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CHANGES IN PRIMARY MATHEMATICS TEACHERS’ 
RESPONSES TO STUDENTS’ OFFERS 

Lawan Abdulhamid 
Wits School of Education, University of the Witwatersrand 

 

This paper contributes to research looking into changes in primary mathematics 
teachers’ responses to students’ offers, measured using an ‘elaboration’ framework. 
The framework was developed in a context of teacher practices characterised by 
absence of teaching that responds constructively to students’ offers. Findings from the 
analysis of the teaching of one Grade 3 teacher across a two-year period revealed 
differences in interactions among her students, and her being more responsive to 
students’ offers in the classroom. I argue that these observed differences are markers 
of changes towards incorporating practices that have been widely described in the 
literature as markers of responsive teaching quality. 
INTRODUCTION 
Eliciting and responding constructively to students’ offers are high-leverage practices 
that have implications for students’ access to the power of mathematics (Hallman-
Thrasher, 2017; Hill et al., 2008; Mason, 2015). Such high-leverage practices are 
lacking in many primary mathematics classrooms in developing nations, and in South 
Africa in particular (Hoadley, 2006; Venkat & Naidoo, 2012). For example, in South 
Africa, classroom practices characterised by an absence of evaluative criteria that 
Hoadley (2006) have been described thus: 

The teacher engages in other work in her space and is not seen to look at what the learners 
are doing. She makes no comment on the work as it proceeds. No action is taken to 
ascertain what the learners are doing (p. 23). 

A teacher’s lack of interest in students’ actions results in her students not knowing if 
what they are doing is mathematically correct, thus limiting their mathematical 
learning. Importantly, Hoadley noted that this absence of evaluative criteria represents 
a feature that has not been described as common in developed country contexts. In this 
context, for over 8 years, a longitudinal research and development project – Wits Maths 
Connect–Primary (WMC–P) – is developing and investigating interventions to 
improve the teaching and learning of primary mathematics in South Africa. In the 
course of this work it became necessary to have tools for examining differences in the 
quality of mathematics teaching, working from the base of non-responsive teaching 
described above, in order to understand the extent of improvement in teaching and its 
development. 
Due to the specificity of the problems noted in developing nations, imported 
international theoretical frameworks (e.g. Hill and colleagues’ Mathematical Quality 
of Instruction (MQI) (Hill et al., 2008); Rowland and colleagues’ Knowledge Quartet 
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(Rowland, Huckstep, & Thwaites, 2005)) largely result in deficit analyses, as they 
assume a baseline level of competence that is often not reached. Therefore, a language 
of description from a home-grown analysis was needed as a means to offer ‘stages of 
implementation’ (Schweisfurth, 2011) towards desired ends in relation to responsive 
teaching. An ‘elaboration framework’ was thus developed (Abdulhamid & Venkat, 
2018) by paying close attention to the nature of teacher’s responses in ways that moved 
away from deficit characterisations based on absences, to staging point 
characterisations directed towards improvement. The main question this paper thus 
addresses is: 

• What changes over time in quality of primary mathematics teachers’ responses 
to students’ offers can be described through the lens of the elaboration 
framework? 

THE ELABORATION FRAMEWORK 
The lack of responsive teaching noted in South Africa led to the development of the 
‘elaboration’ framework, which emerged from a grounded theory approach through 
analysis of 18 lessons taught by four primary mathematics teachers. Detail about the 
development of the framework has been written elsewhere (Abdulhamid & Venkat, 
2018). Here an overview is provided to put the results presented later into context.   
The framework provides a means to identify teachers’ responses (and non-responses) 
to students’ offerings in mathematics lessons and the extent to which these responses 
create opportunities for extending or deepening students’ learning. The framework also 
allows us to chart and examine differences in responses over time, within four broad 
classroom situations where responsive teaching may be productive: 

Breakdown – a situation of students offering incorrect mathematical answers or 
responses; 

Sophistication – a situation with the potential to encourage more efficient use of 
mathematical representations and strategies; 

Individuation – a situation where the teacher takes a group chorus correct 
mathematical offer and uses it to assess individuals’ understanding; and 

Collectivisation – a situation of opportunity for a teacher to ‘unpack’ an individual 
student’s mathematical offer through sharing with whole class 

A further crucial feature of the framework is hierarchies within the four situations that 
elaborate differences in the quality of teachers’ responses. For example, in the case of 
breakdown situations, teacher responses that focus on students’ offers are categorised 
into two types: (1) teacher restating the students’ offer and questioning its correctness, 
and (2) teacher probing students’ offers with follow-up questions. Fundamentally here, 
at level (1), we have acknowledgement of the incorrect offer, but no elaboration 
relating to how to go on to produce a correct offer, or to see why the given offer is 
incorrect – thus reinforcing a way of being with mathematics that is concerned 
primarily with the delivery of correct answers. The move, at level (2), is to probing 
reasons for the incorrect offer, and is thus geared towards mathematical processes as 
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well as their outcomes. Table 1 provides a summary of the hierarchical categories 
where the teacher responded to students’ offerings, related to the focus of this paper. 

Situations of 
elaborations 

Hierarchy of categories of teacher responses  

Breakdown L1 – Restates students’ offer and questions its correctness 
 L2 – Probes students’ offer with follow-up questions 
Sophistication L1 – Offers a more efficient strategy 
 L2 – Elicits more efficient student offers 
 L3 – Interrogates students’ offers for efficiency 
Individuation L1 – Confirms chorus offers with individual students 
 L2 – Interrogates chorus offers with individual students 
Collectivisation L1 – Confirms individual student’s offer with whole class 
 L2 – Interrogates individual student’s offer with whole class 

Table 1: Hierarchical categories of teacher responses within the elaboration 
framework 

DATA SOURCES AND METHODOLOGY 
To illustrate differences in the quality of teachers’ responses to students’ offers, I share 
data and analysis of one Grade 3 teacher, Thandi (pseudonym), teaching additive 
relations across a two-year period (2013 and 2014). Between the two years, I engaged 
with Thandi in a video-stimulated recall (VSR) interview. The aim of the interview 
was to both understand Thandi’s rationales for classroom decisions, and to develop her 
mathematics knowledge for teaching through reflection on practice. Prior to the lesson 
observation, Thandi had attended a 1-year WMC-P ‘maths for teaching’ course in 
2012. Thandi had more than 15 years of teaching experience. 
I observed and video-recorded five lessons prepared and delivered by Thandi (2 in 
2013 and 3 in 2014). Following the observations, I created verbatim transcripts that 
captured all the teacher talk, teacher–student interactions and descriptions of the tasks 
and representations that were produced and used by the teacher during the course of 
the lessons. The analysis began with identification of situations of elaboration, which 
form my unit of analysis. Each unit of analysis is initially examined as either the teacher 
providing elaboration (i.e. responding to the students’ offerings) or not providing 
elaboration (i.e. ignoring or acknowledging students’ offers and move on or pulling 
students’ back to naïve strategies or representations). The incidents where elaborations 
are provided were then coded against the categories listed in Table 1 and allowed for 
an exploration of differences in hierarchies of responsive teaching. 
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ANALYSIS AND FINDINGS 
I provide a narrative account of selected incidents based on data extracts, and some 
commentary relating to moves in quality of elaborations as highlighted in Table 2 
below. These narratives qualitatively illustrate differences in responsive teaching that 
the elaboration framework allows me to theorise as changes in the quality of teacher’s 
responses to students’ offers. 
Levels of 
responses 

Breakdown Sophistication Individuation Collectivization 
2013 2014 2013 2014 2013 2014 2013 2014 

Level 1 5 
(71%) 

4 
(36%) 

0 
(0%) 

5 
(42%) 

0 
(0%) 

4 
(80%) 

4 
(100%) 

2 
(40%) 

Level 2 2 
(29%) 

7 
(64%) 

0 
(0%) 

3 
(25%) 

0 
(0%) 

1 
(20%) 

0 
(0%) 

3 
(60%) 

Level 3 N/A N/A 0 
(0%) 

4 
(33%) 

N/A N/A N/A N/A 

Table 2: Thandi’s summary of quality of elaborations across 2013 and 2014 teaching 
For breakdown situations, in 2013, 29% of incidents of elaborations were at level 2 in 
comparison with 64% in 2014. No sophistication and individuation elaborations were 
seen in 2013 lessons, while widespread elaborations in 2014 were seen with some 
moves to higher levels. For collectivization, in 2013 there was no incident of 
elaboration at higher level in comparison with 60% in 2014. 
Breakdown-quality difference 
In 2013 lesson 1, in the context of the task 25=30- _ involving using a number line to 
find the missing subtrahend, Thandi invited learners to work out the problem on the 
board. The following excerpt played out (L – student and T – Thandi): 

285 L1: (Learner points at 25 on the number line and indicates a backward gesture 
with her left hand and then pauses) 

286 T: Where do you go from twenty-five? 
287 L1: Backward 
288 T: She says we start at twenty-five and go back. Does the sum say 25 minus? 

No, it says 25 equals (Teacher invites another learner).  
289 L2:  (Learner points at 25 and demonstrates a backward gesture).  
290 T:  We are going backward, if we say twenty-five minus, then we move 

backwards. But our sum does not say that. It says twenty-five is thirty minus 
what? (Teacher invites another learner) 

291 L3:  (Learner starts at 25 and demonstrates a forward jump to 30) 
292 T:  What do we do next?  
293 L3:  We go back  
294 T:  Go and sit down (teacher work out the problem herself) 
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Challenges with directly modelling this problem type have been noted in the literature. 
In Carpenter, Fennema, Franke, and Levi’s (1999) categorisation, missing subtrahend 
problems are harder to directly model as the number of jumps to make is not known. 
Further there is an extensive literature base on children interpreting the equals sign as 
a signal to operate, rather than to seek equivalence (Molina & Ambrose, 2008), making 
problems with the operation on the right hand side more complex through being less 
familiar.  
Thandi’s response does not recognise this complexity, as in Line 288, she began with 
a restating of the student’s offer (twenty-five and go back), and she went onto link this 
offer with the problem ‘25 minus’ and questioned whether this was correct in relation 
to the original question. Given this analysis, this incident was coded as ‘restates student 
offer and questions its correctness’ – a level 1 category of the breakdown. The explicit 
rejection of the students’ solution actions, without any further elaboration that 
potentially elicits a correct solution action, appeared to result in a situation where the 
mathematical object seemed not to emerge for many students. 
In her 2014 lesson 1, in the context of a subtraction task 38-9, Thandi had earlier 
introduced adding and subtracting ‘near 10’ numbers by using 10 as a benchmark. She 
invited one student to work out the task on the board. The student drew an empty 
number line, and marked 38 towards the end of the line. She then made a backward 
jump of 10 and landed at 28. The following excerpt played out:  

324 L:  Twenty- eight  
325 T:  What do we do next? Yes?  
326 L:  Minus one  
327 T:  Minus one; she says minus one, if we say minus ten and minus one how 

much have we subtracted? 
328 Class:   Eleven 
329 T:  But, our problem says minus nine not minus eleven 
330 L:  Plus one (learner responds quickly) 

Thandi’s response to the student’s offer of ‘minus 1’ having already jumped back 10, 
involved establishing that the student’s offer was actually taking away 11, not 9, and 
was coded as an incident of ‘probing student offer with follow-up questions’. The 
literature suggests that this kind of response has more potential for extending student 
understanding than overt rejection of the offer (Brodie, 2007). In contrast to Thandi’s 
2013 instances of elaboration in breakdown situations where there was a prevalence of 
elaborations involving a restating of the student offer and acknowledging its 
incorrectness (71%), in 2014 she probed students’ incorrect offers in 64% of her 
responses by establishing the possible consequence of student’s solution actions 
without explicit rejection of the offer. 
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Sophistication-quality difference 
In her 2013 lesson 1, upon completion of writing the 10s between numbers 0 – 100 on 
a number line, Thandi asked learners to point to the position of 25. One learner pointed 
at the mid-point between 20 and 30. Thandi accepted this offer and wrote down 25. 
She then wrote down the following task: 25+5 = ___. Students raised their hands and 
she invited one student (L) to work it out on the board using the number line. The 
following excerpt played out: 

260 L:  (Learner starts at 25, already marked on the number line, and makes a 
single forward jump of 5 and lands at 30) Thirty 

262 T:  Show us where we start and how we move. Draw the jumps 
264 L:  We start here and move five places (learner uses ruler to show movement 

from twenty-five to thirty) 
265 T:  Show us on the number line. 
267 L:  One, two, three, four (uses chalk and makes four marks between twenty-five 

and thirty marks while counting).  

In the excerpt presented above, it was clear that the student involved could work out 
25+5=_ by starting at 25 and making a single jump of 5. Thandi’s response was coded 
as pulling back (within the ‘provides no elaboration’ category) given that the student 
demonstrated a single jump of 5, while Thandi asked for counting on in ones. Thandi 
did not comment on why she insisted on the student showing counting in ones in the 
VSR interview, suggesting that the pulling back was not part of her immediate frame 
of awareness. The move from counting in ones to flexible group counting is an 
important one in developing sophisticated strategies for addition and subtraction 
(Mcintosh, Reys, & Reys, 1992). This kind of ‘unstructured’ working in the context of 
work with structured resources like a number line has been described in prior work in 
South Africa (Venkat & Askew, 2012). 
In her 2014 lesson 3, in the context of a similar addition task, 6+25 on a number line. 
Thandi invited one student to facilitate working out the sum on the board with the 
whole class. He drew an empty number line and marked 25 (in previous examples, 
there had been discussion about the efficiency of starting addition with the bigger 
number). Thus, my focus here, as in the previous incident, is on the ways in which she 
dealt with the need to count on. The student asked the class what number to add first. 
One learner offered ‘plus 1’. He made a forward jump of 1 and wrote down 26. Another 
learner offered ‘plus 1’ again. He made another forward jump of 1 and wrote down 27. 
Another learner offered, ‘plus 1’. At this moment, Thandi interrupted, and the 
following excerpt played out. 

294 T: (Teacher interrupts). It has to be easy. It just has to be easy for us. So we 
take numbers that are going to make it easy for us to count. I am not saying 
this is wrong, because I know that you were going to get the answer, but I 
just want you to get your answers quickly and easily. Now we are going to 
do that. We said six plus twenty-five, isn’t it? 

297 C: Yes  
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298 T: Now let’s look at twenty-five and say how many do we need to add to get 
to the next multiple of ten? Mpho?  

299 L: Plus five  
300 T: Plus five, five and five is ten, so twenty-five and five is…? 
301 C: Thirty 

In the interaction presented in the excerpt above, Thandi encouraged learners into 
flexible group counting by using ten as a benchmark (Mcintosh et al., 1992). This 
response was coded as an incident of provision of elaboration characterised by 
‘eliciting a more efficient strategy’. This marked a contrast to what was seen in her 
2013 teaching where pulling back was the only sophistication-related response seen. 
Thandi’s 2014 elaboration actions were constituted by 58% at higher levels in the 
sophistication situation, and therefore indicated contrasts with teaching in South Africa 
characterised by limited progression to more flexible mathematics working (Ensor et 
al., 2009). 
DISCUSSION 
The finding that the directions of difference were broadly patterned towards ‘higher’ 
levels of elaboration within all the four situations in 2014 mirrored the findings in the 
broader dataset across all four teachers (Abdulhamid, 2016). This suggests that it is 
feasible to interpret these empirical differences as reflecting improvement in the 
teachers’ responses to students’ offers. This claim is further supported by the broad 
evidence of a strong ‘plan-orientation’ in 2013 – in which the teacher pushes for tasks 
to play out with focus on her intended objectives, with no awareness seen of the need  
to deviate from planned action (Rowland et al., 2005) or to establish balance between 
scripted planning and improvisation (Sawyer, 2004) in her teaching. 
In Thandi’s 2014 teaching, there was evidence of substantial engagement with 
students’ thinking in responsive ways (Franke, Kazemi, & Battey, 2007). These 
differences suggest changes in her ways of being with mathematical knowledge (Coles 
& Scott, 2015) in teaching, greater interactions among her students, and being more 
responsive to students’ contributions, a practice that has been widely described in the 
literature as a marker of responsive teaching quality (Hill et al., 2008; Sawyer, 2004). 
CONCLUSION 
The differences seen in the extent and quality of teacher responses to students’ offers 
suggest positive changes in responsive teaching, which were made visible through the 
lens of the elaboration framework. Given the South African evidence of gaps in 
responsive teaching actions, exemplifying this nature and range of differences in 
teaching are important developmentally in relation to attempts to improve students’ 
access to the power of mathematics. 
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DISCOURSE IN CLASSROOMS OF PD PARTICIPANTS 
Reema Alnizami, Anna Thorp, Paola Sztajn 

North Carolina State University 
 

In this study we examined the mathematical discourse in the classrooms of three 
elementary teachers who participated in a professional development (PD) program 
designed to support teachers in promoting high-quality discourse during mathematics 
instruction. Analysis of classroom observations shows that the teacher with higher pre-
PD mathematical knowledge grew in classroom discourse at a greater rate than the 
other two teachers with lower pre-PD mathematical knowledge. 
INTRODUCTION 
Orchestrating multi-directional mathematical discourse with students and among 
students in classrooms has benefits for students’ mathematical learning (National 
Council of Teachers of Mathematics, 2014). Researchers have recommended practices 
that can enhance opportunities for mathematical discussions during instruction, such 
as: asking students questions that support them in thinking conceptually (Ghousseini, 
Beasley & Lord, 2017) and encouraging students to ask questions to each other and to 
the teacher (Boaler & Brodie, 2004); sharing authority over mathematical ideas with 
students (Tofel-Grehl, Callahan & Nadelson, 2017); and encouraging mathematical 
explanation that consists of mathematical argumentation beyond procedural 
explanation to help students conceptualize mathematics (Kazemi & Stipek, 2001). 
However, communications observed in mathematics classrooms in the US are mostly 
unidirectional—teacher to student—inhibiting students’ interest in mathematics 
(Herbel-Eisenmann, Steele, & Cirillo, 2013). Despite significant efforts to promote 
multi-directional conversations in mathematics classrooms, orchestrating rich 
mathematical discourse continues to be difficult for many teachers (Gallimore, Hiebert, 
& Ermeling, 2014; Kazemi & Stipek, 2001). Given the importance of orchestrating 
high-quality mathematical discourse, professional development (PD) opportunities that 
effectively support teachers in enhancing their abilities to promote high-quality 
mathematical discourse in their classrooms are critical. To explore the value of 
participating in such PD initiatives, we examined observation data to capture changes 
in mathematical discourse that took place in classrooms of three teachers who 
participated in the Project All Included in Mathematics (Project AIM) PD program. 
FRAMEWORK ON CLASSROOM DISCOURSE 
A key framework for this study and for the design of Project AIM is the Mathematics 
Discourse Matrix (Sztajn, Heck & Malzahn, 2013). Based on literature on mathematics 
discourse (e.g., Hufferd-Ackles, Fuson & Sherin, 2004; Willey, 2010), the Matrix 
categorizes discourse into four types (correcting, eliciting, probing, and responsive) 
across four dimensions: questioning, explaining, listening, and modes of 
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communication. The four discourse types in the Matrix can be seen to represent levels 
on a continuum of discourse richness from correcting (lower) to responsive discourse 
(higher). When a teacher initiates the communication and students respond, with 
authority residing solely on the teacher, this is considered correcting discourse. 
Breadth increases with eliciting discourse when more students participate in discourse, 
describing the what and how of their solutions. Higher in depth, probing discourse 
involves deeper mathematical explanation, where the teacher’s discourse with students 
pushes for mathematical explanation and justification. At the higher end, responsive 
discourse is observed when eliciting and probing are maintained, as well as evidence 
of making mathematical connections and students taking ownership of their learning. 
It is considered that the different types of discourse may be appropriate for different 
purposes during instruction. However, if the dominating discourse during a lesson is 
correcting, the richness of the mathematics classroom discourse tends to decline. 
RESEARCH QUESTION 
This study explored the following question: How does discourse change in classrooms 
of PD participants whose early-observed discourse patterns are mostly unidirectional? 
More specifically, we conducted a retrospective analysis of change in mathematical 
discourse in classrooms of three teachers who participate in Project AIM.  
METHODS 
This investigation is part of a larger design research study. In PD design research, 
researchers design, implement, and analyse PD materials and activities for the purpose 
of helping teachers develop well-researched instructional practices while also 
generating knowledge and theory about PD design (Cobb, Jackson & Sharpe, 2017). 
The cycles of PD design and implementation include ongoing and retrospective 
analysis (Cobb, 2000). We report on a retrospective investigation of one 
implementation of Project AIM. 
Context 
Project AIM is a 40-hour, year-long PD program designed to support elementary 
teachers in promoting high-quality discourse during mathematics instruction. The PD 
consists of a three-day Summer institute and seven after-school sessions over the 
following school year. A main feature of the PD is the adaptation to mathematics of 
strategies typically used to support discourse during literacy instruction. 
Through several implementations, Project AIM has continually generated value for 
teachers who participated in the PD, making it an appropriate context for retrospective 
analysis. For example, using the Learning Mathematics for Teaching (LMT) measure 
(Hill & Ball, 2004), the research team found significant increases from pre- to post-PD 
in participating teachers’ mathematical knowledge for teaching (MKT). Data from a 
project questionnaire (Sztajn, Heck, Malzahn & Dick, under review) also indicated that 
participants increased in their perceived discourse-related practices from pre- to post-
PD. Results from Project AIM over the years are summarized in Table 1. 
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Implementation LMT Questionnaire 

2012-2013 Increase with 
medium effect size 

Increase in all components of the 
questionnaire with effect sizes ranging 
medium to very large 

2013-2014 Increase with 
medium effect size 

Increase in 6 of 8 questionnaire 
components with effect sizes ranging 
medium to very large 

2014-2015 Increase with 
relatively small 
effect size 

Increase in 6 of 8 questionnaire 
components with effect sizes ranging 
small to large 

2016-2017 Increase with large 
effect size 

Increase in 5 of 8 questionnaire 
components with effect sizes ranging 
medium to large 

  Table 1: Project AIM Knowledge and Practice Results 
During the 2012-2013 implementation, observation data were collected for 16 of 78 
total participants. The sample was selected to be observed based on the levels of 
participants’ responses to the pre-PD LMT measure and discourse-promoting practices 
questionnaire using a stratified sampling approach, which resulted in four strata 
combinations of teachers with higher and lower knowledge and practice levels. 
Mathematical discourse in the classrooms of this sample was observed two consecutive 
days at two time points—once early in the school year (Fall 2012) and again toward 
the end of the school year (Spring 2013).  

 

Figure 1: Change in overall discourse from Fall to Spring. 
In a prior study, we conducted a retrospective analysis of the observation data for 15 
of these teachers to further understand change in PD participants’ classroom discourse 
(Alnizami, Thorp & Sztajn, in press). Data for the 16th teacher was dropped due to a 
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short time between the early and late data collection. Classroom observation protocols 
were coded using the Mathematics Discourse Matrix (discussed above). For each time 
point for each participant, a holistic discourse type was assigned, as seen in Figure 1. 
This study showed that teachers’ pre-PD knowledge and practice levels did not define 
change in classroom discourse from Fall to Spring. Further, we found that 
mathematical discourse improved in most observed classrooms (Alnizami et al., in 
press).  
Participants 
For the present study, we investigated change in mathematical discourse by analyzing 
observation data, which is a data source suitable for learning about discourse quality 
(Desimone, 2009). Given our question about what happens in classrooms of teachers 
whose early observed discourse patterns are mostly unidirectional (i.e., correcting), we 
selected three of the 15 participants represented in Figure 1 for further investigation. 
These teachers’ early discourse levels were the least rich (below eliciting) among the 
15 teachers. Based on the pre-PD knowledge and practice measures, case 1 and 2 
teachers scored low on the LMT, whereas case 3 teacher scored high on this measure. 
All three participants scored high on their self-assessments of their practice.  
Data and Analysis 
Twelve instructional lessons (four for each of the three teachers) were observed using 
a classroom observation protocol, resulting in a written description of the discourse 
that occurred during each lesson. The protocol specified that observers include 
examples and verbatim quotes from the lesson whenever feasible, which resulted in 
about eight-page long protocols for each timepoint. 
Coding the classroom observation protocols was guided by the Mathematics Discourse 
Matrix (Sztajn et al., 2013). A pair of two consecutive lessons for a given teacher from 
the Fall or Spring time points was analyzed as one unit. For each pair of consecutive 
lessons, two authors determined the discourse type within each of three of the Matrix 
dimensions—questioning (teacher and students), explaining (teacher and students), 
and communication patterns (a component of the modes of communication dimension). 
Limitations imposed by reliance solely on field notes inhibited coding for discourse 
types on the listening dimension and the remaining elements of the modes of 
communication dimension. The two authors achieved more than 80% interrater 
reliability on the dimension coding. The two coders were not part of the project at the 
time of these lesson observations, hence they were not involved in the delivery of the 
PD or in the observation process. 
FINDINGS 
As illustrated in figure 1, while the overall discourse observed in two of the selected 
classrooms (cases 1 and 2) did not grow beyond eliciting, overall discourse in the 
classroom of the third teacher (case 3) improved beyond probing. 
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Case 1 
There was no evidence of students asking questions of each other or of the teacher in 
either early or late observations of case 1 (Figure 2). Students’ explanations declined 
in the level of discourse (from around eliciting to around correcting) from Fall to 
Spring. During the early observation, students’ explanations consisted of providing 
their answers and how they found them in response to teacher’s questions. For 
example, students shared their answers to a subtraction problem and explained how 
they solved the problem using methods such as base-ten blocks. During the late 
observation, students only provided short answers when asked questions by the teacher. 
For example, the teacher asked a question about representing a fraction, and the 
students answered with only yes and no. Changes in teacher questioning and teacher 
explanation are somewhat parallel. Specifically, the teacher’s questions were below the 
eliciting level at both timepoints—they were mostly closed-ended questions that 
required short answers. The teacher’s explanations also were below eliciting at both 
timepoints—she frequently explained step-by-step procedures. 

 

Figure 2: Change in discourse dimensions in classroom of case 1 
Case 2 
For case 2 (Figure 3), in both the Fall and Spring, teachers’ questions of the students 
were mostly about how they found their answers (eliciting). The teachers’ explanation 
increased some, but stayed within correcting. On the other hand, students’ questioning 
and explaining were both above eliciting in the Spring. The higher level of increase for 
case 2 was on students’ questioning. In the Fall, for example, students were given a 
stack of questions to ask their small-group members, but they were not observed asking 
questions on their own. In the Spring, some students asked discourse-rich questions of 
each other. For example, during a whole-class discussion, a student asked another 
student, I still have a question about why you didn’t cross out all of the tens? 
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Figure 3: Change in discourse dimensions in classroom of case 2 
Case 3 
Finally, for case 3 (Figure 4), the discourse levels increased by at least one level on all 
of the five dimensions, with the greatest increase observed in student questioning, 
which was even the greatest increase in dimensions across all three cases. In the Fall, 
the only observed question that a student asked was posed to the teacher and sought to 
clarify a portion of the task—whether the portion of the problem that talked about 
getting 30 cents change was cents or money. In the Spring, students came up with their 
own questions to ask other students to compare between data sets that were collected 
by students. 

Figure 4: Change in discourse dimensions in classroom of case 3 
Among all three cases, all the dimensions of discourse that were coded (teacher 
questioning, student questioning, teacher explaining, student explaining, 
communication patterns) increased or remained the same, except for students’ 
explanations in the classroom of case 1. Change in discourse level for the 
communication-patterns dimension was comparable across the three teachers; and 
grew by one level. In the Spring, discourse levels for case 1 on the teacher components 
and communication patterns are those that are bringing the overall level up whereas 
the students’ components are bringing the overall level down. On the other hand, for 
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cases 2 and 3, the students’ components of discourse in Spring are bringing the overall 
levels up. 
DISCUSSION 
Change in discourse quality in mathematics classrooms requires change in both teacher 
and students' components. A teacher might be asking great questions, but if the teacher 
does not release some of the discourse authority to students, involving them in asking 
questions and explaining mathematical ideas, then the discourse will remain low. 
Discourse is not about just teachers’ contribution to the discussion, rather, it is about 
what the teacher and the students contribute to classroom communications. 
When taking into consideration teachers’ pre-PD knowledge and practice levels, 
classrooms of the two teachers with lower knowledge (cases 1 and 2) did not grow 
beyond the starting level—although their self-reported data indicate higher pre-PD 
perceived practice levels. On the other hand, discourse in the classroom of case 3 (with 
higher knowledge score) grew beyond probing. Among these specific cases, we 
conjecture that teacher knowledge might have mattered to the observed changes in 
classroom discourse. This result is in line with prior findings indicating that teachers 
with more developed MKT find opportunities to engage in PD conversations in more 
meaningful ways (Wilson, Sztajn, Edgington, & Confrey, 2014). Future large-scale 
investigation is needed to examine change in discourse of teachers whose initial 
discourse levels are comparable to learn if, for those teachers, initial MKT matters for 
change in classroom discourse. 
A note of caution is that the observations analysed here are not pre and post 
implementation of the PD; rather, the Fall observations were conducted relatively early 
in the school-year implementation stage of the PD and the Spring observations were 
conducted towards the end of the PD implementation. Participants had already 
completed the Summer PD institute when the early (Fall) observations were conducted. 
These results therefore need to be interpreted with caution.  
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TEACHERS' KNOWLEDGE DEVELOPMENT AFTER 
PARTICIPATION IN A COMMUNITY OF INQUIRY 

PROFESSIONAL DEVELOPMENT PROGRAM  
Anabousy Ahlam, Tabach Michal 

Tel-Aviv University 
 

The current study aimed to assess whether teachers’ pedagogical technological 
knowledge (PTK) differed significantly after they participated in a professional 
development (PD) program based on Community of Inquiry (CoI) practices. It further 
sought to examine the effect of teachers' personal characteristics on the development 
of their PTK components. Forty-two middle school mathematics teachers participated 
in the study. Data collected using Thomas and Palmer's PTK questionnaire underwent 
statistical analysis. The results indicate that teachers’ PTK components differed 
significantly after they participated in a CoI PD program, with the exception of the 
content knowledge component. Background variables had an impact on the 
development of some PTK components among the participants in the CoI PD program.  
LITERATURE REVIEW  
The Community of Inquiry (CoI) framework has been proposed for designing a PD 
program aiming at promoting mathematics teachers' knowledge related to technology 
integration (Thomas & Palmer, 2014). The present study seeks to examine teachers' 
PTK development in the context of such a PD program by means of two core themes: 
(1) teachers' knowledge and (2) PD program design. In the next section we examine 
the literature discussing these two themes in light of technology integration.   
Mathematics teachers' knowledge 
Shulman (1987) proposed a professional knowledge framework that incorporates seven 
domains of teaching knowledge. The category within this framework that 
revolutionized researchers' thinking was the pedagogical content knowledge (PCK) 
category, which links the knowledge bases of content and pedagogy. In particular, 
Shulman's PCK domain influenced teachers' knowledge frameworks for mathematics 
education. For example, Ball et al. (2008) proposed a model classified into six 
categories focusing on Mathematics Knowledge for Teaching (MKT): common 
content knowledge, specialized content knowledge, knowledge of content and 
students, knowledge of content and teaching, knowledge of the mathematical horizon, 
and knowledge of curriculum. 
Shulman's PCK also influenced proposed theoretical frameworks for teachers' 
knowledge with respect to integrating technology into classroom practice. One of the 
most important of these theoretical frameworks is the technological-pedagogical 
content knowledge framework (TPACK), defined as the comprehensive body of 
knowledge and skills required for integrating technology in teaching (Koehler et al., 
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2007), though it is not specific to mathematics education. The TPACK model describes 
the interactions between the three main domains of teachers’ knowledge: content, 
pedagogy, and technology. These interactions result in new types of teachers' 
knowledge, namely PCK: technological content knowledge (TCK), technological 
pedagogical knowledge (TPK), and especially TPACK.  
Thomas and Palmer (2014) proposed a theoretical framework in parallel to TPACK to 
describe teachers' knowledge with respect to integrating technology into mathematics 
classrooms—the pedagogical technology 
knowledge (PTK) framework. According 
to these researchers, several factors 
combine to produce PTK (Figure 1): 
MKT, which relates to pedagogical and 
mathematical content knowledge; 
technology instrumental genesis; and 
personal orientations. The present study 
utilizes this framework to measure PTK 
level and to examine whether this level 
differs significantly after participation in a 
PD program based on CoI design. In line 
with Thomas and Palmer (2014), personal 
orientation includes confidence and value 
of the use of technology.   
Professional development program designs  
In the absence of a "big" theory for teacher PD (Jaworski, 2006), researchers have 
attempted to identify frameworks for the professional development of mathematics 
teachers as well as types of PD programs. They identified two kinds of PD programs 
that influence learning and development among practising teachers: those that focus on 
content and process, and those that are strictly process-based (e.g., Simon, 2008). 
Programs that focus on content and process aim to promote mathematical and 
pedagogical knowledge, skills, and dispositions (ibid.). Process-only programs include, 
for example, the lesson study (LS) method developed in Japan. The LS method enables 
and encourages collaborative professional learning and sharing between teachers and 
their educators. Jaworski (2008) proposed a PD design based on inquiry that is parallel 
to the LS method and specifically geared for mathematics education. The inquiry takes 
place in an inquiry cycle (IC) of planning, acting and observing, reflection and analysis, 
and feedback. 
Referring to PD programs aiming to promote mathematics teachers' integration of 
technology, Thomas and Palmer (2014) contended that a PD practice is best 
constructed around a supportive CoI that gives teachers the opportunity to observe, 
practice, and reflect on the use of digital technology in the classroom. They suggested 
organizing small heterogeneous groups of teachers in which each teacher, in turn, 
presents a prepared lesson incorporating technology. The lesson becomes the centre of 

Figure 1: A model of the PTK framework 
(Thomas & Palmer, 2014) 
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community discussion and reflection. In this way, the community takes advantage of 
those teachers who have a high level of PTK. The present study adopts this suggestion 
and implements the entire IC: plan, act and observe, reflect and analyse, feedback. 
Several studies have investigated the PD of mathematics teachers within a CoI. For 
example, Jaworski (2008) describes the inquiry component in a development project 
in Norway titled Learning Communities in Mathematics (LCM): “inquiry was evident 
in the planning process, in ways in which teachers took workshop ideas back to schools 
and tried out ideas in classrooms and in the developing relationships between the 
participants as activity progressed” (p. 318). She also described the central role of this 
inquiry in sharing knowledge and expertise.  
The current study continues the line of investigation from these previous studies while 
considering teachers' practice in the context of technology integration. The study 
adopts the suggestion of Thomas and Palmer (2014) and uses the IC to develop the 
PTK of mathematics teachers who work within a CoI.  
Research questions 

1. Do teachers' PTK scores differ significantly after they participate in a PD 
program based on a CoI framework? 

2. Do background variables (seniority, previous technology integration level and 
employment status) affect changes in the PTK components from pre- to post-
measurements among participants in the CoI PD program? 

METHOD 
The research was conducted during the academic year 2017-2018. The participants 
included 42 mathematics middle school teachers from several schools in average 
socioeconomic areas in Israel. Twenty-three of the participants were enrolled in a 
course titled Technology in Mathematics Education as part of their M.A degree in 
teaching mathematics. The rest were enrolled in a PD program aimed at increasing the 
level of technology integration in their classroom practices. The participants differed 
in their seniority. Twenty-one had been teaching for 0-10 years, while the other 21 had 
more than ten years of teaching experience. Moreover, the participants differed in their 
previous level of technology integration. Eight reported a low level of technology 
integration, 17 a medium level, and 17 a high level. Moreover, nine of the participants 
were ICT coordinators. 
We used a PTK questionnaire as the data collection instrument. The questionnaire had 
two parts. The first part collected personal information, including seniority, 
employment status, and previous technology-integration level. The second part was 
composed of four scales: 1) personal orientation measuring two constructs—teacher’s 
beliefs about the value of technology (26 items) and teacher’s confidence in using 
technology to teach mathematics (7 items); 2) pedagogical knowledge (10 items); 
3) technology instrumental genesis (5 items); and 4) content knowledge (6 items). 
Some of the scales (personal orientations, pedagogical knowledge, and technology 
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instrumental genesis) were borrowed from Thomas and Palmer (2014), while the 
content knowledge scale was developed by Hill, Schilling, and Ball (2004). Note that 
the scales by Thomas and Palmer were originally intended to examine teachers’ 
confidence in using graphing calculators. In the present study, the word “technology” 
replaced “graphing calculators”. Participants indicated their responses on a 5-point 
Likert scale, ranging from 1 (strongly disagree) to 5 (strongly agree). Because the 
scales had been translated, they underwent face validity testing. In addition, the 
reliability of each scale was analysed by computing its Cronbach’s alpha based on the 
teachers’ scores on the PTK questionnaire. These computations yielded Cronbach 
alphas ranging between .71 and .82, which are considered acceptable reliability scores.   
In line with Thomas and Palmer (2014), the PTK levels for each teacher before and 
after the PD program were computed as the average of the following components: 
content knowledge, pedagogical knowledge, beliefs about the value of technology, 
confidence, and technology instrumental genesis. The first research question was 
analysed using paired-samples t-test. The second research question was analysed by  
two-way repeated measures ANOVA tests. To this end, two-way repeated measures 
ANOVAs were run with each of the background variables (seniority, previous 
technology-integration level, employment status) as a between-subjects factor and the 
PD program intervention as a within-subjects factor. The PD program intervention was 
represented in SPSS by a within-subject factor (time) of the two values: 1 for pre-
intervention measurements and 2 for post-intervention measurements. Next, for the 
interaction analysis we ran post-hoc tests in SPSS with Bonferroni corrections, using 
the code 'EMMEANS=TABLES(A*B) compare(A) ADJ (Bonferroni)'. For example, 
in examining the interaction between PD program intervention and seniority we used 
the code: 'EMMEANS = TABLES (PD_time*seniority) compare (seniority) ADJ 
(Bonferroni)'.   
FINDINGS 
We first discuss the findings for the first research question and then those for the second 
question.  
The effect of teachers' participation in a PD program based on CoI on their 
PTK level 
To answer the first research question, we conducted a paired-samples t-test to compare 
the teachers’ PTK and its components before and after PD program participation. Table 
1 shows the means, standard deviations, and standard error means for the PTK 
components of the participating teachers before and after the PD program. The table 
indicates that the mean scores of the participating teachers after the PD program were 
higher than those before the PD program for all PTK components. To discover whether 
these differences are significant, we conducted a paired-samples t-test. Table 2 shows 
the results, indicating that the PD program yielded significantly higher means on all 
the components of the participating teachers’ PTK, except for the content knowledge 
score.  
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Knowledge Component M SD Std. Error M 

Beliefs about the value of technology  
Before 3.58 .50 .08 
After 4.05 .51 .08 

Confidence 
Before 3.85 .60 .09 
After 4.33 .50 .08 

Pedagogical knowledge 
Before 3.68 .51 .08 
After 4.01 .46 .07 

Technology instrumental genesis 
Before 3.69 .64 .10 
After 4.07 .63 .10 

Content knowledge 
Before 4.00 .44 .07 
After 4.04 .42 .07 

PTK 
Before 3.76 .38 .08 
After 4.12 .37 .09 

Table 1: Means, standard deviations and standard error means for participating 
teachers’ knowledge components (N=42) 

 
Knowledge Component Mean 

difference 
SD Std. 

Error 
M 

95% Confidence 
Interval of the 
Difference 

t df 

Lower Upper 
Beliefs about the value of 
technology  

-.47 .45 .07 -.62 -.33 -6.75** 40 

Confidence -.49 .46 .07 -.63 -.34 -6.82** 40 
Pedagogical knowledge -.32 .38 .06 -.44 -.20 -5.41** 40 
Technology instrumental 
genesis 

-.38 .53 .08 -.55 -.21 -4.57** 40 

Content knowledge -.04 .16 .03 -.09 .01 -1.73 41 
PTK -.35 .25 .04 -.43 -.27 -9.17** 40 

       **p<.01 
Table 2: Paired-samples t-test between participants’ scores before and after PD 

program 
Effect of interaction between PD program and background variables on 
participating teachers' PTK components 
Each PTK component that exhibited different levels of the background variables 
(seniority, previous technology-integration level, employment status) was measured 
before and after the PD program. Two-way repeated measures ANOVAs were run with 
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each of the background variables as a between-subjects factor and the PD program 
intervention as a within-subjects factor. 
The interaction between PD program intervention and the 'employment status' 
background variable did not yield significant results for any of the different PTK 
component scores (confidence: F(1,39)=.86, p=.36; pedagogic knowledge: 
F(1,39)=.86, p=.36; technology instrumental genesis: F(1,39)=.77, p=.39, beliefs about 
the value of technology: F(1,39)=.84, p=.31). Significant interactions between the PD 
program intervention and the other background variables are reported below.  
Effect of interaction between PD program intervention and seniority on PTK 
components 
A two-way repeated measures ANOVA was run, with seniority as a between-subjects 
factor and PD program intervention as a within-subjects factor. The results revealed a 
statistically significant effect of seniority on teachers' confidence (F(1,39) = 10.11, p < 
.01). Before the PD program, the confidence of teachers with seniority of ten years or 
less was significantly higher than that of teachers with seniority of more than ten years 
(mean difference=.91, p<.001). This mean difference decreased significantly after the 
PD program (mean difference=.48, p<.001).  
In addition, the analysis revealed that the interaction between the PD program 
intervention and seniority had a significant effect on pedagogical knowledge (F(1,39) 
= 4.23, p < .05). Before the PD program, the pedagogical knowledge of teachers with 
more than ten years seniority was significantly higher than that of teachers with ten 
years or less seniority (mean difference=.33, p<.05). After the PD program, there were 
no significant differences between the participants’ pedagogical knowledge (mean 
difference=.11, p=.33). 
Moreover, the analysis revealed that the interaction between the PD program 
intervention and seniority had a significant effect on teachers' instrumental genesis 
(F(1,39) = 9.04, p < .01). Before the PD program, the instrumental genesis of teachers 
with ten years or less seniority was significantly higher than that of teachers with more 
than ten years seniority (mean difference=.80, p<.001). After the PD program, the 
mean difference still showed higher instrumental genesis among teachers with ten 
years or less seniority, but the difference had become lower and not significant (mean 
difference=.32, p=.09).  
Effect of interaction between PD program intervention and previous technology-
integration level 
A two-way repeated measures ANOVA was run, with 'previous technology-integration 
level' as a between-subjects factor and PD program intervention as a within-subjects 
factor. The analysis revealed that the interaction between the PD program and previous 
technology-integration level (F(2,38)=3.47, p<.05) had a significant effect on 
confidence. Before the PD program, the confidence of teachers with a high level of 
previous technology integration was significantly higher than among those with a low 
technology-integration level (mean difference= .91, p<.05), and also significantly 
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higher than among teachers whose previous use was at an intermediate level (mean 
difference=.63, p<.05). After the PD program, the confidence of teachers with a high 
technology-integration level and of those with a low technology-integration level did 
not differ significantly (mean difference=.42, p=.18). 
In addition, the analysis revealed that the interaction between previous technology-
integration level and the PD program intervention (F(2,38)=4.64, p<.05) had a 
significant impact on pedagogic knowledge. Before the PD program, teachers with a 
high level of technology integration exhibited significantly higher pedagogic 
knowledge than teachers with an intermediate level of previous technology integration 
(mean difference=.45, p<.05) as well as higher pedagogic knowledge than teachers 
with a low level of technology integration, though the difference was not significant 
(mean difference=.02, p=1.00). After the PD program, teachers with a high previous 
technology integration level still showed an advantage in pedagogic knowledge over 
those with a low level (mean difference=.04, p=1.00) and those with an intermediate 
level of technology-integration (mean difference=.08, p=1.0), but this difference 
became lower and not significant. 
DISCUSSION 
The first goal of the current study was to examine whether teachers’ PTK changed 
significantly after they participated in a CoI PD program. The statistical analysis 
showed significantly higher means for PTK and all of its components after participation 
in the PD program, except for the content knowledge component. These results support 
the suggestion of Thomas and Palmer (2014) to design a CoI PD program to develop 
teachers' PTK. The results seem to indicate that most PTK components can be 
influenced by experience related to technology integration, an interesting finding that 
needs verification through more extensive research.  
The second goal of the current study was to examine whether the development of PTK 
components among participants in a CoI PD program was affected by background 
variables. The results for seniority revealed that teachers with more than ten years of 
experience exhibited a more significant increase in their confidence and their 
technology instrumental genesis than teachers with seniority of ten years or less. On 
the other hand, teachers with ten years or less seniority demonstrated a more significant 
increase in their pedagogical knowledge than teachers with more than ten years 
seniority. This finding can be explained by the sharing of knowledge among the CoI 
members, in accordance with Jaworski (2008), who described inquiry as centrally 
important in sharing knowledge to build new knowledge within the community. 
Moreover, the teachers' confidence developed based on the support in technology 
integration that those with less seniority provided to their more experienced peers 
(Thomas & Hong, 2013). 
The results for the background variable of ‘previous technology-integration level’ 
indicated that teachers with a low level of previous technology-integration showed a 
significant increase in confidence as well as in their pedagogical knowledge regarding 
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technology integration. These results indicate that conforming to the IC can support 
teachers in their pedagogy, especially teachers with low PTK. This support is provided 
by sharing technological knowledge among the CoI members (Jaworski, 2008).  
Finally, the findings of this study seem to indicate that PTK development was achieved 
by taking advantage of high PTK among teachers whose participation is valuable to 
the group (Thomas & Palmer, 2014).  
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IMPLEMENTING INQUIRY-BASED LEARNING (IBL): 
OPPORTUNITIES AND CONSTRAINTS FOR BEGINNING 

SECONDARY MATHEMATICS TEACHERS 
Judy Anderson, Una Cha 
The University of Sydney 

 

The purpose of this study was to determine the factors impacting beginning secondary 
mathematics teachers’ implementation of IBL. A survey of 29 novices in their first three 
years of teaching revealed most had a positive view about the benefits of IBL for 
students’ learning yet struggled to implement IBL strategies effectively. While many 
respondents indicated they were supported in their schools and encouraged to try new 
strategies, they felt constrained by other factors including the lack of time and 
experience needed to prepare IBL lessons, and the crowded curriculum with mandated 
non-IBL assessment tasks. In-depth interviews with three teachers highlighted the 
impact of workload, particularly administrative tasks and extra-curricular activities, 
on beginning teachers’ efforts to design and use inquiry approaches.  
INTRODUCTION 
Given the evidence of benefits of inquiry-based learning (IBL) strategies for students 
(e.g., Bruder & Prescott, 2013), teacher education programs in science and 
mathematics have been promoting the implementation of IBL for some time but there 
is little evidence of widespread implementation (e.g., Sullivan, Clarke, & Clarke, 
2013). There is a rich history of research into IBL implementation, particularly for 
science teachers (e.g., Dorier & Garcıa, 2013) with findings suggesting the need for 
quality professional learning programs and ongoing mentoring for new teachers. In 
mathematics, rather than investigating IBL, research has focused more specifically on 
the implementation of problem solving and modelling perspectives (Maaß & Artigue, 
2013) with recommendations to address teachers’ beliefs as key to successful 
implementation (Anderson, 2014). While personal beliefs are an important 
consideration, context specific factors impact the development of each teacher’s 
professional identity, and their pedagogical practices (Peressini, Borko, Romagnano, 
Knuth, & Willis, 2004). In mathematics education, the challenges for teachers to 
change their practice is well documented but there is limited research into studies of 
beginning mathematics teachers’ use of IBL teaching approaches. 
Because of recent changes in the Australian context including a new national 
curriculum (Anderson, 2014) and the promotion of integrated STEM education using 
inquiry approaches (e.g., National Council, 2015), this study sought to investigate the 
opportunities and constraints of implementing IBL for beginning teachers. The target 
group of teachers had all attended the same university education program and were 
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taught by the first author of this paper. During their undergraduate program, the 
following definition was used to guide discussions and development of IBL tasks: 

The term ‘‘inquiry-based learning’’ generally refers to student-centered ways of teaching 
in which students raise questions, explore situations, and develop their own ways towards 
solutions (Maaß & Artigue, 2013, p. 780). 

In the Australian context, IBL as defined here is not typical in secondary mathematics 
classrooms and is not evident in the types of tasks recommended in commonly used 
mathematics textbooks (Vincent & Stacey, 2008). So, for those schools who rely on a 
textbook as their guide for teaching, it is unlikely the students will be provided with 
IBL opportunities (Maaß & Artigue, 2013). This is potentially one constraint to the 
implementation of IBL practices but are there others? As beginning teachers struggle 
to familiarise themselves with school expectations, programs and assessment practices, 
with a new school culture, with a full teaching load, with managing student behaviour, 
and with accreditation requirements for teacher registration, do they have the time and 
support to develop IBL practices? Given the right support and contexts, are there 
opportunities which encourage and enrich beginning teachers’ efforts to implement 
IBL in their classrooms? These questions form the basis of the research reported in this 
paper. 
LITERATURE REVIEW 
Constraints to changes in practice for experienced teachers are well researched. 
Teachers frequently teach the way they were taught; hence changing pedagogies 
requires changes to deeply held beliefs about mathematics teaching and learning 
(Anderson, White & Sullivan, 2005). Such changes take time and effort but teachers 
also identify other issues constraining their implementation of new approaches to 
teaching and learning mathematics – these include the crowded curriculum, insufficient 
time for planning, few professional development opportunities (Anderson, 2014), lack 
of resources (Sullivan et al., 2013), assessment practices which focus on lower order 
skills and procedures, and students’ reluctance to engage with challenging tasks 
(Sullivan et al., 2013). These issues are all important and can create barriers to change 
but this situation is heightened for beginning teachers as they adjust to new work 
environments (Feiman-Nemser, 2001; Hudson, 2012; Peressini et al., 2004). 
Beginning teachers fight to “sink or swim" (Feiman-Nemser, 2001, p. 1014) in their 
new profession and become tempted to use low maintenance practices that enable them 
to endure teaching rather than choose the more time-consuming IBL practices. As 
beginning teachers teach in potentially unfamiliar contexts, they are more likely to 
revert to the way they were taught with a focus on teaching facts and procedures 
through lower-order, repetitive tasks (Feiman-Nemser, 2001). In addition, beginning 
teachers are learning to manage behaviour in classrooms (Hudson, 2012), find useful 
resources (Sullivan et al., 2013), navigate an unfamiliar curriculum, and take on 
administrative work (O’Brien, Goddard, & Keeffe, 2008). O’Brien et al.’s longitudinal 
study into the issues of teacher retention and attrition identified beginning teachers’ 
additional workload from extracurricular and administrative duties such as marking 
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and writing reports as overwhelming. To counter these issues, support from mentors 
through school induction programs have been implemented but as Dorier and García 
(2013) suggest, beginning teachers may be exposed to observing traditional practices 
by mentor teachers, thus reinforcing the traditional methods they experienced in their 
own secondary mathematics education. 
If we adopt a situative perspective, learning to teach evolves by participating in the 
different contexts of university program, field experience, and early school placements 
(Peressini et al., 2004). In their study of the learning trajectories of secondary 
mathematics teachers from undergraduate program into the first two years of teaching, 
Peressini et al. (2004) developed a conceptual framework with two related assumptions 
– learning is situated and “teachers’ knowledge and beliefs interact with historical, 
social and political contexts to create situations in which learning to teach occurs” (p. 
68). They argue for a process of “recontextualising resources and discourses in new 
situations” (p. 70) as beginning teachers develop their practice, and that discourse in 
the inquiry mathematics tradition is very different to the school mathematics tradition. 
Their framework informs this study as we used the task descriptions and inquiry 
discourse practices identified in their paper to design data collection and to gain a 
snapshot of beginning teachers’ current IBL classroom practices. 
THE RESEARCH DESIGN 
To identify the factors which influenced beginning secondary mathematics teachers’ 
implementation of IBL, particularly those that either provided opportunities or 
constraints, data were collected using a questionnaire and interviews. The 
questionnaire sought background information about the participants’ workplace, their 
understanding and perceptions of IBL, their commonly used teaching practices, and 
the factors that have either supported or hindered the implementation of IBL in their 
current school contexts. Open-ended questions seeking information about influencing 
factors were coded and compared to responses from the interviews which had been 
transcribed verbatim. A convenience sampling strategy was used to recruit teachers at 
a secondary mathematics teachers’ conference in the first half of 2018 – all 29 
respondents were in their first three years of teaching and were alumni of the authors’ 
university. Three questionnaire respondents volunteered to be interviewed by the 
second author. As background information, during the teachers’ five–year double-
degree program, research about the benefits of IBL was discussed (e.g., Bruder & 
Prescott, 2013). They had opportunities to try sample IBL tasks, compare these to more 
traditional textbook examples, and discuss curriculum implications of using inquiry 
approaches. It was an expectation that they would develop and implement IBL tasks 
during their field experience placements in schools, and this was accompanied by 
opportunities for reflection on their experiences.  
RESULTS AND DISCUSSION 
All 29 novices who participated in the study were teaching in their first school 
placement since graduating from the university. The sample included representatives 
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from the three sectors of secondary education in Australia (Department of Education 
[DoE] or public schools, Independent schools, and Catholic schools). Seventeen 
participants were in their first year of teaching, seven in their second year, and five in 
their third year. Interviewees included a female in her first year of teaching at a DoE 
school (X), a female in her third year of teaching at an independent boys’ school (Y), 
and a mature-age male in his second year of teaching at a DoE school (Z). This section 
of the paper presents the results from both the questionnaire and interviews to connect 
key themes from both sources of data. 
From a list of commonly used teaching practices, respondents were required to 
nominate the five practices they use most often in secondary mathematics classrooms. 
From their responses, the most commonly nominated teaching strategies (with the 
number of teachers who listed the strategy in brackets) included demonstration of 
procedures (19), whole class discussion (16), practice from textbooks (16), practice 
from worksheets (16), and individual practice (12). This set of strategies are typical of 
teacher-centred practices, which focus on developing mathematical skills, indicative of 
more traditional teaching (Bruder & Prescott, 2013), or the school mathematics 
tradition (Peressini et al., 2004), rather than student-centred approaches. The least 
frequently nominated practices included group work (8), real-world problems (5), 
open-ended questions (4), unfamiliar problem solving (4), student developed questions 
(1) and investigations (0), more usually associated with the inquiry mathematics 
tradition (Peressini et al., 2004) or student-centred pedagogies. 
To obtain information about beginning teachers’ beliefs, and further information about 
their use of IBL, the questionnaire included an item with seven statements to elicit 
participants’ level of agreement using a four-point Likert scale, from ‘strongly 
disagree’ to ‘strongly agree’. Table 1 shows the seven items with level of disagreement 
(strongly disagree and disagree) and level of agreement (strongly agree and agree) 
combined.  

Statements about Inquiry based learning (IBL) SD & D A & 
SA 

IBL is effective in teaching students’ mathematics   5 24 
IBL is only effective with higher-achieving students 22 7 
IBL has potential to motivate students 2 27 
IBL only suits some students’ learning preferences 3 26 
I would like to implement more IBL practices in my classrooms 2 27 
I already use IBL in some of my mathematics lessons 15 14 
I need more support implementing IBL 2 27 

Table 1. Beginning teachers’ level of agreement with IBL statements 
The data from these statements indicate beginning teachers’ desire to implement more 
IBL practices in their classrooms (27). Most agreed IBL is an effective mathematics 
teaching method (24) and has the potential to motivate students (27). In terms of current 



Anderson & Cha 

PME 43 – 2019                                                                                                      2 -  29 

implementation of IBL, about half of the participants agreed they already use IBL in 
their lessons (14), but they would appreciate more support (27). 
Identifying Constraints to IBL 
From the questionnaire data, most teachers acknowledged the benefits of IBL but they 
wanted more support. so the first real constraint appears to be lack of support. However, 
during interviews, respondents indicated they felt supported if they wanted to use IBL 
but that having enough time was the real issue. Z said, “the school’s very for it… it's 
just that we don't have the time”. 
To further explore potential constraints, the questionnaire asked teachers to list the 
constraints to their implementation of IBL. The identified factors were: preparation 
time (26), a crowded curriculum (25), not enough experience with IBL (24), struggle 
to balance other school responsibilities (21), IBL not included in assessment tasks (15) 
and poor student behavior (14). Those constraints listed by fewer teachers included 
adjusting to a new school environment (9), colleagues not using IBL (11), IBL not 
included in the recommended textbook (11), and mathematics department reluctant to 
change practices (13). In this item on the questionnaire, only 8 listed lack of support so 
it is possible some participants viewed lack of support as not enough time, or not 
enough resources. The three most frequently identified constraints were further 
explored during the interviews. 
Lack of time - Since beginning teachers’ attention is divided between administrative 
work and lesson preparation (O’Brien, Goddard & Keeffe, 2007), lack of time is a 
significant factor in constraining IBL. Because the nature of IBL is more complex, 
creating tasks and lessons which also align with curriculum requirements takes longer. 
Y has been teaching for fewer than two years at an independent boys’ high school 
where she lives in the school’s boarding house during school term. Her role as a teacher 
extends beyond regular teaching hours with additional responsibilities associated with 
being a Boarding House Tutor – “It's just that we don't have the time… there is not 
much time I can spend preparing the resources and setting it up as well”. X detailed the 
multiple responsibilities she had as a teacher which hindered her from preparing 
enriching IBL lessons.  

So last term I helped organise props for the musical, and then end of last term, beginning 
of this term I’ve been co-coordinating our team for the Da Vinci Decathlon. And then 
there’s marking exams/writing exams/writing reports… Not to mention (sigh) I haven’t 
even started doing anything for my [teacher] accreditation yet. There are days where I 
literally just prep 10 minutes before class because I don’t have the time  

X raised the issue of the increased expectations required through the mandatory 
accreditation process. This additional requirement places an extra burden on new 
teachers. Data from both the questionnaire and interviews, highlighted the workload 
and stress placed on new teachers as they begin their profession with an expectation 
that they will ‘hit the ground running’ from the first day at school. 
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Crowded curriculum - It was apparent in the interviews that beginning teachers 
struggled to incorporate IBL in their lessons since their priority was to complete the 
required curriculum outcomes. Y stated: 

There's so much content to go through. If I were to use IBL in my classroom for one lesson, 
they will be a whole chapter behind, because I still need to do questions from the textbook 
to show that they have satisfied the requirements 

Being concerned about curriculum coverage was noted in the Dorier and García (2013) 
study, where teachers who were focused on teaching for assessments and fulfilling 
curriculum requirements were not implementing problem-based tasks. If students are 
also focused on examination preparation and believe IBL is not as important as learning 
for the tests, this adds more pressure on teachers (Dorier & García, 2013). In one of the 
interviews Y commented “[the students] will care if it counts to their mark…”. The 
influence of what is assessed is well documented (e.g., Sullivan et al., 2013), and this 
certainly appeared to be a factor for about half of the respondents in the questionnaire. 
Having the experience to manage a crowded curriculum and understanding how IBL 
can help students learn more than one concept at a time is an important skill for 
beginning teachers and one they feel ill-equipped to handle. 
Lack of experience - The noisy classroom, typical of IBL environments, can be 
unsettling with new teachers feeling out of control. Allowing students the freedom to 
investigate their own problems and their own solution methods leads to discomfort 
(Anderson, 2014). It is challenging to provide the experience pre-service teachers need 
to establish appropriate strategies for managing inquiry discourse (Peressini et al., 
2004) as well as access to suitable tasks. X noted: 

I think the main problem is having to find these activities. Like, if there was an online 
database which had an inquiry-based learning activity next to each syllabus dot point, ready 
with worksheets which you could just adapt for your own classroom then I think a lot more 
teachers would be implementing it in their classrooms. I personally think that the main 
problem is spending the time to find these activities, and good ones I mean, is just way too 
time consuming and we don’t have the time.  

During professional experience placements, university programs rely on experienced 
teachers and mentors to offer that support and allow the preservice teachers to 
‘experiment’ with new pedagogies. This does not always occur and so for some, they 
enter the teaching profession without any real experience.  
Identifying Opportunities for IBL 
From participants’ responses to the short answer question about opportunities which 
would allow them to implement IBL practices more effectively, two new themes 
emerged - school cultures and authentic practice. For a small number of participants, 
they were encouraged to use IBL practices by more experienced colleagues – for them 
the outcomes were rewarding and they could see the possibilities. Most of these 
teachers were in their third year of teaching which suggests they had settled into their 
school context and felt more confident to try new practices. While Y felt supported and 
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was encouraged to “give it a go”, she was overloaded with administration and other 
co-curricular tasks and responsibilities. Some respondents acknowledged they were 
keen to try IBL practices but were worried about wasting valuable time – they wanted 
the opportunity to practice the skills needed to manage inquiry discourse without fear 
of judgement. Still others recognized that they were able to use IBL in some classrooms 
and not others because of the experience and readiness of the students to engage in 
inquiry by asking questions, exploring situations, and developing their own ways of 
solving problems. These comments provide evidence of Peressini et al.’s (2004) 
framework on a situative perspective to teacher learning but they raise further questions 
about the support and development required to prepare new secondary mathematics 
teachers for IBL practices. 
CONCLUSION 
The purpose of this study was to determine the factors which influence beginning 
mathematics teachers’ implementation of IBL. Overall, most of the beginning 
mathematics teachers in this study had a positive view about IBL strategies and 
understood the benefits for students’ learning yet struggled to implement these 
effectively. While many respondents indicated they were supported in their schools 
and encouraged to try new strategies, they felt constrained by other factors including 
the lack of time needed to prepare IBL lessons, the perception of a crowded curriculum, 
and lack of experience in creating and using IBL. Considering this, there were useful 
recommendations provided by study participants that require new approaches to 
teacher education and new approaches to managing beginning teachers’ time and 
responsibilities in busy, demanding schools.  
Suggested recommendations to increase the implementation of IBL strategies for 
beginning teachers included reducing administrative and extracurricular 
responsibilities for beginning teachers, collating IBL resources, tasks and lessons 
which are easily accessible and clearly connect to the content areas in the curriculum 
documents; identifying good examples of IBL projects which connect more than one 
concept or topic from the curriculum; considering new ways for pre-service 
mathematics teachers to gain experience of teaching using IBL practices before they 
enter the profession. 
While this study involved a small number of participants from one university, the data 
provide useful information for revising program approaches, re-examining 
requirements during field experience, and supporting new teachers as they enter their 
first appointment in schools. Beginning teachers should not be overburdened with new 
roles and responsibilities and mentors of beginning teachers need to be able to model 
the types of IBL practices we believe better support student learning. 
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EXPERIMENT IN COOPERATIVE GAME THEORY 
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This paper is drawn from a teaching experiment in the field of cooperative game theory 
where different approaches are possible and a criterion for the validity of a solution 
has to be formulated and justified in classroom. In particular, I propose an analysis of 
the dynamic of different points of view and of argumentation produced by the students 
in exploring and discussing a game theory problem. The analysis reveals that the task 
and the social negotiation under the guide of the teacher promote a rich and intriguing 
environment to develop a productive dialectic between different perspectives and 
different argumentation. 
INTRODUCTION 
Since the great seminal book of von Neumann and Morgenstern (1944), game theory 
has reached a wide dissemination and it has now relevant applications in many 
branches of social sciences, economics, biology, and other disciplines. Game theory is 
a field of mathematics dedicated to the study of mathematical models of interaction 
between rational decision-makers (called players) that has provided mathematical 
techniques for analyzing situations in which two or more decision-makers make 
decisions that influence the outcomes. The players can either form binding 
commitments or not. In the first case, the game is called cooperative; in the latter, it is 
called non-cooperative (see, for example, Osborne & Rubinstein, 1994). 
There is a large consensus that games can play a relevant role in learning mathematics 
and many articles in mathematics education concerned games (Mousoulides & 
Sriraman, 2014) as an environment to promote genuine problem-solving activities 
(Martignone, 2007; Martignone and Sabena, 2014), activities of conjecturing (Soldano 
et al., 2019) and modelling (Steiner, 1988; Scholz, 2007).  
The assumption of game theory in studying interactions and decision-making is that 
players make rational choices. However, some studies show that our mind and the 
complexity of situations do not assure that human beings behave according to the 
strategies developed in game theory (Simon, 1955, Camerer, 2003). From an 
educational point of view, I think that this gap between the mathematical models set 
up in game theory and the behaviors of human beings makes it interesting to investigate 
processes involved in exploring a game and in managing the different perspectives of 
the players.  
In this paper, I propose an analysis of the dynamic of different perspectives emerging 
when students explore a cooperative game, with focus on the different argumentation 
and on the shift between various perspectives in an Italian classroom. The hypothesis 
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is that cooperative game activity can promote a rich and intriguing environment to 
promote argumentation and to develop a dialectic between different perspectives.  
THEORETICAL FRAMEWORK 
The Italian National Curriculum Indications states that a middle school student should 
be able to construct reasoning “formulating hypotheses, supporting his/her ideas and 
sharing each other’s point of view”. (MIUR, 2012, p. 61, personal translation). The 
importance of the sharing of points of view and of argumentation is underlined from 
the first lines of these Indications: “the mathematics contributes to develop the ability 
to communicate and discuss, to argue in a correct way, to understand each other’s 
point of view and argumentation” (MIUR, 2012, p. 60, personal translation).  
These excerpts underline a link between argumentative competencies and the sharing 
of different points of view, and therefore, the social dimension of argumentation. 
Mathematics educators share that argumentative competencies should be promoted 
through mathematical activity in classroom including practice of production of 
conjectures and meta-mathematical knowledge about the acceptability and the 
rejection of claims (Yackel, 2001; Mariotti, 2006; Boero, 2011; Stylianides et al., 
2016). The social dimension has a crucial role in negotiating criterion of validity of 
mathematical statements, solution of problems and, in general, mathematical 
knowledge: 

At school, the social dimension related to the community of mathematicians must be 
coordinated with the social dimension related to the classroom community. The crucial 
role of the teacher comes to the forefront, representing contemporaneously the guarantor 
of the mathematics community and the guarantor of the classroom community. (Mariotti, 
2006, p. 188). 

The social dimension in the development of argumentative competencies and the focus 
on the sharing of different points of view make crucial the role of the teacher both as 
cultural mediator (between the classroom and the mathematical community) and for 
managing the different perspectives of students within the classroom. The theoretical 
notion of Mathematical Discussion (Bartolini Bussi, 1996) is a suitable tool to design 
and to analyze teaching activities taking into account both these aspects:  

Mathematical Discussion is a polyphony of articulated voices on a mathematical object 
(e.g. a concept, a problem, a procedure, a structure, an idea or a belief about mathematics), 
that is one of the motives of the teaching-learning activity. The term voice is used after 
Wertsch (1991), following Bakhtin, to mean a form of speaking and thinking, which 
represents the perspective of an individual, i.e. his/her conceptual horizon, his/her intention 
and his/her view of the world. […] A form of mathematical discussion is the scientific 
debate that is introduced and orchestrated by the teacher on a common mathematical object 
in order to achieve a shared conclusion about the object that is debated upon (e.g. a solution 
of a problem). In this case the teacher utters a voice that represents the mathematical culture 
[...] (Bartolini Bussi, 1996, pp. 16-17) 

In this paper, I present a teaching experiment in cooperative game theory, designed in 
a framework of mathematical discussion, with the goal to analyze the emerging and the 
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transition between different points of view and argumentation. In the following pages, 
I use the terms “perspective” (“perspective of an individual” in the quotation by 
Bartolini Bussi) and “points of view” (as in the National Indications) as synonymous.  
METHODOLOGY 
The teaching experiment involved four lessons of two hours in two classrooms, each 
with about 20 students, of a middle school (respectively grade 7th and 8th) of Northern 
Italy and consists in exploring problems of cooperative game theory. Nobody of the 
students have had some previous experience with game theory. Every problem was 
explored in small groups of 4 or 5 students and in a whole-class discussion. The data 
consists in video-recordings of the group activities and of the discussions. In this 
article, I analyze the whole-class discussion in one classroom (grade 7th) about the first 
task (for a mathematical analysis of this problem, see Patrone, 2006, p. 187):  

Ada, Bea and Ciro are three musicians that have to play in an event. They can play alone, 
in duet or in trio. Their profits are the following: 100 euros for Ada if she plays alone, 
150 euros for Bea if she plays alone, 180 euros to Ciro if he plays alone, 600 euros for 
all of them if they chose to play together. If they play in duet, the profits are the following: 
400 euros for the couple Ada and Bea, 300 euros for Ada and Ciro, 420 euros for Bea 
and Ciro. Putting yourself in the shoes of the musicians, try to discuss and explain how 
Ada, Bea and Ciro could find an agreement. Justify your assertion! 

For example, if the three musicians agree to play together, they earn 600 euros that 
they have to share in some way. If Ada and Bea decide to play in duet, then Ciro can 
only play alone: Ada and Bea have to share 300 euros how they want and Ciro earns 
180. 
The problem has been chosen because, as in other problems from cooperative game 
theory, there is not, a priori, one procedure to determinate a solution and rather the 
notion itself of “solution” has to be constructed; in other words, it is necessary to 
understand that a criterion is needed to validate a proposal of division of the profit and 
then a criterion, among many possibilities, has to be identified and justified.  
ANALYSIS OF THE DISCUSSION 
After the small group work, the students present their proposals to the class. It is 
possible to identify three phases of the discussion of the whole class: discussion of the 
proposals of the small groups, game of points of view and construction of a model. 
Phase 1: Discussion of the proposals of the small groups 
Initially, all the groups propose a simple solution. For example, Roberto says: 

Roberto:  if [the musicians] are friend, they share the profit in equal parts […] [They 
play together] because 600:3=200 euros that is greater than the profit they 
would have playing alone. 

Roberto proposes that musicians, if they are friends, share the profit in equal parts but 
he also justifies the musicians’ decision to play together through an argumentation 
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about the greater profit (I refer to argumentation like this with the label ‘greater profit’). 
In considering the possibility that musicians are not friends, students propose other 
arguments: 

Flavio:  Ciro earns more [than the others when he plays alone] […] 
Roberto:  … then he could say ‘why do we have to divide into three equal parts, if I 

am worth more, I want more’ […] 
Flavio:  But even dividing into equal parts he earns more than playing alone 
Teacher:  Yes, sure…this is an observation, but he could say ‘if I am worth more, I 

want more’…  

The argumentation formulated together by Flavio and Roberto is based on the 
preserving of the order of the profit the musicians earn playing alone. I refer to this 
argumentation with the label ‘monotonicity’: if X earns more than Y when they play 
alone, then X has to earn more than Y when they play together and they share a 
common profit. When Flavio comes back to the greater profit as a criterion to accept a 
proposal, the teacher moves the focus on monotonicity to stimulate the students to take 
into consideration different points of view and argumentation. Roberto, as other 
students, on the base of monotonicity, proposes that the musicians play in trio and share 
the profit according the proportion of the profit they would earn playing alone (that are 
100, 150 and 180 respectively for Ada, Bea and Ciro). Considering that 
100+150+180=430, Ada earns 100/430∙600≃139.53, Bea earns 150/430∙600≃209.3 
and Ciro earns 180/430∙600≃251.17. This proposal satisfies both the criterion of 
greater profit and the criterion of monotonicity. Now, the teacher focuses on the 
perspective of Ciro and then of all musicians: 

Teacher:  Is now Ciro happier? […] are all happier? 

The students think the musicians are now happier if they are not friends. So the teacher 
asks a comparison between the two proposals (equal profit and proportional division): 

Teacher:  So we have two proposals… is there one better than the other? 
Flavio:  It depends on which way you look at it. 

With the last two interventions, the teacher focuses on different perspectives in 
different levels: the three perspectives of the musicians and the perspective of the 
students about the proposals. Flavio answers that different perspectives are possible. 
Unfortunately, the teacher does not ask Flavio to explain his thinking in details. 
Phase 2: Game of points of view 
I cannot present here all the solutions emerged in classroom and I just report that the 
students proposed other ways to divide the profit, justified through the greater profit or 
the monotonicity criterion. During the discussion, when a student proposed that Ada 
and Bea play together, the teacher launches the game of standing in the shoes of the 
musicians in order to force the students to look at the situation from different 
perspectives and to promote the emerging of new argumentation and criteria:  
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Teacher:  Ada and Bea are forming an agreement...[..]…is there anyone of you that 
want to do Ciro? [..] Vincenzo, you are Ciro, what do you do?  

Vincenzo:  Because I would earn more […] I propose Bea to come with me so that she 
earns more […] 

The change of perspective regards not only to consider directly the points of view of 
the musicians, but also to move from accepting or not a proposal to consider the 
possibility of proposing a new agreement acceptable from someone because more 
convenient. For example, if Ada and Bea agree to play in duet and to share 400 euros 
in two equal parts, Ciro can propose Bea to play with him, offering 225 euros to Bea 
and 195 euros for him (the couple Ciro-Bea earn 420 euros and 420=225+195). This 
proposal is more convenient for both Ciro and Bea. Now, Ada can propose a new 
agreement with Bea, and so on. 
The teacher’s intervention in the discussion are like the following: “okay […] and now 
I do Ciro”; “so let’s try to do other proposals… [to a student], do another proposal to 
convince the two of them to play with you”; “and then, what do you [to a student] do?”; 
“you [to a student] and Ada would earn…” 
The students act the part of the different musicians, as we can see from the language 
they use during the discussion: “they [Ada and Bea] say no, we are not interested”; 
“so, I am Ciro and say…”; “to me [she is acting the part of Bea] is convenient…”; “I 
[she acts as Ada] propose her to play with me”; “to me [she acts as Bea] it is convenient 
to propose to play together because it is convenient for both”, and so on. 
The focus on the musicians’ perspectives, evident in the students’ expressions (“I”, 
“me”, “you”, etc. instead of “Ada”, “Bea” and “Ciro”), moves the attention on what 
every musician thinks and, in particular, can do. Like in board games, every musician 
can make a move, that, in this case, is a proposal of an agreement more convenient for 
himself/herself and at least for another musician. The argumentations are now more 
refined than argumentation of greater profit, when the better profit was related only to 
the profit the musicians earn playing alone. During the discussion, the students play a 
show in which they put on the shoes of the musicians, negotiating an agreement and 
realizing that if a proposal is not accepted – then the negotiation is not stable - if one 
musician can propose a new agreement more convenient for himself/herself and for 
another musician. I call this criterion the ‘stability of negotiation’. 
Phase 3: construction of a model 
The teacher shifts the attention to the identification of a criterion to validate the 
proposals. She is, now, the “voice” of mathematics, in particular of game theory, and 
she requires identification of mathematical relations to set up a model. 

Teacher: Now listen to me… my question is… are there any reasonable conditions 
for which these proposals can be accepted?  

After a discussion, in which a great tension between the criteria (greater profit, 
monotonicity, stability) appeared, the students selected the stability of negotiation as 
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their criterion of validity, with the awareness that other choices are possible. This leads 
to the construction of the model that I shortly summarize: Ada, Bea and Ciro can decide 
to play in trio if x(A), x(B), x(C) are respectively their final profits and: 

1) x(A) ≥ 100; x(B) ≥ 150; x(C) ≥ 180 
2) x(A)+x(B) ≥ 400; x(A)+x(C) ≥ 300; x(B)+x(C) ≥ 420 
3) x(A)+x(B)+x(C)=600 

When these relations are satisfied, every musician neither has a greater profit playing 
alone (because of the relations in 1) nor can make a proposal to play in duet with 
another one that is convenient for both (because the relations in 2). Therefore, the 
negotiation is ‘stable’. Of course, different solutions are possible. For example, 
x(A)=170, x(B)=240, x(C)=190 or x(A)=120, x(B)=290, x(C)=190. The students 
realize that the previous proposals do not satisfy this criterion. For example, in the 
proportional division of the profit (139.53 to Ada, 209.3 to Bea and 251.17 to Ciro), 
x(A)+x(B) =348.83< 400, then for Ada and Bea is more convenient to play in duet. In 
fact, they would earn 400 euros and if they divide, for example, in 170 for Ada and 230 
for Bea, both of them would earn more than what they get from proportional division.  
DISCUSSION AND CONCLUSIONS 
The cooperative game theory problems, as the game of the musicians, require the 
managing of the different points of view of the players. The problem has not one 
solution, rather the meaning itself of “a solution” has to be explored: then the task also 
requires to manage different points of view of the solvers. This has forced the students 
to suggest many possibilities supported with different argumentations. 
The social interaction of students, orchestrated by the teacher, has been fundamental 
for the emerging of the different voices and solutions, to promote the construction of 
argumentation, and the listening and the comprehension of others argumentation and 
perspectives. During the discussion, the argumentations become criteria for accepting 
the proposals and the meaning of “a solution” is negotiated in the classroom. The 
students have negotiated different points of view on two levels: they have to negotiate 
a solution to a problem posed by the teacher about a negotiation of three characters (the 
three musicians). In other words, the discussion in classroom, with voices of the 
students and of the teacher, has as object the reflection about a game involving the 
voices of the players (the musicians).  
The role of the teacher has been to orchestrate the different perspectives: 

- stimulating the students to express, to explain and to argue their own point of 
view; to stand in the musicians’ shoes; to listen, to take into consideration and 
to assume other’s point of view; to shift from one to another perspective; 

- promoting awareness of how the different proposals are justified on the base of 
different argumentation and criteria; 
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- uttering a voice that represents the mathematical culture, in particular regarding 
the knowledge of game theory, the logical aspects of argumentation and the 
epistemological aspects related to modelling (identification of criteria and 
translation in mathematical relations).   

The results of this study are coherent with the entry “Mathematical Games in Learning 
and Teaching” in the Encyclopedia of Mathematics Education, where we read: 

[…] mathematical games help the teaching and learning of mathematics through the 
advantage of providing meaningful situations to students and by increasing learning 
(independent and at different levels) through rich interaction between players. There are 
positive results, suggesting that the appropriate mathematics games might improve 
mathematics achievement. (Mousoulides & Sriraman 2014, p. 384) 

Concluding, the cooperative game theory and the mathematical discussion can promote 
a rich and intriguing environment to develop a dialectic between different perspectives 
and different argumentation, until the construction of a model, confirming the 
hypothesis I have stated in the introduction. Moreover, the notion of mathematical 
discussion is particularly suitable to design and to analyze activities in game theory 
where different strategies are possible and the meaning of “solution” and the criteria of 
validation have to be negotiated. 
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From a sociocultural perspective that a teacher’s use of mediational means is central 
to student learning, this paper presents an analysis of six teachers and their mediating, 
across a two-three year time gap. Drawing on the Mediating Primary Mathematics 
framework – developed to examine the type and quality of mediational means – we 
propose two composite assessments of quality of mediation – extent and depth –that 
indicate the extent to which teaching addresses mathematical structure and generality. 
The findings reveal a range of differences in these two assessments for each of the six 
teachers, but that all six teachers were more coherent in their use of mediational means 
in the later lesson than in the earlier one. These findings have implications for other 
schooling systems and researchers seeking to improve the quality of mathematics 
instruction. 
INTRODUCTION 
The multiplicity of factors that shape learning make it difficult to track forward in any 
direct way from teaching actions to learning outcomes. Yet studying changes in 
teaching that might better support mathematical learning remains, in many ways, a holy 
grail of mathematics education research, especially as research overviews continue to 
point to the quality of teaching as among the most influential factors impacting on 
learning outcomes (Coe Aloisi, Higgins & Major, 2014). Working, as we do, in 
disadvantaged contexts in a developing country, classrooms often provide the only sites 
of access to mathematical learning, and so understanding and improving the quality of 
teaching is important. With models of effective teaching from the ‘global north’ often 
assuming a baseline of quality in teaching yet to be established in less advantaged 
contexts, these models fail to capture nuanced features that mark significant changes 
in pedagogy. This paper presents findings from a context-sensitive framework for 
assessing quality of teaching – the Mediating Primary Mathematics (MPM) framework 
– that allows us to identify and track changes in teaching. The framework may thus be 
helpful to other researchers working in similar contexts of poor performance and 
imperatives to improve the quality of mathematics teaching. 
BACKGROUND 
Students’ dependence on counting strategies not only well into the upper primary years 
but also into secondary schools has been widely written about in South Africa (Fleisch, 
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2008). This continued dependence is fostered, on the one hand, by pedagogic practices 
in which numerical tasks are recurrently treated from scratch and counting is taken, by 
teachers and students alike, as the primary means of working out answers, and, on the 
other hand, by a marked absence of didactical practices oriented towards building a 
base of known results from which other results can be derived. In our work, we are 
keen to change this dependence on counting and to encourage teachers to begin to 
understand mathematics as a scientific discipline (Vygotsky, 1978) and adopt 
instructional practices that focus on mathematical structure and generality. 
In addressing teaching for structure, we do not expect teachers to meet Freudenthal’s 
(1983) high bar requirement of structure being the total network of basic and derived 
properties and actions that can be associated with an initial relationship like a + b = c. 
Instead, we take a more pedagogical position that learners’ awareness of mathematical 
structure is as a network of basic and derived general relationships that expands over 
time and follow Brown's (2011) position that concepts are structures that emerge 
through noticing similarities and differences across tasks together with reasons that 
might underlie these relationships. Such awareness of structure is central to learners’ 
engagement with mathematical generality, which we take to underpin the power of 
mathematics. We, thus, see teaching towards (awareness of) structure and generality 
as key in teaching in South Africa moving from the limitations noted above, but given 
the wide gap between this vision and current practices there was a need for a tool that 
can provide nuanced assessments of pedagogy that nudge in that direction. 
To this end we developed the Mediating Primary Mathematics (MPM) framework for 
analyzing the quality of instruction in mathematics, the detailed background to which 
is written about elsewhere (Venkat & Askew, 2018). Here we present findings from 
the application of the framework and analyse earlier and later teaching of six teachers 
from six primary schools. This analysis allows us to characterize differences in the 
nature of mathematics teaching across a variety of topics and suggests that the 
differences can be interpreted as improvements in instruction in the direction of more 
attention to structure and generality. Key questions addressed are: 

Using the MPM framework, what differences, over time, in attention to 
mathematical structure and generality can be seen in these teachers’ practices? 
Can these differences be interpreted as showing improvements in teaching? 

THEORETICAL BACKGROUND: TEACHING AS MEDIATION  
Prior writing details the theoretical and empirical concerns underpinning our work 
(Venkat & Askew, 2018); we therefore only overview that detail here. Our work is 
based in a sociocultural view of instruction as mediational and directed towards 
learning which focuses on mathematical structure and generality. Building on the 
classic subject–mediational means–object triad, we find it helpful to consider four, 
interconnected, strands of teacher mediation:  

tasks and associated examples; 
artefacts (physical equipment and manipulatives); 
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inscriptions (images, diagrams, written words and symbols produced within a 
lesson); 

teacher talk/gesture (divided into three sub-strands):  
o methods offered or accepted for generating/validating answers, 
o mathematical connections made or accepted, and  
o student-level connections offered and developed.  

Tasks, and the examples accompanying these, form the base for mediation, which is 
enacted through coordinated use of artefacts, inscriptions and talk/gesture. These 
mediating means provided theoretical lenses for analysing lessons and led to the 
development of the MPM framework. Working with recordings of a number of 
baseline lessons in 2011/12 we parsed each lesson into a sequence of episodes and then 
analyzed the bundle of mediating means used within each episode, with particular 
attention to whether or not a teacher’s mediation was likely to move students from a 
focus on simply succeeding at the task at hand, to beginning to develop a sense of 
mathematical structure and generality. Empirical contrasts from episodes observed 
were used, in conversation with the theoretical base, to construct levels of mediation 
within each of the strands. Iteratively moving between the framework and applying it 
to lesson episodes, led to a fine-tuning of the framework into its current form (Figure 
1). With regard to instructional goals, Askew (2015, 2019) has examined ways in which 
teachers have used all four mediating means in ways that may or may not support 
moves to structure and generality. Here the framework is used to examine two aspects 
of the quality of mediation; extent and depth. 
DATA SOURCES 
Working with ten previously disadvantaged primary schools, we gathered baseline 
videos of mathematics lessons in 2011/12 with Grade 2 and 3 teachers. Returning to 
these schools to video lessons in 2014 there were six teachers from six different schools 
for whom we had both the earlier baseline and later lesson video-data: these six 
teachers form the sample reported on here. Of these six teachers, four taught in 
‘suburban’ schools and two in ‘township’ schools. All of the teachers had taught in 
primary schools for more than five years, some for much longer. While all the schools 
served historically disadvantaged student populations, the township schools had larger 
school rolls and classes, and smaller classrooms than their suburban counterparts. 
Between 2011 and 2014 the project team worked on professional development in these 
six schools, more broadly focusing on supporting teachers in attending to the structures 
and generalities underpinning ‘number sense’, hence our interest in whether we could 
determine changes in teaching practices across the years.  
METHODOLOGY FOR ANALYZING THE QUALITY OF INSTRUCTION 
Analyzing the quality of instruction using the MPM framework required an approach 
that enabled us to look both within and across a lesson’s episodes, to build a picture of 
  
 



Askew, Venkat, Abdulhamid, Mathews, Morrison, Ramdhany & Tshesane 

2 -                                                                                                             PME 43 - 2019 44 

Figure 1: The MPM framework (Venkat & Askew, 2018, p.90)  

MEDIATING TASKS.EXAMPLES (Listed) 
MEDIATING ARTEFACTS 

0 1 2 3 
No artefacts or artefacts 
that are problematic/ 
inappropriate 

Unstructured artefacts used 
in unstructured ways 
(Bags of counters/tally 
marks) 

Structured artefacts used in 
unstructured ways (Abaci, 
100 squares, etc, used with 
unit counting, and without 
reference to structural 
properties) 

Structured artefacts used in 
structured ways / 
unstructured artefacts used 
in structured ways 
(Abacus, 100 square/place 
value blocks/cards, number 
lines, etc used with 
reference to 
structure/relations) 

MEDIATING INSCRIPTIONS 
0 1 2 3 

No inscriptions or 
inscriptions that are 
problematic/ incorrect 

Inscriptions that only 
record tasks or responses 

Unstructured inscriptions 
(e.g. tally marks) 

Structured inscriptions 
(e.g. tables of ordered 
bonds; structured/empty 
number lines; inscriptions 
underpinned by relations) 

MEDIATING TALK & GESTURE 
Method for generating/ validating solutions 

0 1 2 3 
No method or problematic 
generation/validation 
(e.g. mixing of knowns and 
unknowns) 

Singular method/validation 
(provides a method that 
generates the immediate 
answer; enables production 
of answers in the 
immediate example space) 

Localized 
method/validation 
(provides a method that 
can generate answers 
beyond the particular 
example space) 
 

Generalized method or 
validation (provides a 
strategy/method that can 
be generalized to both 
other example spaces AND 
without restriction to a 
particular artefact / 
inscription) 

Building mathematical connections 
0 1 2 3 

Disconnected and/or 
incoherent treatment of 
examples OR oral 
recitation with no 
additional teacher talk 

Every example treated 
from scratch 

Teacher talk connects 
between examples or 
artefacts/inscriptions or 
episodes  

Teacher talk makes 
vertical and horizontal (or 
multiple) connections 
between examples/ 
artefacts/ inscriptions/ 
episodes 

Building learning connections: explanations and evaluations - of errors/ for efficiency/ with rationales 
0 1 2 3 

Pull-back to naïve methods 
OR 
No evaluation of offers 
(correct or incorrect) 

Accepts/evaluates offers 
Accepts strategies or offers 
a strategy OR 
Notes or questions 
incorrect offer 
 

Advances or verifies 
offers. Builds on, 
acknowledges or offers a 
more sophisticated strategy 
OR addresses 
errors/misconceptions 
through some elaboration, 
e.g. ‘Can it be ----?’ 
‘Would – this be correct, 
or this?’ Non-example 
offers 

Advances and explains 
offers. Explains strategic 
choices for efficiency 
moves OR provides 
rationales in response to 
student offers related to 
common misconceptions 
OR provides rationale in 
anticipation of a common 
misconception 
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instructional quality. To this end we overlaid onto the MPM framework the constructs 
of ‘extent’ and ‘depth’ of mediation for structure and generality. The ‘extent’ indicator 
provides an assessment of the extent of mediation for structure and generality across 
the lesson episodes, while the ‘depth’ indicator provides insight into the ways in which 
mediational means were deployed coherently and responsively within episodes, in 
relation both to the mathematical object of learning and to student offers. 
The research team initially parsed lessons into episodes on the basis of tasks set and 
their related example spaces. Within episodes, we noted whether or not students made 
incorrect, and/or overtly inefficient, offers, as the absence of incorrect/inefficient offers 
suggested such episodes functioned largely as rehearsal or revision of prior learning. 
Low-level mediation in such episodes (no explicit instruction or simply recording or 
acknowledging results) was, thus, interpreted in relation to this inference of 
rehearsal/revision, and such episodes were not included in the lesson coding. Similarly, 
smoothly run chorused counting episodes and individual seatwork episodes that did 
not involve whole-class or small-group instruction were also omitted from the analysis. 
In contrast, evidence of incorrect/overtly inefficient answers indicated a need for 
responsive instruction that built connections with learning: to explain or remediate in 
some way, so these episodes were the focus of the quantitative coding reported on here. 
Teachers’ work in each episode was given a 0-3 score for each of the mediating strands, 
creating a mediation ‘map’ of the lesson. Initial coding was done in groups: individual 
team members coded teachers’ earlier and later lesson videos, convened to discuss and 
agree on framework level summaries capturing the essence of mediation. Agreed MPM 
‘maps’ of the earlier and later lessons were thus created for each teacher. For each of 
these maps, extent and depth judgments were made as two distinct but complementary 
ways of assessing mediating for structure and generality. Quantitatively, each cell of 
the MPM map could attain a maximum score of 3: multiplying this by the number of 
coded episodes and the teacher’s actual scores across the episodes, produced an 
assessment of the extent of mediation across the strands of artefacts, inscriptions and 
the three aspects of talk/gesture. For example, if a lesson had four coded instructional 
episodes, there was a maximum score of 12 available for, say, use of artefacts. The 
summed coding score (S) for use of artefacts in relation to this total provided an S/12 
fraction for artefact-based mediation. Given that the talk/gesture strands focused on 
three different dimensions of mediation, we produced proportional summaries for each 
of these strands in each lesson. However, artefact and inscription scores were averaged 
together to produce a single indication of the extent of use of the more structured, 
relatively ‘permanent’ mediational forms in each lesson. Comparisons of proportions 
for earlier and later lessons within each strand provides a lens for considering 
differences in the extent of mediation for structure and generality across teachers across 
years. Given the exploratory nature of this analysis, we set a relatively high bar (20% 
point difference) for considering difference in extent of mediation to be substantive. 
Depth arises from a ‘vertical’ reading of the coordination and coherence of mediation 
within episodes. For example, in a lesson with, say, six coded episodes, we looked 
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vertically for the number of episodes containing higher codes (2 or 3) across two or 
more of the artefact/inscriptions and talk strands, producing another proportional score.  
This coding for both extent and depth allowed us to see differences between earlier and 
later teaching in terms of the teacher’s mediation for structure and generality. Table 2 
shows the 2012 and 2014 scores for one of our teachers Ms M. In the findings and 
analyses that follows, our focus is on patterns of shift towards greater attention to 
mathematical structure and generality that help us to understand the kinds of mediation 
underlying the differences in early number learning that we noted at the outset.  
EXTENT 2012 (6 episodes) 2014 (5 episodes) 
Artifacts & Inscriptions 4/18 & 5/18 (25%) 0/15 & 9/15 (30%) 
Talk/gesture: generating solutions 3/18 (17%) 11/15 (73%) 
Talk/gesture: mathematical connections 8/18 (44%) 13/15 (87%) 
Talk/gesture: learning connections 5/18 (28%) 13/15 (87%) 
DEPTH 2012 (6 episodes) 2014 (5 episodes) 
Higher level mediation in two or more strands 1/6 episodes (17%) 5/5 episodes (100%) 

Table 1: Scores of extent and depth in Ms M’s lessons 
FINDINGS AND ANALYSIS 
Figure 2 presents the differences in the extent scores for each of the six teachers across 
the four strands of mediation. As can be seen, for two of the teachers, Ms M and Ms S, 
there was a substantially greater extent of mediation in their later lesson compared to 
their earlier lesson, with Ms M demonstrating the greatest difference. For Ms Mp there 
is some change from the early lesson to the later, but it is not substantial as for Ms M 
and Ms S. For Ms R and Ms D, the profile of extent is similar across both years, whilst 
Ms B’s extent of mediation in 2014 looks somewhat weaker than in her 2011 lesson. 
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Figure 2: Differences in extent of mediation across teachers and years.  
Using the 20% point difference, Ms M’s teaching indicated differences meeting this 
criterion in 3 of the 4 categories (that is, across all of the talk/gesture strands). Ms S 
met this criterion in 2: arefacts/inscriptions and talk/gesture for mathematical 
connections with Ms Mp also meeting this criterion on talk/gesture for mathematical 
connections. The three other teachers did not cross this threshold on any of the strands. 
Table 2 presents the assessment of depth for the teachers in each of the years. This 
shows that for all of the teachers, within the 2014 lesson, there were higher levels of 
mediational means being coordinated within the teaching episodes. All episodes in Ms 
M’s 2014 lesson showed a coordinated depth of higher-level mediation for structure in 
two or more strands across all 5 episodes, with Ms S and Ms Mp achieving this in at 
least 50% of their episodes in 2014. The other teachers demonstrated less difference 
but given the lack of any coordination of mediating means in the earlier lesson, what 
increased scores they did achieve indicate a difference in their teaching. 
 Ms M Ms S Ms Mp Ms R Ms D Ms B 
2012 17% 50% 0 0 0 0 
2014 100% 60% 50% 40% 40% 29% 

Table 2: Proportion of episodes with coordinated mediation at level two or three 
DISCUSSION 
On the empirical side, we see broad differences in terms of extent and depth of 
mediation for mathematical structure and generality employed across the 12 lessons 
within this analysis, with more extensive differences across some teachers than others. 
The theoretical derivation of the framework from Vygotskian notions of structured 
networks of scientific concepts allows the patterned direction of differences – higher 
scores in the later lessons – to be interpreted in terms of improved extent of mediation 
for structure and generality. The variation in the extent of mediation ranges from 
extensive change in extent across multiple strands – as in the case of Ms M – to lack 
of substantial change in extent of mediation within any of the strands – as in the case 
of Ms B. As Figure 2 shows, these six teachers essentially fell into two groups, those 
teachers who expanded their work with structured mediation, and those who have 
begun to introduce some structured mediation but not to the same extent. 
A key commonality is the broad increase in depth of mediation for structure across five 
of the six teachers. This points to more episodes exhibiting a coordinated orchestration 
across mediational means. As our coding for depth involved looking for higher level 
mediation scores (2 or 3) that point to moves beyond simply a coherent lesson towards 
connection and generality, the increases in the depth indicator suggest, therefore, that 
connected teaching was more in view in the latter lessons than in the former ones. Of 
particular note is that substantial moves on this indicator were seen among teachers 
working from a low base of mediation for structure and generality, suggesting that a 
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focus on helping them to coordinate actions across mediational means may be a 
particularly useful direction to follow in primary mathematics teacher development.  
Our sense is that the central commitment to mathematical goals of structure and 
generality are both important and pragmatic in a context where much recent writing 
has noted that the lack of attention to specialized knowledge may be part of the problem 
in relation to improving disciplinary instruction (Hugo & Wedekind, 2013). The 
explicitness of mathematical goals in the MPM framework – structure and generality 
– coupled with an openness on the pedagogic forms in which these goals are couched, 
means that the MPM framework provides a lens for exploring primary mathematics 
teaching in ways that are sensitive to the ground as well as being mathematically 
ambitious in seeking to expand the spaces of productive mathematical working. 
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BUILDING 3D SHAPES FROM SIDE VIEWS AND SHADOWS – 
AN INTERVIEW STUDY WITH PRIMARY SCHOOL STUDENTS 

Daniela Assmus, Torsten Fritzlar 
Martin Luther University Halle-Wittenberg 

 

This interview study examines how 2nd and 4th graders use unit-sized cubes to build 
shapes from two given side views or two given shadows. Besides the reconstruction of 
the building processes in general, it will be investigated whether and to what extent 
building from shadows differs from building from side views. In addition, the study 
aims to empirically reconstruct difficulty factors for such tasks. First results show 
differences between shadows and side views with regard to the resulting shapes, but 
not with regard to the solution rates. The location of the highest cube tower was 
identified as an important difficulty factor. Seven different types of building processes 
could be differentiated. 
THEORETICAL FRAMEWORK 
The importance of visuospatial reasoning 
After being neglected for a long time, visuospatial reasoning – which is also referred 
to for example as spatial thinking or visualisation – received a strong interest in the 
international mathematics education research over the last decade (see e.g. Sinclair, 
Bartolini Bussi, Villiers, & Jones, 2016 with many references). This is fully justified 
since many studies support a strong association between spatial and mathematics 
abilities or identify early spatial skills as predictors for mathematics achievement (e.g. 
Casey et al., 2015). Furthermore, spatial skills are related to academic performance in 
various STEM fields (e.g. Wai, Lubinski, & Benbow, 2009).  
Although spatial skills are traditionally assumed to be innate and fixed, strong evidence 
from research suggests that spatial skills can be taught and improved (Uttal et al., 
2013). Consequently, a stronger emphasis on visuospatial reasoning in mathematics 
teaching is demanded by numerous highly influential organizations such as NCTM and 
NRC (Davis et al., 2015). 
How can visuospatial reasoning be described? 
Thurstone (1938) described spatial ability as a primary intelligence factor. Since then, 
spatial skills have been the subject of detailed psychometric investigations and several 
models have been developed, for example by Linn and Peterson (1985). From a more 
didactic perspective, spatial skills were also investigated and modeled, e.g. by Maier 
(1999). However, there is no uniform understanding of processes or abilities in this 
field (Uttal et al., 2013). 
According to the National Research Council (2006, p. 5), spatial reasoning “involves 
the location and movement of objects and ourselves, either mentally or physically, in 
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space.” The extent to which it is possible and meaningful to separate from one another 
the involved processes and aspects of perception and imagination, of action and speech, 
is controversial. The approach of Davis et al. (2015, p. 5) seems promising: they are 
less concerned to find unambiguous definitions but rather aim at a “working knowledge 
that will support richer understandings of how children engage with / in their worlds.” 
Instead of a somewhat reductionist approach of breaking spatial reasoning down into 
the smallest possible and therefore exactly describable skills, they try to look at the 
specific situation in its entirety. For its characterization, they use the typology 
developed by Uttal et al. (2013), which has proven itself in various ways and by which 
psychometric models and widespread spatial skill tests can be classified. This typology 
differentiates between static and dynamic situations as well as between extrinsic and 
intrinsic information to be processed. Extrinsic information refers to relations among 
objects or relations between objects and an overall framework or their environment, 
intrinsic information defines or describes an object. Building shapes from projections 
with unit-sized cubes could then be categorized as dynamic-extrinsic. It is dynamic 
because the cubes are moved and the shape is built step by step. It could be seen as 
extrinsic because the cubes have to be positioned in relation to one another and in 
correspondence to the given projections. But there are also intrinsic aspects if, for 
example, a student visualizes the shape as one object based on the projections. This 
exemplarily shows that spatial reasoning often involves several steps that move 
between and span categories (Davis et al., 2015). 
Building 3D shapes from side views and shadows 
In this study we investigate how primary students use unit-sized cubes to build shapes 
from two side views or two shadows. The projections are presented in upright frames, 
on suitably arranged cards or on a “double card” with two projections; Figure 1 shows 
eight examples.  
Such activities are particularly appropriate to make important aspects of visuospatial 
reasoning accessible to research. Especially plane representations of space and the 
change between 2D and 3D are of enormous importance in everyday life. Previous 
studies have shown that building shapes from various orthogonal projections is the 
most difficult way of building from plane representations (compared, for example, to 
building from the isometric or from numeric coded views). The particularly high 
degree of difficulty results from the necessity to coordinate several projections 
(Gutiérrez, 1996). For successful processing flexibility of thinking (Hasdorf, 1976), as 
it is described from a psychological perspective, is therefore necessary. It is generally 
understood as the ability to switch from one aspect of consideration to another or to 
embed an issue in various contexts and to grasp the interrelatedness of facts and 
statements. When dealing with tasks, flexibility of thinking can take the following 
forms: restructuring the task or problem situation, reversing a train of thoughts, 
changing assumptions or criteria, grasping and applying interrelatedness, 
simultaneously considering several aspects. The coordination of both given projections 
for building a 3D shape can be seen as the latter form of flexible thinking.  
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In numerous teaching materials there are tasks in which objects are to be identified or 
produced from given side views or shadows. However, how primary students deal with 
these requirements has not yet been investigated. It is therefore unclear whether there 
are systematic differences with didactic relevance between tasks with shadows and 
those with side views. For example, students may have everyday experiences related 
to shadows and side views, which in different ways partly contradict the mapping rules 
of parallel projection, so that different abstraction processes have to be carried out. 
Further differences could arise from the fact that the projection planes are arranged 
once behind and once in front of the object. 
Building shapes from projections can also be used to promote the development of 
corresponding abilities in mathematics teaching. From a didactic point of view, the 
different presentations of projections using upright frames (Fig. 1, tasks 1-4), suitably 
arranged cards (Fig. 1, tasks 5, 6) or double cards (Fig. 1, tasks 7, 8) appear particularly 
interesting because they could considerably vary the degree of the tasks’ difficulty. 
Additionally, the use of upright frames and transparencies when building from side 
views could also support the understanding of such tasks while maintaining the leading 
idea of projection.  

