWLEDGE DRAWN ON

To illustrate the process of practicalizing principled knowledge that is useful to
teachers, we report on a design study that aimed to develop a teacher professional
development program (PDP). The topic of the PDP was designing language-oriented
mathematics lessons in primary education. The PDP was a sequel to an earlier design
study that used genre pedagogy and other theoretical resources to scaffold students’
mathematical language development in primary education (Smit et al., 2016). The
earlier study (co-design with one experienced teacher) had delivered a set of strategies
for scaffolding mathematical language, exemplary teaching materials, and theoretical
insight into whole-class scaffolding and features of a genre of interpreting line graphs.

Genre pedagogy is a promising approach that explicitly addresses the language
required for learning, in that it provides learners with metalinguistic knowledge about
how (both spoken and written) language is structured and used to achieve particular
communicative goals (e.g., describing or persuading) (Hyland, 2004). The notion of
genre is typically associated with certain literary forms, for example a poem or a novel.
In genre pedagogy, the concept of genre is particularly used for academic text types
used throughout the curriculum. Commonly distinguished genres are report,
explanation, procedure, discussion, recount and narrative (e.g., Derewianka, 1990),
each with specific communicative goals. Genre pedagogy explicitly attends to how
schematic structures help speakers or writers to accomplish their communicative goals
within each specific genre. Furthermore, it centralizes how linguistic features (e.g.,
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general academic language and subject-specific language) operate in a particular genre.
As such, genre pedagogy supports learners in acquiring proficiency in school-bound
genres (e€.g., narratives, reports), with the ultimate aim of students’ independence in
these genres.

Informed by genre pedagogy, Smit et al. (2016) formulated linguistic and structure
features needed for describing and interpreting line graphs. The linguistic features
included, for example, the subject-specific vocabulary and phrases (e.g., the graph
rises), and also the use of expression of gradations of steepness (as in “the graph
descends gradually”), as well as general academic language to be employed when
interpreting the graph (e.g., the number of people increases). The structure features
comprised the stages of students’ reasoning about graphs. For example, students are
expected to identify all parts of the graph and underpin each interpretation (e.g., “his
weight decreased quickly”) with a description related to the course of the graph (“you
can tell as the graph shows a steep fall”). Such explicit attention for linguistic and
structure features of genres is assumed to help learners understand and participate in
mathematical discourse.

The PDP design was informed by the theoretical idea of scaffolding—temporary
adaptive support, which requires repeated diagnosis and responsiveness with the long-
term goal the handover to independence (in our case independent design of language-
oriented mathematics lessons).

METHODS

To develop the professional development program (PDP), we used design research and
we intended to practice what we preach: being explicitly adaptive to learners’ needs by
constantly making predictions about the participants’ learning (using HLTSs),
diagnosing their levels, and responding adaptively in line with the scaffolding idea.
The PDP consisted of seven sessions (2.5 hours each), for which course materials were
developed and adapted during the course of the program. The total number of
hours spent by each participant, including preparing the sessions and completing
assignments, was approximately 40 hours. The participants were five in-service
primary teachers with a variety of backgrounds, years of teaching experience (a range
of 10 to 25 years), and roles within the school (three mathematics specialists, one
language specialist who did not have her own class, one general teacher). Four worked
in regular primary schools, one in special education. Their students were of low to
middle socio-economic status, attending Grades 3 to 6 (age 6-11). All five teachers
entered the program voluntarily and were committed to become more knowledgeable
in the enactment of language-oriented mathematics education.

Data collection consisted of participants’ personal logbooks, our own HLTs, our own
reflection documents written after each session, completed exercises by the participants
and verbatim transcription of the interaction between the researcher-educator and
participants from video recordings of each group session; and two semi-structured
interviews of one of the teachers conducted by the researcher-educator. The teacher
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was chosen based on the completeness of her logbooks and assignments, with the first
interview between the fourth and fifth group session and the second after the final
session. Audio recordings of both semi-structured interviews were made and
transcribed verbatim.

Data analysis focused on the diagnoses of what teachers struggled with, which led to
what we considered critical responses by the design team in the PDP, in particular the
teacher educator. Diagnoses (D) were based on the reflection documents and were
triangulated with the logbooks (LB) and video transcripts (VT). Incidental responses,
less relevant ones such as organisational decisions, were left out of the webs (cf. Figure
1). A second researcher reviewed the filtering of responses to ensure consistency of the
coding of critical vs. incidental ones; there was no disagreement. Figure 1 shows an
example of a web about diagnoses and the team’s responsive changes in the program.
Next, the second researcher checked all diagnosis response relationships and
triangulated them with the interview data.

EXAMPLES OF PRACTICALIZING PRINCIPLED KNOWLEDGE

In the first sessions, the researcher-educator explained the key ideas of genre pedagogy
(principled knowledge from the literature). The notion of genre is rather broad (e.g.,
explanation, discussion), so she narrowed it down to what she then called pedagogical
genres and showed concrete examples of such genres of interpreting line graphs,
estimation, and expanded column method for subtraction. During the analysis of these
genres, she drew the attention of the participants to the linguistic and structure genre
features (structure features refer to the required ordering of the steps to be taken by
students). While reviewing the first completed task of identifying a genre for a
particular domain, the researcher-educator diagnosed that the participants were still
struggling with the concept of genre. This diagnosis was corroborated when two
participants contacted the researcher-educator to report that they could not grasp how
to complete the homework assignment related to the estimation genre. The researcher-
educator concluded that the notions of linguistic and structure features of genres were
not well understood and that the term “genre” was too theoretical for the participants.
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In between two sessions, during a conversation with the language specialist (who
brokered between the participants and the team), the researcher-educator explained the
concept of genre in the context of language for mathematical learning as the text that
includes the specific language and reasoning that is particular to that domain. It was in
this conversation that the term “domain text” as a domain-specific prototypical text
was first coined as an alternative to the more technical concept of genre: our first
example of practicalizing.

To address the issue of structure features of genres within the context of mathematics,
the researcher-educator’s next response was to shift focus from identifying the
structure of spoken or written mathematical text in a domain to identifying the
“reasoning steps” needed to solve mathematical problems. This was regarded as crucial
by both the participants and the researcher-educator, as each mathematical problem,
even within one and the same domain, requires its own language to be discussed and
resolved that is associated with the reasoning steps for that (type of) problem: our
second example of practicalizing.

Based on participants’ completed assignments, prior to the fourth session, the
researcher-educator diagnosed that the participants needed support with identifying
domain texts. As a response, in the fourth session the participants were set the
assignment to use a domain text template that specifically included the identification
of reasoning steps and the required language components for solving the mathematical
problem at stake in order to prepare and enact a language-focused mathematics class.
The new template included three steps:

1. Write the solution as a student should formulate it. This is the domain text.
2. What are the reasoning steps required to solve the problem?
3. What language does a student need to take these reasoning steps?

This template was also an attempt to capture the thinking behind HLTs, another notion
that the participating kept struggling with, and that hence needed to be practicalized:
our third example.

From teachers’ homework and input during the last session there is some evidence that
using the template worked well for the teachers. They made comments such as
“reasoning steps stimulate thinking,” “maybe we give too little attention to reasoning
steps” and ‘“normally language in the mathematics lesson is focused on the
mathematical procedures, not the reasoning steps of a student.” By the end of the sixth
session, most of the participants showed some form of independence with respect to
identifying reasoning steps during the session: “You get closer to the thinking of the
children,” and, with respect to language and reasoning steps, “[language and reasoning
steps] support each other. You can see the thought process in the children.”

In the final session, one participant gave a presentation on identifying language
required for mathematical learning. During the presentation the reasoning steps were
also addressed: “from A to Z, how you can get to the solution.” The participant made
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it clear that, in order to enable students to articulate how they are solving a problem,
they must be equipped with the vocabulary and phrases required to describe their
reasoning steps.

DISCUSSION

To continue the discussion between Bereiter (2014) on practical principled knowledge
(PPK) and Janssen et al. (2015) on the practicality of PPK for designers and teachers,
we ask in this paper what “practicalizing” principled knowledge with and for teachers
may look like. We illustrate this process in a design study that aimed at a professional
development program to help teachers (re)design language-oriented mathematics
lessons. The principled knowledge that we used stemmed from the literature on genre
pedagogy, scaffolding language, and HLTs.

Our illustrations show that technical key terms from the literature such as genre,
including the structure and linguistic features of genres, proved confusing and
impractical for teachers. Our scaffolding approach of repeated diagnosis and
responsiveness in combination with the methodological orientation of design research
ensured that we stayed in touch with the participating teachers. We collaboratively
developed notions and a template that were much more practical for teachers to work
with. The term “domain text” replaced the term genre, and we focused on “reasoning
steps” rather than “structure features.” Moreover, thinking through how students may
formulate solutions of mathematics problems engaged teachers in HLT-type thinking
without being intimidated by the background theories. Yet all of these developed
notions were still connected to the scientific underpinning of genre pedagogy,
scaffolding, and design-research thinking. No so-called “lethal mutations” (Brown &
Campione, 1996, p. 291)—fatal changes contradictory to original intents—had taken
place. Hence we think it is fair to speak of a process of practicalizing principled
knowledge.

Admittedly, it is possible that teachers learned from struggling with the technical
concepts. We do not know what the PDP had looked like if we had started with the
more practical terminology from the start. Yet our study provides a proof of principle
how a process of practicalizing can be elicited. We last speculate on the relevant
mechanisms to allow for theoretical generalization. The methodological approach we
took was design research, which is aligned in the sense that it deliberately aims to be
adaptive to local circumstances, iteratively working towards what works best. In
retrospect, we came to consider the teacher with whom the researcher-educator
invented the idea of domain text as a broker between the other teachers and the design-
research team. She was more experienced than her colleagues, which presumably
helped in understanding the scientific literature enough to engage with the researcher-
educator and take her colleagues’ perspectives. We agree with Janssen et al. (2015)
that PPK 1s not enough to ensure practicality; hence we argue that the need for
practicalizing will always exist.
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The paper reports a small case from a study which aims to understand teacher’s
knowledge of mathematics, practices and mathematical instruction in the context of a
developing country. The description and analysis of the case raises concerns about the
opportunities that students, in such situations, get to learn mathematics and develop
mathematical forms of thinking and reasoning, which has significant implications for
their lives.

INTRODUCTION

The need for “good” (meaning qualified and trained) teachers is strongly felt across the
globe and more so in developing countries like India. In India, many students drop out
of school by the end of primary grades and for many grade 8 is the penultimate year in
school. Often success in mathematics ends up being a crucial criterion for parents and
students alike for deciding to continue or discontinue school education; its practical
value for social mobility is un-questioned. The quality of education and teachers in the
country is not uniform and one can surely link student learning outcomes to teacher’s
capacities to teach mathematics; such relationship is more clearly shown in Hill,
Rowan and Ball (2005). In order to change the situation of access to and success in
school education, there have been systemic attempts to change the curriculum for
students as well as attempts to reform teacher education (including increased duration
and curriculum change), in the last ten-fifteen years. The changes follow many of the
changes and current thinking around the world. It is no doubt important to increase the
duration of teacher preparation programmes, given the amount of knowledge that is
needed to be acquired in order to teach. However, Shulman’s (1986) idea of
Pedagogical Content Knowledge (PCK), Ma’s (1999) Profound Understanding of
Fundamental Mathematics (PUFM) and Ball and her team’s work on Mathematical
Knowledge for Teaching (MKT) (Ball, Thames and Phelps, 2008) indicate the
complexity of this knowledge. It is not easy to say whether this nuanced understanding
about knowledge required to teach mathematics has found any place in the teacher
education system (both pre and continuous professional development) programmes
within India or in other places as well (e.g. Ball and Forzani, 2009; Adler, 2010).

In this paper, I analyse one teacher’s knowledge, her classroom practices in the context
of the mathematics that was taught and made available for learning in a primary grade.
This is to serve as an illustration for the attempts being made through a larger study to
capture knowledge, beliefs, practices and mathematics instruction of teachers in
elementary grades (up to grade 8) and is in the preliminary stage of investigation. Given
the complex scenario within which teachers are prepared to teach and conditions in
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which they teach, it has implications for imagining teacher education in the country
and carrying out such studies.

THEORETICAL FRAMEWORK

In the context of countries which are struggling to meet the requirements of the society
in health and education, teacher support, whenever available, is rather generic;
familiarizing teachers to new expectations in terms of values and practices, exposition
on general pedagogic strategies, including preparation and use of low-cost teaching
learning materials, classroom management, sensitizing them to the diverse population
of children and adolescents in school. While this may lead to some observable
difference in schools, such support may not necessarily change teachers’ teaching of
mathematics or students’ success in mathematics. It is not the general “feel-good”
factor, but the nature and quality of mathematics instruction that perhaps matters most
for students’ subsequent life chances and therefore crucial for addressing issues of
equity and fair chance for everyone (see also Adler, 2010 for similar comments). One
part of the larger study was therefore designed to understand the knowledge of
mathematics and teaching practices through mathematics instruction in the elementary
grades classroom. The study builds on several such work in the past few years which
have developed frameworks for understanding mathematics knowledge for teaching
and tools for understanding quality of mathematics instruction in classrooms (e.g. Ball,
Thames & Phelps, 2008; Learning mathematics for teaching project, 2011; Adler &
Ronda, 2015; Rowland, 2013).

It has been a conscious decision in the study to understand teacher knowledge for
teaching mathematics and their practice in the context of their teaching, as it is known
that linking teacher knowledge outside the context of teaching with their practice is not
easy (e.g. Chazan et al.,, 2003). Moreover, this i1s also critical for planning any
systematic and focused intervention with the teachers, which may have some sustained
impact on the teaching learning process.

On the one hand, the study aligns with the Mathematics Knowledge for Teaching
(MKT) framework (Ball, Thames & Phelps, 2008), in its efforts to identify the presence
or absence of knowledge of content (common, specialized and horizon content
knowledge) and pedagogical content knowledge (knowledge of content and students,
knowledge of content and teaching, knowledge of content and curriculum) in the
observed lessons and during conversation with the teachers. Further, it explores
teachers’ understanding of the curriculum they teach, the usefulness of the textbooks
or other materials they may use, the connections they see between ideas within and
across grades, together with their own understanding of the content they taught during
our observations and their reflection on their planning and practices inside the
classrooms during interviews with them.

On the other hand, it tries to capture the nature and quality of mathematics in the
instruction and learning opportunities that it provides in the lessons observed.
Recognizing the importance of mathematics content in the classroom and engagement
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of students in mathematical activity, a framework for the study was developed on the
lines of Mathematical Discourse in Instruction (MDI) (Adler & Ronda, 2015), MQI
(Learning mathematics for teaching project, 2011) and Knowledge Quartet (Rowland,
2013). The study is attempting to capture key aspects of instruction by the teacher
during the classroom observations, focusing on: (a) transaction of the content, (b)
teachers’ awareness of common errors or misconceptions in the topic, (c) nature of
questions in the classroom, (d) classroom organization, I material or resources used, (f)
classroom norms and expectations from students, (g) learning opportunities to engage
with mathematical thinking and reasoning and (h) equity and access issues.

Transaction of the content is the main body of instruction, where typically the teacher
may move from basic terminologies, symbols, definitions to explaining a few worked
out examples before moving to the exercises given in the text book. This part provides
ample opportunities to observe teacher’s knowledge and practices in the ways she
communicates the meaning and purpose of the idea, exemplifies it, use of definitions
and symbols, the choice of representation, explanations she provides for the concepts
and procedures, and the way the task is put forth and utilized further. The way the
transaction of the content unfolds in the classroom significantly determines (i)
opportunities to learn mathematics for students (making sense of the concept,
procedure or task, space for responding and justifying, space for making errors and
learning from it, space for making connections between ideas) and (ii) the extent to
which it provides equitable access for all students (explicitness of instructions and
explanations, careful building of mathematical language and symbols, non-
discriminating and inclusive practices of giving opportunity to all students to ask and
respond to questions). Equity itself is intricately linked to opportunities to learn
mathematics. For the purposes of the present paper, I will restrict the discussion to
these aspects and not comment on the others.

METHODOLOGY

The study attempts to make detailed observation and analysis of teachers’ knowledge,
practices and beliefs as exemplified through their teaching in the classroom and their
own reflections on various issues during interviews. As part of the study, teachers’
classes are being observed and they are subsequently interviewed on a variety of issues.
Tools for classroom observations and interviews with teachers have been developed.
Criteria for classroom observation and interviews with teachers have been briefly
discussed above. Since video/ audio recording are in general not acceptable by schools
or teachers, detailed notes of classroom and often verbatim proceeds of the classrooms
are maintained. After reading and re-reading it a few times, the classroom observation
schedule is filled. Detailed notes of interviews/ conversations are also maintained.

There are no strict criteria for selection of schools (other than the medium of instruction
which must be English). Schools are approached with the intent of working with at
least 3-4 elementary grade mathematics teachers from the same school and their
participation is entirely voluntary. Once agreed, each teacher is observed for 5-6
lessons (approximately 40 minutes each). The study is currently in its initial stages;
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this paper reports a small piece from the ongoing work which focuses on teacher’s
knowledge, practices and mathematical instruction that promote or hinder
mathematical learning. In the next section, I will analyse one of the seven teachers’
classroom, who have been observed and interviewed till now, for the transaction of
content and opportunities to learn mathematics that she provides in the classroom and
her own reflections on them.

TEACHING ADDITION/ SUBTRACTION OF QUANTITITES

Ms T teaches grades 1 and 2 in a school catering to low income families, many of
whom have migrated from other places in search of livelihood and better prospects.
She is not trained as a teacher but as a computer professional. She has been teaching
for two years now and was observed for six lessons altogether in the two grades. The
administration makes efforts to develop the school and the capacities of the teachers
using whatever internal and external resources are available and were quite willing to
participate in this study. Ms T has also been a beneficiary of such efforts.

During the classes observed, Ms T taught addition and subtraction of measures of
quantities [money (grade 1), length and capacity (grade 2)] on four occasions and
reading time from the clock and shapes in the other two. So, I will focus on the former
rather than the later to bring out the aspects of knowledge and practice and its
affordances and limitations. After a few minutes of general discussion, energizing
activities and quick review of the previous lesson or ideas necessary for the given
lesson, Ms T went straight to give examples and explain the operation on the particular
measure of quantities. The examples and the tasks across both the grades were similar:
Add %32.64 and 329.37 (grade 1), Subtract 329 cm from 793 cm and Subtract 567 1
209 ml from 923 1 306 ml (grade 2) and so were the explanations. During independent
problem solving of similar problems following her explanation, she emphasised speed
with accuracy, which was rewarded by a star or appreciation.

Measures of quantities provided only a backdrop in which more practice of addition
and subtraction were carried out. A couple of brief comments were made, in the entire
duration, to give the students a sense of their utility in everyday life. Else the teacher
wrote the question on the board and students were thereafter picked one by one by her
to help solve the task bit by bit. As the class prepared to carry out the addition/
subtraction, the children decided which was the number to be written on top row and
the number of “boxes” required, in the column arrangement. Figure 1 shows the work
done on the blackboard for the two subtraction questions in grade 2. It shows how
boxes were drawn to make space for writing the “carry-over” and the changed number
post “borrowing”. There was no apparent inaccuracy in the solution.
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Figure 1: Blackboard work in Grade 2 for the two subtraction questions.

The conversation accompanying the blackboard work is significant, and have
implications for opportunities to learn and reason about mathematics. It brings forth
how the teacher makes an attempt to explain to grade 2 children the process of
subtraction. This explanation might have been given earlier to students as well when
they would have learnt subtraction with regrouping. In the transcript below, she
explains why we need to regroup 9 tens (see Figure 1(a)) by modelling “borrowing” in
the general sense (line 3) and then the children demonstrate a novel way of carrying
out the subtraction on their fingers (lines 10-12). This particular technique does not
leave any chances of making an error in computing single digit addition and
subtraction, as there is no ambiguity related to which number to begin and end the
counting, especially in the context of subtraction by counting-backward, but
significantly limits opportunities to learn. It is simple and straightforward but I wonder
what meaning it may have for the children.
6  T:Ican subtract a big number from small number? If you have 3 chocolates, friend
1s asking 9, you can give?
2 S (chorus): No
T: You can borrow from others. [She gets two children S1 and S2 to the front of the
room, having 3 and 9 chocolates respectively, representing ones and tens

digits, standing in the same order from right to left]. I can borrow from S2
[who has 9]. Here only 3 is there [digit in the units place]. Can I subtract?

S (chorus): No. [One child is saying cut 3]

T: How much should you borrow?

S (a few): 1

T: 9 will be as it is? S3?

S3: 9 will become 8

T: 9 will become 8, we borrowed 1. I have 13 chocolates, can give 9.
10 S4: 13 in mind, 9 in finger.

11 T: Subtraction means before number.

12 S4: Before 13, ...12,11, 10,9, 8, 7, 6, 5, 4 (folding the stretched out fingers one by
one, almost sounding like a rhyme)

O 0 9 O W
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It is not clear here why one does not “borrow” 6 instead of 1, which will help equalize
the units place of the minuend and the subtrahend, or how after having borrowed 1, the
3 becomes 13. In the next transcript, the teacher is explaining the solution for the
question in Figure 1(b). An attempt is made to explain “borrowing across 0” (line 15-
17), which is found to be difficult by many children. Once again children are not
introduced to the important idea of regrouping or rate of composition or decomposition,
crucial for developing a deeper understanding of numbers and number operations.
Instead, another analogy is introduced in the form of human incapability of “climbing
multiple steps in one go” (line 17). In the four classes related to addition and subtraction
of quantities, there was no conversation about quantities or place value, a standard idea
in such contexts. Also the decimal point is innocuously used in both grades 1 and 2,
without any consideration to its meaning. Students are not formally introduced to it till
they are in grade 4 in the country.

13 T: 6 in your mind, 9 in your finger. [The teacher initiates the student to compute]

14 S: Before 6, ...5, 4, 3, 2, 1. So borrow [some stretched out fingers are yet to be
folded, but the counting has reached 1, indicating the need to “borrow’]

15 T:1Ican borrow from 0, no?

16 S (chorus): No

17 T: Borrow from 3, we can climb 5 steps together?
6 S (chorus): No.

It is not the case that Ms T was completely unaware of the relationship between the
digits in a number, as was revealed during the interview. She had weighed the options
of possible representations (tally marks or based on ten-for-one exchange) and had
decided to use the “fingers” method for grade 1 and 2 children to check errors as well
as suitability for her students. She was also aware of the difficulties her students faced
in relational problems like “  1is 12 less than 35”, as also quickly finding sums of the
numbers like, 7 and 8. She did not see these as connected to her teaching, where
numbers were being repeatedly treated as concatenated digits, not just in the operations
but also in the reading of numbers (seen in grade 1 where she read 32.64 as three two
dot six four). She knew how to add and subtract two numbers but denied the possibility
of doing it any way other than by the algorithm, including moving from the left to the
right direction.

DISCUSSION AND CONCLUSION

Ms T seems to clearly lack Specialized Content Knowledge (SCK) for teaching
mathematics (for example, in her inability to make connections between numeration
system, numbers, why and when one will add or subtract quantities, or to evaluate
mathematical suitability of an idea). She also lacked Pedagogical Content Knowledge
(PCK), especially knowledge of students vis-a-vis the content (their informal
knowledge, reasoning capacities, errors as a way to learn mathematics), and adequate
knowledge of representations suitable for teaching multi-digit number operations. In
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her case, it is difficult to say whether her trouble with teaching is also because of poor
Common Content Knowledge (CCK) and identifying the boundaries between CCK and
SCK. She was trying out ways which to her mind were clear enough as explanations
or “catchy” for her students to remember, with complete disregard of the mathematics.
Her explanations were not mathematical but were based on misplaced analogies. She
used the common symbols and representations, with perhaps different meanings in the
classroom. She used different combinations of numbers for her examples, all needing
regrouping and including zeros, showing anticipation of student difficulties with
particular combinations. Though the tasks were in themselves not rich, given her
students’ social and family background, they would surely have found interesting ways
of computing them and contributed to their own learning. In the whole process,
opportunities to develop ways of thinking about numbers or operations were severely
constrained. Her instructions and explanations looked simple, however they are
ambiguous, with multiple possibilities of interpretation. Some students had learnt to
remember and use her rules successfully, which she appreciated, while some others
may be looking for meaning and purpose and were baffled by her questions. In either
case, it has serious implications for their future.

While the details of this particular teacher’s knowledge and practices may be unique
or different from others, literature abounds with such cases of teachers facing
difficulties with teaching mathematics at all levels of schooling. The study at this point
makes a contribution in the following ways: One, it is based in a context where it is not
common to look at classrooms with a lens like this for developing an understanding of
the continued poor performance of a large number of students, despite many
interventions. It attempts to understand and analyse teachers’ knowledge and practices
independently and within the classroom context, focusing on important aspects of
content transaction, opportunities to learn mathematics, and equitable access to the
discourse for all. Two, an investigation of this kind is significant for the scores of
students who study in similar schools across the country and may have little options
and opportunities to engage with the subject outside the schools and success in the
subject is key to their life chances. Three, the analysis indicates the need for focused
intervention with teachers, and not techniques, like the use of fingers to increase
accuracy of responses. This teacher and many other teachers like her could be
supported in acquiring “mathematics for teaching” for the area of whole numbers by
introducing them systematically to the structure of our numeration system (e.g. base
10, additive and multiplicative relationships), important aspects of learning oral and
written numeration, conceptual structures required for learning numbers (single and
multi-digit) and possible ways, importance of developing number sense and meaning
of operations and students’ informal experiences with and understanding of numbers.
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CHANGE IN POSING OPPORTUNITIES TO LEARN IN THE
CONTEXT OF PROFESSIONAL DEVELOPMENT

Rinat Baor, Einat Heyd-Metzuyanim

Technion — Israel Institute of Technology

We apply the commognitive framework to examine changes in instructional practices
of a teacher participating in the TEAMS (Teaching Exploratively for All Mathematics
Students) professional development (PD) program. Specifically, we focus on the
process that has often been named "lowering of cognitive demand". We conceptualize
this lowering as "ritualization" of OTLs: transitioning from exploration-requiring
Opportunities to Learn (OTLs) to ritual-enabling OTLs. Two lessons of one elementary
school mathematics teacher who participated in the PD for two years are compared.
Findings show a quantitative change in OTLs, as well as change in patterns of
"ritualization"- transitions from exploration-requiring to ritual-enabling OTLs.

INTRODUCTION

Over the past several years, "powerful", cognitively demanding or "explorative"
mathematics teaching has received widespread interest (Schoenfeld, 2014; Smith &
Stein, 2011; Heyd-Metzuyanim, Smith, Bill, & Resnick, 2018). This type of instruction
attempts to minimize the memorization of rules and procedures and to encourage the
learner to struggle with cognitively demanding tasks, accompanied by discussions in
which the students develop their mathematical thinking. Yet, despite the enormous
amount of resources put into professional development for such cognitively demanding
instruction, studies show that mathematics classrooms around the world often pose
mainly ritual opportunities to learn (Nachlieli & Tabach, 2018). One of the main
processes that may underlie this situation, especially in cases where the curriculum and
the tasks afford explorations, is the phenomenon known as "lowering of cognitive
demand" (Stein & Smith, 1998). Stein and Smith (1998; Smith & Stein, 2011) showed
that this phenomenon is extremely widespread. Yet, the mechanisms underlying it are
not yet sufficiently understood. In this study, we apply the commognitive framework
(Sfard, 2008; Nachlieli & Tabach, 2018) to examine the discursive characteristics of
the process of lowering cognitive demand, and how it can change over the course of a
teacher engaging in professional development.

THEORETICAL BACKGROUND

The commognitive framework conceptualizes learning as a process by which learners
move from enacting ritual routines, where procedures are imitated rigidly and
performed for the sake of others, to explorative routines, where procedures are picked
up flexibly for the sake of producing a certain mathematical narrative (Lavie et al.,
2018). Teaching can offer students opportunities for enacting ritual routines or
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explorative routines. Nachlieli and Tabach (2018) defined the actions of the teacher
that enable students to follow explorative vs. ritual routines as two distinct types of
opportunities to learn (OTLs). Ritual enabling OTLs are teachers’ actions that provide
students with a task that can be successfully performed through rigid application of a
procedure that had been previously learned. Exploration-requiring OTLs create a
situation where students are required to produce mathematical narratives based on
formerly established narratives and on their own authority. In exploration-requiring
OTLs, there is no possibility of simply following previously learned procedures to
satisfy the requirement of the task. Something new, even if very specific, needs to be
conjured up by the student.

Multiple studies have shown that the practice of "ritualization", which we define as
turning exploration-requiring OTLs to ritual-requiring OTLs, is wide-spread
(McCloskey, 2014). Stein and Smith (1998) have termed it "lowering of cognitive
demand", showing that often tasks that start out as posing multiple opportunities for
explorations, end up as constrained to demanding only imitation of previously learned
procedures. As a result of this observation, Smith and Stein (2011) came up with a PD
program named "the five practices for orchestrating productive discussions" which is
intended to help teachers avoid the lowering of cognitive demand. This program
includes various teaching routines such as launching a task, assigning students to work
in groups, calling them to the board to present their solutions and linking between them.

Previous studies have shown that although the "5 Practices" are often accepted with
much enthusiasm by teachers, the realities of changing discursive practices in whole-
classroom discussions are complex and not sufficiently understood (Heyd-
Metzuyanim, et al., 2018). Their examination necessitates a discursive approach, which
helps delineate the exact interactional processes that occur between the teacher and the
student as this "lowering of cognitive demand" occurs. For this, the commognitive
approach, which combines conceptual tools for looking at interactional and
mathematical aspects of the discourse, is particularly useful.

According to Sfard (2008), routines are enacted in mathematics to produce endorsed
narratives about mathematical objects or mathematical signs. Endorsed narratives are
texts that are accepted as truths by the relevant community. Routines are identified by
three distinct parts: initiation, procedure and closure.

Our research question is thus: how does the process of ritualization (turning from
explorative-requiring to ritual-enabling OTLs), as identified in the teaching of one
teacher, change in the lessons of that teacher after professional development?

RESEARCH METHODS

This study was based on a case of a teacher we shall call Simone. Simone was an
experienced teacher (around 27 years of experience in teaching mathematics) and was
usually teaching the higher grades of elementary school. She participated in the PD for
two years, where this PD included around 60 hours of group instruction in a teachers'-
district center, accompanied by 60 hours of individual work on lesson planning,
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implementation and reflection. Parts of these individual-work hours were allocated for
the coaching of the first author (who was also the PD instructor) with individual
teachers who volunteered for the study. Simone received around 6 hours of such
coaching, including lesson planning, observation of her lessons and a feedback session.

For the close analysis of the present study, Simone was chosen out of 30 teachers whom
we have videotaped data on, since we got the impression, both by observations and by
more macro-scale evaluation tools, that some aspects of her practice have changed. Yet
despite this general impression, it was difficult to pinpoint what precisely had changed
in Simone's teaching.

