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REASONING-AND-PROVING TASKS IN HONG KONG SENIOR 
SECONDARY LEVEL PUBLIC MATHEMATICS EXAMINATION 

Chun Yeung Lee1, Kwong-Cheong Wong2   
1University of Oxford, 2The Hong Kong Polytechnic University  

 
The reasoning-and-proving (RP) tasks in Hong Kong senior secondary level public 
mathematics examination are investigated. The results show that a predominant 
proportion of the RP tasks require the students to produce reasoning that merely 
involves calculation and memorisation of facts and procedures. The findings are 
compared and discussed with the curriculum aims. This study indicates some of the 
reasons for the marginal role that proof plays in school mathematics in Hong Kong. 
INTRODUCTION 
Proof can not only verify the truth of a mathematical statement, but also promote sense 
making and understanding in mathematics through explanation (Knuth, 2002). 
Consequently, mathematics educators from many countries suggest that proof and 
proof-related reasoning (RP) permeate school mathematics at different levels and 
across different content areas (e.g., Ball, Hoyles, Jahnke, & Movshovitz-Hadar, 2003). 
In response to this international call, in recent years many studies have been conducted 
to investigate how RP is being treated in the curriculum (e.g., Stylianides, 2009; 
Thompson, Senk, & Johnson, 2012; Davis, Smith, Roy, & Bilgic, 2014; Fujita & Jones, 
2014; Wong & Sutherland, 2018). The focus of these studies, however, has been 
exclusively on examining students’ learning opportunities of RP from textbooks. Few 
studies have been conducted to examine the RP in examination papers and the 
influence of the latter on the former. It is a common perception that examination papers 
have an influence on the students’ learning experience in general and learning 
opportunities of RP in particular, particularly in East-Asian countries (e.g., Hong 
Kong, Singapore, South Korea), just because these countries have a highly 
examination- driven culture. For instance, both Leung (2000) and Wong (2002) 
claimed that the learning experience of students in East-Asian classes is heavily aligned 
with the tasks in the public examinations. However, no direct evidence has been 
provided to support such a claim. This paper is intended to fill these gaps. Specifically, 
it studies the influence of examination papers on the students’ learning opportunities 
of RP. This is done by directly examining the RP tasks of the senior secondary level 
public mathematics examination papers in Hong Kong.  
THE CONTEXT: HONG KONG 
Hong Kong launched its new senior secondary curriculum, Hong Kong Diploma of 
Secondary Education (HKDSE), in 2009 (CDC & HKEAA, 2015). This new 
curriculum consists of a Compulsory Part and an elective Extended Part, and is aimed 
at developing in students: “(a) the ability to think critically and creatively, to 
conceptualise, inquire and reason mathematically, […]; (b) the ability to communicate 
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with others and express their views clearly and logically in mathematical language; 
[…]” (p. 2). The indication of the need to teach RP should be evidently clear from these 
aims. Since 2012, HKDSE examination of mathematics has been conducted yearly to 
assess students’ learning outcomes of the new curriculum, and the mathematical tasks 
presented in these examination papers have been set in a consistent format throughout 
these years. Like other East-Asian countries, Hong Kong has a well-established 
examination- oriented culture. Hitherto, the results of various studies have indicated, 
indirectly, that the HKDSE examination of mathematics has influenced teacher’s 
curriculum decision making and lesson preparation, student’s learning experience, and 
their perceptions of teaching and learning mathematics (e.g., Brown, Kennedy, Fok, 
Chan, & Yu, 2009; Choi, Lam, & Wong, 2012; Lee, 2019). In particular, according to 
these studies, teachers, in order to aid their students to excel at examinations, tend to 
design mathematical tasks which are aligned with those tasks presented in the public 
examinations. We believe, therefore, that a direct investigation of RP tasks in public 
examinations may shed light on how RP is being treated in school mathematics in Hong 
Kong, one of those high-achieving regions in school mathematics (Mullis, Martin, Foy, 
& Hooper, 2016; OECD, 2016). 
ANALYTIC FRAMEWORK AND METHODS 

Reasoning-and-Proving 
Making mathematical generalisations Providing support to mathematical claims 
(a)  Identifying a  

pattern 
(b)  Making a   

conjecture 
(c) Providing a 
proof 

(d) Providing a non-
proof argument 

Plausible pattern 
 
Definite pattern 

Conjecture Generic example 
 
Demonstration 

Empirical argument 
 
Rationale 

Table 1: Stylianides’s Analytic Framework (Stylianides, 2009)  
In this study, we adapted Stylianides’s (2009) Analytic Framework to examine the 
mathematical tasks in HKDSE examinations of mathematics. Based on a particular 
conceptualization of reasoning-and-proving (RP) for doing authentic mathematics, this 
framework was developed and applied first in investigating the RP opportunities in 
junior secondary mathematics textbooks in the US. This framework defines four proof-
related mathematical activities: (a) identifying patterns, (b) making conjectures, (c) 
providing proofs, and (d) providing non-proof arguments, and each is further 
subdivided as in Table 1 (for exact definitions of these terms, see Stylianides, 2009). 
In particular, there are two types of proof: generic example and demonstration. Wong 
(forthcoming) adapts this framework to investigate RP opportunities in senior 
secondary mathematics textbooks in Hong Kong and extends the classification of 
demonstration into (i) visual proof, (ii) paragraph proof, and (iii) two-column proof. 
The paragraph proof is further subdivided into (1) proof by definition, (2) proof by 
calculation, (3) proof by calculation and definition, (4) general direct paragraph proof, 
(5) proof by contradiction, and (6) disproof by counterexample (see Table 3). This 
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extended classification of demonstration, together with the marking schemes in the 
examination reports, allow us to investigate the different types of demonstration 
required in the tasks and the intended mathematical abilities that the task designers 
expect candidates to acquire at the senior secondary level. 
There were several reasons for our adapting Stylianides’s (2009) Analytic Framework 
with Wong’s extension (Wong, 2017, forthcoming; Wong & Sutherland, 2018): (a) it 
is designed for studies in the domain of RP, (b) it has been adopted and/or adapted by 
different studies (e.g., Davis et al., 2014; Fujita & Jones, 2014), and (c) Wong’s 
extension of this framework can enable us to compare his results of RP opportunities 
in textbooks with those in examination papers in Hong Kong. 
In this study, we focused on the Compulsory Part of the curriculum and examined all 
the examination papers and reports so far (HKEAA, 2012‒2018). All mathematical 
tasks were examined – a task here refers to “any exercise, problem, activity, or parts 
thereof that have a separate marker” (Stylianides, 2009, p. 270). In total of 293 
mathematical tasks in the examination papers, 103 of them were identified as RP-
related tasks. These tasks were then analyzed and categorized into subcategories of RP-
related activities, and those categorized as demonstration were further subcategorized 
into the eight classes of demonstration set out in Table 3.  
PROCEDURES AND EXAMPLES OF ANALYSIS  
The mathematical tasks in the examination papers were analyzed in three steps. First, 
we determined whether the tasks were RP-related. Tasks phrased with “prove that” or 
“explain your answer” were coded as RP tasks because these tasks explicitly ask the 
candidate to provide a support to her answer (see Example 1). Those tasks phrased with 
“find the equation of …”, “express … (a variable) in terms of … (another variable)” 
and “describe the geometric relationship…” were also coded as RP tasks (see Example 
3) because these tasks ask the candidate to make a mathematical generalization of a 
pattern that “describe[s] covariation between structures, properties, or variables” 
(Stylianides, 2009, p. 263). Then, the RP tasks were coded as “identifying a pattern”, 
“making a conjecture”, “providing a proof” or “providing a non-proof argument”. Note 
that some tasks were dually coded as both “identifying a pattern” and “providing a 
proof” because (a) they explicitly state “describe the geometric relationship… explain 
your answer” (see Example 3), or (b) both the stated marks of the task and the marking 
scheme hint the candidate to not only identify a pattern but also provide a justification. 
Finally, tasks coded as “demonstration” were subcategorized according to Wong’s 
extended classification of demonstration (for details, see Wong, 2017; Wong & 
Sutherland, 2018) (see Examples 1 and 2). Note again that according to the marking 
scheme, some demonstrations were categorized into multiple classes due to multiple 
solutions in the marking scheme (see Examples 2 and 3). Following Thompson et al. 
(2012), we adopted the consensus model for coding: each author coded all tasks 
independently and differences were then resolved by discussion among themselves.   
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Example 1 

 
Solution 

 
Figure 1: Task 15(b) of HKDSE examination 2013  

In Figure 1, Task 15(a) is not coded as any RP-related activity. Task 15(b) is coded as 
“demonstration‒general direct paragraph proof” as it does not emphasize calculation 
or manipulation (and interpretation) of algebraic expressions (i.e., proof by calculation, 
or proof by calculation and definition), nor involves one-step deductive reasoning 
derived directly by some definition, property or theorem (i.e., proof by definition). This 
task requires, instead, the candidate to have conceptual understanding of the definitions 
of mean, median and standard score in order to formulate an argument as given in the 
marking scheme. 
Example 2 

 

 
Solution 
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Figure 2: Task 18(b)(ii) of HKDSE examination 2017  

As shown in Figure 2, the marking scheme gives two different solutions to Task 
18(b)(ii): The first one is an indirect “proof by contradiction” and the second one is a 
direct “proof by calculation”. So, this task is dually coded. 
Example 3 

 
 

 
Solution 
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Figure 3: Task 18(b)(iii) of HKDSE examination of 2018  
In Figure 3, Task 18(b)(iii) is dually coded as “identifying a definite pattern” and 
“demonstration”. The marking scheme gives two different solutions, both of which 
focus on (a) calculation (to show either the product of two slopes is -1 or QS2 + RS2 = 
QR2) and (b) interpretation of the calculation results (∠QSR is a right angle and hence 
QR is a diameter of a circle) to draw a conclusion. So, this task is further categorized 
into “demonstration‒proof by calculation and definition”. 
RESULTS AND DISCUSSION  
 

 Frequency* Percentage* 
Identifying a plausible pattern 2 1.9% 
Identifying a definite pattern 39 37.9% 
Making a conjecture 0 0.0% 
Providing a generic example 0 0.0% 
Providing a demonstration 92 89.3% 
Providing an empirical argument 0 0.0% 
Providing a rationale 0 0.0% 
*Due to dual coding, the sum exceeds 103 (or 100%). 

Table 2: Frequency and distribution of RP subcategories 
As shown in Table 2, there are relatively greater proportion of RP tasks in the 
examination papers (103 out of 293 tasks, or 35.2%) than RP opportunities in textbooks 
(Cf. Geometry: 15.2% (Wong, 2017) and Algebra: 13% (Wong & Sutherland, 2018)). 
Furthermore, a dominant number of these RP tasks require the candidate to provide a 
proof (demonstration: 92 out of 103, or 89.3%) but none of them accepts any non-proof 
argument as a support to the solution of the task. However, looked closely, Table 3 
reveals also that among those demonstrations, proof by calculation (40.2%) and proof 
by calculation and definition (47.8%), both of which emphasize students’ accurate 
calculation over mathematical reasoning, are the majority (Cf. Palm, Boesen, & 
Lithner, 2011; Wong, 2017; Wong & Sutherland, 2018). These results suggest that the 
pubic examination of mathematics in Hong Kong is calculation-focused and this in turn 
indicates that the task designers intend to assess the candidate’s accurate and precise 
calculation and procedures of problem solving but not RP (general direct paragraph 
proof: 3.3%; proof by contradiction: 5.4%; two-column proof: 7.6%). This is in 
contrast to the curriculum aims. These results provide additional support to the claim 
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that proof plays a marginal role in secondary mathematics in Hong Kong, echoing the 
conclusion of Wong (2017) and Wong and Sutherland (2018). 

 Frequency* Percentage* 
Visual proof 0 0.0% 
Two-column proof 7 7.6% 
Proof by definition 0 0.0% 
Proof by calculation 37 40.2% 
Proof by calculation and definition 44 47.8% 
General direct paragraph proof 3 3.3% 
Proof by contradiction 5 5.4% 
Disproof by counterexample 0 0.0% 
*Due to dual coding, the sum exceeds 92 (or 100%). 

Table 3: Frequency and distribution of the classification of demonstration 
A number of reflections on these results are in order. Hong Kong teachers’ perceptions 
of the characteristics of the mathematical tasks presented in the examination papers 
very probably influence their perceptions of teaching (in particular, RP) and classroom 
practices (Lee, 2019). For example, teachers tend to adopt the mathematical tasks in 
the examination papers in their in-class activities for examination preparation (Brown 
et al., 2009; Choi et al., 2012). This explains why student’s learning opportunities are 
mainly calculation-focused. However, these calculation-focused tasks require students 
only to recall and apply procedural knowledge (i.e., imitative reasoning) rather than 
creative mathematical reasoning (see Palm et al., 2011). As a bad consequence, such 
an overwhelming drilling of this practice would inevitably hinder students from 
developing logical reasoning, conceptual knowledge and, crucially, understanding of 
mathematics. 
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TWO TYPES OF FRACTION KNOWLEDGE? – AN EMPIRICAL 
STUDY FOCUSING ON THE SEPARABILITY OF CONCEPTUAL 

AND PROCEDURAL KNOWLEDGE 
Katja Lenz, Anika Dreher, Lars Holzäpfel, Gerald Wittmann  

University of Education Freiburg 
 
Many explanatory approaches for students’ difficulties in dealing with fractions are 
based on the distinction between conceptual and procedural knowledge. In order to 
empirically confirm such assumptions and for finding corresponding solutions, valid 
assessment of conceptual and procedural knowledge is essential. However, previous 
studies show high correlations of these constructs. Hence, it is not clear, yet, if the 
theoretically assumed 2-dimensional structure of fraction knowledge is appropriate. 
Based on theoretically grounded conceptualizations and operationalizations this study 
thus investigates data from N = 235 students regarding the empirical separability of 
the two knowledge types. Confirmatory factor analyses show that the theoretically 
assumed model fits the data indeed better than other possible models. 
INTRODUCTION  
In spite of extensive efforts in research and practice of mathematics education, 
fractions continue to challenge mathematics teachers and students throughout the 
world (Lortie-Forgues, Tian, & Siegler, 2015). There is consensus among researchers 
that the distinction between conceptual and procedural knowledge is important in 
understanding and remedying these problems (e.g., Bempeni, Poulopoulou, Tsiplaki, 
& Vamvaloussi, 2018; Hiebert & LeFevre, 1986; Pantziara & Philippou, 2012). Studies 
focusing on textbook analyses indicate for instance that learning opportunities 
concerning fractions often focus on procedural knowledge (Alajmi, 2012; Son & Senk, 
2010), which might be a reason for students often lacking conceptual knowledge of 
fractions. To empirically validate such assumptions and for finding corresponding 
solutions, theory based conceptualizations as well as operationalizations of conceptual 
and procedural knowledge are needed. In particular, identifying individual differences 
in students’ knowledge structures and evaluating the effectiveness of different 
instructional methods with respect to conceptual and procedural knowledge requires a 
test instrument that provides valid measurement for this purpose. Therefore, it is 
essential to investigate whether conceptual and procedural fraction knowledge can be 
measured independently of each other and with a sufficient degree of validity (e.g., 
Crooks & Alibali, 2014; Rittle-Johnson & Schneider, 2015).  
THEORETICAL BACKGROUND 
The term procedural knowledge is used to describe knowledge of a sequence of steps 
or partial actions which are performed to achieve a specific goal (Hiebert & Lefevre, 
1986; Rittle-Johnson & Schneider, 2015). In particular, procedural knowledge 
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regarding fractions involves knowledge of how fraction arithmetic procedures such as 
addition of fractions work. Thus, procedural knowledge is used to solve computation 
tasks that are presented symbolically. Conceptual knowledge is commonly defined as 
knowledge of concepts and relations that are fundamental in a certain domain (Crooks 
& Alibali, 2014; Hiebert & LeFevre, 1986; Rittle-Johnson & Schneider, 2015). In 
particular, conceptual knowledge of fractions involves knowing different aspects of 
fractions, for example the part-whole aspect and the measurement aspect (e.g., 
Charalambous & Pitta-Pantazi, 2007).  
Positive correlations between conceptual and procedural fraction knowledge were 
found in different studies (e.g., Hallett, Nunes, & Bryant, 2010; Jordan, et al. 2013). 
For example, Hallett and colleagues (2010) examined individual differences in the 
conceptual and procedural knowledge of 4th and 5th graders in the United Kingdom (N 
= 318), who had not received full instruction on fractions, yet. The authors formed a 
conceptual and a procedural scale by assigning each item to one of these scales 
depending on their judgement of whether the item’s solution relies more on conceptual 
or on procedural knowledge. The resulting scales correlated highly on a manifest level 
(r = .675, p < .001). A similar correlation between the two knowledge types on a 
manifest level was found by Jordan and colleagues (2013): r = .622, p	< .001. The 
authors examined general predictors (attentive behavior, language, nonverbal 
reasoning) and number-related predictors (number line estimation, calculation fluency) 
of 6th grade students´ conceptual and procedural fraction knowledge in the United 
States (N = 357). In this study the separability of conceptual and procedural knowledge 
was as well merely assumed, but not validated empirically in any explicit way. The 
results showed, however, that predictors contributed diversely to conceptual and 
procedural knowledge, which can be interpreted as an indicator of separability.  
In addition to these similar results concerning the relationship between conceptual and 
procedural knowledge, there are also completely contradictory findings: For example, 
Lin and colleagues (2013) found no significant correlation between procedural and 
conceptual fraction knowledge of prospective teachers in Taiwan (N = 47) and in the 
United States (N = 49). Taking a closer look at the operationalizations used in this 
study suggests that using on the one hand purely nonverbal calculation tasks for 
procedural knowledge and on the other hand only verbal explanations for conceptual 
knowledge may lead to an artificially created separation of the constructs. More 
generally, findings of the Multitrait-Multimethod Analysis show that variance in test 
results does not only account for differences in the constructs to be measured, but can 
also be caused by their specific operationalizations.  
This indicates that the results of previous research regarding the relationship between 
conceptual and procedural fraction knowledge must be analyzed in view of the 
conceptualizations and operationalizations of the two constructs in these studies. 
Accordingly, a closer look at the studies mentioned above shows that the 
conceptualizations of conceptual and procedural knowledge differ in their level of 
detail. Furthermore, the comparison of the different operationalizations shows that in 
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each case different approaches were used to assess the two knowledge types and thus 
systematic and comprehensive operationalization is missing so far (e.g., Crooks & 
Alibali, 2014). Therefore, it can be concluded that more research based on explicit 
domain specific considerations and a comprehensive operationalization is needed. This 
is a necessary first step for investigating how conceptual and procedural knowledge 
can be measured independently of each other with a sufficient degree of validity. 
Accordingly, Rittle-Johnson and Schneider (2015) criticized the lack of attention that 
is paid to validity concerning the measurement of conceptual and procedural 
knowledge. 
RESEARCH INTEREST 
The aim of this study is therefore to develop and validate a test instrument with respect 
to its objective to detect differences in students’ conceptual and procedural fraction 
knowledge. This includes in particular evidence for the empirical separability of the 
two knowledge types.  
In this report we examine in particular the following research question: 
Does the 2-dimensional model distinguishing between conceptual and procedural 
fraction knowledge show a better model fit than the 1-dimensional model and than a 
2-dimensional model distinguishing between a verbal and a nonverbal factor? 
TEST DESIGN, SAMPLE AND METHODS 
Our conceptualizations of conceptual and procedural knowledge build on previous 
approaches since commonly occurring core elements of conceptual and procedural 
knowledge were included. In order to develop a systematic conceptualization, 
however, we also took into account different cognitive processes regarding both 
knowledge types, following the two-dimensional taxonomy for learning, teaching, and 
assessing by Anderson and Krathwohl (2001). The cognitive processes were adapted 
according to a mathematics specific taxonomy developed by Barzel, Leuders, Prediger, 
and Hußmann (2013), which was designed in order to systematically create tasks that 
support learners in knowledge organization.  
Hence, the resulting taxonomy structures both knowledge types by different cognitive 
processes which are decisive for the acquisition of mathematical knowledge: 
verbalization, application, and visual representation. Table 1 shows an excerpt of this 
taxonomy regarding the concept ‘equivalence of fractions’ which is important for 
instance for the addition of fractions with uncommon denominators. In terms of 
procedural knowledge it refers to expanding and simplifying fractions. 
 verbalization application visual representation 
conceptual knowledge 
‘equivalence’ 

“Fractions that 
describe the 
same proportion 
are equivalent to 
each other.” 

know examples/ 
counterexamples 
 

1
2
=
2	
4	
			
1
2
≠
2
8

 

roughening or 
refinement of models 
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recognize that 
equivalent fractions 
have the same position 
on the number line 

 

procedural knowledge 
‘Expand fractions/ 
Simplify fractions’ 

 

“Multiply/divide 
numerator and 
denominator of 
a fraction by the 
same number.” 

 

apply the 
procedure 
1 ∙ 2
4 ∙ 2

=
2
8
		
2: 2
8:	2

=
1
4

 
 

 

link between 
procedural and 
conceptual 
knowledge: 

 
Table 1: Excerpt of the taxonomy to describe knowledge elements 

Conceptual knowledge is explicitly formulated in definitions and theorems, while 
procedural knowledge is explicitly formulated in instructions. The application specifies 
the explicitly formulated knowledge. In terms of conceptual knowledge this means that 
examples and counterexamples are known. In terms of procedural knowledge, partial 
steps are internalized by the execution of the procedure and supplemented by 
knowledge about conditions of applicability. Finally, visual representation of 
conceptual knowledge is central for generating mental models. Visual representation 
of procedures represents a connection between conceptual and procedural knowledge. 
Therefore, to assess conceptual and procedural knowledge separately, knowledge 
elements from this part of the taxonomy are not operationalized. 
The conceptualizations of the knowledge types according to the taxonomy were 
implemented in test items. In order to take into account existing research, 
operationalizations of conceptual and procedural knowledge from previous studies 
were reviewed and systematized according to the taxonomy with a focus on tasks that 
are suitable for paper-pencil testing. This analysis revealed three most commonly used 
approaches to assess conceptual fraction knowledge: 1) visualizing the part-whole 
aspect in translation tasks 2) applying the measurement aspect in size comparison tasks 
or number line tasks 3) verbalizing general principles of fractions in explanation tasks 
(for an overview of task types used to assess conceptual knowledge see Rittle-Johnson 
& Schneider, 2015). All three approaches were taken into account for a comprehensive 
operationalization.  
Commonly, procedural fraction knowledge is captured by calculation tasks. In line 
with de Jong and Ferguson-Hessler (1996), we assume, however, that procedural 
knowledge also exists in a declarative manner. Consequently, procedural knowledge 
encompasses not only the application of procedures, but also the verbalization of 
(action-)sequences. 
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Following the approach by Hallet and colleagues (2010), all test items were assigned 
to either the conceptual or the procedural scale. In line with Faulkenberry (2013), the 
classification was based on the assumed knowledge type that participants use when 
solving the tasks. To confirm this classification of the items the scales were discussed 
with experts in mathematics education (N = 14). Controversially discussed items were 
subsequently revised or discarded. The final paper-pencil test instrument assessing 
conceptual and procedural fraction knowledge consisted of 71 items.  
The data was collected by means of a paper-pencil test in a whole-class setting during 
two consecutive periods of 45-minute lessons. Participants were randomly assigned the 
test versions A - D. Test versions A - D contained the same items in different order. 
First, participants were told to complete the fraction test individually at their own pace. 
Students’ responses were scored dichotomously (0 = incorrect or fragmentary; 1 = 
correct). About 20% of the data were coded by a second person. The degree of 
agreement was determined using Cohen's kappa for each item, which represents the 
degree of concordance in coding, while controlling for chance agreement. Adequate 
intercoder reliability was obtained with k	>	.741 for each item.  
A total of N = 235 German students in grade 8 and 9 participated in the study. These 
students were from 10 different classes of different “Realschulen” (a type of school for 
students with an average level of academic performance). In Germany fractions are 
usually taught in 6th grade. Therefore, we assume that 8th and 9th graders had enough 
time to practice and consolidate their earlier instruction in the domain of fractions. 
We used confirmatory factor analyses to investigate whether the data supported the 
theoretically assumed structure of fraction knowledge distinguishing between 
conceptual and procedural knowledge. Model comparisons took into account the 1-
dimensional model and in addition a 2-dimensional model based on a language factor 
(verbal – nonverbal). Considering this second 2-dimensional model responds to the 
findings of Multitrait-Multimethod Analysis mentioned above and showing that 
variance in test results does not only account for differences in the constructs to be 
measured but can also be caused by their specific operationalizations. 
RESULTS 
Confirmatory factor analysis 
According to the global fit measures the 2-dimensional model based on the knowledge 
types showed good agreement with the empirical data (𝑥. = 20.568; df = 13; P(𝑥.) = 
.082; TLI = 0.975; CFI = 0.984; RMSEA = 0.050; SRMR = 0.030) and was superior 
compared to the other models regarding the global fit indices. The Bayesian 
Information Criterion (BIC) which allows for a direct comparison of the models 
showed the lowest BIC value for the 2-dimensional model distinguishing between 
conceptual and procedural knowledge. Differences in BIC values were higher than 10, 
indicating a strong effect (Raftery, 1995). Therefore, the comparison of the fit statistics 
suggested that the 2-dimensional model based on knowledge types was the most likely 
model underlying students’ performances. Since conceptual and procedural knowledge 
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were highly correlated (r = .79, p < .001), a chi-square difference test was conducted 
to get further evidence for discriminant validity. The null hypothesis assumes that there 
is no significant difference between the 2-dimensional model distinguishing between 
knowledge types and the 1-dimensional model. With ∆χ. (1, N = 235) = 29,162, p < 
.01 the difference was significantly greater than zero. This means that there is a 
significant difference in the goodness of fit between the 2-dimensional model based on 
knowledge types and the 1-dimensional model. 
DISCUSSION AND DIRECTIONS FOR FURTHER RESEARCH 
In this study, we developed a test instrument that enables to detect differences in 
students’ conceptual and procedural fraction knowledge. This is necessary for in-depth 
research into reasons and remedies for students’ persistent problems in dealing with 
fractions, since it is assumed that the distinction between these two knowledge types is 
key in this context (e.g., Hiebert & LeFevre, 1986). More generally, this responds to 
the need for research regarding the validity of measures of conceptual and procedural 
knowledge, in particular with respect to the question as to how conceptual and 
procedural knowledge can be measured independently of each other and with a 
sufficient degree of validity (Rittle-Johnson & Schneider, 2015). As Rittle-Johnson and 
Schneider (2015) pointed out, answering this question is necessary before more 
progress can be made in understanding the relations between conceptual and 
procedural knowledge. In line with results of previous research, the latent variable 
analyses showed high correlations between conceptual and procedural knowledge 
(e.g., Hallett et al., 2010). However, the findings of this study provide multiple pieces 
of evidence in terms of discriminant validity. Before data collection, the allocation of 
items to the scales for conceptual and procedural fraction knowledge was confirmed 
by experts of the field (researchers in mathematics education). The question of whether 
the data has the theoretically assumed 2-dimensional structure was investigated by 
means of comparison of different models. The results confirmed that this 2-
dimensional model was indeed superior to a 2-dimensional model distinguishing 
between a verbal and a nonverbal factor as well as to the 1-dimenstional model. Beyond 
these results presented in this report, a further piece of evidence in terms of 
discriminant validity refers to the analysis of the correlations between the two 
knowledge types and general cognitive abilities. Our findings hence indicate that 
conceptual and procedural fraction knowledge can indeed be empirically separated. 
Nevertheless, it should be noted that strictly speaking the validity of the model can 
only be interpreted with respect to the sample that was investigated and thus future 
studies should explore whether it holds true for other samples as well. It should 
however be noted that compared to the typical sample of 5th or 6th graders who have 
just received fraction instruction, considering a sample of 8th and 9th graders may be 
in fact more meaningful regarding the question of empirical separability, since several 
scholars assume that the differences in knowledge types decrease over time or with 
increasing expertise (e.g., Hallett, 2012; Baroody et al., 2007).  
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Future research can also benefit from this study as it provides essential information on 
how conceptual and procedural fraction knowledge can be conceptualized and 
operationalized systematically by taking into account different cognitive processes. 
Moreover, the application of the conceptual framework to other (mathematical) 
domains is promising for further research. 
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Team-Based Learning (TBL) is an instructional method developed by Michaelsen et 
al. (1982), where students participate in pre-class preparatory work and then apply 
the knowledge learned during class. TBL has been shown to produce a variety of 
learning gains over traditional lecture-based pedagogies. We conducted a pre-post 
analysis of student performance using TBL in mathematics class to examine students’ 
engagement and success using TBL. Students’ feedback about the TBL lessons was 
also gathered through focus group discussions. This paper reports the preliminary 
findings of the comparison of a TBL group with a non-TBL group of Grade 7 students.  
Based on our findings, we hope to further develop resources to enhance a TBL 
curriculum for secondary-level mathematics for low achieving students.  
INTRODUCTION 
Team-Based Learning (TBL) is an instructional approach designed to combine the 
principles of Problem-Based Learning, Participant-Centered Instruction, and 
Constructivism.  Popularized by Larry Michaelsen in the late 1970s, TBL first gained 
prominence in medical education as a framework to develop intern and resident doctors 
(McMahon, 2010).  TBL has since been adopted primarily in tertiary education 
throughout health sciences and business curricula, and more recently, in teacher 
training (Samad et al., 2015). This framework provides participants with opportunities 
to discover inconsistencies between their current understanding and new information 
in order to build new knowledge (Samad et al., 2015; Hrynchak & Betty, 2012). One 
of the values of TBL is that it can be used as a complete course framework strategy but 
is versatile enough to be effective when delivered as part of a hybrid design 
(Michaelsen & Sweet, 2008).  
TBL requires students to participate in pre-class preparatory work and then apply the 
knowledge they learnt to in-class lessons. Upon arrival to class, participants complete 
the Individual Readiness Assurance Test (iRAT).  The iRAT is a multiple-choice test 
assessing knowledge gained from the learning resources provided by the instructor.  
Following the iRAT, participants proceed with the Team Readiness Assurance Test 
(tRAT), which takes places as soon as the time limit is up for the iRAT.  The tRAT is 
comprised of the same multiple-choice questions but participants complete the tRAT 
with teammates that have been pre-assigned by the instructor.  The iRAT and tRAT 
are designed to assess participant readiness before advancing to the higher-level 
problem solving required in the application stage. In addition, the tRAT is designed to 
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provide immediate feedback to the teams to confirm whether their understanding of 
the concepts are correct, based on their agreed upon answers, or if they need to 
recalibrate their understanding. After participants have completed the iRAT and tRAT, 
the teacher offers a mini-lecture elaborating on the content and answering questions 
students may have.  The participants in the course then undertake the Application 
Exercise (AE), which are designed to allow participants to think critically about 
complex concepts.  This stage involves intra-team discussion and larger class 
discussions, with the emphasis on the application of knowledge as opposed to simple 
rote learning 
In Singapore, many schools and faculty have relied on traditional pedagogies that are 
teacher-led and lecture-based. While lecture-based teaching has been widely criticized 
due to its lack of participant engagement (Mennenga, 2013; Di Leonardi, 2007), TBL 
has demonstrated in a number of studies to be a transformative instructional approach 
with team processes at its core (Sisk, 2011).  Advantages of TBL include better 
academic performance, greater participant-to-instructor engagement, and greater 
participant satisfaction (Frame et al., 2015; Zgheib et al. 2016; Thomas & Bowen 2011; 
Vasan et al., 2011; Sisk, 2011). The key to TBL’s effectiveness is cultivating students 
as active learners based on four essential elements: 1) teams that are strategically 
formed, 2) students being accountable to themselves and their team, 3) immediate 
feedback from instructors to enable correction of misconceptions and promotion of 
content retention, and 4) application exercises that require student interaction and 
decision-making with real-life problems.  Since many students struggle with 
mathematics, it is important to find innovative pedagogies that improve learning for all 
students. 
METHODOLOGY 
Participants 
A total of 79 Grade 7 students (56 Males and 23 Females) from School A in Singapore 
participated in this study. School A is a specialised school for students in the Normal 
Technical stream. Students of School A are predominantly weak in mathematics and 
have a very low intrinsic interest in solving maths problems.  For this preliminary 
study, two other two mainstream schools (School B and School C) were also recruited 
to serve as a baseline for comparison with School A. Refer to Table 1 for a breakdown 
of students in each group. The schools were contacted via email correspondence, and 
permission was obtained from the respective principals before proceeding with the 
research. Informed consent was obtained from students and teachers involved in the 
study. Ethics approval was obtained from the Institutional Review Board of Nanyang 
Technological University (IRB-2018-07-008). 
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School Number of students in TBL 
group 

Number of students in 
Non-TBL group 

A 39 (2 classes) 40 (2 classes) 
B 36 (1 class) . 
C . 26 (1 class) 

Total 75 66 

Table 1: Number of students in each group separated by school.  
Design 
The study uses a qualitative and quantitative approach to examine the effectiveness and 
feasibility of incorporating TBL into mathematics lessons for secondary school 
students. The study design consisted of a pre-post analysis of test results to obtain 
insight about students’ performance, as well as a focus group discussion to gather 
feedback about the TBL lessons.   
Quantitative Research Questions 

1. Does TBL improve student motivation to learn math? 
2. Does TBL improve student achievement in math? 

Qualitative Research Questions 
3. What components of TBL have the greatest impact on the motivation of students 

to learn math? 
4. What impact do the Application Exercises, especially breakout activities and 

escape room games have on the attitudes of students to learn math? 
Students were divided into two groups, a TBL group and non-TBL group. Refer to 
Table 1 for a breakdown of the groups by schools. For the pilot study, students from 
School B went through TBL lessons while students from School C went through non-
TBL lessons. Those in the TBL group attended lessons that were delivered using the 
TBL framework, while those in the non-TBL group attended lessons that were as per 
the teacher’s usual teaching style. Student performance between the two groups were 
compared to find out whether the overall results of students in the TBL group were 
significantly better than the students in the non-TBL group. In addition, a pre- and post-
test was conducted to find out whether student performance in the TBL group improved 
more than student performance in the non-TBL group.  
The qualitative component of the study included focus group discussions to gather 
feedback from students and teachers about the TBL lessons. This allowed for greater 
understanding of what students enjoyed about the TBL lessons and provided insight 
into how future TBL curriculum could be structured in order to maximise the benefit 
for teachers and students. 18 students from School A were invited to participate in the 
focus group discussion. These students were all from the TBL group and shared their 
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experiences with the TBL lessons. Audio recordings were taken and then transcribed. 
Common key words were identified, coded into categories, and grouped together to 
form themes (Kolb, 2012). 
Materials and Procedure 
Prior to the research lessons, the teachers were given lesson plans as a guide to conduct 
the lesson. Lessons were observed by two research staff, and a procedure checklist was 
recorded and compared to account for inter-rater reliability. All students completed the 
pre-test before starting the research lessons. Each class spent approximately eight hours 
on the topic of simplification of algebraic expressions. Students completed their pre-
lesson learning through Deck.Toys, an interactive online platform for engaged 
learning. After which, the students attempted the iRAT, followed by the tRAT. The 
iRAT and tRAT are administered digitally through InteDashboardÔ, because it saves 
time by allowing for immediate feedback for the teachers to track the progress of the 
students’ scores. After students completed the tRAT, the teachers addressed any 
questions and consolidated the lesson. Worksheets and homework were given as 
application exercises for the students, and the teacher went through textbook and 
workbook examples to explain mathematical concepts. Upon finishing the research 
lessons, students completed a post-test.  
RESULTS 
Pre- and Post-Test 
The mean scores for the pre-test and post-test are shown in Table 2 and 3 respectively.  

School Group N Mean SD  
A TBL 39 2.00 2.86  
 Non-TBL 40 0.90 1.53  

Table 2: Pre-test mean score and standard deviation.  
School Group N Mean SD  

A TBL 39 6.28 2.70  
 Non-TBL 40 4.63 2.64  

Table 3: Post-test mean score and standard deviation.  
Assumptions of parametric tests were not met because assumptions of normality were 
violated (p < .05) as assessed by Shapiro-Wilk’s test (Shapiro & Wilk, 1965). A Mann-
Whitney U test (Mann & Whitney, 1947) revealed that there was no statistically 
significant difference in pre-test scores (U = 602, p > .05) between the TBL and non-
TBL groups, while it revealed otherwise for the post-test scores (U = 511, p < .01). 
While both groups scored similarly for the pre-test, the TBL group (M = 6.28) scored 
significantly higher than the non-TBL group (M = 4.63) for the post-test. 
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The difference score was tabulated by subtracting the pre-test score from the post-test 
score to find out the improvement within-group. Assumptions of normality were met 
but not for homogeneity of variance (p > .05). An independent-sample t-test that is 
corrected for unequal variances showed that there was no significant difference in the 
difference score between the TBL and non-TBL group (t (76) = .934, p > .05). The 
non-significance meant that both groups improved similarly regardless of how the 
lessons were delivered.   

In order to examine whether School A’s TBL and non-TBL groups performed similarly 
to their other school counterparts, the post-test results of all schools were compared. 
The assumptions of parametric tests for the post-score were met. A one-way ANOVA 
showed that there was a statistically significant difference between all four groups for 
the post-test score, (f (3,140) = 3.40, p < .05). Tukey’s post hoc test revealed that 
School A’s TBL group performed similarly to School B’s TBL group (p > .05). 
Likewise, School A’s non-TBL group performed similarly to School C’s non-TBL 
group (p > .05). The results suggested that the post-test scores were consistent across 
the pilot study and current study; TBL groups performed better than the non-TBL 
groups post research lessons. 

Focus Group Discussion 
One common theme of the discussion was that students found TBL lessons to be 
helpful in terms of learning and teamwork. When asked whether TBL has helped the 
students to enjoy the learning experience, 15 out of 18 students agreed. The following 
are selected student comments about their learning experience with TBL. 

Student 1: When we’re asked a question on the spot… some of our brains can’t really 
think that fast… maybe this programme can help us to help one another and 
then maybe can try and think faster by ourselves… it’s something like that 
for me. 

Student 2: So for Deck.Toys we can actually compete with each other. And we can 
also earn points.  

This implied that collaborative learning was prominent in TBL and by brain-storming 
for the answers together; it helped the students to think more effectively as individuals. 
The students also enjoyed the self-learning component of TBL because of its 
interactive nature. When asked to name what teamwork skills the students have gained, 
some of the student’s response were as follows. 

Student 3: Teach[ing] somebody. 
Student 4: When something is wrong, there is discussion about the question. Then the 

person that knows will teach us. Then we will know that it’s wrong. 
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The students’ feedback shows how TBL helped the students learn from one another 
through peer-to-peer teaching, building up their collaborative learning and teamwork 
skills.  

Another common theme was leadership. Students enjoyed the opportunity to be group 
leader and facilitate the team discussion with TBL. When asked which component of 
TBL did the students learn the most from, one student responded the team test, and his 
elaboration is shown below. 

Student 5: Because I’m the leader… each question we take turn and we get to explain 
why it’s the answer. 

A good leader is needed to manage the team discussion and ensure that everyone has 
an opportunity to voice out their opinion. TBL provides a platform for leadership. 
Being the group leader is an important role, and the students enjoyed taking up the 
responsibility.  

Lastly, positive attitude was a common theme brought up. Having observed some of 
the research lessons, the following is the interviewer’s comments about the students 
from School A. 

Interviewer: I’m very impressed by [School A] students, is that your willingness to help 
one another to learn… I always hear you say ‘never mind’, ‘try’, and ‘try 
on your own first’… I hope that you will continue with this wonderful 
attitude. 

The comment suggested that TBL fosters a positive learning environment that can 
motivate students to perform better and gain more self-confidence.  

DISCUSSION 
This preliminary study was conducted as part of a larger study at the National Institute 
of Education to examine how TBL can enhance the mathematics curriculum in 
secondary schools in Singapore. The preliminary findings suggested that TBL is 
effective in engaging low achieving students in the learning of mathematics. The group 
of students taught using the TBL approach performed significantly better than the 
group of students taught through a more traditional approach. One of the key success 
factors of TBL was that the collaborative nature of TBL encourages peer learning. The 
component of the pre-class preparatory work using lessons from the online platform 
Deck.Toys encouraged independent learning and allowed students to learn at their own 
pace as well as to be responsible for their own learning. In the case of normal technical 
students who are less motivated to learn mathematics, the pre-class preparatory work 
was conducted in the classroom with teachers’ monitoring. The findings of this study 
suggest that the independent pre-learning component of the TBL approach is effective 
in supporting students to learn regardless of whether the pre-learning takes place 
outside of class or in class.   
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Limitations and Future Direction 
There are certain limitations to take note of for future research. One point to note is 
that there may be teacher bias as different teachers have different teaching styles, so 
the learning experience may be different across classrooms depending on the teacher. 
In order to minimise this bias, we plan to conduct a workshop for educators, teaching 
them how to conduct and facilitate the research lessons. In addition, the sample size of 
79 is too small and not representative of the entire secondary school population in 
Singapore. As such, we hope to minimise this limitation by recruiting more students 
from different levels in secondary school for the larger part of the study. Finally, due 
to time constraints, we were unable to carry out the full application activities that were 
intended for TBL. The only reinforcements that the students received were in the form 
of worksheets and homework, which may not be the most engaging for long-term 
learning. For the larger study, we plan to incorporate puzzles and games for the 
application activities so students can apply the knowledge that they have learnt by 
solving the challenges as a team.  
There is promise for TBL to be translated to the education setting in secondary schools 
in Singapore. Traditionally, TBL has been implemented most effectively with highly 
motivated learners in tertiary education (McMahon, 2010). Through this study, we 
hope to extend the benefits of TBL to low achieving learners as well. 
This study provides insight into how students feel about TBL lessons and what they 
learn from this unique pedagogy. Given the positive feedback from students that 
experienced the TBL lessons, it is encouraging to see how students enjoyed the lessons 
and learnt soft skills such as teamwork and leadership in addition to achieving higher 
scores in mathematics than the pilot groups. The students also encouraged one another 
to try harder, and this helped to foster a positive learning environment. While more 
work needs to be done before the full benefits of TBL can be reaped, it is promising to 
see how students who completed the TBL curriculum scored significantly higher than 
students who went through regular lessons for the post-test. 
Conclusion 
This study examined the feasibility and effectiveness of implementing TBL in 
mathematics class in secondary schools through experimental manipulation and focus 
group discussions. Pre-test scores were found to be similar, which meant that students’ 
baseline knowledge levels on simplification of algebraic expressions were similar. The 
TBL group scored significantly better than the non-TBL group for the post-test, 
suggesting that the TBL group improved performance compared to the non-TBL 
group. Moreover, the TBL group consistently performed better than the non-TBL 
group for the post-tests when comparing School A’s results with the baseline results 
established by the pilot study. However, when within-group differences were analysed, 
no significant results were found.  Focus group discussions revealed that students 
enjoyed the TBL lessons, and that the TBL lessons were useful in reinforcing 
leadership, teamwork and positive learning attitudes among the students.  
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A FRAMEWORK FOR DETERMINING THE EMBEDDED 
INSTRUCTIONAL APPROACH IN MATHEMATICS TEXTBOOKS 

Moneoang Leshota 
University of the Witwatersrand 

 
In this article, I introduce a framework developed for determining the embedded 
instructional approach in mathematics textbooks, and demonstrate the application of 
the framework on two consecutive editions of the same textbook series. I show how the 
analysis of the sequencing of presentation formats using the framework illuminates 
major differences and similarities in the approach to teaching and learning, advanced 
in each textbook. The underlying implications for teacher textbook use are explored, 
especially in the context where the textbook remains a major resource for teaching.  
INTRODUCTION  
The research reported here is drawn from a larger study (Leshota, 2015) investigating 
the relationship between the affordances of the textbook and teachers’ capacity to 
design instruction using the existing curricular resources, that is, teachers’ pedagogical 
design capacity (Brown, 2009).  All the participating teachers used the same prescribed 
textbook. However, as data collection commenced, a new edition of the textbook was 
released as South Africa was undergoing curriculum revision of the National 
Curriculum Statement (NCS), the new version being called the Curriculum and 
Assessment Policy Statement (CAPS). Teachers were provided with the copy of the 
new edition. This meant that at the start of data collection, each teacher had both 
textbook versions to use as they saw fit. For ease of reference, the old textbook edition 
shall be referred to as the Pre-CAPS textbook, and the new one, as the CAPS textbook. 
The research focused on the topic of Functions at grade 10 level whose content did not 
change from the old curriculum to the new one. However, an initial inspection of the 
textbooks showed some differences in the layout of the content. A closer look also 
pointed to differences in how the properties of the functions were investigated. For 
example, in the Pre-CAPS, the activity involved all three function classes being drawn 
at the same time and then investigating which of these classes exhibited a certain 
property, such as symmetry. In the CAPS textbook, each function class was drawn and 
the different properties featuring in the function investigated.  
From a socio-cultural perspective, textbooks are tools used by humans to achieve goal-
oriented activity (Vygotsky, 1978).  Furthermore, textbooks  have a potential to enable 
or constrain human activity and as a result, they are cultural artifacts that mediate 
human activity (Wertsch, 1998). Textbooks mediate between authors and teachers, 
between teachers and learners, and between the mathematics itself and the learners. In 
the context of this study, textbooks are seen as a powerful tool for ‘re-sourcing’ (Adler, 
2000) teachers who have been perceived as insufficiently prepared for teaching 
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mathematics, and therefore have a social as well as cultural influence on teaching 
mathematics.  
It was thus important for the study to understand what opportunities for mediation of 
function, its properties, processes and applications, the different approaches opened up 
in the classroom, and prompted a more systematic approach to investigating the 
embedded instructional approach in textbooks. Hence, the search through the literature 
and then development of a framework that would enable this investigation.  
STRUCTURE OF TEXTBOOKS – A LITERATURE REVIEW 
The field of textbook research is a new emerging field (Trouche & Fan, 2018).  In an 
earlier synthesis of research on textbooks and curricular resources, Remillard (2005) 
noted that that there was less work done on conceptualising curricular resources than 
on writings about teaching, despite the fact that these resources are critical to teachers’ 
work of teaching. To date it appears there is one study that actually analysed the 
approach of the textbook (Valverde, Bianchi, Wolfe, Schmidt, & Houang, 2002); 
pointing to a gap in literature. The framework introduced here contributes to this gap 
in the field, providing a tool for analysis of the embedded instructional approach in 
textbooks.  
Research widely concurs that curricular resources “represent much more than static 
collections of tasks and lesson plans” (Remillard, 2005, p. 234). Otte (1986) 
conceptualises text and textbooks as “objectively given structures” and “subjective 
schemes”.  In other words, there is what can be seen in terms of the content that is 
supposed to be learned, the sequencing of topics, and exercises to be worked on by 
learners, when looking at a textbook. On the other hand, there is the individual 
interpretation and meaning given by each teacher when encountering the textbook. At 
the same time, teachers operate within a social system and so set of constraints. The 
analysis of the structure therefore provides building blocks for the current article.   
Remillard (2012) identifies the structure  of curriculum materials as one of five ‘forms 
of address’ by which materials interact with teachers.  Typical analysis of the structure 
entails determining “how the various components are organized, the mathematics 
content included or excluded through the representations, and the valence or emphasis 
of the content, including how the content is represented” (p. 111). Such analyses 
communicate the embedded views of authors of these materials, a notion asserted by 
Brown (2009) in his definition of the structure.  For Brown, the content and structure 
of curriculum resources are representational of the physical objects, tasks and concepts. 
Teachers bring these to life in the classroom, meaning that teachers should be able to 
perceive the pedagogical intentions communicated through the textbook.   
Valverde et al. (2002), assert that the structural and pedagogical features of textbooks 
are characterised through the form and style of textbooks.  According to the authors, 
the form and style are more important than the substance itself, as they provide the 
context for learning and as such “can either help or hinder the conveyance of the 
content themes or substance” (p. 17). The authors hypothesise that how the textbook 
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sequences its pedagogical situations and content marks its unique ‘signature’. They 
suggest that analysing the sequencing of presentation formats (or building blocks) in 
each textbook, is an important aspect in the textbook analysis.  
Pedagogical situations and content may also be sequenced according to performance 
expectations of learners. Performance expectations presuppose an approach to learning 
mathematics.  In the case of Functions in this study, the sequencing of performance 
expectations would illuminate the conceptions of Function presupposed by the 
textbook: be either a pointwise and correspondence view of functions, or a global and 
covariation view (Ayalon, Watson, & Lerman, 2017; Even, 1998; Niss, 2014). To this 
effect, Ensor et al. (2002) note the existence of two distinct pedagogic approaches of 
textbooks (and teachers), the deductive approach and the inductive approach. 

The first approach is deductive. Here, the teacher (or textbook) initially states appropriate 
definitions or concepts, which are then exemplified and followed by exercises for students 
to practice. …The second pedagogic approach by contrast is largely inductive. Rather than 
starting with definitions, the teacher (or textbook) introduces a topic by engaging students 
in a range of activities that can be regarded as instances of the concepts, which students 
are to master. Activities lead to definitions and from this point opportunities may be 
provided for students to practice. (pp. 22-23) 

They found that inserting a textbook that was inductive in approach in settings that 
were largely deductive, did not change teaching practices by the teachers. The authors 
noted that teachers who preferred the deductive approach that emphasised on 
procedures, did not use the textbook with a different approach, or if they did, would be 
quite selectively, and not coherent with the intentions of the textbook. They 
recommended the incorporation of textbook use in in-service teacher education as a 
means to facilitate changing one approach to another in textbooks and in classrooms.  
Developing the Framework 
The framework illustrated in figure 1 has been developed from the literature on the 
conceptualisation of curricular resources presented. Figure 1 depicts the mathematics 
content and embedded instructional approach as the main components of the structure 
of the textbook.  The content illuminates the nature of content with respect to content 
areas to be covered and their ordering, in each chapter. The approach is defined in 
terms of its organisation and sequencing of the content. The organisation of content 
reflects two major components, the presentation formats (building blocks of content) 
and the performance expectations of learners. Sequencing the presentation formats 
indicates whether the approach of the textbook is largely inductive, referred to as quasi-
inductive in the framework, or largely deductive, called quasi-deductive in the 
framework (Leshota, 2015). Adopting the definitions from Ensor et al.(2002), a quasi-
inductive approach of the textbook would be one that builds from investigative 
activities for learners, versus a ‘didactic’ approach that emphasises procedures through 
worked examples, the quasi-deductive approach. 
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Figure 1:  A Framework for Analysing Affordances of a Mathematics Textbook 

The sequencing of performance expectations of learners (not part of the article) on the 
other hand illuminates the conception of a particular topic reflected by the textbook.  
The question for this article is what could be learned about the embedded instructional 
approach advanced in a mathematics textbook from the sequencing of presentation 
formats in the textbook. 
METHODOLOGY 
The first chapters on Functions in the Pre-CAPS and CAPS textbooks served as data 
for the analysis in this article. These were chapter 11 in the Pre-CAPS textbooks and 
chapter 7 from the CAPS textbook.  According to the curriculum, learners have done 
straight-line graphs of the form 𝑦 = 𝑚𝑥 + 𝑐 in the previous grade. In grade 10, the 
curriculum deals with determining properties of function classes and their vertical 
transformations. The functions involved include: the quadratic function, 𝑔(𝑥) = 𝑎𝑥.; 
the rectangular hyperbola, ℎ(𝑥) = :

;
; the exponential function, 𝑘(𝑥) = 𝑎𝑏;; and the 

three basic trigonometric functions, cos 𝑥 , sin 𝑥,	and	tan 𝑥.  
The first step in the analysis was to determine and list all presentation formats in each 
chapter in the order that they appeared. For example, in the Pre-CAPS textbook, the 
first presentation format was a short narrative outlining what the chapter dealt with.  
As the first presentation format, it was assigned a letter 1. The narrative was followed 
by an investigative activity for learners, which was assigned the letter 2, and so forth.  
A similar process was performed on chapter 7 of the CAPS textbook. Table 1 shows 
the different presentation formats and their sequencing in the two textbooks. 
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Category Presentation Formats Pre-CAPS CAPS 
Explanatory Text Narrative 1,6 16 

 Definition/explanation  1,3,4,8,19,20 
 General discussion 3,5,7,11,15  
 Note box  6,11,14,18,27 
 Summary tables  30,31,32,33 

Exemplification Activity 2,4,10,16 26,28,29 
 Worked example 8,12,13 2,5,9,10,12,13,17,21,23,24 
 Practice exercise 9,14 7,15,22,25 
 Check your skills 17 34 
 Apply your skills 18  
 Problem solving exercise 19  

Table 1: Presentation Formats in the Pre-CAPS and CAPS Textbooks 
Table 1 shows two main categories for the presentation formats. The explanatory text 
category catered for all presentation formats involving some form of explanation, and 
included five different types; narrative, definition or explanation of a mathematical 
concept, general discussion providing a more elaborated set of notes, note box, usually 
attached to specific examples, and summary tables. The exemplification category 
included presentation formats involving all forms of exercises and examples. 
Investigative activities, worked examples, which detailed solutions to specific 
questions, and practice exercises appeared within the chapters, while three types of 
end-of-chapter exercises were determined, check your skills, apply your skills, and 
problem solving exercises. The numerals under the last two rows indicate when a 
particular presentation format occurred.  For example, narratives occurred twice in the 
Pre-CAPS textbook, as the first (1st) item and at the sixth (6th) place; and once at the 
sixteenth (16th) place in the CAPS textbook. 
The second step was to determine the type of approach advanced by each textbook. For 
this purpose, a matrix table in Table 2 was drawn with the numerals represented on the 
top row, and the different presentation formats on the first column. A symbol,Q, was 
used to mark where each presentation format occurred (red for the Pre-CAPS and black 
for the CAPS textbook). For example, the caption in figure 2 taken from Table 2 
indicates that a narrative was the first (1st) and sixth (6th) presentation format in the 
Pre-CAPS textbook, while a definition/explanation was the first (1st), third (3rd), fourth 
(4th) and eighth (8th) presentation format in the CAPS textbook. 

 
Figure 2: A caption from Table 2 
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Table 2: Sequencing of presentation formats in the Pre-CAPS and CAPS textbooks  
By joining consecutive symbols for each textbook with a straight line, some sequencing 
patterns emerged, from which interpretations about the approach in each textbook 
could be made. The red graph on Table 2 represents the sequencing of presentation 
formats in the Pre-CAPS textbook, while the black graph represents those in the CAPS 
one. 
RESULTS 
The Pre-CAPS textbook 
The red graph on Table 2 shows a dominance of ‘activity - general discussion’ pattern. 
This occurs at three positions: 2-3; 4-5; and 10-11. This indicates that in this textbook, 
a mathematical ‘concept’ (in this case, properties of functions), is established through 
an investigative set of exercises (activities), after which a lengthy discussion and 
elaboration of the mathematical concept featuring illustrations and definitions is 
presented. A closer look at the textbook shows that this pattern occurs when 
establishing the features of the different function classes. 
A second type of pattern occurs at positions 7-9 and 11-13.  This is a ‘general 
discussion - worked example - practice exercise’ pattern.  Here a general discussion on 
concepts is provided, and these concepts are then exemplified, followed by practice 
exercises. This section deals with notation and terminology. In the last pattern, 15-16 
before end-of-chapter exercises, a general discussion on how functions are applied in 
real life starts, followed by an investigative activity featuring real life applications.  
The analysis shows that the Pre-CAPS textbook advances an approach that is largely 
investigative, a quasi-inductive approach. It is only when notation and terminology 
issues are dealt with, that the textbook adopts a more ‘didactic’ quasi-deductive 
approach.  
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The CAPS textbook 
The black graph on Table 2 depicting patterns in the CAPS textbook starts with a 
‘definition – worked example’ pattern at position 1-2. From there, the graph depicts a 
dominant pattern of ‘definition – worked example (note box) – practice exercise’ at 
various positions: 3-7; 8-15 (where some four examples have been worked out); 16-
18; and 19-25. Several note boxes provide additional clarifications or explanation to 
the worked examples. From position 26-29, there is a pattern of ‘activities - summary 
tables’, followed by end-of-chapter exercises. In this regard hence, this textbook 
depicts a highly quasi-deductive approach to teaching. 
A further comparison of the two textbooks shows some similarities with respect to the 
approach for particular content areas. For example, in both textbooks, the sequence 
patterns dealing with determining properties of functions are similar: ‘activities – 
general discussion’ in the Pre-CAPS textbook, and, ‘activities – summary tables’ in 
the CAPS textbook. This shows that for determining the features of function classes, 
both textbooks advance an investigative, quasi-inductive approach.  However, for 
introducing notation and terminology, both textbooks advance a ‘didactic’ quasi-
deductive approach punctuated by ‘general discussion – worked example – practice’ 
pattern in the Pre-CAPS and ‘discussion/explanation – worked example – practice’ in 
the CAPS textbook.  
DISCUSSION 
The question for this article was what could be learned about the embedded 
approach(es) advanced in the textbook(s) from the sequencing of presentation formats. 
The analysis of the sequence patterns succeeded in differentiating between a 
dominantly quasi-inductive approach in the Pre-CAPS textbook versus a largely quasi-
deductive CAPS textbook. Thus, the process has illuminated the uniqueness of each 
textbook in how it approaches the content, as suggested by Valverde et al. (2002). The 
two chapters analysed have the same author; and share the same mathematics content, 
but they exhibit quite different approaches to teaching this content. This is a powerful 
information for teachers to know as it helps teachers in their decisions about how they 
should interact with the textbook. Furthermore, the analysis has illuminated the 
similarity in approach that the two textbooks advance for specific content areas, for 
example, notation and terminology. This shows the potential of the framework as a tool 
for studying and understanding better, the embedded instructional approaches in 
textbooks.   
In conclusion, I concur with Ensor et al. (2002) that textbook use should be 
incorporated in in-service teacher education and professional development activities 
for mathematics teachers. My findings of tacit textbook use by teachers from the larger 
study (Leshota, 2015) could be as a result of clashing approaches between the teachers 
and their textbooks.  
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We focused on both prospective teachers’ (PTs) confidence about their knowledge 
preparation and the extent of their knowledge of the specific topic of fraction division. 
The results revealed how these PTs’ confidence may or may not be supported by their 
knowledge preparation for teaching fraction division, a concept they would be 
expected to teach as part of the country's curriculum standards. The results also 
illustrated the importance of specifying knowledge components in mathematics in 
order to help build or support PTs’ confidence for classroom instruction. 
Accumulated research findings in past decades have led to the understanding that 
teachers’ knowing mathematics for teaching is essential to effective classroom 
instruction (e.g., Li & Kaiser, 2011; RAND Mathematics Study Panel, 2003).  
Corresponding efforts have also been reflected in teacher preparation programs that 
call for more emphasis on prospective teachers’ learning of mathematics for teaching 
(CBMS, 2012; Li, Ma, & Pang, 2008).  Such efforts can presumably increase the 
quality of teacher preparation and prospective teachers' confidence and ultimate 
success in their future teaching careers.  However, previous studies (Li & Kulm, 2008; 
Li & Smith, 2007) revealed a wide gap between sampled prospective middle school 
teachers’ high confidence and their limited mathematics knowledge needed for 
teaching fraction division in the U.S. Much remains to be learned about the extent of 
knowledge in mathematics and pedagogy that prospective teachers have and what else 
they may need to know for building or supporting their confidence.  As part of a large 
research study of elementary school teachers’ mathematical preparation, this paper 
focused on a group of PTs’ confidence and knowledge of mathematics and pedagogy 
on the topic of fraction division in China.  
The topic of fraction division is difficult in school mathematics not only for students 
(Li, 2008), but also for prospective teachers (Li & Kulm, 2008; Simon, 1993). 
Mathematically, fraction division can be presented as an algorithmic procedure that 
can be easily taught and learned as “invert and multiply.”  However, the topic is 
conceptually rich and difficult, as its meaning requires explanation through 
connections with other mathematical knowledge, various representations, or real world 
contexts (Greer, 1992; Li, 2008).  The selection of the topic of fraction division, as a 
special case, can provide a rich context for exploring possible depth and limitations in 
prospective teachers’ knowledge in mathematics and pedagogy.  Specifically, this 
study focused on the following two research questions: 

(1) What is the confidence of prospective elementary school teachers regarding 
their knowledge preparation for teaching? 
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(2) What is the extent of prospective elementary school teachers’ knowledge in 
mathematics and pedagogy for teaching fraction division? 

CONCEPTUAL FRAMEWORK 
To be able to help students learn mathematics with understanding, teachers need to 
have mathematics conceptual knowledge for teaching (MCKT; Li & Howe, 2017). By 
MCKT we mean topic-based conceptual knowledge packages that are needed for 
understanding, explaining, as well as teaching specific mathematics content topics 
with connections. It can be specified as containing the following three topic-based 
knowledge components that can and should be acquired by mathematics teachers: 

(a) Having knowledge and skills directly associated with a specific content topic;  
(b) Being able to connect and justify the main points of a content topic, and to 

place it in wider contexts;   
(c) Knowing and being able to use various representations for teaching the 

content topic, and being able to teach the relations between them. 
Clearly, specific MCKT varies from one content topic to another. The task of 
specifying MCKT is needed but enormous for different content topics. Nevertheless, 
teachers’ acquisition of MCKT would enable them to develop a profound 
understanding of mathematics content topics they teach as termed by Ma (1999). Given 
the dramatic variations across mathematical content topics, we focus on the MCKT 
that teachers would need to have for teaching fraction division.  
The conceptual complexity of the topic of fraction division is evidenced in a number 
of studies that documented relevant difficulties prospective and practicing teachers 
have experienced (e.g., Borko et al., 1992; Simon, 1993; Tirosh, 2000).  Although both 
prospective and practicing teachers can perform the computation for fraction division, 
it is difficult for teachers, at least in the United States, to explain the computation of 
fraction division conceptually with appropriate representations or connections with 
other mathematical knowledge (Ma, 1999; Simon, 1993).  Teachers’ knowledge of 
fraction division is often limited to the invert-and-multiply procedure, which restricts 
teachers’ ability to provide a conceptual explanation of the procedure in classrooms 
(e.g., Borko et al., 1992).  Because the meaning of division alone is not easy for 
prospective teachers (e.g., Simon, 1993), fraction division is even more difficult (Li & 
Kulm, 2008; Ma, 1999).  The findings from previous studies help provide specifics of 
these three components of MCKT as follows:  

(a) Having knowledge and skills about fraction division, including conceptual 
and procedural knowledge (e.g., Borko et al., 1992), and solving problems 
involving fraction division (e.g., Greer, 1992)  

(b) Mathematical connections and justifications of main points related to fraction 
division, including fraction concept; addition, subtraction, and multiplication 
of fractions (e.g., Ma, 1999; Tirosh, 2000)  
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(c) Representational variations and connections for teaching fraction division 
such as explaining the computational procedure for “division of fraction” with 
different representations (e.g., Li & Huang, 2008; Li & Kulm, 2008) 
  

The specifications of these three components of knowledge provided a framework for 
the current study and served as a guideline for selecting items to examine the extent of 
PTs’ knowledge and specific difficulties with fraction division. 
METHODOLOGY 
Subjects 
The participants were prospective elementary school teachers sampled from five 
institutions located in three provinces in China.  These prospective teachers were in 
their last stage of study in the program.  They had already taken all of the required 
mathematics courses and were completing the mathematics methods course at the time 
of their participation in this study.  A total of 319 responses were collected and used 
for analyses and reporting. 
Instruments and data collection 
A survey was developed for this study, containing two main parts with three items for 
Part 1 and seven items for Part 2. Part 1 contains items on elementary teachers’ 
knowledge of mathematics curriculum and their confidence in their readiness for 
teaching. Part 2 has seven main items that assess elementary teachers’ three knowledge 
components of MCKT on the topic of fraction division. Most items were taken from 
previous studies (Li, Ma, & Pang, 2008; Li & Smith, 2007), with some items adapted 
from school mathematics textbooks and others’ studies (e.g., Tirosh, 2000). Given the 
limited page space, only three items (note: each item containing two questions) from 
Part 2 and PTs’ responses to these items are included for analyses to provide a glimpse 
of sampled PTs’ confidence and MCKT.  
The survey was administrated at regular class time by instructors in five institutions. 
Participants were notified that the survey was for research purposes only and should 
be completed anonymously.  
Data analysis 
Both quantitative and qualitative methods were used in analysing and reporting the 
participants' responses. Specifically, responses to the items in Part 1 were directly 
recorded and summarized to calculate the frequencies and percentages of participants’ 
choices for each category.  To analyse participants’ solutions to the items in Part 2, 
specific rubrics were first developed for coding each item, and subsequently, the 
participants’ responses were coded and analysed to examine their solutions/answers.  
RESULTS AND DISCUSSION 
In general, the results showed interesting relationships between PTs’ confidence and 
their mathematical preparation for teaching fraction division, which illustrates the 
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importance of specifying knowledge components in mathematical preparation in order 
to help build or support PTs’ confidence for classroom instruction.  
For PT’s confidence, the results from the survey indicated that (1) participating PTs in 
China did not know well about their national curriculum standards in general; (2) the 
majority of these PTs were confident in the knowledge preparation they received for 
future teaching careers; but (3) they knew very well about the topic placement of 
“multiplication and division of fractions” in mathematics curriculum. The results 
suggested that these PTs tend not to feel over confident.  
For specific knowledge components of MCKT, these PTs’ performance revealed that 
their mathematical preparation was sound in the content topic itself, especially in the 
procedural aspect, and relatively weak conceptually in connecting the content topic 
with other topics both mathematically and pedagogically. The seemingly mixed results 
in their responses actually suggest that these PTs’ confidence was built upon or 
supported by what they know that can and should be specified in concrete terms or 
knowledge components.  The following sections are organized to present more detailed 
findings corresponding to the two research questions.  
Prospective teachers’ confidence in elementary school mathematics 
The following items are from Part 1 of the survey to illustrate PTs’ confidence of their 
knowledge preparation needed for teaching, as related to fraction division.  
For item 1: How would you rate yourself in terms of the degree of your understanding 
of the National Mathematics Standards?  On a scale of four choices (High; Proficient; 
Limited; Low), 78% and 10% of the participants chose "Limited" and "Low", 
respectively.  Small percentages of the prospective teachers felt to have high (1%) or 
proficient (11%) understanding of their national mathematics standards.  
For item 2-(2): Choose the response that best describes whether elementary school 
students have been taught the topic – Multiplication and division of fractions.  On a 
scale of five choices (Mostly taught before grade 5; Mostly taught during grades 5-6; 
Not yet taught or just introduced during grades 5-6; Not included in the National 
Mathematics Standards; Not sure), 86% participants indicated that the topic is “mostly 
taught during grades 5-6" (a correct choice), and most of the remaining (9%) chose the 
first response ("Mostly taught before grade 5", a partially correct choice if only fraction 
multiplication is considered).  The results, in contrast to the participants’ response to 
item 1, suggested that these PTs know very well about the content topic placement in 
mathematics curriculum, although they did not feel confident in knowing about their 
national mathematics standards.  
For item 3-(2): Considering your training and experience in both mathematics and 
instruction, how ready do you feel you are to teach the topic of “Number – 
Representing and explaining computations with fractions using words, numbers, or 
models?”  On a scale of three (Very ready; Ready; Not ready), 52% of the participants 
thought they were "ready", while 14% chose “very ready,” and 33% “not ready.”  The 
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results indicated that the majority of these PTs were confident in their preparation for 
teaching fraction computations, including fraction division.  There was also a large 
percentage of prospective teachers who are not confident. The diversity in responses 
suggested the need of learning more about their confidence and possible connections 
with their knowledge preparation.  
Taking together, prospective elementary school teachers’ responses to the Part 1 
suggested that these PTs in China tend not to feel over confident, although they actually 
knew very well about some specifics. In fact, the results are consistent with what has 
been reported about in-service mathematics teachers in East Asian countries (Mullis, 
Martin, Gonzalez, & Chrostowski, 2004) and China in specific (Li & Huang, 2008).  
The consistency in the general response pattern between PTs in the current study and 
in-service teachers in other studies suggested that culture likely plays an important role 
in expressing confidence by teachers in East Asia including China.  
The extent of prospective elementary school teachers’ preparation in MCKT for 
teaching fraction division 
These PTs’ responses to Part 2 allowed a closer look at the participants’ three 
knowledge components of MCKT, especially on the topic of fraction division.  Results 
indicated that these PTs do very well on items related to fraction division computation 
and problem solving (MCKT knowledge component 1).  For example, for the problem 
“Say whether  is greater than or less than  without solving. Explain your 

reasoning.” 96% of these PTs answered the problem correctly (i.e., the first numerical 
expression is greater than the second one). Among those who provided the correct 
answer, 79% did not use fraction division computations. The common explanations 
include (a) “If the dividend is the same, the smaller the divisor, the larger the quotient.” 
and (b) “2/3 (8/12) is smaller than ¾ (9/12)”. And many respondents provided both 
reasons. The other 17% used the computation rule for fraction division (i.e., converting 
division into multiplication, then followed by comparing 3/2 and 4/3) to reach the 
correct answer. A very small percent of sampled PTs (3 respondents, 1%) used both 
methods.  
Moreover, these PTs also had great performance in solving multi-step word problems 
that involve fraction division. For example, 94% participants solved the following 
problem correctly.  

Johnny’s Pizza Express sells several different flavour large-size pizzas. One day, it sold 24 
pepperoni pizzas. The number of plain cheese pizzas sold on that day was 3/4 of the number 
of pepperoni pizzas sold, and 2/3 of the number of deluxe pizzas sold. How many deluxe 
pizzas did the pizza express sell on that day?  

Specifically, 64% used a multi-step computation method to get the answer (e.g., 24 x 
¾ =18, 18÷2/3 =27), about 27% used a combined computation method (e.g., 24 x ¾ ÷ 
2/3 =27), 2% adopted an algebraic approach to set up and solve an equation for 
solution, and a few (about 1%) provided more than one solution approach. About 6% 
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of these respondents did incorrectly, resulting from either computation errors (e.g., 
providing a computation as 24 x ¾ ÷ 2/3 = 36) or misunderstanding of the problem 
(e.g., providing a computation as 24 ÷ 2/3 = 36). 
For the knowledge component 2 of MCKT, PTs were asked to explain “the meaning 
of fraction division, and how fraction division relates to other content topics” that aims 
to assess their knowledge of fraction division and ability of connecting and justifying 
possible association between fraction division and other content topics. The results 
suggested that 73% provided correct explanations to the first sub-question. Among 
those correct answers, 9% responded as “the meaning of fraction division is the same 
as the division of whole numbers”, 28% provided their answers as “if knowing the 
product of two factors and the value of one factor, it is an operation to find the value 
of the other factor”, 18% responded with an answer that combines the above two, 12% 
explained the meaning of fraction division as “partitioning a number into several parts, 
taking one part or several parts. The rest of answers include comparing fraction 
division with ratio, or operations involving whole number or fraction. For the second 
sub-question, only 18% of these PTs provided correct explanations, with 13% 
indicating “fraction division is an inverse operation of fraction multiplication” and 4% 
mentioning that “fraction division relates to inverse number, for example, if divided by 
a number equals to multiplying its inverse number”. The vast majority (82%) either 
stated what content topics may relate to fraction division but failed to explain how 
(38%), provided some other wrong explanation (8%), or simply did not answer this 
sub-question (36%). 
There were several items used to assess PTs’ knowledge component 3 of MCKT. As 
an example, PTs were asked to explain how to explain/teach given computations of 
fraction division. In particular, the problem of “How would you explain to your 
students why ?; Why ?” (adapted from Tirosh, 2000) was included 

in the survey. For the first fraction division (i.e., explaining why 2/3 ÷ 2 = 1/3?), 95% 
provided valid explanations for dividing a fraction by a natural number (i.e., 2/3 ÷ 2 = 
1/3). The dominant explanation (50%) used the meaning of fraction such as, “dividing 
a whole into three equal parts, each part should be 1/3, so 2/3 mean to have two such 
parts. Dividing 2/3 into two equal pieces, so each piece should be 1/3.” The other 18% 
were dominated by explanations that were based on the algorithm, “dividing a number 
equals to multiplying its reciprocal”, 14% explained with a drawing or number line, 
and about 5% provided correct explanations with two or more different approaches. 
For the second fraction division (i.e., explaining why 2/3 ÷ 1/6 =4?), 84% provided 
valid explanations but the dominant explanation was based on the fraction division 
algorithm (38%). 27% provided their explanations mainly as “changing fractions so 
that they have the same denominator first, and then using the meaning of fraction for 
solution, for example, changing 2/3 into its equivalent fraction 4/6, and 4/6 has four 
1/6”. Some (9%) used drawings or a number line to help explain. Taking together, these 
PTs did very well in explaining these two fraction divisions (95% and 84%, 
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respectively). Their explanations were dominant with an approach that relies on either 
the meaning of fraction or the fraction division algorithm. Moreover, they performed 
better in explaining a fraction divided by a whole than explaining a fraction divided by 
a fraction.  
The results from these PTs’ responses on MCKT items revealed their strengths in many 
aspects of MCKT, as specified in the framework.  However, PTs’ strengths across these 
aspects varied to a certain degree.  It appeared that these PTs have solid performance 
on items related to fraction division computation itself, especially in the procedural 
aspect and problem solving, but relatively weak conceptually in connecting the content 
topic with others both mathematically and pedagogically.  
CONCLUSION 
The findings from this study helped shed a light on the relationships between these 
PTs’ confidence and their mathematical preparation for teaching fraction division. 
Specifically, these PTs didn’t feel over-confident about their understanding of national 
mathematics standards, but they knew very well about the curriculum placement of 
selected content topics. They also had better confidence in terms of their readiness to 
teach elementary school mathematics. Such confidence was likely supported by their 
solid knowledge and skill directly associated with fraction division, a knowledge 
component that is also typically required for school students. At the same time, their 
relatively weak performance on items that are conceptually demanding in mathematics 
or pedagogy likely failed to support their confidence in readiness for teaching. Such 
knowledge differentiations, as specified in the MCKT framework, help provide an 
important and feasible lens for us to know the strength and weakness of teachers’ 
knowledge. For the case of China in this paper, the results suggested that PTs likely 
gain much more on mathematics, somehow less on mathematical pedagogy, and very 
limited on connections of mathematical ideas through their program studies. In turn, 
such results helped illustrate what teacher preparation programs need to do more in 
mathematical preparation in order to help build or support PTs’ confidence for 
classroom instruction. 
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AFFORDANCES OF SOLVING COUNTING PROBLEMS IN A 
COMPUTATIONAL ENVIRONMENT  
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In this paper, we present results from a study in which undergraduate students solved 
counting problems in a computational environment using simple Python programming. 
We present affordances of this experience, both in terms of the students’ combinatorial 
reasoning and in terms of their computational activity. We argue that there are 
compelling reasons to have students leverage computing to solve counting problems. 
We briefly discuss limitations and conclude by offering directions for future research. 
INTRODUCTION AND MOTIVATION 
Researchers and policy makers in Science, Technology, Engineering, and Mathematics 
(STEM) education have made the case that computing is an increasingly integral aspect 
of scientific work, and it should be a fundamental component of our preparation of 
mathematics and science students (e.g., Weintrop et al., 2016; Wing, 2006). Given the 
vibrant state of computing in STEM, we are motivated to examine ways in which 
engaging in computing interacts with students’ learning of mathematical content.  
In this paper, we present results from a study that investigates the effects of Python 
coding on students’ reasoning about the domain of combinatorics. Specifically, we 
focus on undergraduate students’ solving of “counting problems,” which are problems 
that answer how many elements in a set satisfy certain conditions. We address the 
following research question: What are affordances of having students solve counting 
problems in a computational setting, and how do these affordances benefit students? 
By affordances, we mean unique ways in which the computational setting seems to 
enhance students’ combinatorial reasoning and activity. 
RELEVANT LITERATURE AND THEORETICAL PERSPECTIVES 
In this section, we frame our work within existing literature on combinatorics 
education, and we present theoretical perspectives that guide our work by clarifying 
key terms and ideas we use in our study. There is plentiful evidence that counting 
problems are difficult for students to solve (e.g., Batanero et al., 1997; Lockwood & 
Gibson, 2016). Some reasons for these difficulties are that counting involves non-
routine problems, many of which seem disconnected (Kapur, 1970), and counting 
problems often involve very large sets of outcomes, making them difficult to verify 
(Eizenberg & Zaslavsky, 2004). There is further evidence that students struggle to 
understand, justify, and appropriately apply counting formulas (e.g., Batanero, et al., 
1997; Lockwood, 2014). Researchers have attempted to address such difficulties in a 
number of ways – including having students reinvent fundamental combinatorial 
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concepts (e.g., Lockwood & Schaub, in press) and by examining ways of thinking and 
strategies (e.g., English, 1991, Lockwood, 2014) that might be beneficial for students.  
As a conceptual framework, we draw on Lockwood’s (2013) model of combinatorial 
thinking (Figure 1). In this model, Lockwood defines counting processes as the 
enumeration process that one engages as they solve a problem – the steps or procedure 
the individual does. Sets of outcomes are the collection of objects being counted, and 
the cardinality of the set of outcomes is typically the answer to a counting problem. 
Lockwood (2013, 2014) has argued for the importance of making meaningful 
connections between the counting process and the set of outcomes of that process. In 
particular, she argued for students to develop a set-oriented way of thinking toward 
counting, which is a “way of thinking about counting that involves attending to sets of 
outcomes as an intrinsic component of solving counting problems” Lockwood, 2014, 
p. 31). In this report, we frame our perspective on counting through the lens of this 
model. We designed our study accordingly, with the intention of helping students 
reinforce the relationship between counting processes and sets of outcomes. 

 
Figure 1: Lockwood’s (2013) model of students’ combinatorial thinking 

One practical way to reinforce this relationship is through listing outcomes. Lockwood 
and Gibson (2016) found that even partially systematically listing outcomes was 
positively correlated with students answering counting problems correctly. We thus 
infer that listing is potentially a productive combinatorial activity. However, while 
there is merit in partially listing sets of outcomes, complete listing is often infeasible 
to do by hand (as problems often have enormous sets of outcomes). Thus, our interest 
in computing is grounded in the notion that computing can help students connect 
counting processes and sets of outcomes (through the instantaneous generation of 
entire sets of outcomes through programming). This perspective affected our design of 
the study, as we sought to put students in situations where they could use computing 
to reinforce the relationship between counting processes and sets of outcomes.  
The Joint Task Force for Computing Curricula note that “In a general way, we can 
define computing to mean any goal-oriented activity requiring, benefiting from, or 
creating computers” (2005, p. 9). For mathematics in particular, we follow Lockwood, 
DeJarnette, & Thomas (2018) and define computing as the practice of using tools to 
perform (mathematical) calculations or to develop or implement algorithms in order 
to accomplish a (mathematical) goal. From a calculational perspective, computing 
might involve using a tool to complete numerical or symbolic calculations, and from 
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an algorithmic point of view, computing might involve developing or implementing a 
logical sequence of steps telling how to produce output information from given input.  
Weintrop et al. (2016) developed a “taxonomy of practices focusing on the application 
of computational thinking to mathematics and science” (p. 128). We use this taxonomy 
of practices, especially the computational activities associated with Computational 
Problem Solving Practices, to characterize computing activity. Practically, for the 
results described in this paper, computing activity meant the students engaged in basic 
programming tasks in Python, and this primarily included (in Weintrop et al.’s terms) 
Preparing Problems for Computational Solutions (which they define as “reframing 
problems so that existing computational tools can be utilized” (p. 138)) and 
Programming (which “consists of understanding and modifying programs written by 
others, as well as composing new programs or scripts from scratch” (p. 139)).  
METHODS 
Participants and Data Collection 
We interviewed three pairs of undergraduate students in paired teaching experiments 
(Steffe & Thompson, 2000) – two pairs for ~15 hours, one pair for ~10 hours. 
Generally, the teaching experiment methodology involves repeated task-based 
interviews that allow for a researcher to explore students’ reasoning over a period of 
time and to observe how they think about and learn particular mathematical concepts. 
The aim is not necessarily explicitly to teach directly (that is, the end goal is not only 
that students will learn certain material), but rather the goal is “for researchers to 
experience, firsthand, students’ mathematical learning and reasoning” (Steffe & 
Thompson, 2000, p. 267). In this report, we present results from one pair recruited from 
vector calculus. Charlotte and Diana (pseudonyms) were sophomore and freshman 
chemistry majors, respectively. They were novice counters (had not taken counting in 
college), and they had no programming experience in high school or in college. 
The students sat together and worked at a computer, coding in the language Python in 
the environment PyCharm (which has a window in which they could write code and a 
window that displays the output). They worked as a pair on tasks that covered a variety 
of counting problems and situations. In some tasks, we gave them code to interpret, 
which served to familiarize them with the syntax. More often we gave the students a 
counting problem and asked them to solve and code it. Generally, their lack of 
programming experience did not interfere with their ability to explore problems and 
write and edit code (the programming the tasks required was mostly limited to for loops 
and if statements). We videotaped the interviews and also recorded the screen. The 
students worked well together and took turns programming, and both contributed ideas. 
The interviewer (the first author of this paper) regularly asked the students to explain 
their work. Also, the interviewer regularly prompted students to predict the output of 
their code, and this was motivated by the desire to help students connect their counting 
processes with the set of outcomes (Lockwood, 2013). 
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Data Analysis 
All interviews were transcribed, and we created enhanced transcripts that included 
relevant screenshots from the video. The research team reviewed the transcripts and 
identified episodes in which affordances or limitations were clearly evident, and they 
then reviewed those episodes so as to characterize the nature of the affordances or 
limitations they observed. The research team is using the qualitative analysis software 
MaxQDA to systematically code these affordances and limitations. For the purposes 
of this report we report on one key episode that highlights multiple affordances.  
RESULTS 
To present results from this study, due to space, we only discuss four affordances in 
detail. Thus, the affordances we mention do not comprise a comprehensive list from 
our data set, but rather they are examples of the kinds of affordances students may gain 
from counting within a computational setting. In the final presentation we will discuss 
additional affordances that we do not have the space to elaborate here. We describe a 
situation in which the students were attempting to solve the following License Plates 
Problem: A license plate consists of six characters. How many license plates consist of 
three numbers (from the digits 0 through 9), followed by 3 lower case letters (from the 
first 5 letters in the alphabet), where repetition of characters is allowed? Write some 
code to solve this problem. What is a mathematical expression that represents the 
number of outputs of your code? This occurred in the second of nine 60-90 minute 
episodes with the students. We share some highlights from their work on this problem, 
and in doing so we characterize the affordances that emerged in their work. 
In working on the problem, the students began by recognizing that they could visualize 
the license plates by writing six dashes representing six positions, and that the first 
three positions could be 0 to 9, and the last three a to e. Diana wrote the dashes and 
options in Figure 2, which is a common way to represent such outcomes. 

 
Figure 2: Diana writes dashes and options for positions in the license plate 

They then turned their attention to the code and the program. They had copied some 
code that had two nested loops and were editing it. Diana suggested that they consider 
multiple for loops for letters and numbers, and Charlotte suggested perhaps they simply 
repeat the variables with the two loops they had in front of them. 

Diana: Maybe we should figure out a way to have it recognized that there’s three 
letters – or three numbers in a row, followed by two letters in a row. So, we 
could do like a sorting system and like repeat the sets. So, like for i in 
numbers, for j in numbers, for k and numbers, and then keep going with the 
letters – for l in letters, for m in letters, for n in letters. 
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Charlotte: Do you think it would be easier if we kept like these [referring to two the 
nested loops] … But then when it comes down to print, do you like, i 
comma, i comma, i comma, j, j, j. 

The students had thus suggested two possibilities for how to proceed. We will argue 
that the computational setting fostered efficient experimentation as they could get 
immediate feedback on their two ideas. They first proceeded with Charlotte’s 
suggestion, and they wrote the following code (Figure 3). 

 
Figure 3: Code representing Charlotte’s idea on the License Plate problem 

The interviewer asked them what they thought the output of the code would be, and 
they had the following exchange: 

Diana: I think it will definitely give us strings of three numbers, followed by three 
letters, but I’m a little worried it might do only the identical numbers, 
followed by identical letters […] But I don’t know. I don’t know how it will 
read it for sure. 

Charlotte: Yeah. Kind of same thinking. I’m not exactly sure what it’ll do. 

The students ran the program, and Pycharm yielded a list of 50 outcomes. The list was 
generated as Diana had predicted, printing only the outcomes with repeated elements. 
The first few elements were 111aaa, 111bbb, 111ccc, and the last few were 999ccc, 
999ddd, 999eee. By surveying the set of outcomes, the students saw that this was what 
Diana had guessed but not what they wanted for the problem. The interviewer 
reminded them of Diana’s different idea, and Diana then wrote the code in Figure 4. 
Before they ran this program, we asked them to predict what the code would do and 
how the outcome would be organized. Diana gave the following response.  

Diana: Yeah. It’ll probably do – it’ll keep these – because these are the starting 
points. So, like the triple 0 and then it’ll probably go like 001, 002, 003, 
and include all those different combinations. And in terms of like a 
mathematical expression, I was thinking, maybe it might multiply the 
options by each other. So, like with our paper here [points to the dashes 
written in Figure 1] – since this is 0-9, then there are 10 options. And 
there’s 10 options here, and there’s 10 options here. It might do 10 times 
10 times 10 times 5 times 5 times 5. Because there’s 5 options here. 
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Figure 4: Code representing Diana’s idea on the License Plate problem 

Diana explicitly pointed to the dashes they had written in Figure 1 as she spoke. This 
suggests to us that she was making an explicit connection between the representation 
of the code and the positions she had written. Based on her guess about the 
mathematical expression, the students anticipated a total of 125,000. They ran the 
program and found that, indeed, the total was 125,000, and the outcomes had been 
organized as Diana had discussed in the previous excerpt.  
Summary of Results: Characterizing Affordances  
This brief episode highlights a handful of affordances that we want to discuss. We do 
not claim that the programming was necessary for the students (indeed, they could have 
solved the problem using non-computational methods). However, we do contend that 
the programming offered some unique benefits that would not have been so easily 
realized by hand. The computing offered the students an opportunity to generate 
immediate feedback, in the sense that they could instantly see the output of their code. 
Importantly, in this combinatorial context, the output of the code exactly represents the 
set of outcomes of a counting process (in the sense of Lockwood, 2013). From a 
combinatorial perspective, then, such feedback is especially valuable because it gives 
students immediate access to the entire set of outcomes, which is often impossible 
without computational aid. We highlight two additional affordances that this 
immediate feedback enabled. The availability of such feedback facilitated 
experimentation for the students. That is, they were able to explore two different ideas 
efficiently. This is evidenced by the fact that both Charlotte and Diana could offer and 
implement solution strategies. Again, while multiple solution strategies are not an 
inherently computational feature, we suggest that the computational context did seem 
to facilitate the efficient and thorough exploration of multiple strategies in ways that 
would be restricted by by-hand exploration. For example, they simply could not have 
generated complete sets of outcomes that reflected two different processes without the 
use of the computer. The availability of immediate feedback also provided numerical 
and structural verification. In Charlotte’s approach, the immediate feedback of seeing 
the list of outcomes revealed that the nature of the outcomes was not what they intended 
to count, and this confirmed that answer was incorrect. In Diana’s approach, when they 
ran the problem they were able to gain numerical verification that her code generated 
the expected number of outcomes. Researchers have indicated that one reason counting 
problems are so difficult is that they are difficult to verify (Eizenberg & Zaslavsky, 
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2004). Given this established issue, we argue that the verification the computational 
setting provides is a considerable affordance for approaching counting in this way.  
We briefly mention one additional affordance, which is that the computational setting 
seemed to facilitate connections between mathematical representations. This is a 
valuable practice in mathematics education (Pape & Tchoshanov, 2001), and we argue 
that the computational setting enhanced it by offering additional representations of the 
code itself and the entire list of outcomes, which complement other combinatorial 
representations such as tree diagrams. Further, because we often asked students to 
predict what the output of their code would be, we regularly observed students making 
explicit connections between the code, the list of outcomes, and written expressions. 
We suggest that the availability of the entire list of outcomes made it relatively easy 
for them to recognize explicit connections among multiple representations. 
DISCUSSION AND CONCLUSION 
Although we do not have space to discuss them at length, there are also potential 
limitations of using a computational environment. In one situation the students had first 
incorrectly solved a problem by hand, and then they correctly coded that incorrect 
answer. The act of computing did not help them notice the error or ensure that they 
would fix it, nor it did preclude them from arriving at an incorrect answer. An 
additional limitation is that focusing on computing too heavily may prevent students 
from engaging in mathematical approaches to a problem. 
The affordances we highlighted in this brief example demonstrate potential ways in 
which computational activity may help students reason about counting problems, 
which has implications for helping students successfully solve counting problems. 
While ours is a narrow focus on combinatorics, these results serve as an instantiation 
of a broader phenomenon that warrants further investigation – namely, the role that 
computational activity can play in students’ mathematical thinking and activity. 
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Patterning instruction needs a shared language for talking about the structure of 
patterns. In order to develop a basis for such discussions, this paper focuses on young 
children’s explanations of an ABC pattern. Categorization of verbal explanations 
shows that young children make different structural aspects relevant. Although most 
of the explanations are not complete from a mathematical point of view, they offer 
qualitatively rich starting points to further develop children’s structural understanding 
of repeating patterns. 
INTRODUCTION 
There is increasing evidence that competencies regarding repeating patterns are 
especially important for mathematics learning if children focus on the underlying 
structure of the pattern: the unit of repeat and its repetition (Papic, Mulligan, & 
Mitchelmore, 2011; Threlfall, 1999). However, Radford (2012) highlights that the 
ability to analyze and generalize the structure of a pattern does not develop 
spontaneously, but rather depends on cultural influence and on some kind of education. 
Recent studies indeed confirm: Young children’s understanding of repeating patterns 
is scarcely developed in most cases but can be supported by ‘good’ instruction 
(Björklund & Pramling, 2014; Lüken, 2018; Papic et al., 2011). Such instructions 
require from children and their educators to find a shared language for talking about 
patterns: Which structure is there to be seen? In order to develop a good basis for such 
discussions with young learners, we investigate children’s spontaneous explanations 
of a given repeating pattern. In doing so, we do not primarily focus on the correctness 
of their answers, but rather on different structural aspects that they make relevant in 
their interpretations of the pattern.  
THEORETICAL BACKGROUND 
Repeating patterns 
Patterns are an abstract and generalizing phenomenon which is not easy to define 
(McGarvey, 2012). In a mathematics education context, we consider the term ‘pattern’ 
either as a synonym for any regularity (“What is the pattern?”) or as a name for a 
mathematical object that is structured in a regular way (“This is a pattern.”). As an 
example, we can think of six wooden cubes in the following colors: green, purple, 
orange, green, purple, orange (see Fig. 1). A pattern in line with the first description 
is any regularity concerning the color. For example, correct answers to the question 
“What is the pattern?” might be: “Every third element is orange”, “There is an equality 
between every element in the pattern and one of the first elements.”, or “A bit orange, 
a bit purple, a bit green.” (see section “Results”) However, these answers do not refer 
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to the whole structure of the example-pattern. For a complete explanation, the structure 
of the pattern has to be taken into account: the unit of repeat and its repetition, e.g. 
“Green, purple, and orange, and on and on.” (see section “Results”). Thus, patterns in 
line with the second description can be characterized by their underlying structure. In 
this paper, we use the green, purple, orange, green, purple, orange pattern which is a 
repeating pattern (see Fig. 1). A repeating pattern is a periodic sequence of elements 
which can be reduced to a smallest subset, the so-called unit of repeat (Threlfall, 1999). 
This unit of repeat is repeated in the form of a geometric translation. In our example, 
the unit of repeat is either green, purple, orange or purple, orange, green or orange, 
green, purple. In more general terms, this repeating pattern is called an ABC pattern 
which indicates that the unit of repeat has the length 3 and consists of three different 
elements (Liljedahl, 2004).  
In order to grasp the structure of a pattern, children have to learn to interpret a pattern 
in a certain way. They have to grasp the relevant structural aspects: “The recognition 
and use of a small sequence as an element to be repeated does, however, bring an 
awareness of a relationship between a part of the pattern and the whole as a repeat of 
it.” (Threlfall, 1999, p. 25) Activities like copying, extending, repairing, creating, and 
translating repeating patterns, can be correctly solved without referring to the 
structure: by matching elements or by a recursive strategy (McGarvey, 2012; Rittle-
Johnson, Zipper, & Boice, 2019; Wijns, Torbeyns, De Smedt, & Verschaffel, 2018). 
Thus, it is important to talk with children about their perception of the pattern. An 
activity that allows children to do just that and has hardly been investigated up to now 
is the activity of explaining: “Tell me about the pattern!”, “Look at this pattern and 
explain.” If children are invited to explain a pattern, they can use language and other 
available resources, e.g. gestures or the wooden cubes, to make their individual 
interpretations explicit – with all the shortcomings and potentials of learning processes 
(Moschkovich, 2011; Schleppegrell, 2004).  
Children’s explanations of repeating patterns 
There is little research on children’s explanations of repeating patterns and, building 
on such results, on the question of how we might help children in everyday 
conversations to grasp the structure of a pattern. Below, three selected studies are 
shortly presented. 
Rittle-Johnson, Fyfe, McLean, and McEldoon (2013) explored 4-year-old children’s 
verbal explanations during a translation task (n = 65). After producing a correct 
translation of a model pattern, children were asked to explain the correct solution. They 
were asked both, “What is my pattern?” and “How is your pattern the same as mine?” 
Children’s explanations were coded with the help of seven categories. The categories 
comprised non-pattern explanations, in which children named the colors or shapes 
without reference to their position in the pattern, gave other vague explanations, or 
refused the answer. A lot of explanations were given by labeling the items in order, i.e. 
naming either the shape or color of consecutive elements or pointing to each element 
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in order. Children also referred to the pattern’s elements as same or different, or 
explicitly linked individual elements in the new pattern to the model pattern. Rittle-
Johnson et al. (2013) consider these explanations as more sophisticated because 
children abstracted beyond naming characteristics of individual pattern elements. The 
sophistication of children’s explanations increased after the experimenter gave a high-
quality explanation that included the shared, general labels of ‘same’ and ‘different’, 
e.g. “For my pattern, I put two that were the same and then one that was different. Then 
I started over again.” (Rittle-Johnson et al., 2013, p. 383). 
McGarvey (2013) in her research on assessing young children’s attention to pattern 
and structure categorized four types of children’s responses. They are based on her 
working experience with children from age 4 to 7 on various patterning tasks including 
identify, describe, copy, extend, compare, and create patterns. The first type of 
responses, which McGarvey called inattention to pattern and structure, show that 
children have no verbal definition of the term pattern and do not attend to the model 
pattern when describing it. This category relates to Rittle-Johnson et al. (2013) 
nonpattern categories. The second category (direct comparison) in which the elements 
of the pattern are labelled in order, is similar to one of Rittle-Johnson et al. (2013) 
categories, too. Although children describe patterns in the third category (recursion 
strategy) also by labelling the elements in order, it becomes clear in their verbal 
responses to other tasks that they focus on the relationship between consecutive 
elements in the pattern. Based on the last element, they are able to predict the next. For 
the core unit strategy children explicitly name the unit of repeat.  
Fyfe, McNeil, and Rittle-Johnson (2015) hypothesized that labels used to describe 
patterns and relations might influence children’s relational reasoning. In their study, 
62 pre-schoolers (Mage = 4.4 years) translated and described eight repeating patterns. 
During an intervention, half of the children were exposed to concrete labels, i.e. the 
experimenter described the patterns by referring to the changing perceptual dimension 
– the color or shape of the elements (e.g., blue-red-blue-red). The other half was 
exposed to abstract labels, i.e. the experimenter described the patterns using the letters 
of the alphabet (e.g., A-B-A-B). Children exposed to abstract labels solved more tasks 
correctly than children exposed to concrete labels. Fyfe et al. (2015) conclude that 
using abstract language helps children to discover relations between the elements of 
two structurally identical patterns and, thus, facilitates children’s pattern translation. 
These three studies clearly show that children talk about patterns in very different 
ways. But, as far as we know, there is still no study of children’s explanations that 
systematically compares explanations of one pattern and that is, at the same time, open 
to children’s idiosyncratic ways of explaining. From our point of view, just such 
insights can be helpful in order to develop appropriate activities, tasks, and helpful 
impulses for supporting children in their work on repeating patterns. For that reason, 
in this paper we focus on the following question: Which structural aspects do children 
make relevant in their explanations of a repeating pattern? 
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METHOD & ANALYSIS 
Context of this paper is a study investigating patterning strategies in early childhood. 
254 children from 15 kindergartens and 4 primary schools in a metropolitan area in the 
north-western part of Germany participated in the study. Children were ranging in age 
from 2 years 11 month to 7 years 8 month (Mage = 5 years 3 month; SD = 17.19 month). 
None of the participating kindergartens were using a specialized curriculum focused 
on patterning, and teachers reported doing no patterning activities at all. The first-grade 
teachers reported having spent one to two lessons on copying and extending repeating 
patterns. Both practices are representative for the German educational system. 
In a one-on-one interview, each child completed 24 patterning tasks; first eight with an 
AB pattern, then eight with an ABC pattern and last eight with an ABCC pattern. 
Children were always invited to explain their thinking and their ways to find solutions. 
For this paper, we exclusively look at the first of the eight ABC tasks explain ABC 
pattern. Children were presented an ABC pattern made out of two units of repeats from 
green, purple, and orange wooden cubes (see Fig. 1). The presentation was 
accompanied by the prompt, “Please, look at this pattern and explain what you see.” 
All interviews were video recorded and children’s answers were transcribed. 
The transcribed explanations to the task explain ABC pattern were analyzed by means 
of “qualitative content analysis” (Mayring, 2008). In a first deductive step, we defined 
two initial categories from the above summarized literature: “figurative 
interpretations” and “structuring interpretations”. The first type of interpretation is 
related to the pattern, but not in an obvious structuring way. The second type is 
explicitly structuring, however. Whereas we did not differentiate the figurative 
interpretations any further, we did so with the structuring interpretations. For these 
interpretations, we deduced in a second deductive step two subcategories from the 
structure of the pattern (see above): unit of repeat and repetition. Following an iterative 
process, the children’s explanations were coded by the help of these categories and 
subcategories. In this process, particularly the existing subcategories were inductively 
modified and revised. This way, we now differentiate four categories for the structuring 
interpretations which focus on different structural aspects. In the following section, the 
categories are described with regards to content but not quantified yet. 
RESULTS 
Figurative interpretations. Some children interpret the representation of the pattern 
as a representation of a concrete object.  

1 “This is a snake.” [German original: “Das ist eine Schlange.”] 

2 “This is a wall.” [“Das ist eine Mauer.”] 

Interpretations of this type obviously refer to the visible appearance of the six wooden 
blocks and compare it with something that looks in some way similar. Thus, a snake 
has also an elongated shape (1st example), and a wall is also made up of single cuboids 
(2nd example). The interesting point about those figurative interpretations is that some 
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of them might be indeed good starting points for children’s thinking and talking about 
patterns and others not – at least not in an obvious way. For example, the exterior shape 
of the representation of a pattern is not that important at all: From a mathematical 
perspective, it is not relevant that the six blocks form together an elongated shape and 
look, as a consequence, a bit like a snake. But a pattern is, like a wall, composed of 
single elements. Thus, the latter interpretation might be a good cause to talk about the 
structure of the pattern and, for that reason, it can be regarded as a pre-form of a 
structuring interpretation.  
Structuring interpretations. Some children interpret the representation of the pattern 
with a more or less explicit reference to structural aspects of the pattern. This does not 
necessarily mean that the child is talking about the structure of the pattern, but it does 

mean that the child shows some kind of 
structuring in his or her explanation that 
can be regarded as useful for that topic. 
The analysis of children’s explanations 
indeed indicates that there is more about 
explaining a repeating pattern than 
exclusively talking about a unit of repeat 
and its repetition. Figure 1 illustrates our 
four categories of structuring 
interpretations which reflect four different 
aspects of a repeating pattern. 

A) Relevant characteristic. In the given task, the relevant characteristic of the 
cubes is their color. Thus, in order to interpret the pattern as such, children have to 
identify the relevant dimension and, consequently, focus on the color of the wooden 
cubes, but not on their size, their material, or their exact shape. 

1 “A bit orange, a bit purple, a bit green.” [“Ein bisschen Orange, ein bisschen Lila, ein 
bisschen Grün.”]  

2 “Two orange ones, two purple ones, and two green ones.” [“Zwei orange, zwei lilane 
und zwei grüne.”] 

3 “Green, purple, orange, green, purple, orange.” [“Grün, lila, orange, grün, lila, 
orange.”] 

Some children classify the cubes by color (1st & 2nd example), and some of them also 
determine the number of cubes that belong to each of the classes (2nd example). These 
explanations refer to some regularity concerning the color: the cubes can be sorted 
according to color, and each color appears twice. Other children assign the color to 
each of the six cubes (3rd example). All these explanations are similar in identifying 
the color as the relevant dimension. Thus, they can be regarded as appropriate starting 
points for thinking and talking about the structure of patterns. 

Figure 1: Categories for structuring 
interpretations 
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B) Unit of repeat. In the given task, the unit of repeat consists of three single cubes 
in three different colors: green, purple, and orange. Thus, in order to talk about the 
structure of the pattern, children have to express in some way that three successive 
cubes constitute a unit.  

1 “Green- purple-orange!” [“Grün-lila-orange!”] 

2 “(pointing at a set of three cubes:) Orange, purple, green.” [“Orange, lila, grün.”] 

Some children name the unit of repeat without talking about its repetition yet. They 
just name the unit by naming the three different colors (both examples). Some of them 
also support their verbal explanation by a gesture which makes clear that the three 
cubes in three colors form a unit (2nd example). Those explanations do not make the 
repetition relevant yet, but it should be noted that the unit of repeat can actually not be 
identified without recognizing which part of the pattern repeats. Thus, we can conclude 
that those children who only name the unit have already structured the pattern in a 
useful way, but they only explain part of their analysis.  
C) Repetition. In the given task, the unit of repeat is “green, purple, orange”, which 
is represented twice by the six wooden cubes.  

1 “Green, purple, orange, again green, purple, orange.” [“Grün, lila, orange, wieder grün, 
lila, orange.”] 

2 “Orange, purple, green. Orange, purple, green.” [“Orange, lila, grün. Orange, lila, 
grün.”] 

Some children name the unit of repeat twice and, thereby, explicitly highlight the 
repetition: “again” (1st example). Other children indicate the repetition of the unit of 
repeat just by their prosody (2nd example). Their explanations sound as if they consist 
of two complete sentences. Both examples show that the explanation of the repetition 
requires that children explicitly highlight the distinction between the units of repeat: 
Where does the first representation of the unit end and where does the second begin?  
D) Continuability. If children have identified the unit of repeat and its repetition, 
they can start continuing the pattern by repeating the unit of repeat. It has to be noted 
that this aspect of continuability goes beyond the given task. The children were asked 
to explain what they see – and not what they do not see, but what they can imagine. 
Nevertheless, some children already touch this aspect of continuability. 

1 “Always green, purple, orange.” [“Immer grün, lila, orange.”] 

2 “Green, purple, and orange, and on and on.” [“Grün, lila, orange und immer so 
weiter.”] 

Those explanations generalize to a certain extent the aspect of repetition: “Always” (1st 
example), “and on and on” (2nd example). If we have identified the unit of repeat, we 
can repeat this unit any number of times. There is no need to think about an end. At 
least by means of our language, we can even think and talk about an infinite pattern 
that we cannot show with concrete wooden cubes at all. 



Lüken & Tiedemann 

PME 43 – 2019                                                                                                        3 –  
 

55 

DISCUSSION 
The four categories of structuring interpretations that we differentiate are not mutually 
exclusive, but rather build on one another. For example, a child who explicitly refers 
to one of the ‘correct’ units of repeat has obviously recognized the relevant dimension 
of the six wooden cubes. Nevertheless, there are utterances that can be assigned to one 
category, but not to the one(s) before. The following explanation is a case in point: 
“They alternate.” [“Sie wechseln sich ab.”] This utterance indicates that something 
repeats, but without pointing out what actually repeats. Thus, this explanation can be 
assigned to the category of “repetition”, but not to the categories of “relevant 
characteristic” and “unit of repeat”.  
Anyhow, this reflection shows that the categories can be used as an analytical 
framework. Researchers and educators can analyze a child’s explanation of a pattern 
quite quickly and can take into account both sides of the coin: We can see what a child 
makes already relevant in his or her explanation and which aspects are not explicit parts 
of his or her interpretation yet. Concerning the language, there are obviously different 
ways of explaining the same aspect. Concerning the content, some children do not 
focus on the (structure of the) pattern but count the cubes or give a figural 
interpretation. Nevertheless, some of these non-structural explanations can be regarded 
as pattern-related like the wall-example. Other children indeed develop a structuring 
interpretation of the pattern. As a first step, they identify the relevant dimension of the 
elements. By classifying the colors, children refer to a pattern as a regularity (a pattern 
in the pattern). Furthermore, some explanations explicitly take the structure of the 
pattern into account and either describe part of it (“unit of repeat”) or even give a 
complete explanation (subcategories C & D). Interestingly, the children’s explanations 
show us that there might be an important difference between an actual repetition of the 
unit of repeat, which is represented by the given cubes (subcategory C), and a possible 
repetition that can be imagined even as infinite, but that is not represented in the 
concrete task at all (subcategory D).   
In our opinion, such scientific or pedagogical work with the categories really needs a 
clear formulation of goals. We have to be aware of the structure of a pattern in order 
to be able to identify which structural aspects children make already relevant and which 
not. From a scientific perspective, we need further research on children’s explanations 
of repeating patterns (and of other pattern types, too), but with other concrete tasks. In 
this way, we will see how far the categories and subcategories presented in this paper 
are appropriate for other tasks as well and, consequently, how far they could serve as 
an appropriate basis for developing ‘good’ activities, tasks, and helpful impulses for 
children’s learning about patterns. 
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MULTIPLE ARTIFACTS IN THE MATHEMATICS CLASS: A 
TENTATIVE DEFINITION OF SEMIOTIC INTERFERENCE 
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This work aims at laying the base of a model for studying how the mathematical 
learning process triggered by the use of an artifact in the classroom can be affected by 
the use, even in different moments and for different purposes, of another artifact by the 
same students. Taking a Peircean framework, we define semiotic interference as an 
enchaining of signs emerging from the contexts of use of different artifacts, referring 
one to the other. We test our tentative definition on two examples; one is taken from 
the literature while the other one taken by original data. Finally, we discuss the 
potential operativeness of this definition in the data analysis and its generative 
potential in terms of new research problems and questions.  
INTRODUCTION 
Mathematics has been shaped in its history by the use of several tools; and for many 
years research in mathematics education investigated the contribution of tools to the 
process of teaching/learning mathematics (Monaghan, Trouche, & Borwein, 2016). 
Among the different research approaches, we place ourselves in the stream of research 
adopting a semiotic perspective in studying the role of artifacts in the mathematics 
classroom (e.g. Bartolini Bussi & Mariotti, 2008; Presmeg, 2010; Radford et al., 2017). 
We share the view that mathematics meaning-making develops through a complex 
interplay of signs. Following Wartofsky (1979), we call artifact any object produced 
by human beings for accomplishing a task: utensils, texts and books, scientific 
instruments, ICT. 
Here, we focus on the issue of the presence of more than one artifact in the same class. 
The importance of addressing this issue is acknowledged in literature (e.g. Trouche, 
2004). However, with few exceptions which we will examine in the next section, how 
the use of two or more artifacts triggers the process of meaning-making in mathematics 
remain a rather unexplored issue and it deserves further research. 
SYNERGY BETWEEN ARTIFACTS: LITERATURE REVIEW 
The theme of the relation between different artifacts within the same class has been 
addressed by few researchers. We can find an example in the work by Maschietto and 
Soury-Lavergne (2013): they attentively study the signs produced by students while 
using a manipulative (the Pascaline) with the aim of including such signs in the design 
of a software. They call duo of artifacts the couple made of a software and a 
manipulative by which it is inspired.  
The possible linkage between an historical text recalling some features of another 
artifact has also been studied. Maracci and Mariotti (2010) noticed that, after the 
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introduction to a Dynamic Geometry Environment (DGE), high school students were 
able to interpret a text by Euler in which dynamic features of the notion of function 
appears. Signs related to the software are used by to make sense of the historical text. 
Similarly, Maffia (2018) describes how a primary teacher proposes to translate into 
modern language a text by Tartaglia about the so-called “surface-numbers”. The 
students already worked with rectangular slips of paper as representation of 
multiplications. Signs referring to the rectangular slips of paper are used to interpret 
the text and then to construct a definition of surface-numbers.  
Faggiano, Montone and Mariotti (2018) design a complete teaching sequence aimed at 
introducing axial symmetry by using a manipulative and a DGE. The tasks are designed 
to allow student to reflect on the use of one artifact while using the other. This 
potentiality is actually expressed. Indeed, the authors observe that the functional 
dependence between the points involved in the geometric transformation is constructed 
via a semiotic chain involving signs related to both artifacts. This phenomenon is 
defined by Faggiano and colleagues as synergy between artifacts. 
These studies share both a semiotic perspective on mathematics teaching/learning and 
the role of artifacts, and a commitment to design contexts of use of different artifacts 
with the aim of exploiting possible connections between them. 
THE CONSTRUCT OF SEMIOTIC INTERFERENCE 
As a first step in our research, we try to define a model for studying how the 
mathematical learning process triggered by the use of an artifact in the classroom can 
be affected by the use of another one, even in different moments and for different 
purposes. We refer to this phenomenon as semiotic interference. We adopt Pierce’s 
framework as described by Presmeg (Presmeg, 2006; Presmeg et al, 2016) and by 
Sáenz-Ludlow (2006). We consider as sign a triplet made of: a representamen, the 
perceivable part of a sign (like a visible gesture, an inscription or an audible word); an 
object, that is something for which the sign stands for; an interpretant, that can be 
defined as “the sign’s relationship to its semiotic object with respect to its interpreter 
or sign agent” (ibidem, p. 188). Through communication (with the self or with others), 
signs are continuously translated into new signs. In this continuous interpreting 
process, students construct shared meanings that converge (desirably) towards the 
mathematical community’s interpretation (ibidem). This process is called semiotic 
chain (Presmeg, 2006; Bartolini Bussi & Mariotti, 2008). 
We say that we can observe semiotic interference between two artifacts when the 
interpretant of a sign whose object belong to the context of an artifact is translated by 
a student in a new sign whose object belong to the context of another artifact. In other 
words, semiotic interference is an enchaining of signs emerging from the contexts of 
use of different artifacts and referring one to the other. 
The diagram in Figure 1 is an elaboration from Sáenz-Ludlow (2006, p. 188), and it 
depicts (a hyper-simplified version of) the semiotic interplay which may occur when 
semiotic chains originate from to the use of different artifacts. Signs referring to the 
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activity with an artifact evolve being translated into new signs referring to the activity 
with the other one (Ri, Oi and Ii stand for representamen, object and interpretant). The 
background colour fades as the semiotic enchaining progresses in order to represent 
that, through this process, signs are supposed to be more and more decontextualized 
and generalized, to evolve towards target mathematical signs. “From the continuous 
translation of signs into new signs a concomitant sequence of interpretants evolves 
giving rise to the emergence of meaning.” (ibidem, p.188). The expression “semiotic 
interference” is used to refer to a semiotic phenomenon; it is not regarded as positive 
or negative phenomenon by itself. 

 
Figure 1: Semiotic interference in a semiotic chain. 