    

    

Figure 1: Tasks from the interviews 
 
RESEARCH QUESTIONS AND METHODS 
With this study we are investigating the following research questions: 

1. How do primary school students build 3D shapes from given side views or 
shadows? 

2. What are the differences in processes and products between building from side 
views and building from shadows? 

3. What are the differences in processes and products between building from 
projections given in upright frames, on arranged cards or on double cards? 

4. Which difficulty factors concerning projections can be reconstructed 
empirically? 

2 1 

5 6 7 

3 4 

8 
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Data is collected through clinical interviews that are videotaped for later analysis. Each 
participating student completes two approximately 25- to 40-minute interviews, in 
which at first prefabricated shapes have to be checked for whether they fit a given pair 
of projections and how they may be arranged. In the main interview phase, shapes made 
of unit-sized cubes must be built according to both projections. A quadratic 5×5-grid 
is provided for this purpose, its position makes it possible to work with two equivalent 
projections (front left and front right, respectively rear left and rear right). These are 
presented in upright frames, on suitably arranged cards and, finally, on double cards 
(cf. Fig. 1). In the first interview, either shadow projections or side views are given 
exclusively. The other type of presentation is used in the second interview, within its 
last phase the student builds alternating from shadows and side views. The tasks for 
shadows and side views correspond (by swapping the respective right and left 
projections; cf. tasks 1 and 2 from Fig. 1) in such a way that both projections could 
belong to the same shape. 
The design of the tasks takes into account several non-independent aspects: Different 
pairs of projections (asymmetric, axially symmetric, and equal) should be given, the 
degree of difficulty of the tasks should vary and possible building processes should be 
particularly informative. 
Up until now, the interview study involved 6 second and 14 fourth graders from two 
primary schools with different catchment areas concerning among others the socio-
economic background. Prior to the interviews, the participating students worked on a 
compilation of tasks on spatial abilities (according to Thurstone) for which experience 
has already been gained from other studies. Two students each from the same school 
class and with comparable results formed a pair of test persons. In the first interview, 
one of the two students worked on tasks with shadows, the other on corresponding 
tasks with side views. 
On the basis of the videotapes the building processes used by the students were 
reconstructed and the created shapes were described by numbered plans (cf. Fig. 2). 
RESULTS 
For reasons of space, we will not present the results of the interviews in detail, but only 
indicate a few aspects exemplarily. 
Research question 4: As expected, the position of the highest (cube) tower (T) is a 
factor strongly influencing the task’s difficulty. Thus, all tasks with the highest tower 
positioned inside (near the intersection line of the projection planes) were very 
successfully mastered by the participating students. This was shown, for example, in 
tasks 2 and 7 from Fig. 1, which were correctly solved by all students and 19 students 
respectively. On the other hand, task 1 was incorrectly processed by 9 students and also 
task 8 was successfully solved by only 8 students. Due to the highest tower being 
inside, the shape of task 2 or 7 can be built step by step from the far left to the far right 
or vice versa. Only the intersection column (T) has to be considered, which the students 
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did very easily. This approach is neither possible in task 1 nor in task 8, since the 
highest tower is positioned outside or in the middle with regard to the projections. 
Also difficult (6-9 incorrect shapes) were tasks such as no. 6 in Fig. 1 (three different 
heights in both projections) and tasks on double cards (with the exception of no. 7). 
Research question 2: As shown above, there were clear differences between the 
corresponding shadow and side view tasks (with swapped projections) when in one 
task T is inside and in the other T is outside. However, comparing the solution rates of 
tasks with the same characteristics (i.e. e.g. side view tasks and shadow tasks with T 
outside), there is no difference. The positions of the projection planes do not seem to 
have any influence in this respect. The built shapes, however, differ considerably from 
each other. Depending on details of the given projections (especially the position of T), 
many students strove to build the shape as close as possible to at least one projection 
plane. Thus, parts of the shapes built from side views are located further forward on 
the basic grid compared to the shapes in corresponding “shadow tasks”. This is 
particularly evident when T is positioned inside. Here, most students built the shapes 
as close as possible to both projection planes. Exemplarily, Fig. 2 shows the most 
frequent shapes built in task 5 (Fig. 1) and the corresponding “side view task”. In both 
cases, 12 out of 20 students built a shape according to Fig. 2. 

  
Figure 2: Shapes built from shadows in task 5 (left) and built from corresponding 

views (right) 
 
Research question 1: Overall, the building processes of the students are very diverse. 
Nevertheless, some typical procedures can be identified. Using task 4 (Fig. 1) as an 
example, these are described in Fig. 3. Characteristic intermediate states are 
summarized in one picture each with the grey fields indicating the cubes added in this 
step. Usually these cubes are not added simultaneously – as the picture suggests – but 
individually, so that variations in the building procedure can lead to subcategories that 
are not shown here. So far, procedure 2 did not appear in task 4 but in other tasks and 
was transferred to task 4 for easier comprehension. 
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1. Building a silhouette (a) 
and attaching missing 
cubes (b) 

a) 

 

b) 

 

  

2. Building a silhouette (a), 
shifting (b), attaching 
missing cubes (c) 
(adapted) 

a) 

 

b) 

 

c) 

 
3. Layer by layer: Building 

the lower layer (a), 
building the 2nd layer 
(b), building the 3rd 
layer (c) 

a) 

 

b) 

 

c) 

 
4. Building the fringe near 

to projection planes (a), 
completing the tower (b) 

a) 

 

b) 

 

  

5. Vertical layers one by 
one: Building a vertical 
layer (a), a second one 
(b), a third one (c) 

a) 

 

b) 

 

c) 

 
6. Concentric building 

around the highest 
tower: Building T (a), 
attaching the neighbour 
cubes (b) 

a) 

 

b) 

 

c) 

 
7. Building two connected 

silhouettes: Building the 
1st silhouette (a), 
building the 2nd 
silhouette (b) 

a) 

 

b) 

 

  

Figure 3: Building processes in task 4 
Since all tasks require the combination of two different projections, it seems obvious 
to start with one and then, after a change of perspective, add the missing cubes of the 
other silhouette (procedure 1, 2 and 7). Depending on the characteristics of the 
projections, this is more or less easy (see e.g. above: position of T). If the highest tower 
is not inside, as in the task considered here, the positioning of the cubes or silhouettes 
allows conclusions to be drawn about whether and when the two projections will be 
coordinated, i.e. whether and when flexibility of thinking emerges. While in procedure 
1 both projections will be coordinated from the beginning and the first silhouette is 
immediately placed in the correct position, in procedures 2 and 7 the projections are 
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presumably considered one after the other. In procedure 2, the built silhouette is 
subsequently moved so that it matches the second projection. If a student uses 
procedure 7 – which leads to erroneous results for tasks with T not inside – it can be 
assumed that s/he does not coordinate the projections, but rather views them in isolation 
from each other. In very rare cases, a special form of procedure 7 occurs in which the 
two projections are reproduced completely independently of each other and both 
silhouettes do not contain any common cubes.  
For procedures 5 and 6, it is necessary to consider both projections from the beginning. 
Also, for procedures 3 and 4 it can be assumed that the projections will be considered 
simultaneously early on. 
In task 3 and 4, 15 (task 3) or 16 (task 4) procedures could be assigned to one of the 
above categories. Almost the half of the students (task 3: 7, task 4: 9) used procedure 
1. Procedure 3 was used by 4 or 3, procedure 4 by 1 or 2 students, and procedures 5-7 
once each. Thus, it is shown that the students coordinated both projections to a large 
extent from the beginning or at an early stage in the building process. 
CONCLUSION AND OUTLOOK 
Due to the small number of students, the results cannot be generalised. Nevertheless, 
important information can be gained about how primary school students build from 
two orthogonal projections. It does not seem to have any influence on the solution rate 
or the understanding of the task whether shadows or side views are given to build from. 
Based on this, both types of projections could be equally suitable for teaching. 
However, it should be considered that side views usually contain more information 
than shadows. (For shapes built with unit-sized cubes, the only difference is the number 
of “visible” cubes, which can be easily reconstructed.) 
Differences in the positioning of the shapes indicate that objects (3D) and projections 
(2D) can be associated more easily if they are close to each other. This could explain 
the high solution rates of tasks with T inside, since in this case striving to build close 
to the projection supports the coordination of both given projections. The analysis of 
the building procedures provides indications on whether and when both projections 
will be coordinated, i.e. flexible thinking emerges. In further analyses, we will examine 
whether there are connections to the results of the preceded spatial abilities tasks. The 
planned expansion of the sample will allow the use of statistical methods for this 
purpose. Furthermore, a detailed analysis of the building procedures’ frequencies for 
all tasks is intended in future. Of particular interest here is whether there are differences 
between shadows and side views or task- or student-related accumulations of specific 
procedures. In addition, a larger sample enables us to investigate students’ age and sex 
as possible factors influencing solution rates, used procedures and flexibility of 
thinking. 
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It has been argued that teachers need practical principled knowledge and that design 
research can help develop such knowledge. What has been underestimated, however, 
is how to make such know-how and know-why useful for teachers. To illustrate how 
principled knowledge can be “practicalized”, we draw on a design study in which we 
developed a professional development program for primary school teachers (N = 5) 
who learned to design language-oriented mathematics lessons. The principled 
knowledge we used in the program stemmed from the literature on genre pedagogy, 
scaffolding, and hypothetical learning trajectories. We show how shifting to a simple 
template focusing on “domain text” rather than genre, and “reasoning steps” rather 
than genre features made the principled knowledge more practical for the teachers.  
THE NEED FOR PRACTICAL PRINCIPLED KNOWLEDGE 
On the one hand, knowledge generated in research is often not practical enough for 
designers and teachers to use productively in their educational practice. On the other 
hand, there is a need for principled knowledge that goes beyond local, situational, or 
contextual heuristics. It is for these reasons that Bereiter (2014) made a call for 
practical principled knowledge (PPK), knowledge that combines “practical know-how 
and scientific theory”; it offers practical guidance but also “meets standards of 
explanatory coherence” (p. 4). Research on what such PPK may look like is scarce 
(e.g., Kidron & Kali, 2017), and studies on how to develop PPK are even rarer. Bereiter 
suggests that design research could be extended to the creation of PPK, but this effort 
should not be underestimated: Janssen, Westbroek and Doyle (2015) argue that what 
researchers consider PPK is often not very practical in the eyes of teachers. To ensure 
practicality, we involved teachers in making adaptations to a professional development 
program. The research question addressed in the current paper is: What does 
“practicalizing” principled knowledge with and for teachers look like? An answer 
allows us to reflect on what supported this process.  
The principled knowledge that we draw on comes from the literature on genre 
pedagogy (Hyland, 2004; Martin & Rose, 2008), scaffolding (Gibbons, 2002), and 
hypothetical learning trajectories (Simon, 1995). To create PPK that teachers consider 
practical, the methodological approach we use is that of design research. Note that both 
the theory of scaffolding informing our design approach and the methodological 
orientation of design research are inherently adaptive, allowing for continuous 



Bakker, Mackay, Smit & Keijzer 

2 -                                                                                                             PME 43 - 2019 58 

monitoring of the practicality of knowledge from the literature and responsiveness to 
teachers’ needs. 
DESIGN RESEARCH 
Design research has grown out of the need to bridge the aforementioned theory–
practice gap (Bereiter, 2014; Janssen et al., 2015), and to move beyond the typical 
emphasis of educational research on description, explanation, comparison, and 
evaluation (Bakker, 2018). It aims to realize and study education as it could be rather 
than as it was or currently is. The type of knowledge that design researchers are after 
is actionable knowledge about how something can be realized (e.g., achieving 
particular educational goals) or how particular problems can be solved. To do so, a 
design approach to mathematics education seems more appropriate than basic research 
(Wittmann, 1995). Design research adopts an iterative and adaptive stance by using 
and developing theory and using this to do real work (Cobb et al., 2003). 
A useful methodological and design instrument, one often used within mathematics 
education, is Simon’s (1995) notion of hypothetical learning trajectories (HLTs). An 
HLT specifies the starting point, the learning goals, learning activities, and hypotheses 
about how these learning activities help students achieve the desired goals; the 
hypotheses are based on practical experience and refined after scientific analysis. Being 
informed by educational research and practical experience, HLTs thus serve as an 
intermediary between theory and practice.  
PRINCIPLED KNOWLEDGE DRAWN ON  
To illustrate the process of practicalizing principled knowledge that is useful to 
teachers, we report on a design study that aimed to develop a teacher professional 
development program (PDP). The topic of the PDP was designing language-oriented 
mathematics lessons in primary education. The PDP was a sequel to an earlier design 
study that used genre pedagogy and other theoretical resources to scaffold students’ 
mathematical language development in primary education (Smit et al., 2016). The 
earlier study (co-design with one experienced teacher) had delivered a set of strategies 
for scaffolding mathematical language, exemplary teaching materials, and theoretical 
insight into whole-class scaffolding and features of a genre of interpreting line graphs. 
Genre pedagogy is a promising approach that explicitly addresses the language 
required for learning, in that it provides learners with metalinguistic knowledge about 
how (both spoken and written) language is structured and used to achieve particular 
communicative goals (e.g., describing or persuading) (Hyland, 2004). The notion of 
genre is typically associated with certain literary forms, for example a poem or a novel. 
In genre pedagogy, the concept of genre is particularly used for academic text types 
used throughout the curriculum. Commonly distinguished genres are report, 
explanation, procedure, discussion, recount and narrative (e.g., Derewianka, 1990), 
each with specific communicative goals. Genre pedagogy explicitly attends to how 
schematic structures help speakers or writers to accomplish their communicative goals 
within each specific genre. Furthermore, it centralizes how linguistic features (e.g., 
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general academic language and subject-specific language) operate in a particular genre. 
As such, genre pedagogy supports learners in acquiring proficiency in school-bound 
genres (e.g., narratives, reports), with the ultimate aim of students’ independence in 
these genres.  
Informed by genre pedagogy, Smit et al. (2016) formulated linguistic and structure 
features needed for describing and interpreting line graphs. The linguistic features 
included, for example, the subject-specific vocabulary and phrases (e.g., the graph 
rises), and also the use of expression of gradations of steepness (as in “the graph 
descends gradually”), as well as general academic language to be employed when 
interpreting the graph (e.g., the number of people increases). The structure features 
comprised the stages of students’ reasoning about graphs. For example, students are 
expected to identify all parts of the graph and underpin each interpretation (e.g., “his 
weight decreased quickly”) with a description related to the course of the graph (“you 
can tell as the graph shows a steep fall”). Such explicit attention for linguistic and 
structure features of genres is assumed to help learners understand and participate in 
mathematical discourse.  
The PDP design was informed by the theoretical idea of scaffolding—temporary 
adaptive support, which requires repeated diagnosis and responsiveness with the long-
term goal the handover to independence (in our case independent design of language-
oriented mathematics lessons).  
METHODS 
To develop the professional development program (PDP), we used design research and 
we intended to practice what we preach: being explicitly adaptive to learners’ needs by 
constantly making predictions about the participants’ learning (using HLTs), 
diagnosing their levels, and responding adaptively in line with the scaffolding idea. 
The PDP consisted of seven sessions (2.5 hours each), for which course materials were 
developed and adapted during the course of the program. The total number of 
hours spent by each participant, including preparing the sessions and completing 
assignments, was approximately 40 hours. The participants were five in-service 
primary teachers with a variety of backgrounds, years of teaching experience (a range 
of 10 to 25 years), and roles within the school (three mathematics specialists, one 
language specialist who did not have her own class, one general teacher). Four worked 
in regular primary schools, one in special education. Their students were of low to 
middle socio-economic status, attending Grades 3 to 6 (age 6–11). All five teachers 
entered the program voluntarily and were committed to become more knowledgeable 
in the enactment of language-oriented mathematics education.  
Data collection consisted of participants’ personal logbooks, our own HLTs, our own 
reflection documents written after each session, completed exercises by the participants 
and verbatim transcription of the interaction between the researcher-educator and 
participants from video recordings of each group session; and two semi-structured 
interviews of one of the teachers conducted by the researcher-educator. The teacher 
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was chosen based on the completeness of her logbooks and assignments, with the first 
interview between the fourth and fifth group session and the second after the final 
session. Audio recordings of both semi-structured interviews were made and 
transcribed verbatim. 
Data analysis focused on the diagnoses of what teachers struggled with, which led to 
what we considered critical responses by the design team in the PDP, in particular the 
teacher educator. Diagnoses (D) were based on the reflection documents and were 
triangulated with the logbooks (LB) and video transcripts (VT). Incidental responses, 
less relevant ones such as organisational decisions, were left out of the webs (cf. Figure 
1). A second researcher reviewed the filtering of responses to ensure consistency of the 
coding of critical vs. incidental ones; there was no disagreement. Figure 1 shows an 
example of a web about diagnoses and the team’s responsive changes in the program. 
Next, the second researcher checked all diagnosis response relationships and 
triangulated them with the interview data. 
EXAMPLES OF PRACTICALIZING PRINCIPLED KNOWLEDGE 
In the first sessions, the researcher-educator explained the key ideas of genre pedagogy 
(principled knowledge from the literature). The notion of genre is rather broad (e.g., 
explanation, discussion), so she narrowed it down to what she then called pedagogical 
genres and showed concrete examples of such genres of interpreting line graphs, 
estimation, and expanded column method for subtraction. During the analysis of these 
genres, she drew the attention of the participants to the linguistic and structure genre 
features (structure features refer to the required ordering of the steps to be taken by 
students). While reviewing the first completed task of identifying a genre for a 
particular domain, the researcher-educator diagnosed that the participants were still 
struggling with the concept of genre. This diagnosis was corroborated when two 
participants contacted the researcher-educator to report that they could not grasp how 
to complete the homework assignment related to the estimation genre. The researcher-
educator concluded that the notions of linguistic and structure features of genres were 
not well understood and that the term “genre” was too theoretical for the participants.  
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Figure 1: Example from the analysis showing the transition from pedagogical genre 

to “domain text.” 



Bakker, Mackay, Smit & Keijzer 

2 -                                                                                                             PME 43 - 2019 62 

In between two sessions, during a conversation with the language specialist (who 
brokered between the participants and the team), the researcher-educator explained the 
concept of genre in the context of language for mathematical learning as the text that 
includes the specific language and reasoning that is particular to that domain. It was in 
this conversation that the term “domain text” as a domain-specific prototypical text 
was first coined as an alternative to the more technical concept of genre: our first 
example of practicalizing.  
To address the issue of structure features of genres within the context of mathematics, 
the researcher-educator’s next response was to shift focus from identifying the 
structure of spoken or written mathematical text in a domain to identifying the 
“reasoning steps” needed to solve mathematical problems. This was regarded as crucial 
by both the participants and the researcher-educator, as each mathematical problem, 
even within one and the same domain, requires its own language to be discussed and 
resolved that is associated with the reasoning steps for that (type of) problem: our 
second example of practicalizing.  
Based on participants’ completed assignments, prior to the fourth session, the 
researcher-educator diagnosed that the participants needed support with identifying 
domain texts. As a response, in the fourth session the participants were set the 
assignment to use a domain text template that specifically included the identification 
of reasoning steps and the required language components for solving the mathematical 
problem at stake in order to prepare and enact a language-focused mathematics class. 
The new template included three steps: 

1. Write the solution as a student should formulate it. This is the domain text. 
2. What are the reasoning steps required to solve the problem? 
3. What language does a student need to take these reasoning steps? 

This template was also an attempt to capture the thinking behind HLTs, another notion 
that the participating kept struggling with, and that hence needed to be practicalized: 
our third example. 
From teachers’ homework and input during the last session there is some evidence that 
using the template worked well for the teachers. They made comments such as 
“reasoning steps stimulate thinking,” “maybe we give too little attention to reasoning 
steps” and “normally language in the mathematics lesson is focused on the 
mathematical procedures, not the reasoning steps of a student.” By the end of the sixth 
session, most of the participants showed some form of independence with respect to 
identifying reasoning steps during the session: “You get closer to the thinking of the 
children,” and, with respect to language and reasoning steps, “[language and reasoning 
steps] support each other. You can see the thought process in the children.” 
In the final session, one participant gave a presentation on identifying language 
required for mathematical learning. During the presentation the reasoning steps were 
also addressed: “from A to Z, how you can get to the solution.” The participant made 
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it clear that, in order to enable students to articulate how they are solving a problem, 
they must be equipped with the vocabulary and phrases required to describe their 
reasoning steps. 
DISCUSSION  
To continue the discussion between Bereiter (2014) on practical principled knowledge 
(PPK) and Janssen et al. (2015) on the practicality of PPK for designers and teachers, 
we ask in this paper what “practicalizing” principled knowledge with and for teachers 
may look like. We illustrate this process in a design study that aimed at a professional 
development program to help teachers (re)design language-oriented mathematics 
lessons. The principled knowledge that we used stemmed from the literature on genre 
pedagogy, scaffolding language, and HLTs.  
Our illustrations show that technical key terms from the literature such as genre, 
including the structure and linguistic features of genres, proved confusing and 
impractical for teachers. Our scaffolding approach of repeated diagnosis and 
responsiveness in combination with the methodological orientation of design research 
ensured that we stayed in touch with the participating teachers. We collaboratively 
developed notions and a template that were much more practical for teachers to work 
with. The term “domain text” replaced the term genre, and we focused on “reasoning 
steps” rather than “structure features.” Moreover, thinking through how students may 
formulate solutions of mathematics problems engaged teachers in HLT-type thinking 
without being intimidated by the background theories. Yet all of these developed 
notions were still connected to the scientific underpinning of genre pedagogy, 
scaffolding, and design-research thinking. No so-called “lethal mutations” (Brown & 
Campione, 1996, p. 291)—fatal changes contradictory to original intents—had taken 
place. Hence we think it is fair to speak of a process of practicalizing principled 
knowledge. 
Admittedly, it is possible that teachers learned from struggling with the technical 
concepts. We do not know what the PDP had looked like if we had started with the 
more practical terminology from the start. Yet our study provides a proof of principle 
how a process of practicalizing can be elicited. We last speculate on the relevant 
mechanisms to allow for theoretical generalization. The methodological approach we 
took was design research, which is aligned in the sense that it deliberately aims to be 
adaptive to local circumstances, iteratively working towards what works best. In 
retrospect, we came to consider the teacher with whom the researcher-educator 
invented the idea of domain text as a broker between the other teachers and the design-
research team. She was more experienced than her colleagues, which presumably 
helped in understanding the scientific literature enough to engage with the researcher-
educator and take her colleagues’ perspectives. We agree with Janssen et al. (2015) 
that PPK is not enough to ensure practicality; hence we argue that the need for 
practicalizing will always exist. 
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MATHEMATICAL KNOWLEDGE, INSTRUCTION AND 
LEARNING: TEACHING OF PRIMARY GRADE CHILDREN 

Rakhi Banerjee 
Azim Premji University 

 

The paper reports a small case from a study which aims to understand teacher’s 
knowledge of mathematics, practices and mathematical instruction in the context of a 
developing country. The description and analysis of the case raises concerns about the 
opportunities that students, in such situations, get to learn mathematics and develop 
mathematical forms of thinking and reasoning, which has significant implications for 
their lives. 
INTRODUCTION 
The need for “good” (meaning qualified and trained) teachers is strongly felt across the 
globe and more so in developing countries like India. In India, many students drop out 
of school by the end of primary grades and for many grade 8 is the penultimate year in 
school. Often success in mathematics ends up being a crucial criterion for parents and 
students alike for deciding to continue or discontinue school education; its practical 
value for social mobility is un-questioned. The quality of education and teachers in the 
country is not uniform and one can surely link student learning outcomes to teacher’s 
capacities to teach mathematics; such relationship is more clearly shown in Hill, 
Rowan and Ball (2005). In order to change the situation of access to and success in 
school education, there have been systemic attempts to change the curriculum for 
students as well as attempts to reform teacher education (including increased duration 
and curriculum change), in the last ten-fifteen years. The changes follow many of the 
changes and current thinking around the world. It is no doubt important to increase the 
duration of teacher preparation programmes, given the amount of knowledge that is 
needed to be acquired in order to teach. However, Shulman’s (1986) idea of 
Pedagogical Content Knowledge (PCK), Ma’s (1999) Profound Understanding of 
Fundamental Mathematics (PUFM) and Ball and her team’s work on Mathematical 
Knowledge for Teaching (MKT) (Ball, Thames and Phelps, 2008) indicate the 
complexity of this knowledge. It is not easy to say whether this nuanced understanding 
about knowledge required to teach mathematics has found any place in the teacher 
education system (both pre and continuous professional development) programmes 
within India or in other places as well (e.g. Ball and Forzani, 2009; Adler, 2010).  
In this paper, I analyse one teacher’s knowledge, her classroom practices in the context 
of the mathematics that was taught and made available for learning in a primary grade. 
This is to serve as an illustration for the attempts being made through a larger study to 
capture knowledge, beliefs, practices and mathematics instruction of teachers in 
elementary grades (up to grade 8) and is in the preliminary stage of investigation. Given 
the complex scenario within which teachers are prepared to teach and conditions in 
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which they teach, it has implications for imagining teacher education in the country 
and carrying out such studies.  
THEORETICAL FRAMEWORK 
In the context of countries which are struggling to meet the requirements of the society 
in health and education, teacher support, whenever available, is rather generic; 
familiarizing teachers to new expectations in terms of values and practices, exposition 
on general pedagogic strategies, including preparation and use of low-cost teaching 
learning materials, classroom management, sensitizing them to the diverse population 
of children and adolescents in school. While this may lead to some observable 
difference in schools, such support may not necessarily change teachers’ teaching of 
mathematics or students’ success in mathematics. It is not the general “feel-good” 
factor, but the nature and quality of mathematics instruction that perhaps matters most 
for students’ subsequent life chances and therefore crucial for addressing issues of 
equity and fair chance for everyone (see also Adler, 2010 for similar comments). One 
part of the larger study was therefore designed to understand the knowledge of 
mathematics and teaching practices through mathematics instruction in the elementary 
grades classroom. The study builds on several such work in the past few years which 
have developed frameworks for understanding mathematics knowledge for teaching 
and tools for understanding quality of mathematics instruction in classrooms (e.g. Ball, 
Thames & Phelps, 2008; Learning mathematics for teaching project, 2011; Adler & 
Ronda, 2015; Rowland, 2013).  
It has been a conscious decision in the study to understand teacher knowledge for 
teaching mathematics and their practice in the context of their teaching, as it is known 
that linking teacher knowledge outside the context of teaching with their practice is not 
easy (e.g. Chazan et al., 2003). Moreover, this is also critical for planning any 
systematic and focused intervention with the teachers, which may have some sustained 
impact on the teaching learning process. 
On the one hand, the study aligns with the Mathematics Knowledge for Teaching 
(MKT) framework (Ball, Thames & Phelps, 2008), in its efforts to identify the presence 
or absence of knowledge of content (common, specialized and horizon content 
knowledge) and pedagogical content knowledge (knowledge of content and students, 
knowledge of content and teaching, knowledge of content and curriculum) in the 
observed lessons and during conversation with the teachers. Further, it explores 
teachers’ understanding of the curriculum they teach, the usefulness of the textbooks 
or other materials they may use, the connections they see between ideas within and 
across grades, together with their own understanding of the content they taught during 
our observations and their reflection on their planning and practices inside the 
classrooms during interviews with them.    
On the other hand, it tries to capture the nature and quality of mathematics in the 
instruction and learning opportunities that it provides in the lessons observed. 
Recognizing the importance of mathematics content in the classroom and engagement 
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of students in mathematical activity, a framework for the study was developed on the 
lines of Mathematical Discourse in Instruction (MDI) (Adler & Ronda, 2015), MQI 
(Learning mathematics for teaching project, 2011) and Knowledge Quartet (Rowland, 
2013). The study is attempting to capture key aspects of instruction by the teacher 
during the classroom observations, focusing on: (a) transaction of the content, (b) 
teachers’ awareness of common errors or misconceptions in the topic, (c) nature of 
questions in the classroom, (d) classroom organization, I material or resources used, (f) 
classroom norms and expectations from students, (g) learning opportunities to engage 
with mathematical thinking and reasoning and (h) equity and access issues.  
Transaction of the content is the main body of instruction, where typically the teacher 
may move from basic terminologies, symbols, definitions to explaining a few worked 
out examples before moving to the exercises given in the text book. This part provides 
ample opportunities to observe teacher’s knowledge and practices in the ways she 
communicates the meaning and purpose of the idea, exemplifies it, use of definitions 
and symbols, the choice of representation, explanations she provides for the concepts 
and procedures, and the way the task is put forth and utilized further. The way the 
transaction of the content unfolds in the classroom significantly determines (i) 
opportunities to learn mathematics for students (making sense of the concept, 
procedure or task, space for responding and justifying, space for making errors and 
learning from it, space for making connections between ideas) and (ii) the extent to 
which it provides equitable access for all students (explicitness of instructions and 
explanations, careful building of mathematical language and symbols, non-
discriminating and inclusive practices of giving opportunity to all students to ask and 
respond to questions). Equity itself is intricately linked to opportunities to learn 
mathematics. For the purposes of the present paper, I will restrict the discussion to 
these aspects and not comment on the others.   
METHODOLOGY  
The study attempts to make detailed observation and analysis of teachers’ knowledge, 
practices and beliefs as exemplified through their teaching in the classroom and their 
own reflections on various issues during interviews. As part of the study, teachers’ 
classes are being observed and they are subsequently interviewed on a variety of issues. 
Tools for classroom observations and interviews with teachers have been developed. 
Criteria for classroom observation and interviews with teachers have been briefly 
discussed above. Since video/ audio recording are in general not acceptable by schools 
or teachers, detailed notes of classroom and often verbatim proceeds of the classrooms 
are maintained. After reading and re-reading it a few times, the classroom observation 
schedule is filled. Detailed notes of interviews/ conversations are also maintained.   
There are no strict criteria for selection of schools (other than the medium of instruction 
which must be English). Schools are approached with the intent of working with at 
least 3-4 elementary grade mathematics teachers from the same school and their 
participation is entirely voluntary. Once agreed, each teacher is observed for 5-6 
lessons (approximately 40 minutes each). The study is currently in its initial stages; 
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this paper reports a small piece from the ongoing work which focuses on teacher’s 
knowledge, practices and mathematical instruction that promote or hinder 
mathematical learning. In the next section, I will analyse one of the seven teachers’ 
classroom, who have been observed and interviewed till now, for the transaction of 
content and opportunities to learn mathematics that she provides in the classroom and 
her own reflections on them.  
TEACHING ADDITION/ SUBTRACTION OF QUANTITITES 
Ms T teaches grades 1 and 2 in a school catering to low income families, many of 
whom have migrated from other places in search of livelihood and better prospects. 
She is not trained as a teacher but as a computer professional. She has been teaching 
for two years now and was observed for six lessons altogether in the two grades. The 
administration makes efforts to develop the school and the capacities of the teachers 
using whatever internal and external resources are available and were quite willing to 
participate in this study. Ms T has also been a beneficiary of such efforts.  
During the classes observed, Ms T taught addition and subtraction of measures of 
quantities [money (grade 1), length and capacity (grade 2)] on four occasions and 
reading time from the clock and shapes in the other two. So, I will focus on the former 
rather than the later to bring out the aspects of knowledge and practice and its 
affordances and limitations. After a few minutes of general discussion, energizing 
activities and quick review of the previous lesson or ideas necessary for the given 
lesson, Ms T went straight to give examples and explain the operation on the particular 
measure of quantities. The examples and the tasks across both the grades were similar: 
Add ₹32.64 and ₹29.37 (grade 1), Subtract 329 cm from 793 cm and Subtract 567 l 
209 ml from 923 l 306 ml (grade 2) and so were the explanations. During independent 
problem solving of similar problems following her explanation, she emphasised speed 
with accuracy, which was rewarded by a star or appreciation.  

Measures of quantities provided only a backdrop in which more practice of addition 
and subtraction were carried out. A couple of brief comments were made, in the entire 
duration, to give the students a sense of their utility in everyday life. Else the teacher 
wrote the question on the board and students were thereafter picked one by one by her 
to help solve the task bit by bit. As the class prepared to carry out the addition/ 
subtraction, the children decided which was the number to be written on top row and 
the number of “boxes” required, in the column arrangement. Figure 1 shows the work 
done on the blackboard for the two subtraction questions in grade 2. It shows how 
boxes were drawn to make space for writing the “carry-over” and the changed number 
post “borrowing”. There was no apparent inaccuracy in the solution.  
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Figure 1: Blackboard work in Grade 2 for the two subtraction questions. 

The conversation accompanying the blackboard work is significant, and have 
implications for opportunities to learn and reason about mathematics. It brings forth 
how the teacher makes an attempt to explain to grade 2 children the process of 
subtraction. This explanation might have been given earlier to students as well when 
they would have learnt subtraction with regrouping. In the transcript below, she 
explains why we need to regroup 9 tens (see Figure 1(a)) by modelling “borrowing” in 
the general sense (line 3) and then the children demonstrate a novel way of carrying 
out the subtraction on their fingers (lines 10-12). This particular technique does not 
leave any chances of making an error in computing single digit addition and 
subtraction, as there is no ambiguity related to which number to begin and end the 
counting, especially in the context of subtraction by counting-backward, but 
significantly limits opportunities to learn. It is simple and straightforward but I wonder 
what meaning it may have for the children.  

6 T: I can subtract a big number from small number? If you have 3 chocolates, friend 
is asking 9, you can give? 

2  S (chorus): No 
3  T: You can borrow from others. [She gets two children S1 and S2 to the front of the 

room, having 3 and 9 chocolates respectively, representing ones and tens 
digits, standing in the same order from right to left]. I can borrow from S2 
[who has 9]. Here only 3 is there [digit in the units place]. Can I subtract? 

4  S (chorus): No. [One child is saying cut 3] 
5  T: How much should you borrow? 
6  S (a few): 1 
7  T: 9 will be as it is? S3? 
8  S3: 9 will become 8 
9  T: 9 will become 8, we borrowed 1. I have 13 chocolates, can give 9. 
10  S4: 13 in mind, 9 in finger.  
11  T: Subtraction means before number.  
12  S4: Before 13, …12, 11, 10, 9, 8, 7, 6, 5, 4 (folding the stretched out fingers one by 

one, almost sounding like a rhyme) 
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It is not clear here why one does not “borrow” 6 instead of 1, which will help equalize 
the units place of the minuend and the subtrahend, or how after having borrowed 1, the 
3 becomes 13. In the next transcript, the teacher is explaining the solution for the 
question in Figure 1(b). An attempt is made to explain “borrowing across 0” (line 15-
17), which is found to be difficult by many children. Once again children are not 
introduced to the important idea of regrouping or rate of composition or decomposition, 
crucial for developing a deeper understanding of numbers and number operations. 
Instead, another analogy is introduced in the form of human incapability of “climbing 
multiple steps in one go” (line 17). In the four classes related to addition and subtraction 
of quantities, there was no conversation about quantities or place value, a standard idea 
in such contexts. Also the decimal point is innocuously used in both grades 1 and 2, 
without any consideration to its meaning. Students are not formally introduced to it till 
they are in grade 4 in the country.  

13  T: 6 in your mind, 9 in your finger. [The teacher initiates the student to compute] 
14  S: Before 6, …5, 4, 3, 2, 1. So borrow [some stretched out fingers are yet to be 

folded, but the counting has reached 1, indicating the need to “borrow”] 
15  T: I can borrow from 0, no? 
16  S (chorus): No 
17  T: Borrow from 3, we can climb 5 steps together? 
6  S (chorus): No. 

It is not the case that Ms T was completely unaware of the relationship between the 
digits in a number, as was revealed during the interview. She had weighed the options 
of possible representations (tally marks or based on ten-for-one exchange) and had 
decided to use the “fingers” method for grade 1 and 2 children to check errors as well 
as suitability for her students. She was also aware of the difficulties her students faced 
in relational problems like “___ is 12 less than 35”, as also quickly finding sums of the 
numbers like, 7 and 8. She did not see these as connected to her teaching, where 
numbers were being repeatedly treated as concatenated digits, not just in the operations 
but also in the reading of numbers (seen in grade 1 where she read 32.64 as three two 
dot six four). She knew how to add and subtract two numbers but denied the possibility 
of doing it any way other than by the algorithm, including moving from the left to the 
right direction. 
DISCUSSION AND CONCLUSION 
Ms T seems to clearly lack Specialized Content Knowledge (SCK) for teaching 
mathematics (for example, in her inability to make connections between numeration 
system, numbers, why and when one will add or subtract quantities, or to evaluate 
mathematical suitability of an idea). She also lacked Pedagogical Content Knowledge 
(PCK), especially knowledge of students vis-à-vis the content (their informal 
knowledge, reasoning capacities, errors as a way to learn mathematics), and adequate 
knowledge of representations suitable for teaching multi-digit number operations. In 
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her case, it is difficult to say whether her trouble with teaching is also because of poor 
Common Content Knowledge (CCK) and identifying the boundaries between CCK and 
SCK. She was trying out ways which to her mind were clear enough as explanations 
or “catchy” for her students to remember, with complete disregard of the mathematics. 
Her explanations were not mathematical but were based on misplaced analogies. She 
used the common symbols and representations, with perhaps different meanings in the 
classroom. She used different combinations of numbers for her examples, all needing 
regrouping and including zeros, showing anticipation of student difficulties with 
particular combinations. Though the tasks were in themselves not rich, given her 
students’ social and family background, they would surely have found interesting ways 
of computing them and contributed to their own learning. In the whole process, 
opportunities to develop ways of thinking about numbers or operations were severely 
constrained. Her instructions and explanations looked simple, however they are 
ambiguous, with multiple possibilities of interpretation. Some students had learnt to 
remember and use her rules successfully, which she appreciated, while some others 
may be looking for meaning and purpose and were baffled by her questions. In either 
case, it has serious implications for their future.   

While the details of this particular teacher’s knowledge and practices may be unique 
or different from others, literature abounds with such cases of teachers facing 
difficulties with teaching mathematics at all levels of schooling. The study at this point 
makes a contribution in the following ways: One, it is based in a context where it is not 
common to look at classrooms with a lens like this for developing an understanding of 
the continued poor performance of a large number of students, despite many 
interventions. It attempts to understand and analyse teachers’ knowledge and practices 
independently and within the classroom context, focusing on important aspects of 
content transaction, opportunities to learn mathematics, and equitable access to the 
discourse for all. Two, an investigation of this kind is significant for the scores of 
students who study in similar schools across the country and may have little options 
and opportunities to engage with the subject outside the schools and success in the 
subject is key to their life chances. Three, the analysis indicates the need for focused 
intervention with teachers, and not techniques, like the use of fingers to increase 
accuracy of responses. This teacher and many other teachers like her could be 
supported in acquiring “mathematics for teaching” for the area of whole numbers by 
introducing them systematically to the structure of our numeration system (e.g. base 
10, additive and multiplicative relationships), important aspects of learning oral and 
written numeration, conceptual structures required for learning numbers (single and 
multi-digit) and possible ways, importance of developing number sense and meaning 
of operations and students’ informal experiences with and understanding of numbers.  
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CHANGE IN POSING OPPORTUNITIES TO LEARN IN THE 
CONTEXT OF PROFESSIONAL DEVELOPMENT 

Rinat Baor, Einat Heyd-Metzuyanim 
Technion – Israel Institute of Technology 

 

We apply the commognitive framework to examine changes in instructional practices 
of a teacher participating in the TEAMS (Teaching Exploratively for All Mathematics 
Students) professional development (PD) program. Specifically, we focus on the 
process that has often been named "lowering of cognitive demand". We conceptualize 
this lowering as "ritualization" of OTLs: transitioning from exploration-requiring 
Opportunities to Learn (OTLs) to ritual-enabling OTLs. Two lessons of one elementary 
school mathematics teacher who participated in the PD for two years are compared.  
Findings show a quantitative change in OTLs, as well as change in patterns of 
"ritualization"- transitions from exploration-requiring to ritual-enabling OTLs. 

INTRODUCTION 
Over the past several years, "powerful", cognitively demanding or "explorative" 
mathematics teaching has received widespread interest (Schoenfeld, 2014; Smith & 
Stein, 2011; Heyd-Metzuyanim, Smith, Bill, & Resnick, 2018). This type of instruction 
attempts to minimize the memorization of rules and procedures and to encourage the 
learner to struggle with cognitively demanding tasks, accompanied by discussions in 
which the students develop their mathematical thinking. Yet, despite the enormous 
amount of resources put into professional development for such cognitively demanding 
instruction, studies show that mathematics classrooms around the world often pose 
mainly ritual opportunities to learn (Nachlieli & Tabach, 2018). One of the main 
processes that may underlie this situation, especially in cases where the curriculum and 
the tasks afford explorations, is the phenomenon known as "lowering of cognitive 
demand" (Stein & Smith, 1998). Stein and Smith (1998; Smith & Stein, 2011) showed 
that this phenomenon is extremely widespread. Yet, the mechanisms underlying it are 
not yet sufficiently understood. In this study, we apply the commognitive framework 
(Sfard, 2008; Nachlieli & Tabach, 2018) to examine the discursive characteristics of 
the process of lowering cognitive demand, and how it can change over the course of a 
teacher engaging in professional development. 
THEORETICAL BACKGROUND 
The commognitive framework conceptualizes learning as a process by which learners 
move from enacting ritual routines, where procedures are imitated rigidly and 
performed for the sake of others, to explorative routines, where procedures are picked 
up flexibly for the sake of producing a certain mathematical narrative (Lavie et al., 
2018). Teaching can offer students opportunities for enacting ritual routines or 
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explorative routines. Nachlieli and Tabach (2018) defined the actions of the teacher 
that enable students to follow explorative vs. ritual routines as two distinct types of 
opportunities to learn (OTLs). Ritual enabling OTLs are teachers’ actions that provide 
students with a task that can be successfully performed through rigid application of a 
procedure that had been previously learned. Exploration-requiring OTLs create a 
situation where students are required to produce mathematical narratives based on 
formerly established narratives and on their own authority. In exploration-requiring 
OTLs, there is no possibility of simply following previously learned procedures to 
satisfy the requirement of the task. Something new, even if very specific, needs to be 
conjured up by the student. 

Multiple studies have shown that the practice of "ritualization", which we define as 
turning exploration-requiring OTLs to ritual-requiring OTLs, is wide-spread 
(McCloskey, 2014). Stein and Smith (1998) have termed it "lowering of cognitive 
demand", showing that often tasks that start out as posing multiple opportunities for 
explorations, end up as constrained to demanding only imitation of previously learned 
procedures. As a result of this observation, Smith and Stein (2011) came up with a PD 
program named "the five practices for orchestrating productive discussions" which is 
intended to help teachers avoid the lowering of cognitive demand. This program 
includes various teaching routines such as launching a task, assigning students to work 
in groups, calling them to the board to present their solutions and linking between them. 
Previous studies have shown that although the "5 Practices" are often accepted with 
much enthusiasm by teachers, the realities of changing discursive practices in whole- 
classroom discussions are complex and not sufficiently understood (Heyd-
Metzuyanim, et al., 2018). Their examination necessitates a discursive approach, which 
helps delineate the exact interactional processes that occur between the teacher and the 
student as this "lowering of cognitive demand" occurs. For this, the commognitive 
approach, which combines conceptual tools for looking at interactional and 
mathematical aspects of the discourse, is particularly useful. 
According to Sfard (2008), routines are enacted in mathematics to produce endorsed 
narratives about mathematical objects or mathematical signs. Endorsed narratives are 
texts that are accepted as truths by the relevant community. Routines are identified by 
three distinct parts: initiation, procedure and closure.  
Our research question is thus: how does the process of ritualization (turning from 
explorative-requiring to ritual-enabling OTLs), as identified in the teaching of one 
teacher, change in the lessons of that teacher after professional development?  
RESEARCH METHODS 
This study was based on a case of a teacher we shall call Simone. Simone was an 
experienced teacher (around 27 years of experience in teaching mathematics) and was 
usually teaching the higher grades of elementary school. She participated in the PD for 
two years, where this PD included around 60 hours of group instruction in a teachers'-
district center, accompanied by 60 hours of individual work on lesson planning, 
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implementation and reflection. Parts of these individual-work hours were allocated for 
the coaching of the first author (who was also the PD instructor) with individual 
teachers who volunteered for the study. Simone received around 6 hours of such 
coaching, including lesson planning, observation of her lessons and a feedback session.  
For the close analysis of the present study, Simone was chosen out of 30 teachers whom 
we have videotaped data on, since we got the impression, both by observations and by 
more macro-scale evaluation tools, that some aspects of her practice have changed. Yet 
despite this general impression, it was difficult to pinpoint what precisely had changed 
in Simone's teaching.  
From the eight lessons that Simone taught and videotaped, two lessons were chosen 
for comparison - the first and the last. Both lessons took place with the same class, the 
first during December 2016 in Fifth Grade and the second during February 2018 in 
Sixth Grade. The tasks in both lessons were identified by us as cognitively demanding, 
requiring students to reason and form generalizations. The similarity between the tasks, 
their levels of cognitive demand, goals, visual mediators, and lengths created a good 
basis for comparison, which is essential for a micro-analysis.  
Analysis 
In order to identify exploration-requiring OTLs, the analysis was carried out in three 
stages. The first stage followed the method described in Nachlieli & Tabach (2018), 
and segmented the lesson to routines and sub-routines of OTLs. Generally an OTL 
opened up with a question or a prompt made by the teacher. Often, this question or 
prompt was rephrased by the teacher into another question, which consisted of a prompt 
for a sub-routine: a procedure that needs to be followed in order to produce the original 
routine. Routines were numbered using whole numbers (1, 2, etc.) while sub-routines 
and sub-sub-routines were numbered 1.1, 1.1.1 respectively.  
The second stage of the analysis was intended to illuminate the nature of each of the 
narratives that the routines and sub-routines were intended to produce. This was 
imperative for determining the explorative vs. ritual status of the OTL, as will be 
detailed in the next section. For categorizing the narratives, we turned each of the 
teacher's prompts into an "expected narrative". An expected narrative is a narrative that 
is most likely to be received as a result of a teacher's question or prompt. For example, 
if the teacher asked "how many squares are there here?" and pointed to a picture with 
4 squares, the expected narrative would be "there are 4 squares here". Since we do not 
have access to the teacher’s or students' expectations, we interpreted the expected 
narratives according to the context and to what would be reasonable for a student to 
imagine as an acceptable response. After coupling teachers' questions into "expected 
narratives", we turned to describe the students' replies as "received narratives". This 
produced two outcomes: one was a clear blue-print of the structure of the OTLs in 
terms of expected and received narratives. The second was a clear operationalization 
of ritual vs. explorative OTLs. This led to the third stage of analysis, which consisted 
of mapping OTLs to exploration-requiring vs. ritual-enabling. Exploration-requiring 
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OTLs were defined as teachers' prompts in which there were several (if not infinite) 
possible expected-narratives that could be derived from the prompt. Ritual-enabling 
OTLs were defined as prompts where the expected narrative was limited and well-
defined. Exemplification of this analysis will be presented in the findings section. 
FINDINGS 
Our first finding concerns a quantitative comparison of the ritual and explorative sub-
routines in each of the lessons (see Figure 1). This comparison shows change between 
the first and second lesson in the number of exploration-requiring and ritual-enabling 
OTLs. For the current comparison, we counted only OTLs occurring during the whole-
classroom discussion. Therefore, the routine numbers (A4-A7, B4-B7) in Figure 1 start 
from 4. Whereas in the first lesson there were 18 exploration-requiring OTLs and 33 
ritual-enabling OTLs, in the last lesson there were 20 exploration-requiring and only 
10 ritual-enabling OTLs. We note that a high number of OTLs is not necessarily a good 
sign, since it often shows that the teacher asked many questions and did not give 
enough time for students to respond. Thus, a rise of the ratio of explorative to ritual 
OTLs (from 18:33 to 20:10), together with a lowering of the total number of OTLs 
(from51 to 30) shows a substantial change in the overall opportunities given to students 
to participate and contribute substantial mathematical narratives during the discussion.  

 

Figure 2: Exploration-Requiring and Ritual-Enabling OTLs in the two lessons 
The transition from exploration-requiring to ritual-enabling OTLs 
After mapping the OTLs, we examined all the situations in which the teacher opened 
up the routine or subroutine with an exploration-requiring OTL and followed this by 
switching to ritual-enabling OTLs. We found these situations to be generally 
characterized by the student failing to come up with one of the expected narratives that 
would be deemed as acceptable under the exploration-requiring OTL. This either 
happened when the students showed confusion with relation to the teachers' requests, 
or when they produced an answer that was not sufficiently clear (as perceived by the 
teacher) for other students to hear. 
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Figure 3: the Squares and Perimeters task used in Lesson 1 

For example, Table 1 shows the deterioration of an exploration-requiring OTL, where 
the teachers invited students to raise hypotheses regarding why they were asked to 
"continue on and on" with examining different square-configurations and their 
perimeters (see figure 2).  
The expected narratives that could be produced as response to this prompt were 
various, including narratives about the arrangements producing the lowest and highest 
perimeters, which were probably what the teacher was after. The received answer, 
however, was rather limited. One student said "to find a rule". The teacher thus opened 
another explorative OTL (6.1)  asking "how do we receive a shape with a large 
perimeter?" Although the possibilities for answering this question were more 
constrained, we still categorize this OTL as exploration-requiring since there are a 
variety of narratives that could be deemed as acceptable, all concerning the ways by 
which one could "receive the larger perimeter".  

Table 1: Mapping OTLs according to Expected/Received narratives  
Not having heard an acceptable answer to this question, the teacher quickly moved to 
an even more constrained question, this time, providing a ritual-enabling OTL (6.2): 
"What is common to all these arrangements I have here, that are built from 5 squares?". 
Now the only acceptable answers would be quite constrained, falling under the 

Narratives expected/ received in Lesson 1, Routine 6   
6. Expected: a variety of narratives concerning the connection between the squares' arrangement and 
their perimeter  
 6. Received: (We were asked to continue on and on so that we find) a rule 
6.1 Expected: variety of narratives regarding the relation between the shape and the largest perimeter  

6.1 Received: inaccurate answer  
6.2 Expected: All arrangements (on the board) are built of 5 squares and their area is equal  

6.2 Received: Student remains confused 

6.2.1 Expected: All  the shapes have the same area 

6.2.1 Received: The shapes are built from 5 squares 

Legend: 

Received Ritual-enabling Exploration-requiring 
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narrative "they all have the same area". Since the students still did not produce the 
expected answers, the teacher continued posing this question in slightly different 
wordings (6.2.1); until she got the narrative that "all shapes are built from 5 squares". 
The above analysis was performed on all routines and sub-routines of the whole-
classroom discussion. It revealed a more precise view of the ways by which the teacher 
changed her discursive practices around presenting OTLs from the first to the last 
lesson. Figure 4 shows a bird's-eye view of the change in ritual-enabling and 
exploration-requiring routines and sub-routines of two particular routines that we found 
the most amenable for comparison. The first routine is Ls1.routine 6, which was 
partially described above and in table 1. The second was a routine from the last lesson, 
which had a very similar function: Simone attempted to elicit from the students an 
explanation regarding how they had solved the S patterns problem (see figure 3).  

 

Figure 4: The S task implemented in the last lesson 
The routine occurred after one student had already presented his group's solution, 
which could be algebraically described as (n+1)(n-1)+2. The teacher, having monitored 
the students while working in groups, probably expected the group of girls she was 
inviting to the board to produce an alternative narrative which could be summarized as 
n*n+1. Yet, similarly to the first lesson, the students were unable to articulate their 
reasoning once invited to the board. This situation produced, in the first lesson, an 
immediate deterioration into a series of ritual OTLs. In the last lesson, however, as can 
be seen by the recurrence of exploration-requiring OTLs, the teacher went back and 
forth more flexibly between explorative-requiring and ritual-enabling OTLs. The 
ritual-enabling OTLs consisted of prompts encouraging the students to explain their 
solution to the 3rd structure (using the 3 × 3 + 1 calculation), yet immediately went 
back to requesting the students to explain their general solution, which provided an 
explorative-requiring OTL. 
Importantly, the two teaching routines produced very different results, in terms of end 
narratives. Ls1.Routine 6 ended up in a narrative that was quite peripheral to the goal 
of the routine (square cm are used to calculate area). In fact, the whole lesson never 
produced a clear narrative regarding the connection between the shape of the squares 
and the perimeter. In contrast, Ls8.Routine 6 ended up with an acceptable mathematical 
narrative regarding the appropriateness of the girls' solution ((𝑛 + 1)(𝑛 − 1) + 2 =
𝑛 × 𝑛 + 1). Although this narrative, in its algebraic form, was beyond the reach of most 
of the classroom, it enabled the teacher to further explain the two forms of 
generalizations produced by the students.  
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Figure 5: "Birds eye" view of the patterns of Exploration-requiring and Ritual-

Enabling OTLs in Simone's first and last lessons  
We thus see a clear change in the ways by which the teacher handled situations that 
had originally, in her first lesson, produced deterioration into ritual-enabling OTLs. In 
the first lesson, the teacher's ritualization moves produced, gradually, partial narratives 
that became more and more peripheral to the main narrative that she wished to elicit 
from students. This main narrative was "the more elongated the shape of the squares, 
the bigger is the perimeter, while the more 'condensed' the shape is, the smaller the 
perimeter becomes". Instead of producing this narrative, her gradual production of 
OTLs that were more and more ritual-enabling, produced partial narratives such as 
"square cm measures area". In the second lesson, we did not see such "breaking up" of 
the main narrative into partial and meaningless sub-narratives. Instead, there was a 
back-and-forth movement between narratives about particular mathematical objects 
(such as shape 3 can be described by 3 × 3 + 1), geared towards describing a general 
shape.  
DISCUSSION AND CONCLUSIONS 
Change in teaching practices towards explorative instruction has been a notoriously 
difficult process to capture (Heyd-Metzuyanim et al., 2018). In the present study, we 
offer first steps to applying the commognitive framework, with its precise definitions 
of ritual and explorative routines, to capture this process. The commognitive approach 
has been widely used in the study of processes of mathematics learning in interaction  
(see review in Herbel-Eisenmann et al. 2017). Its usefulness for the study of teaching 
practices has only recently started to surface (Heyd-Metzuyanim et al., 2018; Nachlieli 
& Tabach, 2018). In the present study, we show this approach can illuminate the 
process often known as "lowering of cognitive demand" (Stein & Smith, 1998), as it 
happens in teacher-learner interactions. This has important advantages over approaches 
that simply show that such lowering occurs. Our study sheds light on how this process 
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occurs. We saw the teacher, as a reaction to children not producing expected narratives, 
"broke-up" the expected narratives into meaningless parts. We also saw that this 
ritualization process could change through a process of professional development 
process.  In the case of Simone, the change occurred very gradually and over a long 
period. It remains to be seen, in future studies and PD interventions whether awareness 
of such discursive patterns of ritualization can help teachers make the transition 
towards more explorative instruction faster and more efficiently. 
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Lesson Study (LS) is a method of both pre-service and in-service teacher education 
that originates in Eastern countries but has been spread all over the world in the last 
decades. According to the framework of Cultural Transposition, we believe that 
introducing LS in cultural contexts that are so far from Eastern ones brings to light the 
differences between Eastern cultures and other cultures. In particular, the experience 
of LS can bring to light different cultural beliefs underlying the practice of teaching, 
and make teachers reflect on them. In this paper we analyse data collected from 5 
Italian pre-service teachers after their experience of LS in Italian schools during their 
internship, concerning in particular their beliefs about the potential and the limits of a 
rigid or a flexible way of planning and conducting a math lesson. 
INTRODUCTION 
A Lesson Study (LS) cycle  

consists in preparation, actual class and class review sessions […] This process begins with 
finding and selecting materials relevant to the purpose of, and is then followed by refining 
the class design based on the actual needs of the students and tying all this information 
together into a lesson plan. The significance of LS is that all of these processes are 
performed in collaboration with other teachers. A classroom is then taught based on the 
teaching plan devised. The class is observed by many teachers, who are sometimes joined 
by university instructors and supervisors from the board of education, and a review session 
is held for all observers after the class. (Baba, 2007, p. 2)   

LS is a model for mathematics teacher education and development used all over the 
world (Quaresma et al., 2018). It was initiated in Japan in the late 19th century (Isoda 
et al., 2007) and extended with adaptation in many others countries in Australasia, 
North and South America and Europe, up to the constitution in 2007 of the World 
Association for Lesson Studies (walsnet.org). Some key questions of the international 
reports concern the development of pre-service and in-service teachers’ knowledge, 
with attention to teachers’ learning. Less attention is paid to teachers’ beliefs (for 
relevant exceptions see for example Inprasitha & Changsri, 2014). 
According to the framework of Cultural Transposition (Mellone et al., 2018), we think 
that differences between the so called CHC (Confucian Heritage Culture), where LS 
originated, and Western culture (Li, 2012; Nisbett, 2003; see Phuong-Mai et al., 2005, 
for CHC definition) must be taken into account when LS is realized in Western 
countries; in particular, in order to conduct LS in Italian schools, we undertook a 
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process of adaptation of the original structure of LS to make it more consistent with 
Italian culture and context (Bartolini Bussi et al., 2017). However, despite this attempt 
of adaptation, LS continues to be a method that is very far from Italian school culture, 
also because of its current scarce spread in Italian schools.  
In Italy teachers rarely use very structured way of lesson planning. Italian scholastic 
context in fact is characterized by inclusiveness (Bartolini Bussi et al., 2017) (i.e. the 
same class can include children with learning difficulties, with physical and mental 
disabilities, children that are not Italian speakers, and so on), and a child-centered 
vision of teaching (i.e. teachers tend to believe that each child has his/her own specific 
characteristics and needs individualized support) (Li, 2012). Moreover, in Italy 
teachers are free to choose own teaching methods and the sequencing of the topics to 
be treated (Bartolini Bussi et al., 2017). Italian primary teachers usually spend many 
hours in the same class and teach in the same class for more than one year, and this 
makes them feel “less anxious about the short term effects of their teaching and 
encourages them to take care of and to observe long term processes” (Bartolini Bussi 
& Martignone, 2013, p. 3).  
LS, instead, reflects a completely different way to conceive both the planning and the 
management of the lesson. The version of Lesson Plan we proposed to Italian teachers 
(for more details see Bartolini Bussi et al., 2017) consisted in a table to plan a lesson 
of exactly 60 minutes, requiring teachers to state explicit objectives and prerequisites 
of the lesson, and to describe and justify for each phase of the lesson the activity to be 
carried out, its educational aims, the time required for it, materials and focus of 
observation. 
In this report we focus on the influence of this version of LS as introduced in the 
internship experience of Italian primary pre-service teachers. Data we present here are 
part of a larger study concerning primary pre-service teachers attending the University 
of Modena and Reggio Emilia, focused on their beliefs about mathematics teaching 
and the changes they undergo during their education (Funghi, 2019). This was the first 
university in Italy to introduce LS into the possible activities to be experienced during 
the internship of the last two years of the teacher education programme. For reasons of 
space, we focus on the discussion of one of the aspects emerged from data, i.e. the 
potential and the limits of rigidity and flexibility in the way of planning and conducting 
mathematics lessons.  
THEORETICAL FRAMEWORK 
Literature on beliefs: the case of cultural beliefs 
The problem of identifying a shared definition of beliefs has been widely discussed in 
mathematics education, but nevertheless, there is no internationally accepted definition 
(Zhang & Morselli, in Goldin et al., 2016). Skott (2015) highlights that it is difficult to 
grasp all aspects of the ‘belief’ concept in a single explicit definition, and that it can be 
more useful to recognise the main properties of the concept itself, according to what 
has been discussed in the literature: 
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The core of the beliefs concept may, then, be defined as subjectively true, value-laden 
mental constructs that are the relatively stable results of substantial prior experiences and 
that have significant impact on practice. (p. 6) 

Abelson (1979) and Nespor (1987) have both argued that beliefs may originate from 
culture or personal experience. What seems to be missing in the literature is research 
on teacher beliefs originating from culture. We might adopt the term cultural beliefs, 
as mentioned by Bruner (1996) in his elaboration of “folk pedagogy” as “taken-for-
granted practices that emerge from embedded cultural beliefs about how children learn 
and how teachers should teach” (p. 46).  
The discussion about how to define “culture” is complex (e.g. Bishop, 1988, p. 4). We 
shall adopt a working definition that seems to encompass what is required for our 
purposes: 

[culture is] the system of shared beliefs, values, customs, behaviours, and artifacts that the 
members of society use to cope with their world and with one another, and that are 
transmitted from generation to generation through learning. (Bates & Plog, 1990, p. 7) 

Within this frame, we propose to connect the definition of cultural beliefs to the 
“system of shared beliefs” mentioned in this definition of culture, adopting the 
following working definition: 

Cultural beliefs are, on the one hand, beliefs which are socially shared within a given 
culture and are considered as characterising this culture by its members, and, on the other 
hand, individual beliefs which are reconnectable and adherent – within a certain degree of 
re-elaboration and personalisation – to beliefs proper to the culture of the society of which 
the individual is a member. (Funghi, 2019) 

This kind of beliefs are usually invisible to the eyes of the members of one culture, 
because they provide those shared and implicit meanings that allow them to think, 
communicate and share a common perspective on the world (Bruner, 1996). So, among 
the people coming from the same cultural context these meanings are taken for granted. 
Our claim is that when we deal with people, methods or tools coming from another 
cultural context, we are forced to reflect on those meanings we usually take as given, 
reaching a greater awareness about what we believe as members of a certain culture. 
Moreover, we suddenly realise that what we usually take for granted is not and that 
other meanings are possible. Our elaboration is consistent with the construct of Cultural 
Transposition (see Mellone et al., 2018).  
Research questions 

How did the experience of LS during the internship influence pre-service teachers’ 
beliefs about the potential of a detailed and structured way of planning and 
conducting a math lesson? 

Were their beliefs either consistent or contrasting the cultural beliefs shared by the 
Italian practicing teachers? 
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METHODOLOGY 
For reasons of space, we focus on data collected from 5 pre-service teachers attending 
their 5th and last year of education, who participated to a LS cycle realized in a primary 
school within their internship. The participation to the interview was completely 
voluntary, so our sample is a convenience one. We refer to these pre-service teachers 
with the pseudonyms Ambra, Sofia, Rosanna, Renata and Daria. Each interviewee 
participated in a different LS project, conducted independently from one another and 
focused on different topics.  
In order to study their beliefs we decided to collect narrative data, because according 
to Bruner (1990) narration is the means by which the human being makes sense of his 
own existence, organizes his own experience and his own memory – and therefore also 
his own beliefs (Nespor, 1987; Pajares, 1992). Moreover, it is well-known that when 
we deal with beliefs it is not only their content that matters, but also their organization 
and their mutual relationships (Green, 1971). Therefore, the collection and analysis of 
narrative material is particularly suitable to study phenomena intimately connected 
with the organization and personal processing of experience and memory, as in the case 
of beliefs and identity (Kaasila, 2007).  
We chose semi-structured interview with open-ended questions as research instrument, 
because it “enables respondents to project their own ways of defining the world” 
(Cohen et al., 2007, p. 182). The main questions of the interview were established a 
priori, but the wording and the order of questions could  vary, in order to let the 
interlocutors to focus on the aspects they retain more relevant (Furinghetti & Morselli, 
2011) or even to focus on unexpected but interesting issues (Cohen et al., 2007). The 
interviews were conducted after the completion of the LS cycles by the interviewees. 
Many aspects of pre-service teachers’ education were discussed, but for the aims of 
this paper we will limit our discussion to the part of the interview focused on the LS 
experience. It regarded mainly the following topics:  

a short description of the overall LS experience and of the planned lesson; reasons 
for their participation in a LS during the internship; difficulties found in lesson 
planning in relation to the class’s specificity; 

interviewee’s feelings in planning with in-service teachers; aspects that they liked 
or not of LS, and reasons for that; 

if they were willing to participate to other LS in the future and to use the Lesson 
Plan as a planning instrument for everyday lessons.  

The interviews lasted between 30 and 80 minutes, depending on interviewees’ will to 
talk; they were all audiotaped, and then fully transcribed. 

Concerning the analysis of data, we refer to Lieblich et al. (1998), who describe 
different approaches to narrative analysis, depending on the two dichotomies form vs 
content (regarding the choice to focus the analysis on the form or the content of a 
narrative) and holistic vs categorical (concerning the unit of analysis, which can be the 
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whole text or single sentences extracted from the context, respectively). We adopted 
the content-categorical approach, since it is considered to be suitable to study a 
phenomenon common to a group of people (Kaasila, 2007).  

RESULTS AND DISCUSSION 
Our interviewees describe their first impression of the LS planning method as 
“mechanic” and rigid, difficult to be strictly followed in the complex setting of Italian 
classes. This aspect was highlighted in particular by Sofia, who claimed:  

“A first, it [i.e. the LS method] seemed to me a little mechanical because it is given a 
specific timing for each activity within the lesson, and I think that in an Italian class 
giving a specific timing is not always easy, it depends on the class, on the situation and 
on the kind of activity, so I was a little doubtful about it”.  

Ambra and Renata gave two different explanations for Italian teachers’ difficulty in 
following a strict timing: Ambra highlighted the difficulty to meet the needs and the 
difficulties of every child within fixed times (“If you keep on schedule […] you cannot 
spend other time on a new explanation of the same concept or searching for another 
way to make children understand it”), whereas Renata commented that Italian teachers 
usually do not pay attention to the time they spend on a certain activity or topic (“In 
my opinion the main difficulty that especially experienced teachers may meet […] is 
precisely this very detailed way of planning the lesson […] because many times 
teachers tend to improvise, or they are not used to monitor schedule and time spent on 
each part of an activity so much”). These beliefs reflect Italian teachers’ habits of 
planning and conducting lessons: the lesson is usually thought to be very flexible, since 
the teacher shapes its development depending on children’s needs and reactions. This 
is due, in our opinion, both to inclusiveness and to the focus on long term goals of 
Italian school.  
Another feature of LS very far from Italian teachers’ habits consists in the LS implicit 
request to anticipate in detail the different possibilities of development of the lesson 
and children’s reactions, as Renata noticed:  

“What I really liked about LS is that when you plan the lesson you have to imagine all 
the answers children can give. [...] A lot of variables have to be taken into account. In my 
opinion, this is a very interesting feature of LS because usually teachers do not do that in 
their didactic practice”.  

Concerning this issue, Rosanna emphasized also her initial feeling of discomfort 
related to the difficulty of knowing in advance students’ reactions, since at first she 
could not understand its usefulness:  

“At first, I was a bit bothered by the fact that I had to think about every small detail, to 
try to imagine everything children can say or do […] this idea of thinking about every 5 
minutes of an hour of lesson [...] is so different from how we are used to plan lessons that 
I assure you that I did not understand what it was until I tried it”.  
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Therefore, our interviewees stated that they had beliefs that are consistent with cultural 
beliefs shared by Italian teachers in general, before they experienced LS.  
Anyway, as we can see from the previous excerpts, LS constituted the opportunity to 
change their mind about the possibilities of other ways to plan and conduct a math 
lesson. All the interviewees realized that a certain strictness in the way of planning the 
lesson can be really useful, even if they gave different reasons for that. For example, 
Daria highlighted how the Lesson Plan makes the teacher reflect on his/her 
intentionality when he/she plans an activity:  

“[I like] the idea of [expliciting] what do you do at a certain point, why you do it; for 
example, [when I write] ‘I present materials to children’ [I have to ask myself] «Why do 
I present it in this way? Because I know that children first touch something, then they 
understand that it is useful»; therefore, I think it is useful to keep on asking ourselves 
«Why I do it?», not just thinking «I do it because I already know that»”. 

 Sofia claimed that planning a precise timing for each part of the lesson avoids 
downtimes and fosters children’s attention:  

“Actually, I realized that the management of time is better when you plan in this way, I 
mean, there are no downtimes, so the time is exploited at its best. This is an important 
thing, also because children perceive that the lesson has been strictly planned, so that 
they themselves do not waste time”.  

Rosanna and Renata, instead, observed that having a clear goal to reach within 60 
minutes is very useful because it helps the teacher to manage better the time at disposal:  

Renata: In my opinion, having a thread [of the lesson] is very useful, because it happens 
that during lessons I find myself at certain points when I do not know what to do, so I 
think that having a plan to follow can be really helpful. Rosanna: [...] having such a 
detailed timing is positive because within an hour, within a lesson, you reach a goal.  

Renata stated also that this way of planning avoids the teacher to get lost in the 
development of the lesson (“In my opinion, this [i.e. the lack of a rigorous plan] 
constitutes actually one of teachers’ problems, because they tend to get lost”), and that 
anticipation of children’s reactions and possible developments of the lesson is useful 
to exploit children’s contributes at their best (“According to me [it is important] to give 
weight to children’s answers [...] I noticed that, especially in the class where I am 
doing internship, the teacher tends to consider a lot children’s responses, she stops, 
lets them reason, but after all... she does not use their answers to develop a reasoning 
[…], so I think LS can be useful to bring out [from children] some aspects related to 
the activity that is being done, in order to develop them [...] it made me realize that the 
teacher must consider pretty much everything that can come out from an activity”).  
These words testify that experiencing LS let our interviewees not only change their 
mind about the opportunities of using a rigid way of planning and conducting the 
lesson, but it made them reflect on the possibility that being flexible sometimes can be 
not necessarily the best way to cope with their needs. For example, both Renata and 



Bartolini Bussi & Funghi 

PME 43 – 2019                                                                                                      2 -  87 

Sofia in the excerpts above recognized that following a structured and rigid plan 
actually helps the teacher to exploit at best children’s attention and children’s 
contributes, which are elements of primary importance in a child-oriented view of 
teaching. So, LS revealed to be challenging but important in order to look critically to 
their unconscious beliefs concerning planning and conducting lessons that they 
absorbed from Italian context.  
CONCLUSIONS 
Our study shows the potential of LS as a means of becoming aware and challenging 
one’s own beliefs. In the Italian case the LS could be - as was the case for our trainees 
- a good opportunity to review their beliefs about effective ways to design a lesson, 
making it possible to realize the potential of more structured design methods even 
within complex contexts, where the teacher needs to take on many important 
educational choices. In this sense, in some cases (e.g. Renata, last excerpt), they can 
take a distance from a shared practice observed during internship and connected to 
Italian teachers’ cultural beliefs. The introduction of the LS in local contexts different 
from the original ones can be interesting both to explore the cultural beliefs typical of 
the original LS and to reflect on those local beliefs that seem ill-consistent with the LS: 
for instance, in the case of the Italian context, the belief to remain adherent to a child-
centered teaching (hence to develop a flexible attitude) could be in conflict with the 
strict structure of LS – but as we saw this is not always the case. This potential is 
interesting as it applies to prospective teachers too, where training is in the foreground. 
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A STUDY OF JAPANESE PRIMARY SCHOOL TEACHER 
PRACTICES DURING NERIAGE  

Valérie Batteau 
University of Education of Joetsu 

 

This research aims at analyzing teacher practices in a Japanese context with a focus 
on the neriage, a specific phase of structured problem solving lessons. We analyze 
teacher practices with the specific tools of the double didactical and ergonomical 
approach, during a neriage that takes place during a sequence of lessons on length in 
3rd year of primary school. This research highlights some characteristics of practices 
during neriage promoted in the problem solving approach. 
INTRODUCTION 
Mathematics teaching in Japanese primary school has some specificities: the ordinary 
lessons are often in a structured problem solving lesson format (for example, Stigler & 
Hiebert, 1999; Takahashi, 2008). Pre-service and in-service often manage in Lesson 
Study, a format of teachers’ professional development based on their collaborative 
works (for example, Miyakawa & Winsløw, 2009). 
The structured problem solving lesson consists of several phases of which one is called 
neriage, a whole-class discussion in which students compare and discuss ideas, 
solutions or methods for solving the problem. Neriage means polishing up and is used 
by Japanese teachers and researchers in mathematics education (Shimizu, 1999). 
Neriage has a “dynamic and collaborative nature of a whole-class discussion during 
the lesson” (p. 110). According to Shimizu, the teacher’s role is to orchestrate students’ 
strategies and ideas, to highlight important mathematical ideas to reach the goals of the 
lesson, and to help students polish their solutions in order to learn mathematical 
content. During this phase, students struggle with the problem and should find their 
own way to solve it: this experience let them make links between their earlier 
knowledge and the new content that they are going to learn through neriage (Shimizu, 
1999). For Japanese teachers, the neriage is considered as the heart of teaching 
mathematics through problem solving (Takahashi, 2008). Furthermore, the neriage is 
“critical for the success or failure of the lesson” (Shimizu, 1999, p. 110). 
In a case study of three Swiss primary school teachers, we highlighted the difficulty 
for teachers to manage whole-class discussions with comparison of students’ strategies, 
hierarchization of strategies, and to emphasize the knowledge or the method at stake in 
the problem (Batteau, 2018). This difficulty is well known in the French context also 
(for example, Charles-Pézard, Butlen & Masselot, 2012; Peltier-Barbier et al., 2004). 
In the Japanese context, this research proposes to focus on the teacher’s practices 
during this specific phase, the neriage, because that is part of ordinary practices and 
considered as the heart of the lesson by Japanese teachers. 
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We present some elements of the double didactical and ergonomical approach, the 
research question and, the methodology. Then, we present the analysis of the teacher 
practices during a neriage that takes place during a sequence of lessons on length in 3rd 
year of primary school (8-9 years old). The last part is a conclusion of this research. 
THEORETICAL FRAMEWORK 
Robert and Rogalski (2005) developed a framework based on a double viewpoint, one 
in the French didactic of mathematics and another in ergonomics with activity theory 
(Leontiev, 1975; Leplat, 1997). This framework allows to analyze practices in taking 
into account the complexity of teaching, both as an individual and a professional act. 
The term practice concerns speech, actions and, thoughts of teachers and also “all work 
done by that teacher, whether before, during, or after class time” (Robert & Hache, 
2013, p. 25). Indeed, this framework aims at analyzing the relation between teachers’ 
and students’ activity in class, but also the constraints on teachers in the context of their 
profession. Thus, two closely linked elements are considered to analyze teachers’ 
practices: students’ activities and teachers’ management of the class (Robert & Hache, 
2013; Robert & Rogalski, 2005). Teacher practices are analyzed with two specific 
components of practices in the class, the organization of the tasks for the students, the 
cognitive component, and teachers’ interactions with students, the mediative 
component (Robert & Hache, 2013; Robert & Rogalski, 2005). 

The cognitive component corresponds to a teacher's choices regarding content and tasks, 
including their organization, their quantity, their order, their inclusion within a curriculum 
beyond the class period, and plans for managing the class period. (Robert & Hache, 2013, 
p. 51) 

The mediative component corresponds to the teacher’s choices that  
may include improvisations, speech, student investment and participation, instructions, 
assistance to students in completing the tasks, identification of their work and the work of 
the teacher, validations, explanations of knowledge, etc. (Robert & Hache, 2013, p. 51) 

To include the professional dimension in the practices’ analysis, Robert and Hache 
(2013) add three other components of practices: personal, social and, institutional. The 
personal component describes how the teacher invests his/her leeway, what his/her 
representations (about mathematics, teaching of mathematics, his/her students) and, 
his/her mathematical knowledge are. The social component corresponds to the fact the 
teacher is not alone in his/her classroom, how he/she is enrolled in his/her school. The 
institutional component corresponds to constraints: schedule, official programs… 
This article focuses on some aspects of the cognitive component of practices (the 
progress of the lesson, the choice of tasks) and on some aspects of the mediative 
component of practices: teacher interventions, validations, helps (collective, 
individual, with or not reduction of mathematical requirements, procedural or 
constructive) and, explanations of knowledge (contextualized to the task or 
decontextualized, new and old knowledge). 
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RESEARCH QUESTION 
We analyze the cognitive and mediative components of practices in order to understand 
how a teacher manages neriage. The question is: what are specific tasks, interventions, 
validation of solutions, helps and explanation of knowledge managed by the teacher 
during the neriage in order to teach what is aimed in the activity? 
Thus, the Lesson Study process is used as a favored access to analyze and to understand 
the Japanese teacher’s practices during neriage. “Teaching is not a simple skill but 
rather a complex cultural activity that is highly determined by beliefs and habits that 
work partly outside the realm of consciousness” (Stigler & Hiebert, 1999, p. 67). So, 
we assume that Japanese teachers prepare, anticipate and, implement specific and 
culturally embedded practices in order to manage the neriage phase of structured 
problem solving lessons. 
METHODOLOGY 
Within a qualitative methodology we have been collecting data in a 3rd grade class 
(students of 8-9 years old) in a primary school during a sequence of 15 lessons, between 
30 and 150 minutes each, on “feeling the length”. The 3rd lesson is the neriage of 
personal strategies for the measure of the length of the corridor. The 8th lesson is a 
research lesson that takes place during a lesson study process inside the school. That 
means we collect the lesson plan of this research lesson and the report of the research 
lesson. The lesson plan includes teacher mathematics analysis about the sequence, not 
only for the research lesson. The corpus contents videos of 15 lessons and written data: 
blackboards of each lesson, lesson plan, report of the research lesson, textbook and 
teacher’s guide. We analyze cognitive and mediative components of teacher practices 
from written data and from the neriage during the 3rd lesson, transcribed and translated. 
The primary school is attached to the University of Education of Joetsu. It means that 
teachers are considered as experts and they do research, one of which lesson study. The 
teacher, Kazu, has twelve years of teaching experience.  
The next part is some results of the analysis of the Kazu’s practices in the double 
didactical and ergonomical approach. 
ANALYSIS OF THE TEACHER’S PRACTICES 
Cognitive component: Progress of the lessons 
During the 1st lesson, Kazu presents the task: measure the length of the corridor in the 
school, students think about how they can realize this task. Kazu manages a whole-
class discussion about their ideas. During the 2nd lesson, students measure the length 
of the corridor with personal strategies. This is the detailed progress of the 3rd lesson. 
At the beginning (1:00-6:21), each group of students give their results, the measured 
length of the corridor in meters and centimeters (in the table, see figure 1). 
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Figure 1: the blackboard at the end of the 3rd lesson 

Kazu asks students to compare the different results. Then he presents a measuring 
wheel and its operation (8:55-11:39). One of the students measures the length of the 
corridor with the measuring wheel, observed by the others (11:39-19:39). Thus, they 
obtain the exact result of the length of the corridor, 47 m 59 cm (19:39-23:59). Then, 
Kazu manages the neriage phase (23:59-57:00). 
 Kazu interventions during the neriage Mathematical activity proposed 

by Kazu to students  

23:59 What is the closest result to the exact length?  

How did students of the group n°2 measure the 
length? How did they feel? 

Compare results with the exact 
result 

The group of students n°2 
explains his strategy and what 
they feel 

26:09 How did the other groups of students measure 
the length? 

Validate the students’ strategy 

Justify measuring mistakes: why are the 
students’ results different of the exact length? 

Each group of students present 
and explain their strategy 

 

Students explain their measuring 
mistakes 

49:28 

-
57:00 

What is the artefact used by each group of 
students to measure the length? What is the 
length of each chosen unit and the number of 
chosen units? 

Each group gives the chosen 
artefact, the length of the chosen 
unit, the number of chosen units 

Table 1: Interventions of Kazu and mathematical activity proposed by Kazu to 
students during the neriage 

						Date	:	3	October	2018	(lesson	3)	

						Title	of	the	sequence:	feeling	the	length		

						Title	of	the	lesson:	the	length	of	the	corridor			 strategy	with	2	rulers	

Measuring	wheel benchmark	between	rulers	

47m59	 width	of	a	pen	5	mm	

number						length																strategy													strategy	with		strategy				with	a	ruler	of	1	meter	

group	of					measured									with	compass				height	of	a	student									45	times	

students					...m...cm			 	82	cm	56	times		138,4	cm	33	times	
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Kazu chooses one task, measuring the length of the corridor, during 5 lessons (almost 
5 hours) even if the exact result is given at the beginning of the 3rd lesson. 
Mediative component: Teacher’s interventions 
The Kazu’s interventions have the following characteristics: the importance according 
to various students’ strategies and an “affect” dimension. During the neriage, students 
present five different strategies and it does not seem enough for Kazu. He said a lot of 
groups of students use the ruler of 1 meter to measure the length of the corridor. That 
is why during the next lesson, he asks again students to measure the same corridor with 
other personal strategies. At the end of the 4th lesson, students apply more than fifteen 
different strategies to measure the length of the corridor. This characteristic of his 
practices also affects the cognitive component (choice of tasks). Furthermore, during 
the neriage, Kazu asks several times to students what is their feeling about the task.  
Another characteristic of Kazu’s interventions is that he asks students to explain their 
strategy with details and he writes it on the blackboard for each strategy (Figure 1): the 
different measured lengths, the used artefact (ruler of 1 meter, compass, height of a 
student…), the length of the chosen unity (1 meter for the ruler, 82 cm for the compass, 
138,4 cm for the height…), the number of times the chosen unity is used, some 
diagrams of strategies (with the compass and with the rulers).  
Kazu also asks to compare the different results between us (“Can you say that everyone 
is on the 40 meters’ range?”) and with the exact result measure with the measuring 
wheel (“Which is the closest?” or “Was it accurate as it was?”). 
From the exact result, Kazu asks students to explain why they did not find the exact 
result. It means the reasons of their mistakes to justify the difference between their 
results and the exact result. Thus, he asks students to have a reflexive attitude about 
their own strategy. 
Kazu’s interventions also prepare the next phase: the matome, the summing up by the 
teacher, what is aimed in the task. There is not written mathematical expression during 
this neriage, but the written information and Kazu’s interventions prepare the 
mathematical expression of the matome that takes place during the next lesson. The 
matome is: “the whole length = the length of the chosen unity × the number of chosen 
units”. For example, the group 3 uses a compass for a blackboard to measure the length 
of the corridor. One of the students repeats and explains the strategy on the blackboard 
(Figure 1). The compass spacing is 82 cm.  

1 Teacher:  I mean that this is 82 centimeters. So, how about the second time? So? 
2 S1:   Again like this, again at 82 centimeters, 82 centimeters plus 82  
3    centimeters, what is it? 164. So, again with such feeling, we will 
4  measure more and more. […] 
5 S2:   What did you calculate? 
6 S1:   As Miki, you calculate as a calculator, for example, 82 plus 164, and so  
7   on. 



Batteau 

2 -                                                                                                             PME 43 - 2019 94 

8 Teacher:  If so, how many 82 centimeters? […] 
9  S3:   56 times. 

Kazu asks students how many times they used the compass’ spacing of 82 cm. He uses 
the idea of multiplication as an iterative addition from the S1 speech. During the next 
lesson, he writes on the blackboard: 82 cm 56 times, 82cm×56times = 4592cm = 45m92cm. 
Mediative component: Validation 
Every result proposed by students (see table of the Figure 1) is different, Kazu asks 
students, “Is there anything correct in this?” In order to validate the different students’ 
results, he presents a measuring wheel and its operation. Thus, one of the students 
measures the length of the corridor with the measuring wheel, observed by the others. 
The validation of the results of the task is done by students themselves, and not by 
Kazu. There is also a validation of students’ strategy by Kazu when students explain 
that they measure two or three times the length of the corridor, he answers, “It will be 
a good result if you do it three times, do not you?” 
Mediative component: Helps 
Kazu does not propose helps to students during the neriage because every group of 
students already finds a result for the length of the corridor. And when a group of 
students explain that they encountered a difficulty, he asks all students how they can 
find a solution. For example, the group 3 did zigzag when they measured the corridor, 
so they have to follow a straight line in the middle of the corridor to measure it. 
Mediative component: Explanation of knowledge 
The objective of this sequence of fifteen lessons is to feel long lengths, to discover a 
new unit of length: the kilometer, to manipulate long lengths (addition, comparison). 
Students already know to convert centimeters in meters and centimeters, to manipulate 
lengths in meters, centimeters and, millimeters. During this lesson, Kazu converts 
centimeters in meters and centimeters when he reads the length on the measuring 
wheel, for example. The explanation of knowledge concerns some conversions already 
known. During this neriage, we do not find new knowledge: it means students using 
old knowledge to execute the task and to explain it. Kazu writes on the blackboard each 
separated mathematical elements of the previous mathematical expression: the whole 
length, the length of the chosen unity and, the number of chosen units. The knowledge 
during the neriage is contextualized to the task. The Kazu’s interventions during the 
neriage prepare the new knowledge, summing up in the matome that is 
decontextualized to the task. 
CONCLUSION 
This analysis of cognitive and mediative components of practices during a neriage 
highlights some characteristics of practices promoted by Japanese problem solving 
approach. Kazu uses a same task during five lessons even if students already find the 
exact result of the length of the corridor. A characteristic of Japanese problem solving 
approach is that the lessons do not end even if each student find the solution of the 
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problem and the heart of the lesson begins after students come up with solutions 
(Takahashi, 2008). 
In the mediative component of Kazu’s practices, the “affect” dimension and the 
importance of various strategies can be explained by one of the objectives of problem 
solving teaching: create interest in mathematics and stimulate creative mathematical 
activity (Takahashi, 2006). During the neriage, Kazu compares students’ results, asks 
students to explain their own strategy and, to adopt reflexive attitude about it. The 
explanation and the comparison of strategies are also characteristics of practices 
promoted by Japanese problem solving approach. In the written lesson plan, he 
compares different students’ strategies: it is difficult to have a precise measure with a 
long chosen unity and it is difficult to use a small chosen unity to measure a long length. 
Kazu analyzed the given task, anticipated the mathematical expression of matome and 
his interventions during the neriage necessarily to the mathematical expression. The 
neriage is indeed the critical phase in which students use their own knowledge to 
explain how they executed the task whereas the teacher aims to teach the new 
knowledge and methods from students’ strategies. 
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TEACHER INTERRUPTED: HOW MATHEMATICS GRADUATE 
TEACHING ASSISTANTS (DON’T) LEARN ABOUT TEACHING 

Mary Beisiegel, Claire Gibbons, Alexis Rist 
Oregon State University 

 

Despite their impact on undergraduate learners, few studies have investigated 
mathematics graduate teaching assistants’ (MGTAs) needs for professional 
development as they learn about teaching. In this study, we surveyed and interviewed 
MGTAs longitudinally as they progressed through their graduate programs. With 
surveys and interviews, we aimed to capture changes in MGTAs’ views of mathematics 
and teaching, whether they felt that they received adequate support, and what other 
support they feel they needed to grow as teachers. Using two phases of thematic 
analysis, we found several issues that interrupted MGTAs’ progress as teachers. 
INTRODUCTION  
Researchers have shown that mathematics teaching in post-secondary contexts has a 
considerable impact on learners. In particular, lecture-based teaching frequently results 
in lower success rates in mathematics courses and lower retention in Science, 
Technology, Engineering, and Mathematics (STEM) degree programs. In comparison, 
active learning experiences contribute to better student outcomes, such as pass rates, 
higher retention, and improved self-efficacy (Chen, 2013; Flick, Sadri, Morrell, 
Wainwright, & Schepige, 2009; Freeman et al., 2014; Laursen, Hassi, Kogan, & 
Weston, 2014; 2012; Saxe & Braddy, 2015). Despite this research base, mathematics 
graduate teaching assistants (MGTAs), who generally represent future instructors and 
professors of mathematics, are not provided with substantive professional development 
experiences that would teach them how to engage learners in active mathematical 
learning experiences. As a result, MGTAs’ teaching remains rooted in lectures and 
undergraduate students in STEM disciplines do not experience the proven benefits of 
evidence-based teaching practices (e.g., Miller et al., 2018; Stains et al., 2018). 
MGTAs, who often find work as faculty members in mathematics departments, exert 
a significant impact on undergraduate learners’ trajectories in STEM fields (Belnap & 
Allred, 2009; Ellis, 2014), and can negatively impact students’ enrolment and choice 
of major in STEM fields (Bettinger & Long, 2004). Yet, experts in MGTA professional 
development have not reached consensus on the breadth and scope of programs that 
prepare MGTAs to teach. Professional development programs that aim to teach 
MGTAs about teaching vary significantly across institutions, both in the approach to 
teaching and the amount of time spent. In addition, few programs extend beyond 
MGTAs’ first year in graduate school (Deshler, Hauk, & Speer, 2015; Ellis, 2014; 
Harris, Froman, & Surles, 2009; Kung & Speer, 2009; McGivney-Burrelle, DeFranco, 
Vinsonhaler, & Santucci, 2001). 
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Miller and colleagues (2018) completed a review of the literature of professional 
development for MGTAs so that they could characterize the types of research 
conducted regarding MGTAs’ growth as teachers. They identified 26 peer-reviewed 
articles published since 2005 that investigate MGTAs’ teaching development, only 17 
of which attend to growth. Thus, the authors concluded that “GTAs’ growth as teachers 
is a largely unexamined practice” (Miller et al., 2018, p. 2) and suggest that this area 
of study would benefit from longitudinal studies that make explicit a model of growth. 
With this in mind, the purpose of this study is to investigate MGTAs’ development as 
teachers, what and how they learn about teaching, and changes in their thinking about 
teaching and learning longitudinally as they progress through their degree programs. 
The research questions that guide this study are: (1) What are the developmental stages 
for teaching that MGTAs go through over the course of their graduate programs? (2) 
What features of their graduate school and teaching experiences support or hinder their 
learning about teaching and their development as teachers? 
THEORETICAL FRAMEWORK  
Because research has not yet addressed MGTAs growth as teachers, we looked to the 
K-12 literature, where researchers have studied schoolteachers’ experiences in order to 
gain an understanding of teachers’ growth over time. Katz (1972) described four 
developmental stages, which include: (1) survival of the first year of teaching, with 
particular focus on classroom management and the routines of classrooms and schools; 
(2) consolidation, in which teachers begin to understand which skills they have 
mastered, and what tasks they still need to master; (3) a period of renewal, when 
teachers become tired of their routines and start to think of how things might happen 
differently; and (4) reaching maturity, where teachers think more broadly about the 
contexts of schools and students’ learning (p. 52-53).  
CONTEXT AND METHODS OF THE STUDY 
At the beginning of the academic years in 2015-2018, participants were recruited from 
the mathematics department at a large, doctorate-granting institution. Approximately 
5,000 undergraduate students enrol in courses such as Pre-calculus, Differential, 
Integral or Vector Calculus, Business Calculus, or Differential Equations each year. 
Most of these courses are structured as three hours of lecture with 150-250 students per 
class and are taught by an instructor. MGTAs are generally assigned to run recitations 
(60-80 minute workshops each week) of smaller groups of students from the large 
lecture sections. MGTAs are not assigned to courses based on knowledge, skill, or 
experience; their assignments to courses mostly depend upon scheduling. 
When new MGTAs first arrive to this graduate program in mathematics, they receive 
2 ½ days of professional development for their teaching assignment, with a primary 
focus on how to support active learning and student engagement in mathematics during 
recitations. In the first term of their graduate program, they attend a seminar for one 
hour each week that addresses teaching-related concerns such as grading papers, 
student conduct issues, and lesson planning. In the summer after their first year, they 
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have the opportunity to teach their own course, then they return to the main MGTA 
duty of leading recitations. Only informal mentoring happens before and during the 
summer sessions and into the MGTAs’ subsequent years. 
We developed two beginning-of-the-academic-year surveys, one for new and one for 
experienced MGTAs, and protocols for mid-year and end-of-year interviews. Surveys 
are used at the beginning of the year because of logistical issues. They include open-
ended questions that inquire about MGTAs’ thoughts about teaching and learning 
mathematics, how they would describe a well-taught mathematics lesson, and what 
influenced the way they think about teaching. Mid- and end-of-year interviews allow 
a deeper investigation of MGTAs’ teaching practices, their most recent teaching 
experiences, whether they feel that they are receiving adequate support, and what other 
support they feel they need to grow as teachers. The intention of the study is to survey 
and interview participants for the duration of their graduate programs to study their 
development over time. Table 1 illustrates participation in the study. 

Recruitment Year Number of Participants  

2015-2016 11 new participants: 4 first year, 2 second year, 4 third year, 1 
fourth year 

2016-2017 11 continuing participants; 6 new participants: 4 first year, 1 third 
year, 1 fourth year 

2017-2018 11 continuing participants; 10 new participants: 8 first year, 1 
third year, 1 fifth year 

2018-2019 15 continuing participants; No new participants 

Table 1: Study Participants 

Our research team analysed participants’ responses to survey and interview questions 
in two rounds of coding using thematic analysis (Braun & Clarke, 2006). Thematic 
analysis has six stages which include: (1) familiarization with the data; (2) coding 
interesting features of the data in a systematic way and collating data that is appropriate 
for each code; (3) possibly combining codes into themes and collect data for each them; 
(4) reviewing the themes and supporting data for each theme; (5) continuing to analyse 
the themes, generating a clear definition for each; and (6) producing the report of the 
themes with selected data to provide evidence of each theme. In the first round of 
coding, we applied a deductive approach (e.g., using a pre-existing coding frame) 
where we looked for instances of the participants’ experiences that could be elucidated 
with Katz’s (1972) four-stage model of teacher development. In the second round of 
coding, we used an inductive approach that focused on codes we developed through 
the first round of analysis. These codes included what had an impact on their views 
about teaching (graduate course work, their students, the instructor they are assigned 
to, the course they are assigned to, their previous experiences as learners, office hours, 
their MGTA peers, and the resources they use for teaching), issues of identity (being a 
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teaching assistant versus being an instructor, resignation), and teaching (descriptions 
of their teaching practices, the transitions they have made in their teaching, what 
changes they would make to their teaching, and what is important for their teaching). 
FINDINGS 
In our first round of analysis, we found Katz’s (1972) framework to be a useful lens to 
view MGTAs’ development as teachers. We observed most of the first-year MGTAs 
talking about surviving the first year. The quote below is an exemplar of this: 

By that point the quarter [midterm exams], it was just getting really hectic and I wasn’t 
able to plan as much as I usually like to plan for courses. Sometimes I was looking at the 
material for about two hours before I started that day, whereas usually I like to look at it 
the day before or during the weekend or something. And so sometimes, though, the classes 
that I went to where I was kind of doing it on the fly, where I was literally looking at it like 
an hour or two before class. 

We observed some second-year MGTAs in the consolidation stage. This participant is 
describing his approach to teaching a new course: 

I think virtually the same. They would work for a little bit. It was 15 minutes. So, depending 
on the class, if it’s longer, maybe we’ll do it a different way. With 15 minutes, we can take 
a little bit more, take some time at the beginning. They work on something together, then 
back together as a class, and then quiz. 

Later-year MGTAs sometimes spoke differently about their teaching experiences. For 
example, a third-year MGTA summarized her transition from the survival stage to the 
renewal stage in the following way: 

I think previously, I was more focusing on, “I just want to survive my first teaching 
experiences.” So, now that this is my fourth time teaching, I feel a little bit more 
comfortable trying to incorporate more active learning in my classroom, and trying non-
traditional techniques whereas previously, when I taught, for example, my first time 
teaching my own class and I taught Calculus, I did mostly lecture because I just wanted to 
do what I felt most comfortable with – what I felt I could be successful at. 

Another participant we saw as being in the renewal stage spoke about it in the following 
way: “In the few classes that I’ve taught, I’ve tried to little-by-little implement more 
and more activity-based learning and group-based learning and different things.” 
Teacher Interrupted 
Despite seeing some progress, we found that only a few MGTAs spoke about teaching 
in a way Katz would describe as renewal, and only one or two of the MGTAs spoke of 
teaching in ways that Katz would categorize as maturity. Many MGTAs appeared to 
be stuck in the consolidation stage. We also found that MGTAs do not pass through 
Katz’s developmental stages linearly. In fact, they sometimes return to the survival 
stage. We then conducted a second round of analysis to see what experiences prevented 
the MGTAs from moving through the developmental stages. We looked for what might 
have an impact on the MGTAs in terms of learning about teaching and moving toward 
the active learning strategies espoused in the 2 ½ day professional development 
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program. We expected that most, if not all, of the participants’ work as teaching 
assistants would consist of leading recitations for lower-division mathematics courses 
and that there would be some consistency in the courses they were assigned to. 
However, when we looked at what work they were assigned to term-by-term and year-
by-year, there was significant variation not just in the courses they were assigned to 
(algebra vs. differential equations), but also in what work they did (e.g., grading, 
assisting on research studies, assisting in online courses). This is an important finding 
because this variation has an impact on how the participants have the opportunity 
develop as teachers. Below, we describe the issues that we interpreted as interrupting 
the MGTAs’ teaching and learning about teaching. 
Course assignments and expectations had significant impacts on the MGTAs. More 
specifically, how the instructors designed courses, the assignments, and exams had a 
disruptive impact on the MGTAs. This first-year MGTA describes what it was like: 

From term to term, depending on the instructor mostly – not necessarily the class, but the 
instructor – their expectations of the TA are different in terms of what they want you to do. 
When I designed my materials, I knew where the solution was, what the problem was, what 
kind of outcome was expected from the students, what kind of mistakes I will see. So, the 
grading was faster in my opinion. But when everything is given to me, I have to first solve 
it and then figure out all of those details in the goal. And then I start to grade and then I 
encounter things that I didn’t expect. 

Because of the inconsistent ways they were assigned to courses, the MGTAs did not 
have the opportunity to work with the same group of students from one academic term 
to the next. A participant spoke of what it was like to ‘lose’ his first group of students:  

I had all these students, I knew all their names, I was, they like me, I like them. We were 
really excited about this stuff and we’d been together for ten weeks and now that was all 
over and I had to do it all over again. And you know there’s so much energy, like, that had 
gone into the last class and so much had come out of it. And now I was just like you know 
95 more students who I don’t know and I have to do this all over again. And I was, so to a 
certain extent I just, it was a lot harder to care that term. I was losing the students that I had 
so much already invested in. 

Their role as graduate teaching assistants had an impact on the MGTAs’ teaching, 
leaving them powerless to teach in the ways they wanted: 

But I have no power over what happens in the recitation hour. There is a quiz that was 
written up, there’s an activity that was written up. […] So I’m not grumpy about that, 
necessarily. It’s the instructor’s course. That’s fine. But it means I’m not choosing any of 
the problems, or anything like that. So what can I do? And they’re working in groups, for 
the most part. And their group is working well. Somebody knows how to do the problem 
already, and they don’t really need me except for the details. In that sense, I am 
interchangeable with any grad student. [...] I guess in a TA setting, I have such little power 
to actually impact their learning. 

Another participant had a similar remark about feeling powerless to incorporate 
different teaching strategies:  
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Whereas a TA, you know, you’re exactly that. You’re an assistant. So, kind of ... you’re in 
the in between. So, you don’t have that much power, I guess, but some form of that to try 
incorporate [active learning] into teaching would be really interesting, but you know, I 
guess I don’t really know exactly how. 

Some MGTAs’ work assignments took them out of the classroom. In particular, two of 
the participants who had worked as teaching assistants in the first three years of their 
graduate program became research assistants with no teaching duties. They both 
remarked that they had not had the opportunity to grow in their thinking about teaching 
nor in their teaching practices. One of them noted their desire to gain more teaching 
experience, despite being assigned to research duties: 

I think the biggest thing is I just want more experience teaching because I still – because 
it’s something that I can theorize and I can plan, but I just kind of know that’s one of those 
things that I feel like I won’t be able to intentionally get everything out of the class that I 
want until I’ve spend time teaching the class. 