From the eight lessons that Simone taught and videotaped, two lessons were chosen
for comparison - the first and the last. Both lessons took place with the same class, the
first during December 2016 in Fifth Grade and the second during February 2018 in
Sixth Grade. The tasks in both lessons were identified by us as cognitively demanding,
requiring students to reason and form generalizations. The similarity between the tasks,
their levels of cognitive demand, goals, visual mediators, and lengths created a good
basis for comparison, which is essential for a micro-analysis.

Analysis

In order to identify exploration-requiring OTLs, the analysis was carried out in three
stages. The first stage followed the method described in Nachlieli & Tabach (2018),
and segmented the lesson to routines and sub-routines of OTLs. Generally an OTL
opened up with a question or a prompt made by the teacher. Often, this question or
prompt was rephrased by the teacher into another question, which consisted of a prompt
for a sub-routine: a procedure that needs to be followed in order to produce the original
routine. Routines were numbered using whole numbers (1, 2, etc.) while sub-routines
and sub-sub-routines were numbered 1.1, 1.1.1 respectively.

The second stage of the analysis was intended to illuminate the nature of each of the
narratives that the routines and sub-routines were intended to produce. This was
imperative for determining the explorative vs. ritual status of the OTL, as will be
detailed in the next section. For categorizing the narratives, we turned each of the
teacher's prompts into an "expected narrative". An expected narrative is a narrative that
is most likely to be received as a result of a teacher's question or prompt. For example,
if the teacher asked "how many squares are there here?" and pointed to a picture with
4 squares, the expected narrative would be "there are 4 squares here". Since we do not
have access to the teacher’s or students' expectations, we interpreted the expected
narratives according to the context and to what would be reasonable for a student to
imagine as an acceptable response. After coupling teachers' questions into "expected
narratives", we turned to describe the students' replies as "received narratives". This
produced two outcomes: one was a clear blue-print of the structure of the OTLs in
terms of expected and received narratives. The second was a clear operationalization
of ritual vs. explorative OTLs. This led to the third stage of analysis, which consisted
of mapping OTLs to exploration-requiring vs. ritual-enabling. Exploration-requiring
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OTLs were defined as teachers' prompts in which there were several (if not infinite)
possible expected-narratives that could be derived from the prompt. Ritual-enabling
OTLs were defined as prompts where the expected narrative was limited and well-
defined. Exemplification of this analysis will be presented in the findings section.

FINDINGS

Our first finding concerns a quantitative comparison of the ritual and explorative sub-
routines in each of the lessons (see Figure 1). This comparison shows change between
the first and second lesson in the number of exploration-requiring and ritual-enabling
OTLs. For the current comparison, we counted only OTLs occurring during the whole-
classroom discussion. Therefore, the routine numbers (A4-A7, B4-B7) in Figure 1 start
from 4. Whereas in the first lesson there were 18 exploration-requiring OTLs and 33
ritual-enabling OTLs, in the last lesson there were 20 exploration-requiring and only
10 ritual-enabling OTLs. We note that a high number of OTLs is not necessarily a good
sign, since it often shows that the teacher asked many questions and did not give
enough time for students to respond. Thus, a rise of the ratio of explorative to ritual
OTLs (from 18:33 to 20:10), together with a lowering of the total number of OTLs
(from51 to 30) shows a substantial change in the overall opportunities given to students
to participate and contribute substantial mathematical narratives during the discussion.

LESSON 1-'SQUARES' LAST LESSON-'S TASK'
Rit. OTLs M Exp. OTLs Rit. OTLs ™ Exp. OTLs
z ) 5 ] ‘ % 2 . 1
9 17
4 3 4 4 i
0
A4 AS A6 A7 B4 B5 B6 B7

Figure 2: Exploration-Requiring and Ritual-Enabling OTLs in the two lessons
The transition from exploration-requiring to ritual-enabling OTLs

After mapping the OTLs, we examined all the situations in which the teacher opened
up the routine or subroutine with an exploration-requiring OTL and followed this by
switching to ritual-enabling OTLs. We found these situations to be generally
characterized by the student failing to come up with one of the expected narratives that
would be deemed as acceptable under the exploration-requiring OTL. This either
happened when the students showed confusion with relation to the teachers' requests,
or when they produced an answer that was not sufficiently clear (as perceived by the
teacher) for other students to hear.
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Squares and Perimeters
Build polygons from squares so that each square has at least one side shared with the neighboring
square. For example:

\\ ) N - ,»
Find all the possibilities for organizing 3 squares. What is the arrangement with the biggest

perimeter? What is the arrangement with the smallest perimeter?
Find different polygons made with 4 squares ... with 5 squares.... Continue to 6 squares and more.

Figure 3: the Squares and Perimeters task used in Lesson 1

For example, Table 1 shows the deterioration of an exploration-requiring OTL, where
the teachers invited students to raise hypotheses regarding why they were asked to
"continue on and on" with examining different square-configurations and their
perimeters (see figure 2).

The expected narratives that could be produced as response to this prompt were
various, including narratives about the arrangements producing the lowest and highest
perimeters, which were probably what the teacher was after. The received answer,
however, was rather limited. One student said "to find a rule". The teacher thus opened
another explorative OTL (6.1) asking "how do we receive a shape with a large
perimeter?" Although the possibilities for answering this question were more
constrained, we still categorize this OTL as exploration-requiring since there are a
variety of narratives that could be deemed as acceptable, all concerning the ways by
which one could "receive the larger perimeter".

Narratives expected/ received in Lesson 1, Routine 6
6. Expected: a variety of narratives concerning the connection between the squares' arrangement and
their perimeter

6. Received: (We were asked to continue on and on so that we find) a rule

6.1 Expected: variety of narratives regarding the relation between the shape and the largest perimeter

6.1 Received: inaccurate answer

6.2 Expected: All arrangements (on the board) are built of 5 squares and their area is equal

6.2 Received: Student remains confused

6.2.1 Expected: All the shapes have the same area

6.2.1 Received: The shapes are built from 5 squares

Legend:

‘ Exploration-requiring Ritual-enabling Received

Table 1: Mapping OTLs according to Expected/Received narratives

Not having heard an acceptable answer to this question, the teacher quickly moved to
an even more constrained question, this time, providing a ritual-enabling OTL (6.2):
"What is common to all these arrangements I have here, that are built from 5 squares?".
Now the only acceptable answers would be quite constrained, falling under the
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narrative "they all have the same area". Since the students still did not produce the
expected answers, the teacher continued posing this question in slightly different
wordings (6.2.1); until she got the narrative that "all shapes are built from 5 squares".
The above analysis was performed on all routines and sub-routines of the whole-
classroom discussion. It revealed a more precise view of the ways by which the teacher
changed her discursive practices around presenting OTLs from the first to the last
lesson. Figure 4 shows a bird's-eye view of the change in ritual-enabling and
exploration-requiring routines and sub-routines of two particular routines that we found
the most amenable for comparison. The first routine is Lsl.routine 6, which was
partially described above and in table 1. The second was a routine from the last lesson,
which had a very similar function: Simone attempted to elicit from the students an
explanation regarding how they had solved the S patterns problem (see figure 3).

The S Pattern task

1 2 3 4 5

Consider the pattern above: a. Find the next shape. b. Describe the general shape in the pattern.

Figure 4: The S task implemented in the last lesson

The routine occurred after one student had already presented his group's solution,
which could be algebraically described as (n+1)(n-1)+2. The teacher, having monitored
the students while working in groups, probably expected the group of girls she was
inviting to the board to produce an alternative narrative which could be summarized as
n*n+1. Yet, similarly to the first lesson, the students were unable to articulate their
reasoning once invited to the board. This situation produced, in the first lesson, an
immediate deterioration into a series of ritual OTLs. In the last lesson, however, as can
be seen by the recurrence of exploration-requiring OTLs, the teacher went back and
forth more flexibly between explorative-requiring and ritual-enabling OTLs. The
ritual-enabling OTLs consisted of prompts encouraging the students to explain their
solution to the 3™ structure (using the 3 X 3 + 1 calculation), yet immediately went
back to requesting the students to explain their general solution, which provided an
explorative-requiring OTL.

Importantly, the two teaching routines produced very different results, in terms of end
narratives. Ls1.Routine 6 ended up in a narrative that was quite peripheral to the goal
of the routine (square cm are used to calculate area). In fact, the whole lesson never
produced a clear narrative regarding the connection between the shape of the squares
and the perimeter. In contrast, Ls8.Routine 6 ended up with an acceptable mathematical
narrative regarding the appropriateness of the girls' solution (n+1)(n —1) +2 =
n X n + 1). Although this narrative, in its algebraic form, was beyond the reach of most
of the classroom, it enabled the teacher to further explain the two forms of
generalizations produced by the students.
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First Lesson - 'Squares’ Last Lesson - 'S task’
6. expected: A variety of narratives concerning the connection between the 6. expected: Variety of additional options for calculating
squares’ arrangement and their perimeter the S structure at any position

6. received: (We were asked to continue on and on so that we find) a rule 6. received:n xn+1

6.1 expected: Variety of narratives regarding the relation between: an 6.1 expected: Variety of options for explainingn x n + 1
elongated rectangle and the largest perimeter; a smaller perimeter and a
condensed arrangement

6.1 received: Inaccurate answer 6.1 received: The student cannot explain
6.2 expected: All arrangements (on the board) are built of 5 squares and their area | 6.1.1 expected: (substitute the number n=3) 3X3 + 1
is equal
6.2 received: Student remains confused 6.1.1 received: 3X3 4+ 1
6.2.1 expected: All the shapes have the same area 6.2 expected: Variety of options for explaining n xn + 1
6.2.1 received: The shapes are built from 5 squares 6.2 received: the student cannot explain
6.3 expected: We measure area with squares 6.2.1 expected: n=3 3X3+1=10
6.3 received: Sqg. cm (without area) 6.2.1 received: 3X3+1 =10
6.4 expected: Sq. cm is a unit that measures area 6.2.2 expected: substitute the number n=20in nxn+1
6.4 received: (Sq. cm is) Square cm 6.1.2 received: 20X20 + 1 = 401
6.5 expected: the (Sg. cm) unit is used to measure area 6.3 expected ariety of optio
6.5 received: We use this unit to calculate the number of squares 6.3 re: the student cannot explain
6.6 expected: To calculate area we use square cm (not to measure perimeter) 6.3 expected ariety of optio or expla
H . H 6.3 ived: We checked all th b
6.6 received: We use the unit (square Cm) {0 gy —————
calculate area 6.4 received: The student cannot explain
6.4.1 expected: In pattern 4 - the number of squares is 14
6.4.1 received: In pattern 4 - the number of squares is 14
i . 6.5 expected: Variety of options for explainin
Exploraftlon Received n><nr-’+1 ty of op (J '}
-requirin .
quiring 6.5received: M+ 1) x(n—1)+2=nxn+1

Figure 5: "Birds eye" view of the patterns of Exploration-requiring and Ritual-
Enabling OTLs in Simone's first and last lessons

We thus see a clear change in the ways by which the teacher handled situations that
had originally, in her first lesson, produced deterioration into ritual-enabling OTLs. In
the first lesson, the teacher's ritualization moves produced, gradually, partial narratives
that became more and more peripheral to the main narrative that she wished to elicit
from students. This main narrative was "the more elongated the shape of the squares,
the bigger is the perimeter, while the more 'condensed' the shape is, the smaller the
perimeter becomes". Instead of producing this narrative, her gradual production of
OTLs that were more and more ritual-enabling, produced partial narratives such as
"square cm measures area". In the second lesson, we did not see such "breaking up" of
the main narrative into partial and meaningless sub-narratives. Instead, there was a
back-and-forth movement between narratives about particular mathematical objects
(such as shape 3 can be described by 3 X 3 + 1), geared towards describing a general
shape.

DISCUSSION AND CONCLUSIONS

Change in teaching practices towards explorative instruction has been a notoriously
difficult process to capture (Heyd-Metzuyanim et al., 2018). In the present study, we
offer first steps to applying the commognitive framework, with its precise definitions
of ritual and explorative routines, to capture this process. The commognitive approach
has been widely used in the study of processes of mathematics learning in interaction

(see review in Herbel-Eisenmann et al. 2017). Its usefulness for the study of teaching
practices has only recently started to surface (Heyd-Metzuyanim et al., 2018; Nachlieli
& Tabach, 2018). In the present study, we show this approach can illuminate the
process often known as "lowering of cognitive demand" (Stein & Smith, 1998), as it
happens in teacher-learner interactions. This has important advantages over approaches
that simply show that such lowering occurs. Our study sheds light on Zow this process

PME 43 - 2019 2-79



Baor & Heyd-Metzuyanim

occurs. We saw the teacher, as a reaction to children not producing expected narratives,
"broke-up" the expected narratives into meaningless parts. We also saw that this
ritualization process could change through a process of professional development
process. In the case of Simone, the change occurred very gradually and over a long
period. It remains to be seen, in future studies and PD interventions whether awareness
of such discursive patterns of ritualization can help teachers make the transition
towards more explorative instruction faster and more efficiently.
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LESSON STUDY IN PRIMARY PRE-SERVICE TEACHERS’
EDUCATION: INFLUENCES ON BELIEFS ABOUT LESSON
PLANNING AND CONDUCTION
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Department of Education and Humanities, University of Modena and Reggio Emilia

Lesson Study (LS) is a method of both pre-service and in-service teacher education
that originates in Eastern countries but has been spread all over the world in the last
decades. According to the framework of Cultural Transposition, we believe that
introducing LS in cultural contexts that are so far from Eastern ones brings to light the
differences between Eastern cultures and other cultures. In particular, the experience
of LS can bring to light different cultural beliefs underlying the practice of teaching,
and make teachers reflect on them. In this paper we analyse data collected from 5
Italian pre-service teachers after their experience of LS in Italian schools during their
internship, concerning in particular their beliefs about the potential and the limits of a
rigid or a flexible way of planning and conducting a math lesson.

INTRODUCTION
A Lesson Study (LS) cycle

consists in preparation, actual class and class review sessions [...] This process begins with
finding and selecting materials relevant to the purpose of, and is then followed by refining
the class design based on the actual needs of the students and tying all this information
together into a lesson plan. The significance of LS is that all of these processes are
performed in collaboration with other teachers. A classroom is then taught based on the
teaching plan devised. The class is observed by many teachers, who are sometimes joined
by university instructors and supervisors from the board of education, and a review session
is held for all observers after the class. (Baba, 2007, p. 2)

LS is a model for mathematics teacher education and development used all over the
world (Quaresma et al., 2018). It was initiated in Japan in the late 19" century (Isoda
et al., 2007) and extended with adaptation in many others countries in Australasia,
North and South America and Europe, up to the constitution in 2007 of the World
Association for Lesson Studies (walsnet.org). Some key questions of the international
reports concern the development of pre-service and in-service teachers’ knowledge,
with attention to teachers’ learning. Less attention is paid to teachers’ beliefs (for
relevant exceptions see for example Inprasitha & Changsri, 2014).

According to the framework of Cultural Transposition (Mellone et al., 2018), we think
that differences between the so called CHC (Confucian Heritage Culture), where LS
originated, and Western culture (Li, 2012; Nisbett, 2003; see Phuong-Mai et al., 2005,
for CHC definition) must be taken into account when LS is realized in Western
countries; in particular, in order to conduct LS in Italian schools, we undertook a
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process of adaptation of the original structure of LS to make it more consistent with
Italian culture and context (Bartolini Bussi et al., 2017). However, despite this attempt
of adaptation, LS continues to be a method that is very far from Italian school culture,
also because of its current scarce spread in Italian schools.

In Italy teachers rarely use very structured way of lesson planning. Italian scholastic
context in fact is characterized by inclusiveness (Bartolini Bussi et al., 2017) (i.e. the
same class can include children with learning difficulties, with physical and mental
disabilities, children that are not Italian speakers, and so on), and a child-centered
vision of teaching (i.e. teachers tend to believe that each child has his/her own specific
characteristics and needs individualized support) (Li, 2012). Moreover, in Italy
teachers are free to choose own teaching methods and the sequencing of the topics to
be treated (Bartolini Bussi et al., 2017). Italian primary teachers usually spend many
hours in the same class and teach in the same class for more than one year, and this
makes them feel “less anxious about the short term effects of their teaching and
encourages them to take care of and to observe long term processes” (Bartolini Bussi
& Martignone, 2013, p. 3).

LS, instead, reflects a completely different way to conceive both the planning and the
management of the lesson. The version of Lesson Plan we proposed to Italian teachers
(for more details see Bartolini Bussi et al., 2017) consisted in a table to plan a lesson
of exactly 60 minutes, requiring teachers to state explicit objectives and prerequisites
of the lesson, and to describe and justify for each phase of the lesson the activity to be
carried out, its educational aims, the time required for it, materials and focus of
observation.

In this report we focus on the influence of this version of LS as introduced in the
internship experience of Italian primary pre-service teachers. Data we present here are
part of a larger study concerning primary pre-service teachers attending the University
of Modena and Reggio Emilia, focused on their beliefs about mathematics teaching
and the changes they undergo during their education (Funghi, 2019). This was the first
university in Italy to introduce LS into the possible activities to be experienced during
the internship of the last two years of the teacher education programme. For reasons of
space, we focus on the discussion of one of the aspects emerged from data, i.e. the
potential and the limits of rigidity and flexibility in the way of planning and conducting
mathematics lessons.

THEORETICAL FRAMEWORK
Literature on beliefs: the case of cultural beliefs

The problem of identifying a shared definition of beliefs has been widely discussed in
mathematics education, but nevertheless, there is no internationally accepted definition
(Zhang & Morselli, in Goldin et al., 2016). Skott (2015) highlights that it is difficult to
grasp all aspects of the ‘belief” concept in a single explicit definition, and that it can be
more useful to recognise the main properties of the concept itself, according to what
has been discussed in the literature:
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The core of the beliefs concept may, then, be defined as subjectively true, value-laden
mental constructs that are the relatively stable results of substantial prior experiences and
that have significant impact on practice. (p. 6)

Abelson (1979) and Nespor (1987) have both argued that beliefs may originate from
culture or personal experience. What seems to be missing in the literature is research
on teacher beliefs originating from culture. We might adopt the term cultural beliefs,
as mentioned by Bruner (1996) in his elaboration of “folk pedagogy” as “taken-for-
granted practices that emerge from embedded cultural beliefs about how children learn
and how teachers should teach” (p. 46).

The discussion about how to define “culture” is complex (e.g. Bishop, 1988, p. 4). We
shall adopt a working definition that seems to encompass what is required for our
purposes:

[culture is] the system of shared beliefs, values, customs, behaviours, and artifacts that the
members of society use to cope with their world and with one another, and that are
transmitted from generation to generation through learning. (Bates & Plog, 1990, p. 7)

Within this frame, we propose to connect the definition of cultural beliefs to the
“system of shared beliefs” mentioned in this definition of culture, adopting the
following working definition:

Cultural beliefs are, on the one hand, beliefs which are socially shared within a given
culture and are considered as characterising this culture by its members, and, on the other
hand, individual beliefs which are reconnectable and adherent — within a certain degree of
re-elaboration and personalisation — to beliefs proper to the culture of the society of which
the individual is a member. (Funghi, 2019)

This kind of beliefs are usually invisible to the eyes of the members of one culture,
because they provide those shared and implicit meanings that allow them to think,
communicate and share a common perspective on the world (Bruner, 1996). So, among
the people coming from the same cultural context these meanings are taken for granted.
Our claim is that when we deal with people, methods or tools coming from another
cultural context, we are forced to reflect on those meanings we usually take as given,
reaching a greater awareness about what we believe as members of a certain culture.
Moreover, we suddenly realise that what we usually take for granted is not and that
other meanings are possible. Our elaboration is consistent with the construct of Cultural
Transposition (see Mellone et al., 2018).

Research questions

How did the experience of LS during the internship influence pre-service teachers’
beliefs about the potential of a detailed and structured way of planning and
conducting a math lesson?

Were their beliefs either consistent or contrasting the cultural beliefs shared by the
Italian practicing teachers?
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METHODOLOGY

For reasons of space, we focus on data collected from 5 pre-service teachers attending
their 5 and last year of education, who participated to a LS cycle realized in a primary
school within their internship. The participation to the interview was completely
voluntary, so our sample is a convenience one. We refer to these pre-service teachers
with the pseudonyms Ambra, Sofia, Rosanna, Renata and Daria. Each interviewee
participated in a different LS project, conducted independently from one another and
focused on different topics.

In order to study their beliefs we decided to collect narrative data, because according
to Bruner (1990) narration is the means by which the human being makes sense of his
own existence, organizes his own experience and his own memory — and therefore also
his own beliefs (Nespor, 1987; Pajares, 1992). Moreover, it is well-known that when
we deal with beliefs it is not only their content that matters, but also their organization
and their mutual relationships (Green, 1971). Therefore, the collection and analysis of
narrative material is particularly suitable to study phenomena intimately connected
with the organization and personal processing of experience and memory, as in the case
of beliefs and identity (Kaasila, 2007).

We chose semi-structured interview with open-ended questions as research instrument,
because it “enables respondents to project their own ways of defining the world”
(Cohen et al., 2007, p. 182). The main questions of the interview were established a
priori, but the wording and the order of questions could vary, in order to let the
interlocutors to focus on the aspects they retain more relevant (Furinghetti & Morselli,
2011) or even to focus on unexpected but interesting issues (Cohen et al., 2007). The
interviews were conducted after the completion of the LS cycles by the interviewees.
Many aspects of pre-service teachers’ education were discussed, but for the aims of
this paper we will limit our discussion to the part of the interview focused on the LS
experience. It regarded mainly the following topics:

a short description of the overall LS experience and of the planned lesson; reasons
for their participation in a LS during the internship; difficulties found in lesson
planning in relation to the class’s specificity;

interviewee’s feelings in planning with in-service teachers; aspects that they liked
or not of LS, and reasons for that;

if they were willing to participate to other LS in the future and to use the Lesson
Plan as a planning instrument for everyday lessons.

The interviews lasted between 30 and 80 minutes, depending on interviewees’ will to
talk; they were all audiotaped, and then fully transcribed.

Concerning the analysis of data, we refer to Lieblich et al. (1998), who describe
different approaches to narrative analysis, depending on the two dichotomies form vs
content (regarding the choice to focus the analysis on the form or the content of a
narrative) and holistic vs categorical (concerning the unit of analysis, which can be the
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whole text or single sentences extracted from the context, respectively). We adopted
the content-categorical approach, since it is considered to be suitable to study a
phenomenon common to a group of people (Kaasila, 2007).

RESULTS AND DISCUSSION

Our interviewees describe their first impression of the LS planning method as
“mechanic” and rigid, difficult to be strictly followed in the complex setting of Italian
classes. This aspect was highlighted in particular by Sofia, who claimed:

“A first, it [i.e. the LS method] seemed to me a little mechanical because it is given a
specific timing for each activity within the lesson, and I think that in an Italian class
giving a specific timing is not always easy, it depends on the class, on the situation and
on the kind of activity, so I was a little doubtful about it”.

Ambra and Renata gave two different explanations for Italian teachers’ difficulty in
following a strict timing: Ambra highlighted the difficulty to meet the needs and the
difficulties of every child within fixed times ( “If you keep on schedule [ ...] you cannot
spend other time on a new explanation of the same concept or searching for another
way to make children understand it”’), whereas Renata commented that [talian teachers
usually do not pay attention to the time they spend on a certain activity or topic ( “In
my opinion the main difficulty that especially experienced teachers may meet [...] is
precisely this very detailed way of planning the lesson [...] because many times
teachers tend to improvise, or they are not used to monitor schedule and time spent on
each part of an activity so much”). These beliefs reflect Italian teachers’ habits of
planning and conducting lessons: the lesson is usually thought to be very flexible, since
the teacher shapes its development depending on children’s needs and reactions. This
is due, in our opinion, both to inclusiveness and to the focus on long term goals of
Italian school.

Another feature of LS very far from Italian teachers’ habits consists in the LS implicit
request to anticipate in detail the different possibilities of development of the lesson
and children’s reactions, as Renata noticed:

“What I really liked about LS is that when you plan the lesson you have to imagine all
the answers children can give. [...] A lot of variables have to be taken into account. In my
opinion, this is a very interesting feature of LS because usually teachers do not do that in
their didactic practice”.

Concerning this issue, Rosanna emphasized also her initial feeling of discomfort
related to the difficulty of knowing in advance students’ reactions, since at first she
could not understand its usefulness:

“At first, I was a bit bothered by the fact that I had to think about every small detail, to
try to imagine everything children can say or do [ ...] this idea of thinking about every 5
minutes of an hour of lesson [...] is so different from how we are used to plan lessons that
I assure you that I did not understand what it was until I tried it”.
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Therefore, our interviewees stated that they had beliefs that are consistent with cultural
beliefs shared by Italian teachers in general, before they experienced LS.

Anyway, as we can see from the previous excerpts, LS constituted the opportunity to
change their mind about the possibilities of other ways to plan and conduct a math
lesson. All the interviewees realized that a certain strictness in the way of planning the
lesson can be really useful, even if they gave different reasons for that. For example,
Daria highlighted how the Lesson Plan makes the teacher reflect on his/her
intentionality when he/she plans an activity:

“[I like] the idea of [expliciting] what do you do at a certain point, why you do it; for
example, [when [ write] ‘I present materials to children’ [I have to ask myself] « Why do
I present it in this way? Because I know that children first touch something, then they
understand that it is usefuly; therefore, I think it is useful to keep on asking ourselves
«Why I do it?», not just thinking «I do it because I already know that»”.

Sofia claimed that planning a precise timing for each part of the lesson avoids
downtimes and fosters children’s attention:

“Actually, I realized that the management of time is better when you plan in this way, |
mean, there are no downtimes, so the time is exploited at its best. This is an important
thing, also because children perceive that the lesson has been strictly planned, so that
they themselves do not waste time”.

Rosanna and Renata, instead, observed that having a clear goal to reach within 60
minutes is very useful because it helps the teacher to manage better the time at disposal:

Renata: In my opinion, having a thread [of the lesson] is very useful, because it happens
that during lessons I find myself at certain points when I do not know what to do, so I
think that having a plan to follow can be really helpful. Rosanna: [...] having such a
detailed timing is positive because within an hour, within a lesson, you reach a goal.

Renata stated also that this way of planning avoids the teacher to get lost in the
development of the lesson (“In my opinion, this [i.e. the lack of a rigorous plan]
constitutes actually one of teachers’ problems, because they tend to get lost ), and that
anticipation of children’s reactions and possible developments of the lesson is useful
to exploit children’s contributes at their best (“According to me [it is important] to give
weight to children’s answers [...] I noticed that, especially in the class where I am
doing internship, the teacher tends to consider a lot children’s responses, she stops,
lets them reason, but after all... she does not use their answers to develop a reasoning
[...], so I think LS can be useful to bring out [from children] some aspects related to
the activity that is being done, in order to develop them [...] it made me realize that the
teacher must consider pretty much everything that can come out from an activity”).

These words testify that experiencing LS let our interviewees not only change their
mind about the opportunities of using a rigid way of planning and conducting the
lesson, but it made them reflect on the possibility that being flexible sometimes can be
not necessarily the best way to cope with their needs. For example, both Renata and
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Sofia in the excerpts above recognized that following a structured and rigid plan
actually helps the teacher to exploit at best children’s attention and children’s
contributes, which are elements of primary importance in a child-oriented view of
teaching. So, LS revealed to be challenging but important in order to look critically to
their unconscious beliefs concerning planning and conducting lessons that they
absorbed from Italian context.

CONCLUSIONS

Our study shows the potential of LS as a means of becoming aware and challenging
one’s own beliefs. In the Italian case the LS could be - as was the case for our trainees
- a good opportunity to review their beliefs about effective ways to design a lesson,
making it possible to realize the potential of more structured design methods even
within complex contexts, where the teacher needs to take on many important
educational choices. In this sense, in some cases (e.g. Renata, last excerpt), they can
take a distance from a shared practice observed during internship and connected to
Italian teachers’ cultural beliefs. The introduction of the LS in local contexts different
from the original ones can be interesting both to explore the cultural beliefs typical of
the original LS and to reflect on those local beliefs that seem ill-consistent with the LS:
for instance, in the case of the Italian context, the belief to remain adherent to a child-
centered teaching (hence to develop a flexible attitude) could be in conflict with the
strict structure of LS — but as we saw this is not always the case. This potential is
interesting as it applies to prospective teachers too, where training is in the foreground.
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A STUDY OF JAPANESE PRIMARY SCHOOL TEACHER
PRACTICES DURING NERIAGE

Valérie Batteau

University of Education of Joetsu

This research aims at analyzing teacher practices in a Japanese context with a focus
on the neriage, a specific phase of structured problem solving lessons. We analyze
teacher practices with the specific tools of the double didactical and ergonomical
approach, during a neriage that takes place during a sequence of lessons on length in
3" year of primary school. This research highlights some characteristics of practices
during neriage promoted in the problem solving approach.

INTRODUCTION

Mathematics teaching in Japanese primary school has some specificities: the ordinary
lessons are often in a structured problem solving lesson format (for example, Stigler &
Hiebert, 1999; Takahashi, 2008). Pre-service and in-service often manage in Lesson
Study, a format of teachers’ professional development based on their collaborative
works (for example, Miyakawa & Winslew, 2009).

The structured problem solving lesson consists of several phases of which one is called
neriage, a whole-class discussion in which students compare and discuss ideas,
solutions or methods for solving the problem. Neriage means polishing up and is used
by Japanese teachers and researchers in mathematics education (Shimizu, 1999).
Neriage has a “dynamic and collaborative nature of a whole-class discussion during
the lesson” (p. 110). According to Shimizu, the teacher’s role is to orchestrate students’
strategies and ideas, to highlight important mathematical ideas to reach the goals of the
lesson, and to help students polish their solutions in order to learn mathematical
content. During this phase, students struggle with the problem and should find their
own way to solve it: this experience let them make links between their earlier
knowledge and the new content that they are going to learn through neriage (Shimizu,
1999). For Japanese teachers, the neriage is considered as the heart of teaching
mathematics through problem solving (Takahashi, 2008). Furthermore, the neriage is
“critical for the success or failure of the lesson” (Shimizu, 1999, p. 110).

In a case study of three Swiss primary school teachers, we highlighted the difficulty
for teachers to manage whole-class discussions with comparison of students’ strategies,
hierarchization of strategies, and to emphasize the knowledge or the method at stake in
the problem (Batteau, 2018). This difficulty is well known in the French context also
(for example, Charles-Pézard, Butlen & Masselot, 2012; Peltier-Barbier et al., 2004).
In the Japanese context, this research proposes to focus on the teacher’s practices
during this specific phase, the neriage, because that is part of ordinary practices and
considered as the heart of the lesson by Japanese teachers.
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We present some elements of the double didactical and ergonomical approach, the
research question and, the methodology. Then, we present the analysis of the teacher
practices during a neriage that takes place during a sequence of lessons on length in 3™
year of primary school (8-9 years old). The last part is a conclusion of this research.