All the above-mentioned studies can be interpreted in terms of semiotic interference. 
In the following sections we show the kind of analysis prompted by our tentative 
definition on two examples: the former consists in original data from a still in progress 
study, and the latter is drawn from the mentioned literature. We will eventually discuss 
the operative potential of this definition in the data analysis and its generative potential 
in terms of new research problems and questions. 
FIRST EXAMPLE: STRAWS AND ABACUS 
Emma is a third-grade student. During second grade, her teacher introduced the 
positional representation of numbers by using straws as proposed in the guidelines of 
the “Percontare-project” (Baccaglini-Frank, 2015).  Through several tasks, Emma and 
her peers were invited to count straws by creating groups of ten and tying together ten 
straws of the same group. The tied groups were put in a box and the remaining straws 
were put in another one. The positional representation of the number was obtained 
counting the number of groups (tens) and the number of remaining straws (units).  
In third grade, Emma have the same mathematics teacher. The teacher wants to 
introduce hundreds, she decides to abandon straws and to involve the abacus in her 
classes. The abacus was introduced asking students to use it to represent different two-
digits numbers (as in Bartolini Bussi & Mariotti, 2008). After many similar tasks, the 
teacher asked to her students ‘If we add one unit-bead to 99, what does it happen?’. 
Here the word “unit-bead” represents a sign aimed at connecting the role of beads in 
the abacus to the mathematical notion of unit. This analysis is in accordance to a case 
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reported by Bartolini Bussi and Mariotti: students use the words beads and tens-beads 
to distinguish between units and tens. 
Figure 2 shows the text produced by Emma to explain what she obtained after using 
the abacus to complete the task. Emma writes “Now in the units there are 10 tens-beads 
and I tie them and I transform them in a ten-bead but now in the tens there are 10 tens, 
I tie them and I transform them in a hundred-bead”. 
In Emma’s text we can notice a semiotic interference expressed by using the word “tie” 
(“lego” in Italian).  This sign shares the representamen with the sign that was used to 
refer to the activity of (concretely) tying a group of straws. The object of the sign used 
in the past was a concrete activity, in this text the object has changed. The sign “tie” 
cannot refer to the activity of tying beads (never realized by Emma). If we look to this 
sign with the expert’s eye, its object seems to be the operation of changing unit (from 
units to tens) as it can be performed with the abacus: taking off the beads from the unit 
stick and putting one bead in the tens stick. As Sáenz-Ludlow (2006) claims, the 
translation of the previous sign (“tie” as a concrete action) in a new one (“tie” virtually 
referring to beads) allows to get closer to the mathematical shared culture. 

   
Figure 2: Emma’s written text. 

The two signs have many common features, but they are not the same sign (even if 
they have the same representamen) because the object (at least) is different. The fact 
that the two signs share the same representamen, suggests that Emma can see 
something similar (a pertinence) between the two contexts. The process of 
interpretation that is realized by the child, leads her to generate, for the new sign, an 
interpretant based on that activity that she performed with the straws. The new sign 
“tie” is based, in the choice of the representamen and in the attribution of the new 
interpretant, on a translation of the interpretant of the sign “tie” that was introduced in 
the context of straws. 
The new sign has its roots in the interpretant of the sign born in the context of straws, 
but the two signs are different. This interpretation is strengthened by the fact that Emma 
uses the word “tie” to refer both to the change between units and tens (a change that 
was actually performed with straws) and to the change between tens and hundreds. In 
this protocol (fig. 2), the first time in which “tie” is used, it could share an interpretant 
that is very similar to that of the sign produced in the context of straws. But the second 
time, the interpretant is more decontextualized because, by using a representamen 
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related to the context of straws, it refers to the general operation of passing from tens 
to hundreds, an activity that was never performed with straws. So, we have an 
enchaining of three signs, all with the same representamen (the word “tie”): the first 
one has as object the activity of tying straws, the second refers to the activity of 
changing 10 unit-beads with 1 tens-bead and the third one can be interpreted as 
replacing 10 tens-beads with one hundred-bead. 
We can also notice that the child invents the sign represented by the word “hundred-
bead” (“pallina-centinaio” in Italian). It was never used by the teacher or the 
schoolmates before. Because of the similarity of the representamen, we can conjecture 
that this sign has an interpretant generated by those of the signs “unit-bead” and “tens-
bead” that were shared in the class-group. There is an enchaining of signs that is not 
an interference: the context is always the same artifact (the abacus). 
SECOND EXAMPLE: PAPER, PIN AND DGE 
The second example is taken from Faggiano and colleagues (2018). Fourth grade 
students are involved in a teaching sequence about reflection in the Euclidean plane. 
First, children use paper to realize the reflection of polygons by folding the paper and 
using a pin to realize little holes on the vertexes of a given polygon. When the paper is 
opened, the holes are the vertexes of the image of the polygon through the reflection. 
Later, students are introduced to the use of the tool “symmetry” of a DGE. The authors’ 
analysis shows a synergy between the artifacts: the cross-reference to them fosters the 
construction of the mathematical meaning of functional dependency. We agree with 
the authors, but we look more closely at how this cross-reference took place from a 
semiotic point of view, according to the lens that we have introduced. 
We show an excerpt drawn from table 2 (p. 1177). Pupils must explore and explain the 
behaviours of different points in the DGE with respect to dragging: A is a free point, 
point C is obtained by symmetry. Students can observe that both point A and the 
symmetry axis can be dragged and C moves accordingly. The teacher asks: ‘What 
moves? And what does not move?’. F meets “difficulties in understanding why the two 
points behave differently when she drags them” (p. 1177). She overcomes such 
difficulties referring to the previous folding activity. 

F.  when we drag point A, point C moved, but the line did not! … I cannot 
explain it … no, but why should it be normal …, but perhaps because C 
was created by us so … so in the same way as we did with the paper … 

With her right thumb up, she gestures behind her. 
F. … point A is our black figure, … thanks to the line … since the line moved 

… first the red and then the blue … so C moved. [...] 

In the first part of the excerpt, the objects of the discourse refer to the activity with the 
DGE: “drag point A”, “point C moved”, etc. are representamens of signs whose objects 
are images on the screen and their behaviour. When F has difficulties to explain the 
behaviour of the points in the DGE, a new sing appears: A is “our black figure”. We 
can notice several interesting features: first, it is unusual, even for older students, to 
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use the term “figure” to denote a point; then the adjective “our” is used, suggesting 
something very familiar for the utterer; finally, the figure is called “black” – that is the 
colour used to draw polygons to be reflected in the paper-folding activities. The phrase 
“our black figure” expresses the interpretant of the sign “point A” which is translated 
into the representamen of a new sign referring to the paper-folding activity. Similarly, 
in the second part of the utterance, the “line moved” is the representamen of a sign 
referring to the behaviour of a line in the DGE, and it prompts the expression of the 
interpretant “first the red and then the blue [line]” translated into the representamen of 
a sign referring to the paper-folding activity (where lines were red and blue). The 
situation is even more complex and intriguing: once these utterances are produced, the 
expression “line moved” can become an interpretant of the sign “first the red and then 
the blue [line]” in the follow-up of the activities, re-enforcing fruitful cross-reference 
to the use of the artifacts. 
Again, we can draw on the work by Sáenz-Ludlow (2006) to say that the translation of 
the sign originated within the activity of paper-folding in a new sign in the context of 
DGE, helped in getting closer to the shared mathematical culture; e.g. from a figure 
that is actually black, to a sign for the independent variable in a reflection.  
DISCUSSION 
We have defined semiotic interference between two artifacts as the phenomenon that 
is observed when the interpretant of a sign whose object belong to the context of an 
artifact is translated in a sign belonging to the context of another one. It is a mean to 
study learning environments in which we can find several tools, new technologies with 
more traditional manipulatives (Faggiano et al, 2018; Maschietto, 2018; Maschietto & 
Sourey-Lavergne, 2013) and texts (Maffia, 2018; Maracci & Mariotti, 2010). Such 
environments have become more and more common in schools. 
The proposed definition allowed us to interpret the relationships between the signs in 
the excerpts from the above-mentioned literature and other original data. The examples 
that we presented allow us to discuss our definition in terms of operativity, meaning 
the possibility of clearly detect and describe the phenomenon while analysing data. The 
adoption of Peircean framework revealed to be important for distinguishing the signs 
from their representamen that can appear as identical, even when the object and/or the 
interpretant are different. The performed analysis leads us to claim that, when the 
interpretant of the sign is based on a sign coming from the context of a different artifact, 
it is more than just a “cross-reference” (Faggiano et al., 2018) or an “evoking” (Maffia, 
2018; Maracci & Mariotti, 2010) between the artifacts. The observed enchaining 
suggests that semiotic interference plays a role in the process of teaching/learning 
intended as a continuous interpreting process (Fig. 1) in which teachers and students 
approximate more and more the culturally established mathematical signs “by means 
of successive networks of interpretants individually generated with the collaboration 
of the classroom participants” (Sáenz-Ludlow, 2006, p.190). In both the examples, the 
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translation of a sign conducted to the generation of a new sign that we can describe as 
“closer” to culturally shared mathematical signs. 
We do not claim that semiotic interference is always desirable, even if in literature this 
seems the case. Faggiano et al. (2018) define synergy as the expression of the semiotic 
potential of two artifacts linked to the same mathematical content. According to our 
definition of semiotic interference, synergy is the particular case in which semiotic 
interference leads to a semiotic chain linking the activity with the artifacts to the 
mathematical signs that are objective of a teaching intervention. 
We conjecture that is not always the case. For instance, in Emma’s protocol, we found 
a case of semiotic interference that was not expected by her teacher. The simultaneous 
or consecutive presence of more than one artifact is not a rare case and so semiotic 
interference could occur often in our classes. What does it happen when a teacher does 
not recognize a semiotic interference in the signs that are proposed by the students? 
What do teachers need to recognize and manage those situations? How can we deal 
with cases, if any, in which semiotic interference block the decontextualization of signs 
from the context of the artifact(s)? How can we design tasks in order to exploit the 
potential of semiotic interference between artifacts? 
The fact that many research problems and questions arise after defining this construct 
suggests that this first step in constructing a theoretical model for studying this kind of 
learning environments will be productive in developing further research. 
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MATHEMATICAL PROBLEM SOLVING TASKS  
IN THE EYES OF EGYPTIAN TEACHERS  

Mariam Makramalla 
University of Cambridge 

 

This work aims to explore the contextualisation of the Egyptian national mathematics 
curriculum across a variety of private schools catering to students of different 
sociocultural backgrounds. In light of the Goodson Change Model, the study maps out 
contextual relationships between an imposed teaching culture-represented by the 
national curriculum-that is rigid and teacher-centred and a schooling culture -
represented by the private schools- that in contrast appreciates inquiry and student 
activities. In light of this dynamic the study adopts teacher focus groups to explore 
mathematics teachers’ perceptions about problem solving tasks. Results show that 
across varying sociocultural levels and despite being governed by a rigid national 
curriculum, the schooling culture still dominantly influences teachers’ perceptions. 
INTRODUCTION 
The teaching and learning of mathematical problem solving has received considerable 
attention in literature. It is commonly associated with equipping students with the 
capacity to become independent and critical thinkers (Schoenfeld, 1992). Nevertheless, 
there is no unanimous agreement on how the term ‘problem solving’ is globally 
perceived. Depending on the educational context there seem to be variations (Apple, 
2004; Ernest, 1995). The educational context in Egypt is particularly interesting as both 
the political and cultural contexts are quite hierarchical and reserved by nature and 
would therefore not naturally align with an educational agenda that encourages 
independence and critical thinking (Naguib, 2006). This work seeks to explore how 
contextual factors play a role in shaping Egyptian teacher perceptions about 
mathematical problem solving tasks.  
THEORETICAL FRAMEWORK 
This work builds on the theoretical grounding of the Goodson Change Model 
(Goodson, 2000). Along with other researchers (Alexander, 2000; Apple, 2004; Ernest, 
1995), Goodson (2000) argues for education to be governed and affected by the context 
where it is situated. He distinguishes between three contextual agents that influence the 
formation of an educational identity. First of all, there is the internal agency, 
represented by, for instance, the local stakeholders and the school culture. This internal 
context is in turn part of a wider -so called- external context which is often represented 
by external agents affecting the school such as standardised examinations, imposed 
curricula or school inspection mechanisms (Alexander, 2000). Tensions usually exist 
between the two aforementioned contextual spheres. These tensions are balanced, 
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according to Goodson (2000) by the personal agency of teachers; i.e. their degree of 
involvement and investment in either of the sources of contextual influence.   
This study focuses on exploring the aforementioned inner and outer spheres of 
contextual influence in relation to how they affect teacher perceptions about 
mathematical problem solving tasks. While I acknowledge that the definition of 
problem solving has received considerable attention in scholarship (Polya, 1945; 
Schoenfeld, 1992), this work builds specifically on how mathematical tasks are 
designed to incorporate a problem solving element. In order to study that, I make use 
of Stein, Smith, Henningsen, & Silver (2000)’s conceptualisation of mathematical 
tasks. According to the authors (Stein et al., 2000), mathematical tasks can be broadly 
classified into four categories, namely ‘memorisation tasks’, ‘procedures without 
connections tasks’, ‘procedures with connections tasks’ and ‘doing mathematics tasks’. 
The latter type of tasks is described as being tasks that build on a student’s conceptual 
understanding of mathematics. The tasks present a problem situation that can only be 
resolved when students go through an iterative process of knowledge construction, 
collaboration and progress monitoring. I choose to refer to the authors’ characterisation 
of ‘doing mathematics tasks’ as problem solving tasks for the scope of my work.  
LITERATURE REVIEW 
There have been many studies exploring teacher perceptions, how they develop and 
what factors they are influenced by (Ernest, 1982; Martino & Zan, 2011). Scholarship 
has argued for a need to situate an exploration of teacher perceptions within the social, 
cultural and political contexts that control them (Alexander, 2000; Apple, 2004). In his 
work on identifying various purposes in teaching and learning mathematics, Ernest 
(1995) places significant emphasis on an existing co-relation between a school’s 
sociocultural standpoint, the purpose for which mathematics education is directed 
towards and the pedagogical nature of teaching and learning mathematics within that 
particular context. In order to better comprehend the socio-cultural and political 
context of a given school, it is vital to consider the historical roots (Apple, 2004; 
Bourdieu, 1986).  
A wider study from which this work has been derived has addressed in great detail the 
historical mapping of education in modern Egypt and how this has influenced different 
schooling types across the socio-cultural spectrum of Egyptian schools. While it is out 
of scope of this work to delve into the details of that historical mapping, I think it is 
still worthwhile to relate the schooling culture to the political context in which it is 
situated (Apple, 2004). In his comparative study of four different schooling cultures, 
Alexander (2000) places specific emphasis on the political decision to adopt a 
centralised or de-centralised schooling model and argues for that decision to strongly 
relate to the power tensions between the aforementioned inner and outer circles of 
contextual influence (Goodson, 2000). With that in mind, it is worth mentioning that 
since the formation of the republic of Egypt (1957), the national curriculum for 
mathematics has been standardised. It has also become a centralised system that is 
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solely governed by the Ministry of Education (MOE) and strictly imposes itself on all 
forms of national schooling in Egypt. Literature (Naguib, 2006; Sika, 2010) claims that 
in such a system mathematical knowledge is viewed as a fixed set of rules and the 
transmission of it is mostly focused on memorisation and on the mastery of procedures.  
Foreign (non-governmental) entities that govern private schools have various historical 
roots which have strongly impacted the formation of the inner contextual circle of 
influence that, for the scope of this study, is reduced to the school’s cultural context.  
The particular strand of private schooling that this study is focused on has historically 
been associated with more student centred, inquiry based forms of knowledge creation 
(Heyworth-Dunne, 1968). Despite being privately owned, they are still subject to the 
centralised control of the MOE and are still expected to adopt the national curriculum. 
This is why I refer to these schools as national private schools. Unlike the status of 
private schools in some other countries, in Egypt national private schools serve a wide 
range of socio-cultural groups and they constitute a major part of schooling serving 
around 2 million students annually (CAPMAS, 2017). 
Alexander (2000) argues that schools are microcultures in themselves, adapting the 
imposed curriculum (external context) to the local schooling culture (internal context). 
The strength of those microcultures is derived from the personal agents that drive them, 
which according to Goodson (2000) are mainly the teachers. For the case of Egypt, 
being a collective culture (Al-Omari, 2003), teachers’ choices and practices are 
governed and influenced by each other making it unlikely for a teacher to adopt a 
certain view if this view is not collectively perceived as best practise. Research 
conducted in various other educational settings in the Middle East also confirms this 
viewpoint (Thomas, 2008). This is why, for the scope of this work, I choose to associate 
the element of personal agency, which is the third pillar of Goodson’s (2000) 
framework, with the collective view of teachers at a given school. Figure 1 maps out 
the inner and outer circles of contextual influence for the specific case of national 
private schooling.  
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Figure 1. Contextual Mapping 

As presented in Figure 1, the inner circle of private schooling seems to be dominated 
by an externally imposed national curriculum framework. This inner circle itself 
comprises schools of different socio-cultural standings. In this study, I first intend to 
explore relationships between inner and outer contextual circles and how those are 
affecting the element of personal agency, which for the scope of this work is referring 
to a group of mathematics teachers and their colleagues’ perceptions about problem 
solving. Secondly, in light of Ernest’s (1995) association of the nature of teaching and 
learning mathematics with a school’s socio-cultural standpoint, I intend to explore the 
variation of teacher perceptions about mathematical problem solving across the socio-
cultural spectrum of national private schooling. The research questions are as follows:  

(1) How do Egyptian mathematics teachers working in the context of a private 
school that follows the national curriculum characterise problem solving tasks?  

(2)  How do these perceptions vary across the socio-cultural spectrum of national 
curriculum private schooling?  

METHODOLOGY 
This study adopts a multiple case study design (Yin, 2009) as it seeks to explore teacher 
perceptions about mathematical problem solving across a range of national private 
schools that vary in terms of socio-cultural standing (Figure 1). The categorisation of 
schools was based on their geographical location, the school fees and discussions with 
the leadership team of the partner institution that governs this whole strand of private 
national schooling. The wider study from which this work is derived has assessed six 
schools. For the scope of this work, I will report on the research conducted at only three 
of those schools. These three schools were selected as the teacher sample was quite 
comparable in terms of group size and group gender variation. Also, the schools have 
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been classified as high (H), middle (M) and low (L) with regards to their socio-cultural 
standing. Each case study focuses on one school.  
The data collection took the form of teacher focus groups. As previously mentioned, 
being a collective culture, it was important to capture teacher perceptions in a group 
setting (Thomas, 2008). The sample at school H comprised a group of 4 female and 2 
male teachers. The sample at school M comprised a group of 3 female and 3 male 
teachers. The sample of group L comprised a group of 4 female and 3 male teachers. 
All teachers interviewed are familiar with the school culture as they have been working 
at the school for several years and are themselves Egyptian. Also, all of the teachers 
are products of the national curriculum schooling system. 
The focus group discussion was devised around a Task Sorting Activity. Each group 
of teachers were provided with a set of mathematical tasks, that have been pre-
classified from the literature as fitting in one of the four broad categories of 
mathematical tasks referred to earlier (Stein et al., 2000). The tasks also vary in form. 
Some tasks are purely numeric. Others include a narrative or a visual element. Teachers 
were not made aware of the task pre-classification and were asked to single out the 
tasks that they would classify as problem solving tasks. Subsequently, the focus group 
discussion explored the reasons behind the teachers’ choices and more generally 
discussed features that the teachers associate with problem solving tasks. Similarly, 
teachers were also asked to single out the tasks that would align with the requirements 
of the national curriculum. This was followed by a more general focus group discussion 
about national curriculum requirements for mathematical tasks.  
The data analysis scheme follows the constant comparative method in coding and 
comparing all features that teachers associate to problem solving across the case studies 
(Glaser, 1965). The same method was also used for reporting task features that are 
associated with national curriculum requirements. The saturated code is represented by 
a set of features that collectively have been associated by the teachers to problem 
solving or to national curriculum requirements respectively. For each case, the 
popularities of task features that teachers associate to problem solving have been 
recorded with the help of a frequency count analysis. Finally, across the cases, popular 
codes have been contrasted.  
FINDINGS  
Table1 maps out the most popular codes that according to teachers characterise 
national curriculum requirements for mathematical tasks. Table 2 maps out the most 
popular task features that according to teachers relate to problem solving. Table 2 also 
contrasts findings across the three cases H, M and L.  
A task where the solution procedure is already known  
A task that is formulated in a similar way to another task students have worked on 
before  
A task that is solvable only using one approach 
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A task that relates to one sole mathematical concept 
A task that establishes a daily life connection 
A task that requires 1-2 steps to solve 
A task that addresses the level of the average student 
A task where the solution is based on memorisation 

Table 1: National Curriculum Task Characteristics 
Task Features  H M L 
A task that triggers students to think  x x x 
A task that is formulated in a way that is unfamiliar to students  x x x 
A task that can be solved using multiple approaches x x x 
A task that combines different mathematical concepts x x x 
A task that establishes a daily life connection x x x 
A task that requires multiple steps to solve x x  
A task that is used to measure the student’s level x   
A task that requires the student to devise a yet unknown formula in 
order to solve the problem 

  x 

Table 2: Problem Solving Task Characteristics: Teachers’ Perceptions 
 Tables 1 and 2 show the contrast between characteristic features of national curriculum 
mathematical tasks and features the teachers think are inherent in problem solving 
tasks. Table 2 also shows the distribution of teacher problem solving task 
classifications across the spectrum of socio-cultural levels of schooling. These findings 
will be further discussed in the next section.  
DISCUSSION 
When considering teacher responses with regards to their classification of 
mathematical tasks, in light of the understanding of the inner and outer spheres of 
influence, it becomes clear that teachers seem to be less affected by national curriculum 
requirements when describing their own perception of features specific to 
mathematical problem solving tasks. That being said, it is important to mention that, 
being guided by the national curriculum, most teachers have never been exposed to any 
other type of mathematical tasks other than the ones whose features are described in 
Table 1. One teacher refers to that fact by stating that: “We have no other resources for 
mathematical tasks. How would we know how and where to find problem solving 
tasks?”. There seems to therefore be minimal teacher exposure to features that 
according to literature (Schoenfeld, 1992) relate to problem solving and yet Table 2 
shows some traces of task features that are very different to the ones that relate to the 
national curriculum. It would therefore be sensible to conclude that the teachers, as 
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personal agents, are strongly affected by the school culture, or in other words the 
internal context, when it comes to forming their perceptions about mathematical tasks. 
Future work may seek to explore which of the contextual spheres has superiority in 
affecting curriculum enactment decisions.  
Across the socio-cultural levels of schools there seems to be generally agreement about 
the perceived characteristics of problem solving tasks. One exception is the feature 
which relates to the knowledge creation process, referred to only in case H (A task that 
requires the student to devise a yet unknown formula in order to solve the problem). 
The extended study from which this work is derived shows how other national private 
schools that have been classified in the same socio-cultural cluster (H) seem not to 
make reference to that particular task feature. Their input seems to generally align with 
that of cases L and M. It seems therefore that the school culture is a dominant influence 
on teacher beliefs irrespective of their socio-cultural standpoint.  
Returning to the research questions, it can be concluded that, firstly the inner contextual 
circle has indeed greater impact on teachers’ personal agency as opposed to the outer 
circle of influence. Secondly, a similar private schooling microculture seems to extend 
across the three case studies, suggesting that most teachers have similar thoughts about 
mathematical problem solving tasks irrespective of where they stand on the socio-
cultural ladder.  
Findings of this study might be of interest to policy makers. Current research into 
reforming the national mathematics curriculum might want to consider de-centralising 
the national curriculum and contextualising it based on the cultural footprint of each 
schooling context.  
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Mathematics teachers’ professional learning has frequently been treated as either 
predominantly participationist or acquisitionist – as social learning in becoming part 
of a community of practice or cognitive learning in the acquisition of knowledge and 
beliefs. Our experience within mathematics education suggests that professional 
learning is neither purely acquisitionist nor participatory and that a theoretically 
integrated treatment of both, together with affective processes of learning, helps shed 
more light on the complexities of professional learning. In this theoretical paper we 
firstly show how Social Cognitive Theory and its component theory of self-efficacy 
attend to this integration; and, secondly, illustrate this integration with an example 
from our research into preservice mathematics teachers’ training. 
INTRODUCTION  
In the past, professional learning theory has often been characterised as either 
acquisitionist or participationist (Borko, 2004; Sfard, 1998). That is, theory tended to 
foreground the individual, cognitive, acquisitionist or the social, community, 
participatory aspects of professional learning. What we do in this paper is consider a 
particular learning theory, Social Cognitive Theory (SCT) (Bandura, 1986) and its 
component self-efficacy theory (Bandura, 1997), which helped us address the issue of 
theory dichotomy. This was prompted by our work and research in mathematics 
teachers professional learning (TPL) (e.g. Watson, 2013; Watson & Marschall, in 
press). Our interest in SCT resulted from our observations of and empirical work with 
professional learning rather than from a review of theory. Indeed, in this paper, we 
neither aim to critique other theories which, in the last two decades, have tried to attend 
to a comparison and an integration of the two dichotomised aspects of learning, nor do 
we suggest a grand theory of TPL. Our theoretical perspective comes from practice and 
is informed by social psychological theory.  
Our interest in professional learning began from the perspective of practice and through 
our work in mathematics teacher education. In our work we noticed the importance of 
teachers’ affective experiences and teachers’ agency in their professional learning. We 
came to recognise the level of emotional demand on trainee teachers during their 
training (Watson & Marschall, In press) and we observed the extent to which practising 
teachers would implement and sustain ambitious teaching approaches based on their 
level of confidence and emotion (Watson, 2014). For this reason, we considered 
professional learning in terms of the development of teacher self-efficacy (Bandura, 
1997), with its overarching theory, SCT (Bandura, 1977, 1986, 1997). As we 
interpreted SCT in the context of mathematics TPL, we found that it provided a useful 
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theoretical integration of acquisition and participatory metaphors of learning. It is an 
account of this theoretical investigation that we present here. 
In this paper, we explain how SCT (Bandura, 1986) and its component self-efficacy 
theory (Bandura, 1997) integrate the dichotomised cognitive or acquisitionist and 
social or participationist treatment of theory of mathematics TPL (see, for example, 
Borko, 2004; Sfard, 1998) within one theoretical approach. While we have limited 
space to offer a full account of SCT and self-efficacy theory, our contribution here is 
in explaining, at a theoretical level, how this integration works and illustrating this with 
an example from preservice secondary mathematics teacher training. Overall, we 
suggest that this theoretical integration, that not only accounts for acquisition and 
participation, but also attends to affective aspects and teacher agency, could improve 
understanding of TPL. 
We begin with a brief description of the acquisition and participation learning 
metaphors (discussed by Sfard, 1998). We then introduce a triadic causality 
framework, which we use to explain the dichotomised nature of the two approaches. 
Using the triadic framework, we then describe SCT and self-efficacy theory and 
explain how they integrate the two learning metaphors. Finally, we illustrate this 
integration with an example from our research into mathematics initial teacher 
education (ITE). 
THE ACQUISTION AND PARTICIPATION METAPHORS FOR LEARNING 
The acquisition metaphor represents the accumulation of knowledge; where concepts, 
ideas, meaning, facts and representations are internalised, appropriated or transmitted 
through cognitive and psychological processes (Sfard, 1998). Here, knowledge 
acquisition is seen as transfer, “from a social to an individual plane and internalised by 
the student” (Sfard, 1998, p. 6), but is considered primarily as an individual activity 
(Sfard, 2006). The acquisition metaphor implies learning programmes that develop or 
change beliefs, or that develop teachers’ knowledge.  
The participation metaphor suggests social bonds and the development of identity in 
becoming part of a community of practice (Sfard, 1998). “Participationists 
conceptualise developmental transformations as changes in what and how people are 
doing and claim that patterned collective activities are developmentally prior to those 
of the individual” (Sfard, 2007, p. 568). Research within this perspective focuses on 
membership in communities of practice or discourse, which are governed by their 
particular rules and norms (e.g. Sfard, 2007). In professional learning this suggests a 
focus on professional community, where learning involves changing the discourse an 
individual participates in (Sfard, 2007).  
In reality, however, learning theories are neither purely one or the other but rather 
“acquisition-oriented or participation-oriented” (Sfard, 1998, p. 7), and any approach 
to understanding professional learning should attend to both metaphors (Sfard, 1998). 
In line with this view, there have been many attempts at utilising both metaphors, 
although executed mainly by employing pluralistic methodological research 
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approaches (e.g. Borko, 2004; Kaiser, Blömeke, König, Busse et al., 2017). For 
example, in the context of teacher professional development, Borko (2004) proposed a 
situative approach, which makes use of “multiple conceptual frameworks and multiple 
units of analysis” (p. 4); using psychological frameworks when focusing on individuals 
and their knowledge evolution and development of understanding, and sociological 
frameworks when focusing on group of students and learning through participatory 
activities. What makes SCT different is that, instead of employing integration of the 
two metaphors on a methodological level, it presents a theoretically integrated 
approach. 
CONCEPTUAL FRAMEWORK – THE BPE MODEL  
In order to illustrate the acquisitionist-participationist dichotomy we use a triadic 
causality BPE model, as developed by Bandura (1977, 1997). In the model, behaviour 
and actions are denoted as ‘B’; a person’s individual thinking, affective states and 
cognition as ‘P’ and the environment, social context or culture as ‘E’. Although we 
acknowledge that acquisition or participation are not pure phenomena (there is a 
degree of overlap between them), for the purpose of our argument we present the most 
idealised forms of each metaphor i.e. almost purely acquisitionist or participatory. 
In the acquisition metaphor (illustrated in Figure 1a) learning process involves the 
acquisition of knowledge and beliefs (P) about teaching. These are developed in 
response to the social and cultural context (E): E →P. Actions and behaviours, practice 
and pedagogy (B) are a consequence of the teachers’ knowledge and beliefs: P→B. In 
the participation metaphor (illustrated in Figure 1b) the main influence is of the social 
context (E) on behaviour (B): E→B. 

 
 
 
 

Figure 1a: Acquisition metaphor             Figure 1b: Participation metaphor 
This simplified visualisation illustrates the underlying dichotomy in the two metaphors 
of learning. We will use this model to show how SCT and self-efficacy not only 
integrate the two metaphors but also pay attention to affect and offer a sophisticated 
account of individual agency. 
SOCIAL COGNITIVE THEORY  
SCT integrates both cognitive and social aspects of learning presenting a reciprocal 
triadic relationship between behaviour (B), the individual (P) and the environment (E) 
(illustrated Figure 2), which Bandura (1977) explains as follows:  

Personal and environmental factors do not function as independent determinants, rather 
they determine each other. Nor can “persons” be considered causes independent of their 
behavior. It is largely through their actions that people produce the environmental 
conditions that affect their behavior in a reciprocal fashion. The experiences generated by 
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behavior also partly determine what a person becomes and can do which in turn, affects 
subsequent behavior (p. 9). 

 
Figure 2: Reciprocal causation (Bandura, 1977, p. 10). 

This presents a “transactional view of self and society, [where] internal personal factors 
in the form of cognitive, affective and biological events; behaviour; and environmental 
events all operate as interacting determinants that influence one another 
bidirectionally” (Bandura, 1977, p. 6). As well as integrating the social and cognitive 
aspects of learning, SCT incorporates affective aspects and provides a sophisticated 
conceptualisation of individual agency within a collective social context. Although 
agency is often treated as a property, capability or characteristic of the individual 
(Biesta, Priestley, & Robinson, 2015), SCT treats it as an emergent and evolving state, 
“achieved by individuals through the interplay of personal capacities and the resources, 
affordances and constraints of the environment by means of which individuals act” 
(Priestley, Biesta, & Robinson, 2015, p. 19). In other words, reciprocal causation 
provides opportunities for and simultaneously sets limits on individual self-direction 
for action (Bandura, 1997). This action, however, is guided by the individual’s agency 
and governed by their self-efficacy. 
Self-efficacy is the belief an individual has in their capability to be successful in a 
domain (Bandura, 1997). It was originally presented as a component of SCT, though 
its popularity as an operationalisation of SCT, it has latterly become a guise of SCT. It 
carries within it the triadic reciprocal causation of SCT, the transactional nature of 
agency, and reflects the affective aspects of confidence and motivation. It acts on 
behaviour,  

by impacting goals, outcome expectations, affective states, and perceptions of socio-
structural impediments and opportunities (Bandura, 1997). It is a belief about one’s 
capabilities, developed through a self-assessment and assessment of the context, based on 
which the individual mentally models a course of action. Individuals who feel that they 
will be successful on a given task are more likely to be so because they adopt challenging 
goals, try harder to achieve them, persist despite setbacks, and develop coping mechanisms 
for managing their emotional states (Bruce & Ross, 2008, p. 347). 

In learning to teach mathematics, the trainee teacher has a degree of agency as they 
construct and implement mental models of elements of practice and pedagogy that they 
have learnt through observing experienced teachers. They become self-efficacious in 
implementing culturally embedded practices, i.e. traditional teacher-centred 
approaches. The more self-efficacious the teachers become, the more likely they are to 
deviate from culturally accepted norms or use innovative approaches. 
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How self-efficacy is acquired has important implications for understanding and 
theorising teachers’ professional learning and development. Bandura proposes four 
sources of self-efficacy: direct experience, vicarious experience, verbal persuasion, and 
physiological and affective states (Bandura, 1997).  
Direct experience is the strongest source of self-efficacy, which develops self-efficacy 
through relating outcomes to the approach employed by the individual (Bandura, 
1997). This implies the need for both cognitive processing and individual reflection 
during the learning process. As the individual develops mastery, the adopted 
approaches become less conscious and increasingly automated, routinised and based 
on sophisticated heuristics (Bandura, 1997). This goes some way in explaining why 
traditional teacher-centred practices are so common in mathematics classrooms and 
why they can be difficult to change (Watson, 2014) as well as why, once established, 
self-efficacy tends to remain stable over time (Bandura, 1997).  
A second major source of self-efficacy is through vicarious observational processes. 
Individuals save considerable time and energy observing self-efficacious teachers and 
accumulating models of practice that they can use, adapt and absorb into their own 
developing practice. Lortie (2002) characterises teaching as an apprenticeship of 
observation, in which cultural patterns within practice and pedagogy are transmitted 
through generations. A third source of self-efficacy is social support and verbal 
persuasion. As teachers develop, encouragement from others helps them overcome 
dips in confidence and become more expansive in their teaching. In ITE these are 
offered by experienced mentors and colleagues, both in school and educational 
institutions. The fourth factor, physiological and affective states, affect the individual’s 
level of self-efficacy in two ways. On the one hand, stress and tiredness undermine a 
belief in one’s capabilities. On the other hand, excitement and arousal can increase 
self-efficacy (Bandura, 1997).  
The four sources of self-efficacy allow us to see the role of acquisition, participation, 
agency and affect in TPL. In England, university-based ITE involves the development 
of practice within the school context by collaborating and learning from experienced 
colleagues. These are complemented by faculty-based sessions, where trainee teachers 
are given theoretical tools to help them process, plan and reflect on their experiences. 
All of those create opportunities for preservice teachers to acquire knowledge, learn 
from others, participate in professional activities as well as reflect on practice and guide 
their own courses of action. The following example from our own research provides 
an account of this interplay.  
ILLUSTRATION OF SCT IN INITIAL TEACHER EDUCATION 
Alison is a trainee secondary mathematics teacher, whose development of self-efficacy 
is investigated over the course of a year-long ITE programme (see Watson & 
Marschall, in press). Alison’s professional learning involves direct and vicarious 
experiences. As she begins to teach, Alison attends to planning, initially parts of and 
finally full, lessons. In terms of SCT, during this process, she cognitively constructs a 
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mental model of actions in the lesson; a script that is to guide her action. The source of 
the models comes from observation of practice, even though, as SCT suggests, Alison’s 
actions are not mere imitations of what she has observed. During the process, Alison 
expresses a degree of agency; she constantly assesses her capabilities and devises plans 
of action she believes she can execute effectively.  
Affective aspects also have a role in Alison’s mental modelling as well as in her 
performance. She herself often describes how big a part they play in her lesson 
planning and teaching, particularly in the early stages of her training. This is reflected 
in her account of her overall experience, which she summarises by saying: “…there 
were times when I felt like I wasn't really progressing, to go from being terrified to do 
a 10-minute starter, to actually enjoying teaching them for two hours is quite a big 
improvement!” (Watson & Marschall, in press, p. 17). Throughout the year, emotion 
and affect play important part in Alison’s training. In our experience, this level of 
emotional demand is not uncommon for the majority of trainees.  
While Alison acquires knowledge through participation in a community of practice, 
there is, as SCT suggests, a reciprocity, or transaction, between the cognitive 
acquisition and the social participation. The development of Alison’s abstract 
knowledge does not represent a mere acquisition of concepts but it is also practical and 
it relates to Alison’s sense of self: affective and agentic. Alison’s pedagogic knowledge 
and her actions in the classroom are deeply connected to her affective experiences, as 
illustrated by the following example: 

[The lesson was] about using rectangles and trapezia to estimate the areas under curves, 
and I think it was the first ever thing I've taught where the students were more (rather than 
less) happy with it than I thought they'd be … and it really boosted my confidence. 

In short, Alison’s self-efficacy reflects knowledge in action, affective aspects and 
agency, acquired within a community of practice. 
IMPLICATIONS AND CONCLUDING REMARKS 
SCT and self-efficacy integrate the acquisitionist and participationist metaphors of 
professional learning. The nature of the integration in SCT is transactional, the teacher 
negotiates their institutional and social context, with consideration of their personal 
resources: their knowledge, capabilities and dispositions. SCT takes into account 
affective states of an individual, where environmental and contextual effects together 
with physiological and emotional conditions can undermine teachers’ level of self-
efficacy. This is especially important for trainee teachers, who do not yet have enough 
experience to fall back on; in such situations mentoring and social support become 
critical in supporting them (Bandura, 1997). The transactional nature of self-efficacy 
allows for individual teacher agency: existing culturally embedded practices are 
sustained, but teachers can adapt the approach to reflect their own personality. 
SCT provides a theoretical integration of dichotomised learning metaphors (as 
opposed to a methodological integration employed by other approaches). The key 
theoretical link involves affect and agency. SCT does not consider a teacher learning 
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as acquiring knowledge and beliefs that are largely abstract or that just reflecting the 
behaviours developed through participation. It simultaneously considers the role of 
affect and agency in guiding and governing this learning.  
Our current account has gone so far as to show how the theoretical integration takes 
place within SCT. We tentatively suggest, however, that, due to this integration, the 
application of SCT and self-efficacy to mathematics teachers’ professional learning 
could contribute to improving the effectiveness of teacher training programmes. 
References 
Bandura, A. (1977). Social learning theory. New Jersey: Prentice Hall. 
Bandura, A. (1986). Social foundations of thought and action: A social cognitive theory. 

Englewood Cliffs, N.J.: Prentice-Hall. 
Bandura, A. (1997). Self-efficacy: The exercise of control. New York: W.H. Freeman. 
Biesta, G. J. J., Priestley, M., & Robinson, S. (2015). The role of beliefs in teacher agency. 

Teachers and Teaching, 21(6), 624–640. https://doi.org/10.1080/13540602.2015.1044325 
Borko, H. (2004). Professional development and teacher learning: Mapping the terrain. 

Educational Researcher, 33(8), 3–15. https://doi.org/10.3102/0013189X033008003 
Bruce, C. D., & Ross, J. A. (2008). A model for increasing reform implementation and teacher 

efficacy: teacher peer coaching in grades 3 and 6 mathematics. Canadian Journal of 
Education / Revue Canadienne de l’éducation, 31(2), 346–370. 
https://doi.org/10.2307/20466705 

Kaiser, G., Blömeke, S., König, J., Busse, A., Döhrmann, M., Hoth, J. (2017). Professional 
competencies of (prospective) mathematics teachers—cognitive versus situated 
approaches. Educational Studies in Mathematics, 94, 161-182.   

Lortie, D. C. (2002). Schoolteacher (2nd ed.). Chicago and London: The University of 
Chicago Press. 

Priestley, M., Biesta, G., & Robinson, S. (2015). Teacher agency: an ecological approach. 
New York, NY: Bloomsbury Academic, an imprint of Bloomsbury Publishing, Plc. 

Sfard, A. (1998). On two metaphors for learning and the dangers of choosing just one. 
Educational Researcher, 27, 4–13. 

Sfard, A. (2006). Participationist discourse on mathematics learning. In J. Maaß & W. 
Schlöglmann (Eds.), New mathematics education research and practice (pp. 153–170). 
Rotterdam: Sense Publishers. 

Sfard, A. (2007). When the rules of discourse change, but nobody tells you: making sense of 
mathematics learning from a commognitive standpoint. Journal of the Learning Sciences, 
16(4), 565–613. https://doi.org/10.1080/10508400701525253 

Watson, S. (2013). Understanding mathematics teachers’ professional development from the 
perspective of social learning theory. In B. Ubuz, C. Haser, & M. A. Maiotti (Eds.), 
Proceedings of the 8th Congress of European Research in Mathematics Education 
(CERME-8), Antalya, Turkey (pp. 3287–3295). Ankara: PME. 



Marschall & Watson 

3 -                                                                                                            PME 43 – 2019 
 

80 

Watson, S. (2014). The impact of professional development on mathematics teachers’ beliefs 
and practices (eThesis). University of Nottingham. Retrieved from 
http://eprints.nottingham.ac.uk/27744/ 

Watson, S., & Marschall, G. (In press). How a trainee mathematics teacher develops teacher 
self-efficacy. Teacher Development. 

 
 



 3 - 81 
2019. In M. Graven, H. Venkat, A. Essien & P. Vale (Eds.). Proceedings of the 43rd Conference of the International 
Group for the Psychology of Mathematics Education (Vol. 3, pp. 81-88). Pretoria, South Africa: PME. 

USING A COMMUNITY OF PRACTICE TO SUPPORT 
MATHEMATICS TEACHER EDUCATORS’ GROWTH AND 

DEVELOPMENT 
Joanna Masingila1, Patrick Kimani2, Dana Olanoff3 

1Syracuse University, 2Glendale Community College, 3Widener University 
 

Mathematics teacher educators (MTEs) play a significant role in helping prospective 
teachers to develop the mathematical knowledge they need for teaching. However, 
research has shown that the majority of MTEs receive little to no training or support 
to do this important work (Masingila, Olanoff & Kwaka, 2012). To address this need, 
we formed a Community of Practice (CoP) where two novice MTEs worked with an 
experienced MTE to develop their mathematical knowledge for teaching teachers 
(MKTT) and improve their teaching of mathematics content courses for prospective 
elementary teachers. In this paper, we discuss how we formed our CoP, the MKTT that 
we gained from working with the CoP, and what we learned from participating in the 
study, and how we mutually benefited from the experience in different ways. 
BACKGROUND 
Mathematics teacher educators (MTEs) play a significant role in helping prospective 
teachers (PTs) to develop the mathematical knowledge they need for teaching. 
However, research has shown that the majority of MTEs in the United States have little 
experience teaching students at the level of mathematics that they are preparing PTs to 
teach (e.g., primary school), and that they receive little to no training or support either 
in their preparation programs or in their jobs (Masingila, Olanoff, & Kwaka, 2012). In 
order to attempt to improve our teaching of mathematics content courses for 
prospective elementary teachers, two novice MTEs (Nov1 and Nov2) worked with an 
experienced MTE (Expt) as part of a mentored teaching experience at Syracuse 
University, where Nov1 and Nov2 were graduate students and Expt was a faculty 
member. We chose to study our teaching critically and form a Community of Practice 
(CoP) to support one another in improving our teaching and developing Mathematical 
Knowledge for Teaching Teachers (MKTT). 
Wenger, McDermott, and Snyder (2002) defined CoPs as “groups of people who share 
a concern, a set of problems, or a passion about a topic, and who deepen their 
knowledge and expertise in this area by interacting on an ongoing basis” (p. 7). 
Through research and participating in a CoP, members develop and articulate new 
knowledge in response to questions and problems they have about their practice. A 
CoP offers a platform for its members to engage in negotiating shared understandings, 
learning, meaning making, and identity. Wenger (1998) identified three dimensions of 
the community which has practice as the source of coherence: (a) CoP members 
interact with one another, and determine norms and relationships through mutual 
engagement, (b) CoP members are held together by their understanding of a sense of 
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joint enterprise, and (c) CoP members seek to produce, over time, a shared repertoire 
of communal resources (e.g., language, routines, artifacts, and stories). Forming a CoP 
allowed us to work together to gain knowledge about and improve our teaching of 
mathematics content courses for PTs. 
The basis for our mutual engagement came in the form of Nov1 and Nov2 needing to 
have a mentored teaching experience by Expt. We were each invested in the project, 
and our joint enterprise of improving our MKTT, as we all were interested in improving 
our teaching of mathematics content courses for prospective teachers. Through our 
work, we developed a shared repertoire of lesson plans, reflective memos, meetings, 
and ways of interacting with one another. 
THEORETICAL FRAMING 
Our CoP revolved around reflecting on the process of teaching mathematics content 
courses for PTs, part of our shared repertoire. We guided our reflections around 
research on reflection and inquiry, as well as research on MKT. Below; we briefly 
review the literature that guided our work. 
Reflection and Inquiry 
Chapman (2008) states that reflection on teaching practice is an inherent part of the 
work of teacher educators, with this reflection involving: “examining, framing, and 
attempting to solve the dilemmas of classroom practice; and being aware of and 
questioning the assumptions and values [they bring] to teaching” (p. 121). We chose 
to situate our reflection using a position of inquiry as stance (Cochran-Smith & Lytle 
1999). Teacher educators in an inquiry community “generate local knowledge, 
envision and theorize their practice, and interpret and interrogate the theory and 
research of others” (p. 289); they produce the knowledge they need “to teach well … 
when they treat their work as a site for intentional investigation at the same time they 
treat the knowledge and theory produced by others as generative material for 
interrogation and interpretation” (Cochran-Smith, 2003, p. 16). Inquiry as stance is 
critical in examining both one’s own work and the work of others. We used an inquiry 
as stance framing for examining our teaching practice and the practice of the members 
of our CoP; inquiry as stance provided a framing for our joint enterprise (Wenger, 
1998) of developing MKTT. 
In studying our practice through the CoP, we took on the role of “reflective 
practitioners” (Schön, 1983). Schön defines two ways to reflect on one’s practice: 
reflection on action and reflection in action. The former refers to ways in which 
members of a community of practice (in our case, mathematics teacher educators) 
reflect on past experiences with the intention of refining their work to achieve their 
instructional goals, while the latter refers to “thinking on your feet” (p. 54), the 
reflection that occurs while one is in the process of teaching. Because part of our CoP 
focused on peer observation, we were able to add another type of reflection to our 
process: reflection on the actions of others. We observed each other’s teaching both 
directly and through reading their memos, and we were able to think deeply about 
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choices that they and we made and reflect on these decisions. We were bound together 
in mutual engagement (Wenger, 1998) through our reflective practitioner roles, and 
our reflections became part of our shared repertoire.  
MATHEMATICAL KNOWLEDGE FOR TEACHING 
Research on teachers’ knowledge has flourished following Shulman’s (1986) 
presidential address at the 1985 American Educational Research Association’s annual 
meeting, where he introduced the idea of pedagogical content knowledge (PCK). As a 
result of Shulman’s speech and the research that followed, Ball and her colleagues 
introduced the term mathematical knowledge for teaching (MKT) (e.g., Ball & Bass, 
2002), which describes the mathematical knowledge required by the work of teaching. 
Ball and her colleagues (Ball, Thames & Phelps, 2008) developed a framework for 
MKT in which they sought to expand Shulman’s descriptions of content knowledge 
and pedagogical content knowledge to include sub-categories of the mathematical 
knowledge that teachers need to know. They broke mathematical content knowledge 
into three sub-categories: common content knowledge (CCK), specialized content 
knowledge (SCK), and horizon content knowledge.  The first of these categories, CCK, 
refers to the mathematical knowledge that everyone needs to know, whereas SCK 
refers to the mathematical knowledge that is unique to the work of teachers. The 
researchers similarly broke pedagogical content knowledge into knowledge of content 
and students (KCS), knowledge of content and teaching (KCT), and knowledge of the 
curriculum.  
Significantly less research has looked at the mathematical knowledge needed by MTEs 
to help PTs develop MKT (Castro Superfine & Li, 2014).  A number of researchers 
have determined that there is a category of knowledge needed by teacher educators that 
goes beyond the knowledge needed by their students (PTs) (e.g., Jaworski, 2008).  
Additionally, many frameworks for teacher educator knowledge provide a structure 
similar to a framework for teacher knowledge (Olanoff, Welder, Prisad & Castro 
Superfine, 2018). In looking at the parallels in the ways that MTEs learn and develop 
knowledge, versus the ways that mathematics teachers learn and develop knowledge, 
we hypothesized that Mathematical Knowledge for Teaching Teachers (MKTT) would 
have similar knowledge categories to the MKT framework discussed above (Ball, 
Thames, & Phelps 2008). 
The initial joint enterprise of our CoP involved developing our MKTT. However, as 
we progressed through the semester, we added the additional enterprise of studying 
portions of our shared repertoire in order to better understand some of the aspects of 
MKTT we developed and how our CoP helped us in this enterprise. Thus, our CoP 
became dual purpose: to develop our MKTT and also to research what we had learned. 
RESEARCH METHODS 
We formed our CoP when we each taught a section of the same two mathematics 
content courses for PTs during two consecutive semesters. During the first semester, 
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the course content focused on whole number and operations, number theory, 
probability and statistics, and functions. The content for the second semester course 
focused on rational numbers, geometry, and measurement.  These courses were taught 
using the same textbook and general lesson plans, and with an emphasis on PTs 
learning mathematics via cooperative problem solving. PTs worked together in small 
groups to solve problems with the goal of developing deeper understandings of the K-
8 level mathematics and their own MKT. The role of the instructors of the courses was 
to help facilitate the PTs’ problem solving and knowledge development. For two 
semesters, Nov1 and Nov2 observed Expt teach her class before teaching their own 
classes later in the day. Expt also observed Nov1 and Nov2’s classes several times each 
semester. In order for us to reflect on our teaching and observations, and to have a 
record of these reflections, each of us wrote a memo after each lesson session. We met 
briefly before each lesson and weekly after we had taught all of the lessons for the 
week to discuss our observations, what was going well, what was not going well, and 
where we thought we needed to go next. We audio-recorded the weekly meetings and 
transcribed them to add to our data set. 
We used both ongoing and retrospective analyses of the data (daily memos and meeting 
transcripts). Ongoing analysis occurred during the two semesters and was the basis for 
continued reflection on our teaching and learning about our teaching, the testing of 
emerging hypotheses, and the strategies for promoting further development of the 
prospective teachers’ mathematical understandings. Retrospective analysis involved 
examining the larger corpus of data through a carefully structured review of all the 
relevant data. 
RESULTS 
We found evidence that working in our CoP had helped us to develop our MKTT (the 
goal of our joint enterprise) in a number of ways, through our meetings and 
observations, and our reflections, memos, tasks, and revised lesson plans. In this paper, 
we share one finding, which was that as teacher educators we developed an enhanced 
understanding of the mathematics content of elementary mathematics (MTE CCK and 
SCK).  
Mathematics Content Knowledge 
As former mathematics majors, we entered into teaching these courses feeling 
confident with the elementary mathematics material. However, we soon realized that 
much of this material was more complex than we had originally thought. Ma (1999) 
described elementary mathematics as fundamental. She wrote:  

Fundamental mathematics is elementary, foundational, and primary. It is elementary because it 
is at the beginning of mathematics learning. It is primary because it contains the rudiments of 
more advanced mathematical concepts. It is foundational because it provides a foundation for 
students’ further mathematics learning. (p. 124)  
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As teacher educators, we had not looked at some of the mathematics since we were in 
elementary school ourselves, and at that time, we were not studying it with the depth, 
breadth, and thoroughness that we would need in order to teach it, and to help 
prospective teachers develop the deep understandings that they would also need in their 
teaching. The following example on counting methods illustrates one instance where 
our mutual engagement in our CoP helped us develop mathematics content knowledge. 
Thinking differently about counting methods 
One activity in our curriculum involved using combinations and permutations to 
determine the number of possible outcomes in a given situation. Having taught this 
activity before, we discussed that our students did not seem to develop a deep 
understanding of permutations and combinations. Instead, they learned the words and 
where the keys for permutations and combinations were on their calculators, and then 
they punched the appropriate keys and got an answer. Alternatively, if we did not allow 
them to use their calculators, they plugged numbers into a formula, but did not 
understand where the formula came from and why it was appropriate to use in a given 
situation. In discussing our plan for this lesson in our weekly meeting, we decided that 
rather than define permutations and combinations during class that we would try to get 
our students to think about the situations in the problems and use the fundamental 
counting principle on every problem. If the order did not matter in a certain situation, 
they would need to divide their answer by the total number of orders. In the memo that 
follows, Nov1 describes how she introduced the problem: At State University, a group 
of seven students wishes to select a committee of four to negotiate student activity fees 
with the Dean of Students. How many committees can be selected from the group of 
seven? 
In the past, we have given notes for this activity, but ... this time, I didn’t even really 
define permutation and combination in terms of their formulas. I talked about the first 
question [7C4] as we have 4 slots, so we have 7 × 6 × 5 × 4 ways of picking people 
to fill them, but then we have to divide by the number of ways of arranging 4 people.  
I’m not sure how it will work, but I liked it better than them just punching in 7C4 on 
their calculators. (Nov1, Memo 10/31/07) 
At first, this method of talking about combinations seemed to be much better than what 
we had done in the past. The students really seemed to be thinking about whether or 
not the order mattered in a problem, and when they needed to divide by the number of 
orders to figure out the answer. However, when Nov1 was asked a question about a 
homework problem, An experiment consists of tossing a coin 8 times and observing 
the sequence of heads and tails. How many different outcomes have exactly 3 heads? 
she found it difficult to explain the problem without using the words choose or 
combination. Here is an excerpt from her memo following this discussion: 
In my head, I knew the answer was just 8 choose 3.  You have 8 coins and you want to 
choose 3 of them to be heads.  This makes total sense to me and I usually teach it that 
way.  However, since I am not doing "choose", I had a lot of trouble explaining it...I 
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still have trouble working out why you would draw three slots instead of 8.  It sort of 
makes sense, but I can't really explain it.  I just don't know what the best way is. (Nov1, 
Memo 11/05/07). 
Through talking with members of the CoP and reflecting through her memo (part of 
our shared repertoire), Nov1 was able to eventually make sense of how to explain the 
problem both to herself and to her students. Had she not had the benefit of the CoP, it 
would have been easy for her to go back to encouraging the PTs to use formulas. Nov2 
summarized this idea in a memo: 

The temptation here is very high for both the instructor and the students to fall into using the 
formulae for factorial, combination and permutation in which case the students may not get 
to critically think about what they are doing. The instructor needs to consciously work on 
avoiding getting trapped into that so that he/she can lead the students into actually thinking 
about why they are doing what they are doing. (Nov2, Memo, 10/31/07). 

Expt later mentioned the same thing in a CoP meeting where we were discussing how 
the CoP had been beneficial. “I think I hadn’t thought about before, about how to teach, 
some of these ideas without referring to combinations and permutations” (Expt, 
Meeting Notes, 1/31/08).  
It can be difficult to teach in a way that supports students in developing deep, connected 
understandings. We found that elementary mathematics has complexities of which we 
were unaware before we began teaching mathematics content courses for PTs and 
reflecting deeply on our teaching through our CoP. Like the majority of US teacher 
educators teaching these classes, we did not have experience teaching elementary 
school ourselves (Masingila, Olanoff, & Kwaka, 2012). Through our mutual 
engagement and shared repertoire (e.g., reflections, memos, tasks, lesson plans), we 
came to realize the importance of looking deeply at the underlying mathematics behind 
the representations, algorithms, and definitions that we use, and we believe that 
understanding elementary mathematics with strong levels of depth, breadth, and 
thoroughness is an essential component of MKTT. Being able to discuss and work 
through the challenging content with the CoP allowed us to expand our own MKTT by 
learning new mathematics ourselves and discussing ways to encourage PTs to work 
with the content with high levels of depth, breadth, and thoroughness. 
CONCLUSIONS 
Participating in our CoP was extremely worthwhile for our development as MTEs. 
While the work we did took a lot of time and effort, we believe that the benefits and 
opportunities for growth, both individually and as a group, outweigh the challenges. 
While it is possible for MTEs to reflect on their teaching alone by writing memos and 
examining student work, they would miss out on the benefits of the CoP. Without 
forming a CoP, there is no opportunity to reflect on the actions of others, to receive 
feedback on your teaching, or to see other ways of doing things. Additionally, 
participation in a group provides accountability for its members.  
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We call on the Mathematics Education Community to encourage its members to form 
CoPs by providing a Special Interest Group or forum for interested people to meet with 
others who share this interest. Improving the teaching of mathematics for future 
teachers will benefit the community and the population at large. 
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The International Classroom Lexicon Project documented the professional, 
pedagogical vocabulary employed by teachers worldwide to describe the phenomena 
of the middle school mathematics classroom. This paper reports aspects of the 
professional lexicons in use by middle school mathematics teachers in Australia and 
the Czech Republic. A comparison of both content and structure revealed differences 
in: phenomena named (and absent); local systems employed for the organisation of 
terms by each teaching community; and, the distribution of teacher and student agency 
across the set of terms. Access to lexicons of other countries offers possibilities for 
practice that may expand the professional repertoire of mathematics teachers around 
the world and usefully inform teacher reflection on their practice. 
INTRODUCTION 
Researchers have been documenting the professional language of middle school 
mathematics teachers as part of The International Classroom Lexicon Project. This 
project set out to identify the vocabulary (lexical terms accompanied by descriptions 
and examples) that teachers use to name the phenomena in the classroom in 10 
communities worldwide: Australia, Chile, China, the Czech Republic, Finland, France, 
Germany, Japan, the USA, and more recently, Korea (Mesiti & Clarke, 2017). In this 
paper we compare and contrast the lexicons of the Australian and Czech Republic 
middle school mathematics teachers to indicate the variation possible within two 
Western teaching communities with different pedagogical traditions and different 
lexico-grammatical forms and features. The documented differences can be attributed 
to these origins. 
THE TEACHER’S PROFESSIONAL LEXICON 
Researchers have previously argued that the [English] language of practice in teaching 
seems particularly underdeveloped (Lortie, 1975; Lampert, 2000; Grossman, 
Compton, Igra, Ronfeldt, Shahan & Williamson, 2009) and have advocated for a 
“framework for teaching with well-defined common terms for describing and 
analyzing teaching” (Grossman & McDonald, 2008 p. 187). More recently, McDonald 
and her colleagues have indicated that “the lack of a common language limits our 
ability to engage in research aimed at understanding the impact of core practices” 
(McDonald, Kazemi, & Kavanagh, 2013, p. 381). Lampert (2000) has concluded that 
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the lack of opportunities to work collaboratively with peers on the problems of practice 
result in “a language of practice [that] remains flat or nonexistent” (p. 90) whilst 
Connell (2009) has similarly observed that the organisational culture of the teaching 
profession does not appear to support the informal “processes by which practical know-
how is passed to new teachers in on-the-job learning” (p. 223). A documented lexicon 
would help support the initiation and purposeful fostering of professional discussions, 
similar to the practice of Lesson Study in Japan (Lewis & Tsuchida, 1998), that lack 
such a formal tradition. 
The process of creation and validation of the Czech lexicon confirmed the difficulty 
for Czech teachers to speak about lessons in general terms. Czech teachers tended to 
pass many evaluating judgements and discuss the conception of the lesson and assess 
its quality rather than describe the classroom interactions in general terms. They also 
tended to use everyday language rather than pedagogical terminology. It corresponds 
with the traditions of Czech approach to education influenced by its rich history 
(among others the ideas of Comenius, 1907). Entries in the Czech Lexicon focus 
mainly on pupils’ and teachers’ observable activities, mathematical content as such is 
less important. This gives the Czech lexicon a generic character as many of the terms 
are applicable to other classroom settings aside from the mathematics classroom. 
However, teachers do engage in discussion with their colleagues about their practice, 
and, in this paper, we compare the documented lexicon in current use by teachers in 
Australia and the Czech Republic. These lexicons encrypt the pedagogical history and 
values of its community and as such, provide an insight into the evolution of 
mathematics classroom practice and the implicit theories of learning and instruction 
that have become locally institutionalised within the professional language of 
mathematics teachers. The teachers in one language have access to terms, and 
constructs, that may not be available to others. The actions, interactions and events of 
the mathematics classrooms are described and categorised in different ways by 
different communities. 
THE RESEARCH DESIGN FOR DOCUMENTING THE LEXICONS 
Research teams included junior and senior researchers and at least two experienced 
teachers of middle school mathematics and accorded authority to teacher voice in the 
generation of the lexicon. The Australian team included three academics and three high 
school teachers of mathematics, two of whom had taught extensively at years seven 
and eight, whilst the third was a more recent member of the profession. The Czech 
team included three academics and two very experienced teachers that now hold 
leadership positions in schools.  
Each team contributed video material, time-stamped transcripts as well as supporting 
material related to one lesson of year eight mathematics. These lessons were re-
packaged as “three-ups”, that is, three camera angles with a time-code and subtitles all 
visible in one viewing window. A stimulus package of nine lessons, one from each 
team, was constructed and distributed to each local research team for project-wide use. 
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These nine lessons presented a variety of classroom settings and instructional 
approaches both familiar and unfamiliar to the research team members. 
Each team began with the prompt “What do you see that you can name?” and recorded 
their responses on a standardized template. The nine videos were intended to stimulate 
thinking about the possible terms of the lexicon, however, it was not necessary that 
each term recorded had to be present in the video stimulus material. The essential point 
was to record single words or short phrases that are familiar to at least two-thirds of 
middle school mathematics teachers with an agreed meaning. 
Operational definitions were developed for each of the terms. National surveys were 
subsequently developed to collect information about teachers’ level of familiarity with 
each of the terms, the extent to which they endorsed the descriptions, examples and 
non-examples, and the frequency with which they used the terms (or phrases) in 
conversation with their colleagues. Opportunities for commenting on the clarity and 
appropriateness of the descriptions and the examples and non-examples for each term 
were also provided. The goal was to establish that the constituent terms of the lexicon 
were not only familiar to the teaching community whose classroom phenomena were 
encoded in the lexicon, but also, that their meaning was represented in a way that 
teachers were happy to endorse. 
COMPARING LEXICONS: NEGOTIATING OUR UNDERSTANDING OF 
CLASSROOM PHENOMENA 
The essential set of elements for the specification of a lexical term included: the named 
term in the original language (the closest English approximation is in brackets if 
appropriate); a description; examples (and non-examples if appropriate) (in the original 
language as well as English). A selection from the Australian and Czech lexicons is 
given in Figure 1. 
The Australian researchers (speakers of English not Czech) and Czech researchers 
(speakers of English and Czech) independently reviewed the two entire lexicons and 
began by matching lexical terms by name and then by pedagogical intention: whether 
identical, similar or absent. This structured comparison of the two lexicons was 
followed by a number of face-to-face meetings, where the preliminary pairings were 
scrutinised. This approach allowed for critical distinctions in meaning to emerge. This 
involved long explanations that identified which particular elements of the phenomena 
were critical for the terms to be named and subsequently paired. The challenges faced 
by the researchers were overcome with much discussion, detailed explanation and 
reference to examples from the classroom.  
The Australian lexicon consists of 61 terms organised into five categories whilst the 
Czech lexicon consists of 49 terms organised into 10 categories. A selection of terms 
is included in Figure 1 whilst the organisational structures are given in Figure 2. 
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Figure 1: A selection of lexical terms from the Australian and Czech Lexicons 

 
Figure 2: Organisational structure of the Australian and Czech Lexicons  

Identically-named terms (identical in name and intention) and similarly-named terms 
(identical pedagogical intention) are given in Figure 3. Czech terms that are absent 
from the Australian Lexicon and Australian terms that are absent from the Czech 
Lexicon are given in Figure 4. 

Category Name Number of 
Terms Category Name Number of 

Terms Category Name Number of 
Terms

Administration 8 Domácí úkol
(Homework) 2 Organizační formy vyučování

(Organisational Forms of Instruction) 4

Assessment 10 Druhy úloh 
(Types of Problems) 4

Procesy podporující učení žáků
(Processes Supporting Student 

Learning)
5

Classroom Management 5 Fáze vyučovací hodiny
(Lesson Stages) 2 Samostatná práce žáků

(Pupils’ Individual Work) 3

Learning Strategies 27 Hodnocení
(Assessment) 7 Vyučovací metody

(Teaching Methods) 10

Teaching Strategies 49 Organizace vyučování
(Lesson Organisation) 8 Využití didaktických prostředků

(Use of Didactical Means) 4

Australian Lexicon Czech Lexicon
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Figure 3: Terms that appear in both the Australian and Czech Lexicons  

 
Figure 4: Distinctive terms from the Australian and Czech Lexicons  

DISCUSSION 
In comparison, the Australian and Czech Republic lexicons offer interesting 
similarities and differences: 
The organisational structure  
The Australian organisational categories were inspired by a university class of 
practising teachers who were invited to group the lexical items, as well as provide 
category names for their groupings. Some terms appear in more than one category; 23 

Australia Czech Republic Australia Czech Republic

1 Assigning 
Homework

Zadání domácího úkolu 
(Assignment of homework) 9 Monitoring Monitorování (práce žáků)

(Monitoring (of pupils' work))

2 Board Work Zápis informací na tabuli 
(Written record on the board) 10 Motivating Vnější motivace žáka při výuce

(External motivation in a lesson)

3 Clarifying Vysvětlování
(Clarification) 11 Practising

Opakování a procvičování vědomostí a 
dovednosti
(Revision and practice of knowledge and skills)

4 Disciplining Udržování kázně
(Maintaining discipline) 12 Reciting Sborová odpověď

(Group response)

5 Formative 
assessment

Hodnocení formativní
(Formative assessment) 13 Scaffolding Scaffolding

6 Giving Praise Pochvala žáka
(Commendation) 14 Summative 

assessment
Hodnocení sumativní
(Summative assessment)

7 Group work Skupinové vyučování
(Group teaching) 15 Whole class 

discussion
Hromadné vyučování 
(Collective teaching)

8 Individual work Individualizované vyučování
(Individual teaching)

Czech Republic Czech Republic

Zadání úlohy
(Assigning a task)

Řešení úlohy řízené učitelem
(Teacher-controlled solving of a task)

Výklad spojený s demonstrací
(Explanation with demonstration)

Very Similar Terms
Australia

Assigning Homework

Demonstrating

Australia

Worked Example

Identically-Named Terms

Hromadné vyučování
(Collective teaching)

Organizační pokyn
(Organizational instruction) Feedback Positive Reinforcement

Individualizované vyučování
(Individualized teaching)

Úloha důkazová
(Proof problem) (use of a) Hook Reasoning

Individuální konzultace se žáky
(Individual consultation with 

pupils)

Úloha určovací
(Determining problem) Justifying Reflecting

Organizační otázky učitele
(Teacher’s organizational 

questions (non-mathematical))

Vizualizace
(Visualization) Modelling Wait Time

Czech Terms 
(absent from Australian Lexicon)

Australian Terms 
(absent from Czech Lexicon)
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terms belong to both the Learning Strategies and Teaching Strategies categories. The 
ten Czech categories were inspired by the components and familiar structures of Czech 
middle school lessons of mathematics. The 49 terms in the Czech Lexicons are 
organized across twice as many categories as the Australian one which also indicates 
differences in degree of specificity of categories (Novotná, Moraová, Hošpesová, 
Žlábková & Bureš, 2016). 
In comparing the organisational structures of the lexicons both the category names, as 
well as terms grouped within the category, were examined. The following findings are 
noticeable: a) only one category appears in both lexicons (Assessment; Hodnocení); b) 
the Australian category Learning Strategies appears similar in intention to the Czech 
category Procesy podporující učení žáků (Processes Supporting Student Learning) c) 
four of the Czech categories (Domácí úkol (Homework), Druhy úloh (Types of 
Problems), Fáze vyučovací hodiny (Lesson Stages) and Využití didaktických 
prostředků (Use of Didactical Means) are overlooked in the Australian lexicon 
organisational schema (and terms within these categories are noticeably absent from 
the Australian lexicon); and, d) the Australian category, Teaching Strategies, is 
comparable with the Czech categories, Organizační formy vyučování (Organisational 
Forms of Instruction), Vyučovací metody (Teaching Methods) and Organizace 
vyučování (Lesson Organisation) as many of the terms within these categories shared 
pedagogical intention. 
The named phenomena 
There are 20% fewer lexical items in the Czech lexicon and 15 terms (almost a third of 
the entire terms in the Czech lexicon) are present in the Australian lexicon. An 
additional set of 6 terms are very similarly named and have identical pedagogical 
intention (see Figure 3). 
The lexicons differ with level of specification with regard to a particular classroom 
phenomenon. For example, whilst both lexicons identify the phenomena of both 
Formative and Summative Assessment the Czech lexicon has indicated an additional 
four assessment-related terms: Hodnocení neadresné (Assessment-non-directed); 
Hodnocení povšechné (Assessment – general); Sebehodnocení (Self-assessment); and 
Vrstevnické hodnocení (Peer-assessment). Another example is that of the classroom 
phenomena of Shrnutí (Summarization). There are four terms in the Australian Lexicon 
related to the recording or reporting of the main points of a discussion (or text material), 
these include: Summarising, Recapping, Re-Teaching and Reviewing. 
Of interest is the term Scaffolding which appears in both the Australian and Czech 
lexicons. This is an example of a term that has been appropriated into the Czech lexicon 
from the English language and may indicate the consequences not only of the 
internationalisation of English, perhaps too the function of the English language as the 
preferred communicative protocol for the international community. 
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The distribution of agency 
If we adopt the more commonplace definition of agency, that is, “agency can be 
described as the ability or potential to act,” (Priestley, Biesta & Robinson, 2015, p. 22) 
the prevalence of certain terms within the lexicons reflect the importance attached to 
teacher and student actions. Terms were analysed according to who performs the 
action: teacher only; student only; teacher or student; teacher and student. Of the 61 
lexical terms in the Australian lexicon, students’ voice and participation in the 
classroom is a significant characteristic, as 36 of the 61 terms relate to student action 
(Raising Hands, On Task, Practising). However, the teacher’s role was more 
prominent with 50 of the 61 terms related to the teacher action (Differentiating, 
Scaffolding, Wait Time).  
A distinctive feature of the Czech lexicon is the prevalence of terms that reflect the 
importance attached within Czech education to the teacher-student relationship. For 
example, the term Řešení úlohy řízené učitelem (Pupils solve the problem with help 
from their teacher), is interesting in that it characterises some aspect of the interaction 
between teacher and student. However, it should be noted that the Czech term 
anticipates an action by the student at the invitation of the teacher (Clarke, Mesiti, Cao 
& Novotna, 2017). So, while foregrounding a particular student activity, the term 
nonetheless accords the teacher the authority to initiate the designated phenomenon, 
since it is the teacher who invites. 
A particularly interesting category of terms is those in which teacher and student/s are 
wholly complicit and in which the agency or authority to initiate resides legitimately 
with both or either. An obvious Australian example is Whole Class Discussion. In such 
activities, teachers and students are both complicit and co-agentic. The question of 
agency offers insight into the institutionalised power differentials maintained in our 
classrooms. 
CONCLUSION 
In this paper we have shared not only the processes by which each lexicon was 
documented and organised but also by which the two were compared. The contrasting 
of the Australian lexicon with the Czech lexicon was involved and fruitful and revealed 
differences and similarities in context and structure. The comparison was able to 
highlight different emphasis regarding mathematics classroom phenomena as indicated 
by the number of related terms, the number and type of organisational categories and 
the encrypted agency of the terms. 
Comparison of lexicons of teachers offers us the opportunity to reflect critically on our 
professional vocabulary and the pedagogical practices named, invisible or absent from 
our mathematics classrooms. Access to the lexicons of other countries offers 
possibilities for practice that may expand the professional repertoire of mathematics 
teachers around the world and usefully inform teacher reflection on their practice. 
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The present study focuses on investigating the effects of a teaching module on the 
achievement of the understanding of polygons and their attributes with nine years old 
students.  Data come from the answers of 59 pupils in a Spanish primary school to a 
pre- and post- test, designed ad hoc, about geometrical figures. A hierarchical 
similarity and implicative similarity analysis was conducted in order to examine how 
the changes on students’ answers in both tests are from the connections among 
variables. Results indicate that (i) there is prevalence in the use of the perceptual 
register opposite to the verbal register, and (ii) the improvement of the understanding 
of polygons and the use of the attributes depends on the common attribute that 
characterizes a set of polygons. 
INTRODUCTION AND THEORETICAL BACKGROUND 
Students’ ideas and conceptions about geometrical figures are developed in a 
progressive way. Initially, pupils recognise the figures by perceptual similarity, then 
they recognize the attributes and finally they based on formal definition (Satlow & 
Newcombe, 1998; Battista, 2007). The main emphasis in the domain of mathematics 
education is to develop teaching processes based on the expected cognitive 
development which facilitate the concept understanding. This emphasis is on the role 
of experience in geometry learning. According to Marchis (2012), geometrical notions 
and properties are in real world problems and pupils are expected to learn geometry by 
exploring their environment formally through the teaching or informally through 
everyday activities. The many and various activities construct the students’ geometric 
ideas and those affect their future learning experiences in higher grades (Browning, 
Edson, Kimani, & Aslan-Tutak, 2014).  
The process of understanding of the geometrical figures has been developed by Duval 
(1999) who defined the figure apprehension model based on three different ways to 
organize the visual aspects in geometric figures. The first one is related with the 
recognition of the figures (perceptual apprehension), the second one related to the 
definition, the statements and the descriptions of the figures constitutes the discursive 
apprehension, and the last one, the modification of a figure constitutes the operative 
apprehension. For working with geometrical figures, children had to identify the 
attributes of these through of the dimensional deconstruction (Duval, 2017). The 
dimensional deconstruction of geometric figures is the central process of geometric 
visualization, which allows the perceptual recognition of a figure, in a configuration of 
figurative units of smaller dimensions (from 2D to 1D).  
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In geometry is necessary to combine the use of at least two representation systems, one 
for discursive expression (written or verbal) and another for visualization, since a 
geometrical figure is associated both discursive and visual registers.  However, this 
association is cognitively complex (Duval, 2006). For this reason, it is recommended 
that teachers encourage students to describe and explain why a figure belong or does 
not belong to a shape category, adapting the language to the geometric thinking level 
of children (Clements et al., 1999; Elia & Gagatsis, 2003). 
The development of the understanding of geometric figures is a transition that evolves 
from the general domain of geometric figures to the characteristics of the figure. That 
is, the construction of geometric concepts is a progressive development from the 
perceptual to the conceptual (Clements & Battista, 1992). The understanding of 
geometric figures is linked to the use of minimum conditions, therefore, recognizing 
the critical attributes of a geometric figure to consider when a figure belongs or not to 
a category (Bernabeu, Moreno & Llinares, 2018). 
Previous researches have argued that the teaching of geometry in the first years is of 
poor quality, because this instruction is repetitive (Sarama & Clements, 2009; Petridou, 
Ilia & Gagatsis, 2015). However, it has been shown (Petridou, Ilia & Gagatsis, 2015) 
that if the instruction is modified and based on the use of visual examples of geometric 
figures with different critical attributes (e.g., number of sides) or non-critical attributes 
(e.g., orientation, size, colour), is more possible for the child to develop a more 
consistence geometrical thinking and discourse. Through the use of discourse and 
verbalization, describing figures or belonging to a certain class (Sarama and Clements, 
2009) and also, by mentally or physically modifying the figures (Duval, 1995), children 
can develop thinking and achieve a more coherent geometric discourse. Therefore, the 
aim of this study was to examine the effects of a teaching module on the achievement 
of the understanding of polygons and their attributes with nine years old students. For 
this reason, we proposed the following research questions: 

• What changes could we observe in the use of the verbal and perceptual 
registers by the 3rd-grade students after the teaching module? 

• What changes do we identify in the use of the attributes after the teaching 
module by the 3rd-grade students? 

METHODOLOGY 
The present paper is part of a research with a pre- and post-test and a teaching module. 
Context 
The participants of this study were 59 Spanish-speaking students (37 boys and 22 girls) 
of third-grade (9 years old). They studied at a public elementary school in Spain and 
they had mixed communication and math skills, according to their teachers. 
Test and teaching module 
We designed a test consisted of six tasks about geometrical figures, which was used 
for the pre- and post-phase of the study.  Each task included some items, altogether 
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were twelve items which were grouped in four focuses: (a) Recognizing polygons and 
non-example of polygons (Task 1 – Item 1a, 1b, 1c, 1d and 1e); (b) Identifying a 
common attribute in a polygons’ set (Task 2, 3 4 - items 2, 3 and 4a); (c) Drawing 
polygons with conditions (Task 6 - item 6a); and (d) Classification of figures 
(relationships among figures) (Task 4, 5 and 6: item 4b, 5 and 6b). The last five tasks 
of the test were adapted from the metaphor of Drawing machine (DM) developed by 
Battista (2012), which let make figures with some conditions. In this research, we 
selected only the items in which students should use verbal and perceptual registers. In 
the items 1b, 1c, 1d, 1e, students had to identify the missing attribute in the non-
example of polygon to turn it into a polygon, explain this transformation and draw the 
final polygon. The figures considered were: a figure with open, crossed and curves 
sides (1b); a figure with open and curved sides (1c); a figure with curved and crossed 
sides (1d); and a figure with open and crossed sides (1e). By other hand, in the items 
2, 3 and 4a, students had to identify the common attribute of polygons’ set, explain 
what the attribute was and draw an example of polygon complies the attribute. The 
attributes were: concavity and convexity (task 2); six sides polygons and non-six sides 
polygons (task 3); and polygons with a symmetrical axis and without symmetrical axes 
(task 4). 
The teaching module consisted of 10 sessions of 50’ each, two per week, during five 
weeks, from May to June of 2018. In this module, we worked critical attributes of 
polygons (closed, straight and non-crossed sides); and types of polygons and their 
attributes (e.g., concave and convex polygons; polygons according to the number of 
sides). The teaching module was implemented by a member of the research group who 
adopted the role of the teacher in both classes. First of all, teacher introduced the 
content of the session and students discussed tasks with the whole group. At the end of 
the session, students realised several tasks individually similar to the ones performed 
during the session. Some tasks during the sessions consisted on: classifying 
geometrical figures; constructing polygons according to their attributes with materials 
(e.g., Meccano); drawing figures on the digital board. 
ANALYSIS 
We generated 20 variables from the seven items of the test. Firstly, we named the 
variables with the initials “Pr” for the pre-test’ tasks and “Po” for the post-test’ tasks. 
We also named each task with a capital letter, for example the task 1 is the letter A, the 
task 4 is the letter D. In task 1 (A), the items 1b (Figure 1), 1c, 1d and 1e have two 
variables each one. One variable to identify the students’ explanation of the turn of the 
non-example of polygon into a polygon (for example PoAd1), and other variable about 
the drawing from this turn (for example PrAb2). In tasks 2 (B), 3 (C) and the item 4a 
(D) we considered four variables. We assigned a lowercase letter a for the common 
attribute that DM can make and b for the attribute that cannot make it. We put number 
1 for the explanation of the common attribute of polygons’ set and 2 for the drawing 
of an example of polygon that fulfils the attribute. For example, we named PoDa1 the 
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answer in which students explain the common attribute and PoDa2 the drawing of an 
example that fulfils the common attribute identified in the polygons’ set. 

 

Figure 1: Non-example of polygon of the item 1b 
For the analysis of the data, we used a computer software called C.H.I.C. 
(Classification Hierarchique, Implicative et Cohesitive) (Bodin, Coutourier, & Gras, 
2000), by obtaining the hierarchical similarity connections and the implicative diagram 
of the variables’ relations. In the hierarchical similarity, the clusters are established in 
particular levels of the diagram and can be compared with others. In the hierarchical 
similarity is formed some thick links in red which represent the most significant 
relationships among variables. The hierarchical similarity diagram shows how the 
variables are grouped according to the homogeneity with which the students operated 
them. The implicative graph is executed to know the implicative relations among the 
variables, and certainly, the students’ answers of the same task in the pre and post-test.  
RESULTS 
We divided the results into two sections: comparison of variable’s successful level, and 
comparison of the similarity diagram and implicative diagram from pre- and post-test. 
Comparison of variable’s successful level 
Regarding the tasks, we observed two groups (Figures 2 and 3) group 1 includes the 
variables which belong the items about turning the non-examples of polygons into 
polygons and, group 2 includes the variables about identifying a common attribute of 
a polygons’ set, explaining it and drawing an example of polygon with this attribute. 

  

Figure 2: Bar chart of the 
frequencies of success in the pre-test 

Figure 3: Bar chart of the 
frequencies of success in the post-

test  
If we observe level of success of group 1 on the pre-test (Figure 2) and the 
corresponding on the post-test (Figure 3), the variables of explanation how to turn the 
non-example of polygon into a polygon (Ab1, Ac1, Ad1 and Ae1) have lower success 
level than the variables of drawing the final polygon from the turning (Ab2, Ac2, Ad2 
and Ae2), although on the post-test this difference is not very important. Attending to 
group 2, we observe differences among the variables of the pre-test and post-test. 
Firstly, we identify that the variables of explanation the turning on the post-test (Figure 



Moreno, Bernabeu, Gagatsis, Llinares & Panaoura 

PME 43 – 2019                                                                                                        3 –  
 

101 

3) have higher success level than the same variables on the pre-test (Figure 2). 
Secondly, the variables of drawings the final polygon from the turning on the post-test 
(PoAb2, PoAc2, PoAd2 and PoAe2) have higher success level than the same variables 
on the pre-test but this difference is slight.  
In the Group 2, identifying a common attribute of a polygons’ set, both on pre-test and 
on post-test, the variables about the drawing an example of polygon from the 
identification of the common attribute of the polygons’ set (Ba2, Bb2, Ca2, Cb2, Da2, 
Db2) were higher than the variables about the explanation of this attribute (Ba1, Bb1, 
Ca1, Cb1, Db1, Db1). However, on the post-test the explanation and drawing variables 
had not a great difference.  
Moreover, we can observe on the post-test’ variables a higher success levels than on 
the pre-test’ variables. The success level about the explanation of concave polygon 
(Ba1) raised from 5, on the pre-test, to 20, on the post-test, and the explanation of 
convex polygon (Bb1) from 4, on the pre-test, to 20 on the post-test. By other hand, 
the success level about the drawing of an example of concave polygon (Ba2) raised 
from 14, on the pre-test, to 28 on the post-test, and the corresponding of convex 
polygon (Bb2) raised from 17, on the pre-test, to 27 on the post-test.  
We show an example of this difference in Figures 4 and 5. Ana, a girl of third-grade, 
drew a convex polygon instead of a concave polygon and she explained that the DM 
could make these polygons because the line is not crossed, there is not any curved line 
and because the lines are straight, which is a wrong answer; in the place of drawing 
and explaining the convex polygons, the student drew another convex polygon and did 
not explain anything. On the post-test, Ana drew an example of concave polygon and 
explained that the DM could make this figure because has diagonals outside the figure 
(the concave’ definition that we gave during the teaching module); and she drew a 
convex polygon and explained that the DM could not make this figure because it has 
not diagonals by outside (the figure). 

 
 

Figure 4: Answer on pre-test to 
explain and draw concave and convex 

polygon 

Figure 5: Answer on post-test to explain 
and draw concave and convex polygon 

Comparison of the similarity diagram and implicative diagram 
We made a different analysis (similarity and implicative diagram) with each type of 
task. In the similarity and implicative diagram of the both kind of tasks, is formed two 
groups, one belongs to the variables of the pre-test and another belongs to the variables 
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of the post-test. Additionally, in both cases there were relationships of invariants 
between the variables of explanation and drawing on the pre- and post-test. We payed 
attention to the tasks of identifying the missing attribute in the non-example of polygon 
to turn it into a polygon.  
The similarity diagram shows two groups (Figure 6). In the group 1 all the variables 
correspond to the Pre-test (from PrAb1 to PrAe2) and almost all the variables of the 
group 2 correspond to the Post-test (from PoAe1 to PoAe2). We observe, in both 
groups, the same relationship among three variables relating to the explanation of 
turning the non-examples of polygons into polygons liked: a figure with open, crossed 
and curved sides (PrAb1 and PoAb1); a figure with curved and crossed sides (PrAd1 
and PoAd1); and a figure with open and curved sides (PrAc1 and PoAc1). Another 
relationship is produced with the same variables of the drawing the final polygon after 
the turning: a figure with open, crossed and curved sides (PrAb2 and PoAb2); and a 
figure with crossed and curved sides (PrAd2 and PoAd2). That means there was an 
invariant among the same variables on the pre- and post-test. In both groups, the 
variables of the explanation about turning the non-example of polygon into a polygon 
have a similarity relationship and, on the other hand, the variables of the drawings are 
also linked among them. This meant that the variables of the explanations and drawings 
from the turn the same non-example of polygon into a polygon are not linked.  

 

Figure 6: Similarity diagram of the pre- and post-test variables. 
Furthermore, we can observe the same invariants in the similarity diagram of the 
statistical levels of 99% (Figure 7) and 95% (Figure 8) with the same variables. In both 
statistical level, we can observe in the chains A and B that from the variable about the 
explanation of turning the figure with open, crossed and curved sides into a polygon 
(PrAb1 and PoAb1) continues with the variable about the explanation of turning the 
figure with curved and crossed sides into a polygon (PrAd1 and PoAd1). As of the 
variables of the explanations emerge the variables about the drawings. Firstly, is the 
drawing of turning a figure with curved and crossed sides into polygon (PrAd2 and 
PoAd2), and from this emerges the drawing of the transformation of the figure with 
open and curved sides (PrAb2 and PoAb2). 
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Figure 7: Implicative diagram of 
the statistical level of 99% 

Figure 8: Implicative diagram of 
the statistical level of 95% 

DISCUSSION 
This research aims to examine the effects of a teaching module on the achievement of 
understanding of polygons and their attributes in third-grade school. Results indicate 
that (i) there is prevalence in the use of the perceptual register opposite to the verbal 
register, and (ii) the improvement of the understanding of polygons and the use of the 
attributes depends on the attribute that characterizes the geometric figure.  
The difference in the use between the verbal and perceptual register in the students’ 
solutions of the task on the pre- and post-test, in spite of the teaching module 
performed, is showed in the both diagrams (invariants). This phenomenon would be 
explained because the students are not yet cognitively prepared to use the visual and 
verbal register in their answers equitably (Duval, 2006).  
In fact, producing invariants in the diagrams between the pre- and post’ variables, it 
evidences of enhancing the quality of students’ answers. Thereby, the students’ 
understanding of polygons is improved, because they acquired a set of attributes which 
let them understand polygons and the relationships between the attributes to classify 
the geometrical figures shown in the post-test’ answers (Clements & Battista, 1992). 
Moreover, we can intuit students become to develop the dimensional deconstruction of 
figures (Duval, 2017). They became to decompose the figures in smaller dimensions 
to stablish relationships between the geometrical concepts and the parts of the figures, 
to explain the attributes of the figures or drawing an example of polygon fulfils the 
attributes. For this reason, it is recommended encourage students to use the verbal and 
visual register to explain the figure’s belongings, adapting the mathematical language 
to their levels (Clements et al., 1999; Elia & Gagatsis, 2003). 
It would be recommended doing the same research (pre-, post-test and teaching 
module) with older students to verify if the invariant between the pre- and post-test’ 
variables would be altered. Furthermore, it would be advisable to increase the number 
of participants to carry out the statistical analysis.  
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TEACHING-PRACTICES THAT PROMOTE META-LEVEL 
LEARNING: THE CASE OF COMPLEX NUMBERS 

Talli Nachlieli1, Avital Elbaum-Cohen2 
1Levinsky College of Education, 2Tel Aviv University 

 

This paper focuses on teaching-practices in secondary school mathematics from the 
commognitive perspective. Specifically, the paper focuses on identifying accomplished 
teacher’s practices visible in her teaching towards the meta-level learning of complex-
numbers. For this purpose we analysed a video-taped 90-minute lesson on complex-
numbers in 12th grade. Our findings include specific teaching-practices that were 
detected for dealing with the challenging task of teaching towards meta-level learning. 
We categorized the practices according to their role in promoting meta-level learning: 
those that relate to students' former discourse on numbers, those relating to the new 
discourse and those related to justifying transition between discourses.   
INTRODUCTION 
Teaching complex-numbers has long been identified in the research literature as a 
hurdle not easy to overcome (Tirosh & Almog, 1989). In addition, research under the 
constructivist paradigm showed that two familiar ways to teach complex-numbers 
demand the accommodation of mental schemata at least in a minor form. Furthermore, 
it is not reasonable to learn complex-numbers leaning on assimilation alone (Vinner, 
1988). The commognitive paradigm as our over-arching theoretical framework affords 
a different look at teaching and suggests an answer to the question of why teaching of 
complex-numbers is so challenging. According to former commognitive studies, there 
are transitions in the mathematics discourse that include changing the meta-rules that 
govern the discourse. One example for such transition regards learning that "minus 
times minus is plus". Until the introduction of negative numbers, students considered 
mathematics operations on numbers as a part of the laws of nature (3 + 2 is 5 because 
if you take 3 pebbles and add 2 pebbles you get 5 pebbles), and therefore, believed that 
to justify the definition of such operations it suffices to find a suitable everyday model. 
Now, when learning multiplication of negative numbers, they are expected to accept a 
new type of justification, one that requires showing that the operation on the new set 
of numbers is a logical implication of some primary assumptions (for further 
discussion, see Sfard, 2007). This kind of change, the change in meta-rules of 
discourse, will be called here “meta-level learning”. 
In this paper, we clarify why we consider expanding the discourse on numbers from 
real numbers to complex numbers as a case of meta-level learning, and we observe one 
accomplished teacher in an attempt to identify the teaching practices she employed 
while trying to promote this special type of meta-level learning. 
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TEACHING ACCORDING TO THE COMMOGNITIVE PERSPECTIVE 
The commognitive perspective views mathematics as a unique type of communication 
with special ways of saying and doings, and considers learning mathematics as 
changing one's mathematics discourse, that is, modifying one’s ways of 
communicating about mathematics. There are various settings in which learning may 
occur. Settings designed for learning include tacit agreements about the what, how and 
who that characterize the agreed-upon change in discourse. Sfard (2008) has defined 
the teaching-learning agreement, as “a situation that arises when the discursants are 
unanimous, if only tacitly, about at least three basic aspects of the communicational 
process: about which is the leading discourse, about the discursants’ own respective 
roles as those who learn or those who teach, and about the nature of the expected 
change” (Sfard, 2008, p. 299). From this Tabach and Nachlieli (2016) define teaching 
as the communicational activity which motive is to bring a change in the learners’ 
discourse towards a leading discourse. Such a definition of teaching includes all 
communicational actions (verbal, non-verbal, emotional, etc.).  
PRAQTAL: PRACTICES FOR QUALITY TEACHING 
Project PRAQTAL (PRActices for Quality Teaching) focuses on identifying and 
conceptualizing practices for quality teaching of secondary school mathematics and 
physics. The study reported in this paper is a part of this project. Our team arrived at 
the need to explicate practice as an attempt to improve a teacher-education program. 
The suggested change was from more "reflective" and "principles" based programs 
towards "practice" based. We noticed that the task of shifting the preservice teachers' 
traditional-teacher-centered approach towards more reform-student-centred approach 
calls for explicit discussion and explication of practices. Explicating teaching practices 
is at the heart of various other teacher education programs (Grossman, 2018). Some 
projects are content specific, some focus on specific grade levels, and others are 
general, but most grew from the needs of training programs for preparing teachers to 
practice. A prime example is the University of Michigan Teaching Works project that 
identifies and teaches high-leverage instructional practices aiming at preparing 
beginning teachers to be "skillful teachers who are committed to and able to support 
their (students') growth." (http://www.teachingworks.org/). Additional projects are 
discussed in Grossman's book Teaching core practices in teacher education (2018). 
Adopting the commognitive conceptual framework, we define teaching practice as a 
routine. Routine is a repetitive pattern of behaviour, prompted by situations that the 
actor had identified as similar. Following Lavie, Steiner and Sfard (2018), we define a 
teaching-practice similar to their definition of routines: the task the teacher saw herself 
performing together with the procedure she executed to perform the task (p. 9). Two 
examples of such tasks could be: having to address a student's idea that the teacher had 
not thought of earlier or eliciting students' thinking. During a lesson a teacher needs to 
perform many different tasks. Our goals in PRAQTAL are thus to identify typical, 
interesting or challenging tasks that teachers set to themselves before, during and after 



Nachlieli & Elbaum-Cohen 

PME 43 – 2019                                                                                                        3 –  
 

107 

a lesson, and for each task we identify the various procedures that teachers execute to 
perform the task. The plural form is used here to denote that our point of departure is 
that for each task, different teachers may consider different procedures to perform.  
IDENTIFYING TEACHING PRACTICES 
For the purpose of project PRAQTAL, we videotape lessons taught by competent 
teachers. For each video-taped lesson, we focus on the teacher's teaching-actions that 
we have a reason to assume would be repeated when a similar task is pursued. The task 
is our interpretative answer to the question: What may the teacher be trying to achieve 
by those actions?  The tasks are recursive in nature – to achieve a certain task, some 
sub-tasks should be achieved in advance. For example, to achieve the task of 
“promoting purposeful discussions in mathematics lessons”, Smith and Stein (2011) 
identified five sub-tasks that a teacher should pursue, e.g. anticipate students' 
responses, or monitor students' work during group-work. 
In this paper we focus on a specific type of task, the task of promoting students' meta-
level learning. We wish to unpack this large-size task to sub-tasks by analysing 
teachers' actions in a 12th grade lesson on complex-numbers. Our research question is: 
What practices are used by an experienced teacher to promote meta-level learning of 
complex-numbers? The idea of meta-level learning is discussed in the literature (e.g. 
Sfard, 2007). Therefore, we first describe object-level and meta-level learning, and 
then detail the methods of our study and our findings. Let us mention that although the 
project is directed toward quality-teaching-practices in this paper we do not focus on 
the quality dimension of the practices.  
OBJECT-LEVEL AND META-LEVEL LEARNING   
As stated earlier, commognition (Sfard, 2008) views learning mathematics as changing 
the learner's ways of communicating about mathematics (in other words changes in her 
mathematical discourse). Those changes could be at the object-level and include 
expanding one's discourse about a familiar mathematical object. For example, learning 
how to find a y-intercept of a familiar function. Object-level learning may also involve 
endorsing new narratives about familiar objects. An example could be learning that the 
base angles of an isosceles triangle are congruent, after the learner is already familiar 
with triangle congruency theorems. This is considered object-level learning as all that 
is needed for this kind of learning is to apply the familiar congruency theorems.  
In contrast, meta-level learning involves changing the meta-rules of the discourse. 
These changes can be expressed in various manners. Thus, for instance, the change 
may occur in executive rules of discourse, as is the case when, for the first time, 
students are required to justify their claims in the mathematics classroom. Another type 
of meta-level change may occur when a new mathematical object is introduced. For 
example, when students learn about fractions, they need to give up many of the 
previously endorsed claims about operations on numbers. Thus, for instance, 
multiplication is no longer an action that “makes bigger”. Therefore, this kind of 
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learning is a transition to a discourse in which familiar words must be used differently 
(Sfard, 2007).  
Based on previous studies (Sfard & Ben Zvi, 2007; Nachlieli & Tabach, 2012) teaching 
for meta-level learning requires designated teaching-practices which are basically 
different from teaching-practices that promote object-level learning. In the next section 
we explain why we consider the introduction of complex numbers as meta-level 
learning.  
EXPANDING STUDENTS' MATHEMATICAL DISCOURSE ON NUMBERS: 
COMPLEX-NUMBERS 
According to the Israeli mathematics curriculum, complex-numbers are introduced to 
advanced-track students in the twelfth grade. By that time, students have already 
developed a rich discourse on numbers. Throughout the years, they have expanded 
their mathematical discourse from that on natural numbers to unsigned rational, to 
rational, and finally to real numbers. Initially, the defining property of numbers was 
that they answered questions about quantity, such as “How much?” or “How many?” 
The introduction of negative numbers extended the use of the term “quantity” so that 
it could apply not only to what there is, but also to what is lacking. By the time they 
entered the twelfth grade, the students learned to work with real numbers and got 
convinced that the equation x2+1=0 has no solution and the expression √ − 1 is 
meaningless.  
Mastering the chapter on complex-numbers, students must acknowledge that the word 
number would signify from now on also objects of the type of a+bi, where “a” and “b” 
represent real numbers, and “i” is the square root of (-1). Within this new discourse, 
the narrative that "the expression √ − 1 is not a number" does not hold any longer. From 
the very first moment the students must realize that the new “numbers” cannot be 
presented as points on the number-line, do not answer to the question "how many?" 
and cannot be ordered according to size (there is no such thing as the size of a complex 
number!). In addition, numbers are now signified with the help of the letter “i”, a 
symbol that, so far, signaled only variables and parameters. All this implies a far-
reaching change in the use of the word number, and thus in the meta-rules of numerical 
discourse. This change in discourse implies the need for meta-level learning. 
As stated previously, it is reasonable to assume that promoting students’ meta-level 
learning is profoundly different from teaching for object-level learning. The adoption 
of new meta-rules that cannot be derived from an existing discourse is a challenging 
teaching goal. In the next section we look at a teacher grappling with this challenge.  
METHOD 
To identify the practices of the teacher trying to promote student’s meta-level learning, 
which is required in the transition to the discourse of complex numbers, we analysed 
the introductory lesson that took place in an advanced 12th grade mathematics 
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classroom in an Israeli high-school. The lesson was 90-minute-long, and it was video-
taped and transcribed in its entirety. The lesson was taught by the 2nd author.  
Our analysis of the lesson included segmenting the transcript according to teacher's 
actions. For each segment we asked: What is the task that the teacher may be trying to 
perform in those actions? Could this task promote meta-level learning?  
Before focusing on the specific teaching-practices we describe the lesson's thematic 
structure: the teacher's choice, inspired by the assumption that ontogeny of discourses 
can be helped by explaining their historical roots, was to walk her students through a 
version of the historical development of the discourse on complex numbers. This was 
to be done in five steps: (1) making students realize that as long as our discourse on 
numbers includes only real numbers, no number, when squared, would yield a negative 
number (thus, there is no such thing as a square root of a negative number). (2) 
concluding that a 3rd order polynomial has at least one real root, (3) introducing the 
students to the suggestion, made in the 15th century by the Italian mathematician 
Girolamo Cardano, that the real roots of some cubic polynomial function could be 
calculated with the help of a well-defined formula. (4) Introducing students to Rafael 
Bombeli's suggestion that square roots from negative numbers should be recognized as 
full-fledged mathematical objects – as numbers, and could therefore be allowed for use 
in Cardano's formula; (5) justify the claim that these new objects can be called numbers 
(more precisely, "complex-number") by showing that it is possible to define operations 
on these entities that preserve the basic properties of the operations on real numbers; 
and finally, (6) show that real roots of cubic functions can, indeed, be found with the 
help of these new, “complex” numbers.  
FINDINGS: TEACHING-PRACTICES THAT PROMOTE META-LEVEL 
LEARNING 
We found that all the teacher’s identified actions fell into one of the following three 
categories: (1) those related to the students' current discourse on numbers and aimed at 
preparing the ground for the changes to-come; (2) those related to the new discourse 
on numbers, and (3) those related to transition between the discourses; and we present 
the teaching-practices accordingly. For each teaching-practice, we identify the task (in 
italics), followed by detailing some of the procedures the teacher execute in the 
apparent attempt to perform this task.  
Teaching-practices performed in the context of students' familiar discourse on 
numbers 
Explicating some of the narratives and rules in the students' former discourse on 
numbers that are about to change. The procedure performed by the teacher towards 
this task included initiating a discussion about roots of quadratic functions at the 
beginning of the lesson. When students solved the given quadratic equation and stated 
that: "there is no solution (as the discriminant was negative)", the teacher focused the 
discussion on the following questions: What is it that makes us say there is no solution? 
More specifically, the teacher asked: “What property of the graph of the function tells 
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us there is no solution?” and “why can't we find a number that is the square root of a 
negative number?”. In addition, the teacher emphasized precise use of mathematics 
language by stating that “there is no real solution”.  
Helping students identify incompleteness in the existing discourse on numbers (that in 
the future could be resolved by the acceptance of complex-numbers as new 
mathematical objects). The teacher constructed a scenario that positions two narratives 
that if are endorsed, leads our discourse to a dead-end: (1) any cubic function has at 
least one root (its graph intersects the x-axis in at least one point) (2) a familiar and 
productive formula for finding the roots of a cubic function, fails to do so in some cases 
as it requires to calculate a square root of a negative number. 
Teaching-practices performed in the context of the new discourse on numbers 
Providing students opportunities to operate, if only ritually, on new mathematical 
objects or, more specifically, engaging students in applying familiar numerical 
operations to the new mathematical objects. After introducing √ − 1 as a number, the 
teacher asked students to calculate expressions in which the formerly known operations 
+, - and × were applied to complex-numbers.    
Making efforts to convince students that accepting the new objects as numbers indeed 
makes sense, or in other words, showing students that it is reasonable to endorse this 
new meta-level narrative. One must notice that the “reason” we are pointing at here is 
not necessarily mathematical reason. For example, the advantage of being able to solve 
the cubic equation after executing ritual work on complex-numbers, provides the 
students with a good reason to, at least tentatively, accept this new “creature” (√ − 1 ) 
as a number: “So, I think that this exercise is here to give us the feeling that Bombeli 
was not talking nonsense, and that if we adopt those things that till now we wouldn’t 
have looked at them at all, but would have thrown them away instantaneously, if we 
are looking at them just a little deeper, we may benefit from them” (the benefit: finding 
the solution to the given cubic equation) “And indeed, the mathematical world did 
benefit, and we are going to look deeper.” 
Teaching-practices performed in the context of transition between discourses 
Support the students in tentatively accepting rules that may overcome the above-
mentioned incompleteness. To resolve the incompleteness identified in the former 
discourse on numbers, the teacher suggests suspending tentatively the disbelief in 
√ − 1 as a number “let's see what happens if we do not throw this (the square root of a 
negative number that is to be calculated using Cardano's formula) away”. Using those 
new "numbers" is only a tool for finding out whether this would be productive or not 
in resolving the incompleteness.  
Marking explicitly boundaries between students' former discourse on numbers and the 
yet-to-be discourse on numbers. Throughout the lesson the teacher explicated what 
students know about numbers and what is still to be learned by pointing at situations 
in which the former discourse is no longer applicable.  
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DISCUSSION  
In this paper we presented six teaching-practices that aim at teaching towards meta-
level learning. What can we learn from identifying those teaching-practices? As we 
asserted earlier, learning complex-numbers is considered meta-level learning, that is, 
the expected change includes changing meta-level rules that govern the discourse on 
numbers (such as – what is a number? And - how do we accept a mathematical object 
as a number?). Therefore, students cannot "make sense" of the new objects within the 
familiar discourse on numbers as one cannot expect students to independently come up 
with those historically developed rules. This explains why in schools, teachers’ 
scaffolding is essential for meta-level learning to take place.  
The teaching-practices that we identified demonstrate a possible way by which a 
teacher muddled-through the challenging task of promoting such learning: we learned 
how a teacher may lead her students in this rocky path of meta-level learning: 
explicating the relevant rules and objects in the discourse on numbers that the students 
are familiar with, identifying specific incompleteness that the new objects would 
resolve, introducing the new objects and convincing the students why and how 
adopting those objects resolves the incompleteness.  
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SURFACING MISALIGNMENTS IN TEACHER LEARNING 
PROCESSES 
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This paper focuses on learning processes of teachers in TEAMS (Teaching 
Exploratively for All Mathematics Students) professional development (PD) setting 
and on opportunities that encourage such learning. We conceptualize learning in this 
PD as a movement from Acquisition Pedagogical Discourse to Explorative 
Pedagogical Discourse. We show that learning opportunities could be characterized 
as friction between discourses, that is, the surfacing of misalignments between the two 
types of discourse. Friction occurred mostly when discussions arose around concrete 
teaching representations which offered opportunities for negotiation around the 
misalignment.  
INTRODUCTION 
Learning of ambitious, discourse-rich and student-centered teaching practices has been 
the focus of multiple studies (Sztajn, Borko, & Smith, 2017). Yet mostly, studies take 
a pre-post approach to the study of teachers’ learning of such “reform-based” practices, 
focusing on teachers’ “knowledge” and “beliefs” that have (or have not) changed as 
result of PD. In previous studies, we have shown the productiveness of adopting a 
discursive approach to teachers’ adoption of explorative teaching practices. In 
particular, we have shown that teachers can be located on a continuum between 
Acquisition Pedagogical Discourse (APD), which supports and sustains teacher-
centered, “traditional” forms of instruction, and Exploration Pedagogical Discourse 
(EPD), which values students’ struggle, discussions, meaning-making and explicit 
attention to concepts (Heyd-Metzuyanim & Shabtay, 2019). In addition, previous 
studies (Heyd-Metzuyanim, Munter & Greeno, 2018) have shown that a discursive 
viewpoint can shed light on misalignments between teachers’ and mathematics-
educators’ discourse in PD settings. Such misalignment can explain the often-detected 
problem of teachers adopting the explicit narratives of reform-based PD, while not 
enacting the PD-valued practices in their classrooms. In this paper we take this 
approach further, to examine what the detection of APD vs. EPD in a PD setting, along 
misalignments between the PD instructor and teachers’ discourse, can tell us about 
opportunities for learning provided for teachers. Our goal is to examine the process of 
adopting the EPD, through examining the interactions between the PD instructor and 
the teachers as forming an interface or “friction” between the two Pedagogical 
Discourses. 
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THEORETICAL BACKGROUND 
In the present study, we adopt a discursive approach (Sfard, 2008; Heyd-Metzuyanim 
et al., 2018b) to teacher learning for conceptualizing two aspects: first - what is to be 
learned in a PD setting, and second - how this learning is supposed to take place. 
Regarding what is to be learned, a view of learning as becoming a participant in a 
certain discourse (Sfard, 2008) operationalizes adoption of new teacher practices as 
becoming a participant in a certain pedagogical discourse (Heyd-Metzuyanim, Smith, 
Bill, & Resnick, 2018; Heyd-Metzuyanim & Shabtay, 2019). Such a view is congruent 
with works that have conceptualized “reform” and “traditional” teaching as distinctly 
different “figured-worlds” (Ma & Singer-Gabella, 2011).  
Heyd-Metzuyanm and Shabtay (2019) clearly delineated between teaching practices 
that are valued within these different “worlds”, more accurately defining them as 
distinct Pedagogical Discourses. The Acquisition Pedagogical Discourse, which is 
often termed “traditional” or “teacher-centered”, values actions that assume an 
acquisition model of learning - the learner is imagined as a vessel and the teacher 
“pours” knowledge into his brain. This Pedagogical Discourse has clear narratives 
regarding the actions that are most effective for learning - practicing and applying the 
acquired skills. It also has clear visions about what are the most effective teaching 
actions - demonstrating clearly the procedures, breaking them up to small chunks that 
can easily be repeated, and assuring that students reproduce the procedures exactly the 
way they were demonstrated.  
The alternative Pedagogical Discourse, which in many ways has evolved as an 
antithesis of the APD, is the Explorations Pedagogical Discourse (EPD). The EPD 
views learning as participating in a certain social activity and as driven by students’ 
construction of new knowledge, based on previous knowledge (often known as 
constructionism) (Heyd-Metzuyanim & Shabtay, 2019). We use Discourse with a 
capital D as inspired by Gee (2014), to stress that these Pedagogical Discourses precede 
the individual teacher. They exist in documents (such as the NCTM (2000) “Principles 
and Standards for School Mathematics”) as well as in socially accepted narratives 
passed from one teacher to another. Teachers’ pedagogical discourse (with a small d) 
is a private, individualized form of such Pedagogical Discourses, and is usually aligned 
partially both with the APD and the EPD. The differences relate to the extent to which 
a teacher’s pedagogical discourse aligns with APD or EPD.  
One of the trickiest parts of drawing teachers into the EPD is that some aspects of this 
Discourse are easily adopted while others often remain hidden. This results in a 
situation of "misaligned frames" (Heyd-Metzuyanim et al. 2018a), where teachers 
aligned with the APD interpret differently situations that are framed within the EPD as 
functioning for a certain cause. For example, Heyd-Metzuyanim and Shabtay (2019) 
showed that teachers aligned with the APD framed a situation in which a teacher posed 
a cognitively-demanding task, as one where the students were carelessly "thrown into 
the lion's den" to pointlessly struggle.  Defining Pedagogical Discourses as Discourses 
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concerning with what, how, when and who to teach, they pointed to frequent 
misalignments between teachers who claim to adopt certain narratives from the EPD 
(such as stress on reasoning and conceptual understanding) yet differ from the 
canonical EPD in their narratives about who. Therefore, what it is that should be 
worked on, discussed, and justified, often remains in who can be taught in certain ways. 
EPD documents stress that any student, regardless of ability or previous knowledge, 
should receive opportunities to construct new knowledge based on their own reasoning. 
In contrast, teachers aligned with the APD often claim that constructivist, discussion-
based teaching practices are appropriate for high-ability or "strong" students, while 
low-ability students should be taught by demonstrating and drilling tasks of low 
cognitive demand (Heyd-Metzuyanim & Shabtay, 2019). 
Leaning on the view of learning as a form of becoming a participant in a certain 
Discourse (Sfard, 2008), we are now ready to conceptualize the activity of our TEAMS 
PD as an occasion where two Pedagogical Discourses interact. We, the PD instructors, 
mostly adopt the narratives of the EPD, and our framing of teaching-learning 
interactions are mostly consistent with it. The teachers that enter our PD mostly align, 
to varying degrees, with the APD. Even when they adopt narratives from the EPD, they 
often frame teaching and learning in ways that are aligned with the APD. Questions 
that remain to be inquired are - how does the interfacing between the APD and EPD 
occur? and what are the processes that may give rise to teachers’ gradual adoption of 
the EPD (along release of the APD)? Specifically, we ask what are the misalignments 
between teachers' and the PD instructor's discourses? And what is the discursive 
mechanism that affords change in teachers' pedagogical discourse, from alignment 
with APD to alignment with EPD? 
METHOD  
The study took place in the context of the TEAMS PD program, a program that 
included 16 4-hours sessions over two years (2016-2017). The PD introduces teachers 
to the 5 Practices for Orchestrating Productive Mathematics Discussions (Smith & 
Stein, 2011) as well as to Accountable Talk™ tools (Heyd-Metzuyanim et al., 2018b). 
Teachers participating in this program were relatively experienced (ranging from 15-
31 years of teaching). 14 of the participants were middle-school teachers and two were 
elementary school teachers. Nine teachers continued from the 1st to the 2nd year.  
To address the above questions, we watched and partially transcribed all 16 PD 
sessions. Partial transcriptions were intended to capture the activities of the session, as 
well as important conversations and themes. Based on these partial transcriptions, we 
fully transcribed discussions about instruction from five sessions: the 2nd, 3rd, 9th, 14th 
and 15th. This allowed us to closely study changes in teachers' pedagogical discourse 
from initial stages of the PD to last sessions. 
Our analysis included first delineating misalignments between the teachers’ and the 
instructor’s pedagogical discourses. A misalignment between APD and EPD was noted 
when discoursants declared (implicitly or explicitly) valuing similar actions yet the 
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reasons for those values differed (were aligned with different discourses). Next, we 
noted the object of misalignment, what the misalignment referred to: the what, when, 
how or who of the Pedagogical Discourse. During our analysis, a new category came 
up, which we named "friction". Friction was identified when the APD was questioned 
explicitly, and as a reaction, there was a certain move towards EPD. Non-friction was 
identified when misalignments occurred, yet they were not questioned or negotiated. 
Our final analysing step included documenting all misalignments and their object, and 
determining whether they included friction or not. The documentation was in a table 
similar to Table 1 (in Table 1 we only present one example). 
FINDINGS 
Our first finding is that there was a difference in the pedagogical discourse of the 
instructor and the participating teachers, as expected, and that multiple occasions of 
misaligned framings of the instructor and teachers occurred as result of these 
differences. An example of such a misalignment in framing is taken from the 1st 
session. In this session, the teachers worked on a rich mathematical task, which offered 
multiple solutions and opportunities for discussing mathematical concepts. After 
engaging with it as learners, the teachers discussed the task, their work on it, and how 
this way of working on a mathematical task could (or could not) be adapted to their 
classroom. One of the teachers said: 

Teacher This is nice for strong kids. Those that really have the motivation and 
patience to see more and more ways (for solving the problem). But there 
are students that are weak, that each additional way just confuses them more 
and more. They don’t know how to solve. At a certain moment they 
understand something and they want to stop there. And all this discussion 
is just unnecessary for them.  