Another participant had a different type of interruption in his teaching experience when 
he was given a grading assignment: “I hadn’t TA’ed for almost six months, because I 
didn’t teach in the summer. I wasn’t in the classroom with somebody for the whole 
summer and for the fall. It was like six months of not being a TA, so I was like, ‘Oh, 
man. I almost have to relearn this’.” 
Despite the lack of attention to their teaching, we noticed that many of the participants 
want to learn and grow as teachers, even into the fourth and fifth year of their graduate 
programs. In general, they voiced a sense of familiarity with teaching and a desire to 
learn more about teaching, to grow their teaching practices beyond lecturing: 

Because I’ve already gone through three years now teaching. So I’m already comfortable 
with coming up to class and writing things down and grading things in a reasonable enough 
fashion and in good time. But, yeah, it would be really great to be able to like just take it 
another step further. 

But some participants also noted that they were not sure what that would look like: 
That would be kind of nice to know how to make that work efficiently, and as a TA I don’t 
know how to do that, or how to take this to another level. I don’t know. I don’t even know 
what that would look like. … Something that where people are ... I mean, in my head I 
kind of have ... imagine like a play where it’s people are engaged in having fun with it, but 
also being challenged and respected. 

IMPLICATIONS 
Researchers recommend that MGTA professional development programs be informed 
by research findings (Miller et al., 2018) and should take into account the needs of 
MGTAs at different stages of their development (Park, 2004). Additionally, DeFranco 
and McGivney-Burrelle (2001) noted that professional development programs should 
be “viewed as ongoing professional development experiences that support [MGTAs] 
through the long and complex process of changing their teaching practices” (p. 688). 
We observed that MGTAs in their assignments as teaching assistants were unable to 
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change the way they teach for several reasons. We recommend that professional 
development providers take into account the impacts described in this paper (e.g., 
varied and inconsistent course and work assignments, the powerless role of teaching 
assistants). We also recommend that professional development programs extend far 
beyond MGTAs’ first year in graduate school, possibly into their third and later years, 
as they reach the renewal stage (Katz, 1972). 
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In this paper we report on changes to teachers’ practices as a result of their 
participation in a research-based program of professional learning focused on 
challenging tasks. Seventy early years teachers responded to a survey at the end of a 
year-long program asking them to nominate and describe the teaching practices that 
changed most as a result of their involvement in the program. The majority of teachers 
nominated each of ‘Allowing students time to struggle’ and ‘to share their thinking’ as 
the two practices that changed most. Qualitative responses are used to interpret the 
nature of and reasons for these reported changes in practice. 
INTRODUCTION AND BACKGROUND LITERATURE 
It is widely acknowledged that “student learning is greatest in classrooms where the 
tasks consistently encourage higher-level student thinking and reasoning” (National 
Council of Teachers of Mathematics, 2014, p.17). Stacey (2003) suggested that a key 
difference between high-performing and other countries on international comparative 
tests of mathematics is their capacity to engage their students in higher-level thinking 
via cognitively demanding tasks. In a study designed to encourage Australian teachers 
to use challenging experiences in their mathematics classrooms, Sullivan, Borcek, 
Walker, and Rennie (2016) found that implementation was more successful when 
teachers adopted specific practices, including (1) increased time for students to struggle 
on tasks without, or prior to, instruction, and (2) increased use of carefully orchestrated 
dialogue during lessons that emphasised higher-level student thinking and reasoning. 
Following these findings, Sullivan et al. (2016) hypothesised that learning would be 
further enhanced if purposeful follow-up challenging tasks were posed to consolidate 
student learning.  
The potential of purposefully designed sequences of connected challenging tasks was 
the focus of the professional learning (PL) project at the centre of the research reported 
in this paper. In particular, we report on changes to teachers’ practices as a result of 
their participation in a PL research project focused on sequences of challenging tasks. 
Challenge, struggle and student thinking 
The tasks and lessons that are likely to foster higher levels of cognitive activity in 
students are regularly termed ‘challenging’. They are considered challenging because 
the answers are not immediately obvious to students and therefore provide them with 
opportunities for prolonged thinking, reasoning, problem solving and risk taking 
(Sullivan et al., 2016). However, Stein, Grover and Henningsen (1996) argue that the 
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possibilities afforded by challenging tasks are dependent upon the willingness of 
teachers to implement such tasks, and critically, to maintain high levels of cognitive 
demand as work on tasks progresses even when students are struggling.  
Struggle involves students expending effort while experiencing some level of 
confusion while attempting to resolve problems where the solution strategy or answer 
is not apparent. Hiebert and Grouws (2007) suggest that struggle is particularly 
important for students to develop conceptual understanding. They claim that if students 
struggle in order to make sense of mathematics they are more likely to remember the 
mathematics. At the same time, students are more likely to develop a disposition for 
persistence and an underlying growth mindset. They argue that providing students with 
opportunities to engage in struggle is an essential aspect of effective classroom 
practice. In a study involving 36 lesson observations of six different middle school 
teachers, Warshauer (2015) found that the way teachers responded to students 
struggling was critical in determining opportunities for learning. The most successful 
teachers responded with practices that maintained a balance between the level of 
challenge and the degree of support provided as the task unfurled.  
Unfortunately, research indicates that many teachers are hesitant to integrate 
cognitively demanding tasks into their classrooms (Cheeseman, Clarke, Roche & 
Wilson, 2013). This finding raises concerns about some teachers’ capacities to activate 
high-level thinking in their students or to promote sustained periods of student struggle. 
Prompted by concerns that students were not being provided with opportunities to 
regularly experience cognitively demanding tasks and evidence confirming the 
potential benefits afforded by such experiences, a year-long project involving teacher 
PL focused on challenging tasks and the associated pedagogy was designed. Following 
recommendations by Sullivan et al. (2016) regarding the potential benefits of follow-
up tasks, the PL focused on sequences of connected challenging tasks as opposed to 
isolated tasks with little coherence to longer-term learning. 
THEORETICAL FRAMEWORK OF THE CURRENT STUDY 
The PL design, data collection and analysis were informed by Clark and Peterson’s 
(1986) framework. This framework suggests that teachers’ knowledge, dispositions, 
and the opportunities and constraints they anticipate experiencing will influence their 
intentions to act and their classroom actions. Therefore, we conjectured that teachers 
would be more willing to implement challenging tasks if they were better informed of 
their benefits, had ready access to research-developed sequences of tasks and were 
provided with practical classroom support during implementation. In the study reported 
here, the elements of the framework referring to teachers’ pedagogy and classroom 
actions are particularly relevant. 
The current study addressed the research questions: (1) What teaching practices do 
teachers report changed most as a result of participating in a program of professional 
learning focused on challenging tasks? (2) How do teachers characterise the changes 
to these practices?  
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METHODOLOGY 
Participants 
Participants included 102 teachers of F-2 students (approximately 5-8 years of age) and 
teacher leaders from 21 schools who took part in the PL. Seventy participants 
responded to the survey, 68 of whom implemented at least some of the suggested 
sequences in their classroom. Of these 68, 27 (40%) had up to four years teaching 
experience, 11 (16%) had 5-9 years, 30 (44%) had 10 or more years of experience.  
Instrument and Procedure 
At the conclusion of the year-long program, teachers were invited to complete an on-
line survey while attending the final PL day. The survey consisted of 24 items. The 
first four items collected background data for each participant and their school, 
including years of teaching experience and their role at the school. The remaining items 
required mostly qualitative responses to gain insight into teachers’ views of various 
aspects of the program’s implementation, including the nature of the support they 
received to implement sequences, the effectiveness of specific learning sequences and 
the challenges they faced implementing the changes in their classrooms. The findings 
from these aspects, and data collected by observations and interviews, are the subject 
of a range of papers currently in production.  
In this paper, we focus on teacher responses to survey items asking them to report on 
the classroom practices that they considered changed most over the course of the PL. 
In Item 13 teachers were asked to select three teaching practices from a list of nine that 
they considered to have changed most as a result of their participation in the program. 
The list of nine practices were selected based on the initial aims of the PL, the research-
based learning and teaching principles underlying the design of the program, and the 
practices emphasised during PL days and school-based site visits by the research team. 
These practices are represented in Figure 1 and summarised in Table 1. In Item 14 
teachers had to briefly explain what one changed practice ‘looked like’ in their 
mathematics classroom. Fifty-five participants responded to this item.  
The entire survey took participants approximately 25 minutes to complete. 
Data Analysis 
Teacher responses to Item 13 were collated to find the total number of teachers 
selecting each practice as one of the three practices they considered to have changed 
most. A deductive analysis process was used to code each response to Item 14. The 
nine practices constituted the initial codes as it was anticipated that responses would 
link to one of these. It was revealed early in the analysis that a few responses 
incorporated aspects of at least two practices from the list. This meant that several 
responses were dual-coded to practice-based themes. For example, the following 
response was allocated to both the Allowing students to share their thinking and to the 
Questioning of students themes: 
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The biggest change in my classroom practice was to the questioning and sharing of thinking 
all through the lesson – not just at the end of the lesson. 

Responses describing the two prompt practices (Use of extending prompts and Use of 
enabling prompts) were collapsed into one (Use of extending and/or enabling prompts) 
since only one respondent mentioned extending prompts and this was done in 
conjunction with enabling prompts. One response was omitted from the analysis 
because it came from a non-teaching staff member confirming that changes in all the 
practices had been observed but no detail as to what those changes looked like was 
provided. While only one of the remaining 54 qualitative responses to Item 14 was 
coded as Routinely use connected sequences of tasks, it was decided to retain this code 
for reasons explained later. Final analysis involved seven practice-based themes.  
RESULTS AND DISCUSSION 
Figure 1 presents the findings from Item 13. It shows that 51 out of 68 (75%) teachers 
considered Allowing students time to struggle on maths tasks as a practice that had 
changed most as a result of their involvement in the PL. The next most commonly 
selected practice was Allowing students to share their thinking with 36 teachers 
selecting this practice as one of their three from the list provided. The remainder of 
responses were evenly dispersed across six other practices. Only eight teachers selected 
Routinely use connected sequences of tasks.  
Teacher responses to Item 14 provided insight into the nature and extent of changes to 
each of these practices. They also provided some possible reasons as to why changes 
to certain practices were more commonly cited by teachers than others. Table 1 
provides a summary of the number of responses coded to each of the eight practices. 
Understandably, the number of responses detailing changes to each practice recorded 
for Item 14 roughly corresponded to the number of teachers selecting them as one of 
the three practices that changed most. Due to space limitations, reporting of qualitative 
responses focuses on just three practices – the two practices most commonly chosen 
by teachers (Allowing students time to struggle and Allowing students to share their 
thinking) and the least common (Routinely use connected sequences of tasks). 
Allowing students time to struggle on maths tasks was the second most frequently 
selected practice teachers considered to have changed since the start of the PL – 21 
teachers opted to elaborate upon it in Item 14. Approximately one-third of comments 
indicated that allowing students to struggle with mathematics without teacher 
intervention was something “new” to their pedagogy, that felt “uncomfortable”, 
“challenging” and “hard at the beginning” because they had the urge to step in “right 
away” to “save and help my students”. This finding connects to those by Cheeseman 
et al. (2013) that a possible reason for teachers’ reluctance to implement challenging 
tasks is their discomfort with student struggle. According to Clark and Peterson’s 
framework, teachers’ intentions and practices in the classroom are influenced by 
constraints (feeling uncomfortable with struggle), that could have been circumvented 
by opportunities (support to implement challenging tasks) and influenced by 
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knowledge of mathematics and pedagogy (provided by the PL). As suggested by 
Sullivan et al. (2016), teachers need to anticipate constraints such as student negative 
reactions to struggle and be prepared to address them via appropriate practices. While 
approximately equal emphasis was given to the nine practices throughout the PL, the 
large number of teachers who acknowledged that the notion of student struggle in 
mathematics as potentially beneficial was new to them, is a possible reason why so 
many selected this practice as one that changed most. A quarter of responses explicitly 
referred to struggle as something that both teachers and students gradually learnt to 
“embrace” as an integral “part of their learning”.  

Allowing students to struggle was something new to me. The students found it difficult at 
first that I was allowing them to struggle and they wanted my assistance. Over time this 
changed, and they became used to struggling first and then gaining clarity at the conclusion 
when we went through tasks and possible solutions. 

 
Figure 1: Number of teachers (n=68) selecting each practice that they considered 

changed most. Each teacher selected three practices (204 practices in total) 
Teachers expressed a willingness to trial and continue allowing students struggle time 
in their classrooms because they could “see the value” in terms of students’ increased 
“independence” and “persistence” in solving challenging mathematics problems. A 
range of strategies for introducing struggle time into their classrooms were described, 
but the inherent message was to allow students “to struggle first” and “struggle more” 
often. As illustrated in the following quote, teachers typically accompanied struggle 
time with student-led discussion and questioning: 

We would show the wording of the problem, let them have time to read it and try and work 
out what it means, before discussing. Let them lead the discussion. Let the students ask 
questions for clarification IF they want to. 
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Increased “talking” and “more discussion” also characterised teachers’ elaborations of 
how the practice of Allowing students to share their thinking changed over the course 
of the PL. More than half the teachers who responded to Item 13 nominated this 
practice as one that changed most. It was also the most commonly chosen practice for 
teachers to elaborate upon. Similar to the practice of allowing time for struggle, 
teachers noted the difficulties associated with getting students to talk about their 
thinking early in the implementation of the program. This difficulty is an indication 
that it was not a common practice prior to the PL: 

Allowing students to share there thinking was difficult at first as they would often just give 
and answer. Now my students are able to give there answer but explain how they got it or 
what they did to find a solution. More talk within the classroom and lots more discussion. 

Practice Number of 
responses coded 

Allowing students to share their thinking 21 

Allowing students time to struggle on maths tasks 14 

Introducing a mathematics lesson 9 

Use of talk moves 7 

Use of enabling and/or extending prompts 5 

Routinely choose challenging tasks in my mathematics 
program 

3 

Questioning of students 2 

Routinely use connected sequences of tasks 1 

Table 1: Summary of the analysis of teachers’ responses (n=54) describing change in 
their practices. Note that some responses were coded to more than one practice 

One teacher revealed that it was “harder for the teacher than the students 
during…thinking time” because of the sometimes “uncomfortable” silence. All 
responses referring to this practice included clearly articulated strategies for its 
implementation, as demonstrated by the following two teacher quotes:  

I strategically select students to share their thinking based on the least efficient strategies 
to the most efficient strategy used in that task, so children can see a range of strategies and 
learn all the different ways to think and solve a task. Students are to then go and borrow 
one of the strategies they listened to and give it a go during a consolidating task. 
We have in depth discussions where we show students work on the TV and students are 
given opportunities to challenge or agree with other students.  

When describing the nature of student sharing, teachers referred to “high level 
thinking”, “reasoning”, “collaborative…problem solving” and “strategy” discussions. 
One teacher explained that students were “not talking about the answer, as much as 
discussing how they got there and what their logic was”. It was apparent from teacher 
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descriptions that not only was there a great deal more sharing of student thinking 
occurring in their classrooms, but that students were being encouraged to think about 
mathematics at much deeper levels than before. The Clark and Peterson (1986) 
framework guiding our research emphasised connections between teacher beliefs, 
knowledge and their practices. In this case, teachers’ beliefs about the importance of 
students explaining their reasoning gained via the PL were presumably reflected in the 
increased time they allocated to students talking about and sharing their thinking.  
The practice selected least often by teachers was Routinely use connected sequences of 
tasks. This finding was surprising given that a focus of the PL sessions was on the 
importance of providing students with sequences of connected and challenging tasks 
as opposed to isolated challenging tasks with little coherence to longer-term trajectories 
of learning mathematics. As part of the PL, teachers were provided with suggested 
sequences of learning experiences for a range of content areas that were aligned to the 
mandatory curriculum. Instructional materials containing pedagogical advice to guide 
them in their implementation of the sequences were also provided along with 
occasional in-class support during site visits from a member of the research team or 
their school-based mathematics instructional leaders. This finding could reflect where 
the majority of teachers were ‘at’ in terms of their professional learning and their 
capacity for adopting new practices associated with challenging tasks. Teachers’ 
responses indicated that it had taken effort and time for many of them and their students 
to feel comfortable with struggle and challenge in the mathematics classroom. It is 
possible that teachers need much more time than one year to embed such practices into 
their instructional routines before gradually working-up to the implementation of 
whole sequences of challenging tasks. This proposition is supported by the fact that 
more than half the teachers who selected this practice as one of their most changed, 
also reported prior involvement in PL involving challenging tasks. Further support is 
provided by the teacher who chose to elaborate upon this practice in Item 14:  

We have always included a challenging task as one of our weekly lessons from Foundation 
to Year 6. This year we were able to plan sequences of lessons with the same challenging 
approach. We had to let go of … a teacher modelled and teacher centre lesson phase. This 
has been the most difficult step to convince teachers to adopt. 

This comment indicates that challenging tasks were already an accepted part of practice 
for teachers at this school. The notion of connected sequences of challenging tasks was 
therefore less daunting for them and a logical next step in the PL for these teachers. 
CONCLUSION 
The research reported above was part of a large PL project exploring the potential of 
purposefully designed sequences of connected challenging tasks. Reported changes to 
teachers’ practices as a result of their participation in the PL was the focus of this paper. 
In terms of the first research question, teachers reported changes to each of the nine 
practices focused upon in the PL, but the majority of teachers reported most change in 
just two practices – Allowing students time to struggle and Allowing students to share 
their thinking. Regarding research question 2, teachers characterised the changes to 
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these practices in terms of student and teachers gradually accepting them as the norm 
in mathematics lessons. Both practices were linked to increased amounts of time for 
student talk and questioning. The surprising lack of change surrounding the use of 
sequences of challenging tasks is an indication that PL needs to consider teacher prior 
learning and be structured in stages with some aspects potentially needing to be learned 
before others. In the current PL, teachers indicated that a familiarity with challenging 
tasks preceded their readiness to adopt whole sequences of lessons involving such 
tasks.  
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Students persistently misinterpret histograms. Based on a literature review we 
conjectured that the confusion of histograms with case-value plots was leading to 
inappropriate interpretation strategies. Hence, the question for this research is: what 
are the most common strategies for secondary school students when estimating the 
mean in histograms and case-value plots? In a task with twelve graphs (histograms or 
case-value plots) we measured students’ eye movements (N=10, grade 10–11. The most 
common strategies students use are: a case-value plot interpretation strategy and a 
computational strategy both applied to histograms. Furthermore, some students 
reported strategies that are not in line with their gaze data nor their estimated mean. 
BACKGROUND 
For more than two decades misinterpretations with histograms have been reported in 
the literature (e.g., Friel & Bright, 1995; Whitaker & Jacobbe, 2017) as well as attempts 
to improve students’ understandings of histograms through interventions (e.g., 
Meletiou-Mavrotheris & Lee, 2005). An extensive review of the literature on 
histograms showed numerous misinterpretations that are widespread amongst students 
from every school level as well as countries (Boels, Bakker, Van Dooren, & Drijvers, 
2019). In addition, many people are not clear on what a histogram is. In the context of 
this paper we use the following criteria for a histogram (Boels, et al., 2019): (1) it is a 
graph with bars; (2) the data of only one statistical variable are presented; (3) these data 
are measured at ratio measurement level; (4) the vertical axis displays frequency. 
The persistence of misinterpreting histograms was our rationale for searching for 
underlying difficulties. In a literature review we found two difficulties: the lack of 
understanding the big statistical ideas data and distribution (Boels et al., 2019). The big 
idea data refers amongst others to the measurement level of the data. Distribution refers 
amongst others to how the data are distributed (e.g., variability or spread) and how this 
is depicted in a graphical representation (shape). The literature suggests that a 
histogram is confused with a case-value plot (e.g., Cooper & Shore, 2010; Garfield & 
Ben-Zvi, 2007). A case-value plot is a kind of look-a-like of the histogram as it shares 
the same salient features with a histogram. These salient features are: two axes, 
numbers along the vertical axis and—in our construction—the same number of bars 
and the variable weight in kilograms. Nevertheless, on the level of the big ideas data 
and distribution a histogram is very distinct from a case-value plot. For example, a 
case-value plot depicts two variables (here: name and weight, see Figure 1) whereas a 
histogram represents only one (here: weight). Furthermore, in a case-value plot each 
bar is one measurement while in a histogram each bar usually stands for several 
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measurements. As a result, in a case-value plot the heights of the bars are the measured 
value whereas in a histogram the positions of the bars on the horizontal axis are the 
measured values. In addition, the variability of the data in a histogram is the horizontal 
spread weighted by the frequency whereas the variability of the data in a case-value 
plot is given by the vertical difference in the heights of the bars.  

a. Mean in histogram (here: 3.3 kg) b. Mean in case-value plot (here: 3.7 kg) 

 
 

Figure 1: Measures of centre are depicted differently in a histogram (a, Item 1) from a 
case-value plot (b, Item 4).  

Although the confusion of histograms with case-value plots can explain a substantial 
part of the misinterpretations, this does not shed any light on how this confusion arises. 
In a first exploratory study, we therefore studied the interpretations strategies that 
students used to answer questions about histograms and case-value plots (Boels, Ebbes, 
Bakker, van Dooren, & Drijvers, 2018). In our first study we were searching for 
persistent misinterpretations after learning about histograms. We therefore included 
university students only. In preparing that study, we were concerned that we would not 
find any misinterpretations at all as we thought that we had made the differences 
between the case-value plots and the histograms too obvious, see Figure 1. For 
example, we had clearly placed labels next to the axes showing that the requested 
information (average weight) could be found on either the horizontal axis (histogram) 
or the vertical axis (case-value plot). We nevertheless found several students applying 
a case-value plot interpretation strategy onto a histogram (e.g., a horizontal looking 
pattern and reading of the numbers on the vertical axis thus the frequency instead of 
the measured values).  
In an ideal world, students would enter the university without misinterpretations, as 
interpreting histograms is part of the Dutch secondary school curriculum. In order to 
track down where these misinterpretations come from, we need to study secondary 
school students' interpretations of histograms. These students have learned about 
histograms in grade 9 or 10 (usually at age 14–16). Hence, the aim of our current study 
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is to identify the most common strategies of secondary school students when 
interpreting histograms and case-value plots. 
In searching for a suitable task for interpreting histograms, we noted that many 
researchers ask for the variability depicted in a histogram (e.g., Garfield & Ben-Zvi, 
2007). Nevertheless, we decided to ask for estimating the mean from a histogram. The 
first reason for asking for the mean is that finding the mean in a histogram can be 
regarded as a prerequisite for using measures of variability. As measures of centre are 
depicted differently in histograms from case-value plots, the same holds true for 
measures of variability. Moreover, variability can be considered as variation around 
the mean. The second reason for using the mean instead of measures of variability is 
that secondary school students are very familiar with the arithmetic mean (as this is, 
for example, used for grading almost all summative assessment tests in secondary 
schools in the Netherlands) and not so much with measures of variability. Hence, the 
question for this research is: what are the most common strategies for secondary school 
students when estimating the mean in histograms and case-value plots?  
METHOD 
To answer our research question we constructed twelve items with histograms or case-
value plots. Six of these items were either single histograms (three) or case-value plots 
(three). The question for these items was to estimate the mean weight of the packages 
of a postman (histograms) or garbage collected on a beach (case-value plots). These 
questions were open ended. Three of the other six items concerned two histograms 
each and the other three two case-value plots each. These six items held the question 
in which graph the estimated mean was bigger. The three answer options were: the 
graph on the left, the graph on the right or both graphs approximately the same. All 
histograms had a look-a-like case-value plot that shared the same salient features with 
the histograms such as number of bars and range of the weight scale, see for example 
Figure 1 (Item 1 and Item 4). Two items with the same salient features never followed 
one another and there were no more than two items with the same graph type in 
succession. The graph construction was in line with the recommendations to use stimuli 
that differ systematically on relevant features but are similar for irrelevant features 
(Orquin & Holmqvist, 2017). To avoid priming (Lashley, 1951) we started with a 
single histogram in the first two items as we expected that students misinterpreting 
histograms would apply a case-value plot interpretation strategy onto a histogram (see 
data analysis for an explanation on the strategies) and not so much the other way 
around. The twelve items were followed by another thirteen items that were part of an 
exploratory study not reported here. 
Two questionnaires were used to gather data on the students’ background (e.g., their 
grades for mathematics) as well as their precognition on—for example—the meaning 
of frequency and arithmetic mean. By asking first to estimate the mean of five 
assessment scores (each between one and ten) and then to calculate this mean, the 
difference between an estimation and a calculation was subtly stressed as we did not 
want students to make precise calculations. 
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Figure 2: Setup of the equipment (the person in the photo was not a participant)  

Eye-tracking in combination with retrospective thinking aloud with students’ eye 
movements as a cue was used. We could have collected only the answers for these 
twelve items (e.g., Whitaker & Jacobbe, 2017). Although this method is fruitful for 
discovering how widespread the misinterpretations are as well as for getting indications 
of the type of misinterpretations students have, it does not tell us in detail which 
strategies students use to answer these items. In addition, we considered other methods, 
such as combining the assessment items with a thinking aloud protocols or with 
retrospective interviews, both without the use of eye-tracking. We rejected all these 
options for several reasons. Firstly, when people need to explain their strategy during 
thinking aloud, this not only slows down their work on the task, but also changes their 
cognitive processes (Ericsson, 2006). Secondly, retrospective interviews are often 
unreliable but can be improved when participants’ eye movements are used as a cue 
(van Gog & Jarodzka, 2013). As the eye-mind hypothesis does not always hold 
(Anderson, Bothell, & Douglass, 2004; Schindler & Lilienthal, 2019) a retrospective 
interview is needed to link the eye movements data to the students’ strategy.  
Ten secondary school students of one pre-university level school (grades 10–11, mean 
age: 16 years; range 15–18 year) participated in the study reported here which is part 
of a larger study with secondary school students and their STEM teachers. Students 
participated voluntarily and consent was signed by the students and in most cases also 
by their parents (required for students aged 15 or less). All participants received a small 
gift (mathematical puzzle) for their participation. The first author recruited the 
students, carried out the research and conducted the interviews at the participants’ 
school. To stay within the time frame of one lesson of this school the time per student 
was limited to 45 minutes. In this time frame all work with the participant was done, 
which included filling in two questionnaires, answering the tasks described above and 
being interviewed with participants’ own gaze data as a cue. The eye-tracking part took 
approximately 10–15 minutes per student, leaving about 20–25 minutes for the 
interview.  
A Tobii Pro X2-60 eye-tracker with a 60Hz sampling rate was used, mounted with 
adhesive mounting brackets on a laptop with a 13-inch display. The Tobii Pro Studio 
3.4.5 software recorded in real time where people were looking on the screen using 
harmless infrared light to detect the gaze. We also used a chin rest to gain a better 
quality of the eye-tracking data, see Figure 2. For recording the retrospective interviews 
a Rode NT-USB studio microphone was used. Students were tested in a one-on-one 
setting in a room in their own school. Before starting the task, a calibration procedure 
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was used with nine points on the screen. The calibration was followed by a validation 
procedure with four points on the screen. Between all items a fixation cross was used 
for validation as well as making sure that all eye movements start at the right-hand side 
of the screen which was a blank area in the next screen with the item. 

a. Case-value plot strategy applied onto a 
histogram (Item 1) 

b. Case-value plot strategy applied onto a case-
value plot (Item 4) 

The colours indicate where students’ gaze was less (green), medium (yellow) and most (red). 
This student stated that the mean weight was approximately ten (a, histogram) and five (b, case-
value plot). The arrow points at fixations around frequency ten in the histogram. Note that there 
are no fixations on the horizontal weight axis in the histogram although the label weight on the 
horizontal axis was read by this student.  

  

Figure 3: Heatmap of a student applying a case-value plot interpretation strategy onto 
a histogram (a) and a case-value plot (b). 

DATA ANALYSIS  
We analysed the answers given by the students for each item. Furthermore, from our 
previous studies we conjectured that students would use two interpretation strategies: 
a case-value plot interpretation strategy and a histogram interpretation strategy (Boels, 
Bakker, & Drijvers, 2019; Boels et al., 2018). We define a case-value plot 
interpretation strategy as a strategy in which students display a horizontal looking 
pattern and read the requested mean at the vertical axis, see Figure 3. During the 
interview, these students report that they take the middle of the bars or make the bars 
“the same” [height]. Sometimes students move their hands in a horizontal line when 
they explain what they did. If that happened, the interviewer reported this aloud in the 
interview. We defined a histogram interpretation strategy is as a strategy in which 
students display a vertical looking pattern and read the requested mean at the horizontal 
axis. During the interview, these students—for example—reported that they balance 
the graph. Sometimes they might also point to a balancing point at the horizontal axis. 
The interviews and gaze data were qualitatively coded with open, axial and selective 
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coding (Corbin & Strauss, 1990). From these data we inferred the strategies that the 
students used. We also used heat maps, showing students’ gaze data in gradients from 
green via yellow to red (see Figure 3) and gaze plots showing the order of students’ 
gaze data. 
RESULTS 
For the single histogram items students correctly answered on average 0.5 item out of 
3 items which was much less than the average number of correct answers for single 
case-value plots, see Table 1.  
3 items; single 

histograms 
3 items; double 

histograms 
3 items; single case-

value plots 
3 items; double 
case-value plots 

0.5 [0–2] 0.7 [0–3] 1.5 [1–2] 2.3 [2–3] 
Table 1 Average number and [range] of correct answers per student. 

 
a. Computational strategy applied onto a 
histogram (Item 1) 

b. Computation strategy applied onto a case-
value plot (Item 4) 

This student stated that the mean weight was approximately six (a, histogram) and three plus 
one third (b, case-value plot). Note the many fixations on both axis and the going back and forth 
of the fixations from axis to the graph area indicating the computational strategy.  

  

Figure 4: Plot of a student’s gaze. This student uses a computational strategy. 
In the qualitative analysis of our data we found the two interpretation strategies 
described in the data analysis as well as a new strategy that we call a computational 
strategy. In this strategy a student computes a total (either a total of the frequency or a 
total of the frequency times measured value) and divides this by either the number of 
the bars or sometimes the total frequency. In the gaze data the looking pattern appears 
as jumping from bar to bar, for example along the horizontal axis (counting the number 
of bars, see Figure 4).   
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Furthermore, some participants report strategies and answers that did not match the 
answer given earlier during the online eye-tracking session. For example, the 
participant whose strategy is shown in Figure 3 reported a lower answer than ten in his 
retrospective interview and said to have looked on the horizontal axis to find this 
answer. This is not in line with the answer that was given during the online eye-tracking 
session (ten) nor with the gaze data as there are no gazes on the horizontal axis. The 
validation data suggest that gaze data are accurate so this is not due to any off-set nor 
drift, indicating that this participant did not look at the horizontal axis at all. Although 
the axis could have been seen in a peripheral view, this is unlikely for reading off 
numbers.  
CONCLUSIONS AND DISCUSSION 
The first conclusion is that these ten students used two strategies most frequently: a 
case-value plot interpretation strategy applied onto a histogram and a computational 
strategy. The case-value plot interpretation strategy is in line with many findings in the 
literature (e.g., Cooper & Shore, 2010). The computational strategy was found in our 
literature review but is rarely reported (Ismail & Chan, 2015). 
The second conclusion is that several students reported strategies as well as answers in 
their retrospective interview that did not match the answers given during the online 
measurement and nor their gaze data. This indicates that a retrospective interview (a 
thinking aloud protocol) might not always be reliable for secondary school students. 
Gaze data are measured online (meaning: during the performance of the task) and are 
therefore a useful complement in finding students' strategies.  
The third conclusion is that even students who read titles and axis labels misinterpret 
histograms. We therefore speculate that it will not suffice to learn students to (better) 
read the labels of a graph. We conjecture that underlying students inappropriate use of 
strategies is that they do not have understood the big ideas of data and distribution and 
specific how these effect measures of centre and shape in different types of graphs.  
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STUDENT TEACHERS’ USE OF MEASURABLE PROPERTIES 
Bruce Brown 

Rhodes University 
 

Measurement is an important part of the elementary school curriculum. But 
weaknesses in prospective teachers’ knowledge of the concepts of ‘attribute’ and 
‘measurement’ have been identified. Drawing on the modelling perspective, this 
research investigates how a cohort of South African student teachers identify and 
distinguish particular properties as measurable quantities, in their use of mathematics 
to make sense of the world. Difficulties with measurement and the identification of 
properties are noted. Also, a possible influence of appropriate property identification 
on the precision of students’ arguments is noted, suggesting that the concept of 
‘property identification’ should be considered alongside ‘attribute’ and 
‘measurement’ in curriculum design.  
INTRODUCTION 
Elementary school mathematics provides the basic foundation on which all higher 
mathematics is built. But more than this, it provides basic conceptual and operational 
tools that all people could use to help make sense of the world and of their activity in 
the world (OECD, 2017). In their elementary school learning, children engage with 
two of the worlds of mathematics, the conceptual-embodied world and the proceptual-
symbolic world (Tall, 2008). Even though mathematical, these worlds are grounded in 
everyday experience: of objects and their properties in the conceptual-embodied world 
and of actions and their products in the proceptual-symbolic world (Tall, 2006). This 
grounding links mathematics to children’s experience and so allows them to make 
mathematical sense of their world and experiential sense of their mathematics. As well 
as conceptual insight, mathematics brings precision, operational efficiency and 
strategic power (Kilpatrick, Swafford and Swindell, 2001; Milgram, 2007; Schoenfeld, 
2007) to the way we make sense of the world. Making mathematical sense of the world 
is generally included in school curricula under the topic of measurement (Passelaigue 
& Munier, 2015). But it is also important when formulating situations mathematically 
to solve contextual problems or develop mathematical models (OECD, 2017). 
Passelaigue and Munier (2015) discuss the importance of developing a grounded 
understanding of the concepts of ‘attribute’ and ‘measure’ if we wish primary school 
children to master the learning of measurement generally required in the Primary 
School curricula. In their research into elementary school teacher’s specialized content 
knowledge (Ball, Thames & Phelps 2008), they identify and discuss some of the 
difficulties experienced by student teachers in distinguishing and relating these two 
concepts. This paper provides further preliminary findings to support their results and 
provides further insight into some of the misconceptions they identify, by including 
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elements of horizontal mathematization in the analysis of how students formulate 
situations mathematically. 
From the perspective of modelling, the process of horizontal mathematization – 
generating a mathematical model to represent salient features of a problem situation is 
identified as an important stumbling block to many students (Jupri & Drijvers, 2016; 
Verschaffel & De Corte, 1997). Identifying particular properties of things in the 
problem situation as both corresponding to measurable attributes and appropriate for 
solving the problem, is an important element of horizontal mathematization (Van den 
Heuvel-Panhuizen, & Drijvers, 2013). Measuring for mathematical sense making in 
elementary school mathematics may thus be seen as including three layers: First, 
identifying particular properties in a situation that are relevant to the problem at hand 
and relate appropriately to measurable attributes. Second, understanding general 
attributes (such as length, area, speed, and so on) that may be compared and measured. 
And third, being able to measure such general attributes (using particular instruments 
and units) and so quantify these particular properties. 
This paper discusses the manner in which a cohort of South African pre-service 
education students, studying to become Foundation Phase (grade R–3) teachers, engage 
with each of these three layers of sense making. It discusses the responses of students 
to assessment questions that involve measurement and/or the identification and use of 
quantities to solve situated problems. It is evident that, even though a pre-requisite for 
acceptance on the programme was at least a pass in grade 12 mathematical literacy, 
many students were not proficient with making precise mathematical sense of 
questions, by identifying and quantifying relevant properties that could be 
mathematicised.  
THE RESEARCH PROJECT 
This research forms part of a curriculum development / design research project that is 
based on the premise that mathematics provides a means for making sense of the world 
and that phenomena in the world provide means for making sense of mathematics. The 
aim of the research is to develop a curriculum for the preservice education of primary 
school teachers, that will generate a deep engagement with both common and 
specialized mathematical content knowledge (Ball, et. al, 2008) important for 
elementary school teaching. The aim is to provide an authentic experience of the 
process of making sense of and with mathematics and so inducting student teachers 
into mathematics as an activity (Van den Heuvel-Panhuizen, & Drijvers, 2013), to 
enable them to foster and develop this sense making practice in their teaching of 
primary school mathematics to children. 
This paper presents a number of the insights generated from the early, exploratory (and 
predominantly qualitative) phase of the project, focusing on those that relate to 
measurement and the quantification of properties identified in situations being 
modelled. The qualitative generation and justification of conjectures based on this 
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exploratory research, is discussed in this paper. The second phase of the project will 
include a quantitative investigation of this conjecture. 
Student responses to four assessment questions were analysed and three will be 
discussed in this presentation. Two questions involved measuring an irregular area. 
These similar questions were set in the early and final assessments and so this data 
provides some indication of the possible learning of the students. The third question 
required students to relate time, distance and speed.  
RESULTS 
Questions 1 & 2: Area  
These questions involved measuring an irregular area using two different drawn shapes 
as units and then querying the relationship between the two different measurement 
units and the corresponding measurement values. This paper will focus on the second 
part of these questions. 
The second, comparative, part of these questions asked students to work with two 
different units, to get two different measurement values and then to identify how the 
unit area comparison and the measurement value comparison related to each other. 
Student responses were classified using a number of different criteria. First, comparing 
the two units of area, was performed in 4 different ways: rational, descriptive, linear 
and shape. For ‘rational’, students compared the area of the units, generating a rational 
(multiplicative) relationship between the two. A qualitative comparison (such as only 
identifying one as bigger) was classified a ‘descriptive’. ‘Linear’ comparisons involved 
comparing the units along one, or possibly two linear dimensions. Finally, responses 
that only compared the shape of the two units were classed under ‘shape’. 
 Rational Descriptive Linear Shape None / 

unclear 
Percentage 
(Q1) 

36 28 5 10 21 

Percentage 
(Q2) 

58 17 3 5 19 

Table 1: Comparisons of unit areas 
The second criteria for analysing student comparisons, related to the comparison of the 
two measured values. Five different response types were identified: Rational, additive, 
descriptive, unit area, conflated. The first three types compared the measured values, 
but in different ways: ‘rational’ responses provided a rational (multiplicative) 
relationship, ‘additive’ responses provided an additive (difference) relationship and 
‘descriptive’ provided only a qualitative comparison. The other two response types 
showed a lack of distinction between the measured value and the unit area: responses 
classed as ‘unit area’ compared the area of the units, while those classed as ‘conflated’ 
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showed a conflation of the measured value with the area attribute, for example, a 
change in value was discussed as a change in area. 
 Rational Additive Descriptive Unit area Conflated None / 

unclear 
Percentage 
(Q1) 

2 3 21 40 0 35 

Percentage 
(Q2) 

21 3 9 23 6 38 

Table 2: Comparisons of measurement values 
Only 26% (Q1) and then 33% (Q2) of the students identified the measured values as 
salient for this question, distinguishing these from the unit areas – with 2% (Q1) and 
21% (Q2) comparing these rationally. A sizeable percentage of students, 40% (Q1) 
decreasing to 23% (Q2), interpreted this question as requiring a comparison of the areas 
of the two units and a similar proportion provided no, or unclear answers. This suggests 
that, even after the course, approximately two thirds of these students did not 
effectively distinguish between the attribute of area and the area measure. 
The third criteria involved relating the two comparisons. Three classes were identified 
in this analysis: Appropriate, descriptive and no relating. Responses that showed 
(implicitly or explicitly) the reciprocal relationship between the two comparisons, were 
classed as ‘appropriate’. Those providing a purely qualitative comparison were termed 
‘descriptive’ and responses that did not relate the area and value comparisons were 
classified as ‘no relating’. Many of these responses were a repeat of one or both of the 
comparisons). 
 Appropriate Descriptive No relating None / 

unclear 
Percentage (Q1) 7 10 45 38 
Percentage (Q2) 21 8 26 45 

Table 3: Relating comparisons 
It is interesting that the 21% who compared the measured values appropriately (table 
3), also identified and used the appropriate reciprocal relationship between value and 
unit area. However, even at the end of the course, the majority of students – 83% (Q1) 
and 71% (Q2) – did not clearly relate the unit and measured value comparisons. It 
appears from these results that the students do show some progression of learning, but 
that by the end of the course, the majority of students did not display stable conceptual 
mastery of the process of area measurement in this situation. 
An interesting observation emerged about student responses to the second area 
question. In this question the first unit was a square and the second was an isosceles 
right angled triangle, that could be constructed by subdividing the square along the two 
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diagonals. This triangle was similar to, but half the area of, the triangle formed by 
bisecting the square by a single diagonal. Even though the two units were drawn to 
scale, it was remarkable that 36% of the students interpreted the second unit as the 
triangle that formed half the square. This may have been a slip, where the similarity in 
shape was sufficient to convince the students that this choice was good even though 
the area was not conserved. But even so, the dominance of shape over conservation 
again suggests the lack of stability, even fragility, of these students’ understanding of 
area measurement.  
Question 3: Distance, speed and time 
The third question required students to relate time, distance and speed for two people 
travelling the same route in different ways. The question asked the students to show 
that two people who sharing a bicycle equally (one riding then walking, the other 
walking then riding) when they both ride at the same speed and walk at the same speed, 
results in them both taking the same length of time for the journey. Responding 
appropriately to this question requires at least a qualitative conceptual understanding 
of the general attributes of distance, speed and time and the relationships between them. 
But it does not require measurement to quantify these attributes.  
It was apparent in student responses that all the students who explicitly mentioned 
distance, speed or time, did so in such a way that indicated at least a qualitative 
understanding of this attribute. Three different ways of mentioning this attribute were 
noted. These were a descriptive/comparative mention, a special case example of a 
possible measurement, and a more general discussion that showed the students 
awareness that this attribute could be quantified. 
 Quantifiable 

(Q) 
Special case 

(S) 
Descriptive 

(Desc) 
None 

mentioned 
Distance (%) 74 9 2 15 
Time (%) 61 8 18 14 
Speed (%) 44 5 11 41 

Table 4: Students demonstrated understanding of each attribute 
In the case of distance and time, over 80% of the students showed at least a qualitative 
understanding of the attribute. When it came to speed, 59% of the students explicitly 
showed such an understanding.  
The second response characteristic that was analysed was the nature of the argument 
provided by the students. Five categories of argument were identified: Explicit, 
Implicit / incomplete, Special case, Descriptive and None / inappropriate. 
‘Descriptive’ arguments were those that included no more than descriptive 
comparisons of any of the attributes relevant to the problem. ‘Implicit / incomplete’ 
arguments drew on the relationship between the attributes, but did not explicitly detail 
either this relationship, or the observation that two journeys over the same distance at 
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the same speed would take the same time. ‘Special case’ arguments presented specific 
values for at least some of the attributes and drew the general conclusion from this. 
‘Explicit’ arguments explicitly mentioned either the relationship between attributes, or 
the observation that two journeys over the same distance at the same speed would take 
the same time. Every explicit response provided was also complete and correct and so 
these characteristics were not separated in this analysis. 
 Explicit Special 

case 
Implicit / 

incomplete 
Descriptive None / 

inappropriate 
Percentage 6 6 29 44 16 

Table 5: Argument types 
It was noted that the students’ understanding of speed showed some relationship to the 
argument they provided in response to this question – only 3 students (5%) who did 
not mention speed, provided more than a general and often vague discussion of 
possibilities.  
A third response characteristic was also identified as well related to the arguments 
provided by students. This was whether or not students were able to identify the 
particular properties that possessed each of these attributes and were relevant to this 
problem: the attributes of the person riding, the attributes of the person walking, the 
attributes of the friend riding, and the attributes of the friend walking. The following 
categories relating to this separation, were identified: No response, no separation, 
unclear, implicit and explicit. For ‘unclear separation’, some attempt was made to 
identify different properties, but this identification was not clear. An argument showed 
some appropriate awareness of the separate properties, even though they were not 
explicitly identified was classed as ‘implicit’. An ‘explicit’ argument showed some 
explicit identification and relating of the particular properties corresponding to at least 
two of the attributes involved.  
 Explicit Implicit Unclear No separation No response 
Percentage 23 23 11 36 9 

Table 6: Separation of particular properties vs Presentation of speed 
The identification of particular properties possessing the different attributes also 
appeared closely related to more precise and less descriptive arguments. For this 
reason, these proportions are cross tabulated against the students’ presentation of the 
speed attribute and related to the students’ argument form, as shown in graph 8. It 
appears from this graph that two factors that may have contributed to the precision of 
the argument: Firstly, the understanding of speed as a quantifiable attribute related to 
distance and time, and secondly the identification of specific properties possessing 
these attributes, that were appropriate to the problem. 
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Graph 7: Comparison of argument types 

CONCLUSION 
This research supports the findings of Passelaigue and Munier (2015) that many 
prospective elementary school teachers do not distinguish appropriately between the 
concepts of ‘attribute’ and ‘measurement’, when using mathematics to make sense of 
the world.  
It also suggests a third concept that could be included for consideration in order to 
extend our insight into students understanding of this process. This is the concept of 
‘properties’ – particular properties of objects or actions that possess a general 
measurable attribute, for it appeared that the capacity to identify and distinguish 
between two different properties that corresponded to the same general attribute and 
then relate the differing values of the attribute, was a contributing factor to the precision 
of students’ description and argument when using mathematics to make sense of a 
contextual situation. It may be this precision that students are considering in their 
incorrect responses to Passelaigue and Munier (2015), that measurement makes an 
attribute of an object precise, rather than providing an approximate value of the precise 
attribute.  
Even in the simple case of the cardinality of a set of numbers, it was possible for 
students to identify different properties as corresponding to this attribute. This suggests 
the possibility of confusion due to the standard use of the term ‘number’ to refer to 
digits in South African schools.   
These observations suggest that students need a greater exposure to this three layered 
process of measurement for sense making, together with the development of the 
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capacity to conceptualize, discuss and work with these analytical distinctions in their 
mathematical practice and their teaching. 
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Situation-specific skills (situational perception, interpretation, decision-making) as a 
structural relation between teachers’ knowledge and their actual teaching is gaining 
more and more importance in educational research. However, there are multiple 
theoretical approaches and a lack of standardized instruments, especially for early 
childhood teachers. The project Vimas_num addresses this gap by developing a) a 
coherent and substantive definition of the construct ‘situational perception’ for early 
childhood teachers and b) a video-based instrument to measure this construct. But 
although we followed a proved development approach with several cycles, our results 
show that our operationalization is not yet successful. This gives reason to discuss the 
complexity of the construct and especially its measurement via standardized test 
instruments.   
INTRODUCTION: SITUATION-SPECIFIC SKILLS AS PART OF TEACHER 
COMPETENCE 
Competence models describe teachers’ professional competence in their structure 
(Gasteiger & Benz, 2018a; Jenßen et al., 2015, Lindmeier, 2011). Concerning this 
competence structure different authors currently promote approaches that 
conceptualise competence as a continuum integrating (math-related) knowledge and 
beliefs on the one side, skills in actual teaching (performance) on the other side and 
situation-specific skills as a structural relation in between (Blömeke, Gustafson, & 
Shavleson, 2015; Gasteiger & Benz, 2018a). Theoretically, it is assumed that these 

situation-specific skills function as a bridge between disposition and performance (see 

Figure 6: Competence as a continuum (Blömeke et al., 2015, p. 7)  
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Figure 1). The situation-specific skills are further differentiated in situational 
perception, interpretation and decision-making.  
To get an overview over the state of research on teachers’ situation-specific skills in 
mathematics, Stahnke and colleagues (2016) conducted a systematic review. They 
found 60 different studies focusing on teachers’ perception, interpretation, and 
decision-making. In their analysis Stahnke et al. (2016) found meaningful differences 
in the theoretical foundation as well as in the research methods used. They state that 
the studies use multiple terms to describe the same theoretical aspects or vice versa that 
the same terms were used to describe different theoretical aspects. Concerning the 
research methods, they found a variety of research instruments used, but only 10 
studies collected data with a standardized test instrument. Additionally, only two 
studies integrated a sample of early childhood teachers. These results indicate a lack of 
standardized instruments measuring situation-specific skills but also a research gap 
concerning the situations specific-skills of early childhood teachers. Additionally, the 
findings call for a clear definition of the construct of situation-specific skills as a whole 
but also of situational perception, interpretation and decision-making in detail in order 
to soundly operationalize each of the given constructs. This led us to the question: 1) 
How could early childhood teachers’ situation-specific skills be conceptualized? To 
answer this question, we firstly outline the context of early childhood teaching and 
summarize the theoretical foundation on early childhood teachers’ situation skills. We 
will focus on early childhood teachers’ situational perception, as perception seems to 
play a central role in early childhood teachers’ competence structure (Dunekacke, 
2016; Gasteiger & Benz, 2018a). This, as well as the lack of standardized research 
measurements led us to our second question: 2) How can early childhood teachers’ 
situational perception be measured? To answer this question, we present our attempt 
to develop a standardized measurement approach by outlining the steps of the 
development process and their results.  
SITUATION-SPECIFIC SKILLS IN THE EARLY CHILDHOOD CONTEXT 
Lately, several authors have highlighted early childhood teachers’ mathematics-related 
competence and its relevance to children’s mathematical learning (e. g. Dunekacke, 
Jenßen, & Blömeke, 2015; Gasteiger, 2014). The job of early childhood teachers differs 
from the job of school teachers as early mathematics education often takes place in 
natural learning settings and has a less formal character than learning in school 
(Gasteiger, 2014; van Oers, 2010). To guarantee that children benefit from these more 
informal mathematical learning situations, early childhood teachers do not only need 
theoretical based knowledge but additionally sound situation-specific skills. The 
conceptualization of these situation-specific skills is based on the demands of early 
mathematics education. In this context, situational perception is described as 
identifying mathematics in children’s play and recognising everyday situations with 
mathematical potential (Björklund & Barendregt, 2016; Gasteiger & Benz, 2018a). 
Interpretation is related to the mathematical development of the child and decision-
making focuses on the planning of mathematical activities for children as well as the 
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spontaneous act of offering support in a natural learning situation (Gasteiger & Benz, 
2018a).  
In a typical kindergarten situation with mathematical learning potential an early 
childhood teacher has to activate his/her situation-specific skills based on his/her 
knowledge. To use the learning potential of this situation, the early childhood teacher 
firstly has to interpret this situation as one relevant for mathematical learning (van 
Oers, 2010). This interpretation in turn depends on the mathematical aspects the early 
childhood teacher perceives in the given situation. If the early childhood teacher cannot 
perceive the mathematical potential of the situation or only parts of it, (s)he will most 
likely not use the full potential of the situation to support the mathematical learning of 
a child (see also Björklund & Barendregt, 2016; Gasteiger & Benz, 2018b). Following 
this line of argument, we do assume that situational perception is based on theoretical 
knowledge and that sound skills in perceiving mathematical concepts in everyday 
situations in kindergarten can be seen as a precondition not only for interpretation and 
decision-making but also for good mathematics teaching in early childhood.  
Some empirical results also lead to the assumption that early childhood teachers’ 
situational perception plays a central role in early mathematics education: Dunekacke 
and colleagues (2015) find relations between professional knowledge and 
mathematics-related perception and decision making. Additionally, Gasteiger and 
Benz (2018b) show qualitative results indicating an impact of situational perception on 
early childhood teachers’ pedagogical and didactical actions. Lee (2017), however, 
found no statistical relation between perception and interpreting. These contradictory 
results concerning the relevance of situational perception could, as also Stahnke and 
colleagues (2016) argued, be based on either different theoretical foundations or 
different methodological approaches or both, which requires a closer look at the 
situational perception of early childhood teachers. 
EARLY CHILDHOOD TEACHERS’ SITUATIONAL PERCEPTION 
CONCERNING MATHEMATICS  
Situational perception was picked out as a field of research by Goodwin (1994) under 
the keyword professional vision. He defined professional vision as “socially organized 
ways of seeing and understanding events that are answerable to the distinctive interests 
of a particular social group” (p. 606) and reasons that “the ability to see relevant entities 
is lodged not in the individual mind but instead within a community of competent 
practitioners” (p. 626). Van Es and Sherin (2002) adapted this concept of professional 
vision to the context of mathematics education. They called this facet of teacher 
competence ‘noticing’ and defined it as “learning to identify what is noteworthy about 
particular situations” (p. 573) which “involves using what one knows about the context 
to reason about a situation” (p. 574).  
In addition, at the field of early childhood education situational perception is discussed 
from a diagnostical point of view and described by the term observation or pedagogical 
documentation (e.g. Heiskanen, Alasuutari & Vehkakoski, 2018; Schulz, 2015). The 
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focus of this line of research lies on teachers’ skills in and methods of observation and 
pedagogical documentation of children’s development (e.g. Knauf, 2015).  
The concept of situational perception of early childhood teachers concerning 
mathematics can be traced back to aspects of both described research fields: 
professional vision/noticing in mathematics education and observation in early 
childhood education. Definitions of situational perception of early childhood teachers 
in mathematics stress, however, that situational perception is more than observing 
children’s mathematical development: Gasteiger and Benz (2018a) define situational 
perception as recognising the mathematical relevance of everyday situations, 
Dunekacke (2016) as the identification of surface characteristics (as mathematical 
themes) and more sophisticated characteristics (as the level of development of 
children). Both definitions have in common that they do not only focus on the learning 
process of the child but also include the perception of the mathematical potential of 
different situations in a kindergarten setting.  
RESEARCH INTEREST 
Recently, more and more empirical research focuses on early childhood teachers’ 
situational perception. Björklund and Barendregt (2016) assume based on survey data 
of Swedish early childhood teachers that teachers “seem to be quite perceptive of their 
environment and the mathematics that may be recognized within it” (p. 370) – except 
if it comes to situated mathematics learning which is especially important in early 
mathematics education. Additionally, Lee (2017) found differences in early childhood 
teachers’ situational perception related to years of teaching experiences as well as 
educational background. Bruns and colleagues (in press) compared the situational 
perception of early childhood students with and without mathematical background and 
found that students with mathematical background identified more mathematical 
aspects in given video-situations. Although these results give a first impression of early 
childhood teachers’ situational perception in mathematics, empirical research is still at 
the beginning. This is partly related to a lack of instruments to measure this comparably 
new and complex construct: Only the study of Dunekacke et al. (2015) uses a 
standardized test instrument, while the other studies use interview instruments (e. g. 
Lee, 2017) or qualitative survey data (e. g. Björklund & Barendregt, 2016). To get a 
more detailed picture of early childhood teachers’ situational perception in 
mathematics, standardized instruments that can be used in quantitative studies are 
needed. The development of such an instrument is the aim of the project Vimas_num.  
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METHODS 
The development of the test-instrument followed Wilson’s (2005) Four Building Block 
approach (see Figure 7): In a first step, the construct map defines the content of the 
construct ‘early childhood teachers’ situational perception concerning mathematics’ 
and its characteristics concerning the underlying continuum ‘not able to perceive 
mathematics’ to ‘expert in situational perception’. Afterwards, we designed items that 
seemed suitable to measure this construct. The outcome space is the basis for the 
scoring of these items. Finally, the measurement model relates the outcome space to 
the construct and helps us to interpret the item scores in relation to the construct. 

Test instrument 
As described, early childhood teachers’ situational perception concerning mathematics 
is defined as recognising mathematical aspects in everyday (play) situations 
(Duneckacke, 2016; Gasteiger & Benz, 2018a). Hence, items measuring this construct 
need to be based on concrete situations. To realize this, different authors propose a 
video-based measurement approach (e.g. Blömeke, 2013; Dunekacke, 2016; 
Lindmeier, 2013). 
 

Decide for each aspect, if it describes the mathematical content 
of the situation concerning set and numbers correctly. 

 Yes No  I did not know 
the answer 

(1) Comparison of sets  X   

(2) Seeing 5 items at a glance  X   

(3) Ordering numbers   X   
(4) Numbers as representation of stets X    

 

Construct 
Map

Item Design

Outcome 
Space

Measurement 
Model

Figure 7: Construct Modeling: The “Four Building Block” Approach (Wilson, 2005) 

Figure 8: Example of the items 1.1 to 1.4, the cross indicates the right answer  



Bruns & Gasteiger 

2 -                                                                                                             PME 43 - 2019 134 

Following this proposal, we developed four video vignettes showing typical 
mathematical activities of children in a real kindergarten setting. To these vignettes, 
we collected open answers via a written questionnaire from n = 54 pre-service and n 
= 52 in-service teachers to the question: Which mathematical aspects do you see in the 
given situation? After several considerations concerning the item design and a pilot 
study with multiple-choice items, we developed - based on the open answers - four 
complex multiple-choice items to each video. For each item participants have to decide 
whether the given mathematical aspect is part of the situation. Figure 3 shows item 
examples.  
Sample and item analysis 
The 16 video-based items (four to each video) were piloted with a sample of N = 91 
early childhood teachers. The teachers had visited a professional development course 
on early mathematics education. They were average 41.58 years old (SD = 10.66, Min. 
= 21, Max. = 62) and had work experience from 1 to 43 years (M = 16.13, SD = 10.13). 
83 of the participants were female, 8 participants were male.  
To examine item quality, we used descriptive analysis and checked if the 16 items fit 
to the 1PL Rasch-model (software package eRm, Mair, Hatzinger & Maier, 2018).  
RESULTS 
Looking at the descriptive results, we found two items that were solved by nearly the 
whole sample: Item 1.4 was solved by 93.0% (SD = .25) and item 4.4 by 99.0% of the 
sample (SD = .10). Therefore, both items were excluded from further analysis. The 14 
items left and included in the modelling showed solution rates from 21.0% to 89.0%. 
To check, if the items left fit to the 1PL Rasch-model, we used the Wald test, which 
examines whether the items are unidimensional, and mean square fit statistics. Looking 
at the results of the Wald-test, seven items seem to be problematic: one item to video 
1 and 4, two items to video 3 and three items to video 2. Concerning the mean square 
fit statistics, no further items showed a misfit. However, five of the remaining six items 
are quite easy and calculation of Cronbach’s a fails due to negative correlation between 
the six items, indicating that the operationalization of the construct is not yet satisfying.  
DISCUSSION 
As stated there is a need for standardized test instruments to measure early childhood 
teachers’ situational perception concerning mathematics. Within our project, we made 
a proposal for a clearly defined construct of early childhood teachers’ situational 
perception. Based on this construct, we made a first attempt to operationalize early 
childhood teachers’ situational perception. However, the developed items did not prove 
to be a reliable measurement, although we followed a proved development approach 
with several cycles and data analysis showed a fit of six items to the Rasch-model. This 
shows the complexity of the construct situational perception and its measurement.  
Looking at the problems of the measurement model, three reasons could be identified: 
One reason could be the small sample of items and participants. Another reason could 
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be, that the items developed are quite easy and therefore do not discriminate well 
between the participants. As Wu et al. (2016, p. 152) put it: “if all items are equally 
“bad” ([…] low discrimination power), the items will still show good fit, because they 
have equal discrimination”. Additionally, our analysis did not consider that four items 
each were nested within a situation. One possible approach to overcome these problems 
would be to group the items of each video to one item and use a partial credit Rasch-
model instead of the 1PL Rasch-model. This model needs, however, a larger data basis 
– considering the sample size but also the number of items.  
The next steps will therefore be a careful analysis of the problematic items by using 
inter alia a qualitative think aloud study. Based on these results, we will revise our 
existing items and develop further vignettes and accompanying items. The success of 
these steps will be examined by another pilot study with a larger sample of participants. 
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The purpose of this paper is to describe one characteristic of instruction focused on 
mathematical errors and imprecisions in content and language that instructors make 
while teaching algebra in community colleges within the United States. Findings from 
our study reveal that instructors’ mathematical errors and imprecisions relative to 
language and notation are present during instruction, which have the potential to lead 
to a lack of clarity and student misconceptions. 
INTRODUCTION 
For the past decade, many states in the U.S. have implemented the Common Core State 
Standards for Mathematical Practice (SMPs) in elementary and secondary education 
(National Governors Association Center for Best Practices & Council of Chief State 
School Officers [NGA Center & CCSSO], 2010). One of these practices includes 
SMP6: Attend to Precision which states that students should learn to communicate 
precisely and accurately in both their writing and verbalization of mathematical ideas. 
As a companion publication to support the implementation of the Common Core in the 
U.S., the National Council of Teachers of Mathematics published Principles to Actions 
(NCTM, 2014) to illuminate the Mathematical Teaching Practices (MTPs) that 
instructors should weave into every lesson in order to build students’ mathematical 
practices. One of these practices includes MTP3: Use and Connect Mathematical 
Representations where instructors are expected to “engage students in making 
connections among mathematical representations to deepen understanding of 
mathematics concepts and procedures and as tools for problem solving” (p. 24). In 
order to illuminate mathematical connections and help students attend to precision, 
instructors need to use mathematically precise language and notation when making 
their thinking public in order for students to develop appropriate and robust ways of 
knowing mathematics. Otherwise, the potential for a lack of clarity of the mathematics 
can persist and ultimately, student misconceptions of the content may develop. 
This study is situated in U.S. community colleges (tertiary-type B institutions), which 
offer courses in the first two years of post-secondary education (OECD, 2017). These 
institutions provide advanced mathematics courses (such as Calculus and Differential 
Equations), as well as the prerequisite algebra courses needed for all science, 
technology, engineering, and mathematics degrees. Community colleges serve almost 
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half of all U.S. post-secondary students (Snyder, de Brey, & Dillow, 2018), yet little 
research has been conducted to understand the quality of instruction in these colleges. 
With the emphasis in secondary education on attending to precision, as well as using 
and connecting mathematical representations, it is important to understand the ways in 
which content and language precision is (or is not) enacted in community colleges. 
THEORETICAL FRAMEWORK WITH SUPPORTING LITERATURE 
Consistent with Cohen, Raudenbush, and Ball (2003), we believe instruction is defined 
as the interaction among faculty, students, and content that is embedded in particular 
contexts and evolves over time. We contend that this belief about instruction 
acknowledges the nature of knowledge exchanges between the instructor and students, 
and ultimately recognizes that communication among these individuals is critical for 
developing an understanding of the content. Evidence in secondary mathematics 
suggests that, under certain conditions, students do learn more mathematics and that 
understanding the conditions for which teaching causes learning is critical for 
improving education (Hiebert & Grouws, 2006). Specifically, we believe that attending 
to the nature of communication exchanges with a lens towards precision and 
connections can illuminate the conditions that allow students to learn. 
One strategy for teaching mathematics is for instructors to leverage students’ 
mathematical errors. Borasi (1996) wrote that making errors in mathematics can serve 
as productive sources for learning opportunities. Although using student errors to 
leverage a learning opportunity is shown to have instructional benefits, un-identified 
instructor errors or imprecisions cannot productively advance student learning. Kalder 
(2012) stated “When students hear correct language being used consistently and are 
asked to do so themselves, their understanding of mathematical concepts and 
procedures will no doubt improve” (p. 91). This area of interest serves as the basis for 
this investigation which specifically attends to the utterances and written notation 
provided by the instructor while teaching algebra. We assume that the nature of 
communication exchanges has a significant impact on students’ development of key 
mathematical ideas, and that attending to precision when communicating mathematics 
is essential to students’ learning of the content. 
A common practice in teaching mathematics is to use everyday language when 
describing and explaining ideas. For example, instructors may use phrases such as 
“plug in” when describing the process of evaluating a function at a given input value. 
Another example is the use of “cancel” when instructors are describing the process of 
dividing common factors. The use of pronouns (e.g., it, this, that) to refer to various 
mathematical expressions and objects is also a common practice, yet an overuse of 
such pronouns when speaking mathematically can often obscure the interpretation and 
mathematical meaning for students. Adams (2003) suggests that instructors can 
facilitate students’ recognition and use of technical language instead of relying on 
informal language to illustrate mathematical concepts and meanings to everyday words 
and “by explicitly evaluating students’ ability to use technical language appropriately” 
(p. 149). In light of this movement towards mathematical precision, we were curious 
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how instructors at the post-secondary level attended to the mathematical precision 
envisioned for students. Thus, this paper addresses the following research question: In 
what ways do errors and imprecisions in content and language surface during the 
teaching of mathematics in community college algebra courses? 
METHODS 
The wider focus of this study is on the various aspects of mathematics instruction at 
community colleges, captured through video-recorded instructional episodes. Using 
the video coding rubric, EQIPM: Evaluating the Quality of Instruction in Post-
secondary Mathematics (Cawley et al., 2018), we chose one characteristic of 
instruction, Mathematical Errors and Imprecisions in Content or Language (MEICL), 
that was intended to capture instructional events that are mathematically incorrect or 
that demonstrate problematic uses of mathematical ideas, language, or notation. This 
characteristic applies to the work and utterances of the instructor in the course. The 
EQIPM builds upon the work in secondary mathematics by Hill et al. (2008) and Litke 
(2015) and extends their work to the community colleges. 
During the Fall of 2017, trained observers video-recorded 2-3 whole-class sessions 
from 44 instructors covering mathematical topics such as linear, rational, or 
exponential equations and functions. The instructors, who volunteered to be observed, 
were located at six diverse community colleges, which represent a range of institution 
size, degree of urbanicity, and region (Southwest, Midwest, and Central in the U.S.), 
and student background. In total, 143 class sessions were video-recorded with over 190 
hours of instruction. The EQIPM rubric was used by 17 trained coders to rate the 
characteristics of instruction that appeared in each 7.5-minute segment (n = 1,576 
coded segments of which 1,236 are full 7.5-minute segments) of every class session (n 
= 143). A rating of 1 to 5 representing the quality of instruction was assigned by coders 
for each segment. Along with assigning a rating, coders provided supporting evidence 
for each rating they assigned by documenting specific times and a brief explanation of 
the quality of the characteristic based on the guidelines described in EQIPM. For the 
MEICL characteristic, a rating of 1 indicated that no errors or imprecisions were made 
or that errors or imprecisions were clearly corrected within the segment. A rating of 3 
indicated that content errors and/or imprecisions occur in the segment or that errors 
and/or imprecisions obscure the mathematics, but for only part of the segment. A rating 
of 5 indicated that content errors and/or imprecisions occur in most or all of the 
segment, errors and/or imprecisions obscure the mathematics of the whole segment, or 
errors and/or imprecisions disrupt the opportunity for students to make sense of the 
content. Ratings of 2 or 4 were reserved for “in between” cases. For example, a 4 was 
assigned when the error and/or imprecisions were more egregious than that of a rating 
of 3, but were not quite as persistent as those that received a rating of 5. We chose to 
specifically look at this characteristic since this particular code did not load with any 
of the other characteristics in EQIPM when a factor analysis was performed. 
Furthermore, a similar instructional characteristic from the Hill et al. (2008) and Litke 
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(2015) rubric did not load in their factor analysis, suggesting the need to take a closer 
look at the evidence of this characteristic. 
The MEICL characteristic specifically focuses on the errors and imprecisions made by 
the instructor. Coders ignored intentional errors or imprecisions made by the instructor 
or errors that were corrected within the segment. For this paper, we focus on three areas 
within this rating: imprecision in language, imprecision in notation, and mathematical 
errors that muddle the understanding of the content. Imprecision in language include 
use of colloquial language to describe mathematical terms (e.g., cancel, top, bottom, 
over). Imprecisions in language can also include use of pronouns that makes it unclear 
as to what the instructor is referencing (e.g., this, that, move it over there). Notation 
includes conventional mathematical symbols (such as +, -, =) or symbols for fractions 
and decimals, square roots, angle notation, functions, exponents, etc. Imprecisions in 
notation might include inaccurate use of the equal sign, parentheses, or division 
symbol. Imprecision in notation can also include lack of accurate labelling in problems 
(e.g., not labelling important aspects within a graph such as the x- and y-axes or the 
function). Finally, mathematical errors are considered explicit mathematical mistakes 
that the instructor may commit. Errors could be instances where the instructor does not 
take into account all possible contexts (e.g., horizontal asymptotes are never crossed 
by the function, anything to the 0 power is 1), or contradicts given definitions or 
assumptions. 
For this paper, we isolated segments that were rated as a 4 or 5 for the MEICL 
characteristic. A total of 35 segments received a rating of 4 (n = 31) or 5 (n = 4), from 
17 instructors. Of those 17 instructors, four instructors had three or more segments that 
received a rating of 4 or 5. The content areas that received these ratings were rational 
and exponential equations or functions. Once we isolated the segments that received a 
4 or 5 rating, we analysed the coder comments provided for each rating and identified 
the four instructors with three or more segments in this group. From here, we reviewed 
the video segments to further analyse relative to the MEICL characteristic to identify 
the context and potential subtleties associated with the rating given by the coder. 
FINDINGS 
The following discussion is organized based on imprecisions in language, imprecisions 
in notation, and mathematical errors presented during instruction. Among the 35 
segments rated as a 4 or 5, imprecisions in language was the most prevalent. One of 
the most common instances included use of colloquial language or use of pronouns. 
For example, when teaching about how to translate between logarithmic and 
exponential notation, instructor 41322 used imprecise words and phrases to refer to 
mathematical statements or procedures, such as “on the bottom... wanted to move it 
up..." when referring to manipulations of fractions or referred to the argument in a 
logarithm as a “guy” (e.g., "this guy equal to this here..."). He used the phrase “cancel” 
throughout his description of logarithms to indicate principles such as log0𝑏2 = 𝑎 
where he explained that log0	and the argument b would “cancel out.” 
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During instructor 41022’s lesson on how to simplify a complex fraction, the 
instructor’s imprecise language left two students confused. At a certain point in the 
problem, students were expected to simplify the fraction by dividing common factors. 
The following solution was provided for the students: 

 
Figure 1: Board work for instructor 41022. 

The instructor described his work that led to the simplified response of 56
789

 by pointing 
to the factors 𝑚 − 𝑛	and 𝑛 − 𝑚 and saying "these almost cancel, but the negative is 
backwards." One student asked the instructor to clarify how he manipulated the 
numerator from 𝑛 − 𝑚 to get −(𝑚 − 𝑛). The instructor replied, "If we factor out a 
negative...all that does is just toggle the signs...this minus is left over" (pointing to the 
-1 in the numerator). The way that the instructor described his solution was unclear as 
he continuously referred to “factoring out a negative” rather than indicating that he was 
factoring out a negative one. He used the term “minus” and “negative” interchangeably 
and did not describe the mathematical result of distributing the negative into the factor 
to show that it was equivalent to the original. After a few minutes, another student 
indicated that she still did not understand how the instructor “got the one out” of the 
factor in the numerator. The instructor simply proceeded to explain his work in the 
same way as he originally offered to students. This explanation had many imprecisions 
in language through the use of pronouns, as well as imprecise mathematical terms, that 
clearly confused at least two students in this segment and his further explanation 
potentially did little to clarify the mathematics for the students. 
Imprecisions in notation were also apparent in many of the segments that were rated a 
4 or 5, though not as notable as imprecisions in language. In particular, there seemed 
to be imprecisions in writing function notation. For example, instructor 11423 spent 
time discussing five different transformations of the function ℎ(𝑥) = 6

=
. While he wrote 

ℎ(𝑥) = 6
=
+ 1 on the whiteboard, he also wrote the additional transformed functions 

without function notation or an equals sign to indicate an equation. He simply wrote 
the following expressions on the whiteboard: 6

=
− 1, 6

=56
, 6
=86

, 6
=56

+ 1. In this 
example, the instructor described each of these as being rational functions, however, 
did not use any function notation or an equals sign to indicate an equation as opposed 
to an expression. Similarly, instructor 10322 did not use precise notation when 
describing composition of functions. In an example of a function f composed with g, 
he opted to denote the composition as “fog” (in his written and verbal explanation) 
without attending to precision in notating the composition as 𝑓(𝑔(𝑥)) or (𝑓 ∘ 𝑔)(𝑥).  
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Figure 2: Board work for instructor 10322. 
He also did not use an equals sign to indicate an equation, thus the idea of a functional 
relationship among inputs and outputs was non-existent (see Figure 2). In this example, 
his work implies that the result of a composition is an expression, which loses the 
critical idea that a function relates an input to its output, and that when composing 
functions, a new equivalent function is created. 
Instructor 10322 also demonstrated imprecision in notation when he sketched graphs, 
ignoring important features such as labelling axes, using function notation, as well as 
indicating that the function continued beyond the scope of the sketch by using arrows 
at the ends of the function. Figure 3 shows what the instructor wrote on the whiteboard 
to illustrate the graph of the functions 𝑓(𝑥) = 2= and 𝑔(𝑥) = 2=8B.  

 

Figure 3: Imprecision in notation when sketching the graph of two functions.  
In this example, neither of the functions are labelled in the graph, which may lead to 
confusion when identifying each function and their subsequent transformation. 
Anytime the instructor 10322 sketched graphs of specific functions, he consistently did 
not write the equation using function notation, indicating that he was sketching an 
expression which is erroneous. For example, previously in the lesson he showed the 
graph of 5= without indicating a functional relationship between input and output 
values. The mathematical error in writing the function only as an expression removes 
the necessity of having an output, y, for the function with input of x. This instructor’s 
work undermined the topic of functions, specifically notation, which is a challenging 
topic for students (Breidenbach, Dubinsky, Hawks, & Nichols, 1992).  
Finally, we saw examples of mathematical errors in the work that instructors wrote on 
the whiteboard. A mathematical error came when instructor 11432 graphed the 
function 𝑓(𝑥) = =56

=D5E
. Using a table of values created by a graphing calculator, the 

instructor sketched the following on the whiteboard shown in Figure 4 (left graph):  
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Figure 4: Instructor’s graph of 𝑓(𝑥) = =56
=D5E

 on the left, correct graph on the right. 

The graph has certain key pieces of information, including the two vertical asymptotes 
and the horizontal asymptote. However, the graph is incomplete; there are two sections 
of the graph missing and the function is incorrectly plotted: the function is positive 
when −2 < 𝑥 < 1 and negative when 1 < 𝑥 < 2. While the instructor did indicate in 
a subsequent segment that the source of the error was that he had entered the equation 
incorrectly in the calculator, he did not correct the graph written on the whiteboard.  
DISCUSSION 
The current work demonstrates examples of imprecisions in language, imprecisions in 
notation, and mathematical errors that were detected in the video coding of 
instructional episodes. In particular, we noticed that many important mathematical 
ideas were reduced to singular words or pronouns that lost the rigor and meaning of 
the mathematics being discussed. The mathematical notation, specifically examples of 
graphing and using function notation, demonstrated what appeared to be shortcuts for 
writing the information on the board and had the potential to contribute to a lack of 
clarity of the mathematics for students. 
We believe that making mathematical errors is a key component to learning, and that 
therefore, decomposing mathematical errors are an important process to better 
understanding mathematical content (Borasi, 1996). However, mathematical errors are 
only useful if they are recognized in the moment and those involved can engage in 
fruitful discussion of the error. In our case, we observed mathematical errors that were 
generated by the instructor and not resolved within the segment, which have the 
potential for students to develop misconceptions of the mathematics. 
We see the mathematical imprecisions as the more subtle and challenging aspect of 
teaching. Instructors are often required to cover a vast amount of content in a short 
period of time, which may result in a lack of precision. However, when multiple 
imprecisions occur consistently and without connections to the appropriate 
mathematical language and notation, we believe that this practice can potentially 
contribute to students’ development of mathematical misconceptions and lack of clarity 
that may further obscure students’ understanding of the material.  
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DIALOGUE AND SHARED COGNITION: STUDENT-STUDENT 
TALK DURING COLLABORATIVE PROBLEM SOLVING 

Man Ching Esther Chan, David Clarke 
The University of Melbourne 

 

Student-student talk has been found to play an important role in facilitating classroom 
learning in mathematics across cultures. This report examines the socio-cognitive 
activity associated with meaning negotiation in the mathematics classroom. Terms 
such as co-cognition, inter-cognition, and intra-cognition are operationalised using 
data from student collaborative problem solving activity in a laboratory classroom to 
explicate the socio-cognitive aspect of meaning negotiation within a mathematics 
classroom setting. We argue that awareness of these different forms of socio-cognitive 
activity may have useful pedagogical implications for facilitating productive classroom 
dialogue. 
BACKGROUND 
The notion of shared cognition conceptualises cognition as a collective and social 
process beyond the individual. In the mathematics classroom setting, shared cognition 
can be seen as occurring during meaning negotiation between teacher-student and 
student-student interactions as students are initiated into the discourse of the 
mathematics classroom. In this report, we examine the socio-cognitive activity 
associated with individuals’ participation in meaning negotiation through collaborative 
problem solving. In particular, we examine the socio-cognitive aspect of meaning 
negotiation by identifying indicators of shared cognition. The connection between 
these indicators of shared cognition and dialogic processes is discussed. 
Socially shared cognition 
Vygotsky’s (1978) work on the sociocultural nature of learning generated high interest 
in the role that a more able other (e.g., a caregiver or a peer) might play in facilitating 
the learning of individual children, while also highlighting the cultural historical 
context of both knowledge and learning. This sociocultural view of learning directed 
researchers’ attention to the importance of both the context in which learning occurs 
and the primacy of the culturally-framed social interactions through which learning 
occurs. Contemporary theories such as Distributed Cognition (Hutchins, 2006) and the 
Social Brain hypothesis (Dunbar, 1998) and terms such as shared cognition (Resnick, 
Levine, & Teasley, 1991) and interthinking (Littleton & Mercer, 2013; Mercer, 2000) 
continue the expansion of the notion of cognition from a strictly individualistic process 
to a collective process. 
Rather than viewing social and cognitive perspectives of learning as dichotomous, the 
social constructivist view integrates both perspectives in conceptualising the learning 
process. In their effort to resolve the social and cognitive divide in psychological 
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theory, Resnick and her colleagues (1991) used the term shared cognition to describe 
“cognition that is not bounded by the individual brain or mind” (Resnick et al., 1991, 
p. 1). Drawing from the work of Vygotsky (1978) and Mead (1934), Resnick asserted 
that the kinds of interpretative processes available to individuals can be shaped by 
social experience. Instead of focusing on how individuals think about social 
phenomena, social processes can be treated as integral to cognition, and examined in 
terms of the way in which people jointly construct knowledge through processes 
shaped by particular social purposes and interactions. 
Classroom learning as meaning negotiation 
In terms of our conceptualisation of classroom learning, the process of learning can be 
seen as the construction of knowledge by students through their interaction and 
participation within the classroom setting. In associating learning with participation in 
a community of practice, Lave and Wenger (1991) asserted that “participation is 
always based on situated negotiation and renegotiation of meaning in the world” (p. 
51). They used the term situated learning to emphasise the relational character of 
knowledge and learning, the negotiated character of meaning, and the problem-driven 
nature of learning activity (p. 33). Clarke (2001) suggested that the presumptions of 
meaning are community, purpose, and situation, since “it is futile to discuss the 
meaning of a word or term in isolation from the discourse community of which the 
speaker claims membership, from the purpose of the speaker, or from the specific 
situation in which the word was spoken” (p. 36). The negotiation of meaning may be 
concerned with the substantive mathematical content that is the pretext for the social 
gathering called “a mathematics class” or it may be concerned with establishing a set 
of social obligations and responsibilities, without which neither a class nor a 
collaborative group will run smoothly. 
Clarke (2001) posited that for negotiation to take place, there needs to be something 
that is unresolved and uncertain. The inclination of humans to want to achieve 
consensus or intersubjectivity, where intersubjectivity is described as “a mutual or 
taken-as-shared understanding of an object or an event” (Cobb & Bauersfeld, 1995, p. 
295), can be seen as a driving force for the negotiation of meaning by the actors within 
the classroom setting. Cobb and Bauersfeld (1995) defined the negotiation of meaning 
as “the interactive accomplishment of intersubjectivity” (p. 295). While 
acknowledging the importance of intersubjectivity in the meaning negotiation process, 
Clarke (2001) reasoned that as meaning negotiation is mediated by language (or some 
form of conventionalised communicative process), which presumes intersubjectivity, 
some level of existing intersubjectivity is required for the negotiation to occur at all. In 
this conception, a level of student-student and student-teacher intersubjectivity is a 
prerequisite to the negotiative process, so that negotiation may proceed by the 
incremental refinement of intersubjectivity. This suggests that intersubjectivity is not 
only a goal but also a pre-condition for the negotiation of meaning within a classroom 
setting.  
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In order to further examine the shared cognitive process occurring through meaning 
negotiation within the mathematics classroom setting, we particularly focus our 
attention on the socio-cognitive aspect of meaning negotiation by identifying indicators 
of shared cognition. We employ the term socio-cognitive (Van Dijk, 2008) to both 
acknowledge the fundamentally social nature of human cognition (Mercer, 2016) and 
also to contest the image of a cognitively bounded individual evoked by reference to 
individual cognition or cognitive activity without explicit acknowledge of the 
fundamentally social nature of human cognition. We refer to the notion of co-cognition 
(as employed by Heal, 1998) and propose the terms inter-cognition and intra-cognition 
to distinguish different kinds of socio-cognitive activity involved during collaborative 
problem solving. These terms are operationalised using data from the Social Unit of 
Learning project, which involved student collaborative problem solving activity in a 
laboratory classroom. 
THE STUDY 
The Social Unit of Learning project was conducted in a laboratory classroom situated 
within the Melbourne Graduate School of Education at the University of Melbourne, 
Australia. One class of Year 7 students (26 students) provide the focus for this report. 
The class participated in a 60-minute session in the laboratory classroom involving 
three separate problem solving tasks that required them to produce written solutions. 
The students attempted the first task individually (10 minutes), the second task in pairs 
(15 minutes), and the third task in groups of four to six students (20 minutes). The tasks 
have the characteristics of allowing students to express their thinking through multiple 
modes (e.g., verbal, graphical, textual, etc.) and approach the task using different 
strategies or prioritise different forms of knowledge or experience. 
The resulting data collected in the project included: all written material produced by 
the students; instructional material used by the teacher; video footage of all of the 
students during the session; video footage of the teacher tracked throughout the session; 
transcripts of teacher and student speech based on the video recording; and recording 
and transcripts of pre- and post-session teacher interviews. 
CO-COGNITION, INTER-COGNITION, AND INTRA-COGNITION 
The term co-cognition has been used by Heal (1998) to describe a person’s capacity to 
mentally simulate the thoughts of another, akin to the theory of mind (Flavell, 1999). 
The term can be contrasted with meta-cognition, which refers to thinking about one’s 
own thinking (Wilson & Clarke, 2004). In examining the data from the Social Unit of 
Learning project, we found instances of co-cognition when students explicitly tried to 
understand each other’s perspective. For example, one of the pair tasks that was given 
to the students was specified as follows: 

The average age of five people living in a house is 25. One of the five people is a Year 7 
student. What are the ages of the other four people and how are the five people in the house 
related? Write a paragraph explaining your answer. 
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Students Anna and Pandit (pseudonyms; both female) were solving the task and Anna 
had drawn five circles on the working out sheet denoting the five people in the 
household as specified in the task. She wrote “25” above to the middle of the circle, 
circled the middle circle, and drew a line linking the number and the middle circle. 
The pair then had the following conversation (the number denotes speaker turn and // 
denotes overlapping speech): 

47 Anna: Twenty-five. 
48 Pandit: Why are you saying that dude's 25? They don't have to be 25. 
49 Anna: It - it - this one is 25 because that's the average. 
50 Pandit: Average doesn't have to - doesn't mean that one guy has to be 25. 
51 Anna: Oh okay, okay. That makes sense then. 
52 Pandit: Altogether it's 125 because like ... 
53 Anna: Yeah, yeah, yeah. 
54 Pandit: And ... 
55 Anna: Now, I get it. I thought that was //just 25. 
56 Pandit: //Yeah, yeah. So one dude's 13. That means the other four is 112. 
57 Anna: What do you mean? No. It can't - they can't all be like so equal. 
58 Pandit: They're not. Oh my God. Look, so 25's one guy, right. No. It's like for, you 

know, average means like ... 
59 Anna: I know, I know. 
60 Pandit: Yeah. So 25 times five is the total, right? 
61 Anna: Yeah. I know. 
62 Pandit: So everyone's 125. And one guy is 13. 
63 Anna: I know, one guy. So ... 

The conversation between Pandit and Anna suggests that the students had different 
conceptions of average. For Anna, as shown in her writing, she imagined average to be 
the middle number among a group of numbers (Turn 25 “… this one is 25 because 
that's the average”). Pandit did not agree with Anna (Turn 48 Pandit: “They don't have 
to be 25.”) and tried to explain to her that the specification of the average meant that 
the total of the five numbers had to be 25 times 5 (Turn 52 “Altogether it’s 125 because 
like ...). Pandit’s explanation was cut off by Anna’s response (Turn 53 “Yeah, yeah, 
yeah.”). When Pandit went further to suggest that they could subtract the Year 7 
student’s age (13 years) from the total of 125 (Turn 56 “So one dude's 13. That means 
the other four is 112.”), Anna appeared to think that Pandit was implying that the other 
four people had to be of the same age (Turn 57 “No. It can't - they can't all be like so 
equal.”). Her disagreement with Pandit prompted Pandit to trace back Anna’s thinking 
(Turn 58 Pandit: “Look, so 25’s one guy, right. …”) and to try to explain to her 
understanding of Anna’s thinking (Turn 58 Pandit: “It's like for, you know, average 
means like ...”). Although Pandit’s attempt was cut short by Anna’s response, Pandit’s 
utterance “it’s like for you” was an obvious indication that Pandit was trying to reflect 
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Anna’s thinking back to her in order to resolve their disagreement. Pandit’s attempt to 
explain to Anna her own thinking seems to indicate the socio-cognitive process that 
Heal (1998) considered as co-cognition. Anna also appeared to attempt to understand 
Pandit’s thinking, as evident in her response “What do you mean?” (Turn 57) when she 
did not follow Pandit’s statement “That means the other four is 112” (Turn 56). 
Co-cognition can be contrasted with what we have called inter-cognition, which 
invokes the notion of extending or building upon the thoughts of another without the 
level of empathic insight presumed by Heal’s (1998) term. We propose that inter-
cognition occurs where the expressed thought of one individual stimulates or provides 
a platform or scaffold for the (further) thought of an interacting individual. There is a 
fundamental temporality to inter-cognition that is not required for co-cognition. For 
example, below is the conversation between Audrey and Katie (both female) after they 
have worked out their solution to the same task that Anna and Pandit were attempting. 
The conversation took place as they were in the process of writing out their final 
solution, with Katie doing the writing. 

83 Katie: Let's write the explanation now. Why did we choose these ages? 
84 Audrey: We chose these ages as we wanted a variety (laughs). 
85 Katie: We wanted … 
86 Audrey: Because they were all just - ah, I just stabbed myself with a pen. No. Does 

this have to be … 
87 Katie and Audrey: (Laughter)  
88 Katie: Forty-five, forty-five doesn't make a variety. 
89 Audrey: Just say because we wanted a variety of ages. We know this is correct as … 

as we have used addition to add them all. 
90 Katie: We … 
91 Audrey: We used addition to … 
92 Katie: No. We can't say it's correct because there could be many answers. 
93 Audrey: Oh we know this is one of the many answers. 
94 Katie: We know... (Laughs).  
95 Katie: … the answers. As… 
96 Audrey: As we have used addition to add these five numbers up. 
97 Katie: No. We used all of them, divide everything, times. 
98 Audrey: Subtraction. Division. 
99 Katie: Multiplication. 
100 Audrey: And multiplication to make sure our answer is precise. 
101 Katie: Pretty sure I spelled that wrong (laughs). 
102 Audrey: Pretty sure that's an “I”. 
103 Katie: You spell it. 
104 Audrey: To make our answer as precise as it can be. 
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The above excerpt suggested a coordinated way in which Audrey and Katie tried to 
justify their solution in writing. Katie raised the question “Why did we choose these 
ages?” (Turn 83), and Audrey responded (“We chose these ages as we wanted a 
variety…”). Katie pointed out that the choice of two ages of 45 years does not 
constitute a “variety” (Turn 88), and Audrey responded by assuring her that the 
wording was fine and Katie followed by writing the sentence down. Audrey then tried 
to justify their answer by mentioning that they thought that their answer was correct, 
but Katie disagreed (Turn 92 “We can't say it's correct because there could be many 
answers”), and Audrey echoed Katie’s point (Turn 93 “Oh we know this is one of the 
many answers”). There is a coordinated pattern in the way Katie and Audrey operate, 
where one makes a suggestion and the other person responds by extending or building 
on the person’s suggestion. Even when there was a disagreement, the disagreement was 
resolved quickly, either by one person maintaining her stance (e.g., Turn 89 Audrey: 
“Just say because we wanted a variety of ages”), or adjusting her stance by matching 
the stance of the other person (e.g., Turn 93 Audrey: “Oh we know this is one of the 
many answers”). We suggest that the way in which Katie and Audrey expressed their 
thoughts and stimulated each other’s thinking for further thought appears to 
characterise a different type of socio-cognitive activity to which we called inter-
cognition. 
Contrasting with inter-cognition, intra-cognition can be seen when two or more people 
regulate their own thinking as a cognising unit. We suggest that intra-cognition can be 
signalled by the prominence of “we” as the agentic pronoun. Statements that we would 
characterise as intra-cognitive make reference to, evaluate, or regulate the spoken 
contributions of all (both) participants in the student talk. In such intra-cognitive 
exchanges, it is the combined thoughts of the dyad that are the subject of the 
conversation. The excerpts of Anna and Pandit and of Audrey and Katie provide a 
useful contrast in illustrating intra-cognition. The frequent use of “you” and “I” in the 
conversation between Anna and Pandit (e.g., Turn 48 Pandit: “Why are you saying…” 
[Emphasis added]; Turn 59 Anna: “I know. I know.”) suggests that the two students 
were not thinking of themselves as a single unit. Audrey and Katie, on the other hand, 
used the pronoun “we” a lot more frequently compared to the former pair in the excerpt 
(e.g., Turn 83 Katie: “Why did we choose these ages?”; Turn 100 Audrey: “… to make 
sure our answer is precise…”). The use of the pronoun “I” and “you” appeared in 
statements regarding individual actions (e.g., Turn 86 Audrey: “ah, I just stabbed 
myself with a pen”; Turn 101 Katie: “Pretty sure I spelled that wrong.”) and signalled 
delegation of individual responsibility (Turn 103 Katie: “You spell it.”). The use of 
“we” both accords the dyad status as a social unit and as the principal cognising entity. 
SHARING COGNITION WITH DIALOGIC PROCESSES 
By distinguishing student-student talk in terms of co-cognitive, inter-cognitive, and 
intra-cognitive, we are highlighting the socio-cognitive aspect of the meaning 
negotiation process, rather than the character of the reasoning evident in the dyadic 
interaction according to Mercer’s categorisation (Mercer, 2000). We postulate that 
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these different kinds of socio-cognitive activity are crucial for students to achieve 
intersubjectivity during collaborative work as students each think about the other 
person’s thinking (co-cognitive); build on each other’s thinking (inter-cognitive); and 
regulate each other’s thinking as a single cognising unit (intra-cognitive). Our 
categorisation focuses less on the nature of the argumentation and reasoning, and more 
on the level of intersubjectivity achieved during student-student talk through indicators 
of shared cognition. 
In terms of teaching implications, we share the same educational aspiration with 
dialogic perspectives in terms of encouraging students’ active participation in their own 
learning. We believe the socio-cognitive aspect of meaning negotiation that we 
highlighted suggests possible ways in which students could reflect on and regulate their 
shared thinking with others. Guiding questions that may facilitate student monitoring 
and reflection of their interactions with others during collaborative work may include: 
“Do I understand the other person’s perspective?” (co-cognitive); “Are we building on 
each other’s ideas?” (inter-cognitive); and “Are we thinking as a team or as separate 
individuals?” (intra-cognitive). These questions should complement classrooms that 
have already adopted a dialogic teaching approach which encourages communication, 
questioning, inquiry, reasoning, collaboration, and student empowerment (Alexander, 
2018; Lefstein & Snell, 2014). 
CONCLUSION 
Through examining the socio-cognitive aspect of meaning negotiation within a 
mathematics classroom setting, we have found many useful connections between 
dialogic perspectives and our socio-constructivist view of classroom learning. 
Distinguishing between different kinds of socio-cognitive activity during collaborative 
problem solving in terms of co-cognitive, inter-cognitive, and intra-cognitive, 
foregrounds the level of intersubjectivity involved during the meaning negotiation 
process. We see the perspective of classroom learning presented in this report as 
complementary to the dialogic perspectives and encourages further thoughts and 
inquiry into the processes of teaching and learning within the classroom setting. 
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INTEGRATING DESMOS: A CASE STUDY 
Sean Chorney 

Simon Fraser University 
 

In this study I look at a high-school teacher’s use of an online graphing calculator 
software, Desmos, in his high school classroom. Using Ruthven’s Structuring Features 
of Classroom Practice framework to frame reported data and to identify expertise. The 
case study focuses on how the expertise of the teacher is constructed and enacted.  In 
this research report, I highlight how the teacher, without formal training, uses Desmos 
to create a rich learning environment. The strategies reported in this study will also be 
helpful and potentially supportive of future integration of digital technology. 
INTRODUCTION 
When learning mathematics, digital technology can be a powerful learning tool 
(Sinclair, 2014). Engaging in mathematical tasks that draw on the dynamic and 
interactive affordances of digital tools can provide students rich and profound insight 
into mathematics (Kaput, 1992). Well established digital tools such as calculators, 
graphing and scientific, are commonly integrated in high school mathematics classes 
but they have limited affordances and are being replaced by newer digital tools.  
Despite the potential benefits of newer technologies, however, integration in 
mathematics teaching is rare (Bretscher, 2014). In this paper, I focus on the role 
teachers can play. Teachers play an important and critical role in how digital 
technology is integrated (Charalambous & Hill, 2012). Teachers, however, are 
challenged significantly. Training and support of teachers in using digital technology 
is not common. Curriculum documents are frequently not prescriptive in naming a 
particular software for teachers to use. This makes the choices for teachers more 
difficult. One tool that addresses some of these challenges is Desmos. Desmos is an 
online graphing calculator that also provides a rich learning environment for students. 
Desmos has become popular among high school teachers in many jurisdictions across 
North America. The question this paper explores is what does Desmos provide for 
teachers and subsequently to their students that improves mathematics teaching and 
learning.  

Using Ruthven’s Structuring Features of Classroom Practice framework (2009), I look 
for innovations of the integration of Desmos by the teacher in this study. Since there is 
not a lot of research in teacher integration of digital technology this paper contributes 
to this gap. The results of this study can be helpful in planning professional 
development and in addressing curricular issues. This study provides teachers and 
researchers an opportunity to see what pedagogical approaches emerge in using 
Desmos. 
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FRAMEWORK 

Ruthven’s Structuring Features of Classroom Practice framework (SFCP) (2009) offers 
a way to analyze teacher’s implementations of digital technologies. The structuring 
framework lays a base by which to analyze digital technology. Ruthven shifts away 
from discussing teacher’s knowledge of technology as a significant component of good 
implementation such as the TPACK framework which has been described as something 
that “misses the fundamentally new” (Pimm, 2014).  

Instead, Ruthven widens the unit of analysis to include the material and technical 
environment, as well as teacher practices, as central aspects to good implementation. 
That is, it is a robust framework because it moves away from analysing isolated events 
and static knowledge and attempts to outline a set of categories that first define 
characteristics of a teaching situation and then follows up with dynamic practices of 
teaching that changes and develops over time. Ruthven calls this dynamic teaching 
aspect “expertise” (2014). An example of expertise may include how teachers respond 
to various situations that arise in the classroom. Below is an outline of Ruthven’s 
framework. One finds the five categories in the left column, the “defining 
characteristics” in the middle column which can be thought of as the nouns such as 
physical set-up or concretized intentions like “templates for classroom action”. It is 
within the parameters set in this column that the potential for action is established. The 
third column describes the “examples of craft knowledge”. This column can be seen as 
the actions. It is particularly this second column that draws attention to what teachers 
do in the context of the first column.  

Ruthven (2014) describes his framework as a “top level” construct and says “further 
studies are now required in which data collection (as well as analysis) is guided by the 
conceptual framework, so that it can be subjected to fuller … elaboration and 
refinement” (p. 388). Bozhurt and Ruthven (2017) argue that to contribute to the 
framework a “systematic inventory of such types of knowledge” (p. 326) need to be 
generated. One way this study contributes to this inventory is to analyze “new 
structures of interaction involving student, teacher and machine and the appropriate 
(re)specification of role” (p. 391). 
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Table 1: Components of the structuring features framework (Ruthven, 2014, p. 387) 

Desmos offers capabilities beyond the traditional graphing calculator. How might a 
teacher take advantage of these functionalities? And specifically, what obstacles and 
challenges do they encounter? What strategies, framed in this study as expertise 
through the SFCP framework, have they found to mitigate the challenges? 

CONTEXT 

Description of Desmos  
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Desmos is an online web-based calculator (www.Desmos.com) that has calculating, 
graphing and geometric functionalities. In many North American jurisdictions, Desmos 
has replaced handheld graphing calculators because it is free (although an internet 
connection is mandatory), it has more accuracy, and more functionality. It can be used 
on a computer, iPad, tablet, or smart phone.  

Desmos also offers a set of guided learning activities written by a team of teachers, 
educators and researchers.  The activities are organized in the form of slides presenting 
students with interactive prompts that ask them to interpret and predict. An affordance 
of the Desmos activities include the functionality to list all students’ predictions on all 
students’ screens so that not only are students aware of their peers’ predictions but also, 
they have the opportunity for refining their own prediction based on what their 
classmates have predicted. In many activities, Desmos prompts students for a revised 
personal prediction after classmates’ predictions are listed. Teachers have control over 
the activities by the function “pace”. The pacing function sets a limit to how far a 
student can progress in an activity. A teacher can put a limit on slide seven, for 
example, which may allow the teacher to “discuss the screen” (Ruthven, 2014, p.385). 

Case study 

A case study was undertaken to observe the implementation of Desmos. This was an 
exploratory, non-interventive, observational study that reports what was observed 
through the lens of Ruthven’s framework. This study was carried out in a public school 
in the province of British Columbia, Canada.  Multiple teachers were observed over 
many lessons. This research reports on one teacher, Andrew, and a single lesson in 
which he implemented Desmos. The class episode presented highlights a good example 
of integrating Desmos in terms of showing the expertise of the teacher.  

Data was collected through video recordings of the class. There was only one video 
camera which was set up at the back of the room to capture the activities in all areas of 
the classroom. Teachers were interviewed after each lesson using semi-structured 
interview questions. The observations presented below were guided by Ruthven’s 
framework. Each category in Ruthven’s framework became a base from which 
observations were grounded.  

Observations 

Andrew has been a teacher for almost 20 years and had been using Desmos for seven 
years. He had recently completed her master’s degree in mathematics education. For 
this class reported below, Andrew progressed through the “Racing Dots” activity 
(https://teacher.desmos.com/activitybuilder/custom/56d139907e51c4ed1014b51f). 
The racing dots activity has eight slides. The first slide depicts two moving dots that 
start from different positions and move in the same direction at different rates; it also 
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prompts students to predict where the two dots will meet (Figure 1). In terms of content, 
Andrew wanted to introduce students to linear systems. The students had used Desmos 
before but had not engaged with any of the activities. They had also not been introduced 
to linear systems but were knowledgeable about lines. Slide 2 listed all the student 
predictions on all the screens.  

 
Figure 1: Screen 1 of Racing dots activity 

Slides three and four prompt students to reflect on how they made the original 
reflections in slide 1 and 2 asking in slide four, what “tools and methods” they used to 
help clarify their prediction. Using that prompt Andrew asked students to go to the 
whiteboards in group of three and express their “tools and methods”. Later in the 
interview, it was learned that his intention was that the students would create graphs, 
tables and equations which would match the last four slides of the Racing Dots activity. 

Working environment and resource system 
The episode reported here was in Andrew’s regular classroom and the classroom was 
already organized to have a lot of resources and tools available for students. Andrew 
was inspired by the “Thinking Classrooms” model (Liljedahl, 2016) that he learned 
about in his master’s program that he had completed two years earlier. This model does 
away with private notes and uses the whiteboard as a public place for students to solve 
problems and communicate. In previous classes, students were frequently working at 
the whiteboards on a mathematical task, or they were sitting at their small roundtable 
in groups without writing paper either discussing or writing on the table top with a 
whiteboard pen. Andrew’s working environment was already organized to be resource 
rich and organized to be public, collaborative and with access to multiple tools. In terms 
of Ruthven’s “working environment” and “Resource System”, the introduction of 
Desmos on the front projector screen and on the iPads was not a significant change in 
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terms of access and/or transition. Students were already used to using whatever tools 
were available to do mathematics.  