THEORETICAL FRAMEWORK

Robert and Rogalski (2005) developed a framework based on a double viewpoint, one
in the French didactic of mathematics and another in ergonomics with activity theory
(Leontiev, 1975; Leplat, 1997). This framework allows to analyze practices in taking
into account the complexity of teaching, both as an individual and a professional act.
The term practice concerns speech, actions and, thoughts of teachers and also ““all work
done by that teacher, whether before, during, or after class time” (Robert & Hache,
2013, p. 25). Indeed, this framework aims at analyzing the relation between teachers’
and students’ activity in class, but also the constraints on teachers in the context of their
profession. Thus, two closely linked elements are considered to analyze teachers’
practices: students’ activities and teachers’ management of the class (Robert & Hache,
2013; Robert & Rogalski, 2005). Teacher practices are analyzed with two specific
components of practices in the class, the organization of the tasks for the students, the
cognitive component, and teachers’ interactions with students, the mediative
component (Robert & Hache, 2013; Robert & Rogalski, 2005).

The cognitive component corresponds to a teacher's choices regarding content and tasks,
including their organization, their quantity, their order, their inclusion within a curriculum
beyond the class period, and plans for managing the class period. (Robert & Hache, 2013,

p.51)
The mediative component corresponds to the teacher’s choices that

may include improvisations, speech, student investment and participation, instructions,
assistance to students in completing the tasks, identification of their work and the work of
the teacher, validations, explanations of knowledge, etc. (Robert & Hache, 2013, p. 51)

To include the professional dimension in the practices’ analysis, Robert and Hache
(2013) add three other components of practices: personal, social and, institutional. The
personal component describes how the teacher invests his/her leeway, what his/her
representations (about mathematics, teaching of mathematics, his/her students) and,
his/her mathematical knowledge are. The social component corresponds to the fact the
teacher 1s not alone in his/her classroom, how he/she is enrolled in his/her school. The
institutional component corresponds to constraints: schedule, official programs...

This article focuses on some aspects of the cognitive component of practices (the
progress of the lesson, the choice of tasks) and on some aspects of the mediative
component of practices: teacher interventions, validations, helps (collective,
individual, with or not reduction of mathematical requirements, procedural or
constructive) and, explanations of knowledge (contextualized to the task or
decontextualized, new and old knowledge).
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RESEARCH QUESTION

We analyze the cognitive and mediative components of practices in order to understand
how a teacher manages neriage. The question is: what are specific tasks, interventions,
validation of solutions, helps and explanation of knowledge managed by the teacher
during the neriage in order to teach what is aimed in the activity?

Thus, the Lesson Study process is used as a favored access to analyze and to understand
the Japanese teacher’s practices during neriage. “Teaching is not a simple skill but
rather a complex cultural activity that is highly determined by beliefs and habits that
work partly outside the realm of consciousness” (Stigler & Hiebert, 1999, p. 67). So,
we assume that Japanese teachers prepare, anticipate and, implement specific and
culturally embedded practices in order to manage the neriage phase of structured
problem solving lessons.

METHODOLOGY

Within a qualitative methodology we have been collecting data in a 3™ grade class
(students of 8-9 years old) in a primary school during a sequence of 15 lessons, between
30 and 150 minutes each, on “feeling the length”. The 3™ lesson is the neriage of
personal strategies for the measure of the length of the corridor. The 8™ lesson is a
research lesson that takes place during a lesson study process inside the school. That
means we collect the lesson plan of this research lesson and the report of the research
lesson. The lesson plan includes teacher mathematics analysis about the sequence, not
only for the research lesson. The corpus contents videos of 15 lessons and written data:
blackboards of each lesson, lesson plan, report of the research lesson, textbook and
teacher’s guide. We analyze cognitive and mediative components of teacher practices
from written data and from the neriage during the 3™ lesson, transcribed and translated.

The primary school is attached to the University of Education of Joetsu. It means that
teachers are considered as experts and they do research, one of which lesson study. The
teacher, Kazu, has twelve years of teaching experience.

The next part is some results of the analysis of the Kazu’s practices in the double
didactical and ergonomical approach.

ANALYSIS OF THE TEACHER’S PRACTICES
Cognitive component: Progress of the lessons

During the 1% lesson, Kazu presents the task: measure the length of the corridor in the
school, students think about how they can realize this task. Kazu manages a whole-
class discussion about their ideas. During the 2™ lesson, students measure the length
of the corridor with personal strategies. This is the detailed progress of the 3" lesson.
At the beginning (1:00-6:21), each group of students give their results, the measured
length of the corridor in meters and centimeters (in the table, see figure 1).
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Date : 3 October 2018 (lesson 3)

Title of the sequence: feeling the length

Title of the lesson: the length of the corridor strategy with 2 rulers
Measuring wheel benchmark between rulers
47m59 width of a pen 5 mm

number length strategy strategy with strategy with a ruler of 1 meter
group of measured with compass height of a student 45 times
students ..m...cm 82 cm 56 times 138,4 cm 33 times

Figure 1: the blackboard at the end of the 3" lesson

Kazu asks students to compare the different results. Then he presents a measuring
wheel and its operation (8:55-11:39). One of the students measures the length of the
corridor with the measuring wheel, observed by the others (11:39-19:39). Thus, they
obtain the exact result of the length of the corridor, 47 m 59 cm (19:39-23:59). Then,
Kazu manages the neriage phase (23:59-57:00).

Kazu interventions during the neriage Mathematical activity proposed
by Kazu to students

23:59

What is the closest result to the exact length?  Compare results with the exact

How did students of the group n°2 measure the result

length? How did they feel? The group of students n°2
explains his strategy and what
they feel

26:09

How did the other groups of students measure Each group of students present
the length? and explain their strategy

Validate the students’ strategy

Justify measuring mistakes: why are the Students explain their measuring
students’ results different of the exact length? mistakes

49:28

57:00

What is the artefact used by each group of Each group gives the chosen
students to measure the length? What is the artefact, the length of the chosen
length of each chosen unit and the number of unit, the number of chosen units
chosen units?

Table 1: Interventions of Kazu and mathematical activity proposed by Kazu to

students during the neriage
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Kazu chooses one task, measuring the length of the corridor, during 5 lessons (almost
5 hours) even if the exact result is given at the beginning of the 3™ lesson.

Mediative component: Teacher’s interventions

The Kazu’s interventions have the following characteristics: the importance according
to various students’ strategies and an “affect” dimension. During the neriage, students
present five different strategies and it does not seem enough for Kazu. He said a lot of
groups of students use the ruler of 1 meter to measure the length of the corridor. That
is why during the next lesson, he asks again students to measure the same corridor with
other personal strategies. At the end of the 4™ lesson, students apply more than fifteen
different strategies to measure the length of the corridor. This characteristic of his
practices also affects the cognitive component (choice of tasks). Furthermore, during
the neriage, Kazu asks several times to students what is their feeling about the task.

Another characteristic of Kazu’s interventions is that he asks students to explain their
strategy with details and he writes it on the blackboard for each strategy (Figure 1): the
different measured lengths, the used artefact (ruler of 1 meter, compass, height of a
student...), the length of the chosen unity (1 meter for the ruler, 82 cm for the compass,
138,4 cm for the height...), the number of times the chosen unity is used, some
diagrams of strategies (with the compass and with the rulers).

Kazu also asks to compare the different results between us (““Can you say that everyone
is on the 40 meters’ range?”) and with the exact result measure with the measuring
wheel (“Which is the closest?” or “Was it accurate as it was?”).

From the exact result, Kazu asks students to explain why they did not find the exact
result. It means the reasons of their mistakes to justify the difference between their
results and the exact result. Thus, he asks students to have a reflexive attitude about
their own strategy.

Kazu’s interventions also prepare the next phase: the matome, the summing up by the
teacher, what is aimed in the task. There is not written mathematical expression during
this neriage, but the written information and Kazu’s interventions prepare the
mathematical expression of the matome that takes place during the next lesson. The
matome is: “the whole length = the length of the chosen unity X the number of chosen
units”. For example, the group 3 uses a compass for a blackboard to measure the length
of the corridor. One of the students repeats and explains the strategy on the blackboard
(Figure 1). The compass spacing is 82 cm.

1 Teacher: I mean that this is 82 centimeters. So, how about the second time? So?

2 Sl: Again like this, again at 82 centimeters, 82 centimeters plus 82

3 centimeters, what is it? 164. So, again with such feeling, we will

4 measure more and more. [...]

5 Sz What did you calculate?

6 S1: As Miki, you calculate as a calculator, for example, 82 plus 164, and so
7 on.
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8  Teacher: Ifso, how many 82 centimeters? |[...]
9 S3: 56 times.

Kazu asks students how many times they used the compass’ spacing of 82 cm. He uses
the idea of multiplication as an iterative addition from the S1 speech. During the next
lesson, he writes on the blackboard: 82 cm 56 times, 82cmX56times= 4592cm= 45m92cm.

Mediative component: Validation

Every result proposed by students (see table of the Figure 1) is different, Kazu asks
students, “Is there anything correct in this?”” In order to validate the different students’
results, he presents a measuring wheel and its operation. Thus, one of the students
measures the length of the corridor with the measuring wheel, observed by the others.
The validation of the results of the task is done by students themselves, and not by
Kazu. There is also a validation of students’ strategy by Kazu when students explain
that they measure two or three times the length of the corridor, he answers, “It will be
a good result if you do it three times, do not you?”

Mediative component: Helps

Kazu does not propose helps to students during the neriage because every group of
students already finds a result for the length of the corridor. And when a group of
students explain that they encountered a difficulty, he asks all students how they can
find a solution. For example, the group 3 did zigzag when they measured the corridor,
so they have to follow a straight line in the middle of the corridor to measure it.

Mediative component: Explanation of knowledge

The objective of this sequence of fifteen lessons is to feel long lengths, to discover a
new unit of length: the kilometer, to manipulate long lengths (addition, comparison).
Students already know to convert centimeters in meters and centimeters, to manipulate
lengths in meters, centimeters and, millimeters. During this lesson, Kazu converts
centimeters in meters and centimeters when he reads the length on the measuring
wheel, for example. The explanation of knowledge concerns some conversions already
known. During this neriage, we do not find new knowledge: it means students using
old knowledge to execute the task and to explain it. Kazu writes on the blackboard each
separated mathematical elements of the previous mathematical expression: the whole
length, the length of the chosen unity and, the number of chosen units. The knowledge
during the neriage is contextualized to the task. The Kazu’s interventions during the
neriage prepare the new knowledge, summing up in the matome that is
decontextualized to the task.

CONCLUSION

This analysis of cognitive and mediative components of practices during a neriage
highlights some characteristics of practices promoted by Japanese problem solving
approach. Kazu uses a same task during five lessons even if students already find the
exact result of the length of the corridor. A characteristic of Japanese problem solving
approach is that the lessons do not end even if each student find the solution of the
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problem and the heart of the lesson begins after students come up with solutions
(Takahashi, 2008).

In the mediative component of Kazu’s practices, the “affect” dimension and the
importance of various strategies can be explained by one of the objectives of problem
solving teaching: create interest in mathematics and stimulate creative mathematical
activity (Takahashi, 2006). During the neriage, Kazu compares students’ results, asks
students to explain their own strategy and, to adopt reflexive attitude about it. The
explanation and the comparison of strategies are also characteristics of practices
promoted by Japanese problem solving approach. In the written lesson plan, he
compares different students’ strategies: it is difficult to have a precise measure with a
long chosen unity and it is difficult to use a small chosen unity to measure a long length.
Kazu analyzed the given task, anticipated the mathematical expression of matome and
his interventions during the neriage necessarily to the mathematical expression. The
neriage is indeed the critical phase in which students use their own knowledge to
explain how they executed the task whereas the teacher aims to teach the new
knowledge and methods from students’ strategies.
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TEACHER INTERRUPTED: HOW MATHEMATICS GRADUATE
TEACHING ASSISTANTS (DON’T) LEARN ABOUT TEACHING

Mary Beisiegel, Claire Gibbons, Alexis Rist

Oregon State University

Despite their impact on undergraduate learners, few studies have investigated
mathematics graduate teaching assistants’ (MGTAs) needs for professional
development as they learn about teaching. In this study, we surveyed and interviewed
MGTAs longitudinally as they progressed through their graduate programs. With
surveys and interviews, we aimed to capture changes in MGTAs’ views of mathematics
and teaching, whether they felt that they received adequate support, and what other
support they feel they needed to grow as teachers. Using two phases of thematic
analysis, we found several issues that interrupted MGTAs’ progress as teachers.

INTRODUCTION

Researchers have shown that mathematics teaching in post-secondary contexts has a
considerable impact on learners. In particular, lecture-based teaching frequently results
in lower success rates in mathematics courses and lower retention in Science,
Technology, Engineering, and Mathematics (STEM) degree programs. In comparison,
active learning experiences contribute to better student outcomes, such as pass rates,
higher retention, and improved self-efficacy (Chen, 2013; Flick, Sadri, Morrell,
Wainwright, & Schepige, 2009; Freeman et al., 2014; Laursen, Hassi, Kogan, &
Weston, 2014; 2012; Saxe & Braddy, 2015). Despite this research base, mathematics
graduate teaching assistants (MGTAs), who generally represent future instructors and
professors of mathematics, are not provided with substantive professional development
experiences that would teach them how to engage learners in active mathematical
learning experiences. As a result, MGTASs’ teaching remains rooted in lectures and
undergraduate students in STEM disciplines do not experience the proven benefits of
evidence-based teaching practices (e.g., Miller et al., 2018; Stains et al., 2018).

MGTAs, who often find work as faculty members in mathematics departments, exert
a significant impact on undergraduate learners’ trajectories in STEM fields (Belnap &
Allred, 2009; Ellis, 2014), and can negatively impact students’ enrolment and choice
of major in STEM fields (Bettinger & Long, 2004). Yet, experts in MGTA professional
development have not reached consensus on the breadth and scope of programs that
prepare MGTAs to teach. Professional development programs that aim to teach
MGTAs about teaching vary significantly across institutions, both in the approach to
teaching and the amount of time spent. In addition, few programs extend beyond
MGTASs’ first year in graduate school (Deshler, Hauk, & Speer, 2015; Ellis, 2014;
Harris, Froman, & Surles, 2009; Kung & Speer, 2009; McGivney-Burrelle, DeFranco,
Vinsonhaler, & Santucci, 2001).
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Miller and colleagues (2018) completed a review of the literature of professional
development for MGTAs so that they could characterize the types of research
conducted regarding MGTAs’ growth as teachers. They identified 26 peer-reviewed
articles published since 2005 that investigate MGTASs’ teaching development, only 17
of which attend to growth. Thus, the authors concluded that “GTAs’ growth as teachers
is a largely unexamined practice” (Miller et al., 2018, p. 2) and suggest that this area
of study would benefit from longitudinal studies that make explicit a model of growth.

With this in mind, the purpose of this study is to investigate MGTAs’ development as
teachers, what and how they learn about teaching, and changes in their thinking about
teaching and learning longitudinally as they progress through their degree programs.
The research questions that guide this study are: (1) What are the developmental stages
for teaching that MGTAs go through over the course of their graduate programs? (2)
What features of their graduate school and teaching experiences support or hinder their
learning about teaching and their development as teachers?

THEORETICAL FRAMEWORK

Because research has not yet addressed MGTAs growth as teachers, we looked to the
K-12 literature, where researchers have studied schoolteachers’ experiences in order to
gain an understanding of teachers’ growth over time. Katz (1972) described four
developmental stages, which include: (1) survival of the first year of teaching, with
particular focus on classroom management and the routines of classrooms and schools;
(2) consolidation, in which teachers begin to understand which skills they have
mastered, and what tasks they still need to master; (3) a period of renewal, when
teachers become tired of their routines and start to think of how things might happen
differently; and (4) reaching maturity, where teachers think more broadly about the
contexts of schools and students’ learning (p. 52-53).

CONTEXT AND METHODS OF THE STUDY

At the beginning of the academic years in 2015-2018, participants were recruited from
the mathematics department at a large, doctorate-granting institution. Approximately
5,000 undergraduate students enrol in courses such as Pre-calculus, Differential,
Integral or Vector Calculus, Business Calculus, or Differential Equations each year.
Most of these courses are structured as three hours of lecture with 150-250 students per
class and are taught by an instructor. MGTAs are generally assigned to run recitations
(60-80 minute workshops each week) of smaller groups of students from the large
lecture sections. MGTAs are not assigned to courses based on knowledge, skill, or
experience; their assignments to courses mostly depend upon scheduling.

When new MGTAs first arrive to this graduate program in mathematics, they receive
2 '~ days of professional development for their teaching assignment, with a primary
focus on how to support active learning and student engagement in mathematics during
recitations. In the first term of their graduate program, they attend a seminar for one
hour each week that addresses teaching-related concerns such as grading papers,
student conduct issues, and lesson planning. In the summer after their first year, they
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have the opportunity to teach their own course, then they return to the main MGTA
duty of leading recitations. Only informal mentoring happens before and during the
summer sessions and into the MGTAs’ subsequent years.

We developed two beginning-of-the-academic-year surveys, one for new and one for
experienced MGTAs, and protocols for mid-year and end-of-year interviews. Surveys
are used at the beginning of the year because of logistical issues. They include open-
ended questions that inquire about MGTAs’ thoughts about teaching and learning
mathematics, how they would describe a well-taught mathematics lesson, and what
influenced the way they think about teaching. Mid- and end-of-year interviews allow
a deeper investigation of MGTASs’ teaching practices, their most recent teaching
experiences, whether they feel that they are receiving adequate support, and what other
support they feel they need to grow as teachers. The intention of the study is to survey
and interview participants for the duration of their graduate programs to study their
development over time. Table 1 illustrates participation in the study.

Recruitment Year ~ Number of Participants

2015-2016 11 new participants: 4 first year, 2 second year, 4 third year, 1
fourth year
2016-2017 11 continuing participants; 6 new participants: 4 first year, 1 third

year, 1 fourth year

2017-2018 11 continuing participants; 10 new participants: 8 first year, 1
third year, 1 fifth year

2018-2019 15 continuing participants; No new participants

Table 1: Study Participants

Our research team analysed participants’ responses to survey and interview questions
in two rounds of coding using thematic analysis (Braun & Clarke, 2006). Thematic
analysis has six stages which include: (1) familiarization with the data; (2) coding
interesting features of the data in a systematic way and collating data that is appropriate
for each code; (3) possibly combining codes into themes and collect data for each them;
(4) reviewing the themes and supporting data for each theme; (5) continuing to analyse
the themes, generating a clear definition for each; and (6) producing the report of the
themes with selected data to provide evidence of each theme. In the first round of
coding, we applied a deductive approach (e.g., using a pre-existing coding frame)
where we looked for instances of the participants’ experiences that could be elucidated
with Katz’s (1972) four-stage model of teacher development. In the second round of
coding, we used an inductive approach that focused on codes we developed through
the first round of analysis. These codes included what had an impact on their views
about teaching (graduate course work, their students, the instructor they are assigned
to, the course they are assigned to, their previous experiences as learners, office hours,
their MGTA peers, and the resources they use for teaching), issues of identity (being a
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teaching assistant versus being an instructor, resignation), and feaching (descriptions
of their teaching practices, the transitions they have made in their teaching, what
changes they would make to their teaching, and what is important for their teaching).

FINDINGS

In our first round of analysis, we found Katz’s (1972) framework to be a useful lens to
view MGTAs’ development as teachers. We observed most of the first-year MGTAs
talking about surviving the first year. The quote below is an exemplar of this:

By that point the quarter [midterm exams], it was just getting really hectic and I wasn’t
able to plan as much as I usually like to plan for courses. Sometimes I was looking at the
material for about two hours before I started that day, whereas usually I like to look at it
the day before or during the weekend or something. And so sometimes, though, the classes
that I went to where I was kind of doing it on the fly, where I was literally looking at it like
an hour or two before class.

We observed some second-year MGTAs in the consolidation stage. This participant is
describing his approach to teaching a new course:

[ think virtually the same. They would work for a little bit. It was 15 minutes. So, depending
on the class, if it’s longer, maybe we’ll do it a different way. With 15 minutes, we can take
a little bit more, take some time at the beginning. They work on something together, then
back together as a class, and then quiz.

Later-year MGTAs sometimes spoke differently about their teaching experiences. For
example, a third-year MGTA summarized her transition from the survival stage to the
renewal stage in the following way:

I think previously, I was more focusing on, “I just want to survive my first teaching
experiences.” So, now that this is my fourth time teaching, I feel a little bit more
comfortable trying to incorporate more active learning in my classroom, and trying non-
traditional techniques whereas previously, when I taught, for example, my first time
teaching my own class and I taught Calculus, I did mostly lecture because I just wanted to
do what I felt most comfortable with — what I felt I could be successful at.

Another participant we saw as being in the renewal stage spoke about it in the following
way: “In the few classes that [’ve taught, I’ve tried to little-by-little implement more
and more activity-based learning and group-based learning and different things.”

Teacher Interrupted

Despite seeing some progress, we found that only a few MGTAs spoke about teaching
in a way Katz would describe as renewal, and only one or two of the MGTAs spoke of
teaching in ways that Katz would categorize as maturity. Many MGTAs appeared to
be stuck in the consolidation stage. We also found that MGTAs do not pass through
Katz’s developmental stages linearly. In fact, they sometimes return to the survival
stage. We then conducted a second round of analysis to see what experiences prevented
the MGTAs from moving through the developmental stages. We looked for what might
have an impact on the MGTAs in terms of learning about teaching and moving toward
the active learning strategies espoused in the 2 '2 day professional development
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program. We expected that most, if not all, of the participants’ work as teaching
assistants would consist of leading recitations for lower-division mathematics courses
and that there would be some consistency in the courses they were assigned to.
However, when we looked at what work they were assigned to term-by-term and year-
by-year, there was significant variation not just in the courses they were assigned to
(algebra vs. differential equations), but also in what work they did (e.g., grading,
assisting on research studies, assisting in online courses). This is an important finding
because this variation has an impact on how the participants have the opportunity
develop as teachers. Below, we describe the issues that we interpreted as interrupting
the MGTASs’ teaching and learning about teaching.

Course assignments and expectations had significant impacts on the MGTAs. More
specifically, how the instructors designed courses, the assignments, and exams had a
disruptive impact on the MGTAs. This first-year MGTA describes what it was like:

From term to term, depending on the instructor mostly — not necessarily the class, but the
instructor — their expectations of the TA are different in terms of what they want you to do.
When I designed my materials, | knew where the solution was, what the problem was, what
kind of outcome was expected from the students, what kind of mistakes I will see. So, the
grading was faster in my opinion. But when everything is given to me, I have to first solve
it and then figure out all of those details in the goal. And then I start to grade and then I
encounter things that I didn’t expect.

Because of the inconsistent ways they were assigned to courses, the MGTAs did not
have the opportunity to work with the same group of students from one academic term
to the next. A participant spoke of what it was like to ‘lose’ his first group of students:

I had all these students, I knew all their names, I was, they like me, I like them. We were
really excited about this stuff and we’d been together for ten weeks and now that was all
over and I had to do it all over again. And you know there’s so much energy, like, that had
gone into the last class and so much had come out of it. And now I was just like you know
95 more students who I don’t know and I have to do this all over again. And I was, so to a
certain extent I just, it was a lot harder to care that term. I was losing the students that I had
so much already invested in.

Their role as graduate teaching assistants had an impact on the MGTAs’ teaching,
leaving them powerless to teach in the ways they wanted:

But I have no power over what happens in the recitation hour. There is a quiz that was
written up, there’s an activity that was written up. [...] So I’'m not grumpy about that,
necessarily. It’s the instructor’s course. That’s fine. But it means I’'m not choosing any of
the problems, or anything like that. So what can I do? And they’re working in groups, for
the most part. And their group is working well. Somebody knows how to do the problem
already, and they don’t really need me except for the details. In that sense, I am
interchangeable with any grad student. [...] I guess in a TA setting, I have such little power
to actually impact their learning.

Another participant had a similar remark about feeling powerless to incorporate
different teaching strategies:
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Whereas a TA, you know, you’re exactly that. You’re an assistant. So, kind of ... you’re in
the in between. So, you don’t have that much power, I guess, but some form of that to try
incorporate [active learning] into teaching would be really interesting, but you know, I
guess I don’t really know exactly how.

Some MGTASs’ work assignments took them out of the classroom. In particular, two of
the participants who had worked as teaching assistants in the first three years of their
graduate program became research assistants with no teaching duties. They both
remarked that they had not had the opportunity to grow in their thinking about teaching
nor in their teaching practices. One of them noted their desire to gain more teaching
experience, despite being assigned to research duties:

I think the biggest thing is I just want more experience teaching because I still — because
it’s something that I can theorize and I can plan, but I just kind of know that’s one of those
things that I feel like I won’t be able to intentionally get everything out of the class that |
want until I’ve spend time teaching the class.

Another participant had a different type of interruption in his teaching experience when
he was given a grading assignment: “I hadn’t TA’ed for almost six months, because I
didn’t teach in the summer. I wasn’t in the classroom with somebody for the whole
summer and for the fall. It was like six months of not being a TA, so I was like, ‘Oh,

2 9

man. [ almost have to relearn this’.

Despite the lack of attention to their teaching, we noticed that many of the participants
want to learn and grow as teachers, even into the fourth and fifth year of their graduate
programs. In general, they voiced a sense of familiarity with teaching and a desire to
learn more about teaching, to grow their teaching practices beyond lecturing:

Because I’ve already gone through three years now teaching. So I’'m already comfortable
with coming up to class and writing things down and grading things in a reasonable enough
fashion and in good time. But, yeah, it would be really great to be able to like just take it
another step further.

But some participants also noted that they were not sure what that would look like:

That would be kind of nice to know how to make that work efficiently, and as a TA I don’t
know how to do that, or how to take this to another level. I don’t know. I don’t even know
what that would look like. ... Something that where people are ... I mean, in my head I
kind of have ... imagine like a play where it’s people are engaged in having fun with it, but
also being challenged and respected.

IMPLICATIONS

Researchers recommend that MGTA professional development programs be informed
by research findings (Miller et al., 2018) and should take into account the needs of
MGTAs at different stages of their development (Park, 2004). Additionally, DeFranco
and McGivney-Burrelle (2001) noted that professional development programs should
be “viewed as ongoing professional development experiences that support [MGTAs]
through the long and complex process of changing their teaching practices” (p. 688).
We observed that MGTAs in their assignments as teaching assistants were unable to
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change the way they teach for several reasons. We recommend that professional
development providers take into account the impacts described in this paper (e.g.,
varied and inconsistent course and work assignments, the powerless role of teaching
assistants). We also recommend that professional development programs extend far
beyond MGTASs’ first year in graduate school, possibly into their third and later years,
as they reach the renewal stage (Katz, 1972).
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CHANGING TEACHER PRACTICES WHILE TEACHING WITH
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In this paper we report on changes to teachers’ practices as a result of their
participation in a research-based program of professional learning focused on
challenging tasks. Seventy early years teachers responded to a survey at the end of a
year-long program asking them to nominate and describe the teaching practices that
changed most as a result of their involvement in the program. The majority of teachers
nominated each of ‘Allowing students time to struggle’ and ‘to share their thinking’ as
the two practices that changed most. Qualitative responses are used to interpret the
nature of and reasons for these reported changes in practice.

INTRODUCTION AND BACKGROUND LITERATURE

It is widely acknowledged that “student learning is greatest in classrooms where the
tasks consistently encourage higher-level student thinking and reasoning” (National
Council of Teachers of Mathematics, 2014, p.17). Stacey (2003) suggested that a key
difference between high-performing and other countries on international comparative
tests of mathematics is their capacity to engage their students in higher-level thinking
via cognitively demanding tasks. In a study designed to encourage Australian teachers
to use challenging experiences in their mathematics classrooms, Sullivan, Borcek,
Walker, and Rennie (2016) found that implementation was more successful when
teachers adopted specific practices, including (1) increased time for students to struggle
on tasks without, or prior to, instruction, and (2) increased use of carefully orchestrated
dialogue during lessons that emphasised higher-level student thinking and reasoning.
Following these findings, Sullivan et al. (2016) hypothesised that learning would be
further enhanced if purposeful follow-up challenging tasks were posed to consolidate
student learning.

The potential of purposefully designed sequences of connected challenging tasks was
the focus of the professional learning (PL) project at the centre of the research reported
in this paper. In particular, we report on changes to teachers’ practices as a result of
their participation in a PL research project focused on sequences of challenging tasks.

Challenge, struggle and student thinking

The tasks and lessons that are likely to foster higher levels of cognitive activity in
students are regularly termed ‘challenging’. They are considered challenging because
the answers are not immediately obvious to students and therefore provide them with
opportunities for prolonged thinking, reasoning, problem solving and risk taking
(Sullivan et al., 2016). However, Stein, Grover and Henningsen (1996) argue that the
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possibilities afforded by challenging tasks are dependent upon the willingness of
teachers to implement such tasks, and critically, to maintain high levels of cognitive
demand as work on tasks progresses even when students are struggling.

Struggle involves students expending effort while experiencing some level of
confusion while attempting to resolve problems where the solution strategy or answer
is not apparent. Hiebert and Grouws (2007) suggest that struggle is particularly
important for students to develop conceptual understanding. They claim that if students
struggle in order to make sense of mathematics they are more likely to remember the
mathematics. At the same time, students are more likely to develop a disposition for
persistence and an underlying growth mindset. They argue that providing students with
opportunities to engage in struggle is an essential aspect of effective classroom
practice. In a study involving 36 lesson observations of six different middle school
teachers, Warshauer (2015) found that the way teachers responded to students
struggling was critical in determining opportunities for learning. The most successful
teachers responded with practices that maintained a balance between the level of
challenge and the degree of support provided as the task unfurled.

Unfortunately, research indicates that many teachers are hesitant to integrate
cognitively demanding tasks into their classrooms (Cheeseman, Clarke, Roche &
Wilson, 2013). This finding raises concerns about some teachers’ capacities to activate
high-level thinking in their students or to promote sustained periods of student struggle.
Prompted by concerns that students were not being provided with opportunities to
regularly experience cognitively demanding tasks and evidence confirming the
potential benefits afforded by such experiences, a year-long project involving teacher
PL focused on challenging tasks and the associated pedagogy was designed. Following
recommendations by Sullivan et al. (2016) regarding the potential benefits of follow-
up tasks, the PL focused on sequences of connected challenging tasks as opposed to
isolated tasks with little coherence to longer-term learning.

THEORETICAL FRAMEWORK OF THE CURRENT STUDY

The PL design, data collection and analysis were informed by Clark and Peterson’s
(1986) framework. This framework suggests that teachers’ knowledge, dispositions,
and the opportunities and constraints they anticipate experiencing will influence their
intentions to act and their classroom actions. Therefore, we conjectured that teachers
would be more willing to implement challenging tasks if they were better informed of
their benefits, had ready access to research-developed sequences of tasks and were
provided with practical classroom support during implementation. In the study reported
here, the elements of the framework referring to teachers’ pedagogy and classroom
actions are particularly relevant.