Instructor We will talk a lot about this issue. Now let's turn to…. 

We suggest that this is an example of misalignments of frames containing no friction. 
The teacher focuses on students’ ability, and makes a direct connection between ability 
and the type of learning-opportunities that the students should be provided with. She 
stresses that posing a cognitively demanding task that invites multiple solutions, which 
is a highly valued teaching action within the EPD, is only appropriate for "strong kids". 
She adds that multiple solutions "only confuse" the "weak kids". In contrast, materials 
such as "the 5 Practices" or AccountableTalk, which reify the EPD, stress that 
cognitively demanding tasks and discussions that include multiple solutions are 
appropriate for all students. In this example the misalignment is about the who (who 
are the students that would benefit from discussions of multiple solutions) and the what 
(discussions are confusing for weak kids). The reason we claim the example above is 
of "non-friction" is that, despite the teacher clearly declaring narratives that are 
incongruent with the APD, the instructor does not contest these narratives, only signals 
that they may be under dispute ("we will talk about it").  
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The next example includes friction: this example took place during the 2nd session, 
while discussing the instructional actions that the instructor performed when the 
teachers were working on a mathematical task: 

Teacher And you passing between us, you directed “correct?” “not correct?” and 
then each group got up and presented on the board and we saw that there is 
no situation of something (a solution) being wrong. Each way (solution) is 
correct. 

Instructor Each way is correct? 
Teacher Almost. If you get the correct answer. There could be various… and the 

students love it. They don’t like just your template, when you come and 
talk. They like it also on their own. They want to raise different creative 
ways. And they love coming and sharing. 

In this example, the action which was valued by the instructor and the teacher is of 
“students presenting various solutions to a problem”. The teacher explicated that she 
values this action since students get a chance to present their own solutions and that 
they are safe because "all solutions are correct". This narrative is misaligned with the 
EPD since according to the EPD, not all solutions are necessarily correct. On the 
contrary, some may be incorrect, providing a chance to discuss and refute them. The 
reasons for valuing various solutions, according to the EPD, are surfacing conceptual 
links between different solutions, as well as affording authority and agency for students 
to creatively come up with their own solutions. The teacher in this example aligns with 
the how (letting students present on the board), but she does so mostly because of 
valuing students' emotional enjoyment, not because of the what (the content to be 
learned through such a discussion). The evidence for friction can be seen in the 
instructor explicitly questioning this framing, asking: “Each way is correct?". This is 
followed by a correction ("almost") that brings the teacher’s discourse a small step 
closer to the EPD (by implicitly acknowledging that not all solutions are correct). 
We found other examples of misalignments during our PD sessions, which we 
documented in a table similar to Table 1. The instance shown in Table 1 is taken from 
the 14th session, when a teacher presented a short part of a video-taped lesson she 
taught, where she posed a cognitively demanding task and invited three students to 
present solutions on the board. The teacher talked of how important it was for each 
student to present her solution to the problem. She stressed that the students were 
feeling empowered through this process. However, when the instructor asked the 
teacher whether there was an attempt to link between the various solutions to allow for 
mathematics conceptualization, the teacher did not seem aware of the opportunities for 
making such links. The instructor then led the teachers to think together about links 
that could have been made between the various solutions presented on the videotaped 
board. Hence, this is an example of an instance with some friction: the teacher partially 
aligned with the EPD-valued action of presenting various solutions on the board, 
valuing it mostly for the agency it gave students to come-up with their own solutions. 
The instructor valued the action for that reason too, but stressed another reason – 
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making links between the different solutions to enhance conceptual understanding. 
Through the discussion around the imagined teaching action that could have been made 
at that point, friction occurred and the teachers' discourse moved towards the EPD-
valued action of linking between solutions. 
Valued 
pedagogical 
action 

Teachers' reasons for 
valuing the 
pedagogical action 
aligned with APD 

Instructor's reasons for 
valuing the pedagogical 
action aligned with EPD 

Object of talk and 
friction 

Present 
different 
ways of 
solving a 
problem 

Linking between each 
student's ideas to the 
problem asked. 
Students feeling good.  

Linking between ideas – 
linking between the three 
suggested solutions to help 
conceptualize a 
mathematical idea.  
Enables students' struggle  

Discussing a part of 
the teacher's video-
taped lesson  
The reasons are 
questioned: friction  

Table1: Valued pedagogical actions, reasons for those values according to APD and 
EPD, the object of talk misalignments occurred.  

Our findings also shed light on occasions that seem to give rise to friction between the 
APD and EPD: we found that friction occurred when the discussions related to clear 
and concrete representations of teaching that were in front of all participants' eyes, or 
at least in their memory. These occurred, for example, in (1) reflective discussions on 
the teachers’ own work and the instructor's mediating remarks which took place earlier 
in that session, and (2) when teachers discussed clips of videotaped lessons. In contrast, 
most of the cases of misalignment with no friction occurred when such concrete 
teaching representations were not available. For example, when a teacher talked about 
her actions in the classroom that were not videotaped, other PD participants (including 
the instructors) could gain very limited access to the particularities of the valued actions 
and therefore no friction occurred.  
DISCUSSION 
Often teachers' learning is studied using questionnaires about initial and end 
conceptions and beliefs about teaching and learning. In this paper we suggest an 
alternative approach, which focuses on teachers' discourse. This discursive approach 
has become more common in mathematics education (Herbel-Eisenmann et al., 2017) 
but is less common in studying teacher's learning. In the past, we have defined the gap 
between the teachers' and PD instructors' conceptions of teaching and learning through 
the notion of Pedagogical Discourses and misaligned frames (Heyd-Metzuyanim et al., 
2018a; Heyd-Metzuyanim & Shabtay, 2019). In this study we began to explicate the 
process that seems to enable promoting change in teachers’ discourse, from discourse 
that is aligned with APD to one that is aligned with EPD. Our findings suggest that this 
process is best promoted by instances of friction – interactions or discussions where 
misalignments regarding valued actions of the EPD are surfaced and negotiated. 
Previous research (Heyd-Metzuyanim et al, 2018a) has shown that it is not easy to 
surface misalignments, and that these can often go unnoticed. This, because teachers 



Nachlieli & Heyd-Metzuyanim 

PME 43 – 2019                                                                                                        3 –  
 

119 

are quick to endorse (or at least declare alignment with) certain valued teaching actions 
of the EPD, such as giving students agency or promoting conceptual understanding. 
The more difficult narratives to change, as has been shown in this study too, are the 
narratives regarding what should be discussed and conceptualized (which 
mathematical concepts and ideas) and who can benefit from such teaching actions 
("strong" students, or all students). Our findings hint that friction around the what is 
best achieved through highly concrete teaching representations such as focused 
discussions on the mathematical ideas presented in a videotaped lesson (Heyd-
Metzuyanim & Nachlieli, 2019). Our findings also show that the who (who should be 
taught exploratively) is even more difficult to achieve friction on. This may be because 
teachers are quick to privatize their thoughts about the issue (deeming them as 
unacceptable according to the PD leaders, or not "politically correct"). It may also be 
a result of the difficulty to obtain strong evidence in the here-and-now of a PD 
discussion, regarding certain students' ability to learn exploratively. Future studies 
would be necessary to establish the conditions for friction on this difficult 
misalignment between the APD and EPD. 
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This article, using statistical and interpretative analysis, discusses how Japanese 
preschool children (5–6 years old) performed mathematical tasks after a 9 month-long 
intervention programme. We included 35 children in 2 similar Japanese kindergartens 
in the study, conducting interventions for 9 months, and examining their performance 
in pre-/post-interviews. We conducted statistical analysis to reveal semantic 
similarities among interview items using correspondence and cluster analysis. We 
concluded that first, the comparison of numbers and quantities (length) improved, 
which was statistically significant, and second, 2-dimensional measurement was more 
difficult for children to understand than 1-dimensional measurement. 
INTRODUCTION 
Japanese preschoolers have not formally learned mathematics, but naturally acquire 
such skills in their daily life. Japanese studies related to mathematics education, 
therefore, have been limited. After drastic curriculum reform in 2018, the Course of 
Study stated that Japanese children should understand numbers and quantities before 
elementary school. We must now take action on preschool mathematics education.  
Recent studies have focused on mathematics education for preschool and younger 
elementary school students (e.g., Brandt, 2013). Hachey (2013) states that 
mathematical conceptual change in young children is as effective as a substantial 
change in early childhood mathematical teaching practice, as a large body of 
developmental research advocates that young children are born mathematicians, and 
therefore, early childhood mathematics education is vital to foster their competencies. 
Several research papers examine the development of research-based preschool 
mathematics curriculum in different countries (Clements & Sarama, 2013; Chard et al., 
2008; Vogt, Hausera, Steblerb, Rechsteinera, & Urecha, 2018). For instance, Clements 
and Sarama (2003) stated that a set of learning trajectories and framework comprising 
criteria and procedures for creating scientifically-based curricula using those 
trajectories makes it possible to develop an early mathematics curriculum. Vogt, 
Hausera, Steblerb, Rechsteinera, and Urecha (2018) developed play-based pedagogy 
and examined its effectiveness. Further, Worthington and van Oers (2016) note the 
importance of respecting children’s cultural knowledge in play. Unfortunately, in 
Japan, with a different cultural and social environment than in the West, little is known 
about children’s mathematical play and learning. To establish an effective mathematics 
education curriculum, we must understand the way our children learn. Thus, in this 
study, we examine if Japanese children develop their mathematical skills and concepts 
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similar to children from other, primarily Western, studies. We use statistical and 
interpretive analysis of pre- and post-intervention interviews to reveal how Japanese 
preschool children (5–6 years old) respond to mathematics questions. Our research 
questions are: whether and how children improve their performances after the 
intervention; and how the intervention programme affects children’s performance, 
focusing on some outstanding items from the statistical analysis.  
DESIGN AND METHODS 
In an earlier paper, we proposed a framework for constructing an early childhood 
mathematical curriculum (Matsuo, 2016). The theoretical and methodological 
underpinnings of our programme are social constructivism (Ernest, 1994), 
mathematical guided-play (Weisberg, Hirsh-Pasek, & Golinkoff, 2013) and the 
Structure of the Observed Learning Outcome (SOLO) taxonomy (Biggs & Collis, 
1982). This programme presents the scope for the content of preschoolers’ activities, 
while the learning process is explained from the viewpoint of sequence, based on the 
relationship between age and modes of representation and focusing on activities for 
children to create a programme tailored to these concerns. We then proposed a 
mathematical education programme to enable a smooth transition from preschool to 
elementary school (Matsuo, 2017). The aim is for young preschool teachers to 
understand how to incorporate mathematical content into children’s play and recognize 
activities to make children think and act mathematically. For the interventions, we 
developed 6 play-based activities on numbers, measurement, and shapes. For instance, 
regarding numbers, we developed a board game with a die for children to get to know 
about numbers and numerals from 1 to 20. Regarding shapes, we also developed a 
shape game, called ‘making a fish’, in which children were expected to make as many 
patterns of the congruent fishes as possible on a given frame, using congruent coloured 
shapes, such as right angle isosceles triangles, trapezia, parallelograms and squares.  
2 kindergartens in an urban area of Kanagawa Prefecture of Japan participated in our 
pilot study. The children are all Japanese, coming from middle- and upper-middle-class 
families. There were a total of 35 children (28 boys, 7 girls). To evaluate the 
improvement of children’s mathematical skills after these activities, we developed 
pre/post-interview questions. Pre-interviews were conducted in June 2017, and all 6 
activities were implemented twice in the collaborative action research (Raymond & 
Leinenbach, 2000); therefore, 12 activities were implemented after the pre-interview. 
A total of 35 5- to 6-year-old children participated throughout the school year. After 
completion of the activities, a post-interview was conducted with each child in 
February 2018. Both interviews contained 15 common questions. The post-interview 
contained an additional 5 questions on cardinal and ordinal numbers. Among the 
common interview items, 10 were related to numbers, 4 to measurement, and 1 to 
shapes. We designed these questions based on a questionnaire for preschool and 
primary school teachers asking for mathematical contents to teach during preschool.  
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Methodologically, the authors conducted structured clinical interviews (Goldin, 1998). 
To alleviate children’s anxiety, the teachers conducted the interview while one of the 
authors sat nearby, recording. The assigned teachers rehearsed the interviews to 
consistently use mathematical words and expressions. During the implementation, 
each child randomly came to the room. The teacher sat in front of the child. The pre-
interviews took 15–25 minutes, and the post-interviews took 10–15 minutes. We 
analysed the data statistically and used it to observe the children’s actions to determine 
improvement or where there was no qualitative change. The activities for interventions 
were also recorded by DVD camera for additional information to discuss the reason 
for the changes later in the article.  
RESULT OF THE INTERVIEWS 
The interview questions were scored; children received 1 point for every correct 
response and 0 points for incorrect responses. The total score of the common items 
between pre/post-interviews was 15 points. We calculated the participating children’s 
total score in pre/post-interviews and the average percentage for each item. The 
average total pre-interview score was 10.14; that of the post-interviews was 11.40. The 
paired t-test shows statistical significance (p < 0.01, t = -3.683, effect size (d) = 0.780). 
Table 1 shows each item and the average percent of right answers from pre/post-
interviews.  

S/N Questions 

Pre Post 

Mean 
score 

(standard 
deviation) 

Mean score 
(standard 
deviation) 

1 ‘How many marbles do you have?’, preparing 
20 marbles in a container.  

60.0% 

(0.497) 

77.1% 

(0.426) 

2 ‘Read the number shown on a die’, randomly 
showing each face of a die.  

97.1% 

(0.169) 

100% 

(0.000) 

3 ‘Take the same amount of marbles’, showing 6 
faces of a die.  

91.4% 

(0.284) 

100% 

(0.000) 

4 ‘How many numbers are there altogether?’, 
letting children throw 2 dice.  

94.3% 

(0.236) 

94.3% 

(0.236) 

5* ‘Which number on the die is bigger and what is 
the difference between the two numbers?’ 

25.7% 

(0.443) 

68.6% 

(0.458) 
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6 ‘How many apples are there altogether?’, 
showing 10 apples placed in a row.  

91.4% 

(0.284) 

88.6% 

(0.323) 

7 ‘Circle the third apple from the far right’, using 
the same diagram from no. 6. 

71.4% 

(0.458) 

71.4% 

(0.458) 

8  ‘Circle the 4 left-most apples’, showing the 
same diagram from no. 6.  

37.1% 

(0.490) 

48.6% 

(0.507) 

9 ‘How many marbles are there altogether?’, 
showing 2 and 3 marbles separately.  

91.4% 

(0.284) 

100% 

(0.000) 

10 ‘How many marbles remain if you take 1 
away?’, showing 5 marbles in a container. 

94.3% 

(0.236) 

100% 

(0.000) 

11a ‘Take 20 blocks,’ showing a number of them 
on  

their right hand.  
- 

91.4% 

(0.280) 

11b ‘Tell me what the third block from the right is’, 
showing the result of question 11a.  - 

74.3% 

(0.437) 

11c  ‘Tell me the fourth block from the left’, 
showing the result of question 11a. - 

57.1% 

(0.495) 

11d 
 ‘Show me two blocks from the top’ - 

74.3% 

(0.437) 

11e ‘Show me the fifth block from the bottom’, 
showing the result of question 11a. - 

77.1% 

(0.420) 

12 Prepare 4 pencils, each of a different 
length, as shown, and ask, ‘Which do 
you think is the longest? Tell me the 
order from longest to shortest.’  

91.4% 

(0.284) 

100% 

(0.000) 

13* Show 4 pencils, each of slightly different 
length as shown, and ask, ‘Which 
do you think is the longest pencil? 
Tell me the order from longest to 
shortest.’ 

34.3% 

(0.482) 

60.0% 

(0.497) 
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Correspondence Analysis Cluster Analysis 

14 Prepare 4 different rectangles as 
shown, and ask, ‘What do you think 
is the biggest rectangle? Tell me the 
order of the area from biggest to smallest.’ 

91.4% 

(0.284) 

100% 

(0.000) 

15 Prepare 4 different rectangles as 
shown, and ask, ‘What do you think 
is the biggest rectangle? Tell me the 
order of the area, from biggest to 
smallest.’  

42.9% 

(0.502) 

31.4% 

(0.471) 

16 ‘How many triangles are there in the diagram? 
Point them out’, showing a diagram of the 
triangle.  

0.0% 

(0.000) 

0.0% 

(0.000) 

Table 1: The interview items and percentages of the right responses 
MacNemar’s test shows that the result of Q5 and Q13 (marked with an asterisk in Table 
2) showed a statistically significant difference (p < 0.01, χ2=13.067, effect size (𝜑) = 
0.398 in Q5 and p < 0.05, χ2=4.267, effect size (𝜑) = 0.221 in Q13). We inferred that 
the improvement on these questions influenced the significant difference of the 
performance between pre- and post-interviews. 
Statistical analysis 
We investigated semantic similarities among interview items using correspondence 
analysis and cluster analysis, excluding 7 interviews items with average percentages of 
right answers of 0 and 1 (Q2, Q3, Q9, Q11, Q12, Q14, and Q16). Figure 1 shows the 
results of the pre-interview, the correspondence analysis is on the left and the cluster 
analysis on the right.  
 

     
Figure 1: Pre-interview correspondence and cluster analysis 

The numbers correspond to the numbers of the interview items. On the left of Figure 
1, the contribution ratio of the first and second axes are 28% and 23%. In order to group 
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Correspondence Analysis Cluster Analysis 

8 items on the left of Figure 1, cluster analysis was applied, which resulted in the figure 
on the right. One group is Q13 and Q15, and other clusters can be observed. Figure 2 
shows the results of post-interviews with the same analysis of the pre-interviews.  

 

           
Figure 2: Post-interview correspondence and cluster  

By comparison, on the left of Figure 2, the contribution ratios of the first and second 
axis are 32% and 19%. Cluster analysis was applied in the same way as before; the 
items are grouped into Q15 and others. Even though Q13 and Q15 are grouped together 
in the results of the pre-interviews, they belong to different groups in the results of the 
post-interviews. Q13 and Q15 are similar questions regarding measurement; however, 
these results indicate that Q15 may be more difficult for children or that the 
intervention regarding length comparison was effective for children’s learning.  
Specifics about Q13 and Q15  
Q13 and Q15 are both related to measurement area; Q13 is 1-dimensional and Q15 is 
2-dimensional. In the pre-interview, on Q13, only one child tried using paperclips to 
measure the pencils, but did not understand how to use them, while in the post-
interview, 8 children used clips to measure the pencil, known as ‘comparison by 
arbitrary unit’. In Q15, in the pre-interview, 5 children tried using some tools including 
transparent paper, a ruler, and paper, but only one correctly used them to measure the 
rectangles. On the other hand, in the post-interview, 11 children used these tools, 
including grid paper. Only 3 of those 11 reached the correct answer. The children who 
incorrectly measured compared the length and width of rectangles. We also observed 
that even though some children identified the differences of the areas of the rectangles 
at a glance, they incorrectly used the tools and ended up with the wrong answer. We 
inferred that the intervention programme to measure the length and area influenced 
children’s responses in the post-interview, but they were confused about the difference 
between the length and area.  

Measurement activities in the intervention 
It seemed that the intervention programme made an impact on children’s performance 
in the post-interview. Using examples of teaching from the intervention programme, 
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we will now discuss the relationship of the intervention programme to children’s 
performance. In one preschool, a teacher (from the first course) taught the children how 
to measure the length of things carefully using paperclips. They measured different 
items by connecting clips, measuring the edge of the desk, the mat, the height of the 
teacher, and so on. Another teacher taught the second course of the same class; the 
children connected 8 paperclips and then used them to measure shorter objects than the 
ones measured in the first course. After the children used the connected paperclips to 
measure a building block or a box, the teacher asked the children to find objects with 
lengths equivalent to 8 paperclips. Next, they searched for objects with lengths 
equivalent to 16 paperclips. They lined up 16 red magnets and measured them using 
the paperclips. In the area measurement activity, the children measured items using 
arbitrary units. Although the activity was a code-breaking game, the comparison was 
not related to solving the code. When the code was solved, figures whose areas were 
objects for measurement were supposed to be arranged in descending order. A teacher 
directed the children to count the square grids covered in rectangular paper to measure 
their areas. The children copied the target rectangle onto tracing paper, put the tracing 
paper on top of grid paper, and counted the number of squares. The sizes of the 3 kinds 
of rectangles (32, 40, and 48 squares) were relatively large, and the children actively 
counted. Some children made mistakes when counting accurately, and other friends 
helped them. Finally, the paper with a number written on it corresponding to a letter 
was turned in, which solved code. Letters with meaning were arranged in order so that 
the numbers became larger. The same approaches of teaching were observed in both 
kindergartens.  
CONCLUSION 
First, the statistical analysis showed that children improved on the interview items 
regarding comparisons of numbers and quantities, which led to the overall 
improvement of performance in the programme. Second, the intervention programme 
indicated that comparison in 1 dimension was understood well by the children. 
Children learned to use tools to measure, but some incorrectly measured length to 
determine the area of rectangles. On the other hand, the comparison in 2 dimensions 
using arbitrary units, might not be appropriately taught by the teacher, or the content 
to learn measurement in 2 dimensions might not be suitable for the children’s 
developmental stage. We need to investigate the reason carefully in the future. This 
paper has a few limitations: it did not cover the relationship between the intervention 
programme and the results of the interviews in topics other than measurement. In 
addition, the sample size should be larger to more fully understand the effectiveness of 
the programme.  
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FIRST-YEAR UNIVERSITY STUDENTS’ INTERPRETATION OF 
PRAXEOLOGY WHEN SOLVING AN INTEGRATION TASK  

Hans Kristian Nilsen 
University of Agder 

 

From an institutional perspective, this study focuses on first-year engineering students 
at university and their use and justification of techniques when solving a task involving 
integration by parts. Students’ discussions are analysed through observations of group 
work. Despite encouraging the students to justify their techniques, findings indicate 
that the discourse focused on rules and formulas without mathematical justifications. 
Hence, the applied techniques became almost exclusively of pragmatic value, focusing 
on whether or whether not they led to an answer. Further, this suggests that even for 
university students, techniques applied for simple routine tasks in integration, to a 
large extent become “de-mathematicised”. 
INTRODUCTION AND RESEARCH QUESTION 
This study is a part of MatRIC’s (Center for Research, Innovation and Coordination 
of Mathematics Teaching) research activity and focus on Norwegian engineering 
students at their first year at university. During this year, a calculus course is mandatory 
for all the engineering students, and integration is an essential topic in the course. In 
this paper, the goal is to investigate how students interpret the mathematical 
praxeology, when working with a routine task involving integration by parts. Sofronas 
et al. (2011) point to three significant “sub-goals of the integral” as essential for 
students understanding: 1) the integral as net change or accumulated total change, 2) 
the integral as area and 3) techniques of integration (p. 138). By focusing on 
“techniques of integration”, this study is not primarily concerned with whether or 
whether not the students master the techniques, but rather with the discourse and 
students’ justifications of methods and arguments. At the institution in focus of this 
study, mastering integration rules and techniques such as substitution and integration 
by parts, is an important part of students’ curriculum and their final exam. On the other 
hand, the university teacher also expresses the importance of students obtaining an in-
depth understanding of the fundamental concepts and ideas of integration. Hence, a 
relevant issue is if these two aspects imply a kind of contradiction, or if substantial 
mathematical arguments and ideas could be traced also in the work with routine 
integration tasks. Research in mathematics education has generally shown that 
students’ experiences with integration often are limited to techniques and integration 
rules (Grundmeier, Hansen, &, Sousa, 2007; Mahir, 2009; Sherhan, 2015). These and 
similar studies are commonly rooted within cognitive perspectives. Through this study, 
an attempt is made to add to this body of research, by applying an institutional 
perspective, rooted within the anthropological theory of didactics (ATD). In line with 
the introduction above the research question relevant for this study is:  
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What characterizes first-year university students’ interpretation of praxeology when 
solving a task involving integration by parts? 
The term “praxeology” will be explained in the next section, where the ATD 
perspective is accounted for.         
THEORETICAL FRAMEWORK 
The anthropological theory of didactics (ATD), as initiated by Chevallard in the 
eighties (Bosch & Gascón, 2014) offers the possibility of taking institutional aspects 
into account. The mathematical content is in the foreground of the analysis, and 
learning is modelled through students’ activities as “thinking modes are […] seen as 
dependent on the social and cultural contexts where they develop” (Artigue, 2002, p. 
248). In this perspective, a “praxeology” serves as a unit from which one can analyse 
human action, composed be the parts “praxis” and “logos” (Chevallard, 2006). 
“Praxis” consists of a certain type of tasks and a set of “techniques” to solve them, 
while “logos” contains two levels of descriptions and justifications of the praxis. The 
first level is called “technology” and concerns the discourse of the techniques. The 
second level is the “theory” which provides the basis for the technological discourse 
(Bosh & Gascón, 2014, pp. 68-69). Hence, a mathematical praxeology consists of four 
main components: A collection, T, of types of tasks which define the nature and goals 
of the activity, a corresponding collection, τ, of techniques available to accomplish 
each type of task, a technology, θ, that justifies these techniques and a theory, ϴ, that 
justifies the technology (Hardy, 2009, p. 344). 
In this study, the framework described above is combined with “pragmatic” and 
“epistemic” values of techniques. According to Artigue (2002) techniques is of 
pragmatic value if the focus is on their “productive potential” (p. 248). In the case of 
solving integral tasks this could be interpreted to mean a method that works and leads 
to an answer. Techniques associated only with pragmatic values, can hardly belong to 
“logos”, since no attempt of mathematical justification are made. If techniques are of 
epistemic value, the techniques also serve as sources for insight into mathematical 
knowledge. These potential insights could belong both to the “technology” and 
“theory” depending on the content. Further, a “routine task” is here defined as a task 
situated within the context of pure mathematics and that is intended to be solved only 
by using specific procedures. In a mathematical praxeology such procedures belong to 
“techniques”, although techniques in itself is a boarder term, involving all kinds of 
solution strategies. In addition, to be labelled as a “routine” task, this type of tasks 
should be included more than twice in the textbook and at least once on each exam for 
the last three years. In line with Artigue (2009), techniques in terms of being routines, 
run the risk of becoming “de-mathematicised”, which implies detachment from 
mathematical discourses.  
EDUCATIONAL SETTING AND RESEARCH METHODS 
This study focuses on two so-called “study groups” consisting respectively of three and 
four students. One group contained students from the mechatronic engineering 
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program and the other group contained students from the computer engineering 
program. Both the groups attended the same lessons. Organized by the university 
teacher, all the engineering students (about 300) were divided into smaller study groups 
at the beginning of the semester, based on the engineering program that they attended. 
Lessons were held three times a week, each lasting for two hours, and once a week the 
study groups met to work with tasks. The mechatronic students and computer students 
met at different weekdays. One study group from each program was randomly selected 
among those groups who fulfilled the criteria of containing both male and female 
students. To be selected, the study groups also had to volunteer for the research.   
In cooperation with the responsible university teacher, a set of tasks was designed and 
made as a mandatory assignment so that all the students should solve the tasks, 
preferable in their prearranged study groups. We estimated that it should be possible 
to solve the tasks during the two hours they had available in one study group session. 
The task involving integration by parts and that constitutes the basis of the analysis in 
this paper is: “Find the integral: ∫ 2𝑥𝑒.;𝑑𝑥”. In addition, the students were explicitly 
told to argue for their choice of technique. This task is in line with the definition of a 
“routine task” provided in the previous section.  
To catch the details in students’ arguments and solutions, the groups were observed 
with me present as a researcher. The observations were carried out using a voice 
recorder, recording throughout their two hours of work. A camera was used to take 
pictures of students’ notes and drafts during their work. Except from guiding the 
students if they got stuck, I aimed at minimal intervention and took on the role as 
“observer-as-participant” (Wellington, 2015). Carrying out the analysis of the group 
work was done by coding the transcribed voice recordings in accordance with the 
theoretical framework presented in the previous section. 
To be able to account for the mathematical praxeology of the institution, the lessons 
related to integration were videotaped and analysed. In addition, also the textbook and 
the exam tasks for the last three years were analysed. 
ANAYSIS 
This section is divided in two parts: First, based on the observed lectures, textbook and 
earlier exams, the mathematical praxeology of the institution, related to integration by 
parts, will be accounted for. In the second part, observations of students solving tasks 
will be analysed. This structure is to a large extent inspired by Hardy’s (2009) research 
on limits of functions. 
Mathematical praxeology at the institution 
Since the focus of this study is on students’ interpretation of praxeology related to a 
specific task on integration by parts, the overview of the mathematical praxeology at 
the institution will be limited only to contain a type of integration by parts tasks 
relevant to the actual task in focus of the study. The actual task, “Find the integral: 
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∫ 2𝑥𝑒.;𝑑𝑥”, will serve as an illustrative example. Recapitulated, the mathematical 
praxeology is constituted by type of task, techniques, technology and theory.  

Type of task, T (integration by parts): Find the integral ∫ 𝑎𝑥𝑒P(;)𝑑𝑥.  
Description: 𝑔 is a polynomial, and the quotient 𝑔’(𝑥)/𝑥 should somehow contain 𝑥, 
so that substitution cannot be directly applied. There are variants of integration by parts 
tasks, involving both logarithmic and trigonometric functions, but in the textbook and 
lessons the variant above seemed to be taken as the “simplest” type, since it came first 
in the line of examples. For the task in this study, 𝑎 = 2	and 𝑔(𝑥) = 2𝑥.  
Technique τ: From the expression ∫𝑈 𝑑𝑉 = 𝑈𝑉 − ∫𝑉𝑑𝑈, define 𝑈 = 𝑎𝑥	and 𝑑𝑉 =
𝑒P(;)𝑑𝑥. From these expressions, find 𝑑𝑈 and 𝑉. For the task of this study, 𝑈 = 2𝑥 
and 𝑑𝑉	 = 	 𝑒.;𝑑𝑥. Since 𝑑𝑈/𝑑𝑥 = 2, 𝑑𝑈 = 2𝑑𝑥. 𝑉 = U

.
𝑒.;. Hence ∫2𝑥𝑒.;𝑑𝑥 =

2𝑥 ∙ U
.
𝑒.; − ∫ U. 𝑒

.; ∙ 2𝑑𝑥 = 𝑥𝑒.; − U
.
𝑒.; + 𝐶. In the lessons, alternatives to the 

textbook notation above were offered, in terms of writing 𝑢’ instead of 𝑑𝑢/𝑑𝑥. The 
equation then becomes ∫𝑢 𝑣′𝑑𝑥 = 𝑢𝑣 − ∫𝑢′𝑣𝑑𝑥.  
Technology θ: From the textbook, in terms of various tasks and examples, the students 
could be expected to consider integration by parts if the integrand consists of two 
factors, where one factor is composed of two functions, involving for example Euler’s 
number, 𝑒. Arguments for substitution not to be appropriate in these types of tasks, will 
also in some sense count as an argument for integration by parts due to the limited 
number of alternatives. Various arguments could be made for applying integration by 
parts and the textbook suggests to “look for a factor of the integrand that is easily 
integrated” (Adams & Essex, p. 335). Further, on the same page, it is argued that the 
choice of 𝑈 and 𝑑𝑉 should be made so that 𝑉𝑑𝑈 is easier to integrate than 𝑈	𝑑𝑉. In 
lessons, and in line with the notation used there, it was suggested that 𝑢 should be 
chosen so that 𝑢′ “turns out to be simpler” than 𝑢, and that 𝑣 should be chosen so that 
the integral of 𝑣 does not become “more complex” than 𝑣.  
Theory ϴ: Integration by parts rests on the product rule for differentiation, which in 
turn depends on the fundamental theorem of calculus. The product rule and the 
fundamental theorem of calculus have been treated both in teaching and in the 
textbook. 
Students’ solutions 
The task “Find the integral: ∫ 2𝑥𝑒.;𝑑𝑥”, forms basis of the analysis of students’ 
discussions. The students were verbally told to argue for their techniques, and to justify 
why they were appropriate to use. Group 1, consisting of Chris, Megan and Sue 
immediately started the search for solution strategies. 

Megan:  But if we put u as two x, then you have u times e to the power of u 
Chris:  du equals two dx. Then we have e to the power of u, but when you have x 

in front here 
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Megan:  You put u in front, because you have two x which is u 

Magan’s statement indicates substitution as “e to the power of u” is suggested. This is 
followed up by Chris in the next line, indicating that “du” equals “2dx”, but this 
argument is not traceable further in the discussion, as it proceeds. Based on Megan’s 
last statement, the expression 𝑢𝑒[ was established as the new integrand, and further 
just treated as 𝑥𝑒;.  

Sue:  Here we have a sweet little expression. It says the integral of x times e to 
the power of x.  

Chris:  If you look at page 335 it is almost exactly the same expression. 

Sue found this formula in the list from the textbook’s formula section which states that 
∫ 𝑥𝑒;𝑑𝑥 = (1 − 𝑥)𝑒; + 𝐶. Chris refers to an example in the textbook (at page 335) 
where ∫𝑥𝑒;𝑑𝑥 is solved. Since the textbook uses this as an example to illustrate 
integration by parts, Sue seemed to take this into account as she proceeded.  

Sue:  Yes, u times the derivative of v equals u times v minus the integral of the 
derivative of u times v.  

Sue read the integration by parts expression directly from her own lecture notes and 
concluded that one had to find a 𝑢 and a 𝑣. She then continued by giving an argument 
for what such choices should be. 

Sue:  The way NN writes this in lectures and such is that if it is stated like this, 
then you take two x as u, and then this [points to 𝑒.;] is the derivative of v. 
Do you get it?  

Sue’s argument consisted only of a reference to how their university teacher normally 
chooses 𝑢 and 𝑣’.  
Group 2, the data engineering students, consisted of Steve, Seth, Tom and Emily. They 
approached the task in similar terms as group 1.  

Emily:  We have one, two, at least, so I think we must do such substitution by u and 
such. 

Her argument seems to be related to the number of factors in the integrand. Although 
the group seemed to agree on this method, they were not sure what to substitute. The 
content of the discussions changed, as Steve looked to the formula section of the 
textbook for a suitable formula. 

Steve:  We have two x, can we then use 2?  
Seth:  We can 
Steve:  Because if we can, we can put 2 and then we get it, but I do not know if we 

can […]. Does it matter what we take it as the power of? Because the 
derivative of e is just e anyhow […] Does it then becomes two times x 
minus one, times e to the power of two x, plus c? 
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From the context, it seems like Steve’s first comment referred to the exponent of 𝑒 and 
whether or whether not the factor of two influences on the integration. Due to the 
exponent being 2𝑥, he was then applying the formula∫𝑥𝑒;𝑑𝑥 = (𝑥 − 1)𝑒; + 𝐶 to 
achieve (2𝑥 − 1)𝑒.; + 𝐶 as a possible answer. To check the answer, Seth put forward 
the following argument:  

Seth:  I used that formula […] and I took the derivative and got what we started 
with.  

Seth used the formula Steve came up with as a starting point, but he replaced the factor 
(2𝑥 − 1) with (𝑥 − 1). He then applied the product rule for differentiation (𝑢𝑣)′ =
𝑢′𝑣 + 𝑢𝑣′ on the expression (𝑥 − 1)𝑒.;, letting 𝑢 = 𝑥 − 1 and 𝑣 = 𝑒.;. This left him 
with 1 ∙ 𝑒.; + (𝑥 − 1) ∙ 𝑒.; ∙ 2. When the expression was simplified he performed an 
error when multiplying with the factor 2, as he treated the expression like (1 ∙ 𝑒.; +
(𝑥 − 1) ∙ 𝑒.;) ∙ 2. By differentiating his solution, he seemingly arrived at the 
integrand. This eventually also convinced the rest of the group.  
DISCUSSIONS 
In both groups the type of task initially was interpreted to concern substitution, and not 
integration by parts as intended. For group 1, the discussions were limited to investigate 
what happened if 2𝑥 was replaced by 𝑢, which led them to the expression 𝑢𝑒[ as the 
new integrand. In their new integrand, 𝑢 was replaced with 𝑥, based on the notation in 
the list of formulas. The contradictions in the double shift, 2𝑥 → 𝑢 and 𝑢 → 𝑥 were not 
considered. In group 2, Emily briefly linked the use of substitution to the number of 
factors being “at least two”. Although further elaborations were lacking, this argument 
is categorized as technology, since it indicates elements of mathematical justifications. 
Another part of the discussion was concerning 2𝑥 as the exponent of 𝑒, and if the 
formula could be applied also in the case of 2𝑥𝑒.; as the integrand, instead of 𝑥𝑒;. 
Seth’s testing of the answer by differentiation is also categorized as technology, even 
though a calculation mistake led him to an incorrect conclusion. Sue and group 1, 
eventually arrived at a correct interpretation of the type of task but no mathematical 
arguments were put forward by Sue nor the others to substantiate this assertion. The 
choice of 𝑢 and 𝑣’ was justified only by referring to their university teacher. The figure 
below summarizes the findings for both groups. 
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Figure 1: Students interpretation of praxeology in the case of the actual task 
From the excerpts one can observe that students’ use of techniques and their discourse 
are characterized by referring explicitly to sources in terms the textbook, the list of 
formulas and the lessons. With the exception of Seth’s argument for applying the 
formula, the techniques appeared only to be of pragmatic value and the question of 
what might “work” or not dominated the discussions. Questions of why the techniques 
works were absent and the lack of mathematical justifications persisted throughout the 
dialogues.   
CONCLUSIONS 
In line with the claim of Artigue (2009), this study strengthens the assumption that 
techniques characterized by routines run the danger of becoming “de-mathematicised”. 
Despite the “simplicity” of the task and the fact that integration by parts should be 
familiar to all the students due to required background knowledge, the type of task was 
incorrectly interpreted by both groups. Detachment from mathematical arguments and 
justification persisted, even though the students explicitly were encouraged to justify 
their techniques. Hence, the logos of students’ praxeology suffered, both with respect 
to technology and theory. Since other types of integration tasks in the assignment (not 
focused on in this paper) created considerably more sophisticated mathematical 
discussions, it seems like the shortcoming of logos primarily is linked to the type of 
tasks. In other words, for routine tasks in integration, the students seem to hold a belief 
that mathematical justifications are not expected. 
Since “techniques of integration” could be regarded as one of three significant areas in 
the topic of integration (Sofronas et al., 2011), the solution is probably not to omit these 
types of tasks completely. Changing institutionalized norms calls for awareness and 
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the willingness to modify certain kind of practices. One suggestion might be to slightly 
reformulate these types of tasks, for example from “Find the integral…” to “Find the 
integral and explain why your method works”. Another possibility is to combine 
several routine tasks and ask for similarities and differences, or to look for patterns in 
the different solutions. If solutions of some types of tasks consequently are withdrawn 
from the expectancy of mathematical justifications, this might imply some educational 
drawbacks. For example, techniques without justifications could be perceived of as 
meaningless by the students. In turn, this might leave the impression of “having to do 
math just to get the diploma” as one of the students said as a joke during the work with 
these tasks. Further, such views could prevent engineering students to see mathematics 
as valuable for their future careers.    
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AUTHENTIC HI-TECH PROBLEMS IN SECONDARY SCHOOL 
MATHEMATICS 

Ortal Nitzan, Doron Orenstein, Zehavit Kohen 
Israel Institute of Technology, Technion 

 

The current study investigates Authentic Hi-Tech – AHiT math problems which were 
retrieved from the Hi-Tech industry and simplified for formal secondary school math 
lesson. We first characterize the AHiT math problems according to Schoenfeld's 
framework of problem solving. We then investigate the perceptions of two stakeholder 
groups: math experts and policymakers and math teachers with respect to the 
characteristics of the AHiT math problems and their feasibility. Based on the Delphi 
methodology, we employed two stages for analysis: an open-ended questionnaire to 
interview ten stakeholders, and subsequently a Likert-type questionnaire for collecting 
data from 40 stakeholders. Main results suggest two aspects that underlie the use of 
the AHiT math problems: the benefit for learners and the problem characterization. 
INTRODUCTION AND THEORETICAL BACKGROUND 
One of the biggest challenges secondary school teachers face when teaching math, is 
keeping students interested and motivated (Harackiewicz, Smith, & Priniski, 2016). 
Too often, school math problems are disconnected from everyday experiences, and 
students frequently ask why they should learn math (Battin-Pearson, et al., 2000). 
Integrating authentic problems in class has the potential to improve students’ 
motivation and understanding, as well as helping teachers create inspiring lessons 
(Dori, Avargil, Kohen, & Saar, 2018). 
The advantages of using authentic problems in schools is well-established and is 
considered a successful pedagogy, commonly used in Science, Technology, 
Engineering and Mathematics – STEM studies (Habig et al., 2018). Yet, for most 
studies, this method is not focused on mathematics as a stand-alone body of knowledge. 
Moreover, when implemented, it is used in primary school math studies, or in informal 
settings (Van-den Heuvel-Panhuizen & Drijvers, 2014), mainly because when moving 
on to secondary school, the math content material becomes complex and hard to 
demonstrate using students’ daily life scenarios (Imm, Fosnot, Dolk, Jacob, & 
Stylianou, 2012). 
The current study characterizes authentic mathematics problems for secondary school 
based on the theoretical framework developed by Schoenfeld's (1985). The framework 
provides the knowledge and behaviour necessary for an adequate characterization of 
mathematical problem-solving performance. For the purpose of the study, we focus on 
two of the criteria that are related to the knowledge required for problem solving, nor 
the processes of problem solving and performance in class: a) Resources – which refer 
to mathematical knowledge that is brought to solve a math problem, and includes the 
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following: Intuitions and informal knowledge regarding the domain; Facts; 
Algorithmic procedures; "Routine" non-algorithmic procedures; and Understandings 
(propositional knowledge); and b) Heuristics which are the strategies and techniques 
necessary for effective problem solving, including the following: Drawing figures and 
introduction suitable notation; Exploiting related problems; Reformulating problems; 
working backwards; Testing and verification procedures (Schoenfeld, 1985, p. 15). 
However, the implementation of authentic math problems for secondary school might 
be captured differently by various stakeholders, in terms of the correspondence 
between the problems' characteristics to standard math curriculum, as well as their 
willingness to use such problems in class. For example, novice teachers tend to struggle 
most with the challenge of stick to the curriculum (Borko, 2004), thus might be seen 
the authentic problems as not corresponding with secondary school curriculum. 
Alternately, veteran teachers are more tradition and might be more resistant to changes 
and new materials, such as the use of authentic problem (Gainsburg, 2012; Remillard 
& Bryans, 2004). 
RESEARCH QUESTIONS 
The Research questions are: 1) What are the characteristics of authentic math problems, 
targeted for secondary school mathematics?; 1.1) Is there a difference between various 
stakeholders in their perceptions regarding the characteristics of authentic math 
problems?; and 2) Is there a difference between various stakeholders in their 
perceptions regarding the feasibility of authentic math problems integration in 
secondary class? 
METHODOLOGY 
The context of the study 
The study investigates authentic mathematics problems that were developed as part of 
an extensive research conducted in the Faculty of Education in Science and 
Technology at the Technion. Taken from authentic scenarios from the Hi-Tech 
industry (hereafter: Authentic Hi-Tech – AHiT), we simplified problems that were 
solved by Hi-Tech employees (inventions as well as regular work problems), for use 
by teachers in formal secondary school math lessons. For example, engineers in the 
Hi-Tech industry who develop the platform for YouTube video clips try to ensure that 
the video flows smoothly and not get stuck while playing. Thinking of the two marks 
that appear at the bottom of the YouTube video screen, makes this problem analogous 
to the classical algebra question that starts with “One tap fills a pool. The other one 
empties it, what will happen?”, as the Video Loading mark is analogous to pool filling 
and the Video Watching mark is analogous to emptying the pool. Clearly, the classical 
problem taken from the math textbooks is inapposite to students' real-life experiences, 
compared to watching a YouTube video clip that students are exposed to everyday. See 
Figure 1 for illustration for this problem. 



Nitzan, Orenstein & Kohen 

PME 43 – 2019                                                                                                        3 –  
 

139 

 

Figure 1: Illustration of an AHiT mathematics problem 

The study focuses on four AHiT math problems from different fields of mathematics 
(algebra, geometry, and trigonometry) that were converted to teaching units for 
secondary school mathematics, in a format of a 15-min presentation that includes a 
short and simple explanation about the AHiT problem (simplification of key concepts), 
and mathematics exercises related to the AHiT problem, based on secondary school 
math curriculum. One of the teaching units in the field of Algebra was based on the 
YouTube problem that is illustrated above. 
Participants and procedure 
The study is based on the Delphi methodology (Murry & Hammons, 1995). This 
methodology is based on responses retrieved iteratively by anonymous group 
interactions. This methodology was chosen for the current study, since it is well suited 
for studies with incomplete knowledge about a problem or phenomenon (Skulmoski, 
Hartman, & Krahn, 2007), such as the characterization of AHiT math problems 
according to the problem-solving framework proposed by Schoenfeld (1985). 
The iterative process for characterizing the AHiT math problems using the Delphi 
methodology was as followed. In the first stage, we used an open-ended questionnaire 
to interview ten stakeholders in the mathematical field: experts and policymakers 
(N=5), and teachers (N=5); In the second stage, we converted the collected information 
into a Likert-type questionnaire, which served as a survey instrument for collecting 
data from additional 40 stakeholders. 
Research tools 
The open-ended questionnaire was composed of two parts, aimed at responding the 
two research questions: the characterisation of the AHiT math problems, and the 
feasibility of the integration of AHiT math problems in secondary class. The first part 
includes questions based on the two criteria of Schoenfeld framework: Resources, e.g. 
relating to 'intuitions and informal knowledge regarding the domain', we asked: "what 
information is intuitive and what requires explanation and clarification?", and 
Heuristics?, relating to 'exploiting related problems', we asked: "is the analogy given 

Video loading mark Video viewing mark 
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to the problem sufficient?". The second part of the questionnaire includes questions 
based on the SWOT (Strength, Weakness, Opportunity, and Threat) methodology, as 
it provides an objective tool for critical perspective (Thomas, Chie, Abraham, Jalarajan 
Raj, & Beh, 2014). For example: To what extent can this problem be of interest to 
students? [S]; What are the difficulties teachers may face when implementing the AHiT 
problems? [W]; What can help encourage teachers to use such problems during class? 
[O]; What external factors can impair the implementation of AHiT problems? (T). 
The Likert-type questionnaire was composed of 30 questions on a scale from 1 (to a 
low extent) to 5 (to a high extent). The questionnaire was built according to the 
responses retrieved from the open-ended questionnaire and was phrased generally to 
adjust all AHiT problems as following detailed in the data analysis section. For 
example, with respect to the question of "is the analogy given to the problem 
sufficient?", we got responses such as 'In the YouTube problem, the analogy presented 
to a pool filling problem is excellent, but I would have preferred an analogy to a traffic 
problem (speed, time and distance calculation), which is more intuitive'. Therefore, a 
quantitative related question was phrased: "to what extent do you find the analogue 
that is presented in the AHiT problem as intuitive to students'?" 
Data analysis 
For analysing the open-ended questionnaire responses, we used the thematic analysis 
(Braun & Clarke, 2006) for encoding each statement to various categories that 
represent general characterisation of the AHiT problems, i.e. by disconnecting the 
response from the specific problem context. A recursive process of this analysis was 
repeated by two experts in mathematics education until reaching 90% agreement for 
all statements, with inter-rater reliability of κ = .83. After the categories were 
determined and validated, we calculated the frequencies of statements associated to 
each of the categories. We then compared the frequency of statements within each 
category for examining the differences (if any) between the various stakeholders, 
regarding both the characterisation of the AHiT math problems, and the feasibility of 
the integration of AHiT math problems in secondary class. 
For analysing the Likert-type questionnaire data (to be analysed and presented at the 
PME conference), One-Way MANOVA tests will be used to examine the differences 
between the perceptions of the various stakeholders, according to the two parts of the 
questionnaire. 
RESULTS 
For investigating the characterisation and feasibility of AHiT math problems, and 
difference between the various stakeholders from the mathematical field: experts and 
policy makers, vs. teachers, we present the classification of categories retrieved in this 
study for the different criteria, based on the two parts of the open-ended questionnaire. 
In order to focus our discussion of the findings, we present the most frequent category 
for each criteria as a representative example. Table 1 demonstrates the categories that 
arose for the characterisation of AHiT math problems, and Table 2 demonstrates the 
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categories that arose for the feasibility of the AHiT math problems for their integration 
in secondary class. 

Criteria (by 
Schoenfeld, 

1985) 

Sub-criteria (by Schoenfeld, 
1985) 

Examples of categories retrieved in this 
study 

Experts and policy 
makers 

Teachers 

Resources Intuitions and informal 
knowledge regarding the 
domain 

Suitable for high-
level students 

Suitable for high-
level students 

Facts, rules and Algorithmic 
procedures 

Be precise in 
sketches 

Be precise in 
sketches 

"Routine" nonalgorithmic 
procedures 

Suitable as a 
summary, 

enrichment or 
research question 

Suitable as a 
summary or 
enrichment 

Heuristics Drawing figures; 
introduction suitable 
notation 

The use of dynamic 
illustrations 

The use of dynamic 
illustrations 

Exploiting related problems Using a relevant 
analogy and a story 
that will motivate 

students 

Using a relevant 
analogy and a story 
that will motivate 

students 
Testing and verification 
procedures 

Using real scale in 
building the 

mathematical 
problem 

Attach a student help 
page 

Table 1: Characterisation of AHiT math problems, based on Schoenfeld's framework 
According to Table 1, all stakeholders see the AHiT problems as being compatible with 
the sub-criteria that arose from Schoenfeld's theoretical framework. Additionally, it 
was found that the perceptions of the two stakeholder groups were consistent for most 
sub-criteria. Differences were found with regard to the Testing and verification 
procedures sub-criteria, in which teachers' perceptions were targeted to the aspect of 
learning at the classroom, as opposed to the experts' perceptions which were targeted 
to the characteristics of the mathematical problem itself. Another difference was 
revealed in the "Routine" nonalgorithmic procedures sub-criteria, when experts and 
policy makers saw the AHiT problems as encouraging research, as opposed to teachers 
who did not raise this point. 

Criteria Examples of categories retrieved in this study 

 Experts and policy makers Teachers 

Strength Authenticity and relevancy Increasing students' motivation 
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Weakness Convincing teachers that they are 
able to use the AHiT problems 

Teachers' lack of confidence to 
explain the related scientific 

knowledge of the AHiT problems 

Opportunity Teacher training sessions Teacher training sessions 

Threat Availability of teachers Conservative view of the 
education system and the teachers 

Table 2: The Feasibility of AHiT math problems integration in secondary class, based 
on the SWOT methodology 

According to Table 2, in general, the view of the various stakeholders regarding the 
feasibility of AHiT math problems was found to be different. With regard to Strengths, 
it was found that similar to the difference between the stakeholders described above 
(Table 1), teachers emphasized the learner's aspect, while the experts and policy 
makers emphasized the characteristics of the AHiT math problem itself. Another 
difference was found in both sub-criteria the Weaknesses and Threats, so that the 
teachers' attitude was negative (teachers' lack of confidence and lack of flexibility in 
the system), while the experts and policy makers demonstrated a positive attitude 
(belief in teachers' ability to assimilate the problems). However, the two stakeholder 
groups agreed on the need to train teachers so that the use of these AHiT math problems 
would indeed provide an opportunity for success. 
DISCUSSION 
The current proposal presents initial research results for the first stage of the Delphi 
methodology, which analysed the open-ended responses retrieved from ten 
stakeholders in the mathematical field [Extended results for the second stage of the 
Delphi methodology for a sample of 40 stakeholders from the mathematics field will 
be presented at the PME conference].  
For the first research question, the results indicate that the AHiT math problems 
correspond with Schoenfeld's framework for problem-solving. Specifically, all 
stakeholders referred to two aspects that underlie the use of the AHiT math problems: 
the learner aspect and the characterization of the math problem. For the learner aspect, 
an agreement was revealed with respect to the importance of adjusting the AHiT math 
problems to the mathematics level of the students and using a relevant analogy for 
motivating the students; for the characterization of the AHiT math problem, an 
agreement was revealed with respect to the importance of preciseness in the definition 
of the problem and sketches, the use of dynamic illustrations, and the relevance of the 
AHiT problem to the learning unit. Yet, partially, the math teachers emphasized more 
the learner's aspect, while the math experts and policy makers emphasized more the 
characteristics of the AHiT math problem. 
For the second research question, our findings indicate that all stakeholders view the 
Strengths and Opportunities positively, which means that they agree on the high 
feasibility of the AHiT math problems. However, the two stakeholder groups grasp the 
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Weakness and Threat of the AHiT math problems differently, as the teachers find the 
criteria mentioned as inhibiting factors, while the experts and policy makers find these 
factors as more of an opportunity. 
Overall, according to various stakeholders from the mathematics field, the AHiT math 
problems have the potential to increase students’ interest and motivation for 
mathematics learning, due to the authenticity and relevancy of these problems to 
students’ everyday experiences (Battin-Pearson et al., 2000), thus can help teachers 
create inspiring lessons. However, as the participants in this study mutually agreed, 
teachers should be trained in order to efficiently use the AHiT math problems. This is 
a subject for future researches. 
Moreover, due to research conducted in the STEM field regarding authentic problems 
and their effect on students’ understanding (Dori et al., 2018), we suggest to focus on 
students as the main participants for further research. The use of AHiT math problems 
suggests an innovative method to demonstrate daily life scenarios for secondary school 
students, which are uncommonly used in regular secondary math classes (Imm et al., 
2012), thus have the potential to attract more students to engage in high-level 
mathematics (Harackiewicz et al., 2016). 
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A CONSIDERATION OF TECHNOLOGY WITH ROWLAND’S 
KNOWLEDGE QUARTET FRAMEWORK  

Greg Oates, Rosemary Callingham, Ian Hay  
University of Tasmania 

 
This paper reports on a study that seeks to examine changes in teachers’ knowledge 
for teaching mathematics across the curriculum years using Rowland’s Knowledge 
Quartet Framework (KQ). The observations reported here come from a Year 9 
Australian classroom using integrated technology. The findings suggest that 
technology can impact on teacher knowledge within each of the four components 
considered in the Rowland’s framework, with a particular focus on contingency. The 
study supports the potential of the KQ framework for deepening in-service teacher 
knowledge at the secondary level and suggests further research is needed to consider 
the extension of the model to incorporate the role of technology within its framework. 
BACKGROUND 
Teachers’ knowledge for teaching mathematics has been a focus of attention in 
educational research for many years (e.g., Ball, Thames, & Phelps, 2008; Rowland, 
Turner, Thwaites & Huckstep, 2009). The project from which this paper originated was 
designed to extend the examination of teachers’ knowledge for teaching mathematics 
from the primary context to all levels of the curriculum and to consider changes in the 
ways in which teachers drew on their subject and pedagogical knowledge as the subject 
became more specialised and advanced. The project had two phases and the previous 
phase, based on focus groups, has been reported earlier (Callingham, 2015; Chick 
2015). These focus groups were followed by classroom observations in primary and 
secondary classrooms in New Zealand and Australia. The observations were video-
recorded and field notes taken for later analysis. This paper reports on one such lesson 
in a Year 9 Australian class which made extensive use of technology.  
THEORETICAL FRAMEWORKS 
The Knowledge Quartet  
Many studies have developed models to describe the components of pedagogical 
content knowledge (PCK) identified in Shulman’s (1987) seminal framework for the 
specialised form of knowledge needed by teachers. Ball et al. (2008), for example, 
explored the relationship between mathematics subject matter knowledge and PCK, 
concluding that there was a need to map PCK in greater detail and not to take it for 
granted in teacher preparation courses. Although linked to Shulman’s (1987) research, 
Rowland and his colleagues (Rowland et al., 2009; Rowland, 2013) developed a 
framework for the classroom analysis of teachers’ behaviours and practices using 
grounded theory, which they have called the Knowledge Quartet (KQ). Based on 
observations of novice pre-service teachers of mathematics in English (UK) primary 
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and middle school classrooms, they identified four components: Foundation, 
Transformation, Connection, and Contingency. Foundation is concerned with the 
extent of mathematical knowledge whereas the other three components focus on the 
processes of using that knowledge. A detailed description of each component can be 
found in Rowland (2013), but in brief: 

• Foundation is based in the teacher’s beliefs about and understandings of 
mathematics itself; 

• Transformation is concerned with the ways in which teachers transform their 
foundation mathematical knowledge into pedagogical actions; 

• Connection addresses the cohesion within the mathematical ideas, and the 
extent to which a teacher makes the links explicit; 

• Contingency has a focus on unanticipated classroom events and a teacher’s 
subsequent decisions, the teacher’s capacity to “think on one’s feet” 
(Rowland, 2013, p. 26). 

These are not siloed but manifest in different and interacting ways; for example, as a 
result of contingent decisions, connection and transformation may be observed.  
However, while we explicitly acknowledge that the Knowledge Quartet framework is 
innovative and that it has the potential to provide a “fresh lens” in the analysis of 
teacher’s classroom practices, there is uncertainly of its generalizability outside of the 
context in which it was developed (novice-primary teachers in the UK). How might it 
be used in other curriculum areas? How applicable is it at higher secondary levels or 
what value does it have in examining the practice of expert teachers? A review of the 
analysis of lessons (i.e., Rowland et al., 2009) indicates that the pre-service teachers 
were operating within a traditional teacher led instructional paradigm with the teacher 
talk the main medium of instruction. This study seeks to question how the framework 
might change for example in a student-centred, technology-rich classroom. 
Technology in the Mathematics Classroom 
The effect and value of technology in the mathematics classroom has been widely 
investigated, but its consideration within the KQ-framework seems less well explored. 
Thomas and Hong (2013) have extended the PCK-model (Shulman, 1987) to develop 
a model for Pedagogical Technology Knowledge (PTK), also characterised elsewhere 
as TPACK (Mishra & Koehler, 2006). The model described in Figure 1 suggests that 
PTK might help inform the KQ, for example knowledge and orientations within 
Foundation and instrumental genesis (see Artigue, 2002) under Transformation. 
Thomas and Hong (2013) lend support to the potential of their PTK model to inform 
the components of the KQ, when they state that:  

A teacher's PTK applied to mathematics includes the principles, conventions and 
techniques required to teach mathematics through the technology (Thomas & Hong, 2013, 
p. 69). 
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Figure 1: A Framework for PTK (Thomas & Hong, 2013, p. 70). 
Stacey (2003) believed technology can impact significantly on the value of 
mathematical content and knowledge. She suggested, for example, that teachers should 
consider the heuristic value of content for making connections, especially to future 
concepts, reflecting what Ball et al. (2008) described as horizon knowledge and linking 
to the Connections component of the KQ (Rowland, 2013). Technology has also been 
shown to act as a mediator of learning, connecting students, teachers in the learning 
process (Goos, Galbraith, Renshaw & Geiger, 2003). Their findings suggest potential 
implications for the role of technology within all four components of the KQ. 
This paper thus uses the KQ framework (Rowland, 2013) as the basis for its analysis, 
and seeks to identify the influence of technology within this framework. While this 
study shows evidence that technology may influence teacher knowledge within all four 
components of the Rowland’s framework, this paper focuses predominantly on one 
teacher’s contingency in a technology-rich classroom.  
THE RESEARCH CONTEXT 
The research for this paper took place in an independent (non-government, non-
denominational) Australian school (boys only). It offers education from Years 5 
through to 12 with the school identified as being in a high socio-economic band by 
Australian standards and making use of digital learning practices. Permission to 
conduct the research was provided by the relevant University and school ethics 
processes. The school administration selected the mathematics lessons to be observed 
based on timetabling availability of the day of the visit and the willingness of teachers 
to participate. Teachers were asked not to prepare a special lesson but to go about their 
regular teaching. Researchers took notes from brief conversations with the teachers 
before and after the lesson, to determine where this lesson fitted in with their overall 
teaching plan and the nature of their students, so the researchers might better interpret 
the progression of the lesson and the teachers’ actions. Participating teachers were then 
given a lapel microphone that was wireless linked to a single portable tripod-based 
video camera set up in the back of the room. Two researchers were involved with the 
lesson recording, allowing one person to focus on the recording and the other on taking 
notes. Students were introduced to the researchers and the nature of the research briefly 
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described; there was no other interaction between the researchers and students. 
Recordings were transcribed identifying the teacher and generic student contributions. 
The class on which this paper reports was Year 9 class of 25 boys, seated in groups of 
four or five students around circular tables. The teacher was an experienced registered 
teacher of secondary school mathematics with a degree in maths and science and a 
postgraduate university qualification in Education. She had taught mathematics at the 
school for more than 5 years and the lesson occurred towards the end of the school year 
so the teacher knew her students well. There was some flexible grouping of students 
by ability at each table; for example the teacher noted that a few boys were not 
confident in maths and tended to wait for confirmation before they progressed with the 
activity. She had placed a few boys who were stronger in maths who could act as 
informal peer helpers to the other boys at their table, and boys were encouraged to 
work in their groups, to talk about the problems and check their answers. 
Each student used a tablet-laptop computer (i.e. a laptop with the facility to write on 
the screen), connected to the internet and the school’s e-portal, which provided access 
to the particular lesson and enabled students to revise and review past content. The 
teacher used a tablet and a large large-screen television monitor at the front of the room 
as her instructional focus point, connected through the e-portal to students’ lap-top 
computers. At different times she brought the class group together and used the screen 
to explain something to the whole group or to have the students review the problem 
under investigation and its “solution”. Each student could access different packages of 
activities from their laptops depending on his ability and progress. Although the teacher 
could monitor all laptops from the front, she mostly moved around the room talking to 
students in groups and individually. 
The lesson observed for this paper was a 60-minute part of a statistics unit the teacher 
had been developing for the last two weeks. After a brief review of previous work by 
the teacher, the students worked individually and in their groups through a set of 
prepared activities and problems. The problem the teacher intended was finding 
probabilities using two-way tables and Venn diagrams, which could be interactively 
manipulated using the software. For example, students were asked to find the 
probability a given student was studying Civil Engineering in an Engineering School, 
given that she was female. Each student received randomly generated numbers for the 
size of the school, classes and numbers of girls, so discussions were forced to be about 
procedures and concepts. Although formal statistical notation was used in the learning 
platform, at this early stage students’ solutions were largely given through data-entry 
into tables and construction of the Venn Diagrams themselves. The software indicated 
if a student’s answer was correct and the e-portal monitored their progress.  
LINKING THE LESSON TO THE KQ FRAMEWORK  
The transcripts provided rich examples of the teacher’s practice in each of the four 
components of the KQ framework. Here we provide evidence within each but focus 
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mainly on the Contingency component as the examples here we found especially 
interesting in respect of the observable technology effects. 
Evidence of Foundation 
The teacher’s foundation knowledge of where this lesson sat within the probability unit 
was clear and she made this explicit both to the students during class and the 
researchers in the pre- and post-lesson conversations. After the lesson, she talked about 
where she wanted the students to be with respect to the curriculum and students’ 
understandings of probability, and she a clear goal in this respect. She was aware of 
the other curriculum areas involved such as proportional reasoning and fluency in 
converting fractions, ratios and decimals, and during the lesson realised she needed to 
revise probability notation. Her foundation knowledge also extended to her ability to 
adapt and work with the technology. A number of times she looked on her tablet-screen 
and was able to quickly navigate around each of the groups to alter her teaching and 
provide differential instruction to the diverse groups: 

Group A  ...look back on to last week’s lesson where we set out the Venn diagram, 
use that as a model for this problem…  

Group B Student X, can you explain to Student Y how you found your answer? 
Group C  …rather than do problem 2 and 3 try question 4 as it may be more 

interesting one for you. 

The teacher articulated her deep foundation knowledge with respect to her philosophy 
of education; for example she talked about the long-term advantages of allowing the 
student to, at times, struggle but also encouraging them with “doable” problems that 
would, over time, make the students more resilient and enhance the students’ own 
mathematics self-efficacy. She knew that some of the students were struggling with the 
task, and the temptation was to “rescue” some of the groups and do all the thinking for 
them. Rather, aided by the technology, she scaffolded the learning, for example by 
inviting students to go back and review the setting out from previous lessons, or 
adapting the task with simpler numbers.  
Evidence of Transformation 
This dimension was notably evident in several ways, for example in the preparation 
the teacher put into the lesson, with a focus on transforming the content to the specific 
needs of the different students. The technology operating in this maths lesson helped 
in this transformational process because the classroom portal enabled the boys to work 
on activities and review these at home in preparation for the next lesson. Technology 
also allowed the teacher to cater for individual differences in the learning needs of her 
students. Another element of transformation seen in this lesson was the development 
of the boys’ skills to represent their answers in different visual and mathematical forms, 
for example constructing and interpreting Venn diagrams, and extending and 
transforming what students already know about fractions, ratios and decimals to their 
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use in probability contexts. Technology was used in this sense to scaffold the students’ 
use of formal notation, building on their prior knowledge.  
Evidence of Connection 
The teacher made explicit references to connecting mathematical ideas, for example 
explaining to the students the value of this knowledge as a basis for more advanced 
future work. The purpose for doing the mathematics was connected to a wider 
understanding of mathematics as a discipline rather than just a set of unrelated 
activities. This awareness and modelling of connections by the teacher exhibit what 
Ball et al. (2008) described as Horizon Knowledge, and also demonstrated the teacher’s 
perception of the heuristic value of the topic (Stacey, 2003). The e-learning platform 
and the group arrangements facilitated the students’ connections with the mathematics, 
for example in using the “think-pair-share” strategy to encourage them to talk and 
reflect more on the task. The learning platform itself helped the students to make 
connections across multiple representations, by presenting these together in one 
window in a cohesive and interactive manner.  
Evidence of Contingency 
An important observation here is that aside from the introduction and wrap-up of the 
lesson (both less than five minutes), the teacher spent very little time speaking to the 
class as a whole which was common practice for the novice teachers with contingency 
in the Rowland studies (2013). The use of the technology made it easier for her to 
monitor students’ progress, detect issues that might require decisions or be seen as 
teaching moments, and when appropriate, to deviate from an agenda set out when the 
lesson was prepared. She was thus able to deal with problems that arose more 
immediately and individually within the groups, for example in one instance 
suggesting the members of the group read the question more carefully when she 
observed they were using the universal set of all engineering students when the 
question was asking specifically about girls in the class.  
Technology also informed the teacher about student progress which prompted several 
whole-of-class interventions, and an important unplanned decision on the teacher’s 
part. At one point, the teacher realised that many students were struggling with the 
probability notation, so she brought up an example from a previous lesson using Venn 
diagrams on her large screen, and invited students to contribute responses to the 
probability values, prompting them to say how these might be written in formal 
notation. When asked, students could write their response on their tablet screen, and 
share it on the teacher’s screen for the class. At another point early in the lesson, the 
teacher realised that the problem also involved conditional probability, which she had 
not noticed in her planning for the lesson. She made the decision to continue with this, 
but made it explicit to the students that this was harder than she had expected them to 
meet, and she modified her goals and expectations of them accordingly. Afterwards, 
she explained that she was comfortable that the students might not get as much done 
but preferred to make sure they gained a deeper understanding, rather than move on 
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with the lesson she had planned. Later in the lesson, she confirmed this with students, 
stating that “You have done really well. It was really hard, I totally apologise…” and 
she then spent five minutes consolidating their understandings of the “given” 
statements and the subsequent probabilities as a whole class using her tablet projected 
on the large screen. This was a clear response to an unplanned contingency. 
DISCUSSION AND IMPLICATIONS 
The discussion and evidence presented here has demonstrated there is indeed value in 
using the Knowledge Quartet framework (Rowland, 2013) to examine an experienced 
teacher’s practice at the secondary level and provided support for generalising it to this 
extent. We have yet to consider how we might share this analysis with the teacher from 
a professional learning perspective, but we suggest such an approach may help identify 
the practices she sees as most valuable and possibly worthy of sharing with colleagues, 
and those she may wish to develop further.  
With respect to technology, while on the surface in this e-classroom we might argue 
the teacher has just replaced the traditional “blackboard and chalk” with the e-screen 
and the students’ writing pads with tablet-laptops. In reality the shift to an e-learning 
classroom was more sophisticated than this and the use of the Rowland’s Knowledge 
Quartet framework has helped clarify this level of sophistication. Through the lens of 
the KQ, clear examples of the teachers’ foundation knowledge with respect to 
technology were identified. She demonstrated fluency with instrumentation Artigue, 
2002) and mathematical value of the technology (Stacey, 2003) in the design and 
implementation of the lesson, and her interactions with the students showed she had an 
acute awareness of potential technological obstructions for the students (Goos et al., 
2003). This ability to integrate the technology within the teaching in a seamless way is 
a form of foundation knowledge that is not always recognised and reflects the high 
instrumental genesis and PTK (Artigue, 2002; Thomas & Hong, 2013) within this 
teacher’s foundation knowledge. 
The teacher was comfortable adapting her lesson to meet the contingency she 
confronted with unexpected conditional probability, and her response showed her 
foundation knowledge with respect to horizon knowledge (Ball et al., 2008) and the 
heuristic value of the topic (Stacey, 2003). It also showed her belief in the value of 
making connections and developing deeper understanding for her students.  
The findings of this preliminary analysis support extending the use of the KQ 
framework across curriculum levels (i.e. from primary to secondary), and further 
suggest we should explore in more depth the role of technology within the KQ 
framework. There is an implication that the contributing codes within each of the four 
components may need some modification or extension to accommodate the impact of 
technology on teacher practice and the mathematics classroom. Finally, while a deeper 
exploration may well reveal other theoretical perspectives that may help inform such 
an analysis, we have shown that the PTK framework devised by Thomas and Hong 
(2013) has proved useful in our examination to date. 
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Several studies have found that when people compare fractions, they show a “natural 
number bias”, that is, better performance on problems in which the larger fraction has 
the larger components (e.g., 7/8 vs. 2/3) than on problems in which the larger fraction 
has the smaller components (e.g., 2/3 vs. 4/9). However, more recent studies found the 
opposite pattern (“reverse bias”). To better understand what causes these patterns, we 
investigated adults’ strategies in complex comparison problems with varying 
affordances. Adults reported strategies on a trial-by-trial basis. Overall, we found a 
reverse bias pattern. Strategy use varied by problem type, suggesting that participants 
used strategies adaptively. The study highlights variability in strategy use depending 
on problem type, which may account for diverse bias patterns in previous studies. 
THEORETICAL BACKGROUND 
Many people struggle with fractions (see Lortie-Forgues, Tian, & Siegler, 2015, for a 
review). One well-documented phenomenon is the “natural number bias” (Ni & Zhou, 
2005), that is, people’s tendency to overextend natural number reasoning to fraction 
problems. To assess the occurrence of the natural number bias, studies have often used 
fraction comparison problems, in which people are asked to choose the larger of two 
fractions (Vamvakoussi, Van Dooren, & Verschaffel, 2012; Van Dooren et al., 2016; 
Van Hoof, Lijnen, Verschaffel, & Van Dooren, 2013). One indicator of the bias is that 
people are more accurate and/or faster when the larger fraction has the larger 
components (“congruent” comparison problem e.g., 7/8 > 2/3) than when the larger 
fraction has the smaller components (“incongruent” comparison problem, e.g., 2/3 > 
4/9). People may explicitly or implicitly rely on the fractions’ natural number 
components (i.e., their numerators and their denominators) instead of the fraction’ 
overall magnitudes when they make their decisions. 
However, a number of recent studies on fraction comparison have reported the opposite 
response pattern. In these studies, people were more accurate and/or faster comparing 
fractions that are incongruent than fractions that are congruent (Barraza, Avaria, & 
Leiva, 2017; DeWolf & Vosniadou, 2015; Obersteiner & Alibali, 2018; for an 
overview, see Gómez & Dartnell, 2015). The studies that found such a “reverse bias” 
pattern differed from earlier studies in that the participants tended to be older, and the 
fraction comparison problems were often more complex. That is, the fractions were 
unfamiliar to participants, were composed of larger numbers, and had no common 
numerators or denominators (e.g., 19/24 vs. 25/36). Thus, the “reverse” bias pattern 
seems to be more representative of adults’ performance pattern in fraction comparison 
than the typical bias. What can explain this reverse bias pattern? The present study 
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addresses this question by investigating the strategies that people use to solve fraction 
comparison problems. Focussing on strategy use is relevant because some strategies 
may be more prone to the bias than others (Alibali & Sidney, 2015). 
Strategy Use and the Reverse Natural Number Bias Pattern 
DeWolf and Vosniadou (2015) explained the reverse natural number bias by 
suggesting that people relied on a “smaller number—larger fraction” heuristic to 
compare fractions. There is, however, limited evidence that people actually use such a 
heuristic unless fractions have common components. Instead, the reverse bias pattern 
documented in previous research might be explained by another component-based 
strategy: gap comparison. This strategy refers to considering a fraction as larger when 
it has the smaller difference (“gap”) between its numerator and denominator (e.g.,19/24 
> 25/36 because 24 – 19 = 5, which is smaller than 36 – 25 = 11). Although gap 
comparison is not a generally correct strategy, it always leads to a correct response in 
problems with fractions smaller than 1 that are incongruent, but it does not always yield 
a correct response in problems that are congruent. Thus, if people relied heavily on gap 
comparison, this could partially explain the reverse bias pattern. 
In contrast to the gap comparison strategy, strategies that rely on holistic fraction 
magnitudes rather than on fraction components may be unlikely to yield a natural 
number bias response pattern. One such strategy involves using benchmarks (Liu, 
2017). Benchmarks are common numbers that can serve as reference points. They 
allow easy access to approximate fraction magnitudes, which are often sufficient for 
solving fraction comparison problems. For example, to decide that 19/24 > 25/36, one 
can use 3/4 as a benchmark: 19/24 > 3/4 while 25/36 < 3/4, hence 19/24 > 25/36. If a 
fraction comparison problem can be readily solved using a benchmark, people may 
tend to use the benchmark strategy, thereby activating approximate holistic fraction 
magnitudes. On such problems, people should be less likely to display a natural number 
bias than on problems that cannot be solved using a benchmark strategy. 
Little is known about which strategies people use to compare fractions. Clarke and 
Roche (2009) and Fazio, DeWolf, and Siegler (2016) found that school students and 
university students use a large variety of strategies, including benchmarking and also 
gap comparison and other generally incorrect strategies. However, these studies did 
not systematically address how strategy use may depend on problem features, and how 
strategy use relates to the bias response pattern. 
Aim and Research Questions 
The aim of the present study was therefore to investigate whether efficient strategy use 
(especially benchmarking) can reduce a potential (reverse) natural number bias in 
complex fraction comparison in adults. We addressed four research questions: (1) Do 
adults show a reverse natural number bias pattern in complex fraction comparison? (2) 
Which strategies do they use? (3) Do they adapt their strategies to the affordances of 
the problems? (4) Does encouraging participants to use efficient benchmark strategies 
affect their strategy use, their overall performance, and their potential bias? 
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METHODS 
Participants 
Participants were 72 university students (age M = 19.30 years, SD = 1.32) at a 
Midwestern university in the United States. Before the experiment started, 40 randomly 
selected participants (56%) received a tip that using benchmarks such as ½, ¼, or ¾ 
can be helpful in solving fraction comparison problems. The example “5/8 vs. 3/7” 
with 5/8 > 1/2 and 3/7 < 1/2 was provided to illustrate the benchmark strategy. 
Procedure 
Participants were asked to solve 28 fraction comparison problems on a computer as 
quickly and accurately as possible, and to explain, after each problem, how they solved 
the problem. On each trial, two fractions appeared on the screen next to each other, and 
participants indicated the larger fraction by pressing the left (“f”) or right (“j”) key on 
a regular keyboard. There was a 15 sec time limit for their response. Once participants 
gave their response, the prompt “How did you solve this problem?” appeared on the 
screen while the fractions remained visible. Participants then had a maximum of 40 
seconds to provide their explanations. Participants wore headsets and spoke their 
responses into the microphones. The next problem appeared automatically after 40 
seconds, or sooner if participants pressed the space bar. Between any two trials, a 
fixation cross appeared in the middle of the screen for two seconds. Response times, 
accuracy, and verbal responses were recorded using E-Prime software. 
Comparison Problems 
All fractions in the comparison problems were smaller than 1, and most fraction 
components were two-digit numbers. None of the fraction pairs had common 
numerators or denominators. Half of the problems were congruent and half were 
incongruent. The congruent and incongruent problem subsets were balanced in terms 
of the fractions’ magnitudes relative to common numbers that people may use as 
“benchmarks” (i.e., reference points) for comparing fractions. There were three 
categories depending on the fraction magnitudes relative to the potential benchmarks 
0, ¼, ½, ¾, and 1: In “straddling” problems, one fraction was smaller and the other 
larger than ¼, ½, or ¾ (thus “straddling” a benchmark). In “in-between” problems, 
both fractions were in between two adjacent benchmarks. A special case of “in-
between” problems, and therefore a separate category, were problems in which 
fractions were both smaller than ¼ or both larger than ¾, because in these problems, 
one fraction was close to 0 or 1 (“0-1” problems), and 0 and 1 may be especially salient 
benchmarks. Fractions pairs were selected so that the average numerical difference 
between fractions and the closest benchmark was the same (0.06) for both congruent 
and incongruent problems, and the average numerical difference between fractions was 
the same (0.14) for congruent and incongruent problems. The problems were presented 
to the participants in random order. We initially created a set of 56 problems. The 
problem set was then split into two subsets of 28 problems each, both of which 
represented all of the problem features described above in the same way. Each 
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participant was randomly assigned to one of the two problem subsets. There were no 
differences in performance on the two problem subsets, so data were collapsed for 
analysis. 
RESULTS 
Accuracy and Response Times 
Overall, accuracy was high (M = 86%, SD = 11%), and response times were low 
(M = 4813 ms, SD = 1432), suggesting that participants were well able to solve 
complex fraction comparison problems. To analyze effects of problem features, we 
report Wald X2 statistics and estimated marginal means (MEM) of a generalized 
estimation of equation (GEE) model, in which the within-subject factors were 
congruency (congruent/incongruent) and benchmark (0-1/straddling/in-between), and 
the between-subject factor was tip (yes/no).  
Participants were more accurate and faster on incongruent than congruent problems 
(accuracy: MEM = 94% vs. 81%,  c2(1) = 38.86, p < .001; response times: MEM = 4285 
vs. 4652 ms, c2(1) = 11.59, p = .001), indicating an overall reverse bias. There was no 
main effect of tip, either for accuracy or response times. For response times, but not 
accuracy, the effect of congruency was qualified by an interaction with tip, 
c2(1) = 4.51, p = .034. Overall, participants were faster on incongruent than on 
congruent problems, but this difference was smaller (and not significant) for 
participants who received a tip (MEM = 4403 vs. 4542 ms) than for participants who did 
not receive the tip (MEM  = 4170 vs. 4766 ms, p < .001). Thus, although the tip did not 
affect overall performance, it reduced the reverse NNB in terms of response times.  

There was also a main effect of benchmark (accuracy: Wald c2(2) = 24.63, p < .001; 
response times: Wald c2(2) = 74.63, p < .001), such that participants were most 
accurate and fastest on “0-1” problems (MEM = 93%, MEM = 3917 ms), followed by 
“straddling” problems (MEM = 88%, MEM = 4744 ms) and then “in-between” problems 
(MEM = 83%, MEM = 4789 ms); the difference between the latter two problem types was 
significant only for accuracy (p = .014) but not for response times. No other 
interactions were significant.  
Strategy Use 
The verbal recordings of participants’ strategies were transcribed and coded by two 
coders (interrater reliability (N = 18 participants) was sufficiently high (Cohen’s Kappa 
= 0.74). We collapsed strategies into five major categories (for strategy definitions, see 
Table 1). Two of these categories involved using benchmarks: straddling benchmark 
and close to benchmark(s). About one-quarter of all strategies described fell into one 
of these categories, although overall, the latter was more common than the former. A 
third category (holistic) consisted of strategies that involved reasoning about holistic 
fraction magnitudes (but not relying on benchmarks), such as converting both fractions 
into decimals. Almost one-third of all strategies fell into this category. A fourth 
category (component) consisted of strategies based on reasoning about fraction 
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components, but not on holistic fraction magnitudes. These strategies were generally 
incorrect but could yield correct responses on specific problems. Approximately one-
third of all strategies fell into this category. Among these, the primary subtypes were 
gap comparisons (63%) or simple comparisons of denominator magnitudes (11%). It 
is notable that simple comparisons of both fraction components (i.e., “larger 
components—larger fraction”, or “smaller components—larger fraction”) were very 
infrequent overall (1%, and 0.3%, respectively). The final category (other) consisted 
of strategies that occurred infrequently (e.g., guessing) as well as unclear responses.  
 
Percent 
Use 

Strategy Category Description/Examples 

8 Straddling 
benchmark 

One fraction is larger than a benchmark (i.e., ½), 
the other smaller. 

19 Close to 
benchmark(s) 

Both fractions are close to different benchmarks 
(i.e., ½ and ¼). 

30 Holistic One fraction is a small number, the other is a large 
number. 

  Convert both fractions into decimals. 
34 Component Compare the differences between the numerator and 

the denominator of each fraction (gap comparison). 
  One fraction has smaller denominator than the 

other. 
10 Other Guess. 
  No or unclear response. 

Table 1: Self-Reported Strategies. 
We examined whether strategy use depended on problem type and whether participants 
who received the tip about the usefulness of benchmark strategies adapted their 
strategies. Figure 1 presents the results. Differences in strategy use were more 
pronounced between problem types than between the tip groups. On problems in which 
one of the fractions was close to 0 or 1, participants used generally incorrect component 
strategies much more often than on other problems. For the other two problem types, 
participants used component strategies less often and benchmark strategies somewhat 
more often. As expected, the increase of straddling-benchmark strategies was 
especially great for straddling problems, and the increase of close-to-benchmark(s) 
strategies was especially great for in-between problems. Although the shift from 
component to benchmark strategies was slightly more pronounced for the tip group 
than for the no-tip group, differences between the groups were generally small. 
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Figure 1: Strategy use for participants who did not (top) or did (bottom) receive a tip. 
DISCUSSION 
This study shows that adults can solve complex fraction comparison problems quickly 
and accurately. At the same time, adults display an overall reverse natural number bias. 
Even those who received a tip to use benchmarks displayed a bias in their accuracy, 
although the bias was not evident in their response times. This finding underscores the 
conclusions, drawn from earlier studies, that the bias can persist into adulthood. 
Our data suggest that the reverse natural number bias may be associated with relatively 
strong reliance on component-based strategies, and that among such strategies, there is 
greater variety than has been suggested in previous research. The typical natural 
number bias may occur when people rely on comparisons between numerators or 
denominators, which people commonly use when they compare fractions with common 
components (Fazio et al., 2016; Obersteiner & Tumpek, 2016). In our complex fraction 
comparison problems, however, there were never common components, and 
participants almost never reported having used this strategy. Instead, people frequently 
used gap comparison, and frequent use of this strategy may explain the reverse natural 
number bias that we observed. 
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One may wonder why we did not find a stronger bias on “close to 0 or 1” problems 
than on other problem types, given that participants relied most strongly on component 
strategies in these problems. For these problems, gap comparison may have been a 
particularly efficient strategy, because the differences in gaps were most salient in these 
problems. When a fraction has an extreme value (close to 0 or close to 1), it also has a 
particularly large or small gap. This highlights the importance of understanding which 
features of fraction comparison problems are most salient to people—an important 
agenda for future research. 
One limitation of this study is that immediately retrospective self-reports may not be a 
completely valid measure of strategy use. People may not be aware of all of the 
strategies they use for solving a mathematical problem, or they may struggle with 
verbalizing their strategies. Participants in our study solved the fraction comparison 
problems within a few seconds, and it may have been difficult for them to describe the 
cognitive processes that occurred within this brief time period. In addition, prompting 
participants to verbalize their reasoning may itself have influenced the problem-solving 
process. Participants may have been more cautious about using particular strategies, 
because they knew that they would have to explain their strategies after each trial. 
Further research with different methods is needed to assess the validity of immediately 
retrospective self-reports for fraction comparison. 
In sum, this study revealed large variability in strategy use across individuals and 
across problem types. Participants used strategies adaptively in ways that made good 
use of the affordances of different problems; for example, they used benchmark 
strategies when fractions straddled a benchmark, and gap comparison when fractions 
had highly salient gaps. Our findings suggest that patterns of strategy use may at least 
partially explain the occurrence and direction of the natural number bias in fraction 
comparison. To better understand what it means to have a natural number bias, and 
why there is variability in the natural number bias across studies and samples, it is 
critical to understand the strategies people use in making specific fraction comparisons.  
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Research has shown that listening to and interpreting student thinking is challenging, 
yet critical for effective incorporation of student mathematical thinking (SMT) into 
instruction. We examine an exemplary teacher’s interpretations of SMT, his inference 
of the potential of the SMT to foster learning, and the rationale for his responses to 
that thinking. Our findings reveal some reasons why teachers may fail to successfully 
act on SMT that emerges during whole class discussion. This study confirms previous 
research findings, that in order to incorporate SMT into instruction in a way that 
fosters learning, teachers must correctly interpret that SMT. The study also shows that 
even good teachers may need support in developing skills that will enable them 
accurately interpret SMT and its potential to foster learning.	
The use of student mathematical thinking (SMT) to inform instructional decisions has 
been emphasized in current calls for reform as captured in US National Council of 
Teachers of Mathematics documents (e.g., NCTM, 2014). Using SMT in ways that can 
foster learning requires making sense of that thinking (Maher & Davies, 1990). 
However, listening to student thinking is challenging (Ball, 1993) and sometimes 
teachers incorrectly interpret that thinking (Maher & Davies, 1990). Understanding 
teachers’ perceptions of SMT that emerges during instruction and their reasons for 
using that thinking in particular ways would enable teacher educators to be responsive 
to teachers in efforts to support them in enhancing their teaching practice around the 
use of SMT. To that end, the purpose of this exploratory study is to understand an 
exemplary teacher’s interpretations of SMT and rationale for using the student 
mathematics available to him during whole class discussion in the way that he did.	
LITERATURE REVIEW	

Research has shown the instructional value of teachers making sense of SMT. The 
research of the Cognitively Guided Instruction (CGI) project has shown that providing 
teachers with opportunities to make sense of SMT has a positive impact on teacher 
learning and student achievement (Franke & Kazemi, 2001). Therefore, it is important 
that researchers and teacher educators understand teachers’ processes of making sense 
of SMT so as to identify the kinds of support teachers may need in order to develop 
the skill of accurately inferring SMT. Studies that have examined teachers’ 
interpretations of SMT include those that have examined a broad swath of classroom 
activity, of which SMT is only a part (e.g. van Es & Sherin, 2002), and those that have 
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focused specifically on SMT (e.g. Crespo, 2000; Jacobs, Lamb & Philip, 2010). In this 
brief literature review we consider studies that have focused specifically on SMT.	
Research has shown that interpretation of SMT is a skill teachers can develop. Jacobs, 
Lamb & Philip (2010) examined teachers’ development of three skills—attending to 
children’s strategies, interpreting children’s understandings, and responding to those 
understandings—and found that these three skills can be learned. Crespo (2000) 
studied Preservice Teachers (PSTs) interpretations of SMT by examining how PSTs 
interpreted SMT as they exchanged letters with 4th grade students. The results showed 
that PSTs’ interpretations changed from being evaluative to making sense of students’ 
mathematical solutions and from making quick conclusions about student abilities to 
making more thoughtful interpretations. Crespo’s (2000) study also highlighted the 
importance of attending to conversations that reflect teachers’ processes of 
interpretation. Our work in this paper is informed by this finding on the importance of 
attending to such conversations. In this exploratory study we analyze conversations 
between the researcher and the teacher to infer the teacher’s interpretations of SMT 
and their perception of the potential in the SMT to foster learning. Other studies that 
have provided further insight into teachers’ development of the skill of interpreting 
SMT include van Es and Sherin (2008), which revealed that teachers follow 
different pathways as they develop the skill of interpreting SMT.	
Some studies on teachers’ interpretations of SMT have revealed factors that may 
influence teachers’ inferences of SMT. Maher and Davies (1990) revealed that a 
teacher’s limited understanding of a mathematical concept can impede the correct 
interpretation of SMT. Other factors that may influence a teacher’s interpretation of 
SMT include the teacher’s orientations towards listening to students. Davis (1996) 
described three such orientations: evaluative, interpretive and hermeneutic. Teachers 
with an evaluative orientation listen to SMT in order to determine the correctness of 
the SMT. Those with an interpretive orientation listen to SMT in order to get the 
student’s understanding while those with a hermeneutic orientation listen to SMT by 
engaging with students in a process of negotiation of meaning and understanding. An 
understanding of the factors that influence teachers’ interpretation of SMT could 
inform the design of professional development that would support teachers to 
accurately infer SMT and incorporate it in instruction in ways that foster learning. 	
Incorporating SMT in instruction in ways that foster learning while at the same time 
optimizing limited instructional time requires that incorporation of SMT be informed 
by the potential in the SMT to foster learning. Many studies that have examined 
teachers’ interpretation of SMT have not explicitly addressed the potential of the SMT 
to foster learning, yet not all SMT has the same potential to foster learning (Leatham 
et al., 2015). Identifying the potential in SMT to foster learning is critical if teachers 
are to productively use SMT. In this study we explore a teacher’s interpretation of SMT 
that occurred in his classroom with a view to better understand how he interprets SMT 
and his perception of the potential in that thinking to foster learning. We therefore seek 
to answer the following research questions: 1) How does an exemplary teacher 
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interpret SMT that emerges in-the-moment during whole class instruction? 2) What 
inferences does an exemplary teacher make about the potential of SMT, that emerges 
in-the-moment during whole class instruction, to foster learning of mathematical ideas?	
THEORETICAL FRAMEWORK	

Our examination of a teacher’s interpretations of SMT and his perceptions of the 
potential of that thinking to support learning of important mathematical ideas is guided 
by the MOST Analytic Framework, where a MOST is defined as a “Mathematically 
Significant Pedagogical Opportunity to Build on Student Thinking” (Leatham et al., 
2015, p. 90). We refer to the practice of taking advantage of MOSTs as building (Van 
Zoest et al., 2016) and define building as making an instance of SMT “the object of 
consideration by the class in order to engage the class in making sense of that thinking 
to better understand an important mathematical idea” (Van Zoest et al., 2017, p. 36). 	
MOSTs occur at the intersection of three critical characteristics of classroom instances: 
student mathematics (SM), significant mathematics, and pedagogical opportunity. For 
each characteristic, two criteria determine whether an instance of SM embodies that 
characteristic. For SM the criteria are: “(a) one can observe student action that provides 
sufficient evidence to make reasonable inferences about SM and (b) one can articulate 
a mathematical idea that is closely related to the SM of the instance—a mathematical 
point (MP)” (Leatham et al., 2015, p. 92). The criteria for significant mathematics are: 
“(a) the MP is appropriate for the mathematical development level of the students and 
(b) the MP is central to mathematical goals for their learning” (p. 96). Finally, “an 
instance embodies a pedagogical opportunity when it meets two key criteria: (a) the 
SM of the instance creates an opening to build on that thinking toward the MP of the 
instance and (b) the timing is right to take advantage of the opening at the moment the 
thinking surfaces during the lesson” (p. 99). The six MOST Criteria are considered 
linearly and an instance of SMT is classified according to the last criterion it satisfies 
(SM, MP, Appropriate, Central, Opening, and Timing). Those instances that appear 
mathematical, but for which the SM cannot be inferred, are designated cannot infer 
(CNI). When an instance satisfies all six criteria, it is a MOST.	
METHODOLOGY	
This study is part of a larger project focused on understanding teachers’ in-the-moment 
responses to SMT during whole class instruction (see LeveragingMOSTs.org). The 
teacher who is the focus of this exploratory study was chosen because he regularly 
incorporates student thinking into his lessons and has been recognized by his school 
district and university mathematics educators as an exemplary teacher. The data for 
this study consisted of four videotaped math lessons from this teacher's classroom and 
seven corresponding follow-up interviews.	
Our data analysis focused on four different units of analysis: instances of SMT, the 
teacher’s in-the-moment responses to those instances, the teacher’s retrospective 
interpretation of the SMT, and the teacher’s retrospective reasoning for his responses. 
An instance of SMT consists of “an observable student action or a small collection of 
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connected actions” (Leatham et al., 2015, p. 92). The teacher’s in-the-moment response 
to an instance consists of the teacher actions that begin “as a given instance of SMT 
ends and ends when that instance of SMT is no longer the focus of the observable 
teacher actions” (Peterson et al., 2017, p. 19). The teacher’s retrospective interpretation 
of the SMT consists of interview instances in which the teacher explains his 
interpretation of an instance of SMT from the classroom video. The teacher’s 
retrospective reasoning for his response to an instance of SMT consists of interview 
instances in which the teacher explains what he was thinking when he made a specific 
pedagogical move in class. We used video analysis software to segment each classroom 
lesson into the instances of SMT and the teacher responses to each individual instance. 
We used the same software to divide each interview into segments where instances of 
SMT from the classroom videos were discussed. Only those instances that the 
interviewer thought were likely to be MOSTs, appeared to be treated as MOSTs, or 
instances that the teacher wished to discuss, were addressed in the interviews.	
We began coding by identifying instances of SMT that were specifically discussed in 
the interviews. These instances of SMT were located on the video recorded classroom 
lessons and were coded using the MOST Analytic Framework (Leatham et al., 2015), 
and the teacher responses to these instances of SMT were coded using the Teacher 
Response Coding (TRC) framework (see Peterson et al., 2017).	For our third and fourth 
units of analysis, we categorized the teacher’s responses in the interviews as either 
focusing on the students’ thinking or the teacher’s response. We used open coding to 
further categorize the instances dealing with SMT, and the instances dealing with the 
teacher’s responses.	
The goal of this study is to understand teachers’ in-the-moment responses to SMT. 
Therefore, the teacher’s interpretations of SMT relative to the MOST Analytic 
Framework are examined simultaneously with the teacher’s reflections on his 
responses to that thinking. We examine the teacher’s reflections on his responses to 
SMT and how those reflective thoughts align with the potential of that thinking to 
foster learning of important mathematical ideas.	
RESULTS AND DISCUSSION	
Using open coding on the teacher’s interview responses focusing on students’ thinking, 
three categories emerged: the teacher’s inferences of a) the SM, b) the MP, and c) the 
instance’s placement within the MOST Analytic Framework. Using open coding on 
the teacher’s interview responses focusing on his in-the-moment responses to students’ 
thinking, two categories emerged: the teacher’s rationale for his responses, and his 
reflection on those responses.	
From the four lessons and seven interviews we identified 34 instances of SMT where 
the teacher gave some insight into his understanding of, or reaction to the SMT. Thus, 
in addition to knowing what the student said and the teacher’s in-the-moment reaction, 
we were also able to discern one or more of the following: how the teacher interpreted 
what the student said, how the teacher placed the SMT within the MOST framework, 
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the teacher’s rationale for his in-the-moment response, or the teacher’s reflection on 
his in-the-moment response. Through analyzing these factors, we saw that even in a 
classroom with an excellent teacher, barriers that may prevent building still exist.	
Our analysis revealed that the majority of the time–18 out of 34 instances–the teacher’s 
determination of the building potential either aligned with the MOST Analytic 
Framework, or we had no indication from the data that his determination differed from 
the framework. When the teacher recognized the building potential of SMT in an 
instance, his placement of these instances on the MOST framework were in line with 
the MOST Analytic Framework. Additionally, the teacher often explicitly spoke of the 
building potential that he saw in instances, and how this guided his in-the-moment 
responses to these instances. When both the teacher and the MOST Analytic 
Framework categorized instances as MOSTs, the teacher reported that his in-the-
moment responses to SMT were meant to harness that building potential, which was 
corroborated by both the teacher’s retrospective reflection on his actions as well as our 
coding of the teacher’s response to that SMT.	
For 14 of the 34 instances, the difference in building potential between the MOST 
Analytic Framework, and the teacher’s explicit or implicit response can be grouped 
into four categories: a) taking up only part of the SMT because the teacher did not 
understand all of it, b) taking up only part of the SMT because the teacher focused on 
some aspect of that part of the SMT, rather than all of the SMT, c) the teacher 
considered additional context or thinking that was not part of the SMT because he 
wanted the conversation to move in a specific direction, a direction that the SMT alone 
would not likely have steered it, and d) the teacher did not see the importance in an 
instance of SMT. The first three of these were the most common; there was only one 
instance of d), so we only focus on the first three. Finally, of the 34 instances, there 
were two instances where the teacher made an inference of the SMT, which according 
to the MOST Analytic Framework, could not be inferred. This could have been due to 
classroom norms, or the teacher’s insights to his students, but it was not clear to us that 
there was a shared understanding of what the student said by the rest of the class.	
To help exemplify the three most common types of instances where the teachers did 
not recognize the building potential in SMT, we will look first at an instance where the 
teacher did not take up all of the SMT because he did not understand all of it. In one 
such instance, the class was working with geometric sequences, and in trying to 
understand the formula for a geometric sequence a student said: “every time we plug 
in a number it gives us, like, one term further than we wanted it to. So, if we subtract 
one from 𝑛 then it puts us back one term every time." In-the-moment, the teacher did 
not fully understand what the student was saying, and the teacher interpreted the SMT 
as dealing with plugging values in to check the validity of an equation. After the teacher 
watched this portion of the class on video, he realized that the student was actually 
working towards understanding that altering the exponent in the formula of a geometric 
sequence will yield a different term in the sequence, which is something that could 
have been built upon to increase the understanding of the whole class. Thus, the teacher 
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was clearly able to see that a building opportunity existed when he had time to 
contemplate the SMT, but unfortunately, he was not able to see this in the moment, 
and a building opportunity was missed.	
Next, we look at an instance where the teacher only took up part of the SMT because 
he focused on some aspect of that part of the SMT, rather than all of the SMT. In this 
example, the class was beginning to work with logarithmic equations, and a student 
said that “If you add log. 2, log. 9, and log. 2 you get the same thing as 
log.(9 ∙ 2 ∙ 2).”, and went on to note that there was a relationship between this idea 
and the exponential product rule. The teacher then focused only on the exponential 
product rule and asked the class “when you multiply exponents you add them together. 
What does that mean?” and after a student responded to this, the teacher dropped this 
instance of SMT, and moved on. Since the students in this class were already familiar 
with the exponential product rule, the teacher missed an opportunity to connect 
students’ prior knowledge to the new material that they were currently grappling with. 
This differs from our last example because–as he explained in the interview–the 
teacher understood what the student was saying, but in the moment, he made the 
conscious decision to take up only a small portion of the SMT that was presented. In 
retrospect, the teacher was able to see that this was indeed a missed opportunity, and 
he noted that he should have further utilized this instance of SMT.	
Finally, the third most common category of instances where the teacher missed an 
opportunity to build on SMT, were instances where the teacher considered additional 
context or thinking that was not part of the SMT because he wanted the conversation 
to move in a specific direction, a direction that the SMT alone would not likely have 
steered it. In one such instance, the class was working with geometric sequences and a 
student said, “Okay, um, we got 𝑎a = 2(4)a.” Earlier in the lesson, other students had 
noticed that each term in the sequence that they were given was four times the previous 
term. Drawing on this earlier thinking and this newly presented equation, the teacher 
inferred that the SM was “you begin with 2 and continually multiply by 4.” 
Unfortunately, by drawing on this earlier thinking, the teacher missed the opportunity 
to build on the thinking at hand, which was that a student had, for the first time in this 
class, presented an equation for a geometric sequence. Since the class had been trying 
to use their knowledge of exponents to help them construct the formula of a geometric 
sequence, the fact that after grappling with it, one student had finally presented such a 
formula would have been the perfect opportunity to build on that SMT to help the rest 
of the class understand how to derive this formula. However, since the SMT also lent 
itself to a point that another student had been trying to make earlier, the teacher decided 
instead to use the current SMT to exemplify an earlier student response.	
CONCLUSION	
This study confirms the results found by Maher and Davis (1990) that for teachers to 
productively use SMT it is important that they accurately infer that thinking. Our 
findings show that incorporating SMT in ways that foster learning requires that in 
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addition to correctly interpreting SMT teachers need to also correctly identify the 
potential of the SMT. This will help deepen or enrich the mathematical understanding 
of the other students in the class by making the SMT the object of consideration. 
Furthermore, the complexity of teaching is highlighted in this study as we find that 
even an exemplary teacher may not always be able to utilize appropriately the in-the-
moment SMT that is available to them. As our study showed, possible reasons for this 
include: not completely understanding the SMT, choosing deliberately not to act on a 
portion of the SMT, or adding additional context to the SMT to make a specific MP. 
Regardless of the exact reason, not fully utilizing available SMT can lead to missed 
opportunities for learning when the instances are MOSTs–“Mathematically Significant 
Pedagogical Opportunity to Build on Student Thinking” (Leatham et al., 2015, p. 90). 
Our findings show that in two out of 34 instances the teacher inferred the SMT where 
according to the MOST Analytic Framework, SMT could not be inferred. Such 
inferences could result in unproductive engagement in situations where the class does 
not have a shared understanding of the SMT when the SMT is ambiguous and the 
teacher response does not seek clarification of the instance before allowing the class to 
engage with it. This study confirms findings of Cobb (1988) and Maher and Davis 
(1990), that it is important that teachers carefully listen to and seek to fully understand, 
and clarify if necessary, the SMT that occurs in their classrooms since not doing so can 
hinder students’ construction of mathematical ideas as the teacher is then more likely 
to impose their own constructions on students. This suggests that there may be a need 
for professional development that is focused on supporting teachers to make sense of 
SMT that emerges in-the-moment during their instruction as a first step towards the 
development of the skill of building on SMT. Future studies could identify ways of 
supporting teachers’ development of skills that would facilitate the accurate 
interpretation of SMT and its underlying potential to foster learning. 
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EXAMPLES IN MATHEMATICS - DIFFERENCE AND 
REPETITION  
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The availability of instructional examples in the mathematics classroom challenges the 
way teachers confront students with several aspects of the content, which can 
contribute to designating the generality of mathematical concepts. Using the theory of 
variation and Deleuze’s philosophical concepts as the main interpretative framework, 
this study investigates what is involved in repetition and the nature of its interiority, 
what we understand by conceptual difference and difference without concept in a 
development study. The data consisted of 36 teachers’ lesson plans. Qualitative 
analysis of these data led to the identification of events types and the characteristics of 
repetition. 
INTRODUCTION 
Krainer (2014) specifies that mathematics education deal with the learning and 
teaching of mathematics. Still, there is little consensus as to what role educational 
research should play in directly influencing educational practice (e.g. Vanderlinde & 
van Braak, 2010). Kieran, Krainer and Shaughnessy (2013) claim that a distinct gap 
between research and practice has been created because too often, in mathematics 
education, research is no connected to the needs of teachers and does not take into 
account teachers’ reality. The purpose of this article is to investigate what in the use of 
examples enables a teacher’s professional development. Also, the purpose is to 
investigate what is involved in repetition and the nature of its interiority, what we 
understand by conceptual difference and difference without concept in a development 
study. The word example is used in accordance with Watson and Mason (2005) 
definition, namely to be “anything from which a learner might generalize” (p. 3). In 
the teaching using examples, repetition can be used in order to help students be 
successful in their learning behaviour. The use of repetition in learning is a common 
finding in the literature (e.g. Marton et al., 2005). The following questions guide this 
paper: What are the characteristics of repetition in teachers’ professional development? 
What is it that repeats in repetition? 
DIFFERENCE AND REPETITION  
An object of learning (the content that teacher intends to teach as well as how the 
students are expected to make sense of and make use of the content) is formed in the 
communication that occurs in different events between teacher and students (e. g. 
Olteanu, 2016). An event is a process that begins with one aspect of the content that 
one or more students have not yet discerned and ends with one or more students 
distinguishing that the aspect of the content (Olteanu, 2016). For example, if some 
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students do not discerned what slope really means, an event begins with a sequences 
of examples aimed to developed the mathematical concept of slope. The event in the 
development study presented in this article is a problem or problematic idea rather than 
a truth or a solution. If the event is a sequence of mathematical examples, the problem 
or problematic idea is the students’ capability to discern aspects related to the object of 
learning by experiencing them. If those aspects are not discerned they become critical 
aspects for the students (Olteanu, 2016). Deleuze (1994, p. 44) writes: “learning is the 
appropriate name for the subjective acts carried out when one is confronted with the 
objectivity of a problem ... whereas knowledge only designates the generality of 
concepts or the calm possession of a rule enabling solutions”. When using examples in 
a mathematics classroom, students are confronted with several aspects of the content, 
which can contribute to generalizing mathematical concepts. For this reason, the 
analyses of the event as it changes from being specific (immanent) to a convergence of 
parts or elements (Deleuze, 1994), can provide a new way of understanding of what 
the characteristics of repetition are in teachers’ professional development.  
The things shared in an event having mathematical examples as a starting point 
generate a variety of aspects of the object of learning that do not have a fixed form but 
can be formed during the lesson. This ability to be formed can be expressed using 
different patterns of variation. Previous research (e. g. Marton, 2015; Olteanu, 2016) 
mentioned five patterns of variations, which can facilitate students’ discernment of 
critical features or aspects of the object of learning. These patterns of variation are: (1) 
contrast (in order to experience something, a person must experience something else 
to compare it with); (2) separation (an aspect must vary while other aspects remain 
invariant); (3) fusion (several critical aspects need to be considered together); (4) 
similarity (the property of two or more expressions to adopt the same meaning); (5) 
generalisation (is to see variations in the use of the object to fully comprehend it and 
involves recognizing that some features are not critical to the identification of that 
phenomenon).  
Stagoll (2005) explains that an event arises from a set of particular forces. These forces 
can emerge in relation to a set of dialectical opposites (e.g. whole/part) for which 
resolution is never fully granted. For example, a dialectical opposite related to an 
algebraic expression are: (1) a whole ax + b and; (2) the parts that form the whole (e.g. 
a, x, b); (3) the relation between the parts (e.g. the operation); (4) the transformation 
between the parts (e.g. the rewriting ax + b as a(x + b/a), with a ≠ 0); (5) the relation 
parts–whole; and (6) the relation between different wholes (e.g. the relation between 
ax + b and a(x + b/a)). In such dialectical opposites there are qualitative differences. In 
the dialectical opposite “the transformation between the parts” a qualitative differences 
is to understand that two or more expressions are equivalent if they have the same 
value. Even two expressions have different symbolic forms; they represent the same 
quantity when each variable in both expressions has the same value. The expressions 
2x – 3 is equivalent to .

U
𝑥 − 3 because x in both expressions have the same value for 

each value of the variable x. It is important to recognize that the linear functions f(x) = 
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2x – 3 and f(x) =  .
U
𝑥 − 3 have the same rate of change (or slope). Between the forces 

that can emerge in relation to a set of dialectical opposites, qualitative differences that 
are express by singularities can be identified.  
Deleuze (1990) describes singularities as turning points and points of inflection in a 
topological way. In topology, a series of singularities can undergo a variety of 
transformations that allow the study of singular points. A singular point is simply a 
point where the differential of the function is not surjective. The differential function f 
is surjective (f: A → B be an arbitrary function with domain A and codomain B) if 
every element y in A has a corresponding element x in B such that f(x) = y. For example, 
the image can be connected to intended critical aspects (the aspects of the content that 
teachers intend to present in the classroom and the codomain can by connected to lived 
critical aspects (the students’ distinguished critical aspects of the object of learning). If 
the image of the intended critical aspects is not equal with its lived critical aspects, then 
a singularity can be identified.  
Difference is a singularity at the level of ideas and repetition is always affected by an 
order of difference. Deleuze (1994) specifies that the concepts of repetition and 
difference will intersect, “one concerning the essence of repetition, the other the idea 
of difference” (p. 31). Repetition is never the reproduction of the same, but the 
repetition of the different (Deleuze, 1994). A multiplicity is an idea; in other words, it 
is a set of differential elements, differential relations, and singularities (Deleuze, 1994). 
For examples, in the classroom the differential elements would be the teacher, the 
students, the mathematical content, and the examples. They are differential elements 
because they are defined only in relation to each other. The differential relations are 
what the students are able to do with the examples and with each other. They are 
differential in that they are relations of change in the elements: how students are able 
to discern important aspects of the content taken in the examples, to put these aspects 
together, and to use the examples to solve some tasks. These relations are strewn with 
singularities, or sensitive points, when the aspects of the content move across a certain 
threshold of the field. Changes in the elements, relations and singularities will change 
the teaching and learning in the classroom, which in turn enables the teacher to develop 
professionally. 
METHODS 
The results presented in this article are based on a three-year longitudinal study that 
involved eight secondary schools and 22 teachers. The teachers were voluntary 
participants, selected using maximum variation and typical case sampling (Patton, 
2002). To facilitate the development study (McKenney, Nieveen & van den Akker, 
2006), the design principles were: (1) interventionist: the aims were to designing an 
intervention in schools and in a real setting; (2) iterative: during the study the research 
team incorporated cycles of analysis, design and development, evaluation, and 
revision; (3) involvement of practitioners: the teachers participated in all the activities 
and lessons during the project; (4) process oriented: the focus was on understanding 
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and improving interventions by analysing the students’ capability to discern aspects 
related to the object of learning after experiencing them; (5) utility oriented: the design 
was measured by its practicality for teachers in real contexts; and (6) theory oriented: 
the design was based on concepts from variation theory, namely the object of learning, 
critical aspects and patterns of variation.  
The focal point for data analyses was the examples that teachers (two from elementary 
and two from upper secondary school) had planned to use and had has been used as the 
intended object of learning in three-year study of an elementary classroom and an upper 
secondary school. The teachers’ planning is connected to the process of building 
generalization concerning the concept of first-degree functions in classes 7–9 (the 
students were 13–15 years old) and the first course in upper secondary school (students 
are 16 years old). 36 teachers’ planning was analysed.  
Drawing on Deleuze (1994) frameworks, we constructed a model for analysing the 
examples. The schema for codifying and analysing the information with which we 
obtained the results is based on a cyclical process that seeks to minimise discrepancies. 
The states of development that emerged from this process identified the combinations 
of values of the variables to which, as a whole, the observations for a given example 
were best adapted. This procedure enabled to characterise the singularities at the level 
of ideas (difference) and repetition affected by an order of difference. The analysis 
focused mainly on the set of differential elements, differential relations, and 
singularities (multiplicity) in the observed work of the teachers participating in the 
development study.  
RESULTS 
The results consist of a global inventory of the differential elements and the frequency 
distribution of the differential relations over the four teachers involved in the study.  
The differential elements 
The differential elements identified in the study are: the teachers, the students, the 
content and the examples. In the elementary school, the teachers had, in the first year 
of the study, students in grades 7. In the second year of the study these students were 
in grade 8 and the third year in grade 9. This means that the teachers and the students 
were the same during the three years of the study. In upper secondary school, the 
teachers were the same during the study, but taught new classes of students each year. 
The object of learning was the same for elementary and upper secondary schools during 
this period, namely to improve students’ ability to discern relationships between 
variables.  
The differential relations  
Four types of event were identified through a combination of theory-driven and data-
driven analysis.  
Variables change (Event 1) is a basic situation in which functions are presented as an 
input-output relationship, and there is no variety from a variation theoretical 
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perspective. Most functions that teachers in secondary and upper secondary school 
choose as examples are described by an algebraic expression of first-degree. For 
example, the functions as y = 4x + 3 (characterized by a constant additive increase). 
Those functions belong to the same families of linear function, namely the rate of 
change is positive and is expressed by a positive integer. 
Slopes (Event 2) are a transition state. There is some complexity in the conceptual 
structure, and variety begins to appear in the systems of representation. However, there 
is still no variety from a variation theoretical perspective. The examples in this situation 
are characterized by a positive rate of change (e.g. y = 5x + 4) and graphical 
representations, but they not focus attention on links between symbolic and graphical 
representations of linear functions. These functions belong to the same families of 
linear function as in Event 1. 
Changing rates of change (Event 3) shows an advance in all types of first-degree 
functions except those of domain and codomain. The examples belong to different 
families of linear functions (positive and negative rate of change), and the teachers 
stressed the relationship between what happens with positive and negative slopes and 
how they are represented in conventional mathematics. There was variety in the 
systems of representation and the number of connections (Table 1).  