Activity structure 
The most significant observable action Andrew enacted was his decentralization of the 
new digital technology. His use of the “Racing Dots” activity alongside previously 
used technologies was what allowed his students not only to forge relationships 
between different mathematical representations, but also between themselves and the 
mathematical tools. The “Racing Dots” activity was organized by the Desmos team but 
Andrew added his own expertise in using the teacher function “pace” which allowed 
him to freeze the activity at slide four.  This pacing function stopped students from 
working ahead, so it paced the class so they went through the slides at a similar time 
scale and it also provided Andrew the opportunity to ask students to go to the 
whiteboard to express what they were thinking. He asked students to go to the 
whiteboards and represent the racing dots in a way “that made sense to them”. The 
Desmos activity had not shown any traditional graphs or tables yet and Andrew was 
hoping to elicit these models from his students before these representations were 
revealed in slides five to eight. To model a system and explore the different 
representations inherent in that system aligns with Kaput’s notion of “dynamic linking” 
(Kaput, 1992). 
Students worked for 20 minutes using the whiteboard, but also used their traditional 
calculators, and at times worked at their tables. At the end of the 20 minutes Andrew 
went to the whiteboard and commented on student’s representations. At the 
whiteboard, some of his comments were: “Well this group just continued that pattern 
and made a table”; “We have a much more visual table of values over here, careful 
detail of the two dots”; “And then we have graphs, couple groups actually just to graph 
the lines, pretty good estimate, off by a smidge.” He concluded with “Really happy 
with the variety of solutions, I think this covers every single one of them.” Once back 
at the front machine which was projecting Desmos on the screen, he went through slides 
five through eight legitimizing student’s representations on the board by highlighting 
the same Desmos representations in the “Racing Dots” activity. At each slide he spent 
time talking about the representation, what it affords and the reason why one might 
choose one representation over another. 

Curriculum script 
Prediction in math education has been shown to support pattern recognition and 
improve their understanding of a concept (Buendía & Cordero, 2005). Screen one asks 
students to predict when the dots will meet (Figure 1). The second screen collates all 
the predictions from students in the class and list them out (Figure 2). Screen three 
provided the students to refine predictions. In class, Andrew said, “Were trying to 
predict, I think it’s really interesting to see the range of predictions. What information 
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do we need to know [to help us with our predictions]?” He goes through each response 
and comments on each, “This group is thinking about graphs”, “This group is using a 
table”. After going through five predictions, he says “Interesting how nobody 
commented about starting points.”  

Andrew was covering linear systems. The contents of the linear system included 
solving graphically, solving algebraically, connecting ordered pair with meaning of an 
algebraic solution, solving problems in situational context (BC Ministry of Education, 
2015). In terms of broader curricular competencies, Andrew was also focusing on 
“Represent mathematical ideas in concrete, pictorial, and symbolic forms” (BC 
Ministry of Education, 2015). Andrew’s work at the whiteboard was used as a way to 
convince his students that there were multiple ways of expressing a relationship.  

Time economy 
Time economy, in terms of time, Andrew spent one full class on the Racing Dots 
activity. This lesson was slow and deliberate but also the most effective in terms of 
student engagement and clarity of message. Andrew seemed to have enough time to 
have a rich lesson. Time did not seem to be an issue for Andrew. He did not seem to 
focus on time–he focused on connections.  

ANALYSIS AND CONCLUSION 
Answering the research question, we see Andrew performing a number of moves that 
utilize the affordances of Desmos. One of the most important aspect of expertise to 
identify is that Andrew crafted his lesson not only on the content of linear systems but 
also the affirmation of students’ responses and contributions basing those on the 
affordances of Desmos. Through Ruthven’s framework we are able to notice how 
Andrew framed the access to digital technology in an environment that already valued 
and practiced multiple tools and access points. The digital technology was not centrally 
placed but was placed alongside a well-developed system of tools. The class culture 
was then able to uptake of Desmos without a significant change of organization. 

In terms of activity, Andrew used the already established slide-show activity of Racing 
Dots in Desmos. He also applied his expertise by freezing one screen and prompting 
students to express their own understanding on the whiteboard so as to elicit a 
conversation about representation and meaning. Andrew was implementing multiple 
representations to strengthen student conceptual understanding. But he also did this as 
a way to support students’ own understandings. When Andrew asked the students to 
express their thinking on the whiteboard, he used their familiarity with previous forms 
of representations as a way to confirm their own contribution to enable and encourage 
their agency. He balanced new technology with old and found a balance and a way to 
develop “dynamic linking” between old technology and the new. 
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Andrew’s strategies resulted from his years of experience of trying things out. His 21 
years of experience and using Desmos since 2011 made his practice seem fluent. 
Although this research report has not focused on students, the broader overall study 
has found that student responses to this and other activities have been overwhelmingly 
favourable in terms of both engagement and disposition.  
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A MATHEMATICS CURRICULUM IN THE ANTHROPOCENE 
Alf Coles 
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Mathematics education as a field has had little interaction with issues of environmental 
sustainability, yet the world faces unprecedented global and societal challenges. 
Human intervention has led to the designation that we have now entered a new era of 
geological time, the Anthropocene. The label ‘Anthropocene’, for some, signals the 
shift from hopes of ‘saving nature’ and ‘solving’ problems, to living with crises and 
problems as our new and permanent condition. It seems we know and yet do not know, 
that how we live and therefore how we educate, must change. This theoretical report 
asks what recognition of the Anthropocene means for mathematics curricula. I suggest 
there is an opportunity to bring the mathematics curriculum close to the concerns of 
communities and that this is unavoidably political work. 
INTRODUCTION 
The world faces unprecedented global and societal challenges. The extent and range of 
potentially imminent crises threatens the sustainability of human and many other forms 
of life on the plant. The aim of this theoretical report is to consider what recognition of 
such a context could mean for mathematics curricula. The first section is a brief review 
of past work linking mathematics education to issues of sustainability, a strand of 
thinking that goes back several decades. The more recent concept of the Anthropocene 
is then introduced, along with the post-human perspective it suggests. A final section 
considers possible responses.  
MATHEMATICS EDUCATION AND SUSTAINABILITY 
Given the scale of challenges facing the world, there is perhaps a surprising sense of 
the work of mathematics education continuing as normal. A recent special issue of the 
Philosophy of Mathematics Education Journal (‘Mathematics Education and the Living 
World: Responses to Ecological Crisis’, November 2017) is one of the largest single 
collections of writing relating mathematics education to issues of ecology and 
sustainability, and this issue comprises an Introduction and nine articles. In that 
Introduction, Boylan and Coles (2017) identify four strands of past work within 
mathematics education related to ‘the living world’, namely: critical mathematics 
education (Skovmose, 1994); an emancipatory perspective on mathematical modelling, 
which links to ethnomathematics (Barbosa, 2006; D’Ambrosio, 1999); sustainable 
mathematics education (Renert, 2011); and, work linking mathematics education and 
climate change (Barwell, 2013). Boylan and Coles (2017) suggest that Barwell’s work 
represents a shift away from a focus, shared across the first three strands, on desired or 
ideal methods of classroom organisation, within a broadly emancipatory agenda, with 
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a common link to the work of Friere (1970). Such a shift is mirrored by implications 
that have been drawn from a recognition of the Anthropocene, discussed in the next 
section. 

One future-focused article from the Special Issue (Gutiérrez, 2017) argued the need for 
a radical re-thinking of the subject of mathematics itself and proposed a new term for 
it, Mathematx (pronounced ‘Mathematesh’). The argument invites us to rethink 
mathematics to support the development of new relationships between humans, 
mathematics and the planet. The 'x' in 'mathematx' links to the use of 'x' in 
critical/emancipatory movements and the ‘x’ as a political disruption (following 
Malcolm X) as well as an 'x' found in the Nahuatl language. The notion of Mathematx 
draws on principles and beliefs of reciprocity, linked to indigenous cultures in the 
Mayan concept of ‘In Lak'ech’ and Nahuatl (Aztec) term ‘Nepantla’. The themes of re-
thinking the subject matter of mathematics and linking to political concerns are 
connected, by others, to theorising around the Anthropocene, which is the focus of the 
next section. 
THE ANTHROPOCENE AND POST-HUMANISM 
That the world faces unprecedented global and societal challenges caused by human 
intervention is linked to the designation that we have entered a new epoch of geological 
time, the Anthropocene (Finney, 2014). The label ‘Anthropocene’ (Crutzen & 
Stoermer, 2000) and has now been formally adopted (Subcommission on Quaternary 
Stratigraphy, 2016). One technical aspect of the designation is the recognition that there 
will be a visible change in rock strata being laid down at this time, with the label 
‘anthropos’ pointing to the human cause, from plastic to radiation to CO2 to erosion. 
Collective human action has taken on a geological scale. 

The label ‘Anthropocene’ is a cause of dispute (Haraway, 2015), and concerns have 
been raised about the analytical coherence of invoking the category of a single species 
in thinking about global challenges such as climate change (Malm & Hornborg, 2014). 
There is also controversy over what we mean by ‘human’. Colebrook (2016) sees the 
‘Anthropocene’ as the first truly post-human concept. With the concept of the 
Anthropocene, we are imagining a world without humans and recognising that our 
impact will still be able to be ‘read’ in the rock strata after other visible traces of 
civilisation disappear. The concept is post-human in the sense of indicating a 
perspective that is not an irreducibly human one. 

Post-humanism has been taken up within mathematics education in moves to re-think 
the role of the body and the materiality of mathematical concepts (de Freitas & Sinclair, 
2014). There is an overtly political dimension to these moves, for example in exposing 
mathematics itself to be far from neutral and value-free. 
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Within a post-human reading (e.g., Hynes, 2016), the term ‘Anthropocene’ has been 
appropriated to signal the shift from hopes of ‘saving nature’ and ‘solving’ problems, 
to living with crises and problems as our new and permanent condition (Purdy, 2015): 
‘Paradox, partiality, and the mixed-up character of everything have come after the 
grasp at wholeness that began the ecological age.’ (p. 227). Living with crisis rather 
than solving problems, while perhaps new and challenging in some parts of the West, 
is something known for generations in parts of the world and within particular 
communities.  

Latour (2017) suggests one reason for a general inaction in the face of climate change 
is that the ecological war (to reduce emissions, etc) took place thirty years ago, without 
us even realising. And this was a war we lost. He would reject the framing of ‘crisis’ 
because of the sense that crises are things we can overcome; the situation we are in, is 
trying to live with the after-effects (on a likely timescale of millenia) of having missed 
the time when manmade geological planetary changes could have been averted. 

In rejecting the idea that there are problems that can be overcome, the Anthropocene 
has marked a shift from the early environmental movement, when invocations of 
‘saving nature’ were perhaps powerful calls to action. Coles (2017) drew a parallel 
between environmental hopes of nature, as something to be saved, and mathematics 
education reforms that hold up ideal images of classrooms or, say, ideas from the 1960s 
of ‘mathematics for all’. If the Anthropocene suggests hopes of ‘saving nature’ are now 
self-defeating, could the same be said of holding up ideal reform mathematics 
classroom practices? Skovmose’s (2011) conjecture is relevant here, that “90% of 
research in mathematics education concentrates on the 10%, the most affluent 
classroom environments in the world, while 10% of the research addresses the 
remaining 90% of the classrooms” (p.18, italics in original). And Skovsmose goes on 
to point out that some sites of teaching and learning mathematics in the “90%” may 
not share any prototypical features associated with classrooms. A concern of critical 
mathematics education, which feels highly significant in discussions of the 
implications of the Anthropocene, is not to repeat ‘the bias that is established through 
discourse centred around the prototypical mathematics classroom’ (2011, p.20). 

Some suggestions of appropriate values for a curriculum in our current age include the 
acceptance of paradox (de Freitas & Sinclair, 2014); a focus on ethics (Boylan, 2016); 
and, education about risk and uncertainty (Stinson & Bullock, 2012). Latour (2017) 
points to the paradoxical way in which it seems we both know and do not know about 
the drastic changes happening around us. Somehow, we know this and yet at the same 
time, in communities where climate change has yet to have long-term impact at least, 
we manage to not know this in continuing our daily lives as we ever have done. 
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The Anthropocene has perhaps shone a light on the way the problems that face the 
world are of seemingly incomprehensible complexity; it is these problems that might 
offer a route in to considerations of paradox, ethics and uncertainty. In the next section, 
I consider what this could mean for mathematics curricula. 

A CURRICULUM CLOSE TO COMMUNITY CONCERNS 
The preceding discussion makes the case that there will be an on-going need, in relation 
to teaching and learning mathematics, to think differently. The uncertainty and paradox 
surrounding our current time make it hard to predict what kinds of new habits of mind 
(Cuoco, Goldenberg & Mark, 1996) might be needed for a mathematics education in 
the Anthropocene, but they surely cannot be the habits we now display collectively. 
There is perhaps a need for learning about the habit of forming new habits. 
However, the complexity of our situation could also provide an opportunity, since if 
we start questioning, then we can begin with almost any real-world context or problem, 
no matter how local, and we will soon be faced with issues that relate to global 
challenges. This suggests that a place to begin in considering a mathematics curriculum 
for the future might be the very particular concerns of the community within which any 
school finds itself. 
I will draw on two contrasting examples of what such work might look like. These two 
are chosen for no other reason that the fact that I am involved in efforts to instigate 
work in both places along lines I will describe. One community is in a relatively 
affluent city in the South-West of England and the other community is in a relatively 
poor rural community in Mexico. Both contexts relate to pollution. Landigrand et al. 
(2017) reported that pollution is the largest cause of disease and premature death in the 
world. Communities, especially children, from low and middle-income countries are 
the most vulnerable. Feldman and Nation (2015) argue that education responses are 
essential not only to understand the implications of our actions on ecosystem 
degradation processes but also in constructing new responses, as we are forced to adapt 
to the new climatic, economic, technological and societal conditions of the world. 
Air-quality in the City of Bath, England 
Air-quality has been in the news in England, with a report in 2017 indicating that 37 
out of 43 monitoring zones reported levels of Nitrogen Dioxide that were non-
compliant with EU rules (DEFRA, 2017). The health impacts of air pollution range 
from increased likelihood of miscarriages in pregnancies, increased likelihood of 
dementia and impairment of cognitive functions for young children and they are 
quantified in terms of numbers of early deaths. Some primary schools in Bath are sited 
next to main roads where nitrogen dioxide levels frequently exceed safe and legal 
limits; considering air quality is not part of the curriculum in these schools. I am 
personally involved in this issue as a parent, as well as an educator. 
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Water pollution in the Atoyac River, Mexico 
The Atoyac river is Mexico is classified as “heavily polluted” (Lopez-Vargas, et al., 
2018, p.640). Around 1.5 million people live in communities that are settled on the 
banks of the river. Tests on children living near the river “show early biological effects 
that might lead to health problems in their adult life” (p. 640). The perception of people 
living in affected communities is that rates of leukemia among children are at levels 
unknown to previous generations. And yet, a consideration of the river, its pollutants, 
their causes, appropriate safety responses and so on, do not appear in the curriculum of 
schools within affected communities (Arellano-Aguilar, personal communication). My 
personal involvement is through an on-going research collaboration with mathematics 
educators in Mexico. 
How might a mathematics curriculum respond to concerns? 
It is not obvious how to bring issues of local, but pressing, concern into the curriculum 
and what teaching and learning mathematics might look like if that happened. 
However, it is clear that considering issues such as air and water pollution leads quickly 
into political territory – and questions of how pollution is allowed to happen and who 
is responsible. In February 2018, an environmental law organisation ‘ClientEarth’ won 
a case against in the UK which determined that the government’s failure to enforce 
action by local authorities against air pollution was unlawful 
(https://www.bbc.co.uk/news/science-environment-43141467). In Mexico, it is known 
that the main cause of pollution in the Ayotac River is liquid industrial discharge; 
Lopez-Vargas, et al., report health authorities have no monitoring programme for the 
effects on the population. It would seem that local authorities quickly come into view 
and, from there, national governments and international standards, when considering 
questions of pollution. Questions around risk and uncertainty and ethics are likely to 
arise. Some barriers to bringing community concerns into the classroom appear to be 
common across contexts. Having set them out, below, I consider possible responses. 

(a) How do mathematics teachers find out about the concerns of the community? 
(b) How might accessible data be made available, or collectable, in school? 
(c) Where are the spaces in the mathematics curriculum to address community 

concerns? 
(d) What are the skills needed for mathematics teachers to bring community 

concerns into their classrooms? 
(e) How might charges of politicisation of the mathematics curriculum be met? 

One way it is possible to address (a) and (b) is bringing people together. There is a need 
for networks, involving some or all of the following groups: community leaders, 
scientists, teachers, school leaders, teacher educators, policy makers, non-
governmental organisations. However, access to communities is not always 
straightforward. The group of educators in Mexico I am connected with is currently 
setting up just such a network and the experiences and skills of non-governmental 
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organisations working in affected communities is critical to gaining the engagement of 
community leaders and schools. With regard to the City of Bath, similar kinds of 
network are needed and I am involved in work to set one up involving scientists, 
parents, local politicians and school leaders. 
In terms of the spaces within the mathematics curriculum (c), it was clear at a recent 
ICMI Study Conference (ICMI Study 24, on School Mathematics Curriculum 
Reforms) that a phenomenon occurring in many countries is a move towards a 
competency-based curriculum or at least a curriculum that includes a competency 
component. In such a context bringing issues, such as pollution, into the mathematics 
classroom is perhaps easier to justify. Any focus on pollution will inevitably involve 
data collection and so the topics of statistics and probability also provide obvious 
opportunities. Conducting data collection within a school may need the involvement 
of Science teachers and potentially outside funding; data collection provides an 
opportunity for inter-disciplinary work, with all the complexities as well as affordances 
this entails. 
There are potentially new skills needed, of teachers, to bring an issue such as air quality 
or water pollution, into the mathematics curriculum (d). In the Mexican context, as well 
as network meetings to learn from teachers and schools, there are plans for teacher 
workshops to feedback some of the learning from the network and to support teachers 
to raise new issues in their classrooms. Skills of running discussion are particularly 
significant and skills of handling potentially emotionally charged debate. Teachers 
have expressed concerns related to a potential lack of confidence about the inter-
connection of issues and where debate may lead. 
Finally, an important consideration is how to deal with the charge that issues such as 
pollution are not appropriate ones for a mathematics classroom (e). In England, since 
the introduction of a National Curriculum in the late 1980s, there has been a strong 
sense in which a classroom is not a place for teachers to express political opinion. In 
considering a response, it is important to recognise that debates around pollution can 
never take place within a vacuum. The causes of pollution inevitably link to industrial 
production and there are strong forces wanting to maintain the status quo and, for 
instance, not question the assumption of economic growth or, more radically, which 
actively question the scientific basis of global warming. I have come to the conviction, 
in the face of the evidence of human effects on the planet recognised in the naming of 
the Anthropocene, that going along with an ostensibly non-political stance in 
mathematics education, is to take up a political position that is about maintaining a 
fiction that life can go as normal. 
DISCUSSION 
This article aimed to consider issues relevant to mathematics education in the light of 
a recognition of human influence on planetary processes and a sense we have moved 
into a new geological era, the Anthropocene. In conversations with many mathematics 
educators in recent months I have asked the question of how ‘what we do’ might take 
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account of current crises. I have sensed a recognition of the question and an awareness 
that none of us have answers. And indeed, a post-human reading of the concept of the 
Anthropocene moves away from a sense of ‘growth’ (Morgan, 2016) and setting up 
specific and defined ‘ends’ for education or the search for determined answers.  

One of the tensions of teaching is that while we are preparing students for a future 
world that is uncertain and unknowable, our teaching must take place now. The 
thinking reviewed and used here, linked to the Anthropocene, suggests a role for a 
mathematics curriculum close to the concerns of communities, that centrally considers 
uncertainty, risk, ethics and paradox. This is local and uncertain work itself; and there 
is a need for sharing of experiences across contexts, nationally and internationally. It 
may be that we can learn from each others’ experiences of, for example, establishing 
networks. Some stories of successful, or unsuccessful, work in schools and 
communities may provide important ideas for others. Latour (2017) suggests it is time 
for academics to reply to skeptics and climate change deniers with the cry “Go tell your 
masters that the scientists are on the warpath” (p.30, quoting from Pierre Daubigny’s 
play, Gaia global circus). We may never know where or what this warpath is, but this 
report argues it is time, as mathematics educators, we join it. 
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RECONCILING TENSIONS BETWEEN LECTURING AND 
ACTIVE LEARNING IN PROFESSIONAL LEARNING 

COMMUNITIES 
Jason Cooper, Boris Koichu 

Weizmann Institute of Science  
 

Professional learning communities (PLCs) are considered an effective vehicle for 
teacher professional development, yet their emphasis on discussions-based learning 
practices may create tension with the expectation for growth of content knowledge. We 
have been leading a PLC of practicing and prospective heads of school mathematics 
departments, in which this tension was particularly salient. We investigate ways in 
which lectures and workshops conducted by content-experts can support the 
development of desirable PLC characteristics, rather than being at odds with them. 
Findings suggest that the tension can be reconciled by means of ongoing debriefings 
with a focus group comprised of the PLC participants, contributing to the careful 
design of community activity surrounding the expert-provided lectures. 
INTRODUCTION 
Learning in Professional Learning Communities (PLCs) has been found to be 
particularly effective for the professional growth of teachers in general (Shulman, 
1997; Vescio & Adams, 2015), and of mathematics teacher leaders in particular 
(Koellner, Jacobs, & Borko, 2011). These researchers highlight 5 key characteristics 
of learning in professional communities (see table 1), which we use as a theoretical 
framework for the design and analysis of our work with heads of middle-school 
mathematics departments.   
C1 Generative content to yield new understandings and to support future learning 
C2 Active learning 
C3 Reflective dialog about practice (teaching, learning, leading teachers) 
C4 Collaboration for collective work, scaffolding and supporting each other 
C5 Making practice public, learning from others’ success and failure 

Table 1: Characteristics of learning in profession learning communities 
Though these principles have been described and discussed in research, fleshing them 
out and applying them in particular contexts remains a challenge. In the context of our 
work with heads of departments (HoDs), a central challenge has had to do with 
participants' agency. Participants have expectations based on prior experience with PD, 
which tends to be “based on a deficit model of linear teacher learning, as if learning is 
done to achieve an end result or fill a gap in a teacher’s development” (Vescio & 
Adams, 2015, p. 277, based on Webster-Wright, 2009). The responsibility for filling 
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such gaps is on the PD leader, not on the participants, thus conventional PD tends not 
to harness teachers as agents in their learning. In particular, it may not be consistent 
with the characteristics of active (C2), reflective (C3) and collaborative (C4) learning.  
In our vision, school mathematics departments should function as PLCs led by the head 
of department (HoD). To this end, the HoDs themselves participate in municipal PLCs, 
comprising other HoDs in the same city and led by mathematics educators and 
researchers, in order to familiarize themselves with this kind of learning, and thus to 
acquire knowledge and skills for this strategic role. Both the content and the process of 
learning in these PLCs aims to provide a model for HoDs to draw on in leading their 
local communities. Thus, another challenge arises from “the essential tension between 
professional development geared to learning new pedagogical practices and that 
devoted to deepening teachers’ subject matter knowledge” (Grossman, Wineburg, & 
Woolworth, 2001, p. 942). In our context, the new pedagogical practice for HoDs is 
leading a school-based PLC (i.e. heading the department as a learning community in 
ways consonant with the 5 principles of PLC), while the subject matter knowledge 
pertains to HoDs both as mathematics teachers (i.e. mathematical and pedagogical 
content knowledge) and as teacher leaders (i.e. leadership skills).  
Yet another challenge of PLCs is that some of the learning characteristics rely on the 
emergence of community norms. Notably, collaborative learning (C4) and making 
practice public (C5) rely on the development of trust and the suspension of judgment. 
Grossman et al. (2001) have described phases in the life cycle of PLCs, whereby some 
characteristics of PLC learning are more likely to emerge as the community matures. 
Our research is guided by the aim of reconciling HoDs’ expectations to learn content 
knowledge from experts with the characteristics of learning in professional 
communities. We wish to characterize PD activities that provide content knowledge 
for HoDs, while at the same time supporting learning processes of a PLC. To this end, 
we inquire how content-oriented PD activities evolved with respect to the five 
characteristics of learning in professional communities, and with respect to the roles 
of learners as more or less independent agents of their learning. 
SETTING AND METHODOLOGY 
As in many educational contexts around the world, heads of departments (HoDs) in 
Israel are usually practicing mathematics teachers with many years of teaching 
experience and some leadership skills. Their responsibilities include coordinating 
pacing across classes, organizing the preparation of shared exams, student placement, 
and others. We undertook a municipal PD for middle-school (grades 7-9) mathematics 
HoDs, commissioned and funded by the Israeli Ministry of Education (MoE) and 
supported by a private foundation. The community on which we are reporting was co-
led by both authors of this report (henceforth L1 and L2), and comprised 16 teachers 
from two neighboring cities, half of whom were practicing HoDs and half of whom 
were preparing for this position. The scope of the PD was 60 hours per year for two 
years. We are reporting on the first year of activity (2017-2018), during which 11 
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meetings took place at the municipal center for teachers’ professional development (4-
6 hours each). Meetings were organized around topics that were chosen based on the 
leaders’ preliminary views on knowledge required for heading mathematics 
departments, and on expectation questionnaires filled out by the participants. There 
was a high level of agreement on relevant topics among the participating teachers and 
the program leaders, which included strategies for helping low achievers, issues of 
assessment (summative and formative, conventional and alternative), integrating 
technology, curriculum design, implication of research, and a collection of leadership 
issues pertaining to interactions with teachers in the department.  
After the fourth meeting of the community, we set up a focus group, which comprised 
two teachers: T1 – a practicing HoD – and T2 – an experienced teacher who also held 
a coaching position from the MoE – along with the two community leaders (the authors 
of this report, L1 and L2). Debriefing-meetings (approximately 30 minutes each) were 
held after all meetings of the community commencing with the fourth. One of the goals 
of these meetings was practical – to develop and fine-tune appropriate formats for the 
PLC activity (ourselves adhering to C3 – reflective dialog about practice). 
Accordingly, we held the debriefings guided by three questions: 1. Which activities did 
work? 2. Which could we have done without? 3. What could we have done differently? 
Discussions of the third question gradually led to formats that were increasingly 
appropriate for the community of HoDs. This focus group also served a methodological 
role in providing authentic data on how learners perceived the appropriateness and the 
relevance of learning activities. The analysis in our current report relies on the focus-
group and the PLC meetings, which were audio-recorded and transcribed by the 
authors. Six activity formats emerged and evolved – expert-lecture, mathematical 
workshop, teacher-led discussion of a practical dilemma, report on routine activity of 
the school community of mathematics teachers, report on enactment of PD activity 
within the school community, and final assignment. Space permits us to present and 
analyze one such activity. We have chosen the expert-lecture, whose gradual 
adaptation aligned with many of the key characteristics of PLCs. The emergence of the 
modified format took place in meetings 4, 5, 7 and 10, as summarized in table 2. 
Each of the 4 meetings is described as follows: 1. The main activity – its rationale and 
relevance for PLC, and how it drew on insights gained in prior focus group discussions; 
2. Selected utterances from the meeting transcripts; 3. Based on the transcripts - a 
discussion of adaptations of the expert-lecture format that were proposed for future 
meetings in order to increase its relevance. Each adaptation is analyzed along two 
dimensions: the characteristics of PLC learning that are addressed, and the nature of 
HoDs’ agency. The need for brevity does not permit us to present lengthy transcripts, 
hence we draw on the tradition of narrative inquiry (Clandinin & Caine, 2008), which 
is “marked by its emphasis on relational engagement between researcher and research 
participants" (p. 542). Recognizing this relationship as a key aspect of the research, and 
not as bias in an ostensibly objective report, we present selective data with minor 
editing to tell a story in which we played a significant part.  
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Table 2: Evolution of lecture format (ideas in bold were subsequently implemented) 
ANALYSIS AND FINDINGS 
Meeting 4 
The main activity in this meeting – a lecture on textbook analysis – drew on the leaders’ 
prior conception of relevance for the PD, assuming that one role of HoDs is textbook 
selection. This content is generative (C1) in suggesting criteria for HoDs ongoing 
selection of learning resources. However, it was not perceived by teachers as 
particularly relevant, because schools are required to use textbooks for at least 3 years 
so that they can be handed down and re-used, thus selection takes place infrequently. 
Furthermore, the lecturer presented a complex multifaceted view of textbook analysis, 
while the HoDs were expecting prescriptive findings for making decisions. This 
instigated a search in the focus group for alternative notions and modes of relevance. 

3  L2: We thought the topic of how to select a textbook in an informed manner 
was a must. Now I’m not so sure. 

14  L1: It’s relevant even if you can’t replace the book, if you become critical 
towards it and recognize the need to supplement it with external material.  

19  T2: So the question needs to be different. Not just how to choose it, but what I 
do with it. Something else significant needs to happen, every teacher should 
bring some insight, something he takes part in. Not just listening passively. 

40 L1:  I want to propose a model – priming. Before the lecture on textbooks, think 
of three reasons I’m satisfied with my textbook and three why I’m not. 
Share [with the community] and send to the lecturer as background.  

L1 suggested ways in which the topic could be generative (C1), not only for selection 
of future textbooks, but also for instigating reflection on current practices (C3), while 
T2 stressed the importance of active learning (C2). In response to this, L1’s proposal 
addressed C2 (active learning), and C3 (reflection on practice) in a priming activity 
before the lecture. 

Meeting Emergent ideas for expert-lecture format 

4 Send advance questions to lecturer.  

Teachers send pertinent examples from personal experience 

Involve department teachers in the pre-lecture assignment. 

5 Increase HoD compliance (superintendent pressure, allot PD time) 

7 Discuss implications for teaching and practical applications (possibly 
preparing lectures with relatively unequivocal implications). 

10 Cultivate community norm of keeping learning “on track” 
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Meeting 5 
The 5th meeting included a lecture on low-achieving students. The rationale for this 
lecture drew on the intersection of the community leaders’ prior conception of relevant 
content and on the HoDs expectations as elicited in questionnaires. Applying the 
adaptations proposed in the previous debriefing, we asked the HoDs to share “either a 
question that you would like to be addressed or a related idea or thought, e.g. an 
assignment you gave to low achieving students, or an interesting answer from a low 
achiever”. Three out of the 16 HoDs responded, requesting that the lecture touch on 
the following topics: 1. Motivating students with mediocre ability; 2. Common 
misconceptions and strategies for addressing them. The third input was a ruse on the 
negative implications of insisting that chronically low achievers must learn the 
standard curriculum. The first two issues were touched on in the lecture. T1 and T2 
commented in the debriefing on the low level of response to the invitation to influence 
the lecture. 

2  T2: The priming, it didn’t work! We might need to involve the superintendent.  
4  L1: Maybe we can make use of the time in the PD sessions [instead of at home] 

The level of response is probably due to the early stage in the development of the 
community – the norms of collaboration (C4) and sharing practice (C5) in a safe and 
supportive environment were just emerging. The focus group discussed two ways to 
enhance compliance. However, involving the superintendent would not have been 
consonant with the communal norms we were aiming to achieve (C4), nor were we 
comfortable with the idea of restricting all the teachers’ activity to the PD hours, feeling 
that the principle of active learning (C4) implies at least some work outside the PD 
meetings. No new adaptations of the lecture format were proposed in this debriefing. 
Meeting 7 
The 7th meeting included a lecture, given by L2 on the contributions of research in the 
field of mathematics education. The topic of the lecture was in the intersection of the 
leaders’ conception of relevant content and the HoDs expectations.  

2  T1: You lost them after 30 or 40 minutes. The idea is collegial learning, that 
everyone shares something of himself and then we discuss it.  

19  T2: I think the lecture should have been summarized differently, and not only 
at the end…. The research should have been processed and adapted, and 
time allotted to discuss: does it have significance for teaching? What would 
you do with it as a HoD? And share this [with the community]. 

28  L2: I tried to stop after every piece of research and ask, from the perspective of 
HoDs and teachers, how it can be applied.  

31 T2:  But you didn’t give it space. And you brought the questions. 
34  L1: We say that implications [of research] are complex, not unequivocal. This 

is not the answer they want to hear. 
39  L2: These are low expectations from HoDs. 
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40  L1: No, they’re different expectations. We can try to do episodes, describe one 
research and then give 10 minutes in groups to suggest practical 
implications for practice, and hold a discussion.  

76  T2: [Or we can offer] two questions [for the HoDs]: Is the phenomenon familiar 
to you from your school, and what is its significance in teaching. 

While previous suggestions focused on teacher activity before and after the lecture, this 
meeting elicited an idea of how to involve teachers during the lecture. It calls for 
collective learning (C4), recognizing that different community members have distinct 
types of expertise. Furthermore, the adaptation is generative (C1) in the sense that 
familiarity with research can have implications in the future, it involves teachers 
actively (C2), it encourages a reflective stance on practice (C3) in connecting research 
to teachers’ practical experience, and in so doing makes their practice public (C5). T2 
stressed the importance of learner agency in posing questions about application. 
Meeting 10 
The 10th meeting included a lecture by a teacher educator on her experience with 
community learning in a different PD. The lecture was followed by a discussion led by 
T2, driven by the question of how to connect the presented experience with the 
participants’ experiences. Learning from a case in this meeting can be seen as modeling 
C5 (making practice public), and was consistent with expectations that the PD 
introduce other educational contexts. The discussion touched on the expert-lecture 
format in general, with an eye towards planning the following year. 

38  L2: We should tell lecturers that their lecture will be followed by a discussion 
on how to take it to school. 

41  T2: Also need to develop within the community a more critical culture… If you 
didn’t get what you wanted [from the lecturer] – ask. The lecturer may have 
had things to tell us that we didn’t ask about. 

Here T2 recognized the importance of community norms that can keep the learning on 
track. Active learning (C2) does not only imply that teachers participate in the learning 
actively, but also that they may have an active role as agents in directing its course.  
DISCUSSION 
We elaborate in this section on the emergence over time of two aspects of the lecture 
activity – alignment with the characteristics of community learning and learner agency, 
as summarized in table 3. 

Table 3: Learning characteristics and agency in proposed adaptations of format 

Meeting Characteristics of adaptations Agency in proposal 
4 C1, C2, C3  
5 N/A Instructor agency in enforcement 
7 C1, C2, C3, C4, C5 Learner agency in raising questions 

10 C2 Learner guiding and directing lecture 
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The emergence of community learning characteristics 
In three of the four focus group discussions, new ideas were suggested for aligning the 
lecture activity with desired characteristics of community learning. Presenting and 
discussing research (meetings 4 and 7) could be seen as generative (C1), both in its 
findings, and in the reflective stance that it encourages. All suggestions emphasized the 
importance of active learning (C2), in raising questions, in considering applications 
and implications, in guiding the lecturer, and generally not just learning passively from 
the expert. Adaptations in meetings 4 and 7 suggested how learners could reflect (C3) 
both on their practice and on their learning, and meeting 7 suggested how teachers 
could collaborate (C4) through sharing their work, and make their practice public (C5) 
through sharing their experience. 
The emergence of learner agency 
While meeting 5 raised some ideas that tend to deny learners agency (extrinsic 
enforcement of active participation), meetings 7 and 10 suggested how learners could 
act as independent agents in lectures, through question-raising throughout the lecture.  
Active participation before, during and after the lecture 
Our attempt to align the PD with principles of PLCs began with a point in time at the 
beginning of the PD, when learners were invited to fill and submit expectations 
questionnaires. In responding thoughtfully, they were acting as agents of their learning 
by influencing the selection of content topics. Over the course of the PD, many other 
points in time were shown to be appropriate for community learning: Before lectures 
(advance questions and experiences to lecturer), during lectures (keeping the lecturer 
on track, asking questions), and after the lecture (discussing implications for practice).  
The role of the focus group in the process 
Though the principles of learning in a professional community were known to us in 
advance, fleshing them out in a particular context was not a straightforward task. The 
focus-group debriefing served a crucial role in the process, as an instance of what 
Shulman has advocated as “strategies … that permit both intention and chance to be 
represented in their collision…” (1997). Setting up the focus group was a strategy, its 
intention was refinement of learning activities, which collided with the chance 
enactment of the individuals comprising the focus group. We consider the product –
refinements of the lecture-format – to be valuable findings; in combination with the 
process by which these findings emerged they become generative for the community.  
We also note that the focus group has played a role in upscaling; in the second year of 
the project T2 became one of the leaders of the community. 
Relevance for school PLCs led by heads of departments 
Preparing HoDs as leaders of local school-based PLCs has been an explicit goal of the 
PD from its outset. Thus, it would have been natural to expect the lecture format to 
evolve in ways that attend to its role in these local communities. The fact that this did 
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not happen at the outset could be anticipated in view of Grossman et al.'s accounts of 
the development of communities over time. Now that we have entered the second year 
of the program, and the community has matured, interactions with school-based PLCs 
are an explicit focus of our work, and will be reported in due course. 
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In this paper, we present an inquiry regarding developing specialized knowledge in 
prospective primary teachers (PTs) in the context of probability. In particular, we 
discuss the knowledge involved and required in the context of a task focusing on the 
subjective approach to probability. The implementation of such a task allowed us to 
investigate PTs’ criteria to establish the degree of confidence that a given event occurs 
and investigate if these criteria are linked with PTs’ specialized knowledge. 
INTRODUCTION  
In recent years, there has been growing interest in the topic of probability both in 
mathematics curricula around the world and in mathematics education research. 
Indeed, probability plays a crucial role in people's mathematical literacy (e.g., OECD, 
2016), whereas probabilistic reasoning is at the root of many daily decision problems 
as well as in scientific issues. Even if the development of awareness about probability 
assessments is something culturally and socially relevant, the research reveals both 
pupils’ and teachers’ difficulties in this topic (e.g., Batanero, 2015). Research shows 
teacher education plays a core role in filling such gaps and improving practice (e.g., 
Linares & Krainer, 2006; Boyd, Grossman, Lankford, Loeb & Wyckoff, 2009).   
In particular, the different philosophical conceptions of probability (classical, 
frequentist and subjectivist) provide different systems of concepts and procedures that 
serve to analyze uncertain situations. Teachers should be aware of these conceptions 
because they influence students’ reasoning when confronted with chance situations. In 
that sense, it is crucial to think of new ways/approaches to develop teachers’ knowledge 
and awareness about probability after their initial education program. In pursuing such 
an aim, we have taken the subjectivist approach of probability as a starting point (de 
Finetti, 1931). According to this perspective, probability is no longer a physical 
objective property, but rather a subjective judgement conditioned by a person’s 
information and knowledge. This approach captures the psychological basis of 
probability and can be meaningful and consistently linked with the other approaches. 
In this scenario, we designed a particular task with the aim of general inquiry and to 
develop PTs’ knowledge. The task proposes PTs to discuss particular betting contexts, 
some of them linked to everyday decisional situations that can be also read through the 
mathematical lens of Probability. The task design and the analysis were conducted 
based on the model of Mathematical Teachers’ Specialized Knowledge – MTSK 
(Carrillo et al., 2018), since we also consider all the teachers’ knowledge to be 
specialized. We particularly focused on the sub-domain of the MTSK model named 
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Knowledge of the Topic (KoT) to address the following research questions: 1) Can the 
subjective perspective allow us to assess PTs’ specialized knowledge and awareness 
about probability? and 2) Does PTs’ KoT allow them to consciously links between the 
different approaches of classical, frequentist and subjective probability? 
THEORETICAL FRAMEWORK 
Although probability is present in most of the national mathematics curriculum in 
primary school all around the world, research reveals that teachers have fragmented 
knowledge in the probability domain (e.g., Batanero, Godino, & Roa, 2004). Indeed, 
mathematics teachers frequently lack specific preparation in statistics and probability 
education. For example, in Italy, until some years ago, prospective secondary teachers 
with a Master’s Degree in Mathematics were not obliged to receive specific training in 
probability. The situation is even worse for primary teachers, most of who have not 
had basic training in probability; this problem is common to many countries. The 
research showed that this lack of knowledge creates serious difficulties for teachers to 
link their intuitions and daily knowledge with the formal knowledge they are going to 
teach (Batanero, Godino, & Roa, 2004).  
The complexity of the topic is also related that the Probability Theory has different 
philosophical approaches in its inner and actual formalization. Some of them (classical 
and frequentist approaches) look at the probability as an objective property of an event 
or an element of a class, while another (subjectivist approach) conceives it to be related 
to a person’s judgment. The classical view defines the probability of an event as a 
fraction between the number of favourable cases of a particular event and the number 
of all possible cases (i.e., a priori probabilistic study), while the frequentist approach 
sees the probability of an event as the limit of the frequency relative of that event when 
the number of experiments goes to infinity (i.e., a posteriori probabilistic study).  
A different perspective is, instead, followed within the subjective interpretation of the 
probability of an event that was conceived with the intention of discerning the different 
formal approaches of probability and their psychological basis. In particular, de Finetti 
defines the subjective probability of an event E as the price p that an individual, being 
the banker in a gambling game, is available to pay if E occurs (de Finetti, 1931). The 
subjective approach of probability is guided by the idea that in some cases, the 
judgment of the degree of confidence about events’ occurrences can be accessed 
through measurement procedures.  
Batanero, Godino, and Roa (2004) argue that it is necessary to provide teachers with a 
deeper preparation that allows them to develop an awareness of the different 
philosophical approaches to probability. Assuming that teachers’ knowledge 
influences practice and thus, the students’ learning processes (e.g., Nye, 
Konstantopoulos, & Hedges, 2004; Zakaryan & Ribeiro, 2018), it becomes necessary 
to research and deepen the content of probability knowledge. Considering the 
specialized nature of the work of teaching, we refer to the MTSK conceptualization 
(Carrillo et al., 2018), which considers such specialization in an explicit manner both 
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in mathematical and pedagogical content knowledge and built around the beliefs. In 
this vision, in the topic of probability, it’s important to obtain a deeper understand on 
the content of specialized knowledge a teacher needs to have and in which sub-domains 
such knowledge can be located (Carrillo et al., 2018). It is crucial, for example, that 
teachers know that there are different, consistent approaches and definitions of 
probability, each one suitable to read and grasp different aspects of a situation.  
In this study, we focus on the KoT dimension of the MTSK that is divided into: i) 
Definitions, properties and foundations; ii) Procedures; iii) Registers of representation, 
and iv) Phenomenology and applications. This sub-domain, in the case of probability, 
concerns: the intra-conceptual connection between the different definitions of 
Probability linked with the different philosophical approaches (KoT – Definitions); the 
related procedures like for example statistical analyses or evaluations based on 
combinatorial calculus (KoT – Procedures); number representations as fractions or 
percentages, and graphical representations like drawings, tables, histograms, etc. (KoT 
– Registers of representation); and the evaluation of the conditions under which a bet 
would be made and the recognition of the suitable definitions to read and grasp features 
of a situation (KoT – Phenomenology and applications). 
In this scenario, it is vital to let the teachers explore and reflect about how the degrees 
of confidence attributed to different events can be based on personal sensations, but 
also carried out and formalized through measurement processes concerning statistical 
analyses or evaluations based on combinatorial calculus. This kind of work can be 
developed with PTs by designing suitable tasks, implemented through the orchestration 
of collective discussions among teachers. Indeed, the research suggests that the 
mathematical discussion is potentially a valuable tool for developing pupils’ learning 
(Bussi, 1998), as well as to promoting teachers’ specialized knowledge (e.g., Levin, 
1995). In the case of probability, a mathematical discussion that is suitably orchestrated 
can allow PTs to develop an awareness of the differences and links between 
subjectivist, classic, and frequentist approaches to probability. 
CONTEXT AND METHOD 
This research is part of a wider project aimed at investigating teachers’ specialized 
knowledge in different mathematical domains; here we focus on the field of 
probability. Probability, with the name "Data and Predictions" is one of the four 
founding areas of the National Italian Guidelines (MIUR, 2012) and there are different 
attempts throughout the country to support teachers in including this topic in their 
mathematics education proposals. 
Here we report on data collected during November 2018 in the context of the Master’s 
Degree Course for kindergarten and primary PTs at the University Suor Orsola 
Benincasa of Naples, Italy. The data collected regards a task implemented during two 
classes at the end of the Mathematics Education course. This course is placed in the 
third year of PTs’ five-year university path, after other two Mathematics exams (in 
these exams there are no specific contents regarding probability). Our sample is 
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characterized by having poor mathematical formal knowledge about probability, 
mainly stemming from their school experiences.  
For this reason, the PTs required extra time to think on the task, so we opted to give 
them the task prior to the two classes dedicated to discussing it. This way, the PTs 
could work on it individually or in groups at home before class. This choice was made 
in order to give them extra time to reflect upon and search for ways to complete the 
task and to promote a more fruitful in-class discussion (Bartolini, 1998; Levin, 1995), 
as the focus is on developing PTs specialized knowledge and not on identifying the 
gaps in such knowledge. Indeed, during the class, attended by about 60 PTs, we asked 
the PTs to share with us and with their colleagues their reasonings and productions, 
used by the educators as starting point for orchestrating the mathematical discussion. 
With the goal to allow to more meaningfully assess PTs knowledge of classical and 
frequentist probability and develop specialized knowledge, we have designed the 
following task (Fig. 1), starting from the context of betting, to promote a subjective 
view of probability. 

 

Figure 1: The teacher education task 
This task allows us to assess which information PTs were looking for to choose their 
betting and, if in possession of this information, how they decide on the betting. We 
expected that PTs would look for information by referring to knowledge constructed 
during the school years or from their life experience. Indeed, with such task, we intend 
to investigate PTs’ criteria to establish the degree of confidence that a given event 
occurs and how these criteria are linked with KoT. In particular, this task let us assess 
the degree of awareness with which they use their KoT in probability. Moreover, this 
task was designed to promote discussion in a deeper way about the different approaches 
to decision problems by linking them to measurement processes of probability 
(whenever possible), while discussing different strategies where it is not possible. 
Data collection concerns the group discussion audio recordings and the photos of the 
writings made by PTs on the whiteboard during the discussion. Due to the space 
limitation, we focus on two excerpts of the discussion in which, by using the MTSK 
lens, we will show how the PTs try to invest their KoT, even if in same cases very 
poorly, in the proposed betting contexts. In particular, we discuss how the stimuli and 
provocations posed by the task create PTs’ reactions that we, as educators, could use 
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in a mathematical discussion in order to support PTs’ development of specialized 
knowledge. Our goal was to make PTs link their criteria to establish the degree of 
confidence that a given event occurs and the different approaches to probability meant 
exactly as measurement tool of the degree of confidence that certain events occur. 
ANALYSIS  
In the first excerpt of discussion, we are going to analyze a student showing her strategy 
to the first question of the task. In the context of the roll of two non-rigged dice, we 
asked them to imagine which kind of information they would look for in order to decide 
to bet on E1= 7 as sum of the two numbers on dice faces or E2= 3 as sum of the two 
numbers on dice faces.  

Francesca: I would bet on seven because I have thought that there are more possibilities 
that seven will occur than three. Seven can be obtained by six plus one, five 
plus two and four plus three, while three can be obtain only with one 
combination, that is two plus one. There are three combinations, that means 
there are more probabilities in comparison to one combination. After this 
reasoning, I was intrigued and to verify it, I performed the calculus [she 
went to the board writing the production in Fig. 2]. Practically, three are the 
combination, while twelve are the possibilities since six are the faces of a 
dice and six plus six is twelve, so we have twelve possibilities to arrive to 
the right combination.  

 
Figure 2: The whiteboard’s production of Francesca 

Educator:  In which sense twelve are the possibilities to arrive to the right 
combination? 

Francesca:  Because twelve are the total faces of the two dice. 

In this part of the discussion, it is interesting to see how the context of betting seems to 
naturally orient Francesca to root her criteria in the combinations that, from her point 
of view, are the ones that give the sum of seven and three. She made a common mistake 
when finding the amount of favorable events for seven (only three) and for three (only 
one), and her criteria to compare the degree of reliability of the two events is comparing 
the amount of possible combinations for seven (three) with the amount for obtain three 
(one). When comparing the degree of confidence, she consistently perform the 
comparison of the two numerators 3 and 1 with the same denominator expressing the 
total number of combinations, assuming the classical probability view point as a natural 
way to order the degree of confidence, even if she is not aware of such fact.  
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Francesca perceived a sort of dissociation between criteria and calculus, as can be seen 
in her words “to verify it, I performed the calculus”, obviously linked to her belief 
about mathematics at the core of the MTSK model. Indeed her “calculus” seems quite 
forced, and her error in considering as total events the sum of the faces of the two dice 
“Because twelve are the total faces of the two dice”, reveals a loss of sense making 
when applying the formula (KoT – Procedures). However, looking beyond the 
mistakes, a relevant aspect here concerns her attempt to elaborate an intra-conceptual 
connection between subjective probability and classical probability (KoT). Moreover, 
the use of multiple representations properly linked to each other in her white board 
answer–drawings, fractions, decimal representations, percentages (KoT –
Representations), together with the arguments provided verbally, reveal a deep search 
for meaning undertaken by Francesca.  
Continuing the discussion, other PTs’ comments contribute to clarifying the mistakes 
in Francesca’s reasoning and to meaningfully build a shared recognition that it is more 
convenient to bet on 7 because it can occur in six combinations that are (1;6), (2;5),  
(3;4), (4;3), (5;2) and (6;1) on 36 possible combinations of the six faces on the two 
dice, while 3 only in two combinations (1;2) and (2;1) on 36. 
The next excerpt is related to the fourth question of the task. In this question, we asked 
PTs to imagine which kind of information they would look for in order to decide, in a 
coffee shop context, to bet that the person sit in the table closed to mine E1=will order 
a glass of wine or E2=will order a beer, aiming at discussing which can be the possible 
measure strategies of an open context such this one. 

Elisa:  I could look how he is dressed, or the kind of coffee shop, but I have also 
thought that I could ask to the barman what the people order most in that 
place: a glass of wine or beer.  

Educator:  Could you link it to the strategies that we have already discussed?  
Elisa:  Yes, as for the context 3 in which we would see in the previous fifty years 

the weather on the first of January in Naples, also here we are going to 
search the frequencies of the clients who order a glass of wine or beer. 

Elisa connects the subjective request of the task to the frequentist probability, 
navigating in the intra-conceptual connections between subjective and frequentist 
approach to Probability (KoT – definitions). The fact that there are no explicit 
references to a formal definition of frequentist probability brings to front the use of a 
naive idea of such probabilistic view elaborated from personal previous experiences, 
where the questions posed on the task may assume a core role (shaping the content of 
KoT – Phenomenology and applications). 
CONCLUSION  
Teacher’s specialized knowledge must be wider and deeper than that of the student 
(Zakaryan & Ribeiro, 2018) and, therefore, because of its attention to the psychological 
aspects on which the concept of probability is based, we assume that the subjectivist 
point of view (de Finetti, 1931) can be a useful direction in the teacher education field.  
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In particular because, in agreement with Batanero, Godino and Roa (2004), the 
subjectivist approach allows one to build knowledge from the information one has, and 
thus can potentially create connections between intuitions and formal approaches to 
probability. 
In the present study we have explored the possibility to inquiry and develop prospective 
teachers KoT within an approach to probability in the context of betting around events 
whose degree of consistent has been established according different criteria. We saw 
in the analysis of the two excerpts of discussion about the task, that PTs’ in a certain 
sense implement the classical and frequentist approaches to probability, even if in the 
first excerpt such implementation was grounded in problematic aspects of PTs 
knowledge (mistakes) and without any explicit references to the formal definitions. 
This fact reveals PTs lack of awareness in linking the kind of information they want to 
access for decide the betting and the way in which they want to use them with the 
classical and frequentist approaches to probability.  Nevertheless the implementation 
of the task allowed us to see that PTs use naive idea of such probabilistic views, 
elaborated from own previous experiences and school knowledge, and invest them in 
the task with a sense making process, where the questions posed on the task assumes a 
crucial role (shaping the content of KoT – Phenomenology and applications). 
In this sense the subjective approach evoked by betting contexts, like for example the 
ones described in task presented in this paper, potentially creates a space of reflections 
and discussion in which the educators can promote PTs’ KoT development and 
awareness about the links between the different approaches to probability. Possible 
future research paths could be aimed to analyse and deepen the potentialities of the 
mathematical discussion promoted in problem solving contexts on betting, in terms 
PTs’ development of KoT and awareness between the different probability approaches. 
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TEACHERS AND STANDARDIZED ASSESSMENTS IN 
MATHEMATICS: AN AFFECTIVE PERSPECTIVE 
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Standardized assessments in mathematics have an increasing relevance in the 
educational debate and, often, they heavily affect educational policies. Specifically, the 
framework and the items of standardized assessments suggest what is considered 
relevant as an outcome of mathematics education at a certain school level. The strength 
and the quality of the educational impact of standardized assessments seem to depend 
heavily on teachers’ affective reactions to standardized assessment; however, studies 
focused on this issue are very rare: what are teachers’ attitudes towards the 
standardized assessments and their effects? In this frame, we carried out a large 
qualitative research to investigate teachers’ attitudes in the Italian context.  
INTRODUCTION  
National standardized tests have been officially introduced in several countries on the 
wave of the most famous international programmes for student assessments (PISA and 
TIMSS). The framework and the items of the standardized assessments suggest what 
is considered relevant as outcomes of mathematics education at a certain school level. 
Therefore, more or less in an explicit way, standardized assessments intend to impact 
directly not only the educational reform promoted by politicians (Breakspear, 2012), 
but also, at the classroom level, teachers’ educational choices. The test results are often 
used to assess the general quality of an educational system and this has often triggered 
a dispiriting horse race between countries, but also between schools at a national level. 
Nowadays, the growing relevance of standardized assessments in mathematics in the 
educational debate is a fact (Kanes, Morgan & Tsatsaroni, 2014). Several studies from 
different traditions in educational research have focused on the reliability of 
standardized assessments’ results, discussing what such assessments really assess, to 
which degree they may be viewed as didactically consistent with official curricula 
(Bodin, 2005), and discussing their equity (Boaler, 2003). Another line of research 
focuses on students’ performance, analyzing, in particular, students’ errors (Wijaya et 
al., 2014) and interpreting factors affecting students’ performance (Papanastasiou, 
2000). Even though it has been shown that teacher affect heavily influences instruction 
and learning (Jacobson & Kilpatrick, 2015), it is curious to observe that the majority 
of these studies has a cognitive and epistemological perspective and little regard is paid 
to the variable ‘teachers’: only recently, Di Martino and Baccaglini-Frank (2017) 
introduced and discussed the concept of “developmental potential” of standardized 
tests, seen as the educational opportunities for teachers offered by a critical approach 
to tests.  
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In this frame, we carried out a large qualitative research to investigate teachers’ 
attitudes towards the Italian test promoted by the National Institute for the Assessment 
of the Educational and Instructional System (INVALSI). In this paper, we focus on the 
following research questions: what are teachers’ emotions towards the INVALSI test 
and what are the declared reasons to justify these feelings? Are there significant 
differences between teachers of different school levels?  
METHOD AND RATIONALE 
The context  
Every year INVALSI develops and administers in May a census test for grades 2, 5, 8, 
10. The number of items and the time granted vary depending on the school level. 
INVALSI shares the PISA framework and it designs the test items according to the 
official Italian National Standards. Despite this, there is a harsh debate because there 
is a unique test for grade 10, that is not differentiated for scientific high schools and 
professional institutes. The results do not affect the students’ marks except for at grade 
8, where each student’s mark is entered (at least up to 2018) as part of the exam 
marking. In July, INVALSI sends back to the schools a quantitative report with the 
average score of each school class, and the comparison of the average scores of other 
schools with similar characteristics (numbers of students, social environment, etc.). 
The collection of data 
The choices of the research instruments and how to use them are not neutral. We 
developed our research within the more recent trend on affective factors in mathematics 
education. In particular, we refer to the shift from a normative approach – aimed to 
explain affective phenomena through general rules based on a cause–effect scheme – 
to an interpretive one – aimed to interpret the phenomena, “making sense of the world” 
(Di Martino & Zan, 2015). A movement towards the development and use of 
qualitative methods (essays, diaries, written open questionnaires, oral interviews) 
emerges in research on affect (and more in general in mathematics education). We 
developed our research within this frame.   
In the first stage of our research we developed an online questionnaire and promoted 
the teachers’ participation (on a voluntary and anonymous basis) with the help of the 
Italian regional education offices. In the last part of the questionnaire, participants had 
the possibility of sharing their e-mail address to participate to a non-anonymous semi-
structured interview. This interview was developed to zoom into certain issues that 
emerged from the questionnaire answers. We were aware that we would not get a 
statistical sample in this way; however, our goal was to describe, interpret and 
understand a phenomenon and not to, in some sense, measure it. Therefore, we believe 
that having a convenience sample is not a limit. Participation exceeded all expectations: 
we collected 1964 questionnaire replies (very well distributed among the three school 
levels, see Table 1) and 798 participants agreed to participate in the second interview-
stage. On one hand, this exceptional participation confirmed the teachers’ interest in 
making their voices heard about this topic; on the other hand, it raised the problem of 
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the analysis of such a large amount of qualitative data, which needed to be very 
structured. 

Conference Year Number of questionnaire replies 
Primary school (1-5) 635 
Middle school (6-8) 643 
High school (9-13) 681 

Others  8 
Table 1: Distribution of questionnaire replies among school levels. 

The online questionnaire includes 28 questions divided into screens: background 
information (4), emotions (4), view on INVALSI items (5), perceived goals of the 
national assessment (3), strengths and weaknesses of the evaluation system (4), 
relationship between test and didactical practices (4), view on the evaluation system 
(4). Excluding the section about background information, the questions were mostly 
(15 out of 24) open questions; indeed, this approach allows to “catch the authenticity, 
richness, depth of response, honesty and candor which are the hallmarks of qualitative 
data” (Cohen et al., 2007, p. 249). Psychologically central beliefs and emotions of the 
respondent emerge, differently from what happens with the traditional scales, where 
the respondent has only to express a degree of agreement with respect to items chosen 
by others, which may be not relevant for him/her.  
The analysis of data 
We approached the data within the social constructionist paradigm of the grounded 
theory. In their original work, Glaser and Strauss (1967) introduce grounded theory as 
an inductive approach of research (theory and focus have to emerge from data) that is 
at odds with “grand” theory, where data are used to verify a pre-determined theory. 
The radical grounded theory conflicts with the current view that researcher’s 
knowledge, interests, values, attitudes, emotions and beliefs not only strongly affect 
the research in all its development, but constitute an added value. Strauss himself 
understand the limits of the original and radical idea of grounded theory, stating: “the 
final theory that is constructed through grounded in data is a representation of both 
participant and researcher” (Strauss & Corbin, 1998, p. 35). This consideration led to 
the development of different versions of the grounded theory, including the social 
constructionist one:      

Rather than assuming that theory emerges from data, constructionists assume that 
researchers construct categories of the data [...] Social constructionists disavow the idea 
that researchers can or will begin their studies without prior knowledge and theories about 
their topics. Rather than being a tabula rasa, constructionists advocate recognizing prior 
knowledge and theoretical preconceptions and subjecting them to rigorous scrutiny.  
(Charmaz, 2008, p. 402-404) 



Di Martino & Signorini 

2 -                                                                                                             PME 43 - 2019 188 

As for the present study, the context is quite well known by researchers: the INVALSI 
test provoked a spirited debate since its introduction; teachers and students often stand 
up against them and during the test days strikes are not rare. The main purpose of the 
present study was to understand the phenomenon and its causes. In order to do that, 
one issue was finding ways to reduce the copious amounts of data into manageable and 
comprehensible proportions. This was done through a process of coding that constantly 
took shape (the codes initially introduced were often refined during the analysis) and 
that ended when theoretical saturation was reached:      

In constant comparison the researcher compares the new data with existing data and 
categories, so that the categories achieve a perfect fit with the data. New and emergent 
categories are developed in order to be able to incorporate and accommodate data in a 
good fit. (Cohen et al., 2007, p. 493)  

This coding process allowed to detect frequencies (which codes were occurring most 
commonly) and patterns (which codes occurred together).  
RESULTS AND DISCUSSION  
In this paper we will discuss the analysis of the answers to Question Q5 (“What emotion 
comes to your mind when you think of INVALSI?”) and Q6 (“What are the reasons for 
this emotion?”), designed to investigate teachers’ emotions and the declared reasons 
for these emotions. The tag cloud in Figure 1 summarises the wide range of labels used 
and the number of their occurrences in the answers to Q5. ‘Anxiety’ is the label with 
the largest number of occurrences (240: more than 12 per cent of the large sample), 
followed by ‘curiosity’ (182). More in general, the quantitative analysis of the data 
confirms a clear prevalence of labels that describe negative emotions towards the test 
(the 57% of the total). There are also very interesting qualitative differences: we can 
recognize a category of recurring emotions (curiosity, interest, useless, boredom) that, 
in some sense, expresses the judgment about the relevance of the test; but, in the 
negative case, we can also recognize a category that describes a strong emotional 
involvement (anxiety, stress, anger, frustration, apprehension). 

 
Figure 1: Tag cloud for Q5 

The analysis of the answers to Q6, developed using the methodology described above, 
allowed to recognize three main and strictly interrelated categories of reasons for 
expressed emotions. These categories are related to judgements about the adequacy, 
use and educational effects of this kind of standardized assessment.  



Di Martino & Signorini 

PME 43 – 2019                                                                                                      2 -  189 

Adequacy 
The adequacy is assessed at different levels, in terms of: mathematical content; item 
typology; general test structure and setting; equity of the test.  

Mathematical content. Negative emotions are associated to the belief that INVALSI 
mathematics item content differs too heavily from the implemented curriculum (“The 
arguments do not fit the actual curricula”, “Items include questions about probability 
and statistics that are addressed only peripherally in primary school”). The point is 
that INVALSI items are actually linked to the official curriculum (for example, 
probability and statistics are included in the Standards for primary school). The gap 
between Standards and implemented curriculum appears very clearly: in particular, at 
the primary school level, where the absence of a final examination probably gives 
greater freedom in the choice of the implemented curriculum. 

Item typology. INVALSI items challenge students to solve stimulating non-routine 
problems: here again, the gap emerges between the problems proposed in the 
textbooks, and ultimately with the implemented curriculum. This fact is used as a 
reason to justify both positive and negative emotions. The positive emotions related to 
this fact implicitly highlight the negative opinion about the curricular problems (“I like 
the types of problem used by INVALSI because they are different from the one used in 
classroom: they also seem closer to students’ context of life”). Vice versa, reasons for 
negative emotions highlight the belief that a good standardized assessment should 
adapt the items to the traditionally implemented curriculum (“They need to design a 
test that is in line with what teachers do in classrooms everyday”) or to the textbooks’ 
style (“The problems in the test are completely different from those contained in the 
textbooks”) rather than to the Standards.  

General test structure and setting. This is a recurrent issue to justify negative emotions 
towards the test: multiple choice tests are considered inadequate for assessing 
mathematics competence; primary school teachers label the children’s lack of 
opportunity to ask the teacher for help as unnatural; the allotted time period is 
considered inadequate for coping with challenging items. Interestingly, we found 267 
occurrences of the time factor in the analysis of Q6: 258 of them are related to a 
negative emotion and only 9 of them to a positive emotion! In the latter case, teachers 
underline that the setting is similar to other selections that children will have to face in 
their lives and for this reason it can be formative. 

Equity of the test. A number of criticisms accuse the test and its scoring system as being 
unequal because they are intended to assess all students equally, without taking into 
account students’ social backgrounds and their starting points. In particular, secondary 
teachers underline the difference between students from high schools and professional 
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institutes, while primary and middle school teachers report the difficulties, also at an 
affective level, for students with special needs. 

Use 
A widespread perception emerges about the test results being used to assess teachers’ 
efficacy. While official documents make it explicit that the INVALSI test will not be 
used to evaluate teacher (as it is, instead, in other countries), it is true that, locally, 
teachers with the worst results are often put under pressure by their principals. In this 
case, it is very interesting to look at the different reactions of primary and middle school 
teachers on one side, and secondary teachers on the other. The former uniformly 
criticize the fact that they are being indirectly assessed; the latter accept the possibility 
of being assessed, but complain about the students’ scarce motivation to perform well 
and about the absence of differentiations (“I think it is not right that results obtained 
from different classes, different schools, different regions, are used to draw conclusions 
about the validity of a teacher”). 

Educational effects 
This category is strictly related to the previous one: teachers believe that the tests have 
educational effects, especially because their use goes beyond simply assessing 
students’ mathematical competence. In some sense, there is the widespread belief that 
the introduction of the test has really affected teachers’ practice. While some secondary 
school teachers appreciate that INVALSI forces the teachers of the lower school levels 
to cover all the contents in the Standards and to propose non routine mathematical 
problems, in general primary school teachers criticize the educational effects of the 
test. They feel the pressure of having to cover all the topics included in the curriculum, 
regardless of the specific needs of their classes (“You should not try to standardize 
teaching, you should encourage teachers to take into account the specific needs of their 
classroom”): they believe that this system forces to privilege quantity rather than 
quality in education. On the other hand, the main criticism advanced by middle and 
secondary school teachers is the risk of promoting a method of education focused on 
preparing students for a standardized test, the so called teaching to test approach (“The 
tests are likely to interfere excessively with the teaching, inducing an ad hoc training”). 

CONCLUSION  
The quantitative analysis of the data collected in our study highlights two facts. On one 
hand, the exceptional voluntary participation proves the teachers’ interest towards the 
issue of standardized assessment of students’ mathematical competence. On the other 
hand, the supposed prevalence of negative feelings towards the national standardized 
assessment of students’ mathematical competence is confirmed. However, what is 
really important is the qualitative analysis of the different reasons for the teachers’ 
declared emotions. What emerges is a complex picture that includes positions of 
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principle against the standardized assessments and their uses, but also more specific 
criticism towards the design of the test. In this contribution, we discussed only a small 
part of the data collected in the whole research project, but, for example, the data 
collected with the closed question Q25 (“What would you do with the INVALSI test?”) 
show that only the 27% of respondents stated the desire to suppress the standardized 
assessment: the 60% of the sample would maintain the test, recognizing its role, but 
asking for significant amendments.  
At the end of our study, we are even more convinced it is fundamental to consider 
teachers’ affect and to listen teachers’ voices about standardized assessment: teachers 
are one of the key players in the educational context and their active involvement is 
needed to improve the tests and to exploit their informational and developmental 
potential (Di Martino & Baccaglini-Frank, 2017). As Ponte et al. argue: 

The reasons for studying the views and attitudes of teachers are grounded in the assumption 
that these have a significant influence on their thinking and actions. Views and attitudes 
act as a sort of filter. (Ponte et al., 1994, p. 347) 
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THE CO-EMERGENCE OF VISUALISATION AND REASONING 
IN MATHEMATICAL PROBLEM SOLVING: AN ENACTIVIST 

INTERPRETATION 
Beata Dongwi, Marc Schäfer 

Rhodes University 
 

This paper reports on a small part of a Namibian case study that focussed on the 
relationship between visualisation and reasoning when selected young learners solved 
geometry word problems in small groups. Rooted in an enactivist perspective, the study 
sought to analyses and theorise this relationship through the enactivist mediums of co-
emergence and structural coupling. The broader aim of the research was to contribute 
to a deeper understanding of how visualisation processes are integral components of 
reasoning in the solving of geometry word problems. 
THEORETICAL FRAMEWORK 
Enactivism as defined by Begg (2013) is “a way of understanding how all living 
organisms including human beings, organize themselves, and interact with their 
environments” (p. 18). According to Maturana and Poerksen (2004), an enactivist 
perspective questions how the elements of a system work together to form that system. 
In this paper, we report on how selected Grade 11 learners worked together in small 
groups to solve word problems and reach a collective solution. The analysis of the 
relationship between reasoning and visualisation was rooted in notions of co-
emergence in our study. 
Co-emergence as interpreted by Li, Clark and Winchester (2010, p. 407) refers to a 
situation whereby a change of both, a living system and its surrounding environment 
depends on the interaction between the system and its environment. When the system 
and the environment interact, they become structurally coupled. This means that the 
mutual interaction of the organism and the environment causes changes and 
transformations in both (Khan, Francis, & Davis, 2015).  
Begg (2013, p. 82) claims that from an enactivist perspective, humans and the world 
are inseparable: they co-emerge. Brown (2015) concurs that “we are co-emergent and 
where there is a coordination of actions, like in a classroom, or a collaborative group 
in a research project, a culture of practices emerges that is good-enough (effective 
action) to get done what needs to be done” (p. 188). However, while co-emergence 
suggests that the system and the environment interact, Li et al. (2010, p. 407) caution 
that it does not guarantee greater or lesser adaptation on the part of either to each other. 
Students bring forth a world; they emerge with it, but it is their structures that bring 
them forth (Proulx, 2008, p. 22). This inseparability of body, mind and environment is 
known as embodied cognition (Alibali & Nathan, 2012; Antel, 2009; Wilson, 2009). 



Dongwi & Schäfer 

2 -                                                                                                             PME 43 - 2019 194 

In our study, enactivism acted as a linking mediator to understand the bringing together 
of visualisation and reasoning processes.  It is the lens through which the co-emergence 
of visualisation and reasoning was observed and analysed when the research 
participants solved word problems in small collaborative groups. Khan et al. (2015, p. 
272) enlighten that enactivism is attentive to the coupling of organisms and their 
environments, action as cognition, and sensorimotor coordination. Therefore, the 
enactivist notion of “learning in action” resonates strongly with this study as opposed 
to the embodied cognition notion of “learning from action” (p. 272). 
RESEARCH SITE, PARTICIPANTS AND METHODS 
The research was conducted in a well-resourced secondary school in the south of 
Namibia with a cohort of purposefully selected Grade 11 learners. The aim of the study 
was twofold: in the first phase, to identify research participants who preferred the use 
of visual imagery as opposed to algebraic methods of problem solving. In the second 
phase, to observe and analyse the relationship between visualisation and reasoning 
processes while learners solved geometry word problems. Initially a cohort of 17 mixed 
gender and mixed ability learners were selected for the first phase and then eight 
participants were selected for the second phase.  For each phase we used a different 
version of the Enacted Visualisation Geometric Reasoning Tasks (EVGRT) worksheet 
as our data gathering instrument. 
Enacted Visualisation Geometric Reasoning Tasks (EVGRT) 
The EVGRT Worksheet 1 (EVGRT W1) was implemented in the first phase. It 
consisted of 10 tasks that were solved by all the 17 participants in a one-on-one task-
based interview environment. The EVGRT W2 was implemented in the second phase.  
It consisted of 5 tasks that were solved in small collaborative groups by the eight 
participants. 
The tasks for both worksheets were all of such a nature that they encouraged the 
participants to make use of their own visual representations.  In the task based 
interviews the participants were asked by the researcher to explain their visual 
representations and articulate their mathematising and their mathematical reasoning.  
The task-based interviews were both voice and video recorded. The data was 
transcribed and our line-by-line analysis was guided by two analytical tools; one to 
seek for evidence for visualisation and the other for reasoning processes. As part of the 
validation process, both EVGRT worksheets and analytical frameworks were piloted 
and refined. 
THE NATURE OF VISUALISATION AS A WORD PROBLEMS SOLVING 
STRATEGY 
According to Arcavi (2003) mathematics, as a human and cultural creation dealing with 
objects and entities quite different from physical phenomena, relies heavily on 
visualisation in its different forms and at different levels, far beyond the obviously 
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visual field of geometry, and spatial visualisation (pp. 216–217). Arcavi’s (2003) 
defines visualisation as follows:  

the ability, the process and the product of creation, interpretation, use of and reflection 
upon pictures, images, diagrams, in our minds, on paper or with technological tools, with 
the purpose of depicting and communicating information, thinking about and developing 
previously unknown ideas and advancing understanding. (p. 217) 

In addition to embracing this definition, we adapted Presmeg’s (1986) categories of 
visual imagery to construct analytical frameworks that enabled us to understand in 
some depth the nuances of the visualisation and reasoning processes that were evident 
as our participants were observed solving the tasks in the EVGRT worksheets. Visual 
imagery as defined by Hegarty and Kozhevnikov (1999) is the ability to form mental 
representations of the appearance of objects and to manipulate these representations in 
the mind. The five categories of visual imagery (5Vs) that Presmeg (1986) suggested 
are defined as follows: 
Concrete pictorial imagery (CPI) – this refers to the concrete image(s) of an actual 
situation formulated in a person’s mind – i.e., a picture in the mind, drawn on paper or 
described verbally. 
Pattern imagery (PI) – this refers to the type of imagery in which concrete details are 
disregarded and pure relationships are depicted in a visual-spatial scheme. The 
essential feature of pattern imagery is that it is pattern-like and stripped of concrete 
detail (Presmeg, 1986). 
Memory imagery (MI) – this refers to the ability to visualise an image that one has 
seen somewhere before. This too includes a history of recurrent occurrences. 
Kinaesthetic imagery (KI) – this is the kind of imagery that involves muscular 
activity. A kinaesthetic visualiser wants to feel and touch. 
Dynamic Imagery (DI) – this imagery involves processes of transforming shapes i.e. 
redrawing given or initially own-drawn figures with the aim of solving a problem. 
The notion of using one’s body to solve word problems both individually and in a social 
setting was particularly significant to our study of enacted and embodied visualisation, 
hence the inclusion of KI in our analytical framework. We observed that the 
participants engaged their bodies substantially to solve problems in EVGRT W1. 
Alibali and Nathan (2012) describe the activity of using one’s body in problem-solving 
in terms of “gestures”. They assert that “gestures are often taken as evidence that the 
body is involved in thinking and speaking about the ideas expressed in those gestures. 
That is, gestures are taken as evidence that the knowledge itself is embodied” (p. 248).  
Since it is difficult in this very brief paper to report on major aspects of a study which 
resulted from extensive qualitative data, we present some of the data from both phases 
of data collection. We start with a brief discussion of data from the first phase when 
the participants attempted to solve Task 9 of EVGRT W1 (Figure 1).  
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Figure 1: EVGRT W1 Task 9 

A number of our research participants were natural visualisers but one of the 
participants, Millie, stood out in how she applied visualisation processes to solve most 
of the tasks of the EVGRT W1. She interacted well throughout the task-based interview 
and portrayed strong relations between her use of visual imageries and reasoning 
processes. For Task 9 (Figure 1), Millie applied a combination of visualisation 
processes as part of her problem solving strategy. These co-emerged with various 
forms of reasoning processes. While others reached for a ruler and other geometry 
instruments to attempt to find the centre of the circle, Millie used CPI combined with 
KI and DI to figure out the centre of the given circle (Figure 2).  Once Millie asked 
whether she could fold the paper, she did not utter a word. She worked silently, engaged 
her body and made facial expressions which she claimed to be part of her thinking 
process until the final step (Figure 2 (d)) when she exclaimed, “there is the centre! 
Perfect!” Antel (2009) claims that giving considerations to ways in which cognition is 
rooted in bodily actions will contribute to learners’ successful development into active, 
thinking adults (p. 30).  

  
(a) “can I fold the paper?”                             (b) Measures and folds the paper silently 

  
(c) Folds the paper into two symmetrical       (d) “There is the centre! Perfect!” 

             semi-circles 
Figure 2: Millie’s visualisation processes of EVGRT W1 Task 9 
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We needed those participants who preferred visual methods over algebraic methods to 
proceed with to the second phase of data collection. It was during this second phase 
were we observed closely the participants’ mathematical reasoning in relation to their 
already noted visualisation processes enacted in the first phase of data collection. But, 
before we look at that relationship, we ought to comprehend how literature defines 
mathematical reasoning. 
MATHEMATICAL REASONING 
Mathematical reasoning as defined by Brodie (2010, p. v) refers to a process that 
involves forming and communicating a path between one idea or concept and the next. 
It is a means to sense-making of and in mathematical activity. Further, “only through 
making sense of the mathematics can we truly move to sense-making as a worthwhile 
everyday life activity” (Brodie, 2010, p. 59). In our observations we sought evidence 
of reasoning alongside visualisation processes as the participants solved the individual 
tasks of the EVGRT W2. We considered four reasoning processes (4RPs) viz. 
explanation, justification, argumentation and generalisation for the purpose of our 
study.  These are defined as follows:  
Explanation (RPE) refers to the classification aspects of one’s mathematical thinking 
that he/she thinks might not be readily apparent to others.  
Justification (RPJ) is defined by Staples, Bartlo and Thanheiser (2012) as “an 
argument that demonstrates (or refutes) the truth of a claim that uses accepted 
statements and mathematical forms of reasoning” (p. 448).  
Argumentation (RPA) is defined by Lithner (2000) as the “substantiation, the part of 
reasoning that aims at convincing oneself, or someone else, that the reasoning is 
appropriate” (p. 166).  
Generalisation (RPG) refers to the process of identifying operators and the sequence 
of operations that are common among specific cases and extends them to the general 
case (Swafford & Langrall, 2000). 
It was during the second phase of data collection that the participants’ reasoning 
processes were analysed and presented in relation to their 5VIs. Building on Millie’s 
visualisation processes discussed earlier, we present some of the data from the second 
phase in the form of one of the vignettes that we generated from her interactions with 
Rauna when they worked in their small group. The vignette presented in this paper 
serves to illustrate the co-emergence and structural coupling of visualisation and 
reasoning as a result of the participants’ interaction during a focus group task-based 
interview. 
THE CO-EMERGENCE OF VISUALISATION AND REASONING 
In this vignette, we discuss the reasoning process of argumentation (RPA) with 
reference to the 5VIs when Millie and Rauna embraced RPA to solve Task 5 of EVGRT 
W2 (Figure 3).  
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Figure 3: EVGRT W2 Task 5 

Rauna studied the cube that she held and rotated between her fingers as she spoke of 
“going through the cube”. When the others could not comprehend her thoughts, she 
sketched a net of a cube (Figure 4 (a)) as a way of increasing understanding. She argued 
that the diagonal of the cube equalled the length of its face, which was 10cm plus the 
diagonal of the face, which was 14.1cm (Figure 4 (b) and (c)). 

     
(a) “if we have to do this”            (b) “the distance here in the          (c) “is the same distance as if  

middle”                       we go through” 
Figure 4: Rauna’s argumentation for the fifth task 

Although Rauna’s argument in Figure 4 above was not accurate, she inadvertently 
convinced Millie to accept it as a result of her own visualisation and reasoning skills. 
Figure 5 illustrates that mathematical arguments do not have to be accurate in order to 
convince someone.  Here all it took was some of Rauna’s argumentative skills merged 
with visual imagery to convince Millie. Initially Millie was convinced, see Figure 5, as 
she imitates Rauna’s argument.  

       
(a) “she was saying, this              (b) “…is fourteen point one”         (c) “if you fold it like this, it  
       distance…”                is still 14.1” 

Figure 5: Millie convinced by Rauna’s argument 
Both Rauna and Millie employed an amalgamation of visual imageries and reasoning 
processes during this process of collaborative argumentation. Although Millie was 
initially convinced by Rauna’s arguments, she eventually refuted her claims as the 
picture in her mind became clearer and as she visualised and reasoned more on the task. 
From an enactivist point of view, we concluded that there was a structural congruence 
between the participants’ interaction and their environment (Maturana & Varela, 1998, 
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p. 95). Rauna, Millie and the environment had undergone transformations – they 
became structurally coupled (Maturana & Varela, 1998, p. 102). The result of this 
coupling was the co-emergence of visualisation and reasoning processes. 
SIGNIFICANCE FOR MATHEMATICS TEACHERS AND EDUCATORS 
From the above observation snapshot and in the context of this study, we are able to 
conclude that learners involved in word problem solving not only employ a variety of 
visualisation processes, but also incorporate those in their mathematical reasoning. The 
extent to which these processes are employed is a matter of preference. This has 
implications for mathematics teachers and the roll-out of their lessons.  
This study taught us the importance of task-based conversations which teachers could 
use to communicate with their learners in order to understand their mathematising 
better and to anticipate possible misconceptions. In our case, Rauna’s misconception 
was so entrenched in her thinking that she initially failed to tell the difference between 
the length of the diagonal on the face with that within the cube. She justified her 
reasoning by unconsciously folding the net to reach for the opposite vertex (Figure 4). 
Nevertheless, she argued well, and others were convinced – which was the overall 
focus of this study. Despite the misconceptions, what became important to us were the 
visualisation and reasoning processes that emanated from the participants’ interactions. 
Although studies on mathematical reasoning, visualisation and problem solving are 
widespread in various part of the world, our use of enactivism to theorise the interaction 
and interplay between visualisation and reasoning is a new contribution that we are 
glad to explore further. 
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THE BODY OF/IN PROOF: EVIDENCE FROM GESTURE 
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Doctoral students in mathematics took part in clinical interviews during which they 
were asked about their experiences with teaching, learning and doing proof. The 
analysis here focuses on the discourse, both spoken and gestural, used by these 
students in talking about and carrying out proofs, and on an analysis of this discourse 
from the framework of embodied cognition. Specifically a comparison is made with 
gestures used in everyday discourse related to “if-then” statements. 
INTRODUCTION 
The purpose of this paper is to examine mathematical proof and logical reasoning from 
the perspective of embodied cognition (Edwards, 2011; Varela, Thompson, & Rosch, 
1991), using data collected from clinical interviews with 12 doctoral students in 
mathematics. In recent decades, researchers have investigated how the body in 
implicated in mathematical teaching and learning, challenging the paradigm that 
cognition is amodal and abstract, based solely “in the head.” In addition, attention to 
embodiment has broadened the focus within mathematics education research beyond 
written symbols, images, and oral speech to include modalities such as gesture and 
other bodily movements (Edwards, Ferrara, & Moore-Russo, 2014; Hall & 
Nemirovsky, 2012). 

The analysis presented here is based on the principle of cognitive continuity; that is, 
the theory that there are not two or more different kinds of thinking, for example, 
abstract proof and everyday thinking, but instead, even “advanced” mathematical 
thinking involving proof and logic are grounded in basic human experiences. As 
Johnson states, "we do not have two kinds of logic, one for spatial-bodily concepts and 
a wholly different one for abstract concepts. There is no disembodied logic at all. 
Instead, we recruit body-based, image-schematic logic to perform abstract reasoning" 
(Johnson, 2012, p. 181). 
Following Hanna (1990), we take proof to be: 

[A] finite sequence of sentences such that the first sentence is an axiom, each of the 
following sentences is either an axiom or has been derived from preceding sentences by 
applying rules of inference, and the last sentence is the one to be proved. (Hanna, 1990, p. 
6) 

The specific focus here is on logical statements that take the form of “if-then” 
statements; these statements can be seen as the building blocks of proofs. The central 
research question is whether the physical gestures that accompany these “if-then” 
statements when talking about proof are similar to those accompanying “if-then” 
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statements in non-mathematical contexts. If so, then this would provide support for the 
notion of cognitive continuity between these two contexts. 
THEORETICAL CONTEXT AND RELATED RESEARCH 
Within an embodied cognition framework, mathematics is not seen as a transcendental, 
formal collection of rules and patterns, unrelated to everyday thinking and experience, 
but instead, as a human intellectual product, one which develops both historically as a 
discipline over time, and ontologically as it is constructed by an individual learner. It 
is socially-constructed, but not in an arbitrary way, being both constrained and enabled 
by the biological capabilities and physical situatedness of human beings. Embodiment 
does not negate the influence of social interaction and culture; rather it grounds it in 
shared biological constants (Hall & Nemirovsky, 2012; Nuñéz, Edwards, & Matos, 
1999). As stated by Hall and Nemirovsky (2012), “We think of concepts (in 
mathematics but also in other domains) as forms of modal engagement in which bodies 
incorporate and express culture” (p. 212). 

Prior research on proof 

Prior research has examined the learning and teaching of proof (a selection of recent 
work can be found in Lin, Hsieh, Hanna & deVilliers, 2009). The current research 
builds on this foundation, particularly in seeing proof as a form of socially constructed 
knowledge and a specific form of discourse (Balacheff, 1991; Sfard, 2001). The current 
analysis adds the lens of embodiment and gesture studies in analyzing this discourse. 

Prior research on conditional statements 

Logical deductions or “if-then” statements belong to a linguistic category known as 
conditionals, specifically the type called epistemic conditionals (because they 
reference a reasoning process). Two examples are: “If the car is in the driveway, he 
must be home” and “If x is even, then x/2 is an integer” (Dancygeir & Sweetser, 2005, 
p. 17). These kinds of conditionals involve what Danceygeir and Sweetser call a 
“metaphoric ‘compulsion’” (p. 20) in which the speaker is “forced” to draw the given 
conclusion, either based on inductive reasoning (“the car is almost always in the 
driveway when he is home”) or deductive logic (the mathematical definition of 
“even”).  The embodied metaphorical basis for construing proof in terms of the 
“compulsion” found in physical causality is discussed in Edwards (2017). 

In addition to a linguistic analysis of conditional statements, recent research by 
Sweetser has examined gestures associated with orally-stated conditionals. In a study 
involving 402 video clips of talk shows, Sweetser and Smith (2015) found that 
conditionals were generally accompanied by a particular hand motion, specifically a 
movement along a transverse axis through gesture space, starting on the speaker’s left 
and moving toward the speaker’s right. The current analysis examined the gestures of 
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mathematical doctoral students to see whether they also reflected this characteristic 
motion when orally stating epistemic conditionals.  If so, then this would constitute 
evidence of the continuity between everyday uses of conditionals and their use in 
mathematical proof. 

METHOD 
This qualitative study was based on a 90-minute clinical interview with 12 doctoral 
students in mathematics at a research university in the United States. The students 
participated in pairs in the interview and problem solving session, which was 
videotaped. The first portion of the interview consisted of general questions about their 
mathematics learning, teaching, and ideas about proof. The second part lasted 40 
minutes, during which the students were asked to prove a conjecture together, writing 
their work on the blackboard. During the third part, the students were asked to evaluate 
a visual “proof.” The illustrations presented here are drawn from the first portion of the 
interview. 
RESULTS 
The analysis of the doctoral students’ gestures when making conditional statements did 
indeed reveal the presence of the same left-to-right transverse gesture previously 
identified in non-mathematical contexts. The example shown in Figure 1 illustrates 
three instances of this gesture form. In this example, the epistemic conditional that the 
student is expressing can be summarized as follows: “If you have a scalar function and 
a vector function, then the rule for finding their product is the same as the rule for 
finding the product of two scalar functions.” 
 
AC: Well, I guess, so, the 
other day they were trying to 
prove that, um, if you have 
some scalar function of T 
 
Int: Uh huh 
 
AC: ―and some vector 
function of T, 
 
 

 

 
Figure 1a 
 

 
Figure 1b 

Left hand starts in horizontal C-
shape (“bracket”) facing upward on 
left side of body 
 
 
 
 
 
 
 
Left to right motion with left hand 
along transverse axis, ending in 
middle of body, with C-shape 
turning vertical 
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Int: Uh huh 
 
AC: ―that the derivative of 
their product... 
 
 

Figure 1c 

 
Figure 1d 

Left to right motion with left hand 
along transverse axis, with left hand 
open and facing outwards. Left hand 
begins on left side of body and ends 
in middle of body. 
  
 

is the same...  

 
Figure 1e 
 
 

 
Figure 1f 
 

Rapid left to right motion with left 
hand along transverse axis. Left 
hand starts in loose horizontal C-
shape (“bracket”) facing upward on 
left side of body and ends in 
pointing gesture to the right.  
 
 

AC: ...product rule essentially 
that you know from just, you  
 
Int (talking over): Uh huh. 

 

A complex motion in which the left 
hand begins by pointing downward, 
then is moved in a circle twice 
around the right hand while saying 
“you know,” ending up open and 
facing the speaker  
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Figure 1g 

 
Figure 1h 

AC: know from like scalar 
functions 

Figure 1i 

Left hand moves to right and 
finishes in horizontal C-shape 
(“bracket”) on left side of body.  
 
This is the same shape and location 
as when the phrase “scalar function” 
was initially uttered. 

Figure 1: Student’s discourse about scalar functions 
Note: Underlined speech indicated the stroke or emphasized portion of the gesture 
The sequence of gestures accompanying the student’s speech is very rich, taking into 
account characteristics including hand shape and orientation, hand location, and 
movement of the hands through space. Consistent with other conditionals used in non-
mathematical contexts, the sequence includes left-to-right motion along the transverse 
axis; in fact, this transverse motion occurs three different times, as shown in the pairs 
of figures above: 

• Figure 1a – b: A relatively small left-to-right motion of the left hand, as AC 
begins by saying, “If you have some scalar function of T and some vector 
function of T.”  This sequence also includes a change in orientation of the left 
hand; when holding it on the left, AC uses an upward-opening (horizontal) C-
shape as if “bracketing” or “holding” a scalar function. As she moves her hand 
to the right, she rotates her wrist so that when she says, “vector function,” the 
C-shape is now vertical. She thus uses both hand shape and hand location to 
gesturally distinguish the two different kinds of functions. 

• Figure 1c – d: A wider left-to-right motion of the left hand, as AC says, “the 
derivative of their product.” In this case, the hand shape stays the same 
throughout, open and facing outward. 

• Figure 1e – f: After saying “derivative of their product,” AC pauses briefly, 
then makes a very rapid left-to-right motion of her left hand while saying, “is 
the same,” starting with a horizontal C-shape and ending with a right-facing 
point. 

As can be seen above, in addition to an overall left-to-right movement that occurs three 
times during the sequence, gestures are also used to mark or indicate specific 
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mathematical objects, in a scheme that Calbris (2008) calls “two-entity opposition.” 
Two-entity opposition occurs when either two locations in space or the two hands are 
used to denote or “mark” two related but distinct entities. In Figure 1, this happens 
when AC uses a horizontal “bracket” held to her left when saying “scalar functions” 
and then a vertical bracket held to her right when saying “vector functions.” The terms 
“derivative” and “product” have the same hand shape but are marked by left and right 
hand locations, indicating two-entity opposition. 
The discourse segment ends with AC discussing a “product rule” while using an 
iterative circular gesture during a pause in speech (possibly searching for her next 
words), and then comparing it to the rule for scalar functions. Interestingly, the final 
gesture of the sequence, associated with the words “scalar function” has an identical 
shape and location as the gesture used the first time the words were uttered. This is an 
example of using specific hand shapes and locations in gesture space to “hold” a 
referent in discourse (Calbris, 2008; McNeill, 1992). 
DISCUSSION 
Calbris (2008) has stated that in gesture space, the transverse axis can represent logico-
temporal concepts, such as cause and effect, or before and after: 

A path in space or time is depicted by a left-to-right movement. But give that body 
symmetry allows this axis to account for splitting in two as well as two-entity oppositions, 
it can be used to oppose past and future, or precedence and successor, by locating the past 
on the left side and the future on the right side. (Calbris, 2008, p. 43) 

In the current case, and in the research by Sweetser and Smith (2015), the transverse 
axis is used to indicate the premise followed by the conclusion of a conditional, “if-
then” statement. 
The transverse axis of the body has been also called “the axis of reading and writing, 
pointing to the right in the Western world” (Calbris, 2008, p. 28). In this case, the 
motion of AC’s gestures is consistent both with the placement of the “cause” (premise) 
on the left and the “effect” (conclusion) on the right, as well as the left-to-right order 
in which premise and conclusion are generally written in English. In the example given 
above, the left-to-right motion along the transverse axis is thus consistent both with 
how “if-then” statements are written in English, and with prior research and theory 
identifying this gestural motion with logical and conditional statements. 
Taken in conjunction with related research (Edwards, 2010, 2011, 2017), we would 
argue that the examples above provide further evidence that proof and its building 
blocks, statements of logical deduction, are not abstract elements of disembodied 
rationality. Instead, we argue, these sophisticated forms of discourse make use of 
metaphorical mappings related to motion and are supported by conceptual metaphors 
grounded in physical experiences.  
Mathematical proof is thus seen as a specialized cultural product and a specific form 
of discourse, with particular constraints that distinguish it from everyday speech and 
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make it more powerful for the purpose of exploring structure and patterns. Yet the form 
that this discourse takes is not arbitrary, but rather is grounded in embodied human 
experience. As shown above, there exists a continuity between the gestural grounding 
for the logical conditionals used in proof and those used in non-mathematical contexts. 
This kind of analysis is relevant to mathematics education because the conceptual 
sources that students draw from in constructing new mathematical knowledge may not 
correspond to the more sophisticated intra-mathematical sources that their instructors 
use (c.f., Núñez, Edwards & Matos, 1999). For example, students who are beginning 
to learn about formal logic often “import” expectations about conditionals from 
everyday speech, assuming that “if A, then B” implies “if not A, then not B” (Evans, 
Newstead, & Byrne, 1993). A better understanding of the cognitive roots of 
mathematical thinking may help in developing better instruction in such situations. 
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This paper reports on an eight months long intervention program with eight five-year-
olds in Swedish preschool. Four main activities were designed to enable the children 
to discern part-part-whole relations of the first ten numbers. The aim of this paper is 
to present how progress in children’s arithmetical skills are associated with the 
activities they have encountered in the intervention program. Learning outcomes based 
on pre-, post- and delayed interviews show that the participating children made distinct 
progress in the way they experience numbers, with long-term effects on their arithmetic 
skills. In this paper we discuss the analysis of what was taught and what was learnt in 
commensurable terms. 
BACKGROUND 
This study directs attention to a theoretically designed mathematics intervention 
program and how this is reflected in the children’s learning outcomes. There are many 
kinds of interventions aimed at young children’s mathematical development, but few 
make it an issue to focus on intervention implementation related to learning outcomes, 
probably due to the complexity of studying the relation between what is taught and 
what is learnt (Domitrovich et al. 2010; Durlak 2010; Hedges, 2018). This is addressed 
in our study by focusing on 5-year-old children’s learning outcomes related to the 
implementation of a certain way of teaching about numbers.  

INTERVENTIONS IN EARLY MATHEMATICS 
Several international studies have identified positive effects of intervention studies in 
early childhood mathematics education (e.g. Jordan, Kaplan, Ramineni & Locuniak, 
2009; Sarama, Clements, Wolfe & Spitler, 2012). Interventions in early childhood 
usually show growth in children’s knowledge and skills and low-attainers often gain 
the most in the process (Mononen et al., 2014). The vast majority of interventions in 
preschool constitute a battery of activities to be conducted during a certain period of 
time by the preschool teachers. Most intervention outcomes are assessed by 
standardized tests of mathematical abilities and arithmetic skills in particular. These 
generally provide results that children manage to solve more advanced arithmetic tasks 
after an intervention, but research also reports a severe fade-out effect in longer terms 
(Clements, Sarama, Spitler, Lange, & Wolfe, 2011). Generally, what stands out in the 
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intervention programs conducted with preschool children is that they test children’s 
increase in producing correct answers to numerical tasks or abilities to use certain 
strategies as a measure for successful interventions. However, there are also qualitative 
analyses of how children understand some of the objects of interest in the interventions, 
which broadens the picture of what an intervention actually develops among the 
children. Mulligan and Mitchelmore’s studies (2013) are examples where the outcomes 
are tested by children’s ways of expressing structural awareness in drawings, not the 
frequency of correct answers alone.  

A strong focus on skills and abilities to use arithmetic strategies leaves important 
aspects in the background that might influence on the stability of learnt skills. The aim 
of this paper is therefore to present how progress in 5-year-old children’s arithmetical 
skills are associated with the activities children have encountered in an intervention 
program. The specific research question is: How can the development in children’s 
arithmetic skills be associated with what was afforded in the activities? In our study 
we implement a theoretically driven approach (Variation theory of learning) to 
teaching basic arithmetic to young children that takes its departing point in how 
children experience numbers, rather than their skills to solve arithmetic tasks correctly.  

THEORETICAL FRAME 
In this paper we study the enacted object of learning (the implemented program) related 
to the lived object of learning (what the children actually learnt) based on Variation 
theory that describes these objects of learning in commensurable terms. Variation 
theory proposes that looking at children’s learning as a function of what is possible for 
a child to experience in a given situation, could open for studying what in an 
intervention theoretically and empirically influences learning outcomes. Seeing 
learning as a change in ways of experiencing a phenomenon, is a fundamental principle 
in variation theory (Marton, 2015). Learning something is due to experienced aspects 
of what is to be learnt (the object of learning) that have not previously been discerned, 
and thereby perceiving the world in a more differentiated way. Discernment 
presupposes an experienced variation of the aspect in question. These principles – 
discernment and variation – can be applied when designing tasks and activities to draw 
learners’ attention on essential structures and make learners aware of relationships of 
numbers. Subsequently, from these principles, it is possible to analyse what is afforded 
to learn, also. In this way, learning and teaching are described in commensurable terms; 
as afforded variation (the enacted object of learning) and as experienced variation 
(lived object of learning). We would suggest these theoretical notions give a coherent 
foundation possible to apply to data for relating what is taught and learnt.  
THE STUDY 
This paper focuses on how the implementation of designed activities following 
theoretical principles inflicts changes in children’s ways of experiencing numbers.  
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For this particular paper, one preschool group (8 of 65 children participating in the 
program, part of a larger project financed by the National Research Council, grant no 
2014-1791) was selected for qualitative investigation of the teaching and learning 
processes they have taken part in. This group was chosen due to their collective low 
results on the pre-interview and the substantial amount of available observation data 
from the intervention activities.  

The intervention 
Teachers and researchers collaborated in planning, enacting and reflecting on number 
activities during a period of eight months. The teachers conducted each activity several 
times in their preschool groups and video-recorded some of their enactments as basis 
for assessment, analysis and further development of the activities. We aimed for the 
children to develop their ways of experiencing numbers in that they would handle 
numbers in arithmetic situations in proficient ways, which includes knowledge and 
awareness of part-part-whole relations and other necessary aspects of numbers 
(Marton, 2015; Baroody, 2016). 

Four main activities constituted the program, all designed to enable the children to 
discern in particular the part-part-whole relations of numbers by enacting the activities 
through certain patterns of variation. The statement game: The children show the 
number of dots on a dice with their fingers, using both hands. The teacher encourages 
them to show the number in different ways. The snake game: A string with ten beads, 
grouped as five in one color and five in another color. The children first present the 
whole number (ten) with fingers. Some beads are hidden, the children show the visible 
number of beads with a finger pattern. By looking at their unfolded/folded fingers they 
‘see’ the missing part. Finger patters: The children identify finger patterns shown by 
the teacher (>5) with a number word. The teacher asks how many more/less fingers are 
needed to represent a different number. Context problems: Number stories to which the 
children model the problems on their fingers. 

Analysis 
In total 28 video-recorded activities and task-based individual interviews from three 
occasions were analysed. The eight children were interviewed before and immediately 
after the intervention and one year after the program ended. The interviews constituted 
task-based arithmetical problems within the number range 1-10. The same tasks were 
given at all three occasions. For this particular analysis, a total of 64 
answers/observations of 8 tasks were analysed. The children’s answers have been 
analysed both quantitatively and qualitatively. The latter is in focus for this paper, in 
which we have interpreted children’s ways of handling numbers in finding a solution 
to the arithmetic tasks. These acts and utterances are interpreted as expressions of their 
different ways of experiencing numbers. 
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The intervention activities were analysed in terms of the afforded aspects of numbers 
and each interview was categorized according to the expressed ways of experiencing 
numbers. Variation theory offered a theoretical framework for interpreting this relation 
between what was taught and what was learnt in commensurable terms. 

RESULTS 
First, we present what the activities in the intervention program afforded the children 
to learn: finger patterns illustrating numbers, numbers as composite sets, part-part-
whole relations of numbers, and the commutativity principle and how this was enacted 
in the activities. The children’s learning outcomes are thereafter presented in 
qualitative terms and related to the afforded learning objects in order to answer the 
research question what was taught and what was learnt. 

Finger patterns were promoted as means for representing number relations in all 
activities. However, for modelling the part-part-whole relationship on fingers and 
seeing them as composite sets of units (not as single units) the children first needed to 
discern that a specific number can be represented on fingers as different finger-pattern 
sets (six can be represented as a whole hand and one thumb but also as three fingers on 
one hand and three on the other). 

The statement game enabled the children to see that there were different ways of 
modelling the same number, as the teacher compared children’s ways of showing 
numbers by asking: ‘same way?’, ‘different ways?’, ‘in how many different ways?’ 
The activity thus enabled, when enacted in this way, the children to discern numbers 
as composed by different parts. Furthermore, the game opened up for finger patterns 
to be used to represent numbers, both parts and whole, as related to each other.  

The finger patterns worked as a tool to open up for different ways of representing 
numbers but also to structure number relations in a sensual way. This was further 
developed to enable the children to experience the relation between parts and whole, 
simultaneously, which was enacted primarily in the snake-game. When finger patterns 
represent two sets of units (folded and unfolded fingers) the usefulness of structuring 
the part-part-whole relation on the ten fingers emerged when the children were asked 
to identify the visual part, show it with their fingers and then identify the hidden part. 
Some children looked at their knuckles, others turned their hand around – the finger 
pattern thus became a tool for identifying missing parts, without having to count single 
units. 