The current study addressed the research questions: (1) What teaching practices do
teachers report changed most as a result of participating in a program of professional
learning focused on challenging tasks? (2) How do teachers characterise the changes
to these practices?
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METHODOLOGY
Participants

Participants included 102 teachers of F-2 students (approximately 5-8 years of age) and
teacher leaders from 21 schools who took part in the PL. Seventy participants
responded to the survey, 68 of whom implemented at least some of the suggested
sequences in their classroom. Of these 68, 27 (40%) had up to four years teaching
experience, 11 (16%) had 5-9 years, 30 (44%) had 10 or more years of experience.

Instrument and Procedure

At the conclusion of the year-long program, teachers were invited to complete an on-
line survey while attending the final PL day. The survey consisted of 24 items. The
first four items collected background data for each participant and their school,
including years of teaching experience and their role at the school. The remaining items
required mostly qualitative responses to gain insight into teachers’ views of various
aspects of the program’s implementation, including the nature of the support they
received to implement sequences, the effectiveness of specific learning sequences and
the challenges they faced implementing the changes in their classrooms. The findings
from these aspects, and data collected by observations and interviews, are the subject
of a range of papers currently in production.

In this paper, we focus on teacher responses to survey items asking them to report on
the classroom practices that they considered changed most over the course of the PL.
In Item 13 teachers were asked to select three teaching practices from a list of nine that
they considered to have changed most as a result of their participation in the program.
The list of nine practices were selected based on the initial aims of the PL, the research-
based learning and teaching principles underlying the design of the program, and the
practices emphasised during PL days and school-based site visits by the research team.
These practices are represented in Figure 1 and summarised in Table 1. In Item 14
teachers had to briefly explain what one changed practice ‘looked like’ in their
mathematics classroom. Fifty-five participants responded to this item.

The entire survey took participants approximately 25 minutes to complete.
Data Analysis

Teacher responses to Item 13 were collated to find the total number of teachers
selecting each practice as one of the three practices they considered to have changed
most. A deductive analysis process was used to code each response to Item 14. The
nine practices constituted the initial codes as it was anticipated that responses would
link to one of these. It was revealed early in the analysis that a few responses
incorporated aspects of at least two practices from the list. This meant that several
responses were dual-coded to practice-based themes. For example, the following
response was allocated to both the Allowing students to share their thinking and to the
Questioning of students themes:
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The biggest change in my classroom practice was to the questioning and sharing of thinking
all through the lesson — not just at the end of the lesson.

Responses describing the two prompt practices (Use of extending prompts and Use of
enabling prompts) were collapsed into one (Use of extending and/or enabling prompts)
since only one respondent mentioned extending prompts and this was done in
conjunction with enabling prompts. One response was omitted from the analysis
because it came from a non-teaching staff member confirming that changes in all the
practices had been observed but no detail as to what those changes looked like was
provided. While only one of the remaining 54 qualitative responses to Item 14 was
coded as Routinely use connected sequences of tasks, it was decided to retain this code
for reasons explained later. Final analysis involved seven practice-based themes.

RESULTS AND DISCUSSION

Figure 1 presents the findings from Item 13. It shows that 51 out of 68 (75%) teachers
considered Allowing students time to struggle on maths tasks as a practice that had
changed most as a result of their involvement in the PL. The next most commonly
selected practice was Allowing students to share their thinking with 36 teachers
selecting this practice as one of their three from the list provided. The remainder of
responses were evenly dispersed across six other practices. Only eight teachers selected
Routinely use connected sequences of tasks.

Teacher responses to Item 14 provided insight into the nature and extent of changes to
each of these practices. They also provided some possible reasons as to why changes
to certain practices were more commonly cited by teachers than others. Table 1
provides a summary of the number of responses coded to each of the eight practices.
Understandably, the number of responses detailing changes to each practice recorded
for Item 14 roughly corresponded to the number of teachers selecting them as one of
the three practices that changed most. Due to space limitations, reporting of qualitative
responses focuses on just three practices — the two practices most commonly chosen
by teachers (Allowing students time to struggle and Allowing students to share their
thinking) and the least common (Routinely use connected sequences of tasks).

Allowing students time to struggle on maths tasks was the second most frequently
selected practice teachers considered to have changed since the start of the PL — 21
teachers opted to elaborate upon it in Item 14. Approximately one-third of comments
indicated that allowing students to struggle with mathematics without teacher
intervention was something “new” to their pedagogy, that felt “uncomfortable”,
“challenging” and “hard at the beginning” because they had the urge to step in “right
away” to “save and help my students”. This finding connects to those by Cheeseman
et al. (2013) that a possible reason for teachers’ reluctance to implement challenging
tasks is their discomfort with student struggle. According to Clark and Peterson’s
framework, teachers’ intentions and practices in the classroom are influenced by
constraints (feeling uncomfortable with struggle), that could have been circumvented
by opportunities (support to implement challenging tasks) and influenced by
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knowledge of mathematics and pedagogy (provided by the PL). As suggested by
Sullivan et al. (2016), teachers need to anticipate constraints such as student negative
reactions to struggle and be prepared to address them via appropriate practices. While
approximately equal emphasis was given to the nine practices throughout the PL, the
large number of teachers who acknowledged that the notion of student struggle in
mathematics as potentially beneficial was new to them, is a possible reason why so
many selected this practice as one that changed most. A quarter of responses explicitly
referred to struggle as something that both teachers and students gradually learnt to
“embrace” as an integral “part of their learning”.

Allowing students to struggle was something new to me. The students found it difficult at
first that I was allowing them to struggle and they wanted my assistance. Over time this
changed, and they became used to struggling first and then gaining clarity at the conclusion
when we went through tasks and possible solutions.

= 15
I I |
Allowing Allowing Questioning of Introducing a Routinely Use of Use of Use of talk Routinely use
students time students to students mathematics choose enabling extending moves connected
to struggle on share their lesson challenging prompts prompts sequences of
maths tasks thinking tasks in my tasks

maths
programme

Figure 1: Number of teachers (n=68) selecting each practice that they considered
changed most. Each teacher selected three practices (204 practices in total)

Teachers expressed a willingness to trial and continue allowing students struggle time
in their classrooms because they could “see the value” in terms of students’ increased
“independence” and “persistence” in solving challenging mathematics problems. A
range of strategies for introducing struggle time into their classrooms were described,
but the inherent message was to allow students “to struggle first” and “struggle more”
often. As illustrated in the following quote, teachers typically accompanied struggle
time with student-led discussion and questioning:

We would show the wording of the problem, let them have time to read it and try and work
out what it means, before discussing. Let them lead the discussion. Let the students ask
questions for clarification IF they want to.
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Increased “talking” and “more discussion” also characterised teachers’ elaborations of
how the practice of Allowing students to share their thinking changed over the course
of the PL. More than half the teachers who responded to Item 13 nominated this
practice as one that changed most. It was also the most commonly chosen practice for
teachers to elaborate upon. Similar to the practice of allowing time for struggle,
teachers noted the difficulties associated with getting students to talk about their
thinking early in the implementation of the program. This difficulty is an indication
that it was not a common practice prior to the PL:

Allowing students to share there thinking was difficult at first as they would often just give
and answer. Now my students are able to give there answer but explain how they got it or
what they did to find a solution. More talk within the classroom and lots more discussion.

Practice Number of
responses coded

Allowing students to share their thinking 21
Allowing students time to struggle on maths tasks 14
Introducing a mathematics lesson 9

Use of talk moves 7

Use of enabling and/or extending prompts 5

Routinely choose challenging tasks in my mathematics 3

program

Questioning of students 2

Routinely use connected sequences of tasks 1

Table 1: Summary of the analysis of teachers’ responses (n=54) describing change in
their practices. Note that some responses were coded to more than one practice

One teacher revealed that it was ‘“harder for the teacher than the students
during...thinking time” because of the sometimes ‘“uncomfortable” silence. All
responses referring to this practice included clearly articulated strategies for its
implementation, as demonstrated by the following two teacher quotes:

I strategically select students to share their thinking based on the least efficient strategies
to the most efficient strategy used in that task, so children can see a range of strategies and
learn all the different ways to think and solve a task. Students are to then go and borrow
one of the strategies they listened to and give it a go during a consolidating task.

We have in depth discussions where we show students work on the TV and students are
given opportunities to challenge or agree with other students.
When describing the nature of student sharing, teachers referred to ‘“high level
thinking”, “reasoning”, “collaborative...problem solving” and “strategy” discussions.
One teacher explained that students were “not talking about the answer, as much as

discussing how they got there and what their logic was”. It was apparent from teacher
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descriptions that not only was there a great deal more sharing of student thinking
occurring in their classrooms, but that students were being encouraged to think about
mathematics at much deeper levels than before. The Clark and Peterson (1986)
framework guiding our research emphasised connections between teacher beliefs,
knowledge and their practices. In this case, teachers’ beliefs about the importance of
students explaining their reasoning gained via the PL were presumably reflected in the
increased time they allocated to students talking about and sharing their thinking.

The practice selected least often by teachers was Routinely use connected sequences of
tasks. This finding was surprising given that a focus of the PL sessions was on the
importance of providing students with sequences of connected and challenging tasks
as opposed to isolated challenging tasks with little coherence to longer-term trajectories
of learning mathematics. As part of the PL, teachers were provided with suggested
sequences of learning experiences for a range of content areas that were aligned to the
mandatory curriculum. Instructional materials containing pedagogical advice to guide
them in their implementation of the sequences were also provided along with
occasional in-class support during site visits from a member of the research team or
their school-based mathematics instructional leaders. This finding could reflect where
the majority of teachers were ‘at’ in terms of their professional learning and their
capacity for adopting new practices associated with challenging tasks. Teachers’
responses indicated that it had taken effort and time for many of them and their students
to feel comfortable with struggle and challenge in the mathematics classroom. It is
possible that teachers need much more time than one year to embed such practices into
their instructional routines before gradually working-up to the implementation of
whole sequences of challenging tasks. This proposition is supported by the fact that
more than half the teachers who selected this practice as one of their most changed,
also reported prior involvement in PL involving challenging tasks. Further support is
provided by the teacher who chose to elaborate upon this practice in Item 14:

We have always included a challenging task as one of our weekly lessons from Foundation
to Year 6. This year we were able to plan sequences of lessons with the same challenging
approach. We had to let go of ... a teacher modelled and teacher centre lesson phase. This
has been the most difficult step to convince teachers to adopt.

This comment indicates that challenging tasks were already an accepted part of practice
for teachers at this school. The notion of connected sequences of challenging tasks was
therefore less daunting for them and a logical next step in the PL for these teachers.

CONCLUSION

The research reported above was part of a large PL project exploring the potential of
purposefully designed sequences of connected challenging tasks. Reported changes to
teachers’ practices as a result of their participation in the PL was the focus of this paper.
In terms of the first research question, teachers reported changes to each of the nine
practices focused upon in the PL, but the majority of teachers reported most change in
just two practices — Allowing students time to struggle and Allowing students to share
their thinking. Regarding research question 2, teachers characterised the changes to
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these practices in terms of student and teachers gradually accepting them as the norm
in mathematics lessons. Both practices were linked to increased amounts of time for
student talk and questioning. The surprising lack of change surrounding the use of
sequences of challenging tasks is an indication that PL needs to consider teacher prior
learning and be structured in stages with some aspects potentially needing to be learned
before others. In the current PL, teachers indicated that a familiarity with challenging
tasks preceded their readiness to adopt whole sequences of lessons involving such
tasks.
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EYE-TRACKING SECONDARY SCHOOL STUDENTS’
STRATEGIES WHEN INTERPRETING STATISTICAL GRAPHS
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Students persistently misinterpret histograms. Based on a literature review we
conjectured that the confusion of histograms with case-value plots was leading to
inappropriate interpretation strategies. Hence, the question for this research is: what
are the most common strategies for secondary school students when estimating the
mean in histograms and case-value plots? In a task with twelve graphs (histograms or
case-value plots) we measured students’ eye movements (N=10, grade 10—11. The most
common Strategies students use are: a case-value plot interpretation strategy and a
computational strategy both applied to histograms. Furthermore, some students
reported strategies that are not in line with their gaze data nor their estimated mean.

BACKGROUND

For more than two decades misinterpretations with histograms have been reported in
the literature (e.g., Friel & Bright, 1995; Whitaker & Jacobbe, 2017) as well as attempts
to improve students’ understandings of histograms through interventions (e.g.,
Meletiou-Mavrotheris & Lee, 2005). An extensive review of the literature on
histograms showed numerous misinterpretations that are widespread amongst students
from every school level as well as countries (Boels, Bakker, Van Dooren, & Drijvers,
2019). In addition, many people are not clear on what a histogram is. In the context of
this paper we use the following criteria for a histogram (Boels, et al., 2019): (1) itis a
graph with bars; (2) the data of only one statistical variable are presented; (3) these data
are measured at ratio measurement level; (4) the vertical axis displays frequency.

The persistence of misinterpreting histograms was our rationale for searching for
underlying difficulties. In a literature review we found two difficulties: the lack of
understanding the big statistical ideas data and distribution (Boels et al., 2019). The big
idea data refers amongst others to the measurement level of the data. Distribution refers
amongst others to how the data are distributed (e.g., variability or spread) and how this
is depicted in a graphical representation (shape). The literature suggests that a
histogram is confused with a case-value plot (e.g., Cooper & Shore, 2010; Garfield &
Ben-Zvi, 2007). A case-value plot is a kind of look-a-like of the histogram as it shares
the same salient features with a histogram. These salient features are: two axes,
numbers along the vertical axis and—in our construction—the same number of bars
and the variable weight in kilograms. Nevertheless, on the level of the big ideas data
and distribution a histogram is very distinct from a case-value plot. For example, a
case-value plot depicts two variables (here: name and weight, see Figure 1) whereas a
histogram represents only one (here: weight). Furthermore, in a case-value plot each
bar is one measurement while in a histogram each bar usually stands for several
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measurements. As a result, in a case-value plot the heights of the bars are the measured
value whereas in a histogram the positions of the bars on the horizontal axis are the
measured values. In addition, the variability of the data in a histogram is the horizontal
spread weighted by the frequency whereas the variability of the data in a case-value
plot is given by the vertical difference in the heights of the bars.

a. Mean in histogram (here: 3.3 kg) b. Mean in case-value plot (here: 3.7 kg)
Weight packages postman René Weight collected garbage beach Terschelling
5 g
g 18 1 9
e s =
& 16 1 £ 8
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Weight (kg)
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Figure 1: Measures of centre are depicted differently in a histogram (a, Item 1) from a
case-value plot (b, Item 4).

Although the confusion of histograms with case-value plots can explain a substantial
part of the misinterpretations, this does not shed any light on how this confusion arises.
In a first exploratory study, we therefore studied the interpretations strategies that
students used to answer questions about histograms and case-value plots (Boels, Ebbes,
Bakker, van Dooren, & Drijvers, 2018). In our first study we were searching for
persistent misinterpretations after learning about histograms. We therefore included
university students only. In preparing that study, we were concerned that we would not
find any misinterpretations at all as we thought that we had made the differences
between the case-value plots and the histograms too obvious, see Figure 1. For
example, we had clearly placed labels next to the axes showing that the requested
information (average weight) could be found on either the horizontal axis (histogram)
or the vertical axis (case-value plot). We nevertheless found several students applying
a case-value plot interpretation strategy onto a histogram (e.g., a horizontal looking
pattern and reading of the numbers on the vertical axis thus the frequency instead of
the measured values).

In an ideal world, students would enter the university without misinterpretations, as
interpreting histograms is part of the Dutch secondary school curriculum. In order to
track down where these misinterpretations come from, we need to study secondary
school students' interpretations of histograms. These students have learned about
histograms in grade 9 or 10 (usually at age 14—16). Hence, the aim of our current study
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is to identify the most common strategies of secondary school students when
interpreting histograms and case-value plots.

In searching for a suitable task for interpreting histograms, we noted that many
researchers ask for the variability depicted in a histogram (e.g., Garfield & Ben-Zvi,
2007). Nevertheless, we decided to ask for estimating the mean from a histogram. The
first reason for asking for the mean is that finding the mean in a histogram can be
regarded as a prerequisite for using measures of variability. As measures of centre are
depicted differently in histograms from case-value plots, the same holds true for
measures of variability. Moreover, variability can be considered as variation around
the mean. The second reason for using the mean instead of measures of variability is
that secondary school students are very familiar with the arithmetic mean (as this is,
for example, used for grading almost all summative assessment tests in secondary
schools in the Netherlands) and not so much with measures of variability. Hence, the
question for this research is: what are the most common strategies for secondary school
students when estimating the mean in histograms and case-value plots?

METHOD

To answer our research question we constructed twelve items with histograms or case-
value plots. Six of these items were either single histograms (three) or case-value plots
(three). The question for these items was to estimate the mean weight of the packages
of a postman (histograms) or garbage collected on a beach (case-value plots). These
questions were open ended. Three of the other six items concerned two histograms
each and the other three two case-value plots each. These six items held the question
in which graph the estimated mean was bigger. The three answer options were: the
graph on the left, the graph on the right or both graphs approximately the same. All
histograms had a look-a-like case-value plot that shared the same salient features with
the histograms such as number of bars and range of the weight scale, see for example
Figure 1 (Item 1 and Item 4). Two items with the same salient features never followed
one another and there were no more than two items with the same graph type in
succession. The graph construction was in line with the recommendations to use stimuli
that differ systematically on relevant features but are similar for irrelevant features
(Orquin & Holmgvist, 2017). To avoid priming (Lashley, 1951) we started with a
single histogram in the first two items as we expected that students misinterpreting
histograms would apply a case-value plot interpretation strategy onto a histogram (see
data analysis for an explanation on the strategies) and not so much the other way
around. The twelve items were followed by another thirteen items that were part of an
exploratory study not reported here.

Two questionnaires were used to gather data on the students’ background (e.g., their
grades for mathematics) as well as their precognition on—for example—the meaning
of frequency and arithmetic mean. By asking first to estimate the mean of five
assessment scores (each between one and ten) and then to calculate this mean, the
difference between an estimation and a calculation was subtly stressed as we did not
want students to make precise calculations.
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Eye-tracking in combination with retrospective thinking aloud with students’ eye
movements as a cue was used. We could have collected only the answers for these
twelve items (e.g., Whitaker & Jacobbe, 2017). Although this method is fruitful for
discovering how widespread the misinterpretations are as well as for getting indications
of the type of misinterpretations students have, it does not tell us in detail which
strategies students use to answer these items. In addition, we considered other methods,
such as combining the assessment items with a thinking aloud protocols or with
retrospective interviews, both without the use of eye-tracking. We rejected all these
options for several reasons. Firstly, when people need to explain their strategy during
thinking aloud, this not only slows down their work on the task, but also changes their
cognitive processes (Ericsson, 2006). Secondly, retrospective interviews are often
unreliable but can be improved when participants’ eye movements are used as a cue
(van Gog & Jarodzka, 2013). As the eye-mind hypothesis does not always hold
(Anderson, Bothell, & Douglass, 2004; Schindler & Lilienthal, 2019) a retrospective
interview 1s needed to link the eye movements data to the students’ strategy.

Ten secondary school students of one pre-university level school (grades 10—11, mean
age: 16 years; range 15—18 year) participated in the study reported here which is part
of a larger study with secondary school students and their STEM teachers. Students
participated voluntarily and consent was signed by the students and in most cases also
by their parents (required for students aged 15 or less). All participants received a small
gift (mathematical puzzle) for their participation. The first author recruited the
students, carried out the research and conducted the interviews at the participants’
school. To stay within the time frame of one lesson of this school the time per student
was limited to 45 minutes. In this time frame all work with the participant was done,
which included filling in two questionnaires, answering the tasks described above and
being interviewed with participants’ own gaze data as a cue. The eye-tracking part took
approximately 10-15 minutes per student, leaving about 20-25 minutes for the
interview.

A Tobii Pro X2-60 eye-tracker with a 60Hz sampling rate was used, mounted with
adhesive mounting brackets on a laptop with a 13-inch display. The Tobii Pro Studio
3.4.5 software recorded in real time where people were looking on the screen using
harmless infrared light to detect the gaze. We also used a chin rest to gain a better
quality of the eye-tracking data, see Figure 2. For recording the retrospective interviews
a Rode NT-USB studio microphone was used. Students were tested in a one-on-one
setting in a room in their own school. Before starting the task, a calibration procedure
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was used with nine points on the screen. The calibration was followed by a validation
procedure with four points on the screen. Between all items a fixation cross was used
for validation as well as making sure that all eye movements start at the right-hand side
of the screen which was a blank area in the next screen with the item.

a. Case-value plot strategy applied onto a b. Case-value plot strategy applied onto a case-
histogram (Item 1) value plot (Item 4)

The colours indicate where students’ gaze was less (green), medium (yellow) and most (red).
This student stated that the mean weight was approximately ten (a, histogram) and five (b, case-
value plot). The arrow points at fixations around frequency ten in the histogram. Note that there
are no fixations on the horizontal weight axis in the histogram although the label weight on the
horizontal axis was read by this student.

Watis onge het gemiddelde ge tvan de pakketje s * [ bezorgt?
Wat is ongeveer het gemiddelde g ht dat is opgeraapt per persoon?

pakke fies bezorger René
Gewicht opgeraapt strandafval Terschelling

Frequentie
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Figure 3: Heatmap of a student applying a case-value plot interpretation strategy onto
a histogram (a) and a case-value plot (b).

DATA ANALYSIS

We analysed the answers given by the students for each item. Furthermore, from our
previous studies we conjectured that students would use two interpretation strategies:
a case-value plot interpretation strategy and a histogram interpretation strategy (Boels,
Bakker, & Drijvers, 2019; Boels et al., 2018). We define a case-value plot
interpretation strategy as a strategy in which students display a horizontal looking
pattern and read the requested mean at the vertical axis, see Figure 3. During the
interview, these students report that they take the middle of the bars or make the bars
“the same” [height]. Sometimes students move their hands in a horizontal line when
they explain what they did. If that happened, the interviewer reported this aloud in the
interview. We defined a histogram interpretation strategy is as a strategy in which
students display a vertical looking pattern and read the requested mean at the horizontal
axis. During the interview, these students—for example—reported that they balance
the graph. Sometimes they might also point to a balancing point at the horizontal axis.
The interviews and gaze data were qualitatively coded with open, axial and selective
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coding (Corbin & Strauss, 1990). From these data we inferred the strategies that the
students used. We also used heat maps, showing students’ gaze data in gradients from
green via yellow to red (see Figure 3) and gaze plots showing the order of students’
gaze data.

RESULTS

For the single histogram items students correctly answered on average 0.5 item out of
3 items which was much less than the average number of correct answers for single
case-value plots, see Table 1.

3 items; single 3 items; double 3 items; single case- 3 items; double
histograms histograms value plots case-value plots
0.5 [0-2] 0.7 [0-3] 1.5[1-2] 2.3 [2-3]

Table 1 Average number and [range] of correct answers per student.

a. Computational strategy applied onto a b. Computation strategy applied onto a case-
histogram (Item 1) value plot (Item 4)

This student stated that the mean weight was approximately six (a, histogram) and three plus
one third (b, case-value plot). Note the many fixations on both axis and the going back and forth
of the fixations from axis to the graph area indicating the computational strategy.

Wat is ongeveer het gemiddelde gewicht van de pakketjes die René bezorgt? Wat is ongeveer het gemiddelde gewicht dat is opgeraapt per persoon?
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Figure 4: Plot of a student’s gaze. This student uses a computational strategy.

In the qualitative analysis of our data we found the two interpretation strategies
described in the data analysis as well as a new strategy that we call a computational
strategy. In this strategy a student computes a total (either a total of the frequency or a
total of the frequency times measured value) and divides this by either the number of
the bars or sometimes the total frequency. In the gaze data the looking pattern appears
as jumping from bar to bar, for example along the horizontal axis (counting the number
of bars, see Figure 4).
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Furthermore, some participants report strategies and answers that did not match the
answer given earlier during the online eye-tracking session. For example, the
participant whose strategy is shown in Figure 3 reported a lower answer than ten in his
retrospective interview and said to have looked on the horizontal axis to find this
answer. This is not in line with the answer that was given during the online eye-tracking
session (ten) nor with the gaze data as there are no gazes on the horizontal axis. The
validation data suggest that gaze data are accurate so this is not due to any off-set nor
drift, indicating that this participant did not look at the horizontal axis at all. Although
the axis could have been seen in a peripheral view, this is unlikely for reading off
numbers.

CONCLUSIONS AND DISCUSSION

The first conclusion is that these ten students used two strategies most frequently: a
case-value plot interpretation strategy applied onto a histogram and a computational
strategy. The case-value plot interpretation strategy is in line with many findings in the
literature (e.g., Cooper & Shore, 2010). The computational strategy was found in our
literature review but is rarely reported (Ismail & Chan, 2015).

The second conclusion is that several students reported strategies as well as answers in
their retrospective interview that did not match the answers given during the online
measurement and nor their gaze data. This indicates that a retrospective interview (a
thinking aloud protocol) might not always be reliable for secondary school students.
Gaze data are measured online (meaning: during the performance of the task) and are
therefore a useful complement in finding students' strategies.

The third conclusion is that even students who read titles and axis labels misinterpret
histograms. We therefore speculate that it will not suffice to learn students to (better)
read the labels of a graph. We conjecture that underlying students inappropriate use of
strategies is that they do not have understood the big ideas of data and distribution and
specific how these effect measures of centre and shape in different types of graphs.

Acknowledgement

This research is funded with a Doctoral Grant for Teachers from The Netherlands
Organisation for Scientific Research, number 023.007.023, awarded to Lonneke Boels.

References

Anderson, J. R., Bothell, D., & Douglass, S. (2004). Eye movements do not reflect retrieval
processes: Limits of the eye-mind hypothesis. Psychological Science, 15(4), 225-231.

Boels, L., Bakker, A., Van Dooren, W., & Drijvers, P. (2019). Conceptual difficulties when
interpreting histograms. A review. Manuscript submitted for publication.

Boels, L., Bakker, A., & Drijvers, P. (2019). Unravelling teachers’ strategies when
interpreting histograms: an eye-tracking study. CERME 11, Utrecht. Accepted manuscript.

Boels, L., Ebbes, R., Bakker, A., van Dooren, W., & Drijvers, P. (2018). Revealing conceptual
difficulties when interpreting histograms: An eye-tracking study. Paper presented at the
Tenth International Conference on Teaching Statistics, Kyoto, Japan.

PME 43 - 2019 2-119



Boels, Bakker & Drijvers

Cooper, L. L., & Shore, F. S. (2010). The effects of data and graph type on concepts and
visualizations of variability. Journal of Statistics Education, 18(2), 1-16.

Corbin, J., & Strauss, A. (1990). Grounded theory research: Procedures, canons and
evaluative criteria. Zeitschrift Fiir Soziologie, 19(6), 418-427.

Ericsson, K. A. (2006). Protocol analysis and expert thought: Concurrent verbalizations of
thinking during experts’ performance on representative tasks. In K. A. Ericsson, N.
Charness, P. J. Feltovich & R. R. Hoffman (Eds.), The Cambridge Handbook of Expertise
and Expert Performance, (pp. 223-241). Cambridge, UK: Cambridge University Press.

Friel, S. N., & Bright, G. W. (1995). Graph knowledge: Understanding how students interpret
data using graphs. Paper presented at the Annual Meeting of the North American Chapter
of the International Group for the Psychology of Mathematics Education, Columbus, OH.

Garfield, J., & Ben-Zvi, D. (2007). How students learn statistics revisited: A current review
of research on teaching and learning statistics. International Statistical Review, 75(3), 372-
396.

Ismail, Z., & Chan, S. W. (2015). Malaysian students’ misconceptions about measures of
central tendency: An error analysis. Proceedings of the 2nd ISM International Statistics
Conference 2014 (ISM-11), 1643, 93-100.

Lashley, K. S. (1951). The problem of serial order in behavior. In L. A. Jeffress (Ed.),
Cerebral mechanisms in behavior (pp. 112-136). New York: Wiley.

Meletiou-Mavrotheris, M., & Lee, C. (2005). Exploring introductory statistics students'
understanding of variation in histograms. Proceedings of the 4th Congress of the European
Society for Research in Mathematics Education. Sant Feliu De Guixols, Spain.

Orquin, J. L., & Holmgvist, K. (2017). Threats to the validity of eye-movement research in
psychology. Behavior Research Methods, 50(4), 1645-1656.

Schindler, M., & Lilienthal, A. J. (in press). Domain-specific interpretation of eye-tracking
data: Towards a refined use of the eye-mind hypothesis for the field of geometry.
Educational Studies in Mathematics.

Van Gog, T., & Jarodzka, H. (2013). Eye tracking as a tool to study and enhance cognitive
and metacognitive processes in computer-based learning environments. In R. Azevedo &
V. Aleven (Eds.), International handbook of metacognition and learning technologies (pp.
143-156). New York: Springer.

Whitaker, D., & Jacobbe, T. (2017). Students' understanding of bar graphs and histograms:
Results from the LOCUS assessments. Journal of Statistics Education, 25(2), 90-102.

2-120 PME 43 - 2019



STUDENT TEACHERS’ USE OF MEASURABLE PROPERTIES

Bruce Brown

Rhodes University

Measurement is an important part of the elementary school curriculum. But
weaknesses in prospective teachers’ knowledge of the concepts of ‘attribute’ and
‘measurement’ have been identified. Drawing on the modelling perspective, this
research investigates how a cohort of South African student teachers identify and
distinguish particular properties as measurable quantities, in their use of mathematics
to make sense of the world. Difficulties with measurement and the identification of
properties are noted. Also, a possible influence of appropriate property identification
on the precision of students’ arguments is noted, suggesting that the concept of
‘property identification’ should be considered alongside ‘attribute’ and
‘measurement’ in curriculum design.

INTRODUCTION

Elementary school mathematics provides the basic foundation on which all higher
mathematics is built. But more than this, it provides basic conceptual and operational
tools that all people could use to help make sense of the world and of their activity in
the world (OECD, 2017). In their elementary school learning, children engage with
two of the worlds of mathematics, the conceptual-embodied world and the proceptual-
symbolic world (Tall, 2008). Even though mathematical, these worlds are grounded in
everyday experience: of objects and their properties in the conceptual-embodied world
and of actions and their products in the proceptual-symbolic world (Tall, 2006). This
grounding links mathematics to children’s experience and so allows them to make
mathematical sense of their world and experiential sense of their mathematics. As well
as conceptual insight, mathematics brings precision, operational efficiency and
strategic power (Kilpatrick, Swafford and Swindell, 2001; Milgram, 2007; Schoenfeld,
2007) to the way we make sense of the world. Making mathematical sense of the world
is generally included in school curricula under the topic of measurement (Passelaigue
& Munier, 2015). But it is also important when formulating situations mathematically
to solve contextual problems or develop mathematical models (OECD, 2017).