Sequences 1 Sequences 1 
y = x y = - x 
y = 3x y = -3x 

y = U
c
𝑥 y = −U

c
𝑥 

y = d
c
𝑥 y = −d

c
𝑥 

Table 1: Changing rates of change 
Multiple ways to represent and analyse first-degree functions (Event 4) achieves 
full complexity from a variation theoretical perspective, and the information was used 
consistently for the completion of examples. This situation concerns a class discussion 
about what happens when the students justify their own generalizations focusing on 
how the constant rate of change in a linear function appears in different representations 
of the function and the relationships between those representations (similarity and 
generalisation as patterns of variation). For example, in a table the value of variable 
increase or decrease by a constant amount as the value of the other variable increases 
by a constant amount. In a graph the rate of change is represented by the slope—the 
steepness and direction—of the line, and in the symbolic form written in the form y = 
ax + b, a is the constant rate of change. In this way, the students have the opportunity 
to discern difference at the level of ideas and repetition that is affected by an order of 
difference. 
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Table 2 presents the final classification of the three years of the project of the two 
groups into each of the four events. Each row represents a group of teachers and their 
corresponding intended object of learning, organized chronologically. Thus, for 
example, the intended object of learning to the teachers in grades 7 was assigned 
successively to the following events: 1, 1, 1, 2, 2 and 2. 
Between the first and the second year of the project, a turning point occurred for the 
groups in upper secondary school that generated a singular point at the level of ideas. 
For an example, the teachers used contrast, separation and similarity to describe 
differences between positive and negative slopes in both symbolic and graphical 
representations of a first-degree function (Table 1). Something similar occurred in the 
third year of the project in upper secondary school, with the notions of variety of 
phenomena, variety in systems of representation, complexity and systems of 
representation as an organizer of the conceptual structure. 
 
 
 
 
 

 
 
 
 

Table 2: Final assignment of intended object of learning 
The analysis showed that what was repeated between the second and third year 
concerned the use of rich patterns of variation, that is to say an order of difference 
concerning the process of representing an idea using similarity and generalization as 
patterns of variation. In an example, the teachers used representations by keeping the 
meaning of an aspect invariant and varying the form of representation (words, symbols, 
tables and graphs). In this way, the repetition was not a reproduction of what was the 
same, but of things that were different. The characteristics of repetition consisted of: 
(1) qualitative differences in relation to the function as a whole; (2) the parts that 
formed the whole (slopes and y-intercept); (3) the relation between the parts (the ratio 
of the change in the output variable to the corresponding change in the input variable 
of the function); and (4) the relation of parts–whole. 
In the secondary school, the teachers kept invariant the same family of a linear function 
and varied the situations that they modelled. For example, for instructional examples 
they used the change in distance that relates to a particular change in time or price per 
item. Those examples did not provide an opportunity for students to experience the 

 Intended object of learning 
Grades 1 2 3 4 5 6 
7 1 1 1 2 2 2 
8 1 2 1 2 3 3 
9 3 3 3 3 4 4 
Upper secondary school (year 1) 1 1 1 2 2 2 
Upper secondary school (year 2) 3 3 3 4 4 4 
Upper secondary school (year 3) 3 3 3 4 4 4 
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difference at the level of ideas. The intended object of learning was repeated in the 
second year of the project, and thereafter the teachers added some examples concerning 
the difference in the direction of line. In this way, the repetition was not a reproduction 
of what was the same, but a use of a different idea. By contrasting the slopes (positive 
and negative), the examples provided an opportunity to explore several different 
relationships and generalize the rate of change. By using similarity as a pattern of 
variation, the examples provided the opportunity to explore linear functions and 
identify linear patterns of change in tables, graphs, and symbolic rules. In the third year 
of the project, repetition occurred at the level of idea, but the examples provided the 
opportunity for students to experience a statement that described a general 
mathematical truth about some family of function, which can contribute to designating 
the generality of mathematical concepts.  
CONCLUSIONS 
The main result of the study reported in this article was the characterization of the 
events and classification of the intended object of learning based on an analysis of the 
instructional examples. This result confirms that the didactic knowledge of the groups 
of teachers evolved according to stable patterns. The groups progressed in the 
development of their choice of instructional examples at different paces and levels of 
advancement. Analysis of the discrepancies in each event shed light on which notions 
presented more difficulty to students. For example, the notion of connection presented 
a high number of discrepancies with positive difference. The numbers of examples, 
which were chosen, by the groups of teachers had a level of connection to each other 
higher than expected. The potential of repetition in the teaching and learning of school 
mathematics relies on the process of producing examples, which involves design and 
analysis. Design may include: (a) implementation of a known procedure to generate 
the successive terms in, for example, an arithmetic or geometric sequence or (b) 
modification of a given procedure to use a new but related example. Analysis is the 
process of determining the differences in repetition. To summarize, the potential of 
repetition lies in its ability to help students develop an understanding of mathematical 
concepts and. Spaced repetition is a learning technique that incorporates increasing the 
intervals of time between subsequent reviews of previously learned material in order 
to exploit the critical aspects effect. 
The notions of repetition and difference are not well understood and research is needed 
to identify the ways in which mathematics teacher develop their own knowledge. The 
findings could inform development of a set of recommendations for supporting 
professional learning that is grounded in the practices of mathematics teachers who 
have varying levels of experience and work in a variety of different contexts. Such 
recommendations may stimulate further research on the design of examples in 
development studies with a focus on professional development of mathematics 
teachers. 



Olteanu & Olteanu 

3 -                                                                                                            PME 43 – 2019 
 

176 

Over time, mathematics education research has shifted its focus from consideration of 
mathematical content and curriculum development, to the mathematical learning of 
students, to interactions between students and teachers, to the learning of teachers, and 
most recently to the learning of teacher educators (Krainer, 2014). This paper argues 
that philosophical research is needed to enhance theoretical understanding of how 
mathematics teachers learn and develop. Research of this type is important because it 
acknowledges the complex forms of knowledge needed by teacher educators and the 
multiple social settings in which their learning takes place.  
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EXPLORING DYNAMIC MEASUREMENT FOR VOLUME 
Nicole Panorkou 

Montclair State University 
 

This paper describes our efforts for exploring students’ thinking of Dynamic 
Measurement for Volume (DYME-V), an approach to volume measurement that 
engages students in dynamic experiences of extruding surfaces to create 3-D objects 
and assists students in reasoning about volume as a continuous structure that depends 
on the size of the surface being extruded and the height of the extrusion.  
VOLUME: WHAT WE KNOW AND PUSHING FORWARD 
In school mathematics, volume measurement focuses on packing the space within a 
three-dimensional (3-D) object using cubic units and quantifying that packing (Curry 
& Outhred, 2005). Students may use a variety of strategies to measure volume, such as 
counting each individual cubic unit, finding the number of cubic units in one layer and 
skip count or multiply with the number of layers, or using the length x width x height 
formula (Battista & Clements, 1996; Cullen et al., 2017; Curry, Mitchelmore & 
Outhred, 2006).  
When using this Volume as packing approach to measure, students experience several 
difficulties, especially if they are asked to find the volume of a 3-D cube array or of a 
picture of a 3-D object on paper. In these situations, students often count the cube faces 
shown on the 3-D object or picture ignoring the third dimensionality of the object, or 
just count the cubic units that are visible ignoring the hidden portions of the shape 
(Ben-Haim, Lappan & Houang, 1985). Additionally, Battista and Clements (1996) 
stated that while calculating the volume of a given cuboid by enumerating unit cubes 
in arrays, students struggle in coordinating the separate views of arrays and integrate 
them to form a coherent mental model. 
Volume as filling is a second approach to volume measurement used in math education 
that refers to filling a 3-D space with iterations of a fluid unit that takes up the space of 
the container (Clements & Sarama, 2009; Curry & Outhred, 2005). When Curry and 
Outhred (2005) asked students to find the volume of a jug by filling the jug using 
cupfuls of rice, they noticed that students treated the height of the rice in the cups as a 
unit length, which they iterated to fill the whole space inside the jug. Curry and Outhred 
(2005) described this approach as one-dimensional since students focused only on the 
height of the cups. This predominant use of a single dimension to make three-
dimensional judgments was also noticed by Piaget and his colleagues (Piaget, Indelder 
& Szeminska, 1960) and later by Raghubir (1999) who found that these one-
dimensional judgements prevail even when adults perceive volume in boxes at the 
grocery store.  
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EXPLORING VOLUME DYNAMICALLY 
The literature before comes in contrast with research stating that students already have 
a dynamic sense of volume. For instance, Lehrer, Strom and Confrey (2002) reported 
that students visualized volume “like pulling” the area through the height of the 
cylinder, in other words looking at three-dimensional objects as 2-D unfoldings. In 
exploring students’ thinking of dimensions in geometry, Panorkou and Pratt (2016) 
discussed the dual nature of space stating that “one can see the space as incorporating 
objects; in this sense, the space contains the objects. At the same time, the space can 
be thought of as generated by the objects” (p. 213). The generation component of 
volume is also described by Lehrer, Slovin and Dougherty (2014) who gave the 
example of a volume being generated by sweeping an area through a length. To 
illustrate this generation, imagine extruding a two-dimensional rectangular surface 
(base) of area ‘ab’ for a height or depth of ‘c’ to generate a space of ‘abc’ (Figure 1). 

 

Figure 1: Volume as a continuous dynamic structure 

To distinguish this dynamic generation approach to measurement from other 
approaches, we refer to it as dynamic measurement (DYME). DYME is defined as an 
approach to geometric measurement that focuses on how space is measured by the 
lower-dimensional objects that generate it. DYME for Volume (DYME-V), involves 
extruding surfaces (a base) on a certain height and reasoning about volume as a 
continuous structure that depends on the area of the base and the height of extrusion.  
This dynamic perspective of volume could be very powerful for reasoning about 
measurement for a number of reasons. This DYME approach involves reasoning about 
the transformation of quantities that underlie the volume formula. The packing 
approach to volume involves using a volume unit to measure volume (e.g. a number of 
1 cm3 cubes) while the volume formula of area of base times the height involves a 
multiplicative composition of two units (one linear and one area unit) to construct a 
new unit for volume. In other words, it involves a transformation in dimensions. 
Additionally, the DYME approach has the potential to introduce students from an early 
age to a study of mathematics of change and variation (Rochelle, Kaput and Stroup, 
2000) by engaging students in reasoning about the quantities as continuous dynamic 
structures that can dynamically change. For instance, if I split the length of the area of 
base in half, the volume is split in half. Engaging in this type of reasoning characterizes 
what research refers to as covariation reasoning, which involves coordinating two 
quantities simultaneously, for example area of base (or height) and volume, as the 
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values of those quantities change (Carlson, Jacobs, Coe, Larsen & Hsu, 2002; Confrey 
& Smith, 1995). Covariational reasoning is seen as foundational for functional thinking 
(Confrey & Smith, 1995), therefore these dynamic experiences have the potential to 
connect volume measurement to advanced mathematical ideas in algebra and calculus.  
Consequently, our goal was to test the conjecture that it is possible for children to 
visualize volume as a dynamic continuous structure and as a product of the area of base 
and height through careful task design. More specifically, we aimed to explore: (a) 
What type of tasks and tools may be used for developing students’ DYME-V? and, (b) 
What forms of DYME-V reasoning are made visible and can be seen to develop as a 
result of students’ systemic engagement in these tasks? 
THE DESIGN STUDY 
We used a design-based research methodology to engineer particular forms of learning 
and study how those forms of learning develop with the particular context of DYME-
V (Cobb, Confrey, DiSessa, Lehrer & Schauble, 2003). To illustrate the dynamic 
nature of volume, we drew our attention to the power of technology. Ferrara and 
Mammana (2014) argued that students’ physical manipulation of 2-D and 3-D shapes 
prevents them from discovering the crucial relationships between 2-D and 3-D figures, 
however the use of Dynamic Geometry Environments offer “the visual and cognitive 
potential of interlacing related but different figures…allowing for moving back and 
forth between plane and space” (p. 57). Consequently, for our task design, we used the 
dynamic features of extrusion and tracing of Geogebra to enable students to generate 
3-D objects by extruding 2-D surfaces and reason about the measurements involved. 
We developed and refined our conjectures, tasks and tools by conducting design 
experiments (DE) (Cobb et al., 2003) with six pairs of fourth-graders. The students 
represented various abilities according to their teacher. We met with each pair of 
students for around 6-8 one-period (45-50 minutes) sessions.  
FINDINGS 
At the beginning of the design experiments, we asked the students to explain what 
volume means to them. All students responded that they learned how to measure 
volume in science by water displacement. Next, we present some DYME-V tasks and 
discuss the type of generalizations students made as they interacted with those tasks. 
1. Exploring volume as generation 
To help students develop an understanding of a 3D shape and its volume as an extrusion 
of a 2D surface, we asked students to extrude surfaces in different planes and reason 
about what they observe (Figure 2). As they dragged the surfaces, students reasoned 
that the software is “stretching them out” and 3D shapes are created “by pulling, by 
making them longer.” While some students talked about extrusion as a transformation 
from 2D to 3D similar to the examples above, others discussed the extrusion as an 
iteration (creating identical copies) of 2D surfaces.  
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Figure 2: Extruding rectangular surfaces to create 3D shapes 

Olympia’s statement is an example of reasoning about an extrusion as an iteration: 
Researcher:  What does the software do? 
Olympia:  It like creates like…like…3D shapes kind of…with multiple 2D shapes. 

Like 2D square, 2D square and then it starts closing them together to look 
like…this is like 2D rectangles and then they close it together to look like 
a rectangular prism. 

When we asked students who thought about volume as an iteration if they were able to 
count the number of those 2D shapes, they all stated that they cannot count the 2D 
shapes. For instance, Dan argued “that’ll be hard. You have to make an estimate,” 
showing an understanding of volume as a continuous rather than discrete structure.  
2. Volume depends on the size of the base and height 
Students initially noticed that the size of the 3-D shape created “depends on how far 
you stretch them out” or how much you “expand it.” Next, we presented students 
various shapes to extrude, including rectangles, circles and hexagons (Figure 3). By 
extruding different shapes, students were able to generalize that the volume of the 3-D 
shape created depends on the size of the base (we introduced the term “base” to refer 
to the surface being extruded) and the height of extrusion. For instance, Molly argued 
“it depends on how big the base is and it also depends on how much you can drag it.” 

 
Figure 3. Example of a task where students extrude surfaces of various shapes 

By providing students with opportunities to extrude various surfaces in different 
heights, they were able to notice how the changes in the size of the base and the 
dragging distance affects the size of the 3D shape generated. In other words, students 
recognized that measuring a 3D shape requires the coordination of two other quantities.  
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3. Volume as the product of the area of base and height 
To help students recognize the multiplicative relationship between area of base, height 
of extrusion and volume of 3D shape, we made the design decision to just focus on one 
varying quantity and keep the other one fixed. We presented to students the same task 
as in Figure 3 but this time we included a value for the area of each base (Figure 4). 
We first asked them to extrude the shapes for a height of 1 inch and then 2 inches and 
reason about the space covered by each shape. 

 
Figure 4. Extruding surfaces with various shapes that include values for area of base. 

Orill:  This one is 13, that is the highest 38, then second is 10 and 9 the lowest 
(Fig. 4). 

Researcher:  What are these numbers that are you telling? 
Orill:  The areas. 
Researcher:  The area of the base or area of the shape? 
Orill:  Area of the base. 
Researcher:  How much space did we cover in this one [the orange circle]? 
Steve:  13. 
Researcher:  Why? 
Steve:  Because there is 1 and 13. 
Researcher:  How about this? [increases the height to 2] 
Orill:  That covers two 13s. 

As students’ thinking progressed, they were able to generalize that volume depends on 
the size of the base and the height, the number of drags you drag this base: 

Researcher:  How do we estimate the volume of something? 
Lilly:  We have to multiply the numbers of how much drags did you do, the height, 

and how much the base is to get the volume. 
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By generating 3-D shapes using 2-D shapes with various areas of bases and extruding 
those in various heights students were able to generalize that the volume of the 3-D 
shape can be found by multiplying the area of the base with the height of extrusion: 

Orill:  We have to know how much is the base. 
Researcher:  And what are you going to do if you know the base? 
Steve:  You are going to multiply with the height. 

Subsequently, we presented students with a task in which the area of the base was not 
given. Instead we provided a value for length and width of two rectangles: 

Steve:  We have to multiply the length with the width to get the area of the base 
and then you have to multiply the area of the base with the height to get 
how much space in total is covered. 

The excerpt above shows that students were able to recognize that when a rectangular 
surface of area ab is stretched to a height of c, then the volume of the cuboid is ab times 
c; in other words, volume is equal to the product of base times height. After students 
reached this generalization, we told them that, in the specific task, volume measured 
using this symbol “inches3” and asked them to say what they think it means. Students 
argued that in measuring area we have a ‘2’ on top of ‘inches’ or ‘cm’ because we 
measure a 2-D shape while now we have a ‘3’ because we measure a 3-D shape. To 
them, the powers of 2 and 3 were distinguishing the type of space they were measuring. 
4. Multiplicative coordination of length, area of base and volume measurement 
Next, our goal was to explore whether students would use the reasoning they 
constructed about volume to reason about changes in volume when the area of the base 
changes multiplicatively. The tasks focused on changing the linear measures of 
rectangular prisms of a sculpture and reasoning about the change in volume (Figure 5). 
Aiming to help students to focus on the quantities and the relationships among them, 
we had the values of the dimensions of the sculptures hidden at the beginning so that 
students make a conjecture without any numerical calculations. 

 
Figure 5. Students change the dimensions of rectangular prisms and reason about the 

change in their volume 

 [Task: Make the width of the Yellow block three times bigger.] 
Researcher:  If we change the width, what is changing? 
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Jayden:  We are changing the area of the base. 
Charles:  Oh, yeah, the area of the base. 
Researcher:  How many times bigger is it going to be? 
Jayden:  Uh, three. 
Charles:  Three times, the area of the base is going to be 3 times bigger. 
Researcher:  What will happen to the volume? 
Charles:  It will be… 
Jayden:  The volume would be…bigger, if you just extend the volume …. 
Researcher:  How many times bigger? 
Jayden:  Three. 

Students generalized that if we change the width of the shape, then the area of the base 
changes and as a result the volume of the shape changes with the same factor. By 
engaging with this type of tasks, they were able to recognize that to make the volume 
n times bigger, they need to make the area of the base or the height n times bigger. 
CONCLUDING REMARKS 
DYME-V is an exploratory study which examines how students reason about volume 
as a continuous quantity when they are exposed to dynamic Geogebra tasks. Our results 
suggest that the dynamic measurement approach has the potential to engage students 
in dynamic tasks that foster the development of volume as a dynamic continuous 
structure. Students’ understanding of volume developed from perceiving volume as a 
generation of 3-D from 2-D, to coordinate both the area of the base and the height to 
make judgements about volume, to reasoning about volume as area of base times height 
and finally construct covariational relationships between the linear measures of 3-D 
shapes and volume measurement. These results suggest that exposing students to these 
dynamic tasks in earlier grades have the potential to guide their meanings about volume 
as a transformation of lower-dimensional objects and reason mathematically about 
change and variation.  
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SUPPORTING STUDENTS’ UNDERSTANDING GRAPHS AS 
EMERGENT TRACES: THE FAUCET TASK 

Teo Paoletti 
Montclair State University 

 

Students experience persistent difficulties creating and interpreting graphs intended to 
represent covarying quantities. In this paper, I describe ways of reasoning middle 
grade students (age 10-13) engage in as they construct and reason about graphs as 
representing emergent traces of covarying quantities. After describing relevant 
theoretical constructs, I present a seven-part task and describe how each part is 
explicitly designed to support students in developing meanings relevant to the 
theoretical constructs. For each phase, I present a student’s activity highlighting the 
student’s developing emergent thinking. I conclude by discussing implications of this 
study as well as areas for future research.  
INTRODUCTION 
Graphs represent information and relationships while also providing insights into 
students’ thinking in ways that are difficult to express or determine in other forms 
(Arcavi, 2003). However, students experience persistent difficulties creating and 
interpreting graphs intended to represent covarying quantities (Leinhardt, Zaslavsky, 
& Stein, 1990). Researchers have identified a range of common misconceptions related 
to graphing including drawing graphs by connecting points without considering what 
happens between points (Castillo-Garsow, Johnson, & Moore, 2013) and coordinating 
one quantity while tacitly overlooking the other quantity (i.e. reasoning uni-
variationally) when prompted to represent or interpret relationships (Leinhardt et al., 
1990). Collectively, this research indicates instructional approaches have not provided 
students sustained opportunities to develop meaningful ways of understanding graphs 
as representing relationships between covarying quantities.  
The purpose of this paper is to describe how a carefully designed task was productive 
in supporting middle grade students’ (age 10-13) development of emergent thinking 
(Moore & Thompson, 2015). After describing theoretical constructs relevant to the 
current study, I present a seven-part task designed with these constructs in mind. I 
describe how each part of the task explicitly addresses key aspects of the theoretical 
constructs. I then present a student’s activity addressing each phase to highlight the 
students’ developing emergent thinking.  
THEORETICAL BACKGROUND 
Prior to describing emergent thinking, I first describe students’ understandings of 
underlying coordinate systems. Lee (2016) distinguished between two uses of 
coordinate systems in students’ thinking: spatial coordinate systems and quantitative 
coordinate systems. Spatial coordinate systems allow students to represent or 
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mathematize a space or physical phenomena (i.e. using a GPS map to represent the 
location of a car on a trip). In order to represent and coordinate two non-spatial 
quantities (e.g., temperature, volume, etc.), students must construct a quantitative 
coordinate system. To construct a quantitative coordinate system, an individual must 
establish quantities within a situation, extract the quantities from the situation while 
maintaining an awareness of the situational quantities (Steffe & Olive, 2010), and 
project them onto the new space (i.e. the quantitative coordinate system).  
With a quantitative coordinate system in mind, a student must conceive of a point 
corresponding to the two quantities’ magnitudes as representing a multiplicative object 
(Thompson, 2011) to coordinate two quantities in this new space. Drawing on Piaget’s 
notion of “and” as a multiplicative operator, Thompson and colleagues (2017) noted, 
“A person forms a multiplicative object from two quantities when she mentally unites 
their attributes to make a new attribute that is, simultaneously, one and the other” (p. 
98). Hence, as a multiplicative object, a point in a coordinate system simultaneously 
represents two quantities’ magnitudes or values. 
Drawing on previous descriptions of covariational reasoning (e.g., Thompson, 2011), 
Moore and Thompson described emergent thinking as conceiving a graph 
simultaneously in terms of “what is made (a trace) and how it is made (covariation)” 
(2015, p. 785). Critical to such a conception is students understanding a point as a 
multiplicative object. The student can then conceive of the graphs in terms of an 
emergent, progressive, trace constituted by the point’s movement in the quantitative 
coordinate system dictated by the covarying magnitudes of the quantities represented 
on the axes. Paoletti and Moore (2017) described how college students were able to 
leverage emergent thinking to conceive of a single graph as being producible by two 
different emergent traces. After producing a graph representing liquid height and liquid 
volume in a bottle as liquid entered the bottle, the students were tasked with 
representing the same quantities as liquid evaporated from the bottle. The students 
argued their first graph would represent this new situation if they imagined the graph 
tracing in the opposite direction; Paoletti and Moore (2017) concluded such reasoning 
was an indication of the students’ thinking emergently.  
The students in Paoletti and Moore’s (2017) study leveraged the mental actions 
described in Carlson et al.’s (2002) covariational reasoning framework which was 
critical to their activity. The students coordinated direction of change (liquid volume 
increases as liquid height increases; MA2) and amounts of change (the change in 
liquid volume decreases as liquid height increases in equal successive amounts; MA3). 
Particular to their emergent reasoning, the students engaged in reasoning about 
increases and decreases in each quantity when reasoning about their graph as an 
emergent trace; this reasoning supported the students as they conceived of the same 
final graph as being producible by multiple emergent traces.  
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METHODS, PARTICIPANTS, AND ANALYSIS 
To examine the potential of supporting middle-grades students’ (age 10-13) 
development of emergent thinking, I conducted a design study (Cobb et al., 2003) 
consisting of three small-group (one to three students) teaching experiments (Steffe & 
Thompson, 2000). The teaching experiments occurred in a school, which is considered 
underperforming (as measured by standardized testing) that hosts a diverse student 
population (over 75% students of color and qualify for free or reduced-price lunch), in 
the United States. Students were recruited through teacher recommendations; I 
interviewed all students who returned consent forms. 
To analyze the data, I performed conceptual analyses (Steffe & Thompson, 2000) to 
produce, test, and modify models of students’ reasoning so these models provided 
viable explanations of their words and actions. I analyzed the records from the teaching 
episodes using open (generative) and axial (convergent) approaches (Strauss & Corbin, 
1998). Specifically, I watched all videos identifying instances providing insights into 
each student’s understanding related to my theoretical perspective. I then generated 
tentative models of each student’s mathematics, which I compared to researcher notes 
taken during on-going analysis. I tested these models for viability by searching for 
supporting or contradicting instances in other activities. When evidence contradicted 
my models, I revised hypotheses to explain each student’s meanings and returned to 
prior data with these new hypotheses in mind to modify previous hypotheses. This 
process resulted in viable models of each student’s mathematics. For brevity’s sake, I 
focus on my model of one student’s mathematics, Amber, who is representative of 
other students’ mathematics.  
THE FAUCET TASK: BUILDING TO GRAPHS AS EMERGENT TRACES  
For each part of the task, I describe the activity I prompted students to engage in and 
how I designed the part to support students developing emergent thinking including 
the prerequisites leading to such thinking. I then include examples of Amber’s 
responses to highlight how the task has been effective in supporting students in 
thinking emergently.    
In Part I, I present students with a GeoGebra applet intending to represent a faucet with 
water coming out (https://ggbm.at/rdxkrwek). Students can use red and blue sliders to 
turn the hot and cold knobs on and off. As they do so the color of the water changes 
according to the temperature (darker red for hotter, darker blue for colder). The goal of 
Part I is to present students with an experientially real context (Gravemeijer & 
Doorman, 1999) so they can establish quantities within the situation. After giving 
students the opportunity to explore the applet, I ask them what quantities they can 
measure, with the intention of discussing water temperature and amount of water 
leaving the faucet (e.g., flow rate, water pressure). In Amber’s case, she quickly 
identified “how much water comes out” and “temperatures of the water” as quantities 
she could measure.  
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After students describe quantities consistent with water temperature and amount of 
water leaving the faucet, I present Part II, which includes a thermometer to gauge the 
water temperature. I present the thermometer for two reasons. First, it gives students a 
way to describe temperature changing without referring to the color of the water. 
Second, by using a vertical linear segment to represent temperature, I intend for 
students to be able to consider a similar representation in Part IV, during which I 
present them with what I intend to be a quantitative coordinate system with temperature 
represented by a red segment on the vertical axis.  
For Part II, with both the hot and cold knobs turned half way on, I ask students to 
predict what will happen to water temperature and amount of water leaving the faucet 
for the following scenarios: (A) I turn the cold water all the way on (i.e. Figure 1), (B) 
I turn the cold water off, (C) I turn the hot water all the way on, and (D) I turn the hot 
water off. In each case the goals are to support students in engaging in reasoning about 
directions of change (Carlson et al., 2002) with either quantity increasing or decreasing 
as they make sense of the situation; by having students consider each quantity 
increasing or decreasing, I intend to foreshadow their anticipating graphs as being 
producible in different directions (i.e. support their emergent reasoning).   

   
Figure 1: Several screenshots for Scenario A of Part II of the Faucet Task with the 

cold-water knob being turned all the way on. 
Generally, students have little difficulty describing how amount of water leaving the 
faucet or water temperature changes as the knobs are turned. For instance, addressing 
Prompt A, Amber had no difficulty as she described “there’s going to be more water 
coming out… [I ask what is going to happen to temperature] it’s going to become 
colder”. Addressing Prompt C, Amber wrote the temperature and amount of water 
would both go “Up” and when asked why, she said “since you’re turning [the hot 
water] to the right, you’re basically turning it on. And if you turn it slowly more, um 
more water comes out of it. And if, once you turn it fully on, all the waters that coming 
out, it would all become warmer.” In each case, Amber accurately reasoned about 
directions of change of varying quantities as she anticipated turning each knob. 
For Part III, I bring up an applet similar to Part II, with the only difference being the 
presence of a horizontal pink line segment corresponding to the width of the rectangle 
representing the amount of water leaving the faucet (Figure 2a). This pink segment 
varies in length as the amount of water varies. The goal is to support the students 
considering using a segment length to represent another non-spatial quantity, which is 
critical to their leveraging a quantitative coordinate system to represent a relationship 
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between non-spatial quantities. I ask students if they observe anything new (i.e. the 
pink segment) and then to describe what the pink segment is representing. For instance, 
when I asked what would happen to the segment “if the amount of water is getting 
bigger” Amber described “it’s going to become longer” and when I asked if the amount 
of water is going to become less, Amber indicated the segment “is going to become 
smaller.” Amber understood the pink segment varied with respect to the amount of 
water, which was critical to her eventually using the pink segment to represent the 
amount of water in a quantitative coordinate system. 
After students describe what the horizontal pink segment represents, I move to Part IV, 
which no longer shows the pink segment below the water, instead showing a red 
segment I intend to represent water temperature on the vertical axis and a pink segment 
I intend to represent amount of water on the horizontal axis (Figure 2b/c). Hoping to 
support students in conceiving of a quantitative coordinate system, I ask them to 
describe what will happen to each segment for Scenarios A-D described above. The 
students describe quantities in ways consistent with Part II but extend this reasoning to 
describing how the segments vary. For example, when addressing Scenario A, Amber 
described, “the red line would go down…because you’re adding more cold water, cold 
water would make it colder…and then the [pink] line…would become 
bigger…because you’re adding more water.” Amber leveraged her situational 
understanding to describe how segments, representing quantities extracted from the 
situation and imposed onto a new space, vary as the quantities changed. 

 
Figure 2: (a) The applet from Part III with arrow to highlight added pink segment, 

and (b)-(c) two screenshots from Part IV. 
Part V is designed to support students in constructing a point as a multiplicative object 
simultaneously representing how water temperature and amount of water covary. In 
Part V, the applet includes a point in the coordinate system with a horizontal magnitude 
corresponding to the endpoint of the pink segment and a vertical magnitude 
corresponding to the endpoint of the red segment (Figure 3a). To support the students 
in conceiving the point as corresponding to both segments’ magnitudes (i.e. as a 
multiplicative object), I ask them to turn the knobs and observe the movement of the 
point. For example, Amber described the point’s movement by saying, “It’s like if [the 
red segment] goes up [the point] would go up and if the width [pointing to the pink 
segment] is going…left, to the left, [the point]’d be moving with both of these 
[motioning to the pink and red segments], trying to stay equal with them.” After 
describing the point as moving according to the endpoints of the two segments, Amber 
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used this understanding to describe how the point moved for Scenarios A-D. For 
example, addressing Scenario D, Amber described temperature and amount of water 
decreased, which corresponded to each segment getting shorter, then described, “since 
they’re [motioning to the segments on the axes] both moving, it’s going to go 
diagonally [motioning diagonally down and to the left of the point on the screen].” 
After conceiving of the point as a multiplicative object, Amber easily described the 
motion of the point in the quantitative coordinate system so that the point represented 
the covarying quantities magnitudes.  

 
Figure 3: (a) The applet for Part V, (b) the applet for Part VI with one emergent trace 

resulting from turning the cold on, and (c) one example from Part VII. 
In Part VI, I use the ‘Trace’ feature of GeoGebra to trace the point as we again go 
through Scenarios A-D (Figure 3b shows the resulting trace for Scenario A). My goal 
is to support students in imagining the graph as being produced by the trace left by the 
point as it moves (i.e. think emergently). Also, by having four scenarios that produce 
graphs in multiple directions, I intend to provide opportunities to consider the trace as 
emerging in various directions. For example addressing Scenario A, Amber first 
approximated where the point would end after turning the cold water on then described 
creating a line from the given starting point to her ending point to create a graph 
representing Scenario A. In this and other cases, Amber described the resulting graph 
as being produced by a trace of a point in motion. 
In Part VII, I present students with several completed graphs (e.g., Figure 3c) and ask 
them to predict how the knobs began and what single action occurred to produce the 
graph. The goals of Part VII are to explore how students interpret a graph representing 
covarying quantities and to examine if students consider the possibility that different 
scenarios create the same final graph (i.e., reason about the graph as an emergent trace). 
If the students do not consider more than one possible scenario, I raise a second 
scenario as a hypothetical classmate’s solution and ask students to comment on this 
solution. Addressing the first of these tasks (Figure 3c), and indicative of reasoning 
about a graph as an emergent trace, Amber immediately questioned, “it started down 
here [pointing to the bottom right endpoint] or up here [pointing to the top left 
endpoint]?” She then argued if the graph started at the top left endpoint, “turning cold 
on” would produce the given graph. Eventually, Amber argued if the graph started at 
the bottom right endpoint, “turning the cold water off” would produce the graph traced 
in the opposite direction. Hence, Amber reasoned about covarying quantities in the 
situation to describe two possible emergent traces producing the same final graph. 
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DISCUSSION AND IMPLICATIONS 
I designed the Faucet Task to support students in constructing quantitative coordinate 
systems, understanding a point in this coordinate system as a multiplicative object 
simultaneously representing two quantities’ magnitudes, then reasoning about graphs 
as emergent traces produced by multiplicative objects moving within a quantitative 
coordinate system. By describing the underlying principles I used when designing the 
Faucet Task, I intend to support other researchers and teachers in designing other tasks 
which can also support or extend students’ constructing quantitative coordinate 
systems, multiplicative objects, and/or thinking emergently.  
Additionally, I provide empirical examples showing that students as young as middle 
school are capable of constructing quantitative coordinate systems, reasoning about 
points as multiplicative objects, and thinking emergently. Whereas previous 
researchers have shown older populations (Lee, 2016; Moore & Thompson, 2015; 
Paoletti & Moore, 2017; Thompson et al., 2017) can engage in such constructions and 
reasoning, these results highlight students at least as young as 10 years old can 
construct similar understandings. Future researchers may be interested in examining 
ways to support middle grade students building other foundational school mathematics 
ideas after they have developed meanings consistent with those described. 
I conjecture the experientially real nature (Gravemeijer & Doorman, 1999) of the 
Faucet Task supported students in constructing and reasoning about quantities; 
students have had a plethora of prior experiences dealing with faucets and water 
temperature. As a common phenomenon, this task has the potential to not only support 
students in developing understandings of quantitative coordinate systems and 
reasoning emergently but also other mathematical ideas including weighted averages, 
rational functions, and multivariable functions (i.e., f(Hot, Cold) = (Amount of Water, 
Water Temperature). Hence, I intend for teachers, curriculum designers, and 
researchers to leverage this common context to support students in developing their 
understandings of several (related) mathematical ideas.  
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DESIGNING TASKS AND 3D PHYSICAL MANIPULATIVES TO 
PROMOTE STUDENTS’ COVARIATIONAL REASONING 

Teo Paoletti, Steven Greenstein, Madhavi Vishnubhotla, Mustafa Mohamed 
Montclair State University 

 
Constructing and reasoning about covarying quantities is fundamental to students’ 
modeling of dynamic phenomena. In this report, we describe how we designed and 
leveraged 3D-printed manipulatives in parallel with iterative task re-design to support 
middle-grades students (ages 10-14) constructing and reasoning about covarying 
quantities. We present data from a design experiment to highlight why we adapted the 
original task to incorporate 3D-printed manipulatives in order to support students’ 
constructions of mental images of quantities in ways consistent with researcher 
intentions. In doing so, we highlight how 3D-printing has opened up new possibilities 
for manipulatives in mathematics education. 
INTRODUCTION 
Constructing and reasoning about quantities that covary is central to students’ abilities 
to make sense of situations and model dynamic phenomena (e.g., Thompson 2008). 
Attending to students’ images of quantities they are modeling is particularly important 
as researchers have shown that students can create mathematical representations (e.g., 
equation rules, graphs) of phenomena that are consistent with the students’ images of 
the phenomena but inconsistent with ways researchers conceive of the quantities 
(Moore & Carlson, 2012; Paoletti, 2015).  
The purpose of this paper is to describe how we adapted a task to support middle grades 
students (ages 10-14) constructing and reasoning about covarying quantities via new 
access to 3D design and printing technologies. Specifically, we describe results from a 
design experiment (Cobb et al., 2003) consisting of five small-group teaching 
experiments (Steffe & Thompson, 2000) addressing the Cone Task. The task initially 
presented students with a dynamic 3-dimensional (3D) situation represented on a two-
dimensional (2D) tablet screen. With the goal of supporting students’ covariational 
reasoning (e.g., Carlson, Jacobs, Coe, Larsen, & Hsu, 2002), we asked them to describe 
how the height and surface area of a displayed cone covaried. Based on our on-going 
analysis, which raised concerns regarding whether students were constructing 
representations of the surface area of a 3D cone through their engagement with its 2D 
analog, we adapted the task by designing and 3D-printing new manipulatives to support 
students’ construction of images of quantities and to examine how they reasoned about 
those quantities. We describe several iterations as we adapted the task to support 
students’ covariational reasoning.    
QUANTITATIVE AND COVARIATIONAL REASONING  
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Steffe, Thompson, and colleagues’ (Steffe, 1991; Smith III & Thompson, 2008; 
Thompson 2008) stance on quantitative reasoning underscores that teachers and 
researchers can not assume students maintain understanding of quantities in ways 
compatible with their intentions as quantities are constructed by an individual in order 
to make sense of their experiential world (Glasersfeld, 1995). For example, Steffe 
(1991) described:  

Properties of concepts are introduced by the knowing subject’s actions in the construction 
of the concepts. For example, the sweetness of sugar is introduced by the tasting individual 
just as the color of roses is introduced by the viewing individual. The idea that an activity 
introduced by the child in constructing a concept might be later abstracted as a property of 
the concept that could be called “quantity” is an important one. It changes the emphasis 
from viewing the sources of quantity as existing in what we take to be external to the child 
to taking quantity as emerging from the child’s interactions with elements in his or her 
environment. (p. 62)  

As conceptual entities, understandings of a quantity can and may differ from individual 
to individual. Therefore, it is critical to attend to students’ conceptions of quantities, 
because while the mathematical representations of conceived phenomena they 
construct are consistent with their own conceptions, they can be inconsistent with 
quantities that the researchers intended for them to construct (Moore & Carlson, 2012; 
Paoletti, 2015).  
In addition to attending to students’ quantitative reasoning generally, we particularly 
attend to students’ covariational reasoning. Carlson et al. (2002) described 
covariational reasoning as entailing a student coordinating two varying quantities with 
attention to the ways the quantities change in tandem. They specified five mental 
actions that allow for a fine-grained analysis of mental actions students engage in when 
coordinating covarying quantities’ magnitudes or values. The mental actions include 
coordinating direction of change (surface area increases as height increases; MA2), 
amounts of change (the change in surface area increases as height increases in equal 
successive amounts; MA3), and rates of change (surface area increases at an 
increasing rate with respect to height; MA4-5). Whereas researchers (Johnson, 2012; 
Moore, 2016; Paoletti & Moore, 2017) have described productive ways high school 
and college students engaged in reasoning compatible with Carlson et al.’s mental 
actions, we are aware of no studies examining middle-grades students’ enactment of 
these mental actions. In this study, we pay particular attention to MA3 as critical to 
students representing relationships between covarying quantities.   
DESIGNING FOR MATHEMATICAL ABSTRACTION TO SUPPORT 
COVARIATIONAL REASONING 
We report on students’ activities addressing the Cone Task, which we iteratively re-
designed to support them in engaging in MA1-3 as described by Carlson et al. (2002). 
Specifically, we adapted the Cone Task, which Stevens et al. (2015) used in clinical 
interviews to elicit college students’ covariational reasoning, as an instructional task. 
By prompting middle grades students to describe the relationship between surface area 
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and height of the growing cone, we intended to support them in differentiating between 
the amounts of change in one quantity increasing, decreasing, or remaining constant 
for equal changes in the second quantity. The initial task involved a GeoGebra applet, 
which we intended to represent an infinitesimally thin, growing, cone in 3D (Figure 1). 
The applet allowed students to use the short slider to vary the cone’s height (apparently) 
continuously or by discrete jumps in integer increments. Additionally, we had a 
handout representing the cone at integer heights from zero to five. By having specific 
equal changes in height in both the applet and handout, we intended to support students 
in considering how the amounts of change of surface area varied as the surface area 
increased for equal changes in height.  

   
Figure 1: Several screenshots of the Cone Task. 

After the first iteration of the task (described below), we leveraged 3D-printing to 
design physical manipulatives students could use to support their construction of 
quantities in ways consistent with our research focus. As Greenstein (2018) noted, 
“The faithful mental representation of objects is critical, because conceptual thought 
proceeds from representational thought and representational thought proceeds from 
perception” (p. 3). Hence, through a process of designing for mathematical abstraction 
(Pratt & Noss, 2010), we designed the physical manipulatives with the intention of 
making both surface area and amounts of change of surface area for equal changes of 
height available to students for abstraction through their sensorimotor engagement with 
them (Kamii & Housman, 2000; Piaget, 1970). Specifically, to support the students in 
explicitly constructing surface area as a two-dimensional quantity on a three-
dimensional object, we designed and 3D-printed a set of five purple cones, each with 
an integer increase in height (see Figure 2). Further, we designed and 3D printed red 
truncated cones representing those changes in height (e.g., the part of the cone that 
would be added to the 3rd cone to get to the 4th cone). We hoped these red manipulatives 
would help students construct mental images to explicitly consider amounts of change 
of surface area as a quantity.  

       
Figure 2: Photos of the 3D printed cone manipulatives  

METHODS, PARTICIPANTS, AND ANALYSIS 
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In order to examine the potential of supporting students in constructing and reasoning 
about covarying quantities in ways consistent with our theoretical perspective, we 
conducted a design study (Cobb, et al., 2003) consisting of five small-group (one to 
three students) teaching experiments (Steffe & Thompson, 2000). The teaching 
experiments occurred in a middle school, which is considered an underperforming 
school (as measured by standardized testing) that hosts a diverse student population 
(over 75% of the population are students of color, and 75% of them are entitled to free 
or reduced-price lunch), in the northeastern United States. Students were recruited on 
a volunteer basis through teacher recommendations. Specifically, we asked teachers to 
recommend students who they believed could explain their thinking and reasoning, and 
we worked with all students who returned signed consent forms. 
Adopting a radical constructivist perspective (Glasersfeld, 1995), we contend that a 
student’s mathematics is inaccessible to us as researchers. Hence, to analyze the data 
(e.g., video recordings, students’ written work), we performed conceptual analyses 
(Thompson, 2008) to generate and test models of the students’ reasoning so that these 
models provided viable explanations of their observable words and actions. With the 
goal of building viable models of the students’ mathematics in mind, we analyzed the 
records from the teaching episodes using open (generative) and axial (convergent) 
approaches (Strauss & Corbin, 1998). Specifically, we watched all videos to identify 
instances that could offer insights into each student’s understanding of quantities and 
relationships between quantities they conceived of in the Cone Task. Using these 
instances, we generated tentative models of each student’s mathematics, which we 
compared to researcher notes taken during on-going analysis in each of the teaching 
experiments. We tested these models for viability by searching for supporting or 
contradicting instances in their other activities. When evidence contradicted our 
models, we revised hypotheses to explain each student’s meanings and returned to prior 
data with these new hypotheses in mind to modify previous hypotheses. This process 
resulted in viable models of each student’s mathematics and supported our adapting 
tasks from one iteration of the teaching experiment to the next iteration. 
RESULTS: ITERATIVE REDESIGN TO SUPPORT COVARIATIONAL 
REASONING  
We reiterate that the goal of the instructional task was to support students in 
constructing and reasoning about quantities as well as amounts of change of one 
quantity with respect to equal changes in the second quantity (MA3). In the first 
iteration of the task, which we used with two pairs of students, the students only had 
the GeoGebra applet displaying a growing cone and the handout with screenshots of 
the cone at integer height values. There were several features of the students’ 
conceptions of the situation that we found to be problematic. First, when addressing 
the task, although each of the four students described the situation as happening in 3D, 
they tended to describe or reason about the cone as a 2D object (e.g., referring to the 
cone as a “triangle”). Second, three of the four students initially indicated that the 
“surface area” of the cone grew by equal amounts for equal changes of height, which 
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we take to indicate that they were not conceiving of surface area in ways compatible 
with our understanding of the relationship (i.e., for equal changes in height, the change 
in surface area increases by greater amounts). For example, one pair of students 
consistently drew what we infer to be changes in the slant height of the cone when 
describing that the amount of change of “surface area” was constant. Such a claim is 
viable as the students conceived of “surface area” as analogous to slant height but this 
conception was inconsistent with surface area as we intended.   
Because each of these pairs had difficulty conceiving of surface area in ways 
compatible with our intentions, the teacher-researcher directed them to shade and 
color-coordinate surface areas and changes in surface area on their handouts (Figure 
3). Although this activity, which took between 7 and 9 minutes, helped each of the four 
students eventually argue the amounts of change of surface area increased for equal 
changes of height (MA 3), the quantity with which they were operating was still often 
ambiguous from the researchers’ perspective. For instance, when shading in the cones 
on the handout, one student described “how many [of the] first triangles [referring to 
the shaded region in the first image of the cone] will fit into the bigger triangles” and 
used this reasoning to determine the “space left” after fitting the smaller triangles into 
the bigger triangles. In addition to referring to “triangles,” the student described the 
“space” as both volume and surface area. We infer that the students often conflated 
several quantities as they attempted to imagine 3D phenomena from 2D 
representations, and despite making claims which are normatively correct regarding 
how surface area and height covary, we are unsure of the extent to which they were 
reasoning about quantities in ways consistent with our intentions.   

 
Figure 3: Photos of one pairs’ color-coordinated work showing changes in surface 

area in red with the surface area of the previous cone circled in black.  
As we conjectured the students were having difficulty constructing surface area as a 
quantity in ways compatible with our intentions, we designed the 3D manipulatives as 
described above. We asked two groups of students (one triple, one single) to discuss 
how the surface area and height of the cone varied; these students had the 3D 
manipulatives available with the GeoGebra applet and printed paper. There were 
several features of these students’ activity that are notable. First, although the handout 
was available, the students rarely referred to it. Instead, they almost exclusively worked 
with the 3D-printed manipulatives and dynamic animation. Second, each of the 
students identified surface area in ways compatible with identifying a 2D quantity in a 
3D situation; the students referred to the outer area of the cone as something we could 
measure. Despite this, when determining how the surface area changed for changes in 
the height of the cone, the specific quantity(ies) the students were reasoning about was 
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still often either ambiguous from our perspective or clearly not surface area in ways 
compatible with our intention.  
As an example of a student who was reasoning with a concept of surface area 
incompatible with our intentions, Greta (the student working alone) consistently 
compared the relative size of the top faces of the red truncated cones to describe that 
the amounts of change of surface area increased for equal changes in height. Although 
Greta came to a normatively correct description of the relationship between outer 
surface area and height, she was reasoning about changes in the surface area of the top 
face of the cone, which does not appear in the applet.  
Whereas Greta consistently described a surface area other than outer surface area as 
we intended, the group of three students seemed to rely on intuitive or explicit notions 
of volume when describing the amounts of change of surface area increasing for equal 
changes in height. For instance, the students consistently used the 3D-printed 
manipulatives to argue that the amounts of change would increase. However, when 
probed to describe what was getting bigger, one of the three students held two of the 
red manipulatives and explicitly described, “larger is like overall, like how big the mass 
is.” Hence, as with the previous iteration, the students were able to make normatively 
correct claims regarding how surface area and height covaried despite their not 
necessarily reasoning about surface area in ways compatible with our intentions.  
Reflecting across students’ activity during on-going analysis, we noted that all of them 
readily identified volume as a quantity they could measure in the situation. We also 
noted that they tended to implicitly reason about changes in volume when we intended 
for them to describe changes in surface area. Additionally, because the manipulatives 
provided the students with solid objects for their sensorimotor engagement (versus an 
infinitesimally thin cone depicted by the GeoGebra animation), we adapted the task by 
asking the students to describe how volume varied for equal changes in height. This 
change in the quantity under consideration did not compromise the goals of our study 
or of the task (i.e., to support students’ constructions of quantities and their reasoning 
about amounts of change of one quantity with respect to equal changes of a second 
quantity). Two groups of students (one pair and one single) engaged with this iteration 
of the task. We note that students reasoned with quantities that were compatible with 
our intention of volume (i.e., weight or amount of plastic inside the manipulative). As 
an example, in describing volume as weight, Amber determined that if the red 
manipulatives have “different sizes, their weights have to be different,” and so the 
“weight is increasing” for consecutive changes in volume represented by the red 
manipulatives. Amber used this reasoning to claim that as the height of the cone 
increases by equal amounts, the volume of the cone increases by greater amounts 
(MA3). In doing so, Amber’s reasoning is consistent with reasoning about what we 
would refer to as volume, amounts of change of volume, and height of the cone. 
DISCUSSION AND IMPLICATIONS 
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There are several implications from this study. First, we emphasize students 
constructing and reasoning about quantities is non-trivial and re-emphasize 
researchers’ calls to take students’ construction of quantity seriously (Moore & 
Carlson, 2012; Thompson, 2008; Steffe, 1991). We highlight the extent to which 
students made viable claims regarding the situation we intended for them to be 
reasoning about (i.e. surface area) despite their reasoning about a different quantity 
altogether (e.g., volume). If we had only assessed students’ understandings of surface 
area based on their conclusions (e.g., surface area increases by more for equal changes 
of height), we would not have been able to discern this disconnect. Hence, when 
analyzing students’ reasoning, researchers need to pay careful attention to the 
quantities students are considering to ensure that they are, in fact, reasoning about the 
intended quantity rather than some surrogate quantity (e.g., Stevens et al., 2017). 
Second, we highlight the extent to which 3D design and printing provided us with novel 
opportunities to support students’ quantitative and covariational reasoning. By 3D-
printing manipulatives with specific theoretical framings in mind (i.e., Carlson’s 
framework and designing for abstraction), we were able to support students in 
imagining both the volume and height, and changes in volume and changes in height, 
in order to coordinate how these quantities covary. Put another way, the final task was 
productive in supporting students in imagining and coordinating quantities in ways 
consistent with mental actions described in Carlson et al.’s (2002) framework, which 
we conjecture is an important first step to their developing more sophisticated school 
mathematics ideas (e.g., rate of change).  Hence, we intend for this research to be a 
starting point for future researchers interested in (a) exploring middle-grades students’ 
development of covariational reasoning, and (b) examining ways emerging 
technologies, including 3D-printing, can support students in developing important 
mathematical ideas.  
Acknowledgments 
This material is based upon work supported by the Spencer Foundation under Grant No. 
201900012 and NSF Award No. 1812887.  

References 
Carlson, M. P., Jacobs, S., Coe, E., Larsen, S., & Hsu, E. (2002). Applying covariational 

reasoning while modeling dynamic events: A framework and a study. Journal for Research 
in Mathematics Education, 33(5), 352–378.  

Cobb, P., Confrey, J., diSessa, A. A., Lehrer, R., & Schauble, L. (2003). Design experiments 
in educational research. Educational Researcher, 32(1), 9–13.  

Glasersfeld, E. v. (1995). Radical constructivism: A way of knowing and learning. 
Washington, D.C.: Falmer Press. 

Greenstein, S. (2018). Designing a microworld for topological equivalence. Digital 
Experiences in Mathematics Education, 4(1), 1–19. 



Paoletti, Greenstein, Vishnubhotla & Mohamed 

3 -                                                                                                            PME 43 – 2019 
 

200 

Johnson, H. L. (2012). Reasoning about variation in the intensity of change in covarying 
quantities involved in rate of change. The Journal of Mathematical Behavior, 31(3), 313–
330.  

Kamii, C., & Housman, L. B. (2000). Young children reinvent arithmetic: Implications of 
Piaget’s theory. Columbia: Teachers College Press. 

Moore, K. C. (2014). Quantitative reasoning and the sine function: The case of Zac. Journal 
for Research in Mathematics Education, 45(1), 102–138.  

Paoletti, T. (2015) Students’ reasoning when constructing quantitatively rich situations. In T. 
Fukawa-Connolly, N. E. Infante, K. Keene, & M. Zandieh (Eds.), Proceedings of the 
Eighteenth Annual Conference on Research in Undergraduate Mathematics Education 
(pp. 845–852). Pittsburgh, PA: West Virginia University. 

Paoletti, T., & Moore, K. C. (2017). The parametric nature of two students’ covariational 
reasoning. The Journal of Mathematical Behavior, 48, 137–151.  

Piaget, J. (1970). Genetic epistemology. New York City: Columbia University Press. 
Pratt, D., & Noss, R. (2010). Designing for mathematical abstraction. International Journal 

of Computers for Mathematical Learning, 15(2), 81–97. 
Smith III, J. P., & Thompson, P. W. (2008). Quantitative reasoning and the development of 

algebraic reasoning. In J. J. Kaput, D. W. Carraher, & M. L. Blanton (Eds.), Algebra in the 
Early Grades (pp. 95–132). New York, NY: Lawrence Erlbaum Associates. 

Steffe, L. P. (1991). Operations that generate quantity. Journal of Learning and Individual 
Differences, 3(1), 61-82. 

Steffe, L. P., & Thompson, P. W. (2000). Teaching experiment methodology: Underlying 
principles and essential elements. In R. A. Lesh & A. E. Kelly (Eds.), Handbook of 
research design in mathematics and science education (pp. 267–307). Hillside, NJ: 
Erlbaum. 

Strauss, A. L., & Corbin, J. M. (1998). Basics of qualitative research: Techniques and 
procedures for developing grounded theory (2nd ed.). Thousand Oaks: Sage Publications.  

Stevens, I. E., Hobson, N. L. F., Moore, K. C., Paoletti, T., LaForest, K. L., & Mauldin, K. 
D. (2015). Changing Cones: Themes in Students’ Representations of a Dynamic Situation. 
In T. G. Bartell, K. N. Bieda, R. T. Putnam, K. Bradfield, & H. Dominguez (Eds.), 
Proceedings of the 37th Annual Meeting of the North American Chapter of the 
International Group for the Psychology of Mathematics Education (pp. 363–372). East 
Lansing, MI: Michigan State University. 

Stevens, I. E., Paoletti, T., Moore, K. C., Liang, B., & Hardison, H. H. (2017) Principles for 
Designing Tasks that Promote Covariational Reasoning. In A. Weinberg, C. Rasmussen, 
J. Rabin, M. Wawro, & S. Brown (Eds.), Proceedings of the Twentieth Annual Conference 
on Research in Undergraduate Mathematics Education (pp. 928–936). San Diego, CA. 

Thompson, P. W. (2008). Conceptual analysis of mathematical ideas: Some spadework at the 
foundations of mathematics education. In O. Figueras, J. L. Cortina, S. Alatorre, T. Rojano, 
& A. Sépulveda (Eds.), Proceedings of the Annual Meeting of the International Group for 
the Psychology of Mathematics Education (Vol. 1, pp. 31–49). Morélia, Mexico: PME.



 3 - 201 
2019. In M. Graven, H. Venkat, A. Essien & P. Vale (Eds.). Proceedings of the 43rd Conference of the International 
Group for the Psychology of Mathematics Education (Vol. 3, pp 201-208). Pretoria, South Africa: PME. 

IDENTIFYING EMERGING ALGEBRAIC REASONING  
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Multiplicative thinking and generalisation are recognised as key to developing 
algebraic reasoning. In this exploratory study, conducted with 10-12 years old students 
from Australia and China, fraction tasks which require students to find the “whole”, 
rather than the part, are used to identify students’ progress towards algebraic thinking. 
Frameworks to classify their solution strategies, and degree of algebraic reasoning, 
allow teachers to chart student progress. While the Australian students demonstrated 
a greater range of methods the Chinese students favoured multiplicative methods with 
given numbers, but this did not always translate to generalisation. Students who 
generalised proficiently showed clear evidence of algebraic reasoning. 
INTRODUCTION 
Many researchers argue that a deep understanding of fractions is important for a 
successful transition to algebra. The links between fractional knowledge and readiness 
for algebra have been highlighted by many researchers such as Wu (2001); Jacobs, 
Franke, Carpenter, Levi, and Battey (2007); Empson, Levi, and Carpenter (2011) and 
Siegler and colleagues (2012).  
Our current research aims to identify the emergence of algebraic reasoning as middle-
years students solve fraction tasks where algebraic reasoning has been defined by 
Kaput and Blanton (2005) as a process:  

… in which students generalize mathematical ideas from a set of particular instances, 
establish those generalizations through the discourse of argumentation, and express them 
in increasingly formal and age-appropriate ways (p. 99). 

In this exploratory study, which is part of a larger study (Pearn & Stephens, 2017; 
Pearn, Pierce & Stephens, 2017), Australian and Chinese students from Years 5 and 6 
completed paper and pencil tests that were designed to ascertain students’ 
understanding of fraction concepts, their competence and fluency with fraction 
operations. The students were also examined for evidence of algebraic reasoning. 
In this paper we describe the development of two frameworks designed to classify 
students’ responses to specific fraction tasks. These frameworks were then used to 
analyse the responses from Years 5 and 6 students (10 – 12 years of age and in their 
last two years of primary school). Seventeen Australian students from one school and 
12 Chinese students from three primary schools were involved. We compare Australian 
and Chinese students’ written responses to three reverse fraction tasks (Figure 1) using 
the Classification Framework (Table 1) and their subsequent responses to a Structured 
Interview, using the Emerging Algebraic Reasoning Framework (Table 4). All student 
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responses were examined for evidence of students’ algebraic reasoning in an endeavour 
to answer the following research questions: 

• Are similar strategies used by Australian and Chinese students in their written 
solutions to the three reverse fraction tasks? 

• Does the Structured Interview provide clear evidence of students’ ability to 
generalise their solutions based on variations of a set of particular instances? 

 LITERATURE AND FRAMEWORKS 
Researchers such as Kieren (1980) and Lamon (1999) believe that much of the basis 
for algebraic thought rests on a clear understanding of rational number concepts and 
the ability to manipulate common fractions. According to Wu (2001) the ability to 
efficiently manipulate fractions is "vital to a dynamic understanding of algebra" (p. 
17). Empson, Levi and Carpenter (2011) suggest that some strategies students use to 
solve fraction problems “are motivated by the same mathematical relationships that are 
essential to understanding high-school algebra” (p. 410).  
Three reverse fraction tasks 
Key to this study has been the development of three reverse fraction tasks that require 
students to find the number representing the whole using less common fractions of 
two-thirds, four-sevenths and seven-sixths (see Figure 1) and the number of objects 
designated to represent the given fraction (Pearn, Pierce & Stephens, 2017).  
Reverse Fraction Task 1 Reverse Fraction Task 2 Reverse Fraction Task 3 

 

 

 

Figure 1: The three reverse fraction tasks 
In these reverse fraction tasks students are given the fraction, and the number of objects 
representing the fraction, and then asked to find the number of objects representing the 
whole group. (In the Chinese version of these three questions, the term “circles” 
replaced “counters”). Here, the strategies enabling students to generalise from a set of 
particular examples require an understanding of equivalence, as well as an ability to 
transform quantities using equivalence.   
Using a thematic analysis approach (Braun & Clarke, 2006) students’ responses for the 
three reverse fraction tasks were classified according to the specific methods used in 
their written responses. Five categories were established and classified as illustrated in 
Table 1 which includes an explanation, with example, for successful responses for 
Reverse Fraction Task 2 (see Figure 1). A sixth category, Incomplete, was used for 
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responses that were left blank or were incorrect. Table 1 shows that students’ written 
responses varied from the concrete (diagram dependent), strictly computational 
(additive, partly multiplicative) to the generalisable (multiplicative) and algebraic 
(advanced multiplicative).  

Classification Explanation Example 

Diagram 
dependent 

Students use explicit partitioning of 
diagrams before using additive or 
subtractive strategies. 

 

 

Additive 
/subtractive 

Students use additive or subtractive 
methods without explicit partitioning of 
a diagram e.g. find the number of objects 
needed to represent the unit fraction and 
then use counting or repeated addition to 
find the number of objects in the whole. 

 

 

Partially 
multiplicative 

Students use both multiplicative and 
additive methods e.g. they calculate the 
missing fractional part (3/7) and then add 
it onto the original quantity. 

 

 

 

Fully 
multiplicative 

Students use fully multiplicative 
methods. They use division to find the 
quantity represented by the unit fraction 
and then multiply this quantity to 
calculate the whole. 

 

 

 

 
Advanced 
multiplicative 

Students use more advanced 
multiplicative methods which include 
the correct use of appropriate algebraic 
notation to find the whole, or a one-step 
method to find the whole by dividing the 
given quantity by the known fraction. 

 

 

 

 

Table 1: Classification Framework for strategies used for Reverse Fraction Task 2 
The Structured Interview 
The Structured Interview was designed to provide stronger evidence of generalised 
thinking (Pearn & Stephens, 2017). Task-based interviews have been used extensively 
by researchers to determine students’ existing and developing mathematical 
knowledge and problem-solving behaviours (Maher & Sigley, 2014). The research of 
Marton, Runesson and Tsui (2004) demonstrated that a generalisable pattern can be 
fostered when numbers are varied. It was hypothesised that generalised thinking would 
be revealed if students were consistently able to use the same methods in similar 
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reverse fraction questions where the quantities were changed but the fractions remained 
the same. In the Structured Interview the fractions are the same as those used in the 
three reverse fraction tasks, but the quantities representing these fractions were 
changed.  
While the same fractions were used for the Structured Interview no diagrams were 
included. For each fraction there are two variations. The initial variation is a change in 
the given number of counters (Change of number 1). In the left-hand column of Figure 
2 is Reverse Fraction Task 1 while the middle column shows Task 1 from the 
Structured Interview with the same fraction but a different number of counters. The 
second variation is another change in the given number of counters (Change of number 
2) followed by another change of counters to ‘any number’ (Unknown number). An 
example of the second variation is Task 4 from the Structured Interview shown in the 
right-hand column of Figure 2. Questions involving any number were designed to make 
additive and subtractive strategies less attractive and less easy to use and encourage 
students to focus on the fractional structure.  
Reverse Fraction Task 1 First variation Second variation 

 Change of number 1 Change of number 2 
unknown number  

 
 

  

Figure 2: Example of variations for interview questions 
If students successfully completed the second variation relating to ‘any number’ of 
counters for all three fractions, a third variation (Question 7, Figure 3) introducing ‘any 
fraction’ and ‘any number’ was designed to allow students to generalise their solution 
method, for example, by dividing the unknown quantity by the unknown numerator 
and then multiplying by its denominator, or by dividing by the fraction. This question 
was intended to provide an opportunity for students to use algebraic notation to 
represent the unknown quantity and its unknown fraction. 

 
Figure 3: Question 7 from the Structured Interview 

While responses to each task from the Structured Interview could be classified 
individually according to the Classification Framework (Table 1), the overall results 
for each interview also needed to be classified in terms of the development of algebraic 
reasoning. Students’ responses to the Structured Interview were analysed using a 
thematic analysis approach (Braun & Clarke, 2006). Students’ responses varied from 
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computational to fully generalised which indicates algebraic reasoning. The Emerging 
Algebraic Reasoning Framework was developed and is shown in Table 2. 
Level Description 
1. Computational fluency - 
Partial 

Solved only some questions with method restricted to given 
fractions and quantities.  

2. Computational fluency 
Complete 

Solved all questions with given fractions and quantities but 
unable to answer more than one question with ‘any quantity’. 

3. Generalising - Additive  Solved all questions with given fractions and quantities. Used 
additive or mixed methods to solve questions with ‘any 
quantity’. No appropriate generalized multiplicative response 
for ‘any fraction’ and ‘any quantity’. 

4. Generalising- 
Multiplicative  

Solved all questions with given fraction and ‘any quantity’ 
using multiplicative methods. No appropriate generalised 
response to ‘any fraction’ and ‘any quantity’.  

5. Algebraic 
generalisation - Verbal 

Solved all questions with known fractions and ‘any quantity’ 
using consistent multiplicative methods. Students verbalised 
but did not symbolise full generalisation to ‘any fraction’ and 
‘any quantity’. 

6. Algebraic 
generalisation - 
Symbolic 

Solved all questions with known fractions and ‘any quantity’ 
and generalised using consistent multiplicative methods. 
Appropriate algebraic notation used to solve ‘any fraction’ and 
‘any quantity’ task. 

Table 2: The Emerging Algebraic Reasoning Framework  
THIS STUDY 
Table 3 shows the number of students from Years 5 and 6 who completed the three 
reverse fraction tasks and were interviewed. The Structured Interview was given to a 
selection of Australian and Chinese students who successfully solved and explained 
their solutions to at least two of the three reverse fraction tasks. Year 6 Chinese students 
are taught division by fractions, while this is not taught in Australia until Year 8. 
 Australian students Chinese students 

Year 5 9  6  
Year 6 8  6  
Total 17  12  

Table 3: Number of Australian and Chinese students in each year level.  
RESULTS 
The three reverse fraction tasks were in a format that would have been unfamiliar to 
both Australian and Chinese students. The responses for both Australian and Chinese 
students from Years 5 and 6 were analysed to determine the types of strategies students 
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used to solve the three reverse fraction tasks. These responses were then classified 
according to the classifications given in Table 1 and are presented in Table 4. There 
were 17 Australian students (AU) and 12 Chinese students (CH). 

Response Type Reverse 
Fraction Task 1 

Reverse 
Fraction Task 2 

Reverse 
Fraction Task 3 

 AU CH AU CH AU CH 
Incomplete - - - 1 - 1 
Diagram dependent - - 1 - 1 - 
Additive/subtractive - - 1 - - - 
Partially multiplicative 10 - 5 - 9 - 
Fully multiplicative 6 5 9 4 6 4 
Advanced Multiplicative 1 7 1 7 1 7 

Table 4: Classification of students’ responses to the three reverse fraction tasks 
Successful Chinese students used either fully or advanced multiplicative strategies 
whereas Australian students tended to use a range of strategies including partially 
multiplicative strategies. Only one Australian student from this sample used advanced 
multiplicative strategies compared to seven Chinese students. Figure 4 shows a 
response deemed to be Advanced Multiplicative from an Australian Year 6 student in 
the left-hand column and a Chinese Year 6 student in the right-hand column. 

  

Figure 4: Advanced Multiplicative responses from Year 6 students 
Even though some Chinese students used more sophisticated multiplicative strategies 
to solve the three reverse fraction tasks (Table 3) there were fewer differences between 
the two groups when the Structured Interview was analysed. Structured Interview 
responses (Table 5) demonstrated that students’ strategies varied from strictly 
arithmetical (computational fluency), beginning to generalise (additive, multiplicative) 
to the fully generalised demonstration of algebraic reasoning (verbal, symbolic).  

Level 
Australian Chinese 

Year 5 
(n = 9) 

Year 6 
(n = 8) 

Year 5 
(n = 6) 

Year 6 
(n = 6) 

1. Computational fluency - Partial - - 1 2 
2. Computational fluency - Complete 1 - 1 - 
3. Generalising - Additive 1 3 2 1 
4. Generalising - Multiplicative 1 2 - 1 
5. Algebraic generalisation - Verbal 5 1 1 - 
6. Algebraic generalisation - Symbolic 1 2 1 2 

Table 5: Results for the Developing Algebraic Reasoning Framework  
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Table 5 shows that almost all students were able to calculate the number of objects in 
the whole group when given a specific fraction and the number of objects representing 
that fractional part. The first difficulty occurred when students were asked to think 
about the situation where the number of objects was not stated but there were ‘any 
number of counters’. While some students gave no response when asked about ‘any 
number’, other students explained: “I can’t do this because I don’t know the number 
of circles.” (Chinese student) or similarly: “I don’t know how many circles so I can’t 
solve it”. There was no evidence of generalisation in this group. 
Some students from both countries who demonstrated that they were beginning to 
generalise using strategies for the tasks with ‘any number of counters’ were unable to 
complete the third variation with ‘any fraction’ and ‘any number’. The third variation 
identified students who used a range of explanations, verbal and symbolic, to fully 
generalise their solutions. For example, one Chinese student introduced a new fraction, 
five-ninths, in order to explain that: “We need to find out how many are in one piece, 
then multiply x (the quantity represented) by the denominator to get the total amount”.  
CONCLUSION 
There were differences between Australian and Chinese students written solutions to 
the three reverse fraction tasks. Australian students used a greater variety of methods 
compared to Chinese students who tended to use multiplicative methods. However, the 
Structured Interview identified Australian and Chinese students who were 
computationally proficient but unable to generalise, as distinct from those who were 
beginning to generalise, and those who could fully generalise their solutions. The 
Structured Interview identified Australian and Chinese students in each of these three 
groups. Computational fluency, including the ability to divide by a fraction, did not 
guarantee generalisation. The Structured Interview with its three variations allowed 
researchers to identify students whose proficient generalisations showed clear evidence 
of algebraic reasoning. 
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With a focus on teachers’ Specialized Knowledge of division, we discuss some aspects 
related to the dimensions of teacher’s knowledge, particularly Knowledge of Topic and 
Knowledge of Structures of Mathematics, both considered from the Mathematics 
Teachers’ Specialized Knowledge conceptualization. The analysis of the teachers’ 
interactions during a professional development program aimed at accessing and 
developing their specialized knowledge made it possible to elicit a set of indicators of 
teachers’ knowledge. These indicators are perceived to be an effective tool for use in 
teacher education programs intended to develop teachers’ knowledge and improve 
mathematical practices. 
INTRODUCTION  
Teachers’ knowledge has been a focus of attention in teacher education from various 
viewpoints (e.g., Ball, Thames, & Phelps, 2008; Carrillo et al., 2018; Rowland, 
Huckstep, & Thwaites, 2005). Moreover, the extent of the impact of teachers’ 
knowledge on students’ learning and results is well known (e.g., Boyd, Grossman, 
Lankford, Loeb, & Wyckoff, 2009), as this is one of the primary interests among 
international scholars seeking to understand which aspects related to the teacher’s 
knowledge most influence their practice (e.g., Dooren, Verschaffel, & Onghena, 2002). 
Assuming the specialized nature of teachers’ knowledge (in the sense of Carrillo et al., 
2018) is perceived a premise for improving educational contexts and which requires 
still characterize the content of such specialization. Such characterization is 
particularly important in what are considered mathematical critical situations/topics, in 
terms of both learning and teaching. Division is such a case (e.g., Rizvi, 2007). 
Among the problematic factors in the teaching and learning of division, is a focus on 
the algorithm without considering aspects such as the necessary discussion about the 
meanings assumed for the concept of division (Fischbein, Deri, Nello, & Marino, 
1985); the crucial role of the different types of representations, and the relationships 
amongst them (e.g., Ainsworth, Bibby, & Wood, 2002); the connections between 
division and other topics (Young-Loveridge & Bicknell, 2018); and the principles 
associated with the counting and collection-based approaches to working with numbers 
– namely unitizing (Behr, Harel, Post, & Lesh, 1994) – or the intrinsic relationship with 
the foundations of measurement (Clements & Stephan, 2004).  
Thus, aiming at exploring the content of teachers’ knowledge of division that is 
associated with what and how they know (topics) and how to teach it/what they need 
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to know (structure), here we address the following research question: What knowledge 
of topics and structures of mathematics related to division do practising teachers 
reveal when discussing a task conceptualised with the aim of developing such 
knowledge? 
THEORETICAL FRAMEWORK 
The topic of division is considered one of the most difficult, in terms of both learning 
and teaching (Rizvi, 2007). It is problematic for students as many foundational 
concepts are not employed to support the process of teaching, which has implications 
for students’ understandings. For instance, although the concept of unit is crucial to 
understanding the role of each element involved in a division operation (Behr et al., 
1994), it is not a focus of attention in teachers’ practices (e.g., Zakaryan & Ribeiro, 
2018), in particular when the division is taken in the quotative sense.  
Division can be understood in two senses: partitive (sharing) and quotative 
(measurement). The partitive meaning is evoked in contexts in which a group of 
elements (dividend) must be divided (shared) into a number of (equal) sets (divisor) – 
this is the “typical” way division is perceived (One has an amount of “something” and 
one is going to share it amongst a certain quantity of people). The quotative meaning 
of division (measurement division), in contrast, is evoked in contexts in which a 
comparison between two quantities (dividend and divisor) is required – that is, when 
one needs to determine how many times the unit of measurement (divisor) is 
needed/contained to fulfil what needs to be measured (dividend). When aiming to 
clarify the quotative meaning of division, in addition to knowledge of the concept of 
unit of measurement, teachers also need to know the principles of the measurement 
activity (Clements & Stephan, 2004). These principles comprise: i) choosing the unit 
of measurement; ii) partitioning of the whole to be measured; iii) iteration of the unit; 
iv) accumulation of quantity; v) relation to number. In relation to the quotative meaning 
of division, core aspects concern (i) developing a perception of the divisor as the unit 
of measurement; (ii) the notion of decomposition of the dividend into equivalent parts; 
(iii and iv) the notion of the composition of a number that relies on the hierarchical 
inclusion and cardinality constructs; and (v) the perception of the quotient as a quantity 
obtained by a process of measurement.  
Furthermore, in the process of learning division, two other aspects play crucial roles. 
One concerns the use of word-problems to contextualize the meaning (partitive or 
quotative) of division (Downton, 2009). The other relates to the different types of 
representation that help to give meaning to each of the associated mathematical 
constructs (Lesser & Tchoshanov, 2005). When focusing on developing students’ 
knowledge of connections – one of the five school mathematics principles (NCTM, 
2000) – establishing relationships between diverse forms of representations is another 
core aspect related to the process of learning division (Ainsworth et al., 2002).  
In (and for) developing such knowledge of division, it is crucial to focus on teachers’ 
knowledge of such topics, as this has significant effects on students’ learnings (Boyd 
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et al., 2009). Amongst the diverse conceptualizations of teachers’ knowledge, we 
assume the Mathematics Teacher’s Specialized Knowledge (MTSK) conceptualization 
(Carrillo et al., 2018). Of the two domains considered in the MTSK conceptualization 
(Mathematical Knowledge – MK, and Pedagogical Knowledge – PCK), due to the 
scope of our work, we focus only on two of the subdomains of MK – Knowledge of 
Topics (KoT) and Knowledge of Structures of Mathematics (KSM).  
The KoT includes teachers’ knowledge of definitions (what is a division in a 
mathematical sense?); properties and foundations (e.g., the role of each element 
involved in a division); phenomenology and applications (e.g., partitive and quotative 
meanings of division and the contexts to evoke each meaning); procedures (e.g., 
knowing how, when and why to employ each procedure when solving a division); and 
systems of representation (e.g., the most adequate type of representation to be 
associated with each division meaning). As for the KSM, it concerns teachers’ 
knowledge of connections between topics, considering four categories: connections 
based on simplification and connections based on increased complexity, both related 
to “temporal connections underlining the generative role of mathematical items in the 
construction of other items” (Carrillo et al., 2018, p. 8); auxiliary connections (e.g., the 
concept of unit to give sense to the role of divisor as an unit of measurement when 
considering quotative division); and transverse connections (e.g., the principles 
associated with measurement process to sustain the notion of quotative division). 
CONTEXT AND METHOD 
Being part of a broader research project, here we focus on a group of nine practising 
teachers (two from kindergarten, six from primary and one from secondary school 
levels) who participated in a professional development program (PD) in Brazil. The 
PD is a 2-year program focusing on developing teachers’ Specialized Knowledge. It is 
comprised of seven courses (five meetings of 8 hours each), focusing on Numbers and 
Operations (two courses – integers and fractions), Algebraic Reasoning, Statistical 
Reasoning, Geometry (two courses), and Measurement. Here we focus on data 
gathered from the discussions held during one session of the course on Numbers and 
Operations, and particularly the session addressing teachers’ knowledge on division.  
Data was gathered through audio and video recordings of teachers’ interactions (both 
when working in groups of three and the all-group discussions) and teachers’ 
productions when solving the tasks aimed at developing their specialized knowledge. 
For the transcription we use pseudonyms and “Educator.” Here we focus on three 
particular questions: (1) What is division for you? What would you answer if a sixth 
grade student posed this question to you?; (2) Solve the expression 6÷3 describing the 
procedures employed; (3) Formulate two distinct problems that could be solved by the 
expression 6÷3=2, and then provide a solution for each of them, presenting two 
distinct types of representation that clarify the meanings of such solutions.  
Using the MTSK conceptualization as a theoretical and analytical lens, data analysis 
allowed a set of indicators of KoT and KSM to emerge. These indicators were named 
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following Zakaryan and Ribeiro (2018), so that, for example, KoTph1 corresponds to 
an indicator associated with the phenomenology and applications category, included 
in the KoT subdomain (see Table 1). The other indicators correspond to: KoTph2 and 
KoTph3, both related to the phenomenology and applications category; KoTrp1, 
related to the systems of representation category; KSMau1 and KSMtr1, related to the 
auxiliary and transverse connections categories, respectively. We emphasize that the 
given number does not represent any hierarchization, but only an identification. 
RESULTS AND DISCUSSION 
All groups revealed a knowledge of the partitive meaning of division (KoTph1), as is 
evident from the following excerpt from the plenary discussion about Question (1): 
“What is division for you? What would you answer if a sixth grade student posed this 
question to you?”:  

Educator: That’s fine… And what would you say to sixth grade students?  
Mila: We would say that dividing is to share equally. 
Will:  It is when you get the whole and you share it in a certain number of parts. 

We did not write down equivalent parts… But it must be equivalent parts.  
Educator:  What else? 
Norma:  We also answered that: sharing in a certain number of equal parts, since the 

algorithm is already known by the students.  

All the teachers revealed knowing the relationship between the partitive meaning of 
division and the notion of sharing. However, when asked to formulate two distinct 
problems that could be solved by the expression 6÷3=2, only one group was able to 
do so. It is worthwhile noting that a similar question had been posed in the tasks 
associated with addition, subtraction and multiplication, which also highlights what 
could be termed the non-transposability of teachers’ knowledge – what is valid to a 
situation is not directly transformed to another, even when in a similar practice context 
– here involving operations. Below, an example of the small-group discussion, 
extracted from Group 2: 

1  Mila: It is that partitive one?  
2 Mara:  It is (all) related to the expression six divided by three equals 
3   two [writes down 6÷3=2], but probably it has (different) concepts here…  
4  For example, as the addition, that we have the add and the  
5  putting together meanings. Probably, here there are also two  
6  meanings. Let’s imagine that one is about sharing. And the other 
7  one, is about what?  
8 Marsha: Wait! If it is not about sharing, what is it about?  

It is important to highlight that the teachers reveal a knowledge associated with the role 
of word-problems (KoTph3) as a support to evoke distinct meanings of the operations 
(Downton, 2009). Although they assume the possibility of the existence of a distinct 
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meaning of division from the one they know (partitive), they were not able to provide 
a word-problem evoking such a meaning. This brings to front the need to focus on 
developing their knowledge of the quotative meaning (KoTph2) and a situation 
associated with it (KoTph3).  
Only Group 2 was able to provide two word-problems that evoked the two meanings 
of division (KoTph3). 

 
Figure 1: Word-problems provided by Group 2 for the two meanings of division. 

It is important to highlight that, although the group provided word-problems evoking 
the two meanings of division, one of the posed problems (2) was not associated with 
the expression 6÷3=2, but instead to 6÷2=3. Naturally, this misunderstanding could 
be avoided if the concept of unit of measurement (Behr et al., 1994) was mobilized to 
give sense to the role of divisor (KSMau1).  
After the Educator intervention – aiming at elicit the meanings of division with a 
correspondence between the given expression and the posed problem (Ribeiro & 
Amaral, 2015) – the group recognized that the two word-problems provided were 
associated with two distinct reasonings. Nevertheless, they did not establish an explicit 
connection with the notion of measurement (KSMtr1) associated with the second 
problem provided (Clements & Stephan, 2004).  
In relation to the most adequate type of representation to give meaning to a certain 
concept (the last part of the third question), the pictorial representations of the 
expression 6÷3=2 provided by all the groups associated with the notion of sharing:  

 
Figure 2: Pictorial representations provided by the groups. 

However, when asked to provide a solution for each of the two distinct problems they 
formulated, only Group 2 provided two different pictorial representations (KoTrp1): 
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Figure 3: Pictorial representations provided by Group 2 associated to the word-

problems. 
As the other groups provided two problems both evoking only the partitive meaning, 
the focus of their representations was associated with sharing. On the one hand, this 
reveals their knowledge of this type of representation as being the most adequate to 
give meaning to partitive division (KoTrp1). On the other hand, it reveals the need to 
develop their knowledge, both in terms of the quotative meaning (KoTph2) and in 
terms of the adequacy of a type of representation to be associated with it (KoTrp1).  
In order to synthetize the different aspects of the teacher’s knowledge of topics and 
structures on the scope of division, according to the MTSK conceptualization, a set of 
indicators were elicited and identified in accordance with each subdomain (Table 1). 

Categories of KoT and 
KSM 

Indicators 

Phenomenology and 
applications 

(KoTph) 

KoTph1: Knowledge of partitive meaning of division.  

KoTph2: Knowledge of quotative meaning of division. 

KoTph3: Knowledge of types of problems/contexts 
created to evoke a certain meaning of division. 

Systems of representations 
(KoTrp) 

KoTrp1: Knowledge of the most adequate type of 
representation to give meaning to a certain concept. 

Auxiliary connections 

(KSMau) 

KSMau1: Knowledge of the concept of unit to give 
meaning to the role of divisor as a unit of measurement. 

Transverse connections 

(KSMtr) 

KSMtr1: Knowledge of the principles associated with the 
measurement activity as the foundation of the quotative 
division construct. 

Table 1: Categories and indicators related to KoT and KSM subdomains on division 
In this way, it was possible to highlight some evidence of teacher’s knowledge of 
phenomenology and applications, systems of representations and auxiliary and 
transverse connections. 
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FINAL COMMENTS  
This study focused on the characterization of teacher’s knowledge related to the topics 
and the structures of mathematics, according to the MTSK conceptualization. The 
search for this characterization took as its starting point, on one hand, one of the most 
problematic topics on the scope of teaching mathematics, that is, division. On the other 
hand, we assumed the existence of indicators of teacher’s specialized knowledge 
(Zakaryan & Ribeiro, 2018) also in the scope of division and analyzed the interactions 
of a group of practice teachers when discussing a task focusing on such topic. By 
scrutinizing the evidence of knowledge revealed by this, it was possible to elicit a set 
of indicators of specialized knowledge related to division.  
The context of a PD program is conducive to access and develop teacher’s specialized 
knowledge, particularly if the tasks implemented in teacher education are 
conceptualized with the aim of developing such specialized nature of teachers’ 
knowledge. However, even if we had data gathered through three sources (audio and 
video recordings and teachers’ productions to the tasks) it is worth highlighting the fact 
that it is desirable to investigate teachers’ knowledge also in various contexts of 
practices, that is, for example, during class, focus group interviews or during 
preparation of tasks.  
In that sense, this study points to at least two new directions of research. One is 
theoretical, since it is related to deepening the understanding of teacher’s knowledge 
of the other MTSK subdomains – both in division as well as other topics. This focus 
also draws attention to the fact that, when providing new indicators of specialized 
knowledge, new categories associated with each subdomain may emerge, which can 
be perceived, therefore, as a refinement of the MTSK model and a contribution to the 
overall knowledge on teachers’ knowledge. The other direction pointed out is related 
to teacher education. When characterizing teacher’s specialized knowledge by 
identifying a set of indicators of such knowledge, it is possible to refine the 
conceptualization of courses and professional developments programs, focusing on 
developing the specificities of teachers’ knowledge grounded on these indicators.  
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PROFESSIONAL DEVELOPMENT FOR SECONDARY MATHS 
TEACHERS: EVIDENCE OF IMPACT ON TEACHERS’ 

KNOWLEDGE AND ON LEARNER ATTAINMENT 
Craig Pournara, Patrick Barmby 

School of Education, University of the Witwatersrand   
 

We report on the impact of a one-year mathematics professional development course 
on teachers’ mathematical knowledge and their learners’ attainment for two cohorts 
of teachers (2016 and 2017). In both cases teachers’ mathematics test-scores improved 
significantly. We examined the learning gains of Grades 9 and 10 learners from 24 
secondary schools taught by teachers who had attended the course. We compared these 
results with those of learners in 16 matched comparison schools taught by teachers 
who had not participated in the course. The intervention group made larger gains 
which were statistically significant. Learners taught by the 2016 teachers made greater 
gains than learners taught by the 2017 teachers. This is in line with the expectation 
that the impact of professional development on learners is delayed.   
INTRODUCTION 
Across the world a wide variety of programmes attempt to improve teachers’ 
mathematical knowledge in order to improve learner attainment. In South Africa, many 
such programmes have been designed and implemented but there is little evidence of 
positive impact on learners’ performance in mathematics. For the past nine years the 
Wits Maths Connect Secondary (WMCS) project has trialled different models of 
professional development for secondary mathematics teachers. In 2012 the Transition 
Maths 1 (TM1) course was offered for the first time to a small group of teachers in the 
broader Johannesburg area. A small study of learning gains (Pournara, Hodgen, Adler, 
& Pillay, 2015) showed that learners taught by teachers who had attended the course 
made more gains and out-performed learners in the same schools taught by teachers 
who had not attended the course. The results were treated as “evidence of promise” 
and a larger more rigorous study has been ongoing since 2016 to study the impact of 
further cohorts of teachers who have completed the course.  
The notion of learning gains has proved useful as a measure of learner attainment 
where the gain is the change in test-score from pre- to post-test over one academic year. 
In the context of impact studies it enables us, to some extent, to attribute learning gains 
to the teaching received from a particular teacher in a given year. Nevertheless, we are 
well aware of a range of interventions that are taking place in secondary schools where 
we are conducting the research and so we make all claims with caution, knowing that 
no individual intervention at the level of the teacher can fully account for 
improvements in learner attainment.  
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The TM1 course has been revised and refined annually since 2014 and has now been 
offered to five cohorts of teachers across the Gauteng province of South Africa. The 
Learning Gains II study (LG) seeks to answer the question: “what is the effect of 
teachers’ participation in the TM1 course on their learners’ attainment in 
Mathematics?”  
In this paper we report on the initial findings of data collected in 2018 where we 
compared the impact of a group of TM1 teachers who completed the course in 2016 
with the impact of the cohort who completed the course in 2017. This enables us to see 
whether the Learning Gains II intervention had an impact and identify key issues that 
need attention as the study continues and which have a broader impact for similar 
intervention studies.  
TEACHER KNOWLEDGE AND LEARNER ATTAINMENT  
Following from Shulman’s (1986, 1987) distinction between subject matter knowledge 
(SMK) and pedagogical content knowledge (PCK), many have attempted to elaborate 
this for mathematics teaching (Krauss, Baumert, & Blum, 2008). However, the 
boundaries between SMK and PCK are not sufficiently clear to be useful as analytical 
constructs and so we work with the notion of “mathematics-for-teaching” (MfT) 
(Adler, 2005; Adler & Davis, 2006) as an amalgam of mathematical and teaching 
knowledge.  
Attempts to measure teachers’ mathematical knowledge, whether SMK or PCK or 
both, have taken various forms across the world. In some instances, teachers have been 
given the same/similar test items to the learners they teach (e.g. Harbison & Hanushek, 
1992; Mullens, Murnane, & Willett, 1996; Taylor & Taylor, 2013). More sophisticated 
measures have been developed in Germany and the United States (Baumert et al., 2010; 
Hill, Ball, & Schilling, 2008; Krauss et al., 2008). Both these studies have found 
associations between teacher knowledge and learner attainment.  
PROFESSIONAL DEVELOPMENT AND LEARNER ATTAINMENT 
Worldwide there is concern about the impact of professional development on learner 
attainment. A review of studies of professional development relating to school 
mathematics (Gersten, Taylor, Keys, Rolfhus, & Newman-Gonchar, 2014) showed that 
very few of the initiatives which met acceptable standards of rigour also led to positive 
effects on learner attainment. Sample-McMeeking, Orsi, and Cobb (2012) reported the 
effects of a middle school intervention in the US where teachers took university 
summer courses in mathematics lasting two to three weeks. They reported an effect 
size of 0.20 (Hedge’s 𝑔) on learner attainment only for teachers who had attended two 
courses but no discernible effect size for those attending one course. There is a clear 
need for rigorous studies of the impact of professional development on learner 
attainment in mathematics, and this study makes a contribution in this regard.   
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THE TRANSITION MATHS 1 COURSE  
The underlying assumption of all the WMCS project’s professional development is 
that focusing on teachers’ MfT will lead to better teaching which will in turn translate 
into improved learner attainment. We assume a direct effect of the TM1 course on 
teachers’ MfT and an indirect and delayed effect (Clarke, 1994) on learner attainment.   
The course is designed to support teachers currently teaching in Grades 8 and 9 (first 
two years of secondary school in South Africa), to address the mathematical transitions 
from the Senior Phase (Grades 7–9) to the Further Education and Training (FET) phase 
(Grades 10–12). It is offered over a ten-month period in eight two-day contact sessions. 
It deals with both mathematics content (75%) and mathematics teaching (25%). This 
3:1 ratio is similar to the course described in Sample-McMeeking et al. (2012) above. 
The mathematical content includes algebra and number (6 days), functions (4 days), 
Euclidean geometry (3 days) and trigonometry (3 days). Teachers submit seven 
assignments and write two tests all of which include mathematics and mathematics 
teaching content.   
We approach the learning of MfT through revisiting known mathematics (Pournara, 
2013) and learning new mathematics. A revisiting approach to familiar mathematics 
problematizes taken-for-granted aspects, often drawing on extreme cases to deepen 
teachers’ knowledge rather than merely redoing known mathematics to improve 
procedural fluency. For example, in working with linear functions we provide teachers 
with five representations of the same function, say 𝑦 = 2𝑥 − 3 (verbal, table, function 
machine, equation and graph). We then invite them to consider questions about each 
representation that are likely new and unusual, such as: “where is the 𝑦-intercept in the 
function machine?”, “where is double in the table?” and “where is double in the 
graph?” 
The mathematical content extends into the Grade 11 curriculum in algebra, functions 
and trigonometry so that teachers are better prepared to teach at Grade 10 level and 
beyond in the future. As part of the course, we pay attention to common procedures in 
the senior secondary curriculum such as completing the square using algebraic and 
geometric approaches. We challenge teachers to solve geometry problems using more 
than one strategy, for example to use different definitions of a parallelogram to prove 
that a given quadrilateral is parallelogram.  
The mathematics teaching component pays deliberate attention to aspects that are close 
to teachers’ current practice with the assumption that proximity to practice increases 
the likelihood of take-up from the course and implementation in the classroom. The 
teaching aspects are built on the notion of teachers’ mathematical discourse in 
instruction (Adler & Ronda, 2014; Adler & Venkat, 2014) and operationalised through 
the Mathematics Teaching Framework (MTF) which focuses on key elements common 
to all teaching practices: identifying and articulating a lesson goal, designing and 
selecting examples sets, selecting representations, selecting and designing tasks, 
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producing explanations and justifications, and building opportunities for meaningful 
learner participation.  
RESEARCH DESIGN AND METHODS 
We adopted a quasi-experimental design to assess the effect of the TM1 intervention 
on the attainment of the learners of the teachers participating in the study. Given that 
we had no way of influencing whether TM1 alumni would teach Grade 9 in 2018, we 
extended the sample to include Grade 9 and 10 learners in order to guarantee a larger 
sample of TM1 alumni. Teachers were invited to participate if they were teaching 
mathematics to at least one Grade 9 or 10 class in 2018. Having selected the sample of 
TM1 teachers across 24 schools, we then sought comparison schools. The selection 
criteria for the comparison schools were: same school district (geographical area), 
similar number of learners in the school, and similar performance of Grade 9 learners 
on national assessments in Mathematics and English language conducted in 2012. 
Despite the results of this national assessment being dated, the Department of Basic 
Education considered these results more reliable than the latest results of 2014. Ideally 
we wanted to match teachers in terms of number of years teaching mathematics at 
various grade levels. However, in the majority of participating schools, teaching 
allocations are only finalised after a few weeks of teaching and it is not possible to 
guarantee that a teacher who volunteers to participate in the study will indeed be 
teaching at a particular grade before data collection was to commence. We eventually 
selected 16 comparison schools.   
There were 40 teachers who completed the TM1 course in 2016 and 39 teachers in 
2017. To assess their gains on the course in terms of their MfT, tests were administered 
at the start and the end of the course. The test at the end of the course was more 
cognitively demanding than the test at the start and covered more topics. Both tests 
were developed by the project team.  
We tracked 1716 Grade 9 learners and 565 Grade 10 learners taught by TM1 teachers 
over the 2018 school year. We refer to these as the TM1 learners. We also tracked 886 
Grade 9 learners and 645 Grade 10 learners in the comparison schools. These learners 
are referred to as the comparison group. A test was administered to all learners in 
February/March and September/October 2018.  The breakdown of learners per teacher 
group and per grade is given in table 1. 

 Grade 9 Grade 10 
Teacher 
group 

No. of 
teachers 

No. of 
schools 

No. of 
learners 

No. of 
teachers 

No. of 
schools 

No. of 
learners 

TM1 2016 12 11 991 9 8 375 
TM1 2017 12 10 725 6 6 190 
Comparison 23 15 886 24 16 645 

Table 1: Teachers and learners participating in study 
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The test was designed by the project team for Grade 9 learners and was piloted in 2016 
with Grade 9 and 10 learners in schools similar to those participating in the study.  It 
contains typical curriculum items at Grades 8 and 9 levels that deal with number, 
algebra and function. A Rasch analysis showed that the test was fit for the purpose of 
testing learning gains at Grade 9 level. However, there were a few too many items that 
were difficult for many learners. Given this flooring effect with Grade 9 learners we 
expected that it would still be useful as a test of learning gains with Grade 10 learners.   
Each test item was marked as correct, wrong or missing with only 1 mark being 
allocated for a correct response. Consequently, a learner’s test mark is an indication of 
how many items s/he answered correctly. There is no provision for partial marks and 
no consideration of partially correct responses. We moderated 10-20% of coding and 
code-capturing for accuracy.   
A repeated sample t-test was conducted on teachers’ scores for TM1 to determine 
whether gains were statistically significant. A repeated measures ANOVA analysis was 
carried out see whether the interaction between pre/post gains in the learner 
assessment and the learners group (control and those taught by TM1 teachers) was 
statistically significant.  
RESULTS 
We compared the mean test scores for all TM1 teachers before and after the course for 
each full cohort, and for each of the groups in the LG sample. These results are reported 
in Table 2. A repeated sample t-test analysis showed that the increases in test scores 
were statistically significant at the 1% level for the 2017 LG sample and at the 0.1% 
level for the full cohorts in each year and the 2016 LG sample (see Table 2). We 
therefore conclude that the course had a significant impact on teachers’ MfT. 
Moreover, we argue that the statistics under-report the impact of the course on teachers’ 
MfT because the post-course test was substantially harder and covered more topics 
than the pre-test.  

 Teachers completing TM1 course Teachers in Learning Gains study 

 N Ave mk SD t-test N Ave mk SD t-test 

TM1 2016 
pre-test 

   post-test 

40 61.58 15.79 t = 8.73 

df = 39 

p < 0.001 

16 60.42 13.61 t = 5.17 

df = 15 

p < 0.001 40 75.91 18.25 16 76.43 15.08 

TM1 2017 
pre-test 

post-test 

39 65.39 17.77 t = 5.20 

df = 38 

p < 0.001 

15 69.42 13.44 t = 3.48 

df = 14 

p < 0.01 39 76.83 19.85 15 81.39 17.50 

Table 2: Maths test scores and t-tests for teachers  
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Secondly, we examined in the results of the LG test scores for the pre- and post-tests, 
comparing the mean scores for the comparison group and the TM1 learners.  

  Pre-test Post-test  

Cohort N 
Ave 
mark SD N 

Ave 
mark SD 

Change in 
Ave mark 

Total TM1 group 1587 8.54 6.50 1587 11.90 8.44 3.36 
Comparison group 1531 10.81 8.02 1531 13.58 9.27 2.78 

Table 3: Pre- and post-test scores for Total TM1 and Comparison groups of learners 
While the gains were generally small and the overall performance was low, the TM1 
learners made greater gains than those in the comparison group. Carrying out a 
repeated measures ANOVA analysis, the interaction between pre/post-test and learner 
group was significant (F = 9.321, df = 1, p < 0.001). We therefore concluded that there 
was a statistically significant difference in the gains in the learner test scores pre to 
post between the comparison group and the TM1 group.   
The effect size between the comparison and the combined TM1 group in the pre-test 
was of the order of 0.3. In the post-test, this was reduced to 0.1. So a change in the 
effect size of 0.2 took place in favour of the TM1 group. This effect size is similar to 
that reported by Sample-McMeeking et al. (2012) and in the first LG study.  
We also disaggregated the TM1 learners taught by teachers in the 2016 cohort of the 
TM1 course and those in the 2017 cohort of TM1as shown in Table 4.  

  Pre-test Post-test   

Cohort N 
Ave 
mark SD N 

Ave 
mark SD 

Change in 
Ave mark 

TM1 2016  815 8.87 6.90 815 13.09 8.76 4.22 
TM1 2017 772 8.20 6.03 772 10.64 7.89 2.44 
Comparison group 1531 10.81 8.02 1531 13.58 9.27 2.78 

Table 4: Disaggregating the TM1 2016 and 2017 learner scores 
We can see that the gains made by the learners taught by the TM1 2016 cohort of 
teachers were considerably bigger than those taught by the 2017 cohort. 
DISCUSSION 
The findings show firstly that teachers’ participation in the TM1 course had a 
significant impact on their own mathematical knowledge for teaching. However, our 
main interest was whether such gains translate into gains at the level of the learner. The 
learners’ results show statistically significant gains with the greatest gains being made 
by the learners taught by the TM1 2016 cohort of teachers. This finding is in line with 
our expectations and the literature (e.g. Clarke, 1994) that there is a delayed effect of 
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professional development on learner attainment. Despite the statistical significance of 
the results, one cannot escape the fact that learner performance is well below the level 
expected of Grade 9. This is particularly worrying given that the sample included many 
Grade 10 learners. Further analysis will interrogate the impact of the proportion of 
Grade 9 to Grade 10 learners in each of the teacher samples.  
Impact studies such as this cannot provide insights into the mechanisms which enable 
or constrain the desired change. While it is encouraging that the gains are higher for 
learners taught by teachers who attended the course in 2016, their scores are still lower 
than expected, even with Grade 10s on a test that was designed for Grade 9 learners.  
Related qualitative studies are currently investigating teachers’ take-up from the course 
in relation to their teaching practice. Other studies are investigating the nature of 
learners’ errors and the extent to which these errors change between pre- and post-test. 
Taken together this suite of studies will provide deeper insight into the ways in which 
the professional development may (or may not) lead to gains for learners.  
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Acquisition of algebraic language is one of the turning points that allow the student to 
develop advanced mathematical thinking. There are several theoretical schemes that 
analyse this process both in syntactical and semantic aspects. In all these schemes, 
language plays a fundamental role, as does the work on making explicit the processes 
through which one passes from situations to a first mathematical modelling, which uses 
letters and relations between them. In this empirical work, we analyse the answers 
given by a large sample of students in Grade 08 to a question that required to move 
from a geometric situation to its algebraic modelling. The use of a large amount of 
data coming from a large-scale survey allows an "ongoing" description of possible 
stages of development of algebraic thought and of maturity of symbolic thought. 
INTRODUCTION 
Large-scale assessment initiatives and surveys regarding mathematics learning are now 
commonplace practices worldwide, in terms both of national and international 
assessment (OECD-Pisa, IEA-TIMSS Advanced), and the projects contribute 
important data on various levels. The interest of both the general public and the 
researchers themselves is, however, focused mainly on emerging aspects of the system 
(see for example, Breakspear, 2012; Grek, 2009; Martens & Jacobi, 2010) or macro-
phenomena regarding learning processes (De Lange, 2007; Bolondi, Cascella & 
Giberti, 2017).  
The procedures of data collection, correction and codification implemented by the 
agencies who deal with these large-scale assessment projects also provide huge 
amounts of data which represent invaluable material for research. The use of this raw 
data in mathematics education research seems, however, to have been relatively 
restricted so far (Pozio, 2008). 
In our opinion, this is due to two main factors. The first issue is that the questions used 
in the tests are generally not made public as they may be re-used later with the purpose 
of allowing longitudinal anchorage of the scales on which the results are organized 
(OECD, 2017). The second cause is probably due to the lack of validated 
methodological models that allow an integrated use of these materials with the 
qualitative and quantitative methods generally used in mathematics education (Battista 
et al., 2009; Lesh, 2002; Hart et al., 2009). This paper sets out to demonstrate, using an 
initial case study, how it is possible to use results collected during a large-scale national 
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assessment project (the Italian national INVALSI tests) to study a classic problem of 
mathematics education: how students convert a geometric situation into an algebraic 
formula. 
The data analysed are the answers given by 4,565 Grade 08 students to an open 
constructed response question (issued by INVALSI), included in a high-stakes test as 
part of the final examination of the first cycle of education. The initial goal was to use 
this data to classify the types of answers provided by students, identifying and 
quantifying recurrent behaviours, common errors, specific strategies, and results of 
didactic practices. The analysis of the data also revealed the importance of using 
various theoretical lenses, in a panorama of networking theories (Bikner-Ahsbah et al., 
2010), in order to recognize the different phenomena and interpret the various 
situations that arose.  
In the Discussion section we show how, in the light of the theoretical constructs used, 
the classification and analysis of answer sheets allows a “photograph” (with horizontal 
“revealing”) of the students’ behaviour and the creation of a detailed “map” of the 
difficulties they encounter. 
This research study shows how the work on this large-scale assessment project can 
actually contribute, firstly in improving understanding of specific issues linked to 
teaching and learning, and secondly to highlighting the connections and interactions 
between different theory constructs used by the researchers.  In this report, we present 
the main theoretical and operational steps of the research, leaving a complete 
discussion of results and the finer details for a later and longer paper. 
THE BACKGROUND AND CASE STUDY  
The national system of learning assessment was introduced progressively around Italy 
from 2008 onwards. It involves more than 500,000 students per year for each school 
grade surveyed - currently (2019) grades 2, 5, 8, 10 and 13 are surveyed. The 8th grade 
test forms part of the final test at the end of the first school cycle (end of middle school) 
and its results are officially included in students’ achievement records. In 2018, for the 
first time, the Grade 8 test was in CBT form, which allowed centralized digital data 
collection of all answer sheets. 
The set of students involved 574,506 individuals, of whom 31,300 were part of a 
specifically selected sample group. The question being studied was administered to 
4,565 sample students. 
The item calls for the mathematical formulation of a geometric problem, and adopts 
two different question forms: a visual form with an isosceles trapezoid stating the 
length of the oblique side (5) and the value of the shorter base (b), and in wording, with 
a brief text which supplies the relationship between the shorter and longer base. 
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Figure 1: the case study question (translated by authors) 
The task given to students is in line with the National Guidelines, and thus with the 
official curriculum of Italian schools (MIUR, 2012; Kelly, 2009). In fact, one of the 
learning objectives for Grade 8 classes, in the content area of Relationships and 
functions, is "To interpret, construct and transform formulas that contain letters to 
express in general form relationships and properties".  
Theoretical analysis of the questions allows the identification of different issues which 
may cause the students some difficulty: apart from the standard knowledge regarding 
the notion of perimeter, they will also need the ability to use letters in symbolic mode, 
checking the relationship between letters that express the relation of elements in the 
situation, and transforming verbal expressions while checking the meaning. 
FEATURES OF THE THEORETICAL FRAMEWORK 
The question considered in this case study requires the transformation of a geometric 
situation into an algebraic formula. To interpret and categorize the students’ answers, 
various theoretical lenses are of help.  
In fact, the issue of understanding algebraic reasoning has been widely studied in 
mathematics education and a copious literature is available: as to terminology and 
categorization, standard references are Arzarello et al. (1995) and Cai and Knuth 
(2011); for an appreciation of the issue in the framework of school curriculum, 
reference may be made to Usiskin (1988), Kieran (1992) and Van Amerom (2003); as 
to the problem of meaning control in the process of mathematisation by literal 
expressions, two relevant references are Capraro and Joffrion (2006) and the classic 
Arcavi (1994). Situations analogous to those we scrutiny have been analysed from a 
point of view similar to ours by MacGregor and Stacey (1993).     
In the question studied, students are asked to move from a situation in a geometric 
context to its description in symbolic language. The dynamics of this transfer may be 
suitably described in the conceptual framework of the mathematisation cycle, at the 
heart of the framework of the OCSE-Pisa survey (OECD 2016). The question studied 
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is located in the process of formulating (“formulate") and involves various capabilities, 
particularly Communicating, Mathematising, Representation and Using symbolic, 
formal and technical language and operations. 
In examining the processes behind answering this question, where the final goal is a 
symbolic representation, we use the idea of conversion transformation and treatment 
transformation, as stated by Duval (1993), and D’Amore (2006). After all, it is essential 
to consider the meaning of explicit representations in the light of educational practices 
(Sfard, 1991). Some clear traces of behaviour linked to the didactic contract 
(Brousseau, 1986) are also present. 
RESULTS AND DISCUSSION 
34% of the students gave the correct answer (p = 3b +10 or an equivalent algebraic 
formula); 18% of students failed to provide an answer. The remaining answers were 
categorised according to the following table. 
CATEGORY Description Frequency/ 

Percentage 
Example(s) 

1) Verbal Students rewrite the problem in 
words 
 

75 (3,5%) Side + side + 
longer base + 
shorter base 
(half of the 
longer base) 

2) Numerical Students provide a numerical 
value   

378 (17,6%) 5*2 +5*2+5+5 

3) Wrong 
operation 

Students make mistakes in 
choosing the operation(s) to be 
used in the formula; in particular, 
students use the expression b/2 
instead of b*2 

116 (5,5%) 5+5+(b*2b) 
10*3b 
(5x2)+(b/2)+B 
(l*2)+b+(b/2) 
 

4) Generic  
model 

Students write a generic formula 
of a perimeter as the sum of 4 
sides  with no relation between 
the two basis 

362 (17%) (b+B)+5*2 

5) Symbolic Students do not use the numerical 
value 5 and indicate the oblique 
side with the letter l 

61 (3%) b+(b*2)+(l*2) 
bx3+2l 

6) Wrong 
model 

Students use a formula for the 
area 

169 (8%) (B+b)x5:2 
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7) Incomplete 
model 

Students fail to consider all the 
elements of the situation; for 
instance, they take into account 
only the longer base as a function 
of the shorter, but do not add up 
the shorter base 

270 (12,6%) 5*2+(b*2) 
10+2b 

8) Others Incorrect answers that do not fall 
into any of the above categories 

680 (31,6%)  

 Table 1: The different response categories  
In many answers (pertaining to different categories), the symbol B appears despite not 
being present in the proposed task – this symbol is often used in teaching practices in 
Italian schools to represent the larger base of a trapezoid. The letter l is the first letter 
of the Italian word “lato” (side). 
As predicted, difficulties emerge in the Formulate process (OECD, 2016) when the 
student finds him/herself faced with the need to perform a conversion transformation 
(D’Amore, 2006) from visual/verbal format to symbolic form. The loss of meaning 
leads them to consider wrong or incomplete models (categories 6 and 7) or to apply the 
model too strictly (e.g. by using only numeric values or symbols but not both – 
categories 2 and 5). An incomplete mastery of the mathematical tools leads the students 
to make mistakes in the use of symbols which outline the relationship between the 
bases (category 3). The difficulty of converting the situation into symbolic language 
means that some students decide to abandon the use of this language altogether 
(category 1) or fail to use it to express the relationship between the sides (category 4). 
The analysis of the answers organised into the various categories allows a more 
detailed overview of the processes (and difficulties) demonstrated by students, and in 
a certain sense also a quantification of them. As an example, we discuss briefly 
category 1. Here we find several students who do not use any symbols or numbers 
(Table 2). They try to re-formulate the situation textually, often verbally describing the 
requested formula in a procedural manner (in line with Sfard’s theory, 1991, and 
according to the category Rewrote the problem in words, by Capraro et al., 2006). Some 
students correctly describe in words the procedure they would use to calculate the 
trapezoid perimeter, others describe a generic process for calculating the perimeter 
without taking into account the relationship between the two bases. Some students 
describe in words a generic formula of the area instead of the perimeter and this is 
probably due to the didactic contract. In fact, at school, students are taught the formula 
of the area, not that of the perimeter of the trapezoid. So, when they are asked for a 
trapezoid formula, they automatically think about the area formula. Generally, students 
belonging to Category 1 show that they give to the word “formula” only the meaning 
of “procedure” and not that of “relationship”. 
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You have to multiply b by 2 
to find the longer base, then 
add 5 plus 5, and finally add 
all the numbers to find the 
perimeter 

Base1 plus base2 multiplied 
by the height, divided by 
two 

All sides are added 
together, but you must first 
find 'b' and then make the 
sum of the sides 

base1 + base2 + oblique 
side x 2 

Side + side + base1+ base2 
(half of the base1) 

Side + side + longer base + 
shorter base (half of the 
longer base) 

Table 2: Examples from category 1 
A similar analysis was carried out on the other categories and on the correct answers, 
which differ between themselves in terms of different levels of treatment (Duval, 1993) 
of the algebraic expression. 
CONCLUSIONS 
From the analysis of students’ answers, different types of errors emerged which 
highlight various misconceptions, procedural errors, formal errors, and the inability to 
coordinate different forms of representation. The biggest problems that students had 
with algebra learning can be traced back to the spread of didactic practices in which 
the construction of concepts tends to dedicate most attention to manipulative 
mechanisms while neglecting or awarding secondary importance to functional and 
semantic aspects (Malara & Navarra, 2003).   
The research study has shown how it is possible to effectively use collected answer 
data (also from computer-based large-scale assessments) to study with education-
research approaches the reasoning processes displayed by students. In particular, 
different theories can interact to describe the crucial and delicate process of 
formulation via a mathematical model (in this case, algebraic) of a geometric situation 
where aspects of visual representation (also established by educational methods) play 
a fundamental role. 
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COMPREHENDING WORD PROBLEMS: EFFICACY OF AN 
INTERVENTION ON STRATEGIES AND SYNTACTIC 

AWARENESS  
Susanne Prediger, Jennifer Dröse 

TU Dortmund University 
 

Students’ difficulties in reading and understanding word problems can be traced back 
to superficial reading strategies and a lack of awareness of syntactic language fea-
tures. Therefore, an intervention was designed to foster subject-specific comprehen-
sion strategies and syntactic awareness using the design principles of strategic scaf-
folding and variation of syntactic features. This paper reports on a quasi-randomized 
controlled trial with n = 167 fifth graders that compared the learning gains between 
the intervention group and a control group who worked on the same word problems 
but without scaffolding and variation. The quantitative analysis of pre- and post-test 
scores (using ANOVA) showed that after six sessions of intervention, the intervention 
group had significantly higher learning gains than the control group.  
BACKGROUND: APPROACHES FOR OVERCOMING STUDENTS’ 
OBSTACLES IN UNDERSTANDING WORD PROBLEMS 
Word problems are a specific task format used to help students apply mathematical 
concepts, models, and procedures to realistic situations and are often presented in writ-
ten format, requiring several steps for solving them (Leiß, Schukajlow, Blum, Messner, 
& Pekrun, 2010). Based on the empirical identification of typical students’ obstacles 
for mastering these steps, instructional approaches were developed to support students 
to overcome them: 

• Habitual obstacles refer to habits of superficial reading that lead to constructing 
wrong situation models. Instructional approaches, which focus on increasing the 
authenticity of the problems and changed attitudes, have been successfully develo-
ped (Verschaffel, Greer, & de Corte, 2000). 

• Strategic obstacles refer to misleading comprehension strategies or non-matching 
strategy use as the direct translation strategy (Hegarty, Mayer, & Monk, 1995; Leiß 
et al., 2010). Instructional approaches aiming at enhancing students’ strategies have 
been suggested (see Reusser, 1997; Leiß et al., 2010; Prediger & Krägeloh, 2015) 
but have rarely been shown to be effective in controlled trials (except for 
Schukajlow, Kolter, & Blum, 2015). 