One important aspect of learning arithmetic skills is to recognize numbers as composite 
sets. This was introduced in the Statement game but further elaborated in the following 
activities. The teachers offered an alternative to counting single units (beads or fingers) 
and rather ‘see’ the pattern as a composed set that can be part of larger sets or 
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partitioned into smaller sets. The dimension of variation that was opened up through 
the activities was the use of subitizing strategies (recognizing a set without counting 
single units) and the possibility to extend the subitizing range (conceptual subitizing), 
usually using the whole hand as ‘five’ and extending the set by ‘seeing’ for example 
‘the five and two more’. This was enacted as the teachers contrasted the procedure of 
counting single units with seeing collections of items as composite sets of units, such 
as the five beads in the same color on the snake-game string or the ‘whole hand’ 
constituting five as a composite set that does not need to be counted. Extending the 
children’s conceptual subitizing range by recognizing finger patterns that include the 
‘undivided five’ was also coming through in the finger pattern activity when the teacher 
showed a finger pattern including five (e.g. 7 or 8) and promoted them to discern ‘the 
five in the eight’.  

Children are in the activities given opportunities to discern that parts (collections of 
items) can be decomposed into smaller sets of units or as one composite set and some 
single units. The semi-decimal structure (two hands with five fingers or a bead string 
with two groups of five) further supports the discernment of collections slightly above 
five.  

When the part-part-whole relation is discerned it is possible to see that by knowing 
the whole and one part, the unknown part can be identified. This was foregrounded in 
the snake-game, and in some number stories (context problems) where the whole was 
known and one part missing. Alternatively, by knowing two parts, the whole can be 
identified. In the snake-game the teacher after having identified the missing part often 
emphasized that the two parts (collections of beads or for example bears in the story) 
can be composed to the same whole number again. 

Operating on the relation between two parts in a specific part-part-whole relation can 
open up for discerning a commutative pattern. Especially in the context problem 
activity the principle of commutativity was made visible when presented in a sequence, 
such as in the first story two bears were playing and six bears joined in, in the next 
story six were playing and two more were joining. 
Also the snake-game offered the children to discern the commutative principle, within 
the same example: if there are two beads visible and eight hidden it does not matter if 
the finger pattern consists of eight folded fingers and two unfolded, or eight unfolded 
and two folded, it constitutes the same part-part-whole relation. This dimension of 
variation strengthens the children’s discernment of the part-part-whole relation of 
number and thus brings fore the flexibility that commutativity provides to arithmetic 
operations.  
Learning outcomes 
Analysis shows that the children participating in the intervention programme deve-
loped skills that made them produce significantly more correct answers to arithmetic 
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tasks after the intervention and also in a delayed test one year after the intervention 
(reported in Kullberg et al., 2018). In this particular study we direct attention towards 
the qualitative changes in the ways the children experience numbers, that in accordance 
with our theoretical framework determines what the children can do with numbers in 
arithmetic tasks. Arithmetic skills are in this sense based on what aspects of numbers 
children experience when trying to solve an arithmetic problem.  

The observations show that most children in the first interview do not experience a 
relation between parts and whole, or the ordinal and cardinal aspect of numbers 
simultaneously and thus cannot coordinate what to do with the given numbers in a task 
(40 of 64 observations). The first interview only shows 4 observations (of 64) where 
the children make efforts to structure numbers or present an answer as a known fact 
while in the second interview (after the intervention) all but six observations show 
evidence of structuring or using known facts to solve the tasks. The interviews after 
the intervention thus reveal that the children developed their ways of seeing numbers 
in that they experience arithmetic tasks as structures constituted of numbers in a part-
part-whole relation.  

An example of how a child solved the arithmetic task: “You have 10 candies, ate 6 of 
them. How many are left?” in the first interview: 

Child: Maybe five. 
Interviewer: How do you know it is five? 
Child: Because five comes after six. 

The child answers with two consecutive numbers in the counting sequence. Our 
interpretation is that she experiences the ordinal aspect of number, but not necessarily 
the cardinal aspect, which is necessary to see the relation between the parts and the 
whole, and cannot find the missing number.  

The second interview is showing a remarkable change in that almost all observations 
are categorized as expressions of children experiencing a part-part-whole relation in 
numbers, which helps their finding solutions, or they at least attempt to solve the 
arithmetic tasks. At the second interview the child solved the same task as follows: 

The child puts her ten unfolded fingers on the table, folds all five fingers on her left hand 
and the thumb on her right hand at the same time, looks at her structured finger pattern 
and answers “four”. 

Only one observation in the second interview shows a child handling the numbers in 
the tasks by counting single units. This means that after the intervention program the 
children did not count single units on their fingers or by counting words when they 
solved the arithmetic tasks. The vast majority have developed their ways of seeing 
numbers as structured or even as known facts after participating in the intervention.  
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CONCLUSION 
What seems critical for learning arithmetic skills is that the children through the 
intervention activities were given opportunities to experience the necessary ordinal and 
cardinal aspects of numbers, and what is even more important (according to the field 
of research, e.g. Fuson, 1982; Davydov & Andronov, 1981), to coordinate these aspects 
in the arithmetic problem-solving process. In the different activities in our program the 
children were constantly encouraged to reason about number sets (illustrated as finger 
patters) and relate numbers to other numbers, thus opening up the necessary 
dimensions of variation. However, a mere focus on ordinality and cardinality may 
induce counting procedures as ways to determine sets, this was intentionally avoided 
in the program. Instead, a structural approach was promoted by using children’s 
presumed subitizing abilities and extending the subitizing range by using familiar sets 
such as the whole hand constituting ‘five’ as one benchmark. The outcomes of the 
intervention programme clearly show that children did embrace this structural 
approach, since they did not rely on counting single units in the post- and delayed 
interviews.  
In summary, the children have been taught to experience numbers as a structure of parts 
and whole and that it is possible to solve arithmetic tasks by using this structure of part-
part-whole relation. They do this primarily by using their fingers to create finger 
patterns. Some children learned number facts and were able to retrieve from memory 
the part-part-whole relation and use decomposition strategies when applicable and 
consequently did not need to use their fingers to the same extent. Those children who 
did not experience numbers as known facts made use of finger patterns to create the 
necessary structure and then ‘see’ the missing part or the whole. They did this without 
counting single units.  
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ANALYSING LESSONS ON FRACTIONS IN THE MIDDLE 
PRIMARY GRADES: FOCUS ON THE TEACHER  

George Ekol 
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The paper draws on Vygotsky’s sociocultural historical theories of learning, 
elaborated by the ‘mediating primary mathematics’ (MPM) theoretical framework, to 
analyse lessons in the middle primary grades 3-5 on the topic of fractions. Data 
analysis suggests that teachers in this sample focused primarily on the concepts of 
addition of simple fractions, but barely moved learners from single concepts to the 
more general concepts of fractions. Moreover, data analysis revealed the need for 
teacher training in integrating available corporeal objects in developing the meaning 
of the concepts of fractions for the learners before introducing formal definitions. The 
paper extends the application of the MPM analytical framework to specific topics in 
the primary mathematics curriculum.  
INTRODUCTION 
Concerns have been raised in the recent past by many stakeholders, especially in the 
Eastern and southern African regions, about the low learning outcomes in mathematics 
at the primary school level. However, these concerns, as most of them always do, come 
as reactions to the outcomes (end product), rather than to the processes of learning that 
go on in the classrooms before national assessments. For example, a study conducted 
by Uwezo (2015) in East Africa revealed that some learners in grade 7 in some 
countries in East Africa, were unable to solve simple mathematics tasks meant for 
learners in grade 4. This finding caused much debate in the region. Rather than focus 
on the outcomes of learning, this study attempts to understand the processes of learning 
in a typical primary mathematics classroom in Uganda. Two concerns motivate this 
study. First, in general, primary school mathematics is taught as one subject, yet 
individual teachers may have challenges with particular topics in mathematics. Second, 
research studies on specific topics in mathematics are rare, making it difficult to 
address the topic-specific needs of teachers. The topic of fractions was chosen in this 
study based on the in-service primary mathematics teachers’ responses to a 
questionnaire, which showed that fractions was their favourite topic and division was 
the most challenging topic to teach. Given the low learning outcomes reported earlier, 
the current study aimed at interrogating the topic of fractions to uncover the extent to 
which teachers taught fractions and what were the areas that could be improved through 
interventions. Hence, the purpose of this study is to establish the patterns the lessons 
on fractions are likely to present and to point out common weaknesses that teachers 
can pay attention to through on-going professional development. The specific research 
questions are:  
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1. What patterns are likely to show in the teachers’ lessons on fractions in the 
middle primary grades? 

2. Which aspects of the lessons might require specific intervention? 
Our assumption is that topic-specific intervention will increase teacher confidence and 
will improve learner performance in mathematics at the primary level. 
THEORETICAL FRAMEWORK 
The current study is informed by the Vygotskian sociocultural theory of learning, 
elaborated by Venkat and Askew (2018), which views the teacher’s classroom 
activities and teaching strategies collectively, as mediation for the learners to become 
aware of the concepts of mathematics. The teacher mediates the mathematics concepts 
using different means available, such as tools, hereafter referred to collectively as 
‘artefacts’; inscriptions; and talk, including gestures; all these in a planned, or 
structured way. For example, the teacher draws a circle and divides it into equal parts, 
say six. He then uses the parts to introduce the concepts of numerator, denominator and 
fraction.  In this paper, we modify and extend Venkat and Askew’s (2018) ‘mediating 
primary mathematics’ (MPM) framework to the analysis of teachers’ classroom lessons 
on the topic of fractions. 
Mediating primary mathematics (MPM) framework  
Venkat and Askew’s (2018) mediating primary mathematics (MPM) framework is 
founded on the Vygotskian social cultural historical theories of learning (Vygotsky, 
1978), which, as stated in the previous paragraph, assume that learners become aware 
of the mathematics concepts through the mediation role of the teacher. In implementing 
the mediation role, a teacher uses different tasks and examples in his or her lessons. 
Venkat and Askew (2018) group these tasks and examples given to the learners into 
three interconnected “strands” or categories of teacher mediation, namely, mediation 
with artefacts; mediation with inscriptions; and mediation with teacher talk/and 
gestures. Tasks or examples that come through the teacher’s use of artefacts, 
inscriptions, or through talk and gestures, all form the ‘bundle’ for mediation, which I 
name mediation bundle (MB) in this paper (cf Arzarello’s, 2006, semiotic bundle). In 
this paper, the MB also provides the units of analysis of the teacher’s lessons on 
fractions. We do not adopt Arzarello’s semiotic bundle, because, in the MPM analytical 
framework, inscriptions, gestures, and artefacts are analysed individually in their units.  
Artefacts:-These include physical objects and manipulatives. Examples are a 
cardboard drawing of a circle divided into equal parts and small square blocks that the 
teacher can use to mediate the concepts of fractions.  
Inscriptions:-These include images, diagrams, written words and symbols, produced 
by the teacher during the lesson. Examples include a number line model, an area model 
of fractions, and a fraction as a rational number, for example, 4/5. 
Teacher talk/gestures: Venkat and Askew (2018) propose three “sub-strands” of 
teacher talk/gestures, namely, validating/generating solutions; building mathematical 
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connections; and building learning connections, respectively. The first sub-strand is 
about the methods the teacher uses to solve mathematics problems and also to provide 
feedback to the learners on a given task in class; the second sub-strand is about building 
connections between mathematical ideas; and the third sub-strand extends connections 
beyond mathematical ideas to explanations and evaluations of concepts. For example, 
a teacher may ask a learner to evaluate qualitatively how far half (1/2) a kilometre is. 
Some innovative learners may use known land marks in the school, such as ‘five times 
the length of a football field’ to estimate half a kilometre distance. 
The analysis of teacher mediation of fractions using MPM  
Table 1 provides a framework for analysing teacher mediation of fractions adapted 
from Venkat and Askew (2018). Whereas Venkat and Askew (2018) adopt quantitative 
measures 0, 1, 2, and 3 of teacher mediation in each of the three mediation strands (ie, 
artefacts, inscriptions, and talk/gestures), we prefer qualitative representations, for 
example, A0, A1, A2, and A3, with respective cell indicators. For example, cell A0 
represents teacher mediation that involves no artefacts; and cell A1 represents 
inappropriate artefacts used inappropriately. All other cells in the “MPM map” (Venkat 
& Askew, 2018) have specific indicators. We have adopted a qualitative approach to 
support our knowledge claims in this study. Unlike Venkat and Askew (2018), we do 
not claim to “measure” teacher mediation; rather we attempt to understand or to 
contextualise what is going on in the classroom lessons on fractions. 

MEDIATING TASKS/EXAMPLES 
MEDIATING WITH ARTEFACTS  

A0 A1 A2 A3 
No artefacts or artefacts 
that are not appropriate 
for tasks  

Inappropriate artefacts 
used in in-correct ways 

Appropriate 
Structured artefacts 
used in 
unstructured ways 

Structured artefacts used 
in structured ways 

MEDIATING WITH INSCRIPTIONS 
R0 R1 R2 R3 

Inscriptions that are 
problematic or show no 
clear links/examples 
with the concepts of 
fractions 

Inscriptions that focus 
on only single concepts 
or examples for the 
learners  

Inscriptions that 
are extended 
beyond the 
targeted concepts 
or examples 

Inscriptions that link 
more general concepts., 
e.g., a fraction is an 
example of a rational 
number 

MEDIATING WITH TALK/GESTURES 
Method for validating/generating solutions 

S0 S1 S2 S3 
Disconnected and /or 
incoherent method of 
generating examples  

Strategy/method that 
produces immediate 
answer; or aims at 
specific responses 
answers from learners 

Strategy/method 
that can generate 
answers around 
specific examples)  

Strategy/method that can 
be generalised to other 
examples without 
restrictions  
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Building mathematical connections 
C0 C1 C2 C3 

Disconnected and 
incoherent examples   

Standalone examples Talk connects 
between 
examples/inscripti
ons or artefacts 

Talk incorporates 
multiple connections 
between 
examples/artefacts 

Building learning connections 
E0 E1 E2 E3 

No evaluation of 
learners’ contributions 
(correct or incorrect) 

Accepts/evaluates 
learners’ inputs; offers 
strategy, feedback to 
learners’ contributions 

Builds on learners’ 
contributions and 
helps them clarify 
their answers;  

Advances learners’ 
contributions and 
explains common 
misconceptions. 

Table 1: The modified MPM framework Venkat & Askew (2018) 

METHODOLOGY 
The study design is a single case study. Participants in the study are 10 primary school 
teachers purposely sampled from a larger sample of 28 in-service primary school 
mathematics teachers from Uganda; 21 were undertaking a bachelor of education 
(B.Ed.) degree up-grading programme in a university in Uganda; and 7 were fulltime 
teachers in one of the top performing private primary schools close to the said 
university. The 10 teachers were chosen because they had indicated in a separate survey 
that fractions was their favourite topic. All the 10 teachers in this study were male. In 
fact, in the entire sample (F=6, M=22), no female indicated that fractions was her 
favourite topic. 
DATA ANALYSIS 
Although Arzarello (2006) places inscriptions in the “semiotic bundle” which includes 
gestures, glances, drawings, and other extra-linguistic expressions, in this study we 
segregate inscription and analyse it as a unit, given the huge role it plays in teachers’ 
mediations. Under the inscription strand there are four sub-strands marked R0 to R3; 
each with indicators as in Table 1. Due to page restrictions, only three inscriptions of 
teachers T1, T2, and T3 are presented and discussed in this paper. In the data, the 
[italics] sign is used to clarify the teacher’s inscriptions, whereas [...] represents 
sentences that have been shortened to save space, but without losing the original 
meaning. The symbol [number] refers to the line numbering on the teacher inscriptions. 
For example, in the T1 inscriptions below, [3] refers to line number 3, having key 
words such as “same denominators” and “numerators”. 
T1 

1   I involved grade 3 class in a discussion of the previous lesson […] about 
2   addition of fractions with the same denominator. When fractions are having 
3   the same denominators, the denominator is maintained and the numerators are 
4   added, for example   (i) . Then adding fractions 1.4/44/)31(4/34/1 ==+=+
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5   with different denominators, e.g. . Change them [denominators] into 
6.  equivalent fractions, e.g. and 
7    to make them have the same. Choose fractions with the same 
8   denominators then add . I asked pupils [to] form equivalent 
9   fractions of: , , and . Then I guided them on how to add 1/4 + 1/2 
10 by choosing those fractions with the same denominators. 

Three key concepts that appear in teacher T1’s mediation with inscriptions are the 
“same denominators” [2] “different denominators” [5], and “equivalent factions” [6], 
[9] respectively. However, the concepts are applied in different examples that do not 
build on or link with one another. Thus, the teacher T1 mediation with inscriptions 
focuses on single concepts or examples synonymous with cell R1 in Table 1. 
T2 

1  I began the lesson by defining a fraction. Then I told them [learners about the]  
2  types of fractions, ie, simple (proper), improper, decimal and recurring and non- 
3  recurring factions respectively. […] Simple fraction are fractions where the  
4  numerator is smaller than the denominator. […] simple fractions are of two  
5  types, those having the same denominator. e.g. 2/5 + 3/5 or […] those having  
6  different denominators, e.g. 2/3+3/5. Teaching addition of [fractions having] the  
7  same the denominator, e.g. 1/3+2/3, you just add the upper part and take 3 as the  
8  denominator without looking for the least common multiple (LCM). Then those  
9  having different denominators, e.g. 2/3 x 3/5= [(2x5) + (3x3)]/ (3x5). Look for  
10 the [sum of the product of] diagonal 1 and diagonal 2, divided by the product of  
11 the denominators. After that I gave them some [tasks] to try on their own and I  
12 moved around in class helping [learners] and correcting their mistakes [   ]. 

 
Teacher T2’s mediation with inscriptions includes some concepts such as proper, 
improper, decimal, recurring [2] and non-recurring fractions [3], but T3 limits his 
examples only to simple fractions. Even with simple fractions, the inscriptions focus 
on basic rules of getting to the answer rather showing the learner the founding ideas 
behind such techniques. T2’s own admission in line [12] suggests that some of his 
learners still did not understand the techniques he used in his lesson. It seems that more 
illustrations with artefacts and more examples of each of the concepts mentioned above 
would have supported learners more in understanding the concepts and applying them. 
T2’s mediation inscriptions focus on simple fractions indicating category R1 in Table 
1. 
T3 

1  I started the lesson by giving the definition of a fraction as ‘a part of a whole  
2    number’ or a number that has a numerator and the denominator […].  There are  

3/12/1 +
10/58/46/34/2)22/()21(2/1 ====´´=

9/36/23/1 ==

6/56/26/3 =+

3/2 4/1 2/1



Ekol 

2 -                                                                                                             PME 43 - 2019 222 

3    different types of fractions. Can you give  some […] types of fractions that you  
4  know? Most learners were able to give the different types of fractions, but could  
5    not explain what each of them mean. The teacher later explained […]  proper  
6    fraction as fraction [with] the numerator smaller than the denominator 
7    e.g. 1/2, 2/6, 1/7’. Improper fraction has the numerator bigger than the  
8    denominator, e.g. 7/4, 9/2, 4/3. Mixed fraction has a whole number and a  
9    proper fraction, e.g. . Later, I told [learners] that when adding fractions  
10  with the same denominator, we add the numerators and retain only one 
11  denominator, e.g. 3/7 +2/7=(3+2)/7=5/7;    5/9+3/9=(5+3)/9=8/9  […]. I ask  
12  learners to add 2/11+5/11. Most of the learners were able to add the given 
13  fraction correctly as 2/11+5/11=(2+5)/11=7/11 […]. 

 
Unlike T1 and T2, T3 attempts a definition of fraction, albeit in an abstract way [1]. 
Abstract, in the sense that concept of ‘part of a whole number’ if presented as such 
with no artefact to mediate them, would definitely challenge the learners’ 
comprehension. I expected T3 to demonstrate to the learners the concept of ‘whole’ by 
using a physical object, such as the drawing of a circle divided into equal segments. 
Each segment of the circle can then represent ‘part of the whole’. Such an initial 
representation might mediate the definition in [1] that T3 “started the lesson” with. 
Moreover, T3 also provides some working definitions of “proper”, “improper” and 
“mixed”, fractions. However, without enough illustrations, save for the skeletal 
examples [lines 7, 8, 9, 11, 13] that accompany the abstract definitions, it is debateable 
if T3’s learners understood the meaning of the terms. Moreover, the examples are based 
on only one concept of simple fractions. Hence T3’s mediation with inscriptions, again, 
like T1 and T2, do not extend beyond cell R1 in Table 1.  
DISCUSSIONS AND CONCLUSIONS 
There are many ways of representing fractions (Venkat & Bowie, 2017; Yee, 2006:115; 
Watanabe, 2002; Van de Walle, 2004; Carthcart, et al., 2005). The current study 
focused on teacher inscriptions while delivering lessons on the topic of fractions. On 
the first research question, the analysis of data revealed that, although some teachers 
in this sample were aware of the general concepts of fractions, their examples to the 
learners focused on, and were limited to the addition of simple fractions. In respect of 
mediating primary mathematics framework, the teachers’ inscriptions focused on only 
single concepts with no clear links to other concepts. It may be that the teachers’ choice 
of fractions as a favourite topic was based on the assumption of simple addition, which 
also showed in their inscriptions. On the second research question, our data revealed 
that teachers’ examples did not build on learners’ experiences with corporeal objects 
in their immediate environments, to develop the learners’ understanding of fractions. 
Data analysis revealed the need for teacher training in integrating available local 
objects in developing the meaning of the concepts of fractions before introducing 
formal definitions. Concepts such as improper fractions, recurring and non-recurring 

)7/1(2
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fractions, and decimal fractions were mentioned in passing, without fully developing 
their meanings and providing many examples. The modified MPM framework enabled 
us to focus on the teachers’ inscriptions on fractions and unpack their assertions that 
fractions was their favourite topic. The study revealed that teachers in this study 
focused primarily on the concepts of addition of simple fractions, but barely moved 
learners from single concepts to the more general concepts of fractions.  
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TRIADIC DIALOGUE DURING CLASSROOM TALK IN THE 
CONTEXT OF PATTERN GENERALIZATION 

Rabih El Mouhayar 
American University of Beirut 

 

The purpose of this study is to explore knowledge types and forms of interaction during 
classroom talk in the context of pattern generalization. Ten sessions in two classrooms 
in grade 7 were video-taped and the videotapes were transcribed verbatim. Episodes 
corresponding to levels of generalization were analyzed. The findings showed that the 
types of knowledge were mediated by different levels of generalization. Furthermore, 
classroom talk predominantly used procedural knowledge in episodes corresponding 
to different levels of generalization except for episodes that involved noticing 
commonalities in the pattern. Conceptual knowledge type was predominantly used in 
those episodes. The findings also showed that triadic dialogue was the dominant 
discourse structure in classroom talk in which the teacher initiated a question, which 
was followed by a student’s response and then the teacher provided feedback, 
evaluation or elaboration based on student’s response. 
BACKGROUND  
Classroom talk is central in learning and teaching of mathematics. One would expect 
that teachers might have instructional strategies to involve students in classroom talk 
in a variety of manners. However, findings in previous studies (e.g. Mercer, 1995; 
Mortimer & Scott, 2003; Lemke, 1990) report that classroom talk involves a turn-
taking structure that follows an initiation-response-feedback (I-R-F) pattern of 
interaction. In such a case, the teacher initiates a question, the student responds and the 
teacher provides feedback. Lemke (1990) called this pattern of interaction the triadic 
dialogue (TD). According to findings in the literature (e.g. Alexander, 2000), the TD 
is the dominant style of classroom talk. Those findings lead us to believe that TD helps 
teachers to have control over the development of mathematical lesson and the 
participation of students; however, TD has been critiqued because it leads to teacher-
traditional instructional approaches and it limits student independence (Lemke, 1990). 
In alignment with Lemke’s (1990) findings, Mercer (1995) found that the teacher in a 
TD has the majority of turns in which s/he leads the classroom talk. In contrast, the 
students have few opportunities to influence the classroom talk. 
Although there are limitation and critiques of the I-R-F instructional approach, not all 
researchers in mathematics education agree that the TD does not lead to meaningful 
learning. For example, Nassaji and Wells (2000) report that the I-R-F structure was the 
dominant dialogue within an inquiry-style teaching. Other studies (e.g. Wells, 1999; 
Wertsch, 1998) found that dialogic discourse within TD involve students in 
contributing ideas, which may influence classroom discussion. Variations in the TD 
instructional approach and the sequence of speaking turns is important during 
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classroom talk since a teacher utterance or a student utterance in itself is not meaningful 
because meaning making is made through relations between utterances (Barwell, 
2016). I suggest that variations in TD need to be further studied in mathematics 
classroom talk specifically in teaching and learning of pattern generalization(PG) 
where language plays a fundamental role (Radford, 2003). 
The purpose of the present study is to understand the nature of classroom talk in terms 
of knowledge types in TD during generalization of figural patterns. There is a relative 
lack of research in mathematics education on discourse quality, classroom talk and the 
source of utterance (teacher or student) during PG. 
LEVELS OF GENERALIZATION 
In a series of studies, Radford (e.g. 2003; 2008; 2010a) has focused on studying 
students’ levels of generalization (LoG) in PG tasks. This line of investigation was to 
establish the hierarchical nature of the LoG and to characterize them operationally 
using students’ embodied and discursive activity as level indicators. This line of 
research uses a semiotic-cultural approach to distinguish between students’ processes 
of objectification - that is, the ways in which the learners make visible new 
relationships and objects that they refer to in their generalizing activity. This approach 
involves an analysis of semiotic means of objectification – that is, gestures, body, 
posture, and other embodied signs and resources (e.g. language, writing, speech, tools, 
analogies, etc.) in presymbolic and symbolic generalizations. The findings in those 
studies report that there is evidence in support of the hierarchical nature of LoG and 
that students can be assigned a LoG based on their use of semiotic means of 
objectification. 

Radford’s taxonomy is formed of five LoG: Abduction, arithmetic, factual, contextual, 
and symbolic generalization levels. Abduction and arithmetic generalizations (AG) are 
two non-algebraic levels of generalization. More specifically, abduction involves 
noticing a commonality in the context of generalization whereas AG entails extending 
a commonality to subsequent terms of a pattern without the ability to come up with a 
rule that determines any term of the pattern (Radford, 2010b). Thus, AG is limited in 
determining a particular term of the pattern based on making use of a noticed regularity 
in the structure of the pattern. 

Factual (FG) and contextual generalizations (CG) are two types of algebraic, but 
presymbolic, generalization. The latter reveals a higher LoG in comparison with the 
former. FG applies to generalization of objects at the same concrete level (e.g. 
numbers). In contrast, CG goes beyond the realm of specific steps of the pattern and it 
deals with generic objects (e.g. “the figure”, “the top row”). The semiotic means of 
objectification for FG mainly involve bodily gestures in particular steps of the pattern. 
More specifically, FG involves various types of semiotic means of objectification: 
spatial positional linguistic terms (e.g. “the next”); adverbs (e.g. always); rhythm and 
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movement (e.g. 1+2, 2+3, 3+4, 4+5 …), etc. In contrast, CG involves discourse that 
addresses generic objects. Symbolic generalization (SG) is the third and highest level 
of algebraic generalization. It involves expressing the generalization through 
alphanumeric symbols and bypassing the positioning problem to produce nonspatially, 
based symbolizations. 

RATIONALE OF THE STUDY 

Researchers in mathematics education argue that there is a need for further 
investigation into classroom discourse due to its fundamental impact on students’ 
learning. More specifically, there is a need to do further research on TD due to variation 
in its forms and functions (Mortimer & Scott 2003; Nassaji & Wells 2000). For 
instance, Mortimer and Scott (2003) note that the TD entails different communicative 
approaches that varies between dialogic and authoritative approaches. Findings from 
previous studies (e.g. Salloum & BouJaoude, 2017) lead us to believe that there are 
different types of patterns of discourse, which influence the quality of teaching and 
learning within the TD.  

This study aims to analyze mathematical classroom talk in the context of PG for several 
reasons. PG is well researched. It is seen as a route to develop students’ algebraic 
reasoning (e.g. Radford, 2008). To date, the focus of previous studies analyzed how 
learners develop their LoG as they participate in group discussion in the context of PG 
(e.g. Radford, 2003; 2008). Other studies focused on students’ strategies (e.g. El 
Mouhayar, 2018b) or on teachers’ ability to notice students’ reasoning in PG (e.g. El 
Mouhayar, 2018a). The present study extends previous research on classroom talk in 
the context of PG. 

RESEARCH QUESTIONS 

What types of knowledge does classroom talk use in promoting LoG?  
What patterns of interaction exist during episodes corresponding to LoG? 

METHOD 

Setting and Participants 
The data analyzed for this study were collected in a grade 7 classroom in a moderately 
sized private school in a suburb in greater Beirut area serving middle socio-economic 
background students as judged by the school tuition level. This school was selected 
since it had a good reputation (due to high percentage of success in the national brevet 
/ grade 9 exam) and because private schools serve 60% of Lebanese students. 
Furthermore, this school followed the national mathematics curriculum, which was 
adopted by most of the private as well as public schools. On the other hand, it was 
difficult to involve a mathematics teacher from public schools in this study due to 
complicated bureaucratic regulations that govern such participation. The mathematics 
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teacher in the selected classroom was highly regarded in the school because of his hard 
work, care that his students develop meaningful understanding in mathematics and 
because of his good relationship with the students.  

Growing figural patterns was new for the students in grade 7. In previous years, the 
students had some experience in repetitive patterns. Tasks that involve the students to 
find the number of squares in near (e.g. Figure 9) or far generalizations (e.g. Figure 
100) are new for the students. They had no experience in generalizing figural patterns 
similar to the one included in Figure 1. 

 
Figure 1: An example of a growing figural pattern 

Classroom mathematical activities were designed in a particular structure as follows: 
(1) Either small groups, formed of two students, carried out the mathematical activities 
and then this was followed by classroom talk organized by the teacher or (2) classroom 
talk controlled by the teacher carried out the activities without group or individual 
work. The first structure has characteristics of student-centered activity since it allows 
the students to share their ideas, analyze the pattern within small groups, and then 
revise their strategies within classroom talk. However, the second structure allowed as 
well for dialogic classroom talk in which students shared their reasoning and strategies 
with the teacher within whole classroom discussion. 

Data collection and analysis 

Ten sessions in two classrooms in grade 7 were video-taped such that five sessions 
took place in each section. A criterion for selecting grade 7 was that algebra is first 
introduced in grade 7 and because PG is implicit in algebraic reasoning in general and, 
particularly, in concepts such as function and variable. 

To get an in-depth characterization of classroom talk, videotapes were transcribed 
verbatim, and time was coded each 2 minutes. Six levels of analysis were used to 
analyze video transcripts. The first level of analysis identified pattern task and session. 
The purpose of this level of analysis was to identify the learning outcomes of the 
session and the pattern task. The second level of analysis divided each session into 
events corresponding to different generalization types (e.g. determining near or far 
generalizations). The third level of analysis divided each of those events into episodes 
corresponding to different LoG. An episode is a section where classroom talk occurred 
within one LoG, in a particular event, during specific session and dealing with a 
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particular pattern task. More than one episode within the same event and corresponding 
to the same LoG may occur if classroom talk involved more than one student in 
generalizing a pattern in different manners and based on different perspectives in 
noticing the pattern. The fourth level of analysis divided episodes into either classroom 
talk or pair work. Only episodes corresponding to Radford’s levels of generalization 
and to class talk were considered for analysis. The fifth level of analysis focused on the 
teacher’s and students’ meaningful mathematical utterances during classroom talk 
within episodes corresponding to LoG. Each utterance was coded based on knowledge 
type categories (Table 1) using revised Bloom’s taxonomy (Krathwohl, 2002). 
Categories of knowledge types included factual, procedural and conceptual. 
Metacognitive knowledge type was omitted from the analysis because the frequency 
of utterances corresponding to this type was relatively small.  

Knowledge type Definition 

Factual knowledge The basic elements that students must know to be acquainted 
with a discipline or solve a problem in it. 

Conceptual 
knowledge 

The interrelationships among the elements within a larger 
structure that enable them to function together. 

Procedural 
knowledge 

How to do something, methods of inquiry, and criteria for 
using skills, algorithms, techniques, and methods. 

Metacognitive 
knowledge 

Knowledge of cognition in general as well as awareness and 
knowledge of one’s own cognition. 

Table 1: Definition of knowledge types (adapted from Krathwohl, 2002, p. 214) 

In order to discern patterns of interaction and to analyze the use of TD in different LoG, 
each utterance was coded based on an interaction type. The analysis was based on a 
scheme (Mortimer & Scott, 2003) in which five forms of interaction are identified: 
Initiation (I) usually via a question posed by the teacher; Response (R) from the 
student; Evaluation (E) normally by the teacher; Feedback (F) from the teacher and 
based on student’s response; Elaboration (El) of the student’s response.   

Two researchers coded the data independently and several meetings between them 
followed where discrepancies in coding data were negotiated until consensus was 
reached. The coded data were subjected to a series of quantitative analyses. First, 
interaction types were determined to look at patterns of TD. Second, a cross tabulation 
of type of knowledge by LoG was done to explore the possibility of significant 
differences in knowledge type across LoG. The data were also subjected to qualitative 
analysis because our aim was to discern trends in ways the TD was used and how the 
classroom talk moved among knowledge types in representative episodes. 
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FINDINGS 

Knowledge types 

Findings of classifying utterances by their interlocutor (student or teacher) (Table 2) 
show that the teacher talk dominated classroom talk: 62.7% (844 utterances) of the 
total meaningful mathematical utterances resulted from teacher talk whereas 37.3% 
(503 utterances) of the total meaningful mathematical utterances resulted from 
students. The findings also show that the frequency of utterances corresponding to 
different knowledge types varied across generalization level episodes. For example, 
Table 2 shows that classroom talk (teacher and/or students’ utterances) in the abduction 
level episodes were mostly of the conceptual knowledge type followed by procedural 
and then factual. In other episodes, classroom talk utterances were mostly at the 
procedural knowledge type, followed by conceptual and then factual.  

 
Type of knowledge  

Factual Conceptual Procedural Total 
Classroom talk # % # % # % # % 
Abduction 30 11.9* 151 59.7* 72 28.5* 253 100.0 
AG 30 6.8 83 18.8* 329 74.4* 442 100.0 
FG 23   10.6 30 13.8* 164 75.6* 217 100.0 
CG 2 1.1* 23 12.7* 156 86.2* 181 100.0 
SG 14 5.5 42 16.5* 198 78.0* 254 100.0 
Total 99 7.3 329 24.4 919 68.2 1347 100.0 
Teacher talk         
Abduction 18 10.5 104 60.8* 49 28.7* 171 100.0 
AG 22 7.8 51 18.1* 208 74.0* 281 100.0 
FG 13 10.6 17 13.8* 93 75.6* 123 100.0 
CG 1 1.0* 12 12.0* 87 87.0* 100 100.0 
SG 10 5.9 31 18.3* 128 75.7* 169 100.0 
Total 64 7.6 215 25.5 565 66.9 844 100.0 
Student talk         
Abduction 12 14.6* 47 57.3* 23 28.0* 82 100.0 
AG 8 5.0 32 19.9 121 75.2 161 100.0 
FG 10 10.6 13 13.8* 71 75.5 94 100.0 
CG 1 1.2* 11 13.6* 69 85.2* 81 100.0 
SG 4 4.7 11 12.9* 70 82.4* 85 100.0 
Total 35 7.0 114 22.7 354 70.4 503 100.0 
* Adjusted residual ˃∣2∣ 

Table 2: Frequency and percentage of knowledge types of utterances in different LoG 

A chi-square showed significant differences between utterances of classroom talk in 
the distribution of knowledge in different generalization level episodes (χ2 (8) = 
257.191, p = 0.0). Similarly, a chi-square on the data classified by the teacher and the 
students showed significant differences between utterances of the teacher (χ2 (8) = 
165.482, p = 0.0) and between utterances of the students (χ2 (8) = 93.861, p = 0.0). 
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Interaction types 
The analysis showed that TD was the most dominant interaction practice during 
classroom talk in episodes corresponding to different LoG. More specifically, the I-R-
E, I-R-F and I-R-F-R-F- patterns of interaction was very common in those episodes. 
The teacher used TD to elicit students’ responses in order to promote different LoG. 
Patterns of interaction showed that the teacher initiated classroom talk, one student 
selected by the teacher responded and then the teacher provided feedback. After that, 
either the teacher initiated a new question or the same student responded to teacher’s 
feedback. At the end of an episode, classroom talk ended with teacher’s feedback or 
evaluation. The extract below shows this aspect of classroom talk. It corresponds to an 
episode at the abduction level, which took place during session 1 and which addressed 
the growing pattern represented in Figure 1.  

Teacher: Look at this pattern. Try to figure out what is changing? What is fixed? 
Maggie:  Plus four in each figure. 
Teacher:  We are adding four squares in each figure. 
Teacher: Any more propositions? 
Mohamad: In figure three it will be plus four. In each figure, we added plus four to the 

figure before it. 
Teacher: Start from the beginning. From figure one to figure two what is happening?  
Mohamad: Plus four.  
Teacher:  We are adding four. From figure two to figure three?  
Mohamad: Plus four.  
Teacher: Plus four. That is what Maggie said. We are adding four each time.   

From this representative extract, it can be seen that the teacher used TD to elicit 
students’ responses in order to promote the abduction LoG. TD was coded as follows: 
I – R – F – I – R – F– R – F – R – F. Classroom talk also moved among conceptual and 
procedural knowledge types. The teacher initiated classroom talk with a conceptual 
question: “What is changing? What is fixed?" to involve students in noticing 
commonalities. Classroom talk then moved to procedural knowledge about how the 
pattern is increasing. The episode ends by teacher’s feedback in rephrasing what the 
students have noticed in the pattern “We are adding four each time”. 
 DISCUSSION 
One major finding in this study is that types of knowledge were mediated by LoG. 
Another finding showed that classroom talk predominantly used procedural knowledge 
in episodes corresponding to different levels of generalization except for episodes at 
the abductive level in which conceptual knowledge was the most frequent knowledge 
type. Qualitative analysis showed that episodes at the abductive level occurred at the 
beginning of the sessions in which classroom talk started with conceptual utterance 
question asked by the teacher (e.g. “What is changing?”; “What is the constant?”; etc.) 
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to involve the students in noticing commonalities. In conclusion, the findings in this 
study suggest that when TD is used appropriately, it becomes proper for construction 
of meaning. Thus, developing I-R-F at the conceptual knowledge type in classroom 
talk becomes a valuable competency for math teachers, where they can manage 
classroom talk as facilitators. 
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EXPLORING THE IMPACT OF PRE-LECTURE QUIZZES IN A 
UNIVERSITY MATHEMATICS COURSE 

Tanya Evans, Barbara Kensington-Miller, Julia Novak 
University of Auckland 

 

Our work contributes to the fast-growing field of blended-learning, a modality 
combining face-to-face instruction with online activities to support learning. Pre-
lecture quizzes, comprising two multiple-choice questions focusing on the main 
learning outcomes, were introduced for a whole semester. At the completion of the first 
iteration of design research, our findings suggest that this relatively small change in 
course instruction can improve both efficiency and effectiveness of learning, affecting 
the majority of students. The design principle that we developed and tested in practice 
is generalisable and transferable to other educational settings. Central to those 
identified heuristics are the mechanisms that increase frequency of learners’ 
engagement and the quality of engagement by enabling extrinsic motivational drivers.  
BACKGROUND 
Blended learning, the integration of face-to-face and online instruction, is being widely 
adopted as the ‘new normal’ in course delivery across higher education. In mathematics 
classes, this new mode of instruction is commonly seen at all levels, yet the extent to 
which it is effective raises important questions about its pedagogical merit and the 
responsibility of instructors with its evaluation. Engelbrecht & Harding (2005; 2009) 
have captured the scope of Internet teaching and learning of undergraduate 
mathematics prior to 2009 and laid a foundation for systematic approaches for research 
investigations. Borba, Askar, Engelbrecht, Gadanidis, Llinares, and Aguilar (2016), 
summarise findings from many projects supporting blended learning and state: 
“Studies show that the online component of blended learning increases student agency 
(allowing them to control both instructional pacing and sequence), reduces distractions 
that are typical in classrooms or lecture halls, increases time-on-task, and improves 
student performance” (p.603). However, Nardi and Knuth (2017, p.272) in reference 
to a study by Roy, Inglis and Alcock (2017), which serves as a cautionary tale  about 
instructional interventions based on technology,  argue that “evaluating the 
effectiveness of instructional resources needs to be done in far more robust and 
systematic ways than merely relying on students’ self-reported learning outcomes and 
satisfaction with the resources.”  
Driven by the advances of emerging technologies, the higher education sector is forced 
to move with the times and look for ways to become sustainable in a technological era. 
As a result, new instructional design theories that combine the body of knowledge from 
distance education (e.g. Moore, 2013) with the face-to-face instructional principles 
(e.g. Merrill, 2002) have been developed. We position our study globally, oriented by 
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Keller’s (2008) motivational theory that currently dominates instructional design with 
respect to learner motivation. In particular, we refer to the basic principles that 
characterise learner motivation with the emphasis on effectiveness, efficiency and 
engagement. Oriented in this way, we present a conceptual framework, which we call 
the Course Transaction space (CT-space), comprising three dimensions as illustrated 
in Figure 1:  

 

Figure 1: Course Transaction space: three dimensions of educational exchange 

The effectiveness and efficiency of the educational exchange depends on the three 
variables and is affected not only by the distance from the origin, but also by the 
position of the course in the CT-space. Understood this way, mathematics courses in a 
tertiary programme can be represented as a sequence of points in the CT-space. It can 
be used to gauge the distances between courses following an intervention, bringing to 
the fore potential difficulties that may arise for students with the quality or frequency 
of their engagement with the content and the quality of the instruction received. 
In this research report, we use our framework to describe and analyse an online 
intervention in an undergraduate mathematics course, involving pre-lecture quizzes, 
and demonstrate the impact this intervention had on student learning.  
METHOD 
Methodology and research site 
The study was conducted as a design research project, which is typically based upon 
interacting cycles of research and development. This approach continues to gain 
prominence as an effective methodology in the mathematics education research 
community (e.g. Artigue, 2015; Cobb, Confrey, deSessa, Lehrer & Schauble, 2003; 
Goodchild, 2008, 2014; Prediger, Gravemeijer & Confrey, 2015; Schoenfeld, 2007) 
with the aim to “yield useful knowledge (tied to design) that is sensitive to context and 
yet general enough to use in new situations” (Bakker, 2018, p.47). Such knowledge is 
often summarised in the form of design principles, which are updated in the iterative 
process. This is different from experimental research designs in which some variables 
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are manipulated and effects on other variables are measured. Design researchers are 
concerned with designing and studying new forms of instruction with a goal to generate 
theories about the process of learning. Central to this is the identification of 
mechanisms that support that learning, which are practice-oriented, pragmatic, and 
realistically valid. In essence, the design principle tries to generalise the findings that 
come out from the case in such a way that it can be transferable to another situation.  
The study was conducted at a large research university in New Zealand in an 
undergraduate mathematics course covering Calculus II, Linear Algebra II and 
introduction to Ordinary Differential Equations, serving the needs of students majoring 
in a variety of disciplines. For a large proportion of non-mathematics majors taking 
this course, lack of interest in the subject contributes to low intrinsic motivation, 
skewed attitudes and deficient engagement with the course. An additional challenge is 
the size of the course: the enrolment numbers are usually in the range of 350-550 
students per semester. The course is delivered over 12 teaching weeks and has the 
following structure: 3 one-hour lectures per week (transmission style instruction) and 
one-hour weekly tutorial (student-centred utilising active-learning strategies in groups 
of 25-30 students in a room).  
Another important characteristic of the course is that, due to a mandatory policy, all 
lectures are video-recorded and made available to students on the same day. After this 
new policy was rolled out, the attendance of live lectures dropped down significantly. 
In many cases, the attendance rates fell below 30%.  
Intervention: design principles. 
Guided by our CT-space framework, we designed an intervention targeting increases 
along the two dimensions, frequency of engagement and its quality, to primarily focus 
on the learners. A bank of multiple-choice questions was developed and delivered as 
online quizzes, using Canvas, the Learning Management System adopted by the 
university. The students were expected to take the quizzes prior to attending each 
lecture, starting from week two of the semester so as not to disadvantage students who 
enrolled late. Each quiz was designed to assess the two main learning outcomes from 
the previous lecture. The decision about what learning outcomes to assess was made 
by the first author, who at the time of the intervention had been teaching on the course 
for 7 semesters. The students were allowed two attempts at completing each quiz, 
containing two multiple-choice questions, and their highest score was recorded. Each 
question was randomly selected from the bank of questions that was created containing 
2-3 versions of the same question (for example, different numerical values). The 
marking scheme awarded one mark for each correctly answered question, so that the 
maximum mark for a quiz was 2 and the minimum was 0. The time limit was set for 
30 minutes to provide enough time for students to revise the material while taking each 
quiz. Figure 2 shows an example of a question: 
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Figure 2: Quiz question: instructor’s view of a learning analytics tool 

The contribution of quizzes was allocated 7% of the final grade for the course. Out of 
32 quizzes, the best 28 scores were recorded to address any practical issues. Out of 393 
students, only two asked to reopen quizzes for them after they missed the deadline due 
to personal circumstances.  
Data analysis 
The data collected was analysed using a triangulation technique that facilitates 
validation of data through cross verification from more than two sources. We report on 
the data collected from the Learning Management System (providing grades and 
learning analytics); student survey (via Likert-scale questionnaire selecting their 
choices from: not at all, a little, somewhat or significantly) at the end of the trial 
semester; and a focus group interview with 5 students. Due to limited space, we are 
unable to report on data from the video-stimulated recall and reflection from an 
instructor, and an interview of a tutor (teaching assistant facilitating tutorials).  
RESULTS AND DISCUSSION 
The most notable result was the increased rate of engagement. The completion data for 
all 32 quizzes was in the range 81.2% - 96.45% with monotonically decreasing pattern: 
Quiz 1 was completed by 96.45% of enrolled students, Quiz 14 – by 92.13%, Quiz 28 
– by 87.3%. We had hoped for some good engagement with the quizzes initially, but 
had not anticipated this level of engagement to be so high and remain continually high 
as the semester pressure tightened. We were further surprised that the high proportion 
of students who had achieved their best 28 quiz scores to be counted towards the final 
grade, still attempted the last four quizzes ranging from 87% down to 81.2% for the 
last Quiz 32. It is noteworthy to reiterate that the incentive for students to attempt a 
quiz was only 0.25% contribution to their final grade, which manifested as an effective 
extrinsic motivation. In the past, the course assessment consisted of 3 assignments, 10 
tutorials, a test and an exam. In the trial semester, we added 32 quizzes keeping all 
other assessment components unchanged.  
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To provide evidence about the quality of the students’ engagement, the second 
dimension in the CT-space that we were interested in, we report on the data from the 
questionnaire (paper-based, conducted in class at the end of the semester, response rate: 
98% with 140 individual responses). We were interested in what students do in the 
process of preparation to take a quiz, and, most importantly, if the first attempt is 
marked as a wrong answer (the online system automatically provides instant feedback 
alerting the student). Following an incorrect answer, the student can try again with 
plenty of time to refer to their notes and other resources as the quiz is set for 30 minutes 
to answer the two short questions. Over 88% of students reported that they would spend 
some time studying before taking the second attempt. In response to the question “How 
much did the quizzes contribute to your understanding of the course material?” over 
81% of students reported a somewhat/significant impact. 
Analysis of the focus group transcript provided further insight about the students’ 
perspectives of the value of the quizzes:  

Student 1: I think that, for some subjects, it is so easy to just turn up to lectures and to just 
turn up to tutorials and do the work and then if you forget about it until the 
next week, then that’s fine. But the quizzes in some way – you get home in 
the evenings and you like ‘Oh, I’ve got to do my quiz’. So, you map stuff 
out… so you are more inclined to do things. I would probably do stuff 
anyway but, yeah, it motivates me a bit more. 

Moderator to student 2: How about you? 
Student 2: I think it helps a lot for a subject like maths because it helps you do practice 

every day, so it makes you practice every day. 

Unanimously, at the end of the focus group, all five participants agreed that 
incorporation of online quizzes was a good innovation and that it should be used in 
other mathematics courses. 
Unexpected fluctuations along the third dimension in the CT-space (Instruction 
quality) led to iterative revision of the initial design principle. At the design stage, we 
envisioned that before the start of every lecture an instructor would access the data 
from the learning analytics tool to see the quiz results. In line with the Just-In-Time 
Teaching approach (Novak, Gavrin, Christian, & Patterson, 1999), we expected that 
the feedback would allow an instructor to identify the level of student preparedness on 
each topic and any misconceptions that students might bring to class. We assumed that 
receiving such insights before class would enable the teacher to adapt the lecture as 
needed. In particular, we expected that at the beginning of each lecture the teacher 
would address poorly answered questions from the pre-lecture quiz by revising the 
corresponding material from the previous lecture.  
In reality, unexpectedly, a different line of events was unfolding. A large majority of 
students not only chose to engage with this new resource, but they were answering both 
questions correctly. Figure 2 shows an example of a learning analytics tool that was 
accessed by instructors before the start of each lecture, illustrating a typical rate of 
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correct responses. This, we observed, brought a change in teaching behaviour. The 
analysis of lecture recordings from the trial semester revealed a significant reduction 
of time spent on revision by the instructor as compared to previous semesters. This 
change in teaching behaviour can be explained as a consequence of the insights gained 
from learning analytics. The instructors, as evidenced by their actions, did not need to 
spend time on revision freeing up valuable teaching time during the lectures, possibly 
for less-rushed explanations, more examples, etc. More research is needed to 
understand the implications of the aforementioned change on the quality of instruction. 
However, what we observed in the trial semester was that a large majority of the 
students came to the lectures prepared – they had revised the material from the previous 
lecture and passed the assessment.  
The improved engagement with the content is also supported by evidence from the 
comparison of grades distribution in the trial semester with the previous semester of 
the same course. While admitting the limitations of this approach, we note many 
similarities in the delivery of the courses: the same course coordinator, the same 
instructor (for half of semester), the same course book and all other materials, identical 
split into lecture topics and the same external assessor. The role of the assessor is to 
benchmark and calibrate the test and exam (contributing 20% and 60% respectively to 
final grade) against previous semesters. A deliberate attempt was made by the assessor 
to ensure that the exam was at least as hard as in the previous semester. Figure 3 
demonstrates the shift in course grades across the grade bands: from reduction in the 
proportion of fails to an increase (by almost identical amount) in A-band grades. The 
observed difference is significant at p-value <0.05 (Chi-square test: χ2(3)=10.57, 
p=0.014). 

 
Figure 3: Final grades comparison from the trial semester against previous semester. 

CONCLUDING REMARKS 
At the completion of the first cycle of incorporation of pre-lecture quizzes, our findings 
suggest that this relatively small change in course instruction, can improve the course 
‘coordinates’ in the Course Transaction space leading to more efficient and effective 
educational exchange, affecting the majority of students. What we noted in our own 
reflections was the simplicity and enjoyment of the quizzes for the students, which we 
had not factored as a driver. The effect, we further noted was also motivational, 
supporting Keller’s (2008) theory, and particularly encouraging for those less able as 
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“[m]otivation to learn is promoted when learners anticipate and experience satisfying 
outcomes to a learning task” (p.177). Having instant feedback and a small reward of 
0.25% was galvanising, but the surprising effect was the increased attendance at 
lectures. We are looking at further research in these areas.   
The design principle of the quizzes that we developed and tested in practice is 
generalisable and transferable to other educational settings as heuristics for 
instructional design. Central to the design are the mechanisms that increase the 
frequency of learners’ engagement and the quality of engagement by enabling extrinsic 
motivational drivers. For students, the presence of quizzes as motivational stimulus 
leads to heighten sense of accountability for their actions in making choices to attend 
or skip a live lecture, and their intent to learn during the lecture. 
The difficulty of design research in terms of evaluating instructional interventions is 
well recognised. Stylianides and Stylianides (2013) proposed three dimensions of 
evaluation of classroom interventions: how amenable to scaling up, how practicable 
for curricular integration, and how capable of producing long-lasting effects. Evaluated 
this way, our intervention, arguably, can be deemed effective: it is amenable to scaling 
up with a relatively small development investment, as the number of students utilising 
online quizzes is unlimited; it is practicable for incorporation into existing curricular 
structures at any level as most modern Learning Management Systems provide 
capability for setting up online quizzes. To determine long-lasting effects is difficult - 
more research cycles are needed with more nuanced theoretical and practical 
considerations. 
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Strengthening the personal mathematical capabilities of initial teacher education 
students is an international priority. In this paper, we report on an aspect of a study 
that investigated the potential of challenging online tasks to meet this goal. Here, we 
focus on the analysis of survey data in the form of student feedback on trialled tasks 
from the perspective of motivation theory. Findings of this aspect of the study are 
reported along with implications for the design of challenging online mathematical 
tasks and their implementation in teacher education programs.  
BACKGROUND 
Engaging learners in tasks that provide genuine challenge has been argued as essential 
for mathematical development (Sullivan, 2011) and identified as vital in school-
focused curriculum documents internationally (e.g. Australian Curriculum 
Mathematics, 2017; US Common Core Standards, 2010). Despite such support, the 
implementation of programs that maintain a focus on challenging tasks in mathematics 
has been problematic.  
This paper reports on an aspect of an international collaboration between Australian 
and German researchers through the project, Designing Challenging Online 
Mathematics Tasks. The purpose of the project was to develop principles of design for 
tasks implemented in programs aimed at Initial Teacher Education students (ITEs) 
preparing to teach mathematics. The challenging dimension of the tasks targeted the 
development of ITEs’ personal mathematical capability. It was also intended that tasks 
would provide ITEs with insight into the nature of such problems, thus developing the 
confidence necessary for implementation within their own future classrooms. The 
project also aimed to accommodate the opportunities now available via student online 
learning systems, acknowledging the rapid movement of initial teacher education 
programs toward online or blended delivery. 
The project was initiated by developing principles of design for challenging 
mathematical tasks through a synthesis of literature. These principles were subject to 
iterations of revision focused through the generation of initial tasks which were then 
trialled with ITEs in both Australia and Germany. The synthesis of literature focused 
drew on: task design in digital environments (Geiger, 2017); the notion of 
mathematical challenge (Sullivan, 2011); a map of pedagogical opportunities and 
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mathematical analysis software (Pierce & Stacey, 2010); and, the quality of online 
learning environments (Bruder & Sonnberger, 2008). Through the process of iterative 
revisions, the principles of design were identified as: engagement, transparency, 
accessibility, challenge and feedforward/feedback. In this paper, we focus on the 
principle of engagement, particularly the connection between motivational influences 
and mathematical challenge in addressing the following research question: What 
motivation influences are evident in primary ITE’s engagement with challenging 
online tasks? 
CONNECTING ENGAGEMENT, MOTIVATION AND TASK DESIGN 
Engagement is underpinned by aspects of motivation (Martin, 2012), as motivation is 
the process which serves to energise, direct or sustain activity, with engagement being 
the outward, observable outcome of this process (Schunk & Mullen, 2012). Motivation 
is key to engagement and learning achievement, as it focusses the attention of the 
learner towards specific goals and dictates the energy, effort and persistence that the 
learner will contribute to engaging in an activity. While energy and engagement are 
sometimes observable, the motivational influences that act upon engagement are harder 
to determine (Skilling, Bobis & Martin, 2015) but essential as drivers of engagement. 
In the specific context of mathematics education, engagement and motivation are 
essential considerations in the design of mathematics tasks (Gresalfi & Barab, 2011) 
as tasks must be designed with an eye as to how they will be valued by students 
(Hulleman, Durik, Schweigert, & Harackiewicz, 2008). Such valuing has been linked 
to notions of purpose and utility (Ainley, Pratt & Hansen, 2006). In this view, a task 
which has purpose is “one that has a meaningful outcome for the pupil” (Ainley et al., 
2006, p.29), while a task with utility addresses the ways in which the mathematical 
ideas inherent in the task are useful (as distinct from predominantly procedural). 
THEORETICAL FRAMEWORK 
Expectancy-Value Theory (EVT) provides insight into the engagement potential of a 
task by identifying individual’s motivational influences. EVT proposes that the extent 
to which individuals expect to achieve success (expectancy) and their subjective 
valuing of a task (value) strongly influence their motivation and therefore engagement 
(Eccles & Wigfield, 2002). Under EVT, expectancy of achieving success is determined 
by prior experiences that shape self-efficacy and self-concept and, in turn, anticipation 
of progress and challenge. Subjective valuing of a task is influenced by interest or 
enjoyment value, attainment value, utility value and relative cost of undertaking the 
task. Interest value is differentiated into individual (personal) interest and situational 
interest. Individual interest being directed towards a specific object or activity and 
enduring over time (e.g., Hidi & Renninger, 2006), while situational interest is evoked 
by specific features of an activity, such as those that are personally relevant. Attainment 
value is considered the extent to which achieving on a task supports an individual’s 
perception of themselves, for example, as a person, student or mathematician. Utility 
value is the potential of a task to further some future goal, such as a teaching capacity. 
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More specific to mathematics tasks, the notion of utility value relates to tasks in which 
the mathematical ideas embedded are deemed useful (Ainley et al., 2006). Finally, 
relative cost addresses aspects of a task that may be potentially demotivating, such as 
the perceived effort required for success. An individual’s responses to these aspects of 
motivation – expectation of success and subjective task valuing, guide the amount of 
energy and focussed, sustained attention that is then given to a task. Thus, EVT 
provides a framework to structure insight into motivational influences which impact 
pre-service teacher engagement with challenging online mathematical tasks.  
METHODOLOGY 
Participants 
This paper focuses on the survey responses of 43 Australian ITEs and follow-up focus 
group interview with three members of this group who were undertaking the second 
mathematics course in a four-year degree leading to a Bachelor of Education (Primary 
and Early Childhood). The course was concerned with developing content knowledge 
in mathematics for teaching primary and early childhood contexts. In this instance, the 
tasks were used as part of a graded assessment portfolio.   
Online Challenging Tasks 
Three tasks were designed in alignment with the five principles for online challenging 
mathematics tasks (engagement, transparency, accessibility, challenge and 
feedforward/feedback) and implemented with the cohort of ITEs. A brief description 
of these tasks follows: 
Task 1: BBQ Task. Students were asked to compare the price of different BBQ packs 
(both non-vegetarian and vegetarian), for an upcoming social event.  
Task 2: CO2 Emissions. Students were asked to make conclusions based on data 
represented in an interactive graph (generated through www.gapminder.org) about 
carbon dioxide emissions from different countries over time.  
Task 3: Precious Cargo. Students were asked to decide the number and type of bottles 
that would fit in a triangular prism shaped box used to transport wine. 
Data collection 
Data sources utilised in this paper include pre-post surveys and a small group, semi-
structured interview. Data were collected anonymously using a student generated two 
letter, two number code (for example, AB12).  
Pre-post surveys: A pre-post survey was developed in alignment with the previously 
identified principles of design for challenging online mathematical tasks. Survey 
questions included both 4-point Likert scaled items and open-ended questions. Pre-
surveys (14 statements/questions) were administered one week prior to undertaking the 
online challenging tasks. The post-survey (34 statements/questions) was administered 
at the end of the semester after students had competed the online tasks. Included in the 
pre-surveys were questions designed to ascertain ITEs’ beliefs and expectations 
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regarding challenging online mathematics tasks. The post-survey was designed to 
match the pre-survey with additional questions aimed at identifying pre-service 
teachers views on the specific tasks they had undertaken in their course.  
Interviews: Semi-structured interviews were conducted with a focus group of three 
volunteer Australian students via online video conferencing. Interviews were based on 
questions that were aligned with the principles of task design. The interview lasted for 
approximately 90 minutes and was audio-recorded and transcribed for data analysis.   
Data analysis  
Survey data: Duplicate entries were removed where students commenced the survey, 
withdrew, and then returned to re-do at a later time. The responses to the statements 
were converted to percentages and examined via graphical representation. 
Interview transcripts: Transcripts were analysed through an iterative process using 
content analysis. This enabled a search for patterns and themes based on a theoretical 
lens anchored in EVT. Using this grounded methodological approach (Strauss & 
Corbin, 1998), distinctive themes related to ITEs’ expectation of success and subjective 
task valuing were identified. 
RESULTS  
The EVT framework (Eccles & Wigfield, 2002) was employed as the theoretical 
construct to categorise ITE’s responses to pre-, post-surveys and semi-structured 
interviews in relation to expectancy of success and subjective task valuing. 

Expectancy of success 
ITEs’ expectancy of success was addressed through the inclusion of two statements on 
the pre-survey to which students had the option to respond with Strongly Agree (SA), 
Agree (A), Disagree (D), or Strongly Disagree (SD). The first of these was, “I expect 
to make good progress with the challenging tasks”. The responses overwhelmingly 
indicated that students anticipated success with 41 of 43 responses indicating 
agreement (SA or A) with this statement. Forty-two of the 43 respondents also 
indicated agreement with the statement, “I expect the tasks to be challenging”, 
suggesting that while acknowledging the challenge in the task, they still felt that 
progress would occur. One of the two students who thought they may not make good 
progress expressed a desire for support and clues when they became stuck [EL22]. The 
other student who anticipated a lack of progress also indicated that the tasks would not 
be challenging, casting some doubt on the consistency of their responses.  
Subjective task valuing 
In this section, we present an analysis of survey and interview responses related to the 
subjective task valuing component for the EVT framework. The four survey questions 
relevant to the interest aspect of the subject task valuing component and a graphical 
representation of ITEs’ responses (Figure 1) follow: 
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1. The online mathematics tasks were interesting. [Variable: Task Overall]  
2. The context of the online tasks (e.g., BBQ) was interesting enough to work on 

until completion: [Variable: Task Context] 
3. I found the mathematics content (e.g., geometry, statistics) for tasks [all named] 

to be interesting: [Variable: Maths Content] 
4. The challenging aspects of the online task kept me interested: [Variable: Task 

Challenge] 

 

Figure 1: ITE student responses to above questions on the post-survey 
Interest or enjoyment value: While the BBQ task had the least total agreement with 
regards to being interesting enough to work through to completion, it also had the 
highest ‘strong agreement’ and was the only task to have students comment on their 
enjoyment of the context: The BBQ task…was interesting to see the price differences 
among different places [JU27] and I enjoyed the BBQ task as I enjoyed the 
investigation of finding different meat prices and found the results really interesting 
[TI10]. Relevance to current issues was an additional aspect noted with one student 
identifying the CO2 Emissions Task as appealing because I am interested in global 
problem CO2 [as it is] relevant for climate change [CU24]. 
The process of mathematical thinking was also identified as a reason a problem was 
interesting, for example, The precious cargo task [because it] involved the most 
mathematical reasoning [JO14]. There were also students for whom the challenge 
inherent in the tasks was appealing: I believed that the CO2 Emissions task was the best 
because it was the most challenging [MI16] and Precious Cargo…challenged me the 
most and allowed me to be creative with my answers [CA37]. While task challenge is 
included here as a positive aspect leading to reported interest, this was not universal 
with some students feeling the challenge was excessive. The negative aspects are 
reported below under relative cost. 
Attainment value: The value of obtaining success on tasks was strongly influenced by 
the assessable portfolio. Hence, ITEs were motivated by an extrinsic aspect (good 
grades, academic success). This aspect of attainment value was reflected in student 
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comments when asked what they found difficult in addressing the open-ended aspect 
of tasks, for example, I was often unsure if my mathematics working was going in the 
right direction [TI10]; and, I struggled with the open-endedness [TI10]. While these 
are all difficulties typically encountered when individuals attempt to solve complex 
problems (Makar & Fielding Wells, 2011), students concern about success can be 
exacerbated when assessment performance is a factor. This can be of particular concern 
when students believe mathematics is a subject in which uncertainty should not be 
present –my favourite thing about maths…is that it does have a right and wrong 
answer… I don’t like that uncertainty, I really do like things black and white [SH01]. 
Utility value: Student perceptions of the utility value of the tasks and the mathematics 
inherent in the tasks were not highly prevalent in their responses, however, two aspects 
related to the utility of the mathematics tasks were identified: the potential use of tasks 
as a future teacher, and the use of task to enhance ITEs’ personal mathematical 
knowledge, for example, Opportunities for me to use different strategies to find the 
volume and area of 2-D shapes and 3-D shapes [JT32]).  
Relative cost of undertaking the task: Many of the students expressed surprise at the 
effort and time required to engage with challenging tasks. For some this was in the 
application of aspects of mathematics, for example, I found the geometry extremely 
hard [LO26]), while for others it was the lack of direction they felt when faced with an 
open-ended task, for example, I wasn’t sure how much information to provide [KI16].  
DISCUSSION AND IMPLICATIONS 
In utilising the EVT framework (Eccles & Wigfield, 2002) for analytical purposes, we 
could see that while ITEs largely expected to achieve success on the challenging tasks 
(expectancy), their motivation to engage with the tasks varied considerably according 
to their own perceptions of mathematics and mathematical learning (subjective task 
valuing). As such, subjective task valuing (interest, attainment, utility and relative cost) 
is of interest in this study and is predominantly addressed in the discussion. 
On being questioned, ITE’s equated interest predominantly with the life-related 
context of each task but to a lesser extent with the specific mathematical content and 
degree of mathematical sophistication. Some of the context interest was derived from 
the situational interest of the context but more so existing individual interests (Hidi & 
Renninger, 2006) which are unlikely to be known to the task designer. This suggests 
to the task designer that there are multiple aspects of the task that may have potential 
to pique interest but that the degree of challenge and the mathematics inherent are 
potentially the most critical to consider in designing and scaffolding tasks. 
Some ITEs indicated they enjoyed the challenge and the opportunities for reasoning 
and creativity associated with open-ended questions. Others, however, argued the 
absence of explicit direction as to the mathematics and mathematical processes to be 
used was problematic. These latter responses suggest existing views of mathematics as 
predominantly memorisation and application of procedures and thus the tasks 
presented conflicted with these views. As such, the benefit of undertaking the tasks 
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(purpose) and the usefulness of the mathematical approaches (utility) was not evident 
to many of the ITEs (Ainley et al., 2006). A further factor impacting on motivation 
relates to utility value as defined by Eccles and Wigfield (2002) – while some ITEs 
valued the activities for future classroom use, others could not see how the tasks could 
be used either in terms of context or mathematical content. ITEs may not readily make 
connections between the underlying intentions of challenging tasks and this may need 
to be made explicit. 
If ITEs are to develop competence and a positive disposition towards implementing 
challenging problems in their future classrooms, then these aspects of challenging 
mathematics problems that appear to serve a demotivating influence must be addressed. 
Accordingly, teacher education programs must: 1) challenge the notion that the nature 
of mathematics is purely procedural; 2) provide scaffolded opportunities for ITEs to 
experience open-ended problems as a learner; and, 3) make explicit the utility value 
and purpose of challenging tasks to ITEs. 
This study has provided evidence that the implementation of challenging mathematical 
tasks with ITEs is complex, suggesting that tasks must be carefully designed, 
scaffolded and their use justified with the ITE cohort if motivation to engage deeply 
with such tasks is to be cultivated and maintained. A major issue in achieving this goal, 
however is impoverished attitudes and beliefs about the nature of mathematics as a 
discipline held by some ITEs. These attitudes and beliefs must be addressed if ITE’s 
are to be motivated to implement challenging mathematical tasks in their own practice. 
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THE INFLUENCE OF TEACHERS ON LEARNERS’ 
MATHEMATICAL IDENTITIES 

Aarifah Gardee, Karin Brodie 
University of the Witwatersrand  

 

In this paper, we develop a framework to define and research learners’ mathematical 
identities, as both constructed by learners and influenced by their teachers. We show 
how five teachers offered learners different social identities through the kinds of access 
they provided to learning mathematics. Two teachers offered all learners opportunities 
to become full members of their classroom communities, and three teachers 
marginalised those whom they thought could not do mathematics. The offered social 
identities strongly influenced how learners constructed their mathematical identities 
and how they learned mathematics.   
INTRODUCTION 
Over the last two decades, the concept of identity has received significant attention in 
the field of mathematics education and is useful in theorizing learning (Radovic, Black, 
Williams & Salas, 2018; Sfard & Prusak, 2005). In recent years, researchers are 
developing operationalized definitions of identity and Radovic et al. (2018) describe 
three ways in which identity is defined in research: social or subjective; enacted or 
representational; and transformative or stable. In some research, identity is 
conceptualised as a social becoming, being constructed in social contexts, while in 
other research, identity is conceptualised as subjective, emphasising the individual self 
and personal experiences. Some researchers define identity as enacted and related to 
action, while others define identity as representational, mediated and constructed 
through discourse. Most researchers emphasise the malleable and transformative 
nature of identity, while few view identity as static. In this paper, we begin by 
presenting a framework to define identity, which moves between the social, subjective, 
enacted, representational and transformative features of mathematical identity. We use 
our definition to understand how five secondary school mathematics teachers 
influenced learners’ mathematical identities.  
THEORETICAL FRAMEWORK 
Drawing on the work of Marks and O’Mahoney (2014), we define learners’ 
mathematical identities as being constituted by relationships between learners’ 
personal identities, social identities and agency. Personal identities are the subjective 
dimension of identity, involving learners’ understandings of self, as informed by their 
interests, aspirations, experiences and motivations. Social identities are the social 
dimension of identity, involving the ways learners position themselves and would like 
to be perceived by others in their classroom communities. Agency refers to learners’ 
choices in participating in mathematics and developing their identities. Learners’ 
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mathematical identities are influenced by the social identities offered to them by their 
parents, teachers and peers, which influence the opportunities provided to learners to 
participate, learn and become members of the classroom community (Fig 1).     
 
 
 
 
 
 

 
 

Figure 1: Identities offered and constructed 
Teachers can offer learners identities of affiliation, by supporting them to learn 
mathematics and become full members of their classroom community. Some teachers 
offer learners identities of partial affiliation, by inviting participation and supporting 
learners to some extent. Teachers can offer learners identities of marginalisation by 
limiting learner opportunities to learn mathematics and become full members of the 
classroom community.  
While teachers offer learners certain social identities, learners exercise agency and 
construct their identities in different ways, influenced by their own personal and social 
identities. Learners can construct identities of affiliation when offered opportunities to 
affiliate, or identities of marginalisation when marginalised by teachers. Learners can 
also exercise agency by developing their identities differently from what is offered, in 
compliance with or resistance to the offered social identity. Compliant learners often 
aim to achieve peripheral membership in the classroom by participating peripherally 
rather than fully when offered identities of affiliation, or may participate with others 
and not with their teachers when offered identities of marginalisation. Resistant 
learners may not want to be identified as members of the classroom community when 
offered identities of affiliation, or may want to achieve full membership when offered 
identities of marginalisation.  
Experiences of exercising agency concomitantly influence learners’ personal identities, 
as they learn more about themselves in terms of their interests, aspirations and 
motivations, and their social identities, as they evaluate their membership in the 
community. This means that learners’ identities are constantly being developed as they 
learn and participate (or not) in their classroom communities. As learners enact their 
identities through interacting with teachers, teachers can continue offering them the 
same social identities as previously offered or may offer learners different social 
identities from those offered in the past. Different teachers may also offer different 
identities to the same learners. Learners may enact and reproduce the same identities 
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constructed previously or may adopt different identities, as influenced by their 
experiences with new teachers in different classrooms, highlighting the malleable 
nature of identity.   
Different mathematical identities can be enacted as learners participate with others in 
the classroom (Radovic et al., 2018). As Wenger (1998) argues, identity is related to 
learning because as learners participate, they are able to further affiliate themselves 
with their classroom community. Identity is also representational and constructed 
through learner narratives (Radovic et al., 2018). Narratives, according to Sfard and 
Prusak (2005), are a collection of socially shaped stories, which influence action when 
being reifying, endorsable and significant. Reifying narratives contain verbs and 
adverbs that stress the repetition of actions. Narratives are endorsable when the 
storyteller declares the authenticity of narrative, and narratives are significant when a 
change in story is likely to lead to a change in feelings about an identified person. 
Observing classroom interactions and accessing narratives enable understandings of 
the identities offered to and constructed by learners. We now show how our framework 
is useful to research learners’ mathematical identities.  
METHODS 
This study took place in a well-resourced, technical school in Johannesburg over a 
period of two years in the third school term (August - September): two weeks in 2015 
(Grade 9) and four weeks in 2016 (Grade 10). Five mathematics teachers participated 
in the study, two in the first year: Mr Moyo and Mr Molefe (Gr 9), and three in the 
second year: Mr Sithole, Mr Ndlovu and Mr Ncube (Gr 10) (all names in this paper are 
pseudonyms). Nineteen learners participated in the study, eight in the first year, with 
an additional eleven in the second year. From the initial eight participants in the first 
year, six continued to participate in the second year, while two transferred to another 
school. 
All of the teachers who participated in the study had academic degrees to teach 
mathematics. Mr Moyo was newly qualified and had joined the school at the end of the 
second term (May), Mr Molefe had five years of experience teaching mathematics, Mr 
Sithole had thirty-two years, Mr Ndlovu, seven years and Mr Ncube, five years. The 
eight learners who initially participated in the study were selected by their grade 9 
teachers using the following criteria: one high performing learner, one low performing 
learner and the person sitting next to them, which enabled us to observe teacher and 
learner interactions with learners displaying different levels of achievement. In grade 
10, we continued to observe the six learners from Grade 9 and selected an additional 
eleven learners, who were seated next to the initial participants. We asked the Grade 
10 teachers whether each learner was a low, average or high achieving learner, which 
enabled us to understand how teacher ideas about learner performance influenced 
teacher and learner interactions.    
Data were collected in the form of videotaped lessons, field notes, photographed 
learner notebooks and multiple audiotaped semi-structured interviews with learner and 
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teacher participants. A total of 480 minutes of lessons were analysed for each teacher. 
All video and audio recordings were transcribed, and data were analysed qualitatively. 
From the videotaped lessons, we coded the kinds of social identities offered: affiliation 
(A), partial affiliation (PA) or marginalisation (M), by considering the interactions 
between teachers and learners. Observing classroom interactions also enabled us to 
understand how learners exercised agency and enacted their identities as affiliation (A), 
compliance (C), resistance (R) or marginalisation (M). We analysed the semi-
structured interviews by identifying narrative excerpts to understand the 
representational component of identity, using Sfard and Prusak’s (2005) criteria of 
narratives needing to be reifying, endorsable and significant.  
FINDINGS 
An overview of our findings 
Our analysis showed that two teachers offered all learners identities of affiliation with 
their classroom communities, while the other three offered learners differential 
identities depending on learners’ achievement in assessments. We found that learners 
developed their identities in affiliation with, compliance with or marginalisation from 
the social identities offered. None of the learners resisted the offered social identities, 
highlighting that learners’ mathematical identities are strongly influenced by the social 
identities offered by teachers. Table 1 shows the social identities offered to learners by 
the teachers and the identities constructed by learners.  
Two teachers, Mr Moyo (Gr 9) and Mr Ncube (Gr 10), offered all learners social 
identities of affiliation. They engaged with and assisted all learners, including 
struggling learners, and treated learners and their contributions respectfully. All four 
learners in Mr Moyo’s Grade 9 classroom developed their identities in affiliation with 
the social identity offered. In Mr Ncube’s classroom, three learners developed their 
identities in affiliation and three developed their identities in compliance with the social 
identity of affiliation offered.  
The other three teachers, Mr Molefe (Gr 9), Mr Sithole (Gr10) and Mr Ndlovu (Gr10) 
offered learners differential social identities based on learners’ achievement. High 
achieving learners were offered social identities of affiliation - the teachers engaged 
with them, treated them respectfully and were willing to help them. All the high 
achieving learners besides Fred, developed their identities in affiliation with the offered 
identity of affiliation. Low achieving learners were offered social identities of 
marginalisation - the teachers often ignored them, provided them with limited 
assistance and in some situations, treated them disrespectfully. Some of the 
marginalised learners developed their identities in compliance with the offered social 
identity by participating peripherally, while others developed their identities in 
marginalisation from the classroom community.  
Two learners, Sunny and Jack in Mr Molefe and Mr Sithole’s classrooms, whose marks 
were inconsistent, were offered social identities of partial affiliation - the teachers were 
willing to assist them to a certain extent and ignored them at other times. Sunny was 
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identified by Mr Molefe as a “naughty” learner, who was at times the highest achiever 
in the classroom, and at other times, did not perform as well. Jack was identified as a 
learner who had “mathematical intelligence”, and whose marks were sometimes 
average and at other times lower. Both learners enacted identities of compliance. Lane, 
who was identified as a quiet and “slow” learner, whose marks were sometimes average 
and at other times very low, was marginalised by Mr Sithole and responded with 
compliance.  

Table 1: Identities offered and constructed 
Over the two-year period, learners’ mathematical identities changed, some 
significantly, others negligibly. Jack, Lane, Senzo and Sunny enacted different 
identities and provided different narratives of their identities in grade 9 and 10, with 
their teachers usually being the main reason why they no longer enjoyed mathematics 
in grade 10. Shane and Tess enacted similar identities in both grade 9 and 10 and both 
learners’ stories of themselves and ways of participating changed negligibly.  

Grade Teachers Learners’ 
achievement 

Learners Identity 
offered 

Identity 
constructed 

9 Mr Moyo High achievers Shane & Jack A A 
  Average achiever Lane A A 
  Low achiever Senzo A A 

10 Mr Ncube High achiever Thandi A A 
  Average achiever Amy A A 
  Average achiever Thabo A C 
  Low achiever Mike A A 
  Low achievers Jimmy & Tess A C 

9 Mr Molefe High achiever Sindiswa A A 
  Inconsistent Sunny PA C 
  Low achievers Jennifer & Tess M C 

10 Mr Sithole High achievers Phillip, Shane, 
Lebo & Karabo 

A A 

  Inconsistent Jack PA C 
  Inconsistent Lane M C 
  Low achievers Tommy & Senzo M M 

10 Mr Ndlovu High achiever Edward A A 
  High achiever Fred A C 
  Low achiever Sunny M M 
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The social identities offered  
The teachers’ narratives of who could do mathematics influenced how they interacted 
with learners and the kinds of social identities offered to learners. For Mr Moyo and 
Mr Ncube, all learners could learn mathematics. Mr Moyo said that he envisioned a 
classroom where all learners participated. He believed that struggling learners could 
learn mathematics and said that he tried to motivate them. Mr Ncube also thought that 
all learners could learn mathematics. He said, “mathematics is like any other subject 
meant for everyone to do, but it requires for some to go an extra mile than some”, 
meaning that some learners had to work harder than others to understand concepts. He 
said he encouraged learners to participate and that he was willing to help struggling 
learners.  
While providing all learners access to learning mathematics, both teachers still saw 
ability as a characteristic, which enabled some learners to do better than others. For Mr 
Moyo, some learners achieved well because they were “fast thinkers” because they 
practised mathematics and had “high IQs”. He said that slower learners could also 
succeed when given more time and that “someone who is just intelligent but who does 
not practise, that person does not become good in maths”. For Mr Ncube, high 
achieving learners were “gifted” and understood concepts by doing few examples, 
whereas others may have to practise more to achieve the same level of understanding. 
Even though both teachers discussed ability, they both stressed the importance of effort 
in enabling all learners to learn mathematics. 
For Mr Molefe, Mr Sithole and Mr Ndlovu, ability was key to learning mathematics. 
These teachers did not think that all learners could learn mathematics, did not assist all 
learners and offered learners differential identities. For Mr Molefe, learners who did 
not understand mathematics had “deeper psychological problems”. He said, “yes there 
are incompetencies in maths but those incompetencies are a result or consequence of 
these psychological factors”. He said he was not “competent” to treat psychological 
problems and he usually referred these learners to the school counsellor. For Mr 
Sithole, competence in mathematics was a “gift” from “God” and there was “nothing” 
he could do for struggling learners so he concentrated on high achieving learners. Mr 
Ndlovu also attributed mathematical competence to how “God” created people. 

Maths was not made for everybody…because when God probably created people, we 
know in science there are right people and there are left people. There are people that 
are good in numbers. There are people who are not good in numbers. 

He said that he did not help struggling learners and would advise them to get help from 
another teacher or drop mathematics as a subject in school.  
Learners’ mathematical identities 
Learners identified teacher practices as the most important factor that influenced their 
learning of and identification with mathematics. Learners who affiliated when offered 
social identities of affiliation said they enjoyed learning mathematics and identified 
themselves as successful or growing learners of mathematics, who participated as full 
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members of the classroom community. For example, Senzo explained why he affiliated 
with the social identity offered by Mr Moyo in grade 9.  

I am starting to enjoy maths because of Mr Moyo and I realised that it is important for me 
and my life, like my future. And because at home I revise everything every day, every after 
school and morning before I come to school.  

However, in grade 10, Senzo’s identity changed substantively. Senzo, like other 
learners who developed their identities in marginalisation, said that he did not enjoy 
learning mathematics and participated in limited ways, because of Mr Sithole.  

I am demotivated because Mr Sithole is demotivating... He gives you a sum, you try it then 
he comes and checks and tells you that is rubbish. You know that is demotivating. You 
know, he doesn’t really care. 

Learners who complied with the social identities offered participated peripherally. 
Fred, like other compliant learners, was not entirely comfortable to participate. He said 
that he did not always participate even though he enjoyed learning mathematics. He 
explained “well, maybe I am scared that I will get such a comment which will… 
sometimes teachers talk a lot of things that hurt you inside”. He said that Mr Ndlovu 
did not give learners many opportunities to practice mathematics and that Mr Ndlovu 
was “full of anger”. Even though Mr Ndlovu provided opportunities for Fred to 
affiliate, Fred chose to become a peripheral member because of his discomfort, 
indicating that learners’ experiences of their teachers’ practices shaped how they 
developed their identities. 
DISCUSSION AND CONCLUSION 
In this paper, we proposed a framework to define and research learners’ mathematical 
identities. Drawing on Rodovic et all’s. (2018) model of the three ways in which 
identity is defined in research, our framework shows how identity construction is 
social, as learners’ social identities informed how they positioned themselves and were 
positioned by others in the classroom; and subjective, as learners’ personal identities 
informed how they identified themselves as learners of mathematics. 
We showed how teachers’ narratives of who could learn mathematics influenced the 
social identities offered to learners. Two teachers, who thought that all learners could 
learn mathematics, offered all learners social identities of affiliation, by emphasising 
effort. While these two teachers stressed the importance of learner effort, they also 
attributed success to ability. Research points to the dangers of attributing learner 
success to ability, with some researchers showing how such teacher views result in 
inequitable teacher practices and exclusion of learners (e.g. Hodgen & Marks, 2009). 
The dangers of attributing success to ability is highlighted further in our findings, as 
three teachers offered learners differential social identities based on their ability to 
perform well in assessments. Sfard (2009) cautions against the use of marks as labels 
for competence, as these labels may become an obstacle for learners to construct their 
identities positively.  
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We showed how learners’ personal and social identities were enacted, as learners 
agentively participated in the classroom. We also showed how identities were 
representational and constructed through learner narratives, in terms of how learners 
viewed themselves personally as learners, and socially, as members of their classroom 
community (Rodovic et al., 2018). We showed that all learners either identified or 
complied with the social identities offered, with the teacher being the most important 
reason for learners’ identification with mathematics. Learners who affiliated with the 
offered identities of affiliation were comfortable to participate in the classroom because 
of their teachers’ practices. Their teachers treated them respectfully and provided them 
with opportunities to affiliate. Learners who complied with or developed their identities 
in marginalisation from the offered social identities were not comfortable to participate 
in and become full members of their classroom community, as influenced by their 
experiences of their teachers’ practices. None of the learners resisted any of the social 
identities offered. Based on these findings, we conclude that learners’ mathematical 
identities are strongly influenced by their experiences of the social identities offered to 
them by their teachers.  
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Studies on Montessori education's impact on development are rare, especially in 
France. In this report, we present a study that aimed to compare the development of 
preschoolers from Montessori Education and Conventional Education in France in a 
wide range of numerical skills using a longitudinal randomized controlled design. 
Based on a didactical analysis, we made the hypotheses that children would succeed 
in different numerical tasks according to the type of education they receive. Children 
were tested at the beginning of their first pre-school year and again a year and a half 
later. Significant differences between the two educations were identified. These results 
are discussed through a didactical analysis of teaching practices.  

INTRODUCTION  

Montessori education was developed in the first half of the 20th century by an Italian 
doctor, Maria Montessori. She extended her sensorimotor work on children with 
mental disabilities to children who were ordinarily developing and from low-income 
backgrounds. From her observations, Maria Montessori proposed principles of child 
development. She then based her philosophy and teaching method on it. First, she 
described that the child is born with an "absorbing mind" (Montessori, 1988) and a 
motivation to learn. Then the child goes through "sensitive periods" (Montessori, 1966) 
where he is particularly attracted by some specific learning. He is receptive to 
assimilate them easily and quickly. Finally, she argued that not all children progress at 
the same rate. It is therefore necessary to allow the latter to exploit their sensitive 
periods at the appropriate moment. 

In the classroom, these principles involve several specificities concerning the 
environment offered to children and the posture of the teacher. The classes are mixed 
in ages (3 to 6 y-o children in preschool). Children organize their own daily schedule 
by choosing their activities, how long they spend working on them, who they work 
with and where they sit. They can repeat each activity as many times as they wish 
during their three years in the classroom. The materials used in these activities provide 
corrective feedback and are unique in the classroom. They are displayed on small 
shelves in the classroom, grouped into curricular areas of Practical Life, Sensorial, 
Language, Mathematics and Geometry, Geography, Biology, Music, and Visual Arts 
(Montessori, 1967, 1989a, 1989b) and organized according to their level of difficulty. 
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The teacher presents the activities to children and makes sure pupils only choose 
activities whose level of difficulty is appropriate. The lessons are given almost 
exclusively in small groups or one-on-one. 

Studies of Montessori education's impact on development are scarce (Lillard, 2012) 
and the majority have been carried out in the USA (Marshall, 2017). Among the few 
studies that exist, some show better outcomes of Montessori than other teaching 
methods (e.g. Lillard & Else-Quest, 2006; Besançon & Lubart, 2008; Lillard et al., 
2017), and others show similar or even worse outcomes (e.g. Ansari & Winsler, 2014; 
Lopota, Wallace & Finn, 2005). These inconsistent results could be due to 
methodological shortcomings such as variations in the quality of Montessori education 
implementation, imperfect control groups or small sample sizes (Lillard, 2012; Lillard 
et al., 2017). In the present study, we compared the development of a wide range of 
numerical skills in preschoolers from Montessori education (ME) and conventional 
education (CE) using a longitudinal randomized controlled design. Moreover, the study 
aimed to discuss possible explanations of our findings using a didactic analysis of 
materials and practices. 

THEORETICAL BACKGROUND  

To our knowledge, only 3 studies have specifically compared the math performance of 
preschoolers in ME to that of preschoolers in CE and their results are mixed (Lillard & 
Else-Quest, 2006; Laski, Vasilyeva & Schiffman, 2016; Wexley, Guidubaldi & Kehle, 
1974). In 1974, Wexley and colleagues compared 3 to 5 year-old disadvantaged 
children in a Montessori program and a day care conventional program matched in age, 
sex, race, socio-economic status, number of parents living in the household and number 
of years in preschool. They also compared these two groups to two control groups of 
children without preschool education, from disadvantaged and advantaged 
neighborhoods. They used the arithmetic test from the Wechsler Preschool Scale of 
Intelligence (as well as other tasks assessing other aspects of cognitive development). 
This study showed that students in ME performed better in arithmetic than the 
disadvantaged control group but did not differ from the children in the day care 
program and the advantaged control group. In 2006, Lillard and Else-Quest conducted 
an evaluation of the Montessori method using the school lottery system. Children 
whose parents entered the lottery and were accepted constituted the ME group. Those 
not accepted, thus joining other education systems, were assigned to the control group. 
Overall, 112 American children from 5 and 12-year old age groups were compared on 
a range of cognitive measures. For the math measure, they used the Applied Problems 
task of the Woodcock-Johnson 3 Test Battery. A significant group difference in favor 
of the Montessori group was found for the 5-year olds but not for 12-year olds. More 
recently, Laski and colleagues (2016) showed also similar results. They conducted a 
longitudinal evaluation of knowledge of the decimal system and arithmetic among 150 
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children in early elementary school from Montessori and non-Montessori schools. At 
Time 1 (T1), children in pre-school or in first grade were tested with a base-10 block 
task and an addition task. Then two years later, in 2nd or 3rd grade, they were tested with 
five place-value problems and ten arithmetic problems. The authors found that at T1, 
children from Montessori schools performed better in the base-10 block task in 
kindergarten but not in first grade. Moreover, no program differences were seen in 
place-value understanding in second and third grades and no program differences were 
found at any grade level in arithmetic accuracy or strategy use. 

To conclude, these studies seem to show a superiority of ME over CE for math skills 
in preschool, but no difference in primary schools. However, these findings must be 
interpreted with caution because they are few, they have several methodological 
limitations (e.g. no randomized assignment of children into experimental and control 
groups and/or no baseline scores) and they only included limited measures of 
mathematical skills. 

In French conventional preschool education, the math program aim is to enable each 
child to understand that a number can express both a quantity and a rank in a list. 
Number learning is based on the understanding of quantity, its verbal and written 
codification, the acquisition of the oral sequence of numbers and the use of 
enumeration, and precedes the introduction of the numeral system (MEN, 2015). No 
specific learning activities are yet proposed on place value understanding as groupings 
and exchanges activities, or recognizing the correspondence between the position of 
the digit and the number of groupings (Margolinas & Wozniak, 2012, 112). Moreover, 
there is no specific work on operations. On the contrary, in ME, mathematics activities 
aim at introducing the decimal numeration (verbal and written) and calculation. 
Children are first exposed to quantities and symbols separately and then quickly to the 
association between quantities and symbols. Next, the decimal system is presented. 
Finally, children who have already mastered these previous activities learn the four 
operations and the fractions (Montessori, 1934). 

In terms of the key end-of-preschool competencies (according to the French standards), 
we compared activities in math textbooks used in these two institutions: a common 
textbook (Duprey, Duprey, & Sautenet, 2016) to model conventional education and a 
text from Montessori (Montessori, 1934) devoted to the presentation of all materials 
and description of the mathematical concepts to describe the expected competencies in 
ME. This comparative analysis of ME and CE from their respective math textbooks 
allowed us to identify seven types of tasks addressed in these two institutions (Croset 
& Gardes, in press): Count Verbally (T1), Recognize the numerosity of a given set 
(T2), Create a set given a specific numerosity (T3), Solve simple non-symbolic 
arithmetic problems (T4), Create a set of the same numerosity as another distant set 
(T5), Compare the numerosities of two sets (T6), Recognize number symbols (T7). We 
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found that some of those tasks are often proposed to children in CE and less in ME (i.e. 
T4 and T5), or the contrary (i.e. T3, T7 and T1), and some are performed equally in 
ME and CE (i.e. T2 and T6). We will compare the evolution of performance of children 
in ME and CE in these tasks between the first year and second year of preschool using 
a test that we designed for this purpose. 

Research hypotheses 

According to our didactical analysis (Croset & Gardes, in press), we therefore expect 
differences of three orders: 

• Solving simple non-symbolic arithmetic problems (T4), creating a set of the 
same numerosity as another distant set (T5) should be performed better by 
children in CE than children in ME. 

• Creating a set given a specific numerosity (T3), recognizing number symbols 
(T7) and counting verbally (T1) should be performed better by children in ME 
than children in CE 

• No group difference is expected for the tasks: recognizing the numerosity as a 
given set (T2) and comparing the numerosities of two sets (T6). 

METHODOLOGY  

We assessed 76 French preschoolers from the same public school: 32 children in ME 
(17 girls) and 44 controls (21 girls) in CE. The school, located in a low-socioeconomic 
neighborhood has several classrooms serving children from 3 to 6. The school has two 
types of classroom environments: three Montessori multi-aged classrooms and six 
conventional single-aged classrooms. Children were randomly assigned to these 
environments by the teachers during registration at the school. They were first tested 
at the mean age of 3.37, at the beginning of their first year of preschool (Y1) and then 
1.5 years later (Y2), at the mean age of 4.62. They were tested individually with the 
same tasks both times. 

Based on our didactical analysis (Croset & Gardes, in press), we designed a test to 
assess the seven task types described above. The test is called the Mathematical 
Didactic Diagnosis battery (MDD) and is based on tokens that children manipulate. 
For tasks 2 to 6, we proposed different subtests with increasing difficulty levels. For 
example, for T2, children have first to recognize the numerosity of a set of 3 tokens, 
then of 7 and finally, of 11 tokens. On these three tasks, a child’s score for T2 can vary 
from 0 to 3 depending on their success. In total, children were tested on 27 subtests. 

RESULTS 

For each tasks type, scores were analyzed using Year (Y1, Y2) x Education (ME, CE) 
frequentist and Bayesian repeated-measure ANOVAs. We found significant and 
positive evidence of higher progress for children in Montessori education in two tasks: 
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the simple addition and subtraction task (T4), and the number symbols recognition task 
(T7), in which they had to transcode visual symbols to number words. There was no 
significant interaction in the other tasks. All results are summed in Table 1. 

Tasks ANOVA Results 

T1 F(1,74) = 1.51 p = 0.22 BF10 = 0.45  

T2 F(1,72) = 0.04 p = 0.85 BF10 = 0.16 

T3 F(1,74) = 3.31 p = 0.07 BF10 = 0.85 

T4 F(1,74) = 5.78 p = 0.02 BF10 = 4.22 

T5 F(1,73) = 0.30 p = 0.59 BF10 = 0.21 

T6 F(1,74) =0.22 p = 0.64 BF10 = 0.24 

T7 F(1,74) = 7.85 p = 0.006 BF10 = 15.43 

Table 1: Results 

Our first hypothesis is invalidated: children are not better on T4 and T5 in CE than in 
ME. It is, in fact, the contrary: ME children showed a significant higher progress on 
solving simple non-symbolic arithmetic problems (T4, see Figure 1). Children succeed 
as well in the T5 tasks as CE children, contrary to our a priori hypothesis, based on 
teachers’ practices. Our second hypothesis is partially validated: children in ME 
recognize much more number symbols (T7, see Figure 2) than in CE. Children with 
CE count as far away (T1) and create set given a specific numerosity (T3) as well as 
children from Montessori Education. Finally, our third hypothesis is validated: children 
recognize (T2) and compare numerosities (T6) as much with CE as with ME.  

    

Figure 1: Simple non-symbolic arithmetic tasks (T4) 
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Figure 2: Number symbols recognition tasks (T7) 

One limitation of our study is that we tested children in their first and second year of 
preschool but not during the third year. In addition, success in the most difficult 
subtests of the MDD is actually expected during the third year of preschool. However, 
our didactical analysis showed that numerical abilities expected in ME go beyond those 
expected in CE (Croset & Gardes, in press). For this reason, we created a new 
exploratory variable “V” that sums the scores of the subtests that are specifically 
expected to be mastered in the final grade level in French school. This variable sums 
the scores of 12 subtests. We hypothesized that children in ME would outperform 
children in CE in this measure. We indeed found a significant interaction between Year 
and Education in favor of ME (F(1,74) = 11.31, p = 0.001, BF10 = 69.61). ME scores 
are on average 17% better on specific tasks of higher level than CE scores (Figure 3). 

         

Figure 3: Added variable V  
DISCUSSION & CONCLUSION 

Our previous didactical analysis of ME and CE textbooks, in which we analyzed and 
quantified the different tasks proposed in both education systems, allowed us to 
identify keys differences that could explain partially our results. First, the number of 
numerical tasks proposed in CE is more important than in ME because CE offers more 
varied tasks for the same learning objective. For example, pupils in CE are confronted 
with 26 different activities on the recognition of the numerosity of a given set (T2) and 
will rarely have the opportunity to repeat the same tasks. On the contrary, pupils in ME 
encounter only 4 different counting tasks but they will repeat these tasks at least until 
the teacher considers them to be mastered. Second, the tasks in ME are very basic, i.e. 
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there is little problem solving. Numbers are always explicitly appointed as the “object” 
of the study. On the contrary, more complex tasks are proposed in CE, in which 
numbers appear as a possible procedure (tools) but other procedures could be used to 
solve the problem. For instance, the cardinality matching task (T5), a complex task, is 
common in CE while absent in ME. Finally, the time dedicated to developing 
numerical skills is much shorter in ME, 6 months than in CE, 3 years. We can therefore 
say that CE favors a variety of tasks, including complex tasks, with the aim of enabling 
students to transfer their knowledge in various contexts and over a long time. On the 
contrary, ME seeks to entrench knowledge in specific and limited contexts. 

Despite these observations, children in ME seem to be as good, if not better than, 
children in CE. Especially, children in ME exceed the expectations of the second year 
of preschool. The results seem to show that ME students manage to transfer their 
knowledge outside the contexts studied. We can therefore infer that a limited number 
of well-chosen tasks could contribute to a more efficient numerical development for 
disadvantaged preschoolers. 

On a shorter learning time, with targeted and basic tasks that are repeated until their 
perfect mastery, children in ME progress as well as students with French CE. This 
remains true on tasks that are not explicitly taught in ME, which exhibits some ability 
to transfer in Montessori students. At a time when the French government is wondering 
about the target of mathematics education (Villani & Torossian, 2018), this type of 
analysis seems particularly important. 

Moreover, this study shows that crossing didactical and psychological approaches can 
enrich the results of the research question. The didactical analysis enables the 
generation of more specific hypotheses to be tested and the methodology in cognitive 
psychology enables the evaluation of these hypotheses. The results are then analysed 
using statistical tools and finally discussed from both points of view. 