Passelaigue and Munier (2015) discuss the importance of developing a grounded
understanding of the concepts of ‘attribute’ and ‘measure’ if we wish primary school
children to master the learning of measurement generally required in the Primary
School curricula. In their research into elementary school teacher’s specialized content
knowledge (Ball, Thames & Phelps 2008), they identify and discuss some of the
difficulties experienced by student teachers in distinguishing and relating these two
concepts. This paper provides further preliminary findings to support their results and
provides further insight into some of the misconceptions they identify, by including
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elements of horizontal mathematization in the analysis of how students formulate
situations mathematically.

From the perspective of modelling, the process of horizontal mathematization —
generating a mathematical model to represent salient features of a problem situation is
identified as an important stumbling block to many students (Jupri & Drijvers, 2016;
Verschaffel & De Corte, 1997). Identifying particular properties of things in the
problem situation as both corresponding to measurable attributes and appropriate for
solving the problem, is an important element of horizontal mathematization (Van den
Heuvel-Panhuizen, & Drijvers, 2013). Measuring for mathematical sense making in
elementary school mathematics may thus be seen as including three layers: First,
identifying particular properties in a situation that are relevant to the problem at hand
and relate appropriately to measurable attributes. Second, understanding general
attributes (such as length, area, speed, and so on) that may be compared and measured.
And third, being able to measure such general attributes (using particular instruments
and units) and so quantify these particular properties.

This paper discusses the manner in which a cohort of South African pre-service
education students, studying to become Foundation Phase (grade R—3) teachers, engage
with each of these three layers of sense making. It discusses the responses of students
to assessment questions that involve measurement and/or the identification and use of
quantities to solve situated problems. It is evident that, even though a pre-requisite for
acceptance on the programme was at least a pass in grade 12 mathematical literacy,
many students were not proficient with making precise mathematical sense of
questions, by identifying and quantifying relevant properties that could be
mathematicised.

THE RESEARCH PROJECT

This research forms part of a curriculum development / design research project that is
based on the premise that mathematics provides a means for making sense of the world
and that phenomena in the world provide means for making sense of mathematics. The
aim of the research is to develop a curriculum for the preservice education of primary
school teachers, that will generate a deep engagement with both common and
specialized mathematical content knowledge (Ball, et. al, 2008) important for
elementary school teaching. The aim is to provide an authentic experience of the
process of making sense of and with mathematics and so inducting student teachers
into mathematics as an activity (Van den Heuvel-Panhuizen, & Drijvers, 2013), to
enable them to foster and develop this sense making practice in their teaching of
primary school mathematics to children.

This paper presents a number of the insights generated from the early, exploratory (and
predominantly qualitative) phase of the project, focusing on those that relate to
measurement and the quantification of properties identified in situations being
modelled. The qualitative generation and justification of conjectures based on this
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exploratory research, is discussed in this paper. The second phase of the project will
include a quantitative investigation of this conjecture.

Student responses to four assessment questions were analysed and three will be
discussed in this presentation. Two questions involved measuring an irregular area.
These similar questions were set in the early and final assessments and so this data
provides some indication of the possible learning of the students. The third question
required students to relate time, distance and speed.

RESULTS
Questions 1 & 2: Area

These questions involved measuring an irregular area using two different drawn shapes
as units and then querying the relationship between the two different measurement
units and the corresponding measurement values. This paper will focus on the second
part of these questions.

The second, comparative, part of these questions asked students to work with two
different units, to get two different measurement values and then to identify how the
unit area comparison and the measurement value comparison related to each other.
Student responses were classified using a number of different criteria. First, comparing
the two units of area, was performed in 4 different ways: rational, descriptive, linear
and shape. For ‘rational’, students compared the area of the units, generating a rational
(multiplicative) relationship between the two. A qualitative comparison (such as only
identifying one as bigger) was classified a ‘descriptive’. ‘Linear’ comparisons involved
comparing the units along one, or possibly two linear dimensions. Finally, responses
that only compared the shape of the two units were classed under ‘shape’.

Rational Descriptive Linear Shape None /
unclear
Percentage 36 28 5 10 21
Q1)
Percentage 58 17 3 5 19
(Q2)

Table 1: Comparisons of unit areas

The second criteria for analysing student comparisons, related to the comparison of the
two measured values. Five different response types were identified: Rational, additive,
descriptive, unit area, conflated. The first three types compared the measured values,
but in different ways: ‘rational’ responses provided a rational (multiplicative)
relationship, ‘additive’ responses provided an additive (difference) relationship and
‘descriptive’ provided only a qualitative comparison. The other two response types
showed a lack of distinction between the measured value and the unit area: responses
classed as ‘unit area’ compared the area of the units, while those classed as ‘conflated’
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showed a conflation of the measured value with the area attribute, for example, a
change in value was discussed as a change in area.

Rational Additive Descriptive Unit area Conflated None/

unclear
Percentage 2 3 21 40 0 35
Q)
Percentage 21 3 9 23 6 38
(Q2)

Table 2: Comparisons of measurement values

Only 26% (Q1) and then 33% (Q2) of the students identified the measured values as
salient for this question, distinguishing these from the unit areas — with 2% (Q1) and
21% (Q2) comparing these rationally. A sizeable percentage of students, 40% (Q1)
decreasing to 23% (Q2), interpreted this question as requiring a comparison of the areas
of the two units and a similar proportion provided no, or unclear answers. This suggests
that, even after the course, approximately two thirds of these students did not
effectively distinguish between the attribute of area and the area measure.

The third criteria involved relating the two comparisons. Three classes were identified
in this analysis: Appropriate, descriptive and no relating. Responses that showed
(implicitly or explicitly) the reciprocal relationship between the two comparisons, were
classed as ‘appropriate’. Those providing a purely qualitative comparison were termed
‘descriptive’ and responses that did not relate the area and value comparisons were
classified as ‘no relating’. Many of these responses were a repeat of one or both of the
comparisons).

Appropriate  Descriptive No relating None /

unclear
Percentage (Q1) 7 10 45 38
Percentage (Q2) 21 8 26 45

Table 3: Relating comparisons

It is interesting that the 21% who compared the measured values appropriately (table
3), also identified and used the appropriate reciprocal relationship between value and
unit area. However, even at the end of the course, the majority of students — 83% (Q1)
and 71% (Q2) — did not clearly relate the unit and measured value comparisons. It
appears from these results that the students do show some progression of learning, but
that by the end of the course, the majority of students did not display stable conceptual
mastery of the process of area measurement in this situation.

An interesting observation emerged about student responses to the second area
question. In this question the first unit was a square and the second was an isosceles
right angled triangle, that could be constructed by subdividing the square along the two
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diagonals. This triangle was similar to, but half the area of, the triangle formed by
bisecting the square by a single diagonal. Even though the two units were drawn to
scale, it was remarkable that 36% of the students interpreted the second unit as the
triangle that formed half the square. This may have been a slip, where the similarity in
shape was sufficient to convince the students that this choice was good even though
the area was not conserved. But even so, the dominance of shape over conservation
again suggests the lack of stability, even fragility, of these students’ understanding of
area measurement.

Question 3: Distance, speed and time

The third question required students to relate time, distance and speed for two people
travelling the same route in different ways. The question asked the students to show
that two people who sharing a bicycle equally (one riding then walking, the other
walking then riding) when they both ride at the same speed and walk at the same speed,
results in them both taking the same length of time for the journey. Responding
appropriately to this question requires at least a qualitative conceptual understanding
of the general attributes of distance, speed and time and the relationships between them.
But it does not require measurement to quantify these attributes.

It was apparent in student responses that all the students who explicitly mentioned
distance, speed or time, did so in such a way that indicated at least a qualitative
understanding of this attribute. Three different ways of mentioning this attribute were
noted. These were a descriptive/comparative mention, a special case example of a
possible measurement, and a more general discussion that showed the students
awareness that this attribute could be quantified.

Quantifiable Special case Descriptive None
Q) (S) (Desc) mentioned
Distance (%) 74 9 2 15
Time (%) 61 8 18 14
Speed (%) 44 5 11 41

Table 4: Students demonstrated understanding of each attribute

In the case of distance and time, over 80% of the students showed at least a qualitative
understanding of the attribute. When it came to speed, 59% of the students explicitly
showed such an understanding.

The second response characteristic that was analysed was the nature of the argument
provided by the students. Five categories of argument were identified: Explicit,
Implicit / incomplete, Special case, Descriptive and None / inappropriate.
‘Descriptive’ arguments were those that included no more than descriptive
comparisons of any of the attributes relevant to the problem. ‘Implicit / incomplete’
arguments drew on the relationship between the attributes, but did not explicitly detail
either this relationship, or the observation that two journeys over the same distance at
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the same speed would take the same time. ‘Special case’ arguments presented specific
values for at least some of the attributes and drew the general conclusion from this.
‘Explicit’ arguments explicitly mentioned either the relationship between attributes, or
the observation that two journeys over the same distance at the same speed would take
the same time. Every explicit response provided was also complete and correct and so
these characteristics were not separated in this analysis.

Explicit Special Implicit/  Descriptive None /
case incomplete inappropriate
Percentage 6 6 29 44 16

Table 5: Argument types

It was noted that the students’ understanding of speed showed some relationship to the
argument they provided in response to this question — only 3 students (5%) who did
not mention speed, provided more than a general and often vague discussion of
possibilities.

A third response characteristic was also identified as well related to the arguments
provided by students. This was whether or not students were able to identify the
particular properties that possessed each of these attributes and were relevant to this
problem: the attributes of the person riding, the attributes of the person walking, the
attributes of the friend riding, and the attributes of the friend walking. The following
categories relating to this separation, were identified: No response, no separation,
unclear, implicit and explicit. For ‘unclear separation’, some attempt was made to
identify different properties, but this identification was not clear. An argument showed
some appropriate awareness of the separate properties, even though they were not
explicitly identified was classed as ‘implicit’. An ‘explicit’ argument showed some
explicit identification and relating of the particular properties corresponding to at least
two of the attributes involved.

Explicit | Implicit Unclear No separation | No response
Percentage 23 23 11 36 9

Table 6: Separation of particular properties vs Presentation of speed

The identification of particular properties possessing the different attributes also
appeared closely related to more precise and less descriptive arguments. For this
reason, these proportions are cross tabulated against the students’ presentation of the
speed attribute and related to the students’ argument form, as shown in graph 8. It
appears from this graph that two factors that may have contributed to the precision of
the argument: Firstly, the understanding of speed as a quantifiable attribute related to
distance and time, and secondly the identification of specific properties possessing
these attributes, that were appropriate to the problem.
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Graph 7: Comparison of argument types
CONCLUSION

This research supports the findings of Passelaigue and Munier (2015) that many
prospective elementary school teachers do not distinguish appropriately between the
concepts of ‘attribute’ and ‘measurement’, when using mathematics to make sense of
the world.

It also suggests a third concept that could be included for consideration in order to
extend our insight into students understanding of this process. This is the concept of
‘properties’ — particular properties of objects or actions that possess a general
measurable attribute, for it appeared that the capacity to identify and distinguish
between two different properties that corresponded to the same general attribute and
then relate the differing values of the attribute, was a contributing factor to the precision
of students’ description and argument when using mathematics to make sense of a
contextual situation. It may be this precision that students are considering in their
incorrect responses to Passelaigue and Munier (2015), that measurement makes an
attribute of an object precise, rather than providing an approximate value of the precise
attribute.

Even in the simple case of the cardinality of a set of numbers, it was possible for
students to identify different properties as corresponding to this attribute. This suggests
the possibility of confusion due to the standard use of the term ‘number’ to refer to
digits in South African schools.

These observations suggest that students need a greater exposure to this three layered
process of measurement for sense making, together with the development of the
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capacity to conceptualize, discuss and work with these analytical distinctions in their
mathematical practice and their teaching.
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Situation-specific skills (situational perception, interpretation, decision-making) as a
structural relation between teachers’ knowledge and their actual teaching is gaining
more and more importance in educational research. However, there are multiple
theoretical approaches and a lack of standardized instruments, especially for early
childhood teachers. The project Vimas num addresses this gap by developing a) a
coherent and substantive definition of the construct ‘situational perception’ for early
childhood teachers and b) a video-based instrument to measure this construct. But
although we followed a proved development approach with several cycles, our results
show that our operationalization is not yet successful. This gives reason to discuss the
complexity of the construct and especially its measurement via standardized test
instruments.

INTRODUCTION: SITUATION-SPECIFIC SKILLS AS PART OF TEACHER
COMPETENCE

Competence models describe teachers’ professional competence in their structure
(Gasteiger & Benz, 2018a; JenBlen et al., 2015, Lindmeier, 2011). Concerning this
competence structure different authors currently promote approaches that
conceptualise competence as a continuum integrating (math-related) knowledge and
beliefs on the one side, skills in actual teaching (performance) on the other side and
situation-specific skills as a structural relation in between (Blomeke, Gustafson, &
Shavleson, 2015; Gasteiger & Benz, 2018a). Theoretically, it is assumed that these

//Disposition \ Situation-specific skills\ Performance

Cognition Interpreta-
u Observable
behavior
Affect-

&otivation J

s,
Perception
making
Figure 6: Competence as a continuum (Blomeke et al., 2015, p. 7)

0

situation-specific skills function as a bridge between disposition and performance (see
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Figure 1). The situation-specific skills are further differentiated in situational
perception, interpretation and decision-making.

To get an overview over the state of research on teachers’ situation-specific skills in
mathematics, Stahnke and colleagues (2016) conducted a systematic review. They
found 60 different studies focusing on teachers’ perception, interpretation, and
decision-making. In their analysis Stahnke et al. (2016) found meaningful differences
in the theoretical foundation as well as in the research methods used. They state that
the studies use multiple terms to describe the same theoretical aspects or vice versa that
the same terms were used to describe different theoretical aspects. Concerning the
research methods, they found a variety of research instruments used, but only 10
studies collected data with a standardized test instrument. Additionally, only two
studies integrated a sample of early childhood teachers. These results indicate a lack of
standardized instruments measuring situation-specific skills but also a research gap
concerning the situations specific-skills of early childhood teachers. Additionally, the
findings call for a clear definition of the construct of situation-specific skills as a whole
but also of situational perception, interpretation and decision-making in detail in order
to soundly operationalize each of the given constructs. This led us to the question: 1)
How could early childhood teachers’ situation-specific skills be conceptualized? To
answer this question, we firstly outline the context of early childhood teaching and
summarize the theoretical foundation on early childhood teachers’ situation skills. We
will focus on early childhood teachers’ situational perception, as perception seems to
play a central role in early childhood teachers’ competence structure (Dunekacke,
2016; Gasteiger & Benz, 2018a). This, as well as the lack of standardized research
measurements led us to our second question: 2) How can early childhood teachers’
situational perception be measured? To answer this question, we present our attempt
to develop a standardized measurement approach by outlining the steps of the
development process and their results.

SITUATION-SPECIFIC SKILLS IN THE EARLY CHILDHOOD CONTEXT

Lately, several authors have highlighted early childhood teachers’ mathematics-related
competence and its relevance to children’s mathematical learning (e. g. Dunekacke,
JenBen, & Blomeke, 2015; Gasteiger, 2014). The job of early childhood teachers differs
from the job of school teachers as early mathematics education often takes place in
natural learning settings and has a less formal character than learning in school
(Gasteiger, 2014; van Oers, 2010). To guarantee that children benefit from these more
informal mathematical learning situations, early childhood teachers do not only need
theoretical based knowledge but additionally sound situation-specific skills. The
conceptualization of these situation-specific skills is based on the demands of early
mathematics education. In this context, situational perception is described as
identifying mathematics in children’s play and recognising everyday situations with
mathematical potential (Bjorklund & Barendregt, 2016; Gasteiger & Benz, 2018a).
Interpretation is related to the mathematical development of the child and decision-
making focuses on the planning of mathematical activities for children as well as the
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spontaneous act of offering support in a natural learning situation (Gasteiger & Benz,
2018a).

In a typical kindergarten situation with mathematical learning potential an early
childhood teacher has to activate his/her situation-specific skills based on his/her
knowledge. To use the learning potential of this situation, the early childhood teacher
firstly has to interpret this situation as one relevant for mathematical learning (van
Oers, 2010). This interpretation in turn depends on the mathematical aspects the early
childhood teacher perceives in the given situation. If the early childhood teacher cannot
perceive the mathematical potential of the situation or only parts of it, (s)he will most
likely not use the full potential of the situation to support the mathematical learning of
a child (see also Bjorklund & Barendregt, 2016; Gasteiger & Benz, 2018b). Following
this line of argument, we do assume that situational perception is based on theoretical
knowledge and that sound skills in perceiving mathematical concepts in everyday
situations in kindergarten can be seen as a precondition not only for interpretation and
decision-making but also for good mathematics teaching in early childhood.

Some empirical results also lead to the assumption that early childhood teachers’
situational perception plays a central role in early mathematics education: Dunekacke
and colleagues (2015) find relations between professional knowledge and
mathematics-related perception and decision making. Additionally, Gasteiger and
Benz (2018b) show qualitative results indicating an impact of situational perception on
early childhood teachers’ pedagogical and didactical actions. Lee (2017), however,
found no statistical relation between perception and interpreting. These contradictory
results concerning the relevance of situational perception could, as also Stahnke and
colleagues (2016) argued, be based on either different theoretical foundations or
different methodological approaches or both, which requires a closer look at the
situational perception of early childhood teachers.

EARLY CHILDHOOD TEACHERS’ SITUATIONAL PERCEPTION
CONCERNING MATHEMATICS

Situational perception was picked out as a field of research by Goodwin (1994) under
the keyword professional vision. He defined professional vision as “socially organized
ways of seeing and understanding events that are answerable to the distinctive interests
of a particular social group” (p. 606) and reasons that “the ability to see relevant entities
is lodged not in the individual mind but instead within a community of competent
practitioners” (p. 626). Van Es and Sherin (2002) adapted this concept of professional
vision to the context of mathematics education. They called this facet of teacher
competence ‘noticing’ and defined it as “learning to identify what is noteworthy about
particular situations” (p. 573) which “involves using what one knows about the context
to reason about a situation” (p. 574).

In addition, at the field of early childhood education situational perception is discussed
from a diagnostical point of view and described by the term observation or pedagogical
documentation (e.g. Heiskanen, Alasuutari & Vehkakoski, 2018; Schulz, 2015). The
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focus of this line of research lies on teachers’ skills in and methods of observation and
pedagogical documentation of children’s development (e.g. Knauf, 2015).

The concept of situational perception of early childhood teachers concerning
mathematics can be traced back to aspects of both described research fields:
professional vision/noticing in mathematics education and observation in early
childhood education. Definitions of situational perception of early childhood teachers
in mathematics stress, however, that situational perception is more than observing
children’s mathematical development: Gasteiger and Benz (2018a) define situational
perception as recognising the mathematical relevance of everyday situations,
Dunekacke (2016) as the identification of surface characteristics (as mathematical
themes) and more sophisticated characteristics (as the level of development of
children). Both definitions have in common that they do not only focus on the learning
process of the child but also include the perception of the mathematical potential of
different situations in a kindergarten setting.

RESEARCH INTEREST

Recently, more and more empirical research focuses on early childhood teachers’
situational perception. Bjorklund and Barendregt (2016) assume based on survey data
of Swedish early childhood teachers that teachers “seem to be quite perceptive of their
environment and the mathematics that may be recognized within it” (p. 370) — except
if it comes to situated mathematics learning which is especially important in early
mathematics education. Additionally, Lee (2017) found differences in early childhood
teachers’ situational perception related to years of teaching experiences as well as
educational background. Bruns and colleagues (in press) compared the situational
perception of early childhood students with and without mathematical background and
found that students with mathematical background identified more mathematical
aspects in given video-situations. Although these results give a first impression of early
childhood teachers’ situational perception in mathematics, empirical research is still at
the beginning. This is partly related to a lack of instruments to measure this comparably
new and complex construct: Only the study of Dunekacke et al. (2015) uses a
standardized test instrument, while the other studies use interview instruments (e. g.
Lee, 2017) or qualitative survey data (e. g. Bjorklund & Barendregt, 2016). To get a
more detailed picture of early childhood teachers’ situational perception in
mathematics, standardized instruments that can be used in quantitative studies are
needed. The development of such an instrument is the aim of the project Vimas num.
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METHODS

The development of the test-instrument followed Wilson’s (2005) Four Building Block
approach (see Figure 7): In a first step, the construct map defines the content of the
construct ‘early childhood teachers’ situational perception concerning mathematics’
and its characteristics concerning the underlying continuum ‘not able to perceive
mathematics’ to ‘expert in situational perception’. Afterwards, we designed items that
seemed suitable to measure this construct. The outcome space is the basis for the
scoring of these items. Finally, the measurement model relates the outcome space to
the construct and helps us to interpret the item scores in relation to the construct.

Construct
Map

/7 N

Measurement .
( Model ( Item Design
DN e
Outcome

Space

Figure 7: Construct Modeling: The “Four Building Block™ Approach (Wilson, 2005)
Test instrument

As described, early childhood teachers’ situational perception concerning mathematics
is defined as recognising mathematical aspects in everyday (play) situations
(Duneckacke, 2016; Gasteiger & Benz, 2018a). Hence, items measuring this construct
need to be based on concrete situations. To realize this, different authors propose a
video-based measurement approach (e.g. Blomeke, 2013; Dunekacke, 2016;
Lindmeier, 2013).

Decide for each aspect, if it describes the mathematical content
of the situation concerning set and numbers correctly.

v o | [
(1) Comparison of sets X
(2) Seeing 5 items at a glance X
(3) Ordering numbers X
(4) Numbers as representation of stets X

Figure 8: Example of the items 1.1 to 1.4, the cross indicates the right answer
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Following this proposal, we developed four video vignettes showing typical
mathematical activities of children in a real kindergarten setting. To these vignettes,
we collected open answers via a written questionnaire from n = 54 pre-service and n
= 52 in-service teachers to the question: Which mathematical aspects do you see in the
given situation? After several considerations concerning the item design and a pilot
study with multiple-choice items, we developed - based on the open answers - four
complex multiple-choice items to each video. For each item participants have to decide
whether the given mathematical aspect is part of the situation. Figure 3 shows item
examples.

Sample and item analysis

The 16 video-based items (four to each video) were piloted with a sample of N = 91
early childhood teachers. The teachers had visited a professional development course
on early mathematics education. They were average 41.58 years old (SD = 10.66, Min.
=21, Max. = 62) and had work experience from 1 to 43 years (M =16.13, SD =10.13).

83 of the participants were female, 8 participants were male.

To examine item quality, we used descriptive analysis and checked if the 16 items fit
to the 1PL Rasch-model (software package eRm, Mair, Hatzinger & Maier, 2018).

RESULTS

Looking at the descriptive results, we found two items that were solved by nearly the
whole sample: Item 1.4 was solved by 93.0% (SD = .25) and item 4.4 by 99.0% of the
sample (SD = .10). Therefore, both items were excluded from further analysis. The 14
items left and included in the modelling showed solution rates from 21.0% to 89.0%.

To check, if the items left fit to the 1PL Rasch-model, we used the Wald test, which
examines whether the items are unidimensional, and mean square fit statistics. Looking
at the results of the Wald-test, seven items seem to be problematic: one item to video
1 and 4, two items to video 3 and three items to video 2. Concerning the mean square
fit statistics, no further items showed a misfit. However, five of the remaining six items
are quite easy and calculation of Cronbach’s a fails due to negative correlation between
the six items, indicating that the operationalization of the construct is not yet satisfying.

DISCUSSION

As stated there i1s a need for standardized test instruments to measure early childhood
teachers’ situational perception concerning mathematics. Within our project, we made
a proposal for a clearly defined construct of early childhood teachers’ situational
perception. Based on this construct, we made a first attempt to operationalize early
childhood teachers’ situational perception. However, the developed items did not prove
to be a reliable measurement, although we followed a proved development approach
with several cycles and data analysis showed a fit of six items to the Rasch-model. This
shows the complexity of the construct situational perception and its measurement.

Looking at the problems of the measurement model, three reasons could be identified:
One reason could be the small sample of items and participants. Another reason could
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be, that the items developed are quite easy and therefore do not discriminate well
between the participants. As Wu et al. (2016, p. 152) put it: “if all items are equally
“bad” ([...] low discrimination power), the items will still show good fit, because they
have equal discrimination”. Additionally, our analysis did not consider that four items
each were nested within a situation. One possible approach to overcome these problems
would be to group the items of each video to one item and use a partial credit Rasch-
model instead of the 1PL Rasch-model. This model needs, however, a larger data basis
— considering the sample size but also the number of items.

The next steps will therefore be a careful analysis of the problematic items by using
inter alia a qualitative think aloud study. Based on these results, we will revise our
existing items and develop further vignettes and accompanying items. The success of
these steps will be examined by another pilot study with a larger sample of participants.
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The purpose of this paper is to describe one characteristic of instruction focused on
mathematical errors and imprecisions in content and language that instructors make
while teaching algebra in community colleges within the United States. Findings from
our study reveal that instructors’ mathematical errors and imprecisions relative to
language and notation are present during instruction, which have the potential to lead
to a lack of clarity and student misconceptions.

INTRODUCTION

For the past decade, many states in the U.S. have implemented the Common Core State
Standards for Mathematical Practice (SMPs) in elementary and secondary education
(National Governors Association Center for Best Practices & Council of Chief State
School Officers [NGA Center & CCSSO], 2010). One of these practices includes
SMP6: Attend to Precision which states that students should learn to communicate
precisely and accurately in both their writing and verbalization of mathematical ideas.
As a companion publication to support the implementation of the Common Core in the
U.S., the National Council of Teachers of Mathematics published Principles to Actions
(NCTM, 2014) to illuminate the Mathematical Teaching Practices (MTPs) that
instructors should weave into every lesson in order to build students’ mathematical
practices. One of these practices includes MTP3: Use and Connect Mathematical
Representations where instructors are expected to “engage students in making
connections among mathematical representations to deepen understanding of
mathematics concepts and procedures and as tools for problem solving” (p. 24). In
order to illuminate mathematical connections and help students attend to precision,
instructors need to use mathematically precise language and notation when making
their thinking public in order for students to develop appropriate and robust ways of
knowing mathematics. Otherwise, the potential for a lack of clarity of the mathematics
can persist and ultimately, student misconceptions of the content may develop.

This study is situated in U.S. community colleges (tertiary-type B institutions), which
offer courses in the first two years of post-secondary education (OECD, 2017). These
institutions provide advanced mathematics courses (such as Calculus and Differential
Equations), as well as the prerequisite algebra courses needed for all science,
technology, engineering, and mathematics degrees. Community colleges serve almost
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half of all U.S. post-secondary students (Snyder, de Brey, & Dillow, 2018), yet little
research has been conducted to understand the quality of instruction in these colleges.
With the emphasis in secondary education on attending to precision, as well as using
and connecting mathematical representations, it is important to understand the ways in
which content and language precision is (or is not) enacted in community colleges.

THEORETICAL FRAMEWORK WITH SUPPORTING LITERATURE

Consistent with Cohen, Raudenbush, and Ball (2003), we believe instruction is defined
as the interaction among faculty, students, and content that is embedded in particular
contexts and evolves over time. We contend that this belief about instruction
acknowledges the nature of knowledge exchanges between the instructor and students,
and ultimately recognizes that communication among these individuals is critical for
developing an understanding of the content. Evidence in secondary mathematics
suggests that, under certain conditions, students do learn more mathematics and that
understanding the conditions for which teaching causes learning is critical for
improving education (Hiebert & Grouws, 2006). Specifically, we believe that attending
to the nature of communication exchanges with a lens towards precision and
connections can illuminate the conditions that allow students to learn.

One strategy for teaching mathematics is for instructors to leverage students’
mathematical errors. Borasi (1996) wrote that making errors in mathematics can serve
as productive sources for learning opportunities. Although using student errors to
leverage a learning opportunity is shown to have instructional benefits, un-identified
instructor errors or imprecisions cannot productively advance student learning. Kalder
(2012) stated “When students hear correct language being used consistently and are
asked to do so themselves, their understanding of mathematical concepts and
procedures will no doubt improve” (p. 91). This area of interest serves as the basis for
this investigation which specifically attends to the utterances and written notation
provided by the instructor while teaching algebra. We assume that the nature of
communication exchanges has a significant impact on students’ development of key
mathematical ideas, and that attending to precision when communicating mathematics
is essential to students’ learning of the content.

A common practice in teaching mathematics is to use everyday language when
describing and explaining ideas. For example, instructors may use phrases such as
“plug in” when describing the process of evaluating a function at a given input value.
Another example is the use of “cancel” when instructors are describing the process of
dividing common factors. The use of pronouns (e.g., it, this, that) to refer to various
mathematical expressions and objects is also a common practice, yet an overuse of
such pronouns when speaking mathematically can often obscure the interpretation and
mathematical meaning for students. Adams (2003) suggests that instructors can
facilitate students’ recognition and use of technical language instead of relying on
informal language to illustrate mathematical concepts and meanings to everyday words
and “by explicitly evaluating students’ ability to use technical language appropriately”
(p. 149). In light of this movement towards mathematical precision, we were curious
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how instructors at the post-secondary level attended to the mathematical precision
envisioned for students. Thus, this paper addresses the following research question: /n
what ways do errors and imprecisions in content and language surface during the
teaching of mathematics in community college algebra courses?

METHODS

The wider focus of this study is on the various aspects of mathematics instruction at
community colleges, captured through video-recorded instructional episodes. Using
the video coding rubric, EQIPM: Evaluating the Quality of Instruction in Post-
secondary Mathematics (Cawley et al., 2018), we chose one characteristic of
instruction, Mathematical Errors and Imprecisions in Content or Language (MEICL),
that was intended to capture instructional events that are mathematically incorrect or
that demonstrate problematic uses of mathematical ideas, language, or notation. This
characteristic applies to the work and utterances of the instructor in the course. The
EQIPM builds upon the work in secondary mathematics by Hill et al. (2008) and Litke
(2015) and extends their work to the community colleges.