• Conceptual obstacles refer to difficulties with the use of basic mental models in 
the steps of transferring the situation model into a mathematical model (vom Hofe, 
Kleine, Blum, & Pekrun, 2006). Instructional approaches that support the trans-
lation of mental text representations into mathematical models have been 
successfully evaluated. 
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• Language obstacles refer to the noticing and understanding of lexical or syntactic 
language features that affect the process of understanding the problem text. 
Although the problems on the syntactical level have been well specified in different 
assessment studies (e.g. Haag, Heppt, Stanat, Kuhl, & Pant, 2013), interventions 
that prepare students for noticing syntactic features are still rare (Dröse & Prediger, 
submitted).  

As interventions on strategic and syntactic obstacles are still required, the research 
presented in this paper focuses on these two kinds of obstacles. The authors developed 
an intervention for Grade 5 (presented in the next section). Previous qualitative re-
search on the initiated learning processes (reported in Dröse, 2019; Dröse & Prediger, 
submitted) has revealed qualitative evidence that students seem to enhance their stra-
tegies and syntactic awareness in the intervention. This paper reports on a quasi-
randomized controlled trial showing the effectiveness quantitatively. 
DESIGN OF THE INTERVENTION ON STRATEGY USE AND SYNTACTIC 
AWARENESS FOR COMPREHENDING WORD PROBLEMS    
Identifying the relevant learning content for fifth and sixth graders 
By systematically comparing successful and non-successful students in their processes 
of cracking word problems such as the one in Figure 1, qualitative research has re-
vealed indications for identifying the learning content most relevant for increasing fifth 
and sixth graders’ competence in comprehending word problems: 

• For overcoming the strategic obstacles, three comprehension strategies have been 
identified as helpful (Reusser, 1997; Prediger & Krägeloh, 2015): (S1) Focus on 
the question and find information relevant to answering the question, (S2) focus on 
pieces of information with their meanings, and (S3) focus on relations between the 
information (relational processing in Hegarty et al., 1995).  

• Language obstacles in noticing and interpreting syntactic features occur for fifth 
and sixth graders, for example, in syntactically challenging word order: German 
grammar allows the use of different grammatical cases and pronouns to change the 
order of subject and object, but many students are not aware of these possibilities. 
Raising students’ awareness of these syntactic subtleties is hence important 
learning content (Dröse & Prediger, submitted). 

Design principles for fostering reading strategies and syntactic awareness 
To foster both identified types of learning content in Grade 5, the three strategies and 
the awareness of syntactic features, an intervention was designed in several iterative 
design research cycles (Dröse, 2019). Two design principles were realized: 

• The intervention follows the design principle of strategic scaffolding, in which 
students’ strategy use can be supported by a strategic scaffold that is introduced 
and later faded out (Hannafin, Land, & Oliver, 1999). Figure 2 shows the developed 
strategic scaffold, a concept map with specific rules: While writing down the 
question supports Strategy S1, writing down the relevant information (always 
number + unit + explanation) supports Strategy S2. After extracting the relevant 
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information, Strategy S3 is supported by arranging the information cards and 
connecting them with arrows that display the relationships between the information 
cards (Dröse, submitted). Concept maps were chosen as a strategic scaffold, as they 
may encourage learning processes with their different functions and therefore “may 
facilitate cognitive representation of the information” (Nesbit & Adesope, 2006, p. 
417). After the scaffolded construction of the situation model, students can use 
further approaches to mathematize and solve the word problem. 

• The variation principle can generally be applied whenever students’ attention 
should be focused to a specific aspect (Marton & Pang, 2006). In our design, we 
systematically vary the word problem formulations in the critical syntactic features 
(such as the subject and object positions; see Figure 1). This can enable students to 
notice the syntactic differences. The concept maps help to make the differences 
visible (as in Figure 2) and to interpret them in the situation model (Dröse & 
Prediger, submitted). 

Figure 1: Word problem variation with case analyses of German original texts  
(adapted from Dröse & Prediger, submitted)  

                       

                 Concept map for Version A in Figure 1                 Concept map for Version B in Figure 1  

Cockatoo Food  (Version A, English adaption) 
The class observes the feeding of the cockatoos. The three 
cockatoos, Ronny, Leo and Kira, live in one enclosure. 
Ronny still has 15 g of food in his bowl. The zookeeper 
Sonja enters the enclosure with a bucket. In the bucket is 
600 g of food. Leo gets 130 g of food. Ronny gets 120 g 
of food and Kira gets the rest of the food from Sonja. Kira 
and Leo are friends.   

 His friend Kira gives him 30 g food as a present.  

How much food does each cockatoo have? 

 Cockatoo Food (Version B, English adaption) 
The class observes the feeding of the cockatoos. The three 
cockatoos, Ronny, Leo and Kira, live in one enclosure. 
Ronny still has 15 g of food in his bowl. The zookeeper 
Sonja enters the enclosure with a bucket. In the bucket is 
600 g of food. Leo gets 130 g of food. Ronny gets 120 g 
of food and Kira gets the rest of the food from Sonja. Kira 
and Leo are friends. 

His friend Kira is given 30 g of food as a present by him. 

(Literally: To his friend Kira gives he 30g for food.) 

How much food does each cockatoo have? 

Syntactic case analysis of German original text:   Syntactic case analysis of German original text: 
Version A: Seine Freundin Kira schenkt ihm 30g 
Futter. 
                Nominativ (Subject)              Dativ (Object) 

 Version B: Seiner Freundin Kira schenkt er 30g 
Futter. 
                   Dativ (Object)                Nominativ (Subject) 
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Figure 2: Strategic scaffolding by concept maps (adapted from Dröse, 2019)  

Based on these two design principles, an intervention was designed in which the 
strategic scaffold of concept maps was successively introduced for increasingly 
complicated word problem structures. The concept maps were also used as visualiza-
tions for making subtle syntactical differences visible and discussable when comparing 
slightly varied word problems. Word problems were varied in the positions of subjects 
and objects as well as other syntactic features. At the end of the intervention, the 
strategic scaffold was faded out so that students would internalize the three strategies 
without an external scaffold (Hannafin et al., 1999). 
RESEARCH QUESTIONS 
The previous qualitative analysis of small-group teaching revealed indications that 
both design principles and their realization in an intervention of six sessions could en-
hance students’ strategy use and students’ syntactic awareness (Dröse, 2019; Dröse, 
submitted; Dröse & Prediger, submitted). In order to also provide quantitative evidence 
for the efficacy of the intervention in whole classes and regular teachers, a quasi-
experimental controlled trial was conducted with two research questions:  

(Q1) Which are the learning gains of the intervention group compared to the 
control group?  

(Q2) How do the learning gains differ between students with high and low general 
reading proficiency?  

For research question Q1, we hypothesized that the intervention group would learn 
more than the control group (H1). Research question Q2 is relevant in terms of taking 
into account the most important general learning prerequisite for comprehending word 
problems: general reading proficiency (Leiß et al., 2010). We hypothesized that 
students with lower reading proficiency would profit more from the intervention than 
more highly proficient peers (H2), as they have more to learn by the intervention. 
METHODS OF THE CONTROLLED TRIAL 
Research design 
The research was conducted as a quasi-randomized controlled trial with a pre- and post-
test design with fifth graders in whole-class settings. The independent variable is the 
form of intervention, and the dependent variable is the learning gains in comprehending 
word problems.  
Intervention forms 
The intervention and control classes were taught by their regular teachers in 5-6 
sessions of 90 minutes each. The intervention classes (n = 126 students) followed the 
designed intervention program. The two control classes (n = 41 students) were taught 
with the same word problems as the intervention group. The teachers of the control 
classes were sensitized for typical strategic and language obstacles (including the 
syntactic features in view) but were not introduced to the principles of strategic 
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scaffolding and the variation principle and their relevance for fostering strategies and 
syntactic awareness. The teachers of the intervention groups received the teaching 
material realizing these principles and were introduced to the underlying principles.  
Measures for control variables and dependent variable 
Four control variables were taken into account:  

• General reading proficiency was assessed using the reading speed test ELFE, 
which captures reading on the word, sentence, and text level under strong time 
restrictions. 

• Age and language background were captured by students’ self-report of their ages 
and the languages they spoke at home.  

• The socio-economic status was captured using the book scale. 
In order to measure the learning gains between pre-test and post-test, students’ 
achievements in comprehending word problems were assessed using two analogous 
standardized tests on word problems, which were optimized to assess students’ strategy 
use and the identification and interpretation of syntactic language features. To assess 
comprehension, the right mathematization rather than the correctly calculated solution 
but was scored. 
Sample 
In order to control for the comparability in the quasi-randomized controlled trial, 
variances concerning reading proficiency, language background, socio-economic 
status, and age were analyzed (see Table 1). In the variance tests, no significant dif-
ferences appeared between the intervention group and the control group concerning 
general reading proficiency, language background, and socio-economic status (with 
p > .05 in Wilcoxon tests and t-tests for the three ordinal or categorial variables). 
Significant (but nevertheless small) differences appear concerning the students’ age in 
intervention and control group (with p < .05 in Wilcoxon tests).  

Table 1: Descriptive data for comparable subsamples 
 

 
Reading proficiency 
(max. 120) 
m (SD) 

Age 
in years 
m (SD) 

Language 
background 
Percentages of  
mono-/multilinguals 

Socio-economic 
status 
Percentages of low/ 
medium/high SES 

Intervention group  
(n = 126) 

60.03 (13.51) 10.90 
(0.72) 53/47 28/25/48 

Control group          
(n = 41) 

57.29 (14.30) 11.22 
(0.78) 66/34 37/34/29 
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Methods for data analysis 
To test hypotheses H1 and H2, analyses of variance with repeated measures (Type III 
ANOVA accounting for different group sizes) were conducted using R software 
package ez. This allowed comparison of the differences in the learning gains of the 
intervention and control groups. To compare learning gains with respect to reading 
proficiency, a cut-off score of 60 split the intervention group into 50% with low and 
50% with high reading proficiency (median split) and the control group into 49% and 
51%, respectively. 
EMPIRICAL RESULTS 
Research question Q1 concerns comparing the learning gains of the intervention group 
(who were taught based on the two design principles of strategic scaffolding and the 
variation principle) with the control group (who worked on the same word problems 
but without using the two design principles).  
The first two lines in Table 2 show the pre-test and post-test scores. Both groups had 
significant learning gains (Ftime with p < 0.05 for both group with effect sizes of d = 
0.86 and 0.58). However, the learning gains of the intervention group were 
significantly higher than those of the control group (Ftime × group (1, 165) = 4674, p < 
0.05). Hence, hypothesis H1 that the design principles are effective can be confirmed. 

Table 2: Learning gains for the intervention and control group 
Research question Q2 asks for differences in learning gains between the subsamples 
with low and high general reading proficiency. The third to sixth lines of Table 2 show 
that all subsamples in the intervention and control group profited from the interventions 
(with effect sizes between d = 0.56 and d = 0.89). However, for the students with high 
general reading proficiency, there was no significant difference between intervention 
group IG+ and control group CG+ (p > 0.05), whereas for students with low general 

 Pre-test 
m (SD) 

Post-test  
m (SD) 

Learning 
gain m (SD) 

Effect size ANOVA- 
results 

IG (intervention 
group) (n = 126) 

6.23 
(2.48) 

8.98 
(3.16) 2.75 (3.21) d = 0.86 F (1, 165) = 

4.67  
p < 0.05 
h2 = 0.019 

CG  (control group)  
(n = 41) 

5.62 
(2.92) 

7.68 
(3.59) 2.06 (3.54) d = 0.58 

IG+ (IG with high 
reading prof.) (n = 63) 6.69 (2.73) 9.40 (3.37) 2.71 (3.31) d = 0.82 F (1, 81) = 0.93  

n.s. (p > 0.5) 
h2 = 0.01 CG+ (CG with high 

reading prof.) (n = 20) 6.22 (3.01) 8.57 (3.75) 2.35 (4.19) d = 0.56 

IG- (IG with low 
reading prof.) (n = 63) 5.76 (2.12) 8.56 (2.89) 2.80 (3.14) d = 0.89 F (1, 82) = 4.94 

p < 0.05  
h2 = 0.04 CG- (CG with low 

reading prof.) (n = 21) 5.05 (2.79) 6.83 (3.30) 1.79 (2.87) d = 0.62 
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reading proficiency, the learning gains between intervention IG- and control group CG- 
differed significantly (Ftime × group (1, 82) = 4.94, p < 0.05  and h2 = 0.04). 
DISCUSSION  
Hegarty et al. (1995) called for interventions that support students in overcoming 
strategic obstacles: “Thus, a first step in comprehension strategy instruction is to 
present students with problems that help them see that direct translation does not work 
well for some problems. A second step is to provide instruction in a method that 
emphasizes understanding the situation described in the problem” (p. 29). In order to 
enhance the students’ comprehension strategies, strategic scaffolding has been shown 
to be useful (Schukajlow et al., 2015) and was included in the current study of the 
concept maps as a strategic scaffold. Compared to other strategic scaffolds, the concept 
map has a specific strength, as it scaffolds the students’ relational processing, which 
had been shown to be crucial (Hegarty et al., 1995), especially for students with low 
reading proficiency who might not be aware of syntactic subtleties. By applying the 
variation principle to focus students’ attention on syntactic subtleties, we extended the 
scope of the design principle that so far has mostly been used for conceptual purposes 
(Marton & Pang, 2006). To date, no empirical evidence has been provided that raising 
students’ syntactic awareness is effective. 
With the current research report, we can fill this research gap and provide empirical 
evidence that the combination of strategy training and raising syntactical awareness 
can significantly increase learning gains. The intervention group had significantly 
higher learning gains than the control group. The fact that the difference was not 
significant in the subsample of students with high reading proficiency might be the 
result of subsamples that were too small. However, it was significant in the subsample 
of students with low language proficiency, who have been shown by Leiß et al. (2010) 
to have the most needs in raising their abilities to solve word problems. 
The major limitation of the study is that the control group had only 41 students. Future 
studies should extend the control group. However, the specific strength of this study is 
that the control group was not a “no-treatment group.” Instead, it treated all word 
problems occurring in the main intervention, and the teachers were sensitized to the 
typical obstacles so they could talk about them in the classes. The only difference 
between the control group and the intervention group was that in the control group no 
strategic scaffolding took place and there was no explicit comparison of syntactic 
differences on the sentence level. 
These results should have substantial consequences at the mathematics teacher 
professional development level. As the current controlled trial has shown, it is not 
enough to sensitize mathematics teachers to the typical obstacles. Instead, they should 
be given powerful designs to overcome these obstacles. Designs based on the design 
principles of strategic scaffolding and the variation principle promise higher learning 
gains. However, every transfer from one context and grade to another requires further 
design research in order to find the best ways of realizing these design principles.  
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CONDUCTING PD DISCUSSIONS ON LANGUAGE REPER-
TOIRES: A CASE STUDY ON FACILITATORS’ PRACTICES  

Susanne Prediger, Birte Pöhler 
TU Dortmund University 

 
Professional development (PD) programs need to qualify teachers to promote lan- 
guage learners by building upon and successively extending their language 
repertoires. Although PD facilitators play a crucial role in these PD programs, their 
facilitation practices have not yet been empirically captured very successfully. This 
case study investigates the facilitation practices of two facilitators in a PD on 
language-responsive mathematics teaching. The qualitative analysis identifies the 
goals and knowledge aspects that guide their practices. It shows that detailed 
pedagogical content knowledge on the classroom level (PCK-C) and PD level (PCK-
PD) supports goal-oriented facilitation, in which PCK-PD is required to relate the 
teachers’ ideas about first languages to the teaching approach of building upon 
languages repertoires. This study contributes to extending existing generic frameworks 
for facilitation practices to specific PD contents, in this case to language-responsive 
mathematics teaching.  
Establishing new teaching approaches requires PD programs; this is also the case for 
language-responsive mathematics teaching approaches such as building upon students’ 
language repertoires (Barwell, 2018; Planas, 2018). So far, PD programs on language-
responsive teaching have mainly been studied with respect to their PD content and PD 
materials (Hajer & Norèn, 2017) and the teachers’ learning processes (Prediger, 
subm.). Although the PD facilitators’ practices are crucial for the success of the PD, 
research has not yet focused on them. In order to reduce this research gap, this research 
report presents a case study of two facilitators’ practices conducting PD discussions on 
using students’ language repertoires. For this, we adopt existing research frameworks 
on facilitation practices (developed for other PD contents) such that we can use them 
for identifying the underlying goals and knowledge resources (Borko et al., 2014; 
Tekkumru-Kisa & Stein, 2017) and pursue the following research question: By which 
practices do PD facilitators lead discussions on students’ language repertoires, and by 
which goals and knowledge aspects are these practices guided?  

THEORETICAL AND EMPIRICAL BACKGROUNDS  
Background on the classroom level: Building upon language repertoires 
Effective teaching approaches build upon students’ individual resources and systema-
tically connect new content to students’ prior knowledge. For multilingual students, 
this general principle translates into the call to include students’ first languages and all 
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informal, multimodal resources that can support their processes of meaning construc-
tion for new academic and technical 
language in math classrooms, i.e., 
students’ language repertoires (Bar-
well, 2018; Planas, 2018). Figure 1 
(Prediger, Clarkson, & Bose, 2016) 
depicts the components of these 
language repertoires and the need to 
repeatedly relate them. In order to 
unfold the principle in mathematics 
classrooms, teachers should learn 
the following content aspects of tea-
chers’ language-related pedagogi-
cal content knowledge (PCK-C on 
classroom level) in the PD program:  
PCK-C1  Overcome language policy concerns against underprivileged first 

languages (Barwell, 2018; Planas, 2018) 
PCK-C2 Challenge kids to produce output in all registers (offensive approach rather 

than reducing academic language demands; Prediger, subm.) 
PCK-C3  Become aware of the epistemic function of registers and representations 

(rather than only a communicative function; Prediger et al., 2016) 
PCK-C4 Support not only the change, but the systematic connection between registers 

and representations (Prediger et al., 2016) 
PCK-C5 Successively develop students’ language repertoires by extending the 

existing resources and connecting them (Planas, 2018) 
Background on PD level: Goals and knowledge underlying facilitation practices  
In the last decades, PD facilitators’ practices (in PDs with other mathematical PD 
content) have been investigated with two different foci: the enacted facilitation moves 
and the underlying or necessary knowledge that facilitators should refer to. Some 
facilitation moves have been classified independently from the PD content (van Es et 
al., 2014): lifting up (identifying an important idea that a participant raised in the 
discussion for further discussion), countering (offering an alternative point of view), 
connecting ideas (making connections between ideas raised in the discussion), and 
standing back (allowing the group members time discuss an issue). In order to 
understand facilitation practices, the facilitation moves should be considered together 
with the underlying goals (already partly realized in the framework of van Es et al., 
2014) and the knowledge aspects to which the facilitators implicitly or explicitly refer 
(in this perspective, we lift a research framework from the teacher PD level to the 
facilitator level, see Prediger, subm.).  
For the goals, we adopt Schoenfeld’s (2010) conceptualization and distinguish content 
goals (when facilitators pursue selected PD content learning goals) from process goals 

Figure 1: Relating registers and representations  
for building upon language repertoires  



Prediger & Pöhler 

PME 43 – 2019                                                                                                        3 –  
 

243 

(when facilitators strive for PD process qualities as active engagement of participants). 
For the knowledge, we start from Borko et al. (2014), who show that facilitators’ 
practices rely on the knowledge aspects the facilitators implicitly or explicitly refer to. 
The authors conceptualize relevant knowledge aspects (in what they call mathematical 
knowledge for professional development), comprising specialized content knowledge 
on “mathematical content and relationships” and pedagogical content knowledge 
including “the ability to engage teachers in the interpretation of students’ mathematical 
ideas and the purposeful analysis of instructional practices” (p. 165). Hence, they relate 
content knowledge to the classroom level (here abbreviated by CK-C) and pedagogical 
content knowledge to the PD level (PCK-PD). To complete the components on both 
levels, we add CK-PD and PCK-C: CK-PD refers to the facilitators’ knowledge about 
the teaching approaches and content in view, containing CK-C, and PCK-C refers to 
the teachers’ existing and intended pedagogical content knowledge on the classroom 
level. We follow Borko et al.’s (2014) call to empirically disentangle the knowledge 
aspects that are most relevant in the facilitators’ practices.  

METHODOLOGICAL FRAMEWORK  
The presented case study is embedded in a large PD research project on PD courses on 
language-responsive math teaching (Prediger, subm.). The video-recorded PD courses 
usually take four hours and are conducted by two facilitators each. To capture the 
facilitators’ goals and the knowledge aspects they refer to, each PD session is trian-
gulated using a video-based debriefing session in which both facilitators discuss with 
a researcher the critical incidents in the PD session (chosen by all three).  
The data selected for the case study in this research report stems from Alice and 
Christin’s first PD session on language-responsive math teaching with 16 unknown 
teachers, followed by a debriefing session with the facilitators. At the time of the study, 
Alice had 10 years of experience as a teacher and some experience as a facilitator and 
PD material developer (in other topics), while Christin had little experience as a teacher 
at school and as a facilitator but much as a researcher on language. 
The qualitative data analysis followed deductive category-led analytic procedures 
(Mayring, 2015) in four steps: (1) Relevant sequences of discussing language repertoi-
res were identified and transcribed; (2) the enacted facilitation moves were classified 
according to the framework of van Es et al. (2014); (3) the goals and knowledge aspects 
that were likely underlying were interpreted and classified as process/content goals as 
either PCK-PD, CK-PD, PCK-C, or CK-C (see above for the definition of categories); 
and (4) the interpretations were triangulated with the facilitators’ reflections and their 
further perspectives in the debriefing sessions. 
CASE STUDY: THE FIRST PD SESSION OF ALICE AND CHRISTIN 
Alice’s provocative move for the process goal of engaging teachers in discussions  
The selected episode (occurred after a 2.5-hour of the PD session), emerged in a 
sequence dedicated to introducing the teaching approach of relating registers and 
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representations (visualized by a slide with Figure 1). Both facilitators felt a bit uncom-
fortable as they considered themselves as not sufficiently successful in engaging the 
teachers in vivid discussions. In this situation, Alice decides to deviate from the 
original PD schedule by addressing the additional topic of allowing students’ first 
languages in (usually monolingual) mathematics classrooms which was planned for 
later in the PD.  
S1 Al. It is suggested [by the research] that if two students have the same first language, 

for example Turkish, and sit side-by-side in the classroom, that they first have 
the opportunity to clarify certain things related to the task in Turkish.… So that 
the language isn’t an obstacle.… We ourselves, we actually have the rule always 
to talk in German in class. But it [allowing the use of the first languages] seemed 
for me, somehow. I have tried it then. In the moment it was a success for me, 
because they could suddenly talk about things about which they couldn’t talk 
about well in German. Have you had any experience with this?  

She underpins her argument by referring to research and to own experiences in school 
(Turn S1: “I have tried it … it was a success for me”). Her question leads to a vivid 
discussion in which all contributing teachers disagree for various reasons: 
S2 Te1 I’m just wondering if that isn’t a contradiction to, that you have to challenge the 

students. I’m not sure. 
…  … 
S4 Te2 Well, in our case, it is like that: Since they have already reached the eighth grade 

at the Gymnasium [track for higher achieving half of students], then they should 
be able to talk about an everyday problem. If they should not even use technical 
terms, then they should do it in German. Thus I don’t like it if they communicate 
about the problem in Turkish…. 

S5 Te3 Exactly. 
S6 Te2 In working on a task you can ask again…. I had the word “tachometer,” which 

some didn’t know.… for example… And for this [answering the vocabulary 
question], there are classmates and I’m still there [to answer], too.  

The teachers’ contributions reveal different pedagogical content knowledge aspects 
(from the list in the first section): Teacher Te1 (Turn S2) refers to PCK-C2, as she 
considers the use of first languages in mathematics classrooms as a contradiction to an 
offensive approach of pushing language demands. Teacher Te2’s utterance (Turn S4: 
“They have already reached the eighth grade ... They should be able…”) and the 
confirmation of Te3 (Turn S5) show that they share language policy concerns against 
underprivileged first languages (PCK-C1) but miss the epistemic function of the first 
language by focusing only on a deficit-compensating communicative function (PCK-
C3). The second contribution of Te3 (Turn S6) again focuses only on the communica-
tive function of registers and representations (limiting PCK-C3).  
During the discussion Alice does not comment the teachers’ contributions in a content-
related way, thus she does not refer to the content aspects (but her co-facilitator does; 
see below). At the end of the discussion she closes with the following utterance: 
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S16 Al. …I put it [topic of allowing first languages in mathematics classrooms] here 
consciously on the table to discuss it controversially. You have done that well. Just 
to make suggestions about what is possible. Of course, you always have to weigh 
them for yourself: what makes sense and what does not make sense for you.  

Alice knows that the idea of including first languages might raise teachers’ objections. 
However, she addresses the topic of PCK-C1 (overcoming language policy concerns 
against underprivileged first languages, in the list of the first section), which usually 
comes later in the PD program. In Turn S16, she makes explicit that she has used the 
topic to bring up a provocative issue (a variant of countering in the category system of 
van Es et al., 2014). By this, she seems to pursue not a PD content goal, but the process 
goal of engaging teachers in a more vivid discussion. This interpretation is confirmed 
by her explanation and evaluation of her decision in the debriefing session:  
D7 Res. What did you [to Alice] think in this moment? Which criterion did you use to 

decide, if it was right or wrong?  
D8 Al. For me, the group seems so lifeless and I can’t manage this though, because I feel 

that we overfeed them with content and they say afterwards: “It was nice, but I 
didn’t get anything out of it.” Then it was like that, that I thought, perhaps, …they 
have another orientation to this topic and I thought…it is provocative in this 
situation. And perhaps, I knew, that it could be difficult and that they face this 
negatively. But I was very aware of this and hoped that they get some way to see 
a new perspective for the thing.  

D9 Al. And…when they discussed, I thought it was right to make this.… 

To pursue her process goal of engaging teachers in a more vivid discussion, Alice 
draws upon her PCK-PD (Turn D8: “perhaps…they have another orientation to this to-
pic and I thought…it is provocative in this situation.”) that many teachers share 
language policy concerns against underprivileged first languages (PCK-C1). Her focus 
on a process goal could probably also explain why she does not intervene in the 
discussion and closes it (in Turn S12) without commenting on the PD content itself. 
Her goal is reached, as several teachers have contributed to the discussion (Turn S12: 
“You have done that well”; Turn D9: “when they discussed, I thought it was right to 
make this.”). This focus on the process goal explains why Alice activated only very 
limited parts of her own CK-PD, reducing the use of first languages to its communica-
tive function of compensating for deficits in the second language (in Turn S1 and by 
not reacting to Turn S4), without addressing PCK-C2 through PCK-C5.  

Christin turns the process goal into a PD content goal 
After the teacher’s contribution in Turn S6 (see above), Christin tries to fuel the 
discussion by some framing using the theoretical construct of zone of proximal 
development, which refers to the idea of successively building and extending student 
language repertoire (PCK-C5):  
S7 Chr. That is perhaps also a bit the question about what is the zone of proximal 

development of the students. Thus, if the language problem is perhaps so big that 
the given requirements are too big for the students to reach, it is perhaps helpful 
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if they initially speak in Turkish. If it isn’t possible otherwise. But probably most 
of the students – I don’t know how it is with your students – for them it is probably 
in their zone of proximal development. 

Christin’s enacted facilitation move can be classified as an instance of connecting ideas 
(van Es et al., 2014), as she tries to make connections between Alice’s and the teacher’s 
contributions and the PD content on a productive use of students’ language repertoires. 
She introduces the construct of zone of proximal development relating to the longer-
term development of language (PCK-C5), which serves here as a mediating construct 
to explain why some teachers believe the first language not to be necessary (because 
the zone has already been left behind) and Alice’s experience of girl who used it 
productively. Mediating constructs are a key issue in PCK-PD. By these moves, she 
turns Alice’s process into a content goal: Her facilitation goal is not only to have a 
vivid discussion, but she starts to work towards the PD content goals of teachers’ PCK-
C2 and PCK-C5. During the debriefing session, Christin explains why she made the 
comment:  
D10 Chr. That was because I sat there and realized that you talked about different things. 

That they didn’t understand what you meant. Instead, they perceived it as a 
contradiction too: We make it offensive [i.e., we call for language learning 
opportunities] and confront them with the requirements [rather than allowing 
them to escape into their home language]. 

…  … 
D11 Chr. In this situation I thought that I would try to make it explicit.  

According to her debriefing reflections, Christin felt she made the comment because 
she noticed the participants’ irritation with a felt contradiction between Alice’s 
contribution (allowing the use of first languages in mathematics classrooms) and the 
offensive approach of language-responsive mathematics teaching (PCK-C2). Hence, 
she noticed the core of PCK-C2 in the utterance of Teacher Te1 (in Turn S2).  
As Alice quickly closes the discussion about the unplanned topic, both facilitators 
could not yet exploit the emerging learning opportunities for PCK-C2 and PCK-C5. In 
the debriefing session, both facilitators reflect further on how to overcome teachers’ 
concerns in order to also reach PCK-C2 and PCK-C5 for first languages.  
The most critical issue seems to be that none of the teachers (nor the facilitators) 
address the epistemic function of first languages: First languages are not important for 
compensating communicative restrictions (especially not for native resident multilin-
guals) but contain valuable extended thinking tools relevant for the meaning-making 
process, even for students with good language proficiency in the language of 
instruction (PCK-C3). This epistemic potential for meaning-making unfolds not by 
switching between the languages, but by systematically connecting them in different 
registers and representations (PCK-C4). Connecting the teachers’ ideas to these 
knowledge aspects would have required PCK-PD on further mediating constructs.  
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However, to understand Alice’ decisions about her facilitation practice, the process 
goal in its own rationality must be taken into account. Due to time restrictions of PD 
sessions, nobody can exploit every learning opportunity that spontaneously emerges.  
CONCLUSION AND OUTLOOK  
What can we learn from the case study with its limitations in sample size, scope, and 
topic? With respect to the specific PD content of activating students’ multilingual 
language repertoires (Planas, 2018; Prediger et al., 2016), we realize that not every hint 
to including first languages as a part of students’ language repertoires is automatically 
productive for reaching the PD content goals. In particular, the analyzed discussion 
seemed to be hindered by reducing first languages to the communicative function for 
those who cannot sufficiently speak the second language. Barwell (2018) and Planas 
(2018) have pleaded for emphasizing the epistemic role for the meaning constructions 
and an extension from the first language or languages to other registers and represen-
tations. Christin’s moves are first steps in this direction, but perhaps not yet sufficient 
for exploring the epistemic function of all registers with the participating teachers. In 
further work with these facilitators and in preparation of new facilitators, CK-PD 
should be strengthened to flexibly relate to all five aspects of PCK-C1 to PCK-C5.  
On a more general level, the case study modestly contributes to successively develo-
ping a research framework for understanding facilitation practices in an empirically 
grounded way: Rather than only identifying the pedagogical tools such as facilitation 
moves (e.g. connecting ideas), understanding the facilitators’ practices requires the 
interpretation of the goals and the knowledge aspects the facilitators explicitly or 
implicitly refer to or do not refer to in a certain PD situation. Methodologically, the 
video-recorded reflections from the debriefing sessions are essential for triangulating 
the interpretations of goals and knowledge resources. For these goals, we replicated 
Tekkumru-Kisa and Stein’s (2017) and Borko et al.’s (2014) observations that pursuing 
the PD content goals is a demanding job for the facilitators. The distinction between 
PCK-C and PCK-PD allowed us to unpack not only the different PCK-C aspects to 
which Alice and Christin refer, but also to disentangle different ways in which PCK-
PD can relate to these PCK-C aspects: 

• Working with knowledge about typical obstacles in teacher learning for 
provoking discussion (Alice consciously brings up PCK-C1 for provoking 
objections), 

• Noticing an occurring obstacle in teachers’ learning pathways and supporting 
them to overcome the obstacle (Christin notices teachers’ irritation at an 
apparent contradiction with PCK-C2 and tries to harmonize them), 

• Pursuing PD content learning goals (Christin redirects the focus to PCK-C2 
and the apparent contradictions), and 

• Connecting two PD content learning goals (Christin introduces the construct 
of zone of proximal development to connect PCK-C5, but not yet PCK-C3 
and -C4). 
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These distinctions should be followed up in future research in order to elaborate the 
conceptual frameworks for understanding PD facilitation practices. This is highly 
relevant as Borko et al. (2014) describe the specific importance of the flexibility and 
connectedness of facilitators’ knowledge base for goal-oriented facilitation.  
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MENTAL MATHEMATICS AS ORAL MATHEMATICS 
Jérôme Proulx 

Université du Québec à Montréal 
 

In this Research Report, Nunes, Schliemann and Carraher’s (1993) description of oral 
mathematics (versus written mathematics) is used as a way to conceptualize about 
mental mathematics strategies. Meaning-preservation and meaning-making, as 
characteristics of oral mathematics strategies, are used to scrutinize examples of 
mental mathematics strategies and their underlying processes. These analyses raise 
sensitivities about differences between mental strategies and paper-and-pencil work. 
INTRODUCTION – WHAT DOES MENTAL MATHEMATICS ENTAIL? 
Most if not all of the existing literature somehow defines mental mathematics along 
Hazekamp’s (1986) long-standing definition as the solving of mathematical tasks 
through mental processes without paper-and-pencil or other computational (material) 
aids. To this, one can add that there are some time constraints to produce an answer, as 
well as the fact that questions are often asked orally. It is thus mostly the environment 
(e.g., time constraints, no paper-and-pencil or material aids, questions asked orally) 
that appears to define what mental mathematics is and implies. However, although of 
significance, this view of mental mathematics in terms of environment says little about 
what doing mental mathematics entails, the kinds of meanings it produces, the nature 
of the mathematical activity engaged in by solvers, and so forth. 
It is often reported that the strategies used to solve mental mathematics problems differ 
from those usually referred to in a paper-and-pencil context. Butlen and Pézard (1992), 
for example, report that the practice of mental calculations can enable students to 
develop new and economical ways of solving that paper-and-pencil contexts rarely 
afford, because the latter are often focused on techniques that are too time-consuming 
for mental calculations. Others, like Threlfall (2002), have discussed the on-the-spot 
nature of mental calculations, where strategies are said to be developed and tailored for 
the problem at hand, and not pre-scripted in advance of solving. This is also discussed 
by Plunkett (1979), who refers to mental strategies as “fleeting and often difficult to 
catch hold of [as] variable [and] active” (p. 3, emphasis in original), which sensitizes 
one to the emerging production of strategies for that task, at that moment, in that 
context. Referring to Plunkett’s work, Murphy (2004) explains that mental 
mathematics strategies are “seen as ‘active’ as they are created by the user to suit the 
numbers involved” (p. 4). Based on her review of curricular documents, Poirier (1990) 
adopts similar views. She posits that mental mathematics strategies have their own 
processes, that differ from regular written calculations seen mostly as the application 
of known procedures; hence raising the issue that mental mathematics strategies are of 
a particular nature, different from written processes that are the usual focus of paper-
and-pencil contexts. This idea is extended in Reys and Nohda (1994), where it is 
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asserted that mental calculations strategies are more than the mental application of 
algorithms, and thus need not necessarily be linked to paper-and-pencil strategies 
because each has its own processes. Mental calculations strategies are then discussed 
in terms of “higher-order thinking process[es] where the generation of a strategy is as 
important as the execution of the strategy” (p. 12). 
On this basis, mental mathematics seems to engage in the production of specific ways 
of solving that are of a different nature than paper-and-pencil work. Understanding the 
particularity of mental mathematics solving processes appears important for gaining a 
better understanding of how mental mathematics fits into, and can contribute to, the 
actual mathematical education landscape, dominated mostly, if not entirely at times, 
by paper-and-pencil work: Are mental mathematics strategies simply an extension of 
paper-and-pencil work, or are they a different practice? In what ways of solving do 
solvers engage? What are their characteristics? These questions orient this Research 
Report, to investigate and conceptualize what doing mental mathematics implies, the 
kind of mathematics being produced within its activity and the nature of that 
mathematical activity itself. These issues are first addressed conceptually through 
using Nunez, Schliemann and Carraher’s (1993) distinction between oral and written 
mathematics. They are then addressed empirically through an analysis of strategies 
taken from mental mathematics studies, offering illustrative and concrete examples for 
scrutinizing solvers’ mathematical activity in mental mathematics. In that sense, this 
paper is partly theoretical, offering a perspective for conceptualizing about mental 
mathematics strategies, and partly empirical, using data from my own studies and the 
research literature to examine and make sense of the conceptual issues highlighted. 
MATHEMATICAL ACTIVITY IN ORAL MATHEMATICS  
As mentioned above, it is mostly the environment (no paper-and-pencil, time 
constraints, questions asked orally, etc.) that defines mental mathematics. Because of 
this focus, and its usual contrast with paper-and-pencil work in schools, one way of 
conceptualizing mental mathematics is to relate it to Nunes et al.’s (1993) distinction 
between oral and written mathematics. In their seminal work on street mathematics, 
Nunes et al. argue that street and school mathematics are supported and structured by 
different types of symbolic representations, respectively oral and written. Their 
investigation of both forms led them to associate street mathematics with oral 
mathematics, and school mathematics with written mathematics. Nunes et al. use these 
associations as one source of explanations for the major difference in performances 
and forms of activities undertaken by solvers on street-related and school-related tasks.  
In addition to their difference in form (one oral, the other written), Nunes et al. show, 
through their scrutiny of each practice, how meaning is preserved in oral mathematics 
solving. For example, faced with the computation 200 – 35, one student answered 
orally: “If it were thirty, then the result would be seventy. But it is thirty-five. So it’s 
sixty-five; one hundred sixty-five” (Subject L, p. 41). They contrast these kinds of oral 
practices with written practices present in schools, where for the same task one solver 
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underwent the same oral procedure after failed attempts at the school-prescribed 
algorithm. The following is taken directly from Nunes et al.: 

[The child writes 200 – 35 in vertical arrangement. Then he writes the result from units to 
tens to hundreds, computing out loud, and obtaining 200 in the following way.] 
R: Five, to get to zero, nothing. Three, to get to zero, nothing. Two take away nothing, 
two. 
Experimenter: Is it right? 
R: No. So you buy something from me, and it costs thirty-five, you pay with a two-
hundred-cruzeiro note and I give it back to you? 
E: Do it again, then. 
[R. writes down 200 – 35 in the same way, writes the result from units to tens to 
hundreds, counting aloud and obtaining 235 as follows.] 
R: Five, take away nothing, five. Three, take away zero, three. Two, take away nothing, 
two. Wrong again. 
E: Why is it wrong again? 
R: Now you buy something and its costs thirty-five. You give me two hundred and I give 
you two hundred, and thirty-five on top? 
E: Do you know what the result is? 
R: If it were to cost thirty, then I’d give you one seventy. 
E: But it is thirty-five. Are you giving me a discount? 
R: One hundred and sixty-five. (p. 46, Subject R) 

This leads Nunes et al. to assert that “Street mathematics is oral and preserves much of 
the meaning of the situations at hand. Mathematical practice in school is written and 
leaves out as much of the specifics of situations as possible in striving for generality.” 
(p. 49). They explain how in written mathematics the solvers were often couched in a 
role reminiscent of a detective, attempting to decipher through the problem which rule 
to apply for solving. Written mathematics in this sense aligned with a mechanical 
activity, focused on applying school-prescribed routines to solve the right problems. 
And in the process, Nunes et al. show how meaning was left behind in the application 
of general procedures, which brought in many mistakes and much confusion for these 
solvers because they applied these procedures mechanically. In contrast, their oral 
practices were said to preserve meaning all through the computations. But there is even 
more: street vendors showed that in oral mathematics they not only preserved meaning, 
but generated meaning in the action of solving, as it unfolded. Oral mathematics 
practices were thus not scripted but enacted in the midst of solving. For example, they 
show how M., a 12-year-old in Grade-3, engaged with the following task: 

Customer: How much is one coconut? 
M.: Thirty-five. 
Customer: I’d like ten. How much is that? 
M.: [Pause] Three will be one hundred and five; with three more, that will be two 
hundred and ten. [Pause] three hundred and fifteen…I think it is three hundred and fifty. 
(pp. 18-19) 
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The real-time unfolding of the solving process makes oral mathematics strategies 
appear as meaning-making practices, where sense is made through solving as it 
unfolds. In contrast to their written mathematics, where solvers applied rules 
mechanically, in their oral mathematics practices meaning was produced through the 
process of solving per se. To insist on this dimension, Nunes et al. addressed the 
adapted nature of the oral strategies, tailored to the problem under scrutiny, as well as 
varying at times for the same task and even for the same solver. For example, some 
computation problems were often addressed from left to right (from hundreds to units) 
in oral mathematics, and these same numbers were at other times decomposed (57 
became 52 and 5) or grouped (as in the coconut example), and even parts of numbers 
were left out (like Subject L, where one of the 100 of 200 is left aside to first subtract 
35 from the other 100). These adaptations in oral strategies, and their variations from 
problem to problem, were not observed among solvers when they engaged in written 
strategies. When these solvers referred to school-based written procedures, it resulted 
in the application of a series of pre-decided steps to obtain the answer. For Nunes et 
al., written mathematics appeared related to conforming to a set of predefined rules. 
Oral mathematics, on the other hand, transcended this by being much freer and adaptive 
to the problem and the data at hand. Thus, in the oral practices, mathematics was 
engaged in as a process, as something produced in the action of solving, as a meaning-
making endeavor. In contrast, for written mathematics strategies, mathematical 
processes were tamed down, reified as rules, as a tool one searches for and attempts to 
use and apply. Hence, one main distinction between oral and written mathematics that 
came out of Nunes et al.’s work is not only about preserving meaning in oral 
mathematics, but also about making meaning in the process of solving. 
This analysis of Nunes et al. in relation to oral mathematics, as a meaning-preservation 
and meaning-making process, appears fruitful for investigating the nature of the 
mathematical activity with/in which solvers engage when solving mental mathematics 
tasks. Although it would be imprudent to generalize Nunes et al.’s results to any or all 
written work done in schools (as it mainly relates to their studies and its solvers), 
establishing parallels between oral and mental mathematics is of theoretical interest; if 
only, as mentioned, because of similarities in the environment into which solvers are 
plunged in mental mathematics contexts (time constraints, no paper-and-pencil or 
material aids, questions asked orally, etc.) and the usual contrast drawn with paper-
and-pencil work in schools. This parallel is investigated in the following through the 
presentation and analysis of strategies taken from mental mathematics studies. 
INVESTIGATING MENTAL MATHEMATICS SOLVING PROCESSES 
The illustrations of students’ ways of solving mental mathematics tasks offered here 
come from studies conducted in various classrooms. The classroom organization in 
these studies is quite simple: students sit at their desks, the researcher offers tasks orally 
and/or on the board and allows 15-20 seconds to solve them. Students are then asked 
to share and explain their strategies. As the analyses show, strategies students engage 
in are closely tied to the problem and its “information”, where students focus on aspects 
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directly part of, and characteristic to, the problem. This leads to an analysis in terms of 
meaning-preservation and meaning-making in solving. 
Meaning-preservation strategies 
As Nunes et al. insisted, when enacting oral mathematics practices solvers stay close 
to the task at hand, offering ways of solving directly linked to and using the data of the 
problem. Subtracting 35 from 200 engaged in working with the 35, at times splitting it 
as 25 and 10, as 30 and 5, etc., to treat the 200 as a hundred plus a hundred or as the 
double of a hundred. Or again, in 252 – 57, where 57 is split into 52 and 5 to match the 
52 of 252. These strategies contrasted with general algorithms used in written 
mathematics, where the numbers of the problem (be it a 117 or a 51) did not matter, 
and the method, the rule, or prescribed routine was central. The idea of staying close 
to the data of the problem is also strongly present in mental mathematics strategies. 
The following examples offer illustrations of how mental mathematics leads one to 
focus directly on aspects characteristic of the problem. In one mental mathematics 
study, Grade-10 students had to solve a variety of statistical tasks (e.g., central 
tendencies, graphical representations and interpretation, standard deviation; see 
Proulx, 2017, for details). For example, the following task was given to students: 

Here are four distributions. Which distributions have the same mean? 
(a) 41, 42, 44, 45; (b) 41, 42, 43, 44, 45; (c) 41, 42, 47; (d) 40, 42, 44, 45.  

To solve this, students scrutinized the values in each distribution: some paid attention 
to the closeness of numbers in each distribution, others that values were mostly 
distributed “around” 43, others analyzed the distance between each value, and so forth. 
Here is a sample of the strategies engaged in: 

Strategy 1 – Near values. Some students explained that data in A and D distributions are 
very close, almost identical, except for 40 and 41. So, their means are very close. Other 
students asserted that C and D have the same mean. They explained that C has one fewer 
data than D, but that it is possible to make subtractions, for example 41-1, also to get 41 in 
D or to take out 47 to give back to some of the other data in D. 
Strategy 2 – Analysis of data and compensating. Some students asserted that B and C 
distributions have the same mean, because 47 in C is equivalent and compensates for “43, 
44, 45” of B to “pull it toward” the same mean. Other students said that distributions A 
and C have the same mean, explaining that C has the biggest data of all distributions while 
also having the smallest number of data. And, that the total of distribution A is bigger but 
needs to be divided by a larger number. 
Strategy 3 – Discarding the 40s. Some students explained paying attention only to the 
number units in the distribution, because 40 could be taken out of each datum. They then 
added the units and divided by the number of data, obtaining the same mean for A and B. 
Strategy 4 – The balance. Some students mentioned that A and B have the same mean, 
which is 43. They explained that data in distribution A are ordered. And, that on one side 
there is 41 and 42 with one of difference in between, and that on the other side there is 44 
and 45, also with a difference of one, these numbers being before and after 43. For B, it is 
the same thing, but 43 is also part of the distribution as the middle number. 
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These strategies are not simply about calculations, but about scrutinizing the entire data 
distributions: students stay close to the problem and its data, preserving its meaning as 
they solve. These strategies are an expression and arise out of their efforts to make 
sense of the problem, to consider the nature of its data. In these, students enter into a 
statistical endeavor focused on analyzing the data and inferring from them: they are 
about analyzing the entire distribution as well as considering it as a whole, about 
transforming the data and assessing the effect of these transformations, about 
establishing resemblance between different distributions, and so forth. The arithmetic 
means obtained are more than numbers resulting from a calculation: at times, it is an 
order of magnitude that represents the data in the distribution offering a view of its 
central tendency—without actually calculating it—and at other times it is an exact (or 
almost exact) number, not obtained by calculations but by reasoning through the actual 
data (compensating, subtracting, discarding information, etc.). In this sense, these are 
far from a purely arithmetic school exercise, as Gattuso (1997) critiques, where the 
arithmetic mean is often treated as a calculational labor of adding and dividing. The 
strategy about discarding the 40s is a good example of how students stayed close to the 
data in the problem, because this strategy would hardly have been proposed for a 
distribution without data in the 40s (e.g., 29, 37, 39, 54, 56). As well, the regular written 
algorithm, requiring one to add the values and divide by the number of data, does not 
distinguish between values like 29, 42 or even x in its calculation (it is indeed the 
strength of an algorithm to be that way, as Lockhart, 2017, explains). Not being a 
critique of the written algorithm, it illustrates how close strategies were to the data, and 
used them, preserving meaning like for oral mathematics strategies. 
Meaning-making strategies 
As with oral mathematics strategies, meaning is not only preserved in mental 
mathematics strategies, but also generated in the making. Time constraints and the 
absence of material aids force the solver in mental mathematics to find a way into the 
task, creating a need to grasp something, to draw out aspects of significance for solving 
the problem while solving it: it becomes as much a solving process as the production 
of the solving itself. There is a constant articulation between making sense of the 
problem and using this sense to continually pursue its solution. In another mental 
mathematics study, Grade-8 students were asked to solve for x a variety of algebraic 
equations of the form Ax+B=C, Ax+B=Cx+D, Ax/B=C/D (see Proulx et al., 2017). For 
example, for solving the equation  for x, students produced the following: 

Transforming to equivalent forms. One student explained transforming ½ into 10/20, 
making the ½ divided by 2/5 simpler, then repeating it for 2/5, obtaining . This for 

him was equivalent to 0.4x=0.5, and thus the response became x=0.5/0.4. 

Inversing and transforming. One student explained inversing the equation to . Then, 

transforming into decimals to 2.5x=2, and dividing by 2 gave 1.25x=1, so that x=1.25.  

2
5
x = 1

2

20
50

x = 10
20

5
2
x = 2
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Cross multiplying. After transforming the equation to , one student explained having 

cross multiplied, where 5 times ½ gave 2x= 2.5 and thus x=1.25. 
Halving. One student explained that half of 5 is 2.5, but here it was 2 over 5 and not 2.5. 
Because he is looking for ½, then x had to be 1.25 so when multiplied by 2 one gets 2.5. 
Similarly, one student looked for the value of x that would make 2/5 equals to ½. Placing 
fractions over 10, he explained that x is 1.25 because 4 times 1.25 is 5 and 5/10=½.  
Finding common denominator and adding. One student explained placing fractions over 
10, obtaining . Subtracting 4/10 and 5/10 gave –1/10, so then x is worth 1/10.  

These strategies are not necessarily adequate, but illustrate an emergent solving process 
geared toward making sense for finding a value for x satisfying the equation. These 
examples raise a diversity of entries for solving: about decimals, about inversing, about 
halving, and so forth. The “mental” dimension provokes the search for an entry point, 
a way of getting into the problem, of making a first step in it; far from the mechanical 
application of a procedure, it is solving in the making, meaning-making through the 
act of solving. As in oral mathematics, these strategies are responsive to themselves, 
being constituted along the way, one step leading to its consideration in the following 
one, and the next. The strategy unfolds in relation to itself, contingent on its own 
development, influenced and constituted by it. This unfolding and enmeshment of 
meaning is well illustrated in this example, taken from a study on mental calculations 
with preservice elementary teachers (Proulx et al., 2013). When asked to solve 741–
75, Amy explained: 

(a) 741 – 75 is like 700 – 75 + 41. 
(b) 700 – 75 is like having 7 dollars and subtracting 3 quarters. I am left with $6.25.  
(c) 6.25 is six-twenty-five. I add 41 to 625. 5+1 is 6, 4+2 is 6, and I have 600, so 666. 

When 741–75 was given, Amy’s first step was to find a way of entering the task, 
through decomposing it, leading her to decompose 741 in 700 and 41 in order to 
subtract 75 from 700. This decomposition produced in return a new step, that is, to 
solve 700–75, for which she referred to a monetary context (7 dollars minus 75 cents). 
This led to another step, 625+41, which Amy decomposed again for each digit in each 
number in relation to their position (hundreds, tens, units) and its successive addition. 
Each solving step led to or produced another, while producing meaning through it.  
Hence, these mental mathematics strategies, like oral mathematics ones, stay close to 
the problem at hand, preserving its meaning along the way, but also generating 
meaning through solving as steps unfold. These strategies differ from predefined and 
general mechanisms to be used for any kind of number or equation, as they adapt to 
each new “step” developed along the way, and generate what Threllfall (2002) calls 
entire solution paths. Seen like this, mental mathematics strategies become, like oral 
mathematics ones, meaning-making endeavors. 

2x
5
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FINAL REMARKS 
Like Nunes et al.’s oral mathematics, mental mathematics strategies embody an 
aliveness that maintains mathematics as a dynamic activity filled with meaning. The 
concept of oral mathematics is here useful and invites one to see mental mathematics 
strategies as being far from a simple application of learned rules and procedures, and 
more toward meaning-making and meaning-preservation endeavours as solvers engage 
with the problem and the mathematical ideas. Mental mathematics, seen here as a form 
of oral mathematics, appears to distinguish itself from usual paper-and-pencil, written, 
mathematics. There is in fact a sense that the nature of the mathematical activity 
engaged with in mental mathematics creates a space of mathematical exploration that 
is more about engagement with the task to go forward, than about zeroing in on a single 
answer for the task to be done with. Solvers develop strategies to get answers, 
obviously, but all the while by giving and preserving meaning for the task at hand. The 
opening of this space of exploration, of meaning, engaged with in mental mathematics 
is one worth studying and paying more attention to, in order to better understand its 
potential contribution to the mathematical education landscape. 
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We offer here some hypotheses about how teachers’ subject-matter knowledge is 
implicated in instruction through the lens of mathematical discourse in instruction 
(MDI) framework (Adler & Ronda, 2015).    
INTRODUCTION 
It is a common view that teachers’ knowledge of mathematics relates to the 
mathematics made available to learn in instruction. However, there are only a few 
studies that provide empirical evidence and explanation of how this knowledge is 
implicated in instruction. Hill, Blunk, Charalambous et al. (2008) investigated the 
relationship between mathematical knowledge for teaching (MKT) and 
the mathematical quality of instruction (MQI) seen through the various tasks of 
teaching. Their in-depth and extensive study of five telling cases, while confirming an 
overall positive correlation between the teachers’ MKT and their MQI, illuminates the 
complexities of this relationship, and so the challenges in all-encompassing 
claims.  More recently, and with a larger study, Munter & Correnti (2017) examined 
not only the relation of teachers’ MKT to the quality of their mathematics 
instruction but also to teachers’ vision of high quality instruction and doing this over 
time using a tool for examining the presence of ambitious mathematics teaching. Their 
results illuminate that “teachers’ MKT was related to their “current” instructional 
practice but not to its growth; rather, growth in instructional quality was linked to 
teachers’ vision of quality instruction. 
The study we report here aims to contribute towards this emerging field. However, it 
differs in at least four aspects from these earlier works. First, our ‘measure’ of teachers’ 
mathematical knowledge does not include pedagogical content knowledge (PCK) 
which is part of MKT. Our focus is teachers’ subject-matter knowledge (SMK). 
Second, our study is located in a context where traditional or direct teaching is 
predominant. Third, our study involves a particular and narrowly focused domain of 
mathematics. We focus on teachers’ algebra knowledge and even more specifically to 
knowledge that can be classified as transformational activities of algebra (Kieran, 
2004) as this is the dominant type of activities in our algebra classes. Fourth, possibly 
a result of our mathematical focus, our study differs in terms of our descriptions of 
mathematical quality and what we consider as mathematical in instruction. Our 
description of mathematical quality of instruction is a function of our view of 
mathematics as a form of scientific knowledge (Vygotsky, 1978) and we contend that 
mediating this is the critical task of the teacher. Our tool for determining the 
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mathematical quality in instruction is the mathematical discourse in instruction (MDI) 
analytic framework (Adler & Ronda, 2015) which we developed by identifying 
culturally established instructional tools in the contexts in which we work through 
which mathematics is mediated, together with those features of mathematical discourse 
that each tool makes available for learners’ engagement. This framework which we 
present below enables description and evaluation of observable aspects mathematics 
in and through various mediational tools of instruction.  
The level of specificity of the study in terms of its content focus and the dominance of 
direct teaching is a double edged sword: on the one hand it limits the study’s generality 
particularly in content terms. On the other, it affords a sharpened illustration of a case 
of how teachers’ SMK plays out during instruction. We thus set out to answer the 
question: How, if at all, is teachers’ subject matter knowledge in algebra related to the 
algebra they make available to learn in their lessons? 
Transformational algebraic activities 
School algebra consists of three interrelated activities: generational, transformational 
and global/meta-level activities (Kieran, 2004). While these are interrelated activities, 
each mediates particular aspects of algebra. Each may thus require different 
mediational means and processes. 
Much of the initial-meaning making for school algebra lies in generational activities 
(Kieran, 2004). The key algebraic object here is the variable and the various 
relationships between quantities variables represent. School algebra also involves 
processes where algebra is used as a tool. Global-meta level activities includes problem 
solving, modelling, studying change, noticing structures, noticing and generalizing 
relationships, justifying, proving, etc. The multiplicity of processes and ideas that need 
to be coordinated in global-meta level activities, together with the generational or 
transformational activities embedded in them, may be cognitively demanding both for 
the teachers and her learners, but one that is considered to afford more powerful 
mathematical experiences for learners.  
Transformational activities involve various types of algebraic actions or procedures on 
algebraic objects. These are often referred to as ‘rule-based’ activities. We assert here 
that this does not imply mindless learning of procedures and techniques. 
Transformational activity has its own meaning-making power and this lies in the 
development of the notion of equivalence (Kieran, 2004). Moreover, it provides the 
general context for applying arithmetical structures e.g., the distributive property or for 
generalizing operations e.g. subtraction as addition. However, without deliberate 
foregrounding of the fundamental concept of equivalence beyond numbers to 
operations and expression; and without deliberate attention to noticing structures and 
to making explicit the mathematical principles that legitimize the transformational 
processes, transformational activity can become an exercise for memorizing unrelated 
techniques. In contexts where transformational activities are dominant, it is thus 
important to examine whether there is such deliberate attention that leads instead to the 
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development of these notions and an appreciation of general and coherent nature of 
mathematics, and whether and how this relates to teachers’ SMK. 
METHOD 
Data was sourced from teacher participants in a 20-day subject-matter focussed 
professional development course spread over one year for Grade 8-10 teachers in 
disadvantaged schools in the Johannesburg area in South Africa. Out of thirteen 
teachers who completed the course, seven were teaching transformational activities of 
algebra when we collected video data at the end of the course. These teachers, the video 
records and the end of course test results formed our data archive.  
Test items for measuring SMK. The end of course test assessed what the teachers 
learned from the SMK-focused PD the main goal of which was to strengthen teachers’ 
relationship with mathematics, particularly algebra. There were 24 algebra items in all, 
half of which were purely on transformational tasks, four generational and global meta 
level tasks where transformational tasks were implicit and eight were on interpreting 
the properties of function in symbolic form and graphical form. All these items 
assessed fluency with algebraic expressions in various ways. The seven teachers’ 
results on these test items made up our SMK data.  
The video lessons. Our second set of data was the teachers’ lessons collected sometime 
after they took the test. These were video recorded and transcribed. Each transcript was 
then carefully checked by one of us closely examining and refining the transcript as we 
watched the video again, and again. Each author individually analysed the lessons at 
first using the MDI analytic tool and then we compared and discussed our codes. 
Towards the final round of coding we invited another colleague to do an analysis of 
the lessons for further confirmation. It is this process of successive video watching, 
transcript development and analysis that improves the rigour of the analysis.  
Data production – constructing mathematical episodes as unit of analysis. A critical 
task for any lesson analysis is how to divide the lesson into analytic units. Our unit of 
analysis is a mathematical episode so named as our goal is to describe the mathematical 
‘story’ of the lesson as it unfolds. We began by watching the video-recording and 
simultaneously (re)reading the transcript to identify the intended object of learning that 
we know is not synonymous with what is enacted (Marton & Tsui, 2004). We then 
divided the lesson transcript into mathematical episodes each identified by a shift in 
focus of attention with respect to content, typically marked by a new task.  
Our Analytic tool. The tool we used to analyse and evaluate the quality of mathematics 
made available to learn in the lessons is the mathematics discourse in instruction (MDI) 
framework (Adler & Ronda, 2015). The starting point of the framework is that 
“teaching and so learning is always about ‘something’ and bringing this into focus – 
its mediation - is the teacher’s work” (Adler & Ronda, 2015, p. 238). This “something”, 
is the object of learning (Marton and Tsui, 2004). For the object of learning to be visible 
and be in focus during instruction, it needs to be exemplified and experienced by 
leaners. The most common way this is done is through tasks. Embedded in tasks is the 
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mathematical object which is made visible through its examples. However, what is 
being mediated also needs to be named, elaborated and explained necessitating use of 
words and notations to communicate and convey meaning. In addition, what counts as 
mathematics is also communicated implicitly or explicitly during the lesson reflecting 
the authority from which mathematical procedures and claims are legitimated. In the 
MDI framework, we claim that these cultural tools of instruction - tasks, examples, 
naming/word use and legitimations – are means for mediating various aspects of the 
object of learning and it is in and through these tools that we analyse what is made 
available to learn. The framework has both descriptive/analytic and evaluative features 
for each of these mediational means which we present below. 
Tasks. The most common and visible mediational means teachers use to engage 
learners in mathematics is the task. A mathematical task has at least two basic 
components: the object and the action on the object. The MDI framework classified 
tasks in terms of its cognitive demand. In one of the lessons we analysed here (Teacher 
6) the tasks in the main part of lesson were presented and solved one-by-one:  
(1) 5x+5y-3x+2y; (2) Add (8x2+4x-6) and (-3x2+6x+4); (3) Subtract (7x2+4) from 
(15x2-2);   (4) Subtract (-3x2+6x+4) from (8x2+4x-6).  
The objects in focus are algebraic expressions and the action required is to add/subtract 
these. Task (1) involves known facts and procedures because combining similar terms 
comes before the topic on adding and subtracting algebraic expressions. Task (2) is an 
applying task because learners are expected to use their knowledge on combining 
similar terms to add the two multi-term expressions. The same can be said of Task (3) 
and Task (4) which are also applying tasks. In the MDI analytic framework, Task (1) 
is coded R for recall of facts and procedures and Task (2) is coded A for application. 
Of course, Task (2) may be experienced differently, for example, when the task is 
stated as Write 2 algebraic expressions one of which has a negative leading coefficient 
that give a sum of 5x2+10x-2. This version of the second task embeds the 
transformational activity within a generational activity and for some learners this could 
be a problem to solve. This latter version is an example of a task that we code as C/PS  
(connections/problem solving). In this task type, learners can generate many correct 
answers and potentially encourage them to consider a more systematic and faster way 
of getting the answers. In this case they would need to see the underlying structure of 
each term and of the expression itself.  
Examples. Examples for us are instantiations of the mathematical object(s) or the object 
of learning. MDI is interested in two dimensions of example use. First is how the set 
of examples (and with it the choice of representation) can make visible features that 
are key to the object of learning. Second is how the set of examples build towards 
generality. In our analysis of examples, we draw on different patterns of variation 
proposed in variation theory (Marton & Tsui, 2004). We claim that each pattern of 
variation and combinations of them within a lesson offers different degrees for 
experiencing generality of the object that is exemplified.  A pattern called similarity 
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(S) enables local generalization. Similarity occurs when one dimension of the object 
(its examples) is varied and the rest invariant. If a set of examples brings attention to 
difference or contrast (C), opportunities are made available to recognise boundaries 
between classes of examples, and so further opportunities to generalise. When 
examples are fused (F), with simultaneous variance/invariance across an example set 
or through several example sets, opportunities for generalisation is further enhanced. 
Fusion does not refer to simply presenting examples at random but selecting and 
sequencing them to make visible the different dimensions of the object that are being 
varied. In Teacher 6’s lesson for instance, what is being exemplified are the various 
forms in which learners encounter adding and subtracting expressions and the forms of 
expressions itself. That is, the set of adding and subtracting tasks is the exemplification 
itself of the object of learning and so we analyse these ‘objects’ accordingly. Examples 
1 and 2 (that is tasks (1) and (2)) differ in one feature: the context for adding 
expressions. In example 1, adding is in the context of simplifying one expression and 
so involves looking at individual terms. In example 2, adding is in the context of two 
algebraic expressions. Note that the expressions in example 2 were bracketed to enable 
learners to see these as two expressions. Examples 3 and 4 are subtraction tasks with 
the same structure but the sign of the first terms in the expressions to be subtracted 
differs. Examples 2 and 4 involve similar expressions but differ in operation. Taken 
together, the juxtaposition of addition and subtraction operations highlights the contrast 
between operations. The examples are also sequenced so that there is only one 
dimension varying at a time. The example set in this lesson is thus coded F for fusion.  
Naming. Words or names are signifiers. Each carries a potential meaning and hence its 
importance in learning and knowledge development. As we stated earlier, what is being 
mediated needs to be the subject of the talk, and elaborated, examined and explained, 
necessitating the use of words and notations to communicate and convey meaning. 
Thus, what is named (or not) and how, the choice of name to refer to other words, 
symbols, images, procedures or relationships in the tasks and during elaboration, 
matters. Naming may involve a range of word use from colloquial nonmathematical 
words to use of mathematical words as names. We use the following codes to analyse 
the word use in the lesson. We also exemplify it from some texts in T6 lesson:  
1) Colloquial (C) e.g. everyday language and/or ambiguous pronouns such as this, that, 
this, to refer to objects in focus; 2) Ms for math words used as name or labels only e.g. 
in reading string of symbols or in referring to the surface feature of the object such as 
“constant is the number beside x”; and, 3) Ma for mathematical words used in talks 
about objects, procedures, properties (Ma) e.g constant is the numerical coefficient of 
x or constant is the number factor in an algebraic expression.  
Legitimations. Part of teaching mathematics is about communicating criteria about 
what counts as mathematics. Thus, the authority from which the mathematical 
procedures and claims are legitimated, matters. Legitimations ranges from 
nonmathematical criteria and reliance to teacher authority to use of specific examples 
and use of mathematical principles. Legitimating criteria may include 1) Non 
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mathematical e.g. cues are iconic or mnemonic; a statement or assertion, typically by 
the teacher, as if ‘fact’ or 2) Mathematical criteria: which may be Local  e.g. a specific 
or single case (real-life or math) or established shortcut or convention or General such 
as definition, previously established generalization; principles, structures, properties. 
We identify them when teacher ask why questions or prompt learners with ‘because?’ 
or similar prompts.  
Having elaborated the elements of the framework and their descriptive coding, we now 
present the evaluative feature of the framework in Table 1 below. We used this for the 
summative judgment of the lesson – our ‘measure’ of mathematical quality in 
instruction. In the table, the subscripts from 1-4 indicate progression in quality towards 
the privileged scientific knowledge.  

Object of Learning (OoL) 

Tasks Example set Naming Legitimations 

T1–only include 
recall (R) type 
tasks 

T2 – at least 
includes an 
application (A) 
tasks in the main 
lesson 

T3 – A and 
includes at least a 
problem solving 
or task requiring 
multiple 
connections 
(PS/C)  

E1 - example 
space provides 
contrast (C) or 
similarity (S) 

E2 - example 
spaces provide 
both C and S or 
two example 
spaces involving S 

E3 – example 
space shows all 
fusion 

N1 – talk consist 
mostly of colloquial 
(C) words; if there 
are mathematical 
words (Ms), it is used 
as label.  

N2 - movement 
between C and Ms 
but mostly Ms; some 
MA  

N3 – movement 
between C, Ms and 
Ma but mostly Ma 
words  

L0 – no justification provided 
or if there is it is 
nonmathematical  

L1 – most claims made are 
legitimated using a single 
example (Local) 

L2 - criteria extend beyond 
NM and local and 

attempt to include generality, 
but this is partial  

L3 - General full math 
legitimation of a concept or 
procedure, is principled and/or 
derived/proved 

Table 1: MDI indicators of the quality of mathematics made available to learn.  
RESULTS 
Having illustrated our coding, and how these accumulate across episodes into levels, 
we can now present the overall results of our study for all seven teachers (Table 2).  

Teachers Object of Learning SMK (%) MDI = (Examples, Tasks, 
Naming, Legitimating) 

T1 Evaluating algebraic expressions 23 (E1, T1, N1, L0) 

T2 Factorizing Monomials and binomials 39 (E1*, T2->T1, N1, L0) 

T3  Multiplying two binomials 57 (E1, T2, N2, L0) 
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T4  Solving linear and quadratic equations 66 (E3, T2->T1, N2, L1) 

T5  Solving quadratic equation 78 (E3, T2->T1, N3, L3) 

T6   Adding and subtracting algebraic expressions 78 (E3, T2->T1, N2, L3) 

T7  Simplifying/Dividing Algebraic expressions 83 (E3, T2->T1, N2, L2) 

E1* - Correct with the example set that can only be coded E1.  

Table 2: Teachers’ SMK and what is made available to learn in instruction (MDI). 
The results in Table 2 indicate that the teachers’ SMK is related to quality of 
mathematics they make available to learn – to some extent – that is only through use 
of examples and legitimating criteria. The same cannot be said as strongly for the kind 
of tasks set forth for learners to engage nor in teachers’ naming. The teachers that 
scored below 60% in the test used examples that varied in one dimension only while 
those who scored above 60% use examples that varied on two or more dimensions.  In 
addition, teachers with scores below 60% did not provide legitimations that were 
mathematically authorised. In contrast, those with scores above 60% provided 
mathematical legitimations ranging from giving a specific example to drawing on 
mathematical principles that were either complete or partially complete.  
DISCUSSION 
The first hypothesis that we can offer from our focused study is that teachers’ subject 
matter knowledge does matter in how they choose the features of examples critical to 
the object of learning and that could then offer opportunities for generalizing. Selecting 
and sequencing of examples is not trivial. The teacher needs to be able to identify those 
critical aspects of the object of learning that need to be foregrounded. Our second 
hypothesis is that the domain of knowledge that teachers draw from to substantiate 
mathematical claims made during the lesson (legitimations) also has strong links to 
teachers’ knowledge of mathematics. It appears appreciating the need to 
mathematically substantiate the claims made in classroom talk is linked to stronger 
SMK. Our third hypothesis relates to word use/naming. Teachers’ SMK seems related 
to the quality of mathematical talk in the lesson although we cannot state this 
hypothesis as strongly as the other first two above. The lessons with predominance of 
colloquial names were by the two teachers with the weakest SMK. The other teachers 
used mathematical names in the lesson but this mostly entailed reading of strings of 
symbols. We can think of two explanations for this. First is a weakness in our coding 
– that it is not sufficiently differentiated to make visible more nuanced differences 
across T3-T7. Also, our N2 level covers a wide spectrum of values between colloquial 
and more formal talk and would benefit from further categorization or disaggregation. 
We have pursued this in our analysis of textbook lessons (Ronda & Adler, 2017) where 
we differentiated between how objects and procedures are named. A second 
explanation may be because the lessons were on transformational activities of algebra 
where predominance of the reading of symbols in the talk is typical. It thus would be 
interesting to study if the same result will be obtained if the object of learning of the 
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lesson were more on generational or meta-level activities. Our last hypothesis relates 
to task demand. Tasks that involve problem solving and multiple connections which 
are features of reform-oriented teaching did not figure in any of the lessons we 
investigated. Is it possible that this has to do with the rule-based nature of 
transformational activities or to the predominant traditional teaching of mathematics 
from which we draw our lessons? Has it to do with teachers having limited exposure 
to rich mathematical tasks or has it to do with teachers vision of quality mathematics 
teaching (Munter & Correnti, 2017). Is it that teachers position learners as unable to 
engage with complex processes typical of meta-level algebraic activities? These 
questions merit further study, particularly whether the hypotheses we presented will 
hold for algebra lessons that involve generational and/or meta-level activities.  
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This study is concerned with the conceptual understanding of mathematical notions 
taught at school and extended at university. We therefore concentrate on the 
secondary-tertiary transition that falls - in Germany - together with the transition from 
calculus at school to analysis in the first semester at university. In particular we focus 
on the concept of extreme point. To analyse and interpret possible difficulties that 
learners face in relation to these transitions, we draw on two theoretical planes: a 
normative plane that consists of mathematically correct facts and conceptions and a 
descriptive plane that contains the students’ actual thoughts. For this we use the 
approach of concept image as well as Aspects and Grundvorstellungen (GVs). Out of 
their comparison we try to get insight into difficulties and their possible reasons. 
INTRODUCTION 
Many studies have shown that the transition from school to university in mathematics 
brings along a variety of difficulties for students. Gueudet (2008), for example, gives 
a broad overview of these studies and categorizes them into three main perspectives 
that go from individual behaviours, over socio-cultural perspectives to an institutional 
viewpoint. The approach we present is related to Gueudet’s first category. Within this 
category, the high complexity of the mathematical contents at university, individual 
thinking modes, and knowledge organization play a prominent role. We are particularly 
interested in the subject of analysis and want to analyse university students’ conceptual 
understanding within the transition to higher mathematics in order to determine 
challenges in the learning process. Therefore, we focus on mathematical objects 
already discussed at school but formally introduced at university. One of these concepts 
in analysis is the mathematical concept of extreme point, which we define here as 
follows: 

Let 𝐼 ⊆ 	ℝ be an interval and	𝑓:	𝐼 → 	ℝ	 a real valued function. The value of 𝑓 in 𝑥k ∈ 𝐼 is 
called a local minimum if there exists a neighbourhood 𝑈 of 𝑥k such that 𝑓(𝑥k) ≤ 𝑓(𝑥) for 
all	𝑥 ∈ 𝐼 ∩ 𝑈. Similarly, the value of 𝑓 in 𝑥k ∈ 𝐼	is called a local maximum if 𝑓(𝑥k) ≥ 𝑓(𝑥) 
for all 𝑥 ∈ 𝐼 ∩ 𝑈. In both cases the point (𝑥k, 𝑓(𝑥k))	is called a local extreme point of 𝑓. 

THEORETICAL BACKGROUND 
Traditionally, studies that are focusing on the conceptual understanding, especially in 
higher mathematics, have been based on the concept image/concept definition 
approach (Tall & Vinner, 1981). This theory distinguishes between the formal concept 
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definition that are the words used to define a concept accepted by the mathematical 
community, and the concept image that is described as follows: 

We shall use the term concept image to describe the total cognitive structure that is 
associated with the concept, which includes all the mental pictures and associated 
properties and processes (Tall & Vinner, 1981, p. 152). 

A closer look reveals that the formal concept definition is hereby used as a normative 
orientation, while the concept image is a construct that helps to specify the students’ 
ideas by offering both a model and language to describe the learners’ thoughts. 
An alternative approach developed within the German tradition of subject matter 
didactics, are Grundvorstellungen (GVs) (cf. Straesser, 2014). The notion 
Grundvorstellung could be translated as “basic idea” or “basic mental model”. It has 
its roots in the ideas of Pestalozzi at the beginning of the 19th century, however, it 
gained importance in the second half of the last century with its main advocate vom 
Hofe (e.g. 1995). He characterizes GVs as having three main features: 1) giving 
meaning to a concept by connecting it with already known facts or experiences, 2) 
bringing along the development of corresponding representations and 3) having the 
ability to use the concept in a problem. In this study we use the construct of GVs in a 
normative way, that is, a way to demonstrate a guidance of how learners’ conceptions 
could ideally look like. Lately Greefrath et al. (2016) introduced the notion of Aspects, 
a construct that is built on a close connection to GVs. From their perspective “A 
Grundvorstellung of a mathematical concept is a conceptual interpretation that gives 
meaning to it” (Greefrath et al., 2016, p. 101), whereas “An Aspect of a mathematical 
concept is a subdomain of the concept that can be used to characterize it on the basis 
of mathematical content” (Greefrath et al., 2016, p. 101). An Aspect could either be a 
definition, theorems related to the concept, properties or connections to other concepts.  
Thus, Aspects could be seen as a supplement to GVs in that this notion can be used to 
structure the normative plane in a more detailed way. Against the background of 
transition we differentiate between general and partial GVs: A partial GV is an idea 
that gives meaning to a concept in a limited context. It is not generally valid but loses 
its scope of application through restrictive premises. A general GV, however, is valid 
in the whole context. Regarding this distinction it is obvious that the context plays an 
integral role for the classification as general or partial GV. For example, the idea 
“multiplication makes bigger” is a general GV within the set of natural numbers (bigger 
than 1), but a partial GV in the real numbers. 
Both theories, concept image and GV, have different advantages when it comes to the 
analysis of conceptual understanding. While the concept image theory delivers a strong 
model and language to analyse the descriptive plane (actual thoughts of the students), 
it does not offer many possibilities to structure the normative plane, just the formal 
concept definition, which we think is for our purposes not enough. As, however, a 
comparison of the descriptive plane and the normative plane and the resulting 
differences could give integral insights in the learners’ conceptual understanding and 
their possible difficulties, we conclude that the normative plane should be structured 
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with the aid of Aspects and GVs. Especially during the transition from school to 
university we want to explore the potential of using Aspects and GVs normatively to 
gain insight into concepts students bring from school into mathematics studies at 
university. Out of this motivation the following research questions arise. 
RESEARCH FOCUS 
Q1: Which specific GVs and Aspects characterize the concept of extreme point? 
While this question aims at a construction of a normative plane, the objective of the 
second question is to structure the descriptive plane. 
Q2: Which concept images do students have regarding the concept of extreme point? 
To get a deeper understanding of these images and to find possible reasons for learners’ 
difficulties, a comparison between both planes seems helpful. 
Q3: Which differences exist between the normative and descriptive plane and what 
could be possible reasons for these differences? 
METHODOLOGY 
Our response to Q1 is based on normative considerations. We attend to Q2 through an 
empirical study. Finally, we address Q3 via a comparison between the responses of Q1 
and Q2 and refer to the theories explained before. Consistent with the demands of Q2 
we went into the last tutoring exercise of the Analysis I course at our university and 
handed out a questionnaire to eighty-nine students. The students were either in their 
first year, if they were mathematics undergraduates, or in their second year, if they 
were enrolled in a degree for becoming a mathematics teacher at high school. Thus, all 
participants studied mathematics at mathematics faculties. The questionnaire consisted 
of 5 items (true/false) about extreme points that were designed by a mathematics 
professor. The format followed two-tier-tests that are used in science education to 
analyse learners’ misconceptions (e.g. Chou, Chan & Wu, 2007; Svandova, 2014).  In 
first tier, students had to decide if they think a given statement is true or false. For the 
second tier, students were asked to explain their decision (drawings were also 
supported). The two-tier-test helped us in analysing the given solutions in a structured 
way, as the chosen answer possibilities showed first patterns (like the person thinks the 
statement is false but gives a wrong explanation). An illustrative short example of one 
of these items is presented below: 

Item 1: If the function 𝑓: [𝑎, 𝑏] → ℝ is continuous on (𝑎, 𝑏), then	𝑓	takes its extreme 
values on [𝑎, 𝑏]. 

The questionnaire was completed during the regular exercise slot. Fifty-nine students 
provided their email addresses as a sign that they are willing to take part in further 
interviews. Out of the fifty-nine questionnaires we invited twenty-five students, based 
on the analysis of their written solutions, to a follow-up interview. We chose the 
participants to cover the whole variety of difficulties shown in the written explanations 
of the questionnaire. We were especially interested in gaining more information to 
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responses we found interesting or unclear. Between February and April 2016 ten 
interviews were conducted and transcribed. During interviews the students were 
presented again their questionnaire and had to explain their given answers in more 
detail. Furthermore, the interview protocol contained questions based on graphical 
representations that were collected from several written solutions of the students’ 
questionnaires. These graphs as well as the correct answer were given to the 
interviewee masked as an answer of another student and the participants should take a 
stand to them. Based on the transcripts categories of concept images concerning the 
concept of extreme point as well as possible reasons for difficulties were build 
following Mayring’s qualitative content analysis (Mayring, 2010) by using the 
program MAXQDA. 
RESULTS 
With regard to the research questions we will first present the normative plane (Q1). 
Out of a subject matter analysis and discussions with lecturers, three Aspects and four 
GVs of the concept of extreme point could be determined. 

 
Fig. 1: Normative plane of the concept of extreme point 

Here, because of space restrictions, we will concentrate on the three Aspects: 
largest/smallest-value-Aspect 
Extreme points are points (x,y) with the largest/smallest y-value with respect to a 
neighbourhood of x. 
This Aspect refers directly to the definition of an extreme point. It illustrates the 
connection of an extreme point (of a graph of a function) with the maximum/minimum 
of a (totally ordered) set: extreme points are the points, whose y-values coincide with 
the maximum/minimum of the range (on a given domain). 
derivative-zero-Aspect 
Extreme points can be located at points where the derivative becomes zero. 
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In this connection, however, one has to be careful and take into account two important 
factors. First, there are points, which are not extreme points, although the derivative 
becomes zero at these points (saddle points). Second, since this Aspect refers to the 
necessary condition for the existence of (local) extrema, one has to impose two 
additional premises: the point must be an interior point of the domain, and 
differentiability of the function is required. By dropping one of these premises, one can 
easily find examples of extreme points where the derivative is not zero (e.g. boundary 
points of an interval). Consequently, this Aspect leads to partial GVs. 
change-of-monotonicity-Aspect 
Extreme points are located at points where the sense of monotonicity of a function 
changes, i.e., from increasing to decreasing or vice versa. 
It is, in fact, easy to see that a change of monotonicity always implies the existence of 
an extreme point. The converse, however, is false: not every extreme point induces a 
change of monotonicity (consider e.g. constant functions). Hence also this Aspect leads 
to partial GVs. 
While these Aspects represent the mathematical basis of the concept of extreme point 
the associated GVs are strongly connected to graphical representations, like a 
horizontal tangent with respect to the derivative-zero-Aspect (for further details see 
Roos, 2017). Taking the above structuring into account we demonstrate now some of 
the discovered concept images (Q2) and compare them with the described Aspects of 
the normative plane to get insight into possible reasons for the students’ difficulties 
with extreme points (Q3).  
Category 1: Constant functions 
Difficulties in this category include ideas such as constant functions do not have 
extreme values. This category has been previously identified by Fischer and Malle 
(1985, p. 148-150) who discuss the challenges faced by teachers during professional 
learning with constant parts of functions. Constant functions are often seen as non-
prototypical cases for extreme points. However, mathematics at university level should 
concentrate on a precise and overall understanding of the formal concept definition that 
results in adequate concept images of the learners, including different varieties of 
examples. An example of this category was provided by the student Ali (3rd semester) 
via a counterexample to Item 1: 
If the function 𝒇: [𝒂, 𝒃] → ℝ is continuous on	(𝒂, 𝒃), then 𝒇takes its extreme values on	[𝒂, 𝒃]. 
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Fig. 2: Extract of Ali’s questionnaire 

During the interview we wanted to know more about his idea of “missing 
monotonicity”. When asked to further explain his answer, Ali declares: 

 Ali: …A straight line with no slope. Thus there is nowhere an extreme point. Because it 
has no ups and downs. It is always flat. Always the same. 

And when asked about the definition of an extreme point Ali answers: 
Ali: And I think, that my teacher in Grade 11 said ‘A minimum that decreases and 

increases’ and this is still in my mind. 

The example of Ali shows that a concept image focussing only on the change-of-
monotonicity-Aspect could be an obstacle for the acceptance of extreme values 
regarding constant functions, hindering rather than helping the students. This is 
because the Aspect leads to only a partial GV in the sense that if there is a change of 
monotonicity there is an extreme value. This is in contrast to Ali’s argument that if 
there is no change of monotonicity that there could not be an extreme value.  
Ali explains in his interview that his part of the concept image that connects the change-
of-monotonicity-Aspect with extreme points is based on experiences from school. 
 
 
 
 
 
 
 
 

English translation: This statement is false. A counterexample is given by the drawn 
function (constant function). The function has no extreme point - monotonicity is 
missing. 
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Category 2: Borders of an interval 
When Svenja (1st semester) is given the graph of 
Fig. 3 in the context of the discussion of Item 1 
she explains: 
Svenja: 𝑓′, the first derivative, is not zero, neither in 
𝑎 nor in 𝑏. Insofar it shouldn’t be an extreme point. 

She activates here part of her concept image that 
is close to the derivative-zero-Aspect. However, 
in this situation it is not valid, as a and b are no 
inner points. 

The strong connection of extreme points with the derivative could have its roots in 
experiences at school. There the abscissas of extreme points are mainly found by the 
same process: Find the zeros of the first derivative. 
The two examples show that an overgeneralization of Aspects that lead to partial GVs, 
that is that are only usable under certain premises, could entail difficulties for students. 
In the context of transition, an analysis of German school books used in the region of 
our study showed, however, that with regard to the concept of extreme point at school 
a concentration on both the change-of-monotonicity-Aspect and the derivative-zero-
Aspect predominates tasks and explanations in comparison to the largest/smallest-
value-Aspect.  
DISCUSSION AND CONCLUSION 
After constructing a normative plane and a descriptive plane with regard to the concept 
of extreme point, a comparison between these perspectives on students’ responses to 
specific analysis based tasks provided insights into learners’ difficulties: The usage of 
Aspects that refer to partial GVs could promote false overgeneralizations, i.e. premises 
were not taken into account. Furthermore, the fact that at school mainly differentiable 
functions were analysed had a particular impact on the students’ concept images, what 
categories like “differentiability is a premise for extreme points”, suggest. We conclude 
for our case that it could be meaningful to emphasize a discussion about the validity of 
the change-of-monotonicity-Aspect and the derivative-zero-Aspect at school. But also 
for the teaching at university we see some implications. It is important to build on the 
conceptions students bring from school and to enlarge them. Neither is it helpful to 
treat knowledge from school as completely false, nor to treat university mathematics 
just as addition to already fixed acquired knowledge from school. The idea of 
reconstructing conceptions surely plays a prominent role especially in the field of real 
functions that are an important topic in school as well as in university mathematics. 
While “pathological cases” (extreme points at constant functions, extreme points at 
boundaries of an interval) have been (mostly) excluded at school, they must find their 
place in the learners’ concept images at university. At large, students’ concept images 

 
Fig. 3: Graphical representation 

in the interview 
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seen in our study indicate the huge impact experiences from school even after attending 
mathematics courses at university.  
In general, the use of GVs and Aspects to structure a normative plane and the use of 
concept image for the descriptive plane has been a fruitful approach to analyse the 
conceptual understanding of the participants. Their combination offered the 
opportunity to structure both planes in more detail than with just utilizing one of them. 
Especially in the context of transition, our introduced construct of partial GV has 
proven itself helpful. Some GVs that were valid for the functions discussed at school 
(mainly differentiable functions on ℝ) led to errors respectively of overgeneralizations 
when working at university. Our construct of partial GV helped to describe the 
challenges students have when using “old” conceptions attained in new and broader 
contexts. 
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INSIDE TEACHER TENSIONS: EXAMINING THEIR 
CONNECTION TO EMOTIONS, MOTIVES, AND GOALS 

Annette Rouleau 
Simon Fraser University 

 
This paper examines tensions faced by mathematics teachers and their effect on 
teachers’ actions using constructs from activity theory. Findings suggest that 
emotionally laden tensions can reveal motives, and impact teachers’ goals by altering, 
prioritizing, or strengthening them. Therefore, in the relationship between emotions, 
motives and goals, tensions can be understood as drivers of teachers’ actions.  
INTRODUCTION 

Reflective conversations with mathematics teachers invariably contain what I have 
come to call ‘I…, buts’: 

I want to implement problem solving in my classroom, but I don’t know how.  
I know collaboration is a good thing, but some of my students work better alone. 

For those working in professional development, these conflicts are familiar refrains. 
Some teachers want to make changes, but do not know how. Others are trying to make 
change but are encountering challenges. Conflicts such as these are endemic to 
teaching and are commonly referred to as tensions (e.g., Berry, 2007; Carr, 1998; 
Jaworski, 1999; Mason, 1988). Studies in mathematics education have produced lists 
of tensions that impact mathematics teaching (e.g., Liljedahl, Andrà, Di Martino, & 
Rouleau, 2015; Mason, 1988; Page & Clark, 2010) however there has been less focus 
on their mechanisms of action. Liljedahl et al. (2015) argue that “better understanding 
of these tensions would allow us, as mathematics education researchers, to better 
understand the intentions and actions of mathematics teachers — and to better respond 
to their needs in the crafting and delivery of professional development opportunities” 
(p. 200). My aim with this study is to further develop that “better understanding” of 
tensions. I move beyond the identification of tensions to examine more closely how it 
is tensions act, and how they are acted upon, by using constructs based in activity 
theory. 
THEORETICAL UNDERPINNING 

One of the findings from Liljedahl et al. (2015) was that tensions are tied to teachers’ 
needs. For this reason, I turn to Leont’ev (2009) to understand the complex relationship 
between tensions and needs. Consider again, for example, the opening refrain: 

I want to implement problem solving in my classroom, but I don’t know how. 

We see that underlying the tension (I don’t know how) that causes the teacher to 
actively seek professional development is an unfulfilled goal (implementing problem 
solving) that is impeding an unspoken need (e.g., being seen as a good teacher perhaps 
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or improving student learning). This is the essence of Leont’ev’s (1974) notion of 
activity: “Behind the object, there always stands a need or a desire, to which [the 
activity] always answers” (p. 22). He adds that a motive is an object that meets a certain 
need, and that generally, motives go unperceived by the subject:  

The paradox lies in that motives are revealed to consciousness only objectively by means 
of analysis of activity and its dynamics. Subjectively, they appear only in their oblique 
expression, in the form of experiencing wishes, desires, or striving toward a goal. 
(Leont’ev, 2009, p. 171) 

Goals, however, are conscious; we are typically aware of what it is we are striving to 
achieve and can pinpoint our aims. If visualizing activity as a hierarchy, we would see 
unconscious motives/needs driving the activity, with the activity being directed at the 
conscious goals and their related actions (see Figure 1). For Leont’ev, activities are 
composed of actions, which are, in turn, composed of operations. These three levels 
correspond, respectively, to the motive, goals, and conditions. As indicated by the bi-
directional arrows, all levels can move both up and down, e.g., goals can become 
motives, actions can become operations. 
 

 
 
 

Figure 1. The activity hierarchy of Leont’ev (2009).  
To understand the dynamic nature of the components within the activity hierarchy, 
Leont’ev (1974) described a situation in which the activity is learning to drive a car 
with a manual transmission. When first learning, shifting gears is a conscious action 
with the goal of smooth coordination of the clutch and gear-stick. Later, the action of 
shifting gears becomes operational as the learner no longer has to think “How do I 
move my hand or foot?”; these are now unconscious operations determined by the 
conditions (e.g., the speed of the car or the position of the gear-stick). Eventually, 
driving the car is no longer an activity in itself, it becomes an action in another activity 
such as getting to work (for which the unconscious need for status may be one possible 
motive). 
For the purposes of this study, only the top two levels of Leont’ev’s activity hierarchy 
will be considered, where activity can be seen as comprising actions related to 
associated goals. Engeström (2009) argues that tensions are essential for understanding 
the motivation behind particular goals and actions. For example, a subject can have 
conflicting needs, or there can be a conflict between a need to be satisfied and the 
actions that are allowed to be done in order to satisfy it. In both cases, the subject feels 
a tension that can drive the subject to action. Tensions, thus, belong to the subject’s 
consciousness, while motives and needs can be subconscious — even if they cause the 
tension. 
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This impacts analysis as Kaptelinin and Nardi (2006) point out the difficulty in 
establishing motives or needs in human activity: “The link between what an individual 
is doing and what she is trying to attain through what she is doing is often difficult to 
establish” (p. 58). Noting that, for Leont’ev, emotions were signals of the actualization 
of a motive or need, Engeström (2009), suggests that “to gain access to motives, one 
must proceed along a “round-about way,” by tracing emotionally marked experiences. 
In other words, the study of action-level emotional experiences is an avenue to an 
understanding of activity-level motives” (p. 7). 
Emotions, then, play an important role in activity theory where they reflect relations 
between motives (needs) and the real or potential success of an activity. Referring to 
emotions as “internal signals” in that they arrive from lived experiences rather than 
intellectual reflection, Leont’ev (2009) states, “they appear as a result of actualization 
of a motive (need), and before a rational evaluation by the subject of his activity” 
(p.166). Leont’ev places emotion at the level of activity rather than at the level of 
actions or operations but suggests that both can be affected by the emotions 
experienced by the subject. 
This suggests a potential connection between tensions, emotions, and motives, 
discernible at the action-goal level. This leads to my research question: How do 
emotionally laden tensions affect goals and motives? 

METHOD 

In this study, I adopt an exploratory and qualitative approach that focuses on 
documenting the presence of a phenomenon rather than quantifying its prevalence. 
Data for analysis was taken from a larger study involving six teachers whose teaching 
experience ranged from 5 to 16 years. The data used was obtained during semi-
structured interviews that ranged from 40 to 60 minutes. The interviews were audio-
recorded and then fully transcribed. The structure of the interview aimed at letting 
tensions and emotions emerge through a narrative rather than by direct questioning. 
For example, the teachers were asked to describe their school, their relationship with 
their colleagues, and with parents, without explicitly asking them to describe the 
tensions they lived. This allows for richer descriptive data of personal experiences that 
leading questions may inhibit. The transcripts were then scrutinized for utterances with 
emotional components such as “I wasn’t happy…” and for utterances that conveyed 
doubt or uncertainty such as “I wasn’t sure, but…”. The identified emotions and 
tensions were then re-examined for their potential connections to goals and motives. 
FINDINGS 

In the following, I highlight three ways in which tensions impact goals. I characterize 
the instances with excerpts from the interviews and explicate their interconnections 
with emotions and motives. 
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Changing goals 

Excerpts in which the mathematics teachers expressed tensions frequently began with 
some variation of “this never used to bother me, but…”. This piqued my interest and 
these instances were explored to examine what had changed. For instance, Eric 
mentioned that he used to assign, collect, and mark homework. He would give zeros 
for unfinished work and felt it was a good use of both his own, and students’, time. His 
implicit goals were gathering evidence of learning and work habits. As his actions 
worked cohesively towards achieving his goals, there was no apparent tension. This 
changed when he encountered a student who took no notes, handed in no homework, 
sat at the back of the class and yet engaged fully in the lesson: 

He’d sit at the back and say “No, you’re wrong” or “I disagree” or “What about this?”. 
And I loved it because there was this back and forth, and like this is good! So, I think zeros, 
forget that! And man did he bring something to the [class]. I loved it. So that really changed 
my philosophy on taking in homework. Because he just sat there, but he was into it. I 
thought this was great! A lot of the students, all they do is just hand me homework, I like 
this better. 

I argue that the emotion Eric experienced indicates a perception of motive. He 
recognized that, beyond his goal of collecting data for assessment, was the deeper 
desire to engage his students. This becomes apparent when he further explained: 

I used to collect the homework and mark it and there was no engagement with the students. 

In recognizing his motive, he marked it as his new goal — to engage with his students. 
This shift in goals is accompanied by a tension, as he is not yet certain how to proceed.  

I do know one thing—after 10 years of collecting homework and marking, I don't want to 
do that anymore. And so I'm trying to… I want to change. I'm trying to fix that, but I'm 
still struggling with that. So I'm going to make that my focus for the next year. 

This is an ongoing tension for Eric, coloured by uncertainty, as he searches for actions 
that will help him achieve his new goal. 
Prioritizing goals  
There were several instances where tensions experienced by teachers caused them to 
rearrange the priority of their goals. Although the teachers valued both goals, the 
tensions they experienced made them realize that they had been favouring one goal at 
the expense of the other. We see this in Lacey who explained that, when she began 
teaching, she was fine with having her students learn mathematics by completing 
worksheets. She was teaching a combined class of grade one and two students and felt 
that assigning individual worksheets helped with her dual goals of managing the 
behavioural issues in her classroom and fostering student learning.  

I would give them worksheets and then get them to sit at the tables and work on it 
independently. And then I would teach the grade ones, like whole group.  

These actions worked well for her until her participation in professional development 
brought her to the realization that her students were developing very little mathematical 
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understanding. Behavioural issues were under control, but at the expense of student 
learning. This resulted in a tension for Lacey as she explained: 

I knew now that it wasn’t working. I wasn’t happy with my math program, but I didn’t 
know how to change it either.  

In Lacey’s later description of the recognition as a “horrible feeling”, we see a strong 
emotional response as she comes to an unwelcome realization: her need for classroom 
management superseded student learning. It also suggests that her unconscious motive 
may have been to be a good teacher. Unlike Eric, the tension does not cause Lacey to 
shift from one goal to a new goal. She continued to value her goal of classroom 
management but has given higher priority to finding complementary actions to aid her 
goal of developing her students’ mathematical understanding.  
Strengthening goals  
I found instances where the ongoing tensions experienced by a teacher served to 
strengthen their resolve to achieve a goal. This was exemplified in an excerpt from Mia 
who views herself as a progressive teacher who wants students to problem-solve and 
think mathematically. She further explained that she wants to teach in a way that makes 
learning mathematics “an enjoyable experience for students and meaningful for 
kids”—her professed goal. To assess their learning, she relies heavily on formative 
assessments that lead to mastery. She experienced tension when she was forced to 
measure her students’ learning in standardized assessments: 

It was really frustrating in that I had this idea of how I wanted to teach and how I thought 
students should learn. And especially after what I would consider a successful unit or a 
successful lesson and then I would give them this formalized test that was the same as all 
these other classes and then it actually meant little, because if the average mark of the class 
wasn't 75%, then there was something wrong with my teaching or my marking. So, if my 
average was 78%, that probably meant that I was marking too easy and if my average was 
too low, I wasn't teaching them good enough. I found it really difficult, because I had this 
idea that if I taught my students well, then they would succeed at what they were learning 
and if they were above average that maybe meant that I had done something right, that I 
had taught them well. So that was just stifling.  

Mia’s strong emotions evidence the tension she experienced when her teaching style 
was threatened by the imposed assessment. Not wanting to lose sight of her goal, Mia’s 
response was to push back: 

I did [pushback], and that kind of eventually settled and you find enough working terms, 
but it was an issue. 

She goes on to explain that she continued experimenting to find teaching methods that 
suited her students and did not let the threat of standardized testing interfere with her 
goal.  
We see this same tension regarding her teaching style appear again for Mia when she 
recounts colleagues questioning her practice:  
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So, they're like, this isn't right, they [students] need to know these steps. And I'd be like, 
why? They understand what they're doing and they're getting the right answer… like get 
over it.  

Mia likened this to “harassment”, an emotional response that reflects the ongoing 
tension surrounding her pedagogical choices. However, her final comeback, “like get 
over it” indicates Mia’s determination to continue with her actions of working towards 
her goal. Rather than weakening her goal, both instances of tension appear to solidify 
it. Leont’ev (2009) suggests that the emotion that accompanies goals is short-lived and 
does not bring awareness of underlying motive. 
Therefore, I find a third instance referencing this tension enlightening. In this instance, 
Mia had begun preparing her students for their year end standardized exams. However, 
this time Mia experienced tension when she found she had to defend her teaching style 
to her students: 

They were starting to stress out, “We have never seen this, what are you talking about? 
How are we supposed to do this? You never taught us anything”. They started to get angrier 
and angrier as the exam got closer. And I don't know, like that really bothered me—in that 
okay, for my students, like for their sakes, they do have an exam at the end and I wanted 
them to be prepared for it. And even though I could see that they had done some amazing 
math, they never were aware of what they had done. 

Here we see again Mia’s emotional response. She explicitly mentioned feeling 
bothered, but implicitly there is also a sense of uncertainty and disappointment. As 
with the other instances, her teaching style played a role in her tension, but this time 
the results are different. Rather than solidifying her goal, this time the tension caused 
Mia to alter her goal and thus her actions: 

And then what happened the following year when I had them [same students] again, they 
started the year with some of that tension that was still there, even though it sort of had 
settled over summer. It was new curriculum, a new year. But now they were like, “Well, 
what's this going to be about?” And then I ended up teaching them very traditional. And, 
like on my scale of traditional too. So like, I taught them very traditional this year in 
comparison to last year. But as I said earlier, my traditional is still not a typical traditional.  

The emotion and accompanying tension Mia experienced with her students caused her 
to reorient her goals. Mia may have expressed her need to teach in ways that make 
mathematics meaningful for her students, but I argue that in backing down, Mia 
revealed her true motive — building relationships with her students. And like Eric, 
recognition of her motive marks it as her new goal. Tensions with assessment and 
colleagues did not cause her to change her goal or actions, but tensions with her 
students did.  
DISCUSSION AND CONCLUSION 

For the teachers in this study, tensions arose that, I argue, made self-evident their 
motives, and subsequently required them to adjust their goals. According to Leont’ev 
(2009), the level of actions and goals is most readily understood, while the level of 
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activity and its motive is less accessible to individuals. It is through the emotional 
colouring of their actions that an individual’s motive for the activity is revealed. 
However, it is important to note that emotions are not a reason to act, they are a result 
of activity (Leont’ev, 2009). Therefore, I suggest that while emotions are effective in 
revealing tensions, it is the tensions themselves that are vital to the subsequent changes 
in goals and actions. It was only through experiencing tension that the teachers were 
motivated to change their actions. This resulted in the participants changing, 
prioritizing, or strengthening their goals. This leads to two interesting conjectures. 
First, context creates tension. The participants in this study were content in pursing 
their goals until confronted with a new context. We see this in Eric who happily 
collected homework until he met with a student for whom homework had no purpose. 
Likewise, Mia held strong to her goal of student engagement despite pushback from 
colleagues, but this changed when she met resistance from her students. This suggests 
the tensions teachers feel subjectively are there for a reason; they are the objective 
result of goals clashing with a (new) context. The resulting emotionally laden tension 
makes apparent the teachers’ motive, which, in Eric’s case, becomes a new goal (see 
Figure 1). In Mia’s case, the goal was strengthened until it met yet another context (see 
Figure 2). 
 
 
 
 
 

 
Figure 2. (a) Eric’s Goal Transformation (b) Mia’s Goal Transformation 

Related to this is that tensions are also useful in delineating primary and secondary 
goals. This is evident in Lacey, who, through participation in professional development 
(new context), comes to the realization that she values student learning even more than 
classroom management. This suggests an image of tandem goals functioning in parallel 
until they hit a context that creates tension (see Figure 2). What emerges is a 
prioritization of goals where both are in play, but one is given higher priority. 
 

 
 

 
 

Figure 3. Lacey’s Goal Transformation                   
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In this dynamical framing of the relationship between emotions, motives, and goals, 
tensions can be understood as drivers of teachers’ actions. I see tensions as complex 
collections of opposing forces between possible actions and contrasting motives. 
Tensions give rise to emotional responses that, in turn, make teachers conscious of 
their motives. Tensions have an emotional nature and, consequently, they act as 
signals; the teacher feels, through tensions, that the motives of her actions are 
contradictory. As such, tensions drive the teacher to action. 
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Difficulties in mathematics learning are an important topic in practice and research. 
In particular, researchers and practitioners need to identify students’ needs for support 
to teach and help them adequately. However, empirical research about group 
differences of students with and without mathematical difficulties (MD) is still scarce. 
Previous research suggests that students with MD may differ in their quantity 
recognition strategies in structured whole number representations from students 
without MD. This study uses eye-tracking (ET), combined with Artificial Intelligence 
(AI), in particular pattern recognition methods, to analyze group differences in gaze 
patterns in quantity recognition of N=164 fifth grade students.   
INTRODUCTION 
Learning difficulties in mathematics are an important topic in practice and research and 
have attracted increased interest not least since inclusive education has gained 
significance. Researchers and practitioners aim to understand knowledge and learning 
in a fine-grained way, and to foster students with MD individually and adequately (e.g., 
Moser Opitz et al., 2016; Scherer et al., 2016).  
Previous research has indicated that students’ strategies in quantity recognition can be 
used to identify difficulties in mathematics learning (e.g., Schleifer & Landerl, 2011; 
Schindler et al., 2019). An important question is how students’ quantity recognition 
strategies can be observed. A promising method for investigating students’ strategies 
in whole number representations such as the abacus or dot field is analyzing students’ 
eye movements through ET (Lindmeier & Heinze, 2016; Rottmann & Schipper, 2002). 
Qualitative eye movement analyses in such representations may even outperform 
thinking aloud analyses in precision and level of detail—especially for students with 
MD (Schindler & Lilienthal, 2018). However, the qualitative analysis of eye 
movements is laborious and potentially subjective, and it is not yet sufficiently clear 
how eye movements in quantity recognition tasks differ between students with and 
without MD. Even though initial studies report group differences in students’ strategy 
use (Schindler et al., 2019), the statistical analyses and the explanatory power of the 
results are limited due to small sample sizes of students. Therefore, this study aims to 
investigate group differences in students’ gaze patterns when determining quantities in 
structured whole number representations—with a computer-supported, i.e., automated, 
evaluation method. We pursue the research question Do the gaze patterns of MD vs. 
non-MD students in quantity recognition in structured whole number representations 
differ?, which contributes to our overall purpose to investigate whether we can 
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automatize the analysis of group differences in ET data and the evaluation to which 
group a student belongs. 
Automatization of the analysis of ET data is desirable because analyzing eye 
movements for identifying student strategies is extraordinary time-consuming and 
demanding, given that there are—depending of the framerate of the device—100 or 
even 1000 frames per second recorded by the eye-tracker, all of which need to be 
analyzed if strategies are to be identified in videos (like in Schindler & Lilienthal, 2018, 
2019). The effort required to manually analyze ET data is also prohibitive if ET based 
methods are to be used routinely by practitioners, e.g., school teachers.  
Motivated by these considerations, we apply a methodology that makes use of a set of 
pattern recognition methods from AI. In order to compare eye gazes of the groups of 
MD vs. TD (typically developing) students, we analyze differences in students’ gaze 
patterns on digital task sheets. In general, gaze patterns between the groups of students 
could differ in a myriad of ways that arise from combinations of where, when, for how 
long and in which sequence the students look at the stimuli. To render the subsequent 
analysis feasible, we first select a reduced representation: heat maps, i.e., visual 
representations displaying all gazes for each task. Simply put, we then investigate 
whether the heat maps of the two groups can be separated well on task level by our 
pattern recognition system, indicating significantly different gaze patterns. Our 
approach even allows us to semantically interpret group differences: The analysis of 
group-averaged heat maps (displaying all MD (vs. TD) students’ gazes for the tasks, 
Fig. 2) allows us to identify differences that are meaningful for mathematics education 
research and hint at how strategy use might be different between the groups. 
MATHEMATICAL DIFFICULTIES 
To date there is no common definition or term describing the group of students having 
difficulties in mathematics (Scherer et al., 2016). Terms such as mathematical learning 
disabilities, (severe) mathematical difficulties, or developmental dyscalculia are 
used—depending on different educational contexts and research traditions. Medical 
models label a disorder (e.g., WHO, 2018) and support an IQ-discrepancy model. 
However, recent research suggests not to distinguish between students with MD 
depending on the discrepancy between their IQ and their math performance, since 
cognitive patterns of all students with MD, e.g., in counting, subitizing and magnitude 
comparison do not differ qualitatively (Kuhn et al., 2013). In our research, we address 
students with MD following Moser Opitz et al. (2016) and Scherer et al. (2016) as 
those students who encounter difficulties with a certain set of mathematical problems 
both on a conceptual and procedural level, including, e.g., basic arithmetic such as 
counting (also counting principles and counting by groups), (de-)grouping, the base-
10 system, understanding place values, and basic arithmetic operations.  
QUANTITY RECOGNITION 
To determine quantities—i.e., to grasp a set of items and say how many they are—is a 
crucial skill for children to learn. Whereas young children typically already have the 



Schindler, Schaffernicht & Lilienthal 

PME 43 – 2019                                                                                                        3 –  
 

283 

ability to grasp numbers of small sets of items in one glance (“subitizing”, Clements, 
1999), they later on learn to count and to subitize conceptually, i.e., to make use of 
patterning abilities and to structure sets into subsets when determining numbers (ibid.). 
For students to apprehend the number range up to 20 or 100, teachers commonly use 
external representations such as the abacus (frame) or dot field (Gaidoschik, 2015, see 
Fig. 2): These representations both visualize substructures (10s, 5s, 50s)—in slightly 
different ways (e.g., through change of colors or gaps)—for the students to understand 
the base-10 system and to develop mental representations of the structures (Wartha & 
Schulz, 2012). Whereas investigating students’ strategies in such representations 
(identifying what structures they use and how) is a challenging task (Obersteiner et al., 
2014), researchers have found that ET may be useful to analyze students’ quantity 
recognition strategies in structured whole number representations (Lindmeier & 
Heinze, 2016; Rottmann & Schipper, 2002; Schindler & Lilienthal, 2018). Lindmeier 
and Heinze (2016) concluded that ET data are useful to infer student strategies, and 
Obersteiner et al. (2014) point out that a combination of tasks on computerized versions 
of structured whole number representations together with ET appears to be a promising 
approach to assess students’ strategies. For investigating students’ quantity recognition 
strategies through ET, researchers particularly analyzed qualitatively students’ 
scanpaths (e.g., Lindmeier & Heinze, 2016) or gaze-overlaid videos (i.e., augmented 
videos of the scene with the gaze visualized as point, e.g., Schindler & Lilienthal, 
2018), which reveal where the students looked at and indicate student strategies. 
However, as Schindler and Lilienthal (2019) point out, the qualitative analysis of such 
gaze patterns is demanding and time-consuming. Therefore, this study uses AI, in 
particular pattern recognition to (partially) automate the analysis of gaze patterns and 
focuses on the spatial distribution of gazes over the task sheet. 
THIS STUDY 
Students. For answering the research question, we use data from a research project with 
164 (92 males, 72 females) fifth-grade students in a German comprehensive school 
(“Gesamtschule”). The mean age was 10;9 (SD = 0;7) with ages ranging between 9;10 
and 12;6. The participating school was in a town of 80,000 inhabitants, situated on the 
edge of a German urban area. The study took place in the first weeks of fifth grade. 
We conducted a standardized arithmetic paper-pencil speed test (HRT; Haffner et al., 
2005) with all 164 students in classroom settings. Only the first part of HRT, which 
can be used solely for diagnosing MD (at percentile rank (PR)<11; Haffner et al., 
2005), was administered (similar to Schleifer & Landerl, 2011). The six subtests 
address mental addition, subtraction, multiplication, division, magnitude comparison  
(e.g., 7 _ 6; correct response: >) and completion tasks (e.g., _ - 2 = 6). We identified 
MD (at PR<11) and TD (PR>25) following the test’s instructions, resulting in 69 MD 
students and 59 TD students. Percentile ranks between 11 and 25 are considered “at 
risk zone” (AR, Haffner et al., 2005, p. 20), which applied to 36 students. For the 
analysis of group differences, we focus on the groups of MD and TD students, 
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disregarding the AR students (see Fig. 1). Their mean t-values on the test were 32.1 
(SD = 6.3) for the MD group, and 49.7 (SD = 7.5) for the TD group. 
Tasks. We used a computerized version of the 100-bead abacus and the 100-dot field. 
The numbers were systematically chosen so that all ones and tens were included once. 
We also included 100, which led to eleven tasks (arranged according to size: 7, 15, 20, 
31, 43, 54, 68, 76, 89, 92, and 100). The tasks were presented in randomized order 
(different randomization for each representation, i.e., abacus or dot field). 
Procedure and eye-tracker. The students were tested individually in a quiet room. They 
were seated in front of a 24’’ full HD computer monitor. We used the remote eye-
tracker Tobii x3-120, which allows for video-based binocular tracking at a sampling 
rate of 120 Hz. Looking like a black stick, it was attached to the bottom frame of the 
monitor and hardly noticeable. Its presence and function was explained to the students, 
yet, it did not interfere with the students’ work on the tasks. For adjusting the eye-
tracker, a nine-point calibration was conducted. Then, before the students started 
working on the tasks, they first saw a picture of the respective representation (100-bead 
abacus, 100-dot field) and were asked to describe it. This was followed by two practice 
tasks with numbers that were not used in further test tasks. The students were instructed 
to correctly name the number of dots in every task as fast as possible. In between the 
tasks, the students were instructed to fixate a star in the middle of the screen before the 
next task appeared. The students received no response whether their answers were 
correct. Verbal answers were recorded through an audio-recorder.  
Heat maps and spatial information. ET provides rich information and a large amount 
of data. The obtained gaze patterns can differ in many ways, including, in our case, 
where, when, for how long and in which order the students looked at the quantity 
recognition tasks. In order to identify group differences, we needed to choose an 
intermediate representation of the recorded gazes to allow for a feasible subsequent 
analysis. This intermediate representation should lower the dimensionality of the 
problem (loosely speaking, it should reduce the amount of data to be handled by the 
pattern recognition system) while preserving the relevant features of the gaze patterns. 
Following previous research that indicated that students’ gaze distributions on the task 
sheets might differ on group level (Schindler et al., 2019), we decided for heat maps 
that show how gazes were spatially distributed over the presented digital task sheets. 
We thus disregard information about the order in which the students looked at the task 
and consider how long the students paid attention to certain areas only relative to the 
total duration of the task. To compute the individual students’ heat maps, we use the 
Tobii Pro Lab Software and aggregate all gazes (not only fixations). We only include 
heat maps of correctly or inversely (common mistake in German) solved tasks for 
further analyses (e.g., for 68: “sixty eight” or “eighty six”), since we intend to sort out 
instances where students guessed rather than perceived the given information. 
AI and pattern recognition methods. In order to assess which tasks’ heat maps allow 
separating TD students from MD students, a Multivariate Analysis of Variances 
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(MANOVA) (Morrison, 2005) is performed. MANOVA is closely related to Linear 
Discriminant Analysis (LDA) (Izenman, 2013). Both methods are based on the same 
mathematical transformation but offer different interpretations of the results. 
Unfortunately, it is not possible to use the heat maps directly for the analysis as the 
dimensionality of the input data that can be processed applying this method is limited 
by the available number of samples. Each heat map image represents a single point in 
a 2764800 (=1280*720*3, width*height*color) dimensional space. Therefore, it is 
necessary to compress the data contained in the heat maps into a lower dimensional 
space (fewer dimensions than students) before applying the MANOVA.  
To this end, grayscale images are used, reducing dimensionality by one third. Then a 
Principal Component Analysis (PCA) (Abdi & Williams, 2010) is performed. PCA 
generates a new orthogonal coordinate system along the directions of high variance in 
the original data and achieves compression by dropping dimensions with the lowest 
variances. Intuitively speaking, those parts of the heat maps that look the same for 
every student, i.e., show low variance, are removed as they contain no information 
about group discrimination. 50 dimensions are chosen as target dimensionality in order 
to have at least 50 examples for both classes available, since the number of samples 
per class has to be higher than the dimensionality for some statistical tests in the 
MANOVA space. Through the use of 50 dimensions, 91% of the information was 
preserved on average in the compressed representation. 
The heat maps, including those from AR students in the HRT test, are used to calculate 
the compression as the aim is to preserve all possibly occurring heat maps in the 
reduced space. Before the next step, the actual LDA/MANOVA, the heat maps of the 
AR students are removed from the data set to investigate differences between MD und 
TD students. The LDA/MANOVA can be understood as another compression method 
with the goal to maximize linear separability between the classes, i.e., TD and MD 
students, in the reduced space. Since we are considering a two-class problem, this step 
reduces to a single dimension (see the processing pipeline in Fig. 1).   