However, these results are preliminary: Future goals are (1) to increase sample size, 
(2) to evaluate the impact of ME on the development of math skills from age 3 to 6 and 
not just from age 3 to 41/2 (3) to extend the analyses to other types of skills (e.g., 
language, social), (4) to explain differences using in-depth didactical analyses.  
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High dropout rates in mathematics reveal students’ problems during the transition 
from school to university mathematics. As the subject mathematics differs between 
school and university, we use specific questionnaires, which distinguish interest in 
school and in university mathematics. The aim of this contribution is to analyse the 
role and development of students’ interest in school and university mathematics during 
the transition. Our results indicate that interest in university mathematics is positive 
associated with students’ study satisfaction, while interest in school mathematics seems 
to be disadvantageous. Moreover, we identify different interest profiles of students that 
may hinder or improve learning processes. Based on these results, we discuss 
possibilities to support students during this challenging transition.  
INTRODUCTION 
The transition from school to university mathematics is a challenging process for many 
students. This is illustrated by high dropout rates in mathematics – especially during 
the first terms at university (Chen, 2013).  
According to theories of person-environment fit (e.g. Swanson & Fouad, 1999) 
students’ personal characteristics – such as interest, knowledge, and learning behaviour 
– must fit to the learning environment at university to ensure a successful transition. A 
sufficient fit determines students’ achievements as well as their own satisfaction 
whereas an insufficient fit probably leads to less achievement and demotivation. Haak 
(2017) proposes two possible ways in which students can react on insufficient fit: They 
can either adapt their personal characteristics or they can decide to dropout. Therefore, 
not only students’ characteristics at the beginning of their studies, but also the 
development of these characteristics during the first semester is relevant for a 
successful transition. Indeed, students who drop out differ from those who continue 
their studies concerning their subject interest more at the time of the dropout, than at 
the beginning of their studies (Schiefele, Streblow, & Brinkmann, 2007).  
In this contribution, we discuss the role of different interest facets and their 
development during the first term at university for students’ study satisfaction. 
Following Blüthmann (2012), we understand study satisfaction as an evaluative rating 
building on affective experiences and cognitive comparisons. 
INTEREST IN MATHEMATICS 
Interest is considered to play a crucial role in learning processes. Krapp (2007) 
describes interest as a special relation between a person and an object. Individual 
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interest is rather stable over time and comprises emotional- (feelings of enjoyment 
while in interest based activities) and value-related (subjective esteem for the objects 
of interest) characteristics. Subject unspecific studies report a positive impact of 
students’ individual interest on study satisfaction (Schiefele & Jacob-Ebbinghaus, 
2006; Blüthmann, 2012). However, mathematics related studies investigating the 
relation of interest and study satisfaction are scarce but necessary – as pointed out in 
the following.  
General interest in mathematics 
Since studies focused on mathematics provide inconsistent results, the role of students’ 
interest for a successful transition is ambiguous: Rach and Heinze (2017) found neither 
significant effects of interest in mathematics on achievement during the first term nor 
on students’ exam-attendance. Geisler and Rolka (2018) reported that students with 
low interest in mathematics are more likely not to attend their exams, which – 
according to Baars and Arnold (2014) – is a useful indicator of dropout.  
Even though interest plays a crucial role for students’ choice to study mathematics (Di 
Martino & Gregorio, 2018), students’ interest in mathematics seems to decrease during 
the transition (Sonnert & Sadler, 2015). Daskalogianni and Simpson (2002) refer this 
decline to unfulfilled expectations and beliefs that do not fit to the mathematics 
encountered at university. However, Liebendörfer and Schukajlow (2017) found no 
differences between students’ interest in mathematics at the beginning and the end of 
the first term at university. 
Interest in school and university mathematics 
The inconsistent results concerning the relation between interest in mathematics and 
study success as well as concerning the interest development may be grounded in the 
instruments, which are used to measure interest in mathematics. Most of the 
questionnaires use statements such as “I like mathematics” which students are asked to 
rate. However, it might not be clear which kind of mathematics is meant here. Thus, it 
has been widely discussed that the nature of mathematics changes significantly during 
the transition to university. At school, mathematics is often applied to solve real-world 
problems and schematic calculations play an important role. Furthermore, new 
concepts are introduced with many examples and aim on a rather intuitive 
understanding. Mathematics at university is much more abstract and formal: real-world 
problems and applications do not play an important role in studies with a major in 
mathematics. Both lectures – real analysis and linear algebra – which mathematics 
freshmen usually attend during their first year at university, are focused on proofs and 
formal definitions (Witzke, 2015; Halverscheid & Pustelnik, 2013). 
Regarding these changes in the nature of mathematics, some authors have argued that 
by a distinction between interest in school mathematics and interest in university 
mathematics, the role of interest in learning processes could be analysed in detail 
(Liebendörfer & Hochmuth, 2013; Ufer, Rach & Kosiol, 2017). Otherwise, it is 
uncertain to which kind of mathematics students refer when talking about interest. Ufer 



Geisler & Rach 

2 -                                                                                                             PME 43 - 2019 266 

et al. (2017) developed questionnaires that distinguish between students’ interest in 
school mathematics and in university mathematics. The developed scales address 
students’ relationship with mathematics as experienced in the two institutions. Kosiol, 
Rach, and Ufer (2018) report a positive relation between interest in university 
mathematics and students’ study satisfaction, while interest in school mathematics 
seems to be negatively associated with study satisfaction. This is in line with theoretical 
assumptions: If one is interested in university mathematics, it is plausible that one is 
satisfied with one’s studies which mainly contain university mathematics. In their 
qualitative interview study, Liebendörfer and Hochmuth (2013) report decreasing 
interest in university mathematics during the first year at university. 
RESEARCH QUESTIONS 
The focus of our study is the development of students’ individual interest facets in 
mathematics during the transition to university and its relation to study satisfaction. 
Precisely, we want to answer the following questions: 

1) In which way do students’ interest facets (at the beginning and in the middle of 
the first term) and their study satisfaction relate to each other? 

Based on recent studies (Koisol et al., 2018) and theoretical assumptions, we expect 
positive relations between interest in university mathematics and study satisfaction and 
negative relations between interest in school mathematics and satisfaction (H1). 

2) In which way do the specific interest facets develop during the first term at 
university? 

Following Liebendörfer and Hochmuth (2013), we expect a decline of interest in 
university mathematics (H2). We do not have any special hypothesis concerning the 
development of interest in school mathematics. 
To gain a deeper insight in students’ interest development and the effects on study 
satisfaction, we want to shed light on the following (more explorative) questions: 

3) In which way is it possible to identify different profiles of interest development? 
4) To what extent do students with different profiles of interest development differ 

concerning their study satisfaction? 
METHODS 
We used two questionnaires in the lectures real analysis and linear algebra. Both 
lectures take place during the first term at university. In order to control for students’ 
prior achievement, we asked students to report their school qualification grade. 
Besides, students stated their interest in school and in university mathematics within 
the first questionnaire during the second week of the term (T1). Six weeks later (T2), 
the second questionnaire captured students’ satisfaction with their studies of 
mathematics and again their interest in school and in university mathematics. Students 
rated all statements on a five-point likert scale (1=totally disagree, 5=totally agree). All 
used scales had at least satisfying reliabilities (Table 1).  
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132 mathematics freshmen (in a Bachelor mathematics program or in a teacher 
education program) voluntarily filled out the first questionnaire (T1), with 89 students 
completing the first (T1) and the second questionnaire (T2). A MANOVA revealed 
that students who participated in both measurement points (T1 & T2) report significant 
higher interest in university mathematics than those who participated only in T1 
(h2=.08; p<.01). Therefore, the sample of 89 students is probably positive selected. 

Variable Source No. of 
items 

a(T1)/ 
a(T2) 

Example Item 

Interest in 
School 
Mathematics 

Ufer et al., 2017 5 0.71/ 
0.79 

In school, mathematics was 
very important for me. 

Interest in 
University 
Mathematics 

Ufer et al., 2017 5 0.87/ 
0.89 

The kind of mathematics 
that is done at university is 
fun for me. 

Study 
Satisfaction 

Schiefele & Jacob-
Ebbinghaus, 2006 

4 - /0.82 All in all, I’m satisfied with 
my studies of mathematics. 

Table 1: Instruments used in the questionnaires (a = Cronbach’s a) 
RESULTS 
We used hierarchical linear regressions (method inclusion) to assess the relations 
between students’ interest in mathematics and their study satisfaction. Model 1 only 
consists of students’ school qualification grade. Model 2 consists of the interest facets 
at T1, while the school qualification grade was still controlled. In Model 3, the interest 
at T2 was added. Since we expected significant correlations between students’ interest 
at both measurement points, we screened for multicollinearity. For all performed 
regressions, multicollinearity was no problem (VIF<2.85; Tolerance>.35). 
Table 2 summarizes the results of the linear regressions. Model 1 shows that students’ 
school qualification grade is no significant predictor of the study satisfaction. The 
inclusion of the interest facets at T1 (Model 2) increases the explained variance 
significantly (R2=.47) and reveals a strong positive relation between students’ interest 
in university mathematics and their study satisfaction (β=.67; p<.001). Model 3 can 
explain 62% of the variance in the study satisfaction. Confirming H1, students’ interest 
in university mathematics at T2 is still positively related to their study satisfaction 
(β=.58; p<.001) while interest in school mathematics is a weak negative predictor (β=-
.22; p<.05). 

Predictor Model 1 Model 2 Model 3 
School Qualification Grade -.12 -.09 -.06 
Interest School T1  .01 .13 
Interest University T1  .67*** .20 
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Interest School T2   -.22* 
Interest University T2   .58*** 
R2 .14 .47*** .62*** 

Table 2: Results (standardized beta-coefficients) of the hierarchical linear regression 
with depend variable “study satisfaction” (method: inclusion); *p<.05   ***p<.001 

In order to analyse the development of interest facets of the whole sample during the 
first term, we used dependent t-tests. In contrast to H2, neither interest in school 
mathematics (M(T1)=3.70; M(T2)=3.76; p>.40) nor interest in university mathematics 
(M(T1)=3.22; M(T2)=3.23; p>.80) differs between T1 and T2.  
In the whole sample, the means of the interest facets do not change during the term, 
although it is possible that some students develop a higher interest whereas other 
students’ interest decreases. To identify different profiles of interest development 
amongst the students, we conduct a cluster-analysis with interest in school mathematics 
and in university mathematics at T1 and T2. One outlier was eliminated using the 
single-linkage method. The Ward-dendrogram indicated that a four cluster-solution is 
most appropriate to describe the data. This solution was improved using the k-means 
method. A MANOVA revealed that the four clusters differ significantly concerning 
their interest in school and university mathematics at both measurement points. The 
interest development of the clusters is described in the following (see also figure 1): 
Cluster 1 (n=24; highly interested students): These students start with the highest 
interest in school mathematics as well as university mathematics and undergo no 
significant development during the term. 
Cluster 2 (n=19; mainly in school mathematics interested students): These students 
already start with a high interest in school mathematics, which increases significantly 
during the term. In contrast, they show less interest in university mathematics and even 
lose interest during the term. It’s the only cluster with increasing interest in school 
mathematics and decreasing interest in university mathematics. 
Cluster 3 (n=24; average interested students): These students start with an average 
interest in school and in university mathematics. Their interest remains nearly constant 
during the term. 
Cluster 4 (n=19; low interested students): These students start with the lowest interest 
in school and university mathematics. While their interest in school mathematics 
remains stable, their interest in university mathematics moderately increases. 
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Figure 1: Interest development of the clusters; 1=totally disagree, 5=totally agree 

To check whether the clusters differ concerning their study satisfaction and their school 
qualification grade, a MANOVA was conducted (table 3). The results indicate that the 
four clusters do not differ concerning their school qualification grade. However, 
significant differences in the study satisfaction can be observed (h2=.46; p<.001). The 
highly interested students (Cluster 1) report the highest satisfaction while the mainly in 
school mathematics interested students (Cluster 2) are least satisfied with their studies. 
The medium as well as the low interested students (Cluster 3 and 4) report medium 
satisfaction. 

Variable Cluster 1 
(n=24) 

Cluster 2 
(n=19) 

Cluster 3 
(n=24) 

Cluster 4 
(n=19) 

h2 

School Qualification Grade 2.20 2.22 2.03 2.22 .02 
Study Satisfaction 4.03 2.47 3.32 3.08 .46*** 

Table 3: Means and results of the MANOVA; School Qualification Grade: 1=very 
good, 4=sufficient; Study Satisfaction: 1=totally disagree, 5=totally agree; ***p<.001 
DISCUSSION AND OUTLOOK 
Our results indicate that students’ interest in university mathematics (at the beginning 
and in the middle of the first term) is positive associated with study satisfaction which 
is in line with recent research (Koisol et al., 2018). However, a negative relation 
between interest in school mathematics and study satisfaction was only observed at the 
second measurement point. This result might be explained by taking a closer look on 
the interest development during the first term.  
Even though most studies report decreasing interest during the first term at university 
(Liebendörfer & Hochmuth, 2013; Sonnert & Sadler, 2015), in our sample the overall 
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interest in school as well as in university mathematics remained rather stable. This 
might be due to the fact, that our results rely on self-reports, which can be biased. 
Furthermore, the questionnaires were filled out during the lectures and students who 
do not regularly attend the lectures or have dropped out early – and therefore didn’t 
participate in the second questionnaire – have not been part of our analysis. 
However, a cluster-analysis enabled a more differential perspective: We identified a 
group of students with growing interest in school mathematics and decreasing interest 
in university mathematics. This group (the mainly in school mathematics interested 
students) turned out to be least satisfied with their studies of mathematics although they 
start with acceptable learning prerequisites. One might assume that these students 
probably began their studies with unfavourable expectations and get disappointed. In 
order to support students, it might be helpful to inform them before semester starts 
about main differences between school and university mathematics. Because low study 
satisfaction often goes together with study dropout, it is necessary to gain more 
information about the relationship between students’ expectations, interest and study 
satisfaction. Our ongoing research will now focus on the relations between different 
facets of interest in mathematics and early dropout from university. 
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Numerous quantitative studies have shown that learners struggle to understand the 
magnitude of fractions. This is often explained by the natural number bias or the use 
of gap thinking. However, qualitative evidence that supports the interpretations of this 
quantitative research is scarce. We have carried out a qualitative study interviewing 
52 seventh grade students from different profiles obtained in a previous quantitative 
study according to the way they reason about fraction and decimal comparison items. 
Results show a high consistency between students’ reasoning and verbalizations given 
during the interview and their profile, supporting the existence of the hypothesized 
different ways of thinking about the magnitude of fractions, and indicating that these 
ways of thinking are somewhat stable over time. 
THEORETICAL AND EMPIRICAL BACKGROUND 
The importance of understanding rational number is well-documented in the literature 
during the last decades. It is a step prior to the learning of more advanced calculus and 
algebra concepts (Kieren, 1993). However, their learning is a complex task for primary 
and secondary school students (Behr, Lesh, Post, & Silver, 1983): most students show 
difficulties in understanding different aspects of rational numbers, especially fractions 
(Behr, Wachsmuth, Post, & Lesh, 1984; Merenluoto & Lehtinen, 2002). 
Current research focuses on examining whether these difficulties are due to the 
interference of natural number knowledge, a phenomenon known as natural number 
bias (Ni & Zhou, 2005; Van Dooren, Lehtinen, & Verschaffel, 2015). This 
phenomenon refers to the idea that difficulties with rational numbers may arise from 
an inappropriate application of natural number properties (Van Dooren et al., 2015), 
since students develop an erroneous concept of rational numbers as a simple extension 
of natural numbers (Kieren, 1993).  
Research has documented how students from primary and secondary school make 
systematic errors in determining the fraction magnitude, due to their incorrect 
assumption that a fraction’s numerical value increases when its numerator, 
denominator, or both increase (Behr et al., 1984; Resnick et al., 1989). Students 
incorrectly consider that 5/9 is larger than 2/3 because 5 is larger than 2 and 9 is larger 
than 3. When examining that possible bias, studies use fraction comparison items that 
are congruent with the natural number knowledge and items that are incongruent with 
this knowledge. Congruent items are items where the largest fraction has the largest 
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numerator and denominator (e.g. 3/5 vs. 8/9), and incongruent items are items where 
the largest fraction has the smallest numerator and denominator (e.g. 2/3 vs. 4/9). 
Studies have shown that primary and secondary school students are more accurate and 
need less time to correctly answer congruent items than incongruent ones (Meert, 
Grégoire, & Noël, 2010; Van Hoof, Lijnen, Verschaffel, & Van Dooren, 2013). 
However, there are studies finding the opposite too: higher accuracy in incongruent 
items than in congruent ones (DeWolf & Vosniadou, 2015; Obersteiner & Alibali, 
2018; Rinne, Ye, & Jordan, 2017). This gives rise to hypotheses about the existence of 
other incorrect ways of thinking, such as gap thinking or reverse bias thinking. 
Gap thinking consists of comparing the difference (instead of the ratio) between 
numerator and denominator in both fractions, considering that a fraction is larger if the 
difference between the numerator and the denominator is smaller (e.g., 2/3 is larger 
than 7/9 “because from 2 to 3 there is a gap of one and from 7 to 9 there is a gap of 
two”) (Pearn & Stephens, 2004). These students think additively, considering the 
difference between numerator and denominator, rather than multiplicatively, 
considering the ratios (Clarke & Roche, 2009; Moss, 2005). In the reverse bias 
thinking, students consider that the largest fraction is the fraction with the smallest 
denominator (DeWolf & Vosniadou, 2015; Gómez & Dartnell, 2018; Rinne et al., 
2017), focusing on the belief that the smaller value of the denominator corresponds 
with the bigger size of the parts (e.g. “2/3 is larger than 3/5 because a whole divided in 
three pieces is larger than a whole divided in five pieces”) (Pearn & Stephens, 2004). 
Therefore, students who use this reasoning seem to recognize that larger numbers in 
the denominator can lead to smaller fractions, but they do not fully understand the 
relationship between the numerator and the denominator (Rinne et al., 2017). 
Both kinds of reasoning – gap and reverse bias– could explain previous contradictory 
results about the effect of congruency (González-Forte, Fernández, & Van Dooren, 
2018). However, these types of thinking have been indirectly deduced, i.e. derived 
from quantitative studies using items that are congruent and incongruent for these types 
of thinking, assuming that when students perform better on the congruent vs. 
incongruent items, they also reason in that way. This is indirect evidence. In the current 
paper we aim for a validation by providing more direct qualitative evidence.  
To the best of our knowledge, research that supports quantitative results with 
qualitative data about the above-mentioned incorrect ways of reasoning is scarce. 
Clarke and Roche (2009) carried out interviews with 6th graders after answering eight 
fraction comparison items. In this research, incorrect reasoning was identified: “4/5 is 
larger than 4/7 because 4 is closer to 5 than 4 is to 7” (gap thinking), “5/6 is equal than 
7/8 because each has one left” (gap thinking) and “5/8 is larger than 3/7 because both 
numbers are larger” (natural number bias). Evidence for the use of such reasoning was 
also obtained in the study of González-Forte et al. (2018) with primary and secondary 
school students, who had to justify their answers. 
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Our research and objective 
The current research is part of a larger quantitative study with primary and secondary 
school students. In this study 1262 primary and secondary school students answered a 
test with 31 fraction and decimal comparison items, specifically designed to detect 
errors that could be based on natural number bias thinking, gap thinking or reverse bias 
thinking. A cluster analysis revealed six different profiles: students who answered all 
items (or almost) correctly (All Correct), students who incorrectly solved all the 
incongruent items, both in fractions and in decimal numbers (Full Natural Number 
Bias), students who had difficulties in the incongruent fraction items, but correctly 
solved both congruent and incongruent decimal items (Fraction Natural Number Bias), 
students who had difficulties only in the items in which a reasoning based on gap 
thinking leads to an incorrect answer (Gap Thinker), students who had difficulties in 
congruent fraction items and correctly solved the incongruent items, and correctly 
solved both congruent and incongruent decimal items (Fraction Reverse Bias), and 
students who solved the items without any clear pattern (Remainder group). 
The aim of this study is to validate previous results obtained in the quantitative study, 
by analysing the consistency between the students’ reasoning on the test (profiles 
identified) and the reasoning and verbalizations given in an interview. 
METHOD 
Participants 
Participants were 52 secondary school students (7th grade) from four Spanish secondary 
schools who had participated in our previous quantitative study. We interviewed 15 All 
Correct students, 14 Gap Thinker students, 15 NNB students (from Full NNB and 
Fraction NNB) and 8 Fraction Reverse Bias students. We chose 7th grade students since 
it was the grade with sufficient numbers of participants in each profile. Schools 
belonged to different cities and students were from mixed socio-economic 
backgrounds. 
Instrument and analysis 
The interviews were carried out individually and were videotaped. They consisted of 
two phases. In Phase 1, students had to explain how they had found the largest fraction. 
Items used in the interview were: 2/3 vs. 7/9; 4/5 vs. 5/8; 4/7 vs. 1/3 and 2/3 vs. 3/7. In 
Phase 2, students had to read three fictional students’ answers given in plasticized 
cards. Some were based on Natural number bias, others on Reverse bias thinking and 
still others on Gap thinking (Table 2). Students had to indicate and justify with which 
of the students’ answers they agreed and explain why they disagree with the others. 
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Item Answer 

1/3 vs. 5/8 

Pere (Gap thinking): It’s 1/3 because from 1 to 3 there is 2 and from 5 to 8 there is 3, so 
in 1/3 the difference between the numerator and the denominator is smaller. 

Marta (Natural number bias): It’s 5/8 because 5 is larger than 1 and 8 is larger than 3, so 
the numbers are larger and 5/8 is larger. 
Andrés (Reverse bias thinking): It’s 1/3 because 3 is smaller than 8, and if the 
denominator is smaller the fraction is larger. 

4/7 vs. 3/4 

Maria (Gap thinking): It’s 3/4 because from 3 to 4 there is 1 and from 4 to 7 there is 3, so 
in 3/4 the difference between the numerator and the denominator is smaller. 

Roberto (Natural number bias): It’s 4/7 because 4 is larger than 3 and 7 is larger than 4, 
so the numbers are larger. 

Alicia (Reverse bias thinking): It’s 3/4 because 4 is smaller than 7, and if the 
denominator is smaller the fraction is larger. 

Table 2: Fictional students’ answers used in Phase 2 
We analysed students’ reasoning used in the two interview phases, to examine the 
consistency between the reasoning and the profile identified in the quantitative study. 
RESULTS 
Qualitative analysis supports our quantitative results since the majority of the students 
interviewed of each profile reasoned in the same way during the interviews, indicating 
a strong consistency in thinking. Following, we show some examples of students’ 
answers in each profile interviewed. 
86.7% of the students of All Correct profile remained consistent with their reasoning 
in the quantitative study. This means that these students used a correct reasoning in 
Phase 1 and did not choose any of the options offered to them in Phase 2. Tables 3 and 
4 exemplarily show the verbalizations given by one of these students and indicate how 
the students indeed follow a correct type of reasoning. 
Item Answer Reasoning 

2/3 vs. 7/9 7/9 I turned the thirds into ninths. Then I compared 6/9 and 7/9. 

4/5 vs. 5/8 4/5 5/8 is closer to a half, and 4/5 is much more than a half, so 4/5 is larger. 

4/7 vs. 1/3 4/7 4/7 is more than a half, and 1/3 is less than a half. 

2/3 vs. 3/7 2/3 2/3 is more than a half and 3/7 is less than half. 

Table 3: Answers of an All Correct student in Phase 1 
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Item Answer Reasoning 

1/3 vs. 5/8 None 

Andrés We can use only this strategy when the numerators are the same. 

Pere He says that from 1 to 3 there are 2... but it should be 3/3 minus 
1/3 is 2/3. 

Marta That both numbers are larger does not mean anything because, 
for example, 2/3 is larger than 5/8. 

4/7 vs. 3/4 None 

Maria 
This strategy of comparing the difference between the numerator 
and the denominator is not correct. We have to subtract 4/4 and 
3/4 and 7/7 and 3/7, and compare what is left. 

Roberto It does not matter which number is larger. The denominator 
should be the same to say this. 

Alicia We can use this strategy when the numerators are the same. As 
they are not the same, this rule does not work. 

Table 4: Answers of an All Correct student in Phase 2 
64.3% of the students of the Gap Thinker profile remained consistent in their reasoning. 
These students used a reasoning based on gap thinking in Phase 1 and chose Pere and 
Maria’s answer in Phase 2. Thus they always considered as the largest fraction the 
fraction with a smaller difference between numerator and denominator. Tables 5 and 6 
show the verbalizations given by one of these students and indicate how the students 
indeed followed a reasoning based on gap thinking. 
Item Answer Reasoning 

4/7 vs. 1/3 1/3 Because in 4/7 you have 3 left over, and in 1/3 you have 2 left over. As in 1/3 I 
have 2 left over, this is the biggest one. 

2/3 vs. 7/9 2/3 In 2/3 I would have one without eating and in 7/9 I would have two without 
eating. 

Table 5: Answers of a Gap thinker student in Phase 1 
Item Answer Reasoning 

1/3 vs. 5/8 Pere 

Andrés This reasoning does not work for anyone.  

Pere I agree with this. The less you left over, the larger the fraction is. 

Marta This reasoning is not correct. 

Table 6: Answers of a Gap thinker student in Phase 2 
73.3% of the students of NNB profile were consistent with their reasoning. Also in the 
interview these students used natural number ordering for determining the magnitude 
of fractions in Phase 1 and chose Marta and Roberto’s answer in Phase 2. They always 
considered as the largest fraction the fraction with a larger numerator and denominator. 



González-Forte, Fernández, van Hoof & van Dooren 

PME 43 – 2019                                                                                                      2 -  277 

Tables 7 and 8 show the verbalizations given by one of these students and indicate how 
the students indeed followed a reasoning based on natural number bias. 
Item Answer Reasoning 

4/5 vs. 5/8 5/8 I compared the numerators and denominators. In this case 5/8 is larger because 
the numbers are larger, 5 is larger than 4 and 8 is larger than 5. 

2/3 vs. 3/7 3/7 Because 7 is larger than 3 and 3 is larger than 2. 

Table 7: Answers of a NNB student in Phase 1 
Item Answer Reasoning 

4/7 vs. 3/4 Roberto Roberto* 
I agree. It’s the same. You have to compare the 4 with the 3 and 
the 7 with the 4. The larger the numerator and the denominator 
is, the larger the fraction is. 

*This student did not say anything about Maria and Alicia’s answers. 

Table 8: Answers of a NNB student in Phase 2 
75.0% of the students of the Fraction Reverse Bias were consistent with this kind of 
reasoning in the interview too. These students showed reverse bias thinking in Phase 1 
and chose Andrés and Alicia’s answers in Phase 2. They always considered as the 
largest fraction the fraction with the smallest denominator. Tables 9 and 10 show the 
verbalizations given by one of these students and indicate how the students indeed 
followed a reasoning based on reverse bias. 
Item Answer Reasoning 

4/7 vs. 1/3 1/3 
Firstly, I look at denominators to know the size of the pieces. If the denominator 
is smaller than the other denominator, although I have fewer pieces, the pieces 
are larger. 

2/3 vs. 7/9 2/3 Because the 3 pieces are larger than the 9 pieces. 

Table 9: Answers of a Fraction Reverse bias student in Phase 1 
Item Answer Reasoning 

1/3 vs. 5/8 Andrés Andrés* I agree with this, I think it’s the best way to reason, because it’s 
how I do it. 

*This student did not say anything about Pere and Marta’s answers. 

Table 10: Answers of a Fraction Reverse bias student in Phase 2 
Students who were inconsistent answered one of the two phases in the same way as 
their profile, but in the other phase they changed the way of reasoning or answered 
both phases of the interview with reasoning different of their profile. 
DISCUSSION AND CONCLUSIONS 
The high consistency between the students’ reasoning and verbalizations given during 
the interview and their profile as it was determined in the prior quantitative study 
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clearly indicates the existence of different ways of thinking about the magnitude of 
fractions. These are somewhat stable over time, indicating that students’ errors are not 
random. Furthermore, in the last part of the interview students were shown various 
types of incorrect reasoning and even the correct way of reasoning. The participants 
were largely persistent in the choice for their own way of reasoning.  
These qualitative data support the quantitative data by showing firstly, that there are 
indeed several other wrong ways of thinking next to the natural number bias, such as 
gap thinking and reverse bias thinking. Secondly, these wrong ways of thinking are 
persistent over time. Students are even persistent in their way of reasoning when being 
shown the correct way of reasoning. Finally, the verbalizations students provided 
confirm the definitions of gap thinking and reverse bias thinking as they were proposed 
in previous quantitative research. As such, our results can provide an explanation for 
the apparently contrary results regarding to the congruency effect as obtained in 
previous studies (DeWolf & Vosniadou, 2015; Obersteiner & Alibali, 2018; Rinne et 
al., 2017): different students more or less persistently follow different incorrect ways 
of reasoning. 
The existence of other wrong ways of thinking raises questions about when and why 
these errors appear in students. It is widely assumed that natural number bias is due to 
students’ interference with their knowledge about natural numbers when they are 
working with rational numbers and thus mainly occurs in the beginning of the learning 
process. However, gap thinking and reverse bias thinking seem to be learned during 
the middle school. Future studies could focus on the emergence and development of 
these kinds of reasoning and their mutual interaction during development. 
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HOW ENGINEERS USE INTEGRALS: THE CASES OF 
MECHANICS OF MATERIALS AND ELECTROMAGNETISM 
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Université de Montréal, Département de Didactique 

 

It is often said that engineers need to study differential and integral calculus to pursue 
their training. However, there is not much research examining how this content is used 
in professional courses, and how much of it is necessary to pass these courses. In this 
paper, we present our results concerning the use of integrals in two engineering 
courses: Strength of materials for Civil Engineering and General physics for Electrical 
Engineering. Using tools from the Anthropological theory of the didactic, our analyses 
show that conceptual aspects of integrals are used to define notions proper to 
engineering, and that the technical skills needed to calculate antiderivatives are mostly 
reduced to simple functions. 
INTRODUCTION 
Calculus (and, in particular, the use of integrals) plays a key role in solving problems 
in scientific and technical fields, especially within the various engineering disciplines. 
Nonetheless, research in engineering and mathematics education has shown that, for 
many undergraduate students, calculus is one of the most challenging courses of their 
programme, with very high failure rates. This can often lead students to abandon their 
career aspirations (Ellis, Kelton, & Rasmussen, 2014; Rooch, Junker, Härterich, & 
Hackl, 2016). With the considerable increase in studies examining university 
mathematics education in recent years, new research topics have emerged, such as the 
consideration of the different contexts and programs in which mathematics is taught at 
the tertiary level (Nardi, Biza, González-Martín, Gueudet & Winsløw, 2014). 
Regarding these different contexts, researchers and educators alike seem to agree that 
traditional calculus content and teaching methods are not meeting current professional 
needs and do not allow students to adequately develop mathematical skills useful for 
the workplace (Sevimli, 2016). Loch and Lamborn (2016, p. 30) stated that 
“mathematics is often taught in a ‘mathematical’ way with a focus on mathematical 
concepts and understanding rather than applications. The applications are covered in 
later engineering studies.” The disconnection between the content of calculus courses 
and how (and when) it is later used in a professional context has been identified as 
problematic. For instance, Jones (2015) points out that due to the disconnection felt by 
students in attempting to apply their mathematical knowledge to science and 
engineering, mathematics educators and teachers of STEM courses, including calculus, 
should be aware of and concerned about how the content of integral calculus is used 
and applied in the professional world. 
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Regarding this disconnection, research has highlighted the importance of 
understanding the needs of other disciplines and their use of mathematical notions 
(González-Martín et al., 2017). Specifically, more research is needed “studying the use 
of mathematics (and the professional needs) of several categories of professionals, as 
well as how mathematics can be taught by targeting these professional needs.” (p. 
1958). Interested in better understanding engineers’ needs regarding mathematics, we 
launched a research program to investigate how calculus notions are used in 
engineering courses and to identify possible ruptures between how notions are first 
introduced and used in calculus courses and how they are subsequently used in 
professional courses. We note the lack of research on how mathematics notions are 
used in professional courses. 
In this first stage of our research, we are interested in better understanding how single-
valued integrals are used in engineering courses, and whether there is a disconnection 
with the content of calculus courses. To do so, we analysed engineering textbooks, 
working under the principle that most tertiary instructors use textbooks as an important 
resource in planning their curriculum (e.g., Mesa & Griffiths, 2012). At previous 
conferences, we presented our partial results regarding the use of integrals to define 
bending moments for beams and first moments of an area in a Strength of Materials for 
Civil Engineering course (González-Martín & Hernandes-Gomes, 2017, 2018). Now 
having analysed the whole course, in this paper we present a summary of our complete 
results, as well as results from our ongoing analyses of a General and Experimental 
Physics course. 
THEORETICAL FRAMEWORK 
We use tools from the anthropological theory of the didactic (ATD – Chevallard, 
1999), which considers human activities to be institutionally situated. A central 
element in ATD is the notion of praxeology, which is formed by a quadruplet [T/τ/θ/Θ] 
consisting of a type of task T to perform, a technique τ which allows the task to be 
completed, a discourse (technology) θ that explains and justifies the technique, and a 
theory Θ that includes the discourse. Human activity can therefore be described using 
these elements: the first two elements [T/τ] are the practical block (or know-how), 
whereas the second two [θ/Θ] form the knowledge block that describes, explains, and 
justifies what is done. These two blocks are important elements of the ATD model of 
mathematical activity which can be used to describe mathematical knowledge. 
Although ATD distinguishes between different types of praxeology, due to space 
limitations we only present our analyses in terms of tasks. 
Knowledge—and praxeologies—may move from the institution where they emerge to 
other institutions that find them useful (Castela & Romo Vázquez, 2011). Such is the 
case, for instance, of mathematical notions that are used to solve engineering problems. 
In this process, one can speak of transposition effects on the praxeologies in question 
(Castela & Romo Vázquez, 2011; Chevallard, 1999). That is, in moving from one 
institution to another, some (or all) elements of the original praxeology may evolve. 
Therefore, it is important to analyse the types of tasks and techniques as well as the 
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discourses and theories employed in both institutions. In this paper, we present our 
results about the tasks in two engineering courses that call for integrals, and then 
discuss how their use of integrals relates to uses in calculus courses. 
METHODOLOGY 
To better understand how calculus concepts are applied in engineering courses, we 
have had exchanges with two teachers in an engineering programme: one teaches Civil 
engineering, the other Electrical engineering. Thanks to their input, we selected the 
courses we have analysed so far. We examined content from two courses: Strength of 
Materials for Civil Engineering and General and Experimental Physics for Electrical 
Engineering. Both courses are taught in the third semester of the engineering 
programme (second year) at the Brazilian university of the first teacher, and both use 
internationally recognized reference books (Beer, Johnston, DeWolf, & Mazurek, 
2012, and Halliday, Resnick, & Walker, 2014, respectively). 
Regarding the Strength of Materials course, we have analysed all appearances of the 
following notions (defined as integrals): first moment of an area (Q), second moment 
or moment of inertia (I), polar moment of inertia (J), bending moment (M), and centroid 
(C). It should be noted that the reference book (Beer et al. 2012) has 831 pages and 
five appendixes. Regarding the General and Experimental Physics book, we started 
with the content related to electromagnetism (chapters 21 to 24, for a total of 108 pages, 
from p.609 to p.716), covering all appearances of integrals. 
Our methodology was applied in two stages: 

• First, we analysed the general structure of the content related to integrals in the 
first-year calculus courses. The reference book is Stewart (2012). We identified the 
main tasks concerning integrals proposed to students, the techniques used to solve 
them and the explanations (technology). 

• Second, we started our analyses of both reference books, using electronic versions. 
For the first book, we identified all appearances of the notions listed above, while 
for the second, we identified all appearances of integrals in the electromagnetism 
section, searching by keywords. We also identified all appearances of the symbol 
“ ò ”. For all content defined using a single-valued integral, as well as for every 
instance of the “ ò ” symbol, we identified the tasks where they are involved, as 
well as the techniques and explanations present, which allowed us to pinpoint the 
different praxeologies where integrals are used in both courses.  

For instance, Figure 1 shows an example of a task from Beer et al. (2012). This task 
(from chapter 4) asks students to calculate the value of the bending moment on a bar. 
The technique uses the notion of centroid, which can be defined using integrals (see 
González-Martín & Hernandes-Gomes, 2018). In bars with symmetric sections, the 
centroid is on the axis of symmetry, and its coordinates can be found by using a given 
formula (which can be deduced by calculating an integral). Note that the formula is 
given to the students, and there is no need to calculate any integral. Also, students are 
told that centroids are placed on the axis of symmetry (this can also be deduced using 
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integrals). Once the value is obtained, it can be replaced in another formula. We see, 
therefore, that the justifications for using the centroid are based on a professional 
discourse, and that the content from calculus is not explicitly used. 

 
Figure 1: Task to calculate the bending moment of a bar, using the notion of centroid 

(Beer et al., 2012, p. 247). 
DATA ANALYSIS 
Figure 2 summarises our findings of all appearances of the notions Q, I, J, M, and C in 
Beer et al. (2012) and Figure 3 summarises our findings regarding chapters 21 to 24 in 
Halliday et al. (2014). The last column indicates the functions f(x) students need to 
integrate, and FT indicates the use of the Fundamental Theorem to calculate a definite 
integral (∫ 𝑓(𝑥)𝑑𝑥 = 𝐹(𝑏) − 𝐹(𝑎)0

2 , Stewart, 2012, p. 386). 

Regarding the book Mechanics of Materials (Beer et al., 2012) used in the Strength of 
Materials course, our results (Figure 2) show that, with regard to first moments of an 
area (Q), moments of inertia (I), polar moments of inertia (J), bending moments (M), 
and centroids (C), integrals are mostly used in the theoretical sections to introduce and 
define notions proper to engineering, as well as to deduce some properties. However, 
students can use given tables and formulae to find values to solve most of the tasks (as 
in the example shown in Figure 1 above). The actual technique does not rely on using 
integrals, and it is only in the explanation of the technique (technology) that integrals 
appear. However, in many cases the explicit justifications rely on a professional 
discourse which is not (at least for the student) explicitly related to explanations and 
properties that would appear in a calculus course.  
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Description of use Terms 
used Chapter – Sections 

Rules of Integration 
Functions to 

integrate 

The term appears in a 
theoretical explanation. 
It appears without an 
expression using the 

integral sign or the word 
integral. 

Q 4.4(p.262); 6.1(p.422); 6.1C(p.424, 425); 6.4(p.440); 6.6(p.454, 459-
460); 8.1(p.559); 9.5A(p.651); 9.5C(p.654); 9.6B(p.666) 

 

I 3.6(p.196); 4.2(p.245); 4.7(p.292); 4.8(p.304-305); 5(p.347); 
6.1C(p.424); 8.1(p.559); 9(p.600); 10.1A(p.696) 

J 3.1C(p.155, 156); 8.2(p.563); A4(p.A11) 

M 

4.1A(p.240); 4.1B(p.242-244); 4.2(p.247); 4.4(p.260, 262, 276); 
4.6(p.279); 4.10(p.323); 5(p.347-348); 5.1(p.349); 5.2(p.360); 
5.3(p.371, 373); 5.4(p.383, 385, 386); 5.5(p.396); 6.1(p.419); 

6.5(441); 6.6(p.454, 459-460); 8.1(p.559); 8.2(p.563); 9(p.600, 602, 
603); 9.5C(p.655); 10.1A(p.695); 10.1B(p.698-699); 10.2(p.709-711) 

C 
1.2A(p.8); 4.2(p.245); 4.4(p.259-260, 262); 4.6(p. 273, 276, 279); 

6.1C(p.424); 6.4(p.440-441); 6.6(p.454, 459-460); 8.3(p.575); 
9.5A(p.651); 9.5C(p.654); A3(p.A10); A4(p.A11) 

The term appears in a 
theoretical explanation. 

It appears with an 
expression using the 

integral sign or the word 
integral, but no 

calculation is required. 

Q 4.2(p.245); 4.6(p.274); 6.1(p.420-421); 6.3(p.437); A1(p.A2, A3); 
A2(p.A5); A4(p.A11) 

 

I 3.6(p.195); 6.1(p.420-421); 11.2A(p.766); A3(p.A8) 
J 3.1C(p.154); 11.2B(p.767, 768) 

M 
4.1B(p.241); 4.2(p.245); 4.6(p.273, 274); 5.2(p.361-362); 6.1(p.418, 

420-421); 6.3(p.437); 9(p.601); 9.1(p.603-604); 9.5A(p.649-650); 
11.2A(p.766) 

C 4.8(p.303); 9.1A(p.607); 9.2(p.611); A1(p.A2, A3); A2(p.A5) 

The term appears in a 
theoretical explanation. 

It appears with an 
expression using the 

integral sign or the word 
integral and calculation 

is required. 

I 3.1C(p.154); 11.5A(p.788-789) f(x) = k; FT 
J 3.2(p.169) f(x) = k; FT 
M 4.6(p.275); 4.10(p.321-322); 5.4(p.384); 9.1B(p.609); 9.3(p.623-624) f(x) = xn; FT; f(x) = k 

C 4.10(p.321-322, 324) f(x) = k; f(x) = 1/x; FT 

Concept application: It is 
involved in some 

calculations, but no 
calculation of integrals is 

required. 

Q 6.3(p.438); 6.6(p.456, 457); 8.3(p.577-578); 9.5B(p.652-653); 
9.5C(p.655); 9.6B(p.667); 9.6C(p.669); A1(p.A4); A2(p.A7) 

 

I 4.2(p.247); 4.4(p.261, 264); 4.8(p.306); 6.1(p.422) 
J 3.1C(p.155); 11.5B(p.792) 

M 
4.2(p.247, 248); 4.4(p.261, 264); 4.6(p.278); 4.10(p.325); 5.1(p.350, 

351); 5.2(p.362); 5.3(p.372); 5.4(p.388); 6.3(p.438); 6.6(p.456); 
9.5B(p.652-653); 9.5C(p.655, 656); 9.6B(p.667); 11.5A(p.789-790) 

C 4.2(p.247, 248); 6.1(p.422); 6.6(p.458); 9.5B(p.652-653); 9.5C(p.656); 
A1(p.A4); A2(p.A6, A7); A5(p.A12) 

Concept application: It is 
involved in some 

calculations and the 
calculation of integrals is 

required. 

I A3(p.A9) f(x) = xn; FT 
J A3(p.A10) f(x) = xn; FT 

M 
5.4(p.387-388); 5.5(p.397); 9.1A(p.605; 606; 607-608); 9.1B(p.610); 
9.2(p.611-612); 9.3(p.624-625); 11.2A(p.767); 11.8(p.806-808, 810, 

813-814) 

f(x) = k; f(x)= xn; FT; 
Substitution rule for 

f(x) = (x – a)n 

Sample problem: It is 
involved in some 

calculations, but no 
calculation of integrals is 

required. 

Q 6.2(p.428-429); 6.5(p.443-444); 6.6(p.461-462); 8.2(p.564-565); 
8.3(p.580-581, 582-583) 

 

I 4.3(p.250-252); 4.4(p.265-267); 4.6(p.281-282); 5.5(p.400-401); 
6.2(p.428-429) 

J 3.3(p.173) 

M 
4.3(p.250); 4.4(p.265-267); 4.6(p.280, 281-282); 5.1(p.352-354); 
5.2(p.363-367); 5.3(p.373-376); 5.5(p.398-401); 6.2(p.429-430); 
6.5(p.443-444); 8.2(p.564-565, 566, 568-569); 9.4B(p.639-640); 

9.5C(p.657-659); 9.6C(p.670) 

C 
4.3(p.251-252); 4.4(p.265-267); 4.6(p.283); 4.7(p.291, 295); 
4.9(p.310); 4.10(p.326-327); 6.2(p.428-429); 6.5(p.443-444); 

6.6(p.461-462) 
Sample problem: It is 

involved in some 
calculations and the 

calculation of integrals is 
required 

M 5.4(p.389, 390-391); 9.2(p.613, 615, 616-617); 9.3(p.626, 627-628, 
629-630); 11.3(p.774-775) 

f(x) = xn; f(x) = sin(ax); 
f(x) = cos(bx); 

Substitution rule for  
f(x) = (x – a)n; FT 

Figure 2: Summary of the use of integrals in Beer et al. (2012) 
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It is also worth noting that students are asked to recall the calculation of an 
antiderivative primarily in cases involving constants, a polynomial, a sine or a cosine. 
The most complex functions to integrate in the analysed parts are a sum of functions 
of the form (x – a)n, and this can be done either directly, or by substitution. We see that 
integration techniques for very complex functions (as taught in the calculus course) are 
not required. Instead the focus is on the meaning of what an integral represents, for the 
theoretical introduction of notions. However, note that once these notions are 
introduced, students usually do not need to recall that they are defined as an integral, 
since most techniques allow for the use of tables and given formulae. 
Our results are very similar for the second book (Figure 3), although we note the use 
of substitution techniques for three more challenging functions: f(r) = 2r.(z2 + r2)-3/2 
(*), ∫ KLK

√ND8KD
 (**), and ∫ L=

√=D8LD
 (***, for which the antiderivative is directly given and 

can also be found in a table at the end of the book). In this textbook, integrals also are 
used mostly to introduce and define notions proper to electrical engineering, and it is 
rather the interpretation of an integral that allows for a proper analysis of the 
phenomena under study. Regarding the tasks, as with the previous book, many 
techniques call for the use of given properties or tables, which means they can be solved 
without the students being aware of the use of integrals. In most cases where students 
need to calculate an integral, immediate integration techniques are sufficient. 

Description of use Terms used Chapter – Sections Rules of Integration 
Functions to integrate 

The term appears in a 
theoretical explanation. It 

appears with an expression 
using the integral sign or 
the word integral, but no 
calculation is required. 

Electric Field E 22.4(p.638-639) 

 
Electric Flux F 23.1(p.659-662) 

Gauss’ Law 23.2(p.662, 664-666) 

Potential V 24.8(p.706-707) 

The term appears in a 
theoretical explanation. It 

appears with an expression 
using the integral sign or 

the word integral and 
calculation is required. 

Electric Field E 22.4(p.640); 22.5(p.643-644) f(x) = k; FT; Substitution rule (*); f(x) = xn 
Potential Energy 

U 22.7(p.648-649) f(x) = cos(x); FT 

Gauss’ Law 23.4(p.671); 23.5(p.673) f(x) = k 

Potential V 24.2(p.690-692); 24.3(p.694-
695); 24.5(p.698-700) 

f(x) = k; FT; f(x) = xn; Improper Integral    
(a to ¥) of 1/r2; Substitution rule (**); 

Trigonometric Substitution (***) 
Sample problem: It is 

involved in some 
calculations, but no 

calculation of integrals is 
required. 

Potential V 24.6(p.702)  

Sample problem: It is 
involved in some 

calculations and the 
calculation of integrals is 

required. 

Electric Field E 22.4(p.641-642) f(x) = cos(x); FT 
Electric Flux F 23.1(p.662, 663-664) f(x) = k; FT 

Gauss’ Law 23.2(p.666-667) f(x) = k 
Potential V 24.2(p.693) f(x) = k; FT 

Figure 3: Partial results of the use of integrals in Halliday et al. (2014)  
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FINAL REMARKS 
In this paper, we present the results of our ongoing analyses of the use of integrals in 
two engineering courses (in the civil and electrical disciplines). We identify three 
different cases involving tasks where integrals are needed: 

Integrals are used in theoretical sections, to define notions proper to engineering or 
to deduce properties. 

Integrals are implicitly used in tasks proper to engineering, although the actual 
technique does not require students to calculate integrals or recall content used 
in calculus courses. 

The calculation of an integral is required as part of the technique used to solve a 
task. In this case, most of the functions to integrate require the use of 
immediate integration techniques. 

Our results indicate that, although integrals are used in both courses, students could 
succeed without using most of the techniques taught in calculus courses. Indeed, in 
both textbooks, there are few tasks in which the technique calls for an explicit use of 
integration or theoretical results as taught in calculus courses. It appears that, when 
integrals move from calculus courses to these two professional courses, the 
transposition effects make a large part of the mathematical discourse disappear, and 
justifications are mostly based on professional facts. Given these results, it is necessary 
to question the amount of time spent in calculus courses on integration techniques of 
very complex functions, as well as their relevance to the training of engineers. 
Moreover, our results show that integrals appear mostly in the definition of notions 
proper to engineering and in deducing properties. This may indicate that more time 
should be spent in calculus courses developing conceptual knowledge and interpreting 
phenomena using the notion of integral. While still preliminary, our results seem to 
call for a rethinking of the content of calculus courses for engineers. 
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DESIGNING EFFECTIVE PROFESSIONAL LEARNING 
PROGRAMS FOR OUT-OF-FIELD MATHEMATICS TEACHERS  

Merrilyn Goos, John O’Donoghue 
University of Limerick 

 

“Out-of-field teaching” refers to the practice of assigning teachers to teach subjects 
that do not match their training or education. The practice is an international 
phenomenon that seems particularly prevalent in the teaching of mathematics. The aim 
of this paper is to analyse the design features of a national professional learning 
program for out-of-field secondary mathematics teachers. Using a hybrid theoretical 
framework that conceptualises out-of-field teaching as boundary crossing, our 
analysis identifies structural and core features of the program that could contribute to 
teacher learning and identity development. 
INTRODUCTION 
In many countries, the need to advance education in STEM (science, technology, 
engineering and mathematics) is recognised as vital for meeting social and economic 
challenges and developing a scientifically, mathematically, and technologically literate 
citizenry. In these circumstances, education and teacher quality become political issues 
linked to a country’s economic success, with teacher recruitment, preparation and 
retention assuming a high priority in national education policy agendas (Cochran-
Smith, 2013). However, despite the existence in most countries of requirements or 
regulations specifying the qualifications needed for teaching specific school subjects, 
“out-of-field” teaching is an international phenomenon that results in teachers being 
assigned to teach subjects that do not match their training or education (Ingersoll, 
2002). This practice seems particularly prevalent in the teaching of mathematics. Out-
of-field mathematics teaching may be considered undesirable because teachers without 
subject-specific qualifications lack the content knowledge and pedagogical content 
knowledge needed to develop students’ mathematical understanding (Baumert et al., 
2010). In addition, out-of-field teachers tend to suffer from lack of confidence, stress 
and feelings of inadequacy, which hampers development of a professional identity in 
their out-of-field subject (du Plessis, 2016). 

Research is beginning to emerge on the incidence, causes, and consequences of out-of-
field teaching. For example, researchers representing the Teaching Across 
Specialisations (TAS) Collective have developed international comparative studies of 
out-of-field teaching in Australia, Ireland, Germany, Indonesia, the United Kingdom, 
and the USA highlighting the complexities involved in understanding this issue (Hobbs 
& Törner, 2019). In some countries, professional learning programs have been 
developed to upskill out-of-field teachers of mathematics; yet there has been little 
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research to date on the effectiveness of such programs. It seems likely that programs 
supporting out-of-field teachers to build their professional knowledge and identities 
will have a different emphasis from professional development for in-field teachers. The 
aim of this paper is therefore to retrospectively analyse the design features of a national 
program for out-of-field mathematics teachers in Ireland, the Professional Diploma in 
Mathematics for Teaching (PDMT), in order to address the following question: What 
constitutes effective professional learning for out-of-field teachers of mathematics? 

BACKGROUND AND CONTEXT 
Underperformance of secondary school students in mathematics and the low uptake of 
Higher Level mathematics in the senior secondary years were a concern in Ireland in 
the early 2000s (NCCA, 2005), leading to a complete overhaul of the secondary school 
mathematics curriculum that was initiated in 2008. At around the same time, a national 
survey of mathematics teachers in Irish secondary schools (Ní Riordáin & Hannigan, 
2009) established that 48% of respondents were teaching out-of-field. Causes of such 
a high incidence of out-of-field teaching are historically and culturally embedded, and 
arise from factors such as the small size of schools and the autonomy granted to school 
principals to hire and deploy teachers of any discipline in order to deliver a 
comprehensive curriculum (junior secondary students typically take up to ten subjects). 
Nevertheless, the findings of Ní Riordáin and Hannigan’s survey were interpreted by 
education policy makers as a threat to the successful implementation of the new 
mathematics curriculum. As a result, the Department of Education and Skills (DES) 
agreed to fund a national program to develop out-of-field teachers’ content and 
pedagogical content knowledge. The winning bid for delivering the PDMT was 
submitted by the University of Limerick and the National University of Ireland, 
Galway, leading a national consortium of 13 higher education institutions. The PDMT 
is a two-year, part-time postgraduate program, with teachers’ tuition fees fully funded 
by the DES. Six cohorts will have undertaken the program between 2012 and 2020, the 
contract end date, resulting in the upskilling of more than 1000 teachers to meet the 
mathematics teaching requirements of the Irish Teaching Council. 
Evidence emerging from international studies suggests that programs responding to 
out-of-field teaching vary in their goals and structures while displaying some common 
design features (Faulkner, Kenny, Campbell, & Crisan, 2019). We consider that the 
PDMT’s unique characteristics make it a useful example for analysis. Unlike in other 
countries, where multiple providers offer different programs in different regions, often 
with short-term funding, in Ireland the PDMT represents a large-scale, sustained 
initiative that delivers a single university-accredited program across the whole country. 
While the program was designed to meet the pragmatic constraints of the government 
tender, we are now interested in developing a theoretically informed analysis of its key 
design features to make a contribution to knowledge about effective professional 
learning for out-of-field teachers of mathematics.  



Goos & O’Donoghue 

2 -                                                                                                             PME 43 - 2019 290 

THEORETICAL FRAMEWORK 
Although much is known about the design of teacher professional learning programs, 
a new framework is needed to capture teachers’ learning when they move from a 
familiar in-field subject to an out-of-field subject where they have limited knowledge 
and experience of what and how to teach. Hobbs (2013) frames this process as 
boundary crossing between domains of knowledge and practice. A boundary is viewed 
as “a sociocultural difference leading to discontinuity in action or interaction” 
(Akkerman & Bakker, 2011, p. 133), where discontinuities can present opportunities 
for learning and identity development. Hobbs formulated a Boundary Between Fields 
(BBF) model to account for factors that influence out-of-field teachers’ identity 
construction and thus counter deficit views of those who teach out-of-field. The model 
has three groups of factors: context, support mechanisms, and personal resources. 
Contextual factors include a school’s geographical location and state governance 
structures, practices and policies. Support mechanisms can be provided by a school or 
system or sought out by teachers. Personal resources that teachers bring to the out-of-
field experience include adaptive expertise; knowledge of content, pedagogy, 
curriculum, and learners; and dispositions such as confidence and commitment. 
The interplay between context, support mechanisms, and personal resources influences 
out-of-field teachers’ experiences of boundary crossing, which has implications for 
designing appropriate professional learning responses that are yet to be fully explored. 
In this paper we apply the approach proposed by Kenny and Hobbs (2015), who 
mapped the three sets of BBF factors onto the model for effective professional 
development created by Garet, Porter, Desimone, Birman, and Yoon (2001) from a 
survey of more than 1000 US mathematics and science teachers. Garet et al. 
distinguished between structural and core features of professional development. 
Structural features included the form of activity (e.g., workshops and courses vs 
activities such as coaching and mentoring embedded in the teacher’s regular work day), 
duration of the activity, and the extent of collective participation by groups of teachers 
from the same school, department or year level. Core features were defined as the 
degree of focus on improving teachers’ content knowledge, opportunities to engage in 
active learning involving meaningful analysis of teaching, and coherence of the 
professional development activities with broader educational agendas and 
opportunities for professional communication with colleagues. Garet et al. found that 
all core features – content focus, active learning, coherence – had a positive influence 
on teacher knowledge, skills and classroom practice. Amongst the structural features, 
sustained and intensive professional development was more effective than shorter 
duration activities. The integrated framework proposed by Kenny and Hobbs links the 
specific needs and motivations of out-of-field teachers highlighted by the Boundaries 
Between Fields model to the structural and core features of the Garet et al. model. 
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ANALYTICAL APPROACH 
Table 1 presents a condensed version of the Kenny and Hobbs (2015) framework for 
designing effective professional learning programs for out-of-field teachers, with 
illustrative questions that guided our analysis of the key design features of the PDMT. 
Structural features Core features 

Form (Context) 

What organisational resources are available 
to coordinate and facilitate the program? 

How will participants be selected? 

Where and how will the program be 
conducted? 

To what extent will blended learning 
approaches be used in delivery? 

To what extent, and with what 
consequences, will teachers be released 
from regular duties? 

Duration (Context; Support mechanisms) 

How many sessions are offered, how often, 
and with what duration? 

What demands are made on teacher time 
and workload? 

Collective participation (Context; Personal 
resources) 

What are the desired characteristics and 
individual needs of participants? 

How can participation be facilitated? 

Content (Personal resources) 

What disciplinary and pedagogical content 
is to be covered? 

How can the material be tailored to meet 
the needs of this teacher group? 

Active learning (Personal resources) 

How can learning activities be designed to 
enable meaningful engagement in analysis 
of teaching and learning? 

How can learning activities be linked to 
teachers’ daily work? 

How committed are teachers to learning 
and practising in this discipline? 

Coherence (Support mechanisms) 

What are the expectations of the school, 
educational system, and teachers? 

What supports are offered by the school in 
the school or system? 

What are the prospects and expectations for 
teachers’ future career development? 

Table 1: Framework for designing effective professional learning programs for out-
of-field teachers (adapted from Kenny & Hobbs, 2015) 

The underlined terms correspond to the framework of Garet et al. (2001), and the 
italicised terms come from Hobbs’ (2013) Boundaries Between Fields model. As the 
authors of this paper are respectively the recently appointed and founding Directors of 
the PDMT, our analysis combines intimate “insider” knowledge of the program’s 
historical development with a more “arm’s length” external perspective on its current 
operations. To address the questions listed in Table 1 we drew on the PDMT tender 
documentation and course information provided to students, minutes of meetings of 
the group comprising DES officials and university personnel that monitors the 
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program, annual student evaluations of the program, and a published case study of the 
PDMT (Faulkner et al., 2019). 
INDICATIVE FINDINGS 
Selected design features of the PDMT are identified to highlight relevant structural 
features and core features, with attention to factors that influence teachers’ experience 
of boundary crossing between fields and development of a professional identity as a 
teacher of mathematics. 
Structural Features 
The PDMT is managed and coordinated by EPI*STEM, the National Centre for STEM 
Education at the University of Limerick. Two full-time staff – the National Program 
Coordinator and Teaching Coordinator – support a teaching team dispersed across 
participating institutions. Requirements for the form of the program were stipulated by 
Ireland’s Minister for Education and Skills such that graduates would meet the 
mathematics teacher accreditation requirements of the Irish Teaching Council, which 
regulates the teaching profession and teacher education programs. PDMT participants 
are selected according to the following criteria: they must be currently teaching 
mathematics in a secondary school in Ireland, qualified as a secondary teacher in a 
discipline other than mathematics, and registered with the Teaching Council as a 
secondary school teacher.  
The duration of the PDMT is two years of part-time study with teachers accessing 
lectures, workshops, and tutorials in the evenings, week-ends, and summer vacation. 
The program comprises 10 mathematics modules presented in 30-hour blocks over six-
week sessions, and 2 pedagogy modules presented via five Saturday workshops and a 
week-long summer school. Teachers are not released from regular duties in order to 
undertake the program, which makes significant demands on their time. 
Participation of teachers across the country is facilitated by a blended learning format 
involving face-to-face and online interaction, delivered by a national consortium of 
higher education institutions. In the current version of the program, lectures are pre-
recorded and made available to participants at a designated time for viewing at home. 
Video lectures include interactive tasks, and they may be accessed online after being 
posted. Additional supports include lecture notes, face-to-face tutorials and workshops 
at sites around the country, moderated online discussion forums, individual and group 
online tutorials, screencasts and applets for specific topics. 
Implications of Structural Features for Teachers’ Boundary Crossing Experience 
Contextual factors such as working in a rural school with limited access to collegial 
support and professional learning opportunities have been found to exacerbate the 
challenges of teaching out-of-field (Hobbs, 2013). The form and duration of the 
PDMT, involving intensive online and face-to-face participation over a sustained 
period of time, may help to ameliorate these challenges. However, the demanding 
workload represents an additional hurdle that may adversely affect how teachers 
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perceive the discontinuity of the boundary crossing experience, especially when they 
are not given release time from their teaching duties to meet study commitments. While 
many blended learning tools are offered to support teacher participation and interaction 
with lecturers, tutors, and program management staff, one could argue that this does 
not necessarily support collective participation by teachers from the same school or 
year level who can share information on planning, resources, and students’ learning 
needs. Collective participation of this kind requires support from colleagues and school 
leaders if out-of-field teachers are to develop new professional identities. 
Core Features 
The content of the PDMT is shaped by the non-negotiable requirements of the DES 
tender, especially the insistence by the Teaching Council that graduates would have to 
meet the same or equivalent requirements for mathematics teaching as fully qualified 
in-field secondary mathematics teachers. Thus the ten mathematics modules – each 
worth 6 ECTS credits and delivering mainly university level rather than school level 
content – focus on calculus, algebra (including linear algebra and number theory), 
probability, statistics, geometry, history of mathematics, problem solving and 
modelling. Two mathematics pedagogy modules, worth 9 and 6 ECTS credits 
respectively, are each spread over a full academic year and require attendance at five 
3-hour week-end workshops and a week-long summer school. The pedagogy 
workshops are linked to the corresponding mathematics content module and are 
designed to develop topic-specific pedagogical content knowledge as well as address 
contemporary issues in mathematics education such as mathematical modelling, 
numeracy across the curriculum, and teaching mathematics with digital technologies. 
One of the mathematics pedagogy modules requires participants to undertake an action 
research project in their own mathematics classroom, with supervision for the project 
provided from a national network of experienced teacher-researchers. 
When the PDMT was designed it was anticipated that participants would vary in their 
mathematical backgrounds, with most having taken only Ordinary Level mathematics 
at senior secondary school and a low to moderate amount of mathematics in their 
teaching degree. The program is tailored to these varying mathematical needs in a 
number of ways: for example, through recognition of prior learning via other 
professional development courses, a suite of online mathematics learning supports, and 
provision of flexible pathways through the program for those experiencing difficulties. 
Active learning is encouraged by the blended learning format (for mathematics content) 
and the action research projects (for mathematics pedagogy). Otherwise, little 
systematic attention is given to meaningful analysis of teaching and learning in the 
participants’ own classrooms in the ways suggested by Garet et al. (2001) (e.g., 
reciprocal peer observation of teaching, discussion and practising of classroom 
implementation of new teaching approaches, analysis of student work samples). 
The coherence of the PDMT is strongly enhanced by its alignment with the national 
mathematics curriculum reform and the Teaching Council’s standards for accrediting 
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teacher education programs and registering teachers. These national standards and 
frameworks communicate clear expectations to schools and teachers about 
requirements for curriculum delivery and teacher quality, and completion of the PDMT 
has enhanced graduates’ prospects for gaining employment contracts as fully qualified 
mathematics teachers. Participants may experience another dimension of coherence 
identified by Garet et al. (2001), involving opportunities for professional 
communication with colleagues engaged in similar initiatives, but this is not an explicit 
goal of the program. 
Implications of Core Features for Teachers’ Boundary Crossing Experience 
The personal resources and support mechanisms available to out-of-field teachers are 
likely to influence how they experience the program’s core features. Teacher 
knowledge and confidence are major factors impacting on their experience of crossing 
the boundary from out-of-field to in-field teaching (Hobbs, 2013), and the PDMT is 
specifically designed to bolster these personal resources. But Kenny and Hobbs (2015) 
suggest that it is also important for school leaders to provide in-school support and time 
for teachers to implement new practices in their classrooms in order to help out-of-field 
teachers identify with their role as teachers of mathematics. 
CONCLUSION 
This paper presented an initial exploration of principles underpinning effective 
professional learning programs for out-of-field teachers of mathematics, based on both 
theoretical ideas and an empirical case. To capture these teachers’ distinctive 
motivations, needs, and experiences we applied a hybrid framework in an attempt to 
understand what might be needed for boundary crossing between fields to be 
experienced as an opportunity for learning and identity development rather than an 
insurmountable challenge. Our analysis focused on a sustained, large-scale program 
designed to address national educational priorities in a specific context. This analysis 
suggested that the strengths of the program include its emphasis on mathematics 
content and how children learn it, the intensive and sustained engagement it fosters 
among participants, and its alignment with national education goals and standards. 
However, viewing the program through a boundary crossing lens brought into focus 
additional requirements that could be worth considering in future developments. These 
largely involve building professional learning communities involving collective 
participation and collaboration between teachers in the same schools or districts, 
learning activities that engage teachers in systematically analysing their own practice, 
and a focus on school leadership that provides time, mentoring, and other in-school 
support for teachers who are crossing boundaries between disciplinary fields. It 
remains to be seen whether such school-based participatory structures can be 
successfully incorporated into a large-scale national program such as Ireland’s PDMT. 
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INTERROGATING EQUITY AND PEDAGOGY: ACCESS TO 
MATHEMATICS IN AN INFORMAL LEARNING SPACE 

Elena A. Contreras Gullickson, Lesa M. Covington Clarkson 
University of Minnesota 

 

Prepare2Nspire is a near-peer mathematics tutoring program that serves marginalized 
middle and high school students through small learning communities. This informal 
learning space provides mathematics support that is in contrast to their formal 
classroom environments. This paper examines the combination of tutoring and 
mentoring (mentutoring) and the effect on students’ participation in mathematics 
thinking and learning.  Findings from this critical ethnography suggest that students 
increased their participation in mathematics and altered their mathematical identities. 
INTRODUCTION 
The double doors of the room are propped open, inviting you in. From the outside, you 
can see tables filled with young people; some with their heads pointed toward the table 
and others having conversations with people near them.  

As I entered the room, I could hear a constant murmur of conversation. The intonations of 
the conversations fluctuated between loud bursts and a consistent buzz of voices. The 
general feeling was one that projected energy into the room. I could see tables filled with 
students of various ages who appeared to be focused on the papers and books in front of 
them. I could see notebooks, pencils, textbooks and calculators in various positions on each 
of the 14 tables for easy access for students to use. I saw students talking and laughing 
while others had their heads bent over pieces of paper, pencils in hand, with their eyes 
intent on what they were doing. I could smell the warmth and lingering odor of many 
bodies placed together in one room (field notes, October 11, 2017). 

Then, step in a bit further and you will experience mathematics. The description above 
is one of the author’s introduction to an informal mathematics tutoring program, 
Prepare2Nspire (P2N). The mission of this afterschool program is to build mathematics 
confidence, connections and content for urban underrepresented youth through 
cascading tutoring and mentoring and to develop a Science, Technology, Engineering 
and Mathematics (STEM) pipeline to higher education.  

Prepare2Nspire is situated in a working-class neighbourhood where the majority of the 
residents identify as African American. This urban neighbourhood is cited as having 
the highest crime rate in the region and a higher than average unemployment rate 
(Eligon, 2016). Many of the program participants attend neighbourhood schools that 
post some of the lowest academic performances in the state (Minnesota Department of 
Education, 2018). Program participants choose to belong to disrupt deficit narratives 
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(Larnell, 2016) and to become stronger mathematics students. Disruption is inherent in 
the program’s model through the use of learning communities. 

A P2N learning community typically consists of a university undergraduate, four 
eleventh-grade and three eighth-grade participants. An intention of the cascading 
tutoring model is for the undergraduate to mentor and tutor (mentutor) younger 
participants. Eleventh graders provide the same experience for eighth graders. A 
typical P2N tutoring session includes focused time for mathematics and a community 
meal. The meal is a crucial factor in cultivating mentoring relationships amongst the 
participants as it provides an authentic time and space for conversation in a relaxed 
atmosphere. 

There is fluidity in how the participants in the tutoring program take on roles from 
mentutor to mentutee all while making sense of using and learning mathematics in an 
informal space. Taking on each of these roles is empowering. Each participant is 
expected to engage with their community in authentic ways thus acting as natural 
mentors for one another. The mathematical implications become obvious while the 
richer cultural and social implications are important for continuing to work with diverse 
groups of students in both formal and informal settings.  

THEORETICAL FRAMEWORK 
To conduct research in a space such as P2N means confronting the existing inequities 
in mathematics education; especially for students of color. These inequities can be 
interrogated using theories related to the development of mathematical identity 
(Bishop, 2011), situated learning theory (Lave & Wenger, 1991) and cultivating 
positive peer interactions (Walker & McCoy, 1997; Walker 2012). 

There is a myth that culture does not matter in mathematics teaching and learning 
(Nasir, 2013). This is troubling because many states continue to have large academic 
and opportunity gaps between students of color and white students (Barton & Coley, 
2010; Ladson-Billings, 2006). Paying attention to “issues of race and culture in the way 
we teach mathematics has incredible power to disrupt the troubling opportunity gap,” 
(Nasir, 2013, p. 13). We must acknowledge that such issues exist and address them. 
P2N inherently addresses issues of mathematics inequity while empowering students 
of color. 

Participation in formal mathematics classes has a profound effect on the development 
of one’s sense of self. The shaping of mathematical identity is a social construction 
(Boaler, 1997, 2002; Bishop, 2012) that is constantly evolving based upon narrative 
factors. These factors are often racialized narratives (Larnell, 2016; Nasir, 2013). 
Formal classroom settings perpetuate such narratives by placing students from 
underrepresented populations into remedial courses that make it nearly impossible to 
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advance. Students, in turn, begin to identify as being incapable and unable to perform 
academically. They are implicitly convinced that they are not capable of doing better. 
Students internalize these narratives and begin to have low self-worth even if they have 
the skill set or prior experience to show they can be successful. As Larnell (2016) 
describes, these “[deficit] identities intersect with already existing stories about other 
kinds of social identities” (p. 262).  

One approach to influencing the formation of mathematical identity is to cultivate 
positive peer relationships (Tate, 1994; Walker, 2012) through the use of learning 
communities. Lave and Wenger (1991) suggest using a situated learning model where 
learning occurs within social relationships. Positive encouragement from peers is an 
effective and motivating factor for student success (Walker & McCoy, 1997). 
Therefore, community participation is imperative when cultivating mathematical 
identity. 

Social factors and communication play a role in the shaping of mathematical identity 
(Bishop, 2012). Upon joining a community, students learn “in the margins.” As they 
become more comfortable and competent they begin to play a more centralized role 
within their group (Lave & Wenger, 1991). An additional factor in the formation of 
identity is the feeling of empowerment. Struggling students should be put in 
empowering roles and learning will increase (Lieberman, 2013).   

This research aims to observe how an informal mathematics space, comprised mostly 
of participants from underrepresented groups, gives participants an opportunity to 
engage academically and socially in a community centered around mathematics. 
Through program design, participants are placed into a situation that cultivates positive 
peer relationships with fluid roles. Our research questions are:  

How does participation in an informal mathematics learning space increase access to 
mathematics? How does an informal mathematics learning space combine tutoring and 
mentoring to alter underrepresented students’ mathematical identity? 

METHODOLOGY 
The methodology for this research is critical ethnography. Barton (2001) asserts that  

politicizing ethnography is a defining characteristic of critical ethnography because it is 
rooted in the belief that exposing, critiquing, and transforming inequalities associated with 
social structures and labeling devices (i.e., gender, race, and class) are consequential and 
fundamental dimensions of research and analysis (p. 906).  

P2N is an informal social structure that competes with the formal structure of 
schooling; mathematics classrooms, in particular. Formal mathematics classrooms are 
often seen as inequitable spaces (Gutstein, 2003; Larnell, 2016). The purpose of this 
research is to guide thinking toward equity and access for marginalized students. 
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Moreover, this research demonstrates how students learn to persevere which can alter 
their mathematical identities in both formal and informal settings.  

Communities at P2N meet as table groups named after underrepresented scholars in 
science or mathematics. (For example, one community is named “Katherine Johnson,” 
an African American mathematician known for her computation work for NASA.) 
Annually P2N serves approximately 30 eighth-grade participants, 60 eleventh-grade 
participants, with the help of 13 undergraduate tutors. Notably, most of the 
undergraduate tutors are STEM majors from underrepresented backgrounds. In order 
for students to see themselves as people who can excel in science and mathematics, 
they must see and know previous scholars who have succeeded in this way (Egalite & 
Kisida, 2018).  

Over the course of one academic year, four of thirteen learning communities were 
observed for this research. Field notes were recorded and then coded for emergent 
themes. Two interactions highlight how the program supports learning and shows the 
simultaneity of tutoring and mentoring. Additionally, they demonstrate the 
complexities of the role of mentutor in the building of relationship, accountability, and 
mathematical content. This research focuses on findings related to mathematics 
learning in informal spaces and the relationship between tutoring and mentoring. 

FINDINGS 
This research is important for several reasons: changes in student confidence, 
mathematical identity, building of trust, and social and economic implications. For this 
paper, however, we focus on the benefits of learning communities in informal learning 
spaces for supporting marginalized students. Noteworthy, both researchers have taught 
mathematics in formal classroom spaces. As such the discussion will compare and 
contrast the relationships and behaviors that form mathematical identities. 

“Hiding,” a formal classroom tactic, is not an option in P2N’s learning communities. 
Participants are held accountable by the members of their community. For example, 
four African American, eighth-grade students are members of the same community. 
Two of them, Marcus and Derrick, were sitting across from one another and together 
they were working on the same math problem. Marcus read aloud, “two x plus y is 
greater than four x minus three.” He grabbed his pencil and ruler and immediately 
started to write on his paper. Derrick looked at what Marcus was doing and then looked 
back at his own paper. He gently placed his pencil on the table. Marcus began to 
demand affirmation that he was solving the question correctly by pushing his page 
toward me while asking, “Like this? Right? Is this how I do it?” While Marcus was 
speaking, Derrick quietly sat there seemingly awaiting for the time to pass and for his 
mentutor, Vanessa, to walk away. Instead, Vanessa encouraged him to get started by 
asking Derrick some questions about the math problem on his paper. 
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Vanessa:  How do you think we should begin? [Derrick shrugged his shoulders.] What 
does this say? 

Derrick:  two x plus y…. [his speaking trailed off] 
Vanessa:  Do you know what you would do if there were an equal sign there rather 

than an inequality? 
Derrick:  I would move the two x. 
Vanessa:  How about if we go ahead and try that same thing? 
Derrick:  Okay. 

Derrick quietly set to work. He correctly manipulated the inequality to be 
able to graph (field notes, October 25, 2017). 

During this interaction, Marcus exhibited attention seeking behaviors. He was 
persistent and made sure to use his voice to get attention. He wanted to confirm that 
what he was doing was correct despite seemingly appearing to already know what he 
was doing. Derrick, however, is likely accustomed to being overlooked by his teacher 
in a formal space when other students begin to exhibit such behaviors. Classroom 
teachers, in contrast, are often presented with 30 students who all require time and 
attention. In an informal space and within a smaller community the ability to hide is 
much more difficult. Participants like Derrick are thus asked to confront problems that 
appear intimidating or that they would normally avoid. 

There are several examples of this type of behavior. At P2N, students who struggle are 
asked to persevere, sometimes gently as shown above and sometimes more directly as 
evidenced by an undergraduate tutor’s interaction with an eighth-grade African 
American student, Samuel, who is her mentutee. Roxanne, tutor, talks to her 
community members both as a mentor and as a tutor. She recognizes students who try 
to avoid their homework and encourages perseverance and hard work. 

Roxanne:  Excuse me sir, number nine right there [points to Samuel’s paper]. 
Samuel:  I need a calculator. 
Roxanne:  You don’t need a calculator. I’m sitting here thinking this boy is smart but 

you used a calculator. Use your brain… let me see what your brain can do. 
[Samuel pretends to work, but two minutes later has not done anything.] 
Are you stalling on purpose? 

Samuel:  No. 
Roxanne:  Use this pencil. Now you have no excuse. 

As this interaction comes to an end, the meal time begins. Community building is 
heightened during this time. Sharing a meal is an authentic way to allow for organic 
conversation and reflection. Participants connect with one another socially and are able 
to see their mentutors more as mentors and less as tutors. 
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The connection is evidenced through questions posed by two eleventh-grade female 
members of Roxanne’s community, April and Lola. For example, they ask her “Have 
you ever cheated on a test? and “Have you ever fought?” April and Lola likely ask 
these questions because they are related to situations they are facing in their lives. The 
questions are personal and show how Roxanne can maneuver between mathematical 
and mentoring discourse. Roxanne answers the questions authentically while 
remaining a role model. She then turns back to Samuel to check his progress and asks 
him to complete the problems before he eats dinner. She encourages him through the 
process, brings him his dinner and then praises his efforts after he is able to correctly 
finish the problem. 

Roxanne:  You’re not eating until you finish that problem.  I’m serious. [Samuel gives 
her look of surprise. And looks quickly down at his paper as if to begin.] 

Roxanne:  If you had done the rest of these problems with your brain instead of with 
your calculator then you would know. [Samuel is quiet. He looks to the 
ceiling then back at his paper then toward Roxanne repeatedly as he finishes 
the problem.] 

Roxanne:  Okay. That’s great work. I knew you could do it. [Samuel smiles.] Now, 
you’re going to pick two more of these, no you’re going to pick three, and 
do them without a calculator. [Roxanne and Samuel bargain over which 
questions he’ll do.] 

Samuel:  I can’t do them. 
Roxanne:  I am here to help you and show you. [Samuel shows hesitation with slow 

movement and avoiding eye contact with Roxanne.] Pick two. 

Eventually Samuel is able to solve two more problems with Roxanne’s guidance and 
encouragement. She holds him to a high standard, shows him that she believes in him 
and sits with him as he completes his work. Again, this is an example of an interaction 
that does not or cannot always happen in formal classrooms.  

DISCUSSION 
In this research report, a cascading, near-peer tutoring program is used to describe 
various ways in which community and identity can be formed around mathematics. An 
important component is the role of community for student growth and perseverance. 
The finding exists due to the profound use of community building and the ability for 
participants to engage culturally, emotionally and academically within this setting. 

There is a need for educators to be more reflexive in the field about critical pedagogies. 
Critical pedagogy is an education process that integrates issues of self-identity, history, 
power, and the possibility for collective agency and struggle (Johnson, 1995). Student 
confidence is strengthened at P2N. We suggest some of the reasons are use of student 
voice, tutor advocacy, and diversity. It is important to build partnerships between 
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schools and community programs that are based around academics for students to build 
positive identities around mathematics. 

Many of the students who participate in P2N are those who are not usually successful 
in formal classrooms. In an informal mathematics space like P2N, participants are 
empowered through the use of mentoring and tutoring. The strength of these identities 
and skills will hopefully transfer to their formal classrooms. As one participant 
describes bringing her ability to slow down and read through problems, acquired at 
P2N, into her formal mathematics classroom (field notes, December 12, 2017). There 
are powerful pedagogical suggestions for engaging students who are historically 
underrepresented. Students should be given many opportunities in both formal and 
informal learning spaces for peer (and better, near-peer) collaboration and 
communication. When participants end each tutoring session with “Math is hard...so is 
life… We accept the challenge!”, we believe them and the hope is that they carry the 
acceptance of that challenge into their formal learning spaces. 
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DYNAMIC GEOMETRY CONSTRUCTION:  
EXPLORATION OF REFLECTIONAL SYMMETRY THROUGH 

SPATIAL PROGRAMMING IN ELEMENTARY SCHOOL 
Victoria Guyevskey 

Simon Fraser University  
 

The goal of this paper is to explore the dynamic geometry environments (DGE) as a 
type of spatial computer programming language to learn geometry. Using classroom 
projects created by upper elementary students in Web Sketchpad (more specifically, 
closely following the construction process of a Leonardo da Vinci or mirror-writing 
machine by a team of two boys), I describe and analyse the computational thinking 
(CT) practices, which prominently came to the fore during the construction process, 
and show how these practices supported evolution of spatial reasoning and the 
learning of reflectional symmetry. 
With the new era of rapidly growing virtual environments in every area of our daily 
lives, it is only natural to attempt and harness this unexplored force with seemingly 
unlimited potential for the goodness of education. At the Math and Coding Symposium 
in 2015, Richard Noss suggested, “It is impossible to be a citizen of the 21st century 
and not have some idea of what it means to write a computer program, of what is means 
to build a mathematical model”. Kotsopoulos et al. (2016) underscored the benefits of 
integrating computational thinking (CT) and mathematics:  

When children write code, they come to (1) understand in a tangible way the abstractions 
that lie at the heart of mathematics, (2) dynamically model mathematics concepts and 
relationships, and (3) gain confidence in their own ability and agency as mathematics 
learners. (p. 1) 

COMPUTATIONAL THINKING AND MATHEMATICS 
Wing (2006) defined CT as “an approach to solving problems, designing systems, and 
understanding human behaviour that draws on concepts fundamental to computing” (p. 
34). Among the plethora of CT definitions available today (e.g. see Weintrop et al., 
2016; CSTA & ISTE, 2011), the frameworks of Hoyles and Noss (2015) and Brennan 
and Resnick (2012) were found helpful in analysing DGE-based programming. Hoyles 
and Noss defined CT as entailing abstraction, algorithmic thinking, decomposition, and 
pattern recognition. Similarly, but with a slightly different focus, Brennan and Resnick 
defined CT as involving three key dimensions: concepts, practices and perspectives. 
Within practices, Brennan and Resnick identified four main sets: being incremental 
and iterative, testing and debugging, reusing and remixing, and abstracting and 
modularizing. It is specifically the group of practices that is of main interest to me - 
due to its potential to help explain DGE programming live.  
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SPATIAL PROGRAMMING 
Jackiw and Finzer (1993) studied the potential of a DGE as a problem-solving domain, 
one which involved exploration of the process of expressing geometric relationships 
visually and by demonstration. They developed a notion of ‘spatial programming’, 
which they defined as “visual identity between a program and its output” (p. 295). They 
found that, in DGEs, there was no distinction between the geometric content domain 
and the spatial programming domain; students using it encountered programming as 
the central activity. “The distinction between programmer and user disappears; the two 
coalesce into one – the student” (p. 294). They also argue that, “Constructing a sketch 
in GSP [The Geometer’s Sketchpad] is programming, in the straightforward sense of 
building a functional system which maps input to output. The unconstrained elements 
of the sketch […] constitute the program's inputs or parameters. The relationships 
between parts of the sketch […] correspond to a program's production statements. In 
GSP’s case, the semantics of the production language are governed by traditional 
Euclidean constructions” (p. 295). They further state that a program’s structure and its 
output are isomorphic, and that by manipulating the program’s inputs, the student 
generated further output, meaning that manipulating is performed in the same domain 
as constructing the initial sketch.  
Sinclair and Patterson (2018) argued that Sketchpad (Jackiw, 2012) can be an effective 
geometric computer programming language in the context of complex high school 
tasks: “In such a ‘language’, the forms of expression would be less linguistic or 
numerical and more geometric or spatial”, the authors explained. After analysing 
finished DGE sketches created by high-school students in Belgium, they concluded 
that many CT practices associated with the use of propositional programming 
languages were also featured in the more spatial and temporal register of the geometric 
language of DGEs. While their analysis was focused on already-made sketches, I am 
interested in observing the construction process live in hope that it will provide 
additional insight into the phenomenon of using DGEs as CT tools that support learning 
of geometry. My research questions are: What kind of programming might be involved 
in an elementary school construction task? How does this programming support 
learning of geometry? 
METHOD 
The project described in this paper took place in a Grade 6/7 classroom in the spring in 
a high-density, affluent neighbourhood elementary school in Canada. Students 
participating in the project had been exploring geometry with a DGE using iPads for 
approximately one hour per week since the beginning of the school year. Two 
researchers led the project. We employed a team-teaching model, with one of us always 
being engaged with the whole class, or a small group, or individual students. Isometric 
transformations were selected as the content backdrop for these explorations, as they 
are part of the provincial curriculum for this grade level (though are usually presented 
through co-ordinates). From the topic of transformations, a sub-topic of reflection was 
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chosen as a starting point, with the hope that the concept of reflectional symmetry could 
offer a low-floor entry into the world of transformations.  
The first lesson was introductory and ‘unplugged’: Students verbally created 
definitions of transformations based on knowledge from previous years. The second 
lesson involved an introduction of the concepts of symmetry and reflection, while the 
third and fourth lessons revolved around students working with reflectional symmetry. 
Following this, the students were told Leonardo da Vinci’s story, shown a picture of 
the mirror-writing machine that he designed to encode his writings, and then were 
invited to create such a machine using a Basic Geometric Tools websketch 
(BGTWSP:http://www.sfu.ca/content/dam/sfu/geometry4yl/sketchpadfiles/BasicGeo
metryTools/index.html. ). The researchers suggested that they start by placing a point 
(for the ‘pen’) and a segment (for the ‘mirror’) as a possible first step. The Continuous 
symmetry sketch was the ‘black box’, whose code the students had to uncover. 
In this paper, I examine the work of one pair of students, Danny and Dexter, as they 
created their construction of a mirror-writing machine. They were good friends and, 
since the beginning of the year, both were very keen on working with Web Sketchpad. 
The boys worked together for approximately fifteen minutes during each of two 
sessions that were one week apart. At the end of the first session, they reached a partial 
solution and, by the end of the second session, they were finally able to carry out a 
workable procedure to their own and the researchers’ satisfaction, creating a machine 
“that can write stuff backwards”.  
This teamwork was documented via audio recording and a screen capture tool, and 
later transcribed and analysed for the presence of prominent computational thinking 
practices identified by Brennan and Resnick (2012), and Hoyles and Noss (2015). 
Along with myself (the classroom teacher), the boys worked in a small office adjacent 
to the main classroom, so as to make clear audio-recording possible. I was mainly 
observing, but occasionally offered suggestions and scaffolds, especially during the 
‘being stuck’ phases.  
MIRROR MACHINES 
During the construction process, the team had multiple restarts: the boys tried to start 
with intersecting two circles, using one circle with a semi-diameter, using two 
perpendicular lines, or adding triangles, but they had not been yet successful in creating 
a mirror-writing machine, getting either a translation as a result or no transformation 
at all. Only twelve restarts later, the boys were able to construct a mirror-writing 
machine and write the word “Hi” to their sheer delight (see some transitional sketches 
in Figure 1). 
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Figure 1: Various sketches 

There are only two possible ways to build a mirror-writing machine: using two circles 
or using a circle and a perpendicular line. Neither of these starters suggested by the 
researchers appealed to the pair, and they followed their own course. There were two 
major pivots during the construction process, which seemed to indicate a breakthrough 
in the boys’ spatial understanding of reflectional symmetry, and I will now highlight 
both of them. 
Pivot 1 
After the fourth restart, some five minutes into the session, Dexter constructed two 
parallel lines, each running through the two centres of the circles, one small and one 
large. He added tracers to the centres of two smaller circles and attempted writing with 
the right tracer, but no transformation happened. Danny took over and added tracers to 
the intersections of the larger circles. He dragged the pen around, but his letter L now 
had the angle of rotation at 60˚. The boys silently watched the action. Then the first 
disagreement happened: 

Dexter: Try making an L. 
Danny: No, it does the same thing. 
Dexter: No, look at this one. [Dexter took over and tried to draw an L.] See, this one. 
Danny: Yeah, but it’s not backwards, it’s just a different angle. 
Dexter: Oh yeah, but it’s close. It’s closer. 
Danny: No, it’s not. 
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Figure 2: Rotations of the letter ‘L’ 
The boys could not yet see that if they added another 60-degree rotation increment, 
their ‘L’ would be a 180˚ rotation, which would make it upside down, and they would 
have an upside-down, mirror-writing machine (Figure 2). Danny saw the same shape 
even after a 120˚ rotation, but Dexter thought it was different enough to be considered 
‘closer’ to mirror writing. It is not too early to mention that this was the first significant 
step towards reflectional symmetry: The boys began using their spatial reasoning skills 
and contemplating what degree of an angle constitutes a reflection.  
Pivot 2 
After several unsuccessful attempts that began with the segment–point starter, the team 
abandoned the suggested starter yet again and constructed a circle with a segment for 
the near-diameter, adding tracers to the end-points of that segment. When the circle 
dilated, the tracers drew a mirrored line (Figure 3). 

Danny: Yeah, see, if you spread the circle, it goes different ways. That’s it. 
Dexter: But then we need another circle. 
Danny: Why? It works. 

Danny’s emphatic “That’s it” did not convince Dexter, who kept testing the 
construction. He was able to drag the entire circle without dilating it, so the tracers 
were translating rather than reflecting; Dexter then shrank the circle and the line was 
reflected again. He saw the limitations of Danny’s construction, but Danny was so 
excited seemingly to have found a solution, that he did not notice that the reflection 
turned back into the translation until later, when he had a chance to watch the video of 
it. This was the second major turning point, when the boys were seemingly beginning 
to realise that simply moving the tracers in the opposite direction was not enough and 
the relational movement of the two circles was needed. They demonstrated further 
development of their spatial reasoning skills. 
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Figure 3: “That’s it!” … or is it? 
ANALYSIS AND DISCUSSION 
Upcoming analysis of the data described above will demonstrate that CT practices such 
as testing and debugging, and abstraction were prominent in the construction process. 
Testing and debugging 
According to Brennan and Resnick (2012), testing and debugging practices emerge 
when there is a breakdown in code. Most practices they described were developed 
through trial and error, transferred from other tasks or initiated by knowledgeable 
others. Sinclair and Patterson (2018) also found that breakdowns in the behaviour of 
the constructions were the primary source of debugging. Students had to determine 
why the relationships among objects were compromised under motion: “Such 
breakdowns can be seen as bugs if we consider them to be wrongly expressed 
relationships between the different objects in the sketch” (p. 69). 
In the case of Danny and Dexter, testing and debugging was the most frequent practice 
observed. Both boys were relatively new to using GSP, being in their first year of its 
usage. However, by now, they had become comfortable interlocking two circles – 
circles intersecting each other’s centres – for various purposes (e.g. to construct 
perpendicular lines, congruent segments and regular polygons). Interestingly, 
debugging did not happen within this context. However, using less frequently explored 
widgets, like adding a perpendicular line or constructing a three-circles design, often 
resulted in soft constructions with variable angles, causing spatial relationships to be 
affected in undesirable ways and forcing the boys to debug.  
Jackiw and Finzer (1993) commented: “In the programming of a sketch, a bug may be 
considered as an inaccurately or insufficiently expressed relationship between two or 
more objects. Bugs occur most frequently with novice GSP students, who readily arrive 
at a drawing of what they want, only to have the desired relationships between objects 
disappear when they drag a free node” (p. 303). One of the benefits of constructing in 
a DGE is access to immediate visual feedback: breakdown in code could be seen 
immediately as the boys dragged the design which would not behave in the desired 
way. They would take a couple of seconds to ponder and then start over. Instead of 
having to fix the alphanumeric code first, they would make adjustments right there in 
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the sketch. That saved a lot of time and after twelve debugging attempts they eventually 
reached the correct design. 
Abstraction 
Hoyles and Noss (2015) defined abstraction as “seeing a problem and solution at 
different levels of detail”. When Dexter and Danny were designing a procedure for the 
mirror-writing machine, there was abstraction involved, in that they had to see the 
relationship between the writing pen and the movement and position of the circle as 
well as how that circle related to the other circle or the line perpendicular to the line of 
symmetry. When the boys first encountered the finished model of the mirror-writing 
machine, it looked like two symmetric points of different colours, and there were no 
geometric objects visible, so it was difficult – if not, at that point, impossible – for them 
to see the relationship between the objects that the inner mechanism of the machine 
was comprised of and that the writing the pen was producing. However, a couple of 
pieces of the puzzle were in place from the very beginning by mere presentation of the 
finished product of the mirror-writing machine, which did not reveal the mechanisms, 
but vividly demonstrated what the machine was capable of. This ‘black box’ 
experience was very important in helping the boys understand the behaviour they had 
to model: They already knew that movement had to be symmetric, but it was not at all 
obvious to them what the relation between the two points was. 
This relationship was becoming more palpable, as the boys observed the mirrored pen 
in action: It either remained static or it would follow its own trajectory, or it would 
translate or rotate the shape produced by the main pen. At first, they heavily relied on 
intuition. At one point, for example, Dexter referred to the perpendicular widget as, 
“maybe we could use this somehow, ‘cause it has the right angle tool”, not being quite 
sure why he would want the right angle. Another time, after having written another 
translation, Dexter remarked, “It doesn’t work, because there are no circles moving up 
and down”. Even though the up-and-down movement is not enough to produce a string 
of letters – the relational dilation of the two circles was required – it was nevertheless 
a solid step towards being able to abstract. From all this, the boys painstakingly 
extrapolated the intricate and complex relationships among the objects involved: That 
mirrored writing meant to have a point on the opposite side, that circles had to be 
connected but not locked, that the perpendicular line needed to move up and down, or 
that there had to be a line of symmetry that would anchor the entire machine.  
Also, their reasoning was slowly becoming more grounded (e.g., “dot will have to go 
to the other side, since it will be backwards”, or “if you spread the circle, writing goes 
in different ways” or “the lines would have to be in different ways”). Even though the 
boys did not rely on the use of proper CT or mathematical terminology, their ability to 
abstract was evident from their gestures and their on-screen behaviour. This ability did 
not necessarily transfer into full understanding of the geometric relationships, but the 
above utterances indicated that many pieces of the puzzle were already in place.  
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CONCLUSION 
In this paper, I focused on the process of construction in a DGE, hoping that it would 
provide additional insight into the phenomenon of using DGEs as CT tools that support 
spatial reasoning. I also carried out analysis of the CT live and demonstrated what kind 
of programming might be involved in an elementary school construction task. The 
process of debugging was very salient in this example, yielding twelve attempts with 
various tools and various configurations. The boys were able to test out directly 
whether the construction worked, and they could get visual feedback of what they 
constructed. The available tools of the Web sketchpad were providing hints for the 
boys of the kinds of things they could try, and they were responding to those tools more 
than to the researchers. In order to crack the ‘black box’ code and get access to the 
hidden geometric relations of reflectional symmetry, the boys needed to develop the 
ability to abstract. This they managed to do through extensive testing and debugging. 
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LEARNERS’ MATHEMATICAL MINDSETS AND ACHIEVEMENT 
Lovejoy Comfort Gweshe, Karin Brodie 

University of the Witwatersrand 
 

This study seeks to contribute to understandings of high performers’ mathematical 
mindsets. Two high performers, with a growth and a fixed mindset were purposively 
selected for interviews and their responses analysed using thematic analysis. The 
findings show some relationship between mathematical mindsets and achievement. A 
relationship between agency and mathematical mindsets is suggested. Learners’ 
experiences within communities that practice mathematics, and what family members, 
peers and teachers said about mathematics and about the learners, influenced learner 
agency. 
INTRODUCTION 
Beliefs about personal attributes, such as intelligence, define an individual’s mindset 
(Dweck, 2016). Mathematical mindsets are defined as beliefs about mathematical 
intelligence (Boaler, 2013). Two main groups of learners can be distinguished, those 
with a growth and those with a fixed mindset (Dweck, 2016). Learners with a growth 
mindset believe that mathematical intelligence can be developed through effort, and 
therefore is malleable (Dweck, 2016; Boaler, 2013). Learners with a fixed mindset 
believe that they were born with a level of mathematical intelligence which cannot be 
changed by hard work (Dweck, 2016; Boaler, 2013). A growth mindset is characterised 
by viewing mistakes and persevering on challenging problems as opportunities to learn 
and develop intelligence (Boaler, 2013; Dweck, 2010b). Avoiding mistakes and 
challenges are aspects of a fixed mindset (Yeager & Dweck, 2012; Matthews & 
Folsom, 2008).  

Memnun, Hart and Akkaya (2012) define beliefs as personal views constructed by past 
experience. Given that mathematical mindsets are beliefs, we postulate that negative 
mathematical experiences may influence the construction of a fixed mindset. Graven 
(2015) is concerned that many South African learners have negative mathematical 
experiences contributing to low performance in mathematics. Another concern in 
South Africa is that more learners are choosing not to do mathematics instead opting 
for mathematical literacy, which is believed to be less challenging (Spaull, 2013). 
Matthews and Folsom (2008) argue that having a fixed mindset may be seen by 
choosing courses that a person believes are less challenging and therefore can do well 
on. 

Some researchers argue that learners who receive growth mindset messages are likely 
to significantly outperform those who do not (Dweck, 2010a). Appreciating that 
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challenges are part of learning and can be overcome with effort i.e. holding a growth 
mindset, is viewed as important for success in school and in life (Yeager & Dweck, 
2012). High performers can also improve their achievement by engaging in tasks that 
are challenging to them (Dweck, 2010b). There is however some controversy 
surrounding the relationship between mathematical mindsets and achievement, with a 
weak relationship found by some researchers (e.g. Sisk, Burgoyne, Sun, Butler & 
Macnamara, 2018). This paper seeks to address the following questions: 

1) Which factors are related to high performers’ mathematical mindsets? 
2) Are high performers’ mathematical mindsets and achievement related to each 

other? 
LITERATURE REVIEW 

It is known that some high performers hold a fixed mindset. Dweck (2010a) found that 
high performers holding a fixed mindset were likely not to perform well in the future 
while those with a growth mindset were likely to improve. Dweck (2011; 2010b) 
argues that “even geniuses have to work hard” and be given opportunities to persevere 
on challenging problems for them to develop their abilities, citing Einstein as an 
example. Dweck adds that developing the intelligence of high performers to become 
better than they already are is important. Hwang, Reyes and Eccles (2016) however 
argue that holding “a fixed mindset does not necessarily predict low performance for 
relatively high achieving students” (p.16). 

Claro and Loeb (2017) compared about 125 000 learners, with the same prior 
achievement, some with a growth and others a fixed mindset, and found that after one 
year learners with a growth mindset had mathematics test scores about 0.04 standard 
deviations higher whereas the test scores of learners with a fixed mindset were about 2 
standard deviations lower. Dweck (2007) followed learners who were doing 
challenging mathematics courses and experiencing the challenge of moving from a 
lower grade to a higher grade and found that despite having similar skills and 
knowledge, learners with a growth mindset outperformed those with a fixed mindset. 
Anderson, Boaler and Dieckmann (2018) found that changing learners’ mathematical 
mindsets influenced increases in achievement of about 0.1 standard deviations.  

There is general consensus that teachers have the ability to influence how learners 
construct their mathematical mindsets. Changing teachers’ mathematical mindsets and 
teaching practices, and encouraging learners to value mistakes and persevere on 
challenging problems have been shown to influence learners’ mathematical mindset 
shifts from fixed to growth mindsets (Anderson et al., 2018). Yeager and Dweck (2012) 
argue that what teachers and parents say can influence how learners construct their 
mindsets. Studies focusing on peers and family members contributing to learners’ 
mathematical mindset construction are however limited. 
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THEORETICAL FRAMEWORK 

The current study is guided by Dweck and Boaler’s theories of mindset and 
mathematical mindset respectively, Wenger’s (1998) theory of communities of 
practice, and a theory of human agency (Mercer, 2011). A sense of agency is defined 
as understanding the choices that one has (Mercer, 2011). Exercising agency is 
expressing chosen choices in action, some of which may be imposed (Mercer, 2011). 
Agency and mathematical mindset are related to each other in that depending on how 
a learner exercises his/her agency, an existing mindset may be transformed. Mediated 
by agency, a learner’s mathematical mindset may influence achievement, and 
achievement may influence mindset.  

Wenger (1998) argues that social participation shapes our interpretation of the world 
and our actions. As learners interact with members of communities that practice 
mathematics they go through experiences that influence their views of mathematics, 
which may be related to their mathematical mindsets and achievement. A learner’s 
mathematical mindset and the mindsets of teachers, peers and family members may 
influence each other. The academic performance of peers may influence how a learner 
constructs his/her mathematical mindset, including whether or not to persevere with 
mathematics. A learner’s performance may influence how others choose to see the 
learner, in turn influencing how the learner constructs his/her mathematical mindset.  

METHODOLOGY 

A conveniently located school serving a community with children of low socio-
economic status was selected. Fifty seven grade 10 learners volunteered to take part in 
the study. The learners responded to a mathematical mindset questionnaire and allowed 
us to access their grade 9 average mathematics test scores, which ranged from 77% to 
15%. We purposively selected eight learners with a range of scores and mindsets to 
respond to an interview on mathematical mindset. In this paper we report on the two 
highest performers’ interview responses, one with a growth and the other a fixed 
mindset.    
Some of the interview questions were adapted from previous studies (e.g. Darragh, 
2015). We had asked the same questions when we carried out a pilot study and made 
some changes e.g. replacing words and phrases that learners seemed not to understand. 
Learners were requested to be honest as they responded to the questions. Deductive 
and inductive approaches to thematic analysis were carried out. Themes already 
classified as relevant in relation to our study topic, theoretical framework and the 
literature, such as agency, teacher pedagogy, what parents and peers say and 
perseverance were coded. We also coded for responses that were not apparent in the 
literature but came up in the data, for example: views of classwork. The categories that 
will be discussed in this paper are: views of mathematics; what others say; and 
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achievement. Views of mathematics are opinions about mathematics, some of which 
are related to experiences within communities that practice mathematics. What others 
say incorporates what teachers, peers and family members say about mathematics and 
the learner. Achievement is the learner’s academic performance based on test scores, 
and we also show how the learners view achievement as part of their mindsets.  

FINDINGS 

The interviews showed that views of mathematics, acquired through interaction with 
the teacher, peers and family members, and what others say about the learner and 
mathematics are related to agency, which is related to mathematical mindset. When 
learners explained how they felt about what others said about them and about 
mathematics, a relationship between agency and mathematical mindset was suggested. 
Besides mathematical mindset, getting good grades and a good paying job appeared to 
be related to achievement. The influence of achievement on mathematical mindset 
could not be clearly established, probably because the interview questions were not 
specific enough. Views of classwork and not understanding what mathematics is, 
appeared to be related to mathematical mindset. 
Ben  
Most of Ben’s (pseudonym) responses suggest aspects of a growth mindset, with a few 
aspects of a fixed mindset evident. The interview shows that Ben has a largely growth 
mindset, which is evident through his views of mathematics, what others say and how 
he views his achievement. 

Views of mathematics: 

Ben understands that mathematics involves creativity, illustrating an aspect of a growth 
mindset (Anderson et al., 2018). However, the way in which he is taught mathematics 
in class influences a belief that mathematics is not useful: 

It’s [math is] useful except for doing classwork. Outside you see many things that need 
mathematical formulas. Math makes me notice new and easy ways to solve matters, most 
of the time I come up with my own methods. 

Ben understands the importance of making mistakes (Boaler, 2013). He believes that 
memorising rules is not a sign of being good at mathematics, suggesting a belief in 
depth in learning mathematics (Anderson et al., 2018), and that people are not born 
good at mathematics (Darragh, 2015), showing additional aspects of a growth mindset. 
A relationship between experience and Ben’s views of mathematics is suggested:  

When you have not done a mistake you will not learn how to do things perfectly. Mistakes 
help you to see the wrong things that you were doing. 
You can memorise the [math] rules but if you can’t use them in the correct manner you 
may not get the correct answer. 
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No [people are not born good at math], because I started being great in math in grade 8. 