During the Fall of 2017, trained observers video-recorded 2-3 whole-class sessions
from 44 instructors covering mathematical topics such as linear, rational, or
exponential equations and functions. The instructors, who volunteered to be observed,
were located at six diverse community colleges, which represent a range of institution
size, degree of urbanicity, and region (Southwest, Midwest, and Central in the U.S.),
and student background. In total, 143 class sessions were video-recorded with over 190
hours of instruction. The EQIPM rubric was used by 17 trained coders to rate the
characteristics of instruction that appeared in each 7.5-minute segment (n = 1,576
coded segments of which 1,236 are full 7.5-minute segments) of every class session (n
= 143). A rating of 1 to 5 representing the quality of instruction was assigned by coders
for each segment. Along with assigning a rating, coders provided supporting evidence
for each rating they assigned by documenting specific times and a brief explanation of
the quality of the characteristic based on the guidelines described in EQIPM. For the
MEICL characteristic, a rating of 1 indicated that no errors or imprecisions were made
or that errors or imprecisions were clearly corrected within the segment. A rating of 3
indicated that content errors and/or imprecisions occur in the segment or that errors
and/or imprecisions obscure the mathematics, but for only part of the segment. A rating
of 5 indicated that content errors and/or imprecisions occur in most or all of the
segment, errors and/or imprecisions obscure the mathematics of the whole segment, or
errors and/or imprecisions disrupt the opportunity for students to make sense of the
content. Ratings of 2 or 4 were reserved for “in between” cases. For example, a 4 was
assigned when the error and/or imprecisions were more egregious than that of a rating
of 3, but were not quite as persistent as those that received a rating of 5. We chose to
specifically look at this characteristic since this particular code did not load with any
of the other characteristics in EQIPM when a factor analysis was performed.
Furthermore, a similar instructional characteristic from the Hill et al. (2008) and Litke
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(2015) rubric did not load in their factor analysis, suggesting the need to take a closer
look at the evidence of this characteristic.

The MEICL characteristic specifically focuses on the errors and imprecisions made by
the instructor. Coders ignored intentional errors or imprecisions made by the instructor
or errors that were corrected within the segment. For this paper, we focus on three areas
within this rating: imprecision in language, imprecision in notation, and mathematical
errors that muddle the understanding of the content. Imprecision in language include
use of colloquial language to describe mathematical terms (e.g., cancel, top, bottom,
over). Imprecisions in language can also include use of pronouns that makes it unclear
as to what the instructor is referencing (e.g., this, that, move it over there). Notation
includes conventional mathematical symbols (such as +, -, =) or symbols for fractions
and decimals, square roots, angle notation, functions, exponents, etc. Imprecisions in
notation might include inaccurate use of the equal sign, parentheses, or division
symbol. Imprecision in notation can also include lack of accurate labelling in problems
(e.g., not labelling important aspects within a graph such as the x- and y-axes or the
function). Finally, mathematical errors are considered explicit mathematical mistakes
that the instructor may commit. Errors could be instances where the instructor does not
take into account all possible contexts (e.g., horizontal asymptotes are never crossed
by the function, anything to the 0 power is 1), or contradicts given definitions or
assumptions.

For this paper, we isolated segments that were rated as a 4 or 5 for the MEICL
characteristic. A total of 35 segments received a rating of 4 (n = 31) or 5 (n = 4), from
17 instructors. Of those 17 instructors, four instructors had three or more segments that
received a rating of 4 or 5. The content areas that received these ratings were rational
and exponential equations or functions. Once we isolated the segments that received a
4 or 5 rating, we analysed the coder comments provided for each rating and identified
the four instructors with three or more segments in this group. From here, we reviewed
the video segments to further analyse relative to the MEICL characteristic to identify
the context and potential subtleties associated with the rating given by the coder.

FINDINGS

The following discussion is organized based on imprecisions in language, imprecisions
in notation, and mathematical errors presented during instruction. Among the 35
segments rated as a 4 or 5, imprecisions in language was the most prevalent. One of
the most common instances included use of colloquial language or use of pronouns.
For example, when teaching about how to translate between logarithmic and
exponential notation, instructor 41322 used imprecise words and phrases to refer to
mathematical statements or procedures, such as “on the bottom... wanted to move it
up..." when referring to manipulations of fractions or referred to the argument in a
logarithm as a “guy” (e.g., "this guy equal to this here..."). He used the phrase “cancel”
throughout his description of logarithms to indicate principles such as log,b% = a
where he explained that log; and the argument b would “cancel out.”
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During instructor 41022’s lesson on how to simplify a complex fraction, the
instructor’s imprecise language left two students confused. At a certain point in the
problem, students were expected to simplify the fraction by dividing common factors.
The following solution was provided for the students:

-

Figure 1: Board work for instructor 41022.

The instructor described his work that led to the simplified response of m_—jn by pointing

to the factors m — n and n — m and saying "these almost cancel, but the negative is
backwards." One student asked the instructor to clarify how he manipulated the
numerator from n —m to get —(m — n). The instructor replied, "If we factor out a
negative...all that does is just toggle the signs...this minus is left over" (pointing to the
-1 in the numerator). The way that the instructor described his solution was unclear as
he continuously referred to “factoring out a negative” rather than indicating that he was
factoring out a negative one. He used the term “minus” and “negative” interchangeably
and did not describe the mathematical result of distributing the negative into the factor
to show that it was equivalent to the original. After a few minutes, another student
indicated that she still did not understand how the instructor “got the one out” of the
factor in the numerator. The instructor simply proceeded to explain his work in the
same way as he originally offered to students. This explanation had many imprecisions
in language through the use of pronouns, as well as imprecise mathematical terms, that
clearly confused at least two students in this segment and his further explanation
potentially did little to clarify the mathematics for the students.

Imprecisions in notation were also apparent in many of the segments that were rated a
4 or 5, though not as notable as imprecisions in language. In particular, there seemed
to be imprecisions in writing function notation. For example, instructor 11423 spent

time discussing five different transformations of the function h(x) = % While he wrote

h(x) = %+ 1 on the whiteboard, he also wrote the additional transformed functions

without function notation or an equals sign to indicate an equation. He simply wrote
1 1 1

the following expressions on the whiteboard: 1_ 1, , , + 1. In this
x x-1" x+1" x-1

example, the instructor described each of these as being rational functions, however,

did not use any function notation or an equals sign to indicate an equation as opposed

to an expression. Similarly, instructor 10322 did not use precise notation when

describing composition of functions. In an example of a function f composed with g,

he opted to denote the composition as “fog” (in his written and verbal explanation)

without attending to precision in notating the composition as f(g(x)) or (f o g)(x).

PME 43 - 2019 2-141



Cawley, Strom, Mesa, Watkins, Duranczyk & Kimani
4%3 'g\»,b

k2017

(ox-1t

Figure 2: Board work for instructor 10322.

He also did not use an equals sign to indicate an equation, thus the idea of a functional
relationship among inputs and outputs was non-existent (see Figure 2). In this example,
his work implies that the result of a composition is an expression, which loses the
critical idea that a function relates an input to its output, and that when composing
functions, a new equivalent function is created.

Instructor 10322 also demonstrated imprecision in notation when he sketched graphs,
ignoring important features such as labelling axes, using function notation, as well as
indicating that the function continued beyond the scope of the sketch by using arrows
at the ends of the function. Figure 3 shows what the instructor wrote on the whiteboard
to illustrate the graph of the functions f(x) = 2% and g(x) = 2**2,

/%)Z 0«4,2

]e“’ :
A

i

Figure 3: Imprecision in notation when sketching the graph of two functions.

In this example, neither of the functions are labelled in the graph, which may lead to
confusion when identifying each function and their subsequent transformation.
Anytime the instructor 10322 sketched graphs of specific functions, he consistently did
not write the equation using function notation, indicating that he was sketching an
expression which is erroneous. For example, previously in the lesson he showed the
graph of 5% without indicating a functional relationship between input and output
values. The mathematical error in writing the function only as an expression removes
the necessity of having an output, y, for the function with input of x. This instructor’s
work undermined the topic of functions, specifically notation, which is a challenging
topic for students (Breidenbach, Dubinsky, Hawks, & Nichols, 1992).

Finally, we saw examples of mathematical errors in the work that instructors wrote on

the whiteboard. A mathematical error came when instructor 11432 graphed the
function f(x) = ;2__14

instructor sketched the following on the whiteboard shown in Figure 4 (left graph):

Using a table of values created by a graphing calculator, the
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)

x—1
x2—4

Figure 4: Instructor’s graph of f(x) = on the left, correct graph on the right.

The graph has certain key pieces of information, including the two vertical asymptotes
and the horizontal asymptote. However, the graph is incomplete; there are two sections
of the graph missing and the function is incorrectly plotted: the function is positive
when —2 < x < 1 and negative when 1 < x < 2. While the instructor did indicate in
a subsequent segment that the source of the error was that he had entered the equation
incorrectly in the calculator, he did not correct the graph written on the whiteboard.

DISCUSSION

The current work demonstrates examples of imprecisions in language, imprecisions in
notation, and mathematical errors that were detected in the video coding of
instructional episodes. In particular, we noticed that many important mathematical
ideas were reduced to singular words or pronouns that lost the rigor and meaning of
the mathematics being discussed. The mathematical notation, specifically examples of
graphing and using function notation, demonstrated what appeared to be shortcuts for
writing the information on the board and had the potential to contribute to a lack of
clarity of the mathematics for students.

We believe that making mathematical errors is a key component to learning, and that
therefore, decomposing mathematical errors are an important process to better
understanding mathematical content (Borasi, 1996). However, mathematical errors are
only useful if they are recognized in the moment and those involved can engage in
fruitful discussion of the error. In our case, we observed mathematical errors that were
generated by the instructor and not resolved within the segment, which have the
potential for students to develop misconceptions of the mathematics.

We see the mathematical imprecisions as the more subtle and challenging aspect of
teaching. Instructors are often required to cover a vast amount of content in a short
period of time, which may result in a lack of precision. However, when multiple
imprecisions occur consistently and without connections to the appropriate
mathematical language and notation, we believe that this practice can potentially
contribute to students’ development of mathematical misconceptions and lack of clarity
that may further obscure students’ understanding of the material.
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DIALOGUE AND SHARED COGNITION: STUDENT-STUDENT
TALK DURING COLLABORATIVE PROBLEM SOLVING

Man Ching Esther Chan, David Clarke
The University of Melbourne

Student-student talk has been found to play an important role in facilitating classroom
learning in mathematics across cultures. This report examines the socio-cognitive
activity associated with meaning negotiation in the mathematics classroom. Terms
such as co-cognition, inter-cognition, and intra-cognition are operationalised using
data from student collaborative problem solving activity in a laboratory classroom to
explicate the socio-cognitive aspect of meaning negotiation within a mathematics
classroom setting. We argue that awareness of these different forms of socio-cognitive
activity may have useful pedagogical implications for facilitating productive classroom
dialogue.

BACKGROUND

The notion of shared cognition conceptualises cognition as a collective and social
process beyond the individual. In the mathematics classroom setting, shared cognition
can be seen as occurring during meaning negotiation between teacher-student and
student-student interactions as students are initiated into the discourse of the
mathematics classroom. In this report, we examine the socio-cognitive activity
associated with individuals’ participation in meaning negotiation through collaborative
problem solving. In particular, we examine the socio-cognitive aspect of meaning
negotiation by identifying indicators of shared cognition. The connection between
these indicators of shared cognition and dialogic processes is discussed.

Socially shared cognition

Vygotsky’s (1978) work on the sociocultural nature of learning generated high interest
in the role that a more able other (e.g., a caregiver or a peer) might play in facilitating
the learning of individual children, while also highlighting the cultural historical
context of both knowledge and learning. This sociocultural view of learning directed
researchers’ attention to the importance of both the context in which learning occurs
and the primacy of the culturally-framed social interactions through which learning
occurs. Contemporary theories such as Distributed Cognition (Hutchins, 2006) and the
Social Brain hypothesis (Dunbar, 1998) and terms such as shared cognition (Resnick,
Levine, & Teasley, 1991) and interthinking (Littleton & Mercer, 2013; Mercer, 2000)
continue the expansion of the notion of cognition from a strictly individualistic process
to a collective process.

Rather than viewing social and cognitive perspectives of learning as dichotomous, the
social constructivist view integrates both perspectives in conceptualising the learning
process. In their effort to resolve the social and cognitive divide in psychological
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theory, Resnick and her colleagues (1991) used the term shared cognition to describe
“cognition that is not bounded by the individual brain or mind” (Resnick et al., 1991,
p. 1). Drawing from the work of Vygotsky (1978) and Mead (1934), Resnick asserted
that the kinds of interpretative processes available to individuals can be shaped by
social experience. Instead of focusing on how individuals think about social
phenomena, social processes can be treated as integral to cognition, and examined in
terms of the way in which people jointly construct knowledge through processes
shaped by particular social purposes and interactions.

Classroom learning as meaning negotiation

In terms of our conceptualisation of classroom learning, the process of learning can be
seen as the construction of knowledge by students through their interaction and
participation within the classroom setting. In associating learning with participation in
a community of practice, Lave and Wenger (1991) asserted that “participation is
always based on situated negotiation and renegotiation of meaning in the world” (p.
51). They used the term situated learning to emphasise the relational character of
knowledge and learning, the negotiated character of meaning, and the problem-driven
nature of learning activity (p. 33). Clarke (2001) suggested that the presumptions of
meaning are community, purpose, and situation, since “it is futile to discuss the
meaning of a word or term in isolation from the discourse community of which the
speaker claims membership, from the purpose of the speaker, or from the specific
situation in which the word was spoken” (p. 36). The negotiation of meaning may be
concerned with the substantive mathematical content that is the pretext for the social
gathering called “a mathematics class” or it may be concerned with establishing a set
of social obligations and responsibilities, without which neither a class nor a
collaborative group will run smoothly.

Clarke (2001) posited that for negotiation to take place, there needs to be something
that is unresolved and uncertain. The inclination of humans to want to achieve
consensus or intersubjectivity, where intersubjectivity is described as “a mutual or
taken-as-shared understanding of an object or an event” (Cobb & Bauersfeld, 1995, p.
295), can be seen as a driving force for the negotiation of meaning by the actors within
the classroom setting. Cobb and Bauersfeld (1995) defined the negotiation of meaning
as “the interactive accomplishment of intersubjectivity” (p. 295). While
acknowledging the importance of intersubjectivity in the meaning negotiation process,
Clarke (2001) reasoned that as meaning negotiation is mediated by language (or some
form of conventionalised communicative process), which presumes intersubjectivity,
some level of existing intersubjectivity is required for the negotiation to occur at all. In
this conception, a level of student-student and student-teacher intersubjectivity is a
prerequisite to the negotiative process, so that negotiation may proceed by the
incremental refinement of intersubjectivity. This suggests that intersubjectivity is not
only a goal but also a pre-condition for the negotiation of meaning within a classroom
setting.
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In order to further examine the shared cognitive process occurring through meaning
negotiation within the mathematics classroom setting, we particularly focus our
attention on the socio-cognitive aspect of meaning negotiation by identifying indicators
of shared cognition. We employ the term socio-cognitive (Van Dijk, 2008) to both
acknowledge the fundamentally social nature of human cognition (Mercer, 2016) and
also to contest the image of a cognitively bounded individual evoked by reference to
individual cognition or cognitive activity without explicit acknowledge of the
fundamentally social nature of human cognition. We refer to the notion of co-cognition
(as employed by Heal, 1998) and propose the terms inter-cognition and intra-cognition
to distinguish different kinds of socio-cognitive activity involved during collaborative
problem solving. These terms are operationalised using data from the Social Unit of
Learning project, which involved student collaborative problem solving activity in a
laboratory classroom.

THE STUDY

The Social Unit of Learning project was conducted in a laboratory classroom situated
within the Melbourne Graduate School of Education at the University of Melbourne,
Australia. One class of Year 7 students (26 students) provide the focus for this report.
The class participated in a 60-minute session in the laboratory classroom involving
three separate problem solving tasks that required them to produce written solutions.
The students attempted the first task individually (10 minutes), the second task in pairs
(15 minutes), and the third task in groups of four to six students (20 minutes). The tasks
have the characteristics of allowing students to express their thinking through multiple
modes (e.g., verbal, graphical, textual, etc.) and approach the task using different
strategies or prioritise different forms of knowledge or experience.

The resulting data collected in the project included: all written material produced by
the students; instructional material used by the teacher; video footage of all of the
students during the session; video footage of the teacher tracked throughout the session;
transcripts of teacher and student speech based on the video recording; and recording
and transcripts of pre- and post-session teacher interviews.

CO-COGNITION, INTER-COGNITION, AND INTRA-COGNITION

The term co-cognition has been used by Heal (1998) to describe a person’s capacity to
mentally simulate the thoughts of another, akin to the theory of mind (Flavell, 1999).
The term can be contrasted with meta-cognition, which refers to thinking about one’s
own thinking (Wilson & Clarke, 2004). In examining the data from the Social Unit of
Learning project, we found instances of co-cognition when students explicitly tried to
understand each other’s perspective. For example, one of the pair tasks that was given
to the students was specified as follows:

The average age of five people living in a house is 25. One of the five people is a Year 7
student. What are the ages of the other four people and how are the five people in the house
related? Write a paragraph explaining your answer.
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Students Anna and Pandit (pseudonyms; both female) were solving the task and Anna
had drawn five circles on the working out sheet denoting the five people in the
household as specified in the task. She wrote “25” above to the middle of the circle,
circled the middle circle, and drew a line linking the number and the middle circle.

The pair then had the following conversation (the number denotes speaker turn and //
denotes overlapping speech):

47 Anna: Twenty-five.

48 Pandit: Why are you saying that dude's 25? They don't have to be 25.

49 Anna: It - it - this one is 25 because that's the average.

50 Pandit: Average doesn't have to - doesn't mean that one guy has to be 25.

51 Anna: Oh okay, okay. That makes sense then.

52 Pandit: Altogether it's 125 because like ...

53 Anna: Yeah, yeah, yeah.

54  Pandit: And ...

55 Anna: Now, I get it. I thought that was //just 25.

56 Pandit: //Yeah, yeah. So one dude's 13. That means the other four is 112.

57 Anna: What do you mean? No. It can't - they can't all be like so equal.

58 Pandit: They're not. Oh my God. Look, so 25's one guy, right. No. It's like for, you
know, average means like ...

59 Anna: Iknow, I know.

60 Pandit: Yeah. So 25 times five is the total, right?
61 Anna: Yeah.Iknow.

62 Pandit: So everyone's 125. And one guy is 13.
63 Anna: [know, one guy. So ...

The conversation between Pandit and Anna suggests that the students had different
conceptions of average. For Anna, as shown in her writing, she imagined average to be
the middle number among a group of numbers (Turn 25 “... this one is 25 because
that's the average”). Pandit did not agree with Anna (Turn 48 Pandit: “They don't have
to be 25.”) and tried to explain to her that the specification of the average meant that
the total of the five numbers had to be 25 times 5 (Turn 52 “Altogether it’s 125 because
like ...). Pandit’s explanation was cut off by Anna’s response (Turn 53 “Yeah, yeah,
yeah.”). When Pandit went further to suggest that they could subtract the Year 7
student’s age (13 years) from the total of 125 (Turn 56 “So one dude's 13. That means
the other four is 112.”), Anna appeared to think that Pandit was implying that the other
four people had to be of the same age (Turn 57 “No. It can't - they can't all be like so
equal.”). Her disagreement with Pandit prompted Pandit to trace back Anna’s thinking
(Turn 58 Pandit: “Look, so 25’s one guy, right. ...”) and to try to explain to her
understanding of Anna’s thinking (Turn 58 Pandit: “It's like for, you know, average
means like ...”"). Although Pandit’s attempt was cut short by Anna’s response, Pandit’s
utterance “it’s like for you” was an obvious indication that Pandit was trying to reflect
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Anna’s thinking back to her in order to resolve their disagreement. Pandit’s attempt to
explain to Anna her own thinking seems to indicate the socio-cognitive process that
Heal (1998) considered as co-cognition. Anna also appeared to attempt to understand
Pandit’s thinking, as evident in her response “What do you mean?”” (Turn 57) when she
did not follow Pandit’s statement “That means the other four is 112” (Turn 56).

Co-cognition can be contrasted with what we have called inter-cognition, which
invokes the notion of extending or building upon the thoughts of another without the
level of empathic insight presumed by Heal’s (1998) term. We propose that inter-
cognition occurs where the expressed thought of one individual stimulates or provides
a platform or scaffold for the (further) thought of an interacting individual. There is a
fundamental temporality to inter-cognition that is not required for co-cognition. For
example, below is the conversation between Audrey and Katie (both female) after they
have worked out their solution to the same task that Anna and Pandit were attempting.
The conversation took place as they were in the process of writing out their final
solution, with Katie doing the writing.

83 Katie: Let's write the explanation now. Why did we choose these ages?
84  Audrey: We chose these ages as we wanted a variety (laughs).
85 Katie: We wanted ...

86 Audrey:Because they were all just - ah, I just stabbed myself with a pen. No. Does
this have to be ...

87 Katie and Audrey: (Laughter)
88 Katie: Forty-five, forty-five doesn't make a variety.

89  Audrey:Just say because we wanted a variety of ages. We know this is correct as ...
as we have used addition to add them all.

90 Katie: We...

91 Audrey: We used addition to ...

92 Katie: No. We can't say it's correct because there could be many answers.
93  Audrey:Oh we know this is one of the many answers.

94 Katie: We know... (Laughs).

95 Katie: ... the answers. As...

96 Audrey:As we have used addition to add these five numbers up.
97 Katie: No. We used all of them, divide everything, times.

98 Audrey: Subtraction. Division.

99 Katie: Multiplication.

100 Audrey: And multiplication to make sure our answer is precise.
101 Katie: Pretty sure I spelled that wrong (laughs).

102 Audrey:Pretty sure that's an “I”.

103 Katie: You spell it.

104 Audrey: To make our answer as precise as it can be.
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The above excerpt suggested a coordinated way in which Audrey and Katie tried to
justify their solution in writing. Katie raised the question “Why did we choose these
ages?” (Turn 83), and Audrey responded (“We chose these ages as we wanted a
variety...”). Katie pointed out that the choice of two ages of 45 years does not
constitute a ‘“variety” (Turn 88), and Audrey responded by assuring her that the
wording was fine and Katie followed by writing the sentence down. Audrey then tried
to justify their answer by mentioning that they thought that their answer was correct,
but Katie disagreed (Turn 92 “We can't say it's correct because there could be many
answers”), and Audrey echoed Katie’s point (Turn 93 “Oh we know this is one of the
many answers”). There is a coordinated pattern in the way Katie and Audrey operate,
where one makes a suggestion and the other person responds by extending or building
on the person’s suggestion. Even when there was a disagreement, the disagreement was
resolved quickly, either by one person maintaining her stance (e.g., Turn 89 Audrey:
“Just say because we wanted a variety of ages”), or adjusting her stance by matching
the stance of the other person (e.g., Turn 93 Audrey: “Oh we know this is one of the
many answers”’). We suggest that the way in which Katie and Audrey expressed their
thoughts and stimulated each other’s thinking for further thought appears to
characterise a different type of socio-cognitive activity to which we called inter-
cognition.

Contrasting with inter-cognition, intra-cognition can be seen when two or more people
regulate their own thinking as a cognising unit. We suggest that intra-cognition can be
signalled by the prominence of “we” as the agentic pronoun. Statements that we would
characterise as intra-cognitive make reference to, evaluate, or regulate the spoken
contributions of all (both) participants in the student talk. In such intra-cognitive
exchanges, it is the combined thoughts of the dyad that are the subject of the
conversation. The excerpts of Anna and Pandit and of Audrey and Katie provide a
useful contrast in illustrating intra-cognition. The frequent use of “you” and “I” in the
conversation between Anna and Pandit (e.g., Turn 48 Pandit: “Why are you saying...”
[Emphasis added]; Turn 59 Anna: “I know. I know.”) suggests that the two students
were not thinking of themselves as a single unit. Audrey and Katie, on the other hand,
used the pronoun “we” a lot more frequently compared to the former pair in the excerpt
(e.g., Turn 83 Katie: “Why did we choose these ages?”’; Turn 100 Audrey: “... to make
sure our answer is precise...”). The use of the pronoun “I” and “you” appeared in
statements regarding individual actions (e.g., Turn 86 Audrey: “ah, I just stabbed
myself with a pen”; Turn 101 Katie: “Pretty sure I spelled that wrong.”) and signalled
delegation of individual responsibility (Turn 103 Katie: “You spell it.”’). The use of
“we” both accords the dyad status as a social unit and as the principal cognising entity.

SHARING COGNITION WITH DIALOGIC PROCESSES

By distinguishing student-student talk in terms of co-cognitive, inter-cognitive, and
intra-cognitive, we are highlighting the socio-cognitive aspect of the meaning
negotiation process, rather than the character of the reasoning evident in the dyadic
interaction according to Mercer’s categorisation (Mercer, 2000). We postulate that
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these different kinds of socio-cognitive activity are crucial for students to achieve
intersubjectivity during collaborative work as students each think about the other
person’s thinking (co-cognitive); build on each other’s thinking (inter-cognitive); and
regulate each other’s thinking as a single cognising unit (intra-cognitive). Our
categorisation focuses less on the nature of the argumentation and reasoning, and more
on the level of intersubjectivity achieved during student-student talk through indicators
of shared cognition.

In terms of teaching implications, we share the same educational aspiration with
dialogic perspectives in terms of encouraging students’ active participation in their own
learning. We believe the socio-cognitive aspect of meaning negotiation that we
highlighted suggests possible ways in which students could reflect on and regulate their
shared thinking with others. Guiding questions that may facilitate student monitoring
and reflection of their interactions with others during collaborative work may include:
“Do I understand the other person’s perspective?” (co-cognitive); “Are we building on
each other’s ideas?” (inter-cognitive); and “Are we thinking as a team or as separate
individuals?” (intra-cognitive). These questions should complement classrooms that
have already adopted a dialogic teaching approach which encourages communication,
questioning, inquiry, reasoning, collaboration, and student empowerment (Alexander,
2018; Lefstein & Snell, 2014).

CONCLUSION

Through examining the socio-cognitive aspect of meaning negotiation within a
mathematics classroom setting, we have found many useful connections between
dialogic perspectives and our socio-constructivist view of classroom learning.
Distinguishing between different kinds of socio-cognitive activity during collaborative
problem solving in terms of co-cognitive, inter-cognitive, and intra-cognitive,
foregrounds the level of intersubjectivity involved during the meaning negotiation
process. We see the perspective of classroom learning presented in this report as
complementary to the dialogic perspectives and encourages further thoughts and
inquiry into the processes of teaching and learning within the classroom setting.
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INTEGRATING DESMOS: A CASE STUDY

Sean Chorney

Simon Fraser University

In this study I look at a high-school teacher’s use of an online graphing calculator
software, Desmos, in his high school classroom. Using Ruthven’s Structuring Features
of Classroom Practice framework to frame reported data and to identify expertise. The
case study focuses on how the expertise of the teacher is constructed and enacted. In
this research report, I highlight how the teacher, without formal training, uses Desmos
to create a rich learning environment. The strategies reported in this study will also be
helpful and potentially supportive of future integration of digital technology.

INTRODUCTION

When learning mathematics, digital technology can be a powerful learning tool
(Sinclair, 2014). Engaging in mathematical tasks that draw on the dynamic and
interactive affordances of digital tools can provide students rich and profound insight
into mathematics (Kaput, 1992). Well established digital tools such as calculators,
graphing and scientific, are commonly integrated in high school mathematics classes
but they have limited affordances and are being replaced by newer digital tools.

Despite the potential benefits of newer technologies, however, integration in
mathematics teaching is rare (Bretscher, 2014). In this paper, I focus on the role
teachers can play. Teachers play an important and critical role in how digital
technology is integrated (Charalambous & Hill, 2012). Teachers, however, are
challenged significantly. Training and support of teachers in using digital technology
is not common. Curriculum documents are frequently not prescriptive in naming a
particular software for teachers to use. This makes the choices for teachers more
difficult. One tool that addresses some of these challenges is Desmos. Desmos is an
online graphing calculator that also provides a rich learning environment for students.
Desmos has become popular among high school teachers in many jurisdictions across
North America. The question this paper explores is what does Desmos provide for
teachers and subsequently to their students that improves mathematics teaching and
learning.

Using Ruthven’s Structuring Features of Classroom Practice framework (2009), I look
for innovations of the integration of Desmos by the teacher in this study. Since there is
not a lot of research in teacher integration of digital technology this paper contributes
to this gap. The results of this study can be helpful in planning professional
development and in addressing curricular issues. This study provides teachers and
researchers an opportunity to see what pedagogical approaches emerge in using
Desmos.
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FRAMEWORK

Ruthven’s Structuring Features of Classroom Practice framework (SFCP) (2009) offers
a way to analyze teacher’s implementations of digital technologies. The structuring
framework lays a base by which to analyze digital technology. Ruthven shifts away
from discussing teacher’s knowledge of technology as a significant component of good
implementation such as the TPACK framework which has been described as something
that “misses the fundamentally new” (Pimm, 2014).

Instead, Ruthven widens the unit of analysis to include the material and technical
environment, as well as teacher practices, as central aspects to good implementation.
That is, it is a robust framework because it moves away from analysing isolated events
and static knowledge and attempts to outline a set of categories that first define
characteristics of a teaching situation and then follows up with dynamic practices of
teaching that changes and develops over time. Ruthven calls this dynamic teaching
aspect “expertise” (2014). An example of expertise may include how teachers respond
to various situations that arise in the classroom. Below is an outline of Ruthven’s
framework. One finds the five categories in the left column, the “defining
characteristics” in the middle column which can be thought of as the nouns such as
physical set-up or concretized intentions like “templates for classroom action”. It is
within the parameters set in this column that the potential for action is established. The
third column describes the “examples of craft knowledge”. This column can be seen as
the actions. It is particularly this second column that draws attention to what teachers
do in the context of the first column.

Ruthven (2014) describes his framework as a “top level” construct and says “further
studies are now required in which data collection (as well as analysis) is guided by the
conceptual framework, so that it can be subjected to fuller ... elaboration and
refinement” (p. 388). Bozhurt and Ruthven (2017) argue that to contribute to the
framework a “systematic inventory of such types of knowledge” (p. 326) need to be
generated. One way this study contributes to this inventory is to analyze ‘“new
structures of interaction involving student, teacher and machine and the appropriate
(re)specification of role” (p. 391).
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Structuring  Defining characterisation Examples of associated craft knowledge related
feature to incorporation of digital technologies
Working Physical surroundings where lessons take place, Organising, displaying and annotating materials
environ- general technical infrastructure available, Capturing or converting student productions
ment layout of facilities, and associated into suitable digital form. Organising and
organisation of people, tools and materials managing student access to, and use of,
equipment and other tools and materials
Managing new types of transition between
lesson stages (including movement of
students)
Resource Collection of didactical tools and materials in ~ Establishing appropriate techniques and norms
system use, and coordination of use towards subject  for use of new tools to support subject
activity and curricular goals activity
Managing the double instrumentation in which
old technologies remain in use alongside new
Coordinating the use and interpretation of tools
Activity Templates for classroom action and interaction Employing activity templates organised around
structure which frame the contributions of teacher and  predict-test-explain sequences to capitalise
students to particular types of lesson segment  on the availability of rapid feedback
Establishing new structures of interaction
involving students, teacher and machine and
the appropriate (re)specifications of role
Curriculum  Loosely ordered model of goals, resources, Choosing or devising curricular tasks that
script actions and expectancies for teaching a exploit new tools, and developing ways of
curricular topic including likely difficulties staging such tasks and managing patterns of
and alternative paths student response
Recognising and responding to ways in which
technologies may help/hinder specific pro-
cesses and objectives involved in leaming a
topic
Time Frame within which the time available for class Managing modes of use of tools so as to reduce
economy activity is managed effectively so as to the “time cost” of investment in student

convert it into components of “didactic time”
contributing directly to desired student
leaming

familiarisation with them or to increase the
“rate of return” in terms of student learning
Fine-tuning working environment, resource
system, activity structure and curriculum
script to optimise the return on time
investment in terms of student leaming

Table 1: Components of the structuring features framework (Ruthven, 2014, p. 387)

Desmos offers capabilities beyond the traditional graphing calculator. How might a
teacher take advantage of these functionalities? And specifically, what obstacles and
challenges do they encounter? What strategies, framed in this study as expertise
through the SFCP framework, have they found to mitigate the challenges?