 

Figure 1: Pattern recognition system.  
RESULTS 
For pursuing the question if the spatial gaze patterns in quantity recognition differ 
between groups on task level, we used t-tests on the remaining dimension after PCA 
and LDA (Fig. 1). The group differences (MD vs. TD) were significant on a p<.01 
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level for all tasks, confirming significant differences between the groups’ spatial gaze 
pattern data for each task. Yet, significant group differences do not guarantee for linear 
separability, since the actual performance of a classifier depends on the overlap of both 
data distributions. It is common practice for pattern recognition systems to report error 
rates as a practical assessment of how well groups can be distinguished, not just 
whether the differences are significant from a statistical point of view. Hence, we 
performed an actual classification on the given data to assess with what error rate it is 
actually possible to discriminate between the two groups. We report the Balanced Error 
Rate (BER) for a linear classifier using 3-fold cross validation (Kohavi, 1995). The 
BER is calculated according to 𝐵𝐸𝑅 = U

.
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}, with fn – number of false 
negatives, tp – number of true positives, fp – number of false positives, and tn – number 
of true negatives. A BER of 5% means that the average number of students wrongly 
classified is 5% of all samples. Any classifier that would assign classes by chance 
achieves a BER of 50%. The BERs are provided in Table 1. 

task 7 15 20 31 43 54 68 76 89 92 100 
dot 
field 15.93% 18.20% 28.26% 10.19% 8.96% 16.71% 12.99% 9.42% 5.96% 18.95% 18.93% 

abacus 18.05% 17.40% 14.14% 16.41% 17.32% 21.32% 4.88% 12.11% 9.73% 13.79% 17.91% 

Table 1: Balanced Error Rates per task separating TD and MD students. 
Certain quantities have low BERs in both representations: For these tasks, the 
percentage of wrongly classified students is low and the students’ gazes differ 
substantially on group level. For 43, 68, 76, and 89 we found BERs of below 10% in 
at least one representation. For other quantities (e.g., 20), BERs are higher, indicating 
less pronounced, but still relevant differences between the groups of students in these 
tasks. 

   

 
Figure 2: Average heat maps and difference maps for 89 
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Through average heat maps, the group differences in students’ spatial gaze patterns can 
be visualized (Fig. 2; Note: Heat maps have warmer colors where the students looked 
at more often, and difference maps visualize the group differences of the gazes: the 
brighter the bigger the differences in the respective area; maps self-produced by 
authors). As can be seen in the examples, MD students’ gazes appear to be more on the 
right edge of the dots/beads.  
DISCUSSION 
The aim of this paper was to investigate group differences in students’ gaze patterns 
when determining quantities in structured whole number representations. We used 
pattern recognition from AI to find differences in students’ spatial gaze patterns on the 
100-abacus and dot field—in eleven tasks per representation.  
Looking at statistical comparisons, we found that the spatial gaze patterns in quantity 
recognition on the abacus and dot field differed significantly between MD and TD 
students for all tasks. In every task, when determining quantities of 89, 54, or 7, the 
groups’ gaze distributions on the (digital) task sheets were significantly different. 
Calculating furthermore error rates (BER in particular), we found that every task 
contains exploitable information to separate MD from TD students (i.e., for none of 
the tasks the classifier came close to 50%, i.e., guessing). In summary, through AI we 
found that the groups’ gazes differed—substantially in some tasks. This result may hint 
at different strategy uses of the groups of students. This is in line with results from 
previous explorative, qualitative studies which revealed that MD students tend to use 
other strategies on such representations than TD students (Rottmann & Schipper, 2002; 
Schindler et al., 2019). In our study, the visualizations of average heat maps 
(cumulative heat map of all MD/TD students, see Fig. 2) helped to understand group 
differences. These visualizations shed light on the students’ spatial gaze distributions 
on the task sheets and indicate that MD might count rows more often than TD students. 
Besides these empirical findings, our results indicate what tasks (quantities) might be 
most adequate for identifying students with MD. Our results do not suggest that the 
abacus is better suited than the dot field or vice-versa, but instead certain tasks produce 
the lowest errors of our pattern recognition system—often in both representations. 
While the lower error rates (e.g., for 89) are promising, the results indicate that a highly 
reliable classification based on a single task is hard to achieve—and also not reasonable 
from a pedagogical perspective. Future research should investigate what a reasonable 
set of tasks may look like to perform a classification with high confidence. This would 
help identifying students’ needs in order to support them adequately. 
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LATENT STRUCTURES OF MEANING – A PREREQUISITE FOR 
INCLUSIVE LEARNING IN MATHEMATICS CLASSROOMS 

Simeon Schlicht1, Michael Meyer2 
1University of Siegen, 2University of Cologne 

 

This paper focusses conditions for successful inclusive mathematics lessons. The 
special education concept of elementarization for the development of inclusive 
learning materials is introduced. On the basis of these materials, teaching units were 
performed and analyzed. An inclusive learning environment demands the participation 
of all students in classroom interaction. In order to provide this, the relevance of latent 
structures of meaning is pointed out as a crucial aspect. The theoretical considerations 
about latent structures of meaning are exemplified by the interpretation of two scenes 
on elaborating mathematical concepts. 
INTRODUCTION 
Since the ratification of the UN-CRPD (2008) a lot of research on inclusive 
mathematics education has been done (cf. Häsel-Weide & Nührenbörger, 2017; 
Scherer, Beswick, De Blois, Healy & Moser Opitz 2016). Starting point for socially 
relevant discussion on inclusion is the demand of the UN-CRPD (2008) to grant every 
learner access to high quality education (Art. 25, 2a).  
In our work we use inclusion-focusing principles such as “egalitarian difference” 
(Prengel 2006) in order to achieve the aims of the UN-CRPD (2008): Differences 
between the pupils were and are always present in mathematics classrooms – even 
without a learner with a specific diagnosis of special needs. Those differences should 
not be hidden but adopted and productively turned. Equal educational opportunities for 
all learners do not mean the equalization of all learners – just as no striving for equal 
treatment is meant – but (existing) hierarchies should be broken up (Prengel, 2001). 
Considering these principles, the opportunity of “learning to know, to do, to be and to 
live together” (UNESCO, 2009, p. 19) could be given to all pupils. 
In German-speaking traditions in Special Education Research, the concept of 
elementarization is a common access to assure access to high quality teaching content 
for all students with and without special needs (cf. Terfloth & Bauersfeld, 2015). On 
the basis of the concept of elementarization math, lessons for inclusive classrooms 
were conducted. In this paper, the concept of elementarization will be described and 
crucial scenes from the empirical study will be analyzed with interpretative methods. 
THEORETICAL BACKGROUND 
The theoretical background of the presented research traces back to the concept of 
elementarization and the concept of latent structures of meaning. To address academic 
competences (“learning to know, to do”), participative competences (“learning to live 
together”) and personal competences (“learning to be”) in mathematics classrooms, the 
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concept of elementarization forces to identify the elementary structures of the learning 
content on content level, methodological-medial level, cultural-social level, personally 
significant level and development-psychological level (Terfloth & Bauersfeld, 2015). 
The starting point of all educational considerations is the analysis resp. creation of a 
teaching theme in terms of those five directions presented below. In the field of special 
education, this approach has been proven to be a suitable tool to enable education based 
on cultural and social participation, especially for learners with (severe) disabilities 
(Heinen & Lamers, 2006). 
In the first direction of elementarization Elementary Structures, the fundamentally 
constituting characteristics of the concrete mathematical content underlying the 
teaching are sought. Turning to mathematics lessons, this dimension seeks the 
irreducible mathematical kernel that has to be learned in order to gain a rough idea of 
the content. At this core, all other considerations depending on teaching should be 
aligned.  
The second direction Elementary Life-guiding Basic Assumptions focuses on the 
cultural-social relevance and justification of the content: What is the significance of 
the content for society in general and therefore does it also apply in particular to 
(future) life of learners in society? 
The third direction Elementary Experiences considers the concrete learning 
prerequisites of the pupils. Which challenges of everyday life may be explained by the 
subject of learning or can be mastered by the means of acquired strategies? Or in the 
opposite direction: Which everyday experiences of the pupils can and should be taken 
up in relation to the learning object? Considering the heterogeneity in a mathematics 
classroom, different background knowledge (and, thus, contexts) should be regarded 
in the tasks. Consequently, different tasks for introducing content are reasonable. 
In the context of the fourth direction of Elementary Approaches, developmental 
psychological and biographical points of reference for pupils in the respective subject 
of learning are taken into consideration. Which developmental competences in the 
areas of cognition, language, motor skills, emotion etc. and which learning strategies 
have been acquired by the pupils? 
In the fifth direction Elementary Arrangement concrete possibilities of learners to deal 
with the content are focussed: Which methodical-medial approaches are feasible? 
Which are already known to the learners? 
By using the different directions, a possible learning environment can be created. We 
performed them for two content areas in two fourth-grade classrooms: introducing 
preformal algorithms of multiplication and introducing the concept of surface areas. 
The second background, the concept of latent structures of meaning, can be considered 
as a key concept in the theory of “Objective Hermeneutics” by Ulrich Oevermann (e.g. 
1987). Oevermann introduced this theory as a methodology for the interpretation of 
texts of interactions (e.g. transcripts of classroom discussions) in sociology: 
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“The reconstructive interpretation of interaction texts permits the discovery of rules 
which constitute interaction texts as objective structures of significance 
[Bedeutungsstrukturen], which reflect the latent structures of meaning [Sinnstrukturen] 
of interaction itself. The objective structures of significance of interaction texts (which 
are prototypes of objective social structures itself) are real and have some permanence. 
Analytically (though not empirically) they are independent of any specific and conscious 
representation of the meaning of interaction on the side of the participating subjects. […] 
The latent structures of meaning of a single interaction or utterance (as the structure of 
situationally and contextually possible relations of significance) permits, as a rule, 
different ‘ways of reading.’ Participants in the original situation of action produce only 
segments of these readings intentionally.” (Oevermann, 1987, pp. 438f). 

Latent structures of meaning trace back to the existence of “objective” structures: In 
every situation, different rules and principles enable the partners of interaction to 
understand each other. A simple example: In a mathematics classroom, the word 
“times” is mostly used by referring to an operation. The context makes it possible to 
gain a possible meaning of the word. In every situation, different backgrounds for 
interpreting words or utterances might be useable – especially in a heterogenic group. 
Cicourel (1974, pp. 85ff) used the “et cetera principle” for this phenomenon in 
situations of interaction: Implicit rules must be used to understand explicit utterances. 
Latent structures of meaning do not need to be intended by the speaker. He even might 
not be aware of them. In other words: By using the concept of latent structures of 
meaning, different “objective” meanings of a statement are seen as existing meanings 
– irrespective of the intended meaning. Thus, the latent structures of meaning have to 
be differentiated from the subjective structures of meaning. 
The description above shows that latent structures of meaning do not only concern the 
process of analyzing transcripts. They also belong to the interaction itself, in which the 
partners have to make meaning of former statements in order to make the interaction 
pass smoothly along. If different latent structures of meaning exist, it depends on the 
partner of interaction which meanings are going to be manifest. This implies, that the 
partner must have realized the former latent meaning. 
METHODOLOGY 
The analysis of case studies on the genesis of empirically founded theories continues 
to be a major branch of research – even with international impact (Blum, Artigue, 
Mariotti, Sträßer & van den Heuvel-Panhuizen, 2017, p. 294). In German-speaking 
traditions in Mathematics Education Research the interactionist approach initiated by 
Heinrich Bauersfeld (e.g. 1980) and his colleagues (e.g. Voigt, 1995) has provided 
detailed insights into the understanding of learning mathematics by using an 
interpretative framework.  
In order to gain the explicit and latent meanings in the texts (cf. the theoretical part 
above) we followed the described tradition and used the method of objective 
hermeneutics for analyzing transcripts of videotaped classroom communication. By 
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interpreting them step-by-step, latent meanings – not only from a mathematical point 
of view but also from an interactionist’s one – will be considered. 
EMPIRICAL RESULTS 
Classroom Interaction 
Students of a fourth-grade classroom had been solving tasks created by using the 
method of elementarization in order to introduce the concept of surface area. While the 
elaboration of solutions has been made by the students in cooperative small groups, the 
whole class is discussing the solutions. The following discussion (all transcripts have 
been translated and smoothened) took place concerning the working sheet in Fig. 1:  

 
Figure 1: Part of Gereons working sheet. (Translation: measuring areas 1. A rabbit is 

in need of an area of four squares. 2. How many rabbits fit in the enclosures?) 
Raja I put the rabbits in eeh in the array. 
Teacher Yes .. and afterwards? … There is no sign on the rabbits saying we are 12 

(points to the rectangle on the left side on the worksheet), or? The rabbits. 
(laughs) 

Raja (smiles) I counted the rabbits. [...] 

Gereon I multiplied. 
Teacher Multiplied? Why that? 
Gereon Ehm, because it is faster. [...] 

Teacher (Draws a 8x8 rectangle at the blackboard) Explain us how you have done 
it. [...] 

Gereon So, I calculated here (follows the first row by his finger)  

Teacher Say it loud, so everyone can hear you. 
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Gereon I calculated here. (repeats his movement) and calculated so (follows the first 
column by his finger) 

Teacher Ok, so you first draw them, always here. Always 4? (boarders four squares 
for a bigger square) And you put in the rabbits. 

Gereon Afterwards I have here- (uses red chalk to make a partition of two squares 
in the first row and the first column) 

Teacher And afterwards you calculated? Write your calculation on the blackboard. 

Gereon three (writes „3“) times four. (writes „* 4“) [...] 

 
Leo (in the meantime, the classroom discussion goes on by the next task. Leo 

pipes up and points at the blackboard) four times four! And not four times 
three. 

Teacher (looks to the sketch) Yes, the sketch is not really well, that is right. … Below 
there is one too much, yes. (nods)  

Raja presents a first solution (counting the 2x2 squares). Afterwards Gereon (a student 
with learning disabilities) presents another way in order to determine the number of 
2x2-squares by using a multiplication which he presents as a faster method. The 
solution of Gereon is correct considering the tasks on the worksheet. Nevertheless, the 
teacher draws another rectangle on the blackboard, and Gereon fills the whole rectangle 
by squares, forgetting to adapt his solution for the new situation. 
The latent structure of meaning of his solution – multiplying the number of 2x2-squares 
in the rows and columns in order to determine the number of rabbits by multiplication 
– seems not to be problematic for the class. At least Leo realises it and makes his 
understanding manifest by adapting it to the given situation correctly.  
Interview with Laura 
Tasks introducing preformal algorithms of multiplication (e.g. the grid method) created 
by using the concept of elementarization were given to another Grade 4 class. Laura – 
a classmate with down’s syndrome in the inclusive classroom – was excluded from the 
tasks from her teacher. Hence, a follow-up interview considering some of the tasks her 
classmates performed earlier in the study was conducted. In the initial discussion 
concerning the given mathematical manipulative, called Rechenschiffchen (cf. 
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Transcript), Laura correctly determines the number of tiles within a Rechenschiffchen 
by counting them. Now the following dialog starts: 

I If that together, (taking the two Rechenschiffchen in 
front of Laura) if that’s ten, (puts the two 
Rechenschiffchen asides) how many (puts two other 
Rechenschiffchen in front of Laura) are that? 

 

Laura ey (looks at the Rechenschiffchen that were put aside, 
afterwards looks at the Rechenschiffchen in front of 
her) 

 

I (5 sec) look Laura, these were- what did you say? how 
many together? (pushes the two Rechenschiffchen from 
the beginning towards Laura) 

 

Laura (grabs the presented Rechenschiffchen, shoves them 
next to the Rechenschiffchen in front of herself, then 
sorts all of them directly) five. (points at the top 
Rechenschiffchen) one, (points at the second one) two, 
(tapping the third one) three, (points at the lowest one, 
indistinctly) four 

 

Apart from the use of number words, Laura hardly speaks in the interview. However, 
Laura’s solutions allow many interpretations that could have been taken up in 
classroom interaction. A pessimistic interpretation of the scene is that the number range 
exceeds Laura’s counting skills. In order not to fail the last task by acting in an 
uncomfortable number range, she counts a countable amount of objects for her. 
An optimistic interpretation of the scene is that Laura wants to determine the number 
of tiles of the Rechenschiffchen in front of her. After the replacing of the 
Rechenschiffchen by the Interviewer, she is irritated. She accepts the re-offered 
Rechenschiffchen from the beginning and sorts them for the easier numbering exactly 
one above the other. Through this alignment, Laura states that there are “five” tiles in 
each row. To determine the total number, she counts the number of bundles of five, 
systematically proceeding from the top to the bottom. The determination of the result 
remains in the interaction. To put it bluntly, the calculation of the total number of tiles 
(with 5 as the number of tiles per Rechenschiffchen and 4 as the number of 
Rechenschiffchen, leaving the supposed count error in the last turn untouched) leaves 
Laura to the interviewer or the experienced readership of this article. 
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FINAL REMARKS 
The method of elementarization indicates the advantage of using different tasks in 
order to activate different elementary experiences of the students. Thus, not all students 
should work on the same task. Nevertheless, students working on different tasks must 
be able to follow the classroom discussion afterward. The opportunity of working 
together without solving the same tasks belongs to the existence of latent structures of 
meaning: By working on different working sheets the students elaborated and used 
mathematical knowledge (e.g. rules) which had to be adapted to the solutions of other 
tasks (concerning the same mathematical background) given by other students (at least 
the method of elementarization demands the connection to one specific mathematical 
kernel). 
The interpretation of classroom discussions showed the use of the latent structure of 
meaning. The latent rules of Gereon have not been explicated by Leo. The use of the 
rule by Leo indicates the use of Gereon’s rule and, thus, latent structures get meaning 
by their use.  
Regarding the interpretation of the second transcript, different latent structure of 
meaning had been elaborated. These structures could also be realised by students in an 
inclusive mathematics class. By manifesting them, every student has the opportunity 
to take part in the classroom discussion. In other words: Latent structures of meaning 
constitute the possibility of participation of all students in a mathematics classroom. 
An inclusive mathematics education for the realization of an “egalitarian difference” 
(cf. Prengel 2006, 2001) can take place. 
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I ENJOY MAKING DRAWINGS! ENJOYMENT, KNOWLEDGE 
ABOUT DRAWINGS, USE OF DRAWINGS, AND STUDENTS’ 

PERFORMANCE 
Stanislaw Schukajlow, Judith Blomberg, Johanna Rellensmann  

University of Münster 
 

Positive emotions in mathematics have been found to be important for problem solving. 
In the present study, 196 ninth- and tenth-graders filled out a questionnaire about how 
much they enjoyed making drawings and took tests that measured their knowledge 
about drawings, intra-mathematical performance, and modelling performance. 
Because students had to calculate the length of one side of a right-angled triangle to 
solve the modelling problems, some students made drawings. We confirmed the 
expectation that enjoyment of drawing was positively related to the use of drawings to 
solve problems. However, enjoyment of drawing was not related to knowledge about 
drawings, intra-mathematical performance, or modelling performance. We suggest 
that more attention should be paid to emotions toward strategies in future studies.  
INTRODUCTION 
Emotions are important for learning and problem solving (Hannula, 2015; Pekrun, 
2006). One positive emotion that students frequently experience in the classroom is 
enjoyment. Consequently, the enjoyment of mathematics was found to affect problem 
solving and even more specifically students’ modelling performance and students’ 
interest in mathematics (Schukajlow & Rakoczy, 2016).  
However, we do not know much about emotions toward strategies. As the use of 
strategies has been found to be important for successful task processing (Hembree, 
1992), more attention should be paid to the affective factors (e.g., emotions) that can 
affect students’ use of strategies. In the present study, we aimed to take the first step 
toward clarifying the role of emotions in the use of strategies and investigated the 
relation between enjoyment of drawing and achievement-related factors. 
THEORETICAL BACKGROUND 
Enjoyment		

According to the control-value theory of achievement emotions, enjoyment is an 
activating positive emotion (Pekrun, 2006). Students who enjoy an activity feel arousal 
when engaging in this activity and are expected to outperform students who do not feel 
enjoyment. Research on emotions has revealed that enjoyment of problem solving 
arises in students if they have high control appraisals (the confidence to master the 
problem) and high value appraisals (they value the problem-solving activity) (Buff, 
2014).  
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Similar to other affective constructs, enjoyment can refer to different objects. The 
object of emotions varies from general (enjoyment of life) to specific (enjoyment of 
solving a problem). An analysis of the structure of the emotion of enjoyment regarding 
different objects with 513 students in Grades 5 to 10 confirmed that the enjoyment of 
strategies could be statistically separated from the enjoyment of life, school, and 
problem solving (Goetz, Hall, Frenzel, & Pekrun, 2006).  
Self-generated drawing and modelling 
Weinstein and Mayer (1986) defined strategies as behaviors and thoughts that learners 
engage in and that are intended to influence their learning and problem solving. 
Strategic knowledge makes up part of the static knowledge component of 
metacognition as opposed to the dynamic process component of metacognition, which 
includes strategy use (the application of a strategy during problem solving).  
Modelling problems are problems with a connection to reality, and their solutions 
require demanding transfer processes between reality and mathematics (Niss, Blum, & 
Galbraith, 2007). Modelling performance can be clearly distinguished from students’ 
performance in solving problems without a connection to reality, called intra-
mathematical performance. An important goal of research in mathematical modelling 
is to clarify factors that are related to modelling performance and can be addressed in 
interventional studies (Schukajlow, Kaiser, & Stillman, 2018). One of these factors is 
students’ strategies, such as making a drawing. 
Self-generated drawing has been identified as an important strategy for problem 
solving (Hembree, 1992). It can be defined as the process and the product of generating 
an illustration that corresponds to the objects and relations described in a problem 
(Rellensmann, Schukajlow, & Leopold, 2017). Students’ strategic knowledge about 
drawing comprises students’ knowledge about the characteristics of a drawing that fits 
a given problem. In a prior study, we confirmed the importance of strategic knowledge 
for solving modelling problems (Rellensmann et al., 2017). Apart from strategic 
knowledge about drawing, students’ strategy use was found to predict students’ 
performance in problem solving. Students who spontaneously applied a drawing 
strategy were found to demonstrate higher performance than students who did not 
apply a strategy (Hembree, 1992). However, this finding was not always confirmed 
when students were asked to construct a drawing (De Bock, Verschaffel, Janssens, Van 
Dooren, & Claes, 2003). Students who were asked to make drawings for geometric 
word problems were found to perform the same or even worse than students who were 
not asked to make drawings. Thus, it is important to identify the factors that influence 
the spontaneous use of drawings. One reason why students do not always 
spontaneously generate drawings might be their affective perceptions of this strategy 
such as how much they enjoy making a drawing to solve a problem. 
Enjoyment of drawing and achievement-related outcomes 
To the best of our knowledge, the relations between enjoyment of strategy use and 
achievement-related outcomes has yet to be investigated. However, research has found 
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that affective factors that are related to enjoyment might be important for the 
spontaneous use of the drawing strategy. In a correlational study, Uesaka and Manalo 
(2017) found that students made drawings less often when they perceived that making 
a drawing would cost them a lot of effort and when they were not confident they could 
perform this strategy well. Given that in the control-value theory of achievement 
emotions, high efficacy beliefs were suggested to accompany students’ enjoyment, and 
the two constructs were found to be positively related (Buff, 2014), we expected that 
enjoyment of drawing would also be positively related to the use of drawings to solve 
modelling problems.  
The relation between enjoyment of drawing and intra-mathematical performance 
cannot be clearly derived from prior research. As intra-mathematical performance is 
an important part of modelling (Niss et al., 2007) and enjoyment is positively related 
to modelling (Schukajlow & Rakoczy, 2016), enjoyment of drawing might be 
positively related to intra-mathematical performance. 
Further, students who enjoy applying strategies might apply this strategy more often 
and might thereby gain deeper knowledge of this strategy. Thus, a positive relation 
between enjoyment of drawing and students’ knowledge about drawings could be 
expected. 
As enjoyment of strategies was found to be related to enjoyment in mathematics (Goetz 
et al., 2006) and enjoyment in mathematics was found to affect students’ modelling 
(Schukajlow & Rakoczy, 2016), we expected a positive relation between enjoyment of 
drawing and modelling. We expected that this positive relation would hold even after 
we controlled for strategic knowledge about drawings and intra-mathematical 
performance.  
RESEARCH QUESTIONS 
RQ: 1. Is enjoyment of self-generated drawing related to the use of drawings, intra-
mathematical performance, strategic knowledge about drawings, and modelling 
performance? We expected a positive correlation between enjoyment and learning 
outcomes. 
RQ: 2. Is enjoyment of self-generated drawing related to the use of drawings and 
modelling performance after strategic knowledge about drawing and intra-
mathematical performance are controlled for? We expected that the relation between 
enjoyment and modelling would remain positive even after the strategic factor and the 
achievement factor were controlled for. 
METHOD 
Sample and design of the study 
Two hundred twenty German ninth- and tenth-graders from 10 classes in middle- and 
high-track schools (German Gesamtschule and Gymnasium) participated in the present 
study (mean age about 15 years, 109 female students). The study consisted of two test 
sessions on two different days. On the first day of the study, students filled out a 
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questionnaire on enjoyment of drawing, age, and other constructs. They also worked 
on a test on strategic knowledge about drawing. On the second day, at least 2 weeks 
after the first day, they took a modelling test and an intra-mathematical test. Because 
each student worked on the tests on two different days, some data were missing (3% 
on the first day and 8% on the second day). In the presented analyses, we analyzed 
students with complete data only. This means that we excluded students from the 
analysis if they missed the first or second test session, and we performed the analysis 
on 192 students. Students were not instructed to make a drawing while working on the 
modelling problems because we were interested in their natural use of the drawing 
strategy. Their spontaneous use of drawings was coded by analyzing students’ 
solutions to the modelling problems. 
Measures 
The scale for the assessment of enjoyment of self-generated drawing was adapted from 
the enjoyment Likert scale from the Achievement Emotions Questionnaire (Pekrun, 
Goetz, Frenzel, Barchfeld, & Perry, 2011) by changing the scope of the items from 
problem solving to the drawing strategy while solving word problems. It consisted of 
three items that were rated on a Likert scale ranging from 1 (not at all true) to 5 
(completely true). One sample item was: “I enjoy making a drawing when solving a 
difficult word problem.” The reliability (Cronbach’s α) was .766. 
We developed and validated the strategic knowledge about drawing scale in a prior 
study (Rellensmann, Schukajlow, & Leopold, under review). It comprised eight real-
world problems. Each problem was followed by an item that included situational 
drawings and an item that included mathematical drawings (see Figure 1). On the 16-
item test, students were asked to evaluate the utility of the drawings provided for each 
problem by comparing the drawings with regard to their helpfulness in solving the 
presented problem. Each item comprised three drawings (a correct and complete 
drawing, a correct but incomplete drawing, and an incorrect drawing) that students 
rated on a scale ranging from 1 (not helpful at all) to 5 (very helpful). The scores for 
each item ranged from 0 to 3. The number of points depended on the sequence of 
drawings concerning their usefulness for solving the task. If students identified that the 
correct and complete drawing was more helpful than the correct but incomplete 
drawing and that the correct and incomplete drawing was more helpful than the 
incorrect drawing, they were given 3 points (test reliability .76). If a student suggested 
the reverse order of the drawings, he or she received 0 points. 
The modelling performance test comprised eight problems that all required students to 
identify a right-angled triangle and could be solved by applying the Pythagoras 
theorem (see examples of the tasks by Rellensmann et al., 2017). Students’ solutions 
were scored by two raters on a scale ranging from 2 (correct problem solution) to 0 
(incorrect solution or a missing solution). The interrater reliability (Cohen’s κ) was > 
.81. The test reliability of the modelling performance test was .772.  
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Figure 1: An item from the knowledge about drawing scale (Rellensmann, 
Schukajlow, & Leopold, under review) 

Students’ use of drawings was assessed via the number of drawings they constructed 
while solving the eight problems on the modelling test. If students constructed a 
drawing for a modelling problem, they received a score of 1; if they did not make a 
drawing, they were given a score of 0. The test reliability (Cronbach’s α) was .866. 
Intra-mathematical performance was assessed with the test that included 10 items on 
applying the Pythagorean theorem or solving quadratic equations (e.g., x2 = 3.82 – 
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2.52). Students received 1 point for the correct solution and 0 points for an incorrect or 
missing solution. The test reliability was .760. 
RESULTS 
Our first research question referred to the relation between enjoyment of self-generated 
drawing and achievement-related outcomes. By computing Pearson correlations, we 
found a positive relation between enjoyment of drawing and the use of drawings to 
solve modelling problems (see Table 1). This result confirmed our expectation that 
students who enjoy making drawings would construct more drawings to solve the 
problems than students who do not enjoy this strategy. 

  UD SKD IM MOD 

Enjoyment of self-
generated drawing 

r 

 

.159* 

 

.09 

 

-.016 

 

.046 

 

Note. * p: two-tailed, p  < .01, UD: Use of drawings, SKD: strategic knowledge about 
drawing, IM: intra-mathematical performance, MOD: Modelling performance. 

Table 1: Correlations between enjoyment and the achievement-related measures 
However, we did not find relations between enjoyment and the other achievement-
related factors. Enjoyment of self-generated drawing was not correlated with strategic 
knowledge about drawings, intra-mathematical performance, or modelling 
performance. We found that students with high and low enjoyment of drawing had 
similar knowledge about drawings and that they did not differ in their performance in 
solving intra-mathematical and modelling problems. 
The second research question was aimed at investigating the relation between 
enjoyment and modelling performance while controlling for important factors that 
have been found to influence modelling performance in prior studies (knowledge about 
drawings and intra-mathematical performance). Partial Pearson correlations did not 
support our expectations because we did not find a positive relation between enjoyment 
of drawing and modelling after we controlled for knowledge about drawing and intra-
mathematical performance (r = .050, p = .488).  
DISCUSSION 
The goal of our study was to explore the role of enjoyment toward strategies in 
students’ learning outcomes. We found that enjoyment of drawing was positively 
related to the spontaneous use of the drawing strategy. This result confirmed the 
importance of affective factors for students’ strategic behavior. Apart from the costs of 
strategy use (Uesaka & Manalo, 2017), students’ emotions might influence their 
decision to apply a strategy to solve a problem. In future studies, the role of other 
emotions and more broadly the role of other affective factors for strategy use should 
be explored. A practical implication of this finding might be that improving students’ 
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enjoyment of strategy use might increase the frequency with which they use these 
strategies.  
However, students’ enjoyment of self-generated drawing was not related to students’ 
knowledge about drawings. We could not confirm our expectation that students who 
enjoy a strategy and thus apply this strategy more often gain deeper knowledge of this 
strategy. One reason for this finding might be that teachers do not often discuss when 
a student has applied a strategy appropriately. In the case of drawings, teachers should 
not only present the correct solution, but they should also discuss why a drawing is 
helpful and how a student can make a helpful drawing (Rellensmann et al., 2017).  
Enjoyment was not related to intra-mathematical performance. For some tasks, 
students with high or low mathematical knowledge can be confident about making a 
drawing, and they can value making a drawing, whereas for other tasks, they might 
feel less confident about making a drawing and might not value this strategy. Because 
of the similarity between students’ control and value appraisals assumed in the control-
value theory (Pekrun, 2006), enjoyment did not differ for students on different levels 
of intra-mathematical knowledge. However, the importance of control and value 
appraisals regarding strategies for students’ emotions toward these strategies had not 
been investigated until now and should be addressed in future research. 
Given that enjoyment of strategies and enjoyment of mathematics were previously 
found to be related (Goetz et al., 2006) and enjoyment of mathematics was found to 
affect modelling (Schukajlow & Rakoczy, 2016), we expected a positive relation 
between enjoyment of drawing and modelling. However, we could not confirm this 
expectation. Other factors that are related to the strategies (e.g., knowledge about a 
strategy or the quality of the strategy use) were previously found to be more important 
to modelling performance than enjoyment (Rellensmann et al., 2017). Further, in our 
study, enjoyment was not related to strategic knowledge about drawings. However, it 
might be different for other emotions. One of our previous analyses revealed that 
anxiety about drawing was related to modelling performance.  
In the present study, we focused on making drawings because this strategy was found 
to be helpful for solving modelling problems with a spatial structure of the 
mathematical model (Rellensmann et al., 2017). However, from other studies on 
modelling, we know that students also use other cognitive (e.g., highlighting, forward/ 
backward strategy) and metacognitive (e.g., planning, monitoring) strategies (Stillman 
& Galbraith, 1998). It will be interesting to determine whether emotions influence the 
spontaneous use of these strategies.  
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Video is a powerful tool in professional development (PD) that can support teacher 
learning of content and skills. In the mathematics field, PD aligned with high quality 
standards is especially needed to help teachers gain mathematical knowledge for 
teaching and to develop fluency in making instructional decisions that support 
students’ learning of challenging content. The Learning and Teaching Geometry 
intervention consists of well-specified PD materials that engage teachers in learning 
complex mathematical concepts through video cases. This paper describes a group-
randomized efficacy study examining the effectiveness of this intervention. The findings 
suggest that the intervention strongly impacted teachers’ instructional practice, 
leading to some student learning improvements.  
INTRODUCTION 
The power of using video in professional development (PD) to elicit critical reflection 
and to support teachers’ learning of new content and skills has been widely documented 
(e.g., Borko, Koellner, Jacobs & Seago, 2011; Brophy, 2004; Harford & MacRuairc, 
2008; Rich & Hannafin, 2009; Rosaen et al., 2008; Santagata et al., 2007; Sherin, 
2007). Video allows for the complexities of classroom practice to be stopped in time, 
unpacked, and thoughtfully analysed, helping to bridge the perpetual theory-to-practice 
divide and support instructional improvement. While in the classroom teachers must 
constantly make individual in the moment decisions, viewing video during PD allows 
teachers the opportunity to collectively deconstruct and discuss familiar experiences 
and to actively generate new understandings about content, pedagogy and student 
thinking (Cullen, 1991; Korthagen, Kessels, Koster, Lagerwerf, & Wubbels, 2001).  
An accepted theoretical trajectory of teacher learning from effective professional 
development is that increased teacher knowledge leads to subsequent changes in 
classroom instruction which, in turn, support improved student learning (Desimone, 
2009). Therefore, to measure the effectiveness of a professional development 
intervention, it is critical to document changes in knowledge and instruction, along 
with more distal student outcomes (Kennedy, 2016; Wayne et al., 2008).  
This paper examines the overall effectiveness of the Learning and Teaching Geometry 
mathematics professional development intervention (LTG PD) on teacher participants 
in an effort to understand the impact on teacher learning, classroom practice and 
student achievement.  
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Theoretical Perspective 
The LTG PD is conceptually grounded in the development of professional knowledge 
that consists of deep and connected mathematical content knowledge, the knowledge 
of students thinking and how students learn the content, and knowledge of pedagogical 
practices and norms to support student learning. Goals for mathematics teachers’ 
learning should include gaining proficiency in the content they teach, improve their 
understanding of student thinking and learning, and improving their instructional 
practices to meet the needs of diverse learners (NCTM, 2000). Ball and colleagues 
have identified and elucidated “knowledge of mathematics for teaching”—the 
professional knowledge that mathematics teachers must have in order to do the 
mathematical work of teaching effectively (e.g., Ball & Bass, 2000; Ball, Hill, & Bass, 
2005; Ball, Thames, & Phelps, 2008). This conception of knowledge of mathematics 
for teaching is multifaceted and includes both content and pedagogical content 
knowledge.  
“Common” and “specialized” knowledge of mathematics comprises the content 
knowledge that mathematics teachers need. Common content knowledge is the basic 
understanding of mathematical skills, procedures, and concepts acquired by any well-
educated adult. Specialized knowledge involves a deeper, more nuanced understanding 
of mathematical skills, procedures, and concepts. It enables teachers to evaluate 
mathematical representations and solution strategies; to analyse (rather than just 
recognize) errors; to give mathematical explanations; and to make connections among 
mathematical strands. It is what Ma (1999) characterized as “profound understanding 
of fundamental mathematics” (p. 120). 
The pedagogical content knowledge (PCK) that mathematics teachers’ needs include 
a sophisticated understanding of effective instructional practices and student thinking 
related to specific mathematical content and comes into play during all phases of 
teaching. For example, during instructional planning teachers draw upon their PCK to 
select curricular materials and sequence content to facilitate student learning, to predict 
how their students will approach specific mathematical tasks, to consider the needs of 
linguistically and culturally diverse students, and to anticipate student errors. As they 
conduct lessons, PCK enables teachers to recognize instructional affordances and 
constraints of different representations, to interpret incomplete student ideas, to 
anticipate opportunities to address language or cultural references, and to consider how 
to respond to various correct or incorrect pathways students explore. After completing 
a lesson, PCK is central to teachers’ reflections on the learning that did or did not take 
place, and to their consideration of how to plan for and improve future lessons.  
The Learning and Teaching Geometry PD Intervention 
The Learning and Teaching Geometry (LTG) program is a video-based mathematics 
professional development intervention, targeted for teachers serving grades 6-12. The 
intervention consists of 54 hours of PD focused on improving teaching and learning of 
mathematical similarity based on geometric transformations (Seago et al., 2017). The 
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program is designed to be implemented by a knowledgeable facilitator, using a set of 
provided resources to engage teachers in a specified learning trajectory (Seago et al., 
2013). The intervention includes a 30-hour Foundation Module followed by four 8-
hour Extension Modules that explore related topics such as using appropriate 
representations and tools and supporting English Language Learners. The LTG PD 
intervention targets teachers’ mathematics knowledge for teaching geometric 
similarity, meaning that it is intended to inform both their content and pedagogical 
content knowledge in ways that foster student learning of this topic.  
METHOD 
The LTG Efficacy Study (NSF award #1503399) aims to determine the effectiveness 
of the LTG PD intervention using a group-randomized experimental design. 
Participants were 103 secondary mathematics teachers serving Grades 6-12 (47% 
middle school, 53% high school) from two diverse geographic locations. 
Randomization was conducted at the school level, with 23 schools and 49 teachers 
assigned to the treatment group and 18 schools and 54 teachers assigned to the 
comparison group. No statistically significant differences were found by treatment and 
control groups. 
Professional development workshops for treatment teachers in both locations began in 
Summer 2016 and continued throughout the 2016-17 academic year. Nine full days of 
professional development were offered to teachers in each location, beginning with the 
five-day Foundation Module, followed by four days of Extension Modules. On 
average, treatment teachers attended 7 workshops. Control teachers were offered the 
same workshops during the 2017-18 school year, after pre- and post-data collection 
was completed. The same facilitator led all of the workshops, after completing an 
extensive facilitator preparation process that included a multi-faceted assessment of 
fidelity. Based on this assessment process, facilitator was deemed capable of using the 
PD materials as intended and making appropriate context-based decisions and 
adaptations (Jacobs, Seago & Koellner, 2017). 
Pre and post data collected on the effectiveness of the LTG PD included four teacher 
knowledge assessments: (1) Diagnostic Science Assessments for Middle School 
Teachers (DTAMS), a general assessment of teachers’ geometry and measurement 
content and pedagogical content knowledge; (2) Horizon Research, Inc’s assessment 
of teachers’ content and pedagogical content knowledge of geometric similarity, 
developed in alignment with the LTG PD materials; (3) a similarity task embedded 
assessment, and (4) a video case analysis task embedded assessment. In addition, 
teachers were rated on the quality of their mathematics instruction captured in 
videotaped classroom observations using the Math in Common Observation Protocol 
(Perry et al., 2015). The classroom observation ratings included eight individual ratings 
and three sub-scores. A student geometry knowledge assessment measured student 
gain in five content areas over the academic year. In addition, the treatment teachers 
provided daily reflections on their workshop experiences.  
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RESULTS 
Impacts on Teacher Content Knowledge 
Repeated measures analyses of variance were used to detect patterns of change in 
teachers’ content knowledge after completing the LTG PD, relative to the comparison 
group. Significant (p<.05) interactions were found for all embedded assessments 
indicating greater gains for the treatment group compared to the comparison group. 
Significant (p<.01) group and time effects were found for knowledge of 
transformations on the Horizon assessment and a significantly (p<.001) larger gain for 
the treatment group. Of the 8 DTAMS measures, significant and positive time effects 
were found for knowledge of reasoning / problem solving (p<.001) and Measurement 
(p<.001), and a significant and negative effect was found for Geometry 3D (p<.05). 
Within the groups of teachers, both groups gained significantly in the areas of 
reasoning and measurement, but only the treatment group declined in Geometry 3D. 
No other effects were found knowledge of facts, conceptual understanding, pedagogy, 
Geometry 2D, or transformations/coordinates. These results confirmed that teachers 
made some knowledge gains, but they were mostly captured by the highly targeted 
assessments. Additional analyses revealed that within the treatment group, teachers 
made significant gains in all content areas except scaling. 
Impacts on Classroom practice 
Teachers were rated on the quality of their mathematics instruction captured in 
videotaped classroom observations. Both pre- and post-PD ratings were available for 
a subset of 92 teachers (43 treatment, 49 control). No background differences were 
found between this subsample and the remaining sample of teachers.  
The classroom observation ratings included eight individual ratings from the Math in 
Common Observation Protocol. Three quality of instruction averages were created: 
Richness of Mathematics (linking representations, multiple solution methods and 
making sense), Student Engagement in Mathematical Practices (explanations and 
reasoning), and the Mathematics (math, access and agency). Repeated measures 
ANOVA identified a significant (p<.05) time effect for Richness of Mathematics and 
a significant (p<.05) interaction effect for Student Engagement (see Table 1). 
Treatment teachers made significant gains in both averages while the control group did 
not change. On average, treatment teachers improved their ability to engage students 
in mathematical reasoning (p<.01) and to provide accurate, coherent, and well-justified 
mathematical content (p<.05).   

 Pre PD  Post PD  p-value 

Instruction Rating Treatment Control Treatment Control Group Time Group 
X Time 
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Richness of 
mathematics 1.95 2.25 2.26 2.43 ns .014 ns 

Student engagement 
in mathematical 
practices 

1.81 2.31 2.16 2.24 ns ns .011 

Mathematics 1.87 2.16 2.02 2.05 ns ns .053 

Table 1: Results of Repeated Measures Analyses of Variance on Teacher Quality of 
Instruction Ratings, by Group (N=92) 

Impacts on Student Knowledge 
The Horizon Research geometry knowledge assessment was given to students of both 
the treatment and control groups of teachers. Both pre-test and post-test scores were 
available for 758 students (373 treatment, 383 control) in 56 classrooms and 41 
schools. Students’ mean scores for the total assessment and five content areas are 
presented in Table 2. A series of hierarchical linear models was used to estimate the 
impact of school participation in LTG PD on student knowledge. We found a 
significant and positive effect of LTG PD on student gains in knowledge of 
transformations (p<.05; ES=.23). LTG PD explained a significant proportion of 
variance in gains in transformations knowledge with the treatment group making 
almost twice the gain of the comparison group. 

 
Knowledge Outcome 

Pretest Posttest 

Treatment Control Treatment Control 

Total percent correct 48.51 40.81 56.55 48.66 

Total number correct 9.70 8.16 11.31 9.73 

Dilations 1.54 1.27 1.73 1.42 

Scaling 2.81 2.29 3.30 2.76 

Ratio 2.68 2.16 3.03 2.72 

Proportion 1.20 1.06 1.24 1.11 
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Transformations 1.57 1.53 2.09 1.80 

Table 2: Means of Student Knowledge Pre-test and Post-test, by Group (N=758) 
CONCLUSION 
Teachers’ participation in the LTG PD intervention supported critical gains in both 
knowledge and practice, with particularly large gains in instructional practice. 
Improvements in practice were then directly related to student learning in the area of 
transformations. Most researchers in the field theorize that knowledge gains precede 
practice gains. The fact that the teachers made substantial gains in practice without 
showing similarly robust gains in knowledge warrants further investigation. 
Importantly, the observations of classroom practice were not limited to content areas 
covered by the PD; rather, teachers were filmed teaching whatever topic areas they 
would normally cover. Therefore, the impact on practice appears to be quite 
widespread and readily discernible by the observation instrument used in the research 
study. Lastly, the finding that the largest impact on student knowledge was in the area 
of geometric transformations suggests this topic was intentionally and heavily targeted 
by the treatment teachers in their instruction, perhaps due to its relevance across grades 
and mathematics content areas. 
This efficacy study presents important implications for others designing, 
implementing, and studying efforts to support teacher learning. The findings 
underscore the importance of a well-specified year-long intervention to improve 
critical aspects of teacher knowledge and instructional practice, leading to gains in 
student learning in a targeted content area. The study further points to the importance 
of using measures that detect these gains, especially in instructional practice.  
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The current study investigates which general cognitive functions and early numerical 
skills are predictive of kindergartners' exact arithmetic and computational estimation 
performance six months later. Results show that intelligence, verbal counting, and 
number ordering skills are important predictors for both exact arithmetic and 
computational estimation. Secondly, symbolic comparison was only predictive of exact 
arithmetic, whereas verbal working memory only played a role in computational 
estimation. These results suggest that kindergartners' exact arithmetic and 
computational estimation do not rely on exactly the same processes.  
INTRODUCTION 
In the last decades, there has been much research interest in the learning of mathematics 
before the onset of formal schooling, and more specifically, the relationship between 
whole number arithmetic and early numerical skills (Clements & Sarama, 2007). 
Clements and Sarama (2007) distinguish six types of early numerical skills: subitizing, 
verbal and object counting, comparing and ordering, beginning addition and 
subtraction, composing and decomposing, and numerals and mathematical language 
and symbols. Research in mathematical cognition has mainly focused on the role of 
the first three types in exact arithmetic. However, whole number arithmetic is broader 
than exact arithmetic and also comprises computational estimation (Verschaffel, Greer, 
& De Corte, 2007). Much less is known, however, about the role of these three types 
of early numerical skill in computational estimation.  
Concerning the relationship between these early numerical skills and exact arithmetic, 
it has been found that kindergartners’ subitizing abilities (i.e., the ability to enumerate 
small sets) have been shown to be a concurrent predictor of their exact arithmetic skills 
(Gray & Reeve, 2014). Secondly, kindergartners’ counting skills were predictive of 
their arithmetic scores right before the start of first grade (Tobia, Bonifacci, & 
Marzocchi, 2016). This indicates that children who are familiar with a larger number 
range are better in exact arithmetic. Thirdly, the relative contribution of non-symbolic 
and symbolic comparison to exact arithmetic is not clear yet. But based on recent meta-
analysis (Schneider et al., 2017), the symbolic task seems to be a more robust predictor 
for exact arithmetic than the non-symbolic task. Lastly, research on number ordering 
in children shows that number ordering only becomes a predictor of arithmetic skills 
from third grade onwards (Lyons, Price, Vaessen, Blomert, & Ansari, 2014).  
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As mentioned earlier, very little is known about the relationship between early 
numerical skills and computational estimation. One skill that was suggested as an 
important predictor is number comparison (Sowder & Wheeler, 1989). However, in a 
study with 13-year-olds, number comparison did not seem to be a concurrent predictor 
for computational estimation (Rubenstein, 1985).  
In addition to the early numerical skills, general cognitive functions also play a role in 
whole number arithmetic. Several studies addressed the role of working memory in 
both exact arithmetic and computational estimation. In adults, exact arithmetic relies 
more on working memory resources in comparison to computational estimation 
(Kalaman & LeFevre, 2007), while in 3rd and 4th graders, computational estimation is 
more demanding of working memory resources than exact arithmetic (Caviola, 
Mammarella, Cornoldi, & Lucangeli, 2012). This discrepancy might be because 
children’s strategies for computational estimation are less developed in comparison to 
their strategies for exact arithmetic. In addition to working memory, children with 
higher intelligence scores tend to be better in both exact arithmetic (Geary, 2011) and 
computational estimation (Reys, Bestgen, Rybolt & Wyatt, 1982).  
The current study investigates the relationship between early numerical skills, general 
cognitive functions and both exact arithmetic and computational estimation before the 
onset of formal schooling. Data from the first two waves of a large-scale longitudinal 
study on the development of young children’s early mathematical competencies will 
be used (https://ppw.kuleuven.be/o_en_o/CIPenT/wis-co-start). Firstly, we are 
interested in which general cognitive functions are important for exact arithmetic and 
computational estimation and whether these are the same or different. Secondly, we 
are interested in which early numerical skills are predictors of kindergartner’s exact 
arithmetic and computational estimation performance and whether these are the same 
or different.  
METHOD 
Participants 
A group of 407 kindergartners from 17 schools from various regions in Flanders, 
Belgium, participated in the study. A first wave of data (T1) was collected in the spring 
of 2017 when children were in their second year of kindergarten (N = 407, M = 58.14 
months, SD = 3.51 months, 213 boys). A second wave (T2) took place in the fall of 
2018 when the children were in their third year of kindergarten (N = 389, M = 63.79 
months, SD = 3.48 months, 200 boys). The study was approved by the social and 
societal ethics committee of KU Leuven (G-2016 07 591) and all parents approved 
through informed consent.  
Materials and procedure  
Kindergartners’ exact arithmetic performance was assessed by means of eight addition 
problems, which were divided into four difficulty levels: sum between 1-5, 6-10, 11-
15, and 16-20. The task was administered using concrete materials with support of 
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verbal number words (Jordan, Kaplan, Ramineni, & Locuniak, 2009). The 
experimenter said, for instance, “Here are two pieces of candy”, showing them on a 
horizontal line in front of the child and puts them in a box. Then one piece of candy 
was placed in front of the child and put in the box and the child was asked: “How many 
pieces of candy are in the box?” Children had to answer by placing the correct number 
of pieces of candy on the table. The total score was the number of correct answers.  
Kindergartners’ computational estimation performance was assessed using eight 
addition problems, which were just outside 5-year-olds’ level of exact arithmetic and 
could, therefore, be solved only by estimating the outcome (cf. Dowker 1997). These 
problems were divided into four difficulty levels: sum between 11-15, 16-20, 21-25, 
and 26-30. Administration of the task was similar to that of the exact arithmetic task 
but now with cows and a stable instead of candies and a box. At the end of each trial, 
the experimenter asked this time: “About how many cows are there in the stable?” and 
children answered by placing an appropriate number of cows on the table. Estimation 
accuracy was calculated as the percentage absolute error (PAE) of the answers of the 
children relative to the exact answer (PAE = :~���[{�	����:{��a	�y	{��	�;:�{	:a����

�;:�{	:a����
∗

100). 
We used a subset of tests from a larger battery of basic numerical competencies that 
was developed within the framework of the larger research project (Bakker, Torbeyns, 
Wijns, Verschaffel, & De Smedt, 2018). Following early numerical skills were 
assessed. Dot enumeration: children were presented random dot arrays ranging from 
one to nine dots and were asked to say, as quickly as possible, how many dots they 
saw. Verbal counting: children were asked to count as far as they could starting with 
‘one’. Object counting: this competence was assessed by means of the “Give me n”-
task. Children had to provide a certain number of stones varying from 3 to 19 using a 
set of 20 stones. Non-symbolic magnitude comparison: children were presented two 
dot arrays ranging from 1 to 9 dots and had to indicate which array contained most 
dots. Symbolic magnitude comparison: children were presented two Arabic numerals 
ranging from 1 to 9 and had to indicate which of both was the largest. Ordering: 
children were asked to name the number that came immediately before and after a 
given Arabic numeral.  
With regard to working memory (WM), the Corsi Block Tapping task and a word recall 
forward task were administered to assess visuospatial and verbal short term working 
memory span, respectively. The Corsi Block Tapping task started with tapping a 
sequence of two until nine blocks, while the forward word span task required recalling 
a word string from one until five words. As an intelligence measure, the Block Design 
Test from WPPSI-III was administered. Children were asked to recreate a constructed 
model from a stimulus book using one- and two-colored blocks within a limited time. 
Data collection  
Children were tested individually in a quiet room by trained experimenters. In the first 
wave the early numerical skills were assessed in one session of approximately 30 
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minutes. During the second wave exact arithmetic, computational estimation, working 
memory, and intelligence were assessed separately during three sessions of 
approximately 30 minutes.  
RESULTS 
A multilevel analysis to determine the influence of the classroom and school context 
on children's performance revealed that these two factors explained less than 5% of the 
variance in exact arithmetic and computational estimation abilities between children. 
As a result, data were collapsed across classes and schools. Estimates that deviated 
more than three standard deviations from the mean PAE for each item were considered 
as outliers and therefore removed from further analyses (44 out of 3056 estimates or 
1.4%). Descriptive statistics can be found in Table 1.  

Table 1: Descriptive statistics for the different measures that were included in the 
study.  
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Table 2: Partial correlations between the different measures that were included in the 
study, controlling for age at T2.  

As a first step, we calculated all partial correlations controlling for age at T2 (see Table 
2). All of the early numerical skills were significantly correlated with both exact 
arithmetic and computational estimation. 
In a second step, two hierarchical multiple regression analyses were conducted to 
unravel the respective contributions of the general cognitive functions and the early 
numerical skills on exact arithmetic and computational estimation performance, 
respectively (see Table 3). In both regressions, age at T2 was entered in the first step. 
The general cognitive measures were entered in step 2 and the early numerical skills 
in step 3. Collinearity checks revealed no multicollinearity problems. 
In the first regression, a total of 31% of the variance in exact arithmetic is explained 
by the full model, F(1, 302) = 7.17, p < .01. The inclusion of the different predictors 
in the respective steps always leads to a significant increase in explained variance. 
Inclusion of the early numerical skills in step 3, reduces the influence of both types of 
working memory to non-significance. Results show that intelligence, verbal counting, 
symbolic comparison, and number order are predictors of exact arithmetic. In the 
second regression, a total of 28.6% of the variance in computational estimation is 
explained by the complete model, F(1, 296) = 5.96, p < .05. Again, inclusion of the 
different predictors in the respective steps explains a significant additional portion of 
the variance. In contrast to exact arithmetic, verbal working memory remains 
significant when adding the early numerical skills in the step 3. Only verbal working 
memory, intelligence, verbal counting, and number ordering are predictors of 
computational estimation.  
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Table 3: Hierarchical regression on exact arithmetic scores and computational 
estimation performance, standardized coefficients (β). 

DISCUSSION 
The current study focused on the predictive power of general cognitive functions and 
early numerical skills of kindergartners’ exact arithmetic and computational estimation 
performance. In the first research question we were interested in which general 
cognitive functions are important for exact arithmetic and computational estimation 
and whether these are the same or different for both types of whole number arithmetic. 
We observed that working memory played a different role in both types of arithmetic 
skills. Verbal working memory remained a significant predictor after adding the early 
numerical skills for computational estimation but not for exact arithmetic. These results 
confirm those reported by Caviola et al. (2012), who showed that computational 
estimation places greater demands on working memory than exact calculation in third 
and fourth graders. In addition, our results expand Caviola et al.’s (2012) results by 
showing that this is also true in younger children on tasks administered with concrete 
materials. Surprisingly, despite the fact that both tasks were measured using concrete 
materials with verbal support, it is verbal working memory rather than visuospatial 
working memory that is an important predictor of kindergartners' computational 
estimation performance. These findings suggest that children rather rely on the verbal 
labels given by the experimenter than on the amount of objects being presented.  
In the second research question, we were interested in which early numerical skills of 
4-year-olds are predictive of exact arithmetic and computational estimation 
performance six months later. Results show that verbal counting and number order 
skills are significant predictors of both exact arithmetic and computational estimation 
performance. Children who can count higher are familiar with a larger number range 
and being familiar with a larger set of numbers facilitates both exact arithmetic and 
computational estimation performance. Furthermore, children who are better at 
ordering symbolic digits have more insight in the decimal number system which might 
help them to understand that, for example, the sum of the arithmetic problem must be 
larger than both addends. An unexpected result is that comparison is not a significant 
predictor of computational estimation in young children, suggesting that kindergartners 
do not simply rely on their sense for order of magnitude when solving the 
computational estimation task.  
In sum, the importance of verbal working memory and verbal counting and the absence 
of an influence of comparison skills suggests that kindergartners do more than simply 
relying on their non-symbolic number sense and might already use a verbal code 
scheme when estimating. Secondly, our results confirm and expand previous research 
that enlarging kindergartners’ counting range and paying attention to ordinality is not 
only beneficial for exact arithmetic, but also for their computational estimation 
performance. Thirdly, the fact that symbolic comparison was only a predictor for exact 
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arithmetic and verbal working memory only for computational estimation suggests that 
these abilities do not rely on the same processes.  
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SEMIOTIC POTENTIAL OF INQUIRING-GAME ACTIVITIES 
Carlotta Soldano, Cristina Sabena 

University of Torino 
 
We integrate the Theory of Semiotic Mediation with a phenomenological perspective 
to analyse the semiotic potential of GeoGebra when inquiring-game activities are 
implemented. These activities aim at developing a theoretical approach towards 
geometry in secondary school students, starting from game situations. An inquiry-
game activity based on the property of isosceles triangle is presented and experimental 
data from a Grade 9 classroom is analysed. Results show how the inquiring-game 
activity contributes to the production of artefact signs that can evolve into 
mathematical meanings, and of different layers of meaning developed within the 
contexts evoked by these signs.  
INTRODUCTION AND THEORETICAL FRAMEWORK 
Research has shown that the use of Dynamic Geometry Environments (DGEs) can 
contribute positively in students’ harmonization of theoretical and empirical aspects of 
geometry (Laborde et al., 2005). In particular, dragging tools have been proven to allow 
students experiencing the variation hinted in static diagrams, and so improving their 
ways of seeing and conceiving them as different instances of the same geometrical 
objects (Leung, 2003), beyond the prototypical cases that are usually considered in 
classical teaching (e.g. a rectangular with a longer horizontal side and a shorter vertical 
side). Since the creation of the first DGEs, researchers and teachers devoted their 
attention to robust diagrams (Healy, 2000), i.e. diagrams constructed according to 
geometrical properties of the figures. In these diagrams, the geometric properties of the 
figure remain invariant when its base-points are dragged. On the contrary, in soft 
diagrams properties are empirically constructed: hence dragging cannot be used for 
testing the construction and discerning the invariants.  
In our study, we focus on soft diagrams within inquiring-game activities aimed at 
introducing students to the theoretical aspects of geometry (e.g. distinguishing between 
hypothesis and thesis in a theorem, reasoning on properties, formulating conjectures, 
etc.). Inquiring-game activities (Soldano & Arzarello, 2018) are inspired by games of 
verification and falsification, known as semantical games, used by the logician J. 
Hintikka (1998) to establish the truth of statements in his Game Theoretical Semantic. 
According to this theory, in order to establish the truth of statements expressed in the 
form ∀𝑥	∃𝑦	|	𝑆(𝑥, 𝑦), we can imagine a game in which a player, called Falsifier (F) 
controls variable x and has the goal to show that the statement is false and another 
player, called Verifier (V) controls variable y and has to show its truth. In order to win, 
F will look for the worst values of variable 𝑥. If, even in the worst-case scenarios, the 
verifier is able to find a suitable value of	𝑦, then the statement is true; otherwise it is 
false. Within a DGE we conceive 𝑥 and 𝑦 as base-points of a soft diagram and 𝑆(𝑥, 𝑦) 
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as a geometric property (e.g. being an isosceles triangle). During the game, F typically 
tries to create troubles for the verifier by proposing non-prototypical diagrams. V, on 
the contrary, will try to show the possibility to achieve his goal in all situations, also in 
the non-prototypical ones.  
Although each game is designed on a geometric theorem, it is not granted that this 
foreseen mathematical meaning does emerge when the students play the game. This 
aspect is framed within the Theory of Semiotic Mediation (TSM) with the notion of 
semiotic potential of an artefact: it refers to the double semiotic relationship occurring 
on one side, between the artefact and the personal meanings elaborated by the students 
when they use it, and on the other side, between the artefact and the mathematical 
meanings foreseen by an expert (Bartolini Bussi & Mariotti, 2008). Through the 
analysis of signs produced by students and teacher, it is possible to document how this 
double relationship emerges and evolves. The basic signs for the development of the 
semiotic potential are produced when the students use the artefact and are called 
artefact signs; also thanks to the teacher’s intervention, these signs can evolve, first 
into pivot signs relating both to the specific instrumented actions and to the 
mathematical domain, and then into mathematical signs that refer to the mathematical 
domain as culturally and historically developed.  
Also phenomenological perspectives on mathematical teaching-learning processes 
points out how a delicate process is to guide students to “see and recognize things 
according to ‘efficient’ cultural means” and to convert their “eye (and other human 
senses) into a sophisticated intellectual organ” (Radford, 2010, p. 4). As Radford 
stresses, it is necessary to promote a “lengthy process of domestication” (p. 4) of the 
way they are looking at things while learning mathematics. Depending on the ages and 
the backgrounds of the students, a given mathematical situation may evoke different 
contexts and lead to different sense-making (e.g. an increasing and decreasing 
continuous graph in a Cartesian plane may be seen as the picture of a mountain by 
young students). According to the mathematician and philosopher G. C. Rota (1991), 
the starting point for understanding how mathematical meaning arise and evolve is the 
key assumption that there is “no such thing as true seeing”, but “there is only seeing 
as” (p. 239). In Rota’s account, this process is referred to as disclosure. Disclosure is 
a Husserlian concept that indicates the process by which people make sense of and 
interpret the various situations of the world in the contexts in which they are exposed. 
Different contexts may provide different meanings to the objects of our knowledge; 
furthermore, these different contexts are not isolated, on the contrary they are layered 
upon one another, and the layers can generate different (layered) meanings in the flow 
of time. 
Adopting Rota’s phenomenological account, Arzarello, Ascari, Baldovino, and Sabena 
(2011) showed how suitable didactic techniques made by the teacher may promote 
different layers of meanings in students’ disclosures of calculus concepts, highlighting 
the role of making present things that are absent, and of prompting students’ attention 
on some specific aspects of the contexts (Mason, 2008).  
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Our study is grounded on the research hypothesis that using soft diagrams within the 
inquiry game can initiate the students’ disclosure of the meaning of a geometric 
theorem because the necessary/sufficient condition for the thesis are not hidden in the 
construction steps but are produced by intentional moves made on soft diagrams within 
DGEs. Under this hypothesis, in this paper, we investigate which 
artefact/pivot/mathematical signs emerge in the students’ disclosure processes based 
on inquiring-games and how the contexts in which these signs are produced contribute 
to the development of different layers of meanings.  
METHODOLOGY  
The study grounds on a pilot teaching experiment on geometric inquiring-games 
carried out in an Italian Grade 9 classroom. Twelve students were involved for about 
two hours in inquiring-games and in answering some guiding questions, and for 
another two hours in a classroom discussion under the guidance of the teacher. We 
took part in the experiment as participant observers, in collaboration with the teacher. 
Collected data consists of the videorecording and screen capture of two pairs of 
students while playing the game and answering the worksheet questions, the completed 
worksheets from all the students, and the videorecording of the classroom discussions. 
Videorecorded students were chosen by the teacher among those who felt self-
confident in front of video cameras. Data are firstly analysed according to the lens of 
TSM, in order to seize the evolution from artefact signs to mathematical signs produced 
within inquiring-games activities. In order to deepen the interpretation of the evolution 
of signs, the analysis is then integrated with a phenomenological lens. 
We present some results from the first inquiring-game activity, which is played on the 
following theorem (𝑇��): “if the median and the angle bisector drawn from the same 
vertex of a triangle coincide, then the triangle is isosceles”. 

Within your pair, establish a verifier who moves 
point B and a falsifier who moves point C. Each 
match is made by two moves and the first one is 
always made by the falsifier. The verifier’s goal is 
to make segment CD and line b coincide; the 
falsifier’s goal is to prevent the verifier from 
reaching his/her goal. 

The winner of the match is the player who reaches 
the goal at the end of the verifier’s move. 

 

Table 1: Initial configuration and rules of the game (English translation) 
The game is played in a GeoGebra file containing a dynamic triangle ABC (A is fixed, 
while B and C are free points), a segment CD robustly constructed as median from the 
vertex C and a line b robustly constructed as angle bisector from the vertex C (see 
Table 1). By moving B and C, the triangle changes and consequently also the positions 
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of the median and of the angle bisector change. However, being robust diagrams, they 
preserve their constructive nature, i.e. they always remain median and angle bisector. 
On the contrary, isosceles triangles may be obtained as soft diagrams. In particular, the 
falsifier may produce triangles in which the median and the angle bisector do not 
coincide (non-isosceles triangles, Fig.2a), and the verifier may produce isosceles 
triangles in which the median and the angle bisector coincide to the eye (Fig.2b).  

a) 

 

b) 

 

Figure 2: Standard examples of the falsifier’s and the verifier’s moves 
The soft nature of the isosceles triangle and the game context are designed so to make 
the students see the link between the hypothesis of the theorem “the median and the 
angle bisector drawn from the same vertex of a triangle coincide” and its thesis “ABC 
is an isosceles triangle” as a conditional link. In fact, V’s moves are guided by the 
intention of making the median CD and the angle bisector b coincide and the output 
produced by this type of move is an isosceles triangle. Once the students notice the 
isosceles triangles configuration, they can use it to guide the move and to provide the 
coincidence between median and angle bisector, reversing the conditional link. In order 
to foster this disclosure, questions are provided to students in a worksheet (Table 2). 
Q1 focuses students’ attention on the geometric nature of CD and b (median and angle 
bisector), in the cases in which ABC is a triangle. Q2 guides students to observe the 
type of triangle produced by V’s moves (isosceles). Finally, by exploiting the game 
dynamics Q3 is meant to disclose the relationships between the geometrical objects 
and to formulate 𝑇��. 

Q1) What are CD and b with respect to the triangle ABC?  

Q2) Which are the properties of the geometric figure when the verifier reaches his goal? 

Q3) From the facts observed during the game and the answers given to the previous 
questions, formulate a geometric conjecture. 

Table 2: Guiding questions on the game 
DATA ANALYSIS 
Game phase. All the pairs except one attribute the winning of all the matches to the 
verifier. Videorecorded students S1 and S2 follow this expected trajectory. We report 
an excerpt showing their first observations after playing several matches in which the 
verifier has always won: 

1  S2: Impossible that the falsifier wins 
2 S1:  Moving after you (dragging C in Fig.3a), it’s always possible to create 

triangles (making Fig.3b by moving B). C is always on the straight-line 
b, hence in order to move D, which is the midpoint, it is sufficient… 
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make b coincide… then the verifier always wins. How is it possible not 
to make them coincide? (moving C on AB, see Fig.3c) 

a) b) c) d) 

 

                         Figure 3: Configuration explored by S1 (fictitious game) 
3 S2:  You can’t!  
4   S1 Even in this case you manage to make it (moving B so that CD and b 

coincide, Fig.3d) 

The verifier’s winnings are justified by S1 (who plays both the verifier’s and the 
falsifier’s role, ll. 2 and 4) through two fictitious matches: one played on a standard 
configuration (Fig.3a), the other played on a degenerate case (Fig.3c).  These fictitious 
matches and their description can be interpreted within TSM as artefact signs. As a 
matter of fact, although geometric terms are used (“triangle”, “midpoint”), students’ 
attention is mainly focused on the game: they are disclosing what happens in the 
inquiring-game, which constitutes a first layer of meaning in the given context.  
Question 1. All pairs of students easily recognize CD as the median of triangle ABC; 
on the contrary, they face more difficulties in discovering the geometric nature of line 
b, due to the confusion between the soft properties that line b can assume by dragging 
it and the robust properties that it always has because of its construction. Specifically, 
some students see b as perpendicular to AB: this is a soft property for line b, observable 
only in verifier’s winning configuration (when the triangle is isosceles as a soft 
diagram). What is more striking is that students are disclosing a mathematical meaning 
for this line (a mathematical sign within TSM), which was not expected by the 
designers of the activity. When the teacher notices that S1 and S2 are working within 
this unexpected layer of meanings, he decides to intervene:  

5  T: Do you see any right angles there? (pointing to the scalene triangle on 
the screen, configuration similar to Fig.3a) 

6 S2:  No, only when it [b] coincide with CD 
7 T:  Ah interesting! Good point! But in general, you can't say it's 

perpendicular to AB, in general it has some other properties, try to 
understand it. 

8 S1: I don't know... I confess that I have no idea... (starts dragging C)  

In his intervention, the teacher prompts students’ attention on the line b when the 
triangle configuration is non-isosceles and b is not perpendicular (l. 5, configuration 
similar to Fig. 3a). In this way, S1 and S2 become aware of their mistake (l. 6) but they 
need more investigation to provide the right answer to question 1 (l. 8), which entails 
seeing line b as something else than a perpendicular line. A second teacher’s 
intervention which prompts a double focus of attention (“on the property which 
remains true while moving the points” and “on the known elements of triangles”) is 
necessary.   
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Question 2. Four pairs of students out of six give the expected answer (the triangle is 
isosceles). One pair writes that all points are aligned on line b. S1 and S2 write that the 
configuration is “always a straight-line and sometimes an isosceles triangle”. This 
answer is a compromise between two different ways of seeing the situation: S2 is 
focused on the isosceles triangle, S1 is focused on the straight line that appears in the 
degenerate cases. The teacher decides to intervene: 

9 T: If you read question 2 here, [reads] ‘which are the properties of the 
geometric figure when the verifier reaches his goal’... if you want, which 
are the properties of the triangle each time the verifier reaches the goal? 
That is, how would you describe that triangle? 

10 S1:  Scalene  
11 S2:  Isosceles  
12 S1: Why do you see it as isosceles (looking Fig.4a)? Maybe it is isosceles 

(making Fig.4b by moving C) Do you really see it as isosceles? (He 
moves C upside down and obtains Fig.4c) Yes, ok. It’s isosceles (making 
Fig.4d) So every time they coincide it is an isosceles triangle. 

a) 

 

b) 

 

c) 

 

d) 

  

Figure 4: Getting a prototypical configuration in order to answer to question 2 
The teacher reformulates the question: instead of speaking of “properties of geometric 
figure”, he makes explicit reference to the “triangle” (l. 9). In this way, he is prompting 
the students’ attention towards the envisaged mathematical signs involved in 𝑇��. In 
order to discern which kind of triangle is ABC when the verifier wins, S1 drags the 
points until AB is horizontal: in this prototypical configuration she is able to see ABC 
as an isosceles triangle (l. 12).  
Question 3. Three pairs of students write the statement of the theorem using “if… 
then…” formulation, i.e. the mathematical sign corresponding to the expected outcome 
of the activity. One pair produces a pivot sign mixing artefact signs (referring to the 
game) with mathematical signs: “If the verifier reaches the goal then an isosceles 
triangle is formed”. Two pairs do not get to the expected formulation of the theorem. 
In one case, they focus on a degenerate configuration (“If CD is the median of the 
triangle then aligned with the angle bisector, it makes a straight line”); in the second 
case, they do not mention the triangle (“If CD is perpendicular to AB then CD coincides 
with straight line b”). The latter answer is written by the second video-recorded pair of 
students. They played the game in an unexpected way, using the zoom tool to check 
the coincidence between b and CD (e.g. Fig. 5c) and to fix the position of point B (e.g. 
Fig. 5d). Since by zooming the coincidence is never accurate enough the students get 
lost in fixing/zooming cycles of the triangle configuration. The produced artefact signs 
develop a layer of meaning which cannot evolve to the expected mathematical one.  
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The overall data analysis shows that some of the extreme configurations produced by 
students in playing the game (soft diagrams) prompts them on unforeseen paths in 
which the produced artefact signs do not evolve in the expected mathematical ones. In 
Fig. 5 we report on such extreme configurations, produced with the dragging tool 
and/or the zoom tool: 

a)  b)  c)  d)  

Figure 5: Extreme configurations of soft diagrams explored within inquiring-games  
Fig.5a-b are degenerate cases in which V’s goal is reached (b and CD coincide) but the 
artefact signs cannot evolve in the expected mathematical sign since the triangle ABC 
is collapsed. Fig.5c shows a zoom-in configuration in which V’s goal is reached but 
the triangle ABC it is not visible because of its big dimensions.  
CONCLUSION  
The analysis provides evidences that through guiding questions and the teacher’s 
interventions, most of the produced artefact/pivot/mathematical signs evoke expected 
layers of meanings related to the game and to the mathematical contexts, initiating 
students in the disclosure of the geometric theorem on which the game is based. Our 
hypothesis that the use of soft configurations allows students to experience the 
conditional link on which the theorem is based is confirmed (4 pairs out of 6 formulate 
the expected statement of the theorem as answer to question 3). Furthermore, results 
indicate that the game dynamics push the students in a deep exploration of both 
prototypical and non-prototypical situations (e.g. zoomed configurations and 
degenerate diagrams). The letter situations can produce unforeseen artefact signs and 
develop unexpected mathematical layers (e.g. seeing the angle bisector as a height; 
seeing the degenerate configuration as general case).  
We believe that the exploration of these configurations should not be prevented to 
students since they can enrich their theoretical reflections and understanding of 
geometry. Degenerate figures can be exploited by the teacher to define the boundaries 
of the theorem subscribed by its hypothesis, hence they can be used to reflect deeply 
on the role of the hypothesis in the statement of the theorem. In our case, if ABC is not 
a triangle, CD cannot be the median drawn from vertex C and b cannot be the angle 
bisector drawn from the same vertex, since their existence depends on the triangle 
configuration, hence we cannot make sense of the theorem using these configurations. 
Our current research is investigating how, in order to discuss these situations, a class 
discussion on the verifier and falsifier dynamic and on the transformations produced 
on soft diagrams with the dragging tool in DGE may be managed.  
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ANALYSING THE ROLE OF LANGUAGE IN STUDENTS’ 
CONCEPTION OF PARALLEL LINES 

Suchismita Srinivas, Jeenath Rahaman, Ruchi Kumar, Arindam Bose 
Tata Institute of Social Sciences 

 
The concept of parallel lines is foundational to much of the work that students need to 
do in high school geometry – especially in reasoning tasks involving parallel lines and 
transversal and in developing a relational understanding of different quadrilateral 
classes. There appear to be a few exceptionally tenacious alternate conceptions related 
to parallel lines amongst students who learn mathematics in Hindi. This is likely to add 
to the already considerable difficulty that students in state-run secondary schools in 
India have in learning Euclidean geometry. This paper examines data from a large-
scale research project to get a nuanced understanding of students’ concept of parallel 
lines and also explores whether a language-related issue might be challenging concept 
formation. 
INTRODUCTION 
The teaching and learning of Euclidean geometry at the secondary level is a complex 
challenge that several researchers and frameworks have tried to address (Battista, 2007; 
Shaughnessy & Burger, 1985) over the past few decades. In the context of learners 
studying in state-run secondary schools in India, formal geometric reasoning and 
proofs, which constitute over a third of the secondary mathematics curriculum, pose 
an even greater challenge. Additionally, there are complexities related to the 
multilingual context of India. A module on Geometric Reasoning (GR) designed for 
the Connected Learning Initiative (CLIx) project aims to address some of these by 
designing learning experiences that factor in the complexity of the challenge, making 
selective use of technology to do so. The GR module attempts to help students progress 
from lower to higher van Hiele levels of reasoning. 
Some diagnostic studies done prior to module development had revealed several 
learning challenges – some of them expected, but also a few unexpected ones – like 
some extremely tenacious alternate conceptions in students’ understanding of parallel 
lines (Srinivas, Khanna, Rahaman, & Kumar, 2016). It was important to understand 
the nature of the challenge faced by learners and address it, since a robust 
understanding of parallel lines is a foundational concept in geometry. It was also 
somewhat curious, since no other study that we came across had stressed these specific 
alternate conceptions previously, even those specifically on parallel lines (Mansfield 
and Happs, 1992). A recent research had discussed the influence of language on 
students’ relational understanding of squares and rectangles (Bussi & Baccaglini-
Frank, 2015). This led us to examine whether something in the language of instruction 
– Hindi, might be influencing students’ concept formation of parallel lines in some 
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manner. It seemed liked an interesting and less-explored problem to study and report 
at the PME. 
THEORETICAL ORIENTATION  
In the secondary classrooms where this study is situated, students are typically 
introduced to formal concept definitions from the textbook and expected to use those 
for reasoning tasks. But contrary to this expectation, it is not the concept definition, but 
a very personalised mental image of the concept that is evoked in each student when 
they have to retrieve a concept for a task. This is what some researchers have called 
“concept image” (Vinner, 1983). Vinner argued that concept definitions “remain 
inactive or even will be forgotten. In thinking, almost always the concept image will 
be evoked.” While teachers at the secondary expect concept formation to be a one-way 
process – a precise formal definition leading directly to a clear and accurate concept 
image, this in fact is not so. The final concept image, which accommodates all features 
present in the formal concept definition and discards the non-essential features, is 
formed and refined over time. Watson and Mason (2002) discussed the idea of 
‘personal example spaces’ and propounded ‘extending the example spaces’ as an 
important aspect of concept formation. We use the idea of concept images and the 
extension of students’ personal example spaces to reveal students’ existing and 
developing understanding of ‘parallelness’.  
SAMPLE, TOOLS AND METHODOLOGY 
Our research is a sub-study done as part of a large-scale learning outcomes study done 
in CLIx. The study on geometry learning, which provided us data for our sub-study 
was undertaken with Grade 9 students in 10 Intervention schools (INT) and 9 non-
Intervention schools (non-INT) in the Dhamtari district of Chhattisgarh, a state in east-
central India. The official language of learning at the secondary level here is Hindi. 
The tools used in the larger study from which we have drawn data for our sub-study 
are mentioned in the table below. 

Tool Description and Purpose Sample  
Pre-test and 

Post-test 
Written assessment tools 
based on van-Hiele levels 

with 8 MCQs + 
constructed response items 

INT: 466 (91.9% of the cohort, paired) 

non-INT: 499 (88.3% of the 
cohort, paired) 

Student 
Interviews 

Interviews done with pairs 
of students immediately 
after the Pre, and then 

again after the Post-test 

4 pairs from each school – 2 
pairs each of high-performing 

and average-performing, 
ensuring equal representation of 

boys and girls 
Observation 

Freewrite 
At least 2 classroom 

observations in each school 
(All students present in class on 

observation days) 



Srinivas, Rahaman, Kumar & Bose 

PME 43 – 2019                                                                                                        3 –  
 

329 

Table 1: List of tools used in the sub-study on parallel lines 
OBSERVATIONS AND ANALYSIS  
According to the data from the MCQ items of the written pre and post-tests, the INT 
group (Gain score 0.93) showed significantly higher (p<0.001) overall learning gains 
than their peers in the non-INT group (Gain score 0.19). This was true even on 
individual items, including those on difficult concepts like understanding hierarchical 
class relationships amongst quadrilaterals. However, both groups had difficulty on the 
item on identification of parallel lines even in the post test. In the following sections, 
we discuss in detail the students’ concept images of parallel lines that were encountered 
and explore a few probable explanations. 
Data from the Pre-test and Post-test 
In this sub-section, we discuss the MCQ items on parallel lines in the written tests.  

 
Figure 1: Test items on parallel lines: ‘In which of these figures are the lines 

parallel?’ (Translated to English, figures numbered here for easy referencing. The 
figures will be referred to as Img.1 to Img.8 in the text) 

 Pre-test    Post-test   

 A B C D  A B C D 

INT 13.3 48.3 21.9 7.3  51.1 12.0 7.8 23.8 

non-INT 11.2 52.3 24.7 7.4  53.7 12.6 6.2 25.3 

Table 2: Performance data on the Pre-test and Post-test items on parallel lines  
In the pre-test, only 21.9% of the students in the INT group, and 24.7% in the non-INT 
selected the correct option. Just over 10% in each group selected option A, perhaps 
intuitively, based on overall appearance. Nearly half the students in each group selected 
option B -indicating, perhaps, that they couldn’t identify unequal parallel line segments 
(Img.4) as a valid example. In the interviews that followed the pre-test, students’ 
concept images were explored through further probing. 
In a bid to understand whether they had a concept definition in place, students were 
asked to explain what they meant by lines being ‘parallel’. Many students could 
retrieve some form of mathematically acceptable definition of parallel lines. Most 
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students who tried to give a formal definition used the ‘lines that never intersect’ 
construct in their definition rather than the ‘maintaining a constant distance’ construct. 
This was especially interesting for two reasons: 

• In Hindi, the language of learning and teaching in these schools, the term for 
‘parallel’ is samaantar (or samaanantar)– which is a conjugation of 
samaan[equal] + antar [distance], a direct statement of the ‘maintaining a 
constant distance’ construct, and 

• their grade 8 textbook defines parallel lines using the ‘constant distance’ 
construct and in the context of state-run schools in India, the textbook is the 
primary (and in most cases, the only) resource and considered sacrosanct.  

The idea of lines that ‘never intersect’ was articulated with varying degree of 
sophistication by the students – ranging from the very mathematical “kabhi pratichhed 
nahi karti [never intersect]”, to the informal “ek doosre ko kaat ti nahi hai” [don’t cut 
each other] or “ek doosre se takrayengi nahi” [won’t collide with each other]. One 
common colloquial phrase used by some students for parallel lines was ‘sojh’ [straight] 
or ‘sojh-sojh’ indicating lines that move ‘straight’ and don’t intersect. A few students 
produced incorrect concept definitions – for instance, one boy who used the term sojh 
interpreted it as ‘horizontal’ and mentioned in the interview that he would choose only 
Img.4 (pre-test) as parallel if that had been an option. 
Interestingly, not even half the students who could produce mathematically acceptable 
definitions in the pre-test could identify Img.4 as parallel. This seemed to indicate a 
gap between the concept definition and the evoked concept image. Data from the pre-
test and interviews revealed that a concept image that students frequently evoked was 
that ‘parallel lines are necessarily equal’. While we foresaw this happening at the pre-
test stage, a considerable change was expected post teaching - especially in the INT 
group, as the GR module had several tasks specifically designed to reveal students’ 
temporary concept images, and ‘extend their example spaces’. Despite this, in the post-
test item too over 50% of students in the INT group chose only Img.5 (Option A), the 
equal parallel lines. This led us to examine whether the Hindi terms being used was 
somehow informing this concept image. Examples from the student interview data and 
the class interactions provided some insights about how the terms used were 
influencing student thinking about these concepts and are discussed in the next sub-
section. 
A classroom snapshot: The story of sam, samaan, samaantar and smaanaantar 
This sub-section reports an excerpt from a classroom discussion between the teacher 
(T) and a group of girls (G1 to G3) that happened in INT-10, one of the INT schools. 
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Figure 2: A snapshot of the blackboard during the classroom discussion on ‘samaan’ 

[equal] vs ‘samaantar’ [parallel] 
The class is discussing properties of shapes and T asks whether the first shape (see 
Figure 2) has equal sides. The students reply ‘yes’ in chorus. T points to sides p and q 
and asks the class if those were the sides that are samaan[equal]. A few students say 
‘yes’, while others, including student G1, disagree. She indicates sides r and s and says 
those are equal. T asks whether they appear to be equal. Some students say ‘no’, but 
G1 and some others say ‘yes’. T ignores those who said yes and confirms that r and s 
are not equal and asks students to justify. A discussion follows: 

G1: Par sir, yahan baraabar nahi bol rahe, samaan bol rahe hain!/ [But sir, they aren’t 
saying baraabar here, they are saying samaanl!] (‘Baraabar’ is the 
colloquial word for ‘equal’ in Hindi, while ‘samaan’ is the formal one.) 

T: Samaan aur baraabar mein kya antar hai? [What’s the difference between samaan and 
baraabar?] 

G1: (indicating sides r and s) ‘Baraabar’ matlab, jaise yeh 2 cm hai toh yeh bhi 2 cm Aur 
samaan mein na sir, usko aage bhi badha sakte hain… (trails off, appearing 
unsure)/ [‘Baraabar’ means if this one is 2 cm then this one is 2 cm too. 
And sir, in samaan, they can be extended further…]  

T then asks G1 and another girl G2 to come up to the board and there is a discussion 
with an isosceles trapezoid drawn on board where G2 uses the construct of ‘lines that 
never intersect’ to explain ‘parallelness’. G1 repeatedly points at the pairs of parallel 
lines during her explanations, using the word samaan for them. At this point T 
specifically asks her to define what ‘samaan’ means. 

G1: Samaan woh hotein hain ‘jo ek doosre ko kabhi nahi kaat ti./ [Samaan means those 
(lines) which never cut each other.] 

T: Usko samaan bolte hain?/ [Are those called ‘samaan’?] 
G1: Samaantar bolte hain sir…/ [They are called samaantar(parallel), sir…] 
T: Toh phir…?/ [Then…?] 
G1: Samaantar matlab samaan hota hai. / [Samaantar means samaan] 
T: Kaun bolta hai?/ [Who says so?] 

At this point, T comes to the board and unpacks the terms used by explaining their 
conjugation: samaanaantar as samaan + antar, and samaantar as sam (also meaning 
equal) + antar (distance), explaining how this actually defines the notion of 
parallelness. The discussion continues and by now many students are seen discussing 
this in their own groups. After a while when T asks if the distinction between samaan 
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and samaantar was now clear, about half the class says ‘yes’. When T is about to move 
on, G1 and G3 stop him and ask him something (inaudible), and again there is a 
discussion on samaan and samaantar. This happens twice. T explains the derivation of 
the terms again and finally asks students to classify a few pairs as examples and non-
examples.  
Post-test interview responses  
In the interview following the post test, G1 was paired with student G3, and an attempt 
made to reveal their ‘personal example spaces’ and the extent of concept formation 
through some extension tasks that had not been part of the interviews done after the 
pre-test. 

 
Figure 3: Extension tasks 1-3 of the Student Interviews and G1’s responses 

On Task 1, both G1 and G3 could individually produce correct examples. However, 
when presented with Task 2, G1 looked puzzled, and her immediate response was “…jo 
samaan hai ussey samaantar bol sakte hain hum” [lines which are equal ‘can be called 
parallel’]. G3 interrupted her to counter this by pointing out Img.7 of the post-test as 
an example that fits the task. G1 pondered over this, and subsequently, both students 
produced correct examples that resembled Img.7, with G1 agreeing that it is indeed 
possible. Further on, in Task 3, G1 could produce an example, and justify why her 
example fitted the task. But her initial response to Task 2 showed that her concept 
images of ‘samaan’ vs ‘samaantar’ were still not quite robust, and she was not able to 
isolate one concept from the other with consistency.  
DISCUSSION  
Based on class observation data and the student interactions, it appeared that a few 
students (like G1, at the initial stages of the reported classroom discussion), and 
possibly those who chose the lines in Img.7 too as ‘parallel’, were unable to discern 
the difference between the two terms and often used them interchangeably. In both pre 
and post intervention interviews, many such students expressly stated that there is no 
difference between ‘samaan’ and ‘samaantar’. However, a much higher percentage of 
students (51.1% in INT group) had a different issue – while they understood the idea 
of ‘parallelness’ as lines or line segments that would never intersect even if extended, 
they assumed equality of length as an essential feature of the concept. This was a notion 
that they found (as the data showed) extremely difficult to discard. This seemed to be 
the case with G1 during the post-test interviews. 
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Several possibilities were explored while trying to figure out the reason why for so 
many students the evoked concept image of parallel lines was of those that would never 
intersect, but were also necessarily equal in length, and why this particular concept 
image was so unshakeable. The examples that students have had prior exposure to, was 
deemed to be a possible influence. However, it did not seem like the most compelling 
one, especially because their previous class (Grade 8) textbook had roughly 20 
examples each of equal and unequal parallel lines (or line segments). 
A more plausible explanation seems to be the linguistic challenge related to the Hindi 
words for the two concepts – ‘samaan’ and ‘samaantar’. This seems plausible in the 
light of this particular notion not having been reported as being widely prevalent, or 
persistent, in hitherto reported studies on students’ concept of parallel lines (Mansfield 
and Happs, 1992). We discuss a few possible ways in which the terms used could be 
impeding students’ concept formation. 
The words samaan and samaantar are close to each other in sight and sound and might 
be causing students to substitute the usage of one for the other. This is compounded by 
the fact that there is a third word in Hindi, called ‘sam’, also meaning equal (among 
other things), which is also used in mathematics, especially in the context of geometry. 
So sam and samaan both mean the same thing (equal), while samaantar (sam + antar) 
and samaanantar (samaan + antar) both mean the same thing too (parallel). In this 
context, we expect students to understand that samaan and samaantar represent two 
different concepts. One more compounding factor here could be that the everyday word 
used by the students for ‘equal’ is not samaan, but barabar. 
Another challenge could be that the word ‘samaan’ is nested in the word ‘samaantar’ 
in its entirety. It is possible that in the students’ mental schema, this results in the 
concept of samaan (equal) being subsumed within the concept of samaantar(parallel). 
It’s important to note that both samaan and samaantar are attributes applicable to the 
entities in question – line segments. This might offer a plausible explanation for 
students’ extreme difficulty in dissociating the equality feature from the concept image 
of parallel lines.  
In their study, Bussi & Baccaglini-Frank (2015) had suggested that the inclusive 
sequence of ideograms in the representation of ‘squares’ and ‘rectangles’ in Chinese is 
perhaps more effective than the separate, everyday names ‘square’ and ‘rectangle’ 
learnt by English speaking students for developing an understanding of their inclusive 
class relationship in later grades. In our context, the inclusion of one unrelated concept 
(samaan) within another in the Hindi term for parallel (samaantar) might perhaps be 
impeding concept formation, making it more difficult for students to separate the 
essential and non-essential attributes of the concept of parallel lines. This is something 
that needs to be studied further. Also, it is not to say that this is the only challenge to 
students’ understanding of parallel lines – there are many others, a few of which have 
been discussed here. It is important for teachers to understand these challenges and 
take up tasks that help in revealing students’ concept images, and weave a discourse 
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around it to reduce the gap between the concept image and the concept definition, in 
order for them to be used effectively in reasoning tasks. 
Additional information 
Study done with Connected Learning Initiative (CLIx). Seeded by Tata Trusts, Mumbai; 
Founding Partners: Tata Institute of Social Sciences, Mumbai and Massachusetts Institute of 
Technology. 

References 
Battista, M. T. (2007). The development of geometric and spatial thinking. In F. K. Lester Jr. 

(Ed.), Second handbook of research on mathematics teaching and learning (pp. 843-908). 
Charlotte, NC: Information Age 

Bussi, M. G. B., & Baccaglini-Frank, A. (2015). Geometry in early years: sowing seeds for a 
mathematical definition of squares and rectangles. ZDM, 47(3), 391-405 

Mansfield, H. M., & Happs, J. C. (1992). Using grade eight students' existing knowledge to 
teach about parallel lines. School Science and Mathematics, 92(8), 450-454 

Shaughnessy, J. M., & Burger, W. F. (1985). Spadework Prior to Deduction in Geometry. 
Mathematics Teacher, 78 (September 1985), 419-428 

Srinivas, S., Khanna, S., Rahaman, J., & Kumar, V. (2016, December). Designing a Game-
Based Learning Environment to Foster Geometric Thinking. Paper presented at the 2016 
IEEE Eighth International Conference on Technology for Education (T4E), Mumbai (pp. 
72-79). doi: 10.1109/T4E.2016.023 

Watson, A., & Mason, J. (2002). Extending example spaces as a learning/teaching strategy in 
mathematics. In A. Cockburn, & E. Nardi (Eds.), Proceedings of the 26th Conference of 
the International Group for the Psychology of Mathematics Education (Volume 4, pp. 
377–385). Norwich, UK: University of East Anglia 

Vinner, S. (1983). Concept definition, concept image and the notion of function. International 
Journal of Mathematical Education in Science and Technology, 14(3), 293-305 

 
 



3 - 335 
2019. In M. Graven, H. Venkat, A. Essien & P. Vale (Eds.). Proceedings of the 43rd Conference of the International 
Group for the Psychology of Mathematics Education (Vol. 3, pp. 335-342). Pretoria, South Africa: PME. 

TEACHERS’ INITIAL RESPONSES TO HIGH-LEVERAGE 
INSTANCES OF STUDENT MATHEMATICAL THINKING 

Shari L. Stockero1, Blake E. Peterson2, Mary A. Ochieng3, Joshua M. Ruk4, Laura R. 
Van Zoest4, Keith R. Leatham2 

1Michigan Technological University, 2Brigham Young University, 3Strathmore 
University, 4Western Michigan University 

 

We investigate teachers’ initial in-the-moment responses to instances of high-potential 
student mathematical thinking (SMT) during whole class discussion to understand 
what it means to productively incorporate SMT into instruction. Teachers’ initial 
responses were coded using the Teacher Response Coding scheme, which disentangles 
the teacher action, who the response is directed to, and the degree to which the SMT 
is honored. We found that teachers incorporated students’ actions and ideas in their 
response, but tended to address the SMT themselves and did not fully take advantage 
of the SMT. We consider the productivity of teachers’ initial responses in relation to 
principles of productive use of SMT and compare the results to those of a previous 
study of teachers’ hypothetical initial responses to SMT in an interview setting. 
The incorporation of student mathematical thinking (SMT) into classroom instruction 
has been a consistent focus of recommendations for effective mathematics instruction 
(e.g., National Council of Teachers of Mathematics, 2000, 2014) and has been 
recognized as a central component of what has been referred to as ambitious (Lampert 
et al., 2013) or responsive teaching (Robertson, Atkins, Levin, & Richards, 2016). 
Research has begun to help us understand how to effectively incorporate students’ 
thinking about a high-level task that they have worked on (e.g., Stein, Engle, Smith, & 
Hughes, 2008), but much less is known about how to effectively respond to and 
incorporate SMT that emerges during mathematics classroom discourse. Research has 
shown, however, that teacher responses matter; the ways in which teachers respond to 
SMT affects student learning in the classroom and can support very different types of 
instruction. For example, Kazemi and Stipek (2001) identified teacher responses that 
contributed to high-press and low-press interactions, with the high-press interactions 
supporting classroom instruction driven by SMT. Ing et al. (2015) studied teacher 
responses that encouraged students to engage with each other around SMT (e.g., asking 
students to explain each other’s strategies and to discuss differences among strategies), 
finding such responses to be correlated with increased student participation and higher 
achievement. Correnti et al. (2015) identified the use of uptake moves—a move to 
“extend, deepen, clarify, or elaborate the discussion” (p. 308)—as a key difference in 
the responses of two teachers who enacted instruction aligned with traditional versus 
ambitious mathematics teaching, with this move accounting for four times as many 
responses in the classroom aligned with ambitious instruction. This suggest that the 
use of this move could be a key difference between such classrooms. 
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One issue related to responding to SMT is that not all student thinking has the same 
potential to provide leverage for accomplishing mathematical goals, and thus, does not 
all warrant the same response. We are interested in understanding how teachers might 
most productively respond to particular instances of student thinking that have high 
potential to advance student learning, those we have identified as MOSTs—
Mathematically Significant Pedagogical Opportunities to Build on Student Thinking 
(Leatham, Peterson, Stockero, & Van Zoest, 2015). In prior work we have developed 
the MOST Analytic Framework, a tool to identify instances of student thinking that are 
MOSTs (Leatham et al., 2015), but we are only beginning to understand effective 
teacher responses to MOSTs. In Stockero, Van Zoest, Peterson, Leatham, & Rougée 
(2017) we investigated teachers’ descriptions of how they would respond to a common 
set of MOSTs in a scenario-based interview. This study provided some important 
insights into initial teacher responses, including that such responses most often were 
directed to the student who had contributed the MOST, aimed to develop or justify the 
student contribution, and incorporated the students’ words and ideas. However, we do 
not know the extent to which these hypothetical responses that teachers described in 
the scenario interview reflect teachers’ actual responses during instruction. Thus, the 
study reported here addresses the question: What are the characteristics of teachers’ 
initial in-the-moment responses to MOSTs that surfaced during their instruction? We 
use these characteristics to discuss the productivity of various teacher responses. We 
also compare teachers’ responses during instruction to a set of hypothetical responses 
during a scenario interview. Better understanding teacher responses will contribute to 
our understanding of the current state of the practice of responding to MOSTs, as well 
as what it means to productively incorporate high potential student thinking into 
instruction. 
THEORETICAL FRAMEWORK  
MOSTs are instances of SMT that are particularly worth noticing and acting upon since 
they have high potential to help students better understand important mathematical 
ideas if made the object of consideration by the class. As we have described elsewhere 
in greater detail (Leatham et al., 2015), MOSTs simultaneously satisfy three critical 
characteristics of student contributions: student mathematical thinking, significant 
mathematics, and pedagogical opportunity. We see these instances as those worth 
building on—that is, “student thinking worth making the object of consideration by the 
class in order to engage the class in making sense of that thinking to better understand 
an important mathematical idea” (Van Zoest et al., 2017, p. 36). As elaborated 
elsewhere (Stockero et al., 2017), our conception of productive use of MOSTs is 
grounded in four core principles of quality mathematics instruction (Figure 1) that we 
distilled from current research and calls for reform (e.g., NCTM, 2014). Thus, to 
determine the productiveness of a teacher response to a MOST, we focus on the extent 
to which the response effectively coordinates these core principles. 
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Mathematics Principle: The student mathematics of the MOST is at the forefront.  
Legitimacy Principle: Students are positioned as legitimate mathematical thinkers.  
Sense-making Principle: Students are engaged in sense making.  
Collaboration Principle: Students are working collaboratively.  

Figure 1: Principles underlying productive use of MOSTs (Stockero et al., 2017) 
METHODOLOGY 
This study is part of a larger project focused on understanding what it means for 
teachers to build on SMT during classroom instruction (see BuildingOnMOSTs.org). 
The larger MOST project analysed 11 videotaped mathematics lessons from 6-12th 
grade mathematics classrooms from different geographical regions of US that reflected 
diversity of teachers, students, mathematics topics, and curricula. None of the teachers 
had training specific to responding to MOSTs. 
The data analysis of these lessons for this study focused on two different units of 
analysis: an instance of student thinking and the teacher’s initial response to that 
instance. In prior work, we analysed each instance of student thinking that occurred 
during whole-class interaction to identify those that were MOSTs. In the current study, 
we analysed the initial teacher response, our second unit of analysis, to each MOST 
found in the data. We operationalized a teacher response as the collection of 
observable teacher actions that begins as a given instance of SMT ends and concludes 
when the initial teacher turn ends or there is a clear shift to a different activity.  
In the 11 video-taped classroom lessons, we identified 251 MOSTs for which a teacher 
response was inferable. We applied the Teacher Response Coding Scheme (TRC) 
(Peterson et al., 2017) to each of these responses. Figure 2 provides the TRC coding 
categories, definitions and codes. 
RESULTS 
Our analysis revealed that some aspects of teachers’ initial responses to MOSTs 
aligned well with the principles underlying productive use of MOSTs while others 
were less aligned with these principles. We begin by discussing the Student 
Recognition aspects of teacher responses, which generally showed good alignment 
with the principles. We then discuss the most common Actor and Action codes in the 
data and discuss how, in many cases, the alignment of these aspects of teacher 
responses to the principles could be enhanced with variations in the responses.  
Student Recognition of Actions and Ideas  
We capture the extent to which teachers honoured student thinking in their initial 
response to a MOST using the categories Recognition-Student Action and 
Recognition-Student Idea. Recognition-Student Action (as described in Figure 2) is the 
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Category Coding Category Description Codes 

Actor Who is publicly given the opportunity 
to consider the instance of student 
mathematical thinking 

teacher, same student(s), other 
student(s), whole class 

Student 
Recognition 
 

Recognition-Student Action: The 
degree to which the teacher response 
uses the student action, either verbal 
(words) or non-verbal (gestures or 
work) 

explicit, implicit, not 

Recognition-Student Idea: The extent to 
which the student is likely to recognize 
their idea in the teacher response 

core, peripheral, other, not 
applicable 

Action What the actor is doing or being asked 
to do with respect to the instance of 
student thinking 

adjourn, allow, check-in, clarify, 
collect, connect, correct, 
develop, dismiss, evaluate, 
justify, literal, repeat, validate 

Figure 2: Teacher Response Coding Scheme (TRC). 
extent to which the teacher response uses the student action, either verbal (words) or 
non-verbal (gestures or written work). About 70% of the teacher responses to MOSTs 
used either the student’s specific actions (coded as explicit; see example below) or 
referred to the student’s actions using pronouns or other referents (coded as implicit; 
see Table 1). The remaining 30% of the teacher responses did not explicitly or 
implicitly use the student actions (coded as Not). 

  Student Ideas 
  Core Peripheral NA Other Total 

Student 
Actions 

Explicit 95 15 3 2 115 (46%) 
Implicit 54 5 5 1 65 (26%) 
Not 23 14 31 3 71 (28%) 
Total 172 (69%) 34 (14%) 39 (16%) 6 (2%) 251 

Table 1: Recognition of student actions and ideas. 
In the Recognition-Student Idea category, about two thirds of the teachers’ initial 
responses were coded as core to the student mathematics of the MOST (see example 
below). This means that the teacher response focused on a main idea of the MOST in 
a way that the student who contributed the instance would likely recognize the idea as 
their own. Only 2% of the teacher responses for Recognition-Student Ideas focused on 
an idea that did not seem to be related in any way to a main idea of the MOST. 
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It is worth noting that about 82% (95 out of 115) of teacher responses to MOSTs that 
were coded as Explicit for Recognition-Student Action were also coded Core for 
Recognition-Student Idea. Similarly, 83% (54 of 65) of the responses that were coded 
as Implicit for Recognition-Student Action were also coded Core for Recognition-
Student Idea. As an example of a response that is Explicit and Core, consider an 
instance where students were finding the lengths of the sides of similar triangles. A 
student said, "Oh wait, you can have any number for side A. You just have to use the 
corresponding… you just have to use the rules to get sides B and C." In response, the 
teacher asked the student who contributed this idea, “So what are the rules to get sides 
B and C if you start with side A?" This teacher response used the student’s words and 
focused on a main idea of the MOST in a way that the student would likely recognize 
the idea as their own. Our results indicate that teachers are honouring students’ thinking 
to a great extent in their responses by using the student actions and focusing on the 
students’ ideas. This is important because such responses align with the first principle 
of productive use of MOSTs (see Figure 1), the Mathematics Principle, since the 
mathematics of the MOST is at the forefront. 
Actor and Action 
Six moves occurred most frequently in the data (clarify, develop, dismiss, evaluate, 
literal and repeat), collectively accounting for two-thirds of all teacher initial responses 
(Table 2). Three of these actions—dismiss, literal and repeat—clearly do not position 
students to make sense of the SMT because they either let the instance pass by 
(dismiss), or require only a minimal response (literal, repeat). Yet, they made up about 
38% of the data. For example, in a calculus class a student said that they had used the 
quotient rule on ∫ ��

Uz��
𝑑𝑥 and got ��

Uz��
. The teacher responded to this incorrect answer 

by directing the whole class, “OK, the quotient rule. Tell her when you use the quotient 
rule.” Rather than directly asking the other students to engage with the student’s 
mathematics, the teacher instead asked them to give a literal response—factual 
information about the use of the quotient rule. Additionally, of the 95 response that fell 
into these three categories of actions, 56 (59%) also had a teacher actor, meaning the 
teacher did not use the action to engage students in the instance at all. Given that the 
instances of SMT in our data were all MOSTs, the abundance of such responses results 
in a lot of lost opportunities for students to make sense of important mathematics, and 
thus do not support the Sense-making Principle. 
The other three predominant actions in the data have more potential to support 
building. Clarify actions (11% of the data) seek to make the instance of SMT more 
precise. Develop actions (10%) provide or ask for an expansion of the instance that 
goes beyond a simple clarification but does not require a justification. Evaluate actions 
(9.3%) provide or ask for a determination of the correctness of the SMT. These actions 
have potential to position the class to make sense of the SMT (and thus support the 
Sense-making Principle), either by making clearer the student thinking they are going 
to consider or by asking them to engage with the thinking in some way. As with the  
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 Actor 
Move Same Student Whole Class Teacher Total in Data Set 

Literal 8 20 17 46 (18%) 
Clarify 10 1 16 28 (11%) 

Repeat 8 2 16 26 (10%) 
Develop 11 5 9 25 (10%) 
Dismiss 0 0 23 23 (9%) 
Evaluate 3 14 6 23 (9%) 
Total in Data Set 56 (23%) 69 (27%) 116 (46%) 251 

Table 2: Summary of subset of actor and moves codes discussed in the paper. 
actions discussed previously, however, clarify and develop most often had a same 
student or teacher actor, meaning that the engagement that would result from the action 
would likely be quite limited. Evaluate moves were the only one of these potentially-
productive moves that most often engaged the whole class. 
To illustrate why it is more productive for teachers to direct their initial responses to 
MOSTs to the whole class, consider the previously-discussed instance related to 
finding the lengths of the sides of similar triangles. The teacher response, “So what are 
the rules to get sides B and C if you start with side A?" was directed to the student who 
contributed the idea. In directing the response in this way, it engaged the contributing 
student in developing their idea, but it limited the opportunity for other students in the 
class to engage with the important mathematics of similarity, and thus did not support 
the Collaboration Principle. This broader engagement could have easily been achieved 
had the teacher instead directed the same question to the whole class. 
DISCUSSION AND CONCLUSION 
The high level of honouring student thinking that we observed in the use of the student 
actions and the incorporation of student ideas aligns with the principles underlying 
productive use of MOSTs (Figure 1) by putting the student mathematics of the MOST 
at the forefront, and by positioning students as legitimate mathematical thinkers. Also, 
with nearly half of the initial responses to MOSTs engaging either the same student or 
the whole class, the data indicates that students are being given the opportunity to 
engage with each other’s thinking—a component of the Collaboration Principle. Since 
the instances to which the teachers are responding to are MOSTs, however, they are 
instances that the whole class could engage with, making the move of going back to 
the same student a missed opportunity for students to work collaboratively and thus for 
the response to fully align with the Collaboration Principle. 
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A comparison of the results of the actor coding in this study to the hypothetical 
responses to the scenario interview discussed in our previous work (Stockero, et al., 
2017) provides additional insight into the extent to which teachers’ initial responses 
align with the principles underlying productive use of MOSTs. In both settings, teacher 
responses were directed to the whole class about one fourth of the time. The teachers’ 
hypothetical responses had a teacher actor 6% and a same student actor 65% of the 
time, but in the actual classrooms reported in this study, the teacher was the actor 46% 
and the same student was the actor 23% of the time. In both settings, we only examined 
teacher responses to MOSTs—instances which could be productively turned over to 
the whole class. Thus, regularly having the same student as the primary actor in the 
hypothetical study or the teacher as the primary actor in this classroom study leaves 
the whole class actor as a distant second choice in both situations, implying many 
missed opportunities for the class to engage in collaborative sense making 
(Collaboration Principle). Additionally, having the teacher as the actor in nearly half 
of the instances in this study misaligns with the Legitimacy Principle, since responses 
with this actor do not position students as legitimate mathematical thinkers. 
Also, in our hypothetical work, over half of the initial teacher responses asked students 
to develop or justify their thinking–two actions that are of importance when attempting 
to engage students in sense making. Unfortunately, in this study, only about a quarter 
of responses included these two types of actions. The three most common actions in 
the classroom study, which account for just over half of teacher responses, were literal, 
dismiss, and evaluate–moves that do not align with the Sense-making Principle. 
While the results of this study have some positive aspects in the ways SMT is used, we 
can see that, as a whole, the initial teacher responses in our data are not as well aligned 
with ambitious or responsive teaching as the responses that teachers gave to interview 
scenarios in our prior work. We acknowledge that this weak alignment may have 
resulted from our methodological choice of only examining the initial teacher response 
and that subsequent teacher turns may align better—an area for future research. This 
weak initial alignment, however, suggests that the ways that teachers want to or think 
they should respond to SMT are difficult to enact in the moment that decisions about 
responding are made, highlighting the complexity of enacting ambitious teaching. An 
area for future research could be to examine possible reasons for this disconnect. 
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TACTILE CONSTRUCTION OF MATHEMATICAL MEANING: 
BENEFITS FOR VISUALLY IMPAIRED AND SIGHTED PUPILS 

Angeliki Stylianidou, Elena Nardi 
University of East Anglia 

 
Tactile perception in inclusive mathematics education has been associated mostly with 
visually impaired (VI) pupils. We endorse an alternative perspective: that tactile 
perception can be of high relevance to the mathematical learning of sighted pupils too. 
Here, we report from a study in which we explore the impact of universally designed 
mathematical practices upon the mathematical learning of VI and sighted pupils in 
class. In the episodes we report here, we invited the VI pupil and the sighted pupils of 
a Year 5 (Y5) class to construct meaning of shapes through touch. We found that tactile 
perception led not only to better inclusion of the VI pupil but also brought benefits to 
sighted pupils too. We conclude with our study’s aim to contribute to inclusion and 
challenge ableism in the mathematics classroom. 
INTRODUCTION 
Inclusive education has been an issue of international consideration especially since 
the Convention on the Rights of Persons with Disabilities (CRPD) (United Nations, 
2006). Article 2 of the CRPD defines two different ways in which inclusion can be 
achieved: “reasonable accommodation” and “universal design”. The former denotes 
modification and adjustments which are done to ensure that people with disabilities 
enjoy all human rights and fundamental freedoms on an equal basis with others, 
without imposing a disproportionate or undue burden. The latter denotes the design of 
environments, services and tools that can be used by every person, to the biggest extent 
possible, without the necessity for adaptation or specialised design.  
In the study we draw from in this paper, we focus on the inclusion of VI pupils in 
mathematics lessons. We investigate how inclusion and disability are constructed in 
the discourses of teaching staff and pupils in mainstream mathematics classrooms; and, 
we examine how collaboratively designed mathematics lessons impact upon teaching 
staff’s and pupils’ (both VI and sighted) discourses on inclusion and disability. Our 
work resonates with studies (e.g. Nardi, Healy, Biza, & Fernandes, 2018) which 
challenge “ableism” in mathematics education – the “network of beliefs, processes and 
practices that produce a particular kind of self and body (the corporeal standard) that 
is projected as the perfect, species-typical and therefore essential and fully human” 
(Campbell, 2001, p. 44) and which objects to a perspective on disability “as a 
diminished state of being human” (p. 44). 
A conjecture that our study explores is whether, and if so how, universally designed 
mathematical practices lead not only to better inclusion of VI pupils but also bring 
benefits to all pupils. In this paper, we discuss the impact of one tactile mathematical 
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task upon the mathematical learning of both VI and sighted pupils. We present 
evidence from one classroom task. We include evidence of a mathematical 
contribution, made by a sighted pupil, which involves tactile as well as visual 
perception of a shape that is a circle minus a circular segment. We then include 
evidence of a mathematical contribution, made by a VI pupil, which involves tactile 
perception of the same shape and of a circle. We highlight the benefits that the pupils’ 
tactile constructions of mathematical meaning have generated and we conclude with a 
broader discussion of these benefits as they emerge from the study’s ongoing analyses. 
LITERATURE REVIEW AND THEORETICAL FRAMEWORK 
Vygotskii (1993) suggested that, in VI pupils, the substitution of their eyes with their 
hands may result in the emergence of perspectives that differ from those of sighted 
pupils, due to the difference in the sensory tool through which they access mathematics 
and construct mathematical meaning. In the context of mainstream mathematics 
classrooms with VI and sighted pupils, tactile perception has been associated mostly 
with VI pupils (e.g. Argyropoulos & Stamouli, 2006; Leuders, 2016).  
This association of tactile perception with visual impairment often results in the 
inclusion of VI pupils through accommodations of visual materials typically used for 
sighted pupils. While in some cases accommodations are successful – e.g. design of 
tactile shapes for the VI pupil while the rest of the class used the visual shapes of the 
school textbook (Argyropoulos & Stamouli, 2006) – in other cases such 
accommodations have limitations. The limitations can be technical or affective and 
social. Technical limitations constitute, for example, interpretation of mathematical 
notations as images by a screen reading software (JAWS) as well as errors and missing 
elements in Braille textbooks (Bayram, Corlu, Aydın, Ortaçtepe, & Alapala, 2015). An 
example of affective and social limitations is found in the adaptation of a visual task 
with linear patterns represented with dots of two colours. The provision of counters 
with different textures instead of different colours may lead to processing overload for 
the VI pupils and also to difficulties in their communication with sighted pupils on the 
mathematical task (Leuders, 2016). 
Acknowledging the limitations of the above adaptation, Leuders (2016) suggests the 
implementation of the linear pattern task through a universally designed practice: the 
transformation of the visual task to an auditory task, which will be the same across the 
entire class. Leuders’ suggestion, alongside suggestions of other researchers, e.g. 
Healy, Fernandes and Frant’s (2013) work on multimodal mathematical tasks, are 
starting to shift the long-established perspective on tactile perception from the VI 
pupils to the entire class. Healy, Fernandes and Frant (2013) argue that the multimodal 
nature of mathematical representations, which meets the sensory needs of every pupil 
in the classroom, benefits not only the pupils with sensory impairments but also the 
pupils with no sensory impairments in that it allows them to develop a range of ways 
to think mathematically (Healy, Fernandes, & Frant, 2013). 
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The enrichment of sighted pupils with mathematical opportunities provided through 
multimodal tasks, in combination with the affective and social limitations frequently 
caused to VI pupils through problematic accommodations, have led us towards 
designing tactile mathematical tasks and trialling them with the entire class. 
Our study’s theoretical framework is sociocultural and draws upon: Vygotskian 
sociocultural theory of learning (Vygotskii, 1993); Sfard’s discursive perspective, 
known as the theory of commognition (Sfard, 2007); the social model of disability 
(Oliver, 2009); and, the theory of embodied cognition (Gallese & Lakoff, 2005). In this 
paper, we focus on the discursive activity of a sighted pupil and of a VI pupil from the 
same class. We use the theory of embodied cognition (Gallese & Lakoff, 2005) to 
analyse the two pupils’ mathematical contributions which are constructed through 
bodily tools. We draw upon Vygotskii’s theory of mediation (1993) to explore the 
different mathematical meaning making within each pupil. 
In what follows, we present the study’s context, participants and methods. We then 
sample from the data with two episodes which evidence tactile construction of 
mathematical meaning about shapes by the pupils. We conclude with highlighting the 
benefits of tactile meaning making upon all pupils and make the case that these benefits 
are a key feature of inclusive mathematics classrooms. 
METHODOLOGY 
The study we draw from in this paper constitutes part of the first author’s doctoral 
thesis [see (Stylianidou & Nardi, 2018) for further information on the study]. Data 
collection was conducted in four UK mainstream primary mathematics classrooms 
(one Year 1, one Year 3 and two Year 5 classes; pupils’ ages: 6-10). The VI pupils’ 
presence and the willingness of teaching staff and pupils to participate in the study 
constituted our criteria for the selection of the classrooms. We collected data after 
securing ethical approval by our institution’s Research Ethics Committee and ensuring 
participant anonymity, confidentiality and right to withdraw from the study. 
We collected data through observations of 29 mathematics lessons (33.5 hours in total); 
individual interviews with 5 class teachers (6 interviews, 2 hours and 10 minutes in 
total); individual interviews with 4 teaching assistants (6 interviews, 2 hours and 15 
minutes in total); focussed-group interviews with 35 pupils (16 interviews, 2 hours in 
total); 2 ten-minute individual interviews with one pupil; written transcripts of the 
teaching staff’s contributions in the design of the three lessons that constituted an 
intervention phase of the study; photographs of the pupils’ work in the three 
intervention lessons; and, pupils’ evaluation forms of the intervention lesson in two 
classes.  
During observations, written notes were kept in all lessons. 21 lessons were audio-
recorded and 14 lessons were also video-recorded. All interviews were audio-recorded, 
except four, following interviewee requests. For these, written notes were kept instead. 
Data analysis is ongoing and consists of analysis of inclusion and disability discourses 
of teaching staff and pupils in the mathematics classroom, both before and after the 
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design and implementation of intervention lessons. Our analysis focuses on the impact 
of classroom practices upon the participating pupils and teaching staff. It is with this 
focus that our study’s conjecture – outlined in the Introduction – is explored. 
The mathematical task that is the focus of the episodes we present in this paper is as 
follows. The teacher asks the class to close their eyes and describe two shapes (see 
Figure 1, hereafter we call the second shape “Shape X”), both of which were 
constructed with Wikki Stix. The shapes were constructed on the same white A4 paper 
and copies of the paper were given to the class. Wikki Stix is a flexible teaching tool 
made of a wax and yarn combination and can be used for VI pupils’ learning. In this 
paper, we focus on Shape X. At some point during the pupils’ engagement with the 
task, the teacher also gives circles of various colours and sizes to the class and asks 
them the difference between Shape X and these circles. 
In this task, we wanted to invite the entire class to explore mathematics through touch. 
We saw this invitation as potentially beneficial for both the VI and the sighted pupils: 
it would make the VI pupil feel that he is no more the only child in class who accesses 
mathematics differently from his peers. It would increase the sighted pupils’ familiarity 
with a sense which is mostly associated with VI pupils and often under-used by sighted 
pupils. Furthermore, being aware of the characteristics of vision and touch – vision is 
wholistic and touch is gradual, allowing the exploration of an object from its individual 
parts to its whole (Ochaita & Rosa, 1995) – we wanted to explore whether vision may 
generate a misinterpretation of the two shapes (Shape X, for example, at first glance 
may be perceived as a circle) and whether touch may generate a more accurate 
interpretation of the shapes. In any case, we have argued that inviting the entire class 
to explore mathematics through touch could possibly lead to broadening everyone’s 
perspectives on what constitute valid mathematical practices. We use pseudonyms for 
the pupils. 