What others say:  

What Ben’s family says seems related to his sense of agency and some aspects of a 
fixed mindset. The importance of agency in mathematical mindset construction is 
shown when Ben describes how he feels about what his family said but still chose to 
continue with mathematics. Ben’s performance seems related to what his family says 
about him, which is related to his agency and mathematical mindset:  

They [family] don’t have enough support. That makes me think that all I’m doing is 
useless. They are not used to encouraging me, last year they said I must do math lit 
[mathematical literacy] because math was difficult for me. 

When his peers say that mathematics is difficult, Ben chooses not to be influenced by 
them, illustrating how he exercises his agency. Ben believes that there is a relationship 
between not understanding what mathematics is, and aspects of a fixed mindset:  

They [peers] say it’s [math is] difficult. I see that they don’t understand what they are 
saying and what math is. 

Achievement: 

When Ben talks about the time when he liked mathematics, a relationship between 
teacher pedagogy, agency, some aspects of a growth mindset and achievement is 
suggested. The importance of past experience and depth in learning mathematics is 
evident:  

I started liking math in grade 8. There was a teacher who showed us small things that we 
didn’t notice in math, I was amazed…it was fun. It [performance] rose. 

Ben sometimes reveals aspects of a fixed mindset which seem related to teacher 
pedagogy. However Ben perseveres in order to get good grades, illustrating a 
relationship between getting good grades, his agency and perseverance, despite having 
some aspects of a fixed mindset. A relationship between experience and mathematical 
mindset is suggested:  

The teacher that was teaching me math was very strict, I disliked the teacher and that made 
me to dislike the subject…I just wanted to pass so I worked hard and passed. 

Cindy 
Cindy’s (pseudonym) interview responses suggest more aspects of a fixed mindset than 
a growth mindset. Cindy constantly talks about mathematics as being “difficult” but 
useful for “making a living”, and she feels as if she has no choice but to do mathematics 
if she wants to be successful.  
Views of mathematics: 

Cindy does not talk about mathematics having other uses besides for getting a good 
paying job. Her sense of agency and perseverance appear related to getting a good 



Gweshe & Brodie 

PME 43 – 2019                                                                                                      2 -  317 

paying job despite her showing some aspects of a fixed mindset. A relationship 
between experience and Cindy’s views of mathematics is suggested:  

Interviewer: If math was not needed in a job that you wanted would you still do it? 
Cindy: Not really, if it’s not needed I can do it but I won’t focus on it, I will focus 

on the job that I want to do. 
 I think that math is a very difficult subject but if you…try by all means to 

practice you can go somewhere. It [math] is useful because you can make 
a living out of it, you can’t go anywhere without math. 

Cindy believes that memorising rules is a sign of being good at mathematics but does 
not believe that people are born good at mathematics suggesting that she incorporates 
some aspects of a growth mindset and some of a fixed mindset. She seems to value 
mistakes and doing challenging problems, suggesting some aspects of a growth 
mindset (Boaler, 2013): 

I can say so [memorising rules is a sign of being good at math], because you need to apply 
such rules when you want to pass math.  
[Making mistakes]…may be because I followed the wrong method or I jumped some steps 
when doing a sum, it’s also all about not focusing. 
It does help [doing hard problems] because you can be used to such problems.  

What others say: 

When Cindy talks about how her peers make her feel, a relationship between what 
peers say, agency and mathematical mindset is suggested. What the teacher says, and 
a need to get a good paying job seem to be interrelated with Cindy’s sense of agency 
and how she constructs some aspects of a fixed mindset. Cindy seems to feel as if 
identifying with mathematics is an imposed choice (Mercer, 2011):  

They [peers] say math is difficult and it’s just a waste of time. It affects me to listen to 
them and have that belief that math can really be difficult. 
He [teacher] says I need to do my best and try…he assists me. It makes me think I can 
make a living out of math and if I don’t love math I won’t go anywhere. 

Achievement: 

When Cindy talks about the times when she liked and did not like mathematics a 
relationship between her experiences and mathematical mindset, and that of mindset 
and achievement are suggested. Cindy seems not to like doing new and challenging 
problems suggesting an aspect of a fixed mindset, and there seems to be a change in 
achievement, over time, related to mathematical mindset (Claro & Loeb, 2017):  

In grade 9 [she liked math], because we were doing interesting topics. I was really getting 
high marks. 
This year [she did not like math], they are introducing us to many topics that we have not 
done before and it’s really challenging. It’s [performance] average, it’s not like last year. 
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DISCUSSION AND CONCLUSION 
As learners interact with their teacher, peers and family members while talking about 
and doing mathematics they construct mathematical mindsets which to some extent 
appear related to achievement. A learner’s sense of agency and how the learner 
exercises it is related to mathematical mindset and achievement. Experience and what 
others say about the learner and mathematics, including their mathematical mindsets, 
are related to how a learner exercises his/her agency. Teacher pedagogy is related to 
agency which is related to mathematical mindsets, which in turn appear related to 
achievement.  

In this study, both high performers have some aspects of a growth and fixed mindset. 
Ben has a largely growth mindset while Cindy has a somewhat fixed mindset 
suggesting that some high performers can construct a fixed mindset. The finding that 
Cindy has a somewhat fixed mindset and feels that her academic performance is 
decreasing when she compares her grade 9 and 10 performances, suggests that high 
performers with a fixed mindset are likely not to perform well in the future (Dweck, 
2010a). The time when Cindy liked mathematics her performance was good but when 
she did not like mathematics her performance was not good, supporting Anderson et 
al.’s (2018) argument that mathematical mindsets are related to achievement. However 
when Ben liked or did not like mathematics his performance was still good.   

Ben believes that not understanding what mathematics is, is related to aspects of a fixed 
mindset. Anderson et al. (2018) argue that a strategy for changing learners’ 
mathematical mindsets may be to assist them in redefining mathematics as “a product 
of student thinking and purposeful struggle” (p.15). Even though Ben believes that 
mathematics is useful in life, he appears not to believe that the way mathematics is 
taught in class shows its use in real life, influencing how learners construct their 
mathematical mindsets.  
As suggested in the current study, some learners with a fixed mindset may be high 
performers likely to avoid new and challenging topics they encounter in higher grades, 
leading to a decrease in achievement (Claro & Loeb, 2017; Dweck, 2007). Some 
researchers argue that high performers can also improve their achievement in school 
and in life through persevering on challenging problems (Yeager & Dweck, 2012). 
Studies focusing on the mathematical mindsets of high performers, such as the current 
study, should therefore be considered important (Dweck, 2011).  
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PROGRAMS IN UNIVERSITY MATHEMATICS DEPARTMENTS 
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1Monash University, 2University of Melbourne 

 

Examining undergraduate student experiences through a gendered lens provides 
insight into the gender gap in participation in university-level mathematics. In this 
paper, we report on findings from a comparative case study involving first- and third-
year undergraduate students at two large Australian universities. From individual 
interviews with 23 undergraduate students, we found that students’ experience 
increasingly gendered interactions as they progress through their tertiary studies. In 
particular, the women participants recounted times where their gender had affected 
their treatment in university and described how perceptions of gender stereotypes 
changed the ways in which they interacted with others in their undergraduate 
mathematics studies. 
INTRODUCTION 
In many countries, concerns have been raised regarding the lack of participation of 
students in STEM (science, technology, engineering, and mathematics) fields at the 
university level due a shortage of skilled professionals to meet the needs of a world 
that is “becoming increasingly technological and significantly more mathematical” 
(Australian Academy of Science [AAS], 2016, p. 37). In Australia, a very small 
proportion (0.4%) of students enrolling in tertiary education plan to pursue degrees in 
the mathematical sciences (AAS, 2016). Consequently, several government and 
scientific organizations have stressed the need for increased participation in the 
mathematical sciences at the tertiary level (AAS, 2016; Australian Mathematical 
Sciences Institute [AMSI], 2017). Additionally, women remain a minority of students 
in university programs in the mathematical sciences, and women’s proportion of the 
enrolments has declined in recent years (AAS, 2016; AMSI, 2017; Johnston, 2015). 
Tertiary mathematics education is an expanding field of research, and experts in the 
field (Coupland, Dunn, Galligan, Oates, & Trenholm, 2016) suggest that research is 
needed about students’ experiences, since much of the existing research has focused 
on the teaching and learning of specific mathematical topics. In particular, there is a 
paucity of research conducted in Australia on the lack of participation, particularly by 
women and gender minorities, in undergraduate mathematics degree programs. 
Gender is a social construct, and the ways that students experience mathematics vary 
due to the gendered constructs placed on mathematical knowledge (i.e., a “hard” 
discipline associated with men’s knowledge and abilities (see Ernest, 1998). Therefore, 
understanding how students of all genders experience tertiary mathematics is crucial 
in deconstructing this kind of gendered knowledge. The gendering of mathematics has 
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long had impacts on the participation of women in the field (Correll, 2001), and there 
is evidence that gender bias continues to be a factor that discourages women from 
staying in the field (Ganley, George, Cimpian, & Makowski, 2018). However, it should 
be noted that participation alone does not constitute “successful” retention, as women 
may be at risk of significant anxiety due to internal and external pressures to remain in 
the field of mathematics (Hall & Suurtamm, 2018). 
Here, we report on an ongoing study in which we address issues of gendered student 
experience in undergraduate mathematics degree programs, via a multimodal 
methodology, photovoice, combined with individual interviews. 
THEORETICAL FRAMEWORK 
This study is framed by a feminist and social constructivist epistemological stance 
(e.g., Butler, 1999; Fosnot, 2005). We view knowledge as a human construction that is 
gendered and culturally, socially, and historically situated. Furthermore, we view 
disciplinary knowledge of mathematics, as well as views of mathematics and 
mathematicians, as socially constructed, gendered, and linked to the specificities of 
time and place. With regard to the context of the study, we apply this lens to the 
students’ experiences in mathematics degree programs by viewing their learning as 
“both a process of active individual construction and a process of enculturation into the 
mathematical practices of the wider society” (Cobb, 1994, p. 13). 
In interpreting this study’s contributions to the broader understanding of student 
participation in mathematics, we have adopted the socio-cultural perspective outlined 
by Piatek-Jimenez (2015), whereby we interpret students’ participation (or lack 
thereof) in mathematics as a choice. Hence, we consider the students in our study to 
have agency in their educational and vocational journeys and to have made an active 
choice to study mathematics. Our findings provide insight into how students’ university 
experiences have influenced their decisions to remain in the field and increase 
understanding of what is happening at the undergraduate level that may be contributing 
to the attrition of potential mathematics students in the Australian context. 
METHODOLOGY 
In the following sections, we provide an overview of the study’s methodology, namely 
comparative case study and photovoice. Then, we discuss the data collection, 
participants, and analysis methods. 
Comparative Case Study 
As a case study, our research involves “the study of an issue explored through one or 
more cases within a bounded system (i.e., a setting, a context)” (Creswell, 2007, p. 73). 
According to Stake’s conception (1995, 2005), our research project is an instrumental 
case study, as we are focusing on a broader issue, of which the case is representative, 
and a collective case study, as it is an instrumental case study extended to several cases, 
also known as multiple case study design. The broader issue is the differential 
experiences and participation by gender and year level in studying university 
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mathematics, as illustrated by the cases of the first- and third-year students at each 
institution. To investigate this issue, we are collecting data using a modified version of 
photovoice methodology (Wang & Burris, 1997). 
Photovoice 
Photovoice involves participants taking photographs that are relevant to their lives in 
order to “promote critical dialogue and knowledge about important community issues 
through large and small group discussion of photographs” (Wang & Burris, 1997, p. 
370), with the goal of reaching policymakers. Photovoice is highly accessible to 
marginalised groups, such as women in mathematics, and promotes agency and action 
within these marginalised groups (Wang & Burris, 1997). Hence, this method served 
as a conduit to empower the local communities at the participating institutions to 
address inequities in their experiences and highlight the strengths of their respective 
mathematics programs. As a consequence, our findings provide rich insight into the 
gendered experiences of students in university-level mathematics programs and 
identify elements of student experience that support or hinder access to mathematics.  
We are using a modified version of photovoice, beginning with individual semi-
structured interviews about each participant’s educational experiences. Then, per the 
photovoice process (Wang & Burris, 1997), the participant takes photographs to 
represent the supportive and challenging aspects of the mathematics department. In 
focus group interviews, participants discuss the photographs. Photographs can focus 
and encourage discussion, as well as provide a different mode in which participants 
can express themselves (Whitfield & Meyer, 2005). Supported by the interview 
facilitator, participants discuss themes that they see across the photographs. 
Data Collection and Participants 
We have data from three sources – individual interviews, focus group interviews, and 
photographs – with the latter two intertwined. The individual interviews were audio-
recorded, the focus group interviews were video-recorded, and the photographs were 
provided electronically for further analysis. These multiple data sources allow for 
triangulation, wherein “various strands of data are braided together to promote a greater 
understanding of the case” (Baxter & Jack, 2008, p. 554). 
Data were collected from two comparable, prestigious Australian universities (herein 
referred to as University X and University Y), both with large mathematics 
departments. Data collection will be completed by February of 2019 (i.e., before the 
new academic year commences). In Table 1, we provide information about the 
participants to date. These participants have all completed individual interviews and 
are in the midst of undertaking the photovoice process. 
We view gender as a non-binary social construct, so we asked each participant to 
identify their own gender at the beginning of each individual interview as part of a set 
of demographic questions. In so doing, our study was reflective of all genders. 
However, participants only gave responses within binary categories, so we have 
organised our findings to be split as “women” and “men” to reflect these responses.  
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 Number of first-year 
participants 

Number of third-year 
participants 

Institution Men Women Total Men Women Total 
University X 3 5 8 2 3 5 
University Y 4 2 6 1 3 4 

Total 7 7 14 3 6 9 

Table 1: Participant information by year level and gender. 
Three focus groups have been completed, with one consisting of first-year students and 
two consisting of third-year students. We divided students into focus groups with three 
participants each, as this group size provided space for all participants to share their 
photographs and contribute fully to the discussion. Since all of the individual 
interviews have been completed, we report on those findings here, and plan to share 
findings from the other data sources at the conference. 
Data Analysis 
The multiple data sources and participant groups necessitated a complex and multi-
stage approach to data analysis. The individual interviews were analyzed through a 
process of emergent coding (Bogdan & Biklen, 2007; Creswell, 2014). That is, all of 
the participants’ responses were read several times to get an overall sense of the data. 
Then, coding categories were created based on the reading of the data and then applied 
to the responses to each question.  
Due to the importance placed on the participants’ explanations of the photographs, they 
are currently being analyzed within the context of the focus group interviews, in which 
the photographs were discussed. We will further analyze the photographs’ content, 
using content analysis methods (Riffe, Lacy, & Fico, 2014), after the aforementioned 
initial analysis, to provide additional detail and description that may not be evident in 
the focus group interview videos. 
FINDINGS 
The individual interviews provided a wealth of information about the participants, 
spanning from memories and beliefs to educational experiences. For the purposes of 
this paper, we will discuss findings from two of the questions that most related to 
gender and mathematics as they have yielded interesting information about the 
undergraduate student experience in Australia. Additionally, we will address concerns 
raised by women participants about their university experiences. When discussing our 
findings, we will focus on gender differences as well as year-level differences, if the 
latter is relevant. 
Have you ever felt that you were treated differently because of your gender? 
There was a division between year levels in the way that participants at both institutions 
answered this question. Most of the first-year participants (85.7%) articulated that they 
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did not believe that they had experienced any differential treatment due to their gender 
while at university. Two of the first-year women participants reported negative 
interactions with educational staff (7.1%) or members of the public (7.1%), but these 
occurred outside of university (i.e., during high school or in conversation outside of 
university). For instance, Participant 8 from University X shared the following 
example: 

X8: In terms of maths, I did have a teacher that said boys are better. Girls should 
go do English. 

Interviewer: Was that at university? 
X8: No, that was in high school. But at uni, I haven't encountered anything like 

that. 

In contrast to the first-year students’ positive experiences at university with regard to 
gender-related treatment, 22.2% of the third-year participants (both women) shared 
instances from their undergraduate studies where they had felt that their gender had 
impacted their experience, as illustrated by the following quotation: 

I don’t know, even that I’m blonde and female, it’s like very – last picked sort of scenarios 
happen quite a bit or just assuming – even if I would go to write on the board and I’d 
halfway get through something and then someone else would swoop in and be like, 
“Actually, I know better” but they’re writing the same thing as me. (Participant 9, 
University X) 

Additionally, two third-year participants who did not feel like they had been treated 
differentially described interactions similar to those recounted by Participant 9 from 
University X, but felt that this kind of behaviour did not relate to gender: 

I don’t think I’ve ever had anyone who’s targeted me specifically because I’m female. I’ve 
had some people do some crappy things, but I don’t think it’s because I’m female and there 
was a perceived gender difference; I think they were just twats. So real analysis, this 
particular proof I worked quite hard on, I explained it to someone, and then they explained 
my proof back to me like I hadn’t just come up with the entire proof. And they asked me, 
“Do you understand this?” And I was like, “Yes, I wrote this.” But again, I don’t think that 
was a gender thing. (Participant 2, University X) 

These interactions, regardless of whether the students interpreted them as gendered or 
not, highlight a challenge for the women in our study – navigating situations where 
they feel that their work is disparaged by fellow students. 
Have you ever seen any differential treatment by gender? 
Extending beyond our participants’ personal experiences, we also examined any 
interactions that they had observed. Across both institutions, none of the first-year 
participants believed that they had observed differential treatment due to gender. In 
contrast, five (55.6%; two men and three women) third-year students shared instances 
where gender had influenced treatment of fellow students. The majority were 
interactions during class where a man or men would take over a problem that a woman 
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was working through or where assistance was targeted specifically at women students, 
as in the following example: 

X2: I do know friends who have experienced this, stories of – two of my friends, 
Ashley, one girl Ash, one boy Ash, working at the board, and people going 
up to girl Ash to ask if she needed help when both of them were struggling 
at the board in the same physical location, like a metre apart from each 
other. 

Interviewer: Who asked if they needed help, was it a student, staff? 
X2: It was a tutor, I believe. I think it was a tutor. 

While this kind of behaviour may have been an innocent interaction, it is clear that 
many of our women participants, and a small portion of the men participants, 
interpreted these behaviours to be targeted due to the gender of the students that they 
observed.  
Additionally, Participant 7 from University X recounted a story that he heard from a 
student from another university (University Y) expressing transphobic views, refusing 
to sit in the same row as another student who identified as transgender. While only one 
participant mentioned hearing about transphobic views, these stories warrant further 
consideration to better understand the impact of these experiences on women’s and 
gender minorities’ desire to persist in the field of mathematics. 
Internal pressure for third-year women students 
The third-year women participants also described internal challenges that they faced as 
part of their university experience as women in mathematics. Participant 2 from 
University X explained: 

In the early years when it’s compulsory, there’s a pretty good gender balance, and as you 
go further and further up, there are less girls, I’ve noticed in the tutes. And failing at a 
concept often feels like failing as a girl, or as a female in mathematics. I feel very 
representative of that. 

Participant 5 from University Y also reflected on how her fears had impeded her 
experience and engagement in mathematics: 

I find myself not speaking up in classes because I’ve also internalised like, “Be quiet.” And 
also I fear that if I ask a question I'm going to look really stupid, which is definitely 
something that I took from high school. Like, that’s something that I haven’t shed yet. 
Looking stupid is something that I struggle with and that’s because growing up, everyone 
was like, “Oh, you’re really clever” and so that became a very key tenet of my personality, 
well not my personality – my identity. 

These experiences may reflect a significant challenge common to women progressing 
through undergraduate mathematics. Contextualised in the historical gendering of 
mathematics and the impacts of societal beliefs on participation in mathematics, the 
way that women internalise behaviours and feel pressure to excel may be limiting 
participation beyond the undergraduate level. 



Hall, Robinson, Flegg & Wilkinson 

2 -                                                                                                             PME 43 - 2019 326 

CONCLUDING REMARKS 
Analysis of the current dataset of individual interviews with 14 first-year students and 
nine third-year students has revealed gendered experiences present in the 
undergraduate mathematics programs at two large Australian universities. While not 
universal to all participants, many of the stories shared illustrate a need for further 
investigation into the breadth and depth of the challenges described by women studying 
undergraduate mathematics. Similar to Hall and Suurtamm’s (2018) findings, our 
findings highlight significant considerations around the experiences of women in 
mathematics and what is considered “success” in reducing gender inequities in 
mathematics. While the women in our study had persisted to the undergraduate level, 
barriers remain in the ways that women are treated that become increasingly frequent 
as they progress to higher levels of education. 
Many of the negative interactions that the women participants described were acts by 
men in mathematics, purposefully or not, disparaging the work of women who were 
participating in mathematics. This kind of gender bias is a strong predictor of the 
gender gap in various college majors (Ganley et al., 2018), and the implied societal 
values imparted to current and future undergraduate students can have very tangible 
impacts on the performance of women in mathematics (Correll, 2001). Hence, our 
study provides a novel addition to the understanding of factors influencing the 
participation of women in mathematics and a glimpse into the lived experiences of 
undergraduate students in Australia. 
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This paper presents a case study of following visual attention during collaborative 
geometry problem solving. We first analyse the emergence and spread of the incorrect 
idea of curved lines as the optimal shortest solution. Then, we examine the different 
visual representations made for solution ideas and how these are observed by the 
collaborating peers. 
INTRODUCTION 
This paper will present a 20 minute episode of collaborative problem solving in a 
Finnish grade nine mathematics classroom. The episode is rich in students using 
different representations for the ideas they are creating, making this an interesting case 
study on multimodality. We have been using mobile eye-tracking devices, which 
provides us an insight not only of what representations students are using when they 
work with ideas on different media, but also to what visual presentations the students 
are attending to during collaboration. 
Eye-tracking is a method to study student cognition as it occurs. Hartmann and Fischer 
(2016) compare it to mind-reading: the target of a fixation (maintaining of the visual 
gaze on a single location) tells what we think about, and the fixation duration 
corresponds to processing time. Glöckner and Herbold (2011) summarize research 
evidence to suggest that gazes related to more automatic processes would have shorter 
fixations (below 250 ms) and more elaborate information processing generally requires 
long fixations of more than 500 milliseconds. However, there is also much evidence to 
the effect that sometimes the gaze-mind connection breaks and the fixation and 
thoughts are not aligned (e.g.  Schindler & Lilienthal, 2017). 
Our research will focus on examining student eye movements in the context of 
collaborative problem solving in geometry. This study will address three under-
examined research areas. First, while eye-tracking research is strong in the context of 
language processing (Rayner, 1998), the method has been far less used in the area of 
mathematics (Hartmann & Fischer, 2016). Second, eye-tracking research has mainly 
been conducted in laboratory situations and studies conducted in real classrooms have 
only recently started to appear (e.g. McIntyre, Mainhard, & Klassen, 2017). And third, 
research on multiple persons interacting (e.g. Rogers, Speelman, Guidetti, & 
Longmuir, 2018) is so far extremely limited. Although methodologically challenging, 
moving into these poorly explored areas is important for mathematics education. 
Information in a learning context is often visual. Gestures and diagrams are part of 
multimodal communication (Radford, 2008; Arzarello, Paola, Robutti & Sabena 2009). 
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The student cannot look at all possible sources of visual information at the same time, 
but must choose what to attend to. We need to study visual attention in the context of 
mathematical behaviour in ecologically valid ways. In this paper we will present results 
from the MathTrack project that uses mobile gaze-trackers to study students’ 
collaborative problem solving. 
METHODS 
Participants 
The data was collected during a grade ninth mathematics lessons in Finnish lower 
secondary school. The teacher and a collaborative group of four target students 
volunteered for wearing gaze-tracking glasses throughout the lesson.  
Apparatus 
We recorded the actions and conversations of the problem-solving session using audio 
recording and three stationary video cameras in the classroom. The gaze-tracking 
device consisted of two eye cameras, a scene camera, and simple electronics attached 
to 3D-printed frames (see, Toivanen, Lukander, & Puolamäki, 2017). The accuracy of 
the device was approximately 1.5 degrees of visual angle. We used software that 
computed the gaze target coordinates on the scene video. The camera frame rate 
depends on lightning conditions, and maximum rate in optimal conditions is 30 
frames/second. Data was recorded on laptop computers that were carried in backpacks 
allowing subjects to move freely in the classroom. 
Procedure for data collection and analysis 
The research group visited two mathematics lessons. The purpose of the first lessons 
was to help students to get used to the equipment and to test the equipment in the data 
collection environment. The students solved a non-routine mathematics problem 
collaboratively in groups of four students. The actual data collection and the 
collaborative geometry problem solving took place during the second lesson. The goal 
of the problem task was to find the optimal way to connect four imaginary cities located 
at the vertices of a square with cable.  
The problem solving session lasted almost an hour. The students worked both with 
paper and pencil as well as with GeoGebra software. In addition, three video cameras 
recorded the teacher and target students’ activity and we collected students’ written 
work. We also recorded screen capture videos form student computers and conducted 
post lesson interviews with the teacher and focus students, but these have not been used 
in the current analysis. 
The students were seated in pairs sitting opposite to each other. The students in the 
same pair could easily see each other’s computer screens while seated, but not the 
screen of the other pair. However, all students could see at least two other students’ 
notebooks. 
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We had scripted most of the problem solving session for the teacher. During the lesson, 
the teacher first gave general instructions for the lesson and students got their 
GeoGebra software started (3 min 45 s), then posed the problem on the board and 
students worked on the task individually (4 min 33 s). Next, students worked with a 
partner (4 min 10 s), and then the four students worked together (26 min 42 s; fast 
solvers were provided an extension task). Finally, the solutions were collected on the 
board and discussed (4 min 54 s). Furthermore, the students downloaded a GeoGebra 
app to further examine the correct shape (5 min 57 s). In this article, we focus on the 
phase during which the four students were working together. 
When students were working individually, in pairs, or in groups of four, the teacher’s 
activity consisted of roaming in the classroom and stopping to scaffold one group at a 
time. The teacher was instructed to provide encouragement and to ask questions that 
required students to explicate their thinking but to not provide hints on how to solve 
the problem. 
The episode was transcribed using eye-tracking video to provide rich information about 
visual attention to gestures and images. Where necessary and possible, multiple videos 
were examined to better discern details. 
RESULTS AND DISCUSSION 
During individual and pair work, the students as a group had produced all the common 
easy solutions (Figure 1) and each student had found the solution “X”, which is best of 
these solutions.  

       

Figure 1. The common easy solutions, which we will call “C”, “X”, “H”, and “Z”. 
I begin the description where the students are challenged to move beyond these basic 
solutions. The teacher comes to check how the students are doing, and while she 
discusses with students, they start interacting as a group. In what follows, T is for 
teacher, S1 to S4 the four students. S1 and S3 are seated as a pair, and S2 and S4 as 
another pair.  

Teacher How are you doing here? 
S3 We thought that this [pointing at X on her screen]. We were thinking, if one 

can get through here [tracing the diagonal from one vertex to the centre and 
then along the other diagonal to the other vertex]. 

Teacher Yes, it’s possible. 
S3 Then this is [our favourite] 
S4 I feel there is something, just “Ha!” [Expressing surprise, smiling, gestures 

a rapid short hand movement.]  
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 [Teacher and S2 smile.] 
Teacher You can still continue thinking. Some good elements from different 

solutions. Brainstorm still a little further. [Moves away.] 
S3 [To S4.] So that means that there is still some better solution. 
S4 So there is.  
S1 Circle. 
S2 Some triangle. 

For this first segment, I want to point out four things. First, the eye-tracking data 
allowed us to see what the student was actually pointing at and what her question was 
about. The same level of detail will be informative in some of the events that will come 
later. Second, we see that the students know that it is common that a problem has an 
unexpected solution and they joke about it. As the teacher encourages them to explore 
further, they know that there must be another, better solution to be found. S1 suggests 
a circle. This idea catches fire in the group and very much influences the process that 
follows. I will next report how this idea develops and after that I will discuss later why 
this might have been such a tempting idea. 

Teacher  [Comes to S2 and S4.] What do you have here? … Which, in your mind, 
would be the most convincing?  

S4 That. [Points an X on her screen.] Would it be circle? [Makes a small 
unclear gesture in the air.] 

Teacher You can test it. You can get the length of the circle, when you take the circle 
tool. [Points at the tool on GeoGebra menu bar.] 

S3 But how…? 
S1  I said circle before (----). [Pointing at S4, smiling.] 
Teacher  [Smiles to S1.] Yes. You try it, too. 
S1  I don’t want to (---).  
S2 It does not have to be a whole circle, it can be only. [Pointing at X on own 

screen, tracing an incomplete circle to connect all four vertices.]  
S1 [Begins to draw.] 
S3 How can the circle even (--) [Draws a circle in her notebook.] … 
S2 (To S3, smiling.) Do you know the thing, circle and inside it a square, and 

then circle and square and circle and square [gesturing with hands, making 
first a square with both hands, and then ‘collapsing’, them into a smaller 
circle and repeating this a few times.] 

S3 Yes, but. Aha! [Surprised.] But, but, it becomes longer, still. Or does it? 

The teacher makes the decision not to call the circle either a good or a poor suggestion. 
Instead, she invites S4 to test it. As S1 claims ownership for the idea, she suggests him 
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to test it, too. S2 realizes immediately, that the connection between two vertices could 
be left out. Only S3 opposes the idea, but also joins drawing it. 
The teacher then announces to the class that it is time to move on to work in groups of 
four. She soon returns to challenge this group to reconsider the circle as a solution. 
Meanwhile S4 used GeoGebra to compute the length of the circle as the solution 
connecting the four vertices. She got a solution that it would be shorter than X, possibly 
due to not having the figures in the same scale. However, the solution is not questioned, 
even though S1 is puzzled by the apparent fact that the solution he suggested is so 
good. 

S4 No, it IS the fastest! [Cheering.] S1, you are the best! [Gestures V for 
victory with both hands.] Eight point four. Okay, it is the fastest. S1 you are 
a god. 

S1 Weird. [Shakes his head a little.] 
S2 And, if you remove that part, because that is not needed. [Pointing at S4 

screen, circle between two vertices.] … 
Teacher I would ask about this circular solution, what are the benefits in this in 

comparison to, for example this, there they are straight. [Points at the 
solution C on S2 screen.] 

I would suggest that this phase of events is influenced by reading incorrectly the social 
cues given by the teacher. For S3, the social pressure might be at play. However, S2 
points out to an image in her mind, probably something like Figure 2.  
A circle has beauty and power in mathematics. Although the discussion ends with a 
conclusion that the straight lines are shorter, the students present some quite interesting 
arguments. 

S3 Don’t have to stop, just goes on wheeeee. [Rolls head in small circles.]  
S4 [The verbal explanation was incomprehensible and could not be translated. 

However, her gestures focus on turning around the vertex.] 
S3 …If you change the lines of the square into a circle, the circle will be bigger. 

[S4 agrees.] 

Here, we see two kinds of arguments. The first kind refers to physical movement, and 
there, the curved path feels better. The other argument refers to the circle being the 
optimal solution for the ratio between area and perimeter.  
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Figure 2. Squares inscribed in circles inscribed in squares. 

The students finally agreed that the curved lines are just “extra length” and continued 
generating new ideas. I will present those that remained in the discussion and 
developed further. However, we see the curved lines to follow in their ideation, see X’ 
and H’ in Figure 3. 

 
Figure 3. The evolving solutions, which we will call X’, H’, Y’, and Y. 

The following stage in student progress is best described as a diagram (Figure 4). The 
students generated several ideas that were visually presented either as gestures, or 
images, either on paper or on computer. These ideas were effectively communicated 
among the students in the group and the arrows present the flow of information from 
one student to another, when a student was looking at another student’s gestures or 
drawings.  
In this diagram, you can see, for example, how H’ was drawn by S4, and then observed 
by S2 and S3, who both produced their own versions of the solution somewhat later 
However, the students struggled to produce the solution with GeoGebra. In fact, this 
led to S2 and S4 making little progress, as they struggled with the tools to produce a 
solution of the right shape. On the other hand, S3 decided to approximate H’ using 
lines, leading first, accidentally, to small Y, which she deleted, and then to the solution 
Y’, which was developed further into the optimal solution Y. 
 Student 1 S3 S4 S2 
Time HG PP GG HG PP GG HG PP GG HG PP GG 

22        H’     
23           H’  
24     H’      X’  
25    X’         
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26            X’ 
27         X’    
28       H’      
29      Y       
30  H’  >         
31      Y’       
32         H’    
33   X’         H’ 
34             
35             
36         H’    
37      Y     H’  
38             
39           Y  
40            Y 

Figure 4. Diagram of visual representations and their observations. The arrow 
presents the direction of information flowing from visual representation to observer. 

HG = Hand Gesture, PP = Pen on Paper, GG = GeoGebra. The symbol “>” in the 
graph refers to a student gesturing a shape like that. 

CONCLUSIONS 
This case study illustrates how an erroneous idea may emerge and survive in 
collaborative problem solving. The original the idea of circle as the solution was not 
grounded on anything more than a false intuition. However, it got rooted in the group’s 
discourse, probably because students were reading the social cues falsely. Although 
the students discussed and logically refuted the idea, new solution attempts with curved 
lines appeared and spread in the group. 
However, the erroneous solutions (X’ and H’) both have some resemblance to the 
optimal shortest path (Y), providing opportunities to find the optimal solution. 
Moreover, the use of technology both assisted and hindered the finding of optimal 
solution. Student S2 and S4 had their focus on how to draw curved lines, which 
effectively prevented them from generating new ideas. The student S3, on the other 
hand, used line segments to make and approximation of the curved line, which opened 
her the opportunity to find the optimal solution. 
ACKNOWLEDGMENT 
This research was funded by the Academy of Finland grant no. 297856 (MathTrack -project). 



Hannula & Toivanen 

PME 43 – 2019                                                                                                      2 -  335 

References 
Arzarello, F., Paola, D. Robutti, O., & Sabena, C. (2009). Gestures as semiotic resources in 

the mathematics classroom. Educational Studies in Mathematics, 70(2), 97–109. 
Glöckner, A., & Herbold, A. K. (2011). An eye-tracking study on information processing in 

risky decisions: Evidence for compensatory strategies based on automatic processes. 
Journal of Behavioral Decision Making, 24(1), 71-98. 

Hartmann, M. & Fischer, M. H. Exploring the numerical mind by eye-tracking: a special 
issue. (2016) Psychological Research 80(3), 325–333. https://doi.org/10.1007/s00426-
016-0759-0 

McIntyre, N. A., Mainhard, M. T., & Klassen, R. M. (2017). Are you looking to teach? 
Cultural and dynamic insights into expert teacher gaze. Learning and Instruction, 49, 41–
53. 

Radford, L. 2008. Why do gestures matter? Sensuous cognition and the palpability of 
mathematical meanings. Educational Studies in Mathematics 70(2), 111–126.  

Rayner, K. (1998). Eye movements in reading and information processing: 20 years of 
research. Psychological Bulletin, 124(3), 372. 

Rogers, S. L., Speelman, C. P., Guidetti, O., & Longmuir, M. (2018). Using dual eye tracking 
to uncover personal gaze patterns during social interaction. Scientific reports, 8(1), 4271. 

Schindler, M., & Lilienthal, A. (2017) Eye-tracking and its domain-specific interpretation: a 
stimulated recall study on eye movements in geometrical tasks. In: B. Kaur, W. K. Ho, T. 
L. Toh, & B. H. Choy (Eds.), Proceedings of the 41st Conference of the International 
Group for the Psychology of Mathematics Education (Vol. 4, pp. 153-160). Singapore, 
Singapore: PME. 

Toivanen, M., Lukander, K., & Puolamäki, K. (2017). Probabilistic approach to robust 
wearable gaze tracking. Journal of Eye Movement Research, 10(4). DOI: 
10.16910/jemr.10.4.2  

  



 

 

2 - 336 
2019. In M. Graven, H. Venkat, A. Essien & P. Vale (Eds.). Proceedings of the 43rd Conference of the International 
Group for the Psychology of Mathematics Education (Vol. 2, pp. 336-343). Pretoria, South Africa: PME. 

STUDENTS' USES OF ONLINE PERSONAL ELABORATED 
FEEDBACK  

Raz Harel, Michal Yerushalmy 
University of Haifa 

 
Technological developments made it possible to collect, analyze, and assess 
automatically students' mathematics work, offering important tools for the assessment 
of students while they are working in rich digital environments. Automated online 
formative assessment has the potential to promote reasoning processes by improving 
the learners’ mathematics thinking or behavior (Shute, 2008). A commonly used type 
of online formative assessment is elaborated feedback. We explore whether students 
use elaborated feedback in the course of their reasoning process, and if so, how. We 
focused on the process of conjecturing, which is part of students’ work on an online 
example eliciting task (EET) using the Seeing the Entire Picture (STEP) platform. We 
present two case studies of the students' uses of the elaborated feedback. 
INTRODUCTION 
Online Mathematics Formative Assessment 
We refer to formative assessment activities as "all those activities undertaken by 
teachers, and/or by their students, which provide information to be used as feedback to 
modify the teaching and learning activities in which they are engaged" (Black and 
Wiliam, 1998, pp. 7-8). Researchers have differentiated between two main types of 
online formative assessment: verification feedback and elaborated feedback. 
Verification feedback gives simple information about the correctness of the students' 
answer. Elaborated feedback provides an explanation of why a response is correct or 
incorrect. Shute (2008) identified six different types of online elaborated feedback. For 
the current research, we used: “attribute isolation elaborated feedback” (AIEF) which 
consists of observations on the requirements of the task and on its mathematical 
characteristics, including the nature of mathematical objects and actions involved, and 
the mathematical reasoning processes entailed. 

Shute and Rahimi (2017) argued that complex feedback might not be useful to learners. 
The context in which the feedback is given, however, has great influence on the 
students' learning process. Therefore, a relevant question is whether AIEF given to 
students in a context of mathematical reasoning has the potential to develop students’ 
mathematical reasoning. 

Conjectures and example eliciting tasks 
We focused on conjectures, which are a main component of mathematical reasoning 
and learning. When conjecturing, students reconstruct their knowledge and enhance 
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their ability to prove (Boero, Garuti, and Lemut, 2007). For studying the potential of 
elaborated feedback to support reasoning, we needed an environment that supports 
mathematical inquiry and reasoning as well as automatic online elaborated feedback. 
To this end, we used the Seeing the Entire Picture (STEP) platform. STEP is an 
interactive diagram in a multiple linked representation (MLR) environment that 
supports example eliciting tasks. The STEP platform also provides various formats of 
personal feedbacks (Yerushalmy et al., 2017). 

In example eliciting tasks students are asked to construct examples in an MLR 
environment to support their answer. Example eliciting is a vital element in the 
reasoning processes and in conjecture posing. Example eliciting may also be indicative 
of the students’ mathematical reasoning (Zaslavsky and Zodik, 2014). Yerushalmy, 
Nagari-Haddif, and Olsher (2017) stressed the importance of example eliciting as an 
e-task design principle. According to Yerushalmy et al., asking students to submit as 
different as possible examples encourages them to develop a rich and varied example 
space. Example spaces are collections of learner-generated examples that fulfill a 
specific function. The example space can be automatically analyzed to provide 
feedback to students. The STEP platform, therefore, constitutes a novel pedagogical 
tool that supports reasoning processes as well as rich feedback. Yerushalmy et al. 
showed how design principles can affect the personal example space. In the present 
study, we assumed that giving elaborated feedback to the students, which reflects their 
reasoning, can affect their conjecturing process. We examined whether and how 
students use the AIEF while working in rich digital environments that support example 
eliciting tasks and promote reasoning processes. 

METHODOLOGICAL CONSIDERATIONS 
The current research is part of a wider study in which we explore how students use the 
personal AIEF. Here we present a case study of two pairs of students, chosen from the 
advanced mathematics stream from high schools in Israel. Each pair carried out a 
different activity consisting of a task-based interview. 

First, the students performed an online example eliciting task (EET). The students were 
asked to submit three representative examples, as different as possible, for their 
conjectures. To be able to examine whether the students used the feedback to produce 
new conjectures or to expand their personal example space, the students had the option 
to go back to the task and to resubmit new examples. 

Asking the students to create three examples as  different as possible supported the 
construction of a personal example space that could be assessed and analyzed with 
STEP, to produce an elaborate feedback for each example submitted.  
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Each AIEF consists of a list of mathematical characteristics of the task (e.g., the figure 
is rectangle, the figure has equal sides). The list of characteristics was prepared in 
advance, as part of the task design. STEP can analyze the submitted work, and mark 
the identified characteristic of the submitted example in blue and the non-identified 
ones in gray. By that STEP automatically produced the AIEF (See Figures 2 and 3 for 
students' submissions and AIEF). We hypothesize that giving the students elaborated 
feedback that consist of three lists of characteristics (one list for each submission) that 
differ by the indication whether the characteristics of each example were or were not 
identified, enables students to analyze the differences and similarities between the 
submitted examples and thereby support the conjecturing process. 

The data were collected through the STEP platform, and the students’ work was also 
recorded using the Camtasia screen recorder and video editing software, to triangulate 
with elements collected automatically. We analyzed the following aspects of the 
students' use of the feedback: raising conjectures, changes in the characterization of the 
personal example space, using a variety of characteristics from the feedback, and usage 
of language. 

FINDINGS 
Pair 1: Ella and Anna  
Ella and Anna were students in the 9th grade. The task they were given to elicit 
examples was formulated as follows: "A, B, C, and D form the quadrilateral ABCD. 
They are all dynamic and can be dragged. If possible, create 3 examples that are as 
different as possible from each other, in which the perpendicular bisectors to the sides 
of ABCD meet in a single point." Figure 1 shows a screenshot of the task applet. 

Figure 1: Task applet 
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The task has been found effective for raising conjectures (Olsher, forthcoming). We 
used the GeoGebra software to design the task applet. To enable students to focus on 
building quadrilaterals, the various features of GeoGebra were not available to them. 
To support eliciting examples of various types of quadrilaterals, the applet provided 
measurements of squares and angles. As explained in the methodology section, the 
three examples were analyzed by STEP and produced AIEF. Figure 2 shows a 
screenshot of the student submissions, and the online AIEF they received: 

Figure 2: Submissions of Pair 1 and feedback to students 
The students' first submission indicated a narrow example space consisting of 
alterations of a single shape: a rectangle. Below are some of the students' reactions to 
the feedback: 

Anna: All the feedbacks are the same. 
Ella:  Yes. When you submit a rectangle. 
Anna:  No. But it doesn't have to be like that. It can also be a parallelogram 

[pointing at the attribute: "parallelogram" written in the feedbacks]. 
Ella:   So it happens every time that there is a pair of equal sides. 
Anna:  No. Whenever there is a pair of equal and congruent sides in the 

quadrilateral.  

STEP appears to have considered the exact same five characteristics for each example: 
"All angles are equal", "Rectangle", "Parallelogram", "Sum of adjacent angles is 180º", 
and "sum of opposite angles is 180º". At this point, the students could use the 
characteristic: "rectangle" to verify the conjecture they formulated (rectangles are 
shapes in which the perpendicular bisectors to the sides meet in a single point). Instead, 
they used the elaborate feedback as a list from which to choose another conjecture. 
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To formulate a new conjecture, the students used the following characteristics: equal 
sides, and congruent sides. Therefore, in addition to using the elaborated feedback as a 
list from which to choose conjectures, the students also used the feedback to formulate 
a new conjecture. Note that the students mentioned gray (shape-not-identified 
characteristic) as well as blue (shape-identified characteristic) attributes from the 
feedback.  

The students had the option to go back to the task and resubmit new examples, and 
they returned to the applet. First, they refuted the conjecture that parallelogram 
bisectors to the sides of ABCD meet in a single point. Next, they found several 
examples in which the perpendicular bisectors to the sides of ABCD meet in a single 
point. Confused by the variety, they decided to submit three examples and to get ideas 
from the feedback. In other words, they deliberately asked for the feedback help in 
formulating conjectures. Figure 3 shows a screenshot of the students' submissions and 
the elaborated feedback they received. 

Figure 3: Second submission of Pair 1 and feedbacks 
Unlike the students' first submission, the second submission indicated a rich example 
space that contains a variety of shapes. The feedback on the first submission 
encouraged students to go back to the applet and continue the inquiry. We assume that 
the first round (Figure 2) drove the students to expand their example space. The 
students' reaction to the feedback was as follows: 

Ella:  Well, that explains it. 
Anna: Opposite angles are supplementary. 
Ella:  This is our assumption. Opposite angles are supplementary.  
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As we can see, the students used the feedback to formulate a new conjecture.  

Pair 2: Guy and Shai  
Guy and Shai were students in the 12th grade. The example eliciting task they received 
was formulated as follows:  

"f(x) (blue) and g(x) (green) are linear functions. h(x) is the product function of the two 
linear functions. Drag the blue points to create new functions. What kind of product 
functions appears when multiplying two linear functions? Formulate your answer in 
the dialogue box, and create three examples that are as different as possible from each 
other." Figure 4 shows a screen of the task applet: 

Figure 4: Task applet 
The task was chosen because the product function of two linear functions has a 
potential of a varied and rich examples space that may cause students to inquire and 
conjecture. Similar to the previous task, the GeoGebra features were limited to 
dragging the two linear functions and to the "Product Function" button that supported 
the immediate construction of the product function. And similar to the previous task, 
the students were asked to submit three examples as different as possible, and received 
the AIEF that contained information about the attributes of the submitted functions. 

After exploring with the applet, Guy and Shai formulated the following conjecture and 
submitted three examples: "When two linear functions have the same slope tendency, 
the quadratic function is positive. Otherwise, the quadratic function is negative." 

Similar to Pair 1, the submission of Pair 2 indicates a narrow example space that 
contained variations of the same quadratic function. Knowing that the blue 
characteristics represent mathematically identified characteristics of the submissions, 
Guy and Shai focused on the blue characteristics only. They found that the identified 
characteristics of the submissions corresponded to the conjecture they had formulated.  

We analyzed the following aspects of the students’ use of feedback:  
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Raising conjectures: Pair 1 used the AIEF to formulate new conjecture; Pair 2 used it 
to verify their conjecture. 

Example space: the example spaces of both pairs of students were rather narrow, but 
Pair 1 used the AIEF to expand their example space. 

Language usage: Pair 1 was helped by the feedback to formulate a new conjecture; 
the conjectures of Pair 2 resembled the formulation of the AIEF. 

Using a variety of characteristics from the feedback: Pair 1 mentioned a variety of 
characteristics of their feedback that marked in blue and in gray, whereas Pair 2 
mentioned only characteristics of their feedback that were marked in blue.  

The differences between the two pairs are reflected in each aspect of the students’ use 
of feedback. Pair 1 used the elaborated feedback to formulate a new conjecture; Pair 2 
used the feedback to verify their conjecture. The main similarity between the two pairs 
was that they both used the elaborated feedback as a supporting tool in the conjecturing 
process.  

DISCUSSION 
The aim of the research was to examine whether and how students use the AIEF when 
working in a rich digital environment that supports example-eliciting tasks. We focused 
on four aspects of the students' use of feedback, and presented evidence of the uses of 
AIEF for each aspect. Students used the language of the elaborated feedback to 
formulate conjectures, and Pair 1 even used the elaborated feedback to formulate a new 
conjecture. Both pairs used several characteristics from the feedback throughout the 
conjecturing process. Pair 1 used the feedback to formulate a new conjecture. Pair 2 
used the feedback to verify their conjectures and the examples. Pair 1 used the feedback 
to expand their example space.  

There may be several explanations for the differences between the two pairs: different 
subject meters, different classroom norms, etc. An additional explanation may be the 
fact that Pair 1 was surprised by the feedback they received. The students did not 
consider parallelograms as an option. The feedback may have motivated them to 
resume the inquiry. Pair 2 was not surprised by the feedback at all. Perhaps because of 
that, the students had no reason to continue with the conjecturing process. Both pairs 
used the elaborated feedback to support their reasoning process. 

Previous studies have raised the question whether elaborated feedback is useful (Shute 
and Rahimi, 2017). We presented here two case studies in which the AIEF produced 
by automatically analyzing students' examples provides information about 
mathematical attributes of the students' examples and reasoning. It was found to be 
useful when working in a rich digital environment conjecturing about example eliciting 
tasks. The students' use of the AIEF exposed an important relationship between 
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example eliciting tasks and elaborated feedback, marking another step in exploration 
of personal elaborated feedback. 
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THE CASE FOR SELF-BASED METHODOLOGY IN 
MATHEMATICS TEACHER EDUCATION 

Tracy Helliwell 
University of Bristol 

 
How might it be possible to research the growth of a mathematics teacher educator in 
a way that is meaningful to self and others? In this theoretical/methodological report, 
I explore issues pertinent to research where self is both the observer and the observed. 
By starting from a research problem, this paper presents the case for self-based 
methodologies in mathematics teacher education through an examination of self-
observation from research in the domain of psychology and existing self-based 
methodologies in teacher education literature in pursuit of a legitimate approach to 
enquiry. This paper is a positive move towards one such methodology. 
A (NON-)IDEAL-TYPICAL RESEARCH REPORT  
In his opening plenary lecture at PME-42, Mogens Niss characterised the ‘ideal-
typical’ mathematics education journal paper and, in contrast to this, appealed to the 
mathematics education community about the importance of publishing “non-empirical 
papers that focus on an issue…on analysing, comparing or linking theoretical 
frameworks, or on presenting and analysing methods” (Niss, 2018, p. 47) 
In the same plenary lecture, Niss reminded us of Arcavi’s (2000, p. 145) distinction 
between “Problem-driven research” and “Theory-driven research” in mathematics 
education. In the examples of research that Arcavi proposed in his paper, he placed 
himself closer to a problem-driven orientation and emphasised how: 

(a) a broad theoretical predilection underlies all what we do (but does not blind us) and (b) 
theory (or, in some cases, theories) is to help us find ways and insights to conduct the 
research. (Arcavi, 2000, p. 163) 

This paper is one such (non-)ideal-typical research report that was partly motivated by 
a comment made to me during my own PME-42 presentation (Helliwell, 2018) which 
was roughly “the problem is you are researching yourself, you need to research 
somebody else”. This problem-driven research report presents a response to that 
comment and my search for a self-based methodology (SBM) that is underpinned by 
the theoretical foundations of self-observation. My intention in this paper is to examine 
some of the issues that such SBMs present (such as those I can only assume my 
audience member was talking about) by exploring existing self-observational 
approaches and in doing so move towards the formulation of a methodology that 
enables me to make sense of my own lived experiences as a mathematics teacher 
educator (MTE). As Arcavi proposed as a legitimate approach to research, I begin with 
the problem from which point I then “pursue it” and “shop around for frames which 
may help me to make sense of what I find.” (Arcavi, 2000, p. 145). 
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BEGINNING WITH THE PROBLEM(S) 
My research problem 
Behind every piece of research lies at least one human being. Sometimes there is a 
personal motivation for research activity, other times it is a professional one. For the 
last three years I have been collecting data in different forms and from different 
settings. Before this time, I was a secondary school teacher of mathematics for 13 years, 
a role in which I had developed expertise. In my move to a new role, as a university 
MTE, working primarily with prospective teachers of mathematics but also with groups 
of more experienced teachers of mathematics with a common interest (e.g., developing 
the use of mathematical reasoning in their classrooms), I found that the expertise I had 
developed as a teacher, was necessary but not sufficient for me working with these 
teachers. I needed to develop a new expertise and became interested in understanding 
both what this expertise looked like and how the development might happen. I have a 
desire to better understand myself in my role as an MTE so that I can develop my 
practice and hopefully the practice of others with similar interests. The problem I have 
set myself is to make sense of what and how I am learning as an MTE by placing myself 
as the subject of research. By researching my own growth and understanding more 
about the process of becoming an MTE, I hope to contribute to the growing area of 
research and knowledge on MTE learning. One such contribution is the development 
of an SBM, which this paper is a positive move towards.  
A problem for the mathematics education community? 
At a symposium last December that was held to mark the retirement of a dear friend 
and colleague, Laurinda Brown, Olive Chapman gave a seminar on SBMs in MTE 
learning. She talked of the recent meeting of the North-American chapter of the IGPME 
group (PME-NA 2018) where she had been involved in a working group whose interest 
was in developing the use of studies within mathematics education that privilege the 
self. Both in the working group’s paper (Suazo-Flores, Kastberg, Ward, Cox, & 
Chapman, 2018) and during the symposium, a tension was expressed between the 
importance of developing research methodologies that aim to understand and improve 
the practice of MTEs and the pressure as research academics of publishing research in 
established and ‘prestigious’ mathematics education journals where articles 
documenting SBM are the exception (e.g., Hjalmarson, 2017).  
In contrast to this shortage of papers within mathematics education journals, self-based 
study is a well-established genre of research within the teacher education community 
more broadly. Much activity originated from a group of teacher educators that, in 1994, 
began a special interest group (SIG) of AERA (American Educational Research 
Association) known as the ‘Self-study of teacher education practices’ (S-STEP) SIG. 
The S-STEP community initiated an international biennial conference (the Castle 
Conference) that began in 1996 and from this point onwards, there has been an ever 
growing collection of books published, including in 2004, the International handbook 
of self-study of teaching and teacher education practices (Loughran, Hamilton, 
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LaBoskey, & Russell, 2004) and (to date) the 19-volume S-STEP book series, volume 
1 and 2 of which were published in 2005. Around the same time, the journal Studying 
teacher education: A journal of self-study of teacher education practices was launched 
and since then more than 35 issues have been published which include a modest 
number of articles with a mathematics education focus. Is it time for the mathematics 
education community to more fully embrace this new genre of research?  
The remainder of this paper is one attempt at bringing to light this possibility through 
firstly exploring the notion of self-observation from research within the field of 
psychology to examine existing SBMs from (mathematics) teacher education literature 
towards the articulation of an SBM for my own research, as an MTE. 
SELF-OBSERVATION 
The observation of ‘objects’ (including other human beings) is viewed as a 
fundamentally different activity (both ontologically and epistemically) to the 
observation of the ‘self’. One familiar distinction between ‘objective’ knowledge and 
self-observation is that the former is based on “public, verifiable, external, and 
transparent entities” while the latter concerns only “private, idiosyncratic, and internal 
experience” (Clegg, 2013, p. 5). With these characteristics in mind comes the necessary 
consequence of any enquiry based on self-observation as epistemological solipsism 
where the firm assumption is that an observer can only ever know their own mind. 
From this position, it becomes meaningless to suggest that self-observation as a method 
has anything to contribute to the production of general knowledge. At the level of 
experience, however, the distinction between external/internal objects of perception 
can of course be abandoned, since, as Clegg puts it, there is “no meaningful way to 
conceptualise an “external” perception” (p. 6), such terms are in fact contradictory. In 
the words of Maturana (1987, p. 65) “everything is said by an observer”, that is, no 
knowing is independent of the observer, no experience is independent of the 
experiencer, there is no true subjective/objective divide: 

Rather than pretending to create objective observer-independent knowledge or retreating 
into an inner subjectivity, we can use critical methods together with inner subjectivity to 
bring about a maximum of intersubjectivity, that is, understanding the Self to understand 
the Other (Roth, 2005, p. 15) 

In a self-based enquiry, the self both observes and is observed. One prominent method 
of self-observation from the field of psychology is that of Introspection (where, having 
been trained, it is considered possible to carefully and objectively analyse the content 
of your own consciousness). The practice of self-observation within the 
phenomenological traditions, where the focus is on uncovering the essential features 
of lived-experience, is also prevalent. Over time, phenomenology’s conceptual 
approach to self-observation was transformed from “an observation of the self to the 
self’s detached observations of experience… and finally to the self’s engagement with 
the meaning of lived experience” (Gantt & Thayne, 2013, p. 166, emphasis in original).  
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The observing self cannot be separated from the world of lived experience that constitutes 
it as an observing self and, thus, the self cannot observe itself in an “objective” or detached 
manner. This does not, however, make self-observation an unreliable or unscientific form 
of psychological inquiry. Rather, it simply means that we must acknowledge and take 
account of the relational and experiential context in which all self-observation necessarily 
takes place. (Gantt & Thayne, 2013, p. 167) 

According to Clegg (2013) a good theory of self-observation needs to account for and 
make sense of “the differences in inter and intrasubjective agreement across both 
experience-near and experience-distant self-observations” (p. 14). He goes further to 
make clear the importance of accepting the difference between the observer’s and 
interpreter’s frames of reference and to place emphasis on “the negotiations that bring 
these multiple and nonstandard frames of reference into relation” (p. 14). This shift 
towards seeing the value not only from working on one’s own experiences in-the-
moment, but also with retrospective accounts of one’s own experiences with others, 
leads me to consider carefully the practice of self-observation as described within the 
narrative traditions in such forms as narrative inquiry and autoethnographic writings. 
Such approaches are becoming more commonly used within educational research and 
teacher education specifically. I will later be exploring these approaches in more detail 
in the context of mathematics teacher education.  
The self of self-observation 
The status and nature of the self are issues that receive a great deal of attention within 
fields such as sociology, psychiatry, developmental psychology, philosophy of mind, 
social theory, cultural studies, and cognitive neuroscience. Whether self is a social 
construct, an experiential entity or indeed exists (in reality or virtually) is a topic of 
much debate amongst interested parties. Some traditions, such as Buddhism, question 
the legitimacy of the notion of self entirely, as do several philosophers, both modern 
and contemporary. Furthermore, rather than self taking some form of experiential 
reality, some authors claim that self only exists in linguistic form, as a narrative fiction, 
as self that is constructed. For others the self is understood as pure ego-pole, 
independent of experience, that remains unchanged throughout the life of the 
individual. Since self as pure ego-pole is viewed as pure subject of experience, it cannot 
be objectified, that is, the self is not something, which in itself can be experienced. 
According to philosopher and psychologist, Harré (2001), “the word “self”... appears 
in person-centered discourses in at least three psychologically diverse contexts: 
perception, reflection, and social interaction” (p. 60).  From each context there exists 
an associated form of self that Harré calls Self 1, Self 2, and Self 3 respectively. It 
follows that any SBM underpinned by an ontological position that involves multiple 
selves, requires multiple methods of data collection and analysis that can take account 
of this plurality. 
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EXISTING SELF-BASED METHODOLOGIES 
Attempts have been made, including by members of the PME-NA 2018 working group 
(Suazo-Flores et al., 2018), to draw out distinctions between such SBMs as “narrative 
(a look at a story of self), autoethnography (a look at self within a larger context), and 
self-study (a look at self in action, usually within educational contexts)” (Hamilton, 
Smith & Worthington, 2008, p. 17) all of which are used in studies that privilege the 
self in research design. It is acknowledged, however, that the boundaries between such 
methodologies are blurred: 

 
Figure 1: Venn analysis of the three methodologies (Hamilton et al., 2008, p. 24) 

Following is an articulation of each SBM from above, and Mason’s (2002) Discipline 
of Noticing as a methodology, which I have utilised within my own research. 
Self-study  
The term self-study points to the focus of the study rather than any particular approach 
or set of methods. Across existing self-study literature, a range of research methods are 
utilised and consequently a range of reporting styles are evident. The aim of self-study 
is to support practitioner researchers in seeing differently what they are seeing from 
the inside. This insider’s perspective is essential to handling the complexity of teaching 
about teaching and this complexity “requires a familiarity with practice in concert with 
maintaining a distance from practice in order to see what is happening while it is 
happening” (Loughran, 2006, p. 35). The impact of self-study is immediate change in 
practice since those engaged in self-study refer to the experience of “I” as a “living 
contradiction” (Whitehead, 2000, p. 93) when it is recognised that a value is held (such 
as social justice) yet it is denied in practice. It is the study of these living contradictions 
that is so powerful in creating the conditions for change. 
Narrative inquiry 
Narrative refers to the stories that people tell. Within narratives, lived experiences are 
organised into meaningful episodes that allow the narrator to interpret their worlds. 
The construction of narratives can be seen as the construction of what we call a Self, 
and, in this construction, one gradually transforms perceptions of direct experience into 



Helliwell 

PME 43 – 2019                                                                                                      2 -  349 

that of knowledge. Self-based narrative research focuses not only on the experiences 
of the researcher but also on the meaning given to those experiences. In narrative 
inquiry, records of experiences are usually taken but then layered with reflection on 
those experiences (Suazo-Flores et al., 2018).  
Autoethnography 
According to Roth (2005) “auto/ethnography and auto/biography are genres that blend 
ethnographic interests with life writing and tell about a culture at the same time it tells 
about a life” (p. 4). Autoethnography is an autobiographical genre of research and 
writing that displays multiple levels of self and consciousness. An evocative image of 
the autoethnographer is triggered by Ellis (2004) in her autoethnographic novel where 
she refers to the gaze of the autoethnographer “first... focusing outward on social and 
cultural aspects of their personal experience; then... inward, exposing a vulnerable self” 
(p. 37). Through this movement back and forth, the “distinctions between the personal 
and the cultural become blurred, sometimes beyond distinct recognition” (p. 38). 
Autoethnographers use self-reflection and personal writing (of many forms) to explore 
personal experience in order to understand it in relation to the wider cultural context.  
The discipline of noticing 
As part of my own study I looked initially to Mason’s (2002) Discipline of Noticing 
(DN) as a methodology for my research as an MTE (see Helliwell, 2018). Mason 
acknowledges that DN stems from a phenomenological underpinning and he makes a 
strong case for working with lived experience as an alternative to much research that 
has become a task of refining and using existing theoretical frameworks. For Mason, 
the central focus of noticing is one’s “own inner experience” (p. 183) that is 
“awakening…. an inner witness who watches and comments but does not interfere” (p. 
184). This inner witness refers to being awake in the moment so that an increasing set 
of possibilities for action become available. The awakening of this inner witness comes 
about through engaging with DN, which incorporates re-entering moments by 
reflecting on accounts-of incidents. Through this post-spective process of reflecting on 
these incidents it is possible to consider alternative ways of acting in the moment. 
Through labelling particular phenomena that have occurred, it opens up the possibility 
of recognising that phenomena again in the future and triggering a different response 
and by communicating accounts of this process, it can become useful for others to try 
out new ways of acting for themselves. In my own research, I have been reflecting on 
the experience of working as an MTE by paying attention to what I notice, in the 
process of transcribing conversations with mathematics teachers. By returning to 
Harré’s self-model, in light of these existing methodologies, I offer a final examination.      
TOWARDS A SELF-METHODOLOGY FOR STUDYING MTE LEARNING 
Self 1, the self in the context of perception, “is manifested in the structure of perceptual 
fields, each of which is centered on the location in space and time of the embodied 
perceiver” (Harré, 2001, p. 60) and is close to the phenomenologists’ understanding of 
the self in the first-person perspective. Self 1 plays the major role in telling stories of 
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our encounters with the material environment. A self-based study that pays attention 
to Self 1, looks to methodologies linked to frameworks of noticing and 
phenomenology. Self 2, the self in the context of reflection on oneself as a person, is 
the totality of a person’s attributes, including their self-beliefs. The capacity to develop 
a self-concept in this way only comes about through looking at oneself from the 
outside, through objectifying the self, which is usually then articulated using a narrative 
form. A self-based study that pays attention to Self 2, looks to methodologies linked to 
narrative traditions such as narrative enquiry and autoethnography. Self 3, the self in 
the context of social interaction, refers to the person we are taken to be by others and 
points to the contrast or consistency between how we perceive ourselves and how we 
are perceived by others. This self, as a social process, can be described as dialogical, 
in that impressions of self get interpreted by others which in turn get re-interpreted into 
the self. A self-based study that pays attention to Self 3, looks to methodologies where 
the focus is on exploring living contradictions between self-concept and others. In 
adopting a multiple self-model, ideas, principles and methods from each of these four 
methodologies (self-study, narrative, autoethnography, DN) can be brought together a 
legitimate methodology for an MTE developing her expertise.  
In embracing SBMs in researching MTE growth and the development of expertise and 
recognising research based on SBMs as valid contributions to knowledge, much fruitful 
work can be done in the area of MTE learning. Questions around what, if anything, 
makes self-based research distinctive for a mathematics teacher educator in contrast to 
teacher educators more broadly could be explored. 
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A profound understanding of the decimal place value system challenges primary school 
learners worldwide. Besides procedural place value understanding – which is 
transcoding and mapping of number symbols, number words and quantity 
representations – children have to develop place value concepts, which refer in 
particular to the relation of the bundling units (e.g. 1 ten = 10 units). In this paper we 
propose a five-level developmental model of place value concepts and present two 
empirical validation studies. In a cross-sectional study (N=749) we show in a Rasch-
analysis that the items operationalizing the model form a one-dimensional hierarchy 
as proposed. A longitudinal study (N=195) reveals learners’ progress within the model 
sequence. 
INTRODUCTION 
There is a growing body of empirical research highlighting difficulties children have 
while developing a sound understanding of the decimal place value system (e.g. Cobb 
& Wheatley, 1988; Fuson, Wearne, Hiebert et al., 1997; Hart, 2009; Herzog, Ehlert & 
Fritz, 2019; Kamii, 1986; Ross, 1989). In this paper we present a developmental model 
of place value concepts and its empirical validation. 
From a historical perspective, children’s difficulties with the place value system are no 
surprise. Compared with analogue representations of quantities and additive number 
systems, the fully developed place value system including a symbol for zero is rather 
new (Ifrah, 1998). In particular the history of the zero sign, whose development took 
more than 2000 years, illustrates the difficulties humans had to develop a complete 
place value system and might explain, why many children struggle understanding its 
principles (Herzog et al., 2019; Ifrah, 1998; Kamii, 1986). This raises the questions, 
which properties define the decimal place value system and what knowledge is 
necessary for its understanding. 
THEORETICAL BACKGROUND 
There can be four properties determined that structure the decimal place value system 
(Herzog et al., 2019; Ross, 1989): 

Positional property: Each digit in a number contains information about which 
bundle size it represents. 

Base-ten property: All bundles are powers of ten. 
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Multiplicative property: The digits’ face values have to be multiplied with the 
corresponding face values. 

Additive property: The resulting components of a number (decimal 
decomposition) are summed up to construct the number. 

Another main property is the continued bundling principle as it facilitates the iterated 
re- and unbundling in powers of ten. This leads to a specific relationship between the 
bundling units (ones, tens, hundreds etc.): 10 units equal one ten, 10 tens equal one 
hundred etc. (Herzog et al., 2019; van de Walle, Karp & Bay-Williams, 2004). These 
properties make the place value system to an astonishingly efficient tool for 
enumeration, writing and reading numbers and calculation (Fritz & Ricken, 2008; van 
de Walle et al., 2004). 
Place value understanding 
Van de Walle et al. (2004) distinguish between procedural and conceptual place value 
understanding. Procedural place value understanding refers to the understanding and 
mapping of number words, number symbols and quantity representations in a way that 
allows “translating” number representations between these codes. This model can be 
seen as an application of the triple code model on the decimal place value system 
(Dehaene, 1992; Herzog et al., 2019; van de Walle et al., 2004).  
Transcoding – the translation process between the number codes – has been focused 
by researchers for a longer time. Effects of number size and distance, several effects 
regarding the digits as well as processing routes of multi-digit numbers have been 
discussed (Nuerk, Moeller & Willmes, 2015). Linguistic influences were investigated, 
in particular how the structure of number words in different world regions affect 
transcoding processes (Miller, Smith, Zhu & Zhang, 1995; Miura, Kim, Chang & 
Okamoto, 1988; Pixner, Zuber, Hermanova, Kaufmann, Nuerk & Moeller, 2011; 
Zaslavsky, 1999). Typical errors children do in preschool age (70053 for 
“sevenhundredfiftythree”) indicate that the integration of the abovementioned 
properties is a main learning step for children (Byrge, Smith & Mix, 2014). However, 
only a small minority of learners seems to have persistent difficulties with transcoding 
(Herzog et al., 2019).  
Conceptual place value understanding focusses the meaning as well as the relation of 
the bundling units (Cobb & Wheatley, 1988; Herzog et al., 2019; van de Walle et al., 
2004). For example the meaning of ten as bundling unit is hardly to be separated from 
its relation to units: A ten is a bundle of ten units. Therefore, place value concepts are 
not about how to read, write or manipulate numbers, but on the reason why we can do 
it like we do (Herzog et al., 2019).  
Without a conceptual understanding of the place value system, learners cannot 
understand the iterated bundling of the bundling units. In this case, the bundling units 
remain unconnected beside each other (Cobb & Wheatley, 1988; Fuson et al., 1997). 
An understanding of the relation of the decimal bundling units allows representing 
numbers in different ways: For example, 43 can be represented as 3 tens and 4 units 
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(canonical), but also as 2 tens and 14 units or 1 ten and 24 units (non-canonical). This 
knowledge has to be considered as main part of conceptual place value understanding 
(Herzog et al., 2019; van de Walle et al., 2004).  
Certainly, procedural and conceptual place value understanding are not separate 
domains, but interact. In particular procedural place value understanding bases on place 
value concepts and is unlikely to develop without any conceptual basis (Herzog et al., 
2019; van de Walle et al., 2004). 
Developmental model of place value concepts 
In order to structure the concepts that form a sustainable place value understanding, we 
developed a model of place value concepts (Herzog, Ehlert & Fritz, 2017; 2019). The 
model is based on existing theories and models from the last 30 years as well as an 
analysis of the place value system on the one hand (Cobb & Wheatley, 1988; Fuson et 
al., 1997; Resnick, 1983; Ross, 1989). On the other hand, the model was 
operationalized and empirically tested throughout the process of development in 
several pilot studies in Germany. The empirical results led to a revision and adaption 
of the model, so that theoretical considerations and empirical findings were integrated 
(Herzog et al., 2019). In an empirical study, the model hierarchy could be underpinned 
in South Africa, too (Herzog et al., 2017). The model specifies four central conceptual 
levels and an additional starting level: 
Pre-decadic level: On this level, children perceive numbers as unitary entities that are 
not structured into decimal bundling units (Cobb & Wheatley, 1988; Fuson et al., 1997; 
Ross, 1989). Thus, to children a number like 25 is not structured into tens and units. 
That does not necessarily mean that children do not understand decompositions of 
smaller numbers or even more complex decompositions (e.g. 5x5) at all. But they do 
not see the decimal structure of numbers initially.  
Level I (Place values): The first concept, learners develop is the knowledge that there 
are decimal bundling units (Cobb & Wheatley, 1988; Fuson et al., 1997; Ross, 1989; 
van de Walle et al., 2004). They can name and detect digits’ positions within numbers. 
This knowledge allows them to (de-)construct numbers canonically, while non-
canonical representations cannot be handled yet. The number range in which children 
know the place values relies on instruction; however, tasks get not significantly more 
difficult with growing number range (Herzog et al., 2019).  
Level II (Tens-units relation with visual support): The first step towards an 
understanding of the relation between tens and units as decimal bundling units relies 
on visual support in form of structured manipulatives (e.g. base-ten blocks) (Cobb & 
Wheatley, 1988). With help of these manipulatives children can verify the identity of 
ten units and one ten, for example through counting processes. Therefore, non-
canonical representations are understood if visual aids are given. However, abstract 
representations are not yet understood. Moreover, this concept is limited to tens and 
units while bigger bundling units are not involved. 
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Level III (Tens-units relation without visual support): On this level, learners understand 
the relation of tens and units in an abstract way. The bundling unit “ten” now has a 
cardinal meaning that is independent from visual aids or counting processes. This 
knowledge is limited to tens and units. On the same level, children start to integrate 
hundreds and tens when they have visual representations. Analogue to level II, they 
can verify and use the relation between hundreds and tens if they have visual support. 
Level IV (Decimal-bundling-units relation in general): On this last level, children 
internalize their knowledge about the bundling units so they do not rely on visual aids 
at all (Fuson et al., 1997). They can now process non-canonical representations 
abstractly. Although the number range naturally depends on instruction as new digits’ 
names have to be learned, the general principle of the continued bundling is generally 
understood. With this concept the development of place value concepts is considered 
to be completed (Cobb & Wheatley, 1988; Fuson et al., 1997; Ross, 1989). 
EMPIRICAL VALIDATION 
While the model hierarchy is in line with existing research and the content’s structure, 
the proposed model needs an empirical validation. We tackled the model’s validity 
with two studies. 
Study 1: Model hierarchy 
In the first study we operationalized the levels of the model and tested the resulting 
items with a total of N=749 children (340 girls) from grades 3, 4 and 5. The sample is 
distributed equally across the grades (grade 3: 270 (36%), grade 4: 236 (31.5%), grade 
5: 243 (32.4%). Data were collected at the beginning of the school year in all grades. 
The final test contained 36 items based on the model proposed above (Herzog et al., 
2019). Items were designed according to one specific conceptual level each (12 items 
on level I, 8 on levels II to IV each). The item collection shows a good internal 
consistency (Cronbach’s α=.894). 
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Fig. 1: Person-Item-Map of the Rasch analysis with level clusters. 

To test the hierarchy of the concepts as proposed by the model, we used a one-
dimensional Rasch analysis. This probabilistic test model allows determining the 
items’ specific difficulties (Dunne et al., 2012). The model is supposed being affirmed, 
if items operationalizing the same conceptual level form consistent clusters according 
to the model hierarchy. In addition, we investigated how the learners’ performance is 
distributed across the grades 3 to 5. 
The Rasch model shows acceptable to good MNSQ-infit measures (.68-1.3 for all items 
and .8-1.2 for 30 of that) (Wright & Linacre, 1994). In general, the items used to 
operationalize the model form consistent clusters that order as suggested by the model. 
6 items show difficulty measures that belong to neighboured levels (see fig. 1). All 
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“misplaced” items can be explained by instructional and curricular influences (3 items), 
use of specific strategies that change the items’ conceptual level (2 items) or too 
complex task wording (1 item). 
We compared the mean raw scores of learners separated by grade. Table 1 shows the 
mean scores and standard deviations. An ANOVA revealed significant differences 
between the grades (F(2,748)=76.827, p<.001). Post-Hoc-tests following Scheffé 
showed significant differences between grade 3 and 4 as well as grade 3 and 5 (both 
p<.001); grades 4 and 5 did not differ significantly (p=.414). 

 total 3 4 5 

N 749 270 236 243 
M 
(SD) 

22.77 
(7.55) 

18.64 
(6.54) 

24.68 
(6.49) 

25.51 
(7.6) 

Table 1: Distribution of raw scores across the grades 
These results underpin the model hierarchy of place value concepts. Obviously we can 
distinguish specific concepts that children develop in primary school. However, the 
results also reveal that instruction affects the model validity. A transfer to other grades 
needs a specific validation and maybe a revision of the operationalization. The 
distribution of performance across the grades indicates that learners in higher grades 
have more elaborated place value concepts than learners in lower grades, pointing at a 
real development during primary school. However, it seems as learners do mostly 
progress during grade 3 while there is only little development in grade 4.  
Study 2: Individual learners’ development 
To give evidence that the model describes a real development of concepts, it is 
necessary to investigate if learners really rise through the levels and gain conceptual 
knowledge. For this purpose the learners from grade 3 and 4 were followed in a 
longitudinal study for one school year.  
Measurement times were beginning (T1), middle (T2) and end (T3) of grade 3 and 4 
respectively. Data from a total of N=195 (87 girls) could be collected at all 
measurement times. For this study the same task collection in altered order was used 
as in study 1.  
The learners’ raw scores in all three tests were investigated in a variance analysis with 
repeated measurements. Table 2 shows means and standard deviations from all 
measurements for all learners and separately for grades 3 and 4. For all learners 
significant differences were found (F(2,388)=70.350, p<.001, part. η²=.266). Learners 
in grade 3 showed bigger learning effects (F(2,170)=60.571, p<.001, part. η²=.416) 
than the fourth-graders (F(2,216)=21.225, p<.001, part. η²=.164). In post-hoc-tests 
(Bonferroni) growths were significant in all groups and between all measurements 
except grade 4 from T2 to T3 (p=.459).  
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Group   T1  T2 T3 

all   
(N=195) 

M  
(SD) 

24.37  
(6.41) 

27.34  
(6.09) 

28.29  
(6.1) 

Grade 3 
(N=86) 

M  
(SD) 

21.43 
(6.38) 

25.24 
(6.68) 

26.63 
(5.94) 

Grade 4 
(N=109) 

M  
(SD) 

26.67 
(5.43) 

28.99 
(5.03) 

29.61 
(5.92) 

Table 2: Development of raw scores over one year 
The longitudinal study shows that learners individually progress significantly in their 
conceptual place value knowledge. We therefore argue that the proposed model validly 
describes and assesses learners’ individual learning trajectories. The model of place 
value concepts thus is appropriate to structure teaching and assessment in class. 
However, the study reveals that learners in the first develop place value concepts during 
grade 3and the beginning of grade 4. This is in line with the results from study 1. This 
might root from the curriculum and teaching. 
References 
Byrge, L., Smith, L., & Mix, K. (2014). Beginnings of place value: How preschoolers write 

three-digit numbers. Child Development, 85, 437–443. 

Cobb, P. & Wheatley, G. (1988). Children's Initial Understandings of Ten. Focus on Learning 
Problems in Mathematics, 10(3), 1-28. 

Dehaene, S. (1992). Varieties of numerical abilities. Cognition, 44, 1-40. 

Dunne, T., Long, C., Craig, T., & Venter, E. (2012). Meeting the requirements of both 
classroom-based and systemic assessment of mathematics proficiency: The potential of 
Rasch measurement theory. Pythagoras, 33(3), 16 pages. 

Fuson, K. C., Wearne, D., Hiebert, J. C., Murray, H. G., Human, P. G., Olivier, A. I., 
Carpenter, T. P. & Fennema, E. (1997). Children’s Conceptual Structures for Multidigit 
Numbers and Methods of Multidigit Addition and Subtraction. Journal for Research in 
Mathematics Education, 28(2), 130-162.  

Fritz, A. & Ricken, G. (2008). Rechenschwäche [Difficulties in arithmetic]. Basel: Reinhardt. 

Hart, K. (2009). Why do we expect so much? In J. Novotná, & H. Moraova (Eds.), SEMT 
2009. International Symposium Elementary Maths Teaching. August 23 – 28, 2009. 
Proceedings: The Development of Mathematical Understanding (pp. 24-31). Prague: 
Charles University. 

Herzog, M., Ehlert, A. & Fritz, A. (2017). A competency model of place value understanding 
in South African primary school pupils. African Journal of Research in Mathematics, 
Science and Technology Education, 21(1), 37-48. 

Herzog, M., Ehlert, A. & Fritz, A. (2019). Development of resilient place value concepts. In 
A. Fritz, V. Haase & P. Räsänen (Eds.), The International Handbook of Mathematical 
Learning Difficulties (pp. 561-580). New York: Springer. 



Herzog & Fritz 

PME 43 – 2019                                                                                                      2 -  359 

Ifrah, G. (1998). The Universal History of Numbers. From Prehistory to the Invention of the 
Computer. London: Harville Press.  

Kamii, C. (1986). Place Value: An Explanation of Its Difficulty and Educational Implications 
for the Primary Grades. Journal of research in childhood education, 1(2), 75-86. 

Miller, K. F., Smith, C. M., Zhu, J. & Zhang, H. (1995). Preschool origins of cross-national 
differences in mathematical competence: The role of number-naming systems. 
Psychological Science, 6(1), 56-60. 

Miura, I., Kim, C., Chang, C.-M. & Okamoto, Y. (1988). Effects of Language Characteristics 
on Children's Cognitive Representation of Number: Cross-National Comparisons. Child 
Development, 59(6), 1145-1150. 

Nuerk, H.-C., Moeller K. & Willmes, K. (2015). Multi-digit Number Processing: Overview, 
Conceptual Clarifications, and Language Influences. In R. C. Kadosh & A. Dowker (Eds.), 
The Oxford handbook of mathematical cognition (pp. 106-139). Oxford : 2 Medicine UK. 

Pixner, S., Zuber, J., Heřmanová, V., Kaufmann, L., Nuerk, H.-C. & Moeller, K. (2011). One 
language, two number-word systems and many problems: Numerical cognition in the 
Czech language. Research in Developmental Disabilities, 32, 2683-2689. 

Resnick, L. (1983). A Developmental Theory of Number Understanding. In H. Ginsberg 
(Ed.), The Development of Mathematical Thinking (pp.109-151). New York: Academic. 

Ross, S. H. (1989). Parts, Wholes and Place Value: A Developmental View. The Arithmetic 
Teacher, 36(6), 47-51 

Van de Walle, J. A., Karp, K. & Bay-Williams, J.M. (2004). Elementary and Middle School 
Mathematics: Teaching Developmentally. Boston: Pearson.  

Wright, B. D. & Linacre, J. M. (1994). Reasonable mean-square fit values. Rasch 
Measurement Transactions, 8, 370. 

Zaslavsky, C. (1999). Africa counts. Number and Pattern in African Cultures. Chicago: 
Francis Hills. 

 



 

 

2 - 360 
2019. In M. Graven, H. Venkat, A. Essien & P. Vale (Eds.). Proceedings of the 43rd Conference of the International 
Group for the Psychology of Mathematics Education (Vol. 2, pp. 360-367). Pretoria, South Africa: PME. 

CONTRIBUTION OF ACADEMIC MATHEMATICS TO TEACHER 
LEARNING ABOUT THE ESSENCE OF MATHEMATICS 

Anna Hoffmann, Ruhama Even 
Weizmann Institute of Science 

 
This study investigates the contribution of academic mathematics courses to teacher 
learning about the essence of mathematics. Analysis of interviews with eleven 
secondary school mathematics teachers, who graduated from a master’s program that 
included a strong emphasis on academic mathematics studies, identified references to 
four topics regarding the essence of mathematics: (1) Wide and varied, (2) Lively and 
developing, (3) Rich in connections, and (4) Structured deductively. The findings show 
that whereas all teachers (but one) reported that they expanded their knowledge about 
the essence of mathematics, which, in turn, contributed to their classroom teaching, 
substantial differences existed among the teachers in the extent to which they referred 
to each of these four topics. 
INTRODUCTION 
In many countries, the education of secondary school mathematics teachers 
traditionally includes a strong emphasis on advanced mathematics courses at the 
college or university level. This tradition has been reconsidered in recent years, and the 
relevance of academic studies of mathematics to secondary school mathematics 
teaching is being debated (e.g., Dreher et al., 2018; Murray et al., 2017). As part of a 
comprehensive research program that addresses this issue, the current study examines 
what might be the contribution of academic mathematics courses to teacher learning 
about the essence of mathematics, i.e., about what is this discipline called mathematics. 
THEORTICAL BACKGROUND 
The literature on the relevance and contribution of academic mathematics studies to 
mathematics teaching in secondary school is rather limited. Theoretical contemplations 
suggest a potential contribution in two dimensions of subject-matter knowledge that 
appear to be critical for teaching. One dimension is knowledge of specific topics, 
concepts, and procedures, and the other is a more general epistemological knowledge 
about what mathematics is and what doing mathematics entails (Ziegler & Loos, 2014). 
The existing empirical research literature, which is mainly based on interviews with 
teachers, mostly reports on the contribution of academic mathematical studies to 
teaching at the level of knowledge about what mathematics is and what doing 
mathematics entails (e.g., Even, 2011; Wasserman et al., 2018; Zazkis & Leikin, 2010). 
Teachers referred to such aspects as doing mathematics as problem solving, the role of 
intuition in doing mathematics, and the use of mathematics in other disciplines. Yet, 
the literature is lacking conceptual frameworks for analysing this contribution.  
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In a recent study (Hoffmann & Even, 2017, 2018) we addressed this shortcoming of 
suitable conceptual frameworks. In that study we found that expanding teachers' 
knowledge about what mathematics is was one of the main objectives of 
mathematicians who taught advanced academic mathematics courses to practicing 
secondary school teachers. Based on interviews with these mathematicians we 
developed a conceptual framework for analysing teachers' knowledge of what 
mathematics is. The framework comprises of three main aspects: (1) the essence of 
mathematics, (2) doing mathematics, (3) and the worth of mathematics. Each of these 
aspects includes between two to four topics; a total of nine topics (see Error! R
eference source not found.).  

 
Figure 9: A conceptual framework for teacher knowledge about what mathematics is 

This framework serves us now in studying the relevance and contribution of academic 
mathematics courses to teaching mathematics in secondary schools. This paper focuses 
on one aspect, namely, the essence of mathematics, which deals with the question: 
What is this discipline called mathematics? The research question is: What do teachers 
learn about the essence of mathematics during academic mathematical studies and 
how does this knowledge contribute to their work? 
METHODS 
Setting and Participants 
The study is situated in a two-year master’s program for practicing secondary school 
mathematics teachers. A major component of the program comprises eight academic 
mathematics courses tailored for teachers, designed and taught by research 
mathematicians. Four of these courses deal with topics in the school curriculum at an 
advanced level: algebra, analysis, geometry, and probability and statistics. Three 
courses are devoted to the use and application of mathematics in other domains: 
computer science, natural sciences (applied mathematics), social sciences and 
everyday technologies. One course deals with the history and philosophy of 
mathematics. In addition, a final project that involves an independent study of an 
unfamiliar mathematical topic is carried out under the guidance of a mathematician.  
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Eleven program graduates participated in the study; eight women and three men. All 
had experience in teaching mathematics in upper secondary school. Their teaching 
experience varied considerably from 3 to 23 years.  
Data Collection  
The main data source included individual semi-structured in-depth interviews with the 
teachers. The interviews took place between 0.5-2.5 years after graduation, and lasted 
between 45-90 minutes. The aim was to learn how the mathematics courses contributed 
to the teachers' knowledge about the nature of mathematics, and how that knowledge 
contributed to their teaching. The interview consisted of eight open-ended questions. 
The main questions were:  

1. Has there been any change in the teacher you were before the program and the teacher 
you are today?  

2. The program has two main components: courses in mathematics education and courses 
in mathematics. Have the mathematics courses contributed to you as a teacher?  

3. Have you learned anything new about what mathematics is from the mathematics 
studies in the program? 

Following each question, the interviewees were asked to explain their responses and to 
give examples from their experiences in the program and their teaching. Additional 
data sources were participant observations in most courses and informal conversations 
with the teachers. The aim was to strengthen the internal validity of the study.  
Data Analysis 
We used the conceptual framework in Error! Reference source not found. for a
nalyzing the interviews, employing the method of directed content analysis (Hsieh & 
Shannon, 2005). This is a qualitative data analysis method, which uses the categories 
of an existing theoretical framework for coding scheme. During analysis additional 
categories could be created and definitions of existing categories could be modified as 
arising from the data.  
After full transcripts of the interviews were made, everything said by the teachers that 
concerned the nature of mathematics was coded in an iterative and comparative 
manner. For every category found in a transcript, if the teacher did not link it to 
contributions of the academic mathematics courses, the coded text was omitted. As the 
interview questions were neutral by means of the conceptual framework, that is, none 
of the nine topics were mentioned or implied by the interviewer, we regarded the extent 
to which a teacher referred in the interview to a certain topic to indicate that the topic 
was significant for that teacher (Morgan, 1993). Hence, in each transcript, we counted 
the number of words related to each category and calculated the percentage of the text 
associated with each category out of the total coded text.  
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FINDINGS 
Analysis revealed that all three aspects and all nine topics of the conceptual framework 
for teacher knowledge about what mathematics is (Error! Reference source not f
ound.) were mentioned in the interviews. Also, no additional aspects or topics of 
knowledge about the nature of mathematics were identified. Thus, the resulting 
categories were identical to the theoretical framework.  
In the case of the essence of mathematics, which is the focus of this paper, 10 (out of 
11) teachers reported that the academic mathematics courses contributed to their 
knowledge about this aspect, and also that this new knowledge contributed to their 
teaching. Yet, not all ten teachers mentioned all four topics included in the essence of 
mathematics: (1) wide and varied, (2) lively and developing, (3) rich in connections, 
and (4) structured deductively. Table 1 presents for each teacher and topic the number 
and percentage of interview words related to contribution of the mathematics courses 
to the teacher’s knowledge and practice.  

Teacher Wide and varied Lively and 
developing 

Rich in 
connections 

Structured 
deductively 

Total  
coded text 

A - 567 (48%) - 31 (3%) 1175 
B 325 (16%) 368 (18%) 58 (3%) 93 (4%) 2073 
C - 203 (7%) 700 (25%) - 2761 
D - - - - 336 
E - 116 (3%) 575 (14%) - 4041 
F 110 (14%) - - 338 (42%) 800 
G 312 (17%) - - - 1794 
H 135 (14%) - 546 (55%) - 991 
I - 229 (9%) 523 (21%) 648 (26%) 2529 
J 484 (20%) 214 (9%) 186 (8%) - 2395 
K 1342 (35%) 317 (8%) 443 (11%) 294 (8%) 3881 

Median  319  229  483  194   
Note. Percentages are out of the total number of words in the coded text. Shaded cells indicate that 
the teacher reported also on contribution to classroom teaching. 

Table 3: Numbers and percentages of words in teachers' interviews associated with 
contribution to the four topics of the essence of mathematics. 

As shown in Table 1, the teachers varied considerably in the number of topics to which 
they referred (0-4). Still, a similar number of teachers (5-7) referred to each topic. 
Moreover, topics that received considerable focus in a teacher’s report were topics on 
which that teacher reported on contribution to practice as well. In the following, for 
each topic, we describe characteristics of the contribution of the mathematics courses 
to the teachers’ knowledge and practice.  
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Wide and varied 
As shown in Table 1, six teachers reported on contribution of the mathematics courses 
related to the topic mathematics as wide and varied. These teachers reported that they 
became aware of how wide mathematics is, and what a huge amount of mathematics 
exists, which they still and never would know. While one teacher (K) related to this 
category exceptionally lengthy, throughout 1342 words, the median length of word 
count per teacher in this category was 319 words. Teachers reported that they learned 
how wide and varied mathematics is, in terms of the fields of mathematics that exist, 
the kinds of questions one may ask, the assumptions one can make, the ways one may 
try to solve or model problems, and the many levels of complexity a mathematical 
concept could have. The following excerpt from J's interview exemplifies this.  

I:  From the mathematical studies, was there anything you learned about what 
mathematics is? Did you learn something new? What is this discipline? 

J:  Mostly perhaps how many areas it covers. Like when I'm studying mathematics, I 
learn that I don’t know... Actually, you see that mathematics is like a whole world. 
It is impossible to know it. ...You learn whatever you learn, but it is more than that. 
It gives you, like, the feeling of the size of the [pause], like, basically this.  

Five of the six teachers reported that their new knowledge about mathematics as a wide 
and varied discipline contributed to their teaching. They said that their new knowledge 
enabled them to widen students' perceptions about mathematics and revealed to them 
new and interesting frontiers. The following excerpt from K's interview manifests this. 

I: Have there been any changes in you as a teacher following the program? 
K: …It made me understand that mathematics is not something rigid and closed but 

something very very wide… and it enabled me as a teacher… to convey to the 
students that mathematics is very very interesting, and very deep, and it covers all 
domains, and I didn’t have that before. 

I: How do you convey it? ... 
K: …When we study vectors and we learn norms, then every plane has one norm. 

Today, after studying differential geometry, I know that surfaces have norms in 
different directions. I mean, you can talk now about that a norm is not one norm to 
a plane. If the surface is a bit curved, then you have infinite number of norms. You 
can convey this to a certain extent, just open it, and curious girls fly with it further. 

Lively and developing 
Six teachers reported on contribution of the mathematics courses related to the topic of 
mathematics as a lively and developing discipline. The median length of coded text in 
this category was 229 words. The teachers reported that they learned that mathematics 
did not appear suddenly from nowhere but was rather developed slowly. They also 
learned how and why today’s mathematics has evolved. B illustrates this: 

…it is very important how mathematics has evolved... Let's say Euclid, his book of the 
elements of geometry, and then over the years how things evolved, and so on, and 
projective geometry, and so on, and then like all the developments of recent years. There 
is something in this conception that straightens out my head. I can understand much more 
deeply. How it was created. 
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Five of the six teachers said that their new understandings about mathematics as a lively 
and developing discipline contributed to their teaching. They reported that they started 
to present students with the background of how things have developed in order to 
deepen students' understanding and raise their interest. For example, A described: 

I: Is there anything else you teach differently that you can point out? 
A: …if I talk to them about the development of mathematics then it is to teach 

differently. Most definitely. … anything new from the curriculum that I want to 
bring to class… I try not to dump it on them, but to prepare them for it… I may not 
always be able to do that... But whenever I can explain where it came from and what 
people did in order to reach this discovery, I do that.  

Rich in connections 
Seven teachers said that their participation in the academic mathematics courses 
contributed to their understanding about mathematics as rich in connections. The 
median of coded text in this category was the highest of all categories in the aspect of 
the essence of mathematics, with 483 words. The teachers talked about their 
understanding of the connections between different topics and the importance of 
making connections while dealing with mathematics. For example, B said: “One of the 
most powerful things that I had as an insight, it is the connection of all the topics to 
each other and the integration between them.” And E said: “I saw the connection 
between the different topics much more, how one domain uses another in order to 
prove, to make progress, to illustrate.”  
Teacher C demonstrated her development of knowledge on the connectivity of 
mathematics by referring to the topic of conic sections. She explained how differently 
she knew this topic before participating in the program: 

I taught circles, taught ellipses, taught parabolas, taught hyperbolas in 12th grade in 
Cartesian geometry, and I knew how to lead my students so that they succeed in the 
matriculation exams on any question on these subjects. Still for me it was four equations 
of four shapes. I never saw it as one family of quadratic functions that are part of a general 
thing. 

And she continues later in the interview: 
What I told you before about the connections between things. This phenomenon of 
compartmentalization, of putting things in separate drawers. Maybe it's convenient for us 
to put things in drawers, but when things suddenly connect and everything can be here and 
there, then suddenly you feel that you understand.  

Five of the seven teachers elaborated on the ways their new knowledge about the 
connectivity of mathematics contributed to their teaching, by solving problems in 
multiple ways, and by using concepts and representations from various fields. For 
example, C said: “Mainly I think about yesterday and tomorrow, and not just about the 
present. When I teach something, I try to connect it to what was before and what will 
be later and to other domains.” For instance, she stresses for students that the straight 
line they sketch in geometry,  the linear equation 𝑓(𝑥) = 𝑚𝑥 + 𝑛 they see while 
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learning functions, and the equation 𝐴𝑥 + 𝐵𝑦 + 𝐶 = 0 that they meet in Cartesian 
geometry, are all the same mathematical concept in different representations.  
Deductively structured  
The contribution of mathematics courses to the topic mathematics as deductively 
structured was mentioned by five teachers, relatively shortly, with a median of 194 
words, the lowest from all categories in the aspect of the essence of mathematics. The 
teachers did not mention the logical structure of mathematics but rather referred solely 
to the elements of the deductive structure.  
Three teachers mentioned contribution to teaching in this category. They said that the 
mathematics courses contributed to their knowledge regarding the essence of 
mathematical axioms, definitions and proofs, and how mathematics is established by 
axioms and definitions. For example, K said: 

In any mathematical course. It suddenly pops up. You didn’t look for it until you became 
aware of it. When you are aware that you look for definition of everything, I just look for 
it... I suddenly explain to the kids: That is a definition, you cannot argue about it, let us 
define it properly. I also explain what ‘well defined’ is... I think it made me a much more 
organized teacher, and it makes order in the students’ heads... 

CONCLUSION 
As shown in this paper, the conceptual framework we developed, based on interviews 
with mathematicians about what they wished to teach secondary school teachers about 
mathematics (Hoffmann & Even, 2017, 2018), was useful for examining the 
contribution of academic mathematical studies to secondary school teachers’ 
knowledge and practice, in relation to the essence of mathematics. Analysis of 
interviews with teachers, who graduated from a program comprised of eight academic 
mathematics courses, generated the same four topics associated with the essence of 
mathematics, as the analysis of the interviews with the mathematicians who taught in 
that program: mathematics as (1) wide and varied, (2) lively and developing, (3) rich 
in connections, and (4) structured deductively.  
Our study provided tangible examples of how academic mathematics courses that focus 
on specific fields (geometry, analysis, etc.) contributed to teachers’ learning about the 
essence of mathematics, which in turn contributed to their practice. For instance, 
teacher K’s use of the concept of norm she studied in the course on differential 
geometry for demonstrating her developed knowledge about mathematics as a wide 
and varied discipline, and her use of this new knowledge in teaching as a means to 
raise her students’ interest in, and widen their perspectives about, mathematics.  
Our findings suggest that all participating teachers, but one, learned something new 
about the essence of mathematics in their academic mathematics studies. Yet, even 
though all the teachers studied the same academic mathematics courses with the same 
instructors, different teachers attended to different topics of the essence of 
mathematics. More research is needed to better understand these variances among 
teachers, and how they relate to teacher characteristics and to course instruction.   
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PREPARING IN-SERVICE TEACHERS FOR THE 
DIFFERENTIATED CLASSROOM 

Lars Holzäpfel, Timo Leuders, Thomas Bardy 
University of Education, Freiburg 

 

Teaching in heterogeneous classes is currently one of the biggest challenges for 
teachers in Germany. In order to teach mathematics adaptively, teachers must be able 
to select and use adequate tasks. This study addresses teachers’ abilities to evaluate 
tasks with respect to their potential for differentiation. 78 teachers took part in a paper-
pencil-test that assessed their perspectives on the potentially differentiating features of 
tasks, such as openness or accessibility. It was found that their arguments were 
predominantly based on the categories adaptivity, context/language, type of knowledge 
and layout. By cluster analysis four argumentation profiles could be identified. 
INTRODUCTION AND THEORETICAL FRAMEWORK 
One of the central challenges for teachers is to handle the students’ heterogeneity (e.g. 
with respect to their achievement) in the classroom. There are various teaching 
strategies to deal with heterogeneity: for example, it is possible to group students. 
Research shows on the one hand that learning outcomes can increase in homogeneous 
groups, on the other hand other studies show a benefit for students in heterogeneous 
groups (Slavin, 1993; Lou et al., 1996; critical discussion at PME39: Forgasz, 2015). 
Unfortunately, most of the research on grouping does not reveal how the teaching was 
done in the different groups (e.g., diagnostic instruction, Brown, 1984; adaptive 
teaching, Beck et al., 2008). Another possibility is to focus on suitable tasks. Tasks are 
significant in teaching mathematics (Hiebert et al., 2003) and the central steering 
instrument for learning mathematics in schools. It is known from previous research that 
one key element of effective teaching is adaptivity and this plays an important role with 
regard to differentiation (e.g., external differentiation Boaler, 2016; internal 
differentiation, adaptivity Klieme & Warwas, 2011). “Adaptivity” is the ability to adapt 
teaching to heterogeneous learning groups. “Differentiation” refers to a variety of 
strategies of a teacher that aims at improving adaptivity. Among those strategies, task 
quality plays a crucial role for differentiated teaching (Brändström, 2005). Therefore, 
using adaptive mathematical tasks with a high differentiation potential is considered as 
one possible strategy to cope with students’ heterogeneity. In this study we look at the 
teachers’ abilities with regard to their competences selecting adequate tasks for 
differentiated teaching. In particular we investigate which task characteristics they 
focus on. 
To judge the quality of tasks, one can refer to a number of characteristics (e.g., Stein 
& Smith, 1989; Blömeke et al., 2006; Leuders, 2015). In this study we focus on 
characteristics of tasks that are suitable to address learners with different abilities and 
different prior knowledge. The following two examples (taken from the test) show 
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different characteristics of tasks with respect to adaptivity. In Example 1 (Fig. 1) 
students have rarely a possibility to work on different levels or in different ways. There 
is almost no variety in task types and students would have to work on more or less the 
same level in all items. In Example 2 students can begin on an easy level in the first 
item (1); the next items are more challenging because they require working backwards 
(subtraction). In (3) it may not be obvious for all students how to find a solution. 
Moreover, the question whether there are multiple solutions, requires argumentation 
and problem solving. Part (4) is open in several ways: Students can figure out easy or 
complex solutions, they can try to find the same or different numbers on the left and 
right side (symmetric or non-symmetric solution); they can try to use visualizations to 
find further solutions etc. – depending on their individual level of achievement. The 
characteristics of this task (across all four parts (1) to (4)) can be described as problem 
solving, openness and creativity. Another important characteristic is accessibility – all 
students should be able to begin working on item (1); high-performers, however, may 
begin with item (3) or (4). Finally, this task can be described as ‘adaptive’ because it 
can be solved in multiple ways. 

Task-Example 1 (almost no differentiation potential, less adaptivity): 
Compute. 