CONTEXT

Description of Desmos
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Desmos is an online web-based calculator (www.Desmos.com) that has calculating,
graphing and geometric functionalities. In many North American jurisdictions, Desmos
has replaced handheld graphing calculators because it is free (although an internet
connection is mandatory), it has more accuracy, and more functionality. It can be used
on a computer, iPad, tablet, or smart phone.

Desmos also offers a set of guided learning activities written by a team of teachers,
educators and researchers. The activities are organized in the form of slides presenting
students with interactive prompts that ask them to interpret and predict. An affordance
of the Desmos activities include the functionality to list all students’ predictions on all
students’ screens so that not only are students aware of their peers’ predictions but also,
they have the opportunity for refining their own prediction based on what their
classmates have predicted. In many activities, Desmos prompts students for a revised
personal prediction after classmates’ predictions are listed. Teachers have control over
the activities by the function “pace”. The pacing function sets a limit to how far a
student can progress in an activity. A teacher can put a limit on slide seven, for
example, which may allow the teacher to “discuss the screen” (Ruthven, 2014, p.385).

Case study

A case study was undertaken to observe the implementation of Desmos. This was an
exploratory, non-interventive, observational study that reports what was observed
through the lens of Ruthven’s framework. This study was carried out in a public school
in the province of British Columbia, Canada. Multiple teachers were observed over
many lessons. This research reports on one teacher, Andrew, and a single lesson in
which he implemented Desmos. The class episode presented highlights a good example
of integrating Desmos in terms of showing the expertise of the teacher.

Data was collected through video recordings of the class. There was only one video
camera which was set up at the back of the room to capture the activities in all areas of
the classroom. Teachers were interviewed after each lesson using semi-structured
interview questions. The observations presented below were guided by Ruthven’s
framework. Each category in Ruthven’s framework became a base from which
observations were grounded.

Observations

Andrew has been a teacher for almost 20 years and had been using Desmos for seven
years. He had recently completed her master’s degree in mathematics education. For
this class reported below, Andrew progressed through the “Racing Dots” activity
(https://teacher.desmos.com/activitybuilder/custom/56d139907e51c4ed1014b51f).

The racing dots activity has eight slides. The first slide depicts two moving dots that
start from different positions and move in the same direction at different rates; it also
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prompts students to predict where the two dots will meet (Figure 1). In terms of content,
Andrew wanted to introduce students to linear systems. The students had used Desmos
before but had not engaged with any of the activities. They had also not been introduced
to linear systems but were knowledgeable about lines. Slide 2 listed all the student
predictions on all the screens.

Make a prediction.

Where will the racing dots meet? Drag the purple point to
show your prediction.

How confident are you that your prediction is correct?
(O 100% confident
O Somewnhat confident

O Not at all confident

Figure 1: Screen 1 of Racing dots activity

Slides three and four prompt students to reflect on how they made the original
reflections in slide 1 and 2 asking in slide four, what “tools and methods” they used to
help clarify their prediction. Using that prompt Andrew asked students to go to the
whiteboards in group of three and express their “tools and methods”. Later in the
interview, it was learned that his intention was that the students would create graphs,
tables and equations which would match the last four slides of the Racing Dots activity.

Working environment and resource system

The episode reported here was in Andrew’s regular classroom and the classroom was
already organized to have a lot of resources and tools available for students. Andrew
was inspired by the “Thinking Classrooms” model (Liljedahl, 2016) that he learned
about in his master’s program that he had completed two years earlier. This model does
away with private notes and uses the whiteboard as a public place for students to solve
problems and communicate. In previous classes, students were frequently working at
the whiteboards on a mathematical task, or they were sitting at their small roundtable
in groups without writing paper either discussing or writing on the table top with a
whiteboard pen. Andrew’s working environment was already organized to be resource
rich and organized to be public, collaborative and with access to multiple tools. In terms
of Ruthven’s “working environment” and ‘“Resource System”, the introduction of
Desmos on the front projector screen and on the iPads was not a significant change in
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terms of access and/or transition. Students were already used to using whatever tools
were available to do mathematics.

Activity structure

The most significant observable action Andrew enacted was his decentralization of the
new digital technology. His use of the “Racing Dots” activity alongside previously
used technologies was what allowed his students not only to forge relationships
between different mathematical representations, but also between themselves and the
mathematical tools. The “Racing Dots” activity was organized by the Desmos team but
Andrew added his own expertise in using the teacher function “pace” which allowed
him to freeze the activity at slide four. This pacing function stopped students from
working ahead, so it paced the class so they went through the slides at a similar time
scale and it also provided Andrew the opportunity to ask students to go to the
whiteboard to express what they were thinking. He asked students to go to the
whiteboards and represent the racing dots in a way ‘“that made sense to them”. The
Desmos activity had not shown any traditional graphs or tables yet and Andrew was
hoping to elicit these models from his students before these representations were
revealed in slides five to eight. To model a system and explore the different
representations inherent in that system aligns with Kaput’s notion of “dynamic linking”
(Kaput, 1992).

Students worked for 20 minutes using the whiteboard, but also used their traditional
calculators, and at times worked at their tables. At the end of the 20 minutes Andrew
went to the whiteboard and commented on student’s representations. At the
whiteboard, some of his comments were: “Well this group just continued that pattern
and made a table”; “We have a much more visual table of values over here, careful
detail of the two dots”; “And then we have graphs, couple groups actually just to graph
the lines, pretty good estimate, off by a smidge.” He concluded with “Really happy
with the variety of solutions, I think this covers every single one of them.” Once back
at the front machine which was projecting Desmos on the screen, he went through slides
five through eight legitimizing student’s representations on the board by highlighting
the same Desmos representations in the “Racing Dots” activity. At each slide he spent
time talking about the representation, what it affords and the reason why one might
choose one representation over another.

Curriculum script

Prediction in math education has been shown to support pattern recognition and
improve their understanding of a concept (Buendia & Cordero, 2005). Screen one asks
students to predict when the dots will meet (Figure 1). The second screen collates all
the predictions from students in the class and list them out (Figure 2). Screen three
provided the students to refine predictions. In class, Andrew said, “Were trying to
predict, I think it’s really interesting to see the range of predictions. What information
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do we need to know [to help us with our predictions]?” He goes through each response
and comments on each, “This group is thinking about graphs”, “This group is using a
table”. After going through five predictions, he says “Interesting how nobody
commented about starting points.”

Andrew was covering linear systems. The contents of the linear system included
solving graphically, solving algebraically, connecting ordered pair with meaning of an
algebraic solution, solving problems in situational context (BC Ministry of Education,
2015). In terms of broader curricular competencies, Andrew was also focusing on
“Represent mathematical ideas in concrete, pictorial, and symbolic forms” (BC
Ministry of Education, 2015). Andrew’s work at the whiteboard was used as a way to
convince his students that there were multiple ways of expressing a relationship.

Time economy

Time economy, in terms of time, Andrew spent one full class on the Racing Dots
activity. This lesson was slow and deliberate but also the most effective in terms of
student engagement and clarity of message. Andrew seemed to have enough time to
have a rich lesson. Time did not seem to be an issue for Andrew. He did not seem to
focus on time—he focused on connections.

ANALYSIS AND CONCLUSION

Answering the research question, we see Andrew performing a number of moves that
utilize the affordances of Desmos. One of the most important aspect of expertise to
identify is that Andrew crafted his lesson not only on the content of linear systems but
also the affirmation of students’ responses and contributions basing those on the
affordances of Desmos. Through Ruthven’s framework we are able to notice how
Andrew framed the access to digital technology in an environment that already valued
and practiced multiple tools and access points. The digital technology was not centrally
placed but was placed alongside a well-developed system of tools. The class culture
was then able to uptake of Desmos without a significant change of organization.

In terms of activity, Andrew used the already established slide-show activity of Racing
Dots in Desmos. He also applied his expertise by freezing one screen and prompting
students to express their own understanding on the whiteboard so as to elicit a
conversation about representation and meaning. Andrew was implementing multiple
representations to strengthen student conceptual understanding. But he also did this as
a way to support students’ own understandings. When Andrew asked the students to
express their thinking on the whiteboard, he used their familiarity with previous forms
of representations as a way to confirm their own contribution to enable and encourage
their agency. He balanced new technology with old and found a balance and a way to
develop “dynamic linking” between old technology and the new.
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Andrew’s strategies resulted from his years of experience of trying things out. His 21
years of experience and using Desmos since 2011 made his practice seem fluent.
Although this research report has not focused on students, the broader overall study
has found that student responses to this and other activities have been overwhelmingly
favourable in terms of both engagement and disposition.
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A MATHEMATICS CURRICULUM IN THE ANTHROPOCENE
Alf Coles
School of Education, University of Bristol

Mathematics education as a field has had little interaction with issues of environmental
sustainability, yet the world faces unprecedented global and societal challenges.
Human intervention has led to the designation that we have now entered a new era of
geological time, the Anthropocene. The label ‘Anthropocene’, for some, signals the
shift from hopes of ‘saving nature’ and ‘solving’ problems, to living with crises and
problems as our new and permanent condition. It seems we know and yet do not know,
that how we live and therefore how we educate, must change. This theoretical report
asks what recognition of the Anthropocene means for mathematics curricula. I suggest
there is an opportunity to bring the mathematics curriculum close to the concerns of
communities and that this is unavoidably political work.

INTRODUCTION

The world faces unprecedented global and societal challenges. The extent and range of
potentially imminent crises threatens the sustainability of human and many other forms
of life on the plant. The aim of this theoretical report is to consider what recognition of
such a context could mean for mathematics curricula. The first section is a brief review
of past work linking mathematics education to issues of sustainability, a strand of
thinking that goes back several decades. The more recent concept of the Anthropocene
is then introduced, along with the post-human perspective it suggests. A final section
considers possible responses.

MATHEMATICS EDUCATION AND SUSTAINABILITY

Given the scale of challenges facing the world, there is perhaps a surprising sense of
the work of mathematics education continuing as normal. A recent special issue of the
Philosophy of Mathematics Education Journal (‘Mathematics Education and the Living
World: Responses to Ecological Crisis’, November 2017) is one of the largest single
collections of writing relating mathematics education to issues of ecology and
sustainability, and this issue comprises an Introduction and nine articles. In that
Introduction, Boylan and Coles (2017) identify four strands of past work within
mathematics education related to ‘the living world’, namely: critical mathematics
education (Skovmose, 1994); an emancipatory perspective on mathematical modelling,
which links to ethnomathematics (Barbosa, 2006; D’Ambrosio, 1999); sustainable
mathematics education (Renert, 2011); and, work linking mathematics education and
climate change (Barwell, 2013). Boylan and Coles (2017) suggest that Barwell’s work
represents a shift away from a focus, shared across the first three strands, on desired or
ideal methods of classroom organisation, within a broadly emancipatory agenda, with
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a common link to the work of Friere (1970). Such a shift is mirrored by implications
that have been drawn from a recognition of the Anthropocene, discussed in the next
section.

One future-focused article from the Special Issue (Gutiérrez, 2017) argued the need for
a radical re-thinking of the subject of mathematics itself and proposed a new term for
it, Mathematx (pronounced ‘Mathematesh’). The argument invites us to rethink
mathematics to support the development of new relationships between humans,
mathematics and the planet. The 'x' in 'mathematx' links to the use of 'x' in
critical/emancipatory movements and the ‘x’ as a political disruption (following
Malcolm X)) as well as an 'x' found in the Nahuatl language. The notion of Mathematx
draws on principles and beliefs of reciprocity, linked to indigenous cultures in the
Mayan concept of ‘In Lak'ech’ and Nahuatl (Aztec) term ‘Nepantla’. The themes of re-
thinking the subject matter of mathematics and linking to political concerns are
connected, by others, to theorising around the Anthropocene, which is the focus of the
next section.

THE ANTHROPOCENE AND POST-HUMANISM

That the world faces unprecedented global and societal challenges caused by human
intervention is linked to the designation that we have entered a new epoch of geological
time, the Anthropocene (Finney, 2014). The label ‘Anthropocene’ (Crutzen &
Stoermer, 2000) and has now been formally adopted (Subcommission on Quaternary
Stratigraphy, 2016). One technical aspect of the designation is the recognition that there
will be a visible change in rock strata being laid down at this time, with the label
‘anthropos’ pointing to the human cause, from plastic to radiation to COz to erosion.
Collective human action has taken on a geological scale.

The label ‘Anthropocene’ is a cause of dispute (Haraway, 2015), and concerns have
been raised about the analytical coherence of invoking the category of a single species
in thinking about global challenges such as climate change (Malm & Hornborg, 2014).
There is also controversy over what we mean by ‘human’. Colebrook (2016) sees the
‘Anthropocene’ as the first truly post-human concept. With the concept of the
Anthropocene, we are imagining a world without humans and recognising that our
impact will still be able to be ‘read’ in the rock strata after other visible traces of
civilisation disappear. The concept is post-human in the sense of indicating a
perspective that is not an irreducibly human one.

Post-humanism has been taken up within mathematics education in moves to re-think
the role of the body and the materiality of mathematical concepts (de Freitas & Sinclair,
2014). There is an overtly political dimension to these moves, for example in exposing
mathematics itself to be far from neutral and value-free.
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Within a post-human reading (e.g., Hynes, 2016), the term ‘Anthropocene’ has been
appropriated to signal the shift from hopes of ‘saving nature’ and ‘solving’ problems,
to living with crises and problems as our new and permanent condition (Purdy, 2015):
‘Paradox, partiality, and the mixed-up character of everything have come after the
grasp at wholeness that began the ecological age.” (p. 227). Living with crisis rather
than solving problems, while perhaps new and challenging in some parts of the West,
is something known for generations in parts of the world and within particular
communities.

Latour (2017) suggests one reason for a general inaction in the face of climate change
is that the ecological war (to reduce emissions, etc) took place thirty years ago, without
us even realising. And this was a war we lost. He would reject the framing of ‘crisis’
because of the sense that crises are things we can overcome; the situation we are in, is
trying to live with the after-effects (on a likely timescale of millenia) of having missed
the time when manmade geological planetary changes could have been averted.

In rejecting the idea that there are problems that can be overcome, the Anthropocene
has marked a shift from the early environmental movement, when invocations of
‘saving nature’ were perhaps powerful calls to action. Coles (2017) drew a parallel
between environmental hopes of nature, as something to be saved, and mathematics
education reforms that hold up ideal images of classrooms or, say, ideas from the 1960s
of ‘mathematics for all’. If the Anthropocene suggests hopes of ‘saving nature’ are now
self-defeating, could the same be said of holding up ideal reform mathematics
classroom practices? Skovmose’s (2011) conjecture is relevant here, that “90% of
research in mathematics education concentrates on the 10%, the most affluent
classroom environments in the world, while 10% of the research addresses the
remaining 90% of the classrooms” (p.18, italics in original). And Skovsmose goes on
to point out that some sites of teaching and learning mathematics in the “90%” may
not share any prototypical features associated with classrooms. A concern of critical
mathematics education, which feels highly significant in discussions of the
implications of the Anthropocene, is not to repeat ‘the bias that is established through
discourse centred around the prototypical mathematics classroom’ (2011, p.20).

Some suggestions of appropriate values for a curriculum in our current age include the
acceptance of paradox (de Freitas & Sinclair, 2014); a focus on ethics (Boylan, 2016);
and, education about risk and uncertainty (Stinson & Bullock, 2012). Latour (2017)
points to the paradoxical way in which it seems we both know and do not know about
the drastic changes happening around us. Somehow, we know this and yet at the same
time, in communities where climate change has yet to have long-term impact at least,
we manage to not know this in continuing our daily lives as we ever have done.
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The Anthropocene has perhaps shone a light on the way the problems that face the
world are of seemingly incomprehensible complexity; it is these problems that might
offer a route in to considerations of paradox, ethics and uncertainty. In the next section,
I consider what this could mean for mathematics curricula.

A CURRICULUM CLOSE TO COMMUNITY CONCERNS

The preceding discussion makes the case that there will be an on-going need, in relation
to teaching and learning mathematics, to think differently. The uncertainty and paradox
surrounding our current time make it hard to predict what kinds of new habits of mind
(Cuoco, Goldenberg & Mark, 1996) might be needed for a mathematics education in
the Anthropocene, but they surely cannot be the habits we now display collectively.
There is perhaps a need for learning about the habit of forming new habits.

However, the complexity of our situation could also provide an opportunity, since if
we start questioning, then we can begin with almost any real-world context or problem,
no matter how local, and we will soon be faced with issues that relate to global
challenges. This suggests that a place to begin in considering a mathematics curriculum
for the future might be the very particular concerns of the community within which any
school finds itself.

I will draw on two contrasting examples of what such work might look like. These two
are chosen for no other reason that the fact that I am involved in efforts to instigate
work in both places along lines I will describe. One community is in a relatively
affluent city in the South-West of England and the other community is in a relatively
poor rural community in Mexico. Both contexts relate to pollution. Landigrand et al.
(2017) reported that pollution is the largest cause of disease and premature death in the
world. Communities, especially children, from low and middle-income countries are
the most vulnerable. Feldman and Nation (2015) argue that education responses are
essential not only to understand the implications of our actions on ecosystem
degradation processes but also in constructing new responses, as we are forced to adapt
to the new climatic, economic, technological and societal conditions of the world.

Air-quality in the City of Bath, England

Air-quality has been in the news in England, with a report in 2017 indicating that 37
out of 43 monitoring zones reported levels of Nitrogen Dioxide that were non-
compliant with EU rules (DEFRA, 2017). The health impacts of air pollution range
from increased likelihood of miscarriages in pregnancies, increased likelihood of
dementia and impairment of cognitive functions for young children and they are
quantified in terms of numbers of early deaths. Some primary schools in Bath are sited
next to main roads where nitrogen dioxide levels frequently exceed safe and legal
limits; considering air quality is not part of the curriculum in these schools. I am
personally involved in this issue as a parent, as well as an educator.
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Water pollution in the Atoyac River, Mexico

The Atoyac river is Mexico is classified as “heavily polluted” (Lopez-Vargas, et al.,
2018, p.640). Around 1.5 million people live in communities that are settled on the
banks of the river. Tests on children living near the river “show early biological effects
that might lead to health problems in their adult life” (p. 640). The perception of people
living in affected communities is that rates of leukemia among children are at levels
unknown to previous generations. And yet, a consideration of the river, its pollutants,
their causes, appropriate safety responses and so on, do not appear in the curriculum of
schools within affected communities (Arellano-Aguilar, personal communication). My
personal involvement is through an on-going research collaboration with mathematics
educators in Mexico.

How might a mathematics curriculum respond to concerns?

It is not obvious how to bring issues of local, but pressing, concern into the curriculum
and what teaching and learning mathematics might look like if that happened.
However, it is clear that considering issues such as air and water pollution leads quickly
into political territory — and questions of how pollution is allowed to happen and who
is responsible. In February 2018, an environmental law organisation ‘ClientEarth’ won
a case against in the UK which determined that the government’s failure to enforce
action by local authorities against air pollution was unlawful
(https://www.bbc.co.uk/news/science-environment-43141467). In Mexico, it is known
that the main cause of pollution in the Ayotac River is liquid industrial discharge;
Lopez-Vargas, et al., report health authorities have no monitoring programme for the
effects on the population. It would seem that local authorities quickly come into view
and, from there, national governments and international standards, when considering
questions of pollution. Questions around risk and uncertainty and ethics are likely to
arise. Some barriers to bringing community concerns into the classroom appear to be
common across contexts. Having set them out, below, I consider possible responses.

(a) How do mathematics teachers find out about the concerns of the community?
(b) How might accessible data be made available, or collectable, in school?

(c) Where are the spaces in the mathematics curriculum to address community
concerns?

(d)What are the skills needed for mathematics teachers to bring community
concerns into their classrooms?

(e) How might charges of politicisation of the mathematics curriculum be met?

One way it is possible to address (a) and (b) is bringing people together. There is a need
for networks, involving some or all of the following groups: community leaders,
scientists, teachers, school leaders, teacher educators, policy makers, non-
governmental organisations. However, access to communities is not always
straightforward. The group of educators in Mexico I am connected with is currently
setting up just such a network and the experiences and skills of non-governmental
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organisations working in affected communities is critical to gaining the engagement of
community leaders and schools. With regard to the City of Bath, similar kinds of
network are needed and I am involved in work to set one up involving scientists,
parents, local politicians and school leaders.

In terms of the spaces within the mathematics curriculum (c), it was clear at a recent
ICMI Study Conference (ICMI Study 24, on School Mathematics Curriculum
Reforms) that a phenomenon occurring in many countries is a move towards a
competency-based curriculum or at least a curriculum that includes a competency
component. In such a context bringing issues, such as pollution, into the mathematics
classroom is perhaps easier to justify. Any focus on pollution will inevitably involve
data collection and so the topics of statistics and probability also provide obvious
opportunities. Conducting data collection within a school may need the involvement
of Science teachers and potentially outside funding; data collection provides an
opportunity for inter-disciplinary work, with all the complexities as well as affordances
this entails.

There are potentially new skills needed, of teachers, to bring an issue such as air quality
or water pollution, into the mathematics curriculum (d). In the Mexican context, as well
as network meetings to learn from teachers and schools, there are plans for teacher
workshops to feedback some of the learning from the network and to support teachers
to raise new issues in their classrooms. Skills of running discussion are particularly
significant and skills of handling potentially emotionally charged debate. Teachers
have expressed concerns related to a potential lack of confidence about the inter-
connection of issues and where debate may lead.

Finally, an important consideration is how to deal with the charge that issues such as
pollution are not appropriate ones for a mathematics classroom (e). In England, since
the introduction of a National Curriculum in the late 1980s, there has been a strong
sense in which a classroom is not a place for teachers to express political opinion. In
considering a response, it is important to recognise that debates around pollution can
never take place within a vacuum. The causes of pollution inevitably link to industrial
production and there are strong forces wanting to maintain the status quo and, for
instance, not question the assumption of economic growth or, more radically, which
actively question the scientific basis of global warming. I have come to the conviction,
in the face of the evidence of human effects on the planet recognised in the naming of
the Anthropocene, that going along with an ostensibly non-political stance in
mathematics education, is to take up a political position that is about maintaining a
fiction that life can go as normal.

DISCUSSION

This article aimed to consider issues relevant to mathematics education in the light of
a recognition of human influence on planetary processes and a sense we have moved
into a new geological era, the Anthropocene. In conversations with many mathematics
educators in recent months I have asked the question of how ‘what we do’ might take
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account of current crises. [ have sensed a recognition of the question and an awareness
that none of us have answers. And indeed, a post-human reading of the concept of the
Anthropocene moves away from a sense of ‘growth’ (Morgan, 2016) and setting up
specific and defined ‘ends’ for education or the search for determined answers.

One of the tensions of teaching is that while we are preparing students for a future
world that is uncertain and unknowable, our teaching must take place now. The
thinking reviewed and used here, linked to the Anthropocene, suggests a role for a
mathematics curriculum close to the concerns of communities, that centrally considers
uncertainty, risk, ethics and paradox. This is local and uncertain work itself; and there
is a need for sharing of experiences across contexts, nationally and internationally. It
may be that we can learn from each others’ experiences of, for example, establishing
networks. Some stories of successful, or unsuccessful, work in schools and
communities may provide important ideas for others. Latour (2017) suggests it is time
for academics to reply to skeptics and climate change deniers with the cry “Go tell your
masters that the scientists are on the warpath” (p.30, quoting from Pierre Daubigny’s
play, Gaia global circus). We may never know where or what this warpath is, but this
report argues it is time, as mathematics educators, we join it.
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RECONCILING TENSIONS BETWEEN LECTURING AND
ACTIVE LEARNING IN PROFESSIONAL LEARNING
COMMUNITIES

Jason Cooper, Boris Koichu

Weizmann Institute of Science

Professional learning communities (PLCs) are considered an effective vehicle for
teacher professional development, yet their emphasis on discussions-based learning
practices may create tension with the expectation for growth of content knowledge. We
have been leading a PLC of practicing and prospective heads of school mathematics
departments, in which this tension was particularly salient. We investigate ways in
which lectures and workshops conducted by content-experts can support the
development of desirable PLC characteristics, rather than being at odds with them.
Findings suggest that the tension can be reconciled by means of ongoing debriefings
with a focus group comprised of the PLC participants, contributing to the careful
design of community activity surrounding the expert-provided lectures.

INTRODUCTION

Learning in Professional Learning Communities (PLCs) has been found to be
particularly effective for the professional growth of teachers in general (Shulman,
1997; Vescio & Adams, 2015), and of mathematics teacher leaders in particular
(Koellner, Jacobs, & Borko, 2011). These researchers highlight 5 key characteristics
of learning in professional communities (see table 1), which we use as a theoretical
framework for the design and analysis of our work with heads of middle-school
mathematics departments.

C1 Generative content to yield new understandings and to support future learning
C2 Active learning

C3 Reflective dialog about practice (teaching, learning, leading teachers)

C4 Collaboration for collective work, scaffolding and supporting each other

C5 Making practice public, learning from others’ success and failure

Table 1: Characteristics of learning in profession learning communities

Though these principles have been described and discussed in research, fleshing them
out and applying them in particular contexts remains a challenge. In the context of our
work with heads of departments (HoDs), a central challenge has had to do with
participants' agency. Participants have expectations based on prior experience with PD,
which tends to be “based on a deficit model of linear teacher learning, as if learning is
done to achieve an end result or fill a gap in a teacher’s development” (Vescio &
Adams, 2015, p. 277, based on Webster-Wright, 2009). The responsibility for filling

2-169
2019. In M. Graven, H. Venkat, A. Essien & P. Vale (Eds.). Proceedings of the 43rd Conference of the International
Group for the Psychology of Mathematics Education (Vol. 2, pp. 169-176). Pretoria, South Africa: PME.



Cooper & Koichu

such gaps is on the PD leader, not on the participants, thus conventional PD tends not
to harness teachers as agents in their learning. In particular, it may not be consistent
with the characteristics of active (C2), reflective (C3) and collaborative (C4) learning.

In our vision, school mathematics departments should function as PLCs led by the head
of department (HoD). To this end, the HoDs themselves participate in municipal PLCs,
comprising other HoDs in the same city and led by mathematics educators and
researchers, in order to familiarize themselves with this kind of learning, and thus to
acquire knowledge and skills for this strategic role. Both the content and the process of
learning in these PLCs aims to provide a model for HoDs to draw on in leading their
local communities. Thus, another challenge arises from “the essential tension between
professional development geared to learning new pedagogical practices and that
devoted to deepening teachers’ subject matter knowledge” (Grossman, Wineburg, &
Woolworth, 2001, p. 942). In our context, the new pedagogical practice for HoDs is
leading a school-based PLC (i.e. heading the department as a learning community in
ways consonant with the 5 principles of PLC), while the subject matter knowledge
pertains to HoDs both as mathematics teachers (i.e. mathematical and pedagogical
content knowledge) and as teacher leaders (i.e. leadership skills).

Yet another challenge of PLCs is that some of the learning characteristics rely on the
emergence of community norms. Notably, collaborative learning (C4) and making
practice public (C5) rely on the development of trust and the suspension of judgment.
Grossman et al. (2001) have described phases in the life cycle of PLCs, whereby some
characteristics of PLC learning are more likely to emerge as the community matures.

Our research is guided by the aim of reconciling HoDs’ expectations to learn content
knowledge from experts with the characteristics of learning in professional
communities. We wish to characterize PD activities that provide content knowledge
for HoDs, while at the same time supporting learning processes of a PLC. To this end,
we inquire how content-oriented PD activities evolved with respect to the five
characteristics of learning in professional communities, and with respect to the roles
of learners as more or less independent agents of their learning.

SETTING AND METHODOLOGY

As in many educational contexts around the world, heads of departments (HoDs) in
Israel are usually practicing mathematics teachers with many years of teaching
experience and some leadership skills. Their responsibilities include coordinating
pacing across classes, organizing the preparation of shared exams, student placement,
and others. We undertook a municipal PD for middle-school (grades 7-9) mathematics
HoDs, commissioned and funded by the Israeli Ministry of Education (MoE) and
supported by a private foundation. The community on which we are reporting was co-
led by both authors of this report (henceforth L1 and L2), and comprised 16 teachers
from two neighboring cities, half of whom were practicing HoDs and half of whom
were preparing for this position. The scope of the PD was 60 hours per year for two
years. We are reporting on the first year of activity (2017-2018), during which 11
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meetings took place at the municipal center for teachers’ professional development (4-
6 hours each). Meetings were organized around topics that were chosen based on the
leaders’ preliminary views on knowledge required for heading mathematics
departments, and on expectation questionnaires filled out by the participants. There
was a high level of agreement on relevant topics among the participating teachers and
the program leaders, which included strategies for helping low achievers, issues of
assessment (summative and formative, conventional and alternative), integrating
technology, curriculum design, implication of research, and a collection of leadership
issues pertaining to interactions with teachers in the department.

After the fourth meeting of the community, we set up a focus group, which comprised
two teachers: T1 — a practicing HoD — and T2 — an experienced teacher who also held
a coaching position from the MoE — along with the two community leaders (the authors
of this report, L1 and L2). Debriefing-meetings (approximately 30 minutes each) were
held after all meetings of the community commencing with the fourth. One of the goals
of these meetings was practical — to develop and fine-tune appropriate formats for the
PLC activity (ourselves adhering to C3 — reflective dialog about practice).
Accordingly, we held the debriefings guided by three questions: 1. Which activities did
work? 2. Which could we have done without? 3. What could we have done differently?
Discussions of the third question gradually led to formats that were increasingly
appropriate for the community of HoDs. This focus group also served a methodological
role in providing authentic data on how learners perceived the appropriateness and the
relevance of learning activities. The analysis in our current report relies on the focus-
group and the PLC meetings, which were audio-recorded and transcribed by the
authors. Six activity formats emerged and evolved — expert-lecture, mathematical
workshop, teacher-led discussion of a practical dilemma, report on routine activity of
the school community of mathematics teachers, report on enactment of PD activity
within the school community, and final assignment. Space permits us to present and
analyze one such activity. We have chosen the expert-lecture, whose gradual
adaptation aligned with many of the key characteristics of PLCs. The emergence of the
modified format took place in meetings 4, 5, 7 and 10, as summarized in table 2.