 
Figure 1: The two shapes made with Wikki 

Stix. Shape X is a circle minus a circular 
segment. 

 
Figure 2: Luke holding the yellow 
circle. 

TWO Y5 EPISODES: TACTILE CONSTRUCTION OF SHAPES 
The following episodes come from a recapping lesson on mathematical topics in a Y5 
class. One of these topics was shapes. Luke is the VI pupil of this class, is blind in one 
eye and has reduced vision in the other. The class has a general teaching assistant who 
supports pupils that need help at particular instances and whose role is not on 
supporting the VI pupil specifically. On the day of the lesson implementation, the 
teaching assistant was not in the classroom and the teacher was the only member of 
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teaching staff in there. We will first present the contribution of a sighted pupil (Zak), 
made while in conversation with the first author, on Shape X. His contribution consists 
of two parts: in the first part he accesses the shape through touch and in the second part 
he accesses it visually. We noted that Zak’s tactile contribution was common among 
pupils in the class, including the VI pupil, and we have selected Zak as typical. We will 
then present the contribution of the VI pupil (Luke), to the entire class, on the 
difference between Shape X and a circle (the yellow circle seen in Figure 2). 
A factual account of the episodes 
Shape X: Zak’s contribution 
During the entire lesson, the first author was sitting next to Luke. Zak was sitting in 
Luke’s table too. At some point during the pupils’ engagement with the shapes in 
Figure 1, Zak talks to the first author and tells her that he feels a straight line segment 
on Shape X when he has his eyes closed while that it is not that clear for him that there 
is a straight line segment when he actually opens his eyes and sees the shape.  
Difference between Shape X and the circle: Luke’s contribution 
When the teacher invites the class to share their experiences of the two shapes in Figure 
1, the conversation turns to Shape X. Luke then proposes the following comparison 
with the yellow circle.  

 “With the normal circle like this [he shows and grabs the yellow circle] feels like, feels 
like it’s gonna roll more [he positions the yellow circle as if it is ready to roll]. That one 
[he shows Shape X] feels like it’s just gonna bob up and down.” 

A preliminary analytical account of the episodes 
Zak’s contribution 
Zak constructs different meanings of Shape X through touch and through vision. While 
he confidently states the existence of a straight line segment when he feels the shape 
with his hands, he does not clearly see a straight line segment when he sees the shape 
with his eyes. Drawing upon Vygotskii’s (1993) theory of mediation, according to 
which material, semiotic and sensory tools impact upon the construction of meaning, 
we attribute Zak’s different mathematical constructions to the different sensory tools 
through which he accesses the shape each time: his hands and his eyes.  
Drawing upon the theory of embodied cognition, according to which concepts – and 
therefore mathematical constructions – are embodied (Gallese & Lakoff, 2005), we 
relate each of Zak’s mathematical constructions to the characteristics of the 
corresponding sensory tool. Zak clearly feels the straight line segment with his hands, 
possibly because tactile perception is characterised by gradual perception of an object, 
allowing the exploration of the object from its individual parts to its whole. So Zak had 
to trace Shape X gradually and successively to be able to perceive it as a whole. On the 
other hand, Zak does not clearly see the straight line segment with his eyes, possibly 
because visual perception is wholistic, namely allows the perception of the entire object 
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at once. Since the straight line segment covered only a small part of Shape X – and the 
curved part dominates the shape – Zak’s uncertainty regarding the existence of a 
straight line segment when he sees the object with his eyes is understandable. We may 
even surmise that Zak would not have noticed the straight line segment at all with his 
eyes if he had not firstly perceived the shape with his hands.  
We have evidence that Zak appreciated tactile construction of mathematical meaning 
about shapes. In the evaluation form of the lesson, Zak wrote that he liked “the hidden 
facts on the shapes” (Figure 3).  

 
Figure 3: Zak’s response to what he liked on the shape task 

We see Zak’s statement as evidence in favour of the conjecture our study explores. He 
benefited mathematically through touch and he also appreciated a form of perception 
that is mostly associated with VI pupils – we note that he is aware of Luke’s learning 
Braille at school, and his own experience with tactile meaning making in mathematics 
may indeed help him develop a non-ableist (Campbell, ibid) perspective on the 
mathematical learning and capabilities of VI pupils. 
Luke’s contribution 
Luke makes different meanings of the circle and of Shape X through touch. He feels 
that the circle is going to roll more – while Shape X is not; it is instead going to “bob 
up and down”. Drawing upon Vygotskii’s (1993) theory of mediation, we attribute 
Luke’s different mathematical constructions to the different material tools which he 
accesses each time: the circle and Shape X. Therefore, while in Zak’s case the material 
tool is the same in both cases and the sensory tool changes each time, in Luke’s case it 
is the other way around: the sensory tool is the same in both cases and the material tool 
changes each time. We see Luke’s use of the word “normal” as acknowledgement that 
Shape X is not a circle. We also note that Luke’s description of Shape X does not come 
from an actual practical implementation of the rolling of the shape but from imagining 
the shape doing so. We see his imagining the rolling of the shape as an instance of what 
Gallese and Lakoff (2005) label as “embodied imagination” (p. 456). 
We see Luke’s meaning making about Shape X and the circle (“rolling”, “bobbing up 
and down”) as quite different from those of the other pupils who – as evidenced in the 
data we collected from this lesson – mostly draw upon properties of shapes and whose 
contributions relate to the description of shapes in school textbooks. We see Luke’s 
contribution not only as different but also as refreshingly practical. For example, before 
Luke, Zak said that in a circle “you need everything to have a slight edge”. We also 
note that Luke’s contribution, especially his description of a circle, was highly 
appreciated by the teacher, who integrated it into his lesson and initiated its further 
discussion with the entire class. We see the teacher as “attuning” (Nardi et al., 2018, p. 
154) his lesson to the mathematical productions of a VI learner and we argue that 
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inviting the class to participate in tactile construction of mathematical meaning about 
shapes not only resulted in Luke’s better inclusion – he takes centre stage in parts of 
the lesson – but also benefited others in class. 
DISCUSSION AND CONCLUSION 
In this paper, we see evidence in favour of our conjecture: tactile perception may lead 
not only to better inclusion of VI pupils but can also bring benefits to sighted pupils, 
too. We see these benefits as a key feature of inclusive mathematics classrooms. 
Similar benefits emerged in other mathematical topics, e.g. numbers, in which we 
invited the entire class to access mathematics through touch. More examples of 
mathematical tasks and of generated benefits will be included in the first author’s 
doctoral thesis and subsequent papers. Based on our findings with regard to the benefits 
of tactile perception upon both VI and sighted pupils, we can argue that tactile 
perception of both VI and sighted pupils has the potency to generate multiple benefits 
to all pupils in inclusive mathematics classrooms. We envisage that more tactile tasks 
will be designed and trialled in inclusive mathematics classrooms with all pupils. 
Our evidence and analyses resonate with Healy, Fernandes and Frant’s (2013) 
argument about the impact that universally designed tasks may have upon the entire 
class: tactile construction of mathematical meaning benefits both the VI pupil and the 
sighted pupils, in that it allows them to develop a broader repertoire of ways to think 
mathematically. We see the invitation of the entire class to experience mathematics 
through the same sensory tool as a way to challenge ableism in the mathematics 
classroom and also as a way to create more inclusive mathematics classrooms. 
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BEYOND A SHADOW OF A DOUBT: DO FIVE TO SIX-YEAR-
OLDS RECOGNIZE A SAFE BET? 

Anne-Sophie Supply, Wim Van Dooren, Patrick Onghena 
University of Leuven 

 

The present study investigated 5- to 6-year olds’ ability to distinguish a certain from 
an uncertain outcome when both were simultaneously presented in a probability game 
context. Three hundred and eighty-two children had to decide which of two boxes had 
the highest probability of blindly drawing a desired element. In five items, one box 
contained desired and undesired elements (uncertain outcome), while the other box 
contained only desired elements (certain outcome). The results showed that children 
within the same year of kindergarten strongly differed in their ability to distinguish a 
certain from an uncertain outcome. Age and sex were not predictive for these 
differences. Children’s performance on this task was predictive for their performance 
on a task about comparing probabilities of only uncertain outcomes. 
INTRODUCTION 
Uncertainty is omnipresent in our everyday lives, which in turn justifies why we would 
want students to learn about probability (Gal, 2005). The lack of probability as a subject 
in many elementary school curricula (Langrall, 2018) might be explained by the fact 
that Piaget and Inhelder (1951/1975) concluded that the complete understanding of the 
probability concept can only be achieved in the formal operational stage, starting 
around the age of 11 (Jones & Thornton, 2005).  
However, views of Piaget & Inhelder (1975) are challenged by more recent studies that 
investigated children’s ability to identify the best of two sets (i.e., the best sample 
space) to blindly draw a desired element from. In such studies, children had to select 
the best set by comparing the probabilities of a favourable outcome in two different 
sample spaces that contained more than one possible outcome. Falk, Yudilevich-
Assouline, and Elstein (2012) found that children already as young as 8 were generally 
able to choose by the greater probability, which is the only correct rule. Denison and 
Xu (2014) even suggested that infants show sensitivity to proportions when comparing 
the likelihood of an outcome in two different sample spaces. Given these examples, it 
is no surprise that more and more authors advocate for the introduction of probability 
as a study domain in the early grade mathematics curricula (e.g., Langrall, 2018).  
Despite of the growing body of evidence suggesting that young children have some 
notion about chance, there is little agreement regarding the age at which children 
understand the different key ideas in probability (Lajoie, 1998). In order to develop 
instruction for young children, it is therefore important to learn more about the onset 
and (natural) development of these key ideas. Jones, Langrall, Thornton, and Mogill 
(1997) suggested that the recognition of certain or impossible events (as opposed to 
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uncertain but possible events) might form the starting point for the development of 
probabilistic reasoning. If the recognition of (un)certainty is, indeed, a precursor for 
other components of probabilistic reasoning, it might be of interest to know the age of 
onset of comprehending the difference between certain and uncertain events. 
Development of the understanding of (un)certainty 
Children’s understanding of the distinction between certainty and uncertainty has been 
assessed in various ways. A well-known paradigm is the box task of Piéraut-Le 
Bonniec (1980). Children receive a box with two holes (one larger than the other) and 
two objects (a pencil that fits through both holes and a marble that only fits through the 
larger hole). They are then informed about the hole (larger or smaller) that was used or 
about the object (pencil or marble) that entered the box and they are asked whether or 
not they are able to know for sure which object is in the box or through which hole the 
object entered the box. In this type of task, children are presented with information and 
are then asked whether or not the information provided suffices to know what 
happened. Children thus need to reflect on what could have happened and use their 
logical reasoning abilities. Horobin and Acredolo (1989) attributed the difficulties that 
young children experienced in an adapted version of the Piéraut-Le Bonniec box task 
to their confusion between possibility and probability. Children are for example, able 
to identify multiple possibilities in an uncertain situation. Thus, they are able to answer 
the question: ‘What can happen?’ However, they are perhaps still unable to assign 
(equal) probabilities to the different possibilities: every possibility has a certain (or the 
same) chance to occur. This might lead children to close on one single possibility, when 
they are asked ‘What happened?’. 
To the best of our knowledge, there is little research on the understanding of the 
difference between certainty and uncertainty in probabilistic situations similar to those 
presented in Falk et al. (2012) and Denison and Xu (2014). This is remarkable, given 
that (degrees of) (un)certainty are inherent in reasoning about probabilities and given 
the popularity of binary choice tasks in research. In one of Piaget and Inhelder’s (1975) 
experiments, children received two sets each containing blank and/or crossed counters 
and were asked which set would yield them the better chance to blindly draw a crossed 
counter. In contrast to the previously mentioned box task, children had to adopt a more 
anticipatory way of reasoning and think about “What will happen?”. They had to make 
predictions when all possible outcomes were directly visible. In the ‘Possibility vs. 
Certainty’ items children received one set only containing crossed counters, while the 
other set contained both types. In these items, choosing the set only containing crossed 
counters implied a safe bet. Piaget and Inhelder (1975) described that children in the 
preoperational stage (until the age of 7-8) were unable to systematically identify the 
‘certainty set’ as the more opportune set. They explained that many of the children in 
this stage are “not at all concerned with the possible cases and consider only the number 
of favourable cases as if that were an absolute number” (p.139). 
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These findings contrast sharply with a more recent study by Girotto, Fontanari, 
Gonzalez, Vallortigara, and Blaye (2016). Not primarily interested in children’s ability 
to distinguish a certain from an uncertain outcome, they nevertheless presented two 
‘Possibility vs. Certainty’ items to 3- to 5-year olds. In the first item, the ‘Certainty 
box’ contained a larger number of target chips than the ‘Possibility box’. In the second 
item, the ‘Certainty box’ contained a smaller number of target chips than the 
‘Possibility box’. Girotto et al. (2016) explained that, for the latter item, children have 
to inhibit the absolute number heuristic (i.e., choosing by the greatest number of 
desired elements). They found that 63%, 91% and 84% of 3-, 4- and 5-year olds, 
answered this first item correctly. The second item, which could be considered more 
difficult, was correctly answered by 54%, 76% and 88% of 3-, 4- and 5-year olds. 
These findings cast doubt on the conclusions of Piaget and Inhelder (1975). With the 
aim of elucidating these differing findings, the current study was set up. 
The present study 
The main aim of the current study was to investigate 5- to 6-year olds’ ability to 
distinguish a certain from an uncertain outcome and whether age and sex predict 
differences in this ability. Furthermore, we were interested in the link between the 
ability to distinguish a certain from an uncertain outcome and the ability to compare 
the probabilities of uncertain outcomes.  
METHOD 
Participants 
The current study is part of a larger longitudinal research project in which we map the 
development of different key mathematical abilities in children from kindergarten until 
the third year of elementary school. Children from 17 different schools in Flanders, 
Belgium participated in the longitudinal research project. Different schools were 
selected to ensure the representation of different socio-economic backgrounds. Parents 
of 410 children consented for participation in the overall project. For the current study, 
data were used of the first wave in which the probability tasks were introduced to the 
children. At that time, children were in the second semester of their third year in 
kindergarten. It is important to bear in mind that during previous waves of the 
longitudinal research project none of the mathematical abilities assessed were related 
to any form of probabilistic reasoning. Because of unavoidable dropout (6.83%) due 
to children moving away and changing schools, 382 children were tested during this 
third wave (194 boys, 188 girls). At the moment of testing, the average age of 
participants was 5.88 years (range 5.15 years to 6.58 years).  
Design and materials 
During this wave of data collection, children were individually tested in three sessions 
of 30 minutes. In each session, children received a collection of tasks assessing the 
different key mathematical abilities that form the focus of the larger longitudinal 
research project. For the current paper, we only focus on the assessment of children’s 
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probabilistic reasoning abilities, and more specifically on the binary choice task 
assessing children’s ability to 1) distinguish a certain from an uncertain outcome and 
to 2) compare probabilities of two uncertain events. Due to the length restriction of this 
report, results of other measures assessing components of children’s probabilistic 
reasoning abilities are not included.  
For the binary choice task, children sat in front of a laptop, operated by the 
experimenter. Children were first introduced to a blindfolded bird on screen and were 
told that the bird loves black berries but hates white and green berries. In every trial, 
the bird could blindly pick a berry from one of two boxes which were filled with a 
different number of berries of the desired and undesired colors. Unlike the bird, 
participants could see the content of every box and they were asked to help the bird by 
deciding which of two boxes was best for the bird to blindly pick a berry from. So for 
each item, children were asked to help the bird by deciding which box would yield the 
bird the highest probability of blindly picking a desired berry. Children had to point at 
the box of their choice. It is important to note that no actual draw took place and that 
children did not receive feedback on the accuracy of their decisions. 
The binary choice task consisted of 29 items of two main categories. The first category 
consisted of five items in which one of two boxes contained only desired black berries, 
while the other box contained desired as well as undesired berries. We will refer to 
these items as the C-items (referring to certainty). To solve these items, participants 
had to notice that one of two boxes contained only desired berries and that blindly 
picking from that box meant certainty of success. For all these items, the number of 
desired black berries was always larger in the ‘uncertain’ box and thus, application of 
the absolute number heuristic would lead to the incorrect choice. The second category 
of items consisted of 24 items (based on the study of Falk et al., 2012) in which 
children, again, had to decide 
which of two boxes was the best 
option for the bird to blindly pick 
from. Now, both boxes contained 
desired and undesired berries, 
thus, children had to compare the 
probabilities of two uncertain 
events. We will refer to these 
items as the P-items (referring to possibility). An example for both types of items is 
shown in Figure 1. Items from both categories were mixed.  

  

Figure 1: Example of one item for each 
category. 
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RESULTS 
Our first interest was children’s 
performance on the C-items. Internal 
consistency for these items was good (α = 
.84). On average children solved 2.37 (sd = 
1.92) out of five C-items correctly. Figure 
2 shows the distribution of accuracies. 
Remarkably, children’s scores followed a 
U-shape: A large group of children 
(44.76%) solved none or just one item 
correctly and a large group of children 
(37.44%) solved four or five items 
correctly. A small group of children 
(17.80%) responded rather inconsistently, 
solving two or three out of five items correctly. Exploring answering patterns of 
children that solved only one item, indicates that in 84% of cases it concerns the same 
item, in which the relative difference between desired elements in the certain and 
uncertain set was considerably smaller than in other items. This item possibly caused 
children who were answering by the largest number of desired berries to ‘accidentally’ 
choose the correct box. Children that solved four out of five items did not consistently 
fail the same item.  
Second, we tested whether age and sex predict variability in children’s scores on the 
C-items. Intraclass correlation coefficient (ICC < .01) and design effect (deff =1.11) 
were first calculated to verify the proportion of variability in scores on the C-items that 
was attributable to the school that children were in. This design effect smaller than two 
indicated an ignorable effect of clustering within schools (Lay & Kwok, 2015). 
Therefore, a regression model with only fixed effects (age and sex as predictors) was 
fitted to the data. Variance explained by the model seemed negligible, with R² < .01 
and no significant evidence for the overall model was found, F(2, 379) = 1.07, p = .34. 
No significant evidence was found for age or sex predicting scores on the C-items. 
Third, we investigated whether children’s performance on the C-items is predictive for 
their performance on the P-items. Again, due to children being nested in schools, the 
intraclass correlation (ICC  = .01) and design effect (deff = 1.23) were first calculated,  
now for the P-items. A regression model with only fixed effects was run, with 
performance on the C-items and age as predictors. Significant evidence for the model 
was found, F(2, 379) = 94.97, p < .001, with R² = .33. Children’s scores on the P-items 
increased with B =.95 (p < .001) for each C-item solved. Comparable to performance 
on the C-items, age was not a significant predictor of performance on the P-items (B < 
.01, p = .13).   
CONCLUSION AND DISCUSSION 
Whereas Girotto et al. (2016) found that most children of this age perform well on the 

 

Figure 2: Distribution of total scores 
on C-items for all participants 
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‘Possibility vs. Certainty’ item, Piaget and Inhelder (1975) suggested that children in 
the preoperational stage are unable to consistently identify the set in which the desired 
outcome was absolutely certain. Findings in the current study provide a more nuanced 
picture of 5- to 6-year olds’ ability to distinguish certain from uncertain outcomes and 
relying on it in their predictions in probabilistic contexts. Results suggest that 5 to 6-
year-old children either did or did not understand the difference between certain and 
uncertain events, as a large group of children performed very well while a second large 
group performed very badly.  
Based on these results, it seems premature to draw general conclusions on 5 to 6-year- 
olds’ abilities to identify certainty. However, a considerable number of children seem 
to consistently identify certainty, while another considerable number of children 
consistently fail to do so. Possibly, around the age of 5 to 6 a transition takes place: 
Children move from not understanding to understanding the implications of certainty, 
and once this shift took place it seems to be an all-or-nothing issue. It is, however, 
unclear whether the children performing around chance level, (1) are to be included in 
the ‘not understanding group’, (2) represent children that were experiencing this 
transition right at the moment of testing, or (3) represent children whose performance 
is explained by measurement error. Longitudinally following the same children on this 
ability, will shed more light on the nature of this transition: Do children move rather 
abruptly from one group to another or does this happen more gradually?  
Comparing our results to those obtained by Girotto et al. (2016), it is important to note 
that in their study, children received the ‘Possibility vs. Certainty’ items after an item 
with both sets containing a sample space with only one possibility (only desired 
elements in one set and only undesired elements in the other set) and before items with 
both sets containing a sample space with different possibilities. Furthermore, 
concerning the ‘Possibility vs. Certainty’ items children first received an item that was 
congruent with the above-mentioned absolute number heuristic. Only afterwards they 
received an item that was incongruent with this heuristic. In the present study, all C- 
and P- items were mixed and the absolute number heuristic would cause children to 
choose the incorrect set for all C- items. Possibly, the first tasks that were presented in 
a set order of complexity in the study of Girotto et al. (2016) (unintentionally) 
functioned as training items, resulting in improved performance on subsequent items. 
If this is true, our results can be interpreted as demonstrating that 5- to 6- year-olds 
differ strongly in their ability to distinguish a certain from an uncertain event when the 
context is less explicit, perhaps even misleading. 
Furthermore, results of the present study provide some first empirical support for an 
association between the ability to differentiate certainty from uncertainty and the 
ability to reason about probabilities (Jones et al., 1997). Future waves of data collection 
within the current longitudinal research project will shed light on the nature of the link 
between both abilities. Does the ability to distinguish certainty from uncertainty indeed 
precede the ability to compare probabilities, or are both abilities two sides of the same 
coin: making the connection between the number of possibilities within a set and the 
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corresponding probability of an outcome (Horobin & Acredolo, 1989)? For example, 
Bryant and Nunes (2012) stated that in many probability problems, the most important 
step is working out the sample space. Perhaps, the ability to imagine all the possibilities 
in simple events explains the link between distinguishing certainty from uncertainty 
and comparing probabilities. 
In future studies, it may help to generate more in-depth insight in differences in 
children’s understanding of the distinction between certain and uncertain outcomes. 
For example, children could be asked to imagine for each item that an actual blind draw 
would take place in the set of their decision. For each item, a scale could be added with  
which children can assess their degree of certainty about the desired element being 
drawn (Horobin & Acredolo, 1989). If scoring well on the C-items, indeed, means that 
these children are able to distinguish certainty from uncertainty, we might expect them 
to indicate that they are 100% sure that the desired outcome will arise in the C-items, 
while they would indicate that they are not absolutely sure about this in the P-items. 
For children that fail C-items, we would not expect such an answering pattern. 
However, before implementing this, we have to know whether children of such young 
age are able to correctly interpret and use this kind of scale. Furthermore, we have to 
be aware that judgements about certainty could also be interpreted as judgements of 
confidence in the correctness of their answer (Piaget & Inhelder, 1975).  
Finally, we are aware that the mere reliance on one type of tasks (i.e., binary choice 
tasks) might have led to an underestimation of children’s probabilistic reasoning 
abilities (e.g., Acredolo, O’Conner, Banks, & Horobin, 1989). The current study was 
not intended to draw more general conclusions. The measures we reported (as well as 
other measures within the longitudinal research project) are intended to inform us on 
specific components of children’s probabilistic reasoning abilities. In this case, their 
ability to identify the certain outcome when two sample spaces, one with only one 
possibility and one with two possibilities, are simultaneously present. However, our 
findings do suggest that some children experience difficulties in putting aside 
deterministic ways of thinking when confronted with uncertain situations. Something 
Falk et al. (1980) recommend to take into account when including probability in the 
mathematics curricula that generally contains topics that are deterministic in nature. Or 
how Falk et al. (1980) put it: “One of the aims of teaching about probability in the first 
grades should be to restore the balance in favour of indeterminism” (p. 202). 
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This paper explores the contingency dimension of university mathematics lecturing 
using the theoretical framework of the knowledge quartet (Rowland et al., 2015). Semi-
structured interviews and lecture observation from eight research mathematicians are 
used to understand and analyse contingent lecturing moments in undergraduate 
mathematics. Findings suggest that research mathematicians deviate from their 
planned agenda for the lesson according to the contingent moments in lecturing. 
Student responses were one of the triggers for contingency in lectures.  
INTRODUCTION  
Contingent moments in mathematics teaching described in past research (Mason & 
Davis, 2013; Rowland, Turner, Thwaites & Huckstep, 2009; Rowland, Thwaites & 
Jared, 2015) suggests, is important for professional development in teaching. 
Contingency is an unplanned event that can happen in mathematics teaching. 
Contingency in mathematics teaching refers to the teacher’s ability to ‘think on their 
feet’ (Rowland et al., 2015) to an unexpected event during teaching. Rowland et al. 
(2015) describe contingency in teaching as the moments where teachers ‘encounter 
unexpected responses or events in the classroom. There could be events, agents and 
actions that can lead to contingent moments in teaching (Rowland et al., 2015). 
Because of the unexpected event, the teacher had to deviate from their planned agenda 
for the lesson. The unpredictability in mathematics teaching is revealed in a contingent 
teaching moment. It is critical to understand how lecturers respond to those contingent 
moments, as it demands considerable knowledge in mathematics and its pedagogy. 
Schoenfeld (1998, p. 18) described these contingent moments as bringing ‘surprises’ 
to the teacher. This paper uses the Knowledge Quartet Framework (Rowland et al., 
2009) to describe and analyse contingent moments in mathematics lecturing at 
undergraduate mathematics courses in a university. The research question addressed 
here is: what is the nature of contingent moments in university mathematics lecturing 
when analysed using the framework of knowledge quartet? 
THEORETICAL FRAMEWORK - THE KNOWLEDGE QUARTET 
Rowland, Huckstep and Thwaites (2005) have used the framework of ‘Knowledge 
Quartet’ as a tool to identify Mathematical Content Knowledge for teaching. Their 
empirical work with primary mathematics teacher trainees led them to conceptualise 
the ‘Knowledge Quartet’. The four pillars of the ‘Knowledge Quartet’ are foundation, 
transformation, connection and contingency. Foundation refers to the teacher’s 
knowledge. Transformation is this knowledge in action, and Connection refers to the 
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connected knowledge required for teaching. The fourth pillar of contingency is the 
ability respond to students’ questions. The focus of this paper is on this dimension of 
the contingency component of the knowledge quartet. This empirical work has its basis 
in the notion that the mathematical content knowledge required for teaching is realised 
through its practice. It gives the prospect for reflecting on teaching and teacher 
knowledge (Rowland et al., 2009). 
Rowland et al. (2015) suggest that teachers have a planned sequence in their mind for 
mathematics teaching. Leinhardt (1993) used the term ‘agenda’ to describe a planned 
lesson structure, its context and underlying pedagogy. Contingent moment arises when 
the teacher has to deviate from the planned lesson or agenda. According to Rowland, 
Turner and Thwaites (2014, p. 320) “teacher’s intended actions can be planned, but 
students’ responses cannot.” Mason (2015) describes how unexpected events in 
mathematics classrooms can be idiosyncratic and situation dependent. This means that 
what could be unexpected for a teacher in a particular situation may not be the same 
for another. However, Mason (2015), using the discipline of noticing, emphasises that 
the ability to notice and respond to unexpectedness needs a teacher’s attention. Mason 
and Johnston-Wilder (2004) use the term ‘knowing-to-act’ in the moment, which is 
explained as something relevant has to ‘come to mind’ and then ‘come-to-action’ 
(Mason, 2015) and this needs attention to direct action. It is the ability to cope with 
unexpected needs more than the experience of different actions and mathematical 
knowledge. Mason and Davis (2013) maintain that awareness is important for making 
in-the-moment decisions. They use the term ‘being’ to suggest it as an aspect that is 
sensitised and responsive to what emerges at the moment based on the teachers’ 
personal experiences of mathematics learning and teaching. The unpredictability in 
mathematics teaching is described as inflight decisions (McNair, 1978-1979). 
Contingency is also seen as a decision-making moment in teaching as it is unplanned 
and unexpected (Rowland et al., 2015; Schoenfeld, 1998, 2011). Paterson, Thomas and 
Taylor (2011) studied lecturers’ decision-making in a university using the framework 
of Resources, Orientations and Goals. This paper uses the knowledge quartet 
framework to understand the nature of university research mathematicians’ contingent 
moments in mathematics lecturing.  
The contingency dimension of the knowledge quartet is constructed from four aspects 
of lesson observations. They are: Responding to students’ ideas, Deviation from the 
agenda, Teacher insight during instruction and (un)availability of resources (Rowland 
et al., 2014). According to Rowland and Zazkis (2013), unexpected responses from 
students created most of the contingent moments. Rowland et al. (2015) identify three 
types of triggers for contingent moments. The student initiates the first type, the teacher 
insight during the lesson initiates the second and the third is by some cultural, 
pedagogical tool. They identify three types of contingent responses from teachers, 
which are to ignore, to acknowledge but put aside, and to acknowledge and incorporate. 
Contingent decision making partly depends on teachers’ subject and pedagogical 
content knowledge. Ball and Bass (2000) maintained that teaching in the real-time need 
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knowledge, mathematical insight and sensibility depending on the situation. Rowland 
and Zazkis (2013) suggest that teacher responses to problematic contingent decisions 
depend on their mathematical knowledge in deciding and implementing appropriate 
pedagogical decisions. They suggest that contingent moments give teachers’ an 
opportunity to learn to improvise their knowledge and skills in mathematics teaching.  
METHODOLOGY  
This paper reports on data from eight research mathematicians in a university 
mathematics department in New Zealand. The data collection followed pre-lecture 
interviews, lecture observations and post-lecture discussions with research 
mathematicians (RM1, RM2, RM3, RM4, RM5, RM6, RM7 & RM8). All research 
mathematicians had more than 15 years of teaching experience and had a PhD 
qualification. Additionally, research mathematicians RM4 and RM8 had a post-
doctoral qualification. None of them had any formal teaching qualification.  
All the interviews and discussions were semi-structured. An observation schedule was 
used for lecture observations. Research mathematicians explained their planning for 
the lecture in the pre-lecture interview. Most of them had clear ideas about their lecture 
for the class and followed a course book as a guideline for topics in the lesson plan. 
Lecture observations are used to identify contingent moments in the classroom. Post-
lecture discussions were used to understand and confirm the contingent moment in the 
observed lecture. Classes observed were in undergraduate mathematics including 
calculus, linear algebra, statistics, applied mathematics and number theory. The 
lectures were of one-hour duration. The pre-and post-lecture interviews were audio 
recorded, and lecture observations were video recorded and transcribed. The interviews 
lasted for 30 minutes to one hour. The interview questions were: Can you recall a 
contingent moment in lecturing where you had to decide in the moment? I observed 
this moment in your lecturing as a contingent moment - do you agree with this? Can 
you describe that contingent moment? Inductive thematic analysis (Braun & Clarke, 
2006) was used to analyse the data from the transcripts. The knowledge quartet was 
used to identify the themes corresponding to contingent moments in research 
mathematicians’ lecturing. 
RESULTS AND DISCUSSION 
The lecture observations and post-lecture interviews gave evidence for 
mathematicians’ in-the-moment decision making. The triggers of contingent moments 
are identified using the knowledge quartet framework and are illustrated using 
examples from the data.  
According to RM1, students misinterpret contingent decision making in lectures as 
they think he is unprofessional.  

I just try to think really hard and fast. To the students, it appears that I don’t know what 
I’m doing. And perhaps I am unprofessional. [RM1, Post-lecture discussion] 
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When asked how RM1 can be sure of this, he replied that student evaluation indicates 
this.  

That’s the evaluation feedback. [RM1, Post-lecture discussion] 

For research mathematician RM2, a contingent moment in lecturing is related to the 
timing of the material to lecture. Making a decision during lectures about when to stop 
a topic was a concern for RM2. Contingent moments are there when an exercise takes 
longer time than expected and when there is an unexpected classroom discussion 
during the lecture. 

Timing is a simple one if I got to a certain point in lecture and my plan was to finish a 
complete handout, but I’m only going to get halfway through, I will stop at some point 
because there is a better place to stop then, in the middle of something. So I do that to some 
extent… The biggest changes really are how I am covering the materials in the lecture, and 
if there is an exercise which takes longer than I was expecting, or ends up with a discussion 
that takes longer, usually I will take that and do it and continue the material on to the next 
time. Some of the diagrams I use in lectures are preplanned, some of them will be like ‘I’m 
saying some words, but just listening to myself; I can tell that not being very clear. So here 
is a picture of it that may be of help’. And if that happens sometimes in lectures, I will then 
try to take that actually to do a proper diagram for the next time. [RM2, Post-lecture 
discussion] 

RM2 also mentions that his contingent decisions might not be very clear at the very 
moment in the lecture. However, he takes it seriously to improvise for the next time. 
This is an example where contingent moments are used for improving pedagogical 
content knowledge (Rowland & Zazkis, 2013). 
According to RM2 contingency in lectures occurs when he has to think of appropriate 
words to use in the context of the lecture and when he has to consider a particular 
problem from different perspectives. However, it happens rarely in his experience. 

Sometimes, I will think of especially a way of using metaphors or different ways of looking 
at the problem, sometimes I will think of those in the lecture and pursue that at the time, 
but that’s relatively rare. [RM2, Post-lecture discussion] 

Mathematician RM3 was asked if limited mathematical knowledge will lead to 
difficulty in appropriate decision-making during contingent moments in mathematics 
lecturing. RM3 replied as follows: 

Not in this course. I had experiences like that before. It is usually either because you are 
teaching something more advanced and then maybe a student asks a question, or the 
question occurs while you are teaching. And you think, I wonder if that was true and then 
you realise that it is not clear. How do I answer that? I had this experience when teaching 
advanced materials and I also have this experience when teaching a subject that I wasn’t 
really very knowledgeable about. [RM3, Post-lecture discussion] 

RM3 reveals that lack of mathematical knowledge may make decision-making in 
contingent moments difficult.  
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Mathematician RM4 described a contingent moment in his lecture of Laplace 
transforms on wave equations. To explain the given wave equation, RM4 used the 
example of an infinitely long string and a wave that travels to the right along an 
infinitely long string.  

I was able to compare [the solution of the wave equation] with what students should have 
been able to experience themselves; for instance when they wobble around a string or 
something and see the waves move along a string and or a rope… Now they have seen the 
mathematics that describes that. [RM4, Post-lecture discussion] 

Explaining the contingent moment, RM4 said: 
That was more of a spontaneous thing because when I was thinking about the actual lecture 
beforehand, I was thinking about the mathematics of solving the example, just reminding 
myself of doing that, but I wasn’t actually thinking in terms of the solution. It was when I 
got to the solution that I realised, Ahh, this is a good thing to remind students, well to tell 
students about how to connect the actual solution to something that they would have 
observed themselves, yeah. I made the decision at the time, almost we didn’t have enough 
time to do that and it was right at the very end in fact. [RM4, Post-lecture discussion] 

Mathematician RM5 describes a contingent moment in her lecture on mathematical 
modelling using ordinary differential equations. The lecture was on modelling 
populations and the example used was a predator-prey system. The physical 
significance of the system was explained, and a phase portrait was constructed 
modelling the given model of predator-prey population. RM5 had a contingent moment 
during the lecture where the model did not produce an expected outcome. 

One of the places where I had to make a decision that I’m not sure worked out as I wanted, 
was when we had looked at the first model and we had seen that it had produced some kind 
of unusual behaviour. Umm, that did not completely model what we wanted, and then there 
was a discussion about how we could modify the model. [RM5, Post-lecture discussion] 

During the contingent moment, RM5 invited students’ suggestions.  
I had some suggestions on ways we could modify the model that I put up on the board, and 
I was also asking students for suggestions and trying to show them what happened in the 
MATLAB. Some of that worked. [RM5, Post-lecture discussion] 

RM5 did not ignore students’ ideas, but responded and acknowledged them (Rowland 
et al., 2014, 2015). However, it did not produce the required results. 

One of the two students sitting up the front had some suggestions of how we could model 
certain changes, and the suggestions they had, I mean they were good suggestions, but they 
had limitations like other ones, and there wasn’t a lot of time to explore with MATLAB. 
So, I could put them in, and we could see it didn’t quite work, then I just say, well, it 
doesn’t do this, or it does do this and I didn’t feel like there was really time to do that 
properly. And you know when they made suggestions, it was not very sensible, it was hard 
to get something useful out of it because there was not really the time to explore the 
suggestions properly. So I think that if I were going to teach that lecture again, I would 
change the way; the direction with the class a little bit so that it could go in a more useful 
direction. [RM5, Post-lecture discussion] 
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We can see that RM5 has taken this opportunity to learn and improve mathematical 
and pedagogical content knowledge (Rowland & Zazkis, 2013). Rowland et al., (2015) 
identified a teacher’s insight during lecture as another trigger for contingency. 
Mathematician RM6 described his insight during mathematics lecturing leading to a 
contingent moment.  

I also decided not to go through and prove in detail the fact that between every two rational 
number, there is an irrational number and between every two irrationals, there is a rational 
number. In my lesson planning, I was planning on doing that, but during the lecture, I saw 
that the class was interested in what I was talking about, I didn’t want to lose that interest, 
so I decided not to do that. In fact, I said in the class that I am going to put that in the 
tutorial question. I put it on the tutorial question that they had to do it today. Hopefully, 
they work through that and figure that out that for themselves. And I do think that was the 
right decision at that time in the class because I think that they remained interested and 
intrigued by the things I was talking about right to the end and they were not distracted by 
the boring calculations and stuff. [RM6, Post-lecture discussion]  

However, this was initiated by student response during the lecture. This contingent 
decision was clearly based on the whole class interaction and engagement which made 
RM6 deviate from his planned agenda for the lesson as evident from the below quote. 

If there had have been no response or if they [students] had been very unresponsive, then 
I would have just gone through the details and this often will force them to pay attention 
because ‘oh, he is writing all the stuff down which they [students] have to write down’ and 
they think as soon as you write down calculations, they have to start paying attention. If 
they had been not interactive, that’s what I would have done. But once they start interacting 
and you get lots of talking from the class, then you have got their attention already, then 
you can go on doing interesting, bigger picture things. [RM6, Post-lecture discussion]  

RM7 described a contingent moment in his lecture on calculus when he used the idea 
of summing series in solving a problem on finding the limit for a sequence. 

The point that I was trying to make then which I had not planned on making until then, 
was that you have this method of knowing there is a limit... having the confidence of 
knowing there is a limit then you can try to find what that limit is. And this is often the 
case that you process it as a two-step process where you deduce that something you are 
looking for actually is there. Then you try coming up with some sophisticated way of 
finding what it actually is. Solving differential equations could be similar to that in which 
you have a general theorem for the existence of a solution of the differential equations that 
tell you that there are solutions, then knowing that you might go hunting for solutions for 
a particular equation. You might not find them because you might have these numerical 
methods. But at least you’ve got some idea. So I brought that example up because it seemed 
at the time in the lecture a good way of illustrating how this theorem could be useful. But 
it was not something I planned in advance; I hadn’t thought about this until that moment. 
[RM7, Post-lecture discussion] 

RM8 during the interview talked about how she was keen on using real-life examples 
to reduce the abstract nature of some statistical concepts in her lectures. RM8 identified 
her use of real-world examples in lectures as contingent moments. 
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Often such things [use of real-world examples] do arise during lectures, and I suddenly 
think of ‘well it is like this’. And then I refine that, and I write it down in my notes and 
remember to use it again in the future. [RM8, Post-lecture discussion] 

 These are some of the contingent thoughts that occur to mathematicians amid the 
lectures ‘being in the situation’ and ‘be fully mathematical with and in front of 
students’ (Mason & Davis, 2013, p. 188). 
CONCLUDING REMARKS 
In summary, research mathematicians in this study described their contingent moments 
in mathematics lecturing. Triggers for contingent moments are identified using the 
knowledge quartet framework, RM2 reported that unexpected classrooms discussions, 
thinking of using appropriate words to use to describe in the context of lectures and 
considering a problem from different perspectives in the lectures led to contingent 
moments. RM4 and RM8 mentioned thinking and using real-world examples in 
lectures as contingent moments. Students’ responses in lectures triggered RM4’s 
contingent moments, which was acknowledged and incorporated in the lecture but did 
not produce the required results. Mathematician RM5 had his insight leading to 
contingent decision-making in a lecture in which he deviated from the planned agenda 
for the lesson as supported by knowledge quartet study (Rowland et al., 2015). 
Research mathematicians in this study experienced different contingent moments in 
their lectures. However, student response was a common factor leading to contingency 
in RM5 and RM6’s lectures. Time was mentioned as a constraint in contingent 
decision-making as it pressed mathematicians to deviate from their planned lesson 
which seemed a concern for them (for example, RM2, RM4 & RM5). This study has 
shown that knowledge quartet is an effective tool in analysing university lecturers’ 
practice, specifically contingent moments in lecturing. It enabled us to understand 
mathematicians’ reflective practice. Research mathematicians (RM2, RM3, RM5, 
RM8) see contingent moments as providing learning opportunity and use it to 
improvise their pedagogical content knowledge (Rowland & Zazkis, 2013) which has 
implications for research mathematicians’ professional learning and development.  
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USING LEGITIMATION CODE THEORY TO EXAMINE 
MATHEMATICS CURRICULUM MATERIALS  

Steve Thornton, Ruqiyah Patel, Kristen Tripet 
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This paper uses the concepts of semantic gravity and semantic density from 
Legitimation Code Theory to examine the knowledge-building evident in a set of 
curriculum materials taken from an Australian project. It shows how the materials shift 
between various semantic modes, emphasising to a greater or lesser degree the link 
between mathematics and context, and capturing meaning in forms that have greater 
or lesser degrees of condensation. The paper suggests that it is the shifts between 
semantic modes rather than the mode of presentation itself that promotes robust 
knowledge-building. 
INTRODUCTION 
Questions relating to the importance of context and how best to promote transfer of 
learning to new situations abound in the mathematics education literature (e.g. Boaler, 
1993; Carreira, Evans, Lerman, & Morgan, 2002). However, discussions of whether 
mathematics is best learned through concrete or abstract situations grossly 
oversimplify the question. Rather, what promotes robust knowledge-building may well 
not be the learning situation itself but rather the shifts between learning situations 
(Maton, 2014). Legitimation Code Theory (LCT) (Maton, 2000) provides a framework 
that enables the researcher to examine curriculum materials and teaching in practice to 
identify and describe such shifts. 
This paper analyses a set of mathematical modelling materials from an Australian 
mathematics curriculum project, reSolve: Mathematics by Inquiry, in which students 
first encounter a challenging real-world problem, explore the situation, unfold the 
mathematics to seek meaning, make conclusions, and ultimately relate it back to the 
original situation.  
Specifically, the paper asks: 

• What semantic codes are evident in the curriculum materials; and 
• How do the materials vary along the semantic gravity and semantic density 

dimensions of LCT? 
The study simultaneously informs both the mathematics education research and design 
community and the LCT community. It provides a new perspective on mathematics 
curriculum and knowledge-building that remains unexplored but offers much potential 
in mathematics education research. At the same time, it adds to the body of work 
currently examined using LCT and sheds light on how LCT can be used to examine 
written curriculum materials that are designed to be educative for teachers. 
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LEGITIMATION CODE THEORY (LCT) 
Most mathematics education research constructs “knowledge” as a state of 
understanding characteristic of an individual developed through a process of individual 
and social construction. Research studies therefore focus on the cognitive and 
emotional processes involved in a person “coming to know”, leaving aside questions 
relating to knowledge itself. Knowledge as an object of study in its own right—that is, 
the forms knowledge takes, the modalities that characterise different forms of 
knowledge, and how these are realised in the artefacts and processes of teaching—is 
seldom considered in educational research. Such knowledge-blindness (Maton & 
Howard, 2018) takes for granted what we mean by knowledge and thus becomes an 
obstacle to addressing the knowledge-building that is intended in mathematics 
curriculum resources. 
Legitimation Code Theory seeks to address knowledge-blindness through a careful 
examination of the principles underlying the practices and relationships evident in 
learning, teaching and associated interactions and resources. It builds on Bernstein’s 
(1990) notions of classification and framing to develop a set of codes relating to the 
organising principles of specialisation, semantics and autonomy embodied in an 
educational practice. In each of these dimensions the principles are organised along 
two independent axes to create codes characteristic of the knowledge relations evident 
in a given practice. 
Specialisation refers to the degree to which knowledge is classified and framed along 
epistemic and social dimensions. Specialisation codes were used by Thornton (2008) 
to examine the responses of mathematicians and mathematics educators to an 
Australian Government review of numeracy education in schools. The textual analysis 
of the responses suggested that “knowledge within the disciplines of mathematics and 
mathematics education relies on different epistemic devices, and hence that debates 
surrounding mathematics education arise, at least in part, from differing ways of 
viewing knowledge” (p. 523). 
Semantics explores how depth of meaning and complexity are encoded within an 
educational practice and how dependent that meaning is on the context within which 
the practice is embedded. The semantics dimension has been used to explore how 
mathematics is used as a tool in physics to condense meaning while maintaining a close 
connection to the empirical world (Doran, 2017). Mathematics provides a platform on 
which hierarchies are built through the creation of scientific propositions and theories 
that can be generalised across a range of phenomena. 
Autonomy explores how constituents such as people, ideas and artefacts are positioned 
within a disciplinary category and how strongly they are related to constituents in other 
categories. Maton and Howard (2018) used autonomy codes to examine knowledge-
building practices in school history and science, identifying pathways that either 
inhibited or promoted knowledge-building among students. 



Thornton, Patel & Tripet 

PME 43 – 2019                                                                                                        3 –  
 

369 

This paper uses the semantics dimension of legitimation code theory to examine the 
codes embedded in published curriculum resources and how these vary through the 
course of the intended use of the resources.  
THE RESOLVE: MATHEMATICS BY INQUIRY PROJECT 
reSolve: Mathematics by Inquiry is an Australian Government Department of 
Education and Training funded project that aims to “transform the teaching and 
learning of mathematics in Australian schools”. The project was designed for 
coherence, scale and sustainability through the development of an underpinning 
philosophical framework, the reSolve Protocol, and through the parallel activities of 
resource development and the recruitment and training of more than 250 Champions 
across Australia. The Protocol highlights the importance of purposeful mathematics, 
inclusive and challenging tasks, and classrooms that have a knowledge-building culture 
(Thornton, 2017). The resources include teaching resources written for teachers from 
Kindergarten to Year 10 that exemplify the elements of the Protocol and professional 
learning resources that engage teachers in sustained and targeted discussion of 
pedagogic features of mathematics classrooms that enact the elements of the Protocol. 
The Champions, volunteer teachers from all geographic areas and all levels of 
schooling across Australia, are the mechanism through which the project embeds scale 
and sustainability. 
A key feature of many of the teaching resources is a focus on appropriate imagined, 
mathematical or real-world contexts to make mathematics meaningful and purposeful 
for students. In some cases, such as a Year 3 resource imagining that a rook has escaped 
from a chessboard onto a number chart, the context acts as a springboard for developing 
and consolidating powerful mathematical ideas, in this case place value. In others, such 
as a Year 10 resource examining competing claims to be the world’s steepest zipline, 
it is the context itself that is the focus, and mathematics is a powerful tool through 
which to investigate the context. In every case, mathematics and context are 
intertwined so that each supports the other. 
The next section of the paper examines one Year 10 reSolve resource, Cornering, using 
the semantics dimension of legitimation code theory. 
SEMANTICS IN LCT: EXAMINING A RESOLVE RESOURCE 
The semantics dimension of legitimation code theory “conceives social fields of 
practice as semantic structures whose organising principles are conceptualised as 
semantic codes comprising semantic gravity and semantic density (Maton, 2014, p. 
182, italics in original). Semantic gravity refers to the degree to which meaning relates 
to context and can be stronger or weaker depending on the strength with which meaning 
is related to context. Stronger or weaker semantic gravity are denoted respectively as 
SG+ or SG-. Semantic density relates to the degree of condensation of meaning within 
practices and can similarly be coded as SD+ and SD-. Together the codes form a 
semantic plane in which the strengths of each semantic code can vary independently 
(Figure 1). Maton (2014) terms the modalities in the four quadrants of the plane 
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rhizomatic (SG-, SD+), prosaic (SG+, SD-), motif (SG-, SD-), and figurative (SG+, 
SD+). 

 
Figure 1: The semantic plane (adapted from Maton, 2014). Note that in Maton’s 

original diagram SG- was placed on the positive y-axis as it involves greater 
abstraction. 

The embedding of these codes in practice is illustrated using the reSolve mathematical 
modelling activity Cornering, designed to investigate how long vehicles negotiate 
corners and roundabouts in roads. The semantic shifts described below are illustrated 
by the directional arrows included in Figure 1. Cornering includes five distinct learning 
experiences, each designed to introduce or develop important mathematical ideas 
related to the practical problem. 
Lesson 1: Sharing the Road 

The lesson commences in a strongly prosaic (SG++, SD--) mode. Students discuss the 
meaning of the “Do not overtake turning vehicle” sign found on some trucks and buses 
and recall instances when a truck or bus has had difficulty getting around a corner or 
roundabout. The meaning is thus highly dependent on context (SG++) but neither 
condensed nor abstracted as there is no attempt to examine the situation mathematically 
(SD--). The lesson then moves towards a figurative code using a simple paper scale 
model to visualise what happens when long vehicles turn corners (Figure 2). The 
meaning remains highly context dependent (SG++) but the use of a scale model for the 
corner and vehicle to answer questions such as how much wider the lane would need 
to be to avoid the truck moving outside the lane strengthens the semantic density (SD-
). The strength of semantic gravity is maintained through a discussion of the limitations 
of the model and the need for a model with steerable wheels. 
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Figure 2: Using a fixed paper model 
Lesson 2: A Better Model 
The lesson again commences in a strongly prosaic mode (SG++, SD--) as students walk 
a bicycle or scooter in an arc, discovering that the rear wheel travels along an arc of 
smaller radius than the front wheel. The semantic density is strengthened when students 
draw a diagram of the experiment from above (Figure 3) to understand the geometry 
of the situation. It is further strengthened, and the semantic gravity weakened, by 
applying trigonometry to calculate the distance by which the radius of the arc traced 
by the front wheel exceeds the radius of the arc traced by the back wheel (the cut-in 
distance, f – r in Figure 3). This part of the lesson therefore has a rhizomatic mode (SG-
, SD+), embedding strong semantic density but weaker semantic gravity in that 
although the calculation relates to the context it is a specific instance of a result that 
could be applied to any two concentric circles. 

  

Figure 3: A bicycle or scooter model 
Lesson 3: Software Models 
Lesson 3 moves towards the figurative mode through the use of a dynamic geometry 
model to relate the trigonometric results from lesson 2 to the real world of a bicycle. 

Angle FOR is equal to 𝜃 (exterior angle of a triangle is 
equal to sum of 2 interior angles). Hence values of f and 
r (and the cut-in distance) can be found using just w and 
𝜃. 
�
�
= 	tan 𝜃   and  �

y
= sin 𝜃, so that 

𝑟 = 	 �
{:a�

  and 𝑓 = 	 �
��a�
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Students investigate the relationship between the length of the wheel base, the angle 
through which the wheel can turn and the cut-in distance (Figure 4).  

 
Figure 4: Software used to investigate the bicycle model 

In this case a bicycle of length 10m (this is not totally unrealistic, students are shown 
a picture of a bicycle built for 10) with a wheel that can turn through an angle of 40° 
(about the maximum for a car) could travel around a roundabout with outside radius 
15.56m with a lane at least 3.64m wide. The use of dynamic geometry weakens the 
semantic density and at the same time strengthens the semantic gravity through the 
interpretation of the results in terms of the radius of the roundabout and the width of 
the lane. 
Lesson 4: Modelling Four Wheels   
The bicycle model is extended to a car or truck model in lesson 4 using new software 
models, first to investigate the effect of front and rear overhangs on space required for 
turning, and then taking vehicle width into account (Figure 5). Stronger semantic 
gravity is evident as students are presented with real data relating to a range of vehicles. 
Given the sophistication of the mathematical calculations involved, only software is 
used to model and investigate the situation, further weakening the semantic density. 
The lesson therefore moves back towards the prosaic mode (SG++, SD-). Note that the 
strength of semantic gravity is greater than in the initial investigation as the 
investigation now relates to a four-wheeled vehicle rather than a bicycle. 
 

 

Figure 5: A four-wheel model 
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Lesson 5: Presentations and Parking 
In the final lesson of the unit the students and teacher reflect on the modelling process 
and recap the findings, strengths and limitations of each of the preceding four lessons. 
Although not, of course, using the language of semantic codes, this reflection 
summarises the various modality shifts that occur throughout the process. These shifts 
are shown in Figure 1. Students bring this together through presentations to peers, 
writing a report to the local council and possibly extending their work to designing a 
car park. 
DISCUSSION AND CONCLUSION 
Legitimation code theory provides a powerful framework through which the semantic 
shifts between learning situations can be investigated. Significantly, the semantics 
dimension of LCT not only addresses the relation of meaning to context but also 
addresses the degree of condensation of meaning. The example of the Cornering unit 
shows that each of these aspects of semantics can vary independently. The resources 
intentionally move students between prosaic modes in which meaning is discussed 
informally and tightly linked to context, through rhizomatic modes where the context 
remains important but is represented mathematically, towards a figurative mode where 
the context is backgrounded and finally back to a prosaic mode where students interpret 
their results and present them to a non-mathematical audience. There is no suggestion 
that one mode is preferable to another; each provides a different and important 
perspective on the problem. 
This contrasts sharply with traditional textbook exercises, which often commence in a 
rhizomatic mode showing students how to solve a particular type of mathematical 
problem and (perhaps, pretend to) move towards a figurative mode through the use of 
(often artificial) word problems. It also contrasts sharply with resources that assume 
that abstract understanding develops naturally through the use of concrete resources 
through some kind of infallible genesis of mathematical knowledge, a phenomenon 
that Brousseau (1997) terms the Dienes Effect. 
The example of the Cornering unit shows how knowledge can be built through 
deliberate shifts in semantic modalities. Of course, it is relatively easy to identify 
semantic gravity shifts in mathematical modelling units as the point is to move between 
the real world, the mathematics and back. However, the semantics dimension of LCT 
adds the further element of semantic density, enabling us to examine the semantic shifts 
in a much more nuanced way. Intentionally designing such semantic shifts into other 
mathematics curriculum resources has the potential to promote more robust 
knowledge-building and to enhance the degree to which they are educative for teachers 
as well as students (Davis & Krajcik, 2005). 
Any curriculum or teaching resource can, of course, be subverted or enhanced by a 
teacher. As Maton (2014) has shown, the semantics dimension of LCT can be used to 
examine the complex features of teaching in practice, including the semantic range, 
ideal entry and exit points, and the semantic flow or connectedness between points in 
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a teaching and learning episode. How teachers realise the semantic shifts embedded in 
teaching resources, or how best to design resources to embed productive semantic 
shifts are empirical questions beyond the scope of this paper. However, the paper has 
shown that the semantics dimension of LCT can shed light on how a particular set of 
curriculum resources moves between different degrees of condensation and context 
dependence. 
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PAPER PLATE PATTERNS: PRE-SCHOOL TEACHERS 
WORKING AS A COMMUNITY OF PRACTICE  

Helen Thouless, Sue Gifford 
UCL-Institute of Education, University of Roehampton  

 

Young children’s patterning, defined as ‘finding a predictable sequence’, has been 
identified as significant for later mathematical achievement, while proving amenable 
to amelioration. This study examines how English teachers of three- to five-year-olds 
engaged in a collaborative project designed to develop their children’s pattern 
awareness. The teachers and researchers formed a community of practice that enabled 
the teachers to share and develop their pedagogical practice. This paper illustrates 
one example of how the teachers worked together to change their practice around 
border patterns; as their collaboration developed they produced interim stages in the 
teaching sequence that fostered children’s reasoning. 
INTRODUCTION 
Recently pre-schoolers’ pattern awareness has been identified as significant for later 
mathematical achievement (Rittle-Johnson, Fyfe, Hofer, & Farran, 2017). Fortunately, 
it can be taught, with positive effects relating to number and pre-algebraic thinking, 
which has particular relevance for low-achieving or disadvantaged children (Papic, 
Mulligan, & Mitchelmore, 2011). 
Two years ago, we began a collaborative project with English teachers of three- to five-
year olds, drawing on the work of Papic et al. (2011) and Mulligan and Mitchelmore 
(2016). In this paper we consider the following research question: How do teachers 
work together as a community of practice to develop their children’s understanding of 
repeating patterns? 
LITERATURE 
Professional Development 
In PME 42 Tirosh, Tsamir, Levenson and Barkai (2018) identified that pre-school 
teachers receive little preparation for teaching mathematics to very young children and 
that there is therefore a need for professional development in mathematics for this 
group of teachers. Although Tirosh et al. (2018) were discussing the Israeli context, 
this need for professional development in early mathematics education is equally 
present in the English context (AAPG, 2014). 
Many of the design principles that Tirosh et al. (2018) engaged in as they designed 
their professional development were the same as the design principles we used: playful 
learning, flexible activities, activities where the child is active but the teacher guides 
the child’s learning, and objects that are familiar to the children and readily available 
to the teacher. Most of our teachers were trained in Froebelian principles and therefore 
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child-led, playful learning was an important component of our design. We designed 
flexible activities and encouraged the teachers to adapt them to their own contexts 
using objects that were readily available in their classroom and thus familiar to the 
children. A difference with the design of our study and that of Tirosh et al.’s (2018) is 
that we engaged our teachers in the design of the curriculum and evaluation of the 
scope and sequence of the activities we proposed. Thus, we offered professional 
development in the model found to be most effective, by engaging teachers in 
curriculum development and evaluation (NCETM, 2009). 
Repeating patterns 
Patterns are composed of discernible regularity, whether a regularity involving 
repetition or systematic change. Mulligan et al. (2015) define a pattern as “some 
regularity observed in a mathematical context and the description of this regularity is 
its structure” (p. 1). Repeating patterns are the first type of patterns that are explicitly 
taught to children, often being introduced during preschool (Clements & Sarama, 
2008). These patterns involve a unit of repeat, which is the smallest unit which when 
repeated makes the entire chain/surface/structure, for example, the pattern ABAB’s 
unit of repeat is AB. 
It is not clear why knowledge of repeating patterns should predict later mathematical 
achievement (Rittle-Johnson et al., 2017). Papic et al. (2011) argue that their project 
was effective partly because teachers encouraged children to look for structural 
similarities and differences. However, Threlfall (1999) pointed out that identifying the 
unit of repeat is key, as children can produce simple repeating patterns by visual 
matching or alternating actions, without understanding that it can be infinitely repeated. 
Papic et al. (2011) suggest that recognising a composite single unit which can be 
counted leads to multiplicative reasoning and functional thinking. Teaching about 
repeating patterns must therefore focus on the unit of repeat.  
Border patterns are an extension of linear repeating patterns, because they add the 
complexity of changing direction and introduce the necessity of thinking of equal 
groups if the spaces in the border are defined (Papic et al., 2011). Our introduction of 
border patterns in our professional development addresses Tirosh et al.’s (2018) 
request that professional development for early years’ professionals widen their 
understanding of what of repeating patterns can consist of. 
THEORETICAL FRAMEWORK 
Communities of practice is a social theory for investigating how people work and learn 
collaboratively (Bannister, 2018). Wenger (1998) identifies a community of practice 
as a group whose members are mutually engaged in an activity, have as joint enterprise 
and have a shared repertoire of customs of practice. Mutual engagement of the 
participants is an essential part of a community of practice, because there is no practice 
without participation. This mutual engagement creates “relationships among people” 
(Wenger, 1998, p. 76) that can result in deep interconnections. Joint enterprise is a goal 
that has been mutually negotiated by the members of the community but has not 
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necessarily been reified as a vision or mission statement; as the community of practice 
evolves, the joint enterprise may evolve too. Over time, as the community works 
together, they will develop a shared repertoire of participation and reification 
structures. These shared repertoires may include routines, use of words, tools and ways 
of talking. 
Wenger (1998) defines practice as “meaning as an experience of everyday life” (p. 52) 
and further defines meaning as located in the process of negotiation of meaning through 
the dual processes of participation and reification. Participation is the “experiential 
process of taking part and sharing in communities” (Bannister, 2015, p. 249), whereas 
reification refers to the “process of giving form to our experiences by producing objects 
that congeal our experience into ‘thingness’” (Wenger, 1998, p. 58). As we analyse 
what learning has occurred in our community of practice we need to examine both the 
participants’ change in participation in the practices and any reification that occurs. 
METHODOLOGY 
Context and participants 
This project extended over two years. In the first year we worked with six teachers of 
three- to five-year olds in four socially diverse state-funded schools in London, UK, 
which expanded to 11 class teachers in six schools in the second year, with five teachers 
continuing throughout. The schools had volunteered to join the project and the teachers 
were mostly highly experienced.  
The teachers attended 14 after-school meetings, at which we offered a flexible core 
teaching programme, which we encouraged the teachers to adapt for their children and 
settings. At these meetings we provided a brief background to the research, introduced 
the next month’s topic and the teachers shared how they had been teaching pattern. 
While four main areas of pattern were examined across the year, in this paper we focus 
on repeating patterns, in particular border patterns. 
We also visited the schools three times each year to observe teaching and learning, to 
assess the children’s pattern awareness and to discuss the children’s progress. 
Data collection 
The data reported here derive from three sources: field notes from teachers’ reports at 
project meetings and informal interviews, our observations of teaching and learning in 
schools, and semi–structured group exit interviews. Our findings rely on teachers’ 
stated reflections on the progress made by children and what helped to develop this. 
We asked the teachers at each meeting to report on the children’s responses and any 
progress the children had made in their pattern awareness. When we visited the teachers 
at school, we asked what had made a difference to the children’s progress in pattern 
development and what they had struggled with. All teachers kept “learning journals” 
with photos relating to the children, which they discussed with us. More generally we 
asked how pattern had related to the children’s mathematical development and, if 
positive, why they thought that. In the exit interviews we asked what impact the project 
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had on the children and their teaching. We analysed our notes and transcriptions to 
identify common themes and conclusions in relation to our focus on learning in a 
community of practice. 
FINDINGS AND ANALYSIS 
Our group of teachers consisted of a community of practice in that they were mutually 
engaged in a joint enterprise and had shared repertoires for engaging in this 
community. This group consisted of early years teachers who were engaged in the joint 
enterprise of improving their young children’s engagement in mathematics, though 
pattern activities. While engaged in this joint enterprise the teachers were mutually 
engaged in curriculum development in pattern instruction for the early years and 
refining the current developmental progressions. These teachers also had a shared 
repertoire in that they met every six weeks and at these meetings they had norms for 
sharing how they had implemented and adapted the programme. 
As members of this community of practice, the teachers developed their subject 
knowledge about patterns and changed their teaching practice by developing several 
convergent pedagogical approaches, such as integrating patterning into whole class 
routines and encouraging children’s independent “co-working”, which included the 
children challenging each other to continue patterns or spot errors. These are all 
examples of the teachers’ learning within this community of practice.  
In this paper we will investigate one specific example of the teachers’ learning within 
the community of practice, examining how they changed their participation in the 
practice of teaching their children about border patterns through the reification of paper 
plates. In Papic et al.’s (2011) original border task the children were asked to complete 
a 14 square border pattern when given two colours, identify whether the pattern has a 
beginning and end, and justify whether the pattern could be completed. This task 
presented young children with numerous challenges.  Some children found the fine-
motor task of fitting the blocks into the given spaces difficult and consequently ended 
up with an AB pattern that was not continuous around the rectangle (see Figure 1). 
Other children could make a linear AB pattern but had difficulties continuing the 
pattern around a corner (see Figure 2), while others came up with more innovative 
patterns, such as AABB, but were then frustrated when they found that their unit of 
repeat would not fit into the fixed number of squares (see Figure 3).  
During the second year, Sam (all names are pseudonyms) reported that his children 
“made patterns with objects going round a paper plate, which gave them a template for 
a circle” and enabled them to make continuous circular border patterns (see Figure 4). 
The paper plates had several advantages over the rectangular border because on the 
paper plate there was no prescribed space for an object to be placed so children could 
squeeze another object in or adjust the spacing between the units to fit. The paper plate 
was the reification of an open circular border, with no corner to negotiate. 
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Figure 1: Blocks in spaces      Figure 2: Turning a corner      Figure 3: Unit of repeat  

                                                

Figure 4: Paper plate         Figure 5: Mirror            Figure 6: Open rectangular 
border 

The other teachers took up this idea in their practice and commented on it in subsequent 
meetings, with both Tina and Pam remarking that it is “easier to do circular borders 
than square” and that her children “enjoyed the circular patterns”. In this community 
of practice, the open circular border pattern had become an interim stage between linear 
repeating patterns and the rectangular border patterns proposed by Papic et al. (2011). 
However, several teachers noted disadvantages in using plates and made further 
adaptations: for example, Pam said, “Dave wanted to put another circle inside the first 
one, maybe because he thought that he had to fill in the plate. He wanted to match the 
inside and outside circle but didn’t realise that the numbers couldn’t match. So I 
coloured the inside of the circle so that the children didn’t feel like they had to fill in 
the middle.” Kathy also found that the children tended to want to fill in the entire plate 
(see Figure 4), so she got her children to make a border around a circular mirror (see 
Figure 5). As the other teachers engaged with Sam’s practice they negotiated the 
meaning of the paper plate and adapted its form to meet their understanding of the 
purpose of the plate. 
Kathy and Kim developed a further interim stage of making a border around 
rectangular frames, which involved turning corners, but without a fixed number of 
squares (see Figure 6). We observed two children fitting pom-poms around a 
rectangular border. At first the pattern was white, white, white, yellow, yellow, blue 
but there was an error where it joined up with itself, which they fixed, with some 
prompting, by adding more pom-poms. When we asked if they could remove some 
pom-poms because the border was “a bit wavy”, one child said, “I might change the 
pattern” and made it fit better by removing one yellow from every unit of repeat. The 
two children jointly described this pattern as “white, white, white-3 whites” and 
“…blue, yellow and start over and over”. The changes in their teachers’ practice and 
the reification of these changes (e.g. the open border with and without corners) seem 
to have enabled these children to analyse and identify the unit of repeat in a continuous 
pattern.  
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CONCLUSION 
The early years teachers in this study worked together in a community of practice to 
improve their children’s engagement and knowledge of mathematics through 
developing curriculum. As they collaborated together and shared their observations 
and pedagogical innovations they also improved our knowledge of the developmental 
progression from linear repeating patterns to border repeating patterns. 
As these teachers participated in the community of practice they realised that although 
their children found linear repeating patterns relatively simple, many children found 
border patterns more complex. One teacher came up with the idea that children found 
it easier to make a border pattern in a circle because this avoided the difficulty of going 
around corners, and he reified this innovation in the form of a paper plate. Other 
teachers in the group took up this idea and tried it out in their classroom, adapting the 
reification to address the new complications and to add further interim stages between 
linear repeating patterns and border patterns.  
The strength of this community of practice lay in the participants’ willingness to share 
and develop their pedagogy, which resulted in the teachers creating significant interim 
stages in the trajectory of developing pattern awareness. As a consequence of this 
group’s work the current developmental progression between linear repeating patterns 
is: 1) linear repeating patterns; 2) circular repeating border patterns; 3) repeating border 
patterns around shapes that have corners; 4) repeating border patterns around shapes 
with corners and a defined number of spaces to fill. 
The study shows that when early years teachers are given the opportunities to work 
collaboratively together in a community of practice on a regular, on-going basis, they 
may not only improve their own subject knowledge and pedagogical practice but may 
add to our understanding of how young children learn and develop mathematically.   
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TEACHER BELIEFS AND PRACTICE WHEN TEACHING 
MATHEMATICS WITH TECHNOLOGY – DOES GENDER 

MATTER?  
Daniel Thurm 

University of Duisburg-Essen 
 

Teacher gender has been identified as a differentiating factor in the context of teaching 
mathematics with technology. However, there is also evidence that gender differences 
are becoming less pronounced, potentially due to the omnipresence of technology in 
everyday life. The present study investigates gender differences in the context of 
teaching mathematics with technology by focusing on teacher’s self-efficacy, teacher’s 
technology related beliefs and teacher’s frequency of technology use. Analyzing the 
data from n=198 upper secondary school teachers in Germany, we observe no gender 
differences with respect to teachers’ beliefs about teaching with technology and 
frequency of technology use. However, women show significantly lower self-efficacy 
beliefs with respect to teaching with technology. 
INTRODUCTION 
Research in the last decade has shown, that teaching with technology like function 
plotters, geometry packages and computer algebra systems (so called “Mathematics 
Analysis Software”) can support the learning of mathematics in many different ways 
(e.g. Drijvers et al 2016). In this context it is important for teacher educators to 
understand the factors associated with technology integration and teacher gender has 
been discussed as a differentiating factor influencing technology uptake (e.g. Forgasz, 
Griffith, & Tan, 2006; Buabeng-Andoh, 2012). For example, research indicates that 
female teachers and female students may be less positive and less confident in using 
technology and make use of technology less often than male teachers and students. 
However, there is also evidence that gender differences are diminishing, possibly due 
to the fact that technology use has become ubiquitous in peoples private and 
professional life. In order to get a nuanced picture of gender differences with respect 
to technology related constructs of in-service mathematics teachers, we take a 
multidimensional approach and use differentiated multi-item scales to scrutinize 
gender differences with respect to teacher’s self-efficacy beliefs, teacher’s technology 
related beliefs and teachers’ frequency of technology. The results can help to design 
professional development programs that take gender differences into account by 
providing tailored support for male and female teachers. 
THEORETICAL BACKGROUND 
Technology in the mathematics classroom 
The use of digital technology in the mathematics classroom can comprise a plethora of 
different technologies. These range from general technology that can be used across 
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different subjects (e.g. word processing software like MS-Word) to subject-specific 
technology like digital learning environments, function plotters, geometry packages 
and computer algebra systems (CAS) that are specifically used in mathematics 
education and are also known under the term “Mathematics Analysis Software” (MAS; 
Pierce & Ball, 2009). Research shows, that technology can support student learning in 
many different ways. For example, these tools can facilitate constructivist teaching 
approaches like discovery learning by giving pupils the opportunity to explore 
mathematical links on their own. In addition, digital tools can enhance conceptual 
understanding of mathematics by providing easy access to multiple and linked 
representations (Drijvers et al., 2016). For this reason, policy makers, researchers and 
teachers advocate the use of technology in the mathematics classrooms. 
Gender differences 
With the introduction of technology in schools, teacher and pupil gender has been 
discussed as a factor affecting technology use in the classroom (e.g. Forgasz, Griffith, 
& Tan, 2006; Buabeng-Andoh, 2012; Wong, Teo, & Russo, 2012; Sang, Valcke, Van 
Braak, & Tondeur, 2010; Pierce, Stacey, & Barkatsas, 2007; Antonietti & Giorgetti, 
2006). In particular, some results indicate that female teachers (as well as female 
students) have more negative beliefs towards technology use and perceive themselves 
as less competent using technology. For example, Meredyth, Russell, Blackwood, 
Thomas, and Wise (1999) examined teacher gender differences in an Australian 
national sample and found that:  

“Male teachers were more likely to possess advanced information technology skills than 
female teachers and significantly more likely to indicate that they enjoyed using computers 
a great deal. They were more likely to say that they felt able to keep abreast of new 
programmes and educational applications. Information technology skills were more likely 
to be self-taught for male teachers than for female teachers. Male teachers appear to be 
more likely than female teachers to engage with a range of information technology uses, 
independently of the support provided by their employers.” (Meredyth et al., 1999, pp. 
281-282) 

In addition, there are results indicating that women have lower self-efficacy beliefs 
with respect to teaching with technology compared to male teachers (e.g. Sang et al., 
2010, p.104; Scherer & Siddiq, 2015). For example, Pierce and Ball (2009) find that 
significantly more female teachers agree to the statement “if there are unexpected 
problems caused by technology, this will be very difficult for me”. The authors 
therefore hypothesize “that female teachers may be less confident than males about 
using technology” (Pierce & Ball, 2009, p. 312). However, Scherer and Siddiq (2015) 
caution that comparisons among female and male teachers must be based on a 
multidimensional construct. They measure self-efficacy related to computer use in the 
classroom in four areas, namely “Self-efficacy in basic operational skills”, “Self-
efficacy in advanced operational and collaborative skills” und “Self-efficacy in using 
computers for instructional purposes”. Analyzing data from n=1208 Norwegian 
secondary school teachers they find gender differences in favor of male teachers only 
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for the first two scales. An explanation for this could be “that the instructional factor 
may additionally involve aspects of teachers’ pedagogical content knowledge” 
(Scherer & Siddiq, 2015, p. 54).  
According to Cooper (2006) the observed gender differences are fundamentally a 
problem of computer anxiety rooted in the socialization pattern of boys and girls. In 
addition, Huffman, Whetten, and Huffman (2013) show that gender roles like 
masculinity can be the source of gender differences and not biological sex alone. 
Furthermore, there is also evidence that unfavorable attribution patterns cause the 
gender differences. For example, Koch, Müller, and Sieverding (2008) show, that 
women attribute technical problems when using technology to their own failure 
whereas males attribute problems to external factors. 
However, there are also studies finding no significant gender differences. For example, 
Forgasz (2002) finds no gender differences with respect to beliefs, perceived levels of 
competence or confidence in using computers for the teaching of secondary 
mathematics.  Forgasz et al. (2006) asked n=38 teachers in an open-ended question to 
describe the impact that CAS calculators will have on teaching, student learning and 
curriculum. They could not find any statistically significant gender differences.  With 
regard to teacher beliefs about technology in the mathematics classroom Pierce and 
Ball (2009) develop the “Mathematics with Technology Perceptions Survey”. Gender 
differences were only observed for the item: „If I use more technology, my students 
will be more motivated to work on their math”. Handal, Cavanagh, Wood, & Petocz 
(2011) investigated weather gender is related to the stage of adoption of graphing 
calculators. In a sample of n=587 teachers they could not find a significant relation 
between gender and teachers’ stage of adoption of graphing calculators.  
In total, it is unclear to what extent the “digital divide” (Cooper 2006; Vekiri & 
Chronaki, 2008), which refers to gender differences in access, intensity and nature of 
technology use, is still present. For example, the gender gap might be narrowing due 
to the increasing availability and penetration of technology in everyday life (e.g. Teo, 
2010; Wong et al., 2012; Sang et al. 2010). Hence, Siddiq and Scherer (2016) make 
the point that the  

“[…] conflicting findings require a continued focus on whether differences across gender 
exist for the specific [technology related] constructs […]” (Siddiq & Scherer, 2016, p. 6). 

RESEARCH QUESTION AND METHODOLOGY  
The study aims to explore gender differences with respect to the use of technology with 
a focus on Mathematical analysis software (MAS) and addresses the following 
question:  
How is gender related to 

• self-efficacy beliefs in the area of teaching mathematics with MAS 
• beliefs about the use of MAS 
• frequency of the use of MAS.  
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To answer this question, it is necessary to measure teachers’ self-efficacy beliefs, 
teacher beliefs about teaching mathematics with MAS as well as teachers’ frequency 
of MAS use. In the following we give an overview about the measures used in this 
study to capture these constructs.  
To measure teachers’ self-efficacy beliefs, we used a questionnaire that assessed self-
efficacy in two domains: (s1) Self-efficacy related to task design & task selection when 
teaching with MAS (4 Items), (s2) Self- efficacy related to lesson design & lesson 
implementation when teaching with MAS (4 Items). Response category was chosen 
according to Banduras “Guide for constructing self-efficacy scales” (Bandura, 1997) 
which recommends that teachers rate the strength of their belief in their ability on a 
scale from 0-100. In addition, we used a single item to capture the perceived 
competence in operating the GC. Teachers were asked to rate their competence on a 
five-point Likert-scale ranging from “very low” to “very high”.  
To measure teacher beliefs we used a questionnaire which consisted of the five 
following scales (Thurm, 2017): b1) beliefs that MAS supports discovery learning, b2) 
beliefs that MAS support multiple representations, b3) beliefs that MAS is too time 
consuming (as there is a general concern that there is not enough time to cover the 
MAS and the required curriculum), b4) beliefs that MAS has a negative impact on 
computational skills (as there is a common concern that pen-paper-skills may be lost 
in the presence of MAS), b5) beliefs that MAS leads to mindless working, b6) beliefs 
that students must master concepts and procedures prior to MAS use.  Responses were 
given on a five point response format ranging from 1= “strongly disagree” to 5= 
“strongly agree”. Hence high values on the scales b1) and b2) with simultaneously low 
values on the scales b3) – b5) reflect positive beliefs about the use of MAS in 
mathematics education. 
To capture teacher’s MAS use we focused on frequency of MAS use which can be 
more validly captured by self-reports than the quality of teaching (Mayer, 1999). We 
assessed the frequency of MAS use with a Likert-scale questionnaire (Thurm, 2018) 
that differentiates the use of MAS in the following areas: (f1) use of MAS for discovery 
learning, (f2) use of MAS for linking multiple representations, (f3) use of MAS to 
support individual learning, (f4) use of MAS when practicing. In addition, a category 
capturing how often the use of MAS was subject to critical reflection was included 
(f5). Items in this category asked for example on how often limitations of MAS were 
discussed or on how often there was a critical reflection about when to use pen & paper 
skills and when to use MAS to solve a given task.  
Data was gathered in 2014 from n=198 upper secondary school teachers within a larger 
research study (Thurm, Klinger, & Barzel, 2015) in North Rhine-Westphalia, 
Germany. In this state the use of MAS is compulsory in the final examination in upper 
secondary since the schoolyear 2014/2015. The average age of the teachers was 43 
years, which is comparable to the average age of 45 years for all teachers in North 
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Rhine-Westphalia. Teaching experience with mathematics was distributed as follows: 
0-5 years (27%), 6-11 years (19%), 12-17 (16 %), 18-23 (11%), more than 23 years 
(25%). Due to the fact that MAS had been made compulsory only shortly before the 
study took place, there was a large number of teachers without any previous experience 
in teaching with MAS. In total, 52% had no previous experience teaching mathematics 
with MAS and only 12% had more than 5 years’ experience in teaching mathematics 
with MAS.  
RESULTS 
Table 1, Table 2 and Table 3 show the correlations between self-efficacy, beliefs about 
teaching with MAS and frequency of MAS use, respectively. No significant 
relationship between gender and beliefs about MAS use was found. There was also no 
significant correlation between frequency of MAS use and gender. However, gender 
differences were found with respect to teachers’ self-efficacy beliefs. Female teachers 
had significant lower self-efficacy beliefs with respect to task design & task selection 
(s1) and operating MAS (s3). Self- efficacy beliefs related to lesson design & lesson 
implementation (s2) were also negatively correlated with gender, but in this case the 
correlation was not significantly different from zero.  
 

Self-efficacy r 
s1) Self-Efficacy with respect to task design & task selection -0.19* 
s2) Self- efficacy related to lesson design & lesson 
implementation -0.12 

s3) Operating MAS -0.22* 
Table 1: Correlation between self-efficacy and gender 

 (* p<0.1, ** p<0.01, *** p<0.001) 
 

Beliefs about technology use r 
b1) MAS supports discovery learning 0.02 
b2) MAS support multiple representations 0.07 
b3) MAS is too time consuming 0.05 
b4) MAS has a negative impact on computational skills 0.08 
b5) MAS leads to mindless working 0.10 
b6) students must master concepts and procedures prior to MAS 
use 0.13 

Table 2: Correlation between beliefs about MAS use and gender  
(* p<0.1, ** p<0.01, *** p<0.001) 



Thurm 

PME 43 – 2019                                                                                                        3 –  
 

387 

Frequency of technology use r 
f1) use of MAS for discovery learning 0.00 
f2) use of MAS for linking multiple representations 0.05 
f3) use of MAS to support individual learning -0.07 
f4) use of MAS when practicing. -0.06 
f5) reflection of MAS use -0.10 

Table 3: Correlation between frequency of technology use and gender  
(* p<0.1, ** p<0.01, *** p<0.001) 

DISCUSSION 
The study aimed to scrutinize the link between gender, self-efficacy beliefs, beliefs 
about teaching with MAS and frequency of MAS use. The results indicate that there is 
no differential effect of gender with respect to beliefs about MAS use and frequency 
of MAS use. These results are in line with the results of Forgasz (2002), Forgasz et al. 
(2006), Pierce and Ball (2009) and Handal et al. (2011). However, gender differences 
are apparent with respect to teacher self-efficacy beliefs which supports the hypothesis 
of Pierce and Ball (2009), claiming that women have lower self-efficacy beliefs with 
respect to teaching with technology compared to male teachers. In addition, the 
multidimensional approach taken in this paper shows that differences in self-efficacy 
beliefs are more prominent for operational skills and task design and less pronounced 
for designing and implementing lessons when teaching with technology. This seems in 
line with the results of Scherer and Siddiq (2015) who show that gender differences in 
self-efficacy beliefs depend on the extent to which technical skills play a role in the 
different self-efficacy domains that are captured. In this study, the scale that focuses 
on lesson design and implementation is not only capturing technical skills but also 
aspects of teachers’ pedagogical content knowledge.  
In summary, this study could not find a gender gap for technology related beliefs and 
frequency of technology use. However, gender differences with respect to self-efficacy 
beliefs seem to remain in place. For example, Scherer and Siddiq (2015) found that 
professional development programs can be particularly effective for woman to increase 
their self-efficacy beliefs: 

“[…] for the subsample of female teachers, participating in courses on ICT integration into 
teaching and learning was positively and significantly related to CSE [computer self-
efficacy] in the advanced and instructional use of computers” (Scherer & Siddiq, 2015, p. 
52).  

Hence if we want to close the remaining gap designers of professional development 
need to be aware of potential gender differences with respect to self-efficacy and 
provide means to strengthen female teacher’s self-efficacy beliefs.  
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A TEACHER’S CONCEPTUAL ‘AHA’ ENABLES REAL-TIME 
ADAPTATION TO STUDENTS’ MULTIPLICATIVE REASONING 
Ron Tzur, Nicola M. Hodkowski, Bingqian Wei, Alan Davis, Mike Ferrara, Cody 

Jorgensen, Heather L. Johnson 
University of Colorado Denver 

 
We examine how conceptual progress in an elementary teacher’s mathematical 
knowledge for teaching seen as a units coordination ‘aha moment’, enabled real-time 
adaptation of her teaching to fit students’ available conceptions. We analyze the case 
of Mona, a grade-5 teacher who planned a lesson to foster students’ reasoning with 
the Unit Differentiation and Selection (UDS) conception. In a pre-lesson interview, 
Mona realized why the Same-Unit Coordination (SUC) conception, which involves 
additive operations on composite units, serves as a conceptual requisite for UDS. This 
seemed to underlie a real-time adaptation to her goal for students’ learning during the 
observed lesson. We discuss the key role a units coordination lens can serve in 
deepening teachers’ mathematical knowledge to benefit students’ reasoning. 
To explicate our research question, we first illustrate the mathematical conceptions 
involved. Consider a situation involving 40 packs, 6 cans each (40x6=240 cans). A 
pack is thought of as a composite unit, as it is composed of smaller units—here, cans 
thought of as 1s (Steffe, 1992). A logical anticipation is that the total of cans in the 
entire set remains the same even if organized into two sub-sets (e.g., 21+19). Consider 
further that Store A gets 21 packs and Store B gets 19 packs. Two numbers of interest 
could be: the total of cans in both stores, and how many more cans Store A has than 
Store B. The logical anticipation entails a general procedure: find sub-totals of cans 
(21x6; 19x6) and add or subtract them (126±114). Yet, reorganizing the sets of 
composite units (packs) could be much more efficient. For the total we add 21+19=40 
packs and multiply 40x6=240 cans; for the difference we subtract 21-19=2 packs and 
multiply 2x6=12 cans. The latter is implied by the logical anticipation: 21=19+2 packs. 
Such reorganization relies on (a) differentiating the two types of units 
(packs=composite units, cans=1s) and (b) selecting the composite units (packs) as a 
start. It also underlies the coordination of multiplicative and additive operations known 
as the distributive property (Tzur et al., 2009): (21+19)x6=21x6+19x6 and (21-19)x6= 
21x6-19x6. We think teachers can realize that operating only on composite units (e.g., 
21-19=2 packs) is a conceptual prerequisite for finding the total or difference in 1s 
(e.g., 2 packs x 6 cans each = 12 cans). Accordingly, our study addresses the question: 
How may such a realization (‘aha moment’) enable a teacher to adapt her teaching so 
it fits with students’ available conceptions? 
This question is situated at the nexus of four lines of work, which we endeavor to 
connect further: teachers’ mathematical knowledge for teaching (MKT; Hill, Rowan, 
& Ball, 2005), teachers’ noticing (Jacobs, Lamb, & Philipp, 2010), units coordination 
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as a lens to articulate children’s mathematical reasoning (Norton et al., 2015), and 
student-adaptive pedagogy (AdPed; Tzur, 2013). MKT pertains to teachers’ 
intertwined understanding of particular mathematics and of how students think about 
and learn it. MKT has become a central construct, informing both assessment of and 
PD for teachers, not the least because it has significant impact on student learning and 
outcomes (Hill et al., 2005). Noticing, an important component of MKT, pertains to 
teachers’ awareness, propensity, and capacity to discern specific students’ behaviors 
and strategies when engaged in doing mathematics (e.g., counting on fingers, drawing 
diagrams, etc.). We draw on both lines of work, while stressing the need to augment 
teachers’ MKT and noticing with conceptual models that enable: (a) going beyond 
students’ observable behaviors to articulate their available conceptions, and (b) 
adapting goals/activities for students’ learning to those conceptions.  
CONCEPTUAL FRAMEWORK 
We draw on Piaget’s (1985) core notion of assimilation, which entails one’s available 
conceptions govern her mathematical behaviors. We further build on Steffe’s (1992) 
units coordination lens, which articulates children’s numerical conceptions in terms of 
operations on units—distinguishing 1s from composite units. We focus this study on 
three conceptions in a multiplicative reasoning progression (Tzur et al., 2013). The 
first, Multiplicative Double Counting (mDC), entails distributing items of one 
composite unit (e.g., 3 packs of gum) over another composite unit (e.g., 5 pieces of 
gum in each pack), and then finding the total of 1s (e.g., 1-is-5, 2-is-10, 3-is-15). MDC 
is multiplicative, as this distribution transforms the units (Simon, Kara, Norton, & 
Placa, 2018). The second, same-unit coordination (SUC), entails being cognizant of 
and operating on sets of composite units without losing sight of the 1s in them (e.g., 3 
packs and 6 packs, each with 5 pieces of gum). One’s goal may be to find the sum of 
or difference in those sets (e.g., 6+3=9 packs, 6-3=3 packs). SUC is an additive, unit-
preserving operation (Schwartz, 1991) on sets of composite units. We explained the 
third conception, Unit Differentiation and Selection (UDS), in the Introduction. It 
involves operating additively on two sets of composite units and then multiplicatively 
on the sum/difference of composite units and the 1s in them. That is, UDS is a 
coordination into a single conception of SUC followed by mDC. 
The notion of assimilation underlies our student-adaptive pedagogy (AdPed; Tzur, 
2013) stance, which we apply in our work with teachers and students. AdPed builds on 
and goes beyond noticing by inferring available conceptions that plausibly underlie 
students’ noticeable behaviors. Goals/activities for students’ learning are adapted to fit 
with those inferred conceptions. In this study, our work with teachers thus fostered not 
only their reasoning with mDC, SUC, and UDS but also explicating similarities and 
differences in units and operations each conception entails. If a teacher indicates she 
can assimilate and pose mDC and SUC tasks, we promote her linking of those with 
UDS—particularly SUC as its first step. We see such a linkage as a necessary 
component in a teacher’s MKT, as it enables going beyond noticing to inferring 
students’ conceptions and adapting teaching accordingly. 
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METHODS 
This case study with Mona, a 5th grade teacher at a school within a US metropolitan 
area, was part of a project1 to promote and study elementary teachers’ professional 
development (PD). About 85% of the students in that school (and her class) identified 
as students of color, with ~70% learning English as an additional language. Mona, 
along with her 3rd, 4th, and 5th colleagues, participated in the 2-year PD program of our 
larger project. Using the units coordination lens, the PD program focused on advancing 
three facets of teachers’ knowledge. One facet, the teachers’ MKT, focused on their 
multiplicative and fractional reasoning. Another facet, focused on the teachers’ 
capacity to (a) notice specifics of students’ work and (b) explain it in terms of units 
(1s, composite units) and operations (additive, multiplicative) that underlie students’ 
observable behaviors. A third facet focused on teachers’ ability to adapt their teaching 
so it fits with and explicitly draws on what students do know.  
We mingled work on all three facets in four components of our PD program, while 
using playful activities and tasks that could both foster teachers’ learning and be easily 
modified for their own classrooms. First, we engaged all teachers in a 5-day Summer 
Institute. Next, over one school year we used a job-embedded PD consisting of four 
half-day workshops and monthly reciprocal visits by partner teachers to (“buddy-
pair”), an adaptation of the Lesson Study (Corcoran & Pepperell, 2011) approach to 
the US context. Then, we conducted a second, 5-day Summer Institute in which 
observing, reflecting on, and discussing video segments of teachers’ work with 
students in their own classrooms served as a key tool. A similar job-embedded PD 
effort during the following school year concluded the PD program. 
For data collection and analysis, we followed Simon and Tzur’s (1999) Account of 
Practice (AOP) strategy. An AOP data set involves observing a teacher’s class while 
she teaches new mathematical ideas, and pre/post interviews about the observed 
lesson(s). This study focuses on a video recorded set (Intrv-Obsrv-Intrv) with Mona 
1.5 months before the PD program ended. Glaser and Strauss’ (Glaser & Strauss, 1967) 
grounded theory methodology underlies analysis of AOP data. Using the units 
coordination lens to discern Mona’s understanding of operations on 1s and composite 
units that underlie the mDC, SUC, and UDS conceptions, we scrutinized, discussed 
and transcribed video segments. First, team members working individually and in small 
sub-teams, observed the entire set while jotting logs of main events. The entire team 
then met to analyze data segments that demonstrated Mona’s understanding of the three 
conceptions, her teaching moves, and her thinking about those moves. Once discerning 
Mona’s ‘aha’ (pre-interview) that deepened her MKT and noticing of students’ 
operations on 1s to solve an SUC task, we could analyze her rationale for adapting the 
lesson as she assimilated their work into her novel, SUC-UDS linkage. 
RESULTS 
We analyze data to support a twofold claim about augmenting a teacher’s MKT with 
units coordination: It deepens her MKT and noticing, and thus enables conceptually- 
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driven adaptation to her teaching. We first demonstrate how Mona realized a novel link 
between the UDS conception—her original goal for students’ learning—and the SUC 
conception as a conceptual foundation of UDS. Then, we show how this link enabled 
recognizing (a) the conceptual source of students’ lacuna when they solved an SUC 
“review” task and (b) a need for and actions to change her lesson so it nurtures the 
prerequisite, additive operations on composite units.  
Deepening MKT: Conceptualizing SUC as UDS Requisite 
To start the pre-lesson interview, the researcher asked Mona to describe her plan for 
the upcoming lesson. Mona said she would begin with an mDC and and SUC review 
tasks. Then, she would turn to her main goal: students’ learning to reason with UDS. 
To illustrate the meaning of each conception, Mona pointed to specific examples of 
tasks she prepared on large posters. These illustrations, which Mona further explained 
to the researcher, indicated she could clearly articulate each of the three conceptions 
(mDC, SUC, and UDS). Mona said this plan drew on her assessment, through 
individual interviews of each student (two months earlier, before the class shifted 
attention to the state annual test), that most students could reason with mDC and SUC. 
Excerpt 1 presents Mona’s response to the researcher’s probing about the link between 
mDC and SUC, after M (“M” stands for Mona, R for the “Researcher”). 
Excerpt 1 (Pre-Interview): Mona’s ‘aha moment’ of the SUC-UDS link. 

R: So, can you talk to me about the goal for today, UDS? What’s different about UDS? 
M: [In UDS] Comparing our composite units, but then determining the difference in the 

single units. So, you’re still tracking the Multiplicative Double Counting. And a lot of 
the kids in this one, can do it, but they do it in a not very efficient way. 

R: Can you explain that? … [Have you] already done some UDS with them? 
M: Yeah, well, I asked them questions … A majority were still just confused. But a lot of 

them will figure out [their] single units, and my single units, and then subtract them 
versus being able to see we have the same exact composite units. [But in UDS we] just 
have to figure out what’s the difference in composite [units] … OH! (‘aha’ facial 
expression) So that’s why Same Unit Coordination is important. 

R: Can you tell me what you’re thinking? 
M: (Brings a piece of paper) So, in single unit (she draws 6 lines, writes 5 above each line, 

and writes ‘6T’ and ‘5c’), I do not know why I keep going to 5. It doesn't really matter. 
(She draws 3 more lines, writes 5 above each line, and writes ‘4T’ and ‘5c’). So, in Same 
Unit [Coordination], you’re concentrating really only on the towers (circles ‘6T’ and 
‘4T’ in her drawing). And, Unit Differentiation [and Selection], you really only want to 
concentrate on the towers … I have two more towers, so I am still only back to that 
Same Unit Coordination. Cubes don’t matter until I realize that I have two more towers, 
[and] 5 [cubes] in each would be 10 cubes altogether, [with this last step being 
Multiplicative Double Counting. 

We see three key points to understanding Mona’s novel units coordination, leading to 
her ‘aha’ about the SUC-UDS linkage. First, she distinguished mDC (“pay attention to 
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composite units as well as the single units”) from SUC (“only asked about the 
composite units”). This indicated her MKT already included a focus on units that 
underlie different solutions and operations on those units. Second, she genuinely stated 
her inability to explain (“I don’t really think I know”) the importance of this distinction 
in linkage to her UDS lesson goal. We infer the missing linkage was between SUC and 
UDS based on Mona’s utterance right after her ‘aha’ (“So that’s why Same Unit 
Coordination is important”). Third, she then brought forth her conceptualization of 
UDS (“just have to figure out what’s the difference in composite [units]”), followed by 
her reflection on students’ difficulties through the lens of units coordination (“A 
majority were still just confused”). Reflecting on those experiences led to her 
realization (“Oh!”) of the SUC-UDS linkage, which she explained in terms of units and 
operations (“And, Unit Differentiation [and Selection], you really only want to 
concentrate on the towers … I have two more towers, so I am still only back to that 
Same Unit Coordination.”). She finished this explanation with a numerical example, 
subtracting 6-4 (towers) to find that difference and then multiplying (using mDC) to 
find there are additional ten 1s in the larger set of 5-cube towers. Heading into the 
lesson, we infer Mona’s MKT was deepened: She could consider students’ learning of 
and struggles with UDS in light of SUC as a conceptual prerequisite. 
Conceptually-Driven, Real-Time Adaptation of Teaching 
To start the lesson, Mona engaged all students in solving the mDC review task (total 
of cubes in 7 towers with 4 cubes each). She looked for their coordination of the 
composite units (a finger raised for each tower) and 1s in each (uttering multiples of 
4). While some students appeared facile with mDC, others seemed to struggle. Mona 
asked a student to share a solution, which seemed to meet Mona’s expectation for both 
the correct answer and the double-count (1-finger-is-4, 2-are-8, etc.). 
Letting students work for over a minute on the SUC task (3 packs and 6 packs, each 
with 5 pieces of gum; how many packs), Mona noticed they got stuck. She first asked 
them to talk with a partner, noticing most answered, “45.” Then, she asked the entire 
group who could explain. Only one student raised her hand. To Mona’s question, “Ok, 
what’s your answer?” the student responded, “Nine. Because 3 (packs of 5) is 15, and 
six is 18.” Thus, four minutes into the lesson, Mona decided to adapt it. While flipping 
the poster with review tasks and the poster for teaching UDS, she told the class: “I’m 
changing what we were originally going to do.” As Excerpt 2 from the post-lesson 
interview shows, she decided to focus on SUC instead of on UDS. 
Excerpt 2 (Post-Interview): Mona’s rationale for adapting the lesson. 

R: After you did the mDC, you went into the SUC question. Talk to me a little about what 
you observed then, and why you chose [to change the lesson]. 

M: (Appears perturbed) Umm. I mean (pause). When we went into the SUC, they reverted 
back to mDC. They did not see that as a different question at all. They saw it as 3 packs 
of gum. [A little later, after clarifying the numbers in the SUC task] But even if I put 
towers and cubes [ in place of packs and guns] I don't think it would have changed the 
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outcome. I think that had I asked them how many pieces of gum, that would have 
demonstrated they understood mDC. But they totally saw that as an mDC, not as an SUC, 
and not one group said the correct answer. 

R: What were the groups saying? ‘Cause you [kept asking] What did you say? 
M: [As their answers] I heard 15; I heard 18. I didn’t hear 9; ever. Student C was the only 

one who kept going, “wait, why?” [And he] kept going “I don't know if that’s the answer.” 
But he couldn't articulate why it wasn't the answer anyway. So they were 45, that was a 
[common] one. So they were just figuring out how many pieces of gum [in each set] and 
then adding them together. 

[A short exchange here focused on Mona’s choice of numbers for the SUC task.] 
M: But as soon as I heard all those answers, I was like, we are at the very beginning stage 

of this. Because they don't see the composite (units). They only see that as…they did 3 
times [5]. The people who got 45, that tells me that they understood 3, the packs were 
[like] towers, the pieces were [like] cubes, and they figured out the cubes altogether.  

R: So that’s when you chose to stop, and you didn’t move on to UDS (original goal)? 
M: Noooo (body expression indicating UDS was absolutely improper in her mind). 
R: Why? 
M: Because to do UDS, you have to be able to see it as composite units first, then single 

units. [R: Why?] Because your ultimate goal is to [first] compare your composite units, 
figure out the difference of composite [units], and then know the left overs, then [it goes 
back] to mDC. 

R: So why stop? Why not just keep going [to UDS]? 
M: (Looks at the researcher as if the answer is obvious) Why go through the motions when 

they wouldn’t have understood what they were doing? 
R: (A bit later) So, you see it very important that they have abstract understanding of mDC 

and SUC before moving into UDS? 
M: Yeah, and I really have never realized how much … until I did that and listened to 

answers, I was like, I now totally get it … (R asks: Get what?) That they have to be able 
to differentiate, and understand the question, of composite units versus single units.  

Data in Excerpt 2 support our claim that Mona’s deepened MKT enabled adapting her 
lesson in real-time. Her noticing that students reasoned with mDC to solve the SUC 
task could be rooted in her prior distinction between the focus on 1s (mDC) and on 
composite units (SUC). Similarly, rejecting that the issue was context (“… had I asked 
them how many pieces of gum, that would have demonstrated they understood mDC”) 
might have also been supported by her previous MKT. However, her noticing (“So 
they were 45, that was a [common] one”) and acute awareness that students operated 
on 1s, not on composite units, seemed to then be assimilated into her novel SUC-UDS 
link (e.g., “Because they don’t, they don’t see the composite units”).  
When asked of her decision not to go to UDS, her rejection (“Noooo”) showed it 
contradicted her stance of setting a sensible goal for students’ learning. She realized 
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her students were yet to develop the conceptual prerequisite for UDS, a linkage she 
made through the ‘aha’ moment in the pre-lesson interview. Thus, changing the lesson 
to focus on SUC seemed to her a more suitable path (“Why go through the motions 
when they wouldn’t have understood what they were doing?”). Her explanation of the 
conceptual basis for her adaptation reflects the conceptual linkage she made in the pre-
lesson interview, between SUC and UDS. That is, her deepened MKT included units 
coordination for UDS that requires operating on composite units before operating on 
1s (“Because to do UDS, you have to be able to see it as composite units first, then 
single units.”). Thus, to her it made sense to focus first on students’ identification of 
and additive operations on composite units, that is, SUC. 
DISCUSSION 
We see two key contributions of this study. First, it stresses two roles that a units 
coordination lens can serve in promoting teachers’ MKT and, hence, their practice. 
One role is in promoting teachers’ learning through teaching (Tzur, 2010), as they 
make sense and use of research that explicates units and operations underlying their 
own (MKT) as well as their students’ mathematics. Mona’s case is telling. She 
participated in a 2-year PD program that constantly emphasized units and operations 
linkages between mDC, SUC, and UDS. Through further probing of her thinking about 
those linkages during the pre-lesson interview, she conceptualized the SUC-UDS 
linkage for herself (see Excerpt 1). The second role, once a teacher deepens her MKT 
with an explicit units coordination linkage—is driving her (a) noticing of students’ 
abilities and struggles, (b) inferring conceptual sources of what she notices, and 
ultimately (c) adapting her teaching to fit learning goals to students’ reasoning (not fit 
students to a pre-set plan). Again, Mona’s case is telling. It illuminates how a teacher’s 
MKT, once deepened with a units coordination lens, afforded conceptually-driven 
planning and adaptation to her planned lesson. 
A second contribution is in using Mona’s case to elucidate a reorganization of four 
constructs: teacher MKT (Hill et al., 2005), teacher noticing (Jacobs et al., 2010), a 
units coordination lens, and student-adaptive pedagogy (Tzur, 2013). Here, a 
conceptual ‘aha’ rooted in coordinating units and operations that help link SUC and 
UDS deepened her MKT. In turn, her explicit units coordination expanded what she 
could notice in her students’ work (e.g., attributing their responses to the SUC task to 
irrelevant operations on 1s). Thus, her deepened MKT afforded going beyond noticing 
to explicate conceptual causes for students’ behaviors (Hodkowski, 2018). Being 
committed to students’ learning of what is conceptually reachable for them, these new 
capacities afforded Mona’s conceptually-driven adaptation to her teaching. Drawing 
on Mona’s case, future research can further articulate complexities of the interplay 
between a teacher’s MKT, noticing, and adaptive teaching. 
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Spatial ability is an important component of mathematical competence. There are 
multiple ways to represent three-dimensional figures in a two-dimensional way. This 
paper reports a study that systematically compared the effect of the projection method 
used in a validated questionnaire (PSVT:R) on performance in conducting mental 
rotations. It was found that accuracy and efficiency was lower when items were 
presented in isometric projection as compared to a trimetric or oblique parallel 
projection, and this was the case for a sample of Grade 6 students as well as Grade 12 
specializing in mathematics. Implications for research and practice are discussed. 
THEORETICAL AND EMPIRICAL BACKGROUND 
Strengthening learners’ spatial ability is an important goal of nowadays’ mathematics 
education, both at the primary and secondary level. This ability includes understanding 
two-dimensional representations of spatial situations and using such representations in 
problem solving. For instance, one of the educational standards in the Flemish 
secondary curriculum states that learners should be able to illustrate that information 
can be lost when representing three-dimensional situations by means of a two-
dimensional representation (Vlaams Ministerie van Onderwijs en Vorming, 2014).  
There are multiple ways to represent spatial situations on a two-dimensional plane, 
based on different projection methods. In Figure 1, the same geometrical object is 
represented in four different ways. Only the differences between figures 1b and 1c 
(orthogonal projections) are based on taking a different viewpoint in relation to the 
figure. The other differences are intrinsically related to the specific properties of the 
projection method itself. For instance, the vertical edges in Figure 1a (central 
projection) are not shown in parallel. In Figure 1d (oblique parallel projection), the 
front side can be seen in its true shape (lengths and angles are shown truthfully), which 
is impossible in Figures 1b and 1c. All these projections are used commonly in school 
contexts, professional contexts and daily life.  
An important question is how mathematics education should deal with these different 
representations. Each of the representations has specific properties that could be used 
in education to enhance spatial ability. The central projection in Figure 1a is the 
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representation that best connects to the way we observe objects, but is too complicated 
to use for constructions in mathematics classes, whereas the oblique parallel 
representation in figure 1d may be the easiest to use and construct, although it is the 
furthest away from the way we observe (van de Craats, 1986). In educational practice, 
this complexity is typically not addressed, and also in research, representations are used 
inconsistently (for a clear example, see Baki, Kosa, & Guven, 2011).  
This paper reports about one of the first studies that systematically investigates the 
impact of the projection method that is used to represent spatial objects, specifically in 
the measurement of an important component of spatial ability, i.e. mental rotation 
(Borella, Meneghetti, Ronconi, & De Beni, 2014). A widely used and well validated 
test instrument to measure mental rotation ability is the (revised) Purdue Spatial 
Visualisation Test: Rotations (PSVT:R). It was originally developed by Guay (1976), 
and revised and psychometrically validated by Yoon (2011; Maeda, Yoon, Kim-Kang, 
& Imbrie, 2013). The test contains 30 items in which one given object is rotated, and 

respondents have to indicate how another object would look like if it is rotated in the 
same manner. An example item is given in Figure 2.  

 

Figure 2: Item 10 of the PSVT:R (Yoon, 2011, p. 30). 
 

 

    a         b              c   d  
Figure 1: Central (a), orthogonal (b and c) and oblique parallel (d) projections of the 

same figure. 
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The PSVT:R uses an orthogonal projection, and more specifically the isometric 
projection method (as also used in Figure 1b). The question remains, however, to what 
extent the performance on this questionnaire is affected by the use of this projection 
method. Branoff (2000) has already criticized this choice based on the fact that the 
isometric projection method leads to figures that are difficult to interpret: “isometric 
projections of three-dimensional objects create accidental instances where the three-
dimensional objects may be interpreted as two-dimensional patterns” (p. 15). A clear 
example is answer alternative E in Figure 2. Branoff (2000) and Yue (2008) conducted 
some exploratory studies in which they respectively used a test variant with trimetric 
projections and central projections, and they found indications for shorter test times 
and better performance. However, differences were not significant.   
RESEARCH QUESTIONS 
The present study was conducted to systematically investigate the impact of the 
projection method that is used in the PSVT:R. We compared the original PSVT:R with 
a variant that used a trimetric projection as well as a variant that used an oblique parallel 
projection. We were particularly interested in the effect of the projection method on 
the performance on the questionnaire, as well as the efficiency (i.e. the performance 
taking into account the time used).  
A further question was whether the effect of the projection method would be similar 
across different levels of expertise. We therefore conducted the study in two 
populations: Grade 12 students in study programmes with a strong mathematical focus 
(the age and expertise level for which the PSVT:R is intended) and Grade 6 students. 
If certain projection methods would be the cause of difficulties, one could expect these 
to occur more prominently in students with lower levels of expertise. 
We also systematically investigated which item characteristics could be the underlying 
cause of students’ errors, and of differences in performance between the projection 
methods. Particularly the fact that in some items the isometric projection caused edges 
or vertices to coincide largely contributed to the difficulties we observed. Due to space 
limitations, these findings cannot be reported in the current paper but they will be 
presented at the conference. An illustration of this issue are the coinciding edges and 
vertices in the isometric representation of answer alternative A in Figure 2 as compared 
to the trimetric and oblique representations of answer alternative A in Figure 3.   
METHOD 
Instrument 
The original PSVT:R questionnaire was developed in isometric projection. For the 
purpose of the current study, all objects were first reconstructed using Geogebra 2013 
(version 4.2.30.0). Next, variants of the questionnaire were made in trimetric projection 
and in oblique parallel projection. For reasons of illustration, Figure 3 shows the 
answer alternatives of Item 10 of the PSVT:R in these projections (the original 
isometric alternatives are shown in Figure 2).  
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Sample  
The test was administered to two samples in Flanders, Belgium. The first sample was 
a group of 187 Grade 6 primary school students (nine class groups from five different 
schools). As there are no study tracks in primary school, this sample can be considered 
representative for the population of that age (11-12-year olds). The PSVT:R is 
originally intended for participants starting from the age of 13, so it could be assumed 
that the test would be quite challenging for this first sample.  
The second sample consisted of 161 students from Grade 12 of secondary school (ten 
class groups from 6 different schools). They were following a track in general 
secondary education, preparing for higher education studies and with an above-average 
focus on mathematics, following 6 to 8 hours of mathematics per week. Due to 
selection mechanisms throughout the Flemish secondary education system, this group 
cannot be considered representative for the general population of 17-18-year olds. This 
sample has a specific interest, prior knowledge and ability in mathematics. 
Although we will refer to these two samples as two “age groups”, it will be clear that 
they differ in several ways beyond their age. We intentionally included these two 
different groups in order to gain a better understanding of the effect of the projection 
method. It might be that the projection method played a different role in students with 
different levels of expertise.   

Procedure 
Test administration was done collectively in class groups. The three test variants were 
randomly distributed to students within each class group. Students were not aware that 
different test variants were used. 

 

 

Figure 3: Answer alternatives of Item 10 of the PSVT:R. Figure above in trimetric 
projection. Figure below in oblique parallel projection.  (example of isometric 

projection in Figure 2) 
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Because of the young age of our Grade 6 sample, we introduced the test by means of 
two self-developed practice items, in which real spatial objects were shown and rotated 
at the front of the classroom. In this way, we clarified the reasoning that was expected 
in the test itself. The same instructions were also given to the Grade 12 school sample. 
Students could work as long as they wanted, but they were asked not to return in the 
booklet to items previously solved. In order to calculate the efficiency, the time it took 
students to complete the test was also registered on the test booklet.  
RESULTS 
Accuracy 
An overview of the accuracies in both age groups and in the three conditions is 
provided in Table 1. In order to test the effect of the projection method on accuracy, in 
each age group a one-way ANOVA was conducted in SPSS23. Post hoc tests to test 
for significant differences across conditions were conducted using Tukey’s HSD. 
Outlier scores were removed. Scores for Grade 12 students were then transformed 
(using a square root transformation) in order to meet assumptions of normality. 
Levene’s tests indicated that homogeneity assumptions were met.  
In the group of Grade 6 students, a significant effect of projection method was found, 
F(2, 182) = 4.035, p = .019, partial ɳ²= .042. The post hoc tests indicated that accuracy 
in the isometric projection was significantly lower than in the other two projections, 
with no difference between the latter two. 
A similar trend was found in the accuracy scores of the grade 12 students, but the effect 
was not significant, F(2, 156) = 2.461, p = .089, partial ɳ²= .031. Again, accuracy in 
the isometric projection was lower than the other two.  

 Grade 6 Grade 12 
 Mean SD Mean SD 

Isometric 12.4 5.19 22.4 4.35 
Oblique 
parallel 13.8 4.40 24.0 4.16 

Trimetric 14.0 4.06 24.1 3.48 
Total 13.4 4.57 23.5 4.07 

Table 1: Mean accuracy and standard deviation, by age and projection method 
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Efficiency 
Efficiency was operationalised as the ratio between the number of correct responses 
and the time (in minutes) taken to complete the test. An overview of the efficiency 
scores in both age groups and in the three conditions is provided in Table 2. 
Similar to the analysis of accuracies, in each age group a one-way ANOVA was 
conducted with condition as a predictor and using Tukey’s HSD for post hoc 
comparisons. Scores for Grade 6 and Grade 12 students were then transformed (using 
a log10 transformation) to meet assumptions of normality. Levene’s tests indicated that 
homogeneity assumptions were met.  
In the Grade 6 students, a significant effect of projection method was found, F(2, 184) 
= 4.535, p = .012, partial ɳ²= .047. The post hoc tests indicated that efficiency in the 
isometric projection was significantly lower than in the other two projections, with no 
difference between the latter two.  
The same effect was found in the Grade 12 students, F(2, 156) = 6.094, p = .003, 
partial ɳ²= .072. Again, efficiency in the isometric projection was lower than the other 
two projections, while there was no difference between the trimetric and oblique 
parallel projection.  
CONCLUSIONS AND DISCUSSION 
In general, we found that the accuracy on the PSVT:R in the isometric projection was 
lower than in the oblique parallel and trimetric projection. This effect was significant 
in the Grade 6 sample but not in the Grade 12 sample. The same pattern was found in 
the efficiency scores, and this time, differences were significant both in the Grade 6 
and Grade 12 sample.  
The original PSVT:R was developed by Guay (1978) using isometric projection, and 
also the validation studies happened using this original version (e.g., Maeda et al., 
2013; Yoon, 2011). We now have observed that this projection method makes the test 
more difficult, as compared to when other projection methods would be used, and this 
seemed particularly the case in younger students with less expertise. If the goal of the 

 Grade 6 Grade 12 
 Mean SD Mean SD 

Isometric 1.0 0.38 1.2 0.51 
Oblique 
parallel 1.1 0.50 1.4 0.52 

Trimetric 1.2 0.49 1.6 0.50 
Total 1.1 0.47 1.3 0.52 

Table 2: Mean efficiency score and standard deviation, by age and projection 
method 
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test is to measure students’ spatial ability and more specifically their mental rotation 
skills, one can wonder whether the choice for the isometric projection is the best 
possible choice. Even when students have managed to conceive the spatial figures and 
to rotate them in the same way as the given example, they may still encounter 
difficulties finding the correct answer alternative merely because of confusions that 
occur due to the choice of the projection method. 
At first sight, it may look as if this issue merely relates to a psychometric discussion 
about how mental rotation ability can be measured reliably and validly. This is 
important in its own right, but the choice of a projection method, has also specific 
relevance from a mathematics education perspective. The choice of a method to 
represent three-dimensional figures two-dimensionally is a far from trivial one, but as 
far as we know, there is little or no systematic research on this topic, and educational 
practice often overlooks this issue as well. For example, the use of powerful software 
for visualization in the teaching process may enhance the learning of students (Ferrara 
& Mammana, 2014; Widder, Berman, & Koichu, 2018), but the projection method 
used in this software seems to remain largely unproblematized. Various projection 
methods may have their place in educational practice, in textbooks, in software, in tests, 
etcetera. Each of these projection methods may have its own advantages, such as the 
ease of creating a drawing oneself, the mathematical properties that can be deduced 
from a two-dimensional drawing (comparing lengths, comparing the size of angles, 
finding parallel lines and planes, finding right angles, …). Teachers’ explicitly 
discussing and comparing various projection methods may also lead to a deeper 
understanding in students of the process of creating two-dimensional representations 
of three-dimensional figures and the fact that this process always involves a loss of 
specific information. A good understanding of spatial ability, its development and its 
measurement is moreover not only relevant for the domain of geometry; it is of crucial 
importance for mathematics education more generally. Spatial abilities play an 
important role on mathematical performance also in other domains, such as algebraic 
reasoning (Chimoni & Pitta-Pantazi, 2018).  
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This paper zooms in on the curriculum systems for elementary mathematics education 
in the United States, Finland, Sweden, and Flanders (Belgium), which are all in the 
midst of curriculum reform. Our analysis builds on a framework that focuses on 
curriculum policy, design and enactment in each of these regions and draws on 
interview data with teachers in all four regions, documents composed to support the 
international research team’s prerequisite understanding (sample case descriptions of 
curriculum use per region, context descriptions), and available descriptions of 
mathematics education in these four regions. This leads to a nuanced understanding 
of the four curriculum systems, which sheds light on a challenging balance concerning 
a curriculum reform that is both coherent across a region and supported by teachers. 
MATHEMATICS CURRICULUM REFORM: A DELICATE PROCESS  
Curriculum reform is a delicate process because multiple factors influence 
implementation, and, ultimately, student performance. If a curriculum is to promote 
region-wide reform, it should be coherent across that region. Further, there is evidence 
that the teacher has a crucial role, in that teachers should embrace and advocate the 
underlying vision (e.g., Tarr et al., 2008).  
This paper aims to add to a better understanding of the mathematics curriculum systems 
in the U.S., Finland, Sweden, and Flanders (Belgium). All four regions have recently 
undergone or are in the midst of mathematics reform. We draw on Stigler and Hiebert’s 
(1999) assertion that comparing educational systems allows bringing to the surface 
otherwise hardly noticed aspects from within a system. By describing and comparing 
the curriculum systems of these four regions, this study will consider consequences for 
teacher involvement in, and region-wide coherence of the curriculum. 
CURRICULUM POLICY, DESIGN, AND ENACTMENT FRAMEWORK 
We understand teachers’ use of resources to be situated in a broader school system and 
draw on the curriculum enactment process as conceptualized in Remillard and Heck 
(2014) (See Figure 1). Remillard and Heck differentiate between an official and 
operational curriculum. The official curriculum is authorized by governing agencies 
and includes curricular aims and objectives; assessments; and the designated 
curriculum – a set of instructional plans specified by a governing agency. The 
operational curriculum captures the enactment process. It acknowledges the central 
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role that teachers have in interpreting and mobilizing curriculum resources and 
differentiates between a teacher-intended and enacted curriculum, and student 
outcomes. The location of instructional resources outside of the official and operational 
curriculum allows to fit both (centralized) systems in which the instructional resources 
are part of the official curriculum, and other systems in which they are not.  
We use the term instructional resources to refer to the resources used to support 
curriculum enactment. These resources include curriculum resources that sequence a 
particular content such as student textbooks and teacher’s guides, but also other 
resources such as digital (online) applications. 

 

Figure 1. Visual model of the curriculum policy, design, and enactment system 
(Source: Remillard & Heck, 2014, p. 709) 

CONTEXT AND METHOD OF STUDY 
This study is part of a larger cross-cultural study on elementary school teachers’ use of 
printed and digital instructional resources in the U.S., Finland, Sweden, and Flanders 
(the northern part of Belgium, which has its own educational system). Although largely 
an opportunity sample, the selection of these four regions addresses both constants and 
contexts (Osborn, 2004) comprising a sound rationale for comparison. Talking to the 
constants, all four regions value local educational authority, emphasize similar aspects 
as to the mathematical curriculum, and teachers rely on (printed) curriculum resources 
when teaching mathematics. Our previous analyses of printed curriculum resources 
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also shed light on differences in provided teacher support, surfacing context-specific 
assumptions of teaching and learning mathematics (e.g., Remillard, Van Steenbrugge, 
& Bergqvist, 2016). 
When designing and analyzing interviews on resource use with teachers in the four 
regions, we were faced with challenges of equivalence, validity, and comparability 
(Clarke, 2013; Osborn, 2004), and with challenges related to the undertaking of such a 
study in a cross-cultural team of researchers. To develop the research team’s 
prerequisite intersubjectivity (Andrews, 2007) needed to fully understand the 
completed interviews as situated in their specific context, we developed case 
descriptions illustrating curriculum use for one teacher per context, and context 
descriptions. This paper draws primarily on these four case and context descriptions, 
but also on interview data specifically relating to the selection of instructional 
resources, and additional readings on mathematics curricula in these four regions (i.e., 
Hemmi, Krzywacki, & Partanen, 2017; Remillard & Reinke, 2017; Van Steenbrugge 
& Ryve, 2018; Verschaffel, 2004). 
Ten teachers in Finland, the U.S., Flanders, and Sweden were interviewed in the fall 
of 2017 and again in the spring of 2018 on their use of resources when planning and 
teaching mathematics. The first interview was general and addressed teacher and 
school backgrounds, what resources teachers used, teachers’ views on the curriculum 
resources being used, and teachers’ general beliefs on teaching and learning 
mathematics. The second interview focused in more detail on teachers’ actual use of 
both print and digital resources, and centred around a walk-through of planning, 
decisions, and enactment of a lesson that the teacher taught recently.  
Each case description was prepared by a team member who is a cultural insider, written 
in English for shared use. We first applied low-inference codes to the interviews to 
index excerpts of the interviews. These codes identified, for instance, teachers’ 
descriptions of resources, how they were used, and reasons for use. The process of 
coding was tried out individually, discussed in, and refined by the team. Having coded 
two interviews for one teacher per region, we gathered similarly-coded statements and 
applied the following structure to the cases: a) teacher education and teaching 
background, b) information about school and class, c) selection process of the 
resources, d) use of resources and purposes for use, e) teacher beliefs and conceptions, 
f) changes in resource use.  
The process of writing and reading cases made us aware that significant insider 
knowledge was necessary to make sense of them, which is why we also developed 
context descriptions. Context descriptions are organized according to the following 
structure: a) school system-structure, b) pathways into teaching elementary 
mathematics, c) school environment, d) financial resources for organizing education, 
e) decision-making mechanisms in schools in relation to mathematics education, f) 
student assessment, and g) monitoring and quality assurance of education. 
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An important step in the process of developing the cases and context descriptions was 
full-team review and discussion of them. In fact, we arrived at a common structure and 
approach through incremental development, review, and discussion. 
Building on the curriculum policy, design, and enactment framework (Remillard & 
Heck, 2014), we came to the following analytical structure to compare the four 
educational systems, based on case and context descriptions, interview data, and the 
abovementioned additional readings: 

• Educational jurisdiction and school funding; 
• Most recent central mathematics curriculum, including name and launching 

date, novel aspects, requirement of adoption; 
• Role of assessments; 
• Curriculum specification in addition to central curricular aims and objectives; 
• Instructional resources and influential factors, including resource market and 

acceptance criteria. 
Curriculum	systems	in	the	U.S.,	Finland,	Sweden,	and	Flanders	
Table 1 includes our descriptions of the curriculum systems of the U.S., Finland, 
Sweden, and Flanders. Looking across the table helps highlight similarities and 
differences related to a) regulations and incentives to steer local authority, b) role of 
curriculum resources in curriculum reform, and c) curriculum interpretation. We 
discuss these aspects below and relate them in a final section to two crucial aspects of 
curriculum reform: coherence and embracement of the reform by teachers. 
Regulations and incentives to steer local authority are present to different extents. The 
curriculum systems of the U.S. and Flanders have the most explicit mechanisms to 
steer local authority. In the U.S., states possess authority in relation to educational 
policy and, sometimes, delegate policy to school districts, but the Government by 
means of applying specific funding mechanisms influences policy and curriculum use 
at state, district, and school level. In Flanders, schools are in principle free to determine 
how to work toward the attainment targets, but the Government, through regulations 
such as school inspectorates and the requirement to adopt a learning plan, and through 
targeted funding, sets the framework of the curriculum system and influences 
curriculum policy and use at the local school level. In Sweden, the Government also 
sets the framework of the curriculum system, but influences curriculum use at a more 
implicit level, through rolling out a nation-wide professional development program 
following the curriculum reform. From our study, it appears that central regulation is 
the least manifested in Finland. The Finnish National Board of Education commissions 
on a regular interval-base an expert group to develop a new curriculum. Schools and 
teachers are provided with guiding documents and regulations but are not checked 
upon regarding the application of the guidelines and regulations. 
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 U.S. Finland Sweden Flanders 

Educational jurisdiction and school funding 

Jurisdiction School districts 
with oversite 
from states  

Finnish 
government 

Swedish 
government 

Flemish 
government 

School 
funding 

State and local 
taxes 

National and 
local funding 

Government to 
municipals to 
schools 

Government; 
also targeted 
funding 

Most recent central mathematics curriculum 

Name & 
launching date 

Common Core 
State Standards 
(CCSS), 2010 

National Core 
Curriculum 
(NCC), 2016 

Läroplan (LGR 
11), 2011 – 
revised 2018 

Attainment 
targets; 
1998/under 
development 

Novel aspects Emphasis on 
visual models 
and conceptual 
understanding 

Cross-
curricular 
competences 
(e.g., digital 
competence)  

Mathematical 
competences,  
digital 
competence 

Structured 
around 16 key 
competences 
(e.g., digital 
competence) 

Adoption Not required; 
Federal 
government 
incentivizes 
states toward 
CCSS & 
assessment 
adoption 

Required, but 
not checked 

A nationwide 
professional 
development 
program 
supports 
adoption; 
checked by 
school 
inspectorates 

Required, 
checked by 
school 
inspectorates 

 

Assessments 

 Consequential 
for student 
promotion, 
teacher 
employment, 
school funding 

Individual 
teachers are 
responsible for 
assessment 

National tests 
check 
performance 
on school and 
population 
level 

Tests assess 
mastery of 
attainment 
targets on 
population 
level  
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Continued curriculum specification 

Level & 
content 

Districts and 
schools often 
specify 
instructional 
resources to be 
used, and issue 
pacing 
guidelines 

National board 
of education 
hosts a website 
with available 
resources;  

School teams 
and/or local 
authorities 
concretize 
NCC into a 
central school-
level 
curriculum 

/ Three umbrella 
organizations 
issue learning 
plans, which 
break down 
attainment 
targets per 
grades, add 
goals and 
didactical 
suggestions 

Instructional resources and factors that influence resources and use 

Instructional 
resource 
market 

Commercial 
enterprise, 
limited number 
of publishers	

Commercial 
enterprise, 
limited number 
of publishers	

Commercial 
enterprise, 
limited number 
of publishers	

Commercial 
enterprise, 
limited number 
of publishers 

Acceptance 
criteria 

By some 
states/districts 

No No No 

Selection 
instructional 
resources	

Main curriculum 
resource & 
larger digital 
platforms: 
districts & 
schools;  

Digital 
resources: 
teachers	

Main 
curriculum 
resource & 
digital 
resources: 
teachers	

Main 
curriculum 
resource: 
schools;  

Digital 
resources: 
teachers	

Main 
curriculum 
resource: 
schools; Digital 
resources: 
teachers, 
schools, school 
groups, 
umbrella 
organizations	

Table 1: The curriculum systems of the U.S., Finland, Sweden, and Flanders 
In all four regions, curriculum resources served as interpreters of the official 
curriculum, hereby serving as mediators between the intended curriculum and the 
classroom (Valverde, Bianchi, Wolfe, Schmidt, & Houang, 2002). Additionally, and 
talking to the systems of Finland and Flanders, curriculum resources can also 
potentially influence curriculum making. In Finland, teachers at times rely on the 
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learning sequence in commercial curriculum resources to design their crucial school-
level curriculum. Currently in Flanders, new curriculum resources, often 
complemented with digital applications, are published before the actual launch of the 
new attainment targets, hereby possibly influencing the novel aspects of the 
mathematics reform related to digital competence. 
Our comparative analysis also reveals differing levels where significant curriculum 
interpretation happens to reside. In Sweden, the bulk of interpretation happens at the 
individual teacher level. In Finland, significant interpretation is applied to compose a 
school-level curriculum, whereas in Flanders, major interpretation of the attainment 
targets is located above the school-level, by the umbrella organizations issuing learning 
plans. In the U.S., significant curriculum interpretation resides in the assessments.  
CURRICULUM REFORM: A DELICATE BALANCE BETWEEN REGION-
WIDE COHERENCE AND TEACHER APPROVAL 
The findings suggest that a curriculum reform that is both region-wide and supported 
by teachers, is a challenging balance. Both Flanders and the U.S., through their layered 
curriculum system, succeed most toward a region-wide curriculum coherence, but this 
goes at the cost of teacher involvement in the reform process. In Finland, teachers are 
most involved in reform through the design of a school-level curriculum, but this goes 
at the cost of a nation-wide curriculum-coherence. Sweden stands out in that teachers 
were asking for reform and that the Government answered the call by rolling out 
nationwide professional development. It still has to be seen to what extent that results 
in curriculum coherence. In all four regions, commercially published curriculum 
resources are a central aspect in a region-wide curriculum reform. Given this 
significant position, it is remarkable that only in the U.S., sometimes quality criteria 
are issued that curriculum resources have to pass. 
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EARLY PROPORTIONAL REASONING ABILITIES: 
THE ROLE OF RELATIONAL PREFERENCE 

Elien Vanluydt, Tine Degrande, Lieven Verschaffel, Wim Van Dooren  
Centre for Instructional Psychology and Technology, University of Leuven 

 

Recent literature suggests that children develop proportional reasoning abilities at an 
earlier age than traditionally assumed. It also indicates that children’s preference for 
additive and multiplicative relations plays a role in this development. In this study we 
investigated four- to nine-year olds’ proportional reasoning abilities in missing-value 
proportional reasoning problems, and how these are related to the extent of their 
preference for additive and multiplicative relations. Having a multiplicative preference 
was a significant predictor for proportional reasoning abilities, but surprisingly an 
additive preference was a significant predictor too. It seems that at this young age, an 
additive preference is not a barrier for proportional reasoning abilities. Rather, along 
with a multiplicative preference it is a facilitator for this ability. 
INTRODUCTION 
Proportional reasoning is an important goal in mathematics education. Proportions are 
characterized by the equality of two ratios (mathematically written as a/b = c/d) or put 
differently as a multiplicative relation between two co-varying measures (Vergnaud, 
1988).  
The traditional Piagetian stance on the development of proportional reasoning 
considers additive reasoning as a precursor. Inhelder and Piaget (1958) state that 
children first tend to focus on the “equality of differences’ (p. 177), and only later on 
the equality of ratios. Put differently, early in development, children are only able to 
quantify relations in an additive way, and only later when they have reached the formal-
operational level of cognitive functioning, they can think of relations in a multiplicative 
way, and thus understand proportions. Many other authors supported the traditional 
assumption of an additive phase preceding a proportional phase (e.g., Lamon, 2008). 
This assumption is strengthened by numerous studies revealing that children 
erroneously use additive reasoning to solve proportional reasoning problems (e.g., 
Kaput & West, 1994). 
However, recent studies started to question whether the sequential development of 
additive and proportional reasoning is as straightforward as has been assumed 
traditionally. First, Van Dooren, De Bock and Verschaffel (2010) discovered that 
besides the inappropriate application of additive reasoning in multiplicative missing-
value problems, the inverse mistake occurs as well. Children also over-use 
multiplicative reasoning in additive missing-value word problems, while they do 
master additive reasoning. Second, other recent studies suggested an early 
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development of proportional reasoning abilities, starting from the beginning of primary 
school (e.g., Boyer & Levine, 2012). 
It seems that children’s inappropriate use of proportional reasoning in additive missing-
value word problems and vice versa cannot be explained solely by their abilities to 
reason additively or multiplicatively. Degrande, Verschaffel, and Van Dooren (2018) 
proposed an additional explanatory element, namely children’s preference for additive 
and multiplicative relations. Preference expresses that children are inclined to use one 
type of relation above the other, in situations where they can choose and where both 
types are equally valuable. Degrande et al. (2018) investigated children’s preference 
for additive and multiplicative relations in schematic missing-value problems that were 
open to both types of reasoning. Firstly, they explicitly found the existence of a 
preference for additive relations in some children and a preference for multiplicative 
relations in others. Secondly, they showed that such a relational preference offers an 
additional explanation for the over-use of additive and proportional methods in solving 
world problems, over and above calculation and modelling skills (Degrande, 
Verschaffel, & Van Dooren, 2017). This suggests that besides their skills, children’s 
preference for additive and multiplicative relations plays a unique role in the type of 
reasoning they exhibit when solving proportional problems.  
The present study 
In this study we focused on children at an age before the start of instruction on 
proportional reasoning. We investigated how four- to nine-year olds’ abilities to solve 
missing-value proportional reasoning problems are related to the extent of their 
preference for additive and multiplicative relations. Is children’s multiplicative 
preference associated with their performance on proportional reasoning ability tasks? 
And does an additive preference act as a barrier to proportional reasoning abilities, or 
can it also be a facilitator?  
METHOD 
Participants 
Data were collected in two elementary schools in Flanders, Belgium, resulting in a 
sample of 185 children: 43 kindergartners (M=5.06 years, range=5.00-6.03 years), 44 
first graders (M=6.07 years, range=6.01-7.07 years), 40 second graders (M=7.07 years, 
range=7.02-9.00 years), and 58 third graders (M=8.08 years, range=8.01-10.01 years). 
43.2% of the participants were boys. All children participated voluntarily with 
informed consent of their parents and teachers.  
Design and materials 
All children were individually tested during 30 minutes with tasks using manipulatives 
and oral instruction. Two aspects were addressed: children’s preference (P) for additive 
and multiplicative relations and their proportional reasoning abilities (A). All tasks 
were non-symbolic, because the youngest children were not yet familiar with symbolic 
number presentations. 
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Preference (P) – To identify children’s preference for additive and multiplicative 
relations, a preference task consisting of four open missing-value items was developed. 
These open problems did not contain any inherent mathematical model. Different ways 
of relational reasoning, including additive or multiplicative reasoning, could be used 
and led to equally valuable answers. Thus these items revealed what kind of relations 
a child preferred. Two items were in a “magic” context and two in a “growth” context. 
For each context there was an item with discrete quantities (i.e., pills in a magic hat 
and caterpillars) and an item with continuous quantities (i.e. wands in a magic cauldron 
and snakes). Figure 1 shows the instruction and the presented materials for the two 
discrete items. 
a) “Martijn has a magic hat. When he puts this pill (point top left) in the 
hat, these pills (point top right) come out. He has more pills now. How 
many pills will come out of our hat, when he puts these pills (point 
bottom left) in the hat? You can put the right number of pills next to the 
hat.”  
(additive answer: 4 pills, multiplicative answer: 6 pills)  

b) “Yesterday Fien saw two caterpillars in her garden, a green one and a 
yellow one. Yesterday the green caterpillar was this long (point at short 
green caterpillar), today the caterpillar is this long (point at long green 
caterpillar). The yellow caterpillar was this long yesterday (point at 
yellow caterpillar). The caterpillar has grown. How long will the yellow 
caterpillar be today? You can make the yellow caterpillar with your 
pieces.”  
(additive answer: 8 pieces, multiplicative answer: 12 pieces) 

 

Figure 1: Oral instruction and presented materials for the discrete preference items: 
a) pills in a magic hat (magic context) and b) caterpillars (growth context). 

Children’s answers were classified as additive, when the numerical answer was 
obtained by calculating the difference between two numbers and applying it to the third 
number, or as multiplicative, when the numerical answer was obtained by calculating 
the ratio between two numbers and applying it to the third number. Answers were 
classified as other either when the given numbers were combined in another way than 
specified above or when the problem was left unanswered. Children could only give 
one answer per problem, therefore it was not possible to answer both additively and 
multiplicatively within one problem. However they could answer additively in some 
problems and multiplicatively in others.  
Ability (A) – Children completed two tests addressing their abilities in proportional 
reasoning. One eight-item test measuring the ability to reason proportionally with two 
discrete quantities (A-DD, puppets and grapes) and one eight-item test measuring 
proportional reasoning with a discrete and a continuous quantity (A-DC, puppets and 
chocolate bars). All items were missing-value problems, in which children had to 
construct a set B equivalent to a set A by putting the elements in set B in the same ratio 
as the elements in set A. Figure 2 shows an example item for both tests. 
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A-DD 

a) “All puppets are equally hungry. If I give four grapes to these 
puppets, how many grapes do you have to give to these puppets for it 
to be fair?” 0 

A-DC 

b) “All puppets are equally hungry. If I give this chocolate bar to 
these puppets, which chocolate bar do you have to give to these 
puppets for it to be fair?”  

Figure 2: Example item with instruction and materials for both ability tests: a) with 
two discrete quantities and b) with a discrete and a continuous quantity. 

RESULTS 
First, results on the preference task showed a steady increase with grade in the mean 
number of both additive and multiplicative answers at the expense of other answers 
(Table 1). Kindergartners solved on average 0.98 out of 4 problems additively, while 
third graders solved on average 2.62 out of 4 problems additively. This increase was 
less steep for the number of multiplicative answers, and generally multiplicative 
answers remained quite rare in this young age group. Kindergartners solved on average 
0.42 out of 4 problems multiplicatively, while third graders solved on average 0.78 out 
of 4 problems multiplicatively. “Other” answers decreased. A multivariate analysis of 
variance showed that there was a statistically significant effect of grade for each of 
these answer types (F(6,360)=18.05, p<0.001; Wilk's Λ = 0.59, partial η² = 0.23).    
 K3 E1 E2 E3 
P – Additive  0.98 (0.96) 1.64 (1.06) 2.30 (0.99) 2.62 (1.01) 
P – Multiplicative  0.42 (0.70) 0.30 (0.55) 0.47 (0.78) 0.78 (0.80) 
P – Other  2.60 (1.18) 2.07 (1.07) 1.23 (0.97) 0.60 (0.77) 
Table 1: Mean number (and SD) of additive, multiplicative or other answers on the 

preference task (four items) per grade. 
Second, we also observed a gradual increase with grade for the A-DD and -DC test 
(Table 2). For the A-DD test, kindergartners solved on average 2.23 out of 8 items 
correctly, while third graders solved on average 6.71 out of 8 items correctly. For the 
A-DC test, kindergartners solved on average 2.09 out of 8 items correctly, while third 
graders solved on average 5.47 out of 8 items correctly. A multivariate analysis of 
variance showed that there was a statistically significant effect of grade on both ability 
tests (F(6,360)=26.76, p<0.001; Wilk's Λ = 0.48, partial η² = 0.31).  
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 K3 E1 E2 E3 
A-DD  2.23 (2.05) 3.32 (2.33) 5.73 (2.17) 6.71 (1.63) 
A-DC  2.09 (1.77) 2.77 (1.51) 3.93 (1.72) 5.47 (1.59) 
Table 2: Mean number (and SD) of correct answers on A-DD and A-DC per grade. 

Third, a medium positive correlation was found between the total score on the 
proportional reasoning ability tests and the number of multiplicative answers on the 
preference task (r=0.30, p<0.01). Contrary to our expectations there was an even higher 
positive correlation between the total score on the proportional reasoning ability tests 
and the number of additive answers on the preference task (r=0.51, p<0.01). Table 3 
shows the correlations between the scores on the ability tests and the number of 
additive and multiplicative answers on the preference task. 
 1 2 3 4 5 
1.  A-DD  --     
2.  A-DC  0.69** --    
3. A-Total 0.93** 0.90** --   
4.  P-Additive  0.50** 0.39** 0.51** --  
5.  P-Multiplicative 0.24** 0.36** 0.30** -0.19** -- 

** Correlation is significant at the 0.01 level (2-tailed). 

Table 3: Correlation matrix of A-DD, A-DC, A-Total, P-Additive and P-
Multiplicative. 

To further investigate the associations between children’s proportional reasoning 
abilities and their preference for additive and multiplicative relations, hierarchical 
linear regression analyses were performed. The first two had the A-DD score as 
outcome and grade as predictor in the first step. The difference between the two 
regressions was the order in which the two preference measures were entered as 
predictors: P-Additive was entered before P-Multiplicative (Step 2a), or vice versa 
(Step 2b). In the third and final step both preference measures and grade were entered 
simultaneously. The assumptions for the regression analyses were examined and not 
violated in in any of the analyses. The regression diagnostics showed no 
multicollinearity (VIFs < 1). The results in Table 4 indicate that the two preference 
measures and grade together explained half of the variance in the A-DD test. The 
number of additive and multiplicative answers on the preference task uniquely 
explained respectively 6.0% and 3.0% of the variance in the A-DD test, over and above 
grade. Both were significant additional predictors.  
 
 



Vanluydt, Degrande, Verschaffel & Van Dooren 

PME 43 – 2019                                                                                                        3 –  
 

419 

  Predictors B t Unique R2 

Step 1 F(1,183) = 145.37** 

Total R2 = .44 

Grade 1.57 12.06** .44 

Step 2a F(2,182) = 82.64** 

Total R2 = .48 

Grade 

P-Additive 

1.30 

0.50 

8.65** 

3.40** 

.22 

.04 

Step 2b F(2,182) = 75.02** 

Total R2 = .45 

Grade 

P-Multiplicative 

1.30 

0.50 

8.65** 

3.40** 

.40 

.01 

Step 3 F(3,181) = 62.32** 

Total R2 = .51 

Grade 

P-Additive 

P-Multiplicative 

1.09 

0.70 

0.73 

6.88** 

4.55** 

3.44** 

.13 

.06 

.03 

Note. * p < .05, ** p < .01 

Table 4: Regression analyses with A-DD as an outcome measure. 
Finally, two similar hierarchical regression analyses were performed, but this time with 
the A-DC score as outcome. The results in Table 5 indicate that the two preference 
measures and grade together explained almost half of the variance in the A-DC test. 
The number of additive and multiplicative answers on the preference task uniquely 
explained respectively 2.0% and 6.0% of the variance in the A-DC test, over and above 
grade. So, both were significant additional predictors. 
  Predictors B t Unique R2  
Step 1 F(1,183) = 119.03** 

Total R2 = .39 

Grade 1.15 10.91** .39  

Step 2a F(2,182) = 60.01** 

Total R2 = .40 

Grade 

P-Additive 

1.08 

0.12 

8.68** 

0.10 

.25 

.01 

 

Step 2b F(2,182) = 71.45** 

Total R2 = .44 

Grade 

P-Multiplicative 

1.06 

0.63 

10.25** 

3.85** 

.32 

.05 

 

Step 3 
F(3,181) = 51.93** 

Total R2 = .46 

Grade 

P-Additive 

P-Multiplicative 

0.85 

0.34 

0.81 

6.64** 

2.77** 

4.69** 

.13 

.02 

.06 

 
 

Note. * p < .05, ** p < .01 

Table 5. Regression analyses with A-DC as an outcome measure. 

DISCUSSION AND CONCLUSION  
In this study we administered two tests to measure children’s proportional reasoning 
abilities, together with a task to assess their preference for additive and multiplicative 
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relations. This made it possible to investigate whether there is an association between 
children’s proportional reasoning abilities and the extent to which they prefer additive 
and multiplicative relations. Since numerous studies revealed that children erroneously 
use additive reasoning to solve proportional problems, one could expect that a 
preference for multiplicative relations is a facilitator for proportional reasoning 
abilities whereas a preference for additive relations may act as a barrier.  
As expected, a medium positive correlation was found between the number of 
multiplicative answers on the preference task and the total score on the proportional 
reasoning ability tests. However, contrary to our expectations, we found an even higher 
positive correlation between the number of additive answers on the preference task and 
the total score on the proportional reasoning ability tests. Linear regression analyses 
showed that both preferences were significant predictors for proportional reasoning 
abilities with two discrete quantities. An additive preference was a significant predictor 
and it explained even more of the variance on the A-DD test than a multiplicative 
preference. Another surprising result was that we did not find a similar pattern for the 
proportional reasoning ability test with a discrete and a continuous quantity. Again 
both preferences were significant predictors, but this time a multiplicative preference 
explained more of the variance on the A-DC test than an additive preference.  
Contrary to what we expected, an additive preference does not seem to be a barrier for 
proportional reasoning abilities. It even seems that having a relational preference, 
regardless of whether it is an additive or a multiplicative preference, facilitates 
proportional reasoning abilities. It may be that at this young age, children who already 
spontaneously exhibit a kind of focus on any quantitative relation underlying our 
preference tasks, be it in an additive or multiplicative way, are a step forward in their 
thinking about mathematical relations as such, and benefit from this when thinking 
about proportional situations. Our findings are in line with recent research that has 
shown that a spontaneous focus on quantitative relations has a beneficial effect on the 
development of certain mathematical concepts such as rational numbers (McMullen, 
Hannula-Surmonen, Laakonen, & Lehtinen, 2016).   
Unexpectedly, at this young age the additive preference is an even better predictor than 
the multiplicative preference for performance on the proportional reasoning test with 
two discrete quantities, while this was not the case for the test with a discrete and a 
continuous quantity. Indeed, in proportional situations with discrete quantities children 
can use specific strategies, such as equal distribution or sharing, to directly “model” 
the situation at hand and create exact numerosities. Such approaches are not possible 
in situations with a discrete and a continuous quantity, where counting and 
manipulating the continuous quantity is no longer possible. The latter seems to be more 
directly relying on multiplicative reasoning.  
Children’s preferred type of relations is associated with their performance on missing-
value proportional reasoning ability problems. The role of this preference seems to be 
less straightforward than we previously hypothesized. Longitudinal-follow up research 
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would be useful to map the development of this preference throughout primary school, 
and to see whether preference at an earlier age predicts children’s proportional 
reasoning abilities at a later age, as well as the development of these abilities. 
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In this paper, we report on outcomes from the Structuring Number Starters intervention 
project focused on early grades’ number learning in South Africa. Using tests drawn 
from the Maths Recovery programme, a cross-attainment sample of Grade 2 students 
in six schools took part in oral interview assessments early in 2011, 2014 and 2018, 
with professional development activities for their teachers occurring across this 
period. Student outcomes point to increasing proportions, over time, of students able 
to use more sophisticated counting strategies, and to work with number structure for 
more efficient calculation.  
INTRODUCTION  
Low performance in mathematics at all levels of education continues to be a feature of 
the South African education system. In this context, a public-private partnership was 
set up in the late 2000s that established a small number of research and development 
Chairs, based in South African universities, charged with the explicit aim of developing 
and studying the implementation of research-based interventions to improve learning 
outcomes across the system. The interventions had to be developed with potential for 
working at a larger scale if outcomes proved positive. In this paper, we report on the 
outcomes from an intervention focused on early grades’ number learning – the 
Structuring Number Starters project – that was run by one of these Chairs within the 
Wits Maths Connect-Primary (WMC-P) research and development project, and carried 
out in ten partner schools. 
BACKGROUND 
Poor performance in mathematics in South Africa has led, over the course of the current 
decade, to a groundswell of interest in primary mathematics teaching and learning. 
When the WMC-P project began in 2011 key problems that had been written about in 
primary mathematics were related to two issues. Firstly, there was wide evidence of 
primary school students’ approaches to number work being marked by counting based 
approaches, and often, highly inefficient concrete counting-in-ones or skip counting in 
multiples (Schollar, 2008). Second was evidence of poor understandings of 
mathematical progression among primary teachers. One response to this had been the 
development of a more closely specified curriculum with attempts to highlight the 
growth of concepts across terms, grades and phases (DBE, 2011), but there is limited 
evidence that standards have improved as a result of this. Writing across several 
developing countries also reports on this evidence of low student performance and 
limited progression, together with the limited success of close curricular prescription 
(e.g. Pritchett & Beatty, 2012). This evidence indicates that studies of progression in 
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early numeracy in the South African context are likely to be of broader international 
interest. 
We began our work in South Africa with ten partner primary schools, all serving 
historically disadvantaged populations. Baseline observations in classrooms across 
these schools confirmed the prevalence of concrete counting-based approaches to early 
additive relations problems, which suggested a need for intervention approaches, as 
described in the international literature, for supporting students to move towards more 
sophisticated approaches when working with number. In particular, the aims and 
approaches of the Maths Recovery programme (Wright, Martland & Stafford, 2006) 
were in line with our goals, and additionally, provided interview-based assessments 
that we could use to build a profile of the sophistication of strategies Grade 2 students 
(grade appropriate students aged 6-7) used to answer problems. This was especially 
useful in a national assessment terrain where tasks were marked as correct or incorrect, 
without attention to the approaches used to produce answers. 
Our broader intervention model was based on working with grade cohorts of students 
across the school year, focusing on one grade in each academic year. Professional 
development and intervention activity comprised a termly workshop with WMC-P 
team members presenting and discussing, with teachers, tasks, activities and resources 
that focused attention on number structure and relations. The teachers then tried out 
these tasks, activities and resources with their classes, with one lesson observed and/or 
co-taught by a WMC-P team member each term. This programme is now in its 8th 
year. Table 1 summarizes our tracking of cohorts in the years of empirical data 
collection in the six schools that have worked with the project across this whole period. 

Year and grade cohort worked with during intervention 

Phase 1 (2011-15) Phase 2 (2016-date) 

2011 2012 2013 2014 2015 2016 2017 2018 

G2 G3 G1 G2 G3 No data 
collected GR&1 G2 

Table 1: Cohorts tracked across years, assessment data collection years highlighted 
As part of our study of the effectiveness of intervention, we administered two parts of 
the Maths Recovery assessments to a cross-attainment sample of students early in 
Grade 2 in each of 2011, 2014 and 2018. Grade 2 represents the middle grade of the 
Foundation Phase in South Africa (Grades 1-3), with some Reception Grade classes 
coming on stream in the partner schools only in recent years. The broader study of 
learning has included a written assessment at the start and end of Grade 3. In-depth 
assessment interviews early in Grade 2 provided us with snapshot data over time of 
students’ approaches to additive problem-solving, with our intervention work drawing 
diagnostically from the profiles of performance seen in each of these test 
administrations. On the research side that we focus on in this paper, this assessment 
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dataset provides a quasi-longitudinal profile of performance in Grade 2 over time in 
the context of ongoing intervention activity. 
Below, we discuss the literature and theoretical models of progression that underpin 
these assessments, and then summarise the profile of learning outcomes seen across 
the quasi-longitudinal test administrations in 2011, 2014 and 2018. We analyse these 
outcomes, and discuss the implications of shifts in profiles of attainment for policy-
making in the broader terrain and for our ongoing work. 
LITERATURE & THEORY 
In the context of additive enumeration, a broad swathe of international literature 
clusters around learning trajectories related to increasing efficiency of counting and 
calculating strategies. One trajectory begins in the terrain of enumerating quantities, 
drawing on Gelman & Gallistel’s (1986) seminal work setting out the principles that 
have to be mastered in learning to count (1-1 correspondence, stable order of the 
number words, cardinality, counts as abstractions, and order irrelevance). Within this 
trajectory students move into increasingly efficient counting via what can be described 
as ‘count all’, ‘count on’ or ‘count down from’ strategies, prior to beginning to work 
with number structure and properties such as commutativity, place value and inverse 
relationships. 
A body of literature questions this trajectory, arguing that instruction should start in 
number structure and properties set within measurement contexts, rather than start with 
counting (Davydov, 1990). The argument for this ‘straight for structure’ trajectory is 
that counting fails to communicate a sense that counts essentially represent a ratio 
between a unit quantity and the entity being measured by that unit. This, it is argued, 
creates artificial and unhelpful boundaries between natural numbers and fractions: in 
the measurement-based approach, rational numbers arise ‘naturally’ alongside whole 
numbers. 
The South African curriculum context largely works with the former – a counting into 
calculating trajectory – a perspective firmly embedded in the practices of our partner 
schools. Reflecting this focus on counting, studies of the 2011 project dataset pointed 
to students getting correct answers to additive questions in lower number ranges merely 
by using concrete counting strategies rather than through any combination of 
calculating and reasoning based on number structure (Weitz & Venkat, 2013). 
Our intervention work in the Structuring Number Starters project has, however, moved 
increasingly towards a ‘straight for structure’ model. This has involved the 
development of task sequences and resources/representations underpinned by attention 
to numerical relationships. Examples include a focus on using single digit number 
bonds and base ten related number combinations to develop non-count-by-one 
calculation strategies, using semi-structured number lines (see 
https://www.wits.ac.za/wits-maths-connect/wits-maths-connect-primary/structuring-
number-starters/term-1-resources/ for further examples). Developing familiarity with 
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‘five’ and ‘ten’ as useful benchmarks for efficient calculation is a feature that recurs 
prominently in these tasks. 
While moving towards the ‘straight for structure’ approach in our development work, 
the broader curricular context, and the underlying agreement between the counting into 
calculating and the straight-for-structure advocates on appreciation of structure as a 
key goal in early number learning, led to our working with the ‘counting into structure’ 
trajectory for analysis of counting and calculating efficiency among students. We chose 
to work with Wright, Martland and Stafford’s (2006) Learning Framework in Number 
(LFIN) which deals with a range of number aspects (including forward and backward 
number counting, and numeral recognition), but is centred around a spine in which 
strategic counting efficiency leads into further efficiencies involved in working with 
number relationships. Wright and colleagues describe the hierarchies in this spine as 
the ‘Stages of Early Arithmetic Learning’ (SEAL), with the label ‘stages’ marking 
what they see as the substantial conceptual reorganizations involved in the moves 
between steps. These stages, in paraphrased terms, are outlined in Table 2. 

Stage Title Description of counting/calculating strategies 

0 Emergent count Cannot count a visible collection of counters 

1 Perceptual count Can count perceived items (seen, heard or felt) and 
solve additive tasks involving displayed collections 

2 Figurative count Can solve additive tasks involving one or two screened 
quantities using the ‘count all’ strategy 

3 Initial number 
sequence 

Can solve addition tasks using ‘count on’, ‘count-up-
to’ and ‘count-down-from’ 

4 Intermediate 
number sequence 

Can use ‘count-down-to’ to solve missing subtrahend 
tasks and can choose the more efficient of ‘count-
down-from’ and ‘count-down-to’ for task at hand 

5 Facile number 
sequence 

Can use a range of ‘non-count-by-one’ strategies 
involving calculation-by-structuring (doubles, near 
doubles, compensation, 1010, N10 and bridging-
through-ten) and known and derived facts 

Table 2: The Stages of Early Arithmetical Learning 
In Stages 1 and 2, the enumeration of quantities relies on unit counting of all the 
quantities presented in the problem – each part, and then the whole, have to be counted 
out from one. ‘Count on’ and ‘count down from’ strategies at Stage 3 shift this triple 
count to a single count – on or down from the starting number. Hence the shift from 
Stage 2 to Stage 3 in Wright et al.’s model is important in that it marks the first move 
to any reification of counting processes into number objects (Gray, 2008). Whilst Stage 
3 represents an important shift in efficiency terms, it remains, as van den Heuvel-
Panhuizen (2008) notes, within the terrain of ‘calculating-by-counting’ strategies, 
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rather than the ‘calculating-by-structuring’ strategies which involve both attending to 
relationships between numerical quantities and also deriving efficient strategies based 
on number fluencies that present themselves as recalled facts. It is in Stage 5 that such 
calculation by structuring, using number relations and properties, comes to the fore, 
with Stage 4 laying the groundwork for this move. 
METHODOLOGY 
Each of our partner schools were asked to select six Grade 2 students from across the 
mathematics attainment range: two under-attaining students, two average attaining 
students and two higher-attaining students. Following the Math Recovery model, in-
depth 1-1 assessment interviews were conducted with each of the selected students 
(with informed consents from the children, their parents/carers, teachers and school 
principals). The interviews, conducted with student first language translators where 
needed, were video-taped in order to capture gesture-based counting strategies (in 
particular, finger counting) which, as we noted earlier, were widely prevalent.  
Subsequent coding of each child’s assessment responses using the LFIN led to the 
development of individual learner profiles. In this paper, we focus on the SEAL aspect 
only, described in Wright et al’s work as the single most important aspect in relation 
to supporting early number progression in the overall LFIN profile. Although we 
worked with ten partner schools each year, six schools were involved across each of 
the 2011, 2014 and 2018 test administrations, so we focus here on the profile of SEAL 
stages seen across the 108 students interviewed: 36 in each year. 
FINDINGS AND ANALYSIS 
In Table 3, we summarize the SEAL Stage profiles across 2011, 2014 and 2018 of the 
cross-attainment sample of 36 learners from the six schools participating across all 
three test sittings. 

SEAL Stage 2011 2014 2018 

0 4 (11.1%) 1 (2.8%) 1 (2.8%) 

1 8 (22.2%) 4 (11.1%) 1 (2.8%) 

2 15 (41.7%) 9 (25%) 10 (27.8%) 

3 8 (22.2%) 20 (55.6%) 15 (41.7%) 

4 1 (2.8%) 2 (5.6%) 7 (19.4%) 

5 0 (0%) 0 (0%) 2 (5.6%) 

Table 3: SEAL profile across 2011, 2014 and 2018 (n=36 in each year) 
We considered the data quantitatively and more qualitatively to understand SEAL 
profiles over time. Drawing from the literature noting that the move from Stage 2 to 3 
marks an important transition into beginning to see numbers as reified structures, we 
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carried out a chi-square test of independence to examine the relation between grouped 
SEAL stages 0-2 and 3-5 and the year of assessment. This grouping ensured that all 
cells contained five or more students, allowing for a valid chi-square test application. 
The null hypothesis here was that the distribution of students across these two 
combined levels was independent of the year of assessment. Contradicting this 
hypothesis, the relationship between these variables was highly statistically significant: 
c2 (2, N = 108) = 14.75, p <.001, indicating that differences between the years were 
highly unlikely to be due to chance alone. 
Returning qualitatively to the individual SEAL stages, a graphical representation of the 
proportions of students using the strategies associated with each of the SEAL Stages 
illustrates the shifts in the profile of strategy use over time (see Figure 1). 

 
Figure 1: SEAL profile over time 

Several features of the shift in profile over time illustrated in Figure 1 are noteworthy. 
Most importantly, in 2011, 75% of the student cohort in our cross-attainment range 
sample were assessed as using the concrete unit counting strategies associated with 
Stages 0-2, but by 2014, this proportion had dropped to 38.9% of the student cohort, 
and by 2018, had decreased further to 33.4% of the student cohort. The key shift seen 
in the 2014 attainment profile is a large increase in the students assessed as being at 
Stage 3 – the ‘count on’/’count down from’ stage – which, as we noted earlier, marks 
the start of reifications of counting processes into number objects. There is also a shift 
in 2014 to over 60% of the students exhibiting strategies related to SEAL Stages 3 to 
5, in contrast to only 25% of the student cohort being in this range in 2011.  
The key shift in 2018 is evidence of growing proportions of students able to work with 
number structure and relationships in ways that move them beyond counting-in-ones 
strategies. In 2018, 25% of the cross-attainment sample used SEAL Stages 4 & 5 in 
their responses – the stages in which ‘calculating-by-structuring’ comes into play 
making use of relationships between numbers for increasingly efficient working. This 
proportion is substantially higher than the 2.8% of the cohort at these stages in 2011 
and the 5.6% at these stages in 2014. This large increase points to successes associated 
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with teachers’ work with tasks underpinned by the ‘straight for structure’ approach in 
the Structuring Number Starters project. 
CONCLUDING COMMENTS 
These shifts in the profiles of student performance across the years point to teaching 
and learning that is moving forwards in relation to strategic efficiency and a stronger 
sense of number structure and relationships. Such a move is important given the 
literature showing that this is necessary for subsequent working in expanded number 
ranges and for algebraic thinking (Kieran, 1996). There is also though, further work to 
be done with the stubborn third of students who remain in the concrete counting from 
one stages, and the roughly 40% of the sample working with ‘count-on’ and ‘count-
down-from’ strategies at Stage 3 in 2018. This work goes hand-in-hand with 
simultaneously working to encourage further moves into the more efficient relational 
strategies associated with SEAL Stages 4 and 5. 
This analysis provides us with useful insights into changes over time in strategic 
efficiency, in the context of our broader development activity. The terrain of our work 
was one in which multiple initiatives were at play – national curriculum changes, the 
rollout of national workbooks, and provincial initiatives focused on supporting 
curriculum coverage and pacing through the provision of scripted lesson plans. What 
demarcated our intervention from these broader issues was specific attention to 
instruction focused on number structure and strategic efficiency, rather than more 
generic attention to curricular coverage. Additionally, our move into a ‘straight-for-
structure’ approach appears significant in its association with the substantial increase 
in the proportions of students now displaying approaches in the upper, structural, 
SEAL stages. The analysis suggests that the Structuring Number Starters project is 
paying dividends in supporting both pedagogic attention and also learning outcomes 
towards efficient working with number based in a sense of number structure and 
relationships. As such, these findings are of broader interest given the evidence from 
contexts of disadvantage and poverty in several parts of the world where many 
students’ poor performance in number in the early grades remains a live concern. 
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OPPORTUNITIES FOR SAMING REALIZATIONS IN 
DIFFERENT TASKS 
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The Realization Tree Assessment (RTA) tool offers a graphical presentation of the 
mathematical ideas students got exposed to and engaged with through a certain task. 
It depicts the mathematical object together with its different realizations, the extent to 
which opportunities for saming those different realizations were given to students 
during a lesson and the extent to which students had authority to produce narratives 
about the object. Five mathematics lessons which were based on a middle-school task 
dealing with linear functions were analysed using the RTA. The results were compared 
to RTAs of lessons based on a pattern generalization task. We discuss the similarities 
and differences between the RTAs in terms of opportunities for explorative 
participation as well as exhausting the potential of a task. 
INTRODUCTION AND THEORETICAL BACKGROUND 
The Realization Tree Assessment (RTA) tool (Weingarden & Heyd-Metzuyanim, 
2017, 2018; Weingarden, Heyd-Metzuyanim, & Nachlieli, 2017) is designed to 
explicate the mathematical object that appeared through engagement with a task 
together with its different realizations. Based on ideas from the commognitive 
framework (Sfard, 2008), the RTA displays graphically the extent to which 
opportunities for saming different realizations of the mathematical object were given 
to students during a lesson. Uniquely from other evaluations tools, the RTA allows 
exposure to the mathematical content of the lesson, including the mathematical objects 
that students could be exposed to through engaging with the task. However, the 
uniqueness of the mathematical content of each task means that each lesson needs a 
new and unique "skeleton" of an RTA. This "skeleton" includes the main mathematical 
object that could be exposed by the task, as well as its different realizations. This 
exclusiveness enables a relatively straightforward comparison between lessons based 
on the same task, yet it limits the comparison between lessons based on different tasks. 
This limitation is crucial when one wishes to use the RTA for evaluating various 
lessons, and planning and analyzing lessons together with teachers.   
Until now, we applied the RTA only on lessons based on one particular task – the 
Hexagons task, to examine how different lessons offer different opportunities for 
saming realizations of a mathematical object (Weingarden & Heyd-Metzuyanim, 2017, 
2018). In the present study, we continue the development of the tool. Our goal is to 
examine the similarities and differences of RTAs of lessons based on two different 
tasks. 
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THE RTA 
The Realization Tree Assessment (RTA) tool (Weingarden et al., 2017) has been 
developed in the context of the TEAMS (Teaching Exploratively for All Mathematics 
Students) professional development program. The RTA was developed as an answer 
to the insufficiency of previous tools to capture the mathematical aspects of explorative 
instruction – instruction that offers students opportunities for explorative participation. 
In explorative participation, the learner establishes new mathematical narratives based 
on formerly established ones, while objectifying – talking about mathematical objects 
as existing by themselves (Sfard, 2008). In order to objectify, the student needs to 
'same' the different realizations of the mathematical object. The process of saming is 
described by Sfard (2008) as “assigning [the signifier] to a number of things that, so 
far, have not been considered as in any way 'the same' but are mutually replaceable in 
a certain closed set of narratives” (p. 170).  
The RTA was initially developed to examine students' opportunities for explorative 
participation, while focusing on the opportunities for saming different realizations of 
the mathematical object. This is done by graphically illustrating (1) the different 
realizations of the mathematical objects that are presented during the lesson; (2) the 
extent to which links between realizations are made; and (3) the extent of students’ 
authority (who produces the mathematical narratives).  
In our former works with the RTA, we applied it on one particular task (the Hexagons 
task) and used it to analyse 10 lessons of different teachers (Weingarden & Heyd-
Metzuyanim, 2017, 2018). From these studies we learned about the various ways in 
which teachers implement the Hexagons task, the different levels of exposure to the 
mathematical objects afforded to students in different classrooms, and the connections 
between level of explorations and characteristics such as grade level and track.  
In the Hexagons task students are asked to describe the perimeter of a general “train” 
in a pattern of hexagons “trains” (see Figure 1). 

This task's richness lies in its affordance to connect different algebraic expressions to 
a single visual mediator (the perimeter of the Hexagons' train), as there are different 
algebraic expressions that express how this perimeter can be counted. Therefore, the 
task provides opportunities for saming the different algebraic expressions that describe 
different procedures for counting the Hexagon's sides. For example, 4x+2 describes 
counting upper and bottom sides, then the 2 edges external edges; 6x-2(x-1) describes 
counting all the hexagon edges, then omitting the internal ones; and there are many 
more.  
The comparison of 10 different lessons that were all based on the Hexagons task 
revealed interesting differences in the extent to which students got exposed to the 

Figure 1: The Hexagons Pattern 
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various realizations of the "algebraic expression" object. Some lessons included only 
very little exposure to different realizations, yet those realizations that were mentioned, 
were explained by students. Other lessons contained many realizations, yet most were 
authored by the teacher. The lessons we evaluated as most "explorative" were those 
that contained multiple realizations, multiple links drawn between them, and highest 
students' authority.  
Comparing the "level of exploration" in a lesson is useful for several reasons. First, it 
enables studying the effects of interventions such as professional development. 
Second, it may offer insights into factors that contribute to explorative instruction (such 
as teachers' expertise, school/curriculum variables, tracking and more). Finally, it can 
serve as a tool for teachers to reflect upon lessons that have implemented a cognitively 
demanding task.   
However, all these potential benefits will only be possible if the RTA can be flexibly 
applied to a variety of tasks. Therefore, our research question is: to what extent can the 
opportunities for students' explorative engagement be identified, compared and 
contrasted by the RTAs of lessons implementing two different tasks? 
METHOD 
As indicated above, the study reported here was performed in the context of the 
TEAMS project for training Israeli teachers to implement explorative instructional 
practices in middle school mathematics classrooms. As part of the professional 
development, the teachers were asked to implement and videotape a lesson based on a 
task they had experienced as learners in the professional development. One of those 
tasks is the Calling-Plans task (originally designed by the Institute for Learning, 
University of Pittsburgh) which deals with the intersection of two linear functions (see 
Figure 2). The Calling-Plans task's richness lies in its potential to expose, discuss and 
link the four realizations of the function object taught in middle-school: verbal, 
algebraic, graphic and ordered-pairs. This provides opportunities for saming the 
different realizations of the "intersection of functions" object. In particular, since the 
Calling-Plans scenario includes two different "calling plans" (each which can be 
described as a linear function), we denoted as the main object at the root of the RTA 
to be: intersection of two functions.  

The analysis of lessons using the RTA is based on watching only the whole-classroom 
discussion. It does not require transcription, but rather a careful design of the "skeleton" 
of the tree, based on theoretical knowledge of the potential of the task. This knowledge 
is derived through discussion with mathematicians and mathematics educators. The 

Long Distance Company A charges a base rate of 45 NIS (equivalent of dollars) per month 
plus 5 agoras (equivalent of cents) per minute that you are on the phone. Long Distance 
Company B charges a base rate of only 20 NIS per month but they charge you 30 agoras per 
minute used. Which company would you choose, why? 

Figure 2: The Calling-Plans task 
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design of the "skeleton" is followed by shading and marking realizations and links 
whenever they are spotted during the lesson. In the case of the Calling-Plans task, the 
skeleton of the RTA depicts the mathematical object "intersection of two functions" at 
the top of the tree and its different realizations as nodes in the tree (see Figure 3). We 
code the tree according to two criteria: (1) Coloring the realizations that were exposed 
to students during the lessons based on who articulated the realization (dark color = 
student; light color = teacher.) (2) Drawing arches between the realizations that were 
linked during the discussion (continuous line = link made by students; dashed line = 
link made by the teacher). 
Two elements of explorative lessons are examined by the RTA. The first – 
opportunities for saming realizations - describes the extent to which the lesson exposed 
students to the different realizations and offered opportunities to same them, that is, 
view them as representing the same mathematical object. This element is pictured in 
the RTA by the fullness of the tree:  multiple realizations are shaded and multiple links 
between realizations are drawn. The second element of explorative lessons – students' 
authority, describes the extent to which students (rather than the teacher) articulate the 
realizations and links. Students' authority is identified in the RTA by the darkness of 
the tree and by the continuity of the lines. 
FINDINGS 
Level of explorations in the RTAs of the Calling-Plans task 
We start by describing the RTAs of three lessons based on the Calling-Plans task. This 
is done to exemplify the method and to display contrasting levels of opportunities for 
explorative participation. Due to space limitations, we only present full RTAs of one 
Calling-Plans and one Hexagons lesson. However, our analysis is based on unique 
RTAs drawn for each lesson. The first lesson took place in 8th grade and is called 
Calling-Plans lesson 1 (CP-Ls1, see Figure 3). In this lesson, students articulated an 
algebraic realization of the Calling-Plans problem: “y=0.05x+45 , y=0.3x+20", and 
made some connections to the possible verbal realizations (underlined in the verbal 
realization box). They described briefly how they found that x=100 ("I subtracted [the 
two functions]”, “I compared them [the two functions] to find the intersection”) and 
mentioned the verbal realizations when they explained: “[when the calling time is] less 
than 100 minutes, it's more profitable to choose Company B… and above 100 it's better 
to choose Company A”. No other realizations were made explicit during CP-Ls1 and 
no other connections to the various realizations of the object were drawn. CP-Ls1 is 
thus identified by a high level of students' authority but opportunities for saming 
realizations were scarce. 
Quite a different picture of explorative participation was found in the second lesson 
(CP-Ls2). Here, opportunities for saming realizations were found throughout the 
lesson, but the level of students' authority was low. In CP-Ls2, three types of 
realizations were exposed to students during the whole-classroom discussion: the 
verbal realization, several algebraic realizations and the ordered-pairs realization. In 
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addition, links between the realizations were made. However, the light color of most 
of the realizations (teacher-authored realizations) and specifically, the dashed arches 
between realizations (teacher-authored links) show that although students were 
exposed to different realizations of the mathematical object and were provided with 
opportunities for saming realizations during the lesson, they did not author narratives 
about the links between the realizations and, consequently, no new narratives about the 
main mathematical objects were constructed by the students.  
In the 3rd lesson (CP-Ls3), both elements of explorations were found: opportunities for 
saming realizations and students' authority. Students articulated all three types of 
realizations that were discussed during the lesson: verbal, graphic and inequality 

algebraic realizations. One student explained the inequality that she built as she was 
making links between the verbal realization (underlined) and the inequality algebraic 
realization (in bold):  

“we did the rate of Company A that is 45 NIS (equivalent of dollars) per month and 5 
agoras and then we basically did: 45 + 0.05x. And then we actually did (an) inequality of 

CP-Ls1 

CP-Ls3  CP-Ls2 CP-Ls4 

Figure 3: Calling-Plans RTAs 
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the rate of Company B, which is 20 NIS per month and 30 agoras per call [minutes], which 
is: 0.3x+20. And then actually you do the inequality and then find the [intersection]” 

Similarities and differences between the RTAs of the two tasks 
We now move to compare and contrast the Calling-Plans RTAs with the Hexagons-
Task RTAs. At first glance, the skeleton of the Hexagons RTA (Figure 4) is 
significantly different from the Calling-Plans RTA. The main difference is that each 
task offers engagement with a different mathematical object. 
While the Calling-Plans task deals with the ‘intersection of two functions’ object, the 
Hexagons task deals with the ‘perimeter’ object (perimeter of the Hexagon’s general 
train). Each task affords opportunities for highlighting and saming its main object's 
different realizations.  

Despite these differences, more general similarities can be found between the RTAs of 
the two tasks. For example, in each of the RTAs (CP and Hex), there are lessons that 
can be characterized as relatively “weak” or “strong” in students’ authority. This is 
relatively simple to observe. For example, the RTAs depicting CP-Ls3 and Hex-Ls3 
are strong in students' authority, while CP-Ls2 and Hex-Ls2 are weak. Another 
observation that can be made, across the tasks, relates to the opportunities for saming 
different realizations. Unlike CP-Ls3 and Hex-Ls 3, which contain multiple 
realizations and multiple links, CP-Ls1 and Hex-Ls1 contain relatively little 
opportunities for saming different realizations. In CP-Ls1, there are only 2 realizations 
shaded, and no links. In Hex-Ls1, there are several realizations but very few links, and 
none of these relate to the saming of the algebraic expressions. We call lessons depicted 
by such RTAs "show and tell" lessons, where multiple students present their different 
solutions, but no links are made between them.  

Hex-Ls4 

Hex-Ls1 Hex-Ls3 Hex-Ls2 

Figure 4: The Hexagons' RTA 
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The comparison of the two RTAs (CP and Hex) highlights that not all links are 
necessarily productive for achieving the mathematical goal of the lesson. Take for 
example the links drawn in different RTAs of the CP task. In CP-Ls4, one teacher 
devoted much attention to the question of how to convert NIS (equivalent of $) to 
agoras (cents) and what that would mean for the algebraic expressions y=0.05x+45 
which would turn into y=5x+4500. This shifted the discussion to the two instantiations 
of the function objects (y=0.05x+45 & y=0.3x+20; y=5x+4500 & y=30x+2000). 
Although these two pairs of functions are useful for solving the same problem, this 
issue was peripheral to the object of the lesson, which was saming the different 
realizations of the two functions and their intersection.  
A similar situation occurred in some Hexagons lessons (e.g Hex-Ls4), where links 
were made between the algebraic, ordered-pairs and graphic realizations of the 4x+2 
expression. Paradoxically, such links would have been appropriate for the Calling-
Plans task. In the Hexagons’ task, however, the main object to be samed were the 
algebraic expressions, as embedded in the visual realization of the perimeter of the 
trains (being “the same” for all the various ways in which it can be counted and 
expressed algebraically).  
DISCUSSION AND CONCLUSION  
Our goal for this paper was to examine the extent to which opportunities for students’ 
explorative engagement can be identified, compared and contrasted by the RTAs of 
lessons implementing two different tasks, the Calling-Plans and the Hexagons task. 
Our findings indicate similarity in certain elements of the RTAs and differences in 
others. The element of students' authority can easily be identified in the RTAs of both 
tasks. This element is identified by the darkness of the tree (students' realizations) and 
by the continuity of the lines (students' links between realizations). However, the 
fullness of the tree (multiple realizations and multiple links), does not necessarily 
indicate the level of explorative instruction. There are instances where multiple 
realizations appear in a lesson, yet the lesson does not amount to a substantial 
mathematical idea. These occur in two main types of lessons: (1) "Show and tell"  
lessons (Stein, Engle, Smith, & Hughes, 2008), where multiple realizations are shaded, 
yet no links are drawn between them. (2) “Concepts-gone-wrong” lessons, where 
multiple links are made, yet they are not the important links that should be highlighted 
by the task. 
The important conclusion drawn from the addition of examining the RTAs of the 
Calling-Plans task is that links do not always produce opportunities for saming. In 
certain cases, classroom discussions diverge into making links that do not same 
realizations of the central mathematical object underlying the task.  We claim that the 
RTA, especially when applied to different tasks, is useful for exposing the relation 
between the goal of the task and its enactment. This should be useful not only for 
researchers attempting to understand classroom instruction, but also as a 
"representation of practice" (Grossman et al., 2009) by which teacher educators could 
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discuss with teachers the various opportunities for engaging students with 
objectification that arise from a task. 
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INTEREST AND EMOTION PREDICTORS OF MOTIVATION IN 
SECONDARY MATHEMATICS CLASSROOMS 
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1Arizona State University, ²University of Delaware 

 
This paper uses data from a large study of US high school mathematics engagement to 
quantitatively examine how different aspects of affect—interest, positive emotions, and 
negative emotions—influence different aspects of motivation—mastery goal 
orientation, performance goal orientation, and self-efficacy—in the context of 
mathematics classrooms. The results of a latent path analysis suggest that whereas 
interest was significantly associated with each of the different types of motivation, 
positive and negative emotions were only associated with self-efficacy. Implications 
for differentiating between the influence of different types of affect in learning contexts 
are discussed.  
INTRODUCTION 
Students’ motivation to learn and do mathematics in the US is volatile during the first 
few years of high school. For example, in a recent study, many ninth graders interested 
in pursuing math-intensive career paths were found to be no longer interested two years 
later. By contrast, some who were previously uninterested became interested by 

eleventh grade (Mangu, Middleton, & Lee, 2016). However, the reasons behind such 
volatility are not well understood. Given the importance of mathematics for many 
careers, and that secondary education may be the last opportunity for students to opt in 
to mathematics-related pursuits, it is important to understand the complex nature of 
motivation for mathematics during this phase of their development. 
Motivation in the Classroom.  
Three types of motivation variables have consistently been shown to impact student 
engagement in mathematics: mastery goal orientation—in which students are 
motivated to understand the content; performance goal orientation—in which students 
are motivated to gain favourable judgement and avoid unfavourable; and self-
efficacy—the belief that one has the capability to succeed. Mastery goal orientation is 
associated with more effective learning strategies, such as adapting one’s strategies and 
seeking out help, whereas performance goal orientation is associated with somewhat 
less effective learning strategies, such as avoiding the appearance of incompetence 
(e.g., Elliot & Dweck, 2005, Harackiewicz et al., 2002). Mathematics self-efficacy, for 
its part, is associated with increased math performance and with choosing a 
mathematics-related major (Hackett & Betz, 1989).  
Although these three commonly studied components of motivation are somewhat 
distinct, they are also related and may influence the expression of each other. For 
instance, mastery goal orientation and high self-efficacy together appear to be related 
to students’ ability to muster the resources necessary to persevere in mathematics, as 
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learners with this combined motivational profile tend to be more adept at coping with 
failure (Meyer, Turner, & Spencer, 1997). 
Affect and Motivation.  
Affect is also a key aspect of students’ experiences with mathematics and has important 
relationships with motivation. Specifically, positive emotions (such as relief, hope, and 
joy) improve motivational outcomes such as effort and self-efficacy, whereas negative 
emotions (such as shame, hopelessness, and anger) typically lead to avoidance 
responses such as decreased self-efficacy (Pekrun et al., 2004, Akin & Kurbanoglu, 
2011). Yet negative and positive emotions are rarely considered simultaneously with 
another component of affect, interest, which is associated with increased attention, 
academic goals, and higher levels of learning (Hidi & Renninger, 2006). Notably, math 
interest includes not only positive emotions in the moment (i.e., situational interest), 
but also a stored sense of value and desire to seek out repeated engagement with 
mathematics over time (i.e., personal interest, Hidi & Renninger, 2006). 
The Present Project. 
In the present project, we examine the simultaneous relationship between each of the 
three components of affect in the mathematics classroom—positive emotions, negative 
emotions, and math interest, which are conceptualized as predictors and as mediators 
between classroom experiences and students’ academic history—and the influence of 
these affective variables on motivation—mastery goal orientation, performance goal 
orientation, and self-efficacy, which are conceptualized as outcomes in the present 
study. The study is part of a longitudinal approach to measuring students’ mathematics 
engagement. As such, it reports early results on the cross-sectional relationships among 
these variables. Longitudinal relationships will be modelled in subsequent years. 
Hypotheses.  
From the research, we identified three hypotheses that are tested in this study: (1) 
significant, negative relationships should exist between negative emotions and mastery 
goal orientation, self-efficacy, and performance goal orientation, (2) significant 
positive relationships should exist between positive emotions and mastery goal 
orientation, self-efficacy, and performance goal orientation, (3) significant positive 
relationships should exist between math interest and mastery goal orientation, self-
efficacy, and performance goal orientation. Correlations are hypothesized to exist 
among affective variables (specifically, math interest was hypothesized to be positively 
correlated with positive emotions, but both interest and positive emotions were 
expected to be negatively correlated with negative emotions), and motivation variables 
(specifically, mastery goals were hypothesized to be positively related with self-
efficacy, and negatively related to performance goals. Performance goals were 
expected to show a low-to-moderate correlation with self-efficacy). 
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METHOD 
Participants 
As part of a larger study on mathematics engagement in secondary classrooms, 296 
students enrolled in first-year mathematics classes across three high schools each in 
Delaware and Arizona were recruited to take a 91-item survey in Spring 2018. 
Instrument 
The survey used was developed by a team of five researchers with expertise in 
mathematics learning. They adapted items from previous surveys to reflect four major 
conceptual dimensions of mathematics engagement: cognitive engagement, 
behavioural engagement, affective engagement, and social engagement. Preliminary 
psychometric analyses on this instrument using the pilot data from the present study 
suggest that the instrument has a seven-factor structure for the Likert items, and a two-
factor structure for the categorical emotion items (see Zhang, in prep). 
Measures 
Emotions were measured using a checklist in which a student was asked to select from 
a list of 28 emotions, which he or she commonly felt during mathematics class. 
Negative emotions comprised thirteen binary response items, positive emotions 
comprised ten binary response items. Math interest was comprised of thirteen 7-point 
Likert scale items. Motivational constructs were measured on a 7-point Likert scale: 
mathematics mastery goal orientation comprised thirteen items, mathematics 
performance goal orientation comprised five 7-point Likert scale items, and 
mathematics self-efficacy comprised eighteen 7-point Likert scale items (see Zhang, in 
prep for the wording and source of all items). Each of these constructs was treated as a 
latent variable in our analyses, thus helping to correct for attenuation in the estimates 
of our path coefficients due to measurement error.   
Analysis 
The pertinent variables for this study comprised 69 items, 23 binary and 46 Likert scale. 
Because of the difference in level of the variables, we treated all responses as ordinal, 
thus using polychoric correlations and WLSMV estimations with theta 
parameterization. We used pairwise deletion to handle missing data in our analyses, 
yielding a final sample size of 296 in each analysis. 
First, we estimated the fit of our measurement model using a confirmatory factor model 
to examine whether our expected latent variables adequately captured common 
variance in our measured variables (see Figure 1). 
Then, we examined the fit of our structural model using a hypothesized latent variable 
path model to see whether the expected relationships between each of the affective 
latent predictors (math interest, negative emotions, and positive emotions) and each of 
the motivational latent outcomes (mastery goal orientation, performance goal 
orientation, and self-efficacy) fit the data well (see Figure 2). However, because our 
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hypothesized path model was saturated, we did not expect to see a difference in fit from 
our CFA model. Instead, we were interested in examining and interpreting theoretically 
relevant path coefficients.  

 
Figure 1: Parameter Estimates for the Confirmatory Factor Model. 

Bolded values are significant at the p < .05 level. Standard errors are in parentheses. 
Results reflect standardized output.  

Note also that in the latent path model, there were some significant expected 
correlations between each of the affective latent predictors (math interest, negative 
emotions, and positive emotions) and between each of the motivational latent outcomes 
(mastery goal orientation, self-efficacy, and performance goal orientation), consistent 
with theoretical conceptualizations of these constructs. All other possible correlations 
between latent variables were fixed to zero.  
For ease of interpretation, we reported the fully standardized results from our output. 
All models were estimated in MPlus Version 8 (Muthen & Muthen, 2017). 
RESULTS 
Confirmatory Factor Model 
Overall, the confirmatory factor model fit relatively well (see Table 1 for fit statistics). 
Although our chi square was significant [χ²(2259) = 3800.56, p < 0.001], the rule of 
thumb that χ²/df be less than 3 shows that our model has adequate fit. The RMSEA was 
0.048 with a 90% confidence interval between 0.045 and 0.051, which indicated 
relatively good model fit (Browne & Cudeck, 1993; Hu & Bentler, 1999). Moreover,  



Wiezel, Middleton, Zhang & Grimm 

3 -                                                                                                            PME 43 – 2019 
 

442 

 CFI and TLI were also good by standard 
cutoffs (0.90 - 0.95) (Brown, 2006). 
However, note that given our use of 
WLSMV estimation, these estimates may be 
somewhat artificially high for CFI and TLI 
and artificially low for RMSEA (Xia & 
Yang, 2018). Nevertheless, overall, our fit 
indices suggested that our measurement 
model fit the data reasonably well. Because 
the factor structure of these items is 
addressed elsewhere (Zhang, in prep), we do 
not interpret factor loadings and parameters 
estimates here. We instead fit the 
hypothesized latent variable path model, 
interpreting parameter estimates. 
Hypothesized Path Model 
Overall, the hypothesized latent variable path 
model fit the same as the CFA model (see 
Table 1 for fit statistics, and Table 2 and 
Figure 2 for parameter estimates). Together, 
this suggests that the proposed structural 
model fit the data well. This is not surprising 
given the saturated nature of the model at the 
path (but not measurement) level.  
Accordingly, we interpret standardized regression coefficients and correlations 
between the latent variables, which are theoretically relevant to our research questions 
(See Table 2 and Figure 2). 
The relationships among latent variables are presented at the top of Table 2. In the 
hypothesized model, there was a significant, positive standardized regression 
coefficient between math interest and all three motivation variables (mastery goal 
orientation, performance goal orientation, and self-efficacy). This suggests the 
potential importance of math interest in terms of supporting multiple components of 
motivation in secondary math classrooms. 
There was also a significant, strong, negative standardized regression coefficient 
between negative emotions and self-efficacy, and a moderate positive coefficient 
between positive emotions and self-efficacy. Standardized regression coefficients 
between both emotion factors and the mastery goal and performance goal motivation 
outcomes were not statistically significant. 

Model Goodness 
of Fit 
Index 

Estimate 

CFA χ² 3800.56 
(p<.0001) 

 df 2259 

 RMSEA 0.048 (0.045, 
0.051) 

 CFI 

TLI 

0.91 

0.91 
Path 
Model 

χ² 3800.56 
(p<.0001) 

 Df 2259 
 RMSEA 0.048 (0.045, 

0.051) 
 CFI 

TLI 

0.91 

0.91 
Table 1: Goodness of fit indices for 

the CFA and Latent Path Models 
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Next, we discuss the correlations among the affective variables. There was a significant 
negative correlation between math interest and negative emotions and a significant 
positive correlation between math interest and positive emotions, as might be expected. 
However, contrary to 
expectations, there was a large 
significant positive correlation 
between negative and positive 
emotions.  
For the motivation variables, 
we found a significant, small, 
positive correlation between 
mastery goal orientation and 
self-efficacy, and between 
mastery goal orientation and 
performance goal orientation. 
However, the correlation 
between and between self-
efficacy and performance goal 
orientation was not significant. 
DISCUSSION 
In this project, we examined the 
relationship between three 
components of affect in the 
mathematics classroom: 
positive emotions, negative 
emotions, and math interest, 
and three commonly measured 
aspects of motivation: mastery 
goal orientation, performance 
goal orientation, and self-
efficacy. Although we expected that negative emotions would be significantly 
negatively related to mastery goal orientation, performance goal orientation, and self-
efficacy, whereas positive emotions and math interest would be significantly positively 
related to mastery goal orientation, performance goal orientation, and self-efficacy, our 
hypotheses were only partially supported. Specifically, we found that math interest was 
significantly positively associated with each of the three motivational outcomes—
mastery goal orientation, self-efficacy, and performance goal orientation—as 
predicted. 

Standardized Regression Coefficients 
 Interest Positive 

Emotions 
Negative 
Emotions 

Mastery 
Goals 

0.53***  0.05 -0.01 

Performance 
Goals 

0.25** -0.11  0.27 

Self-Efficacy 0.42*  0.37* -0.52** 
Correlations Among Affective Variables 

 Interest Positive 
Emotions 

 

Positive 
Emotions 

0.28***   

Negative 
Emotions 

-0.32***  0.53***  

Correlations Among Motivation Variables 
 Mastery 

Goals 
Performan
ce Goals 

 

Performance 
Goals 

0.14*   

Self-Efficacy 0.22**  0.07  

Table 2: Relationships Among Latent Variables 
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Figure 2: Parameter Estimates for the Hypothesized Latent Variable Path Model 
Bolded values are significant at the p < .05 level. Standard errors are in parentheses. 

However, our two emotion variables did not quite perform as expected—positive and 
negative emotions only showed significant relationships with self-efficacy. 
Specifically, in our sample, positive emotions were positively associated with self-
efficacy, whereas negative emotions were somewhat more strongly negatively 
associated with self-efficacy. Although this is consistent with some prior research 
(Pekrun et al., 2004, Akin & Kurbanoglu, 2011), it is notable that math interest, which 
involves a math-specific knowledge structure (Hidi & Renninger, 2006) appeared to 
be more broadly related to motivation in math classrooms than did positive and 
negative emotions in our study.  
This may be because our measures of emotions were relatively general. Specifically, 
we operationalized emotions using an item that asked participants to “think about a 
typical math experience” and indicate which among a list of emotions they felt during 
that experience. In responding to this question, students may have reflected not only 
on their feelings about math, but also on their feelings about other agents in the math 
classroom, such as teachers or classmates, which may have had conflicting influences 
on mathematics motivation. Indeed, if students were considering a variety of possible 
sources of math affect, this may help make sense of the unexpected positive correlation 
between positive and negative emotions in our sample (r = 0.53, p < 0.001). For 
instance, it may have been that when reflecting on their feelings about a typical math 
class, students had negative emotions about the math but positive emotions about their 
peers, or vice versa, thus allowing both positive and negative emotions to correlate 
when measured in the form of a single, undifferentiated self-report measure.  
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Whereas our results suggest the importance of disentangling different aspects of math 
affect, our findings also suggest that future research may benefit from taking this even 
further by disentangling whether positive and negative emotions felt about the math 
task, teachers, or classmates also have differing effects on motivation in the classroom. 
Such work may help us better understand how to foster richer affective and 
motivational secondary math experiences. 
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WHICH EARLY PATTERNING ACTIVITIES COUNT THE 
MOST? 

Nore Wijns1, Lieven Verschaffel1, Bert De Smedt2, Joke Torbeyns1  
1Centre for Instructional Psychology and Technology, KU Leuven, 2Parenting and 

Special Education Research Unit, KU Leuven 
 
Young children’s performance on activities with repeating patterns is found to 
contribute to their later mathematical development, but it remains unclear whether 
specific patterning activities contribute more than others. The current study 
systematically analysed 369 four-year olds’ performance on three different patterning 
activities (i.e., extending, translating, and identifying the unit) in relation to their future 
numerical ability. Performance on all three activities contributed uniquely to 
children’s numerical ability one year later above age, spatial ability, and visuospatial 
working memory. Performance on two activities remained a significant predictor when 
controlling for the autoregressive effect of prior numerical ability, suggesting that 
these patterning activities are critical to children’s numerical development. 
INTRODUCTION 
Children’s ability to handle repeating patterns recently became an important topic 
within early mathematics research (Wijns, Torbeyns, De Smedt, & Verschaffel, in 
press). Pre-schoolers’ performance on activities with repeating patterns has been found 
to contribute to their later mathematical development, even above other domain-
general and domain-specific measures (e.g., Lüken, Peter-Koop, & Kollhoff, 2014; 
Rittle-Johnson, 2017). Researchers have used a broad range of activities to measure 
children’s ability regarding repeating patterns, including extending (i.e., continuing the 
following elements of a pattern), translating (i.e., copying the pattern using different 
materials), and identifying the unit (i.e., indicating the smallest part that repeats). These 
various types of activities are assumed to contribute differently to children’s 
mathematical development. However, empirical evidence regarding these assumptions 
is still missing. The current longitudinal study looked into this matter by systematically 
analysing four-year olds’ performance on three types of patterning activities in relation 
to their future numerical ability.  
THEORETICAL BACKGROUND 
Repeating patterns and patterning activities 
A repeating pattern (e.g., ABAB, Δo□Δo□) is a predictable sequence that contains a 
unit (e.g., AB, Δo□) that repeats indefinitely. The insight that a repeating pattern 
consists of a unit is mathematically important, because it is necessary to predict or 
generalize a repeating pattern (Rittle-Johnson, Fyfe, Loehr, & Miller, 2015; Threlfall, 
2005). Several researchers made assumptions on whether or not this insight is required 
to solve a specific patterning activity (Sarama & Clements, 2009; Threlfall, 2005). For 
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example, for some activities pre-schoolers are required to identify the unit of repeat 
explicitly (i.e., circle the smallest part that repeats) or implicitly (i.e., memorize the 
pattern), whereas this is not assumed to be required for extending. Some researchers 
claim that children also need to recognize the unit in a translation activity (Rittle-
Johnson et al., 2015), but this claim has been questioned recently (Lüken, 2018; Rittle-
Johnson, Zippert, & Boice, 2018).  
Association between patterning ability and mathematical ability 
Pre-schoolers’ performance regarding repeating patterns is found to relate to their later 
mathematical ability. In a first study, five-year olds who could copy, extend, and 
explain an ABCC pattern, had significantly better mathematical abilities one and two 
years later (Lüken et al., 2014). In two other studies, four- to six-year olds’ performance 
on activities including copying, extending, interpolating, translating, and unit 
identification, predicted mathematical abilities in fifth grade, above other early math 
measures such as counting, geometry, and calculation (Nguyen et al., 2016; Rittle-
Johnson, Fyfe, Hofer, & Farran, 2017). More recently, four-year olds’ performance on 
extending, interpolating, and translating repeating patterns was a unique predictor of 
their mathematical ability concurrently and seven months later (Rittle-Johnson et al., 
2018). This association remained while controlling for verbal and spatial measures, 
and, importantly, prior math knowledge as measured by the same measure as the 
outcome variable.  
CURRENT STUDY 
Several studies have recently identified performance on activities with repeating 
patterns as a unique predictor of later mathematical competence, above domain-general 
cognitive measures and prior mathematical competence, even when measured by the 
same instrument as the outcome variable. These studies suggest that patterning 
activities are important for children’s mathematical development. It remains however 
unclear whether specific patterning activities contribute more to later mathematical 
development than others. Although previous studies included different types of 
patterning activities, children’s performances on the different types of activities were 
combined into one overall patterning score in all analyses. Therefore, the association 
between different types of patterning activities and later mathematical development is 
unclear. The current longitudinal study addressed this issue by analysing pre-schoolers’ 
performance on three types of activities in relation to their numerical ability one year 
later. Performance on each activity was included as a predictor of numerical ability one 
year later in a regression analysis, while taking into account spatial ability and 
visuospatial working memory (given that the patterning activities were spatial in 
nature), as well as prior numerical ability.  
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METHOD 
Participants 
This study is part of a large-scale project on the development of young children’s early 
mathematical competencies (https://ppw.kuleuven.be/o_en_o/WisenCo). We received 
an active informed consent from the parents of 410 children from one year group of 
the 17 schools (31 classrooms) that agreed to participate in the project. Schools were 
selected in order to include children from a range of socio-economic backgrounds. Data 
on one or more tasks were missing for 41 children, due to moving away, technical 
issues, and serious attentional or motivational problems, ultimately leading to a group 
of 369 participants (182 boys, 187 girls) with complete data. Their average age was 4 
years, 10 months (range 4 years, 3 months to 5 years, 7 months) at the first time point.  
Procedure  
We assessed children’s patterning ability and numerical ability during two test sessions 
of 30 minutes each in Spring 2017, i.e., when the children were in the last semester of 
their second preschool year (T1). Session 1 involved tasks with repeating patterns, 
whereas session 2 involved the numerical tasks. Spatial ability and visuospatial 
working memory were measured after the summer break of 2017. Finally, we 
administered the set of numerical tasks for a second time in Spring 2018, i.e., when the 
children were in the last semester of their third preschool year (T2).  
Materials 
We selected three activities that are assumed to contribute differently to later 
mathematical development, namely extending, translating, and identifying the unit. 
Each of these three activities was presented with six repeating pattern items (i.e., AB, 
AAB, ABC, AABB, AABC, and ABCD), leading to 18 items. The exact instruction, 
as well as an example item for each activity, is provided in Figure 1. The internal 
consistency was good for the overall measure (Cronbach’s α = .79) and acceptable to 
good for the different activities separately (Cronbach’s αs = .60-.72).  
Our measure of numerical ability was created based on recent research with children 
of a similar age range (see Andrews & Sayers, 2015; Purpura & Lonigan, 2013). At T1 
the measure consisted of 88 items covering various aspects of numerical ability 
comprising verbal counting, dot enumeration, object counting, symbolic and non-
symbolic comparison, number order, number recognition, and verbal arithmetic. The 
internal consistency of this measure was high (α = .93). At T2 we used the same set of 
tasks, but we added a symbolic arithmetic task and extra items of the dot enumeration 
task, leading to a measure consisting of 105 items with a high internal consistency (α 
= .94). We used a sum score of the Z-scores of performance on each of the aspects in 
our analyses. 
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Activity Instruction Example item 
Extending “Look carefully at this row. There is a 

pattern in it. At the end there is something 
missing. One of these figures has to be 
placed in the empty spot. Do you know 
which of these has to be on the empty spot?”  

Translating “Look carefully at this row. There is a 
pattern in it. Please make the same pattern 
with your figures on the paper strip.” 

 
Identifying 

the unit 
“You will soon see a row with a pattern in it. 
You will have to look very closely at it and 
try to remember the pattern. After a short 
period I will hide the pattern and you will 
have to copy it.”  

Figure 1: Instruction and example of a repeating pattern item for each patterning 
activity. 

The Block Design subtest (α = .76) of the WPPSI-III-NL was used to measure spatial 
ability (Hendriksen & Hurks, 2002). Children are asked to make a certain construction 
of red and white blocks within a given time limit. We used a Corsi span task (α = .77) 
to measure visuospatial working memory (De Smedt et al., 2009). Children need to 
reproduce a sequence of block that the experimenter had tapped in a random order. 
RESULTS 
We present the means and standard deviations of all variables, as well as correlations 
between patterning and numerical tasks in Table 1. Significant medium to large 
correlations were found between the patterning and numerical tasks, and these 
correlations held while controlling for age, spatial ability and visuospatial working 
memory (see partial correlations below the diagonal in Table 1).  
We further explored the association between the different patterning tasks and later 
numerical ability by means of a regression analysis using numerical ability at T2 as the 
outcome variable. In the first model we included age, spatial ability, visuospatial 
working memory, and the three patterning activities as predictors. In the second model 
we also included an autoregressor (i.e., numerical ability at T1) as a predictor in order 
to examine the unique contribution of patterning in the development of numerical 
ability. We examined the assumptions for regression analysis, and these were not 
violated (e.g., VIFs < 2.0).   
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Variable Raw 
score 

Correlation 

M 
(SD) 1 2 3 4 5 6 7 8 

1. Age (in 
months) 

70.10 
(3.49) 

- .14** .17*** .11* .22*** .23*** .29*** .23*** 

2. Spatial ability 22.10 
(5.53) 

 - .40*** .38*** .34*** .38*** .43*** .40*** 

3. Visuospatial 
WM 

6.05 
(2.16) 

  - .23*** .38*** .37*** .45*** .38*** 

4. Extending 3.00 
(1.69) 

   - .36*** .29*** .45*** .35*** 

5. Translating 2.99 
(1.78) 

   .25*** - .47*** .48*** .46*** 

6. Identifying  
the unit 

2.65 
(1.60) 

   .15** .33*** - .55*** .51*** 

7. Numerical 
ability T1 

0.32 
(5.54) 

   .33*** .31*** .38*** - .69*** 

8. Numerical 
ability T2 

0.13 
(4.90) 

   .21*** .31*** .36*** .57*** - 

Notes. * p < .05, ** p < .01, *** p < .001. Zero-order correlations are presented above the 
diagonal, partial correlations taking into account age, spatial ability, and visuospatial working 
memory, are presented below the diagonal. 

Table 1: Descriptive statistics of all variables and correlations between patterning 
and numerical tasks 

The results in Table 2 show that in the first model the two spatial tasks and the three 
patterning tasks all had a unique contribution to numerical ability at T2. When we 
included prior numerical ability in the second model, the spatial tasks and the extending 
task were no longer significant predictors. Translating and identifying the unit 
remained significant and unique predictors. 
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DISCUSSION 
Recent evidence suggests that children’s ability to handle repeating patterns 
contributes to their later mathematical development (e.g., Lüken et al., 2014). Studies 
thus far have used a general patterning measure including various patterning activities, 
yet several researchers claim that not all patterning activities are equally important for 
children’s later mathematical development. The current study explored the 
contribution of different patterning activities to mathematical development by means 
of correlational and regression analyses in which different patterning activities were 
included as separate predictors and numerical ability one year later as an outcome 
variable. Our findings indicate that performances on the three patterning activities (i.e., 
extending, translating and identifying the unit) were associated with numerical ability 
one year later and that these associations were unique above age, spatial ability, and 
visuospatial working memory. When prior numerical ability was also included in the 
regression analysis, only translating and identifying the unit remained unique 
predictors.  
This study addressed an important gap in research on early math education by looking 
into the contribution of specific types of patterning activities to children’s 
mathematical development. Our results suggested that patterning activities are related 

 Predictor B (SE) β 

Model 1  
F(6,362) = 36.80***  
Total R² = .38 

Age .11 (.06) .08 

Spatial ability .12 (.04) .13** 

Visuospatial WM .26 (.11) .11* 

Extending .34 (.14) .12* 

Translating .49 (.14) .18*** 

Identifying the unit .87 (.15) .28 *** 

Model 2  
F(7,361) = 54.38*** 
Total R² = .51 

Age .02 (.05) .01 

Spatial ability .07 (.04) .08 

Visuospatial WM .05 (.10) .02 

Extending  .01 (.13) .00 

Translating .29 (.13) .11* 

Identifying the unit .44 (.14) .14** 

Numerical ability T1 .45 (.05) .51*** 

Note. * p < .05, ** p < .01, *** p < .001. 

Table 2: Regression models predicting numerical ability at T2 
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to children’s mathematical development. More importantly, translating and identifying 
the unit contributed uniquely to the development of children’s numerical ability. One 
possible explanation for the latter finding might be that children need to recognize the 
unit of repeat of the pattern in order to complete these two patterning tasks and that 
understanding this concept of a unit supports numerical tasks such as counting (e.g., 
counting in pairs).  
Since the present study is only the first to focus on different patterning activities 
separately, more research is necessary to validate our findings. Longitudinal studies 
following children throughout preschool and primary school are needed to further 
explore the role of performance on different patterning activities for later mathematical 
development. Future intervention studies could provide evidence for a causal 
association between specific patterning activities and (specific) mathematical tasks.  
Overall, the current study supports the idea that early childhood settings should include 
patterning activities in their daily practices. We suggest that early childhood educators 
and caregivers should focus more on activities such as translating and identifying the 
unit, which are currently underrepresented in early educational settings.  
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STRUCTURAL THINKING AND ITS IMPACT ON SOLVING 
LINEAR EQUATIONS: A QUANTITATIVE STUDY IN 

SECONDARY SCHOOLS 
Alexander Wolff, Marianne Nack, Boris Girnat 
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This paper is focused on the relationship between structural and operational thinking 
in the context of prior arithmetic and algebraic knowledge and the subsequent ability 
to solve linear equations. A test was administered to 469 students consisting of six item 
groups both with conventional operational items and with newly developed tasks to 
measure structural thinking in arithmetic and algebraic contexts. The influence of 
structural thinking on solving linear equations was significant and substantial. 
Nevertheless, the impact of operational skills is nearly twice as large as the impact of 
structural skills. Additionally, investigating mean differences of the six scales shows 
gender differences especially related to structural thinking and gives some support for 
the thesis that structural thinking does not grow according to the grade level. 
INTRODUCTION: SFARD’S THEORY OF STRUCTURAL THINKING AND 
ITS ADAPTION TO THE FOLLOWING STUDY 
Sfard (cf. 1991) introduced a theory on the ontological development of mathematical 
concepts that has become influential in many parts of mathematics education. She 
expands upon a widely held view of how mathematical concepts can be conceived. She 
denotes the two distinct approaches as an operational and as a structural understanding. 
A structural understanding can be characterised as the ability of “treating mathematical 
notions as if they referred to some abstract objects” (Sfard, 1991, p. 4). Its underlying 
idea can be recognised at a glance and its static nature permits to consider properties 
of mathematical concepts in the same way as properties of real objects. An operational 
conception however is about processes, algorithms and actions rather than about 
objects and their properties. In contrast, it is dynamic (Sfard, 1991, p. 4, p. 33). Sfard 
stresses that a structural understanding is the more advanced stage. Nevertheless, she 
considers this distinction less as a dichotomy, but as a duality: “The thesis […] implies 
that one ability cannot be fully developed without the other: on one hand, a person must 
be quite skillful at performing algorithms in order to attain a good idea of the ‘objects’ 
involved in these algorithms; on the other hand, to gain full technical mastery, one must 
already have these objects, since without them the processes would seem meaningless 
and thus difficult to perform and to remember” (Sfard, 1991, p. 32). For the transition 
from an operational to a structural understanding of mathematical notions, she assumes 
three steps a student has to go through whenever he gets acquainted to a new 
mathematical concept: interiorisation, condensation and reification (cf. Sfard, 1991, 
pp. 18f.). This means that some operational skills are the initial points to gain a 
structural understanding and the latter cannot emerge without a sound operational base 
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(Sfard, 1991, p. 32). Since Sfard regards the major feature of a structural understanding 
as a handling with objects that have properties, we follow this approach to design our 
items: This kind of understanding manifests itself in the same treatment of different 
expressions as representatives of the same mathematical object with equivalent 
properties. 
Present research regards the role of the equal sign as central to the ability of solving 
linear equations (cf. Knuth et al., 2006, p. 297, cf. also McNeil & Alibali, 2005). We, 
however, consider a structural perception of arithmetic and algebra expressions to be 
the crucial point. With this idea in mind, we designed a test to investigate the impact 
of a structural understanding of previous knowledge, namely the understanding of 
arithmetic and algebraic expressions, on the ability to solve linear equations. 
Nevertheless, with respect to Sfard’s idea of duality, it would be too simple to assume 
a monocausal connection between a structural understanding of prior knowledge and 
the ability of solving linear equations. It seems to be more appropriate to include some 
background variables that are not connected to structural thinking but are supposed to 
have a positive impact on solving linear equations. Knuth et al. used the score of a 
national standardised test (cf. Knuth et al., 2006, p.301). We decided to act on the stage 
model Sfard proposed and used different groups of items that measure operational 
skills that are supposed to have a positive influence on solving linear equations as well, 
although not presupposing any kind of structural understanding. 
To summarise our intention: 1) We used Sfard’s theory and adapted her stage model 
to investigate the impact of an operational and a structural understanding of prior 
knowledge on the ability to solve linear equations. 2) We started from Knuth’s 
hypotheses that a structural understanding had a positive impact on solving these 
equations and that this understanding did not grow according to the grade levels (Knuth 
et al., 2006, p. 303). In contrast to Knuth et al., we do not regard the equality symbol 
on its own to be of central importance, but rather to what extent a student is able deal 
with arithmetic and algebraic expressions structurally. 3) To isolate the influence of a 
structural understanding, we included some operational items that are supposed to have 
a positive impact on the ability to solve linear equations. 
THE TEST: ITEM GROUPS AND THEIR UNDERLYING CONCEPTS 
Our test consists of six groups of items (cf. Table 1): Eight items are related to the tasks 
of solving linear equations (“lineq”). These items are intended to form the dependent 
variable that will be explained by all of the other item groups as independent variables 
or predictors. The predictor variables are represented by two classes consisting of two 
and three item groups, respectively: Two groups (“op_al_1” and “op_al_2”) measure 
basic skills to deal with arithmetic and algebraic expressions being useful (or 
necessary) to solve linear equations. They have an operational nature, since they can 
be solved by only executing actions. Three groups are related to a structural 
understanding of arithmetic (str_ar_a and str_ar_m) and algebraic (str_al) expressions: 
Since we consider a structural understanding as the ability to recognise expressions as 
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equivalent on the base on its underlying concept (e.g. 5x), we used the idea of (de-
)composing (formal) expressions to measure this ability. In Table 1, Cronbach’s alpha 
is reported based on the data collection that will be described subsequently. The table 
shows that only one scale (op_al_1) has a questionable value, whereas all the other 
scales have good to excellent internal consistencies (cf. Cronbach, 1951). 

abbrivia- 
tion 

Cronbach’s 
alpha 

No. of 
items 

Example(s) 

op_al_1 0.67 6 Simplify: x + 66 + 4x = ___________ 

op_al_2 0.93 8 Expand: 4(x+1) = ___________ 

Factor out: 5x – 15 = _________ 

str_ar_a 0.82 4 Enter the correct numbers: 479 + 75_7 = 7588 + 47_ 

str_ar_m 0.85 4 Enter the correct numbers: 82 ∙ _30 = 82_ ∙ 73 

str_al 0.94 6 Determine the solution set by cleverly disassembling: 

5𝑥 = 20 = __ ⋅ __       𝕃 = { ____ } 

lineq 0.91 8 Determine the solution set of the linear equation: 

10 = 5𝑥 − 7                 𝕃 = { ____ } 

Table 1: Test items and reliabilities of the scales 
DATA COLLECTION AND ANALYSIS 
Our data were collected as a convenience sample of 469 students in autumn 2018. The 
German school system consists of three types of schools, separated according to the 
(expected) capabilities of the students: Level I is called “Hauptschule” (a high school 
open to all students, focused on developing hands-on, practical skills); level II is called 
“Realschule” (a selective high school for middle-tier students, providing an all-rounded 
education); and level III is called “Gymnasium” (an academically-oriented, selective 
high school for strong students). Additionally, there exists a so-called “integrated 
comprehensive school” (ICS) that provides classes or courses on all three levels.  

Table 2: Composition of the sample 
Table 2 shows the composition of our sample. In Table 1, the item groups are described, 
presupposing that there exist six different skills – each measured by one item group. 
Whether this assumption empirically holds, was tested both by explorative (EFA) and 
confirmatory factor analyses (CFA). The explorative analysis consisted of two steps: 

gender type of school Grade 

male: 242 
female: 227 

level I: 89 
level II: 228 
level III: 93 
ICS: 59 

grade 8: 108 
grade 9: 214 
grade10: 147 
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A parallel analysis according to Horn was performed to determine the optimal number 
of factors to extract (cf. Horn & Engstrom, 1979). This procedure suggested six factors 
(as expected). Second, an exploratory factor analysis (with a promax rotation) was 
performed to check if the factor loadings correspond to the assumed six factors, i.e. 
that each of the items essentially loads to just one factor. This was in general fulfilled 
– with one exception: Three of the eight items of group “lineq” has the form 5(3+2𝑥) 
= 39. Comprehensively, they also had smaller, but substantial loadings on the factor 
“op_al_2” besides their main loadings on the factor “lineq”. The calculations were 
performed using R (R Core Team, 2018, version 3.5.2) with the psych package 
(Revelle, 2018, version 1.8.10).  
The explorative results gave support for our theoretical assumptions and, additionally, 
suggested some refinements by allowing double loadings for the three items discussed 
above. Therefore, we performed a confirmatory factor analysis, using the R package 
lavaan (Rosseel, 2012). We used a DWLS estimator. This is the standard method that 
is currently advised in case of dichotomous data (cf. Beaujean, 2014). The fit indices 
of this model were excellent (CFI 0.983, RMSEA 0.38, SRMR 0.39, cf. Beaujean, 
2014, for interpreting the model fit). 

 op_al_1 op_al_2 str_ar_a str_ar_m str_al lineq 

op_al_1 1 0.688*** 0.398*** 0.365*** 0.396*** 0.651*** 

op_al_2  1 0.371*** 0.338*** 0.326*** 0.646*** 

str_ar_a   1 0.571*** 0.409*** 0.469*** 

str_ar_m    1 0.378*** 0.377*** 

str_ al     1 0.419*** 

lineq      1 

Table 3: Latent correlations between latent variables 
In addition to the fit indices, the model used for the CFA also provided the latent 
correlations between the six factors defined by our item groups. Using latent 
correlations has one important advantage compared to calculating Pearson’s product-
moment correlations between the row sums of each item group: The product-moment 
correlations contain measurement errors and underestimate the “true” correlations 
between the underlying latent variables, whereas latent correlations are adjusted for the 
measurement error and express the relationships between the latent variables more 
accurately (cf. Beaujean, 2014, pp. 100-103). Table 3 shows the latent correlation 
between the six factors of our test (the asterisks here and in the following denote the 
usual significance levels: * stands for p < 0.05, ** for p < 0.01, and *** for p < 0.001). 
It is noteworthy that the latent correlations are substantial, but not as high as that the 
phenomenon of multicollinearity would appear (cf. Kock & Lynn, 2012, e.g. if the 
correlations are greater than 0.8 or 0.9). In terms of content, this finding means that the 
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six item groups measure six skills that are related to each other, but they are empirically 
clearly distinguishable. 
The next step of our analysis was focused on group differences defined by mean 
differences of the six factor scores. As Table 2 shows, the internal structure of our 
sample, we used the three subcategories of our sample (gender, type of school, and 
grade level) as covariates in the following manner: for each subcategory, a reference 
group was chosen (male, school level I, and grade 8), its mean was set to zero and the 
means of the other group(s) of the same subcategory were expressed in terms of 
Cohen’s d, i.e. as the standardised mean difference between the reference group and 
the other group(s) relative to the pooled standard deviations (cf. Cohen, 1988). All 
calculations were performed using R with the lavaan package. Cohen proposed the 
following rule to interpret the values of Cohen’s d: 0.2 indicates a small, 0.5 a medium, 
and 0.8 a strong effect. This rule was expanded by Sawilowsky: 1.20 stands for a very 
large effect and 2.0 for a huge effect (cf. Sawilowsky, 2009). 

 ref. gr.: male reference group: level I ref. gr.: grade 8 

abbr. female ICS level II level III grade 9 grade 10 

op_al_1 -0.09 0.76*** 1.56*** 2.63*** 0.13 0.37** 

op_al_2 0.08 0.61*** 1.29*** 1.46*** 0.51*** 0.20 

str_ar_a -0.33** 0.09 0.69*** 1.39*** 0.45*** 0.29* 

str_ar_m -0.22* 0.10 0.50*** 1.10*** 0.34* 0.39** 

str_al -0.14 0.23 0.31* 1.14*** 0.11 0.10 

lineq -0.09 0.39** 1.21*** 1.87*** 0.75*** 0.50*** 

whole test -0.08 0.53*** 1.32*** 2.02*** 0.62*** 0.42*** 

Table 4: Mean differences expressed in terms of Cohen’s d 
Table 4 contains the mean differences of the six factors discussed above. Additionally, 
the score of the whole test was regarded. Even though the six factors are clearly 
distinguishable and an one-factor score has a significantly worse model fit than the six-
factor model, the fact that the score of all items leads to Cronbach’s alpha of 0.96 may 
justify that the whole test can be analysed using a one-dimensional model. 
The values of Table 4 are interpreted as follows: In general, there are no significant 
gender differences observable – except for two of the structural factors (str_ar_a and 
str_ar_m). The differences are small, but significant. Papers like Knuth et al. (2006) 
has not dealt with gender differences. Hence, it would be an interesting question if our 
observation is a singular case or if gender differences concerning structural thinking 
can be found in other contexts. The massive mean differences related to types of 
schools are mainly interesting for the German community. The schools have very 
different levels; and especially the integrated comprehensive school (ICS) does not 
satisfy its self-imposed goal to be an adequate alternative for students on all possible 
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levels. In particular, it is remarkable that the results of the ICS students do not 
significantly differ from level I students in case of the three factors related to structural 
thinking and, additionally, that only level III students achieve large values of Cohen’s 
d in these cases. This finding could be an indicator for the hypothesis that structural 
thinking might be an ability predominantly reachable for high-performance students. 
The mean differences related to grade levels seem to support the findings of Knuth et 
al. (2006). The increases from grade 8 to 9 are partly not significant and – if so – they 
are rather small. From grade 9 to 10, the means even decrease in some cases. This 
observation fits to Knuth’s finding that structural perceptions do not increase according 
to the grade level. But our findings are ambiguous: The non-structural item groups vary 
quite consistently with respect to the grade levels. 
The last part of our analysis was committed to the core question of our research: Does 
structural thinking have a positive impact on solving linear equations? We decided to 
use a linear model to investigate this question (cf. Searle & Gruber, 2016). We declared 
the factor related to linear equations to be the dependent variable and all the other 
factors to be the predictors. To be more precise, the formula for this model is as follows:  

𝑙𝑖𝑛𝑒𝑞 = 𝛽U ⋅ 𝑜𝑝_𝑎𝑙_1 +	𝛽. ⋅ 𝑜𝑝_𝑎𝑙_2	+	𝛽d ⋅ 𝑠𝑡𝑟_𝑎𝑟_𝑎	+	𝛽c ⋅ 𝑠𝑡𝑟_𝑎𝑟_𝑚	+	𝛽¢ ⋅ 𝑠𝑡𝑟_𝑎𝑙	 + 𝜀 

The regression coefficients βi can be regarded as the equivalents of covariances and the 
standardised regression coefficients 𝛽¤� as the equivalents of correlations. However, the 
role of regression coefficients is different. A covariance is a measure for the whole 
variance two variables have in common, but a regression coefficient corresponds only 
to the amount of variance a predictor has in common with the dependent variable that 
cannot be explained by other predictors. This is the reason why regression coefficients 
are typically smaller than the corresponding covariances or correlations – especially, 
if the predictors are correlated with each other (like in our case, cf. Table 3). 

Table 5: Unstandardised (βi) and standardised regression coefficients (𝛽¤�)	 
Table 5 shows the regressions coefficient of our linear model with their standard errors 
se(βi) and 𝑠𝑒(𝛽¤�). The standardised regression coefficients can be directly compared 
with each other. The linear model estimated with the lavaan package produces good fit 
indices (CFI 0.981, RMSEA 0.42, SRMR 0.39). The total R² of variance explained 
equals 0.545. That is a considerable proportion of explained variation.	The outcome 
can be interpreted as follows: The basic operational skills (op_al_1 and op_al_2) have 

 βi se(βi) 𝛽¤� 𝑠𝑒(𝛽¤�) 𝛽¤� male 𝛽¤� female 

op_al_1 0.982*** 0.259 0.305*** 0.080 0.350*** 0.261** 

op_al_2 0.303*** 0.056 0.371*** 0.068 0.275*** 0.398*** 

str_ar_a 0.199** 0.064 0.170** 0.054 0.170** 0.150* 

str_ar_m 0.017 0.068 0.013 0.052 0.030 -0.012 

str_ al 0.115* 0.047 0.116* 0.048 0.149* 0.081 
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a greater impact on the ability of solving linear equations than the factors related to 
structural understandings. However, two of the structural factors (str_ar_a and str_al) 
have a significant impact. Their standardised regression coefficients are approximately 
half as large as those of the operational factors, but they provide a substantial 
contribution. Only the structural factor related to multiplicative contexts (str_ar_m) 
does not have a significant influence. Remarkably, the newly invented item group 
concerning a structural understanding of an algebraic expression (str_al) possesses a 
significant impact. This finding may indicate that these items could be used as a class 
of suitable exercises to empower students both to gain structural insight in numbers 
and algebraic contexts and to solve linear equations. The gender differences reported 
in Table 5 are not easy to interpret. The operational item groups (op_al_1 and op_al_2) 
swap their role between male and female students; two structural item groups (str_ar_a 
and str_ar_m) behave in the same way; and the third one (str_al) has a less important 
role for female students. 
CONCLUSION 
Our research results expand the picture that already exists concerning the question of, 
if and to what extent a structural conception of previous knowledge has an impact on 
future learning. Previous knowledge and competence of being able to deal with 
arithmetic and algebra expressions structurally has a significant and substantial impact 
on solving linear equations – but with two limitations: 1) The impact of basic 
operational skills is twice as large (op_al_1 and op_al_2); 2) only structural 
understanding in additive contexts (str_ar_a) and in the form of decomposing numbers 
according to algebraic expressions to find solutions of linear equations (str_al) provide 
a significant influence. An example for the latter is “Determine the solution by cleverly 
disassembling the number 20 in: 5𝑥 = 20 = __ ⋅ __”. Tasks like this may be used to 
establish a new class of exercises as a pre-stage to solving linear equations 
algorithmically. In addition to our main result, our study detects gender differences 
concerning structural understanding both in arithmetic and algebraic contexts: Female 
students earned significantly lower results on the related scales than their male 
classmates, but the effect size is small. Quite similar than in previous research (cf. 
Knuth et al., 2006), there is some evidence that a structural perception does not increase 
substantially according to the grade level. 
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