Each of the 4 meetings is described as follows: 1. The main activity — its rationale and
relevance for PLC, and how it drew on insights gained in prior focus group discussions;
2. Selected utterances from the meeting transcripts; 3. Based on the transcripts - a
discussion of adaptations of the expert-lecture format that were proposed for future
meetings in order to increase its relevance. Each adaptation is analyzed along two
dimensions: the characteristics of PLC learning that are addressed, and the nature of
HoDs’ agency. The need for brevity does not permit us to present lengthy transcripts,
hence we draw on the tradition of narrative inquiry (Clandinin & Caine, 2008), which
is “marked by its emphasis on relational engagement between researcher and research
participants" (p. 542). Recognizing this relationship as a key aspect of the research, and
not as bias in an ostensibly objective report, we present selective data with minor
editing to tell a story in which we played a significant part.

PME 43 - 2019 2-171



Cooper & Koichu

Meeting Emergent ideas for expert-lecture format

4 Send advance questions to lecturer.
Teachers send pertinent examples from personal experience

Involve department teachers in the pre-lecture assignment.

5 Increase HoD compliance (superintendent pressure, allot PD time)

7 Discuss implications for teaching and practical applications (possibly
preparing lectures with relatively unequivocal implications).

10 Cultivate community norm of keeping learning “on track”

Table 2: Evolution of lecture format (ideas in bold were subsequently implemented)
ANALYSIS AND FINDINGS
Meeting 4

The main activity in this meeting — a lecture on textbook analysis — drew on the leaders’
prior conception of relevance for the PD, assuming that one role of HoDs is textbook
selection. This content is generative (C1) in suggesting criteria for HoDs ongoing
selection of learning resources. However, it was not perceived by teachers as
particularly relevant, because schools are required to use textbooks for at least 3 years
so that they can be handed down and re-used, thus selection takes place infrequently.
Furthermore, the lecturer presented a complex multifaceted view of textbook analysis,
while the HoDs were expecting prescriptive findings for making decisions. This
instigated a search in the focus group for alternative notions and modes of relevance.

3 L2 We thought the topic of how to select a textbook in an informed manner
was a must. Now [’m not so sure.

14 L1: It’s relevant even if you can’t replace the book, if you become critical
towards it and recognize the need to supplement it with external material.

19 T2: So the question needs to be different. Not just how to choose it, but what I
do with it. Something else significant needs to happen, every teacher should
bring some insight, something he takes part in. Not just listening passively.

40 LI: I want to propose a model — priming. Before the lecture on textbooks, think
of three reasons I’m satisfied with my textbook and three why I’m not.
Share [with the community] and send to the lecturer as background.

L1 suggested ways in which the topic could be generative (C1), not only for selection
of future textbooks, but also for instigating reflection on current practices (C3), while
T2 stressed the importance of active learning (C2). In response to this, L1’s proposal
addressed C2 (active learning), and C3 (reflection on practice) in a priming activity
before the lecture.
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Meeting 5

The 5" meeting included a lecture on low-achieving students. The rationale for this
lecture drew on the intersection of the community leaders’ prior conception of relevant
content and on the HoDs expectations as elicited in questionnaires. Applying the
adaptations proposed in the previous debriefing, we asked the HoDs to share “either a
question that you would like to be addressed or a related idea or thought, e.g. an
assignment you gave to low achieving students, or an interesting answer from a low
achiever”. Three out of the 16 HoDs responded, requesting that the lecture touch on
the following topics: 1. Motivating students with mediocre ability; 2. Common
misconceptions and strategies for addressing them. The third input was a ruse on the
negative implications of insisting that chronically low achievers must learn the
standard curriculum. The first two issues were touched on in the lecture. T1 and T2
commented in the debriefing on the low level of response to the invitation to influence
the lecture.

2 T2 The priming, it didn’t work! We might need to involve the superintendent.
4 Ll: Maybe we can make use of the time in the PD sessions [instead of at home]

The level of response is probably due to the early stage in the development of the
community — the norms of collaboration (C4) and sharing practice (C5) in a safe and
supportive environment were just emerging. The focus group discussed two ways to
enhance compliance. However, involving the superintendent would not have been
consonant with the communal norms we were aiming to achieve (C4), nor were we
comfortable with the idea of restricting all the teachers’ activity to the PD hours, feeling
that the principle of active learning (C4) implies at least some work outside the PD
meetings. No new adaptations of the lecture format were proposed in this debriefing.

Meeting 7

The 7" meeting included a lecture, given by L2 on the contributions of research in the
field of mathematics education. The topic of the lecture was in the intersection of the
leaders’ conception of relevant content and the HoDs expectations.

2 Tl You lost them after 30 or 40 minutes. The idea is collegial learning, that
everyone shares something of himself and then we discuss it.

19 T2: I think the lecture should have been summarized differently, and not only
at the end.... The research should have been processed and adapted, and
time allotted to discuss: does it have significance for teaching? What would
you do with it as a HoD? And share this [with the community].

28 L2: I tried to stop after every piece of research and ask, from the perspective of
HoDs and teachers, how it can be applied.

31 T2: But you didn’t give it space. And you brought the questions.

34 LI: We say that implications [of research] are complex, not unequivocal. This
1s not the answer they want to hear.

39 L2: These are low expectations from HoDs.
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40 LI: No, they’re different expectations. We can try to do episodes, describe one
research and then give 10 minutes in groups to suggest practical
implications for practice, and hold a discussion.

76  T2: [Or we can offer] two questions [for the HoDs]: Is the phenomenon familiar
to you from your school, and what is its significance in teaching.

While previous suggestions focused on teacher activity before and after the lecture, this
meeting elicited an idea of how to involve teachers during the lecture. It calls for
collective learning (C4), recognizing that different community members have distinct
types of expertise. Furthermore, the adaptation is generative (C1) in the sense that
familiarity with research can have implications in the future, it involves teachers
actively (C2), it encourages a reflective stance on practice (C3) in connecting research
to teachers’ practical experience, and in so doing makes their practice public (C5). T2
stressed the importance of learner agency in posing questions about application.

Meeting 10

The 10" meeting included a lecture by a teacher educator on her experience with
community learning in a different PD. The lecture was followed by a discussion led by
T2, driven by the question of how to connect the presented experience with the
participants’ experiences. Learning from a case in this meeting can be seen as modeling
C5 (making practice public), and was consistent with expectations that the PD
introduce other educational contexts. The discussion touched on the expert-lecture
format in general, with an eye towards planning the following year.

38 L2: We should tell lecturers that their lecture will be followed by a discussion
on how to take it to school.

41 T2: Also need to develop within the community a more critical culture... If you
didn’t get what you wanted [from the lecturer] — ask. The lecturer may have
had things to tell us that we didn’t ask about.

Here T2 recognized the importance of community norms that can keep the learning on
track. Active learning (C2) does not only imply that teachers participate in the learning
actively, but also that they may have an active role as agents in directing its course.

DISCUSSION

We elaborate in this section on the emergence over time of two aspects of the lecture
activity — alignment with the characteristics of community learning and learner agency,
as summarized in table 3.

Meeting  Characteristics of adaptations Agency in proposal
4 C1,C2,C3
5 N/A Instructor agency in enforcement
7 Cl, C2,C3,C4,C5 Learner agency in raising questions
10 C2 Learner guiding and directing lecture

Table 3: Learning characteristics and agency in proposed adaptations of format
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The emergence of community learning characteristics

In three of the four focus group discussions, new ideas were suggested for aligning the
lecture activity with desired characteristics of community learning. Presenting and
discussing research (meetings 4 and 7) could be seen as generative (C1), both in its
findings, and in the reflective stance that it encourages. All suggestions emphasized the
importance of active learning (C2), in raising questions, in considering applications
and implications, in guiding the lecturer, and generally not just learning passively from
the expert. Adaptations in meetings 4 and 7 suggested how learners could reflect (C3)
both on their practice and on their learning, and meeting 7 suggested how teachers
could collaborate (C4) through sharing their work, and make their practice public (C5)
through sharing their experience.

The emergence of learner agency

While meeting 5 raised some ideas that tend to deny learners agency (extrinsic
enforcement of active participation), meetings 7 and 10 suggested how learners could
act as independent agents in lectures, through question-raising throughout the lecture.

Active participation before, during and after the lecture

Our attempt to align the PD with principles of PLCs began with a point in time at the
beginning of the PD, when learners were invited to fill and submit expectations
questionnaires. In responding thoughtfully, they were acting as agents of their learning
by influencing the selection of content topics. Over the course of the PD, many other
points in time were shown to be appropriate for community learning: Before lectures
(advance questions and experiences to lecturer), during lectures (keeping the lecturer
on track, asking questions), and after the lecture (discussing implications for practice).

The role of the focus group in the process

Though the principles of learning in a professional community were known to us in
advance, fleshing them out in a particular context was not a straightforward task. The
focus-group debriefing served a crucial role in the process, as an instance of what
Shulman has advocated as “strategies ... that permit both intention and chance to be
represented in their collision...” (1997). Setting up the focus group was a strategy, its
intention was refinement of learning activities, which collided with the chance
enactment of the individuals comprising the focus group. We consider the product —
refinements of the lecture-format — to be valuable findings; in combination with the
process by which these findings emerged they become generative for the community.

We also note that the focus group has played a role in upscaling; in the second year of
the project T2 became one of the leaders of the community.

Relevance for school PLCs led by heads of departments

Preparing HoDs as leaders of local school-based PLCs has been an explicit goal of the
PD from its outset. Thus, it would have been natural to expect the lecture format to
evolve in ways that attend to its role in these local communities. The fact that this did
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not happen at the outset could be anticipated in view of Grossman et al.'s accounts of
the development of communities over time. Now that we have entered the second year
of the program, and the community has matured, interactions with school-based PLCs
are an explicit focus of our work, and will be reported in due course.
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In this paper, we present an inquiry regarding developing specialized knowledge in
prospective primary teachers (PTs) in the context of probability. In particular, we
discuss the knowledge involved and required in the context of a task focusing on the
subjective approach to probability. The implementation of such a task allowed us to
investigate PTs’ criteria to establish the degree of confidence that a given event occurs
and investigate if these criteria are linked with PTs’ specialized knowledge.

INTRODUCTION

In recent years, there has been growing interest in the topic of probability both in
mathematics curricula around the world and in mathematics education research.
Indeed, probability plays a crucial role in people's mathematical literacy (e.g., OECD,
2016), whereas probabilistic reasoning is at the root of many daily decision problems
as well as in scientific issues. Even if the development of awareness about probability
assessments is something culturally and socially relevant, the research reveals both
pupils’ and teachers’ difficulties in this topic (e.g., Batanero, 2015). Research shows
teacher education plays a core role in filling such gaps and improving practice (e.g.,
Linares & Krainer, 2006; Boyd, Grossman, Lankford, Loeb & Wyckoff, 2009).

In particular, the different philosophical conceptions of probability (classical,
frequentist and subjectivist) provide different systems of concepts and procedures that
serve to analyze uncertain situations. Teachers should be aware of these conceptions
because they influence students’ reasoning when confronted with chance situations. In
that sense, it is crucial to think of new ways/approaches to develop teachers’ knowledge
and awareness about probability after their initial education program. In pursuing such
an aim, we have taken the subjectivist approach of probability as a starting point (de
Finetti, 1931). According to this perspective, probability is no longer a physical
objective property, but rather a subjective judgement conditioned by a person’s
information and knowledge. This approach captures the psychological basis of
probability and can be meaningful and consistently linked with the other approaches.

In this scenario, we designed a particular task with the aim of general inquiry and to
develop PTs’ knowledge. The task proposes PTs to discuss particular betting contexts,
some of them linked to everyday decisional situations that can be also read through the
mathematical lens of Probability. The task design and the analysis were conducted
based on the model of Mathematical Teachers’ Specialized Knowledge — MTSK
(Carrillo et al., 2018), since we also consider all the teachers’ knowledge to be
specialized. We particularly focused on the sub-domain of the MTSK model named
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Knowledge of the Topic (KoT) to address the following research questions: 1) Can the
subjective perspective allow us to assess PTs’ specialized knowledge and awareness
about probability? and 2) Does PTs’ KoT allow them to consciously links between the
different approaches of classical, frequentist and subjective probability?

THEORETICAL FRAMEWORK

Although probability is present in most of the national mathematics curriculum in
primary school all around the world, research reveals that teachers have fragmented
knowledge in the probability domain (e.g., Batanero, Godino, & Roa, 2004). Indeed,
mathematics teachers frequently lack specific preparation in statistics and probability
education. For example, in Italy, until some years ago, prospective secondary teachers
with a Master’s Degree in Mathematics were not obliged to receive specific training in
probability. The situation is even worse for primary teachers, most of who have not
had basic training in probability; this problem is common to many countries. The
research showed that this lack of knowledge creates serious difficulties for teachers to
link their intuitions and daily knowledge with the formal knowledge they are going to
teach (Batanero, Godino, & Roa, 2004).

The complexity of the topic is also related that the Probability Theory has different
philosophical approaches in its inner and actual formalization. Some of them (classical
and frequentist approaches) look at the probability as an objective property of an event
or an element of a class, while another (subjectivist approach) conceives it to be related
to a person’s judgment. The classical view defines the probability of an event as a
fraction between the number of favourable cases of a particular event and the number
of all possible cases (i.e., a priori probabilistic study), while the frequentist approach
sees the probability of an event as the limit of the frequency relative of that event when
the number of experiments goes to infinity (i.e., a posteriori probabilistic study).

A different perspective is, instead, followed within the subjective interpretation of the
probability of an event that was conceived with the intention of discerning the different
formal approaches of probability and their psychological basis. In particular, de Finetti
defines the subjective probability of an event E as the price p that an individual, being
the banker in a gambling game, is available to pay if E occurs (de Finetti, 1931). The
subjective approach of probability is guided by the idea that in some cases, the
judgment of the degree of confidence about events’ occurrences can be accessed
through measurement procedures.

Batanero, Godino, and Roa (2004) argue that it is necessary to provide teachers with a
deeper preparation that allows them to develop an awareness of the different
philosophical approaches to probability. Assuming that teachers’ knowledge
influences practice and thus, the students’ learning processes (e.g., Nye,
Konstantopoulos, & Hedges, 2004; Zakaryan & Ribeiro, 2018), it becomes necessary
to research and deepen the content of probability knowledge. Considering the
specialized nature of the work of teaching, we refer to the MTSK conceptualization
(Carrillo et al., 2018), which considers such specialization in an explicit manner both
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in mathematical and pedagogical content knowledge and built around the beliefs. In
this vision, in the topic of probability, it’s important to obtain a deeper understand on
the content of specialized knowledge a teacher needs to have and in which sub-domains
such knowledge can be located (Carrillo et al., 2018). It is crucial, for example, that
teachers know that there are different, consistent approaches and definitions of
probability, each one suitable to read and grasp different aspects of a situation.

In this study, we focus on the KoT dimension of the MTSK that is divided into: 1)
Definitions, properties and foundations; ii) Procedures; iii) Registers of representation,
and 1v) Phenomenology and applications. This sub-domain, in the case of probability,
concerns: the intra-conceptual connection between the different definitions of
Probability linked with the different philosophical approaches (KoT — Definitions); the
related procedures like for example statistical analyses or evaluations based on
combinatorial calculus (KoT — Procedures); number representations as fractions or
percentages, and graphical representations like drawings, tables, histograms, etc. (KoT
— Registers of representation); and the evaluation of the conditions under which a bet
would be made and the recognition of the suitable definitions to read and grasp features
of a situation (KoT — Phenomenology and applications).

In this scenario, it is vital to let the teachers explore and reflect about how the degrees
of confidence attributed to different events can be based on personal sensations, but
also carried out and formalized through measurement processes concerning statistical
analyses or evaluations based on combinatorial calculus. This kind of work can be
developed with PTs by designing suitable tasks, implemented through the orchestration
of collective discussions among teachers. Indeed, the research suggests that the
mathematical discussion is potentially a valuable tool for developing pupils’ learning
(Bussi, 1998), as well as to promoting teachers’ specialized knowledge (e.g., Levin,
1995). In the case of probability, a mathematical discussion that is suitably orchestrated
can allow PTs to develop an awareness of the differences and links between
subjectivist, classic, and frequentist approaches to probability.

CONTEXT AND METHOD

This research is part of a wider project aimed at investigating teachers’ specialized
knowledge in different mathematical domains; here we focus on the field of
probability. Probability, with the name "Data and Predictions" is one of the four
founding areas of the National Italian Guidelines (MIUR, 2012) and there are different
attempts throughout the country to support teachers in including this topic in their
mathematics education proposals.

Here we report on data collected during November 2018 in the context of the Master’s
Degree Course for kindergarten and primary PTs at the University Suor Orsola
Benincasa of Naples, Italy. The data collected regards a task implemented during two
classes at the end of the Mathematics Education course. This course is placed in the
third year of PTs’ five-year university path, after other two Mathematics exams (in
these exams there are no specific contents regarding probability). Our sample is
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characterized by having poor mathematical formal knowledge about probability,
mainly stemming from their school experiences.

For this reason, the PTs required extra time to think on the task, so we opted to give
them the task prior to the two classes dedicated to discussing it. This way, the PTs
could work on it individually or in groups at home before class. This choice was made
in order to give them extra time to reflect upon and search for ways to complete the
task and to promote a more fruitful in-class discussion (Bartolini, 1998; Levin, 1995),
as the focus is on developing PTs specialized knowledge and not on identifying the
gaps in such knowledge. Indeed, during the class, attended by about 60 PTs, we asked
the PTs to share with us and with their colleagues their reasonings and productions,
used by the educators as starting point for orchestrating the mathematical discussion.

With the goal to allow to more meaningfully assess PTs knowledge of classical and
frequentist probability and develop specialized knowledge, we have designed the
following task (Fig. 1), starting from the context of betting, to promote a subjective
view of probability.

Imagine to have to bet on one of the two events E; and E; described in the following different
contexts, which kind of information you would look for in order to decide on which one to bet?

1) Roll of two non-rigged dice

Ei=7 as sum of the two numbers on dice faces; E;= 3 as sum of the two numbers on dice faces
2) Weather forecast for tomorrow in Naples

E =it rains; Ep=it is sunny

3) Weather forecast for January the first (2019) in Naples

E= it rains; Ep=it is sunny

4) In a coffee shop the person sit to the table closed to mine

E1=he/she will order a glass of wine ; E;=he/she will order a beer

Figure 1: The teacher education task

This task allows us to assess which information PTs were looking for to choose their
betting and, if in possession of this information, how they decide on the betting. We
expected that PTs would look for information by referring to knowledge constructed
during the school years or from their life experience. Indeed, with such task, we intend
to investigate PTs’ criteria to establish the degree of confidence that a given event
occurs and how these criteria are linked with KoT. In particular, this task let us assess
the degree of awareness with which they use their KoT in probability. Moreover, this
task was designed to promote discussion in a deeper way about the different approaches
to decision problems by linking them to measurement processes of probability
(whenever possible), while discussing different strategies where it is not possible.

Data collection concerns the group discussion audio recordings and the photos of the
writings made by PTs on the whiteboard during the discussion. Due to the space
limitation, we focus on two excerpts of the discussion in which, by using the MTSK
lens, we will show how the PTs try to invest their KoT, even if in same cases very
poorly, in the proposed betting contexts. In particular, we discuss how the stimuli and
provocations posed by the task create PTs’ reactions that we, as educators, could use
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in a mathematical discussion in order to support PTs’ development of specialized
knowledge. Our goal was to make PTs link their criteria to establish the degree of
confidence that a given event occurs and the different approaches to probability meant
exactly as measurement tool of the degree of confidence that certain events occur.

ANALYSIS

In the first excerpt of discussion, we are going to analyze a student showing her strategy
to the first question of the task. In the context of the roll of two non-rigged dice, we
asked them to imagine which kind of information they would look for in order to decide
to bet on E;= 7 as sum of the two numbers on dice faces or E>= 3 as sum of the two
numbers on dice faces.

Francesca: [ would bet on seven because I have thought that there are more possibilities
that seven will occur than three. Seven can be obtained by six plus one, five
plus two and four plus three, while three can be obtain only with one
combination, that is two plus one. There are three combinations, that means
there are more probabilities in comparison to one combination. After this
reasoning, | was intrigued and to verify it, I performed the calculus [she
went to the board writing the production in Fig. 2]. Practically, three are the
combination, while twelve are the possibilities since six are the faces of a
dice and six plus six is twelve, so we have twelve possibilities to arrive to
the right combination.
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Figure 2: The whiteboard’s production of Francesca

Educator:  In which sense twelve are the possibilities to arrive to the right
combination?

Francesca: Because twelve are the total faces of the two dice.

In this part of the discussion, it is interesting to see how the context of betting seems to
naturally orient Francesca to root her criteria in the combinations that, from her point
of view, are the ones that give the sum of seven and three. She made a common mistake
when finding the amount of favorable events for seven (only three) and for three (only
one), and her criteria to compare the degree of reliability of the two events is comparing
the amount of possible combinations for seven (three) with the amount for obtain three
(one). When comparing the degree of confidence, she consistently perform the
comparison of the two numerators 3 and 1 with the same denominator expressing the
total number of combinations, assuming the classical probability view point as a natural
way to order the degree of confidence, even if she is not aware of such fact.
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Francesca perceived a sort of dissociation between criteria and calculus, as can be seen
in her words “to verify it, [ performed the calculus”, obviously linked to her belief
about mathematics at the core of the MTSK model. Indeed her “calculus” seems quite
forced, and her error in considering as total events the sum of the faces of the two dice
“Because twelve are the total faces of the two dice”, reveals a loss of sense making
when applying the formula (KoT — Procedures). However, looking beyond the
mistakes, a relevant aspect here concerns her attempt to elaborate an intra-conceptual
connection between subjective probability and classical probability (KoT). Moreover,
the use of multiple representations properly linked to each other in her white board
answer—drawings, fractions, decimal representations, percentages (KoT -
Representations), together with the arguments provided verbally, reveal a deep search
for meaning undertaken by Francesca.

Continuing the discussion, other PTs’ comments contribute to clarifying the mistakes
in Francesca’s reasoning and to meaningfully build a shared recognition that it is more
convenient to bet on 7 because it can occur in six combinations that are (1;6), (2;5),
(3;4), (4;3), (5;2) and (6;1) on 36 possible combinations of the six faces on the two
dice, while 3 only in two combinations (1;2) and (2;1) on 36.

The next excerpt is related to the fourth question of the task. In this question, we asked
PTs to imagine which kind of information they would look for in order to decide, in a
coffee shop context, to bet that the person sit in the table closed to mine E;=will order
a glass of wine or E;=will order a beer, aiming at discussing which can be the possible
measure strategies of an open context such this one.

Elisa: I could look how he is dressed, or the kind of coffee shop, but I have also
thought that I could ask to the barman what the people order most in that
place: a glass of wine or beer.

Educator: ~ Could you link it to the strategies that we have already discussed?

Elisa: Yes, as for the context 3 in which we would see in the previous fifty years
the weather on the first of January in Naples, also here we are going to
search the frequencies of the clients who order a glass of wine or beer.

Elisa connects the subjective request of the task to the frequentist probability,
navigating in the intra-conceptual connections between subjective and frequentist
approach to Probability (KoT — definitions). The fact that there are no explicit
references to a formal definition of frequentist probability brings to front the use of a
naive idea of such probabilistic view elaborated from personal previous experiences,
where the questions posed on the task may assume a core role (shaping the content of
KoT — Phenomenology and applications).

CONCLUSION

Teacher’s specialized knowledge must be wider and deeper than that of the student
(Zakaryan & Ribeiro, 2018) and, therefore, because of its attention to the psychological
aspects on which the concept of probability is based, we assume that the subjectivist
point of view (de Finetti, 1931) can be a useful direction in the teacher education field.
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In particular because, in agreement with Batanero, Godino and Roa (2004), the
subjectivist approach allows one to build knowledge from the information one has, and
thus can potentially create connections between intuitions and formal approaches to
probability.

In the present study we have explored the possibility to inquiry and develop prospective
teachers KoT within an approach to probability in the context of betting around events
whose degree of consistent has been established according different criteria. We saw
in the analysis of the two excerpts of discussion about the task, that PTs’ in a certain
sense implement the classical and frequentist approaches to probability, even if in the
first excerpt such implementation was grounded in problematic aspects of PTs
knowledge (mistakes) and without any explicit references to the formal definitions.
This fact reveals PTs lack of awareness in linking the kind of information they want to
access for decide the betting and the way in which they want to use them with the
classical and frequentist approaches to probability. Nevertheless the implementation
of the task allowed us to see that PTs use naive idea of such probabilistic views,
elaborated from own previous experiences and school knowledge, and invest them in
the task with a sense making process, where the questions posed on the task assumes a
crucial role (shaping the content of KoT — Phenomenology and applications).

In this sense the subjective approach evoked by betting contexts, like for example the
ones described in task presented in this paper, potentially creates a space of reflections
and discussion in which the educators can promote PTs’ KoT development and
awareness about the links between the different approaches to probability. Possible
future research paths could be aimed to analyse and deepen the potentialities of the
mathematical discussion promoted in problem solving contexts on betting, in terms
PTs’ development of KoT and awareness between the different probability approaches.
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TEACHERS AND STANDARDIZED ASSESSMENTS IN
MATHEMATICS: AN AFFECTIVE PERSPECTIVE

Pietro Di Martino, Giulia Signorini
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Standardized assessments in mathematics have an increasing relevance in the
educational debate and, often, they heavily affect educational policies. Specifically, the
framework and the items of standardized assessments suggest what is considered
relevant as an outcome of mathematics education at a certain school level. The strength
and the quality of the educational impact of standardized assessments seem to depend
heavily on teachers’ affective reactions to standardized assessment;, however, studies
focused on this issue are very rare: what are teachers’ attitudes towards the
standardized assessments and their effects? In this frame, we carried out a large
qualitative research to investigate teachers’ attitudes in the Italian context.

INTRODUCTION

National standardized tests have been officially introduced in several countries on the
wave of the most famous international programmes for student assessments (PISA and
TIMSS). The framework and the items of the standardized assessments suggest what
is considered relevant as outcomes of mathematics education at a certain school level.
Therefore, more or less in an explicit way, standardized assessments intend to impact
directly not only the educational reform promoted by politicians (Breakspear, 2012),
but also, at the classroom level, teachers’ educational choices. The test results are often
used to assess the general quality of an educational system and this has often triggered
a dispiriting horse race between countries, but also between schools at a national level.
Nowadays, the growing relevance of standardized assessments in mathematics in the
educational debate is a fact (Kanes, Morgan & Tsatsaroni, 2014). Several studies from
different traditions in educational research have focused on the reliability of
standardized assessments’ results, discussing what such assessments really assess, to
which degree they may be viewed as didactically consistent with official curricula
(Bodin, 2005), and discussing their equity (Boaler, 2003). Another line of research
focuses on students’ performance, analyzing, in particular, students’ errors (Wijaya et
al., 2014) and interpreting factors affecting students’ performance (Papanastasiou,
2000). Even though it has been shown that teacher affect heavily influences instruction
and learning (Jacobson & Kilpatrick, 2015), it is curious to observe that the majority
of these studies has a cognitive and epistemological perspective and little regard is paid
to the variable ‘teachers’: only recently, Di Martino and Baccaglini-Frank (2017)
introduced and discussed the concept of “developmental potential” of standardized
tests, seen as the educational opportunities for teachers offered by a critical approach
to tests.
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In this frame, we carried out a large qualitative research to investigate teachers’
attitudes towards the Italian test promoted by the National Institute for the Assessment
of the Educational and Instructional System (INVALSI). In this paper, we focus on the
following research questions: what are teachers’ emotions towards the INVALSI test
and what are the declared reasons to justify these feelings? Are there significant
differences between teachers of different school levels?

METHOD AND RATIONALE
The context

Every year INVALSI develops and administers in May a census test for grades 2, 5, 8,
10. The number of items and the time granted vary depending on the school level.
INVALSI shares the PISA framework and it designs the test items according to the
official Italian National Standards. Despite this, there is a harsh debate because there
is a unique test for grade 10, that is not differentiated for scientific high schools and
professional institutes. The results do not affect the students’ marks except for at grade
8, where each student’s mark is entered (at least up to 2018) as part of the exam
marking. In July, INVALSI sends back to the schools a quantitative report with the
average score of each school class, and the comparison of the average scores of other
schools with similar characteristics (numbers of students, social environment, etc.).

The collection of data

The choices of the research instruments and how to use them are not neutral. We
developed our research within the more recent trend on affective factors in mathematics
education. In particular, we refer to the shift from a normative approach — aimed to
explain affective phenomena through general rules based on a cause—effect scheme —
to an interpretive one — aimed to interpret the phenomena, “making sense of the world”
(D1 Martino & Zan, 2015). A movement towards the development and use of
qualitative methods (essays, diaries, written open questionnaires, oral interviews)
emerges in research on affect (and more in general in mathematics education). We
developed our research within this frame.

In the first stage of our research we developed an online questionnaire and promoted
the teachers’ participation (on a voluntary and anonymous basis) with the help of the
Italian regional education offices. In the last part of the questionnaire, participants had
the possibility of sharing their e-mail address to participate to a non-anonymous semi-
structured interview. This interview was developed to zoom into certain issues that
emerged from the questionnaire answers. We were aware that we would not get a
statistical sample in this way; however, our goal was to describe, interpret and
understand a phenomenon and not to, in some sense, measure it. Therefore, we believe
that having a convenience sample is not a limit. Participation exceeded all expectations:
we collected 1964 questionnaire replies (very well distributed among the three school
levels, see Table 1) and 798 participants agreed to participate in the second interview-
stage. On one hand, this exceptional participation confirmed the teachers’ interest in
making their voices heard about this topic; on the other hand, it raised the problem of
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the analysis of such a large amount of qualitative data, which needed to be very
structured.

Conference Year Number of questionnaire replies
Primary school (1-5) 635
Middle school (6-8) 643
High school (9-13) 681
Others 8

Table 1: Distribution of questionnaire replies among school levels.

The online questionnaire includes 28 questions divided into screens: background
information (4), emotions (4), view on INVALSI items (5), perceived goals of the
national assessment (3), strengths and weaknesses of the evaluation system (4),
relationship between test and didactical practices (4), view on the evaluation system
(4). Excluding the section about background information, the questions were mostly
(15 out of 24) open questions; indeed, this approach allows to “catch the authenticity,
richness, depth of response, honesty and candor which are the hallmarks of qualitative
data” (Cohen et al., 2007, p. 249). Psychologically central beliefs and emotions of the
respondent emerge, differently from what happens with the traditional scales, where
the respondent has only to express a degree of agreement with respect to items c