 
 
Task-Example 2 (high potential for differentiation, adaptive for low- and high 
performing students): 
Add the numbers. The result is always in the middle of two numbers. Search for 
several solutions in (4). 

 
Figure 1: Task examples. 

When teachers reflect on the tasks and their characteristics, they analyze the 
affordances of the task and the tasks’ adequacy for learners with different abilities. 
Therefore, we aim at assessing teachers’ arguments when choosing or evaluating tasks 
with respect to their potential for differentiation. We address the following research 
questions: 

(1)  To what extent do teachers succeed in identifying the differentiating potential 
of tasks compared to an expert view? 
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(2)  What criteria do teachers have for assessing tasks with regard to their potential 
for differentiation? 

(3)  Is it possible to identify groups of teachers with different kinds of criteria? 
METHODS 
The participants of the study were N = 78 in-service teachers at secondary schools in 
Germany with several years of teaching experience. These participants completed a 
paper-pencil test instrument including 8 tasks, which had to be evaluated with respect 
to the question whether they are appropriate for differentiation (in figure 1 two of the 
eight tasks are listed). The teachers were asked to give reasons for their evaluations; 
they had to describe how adaptivity is realized in the task (or not). Three experts first 
assessed the tasks in terms of their differentiation potential. The expert rating was 
carried out by three independent persons who have been studying the topic of 
differentiation for several years and also have teaching experience. The agreement of 
these three persons was fair to good (with a Fleiss kappa value of .48; Table 2). The 
test instrument was then designed such that tasks with varying potential for 
differentiation (weak, medium and strong) from an expert’s point of view were mixed 
but were not explicitly marked as such. First, the teachers were asked to indicate on a 
four-point-Likert-scale for each task how suitable they considered the task for use in 
heterogeneous learning groups (unsuitable (1), rather unsuitable (2), rather suitable (3), 
suitable (4)). In a next step, the teachers were instructed to describe two aspects of each 
task that were relevant for their evaluation of the task. First, the teachers’ evaluations 
of the tasks were compared with the expert judgement (Table 2). Afterwards, teachers' 
comments were analysed using a specially developed rating manual (Table 1). 
Development of the rating manual 
A rating manual was used to evaluate the teachers’ open answers. In a first step, this 
manual was developed based on theoretical considerations. At this point, the rating 
manual included 7 categories. During the evaluation it became necessary to add 
categories and therefore the manual was further developed inductively. In particular, it 
was found that teachers often evaluated the tasks by focusing not on aspects that 
characterize a task in terms of its differentiation potential but on other aspects of tasks 
such as “layout” or “task” context. Moreover, the teachers formulated their reasons 
often from the perspective of their students. Finally, the complete manual included 23 
categories (see figure 3). We evaluated each category according to whether it was 
mentioned regarding lower or higher achieving students. The procedure (Table 1) was 
followed for all categories C1 to C23. The rating scheme was used to evaluate the 
teacher comments in the test. The procedure was as follows (Table 1): If a category 
matched a teacher’s comment, the value “1” was assigned; we assigned “–“ if the 
comment was negative and “+” if the comment was positive. If the commentary was 
formulated with respect to higher or lower achieving students, first a “1” was assigned 
in “general”. For average, higher, and lower achieving students, the values “1”, “+”, 
and “–“were assigned, respectively. 
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Table 1: Example for the rating system. 
Some examples of the rating can be found in figure 2. 

 
Figure 2: Rating examples. 

RESULTS 
For answering the first research question, the teachers’ evaluations were compared to 
the expert judgements.  

Task number  0 1 2 3 4 5 6 7 

Expert 1 
Expert 2 
Expert 3 

4 
4 
4 

2 
1 
2 

3 
4 
2 

4 
4 
4 

3 
3 
3 

1 
1 
1 

1 
2 
1 

4 
4 
3 

Share Teacher Value 1 
Share Teacher Value 2 
Share Teacher Value 3 
Share Teacher Value 4 

6% 
43% 
44% 
8% 

23% 
44% 
26% 
8% 

14% 
31% 
40% 
14% 

8% 
25% 
29% 
38% 

5% 
46% 
28% 
19% 

16% 
33% 
31% 
15% 

18% 
38% 
29% 
15% 

11% 
25% 
30% 
30% 

Average Experts 4,0 1,7 3,0 4,0 3,0 1,0 1,3 3,7 
Average Teachers 2,5 2,2 2,5 3,0 2,6 2,5 2,4 2,8 

Table 2: Teacher ratings compared to expert ratings. 
Overall the expert judgment on all 8 tasks was almost met only with 2 tasks, namely 
tasks 2 and 4 (see Table 2). Assessments of teachers were rarely extreme (i.e., they 
rarely chose 1 and 4 on the rating scale). It is interesting to see what justifications 

category category description category rating 
Goal 

differen- 
tiation 
[C2] 

Teacher describes that 
task pursues different 

goals in terms of 
content for those with 

higher and lower 
achievement. 

In general:              c no: 0, yes: 1  +  – 
For low achieving: c no: 0, yes: 1  +  – 
For high achieving:c no: 0, yes: 1  +  – 
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teachers give when selecting or not selecting tasks in relation to a differentiated 
assignment of tasks in a practice lesson at the end of a unit (still without intervention). 
The decisions were mainly based on the aspects of “technical work”, “difficulty level” 
and “layout”. 

Code total number of answers Condensed codes 
C4 Technical work 256 Task Content 

C7 Difficulty 200 Specific Adaptivity 
C10 Layout 191 Task Structure 

C3 Openness 134 Specific Adaptivity 

Table 3: Most frequently mentioned aspects in the test. 
 

 

Figure 3: Condensed category system. 
To cluster the teachers' answers, the 23 existing codes were condensed. In particular 
this was done in view of the fact that not all codes could be mentioned for task reasons 
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in each of the eight tasks. Figure 3 displays the results. For example, a teacher may 
mention a task feature eight times over all eight tasks, although this aspect is actually 
characteristic of only two tasks. Thus, a categorization had to be developed, which at 
the end considers the actual occurrence of the features over all tasks. The result is the 
(standing above) grid in figure 3. 
For answering the third research question a dimensional analysis was conducted. Since 
the codes “unspecific adaptivity” and “self-regulation” were mentioned very 
infrequently, these codes were excluded for cluster analysis. Thus, the cluster analysis 
was based on the four codes “specific adaptivity”, “task content (knowledge type)”, 
“task content (content type)” and “structural properties (external features)”. The 
frequencies of these four types of arguments per teacher were normalized, so that for 
all four codes a value between 0 and 1 could be ascribed to each teacher. Thus every 
teacher was characterized by his or her individual argumentation profile. 
 

 

task structure (external form) 
task content (type of knowledge: routine/drill, 
higher order thinking) 
task content (content type: context/ application, 
language, further features) 
specific adaptivity (openness, accessibility, goal 
differentiation, difficulty) 

 

Figure 4: Distribution of the arguments mentioned  
by the teachers among the quartiles. 

The distribution of the arguments within the whole group of teachers is shown in fig. 
4. Since every quartile contains the same number of teachers, one can say that the all 
four argument types are mentioned seldom (1. quartile) to often (4. quartile) by a 
relevant part of the teachers: the arguments are well distributed over the group. But are 
the argument profiles of each teacher different or are there certain types within the 
group? This was investigated by a latent cluster analysis (LCA), in which the data was 
described best by a four-cluster model (see fig.5). 
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Figure 5: Profiles of the cluster analysis (cluster sizes between 20 and 35) 

In the group of 78 teachers in particular, two clusters show high values for adaptivity, 
while one of these clusters has a high layout-value, the other is low in this aspect. The 
other two clusters have low adaptivity values but differ significantly in the context 
category. This shows, that one group of teachers values real-life tasks. 
CONCLUSIONS 
The results show that teachers are not always aware of different types of task with 
respect to their potential for differentiating. Overall, there was only little agreement 
between teachers and expert ratings of the differentiation potential of tasks (research 
question 1). Thus, we conclude that teachers often do not recognize the differentiation 
potential of a task and also assign tasks as a potential for differentiation that does not 
exist at all. 
An unexpected feature of a task often referred to by teachers as justification for existing 
or non-existent differentiation is the “layout” feature. Teachers focus in their 
justifications on task features that are easy and obvious to recognize, such as “layout”, 
“level of difficulty” or “technical work” (research question 2). In addition, teachers 
with different foci on task characteristics can be identified. Here four groups of teachers 
can be distinguished (research question 3): A group of teachers called increasingly 
aspects of the code “specific adaptivity” (e.g. degree of difficulty, openness), another 
group from the code “task content (knowledge)” (e.g. technical work), another group 
from the code “task content (content type)” (e.g. language) and the fourth group from 
the code “task structure” (e.g. layout). The cluster with a high value for “context” 
(figure 5) is to be viewed critically, since learning-relevant characteristics of tasks with 
regard to the potential for differentiation are obviously overlooked by the teachers. 
This study has several limitations: The findings may depend on the specific items. 
Moreover, teachers in this test evaluate the tasks with regard to their practicability in 
the classroom and this leads to a certain degree of confusion. For example, they focus 
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on the length of the text of a task or on the fact that the task (in general) is not suitable 
for their class. There is another limitation of the study: Of course, the 78 participating 
teachers were a selection of motivated colleagues, as they had registered for a series of 
further training courses. In this respect, the results are to be interpreted against this 
background. 
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MENTAL COMPUTATION FLUENCY: ASSESSING FLEXIBILITY, 
EFFICIENCY AND ACCURACY 

Sarah Hopkins, James Russo, Ann Downton 
Monash University 

 
In this paper, we elucidate the steps taken to develop an assessment of mental-
computational fluency, with the aim to capture the key features of the construct, namely 
procedural flexibility, efficiency, and accuracy. Over 200 children in third and fourth 
grade completed the assessment. Using Rasch analyses, we investigated which items 
contributed to producing a measure and which did not. The findings allowed us to 
modify the assessment and produce a unidimensional scale for measuring mental-
computational fluency with addition. We discuss the value of this assessment in terms 
of advancing learning theory and educational practice. 
PROCEDURAL FLUENCY 
As in many countries, reform in mathematics education in Australia has required 
greater emphasis be placed on children developing proficiencies relating to 
understanding, fluency, problem solving, and reasoning (Australian Curriculum 
Assessment and Reporting Authority, 2010). This study is focused on children’s 
development of fluency and in particular procedural fluency, defined by the National 
Council of Teachers of Mathematics (NCTM) as: 

the ability to apply procedures accurately, efficiently, and flexibly; to transfer procedures 
to different problems and contexts; to build or modify procedures from other procedures; 
and to recognize when one strategy or procedure is more appropriate to apply than another 
(NCTM, 2014, p.1). 

Embedded in this definition of procedural fluency is the expectation that children will 
have more than one procedure for solving mathematical problems and can switch 
between procedures depending on problem features, and so demonstrate procedural 
flexibility. Children should also be able to apply an increasing understanding of 
mathematical ideas to modify procedures and remove redundant steps, and so 
increasingly rely on efficient procedures, and make few errors when doing so 
(displaying accuracy).  
Rittle-Johnson (2017) explained how procedural fluency develops as procedural 
knowledge and conceptual knowledge interact and influence each other in an iterative 
process through experience in solving problems. The procedures and concepts 
exhibited by children as they build procedural fluency with mental computation are 
well documented in the literature, particularly for the operations of addition and 
subtraction, and are outlined in the next section. 



Hopkins, Russo & Downton 

PME 43 – 2019                                                                                                      2 -  377 

Mental computational fluency 
As children develop procedural fluency with mental addition and subtraction, they 
demonstrate a good understanding of the structure of numbers (place value), the 
positioning of numbers (number magnitude), and the meaning of the operations 
(Verschaffel, Greer, & De Corte, 2007). They apply a range of procedures to solve 
problems, which are often characterised in the literature as being one of three types: 
split strategies, jump strategies, and compensation strategies (Blöte, Klein, & 
Beishuizen, 2000; Torbeyns, Verschaffel, & Ghesquière, 2006). Both split and jump 
strategies make use of standard partitioning (i.e., with reference to place-value) and 
rearranging to make adding easier. Split strategies involve partitioning two or more 
addends [e.g., 34 + 48= (30 + 40) + (4 + 8)] and jump strategies involving partitioning 
one addend [e.g., 76 + 13 = (76 + 10) + 3]. Compensation strategies involve changing 
(adding to or subtracting from) one addend, to make use of a known fact, and then 
compensating for this change: [e.g., 17 + 9 = (17 - 1) + (9 + 1) or 17 + 9 = (17 + 10) - 
1]. 
There is another type of partitioning strategy, often described in the literature relating 
to single-digit addition, referred to as decomposition strategies (Siegler, 1987). 
Decomposition strategies can be thought of as non-standard partitioning strategies, 
where at least one addend is partitioned to make use of a known fact: for example, a 
doubles fact [e.g., 25 + 26 = (25 + 25) + 1] or a tens fact [e.g., 47 + 6  = (47 + 3) + 3]. 
While there is considerable research in the field identifying the different types of 
strategies children use for mental computation with addition and subtraction, and the 
understandings children require in order to apply these strategies meaningfully, there 
are few suitable assessments for evaluating mental computation fluency. Some 
assessments depend on self-reports of strategy use to capture indicators of efficiency 
and flexibility (e.g., Beishuizen, 1993). These involve labour-intensive data collection 
methods and so are not suited to large-scale research or everyday classroom practice. 
Other assessments produce problematic results, including data with a bimodal 
distribution (e.g., Brown & Alibali, 2018), making them unsuitable for measurement 
purposes. More broadly, assessments designed to measure computational fluency have 
focused on speed and accuracy, and ignored key features of the construct, namely 
flexibility and efficiency (e.g., Calhoon, Emerson, Flores, & Houchins, 2007; Foster, 
2018).  
Baird, Andrich, Hopfenbeck, and Stobart (2017) point out the huge impact educational 
assessments can have on teaching and learning when they function as a communicative 
device, making explicit to educators what represents quality learning. These authors 
explicate that the notion of quality (including how proficiency of a construct is 
operationalised) will depend on four spheres of influence, which are theory based, 
empirically driven, expert devised, and policy driven. They argue that the washback 
effects of assessments can serve the goals of education particularly well, when learning 
theory and assessments (aligned with assessment theory) are strongly associated and 
have reciprocal effects upon each other. Relating specifically to procedural fluency, 
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Rittle-Johnston (2017) also expressed the need for researchers to develop and validate 
measurement tools to build theories of mathematical development, which are more 
comprehensive than those that currently exist. 
In the next section, we explain the steps we took to construct an assessment designed 
to measure mental computational fluency with addition (MCF-A). We outline findings 
from an analysis of responses from over 200 children to identify items that contribute 
to producing a scaled measure and an investigation of items that did not. It is worth 
mentioning that previously we pilot-tested an assessment that included both addition 
and subtraction items. We found children struggled with the format of the assessment 
and switching between operations, and so included only addition items in this version 
of the assessment.  
ASSESSMENT DESIGN 
To construct an assessment for measuring mental computational fluency with addition 
(MCF-A), we used a novel format for items that required students to explain a strategy 
used by Emma (a fictitious student). Instructions to children were:  

Emma is good at adding numbers. She uses clever strategies to make adding easier. Your 
job is to try and think like Emma. Explain what Emma did to get the number in the box. 
For example, to solve 3 + 4, Emma thinks, that is the same as 6 + 1. What numbers did 
Emma add together to get 6? (Answer: 3 + 3).  

According to Rasch Measurement Theory (Andrich, 2016), a critical component in 
designing assessments to measure a construct is to generate items that range from being 
very easy to get right (or endorse), to items that are very difficult. Furthermore, item 
difficulty must be invariant regardless of who attempts these items, provided they are 
drawn from the population for which the assessment was designed. Items that adhere 
to this principle produce scores that display a Guttman structure, which is ideally 
needed before scores from items can be added together to form a measure. The Rasch 
model represents a probabilistic Guttman structure and can be compared with data from 
an assessment to evaluate the extent to which items on the assessment provide scores 
that adhere to this structure. 
While items for assessing a construct on either end of a continuum are often easy to 
write, it is harder to write items that operate at regular intervals along the continuum. 
To create items for assessing mental computation fluency that function along a 
continuum of difficulty, we included items with single-, double- and triple- digit 
addends, and items with two or three addends. Since we used items with three addends, 
it was appropriate to include a new type of procedure, one not previously mentioned in 
the literature, which we labelled noticing strategies. Noticing strategies do not involve 
partitioning or changing an addend, only changing the order of addends to make adding 
easier. These involve combining addends that have a particular association or 
relationship, such as tens facts or doubles [e.g., 3 + 5 +7 = (3 + 7) + 5]. 
We hypothesised three factors would influence item difficulty: (i) the size of the 
addends, (ii) the number of addends, and (iii) the type of strategy represented. 
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Predicting item difficulty based of addend features was straightforward; however, 
previous studies have produced mixed findings in relation to which strategy is more 
difficult, possibly due to differences in national curricula (Verschaffel et al., 2006). We 
reasoned that strategies that can be used to solve both single-digit and multi-digit 
problems (i.e., noticing and non-standard partitioning strategies), would be easier than 
strategies used to solve only multi-digit problems (e.g., standard partitioning 
strategies), as children would have opportunities to practice these at a younger age. We 
used a grid (see Table 1) to help construct items that differed in difficulty. Table 1 is 
organised such that items differ in terms of addend features (organised in rows) and 
strategy type (organised in columns). The item numbers represent the predicted order 
of difficulty and the order of presentation in the assessment. 

Noticing 
 

Non-standard 
partitioning 

Standard 
partitioning 

Compensating 
 

 1. 4+5=8+1 

2. 4+7=10+1 

 3. 9+3=13-1 

4. 5+8+5=10+8 

5. 6+3+6=12+3 

6. 8+3+2=10+3 

   

   7. 8+19=28-1 

8. 4+28=30+2 

 9. 10+11=20+1 

 

10. 28+13=38+3 

11. 21+26=40+7 

 

12. 11+3+9=20+3    

13. 6+18+34=40+18    

 14. 48+45=90+3 

15. 36+37=72+1 

17. 76+21=96+1 

18. 56+33=80+9 

20. 23+44=64+3 

16. 44+49=94-1 

19. 22+49=21+50 

21. 67+45+43=110+45  22. 45+67+82=180+14  

 23. 
235+238=470+3 

25. 955+445=1000+400 24. 456+356=800+12 

Table 1: The assessment of MCF-A comprising 25 items. 
METHODS 
To investigate how the assessment of MCF-A functioned, we asked 203 children in 
Years 3 and 4 to complete it. Using convenience sampling, participants were selected 
from three metropolitan public primary schools in Melbourne, Australia. These schools 



Hopkins, Russo & Downton 

2 -                                                                                                             PME 43 - 2019 380 

served a range of demographics with one school community relatively advantaged, one 
school relatively disadvantaged, and one school community similar to the national 
average, based on indicators of socioeconomic status. Participation rates in each school 
were 53%, 33% and 71% respectively. The researchers (authors) and a research 
assistant administered the assessment, which children individually completed during a 
60-minute mathematics class. Most children finished the assessment after 30 minutes. 
Data were analysed using RUMM software (Andrich, Sheridan, Lyne, & Luo, 2000; 
version 2030) to evaluate how well the observed data fitted expectations of the Rasch 
model.  
RESULTS 
An initial analysis of the data indicated the assessment had targeted the population 
well, with the exception that 12 participants did not score on the assessment. Person-
ability scores ranged from 4.6 to 3.0 logits (M = 0.8, SD = 1.9) and the item-difficulty 
scores ranged from -2.9 to 0.4 logits (M = 0.0, SD = 1.4). The total item-trait statistic 
(chi-squared = 321.93, df = 50, p = 0.000) indicated some modifications to the scale 
were needed. Ideally, the probability statistic should be greater than 0.05 (without 
Bonferroni adjustment). 

Noticing 
 

Non-standard 
partitioning 

Standard 
partitioning 

Compensating 
 

 1. 4+5=8+1  3. 9+3=13-1 

5. 6+3+6=12+3    

   7. 8+19=28-1 

8. 4+28=30+2 

  11. 21+26=40+7  

  17. 76+21=96+1  

21. 67+45+43=110+45 23. 
235+238=470+3 

  

Table 2: Misfitting items on the MCF-A  
The poor functioning of item 3 and item 7, which were predicted to be the easiest for 
use with a compensating strategy, are noteworthy given these items were considerably 
more difficult than expected. Instead of being ranked 3rd and 7th in difficulty as 
predicted, they were ranked 15th and 18th respectively (based on the initial analysis of 
data, before items were removed). While it might be that recognising use of a 
compensation strategy was more difficult than expected, this point is not clear given 
these items did not fit the Rasch model. It could be that items solved using a 
compensating strategy are more sensitive in picking up differences in teaching 
approaches. In other words, a compensatory strategy may be emphasised in some 
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classes or schools and not in others. Alternatively, it could be that these items were not 
well constructed.  
Item response curves for Item 3 and Item 7 indicating that at least some children were 
guessing the answer, suggesting a problem with how the items were constructed. We 
reasoned that Item 3 (9 + 3 = 13 - 1) could actually be efficiently solved using a 
counting-on strategy (where children count on three). A better item might be 9 + 7 = 
17 – 1, as a compensatory strategy is clearly more efficient for this problem than a 
counting-on strategy. We also noticed that Item 7 (8 + 19 = 28 – 1) might have been 
made more difficult (unintentionally) due to the ordering of the addends. A better item 
would be 19 + 8 = 28 – 1. 
The inconsistent ordering of the addends might also help explain why responses to Item 
8 (4 + 28 = 30 + 2) did not fit the Rasch model. The item’s characteristic curve 
indicated it was over discriminating. This item might have distracted students of lower 
fluency ability and be less confusing for some students if it was written as 28 + 4 = 30 
+ 2 or 4 + 28 = 2 + 30.  
Item characteristic curves for Items 1 and 11 indicated both items were discriminating. 
We reasoned that Item 1 (4 + 5 = 8 + 1) did not work well for students of higher fluency 
ability because some students might just know (i.e., can retrieve) the answer of nine; 
hence, the item was not a good example of a problem efficiently solved using a non-
standard partitioning strategy. Similarly, Item 11 (21 + 26 = 40+7) did not work well 
because some students might just know the answer. We examined the item character 
curves for the other ill-fitting items but possible explanations for misfit were less 
forthcoming. 
After removing the nine ill-fitting items, the test-of-fit summary statistics for the 
modified assessment (with 16 items) produced scores that did not deviate from 
perfection imposed by a Guttman structure (chi-squared = 321.93, df = 50, p = 0.031). 
(Note, the probability statistic needed to be greater than 0.003 with Bonferroni 
adjustment.) All items produced scores fitting the Rach model and there was no 
evidence of differential item functioning according to school. As all items were 
dichotomous (marked either correct or incorrect), the ordering of thresholds did not 
have to be checked. Furthermore, a principal components analysis of residuals 
indicated the scale to be unidimensional. While the results are promising (illustrated in 
Figure 1), further work to the assessment is needed as 27 children did not score. The 
power of analysis of fit was good but not excellent.   
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Figure 1: Item map illustrating person scores and item scores (representing item 

difficulty) in logits, using the modified assessment of MCF-A.  
Children who found it difficult to score would have benefitted from more items that 
were easier and possibly from clearer instructions.  
DISCUSSION 
Applying Rasch measurement theory, we designed an assessment to measure 
computational fluency with mental addition for children in Years 3 and 4. Testing the 
assessment to see if it produced scores that were consistent with the Rasch model 
provided much useful information. The analyses identified problematic items and 
illuminated possible reasons for why misfit occurred. After removing these items, we 
found the assessment targeted the population fairly well and produced a scaled and 
unidimensional measure of a mental computational fluency.  
We contend that this assessment of MCF-A has great potential for communicating what 
students need to know and be able to do. The novel format of items operationalises 
important aspects of procedural fluency as defined by the NCTM (2014). The MCF-A 
requires flexibility, as children need to generate a range of potential solution 
procedures when considering the strategy Emma had used. It requires knowledge of 
efficient procedures because the intermediate step used by Emma represents an 
efficient means of solving the problem. The child also has to accurately recall or 
calculate the appropriate number fact corresponding to the intermediate step arrived at 
by Emma. In this sense, the assessment addresses discipline-expert devised criteria of 
quality learning. It also builds on a substantial body of empirical findings revealing the 
different types of mental strategies children use to add together multi-digit numbers. 
Furthermore, we believe the assessment has much potential for improving educational 
practice and contributing to learning theory. It meets the criteria articulated by Baird 
et al. (2017) and the need expressed by Rittle-Johnston (2017) for better tools to build 
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comprehensive, integrative theory of how fluency develops. As the removed items 
represented key strategy types, they were theoretically important and so need to be 
rewritten. The next version of the assessment is currently undergoing testing. 
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CULTURALLY DIVERSE STUDENTS’ PERCEPTIONS OF 
MATHEMATICS IN A CHANGING CLASSROOM CONTEXT 

Jodie Hunter, Roberta Hunter, Rachel Restani 
Massey University 

 
In classroom contexts where professional learning and development focused on 
ambitious teaching is undertaken, there are new expectations and roles for students. 
The aim of this study was to explore culturally diverse students’ perceptions of 
mathematics within a changing classroom context. Data are drawn from four classes 
of Year 5 - 8 students (9-12 year-olds), including an open-ended questionnaire item 
and small group interviews. Results indicate that as changes were introduced into the 
classroom, there were shifts in the student perceptions related to their vision of 
mathematics, what it meant to be good at maths, and how to improve in maths.   
INTRODUCTION 
In many Western countries, an ongoing challenge for researchers and educators over 
the past decade has been persistent inequities in mathematics teaching and learning for 
particular groups of learners. Growing awareness of the gatekeeping role of 
mathematics on students’ future education, employment and life choices (Hunter & 
Hunter, 2018; Tate, 2013) has resulted in a need to investigate and address issues 
related to equity within mathematics education. Within the New Zealand context, there 
is a changing student population that is increasingly culturally diverse. This includes 
indigenous Māori students, as well as the largest group of Pāsifika students in the 
Western world. Students of a Pāsifika background are not from a single ethnicity, 
nationality, language or culture but are a diverse group including those born in New 
Zealand who identify themselves with the Pacific Islands culture and language and 
those who have migrated to New Zealand from the Pacific Island nations (Coxon, 
Anae, Mara, Wendt-Samu, & Finau, 2002). Frequently, the cultural background of both 
Māori and Pāsifika students has been perceived as a deficit within the schooling system 
(Hunter & Hunter, 2018; Turner, Rubie-Davis, & Webber, 2015). At the same time, 
mathematics teaching and learning practices in classrooms have perpetuated racial 
disparities with frequent use of ability grouping, in which Māori and Pāsifika students 
are over-represented in “low-ability” groups and related repetitive and procedural 
teaching (Anthony & Hunter, 2017; Turner et al., 2015).   
Both the widespread use of ability grouping and associated procedural teaching in New 
Zealand mathematics classrooms has been challenged by Developing Mathematical 
Inquiry Communities (DMIC), a whole-school formative professional learning and 
development (PLD) research project. The DMIC project is a transformative re-
invention of pedagogical practices designed to support teachers’ development of 
ambitious mathematics pedagogy (Kazemi, Franke, & Lampert, 2009) and culturally 
responsive teaching (Gay, 2010). Implemented in schools that serve disadvantaged 
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communities, key components include the use of teacher designed group-worthy, 
culturally appropriate tasks; instructional practices that support respectful social 
interactions; and the development of a range of mathematical practices including 
providing mathematical explanations, mathematical argumentation, and justification. 
A number of previous studies (e.g., Kazemi et al., 2009; Hunter & Hunter, 2018) have 
focused on the role of the teacher in shifting pedagogy towards ambitious practice, 
fewer studies focus on student perceptions in changing classroom contexts. For 
students inducted into reformed classroom communities, there are shifts in their role as 
a learner. Students are required to engage in ways of learning that privilege different 
forms of knowledge and participation (Hodge, 2008; Hunter, 2016; Pratt, 2006).  
While the teacher takes an important role in reconstructing their pedagogical practices 
to align with ambitious mathematics pedagogy, it is also important to acknowledge the 
student role within the classroom. A number of studies (e.g., Clarke & Roche, 2018; 
Esmonde, Brodie, Dookie, & Takeuchi, 2009; Hodge, 2008; Larkin & Jorgensen, 2015; 
McDonough & Sullivan, 2014; Moyer, Robison, & Cai, 2018) have recognised and 
advocated for the need to consider student perspectives when researching mathematics 
classrooms. Some of these studies have used video diaries or photo-elicitation (Hunter, 
2016; Larkin & Jorgensen, 2015) or creative interviewing techniques (McDonough & 
Sullivan, 2014) to investigate student views and beliefs related to mathematics teaching 
and learning. Other studies (e.g., Hodge, 2008; Moyer et al., 2018) report on 
perceptions and beliefs of students who have experienced different forms of 
mathematics teaching. For example, Hodge (2008) examined younger students’ 
perceptions in regards to their role in the mathematics classroom. The researcher 
interviewed students after they had spent the first year in a classroom with reform based 
instruction methods and then again after they had moved to more traditional orientated 
instruction in the second year. The students gave markedly different responses in 
regards to what it meant to be a good mathematics student in each class. Similarly, 
Moyer and colleagues interviewed high school students who had been taught using 
different types of mathematics curricula in middle school, reform or traditional. The 
researchers found no difference in emotional disposition or perceived competence 
between the groups of students. However, there was a significant different in the 
students’ vision of mathematics and beliefs related to how they thought they best learnt 
mathematics. Students who had experienced a traditional curriculum in middle school 
showed a stronger preference for individual work and instrumental instruction.  
A further set of studies have investigated student perceptions of specific aspects of 
mathematics lessons such as the use of contextual tasks (Clarke & Roche, 2018) or 
cooperative groupwork (Esmonde et al., 2009). For example, Clarke and Roche (2018) 
asked students to provide feedback on three different types of tasks in regards to 
enjoyment, learning and difficulty. Esmonde et al. (2009) interviewed students about 
their beliefs related to the efficacy of group work and positive and negative group 
interactions. An over-arching theme of these studies is that students are able to both 
reflect upon and analyse their experiences of classroom practices and discuss their 
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perceptions of mathematics and teaching and learning. The focus in this paper is an 
exploration of diverse students’ perspectives over a school year related to learning 
mathematics in a changing classroom context. Specifically, we investigate students’ 
initial views of mathematics, what it means to be successful at mathematics, and how 
mathematical performance can be improved. Within this paper, the initial data is 
contrasted with student perspectives at the end of a school year after their teachers had 
participated in the DMIC professional learning and development project.  
The theoretical framing of this paper is based within a socio-cultural perspective. In 
this view, individuals participate in the everyday activities within a classroom 
community of practice (Lave & Wenger, 1991) and thereby learn the ways of thinking 
and acting valued by the community. Through participation, a sense of what it means 
to be a member of the community and a sense of self in relation to the community is 
developed. For different students there can be a greater or lesser sense of belonging to 
the community. This is related to how students come to understand what it means to 
do mathematics in the classroom and to what extent they identify with this (Boaler, 
Wiliam, & Zevenbergen, 2000).  
RESEARCH DESIGN 
This research reports on a case study of four classrooms at one school and is part of a 
larger study focusing on the implementation of DMIC and student and teacher 
perspectives. It was conducted with Year Five to Eight students (aged 9 – 12 years old) 
from four classrooms at a low socio-economic, high poverty, urban school in New 
Zealand. Ninety-one students completed the written questionnaire for the study.  Forty-
four students also agreed to participate in a small group interview including 22 male 
and 22 female students. The students were predominantly of Pāsifika descent with 
other students from an indigenous New Zealand Māori background and a small number 
from South East Asia and India.  
To explore the students’ perspectives both a written questionnaire and small group 
interviews were undertaken. The questionnaire consisted of two open-ended questions 
and 19 likert scale statements and was undertaken in February and November. The 
interview was conducted in small groups of two or three students with 14 questions. 
Due to the ethics procedure, the initial interviews were undertaken later in the year in 
May after the DMIC professional development had begun. The final interviews were 
undertaken in November. These included questions focused on their classroom 
experiences of learning mathematics both in the past and present, their disposition 
towards mathematics, perceptions of how they learnt mathematics or succeeded in 
mathematics, the teachers’ role within mathematics lessons, and their perceptions of 
participating in mathematical practices in the classroom. Interviews were audio-
recorded and wholly transcribed. The results reported in this paper draw on one of the 
open-ended written responses (What is mathematics?) from the questionnaire and the 
interview data for the following questions: 1) What makes someone good at maths? 2) 
What would you need to do to get better at maths?  
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Data analysis used a grounded approach in which codes, categories, patterns, and 
themes were developed. A coding system was utilised to determine how to examine, 
cluster, and integrate the emerging themes (Creswell, 2008). Researchers had regular 
meetings to identify and discuss the emerging themes. The analytic tool, NVivo was 
utilised to code the data and student responses to the interview questions could be 
coded in multiple nodes. To ensure reliability of the coding, two members of the 
research coded each of the interview data independently and then crosschecked the 
analysis. For cases where there were contradictions, the researchers discussed these 
differences until a consensus was reached.  Insights gained from the students’ surveys 
and interviews are presented in the following sections.  
RESULTS 
Each section in the results will provide an overview of the themes identified from the 
initial and final student responses to the specific questions.   
What is mathematics?  
The open-ended survey question asked students to write a description of their 
perceptions of mathematics. In the initial phase, student responses mirrored a 
traditional mathematics classroom with a strong focus on number.  
Most students gave responses that indicated their belief that mathematics was 
synonymous with number and calculations. Although the open-ended nature of the 
question allowed students to draw on a wider definition of mathematics, 51% of the 
responses solely referenced number, timestables, or operations (addition, subtraction, 
multiplication, division). A smaller group of student responses (28%) included 
problem-solving, typically amongst a list of words associated with number. For 
example, one student wrote: “timestables, dividing, plus, take-away, problem-solving, 
equals”. A small group of students (4%) included other mathematical topics (e.g., 
measurement or geometry). Other responses included thinking (8%) and brainy (7%).   
Responses to the open-ended survey question at the final phase of data collection were 
noticeably different. While number was still a prevalent response, with 28% of student 
responses only referencing number or calculations, the large majority of students 
offered additional descriptions of mathematics.  
Most commonly, students mentioned the words learning and problem-solving. 
References to learning were made within two different contexts. The most frequent 
response (33%) was to refer to learning mathematics as participatory practices of 
working together, sharing ideas, and asking questions. For example, one student wrote:  

solving of problems, friendly arguing, sharing lots of ideas and your smart thinking, 
working as a team/family together, participating and contributing, learning ratios, 
fractions, division, adding, multiplication, subtraction, decimal numbers.  

Other student responses (12%) viewed mathematics as a way of learning and 
developing: “maths is another way to learn, it’s like a language with numbers that I 
think everyone should know”. Alternatively, another student responded: “learning tool, 
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powers up your brain”. Student responses (15%) also commonly referred to problem-
solving as well as topic aspects of mathematics. Interestingly, a small group of students 
(9%) described mathematics with reference to current and future utility: “an activity 
that can led you to your future education and job”.  
What makes someone good at maths?  
At the beginning of the study, the most common response (20%) that students attributed 
to making someone good at maths was listening. This included both listening to the 
teacher and to their peers: “listen to my teacher, listen to other people if they’re 
sharing”. These responses generally indicated a passive view of listening, with only 
one student providing a response that indicated they viewed listening for understanding 
as important: “listening and asking questions”. A smaller group of student responses 
(11%) identified sharing mathematical ideas and explanations as what made someone 
good at maths. Generally, these were short responses that did not detail why or how 
this made someone good at maths: “telling people, helping, sharing, explaining”. Other 
student responses (11%) noted that working productively with others made someone 
good at maths: “working together being as a family”. Finally, a small number of student 
responses (9%) noted the importance of taking a risk.  
In contrast, at the end of the year, a shift was evident with student responses (23%) 
putting greater emphasis on sharing mathematical ideas and explaining their thinking. 
Interestingly, the responses indicated a responsibility on the behalf of the person 
explaining to ensure others understood: “making sure everyone understands what you 
are saying and doing”. Similarly, another student stated: “sharing ideas and ask if they 
have got any questions”. Students continued to privilege listening as making someone 
good at maths (20%) and again this largely indicated a passive view, however at this 
point, three students provided responses that indicated listening for understanding. A 
larger number of student responses (18%) emphasised being able to work 
collaboratively. In the final interviews, three new themes were noted with two of these 
related to mathematical disposition. A number of student responses (14%) referred to 
effort: “if you put in this much effort (indicates wide with hands), you get this much in 
return (indicates wider)”. Also related to disposition, student responses (9%) noted that 
someone good at mathematics was willing to take a risk, make mistakes and keep 
persevering with confidence: “someone who is focused, has made mistakes, confident, 
shy a little bit, a person who can stand up to what they think. Anyone can be good at 
maths, you just have to believe”. Finally, a group of student responses (7%) noted 
mathematical practices as components of being good at maths: “challenging them 
[peers] and asking questions” or: “we need to respect each other even if we disagree 
with an idea, we can’t say it in a bad way”.      
What would you need to do to get better at maths?  
In the initial interviews, students most commonly stated that to get better at maths you 
needed to ask questions (18%) and similar to the earlier section to listen to both peers 
and the teacher (18%). Mirroring the previous responses, most of the statements related 
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to listening implied a passive listening role with only one response indicating listening 
for understanding. A number of students (14%) also noted their belief that to get better 
in maths, it was important to study and practice at home: “practice at home my 
timestables”. A small group of student responses noted aspects related to disposition 
including effort and willingness to take a risk.  
A notable change in the final interviews were the increasing range of descriptions and 
attributes in the student responses related to how an individual could get better at 
maths. The number of student responses that valued listening to improve in maths 
increased slightly (23%), with this increase related to an increased number of students 
indicating listening for understanding: “listen to other people doing their strategy so I 
can use their strategy to help with my learning”. The number of student responses that 
indicated passive listening remained the same. Other student responses (20%) 
identified providing explanations and revoicing their peers’ explanations as a means of 
getting better at maths. For example, one student response was: “explaining my ideas 
to my group, each and every detail so they can all understand”. Another common 
student response (14%) noted the importance of effort: “try really hard and give it what 
I’ve got”. In the final interview, a much smaller number of student responses identified 
asking questions (7%) or practice at home (7%). 
DISCUSSION AND CONCLUSION 
Clearly, the classroom environment has a key influence on students’ views of 
mathematics and their beliefs about success in relationship to mathematics. Similar to 
the findings of Moyer and colleagues (2018), the findings of the current study show 
shifts in these students’ vision of mathematics. Initially, many of the student responses 
indicated that they viewed mathematics as solely related to number and calculation. 
Notably, towards the end of the first year of change within their classrooms, student 
responses indicated a wider perception of mathematics with an emphasis on 
participatory practices and also a view of mathematics as a way of learning and 
developing. A key difference in the current study from previous studies is that these 
students had the same teachers within a school where PLD was being undertaken rather 
than experiencing different curricula (e.g., Moyer et al., 2018) or different teaching 
styles from two different teachers (Hodge, 2008).  
Similarly, shifts were noted in student perspectives of what it means to be good at 
mathematics and how to improve in mathematics. The perception of the importance of 
listening to others was maintained throughout the year, although some small shifts were 
noted in relation to the type of listening, passive or listening for understanding. The 
initial privileging of listening over explaining as a form of meaning-making is similar 
to the findings of Pratt (2008) with students in the United Kingdom. In the current 
study, although an emphasis on listening was maintained, key shifts included widening 
definitions of what it meant to be good at mathematics and ways in which to improve 
mathematical performance. The shift in student responses paralleled ambitious 
teaching practices advocated in the DMIC PLD such as facilitating student questioning, 
providing challenging mathematical tasks and the introduction of key mathematical 
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practices such as explanations, justification, and mathematical argumentation. Also of 
interest in the student responses were links to their cultural background and key values, 
for example, respect (e.g. behaving in a respectful manner when disagreeing) and 
reciprocity and collaboration (e.g. ensuring others understood their explanations and 
working as a family).    
Similar to previous research studies (e.g. Hodge, 2008; Larkin & Jorgensen, 2015; 
Moyer et al., 2018), the current study highlights that students are able to reflect on their 
visions of mathematics and what makes someone successful in this area. Future 
research may investigate more closely the relationship between these diverse students’ 
cultural backgrounds and their perspectives. It will also be beneficial to analyse the 
student responses in conjunction to the teacher actions within the classroom.  
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This paper explores how teachers and students discursively construct mathematical 
activity as they interact in mathematics classrooms, and the consequences these have 
on the identities of mathematics teachers and mathematics students.  Using a 
conversation analytic approach we examine how these identities are discursively 
constituted through the social actions that are performed in the interaction. We offer 
two contrasting examples that both involve students calculating values using known 
procedures, but where the identities of mathematics teacher or student are constructed 
differently. 
INTRODUCTION 
Language is constitutive; our choice of words that we use to describe concepts or tasks 
and activities creates the meaning that these have for our students.  The ways that 
teachers and students describe the activities of mathematics therefore constitute the 
nature of the mathematical activity, which in turn influences what it means to be a 
teacher or a student of mathematics.  In this paper we examine how the way that 
teachers introduce and begin to work on tasks affects the construction of these 
identities. Whilst there has been a great deal of research into identity in the mathematics 
classroom (e.g. Lerman, 2011) this has largely focused on researcher’s categorisations 
of identity types.  In this paper we take an ethnomethodological approach to examining 
identity that takes identity as something that is discursively constructed in interaction 
(similar to the approaches taken by Wood (2013) and Cobb & Hodge (2011)). 
THEORETICAL BACKGROUND 
An ethnomethodologically based analysis of identity, such as the conversation analytic 
(CA) one used in this paper, is based on a turn-by-turn analysis of the identities that 
the participants in an interaction orient to.  It is the identities that the participants 
themselves draw upon, both directly and indirectly, that are of interest rather than 
researcher identified identities such as teacher or student (Schegloff, 1997).  Having 
said this, that the participants are orienting to these identities of teacher and student is 
often apparent through the structure of turn-taking and the actions performed within 
these turns (Ingram, 2012), as they are in the extracts below. The teacher usually 
controls who can speak when, generally controls the topic and asks the questions (that 
they already know the answer to), whereas students answer these questions (Mehan, 
1979). 
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Ethnomethodological approaches do not enter into the debate about the ontology of 
identity, or any analysis about the relationship between identity and what participants 
think or feel.  Instead the analysis focuses on how participants display and orient to 
specific identities and the consequences this has on the interactional activities (Benwell 
& Stokoe, 2006). This conceptualisation of identity means that identities are indexical 
to the interaction in which they are oriented to, and are also dynamic and fluid; 
adapting, altering and developing in interaction. 
Using a conversation analytic approach, Zimmerman (1998) distinguishes between 
three different types of identity that are oriented to in interactions: discourse identities, 
situated identities and transportable identities. It is the discourse identities that we focus 
on in this paper, and these are the identities oriented to by participants in a turn-by-turn 
basis such as speaker, listener, questioner or answerer. These discourse identities are 
often reflexive and have consequences for the identities of the other participants. For 
example, by assuming the discourse identity of speaker, the other participants are 
required to assume the discourse identity of listener (though they may not actually do 
this). Situated identities relate to the context in which the interaction is occurring, such 
as teacher and student where the interaction is occurring in a classroom. Transportable 
identities are carried by participants across different interactions in different contexts, 
such as female, mother, but are not necessarily oriented to within an interaction. 
An analysis using CA focuses on the social actions being performed by turns within 
the sequential context in which they occur. The design of these turns, including the 
choice of words, constitutes the nature of mathematical activity that occurs in the 
interaction. In this paper we examine two transcripts of whole class interactions to 
show how the participants’ identities of mathematics teacher and mathematics student 
are discursively constituted in the interaction, and how these identities constrain what 
it means to do mathematics.  
RESEARCH METHOD 
This paper uses data from a larger study of interactions in secondary mathematics 
classrooms (students aged 11-18) in the UK. The extracts are taken from two different 
lessons, one taught by Tim and the other taught by Todd (all names are pseudonyms). 
The lessons were video recorded and then all whole-class interactions were transcribed 
using Jefferson transcription notation (Sidnell, 2010) but there was no intervention or 
direction given to the teachers about how or what to teach, so the lessons are to some 
extent naturally occurring (Ingram & Elliott, 2019). The transcriptions have been 
simplified in this paper for ease of reading. 
A conversation analytic approach has then been used to develop a detailed description 
of how the identities of mathematics teacher and mathematics student are constituted 
in interaction and the nature of these identities in terms of the mathematical activities 
they involve. 
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THE DISCURSIVE CONSTRUCTION OF THE IDENTITIES OF 
MATHEMATICS TEACHER AND STUDENT 
In this section we compare and contrast the introduction of the first task of a lesson, 
showing how each teacher discursively constructs the nature of activity and as the 
interaction develops how the identities of mathematics teacher and student are 
reflexively constituted.  The first three extracts are from Tim’s lesson on limits of 
sequences, whilst the last three are from Todd’s lesson on frequency tables. 

18 Tim:  okay (0.6) your fir:st thing today I've put a problem on the board, I will  
19  have a problem on the board in about (0.3) 30 seconds, okay I want you to  
20  look at that (.) first question is quite an easy one, the second question we  
21  have to need to think about in terms of (.) what it actually means, (1.3) okay  
22  and I want you to try your best and try and understand (.) how far you can  
23  get it done, okay. here is your problem. have a go at this (.) I've just inherited  
24  twelve thousand pounds, (0.4) okay and being the generous man that I am  
25  I want to donate (.) some of that to charity (.) but because I'm not totally  
26  generous, (1.2) okay I'm going to donate one quarter of the twelve thousand  
27  pounds, then the following week I want to donate a quarter of that amount,  
28  following week a quarter of that amount okay how much will I donate in  
29  each of the first four weeks, the first few are obviously easy. how much will  
30  you donate in total okay  

Extract 1: Tim introducing the first task. 
Tim constructs the activity in his lesson as solving problems that involve ‘thinking’ 
(line 21), ‘understanding’ (line 22) and ‘having a go’ (line 22).  He begins by asking 
his students to ‘look’ (line 19) at the problem.  The problem is given using words, but 
Tim has used the word ‘look’ rather than ‘read’.  Consequently, Tim is asking his 
students to go beyond reading the question, and to also think about the problem.  
Furthermore, Tim describes the second part of the question as something that “we have 
to need to think about in terms of what it actually means” (lines 20-1). The choice of 
the pronoun ‘we’ here aligns Tim with his students in the role of problem solvers, 
referring to the generic processes that a problem-solver goes through when they 
encounter a problem; the processes of thinking about the problem, working out what it 
means as well as what to do as the first stages of solving a problem (Mason et al., 
2010). Thus the identity of mathematics teacher includes problem posing, and the 
identity of mathematics student includes problem solving, thinking, trying, 
understanding, and having a go. 

33 Tim: wee:k two:, how much am I donating if I’m donating a quarter of that.  
34  (.) Sam? 
35 Sam: seven point s-, seven (.) point five, no seven hundred and fifty 
36  (1.5) 
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37 Tim: ok a quarter of that, seven hundred and fifty points. ok. I want you to try 
38  and work out (0.8) the next (0.5) two weeks, and then I want you to think 
39  about (0.3) how much are you going to end up donating in total. 

Extract 2: Tim asking how much is donated in week 2. 
In Extract 2, Tim repeats Sam’s answer of seven hundred and fifty (line 37), 
consequently showing that this answer is appropriate and correct.  Tim also adds the 
units ‘pounds’ to the end of this answer.  This revoicing is usually discussed in the 
literature as a device that teachers use to encourage students to give more complete or 
mathematical answers, but here it also focuses attention on the specific problem of 
donating money, rather than a generic calculation of a quarter of three thousand.  Here 
the situational identities of teacher and student are being oriented to by who is asking 
the question, evaluating the answers, and setting the tasks of what to do next, and who 
is answering the question. 

58 Tim: some of you used calculators, some of you didn’t.  ok that’s good. I don’t  
59  mind either way. (1.7) I want you thinking about it. ok. the values you got  
60  for the first three weeks were three thousand, (1.0) seven hundred and fifty,  
61  (.) one eighty seven fifty and forty six eighty eight?  
62  [   yep,        ] if you round it. 
63 Simon: [forty seven] 
64 Tim: ok (0.7) what I was wanting to think about is what (0.3) is actually  
65  happening.  some of us talked about when do you s:top, do you stop. 
66 Steve: nope 
67 Tim: why not. hands up. (1.7) why not. Seb? 
68 Seb: because the number: 9(.) keeps getting smaller, cus of ((inaudible)) 
69 Tim: so it keeps getting smaller 
70 Seb: yep 
71 Tim: but will there be a point where we actually s:top? 
72 SS: yes 
73 Tim: why 

Extract 3: Tim asking do you stop. 
In Extract 3, line 58 Tim refers to his students using calculators.  By mentioning this 
he is making it relevant (in a CA sense) to the interaction.  In line 59 he then emphasises 
that he wants the students “thinking about it” before listing the values for the earlier 
calculations, reinforcing the earlier constitution of mathematics students as thinkers. 
Tim contrasts the performance of and the answers to the calculations with what he 
wants his students to do, thinking.  There is no discussion of the how the values were 
calculated and he stated that he did not mind whether students used calculators. The 
answers to the calculations are listed by Tim without comment and without inviting the 
students to offer them.  Calculations are part of the activity, but attention is on their use 
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in solving the problem rather than the calculations themselves, contrasting ‘working it 
out’ (line 38) and ‘thinking’ (line 59).  Thus both the identities of teacher and student 
involve the action of calculating, but it is the activity of thinking that is oriented to as 
something that students should do. 
The emphasis so far on thinking about (to use Tim’s words) what is going on leads to 
Tim’s question in line 65 of ‘do you stop’.  The introduction of the question of whether 
you stop references earlier conversations (“some of us talked about” in line 65). By 
mentioning these discussions Tim is making them relevant to the current interaction 
and indicates that the question is something that is worthwhile discussing; the answer 
needs to be thought about.  Discussing is something teachers and students do together. 
Consequently, Tim is suggesting that the answer of whether you stop or not is not 
immediately obvious.  This is developed further in line 67 where Tim asks “why not” 
twice, before re-asking the question in line 71 and asking why in line 73, thus asking 
his students to offer explanations for each alternate answer. In summary, in the 
introduction of this problem, Tim has discursively constructed his students as people 
who think and find meaning, as well as people who participate in mathematical 
activities such as specialising, discussing, explaining, arguing and justifying. 
The next three extracts come from one of Todd’s lessons and illustrate the differences 
in what it means to be a mathematics student. 

276 Todd: sometimes in the exam they won’t give you that extra column they’ll just  
277  give you these two, and they’ll expect you to know (.) that it might be useful  
278  (.) to put this extra column on, do you know what I mean. And in a minute,  
279  when you do some practice from the text book it’s the same thing. They  
280  just give you this bit of the table and they expect you to use your initiative  
281  (.) to draw in the extra column to do it. ok. well let’s go through these then,  
282  the mode, the median, the mean and the range.  I think we’ll leave the mean  
283  till last because it’s a bit like the mean one. um Peter and (.) Paul, paying  
284  attention now specially, right any offers anyone for telling me what, m-why  
285  of course we always want to know why (.) what the mode, the median the  
286  mean and the range are. (1.7) … ((transcript omitted)) Phillip? 
287 Phillip: er um days absent three is the mode because it’s the most common one 

Extract 4: Todd introducing the task of finding mean, mode, median and range. 
In Extract 4, Todd’s introduction includes references to doing “some practice” (line 
279), needing “to know” (line 277) and using “your initiative” (line 280).  The question 
asked in lines 284-286 begins and ends as a what question, but with a request for why 
sandwiched between.  Phillip’s answer in line 287 includes the remembering of a 
definition and procedure for finding the mode and similarly in line 358 in Extract 5 
Pierre is remembering a definition and procedure for finding the median.  The 
interaction in lines 313-319 in Extract 5 is all about remembering and applying the 
procedure for calculating the range.  In this introduction Todd constructs his students 
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as people who do practice, use their initiative, pay attention, and tellers and Phillip adds 
to this remembering definitions, applying them to questions and using them to explain 
answers.  

313 Peter: is the range a hundred and seven- seventeen  
314 Todd: range a hundred and seventeen. the range is the biggest number take away.  
315  the smallest number. the biggest number is a hundred and twenty-five, the   
316  smallest number is eight, a hundred and twenty-five take away eight. Paul  
317 Paul: no because the (.) the range is going to be in days absent so it’ll be eight  
318 Todd: ah. remember Peter. this table does not have any numbers a hundred and  
319  twenty-five in there.  
  ((transcript omitted)) 
358 Pierre: is the median um ta-add up all the (.) frequencies so [that ] adds up to five  
359  hundred 

 Extract 5: Calculating the range from a frequency table. 
In Extract 5 Peter phrases his answer in line 313 as a question, and later in line 358 
Pierre does the same, thus orienting to the teacher’s role of evaluating. Yet it is Paul 
who makes the evaluation in line 317.  Todd’s response to Peter constructs the teacher 
also as someone who applies definitions in his calculation of the range.  The role of 
student as someone who remembers continues in line 318 where Todd explicitly asks 
Peter to remember, but also in Pierre’s turn in line 358-9 where he remembers the 
algorithm for calculating the median.  
There is a brief change of focus in line 499 in Extract 6: 

499 Todd: Peter in the corner. What does that number there represent, this five hundred 
500 Peter:  er::m how many (.) times, (0.9) um how many people there was 
501 Todd: good how many people were surveyed.  Pip. what does that one thousand  
502  seven hundred and sixty represent. 
503 Pip: um the total um number of days off 
504 Todd:  if you add up everyone’s days of absence it will add up to one thousand  
505  seven hundred and sixty, so as Phillip said, what we’re going to do now is  
506  one thousand seven hundred and sixty, divided by five hundred it’s going  
507  to give you (0.7) what is it Phillip 
508 Phillip: three point five two? 
509 Todd: three point five I’m going to call that. Three (.) point five. So the average, 

the mean average number of days absent (.) is about three and a half… 

Extract 6: Calculating the mean from a frequency table. 
In lines 499 and lines 501-2 Todd asks the students what these two numbers mean.  
Todd accepts Peter’s and Pip’s answers but his acceptance of Pip’s answer focuses 
back on the procedure for calculating the mean and the role of these numbers in the 
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calculation. Again here the students are remembering features of a frequency table.  
Todd also constructs the identity of teacher as someone who demonstrates procedures, 
and identifies which calculations to perform, but the students as the ones who perform 
the calculations. So in this introduction the identity of teacher has been constructed as 
one that involves posing questions, demonstrating, and evaluating and the identity of 
student as someone who practices, pays attention, remembers, applies and uses 
definitions. 
CONCLUSION 
In this paper we have shown how the identities of mathematics teacher and 
mathematics student are discursively constructed in interaction, and how these 
interactions constitute the nature of these identities.  Teachers and students orient to 
and perform different mathematical activities in interaction, making particular 
activities relevant to the identities of mathematics teacher and student. In the extract 
from Tim’s lesson mathematics students are discursively constructed as people who 
think and find meaning, as well as people who participate in mathematical activities 
such as specialising, discussing, explaining, arguing and justifying.  In the extract from 
Todd’s lesson, students are discursively constructed as people who practice, pay 
attention, remember, apply and use definitions.  Whilst all of these activities are part 
of what it means to do mathematics, in each case students are only asked to do or 
perform a small set of these actions.  We have only shared brief extracts from the 
lessons for each of these teachers, but for each teacher these same actions are requested 
of or performed by students consistently across all four lessons that were video 
recorded.  In the study, this consistency is apparent across the majority of teachers who 
videoed more than one lesson, with only one exception.  This suggests that what it 
means to be a student of mathematics as constructed through classroom interactions is 
specific to the classroom that these interactions are situated in, and that it is not only 
the nature of tasks that influence the nature of this identity. 
Transcript conventions (Sidnell, 2010) 
Convention Name Use 

[ text ] Brackets Indicates the start and end points of overlapping 
speech. 

(0.5) Timed silence Indicates the length, in seconds, of a silence. 
(.) Micropause A hearable pause, usually less than 0.2 seconds. 
.  Period  Indicates falling pitch or intonation. 
? Question Mark Indicates rising pitch or intonation. 
, Comma Indicates a temporary rise or fall in intonation. 
- Hyphen Indicates an abrupt halt or interruption in utterance. 

underline Underlined text Indicates the speaker is emphasizing or stressing the 
speech. 

::: Colon(s) Indicates prolongation of a sound. 
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ON THE LEARNING OF GROUP ISOMORPHISMS  
Marios Ioannou 

Alexander College 
 

Undergraduate mathematics students’ encounter with the notion of group isomorphism 
is, more often than not, one of the major challenges that these students face in their 
first Group Theory course. This study focuses on students’ responses to the notions of 
kernel, image and group isomorphism. Analysis suggests the great majority of students 
face difficulties that are mostly related to unclear grasp of the definitions of the three 
aforementioned notions. This has an unfavourable impact on the proof process as well 
as the use of notation. For the purposes of this qualitative research study there has 
been used the Commognitive Theoretical Framework.   
INTRODUCTION 
Research in the learning of Group Theory proves significant, since novice students 
consider this module as one of the most demanding in their syllabus. It “is the first 
course in which students must go beyond ‘imitative behavior patterns’ for mimicking 
the solution of a large number of variations on a small number of themes” (Dubinsky 
et al., 1994, p268). A typical first Group Theory module requires deep understanding 
of the abstract notions involved. An important element that causes students’ difficulty 
with Group Theory is its very abstract nature (Hazzan, 2001). The deductive way of 
teaching Group Theory is unfamiliar to students and, in order to achieve mastery of the 
subject, it is necessary to “think selectively about its entities, paying attention to those 
aspects consistent with the context and ignoring those that are irrelevant” (Barbeau, 
1995, p140). The aim of this study is to investigate undergraduate mathematics 
students’ responses to the notions of kernel, image and group isomorphisms by using 
the Commognitive Theoretical Framework (CTF) (Sfard, 2008), due to its great 
potential to investigate mathematical learning in both object level and meta-discursive 
level (Presmeg, 2016). 
THEORETICAL FRAMEWORK 
CTF is a coherent and rigorous theory for thinking about thinking, grounded in classical 
Discourse Analysis. It involves a number of different notions such as metaphor, 
thinking, communication, and cognition (Sfard, 2008). In mathematical discourse, 
objects are discursive constructs and form part of the discourse. Mathematics is an 
autopoietic system of discourse, namely “a system that contains the objects of talk 
along with the talk itself and that grows incessantly ‘from inside’ when new objects are 
added one after another” (Sfard, 2008, p. 129). Moreover, CTF defines discursive 
characteristics of mathematics as the word use, visual mediators, narratives, and 
routines with their associated metarules, namely the how and the when of the routine. 
In addition, it involves the various objects of mathematical discourse such as the 
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signifiers, realisation trees, realisations, primary objects and discursive objects. It 
also involves the constructs of object-level and metalevel rules.  
Mathematical discourse involves certain objects of different categories and 
characteristics. Primary object (p-object) is defined as “any perceptually accessible 
entity existing independently of human discourses, and this includes the things we can 
see and touch (material objects, pictures) as well as those that can only be heard 
(sounds)” (Sfard, 2008, p169).  Simple discursive objects (simple d-objects) “arise in 
the process of proper naming (baptizing): assigning a noun or other noun-like symbolic 
artefact to a specific primary object. In this process, a pair <noun or pronoun, specific 
primary object> is created. The first element of the pair, the signifier, can now be used 
in communication about the other object in the pair, which counts as the signifier’s 
only realization. Compound discursive objects (d-objects) arise by “according a noun 
or pronoun to extant objects, either discursive or primary.” In the context of this study, 
group is an example of compound d-objects. The (discursive) object signified by S in 
a given discourse is defined as “the realization tree of S within this discourse.” (Sfard, 
2008, p166)  
Sfard (2008) describes two distinct categories of learning, namely the object-level and 
the metalevel learning. “Object-level learning […] expresses itself in the expansion 
of the existing discourse attained through extending a vocabulary, constructing new 
routines, and producing new endorsed narratives; this learning, therefore results in 
endogenous expansion of the discourse” (Sfard, 2008, p. 253). In addition, “metalevel 
learning, which involves changes in metarules of the discourse […] is usually related 
to exogenous change in discourse. This change means that some familiar tasks, such 
as, say, defining a word or identifying geometric figures, will now be done in a 
different, unfamiliar way and that certain familiar words will change their uses” (Sfard, 
2008, p. 254). 
LITERATURE REVIEW 
Research in the learning of Group Theory is relatively scarce compared to other 
university mathematics fields. The first reports on the learning of Group Theory 
appeared in the early 1990’s. Several studies, following mostly a constructivist 
approach, and within the Piagetian tradition of studying the cognitive processes, 
examined students’ cognitive development and analysed the emerging difficulties in 
the process of learning certain group-theoretic notions. Even more limited is the 
commognitive analysis of conceptual and learning issues (Nardi et al. 2014). In the 
context of this research strand, Ioannou (2012) has, among other issues, focused on the 
intertwined nature of object-level and meta-level learning in Group Theory.   
A significant milestone in the learning of Group Theory is the introduction of the rich 
and multifaceted notion of group isomorphism. Literature suggests that for novice 
students, the notion of isomorphism is a “complex and compound concept, composed 
of and connected to many other concepts which in themselves may be only partially 
understood” (Leron et al., 1995, p. 153). Leron et al (1995) also suggest that 
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understanding of group isomorphism requires understanding of the notions of group, 
function and quantifier, and conversely, learning about group isomorphism may 
substantiate the understanding of the aforementioned notions.  Moreover, there is a 
connection between the isomorphism tasks to the notions of the order of group, the 
order of the elements of the group, commutativity and others.  
The high level of abstraction and the conceptual difficulties are interconnected with the 
students’ cognitive perplexity in Group Theory, which, climaxes at the introduction 
and proof of the First Isomorphism Theorem (Nardi, 2000). Indeed in a typical 
introductory module in Group Theory, First Isomorphism Theorem is the last and most 
crucial result introduced and is probably a “container of compressed conceptual 
difficulties” (Nardi, 2000, p179), since it involves all the preceding concepts.  
METHODOLOGY 
This study is part of a larger research project, which conducted a close examination of 
Year 2 undergraduate mathematics students’ conceptual difficulties and the emerging 
learning and communicational aspects in their first encounter with Abstract Algebra 
(see Ioannou, 2012). The course was taught in a research-intensive mathematics 
department in the UK. It was mandatory for Year 2 undergraduate mathematics 
students, and a total of 78 students attended it. It was spread over 10 weeks, with 20 
one-hour lectures and three cycles of seminars in weeks 3, 6 and 10 of the semester. 
The role of the seminars was mainly to support the students with their coursework. The 
course assessment was predominantly exam-based (80%). In addition, the students had 
to hand in a threefold piece of coursework (20%) by the end of semester. The gathered 
data includes the following: Lecture observation field notes, lecture notes, audio-
recordings of the 20 lectures, audio-recordings of the 21 seminars, 39 student 
interviews (13 volunteers who gave 3 interviews each), 15 staff interviews (5 members 
of staff who gave 3 interviews each), student coursework, and student examination 
scripts. For the purposes of this study, the data of the 13 volunteers has been analysed, 
following the principles of Grounded Theory (Glaser and Strauss, 1967). 
DATA ANALYSIS 
The aim of this study is to analyse undergraduate mathematics students’ first encounter 
with the notions of kernel, image and group isomorphisms. It is a ramification of a 
larger study, which focused on the analysis of these students’ first holistic experience 
with Group Theory (Ioannou, 2012).  The analysis of the 13 students’ data suggests 
that all 13 have shown signs of incomplete object-level learning of the notions of 
kernel, image and group isomorphism. The relevant mathematical task that they had to 
solve in the coursework is the following: 
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Figure 1: Mathematical task on group isomorphisms 

The analysis of the thirteen students’ solution suggests that ten of the thirteen students 
produced flawless answers regarding the first part about the definition of 
homomorphism. In what follows, I analyse some typical examples of the errors 
involving incomplete object-level learning of kernel and image, in the process of 
proving that a given map is in fact an isomorphism.  

 
Figure 2: Part of Student A’s solution of 5i 

Student A’s reasoning is occasionally not explicit.  She does not produce full narratives 
for proving what is the kernel and image of the homomorphism, suggesting probably 
some difficulty with the definitions of these two notions, as well as understanding of 
the connection between image and subjectivity, and kernel and injectivity. As the 
markers’ comments suggest, her narratives need to be more detailed, predominantly by 
referring to the definitions of image and kernel.   Since her object-level learning is 
incomplete, the application of metarules is problematic. The word use becomes rather 
awkward.  Instead of stating that 𝜑 is an isomorphism, she mentions that	𝜑 is 
isomorphic.  The use of the word ‘isomorphic’ instead of ‘isomorphism’ suggests that 
Student A has not yet objectified the notion of isomorphism.  This notion may not have 
been reified yet, since Student A refers to the notion of isomorphism as being a 
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procedural activity and not an object.  In general, the above analysis is in agreement 
with Student A’s initial perception about this task and the d-objects of homomorphism, 
kernel and image. 

I found it easy enough to show that they’re homomorphisms.  The kernel’s… it’s just the 
image… that I’m having problems with at the moment, yeah.  So I know someone in my 
course that – he did it and he got help in his seminars, so he said he’d try and explain it to 
me?  So hopefully, I’ll understand it then, if not I’ll have to go ask the lecturer. Student A 

Other typical inaccuracies regarding the notions of kernel and image were apparent in 
Student B’s solution.  In particular, there were occasions of problematic use of notation, 
for instance instead of writing eV he writes eW.  This inaccuracy is rather important, 
because it is probably a result of incomplete object-level learning of the d-object of 
group, and the identity element in particular. Furthermore, it possibly suggests that he 
is not yet aware of the fact that the identity element of Gis the same for every subgroup.  
In addition, there are problems with his metalevel learning resulting inaccuracies in the 
process of proving.  For instance, he does not justify why g = e when he concludes 
that ker(φ) = {eV}. There is no explicit explanation saying that since ker(φ) = {eV}, 
therefore φ is injective. Student B has probably not yet objectified the idea of φ being 
injective or surjective, therefore an isomorphism, in relation to the kernel and image. 

 
Figure 3: Part of Student B’s solution of 5i 

His performance is relatively mirrored in his somewhat optimist impression regarding 
the task, as discussed in the second interview. 

Yeah, 5, I mean, proving the homomorphisms, wasn’t too much of a problem, sometimes 
saying what the kernel, the image was, was a bit – harder, and – which were isomorphisms, 
basically though, that was fine, once I’d kind of – went over the definition of an 
isomorphism, I mean, it just kind of pretty much relies on what you’ve – get in your kernel 
image, but um... cos I mean it’s probably the whole visualizing, I was just a bit kind of – 
it’s kind of – this is abstract, it’s the whole abstract concepts of kernels and images and – 
not all – you know, not kind of meeting them everyday, things... but – yeah, I think I’m 
getting there... Student B 

Student B expresses his need to have a visual image of the d-objects of kernel and 
image and links his difficulty to cope with them with the level of abstraction.  He 
emphasises that the new d-objects are different from the ‘usual’ mathematical d-objects 
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(‘not kind of meeting them everyday’), and indirectly suggests that his approach to 
objectify them should be different.  
Another representative example of incomplete object-level learning of the notion of 
image was apparent in Student C’s solution.  In particular, in this mathematical task, 
im(φ) = G, since φ	is surjective.  Instead, Student C wrote that im(φ) = hgh56, 
without explicitly stating that the image of the homomorphism in this case is the group 
G itself indicating also problematic application of the governing metarules, showing 
lack of precision, clarity and rigor.   In addition, her attempt to prove that the 
homomorphism is bijective, and therefore an isomorphism, is problematic because of 
her incomplete object-level learning of the kernel.  In particular, Student C was not yet 
able to conclude that when ker(φ) = {eV} then 𝜑 is one-to-one and therefore 
isomorphism (since it is already proven that it is surjective as well).    

 
Figure 4: Part of Student C’s solution of 5i 

Student C’ impression, as this has been expressed in her interviews is in agreement 
with her performance, expressing her initial difficulty with the d-objects of kernel, 
image and isomorphism. 

Um... like the first couple of parts, but obviously didn’t get in – again, they were getting a 
bit harder towards the end because they were getting more difficult examples… so yeah... 
and again, it’s just trying to get your head round all like the concepts, I think, you just need 
to keep going over them and then – obviously the questions will become easier to do.  And 
then... because obviously we’ve only just done this one as well, so I think I need to go 
through it a couple more times, just to see whether I can um, do it. Student C 

The above analysis possibly suggests that incomplete object-level learning affects 
unfavourably metalevel learning and application of metarules in the given context.  
Moreover, application of metarules is possibly context sensitive, and even if metalevel 
learning is complete in a certain mathematical discourse, the application of the same 
metarules might be problematic in a different one. 
Another typical error is the incomplete object-level learning (or occasionally the 
imprecise use of notation) regarding the sets and their elements.  For instance, Student 
D seems to have incomplete object-level learning of the d-objects of kernel and image.  
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These problems were revealed when he considered kernel to be the identity element of 
G, instead of the set containing the identity, as the excerpt below suggests. Instead of 
writing φ(h56gh) = g, Student D stated that φ is surjective whenever any element g ∈
G can be written as h56gh = g, without considering the role of homomorphism.  
 

 
Figure 5: Part of Student D’s solution of 5i 

CONCLUSION  
The first major signs of incomplete object-level learning in Group Theory, for the 
majority of students occurred when the notions of kernel and image were introduced 
(see also Ioannou, 2012).  The analysis above suggests that there are clear indications 
of incomplete metalevel learning, which were revealed through the lack of explicitness 
in the thirteen students’ mathematical narratives, and by the absence of important steps 
in the application of the routines involving these d-objects. Another indication of a 
problematic encounter with these d-objects was the increasingly problematic use of 
vocabulary and notation. The d-objects of kernel and image were problematic to the 
majority of students, mainly because these novice students were not able yet to 
objectify them properly.  Kernel and image have not been fully objectified as algebraic 
structures linked directly with the notion of homomorphism and giving valuable 
information about the injectivity and subjectivity, respectively, of this homomorphism.  
Moreover, students have possibly not realised that 𝑘𝑒𝑟(𝜑) is an element of 𝐺 and 
𝑖𝑚(𝜑) is an element of 𝐻.  In a future study, I aim to investigate further students’ 
encounter with the aforementioned notions and how these are related to the learning of 
the First Isomorphism Theorem. 
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PRINCIPLES IN THE DESIGN OF TASKS TO SUPPORT PRE-
SERVICE TEACHERS’ NOTICING ENHANCEMENT  

Pedro Ivars, Ceneida Fernández, Salvador Llinares 
University of Alicante  

 

Professional noticing is understood as a knowledge-based reasoning process. 
Particularly, noticing students’ mathematical understanding involves the use of 
different domains of knowledge to attend to students’ strategies, to interpret students’ 
understanding and to decide how to respond considering students’ understanding. In 
this paper, we discuss the principles in the design of tasks to support pre-service 
teachers’ enhancement of noticing students’ mathematical understanding using 
learning trajectories as a tool.  
INTRODUCTION 
Professional noticing has been conceptualized from different perspectives. Mason 
(2011) stated that noticing implies a “movement or shift of attention” (p.45). Based on 
Mason’s work, Sherin (2007) characterized professional noticing as two main sub-
processes: selective attention (noticing) and knowledge-based reasoning. Noticing is 
linked with the ability of teachers to focus their attention on a relevant classroom 
situation while reasoning involves using what teachers know about the subject matter 
to make sense of an idea, making connections between specifics of the classroom and 
broader principles of teaching and learning (van Es & Sherin, 2008). In this sense, 
professional noticing is the ability to use specific knowledge in classroom situations 
and bridges the gap regarding the relationship between professional knowledge and 
professional practice (Seidel, Stürmer, Prenzel, Jahn, & Schäfer, 2017).  

In noticing children’s mathematical understanding (Jacobs, Lamb, & Philipp, 2010), 
attending to children’s strategies implies that teachers identify mathematically 
significant details. Therefore, attending to requires “not only the ability to focus on 
important features in a complex environment but also knowledge of what is 
mathematically significant” (Jacobs et al., 2010, p.195). Interpreting children’s 
understanding involves that teachers’ reasoning is consistent with both the details of 
the specific children’s strategies and what is known about children’s mathematical 
understanding. In other words, teachers must attend to children’s strategies and “also 
have sufficient understanding of the mathematical landscape to connect how those 
strategies reflect understanding of mathematical concepts” (p.195). Finally, deciding 
how to respond implies to select an activity that can help students progress in their 
understanding. Therefore, it involves the use of “knowledge about children’s 
mathematical development to identify a reasonable next step” (p.195). This perspective 
suggests that noticing students’ mathematical understanding is a knowledge-based 
reasoning process (Mason, 2002; Sherin, 2007). 
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NOTICING CHILDREN’S MATHEMATICAL UNDERSTANDING AS A 
KNOWLEDGE-BASED REASONING PROCESS 
When pre-service teachers notice children’s mathematical understanding (attending to, 
interpreting and deciding) they have to use their knowledge (subject matter knowledge 
and pedagogical content knowledge). Considering the MKT framework (Ball, Thames, 
& Phelps, 2008), attending to children’s strategies implies that teachers identify 
important mathematical details in students’ procedures (common and non-common) 
and the roots of their mistakes (Specialized Content Knowledge, SCK). To interpret 
students’ understanding, teachers must coordinate what has been attended with what is 
known about children’s mathematical understanding. Therefore, in interpreting, 
knowledge for explaining procedures, understanding common and uncommon 
strategies and explaining the origin of their errors (SCK) is required. Furthermore, 
knowledge about which aspects of the concept are the easiest or the most difficult ones 
for students, which are the most common errors related to a concept and how a 
mathematical content develops over time (Knowledge of Content and Students, KCS) 
is also needed to interpret different levels of understanding. Finally, deciding how to 
respond involves to take into account which aspects of the concept are the easiest or 
the most difficult ones for students; which are the most common errors related to the 
concept and how a concept develops over time (KCS); and which are the strategies or 
representations more adequate for introducing the concept (Knowledge of Content and 
Teaching, KCT). Furthermore, teachers should use their knowledge about which are 
the best sources and materials to help students progress in their understanding 
(Knowledge of Content and Curriculum, KCC). 
As in the Spanish context teachers’ educators cannot visit pre-service teachers at 
schools, the design of learning environments focused on developing professional 
noticing gives pre-service teachers the opportunity to learn of and about the practice. 
However, its development is a challenge since pre-service teachers not only must 
acquire the necessary knowledge but also learn to use it to attend to, interpret and 
decide (knowledge-based reasoning process). Previous research has shown that 
providing pre-service teachers with students’ learning trajectories (information about 
how children learning develops over time) can help them to notice students’ 
mathematical understanding (Callejo, Pérez, Moreno, Sánchez-Matamoros, & Valls, 
2017; Edgington, Wilson, Webb, & Sztajn, 2015; Ivars, Fernandez, Llinares, & Choy, 
2018; Sztajn, Confrey, Wilson, & Edgington, 2012). The objective of this paper is to 
present the principles in the design of tasks to support pre-service teachers’ 
enhancement of noticing students’ mathematical understanding using learning 
trajectories as a tool. 
PRINCIPLES IN THE DESIGN OF TASKS TO SUPPORT PRE-SERVICE 
TEACHERS’ NOTICING: LEARNING TRAJECTORIES AS A TOOL  
We take into account three notions in the design of tasks addressed to enhance pre-
service teachers’ noticing: Learning Trajectory Based Instruction (LTBI, Sztajn et al., 
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2012), semiotic tools from sociocultural perspectives of learning (Wells, 1999) and 
authentic tasks (Brown, Collins, & Duguid, 1989). 
A learning trajectory (LT) is a construct that involves hypotheses about “the order and 
nature of the steps in the growth of students’ mathematical understanding, and about 
the nature of the instructional experiences that might support them in moving step by 
step toward the goals of school mathematics” (Daro, Mosher, & Corcoran, 2011, p. 
12). Therefore, a LT provides pre-service teachers with information regarding different 
students’ strategies (common and uncommon), the common students’ errors and their 
origin (SCK), and levels of understanding (growth of students’ mathematical 
understanding) including which aspects of the concept are the easiest or the most 
difficult ones (KCS). Furthermore, it provides pre-service teachers with a set of 
different instructional activities to reach the learning objective including the most 
adequate strategies and representations for introducing the concept (KCT) and the use 
of the best materials and resources to help students progress in their understanding of 
the concept (KCC) (instructional experiences).  
Sztajn et al. (2012) define Learning Trajectory Based Instruction as “teaching that uses 
students’ LTs as the basis for instructional decisions” (p. 152). We use this notion in 
the design of tasks in teacher training programs to enhance noticing, since LTs create 
“a more integrated understanding of instruction based on how the logic of the learner 
becomes more sophisticated over time” (p. 152). Therefore, using learning trajectories 
as a tool provides pre-service teachers with (i) a frame to focus their attention on 
interpreting students’ mathematical understanding and on responding with appropriate 
instruction (Sztajn et al., 2012); and (ii) a mathematical language to describe students’ 
thinking (Ivars et al., 2018; Wickstrom, Baek, Barrett, Cullen, & Tobias, 2012).  
From a sociocultural perspective of learning, Wells (2011) describes the learners as 
“agents-acting-with mediational –means”. Tasks in our teacher education programs are 
designed with the objective that pre-service teachers use the information provided in 
the learning trajectories to notice students’ mathematical understanding. Therefore, we 
use learning trajectories as mediational-means. In other words, learning trajectories are 
meaning-making tools that mediate pre-service teachers’ communicative and reflective 
actions (semiotic tools).  
Finally, the tasks designed can be considered as authentic activities defined by Brown 
et al. (1989) as the “ordinary practices of the culture” (p. 34). We use real classroom 
vignettes that consist of written students’ answers to different activities, videos of 
students’ solving activities or videos showing interactions student-teacher.  
Following, we illustrate the design of a task in the context of noticing students’ 
fractional understanding (Ivars et al., 2018). 
THE DESIGN OF A TASK: AN EXAMPLE 
The task has three elements: (i) two primary school fraction activities (Figure 1), (ii) 
the answers of three primary school students to these activities with different level of 
understanding (Table 1), and (iii) three questions as a guideline: Q1) Describe how 
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each pair of students has solved the activity identifying how they have used the 
mathematical elements involved and the difficulties they have had with them. Q2) 
What are the characteristics of students’ understanding that can be inferred from their 
responses? Explain your answer. Q3) How could you respond to these students? 
Propose a learning objective and a new activity to help students progress in their 
thinking.  
To answer the task, pre-service teachers have to use the information provided in a 
learning trajectory of the part-whole meaning of fraction. This LT was designed 
considering previous research on how students’ thinking about the part-whole meaning 
of fraction develops over time (Battista, 2012) (the LT as a semiotic tool). This LT 
contains information about the mathematical elements of the part-whole meaning of 
fraction, and its development over time (students’ levels of understanding). 
Characteristics of these levels of understanding are exemplified by different students’ 
answers and by examples of instructional activities that could help students progress 
between levels. For instance, activities of identifying and representing a fraction given 
a whole, and activities aimed at identifying and representing a whole when a part is 
given, using different representations: continuous contexts, discrete contexts and the 
number line. In some of these activities, the use of materials and resources are 
exemplified (such as the use of Cuisenaire Rods).  

 
Figure 1: Activities and primary school students’ answers of the task  
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  Student 1 
(Level 1) 

Student 2 
(Level 2) 

Student 3 
(Level 3) 

Mathematical Elements Activity 1 2 1 2 1 2 
The parts of a whole must be equal sized No No Yes Yes Yes Yes 
A part could be divided into other parts No  No  Yes  
A part (unit fraction) as an iterative unit to 
reconstruct the whole  No  No  Yes 

 Table 1. A summary of the characteristics of students’ answers of the task 
EXAMINING ROLE OF TASK TO SUPPORT PRE-SERVICE TEACHERS’ 
NOTICING OF STUDENTS’ MATHEMATICAL UNDERSTANDING  
In this section, we illustrate how pre-service teachers use the knowledge from the LT 
to notice students’ mathematical understanding. Data come from a study where 29 pre-
service teachers (PTs) answered this exemplified task. All of them were able to attend 
to students’ strategies and 28 of them used the LT to interpret students’ mathematical 
understanding. However, only 17 out of the 29 PTs provided suitable instructional 
activities that help students progress in their understanding. Following, we show how 
PTs used the knowledge provided by the LT to attend to, interpret and decide through 
a pre-service teacher’s answer (PT05). The discourse provided by PTs is considered as 
evidence of the use of the LT as meditational-mean to endow meaning to the situation. 
Describing (attending to) students’ answers  
The following excerpt shows how PT05 uses Specialized Content Knowledge (SCK) 
to identify the mathematical details in the student 2’s answer and to explain the origin 
of the errors (this information was provided in the LT. Emphasis added): 

Student 2 (Activity 1). He recognises that the parts of the whole must be of equal size 
since he states that figure F represents 3/8 but A and B don’t represent 3/8 because 
their parts are not of equal size. He has still difficulties in recognising that a part could 
be divided into other parts since he doesn’t realise that figure D represents 3/8 
(although he says that D represents 6/16, he doesn’t realise that this is equivalent to 
3/8). Additionally, regarding figures C and E, he only notices the shaded square points 
but he doesn’t take into account that they also represent 3/8 in a discrete context. 

Student 2 (Activity 2). He has taken into account that the parts of the whole must be 
of equal size since he divides the figure given into parts of equal size. However, he 
considers that the rectangle given is the whole, so he draws another rectangle to 
represent 5/3. 

This PT identifies mathematical details in the student 2’s answers when she identifies 
that the student recognises that the parts of the whole must be of equal size or when 
she identifies the student’s difficulties in recognising that a part could be divided into 
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other parts. Furthermore, this PT explains why this student has difficulties with this 
mathematical element “although he says that D is 6/16, he doesn’t realise that this is 
equivalent to 3/8”, and the origin of the student 2’s error in the activity 2 “However, 
he considers that the rectangle given is the whole, so he draws another rectangle to 
represent 5/3”. 
Interpreting students’ understanding 

To interpret students’ understanding, PTs have to coordinate the mathematical details 
they have attended with their knowledge about students’ understanding of the fraction 
concept. The type of task designed provides the context in which PTs can use 
Specialized Content Knowledge (SCK) and Knowledge of Content and Student (KCS) 
to relate the mathematical elements with the proficiency levels of students’ 
understanding. An example of this type of discourse is the excerpt of PT05: 

Student 2. Student 2 shows features of the level 2 of understanding considering the 
students’ understanding levels given in the LT. Although he recognises that the parts 
of the whole must be of equal size, he has still difficulties in recognising that a part 
could be divided into other parts. Furthermore, he has difficulties in recognising the 
whole in an activity of reconstructing the whole. 

This PT interprets student 2’s understanding recognising that this student is at level 2.  
She explains that the student “recognises that the parts of the whole must be of equal 
size […]” but this student has difficulties with the mathematical elements “a part could 
be divided into other parts [and] recognising the whole…” In this sense, this PT relates 
what she has attended to with the information from the LT about the students’ most 
common errors and the levels of students’ understanding.  

Responding to students: Proposing a learning objective and a new activity  

Providing a learning objective and an instructional activity to help students progress in 
their understanding of the fraction concept create a context where pre-service teachers 
can connect learning and teaching. This requires that PTs use the knowledge about how 
the understanding of a concept develops over time, which aspects of the concept are 
the easiest or the most difficult ones for students and which are the most common errors 
related to the concept (KCS) to formulate the learning objective. Furthermore, to design 
a new activity, PTs need to use the knowledge about the instruction, for instance, which 
are the most adequate representations for introducing the concept (KCT), and the best 
sources or materials to help students progress in their understanding (KCC).  

Following, an excerpt of PT05 is shown. Considering her interpretation of the student 
2’s understanding, she proposes an objective focused on recognising that a part could 
be divided into other parts. This objective helps student 2 progress in his 
understanding. Furthermore, this PT proposes an instructional activity of recognising 
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2/3 in different representations (discrete and continuous) in which the mathematical 
element identified as learning objective is considered. 

Student 2: Objective: Recognising that a part could be divided into other parts. 
Activity: Which of these figures represent 2/3? 

 

This instructional activity includes two modes of representation (discrete and 
continuous) and involves the necessity of identifying a whole to recognise the 
representation of 2/3. The fact that students have to identify that 8/12 is equivalent to 
2/3 in figure B or 6/9 is equivalent to 2/3 in figure D focuses students’ attention on 
recognising that a part could be divided into other parts.  

FINAL COMMENTS 

We have shown the principles that we consider in the design of tasks addressed to 
enhance pre-service teachers’ noticing: The notion of Learning Trajectory Based 
Instruction (Sztajn et al., 2012), the notion of a semiotic tool (Wells, 1999) and the use 
of authentic tasks (Brown et al., 1989). Through the PTs discourse to an exemplified 
task we can see how they use the knowledge provided in the LT to notice students’ 
mathematical understanding. Therefore, the principles used in the design of tasks can 
be considered useful to support pre-service teachers’ enhancement of noticing students’ 
mathematical understanding (noticing as a knowledge-based reasoning process). 
Furthermore, the authentic tasks designed bridge the gap between professional 
knowledge and professional practice (Seidel et al., 2017) since PTs have to use their 
knowledge in practical situations such as interpreting students’ understanding. 
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PRE-SERVICE TEACHERS’ NARRATIVES IN KINDERGARTEN 
TEACHER EDUCATION 
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Developing teachers’ knowledge, awareness and noticing ability in and for attending 
and developing students’ mathematical understanding needs to be a core element in 
teacher education – mainly taking as a starting point the students’ reasoning. Pursuing 
such gold one possible perspective is to consider (pre-service) teacher’s narratives on 
observed practices focusing on what they notice, and the knowledge required in and 
for such noticing and to provide a fruitful feedback – Interpretative Knowledge. In the 
scope of this paper we discuss pre-service teachers’ noticing ability and interpretative 
knowledge when observing a teachers’ practice in the scope of number sense.  
THEORETICAL BACKGROUND  
Kindergarten is an educational stage which has gained a relevant attention into the 
mathematical research community in the last decades (Lin, Tsamir, Tirosh, & 
Levenson, 2013). Such focus considers that children, at this stage, can understand 
mathematical processes (concrete and abstract ones), and the way they acquire 
expertise in mathematics can define the acquisition of knowledge, in mathematics and 
other subjects, in the future educational stages (e.g., Baroody, 2000; Jordan, Kaplan, 
Ramineni, & Locuniak, 2009).  
There are a wide range of studies conducted with kindergarten children focusing on 
their ability to understand different mathematical concepts such as patterns (Tsamir, 
Tirosh, Levenson, Barkai, & Tabach, 2015), parallelism (Sinclair, Moss, & Jones, 
2010), or symmetry (Sinclair & Kaur, 2011). Nevertheless, such focus of attention is 
leaving aside the teachers’ role and the teachers’ knowledge for teaching such 
concepts. 
To teach mathematics, particularly at kindergarten, teachers are required to be in 
possession of specialized professional knowledge. This knowledge needs to be 
developed during teacher education programs since such specialization does not 
develop over time in the daily work in classrooms (e.g., Ribeiro, Mellone, & Jakobsen, 
2013). In fact, previous research has shown that often kindergarten teachers seem not 
to be (still) in possession of such adequate knowledge to teach (e.g., Hassidov & Ilany, 
2015). Therefore, it is crucial to focus on this issue. In this context, as teacher 
educators, we are interested in how to enhance pre-service kindergarten teachers’ (PTs) 
knowledge and skills to teach mathematics.  
Professional noticing has been identified as a competence that teachers must acquire 
since it allows teachers to be aware of aspects, in a teaching learning situation, that 
other people could not identify (Roller, 2016). Jacobs, Lamb, and Philipp (2010) 
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characterized professional noticing of children’s mathematical understanding as a set 
of three interrelated skills: attending to children’s strategies; interpreting children’s 
understanding; and deciding how to respond on the basis of children’s understanding. 
This competence is understood as a knowledge-based reasoning since teachers must 
attend to a classroom situation and then interpret the situation, considering their 
available knowledge (Sherin, 2007) to decide what to do next. Therefore, this 
competence highlights the need of specialized knowledge. 
Such knowledge is well captured by the notion of Interpretative Knowledge – IK 
(Mellone, Jakobsen, & Ribeiro, 2015; Ribeiro, Mellone, & Jakobsen, 2016) which 
refers to the teachers’ knowledge required and involved in and for interpreting. 
Therefore, it corresponds to the knowledge for giving meaning to students’ productions 
and for providing a fruitful feedback that can help students develop their mathematical 
knowledge. Such IK is grounded in the teachers’ content knowledge and when we 
consider the specificities of such knowledge, the Mathematics Teachers Specialized 
Knowledge – MTSK (Carrillo et al., 2018) conceptualization is assumed. Therefore, 
kindergarten teachers are required to be in possession of a knowledge that allows them 
to, amongst others, understand the hows and whys related to the mathematical topics 
they are dealing with (Knowledge of Topics-KoT), in order to leave the door open to 
future learning; the connections that can be performed, and its implications, within and 
between topics (Knowledge of the Structure of Mathematics-KSM) and what 
comprises to “do mathematics” in terms of the mathematical activity to be developed 
(Knowledge of Practices in Mathematics-KPM).  
Narratives can be used as a means for capturing and studying practice and a form of 
expressing teachers’ practical understanding of mathematics teaching (Chapman, 
2008). We perceive narratives as a story in which the author relates to a sequence of 
significant events that has an internal logic and makes sense to him/her. In this sense, 
PTs’ narratives describing what they notice on a teaching-learning situation are tools 
that can help them focus their attention on important aspects of the situation (Ivars & 
Fernández, 2018). In fact, Ivars and Fernández (2018) underline narratives as a tool to 
enhance primary school PTs’ noticing during their practices at school. 
In our study, we use narratives as a tool to enhance pre-service kindergarten teachers’ 
noticing during their period of school practice. In these narratives, PTs had to identify 
a significative (for them) mathematical teaching-learning situation (associated to the 
acquisition of students’ mathematical competence), interpret it and propose next 
teaching decisions. Our aim is to analyse how PTs notice children’s mathematical 
understanding understood as a knowledge-based reasoning. Therefore, we analyse PTs 
written narratives to identify the knowledge PTs use when they notice children’s 
mathematical understanding. We extend previous studies in two ways. Firstly, we focus 
on kindergarten teacher education and, secondly, we carry out a deeply analysis of how 
pre-service kindergarten teachers use their knowledge to notice children’s 
mathematical understanding using the IK framework.  
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The present study  
The study presented here is part of a larger study where 21 PTs had to write narratives 
during their period of practice at schools. In the Spanish context, the degree to become 
kindergarten teacher consists of four years. During the last year PTs are enrolled in a 
period of eight weeks of school practice. The first two weeks they focus on observing 
the school tutor while on the remaining six weeks PTs must develop and implement a 
didactic unit. 
During the observation period, PTs were asked to write a narrative identifying and 
describing a noteworthy teaching-learning situation related to children’s mathematical 
learning. PTs are provided with a guide to focus their attention on attending to, 
interpreting and deciding (Ivars & Fernández, 2016) and they should mobilize the 
knowledge acquired at least in two previous compulsory mathematics education 
courses (one related to numerical sense the other to geometrical sense). 
Due to space constrains, and from the richness of data, from the 21 PTs narratives we 
will focus on one of the PTs’ narrative (Alicia’s narrative) as an example of how PTs 
use their knowledge to notice children’s mathematical thinking through a written 
narrative. Alicia was observing a four years kindergarten classroom where children 
were working with the number-word sequence and the principles of counting. 
In the Spanish context kindergarten school comprises children from 3 to 6 years old 
and its attendance is not compulsory. Nevertheless, there is a curriculum (Decree 
38/2008) indicating that a kindergarten teacher should teach, amongst others, the 
following contents: the cardinal and ordinal number, the construction of number 
sequences by adding a unit, the representation of collections of objects through the 
cardinal number and the use of the number-word sequence to count elements in 
everyday situations. 
Considering the focus of Alicia’s narrative, during the mathematics education courses, 
PTs have participated in discussions where they had to interpret children’s 
mathematical understanding related to the acquisition of the number-word sequence 
and the principles of counting (analysing videos or written answers) and to propose 
activities that help children progress in their understanding, using a theoretical 
document with information about how children learn this mathematical content. This 
theoretical document includes information about how students acquire the principles 
of counting (Gelman & Gallistel, 1978): stable order principle, the one-to-one 
correspondence principle, the cardinal principle, the abstraction principle, the 
irrelevance-order principle and the most common errors. The one-to-one 
correspondence principle implies coordinating two processes: partitioning, which 
implies the one-to-one mental transference of the objects in the group to be counted to 
a counted group and tagging which implies to give a tag to each of the elements 
counted. In the acquisition of this principle children can make some errors: (i) errors 
in the partitioning process such as ticking off an item more than once or skipping an 
item; (ii) errors in the tagging process such as using the same tag twice; and errors in 
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the coordination of the two processes such as continuing tagging elements that had 
been counted. 
The research question posed is: Which knowledge does a PT mobilize to notice 
students’ mathematical understanding when writing a narrative about children’s 
acquisition of the principles of counting during her period of practices at school?   
METHOD: ANALYSIS 
The narratives were analyzed independently by three researchers with the focus on the 
knowledge used by this PT when she attends to children’s strategies, interprets 
children’s understanding and proposes following next steps. Afterwards, similarities 
and differences were discussed until reaching a consensus. 
Therefore, we focus our attention on what mathematically important details PTs 
identify when describing children’s answers; on the interpretations of PTs to children’s 
answers, and how such interpretation addresses children’s mathematical 
understanding; on how PTs provide specific instructional steps to implement forward 
based on children’s mathematical understanding; and on the knowledge involved in 
and for doing such identification, interpretation, and proposition for the following 
instructional steps.   
RESULTS AND DISCUSSION 
Alicia, in her narrative, describes the context and the activity in which children are 
engaged in the classroom “an activity of making a correspondence between an amount 
of fruits and a card with its cardinal number”:  

The students and the teacher are seated in a U-shape where the teacher puts different 
autumn’ fruits in a row and asks different children to count how many fruits there are and 
to choose the corresponding card with the cardinal number. 

Next, she describes the objective pursued in the activity: 
The objective, in this activity, is to acquire some principles of counting: stable order 
principle, the one-to-one correspondence principle and the cardinal principle.  

Alicia is able to identify the important mathematical elements involved in the activity– 
principles of counting (KoT). Counting this set of elements implies having acquired 
the stable order principle, the one-to-one principle and the cardinal principle. Alicia 
does not mention the other two principles (the abstraction and the order-irrelevance 
principles) probably because within the proposed activity, these two principles are not 
brought into play (its acquisition cannot be observed). By doing so, she focuses on the 
immediate observable evidence (what can be seen directly) and thus, she leaves aside 
a more global view on what children need to learn and the aspects of teachers’ 
knowledge required for the development of such learning. This does not mean that she 
does not have such knowledge for herself (KoT), but highlights the need to (us, as 
educators) rethink also some of the focus of attention and guidelines for observation. 
This is relevant since if we, as teacher educators, make more explicit the focus on the 
noticing process as well as on the content of the IK, pre-service teachers could provide 
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better informed decisions afterwards. Thinking on the IK, and its intertwined nature 
with the noticing skill, we can consider, as a core element in and for providing “true” 
meaning to children’s comments, the knowledge grounding noticing and also 
dimensions/aspects non-observable to the eyes (e.g., what is beneath the actual 
discussion and the implications of such mathematical dimensions, having children’s 
understanding and productions as a starting point).  
Following, Alicia describes the next classroom interaction (the teacher [school tutor] 
puts six chestnuts on the floor on a row): 

Teacher: How many chestnuts are there? 
Sara:  One, three, four, six, eight, nine. 
Teacher: Are you sure there are nine? 
Sara:  Yes. 
Teacher:  Please, try it again. 
Sara:  One, two, four, eight, five, nine. 
Teacher:  Can we help Sara to count the chestnuts? 
Students:  One, two, three, four, five, six. 
Teacher: Now you, Sara. 
Sara: One, two, three, four, five, six. 

When Alicia opts by including this interaction into her narrative, she reveals an 
awareness of the teacher awareness on the student’ difficulties in counting, and points 
out the importance of the teacher’s particular actions for helping the student (Sara) in 
developing her knowledge on the principles of counting, having as a starting point her 
own difficulties. This interaction highlights the importance of Alicia’s knowledge 
attributed to the one-to-one and the cardinal principles as shaping the teacher’s goals.     
In fact, Alicia interprets Sara’s understanding of counting principles as we can observe 
in the following excerpts of her narrative: 

[…] Sara doesn’t understand the notion of cardinality since, the last number recited does 
not only represent the last element counted, but also the total amount of elements. 
[…] Sara has not acquired the stable order principle because, if we count the collection 
with the number-word sequence, we would say: one, two, three, four, five and six.  
[…] in the case of Sara […] the only mathematical concept she has assimilated is the one-
to-one correspondence. She shows difficulties with the order when she is counting each 
object; those difficulties may be because the order of the number-word sequence has not 
been acquired yet. 

Alicia attributes Sara’s difficulties in obtaining the cardinal of a set of elements to her 
problems with the order of the number-word sequence. Nevertheless, Alicia points out 
that Sara is able to assign one counting word to each of the chestnuts in the set. This 
identification allows Alicia to interpret that Sara understands the one-to-one 
correspondence principle as she states that “the only mathematical concept she has 
assimilated is the one-to-one correspondence”. In that sense, although Alicia identifies 
the Sara’s difficulty (which is linked with giving meaning to the coordination of 
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partitioning and tagging -KoT), it seems that she is assuming that the one-to-one 
correspondence does not necessarily link quantities to its corresponding word (KoT 
related to the ways definitions are perceived). Such interpretation seems to show an 
absence of connections between the elements of the principle of counting (KSM) – 
understanding them as isolated components–as if each one could coexist on its own 
and even so, at any random moment.  
When thinking on how to improve the quality of the discussion and of the students 
mathematical learning and understanding, Alicia proposes a modification for the initial 
activity–to start with a smaller number of objects and then adding more: 

In the case of Sara, who, from the students, is the one who reveals more difficulties in this 
activity, the teacher should have started with only two chestnuts and then add more, maybe 
in this way, she would have counted each element correctly without the help of the other 
students. 

Alicia (pseudo)mobilizes a hermeneutical listening (Davis 1997) as she is able to give 
“some sort” of meaning to Sara’s difficulties concerning the counting process but 
considering the feedback provided, she does not focus on helping Sara to reach a 
broader (complete) understanding of the counting principle (stable order principle). 
This principle is linked to the acquisition of the different levels of the number-word 
sequence (Fuson, 1991). Therefore, the focus was on the action and not on the 
mathematical ideas to be discussed (fruitful feedback) and her new proposed action is 
grounded on her own understanding of the mathematical concepts itself which she 
perceives as being grounding Sara’s difficulties. Such focus on the actions (deriving 
from a mathematical discussion into a pedagogical one) is related with Alicia’s own 
knowledge of the topic to be addressed – counting principle (KoT); the connections 
between its elements – e.g. correspondence (KSM) and the role of generalization and 
problem solving (KPM).  
FINAL COMMENTS 

Using as a framework the IK can provide a deeper insight into what knowledge pre-
service teachers mobilize when they notice students’ mathematical understanding. 
From our results, we can see how Alicia uses specialized knowledge to attend to the 
mathematical elements of the activity, to interpret children’s understanding (IK), being 
able to relate the important mathematical elements of the activity (principles of 
counting involved). Furthermore, she uses some dimensions of specialized knowledge 
when interpreting Sara’s production since she is able to relate Sara’s difficulties with 
some of the counting principles previously identified. These results suggest that writing 
narratives allows this PT to focus her attention on specific aspects of the teaching-
learning situation, particularly, on children’s mathematical understanding. Therefore, 
writing narratives can be seen as a powerful tool to enhance pre-service kindergarten 
teachers’ noticing (understand as a knowledge-based reasoning) during their practices 
at schools.  
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Furthermore, the analysis of Alicia’s narrative reveals PTs difficulties in and for 
interpreting children’s reasoning as a starting point to provide next instructional steps 
focused on children’s understanding. This information is important since teachers’ 
educators need to be aware on the nature and content of the knowledge used by PTs in 
order to notice important aspects of teaching-learning situations for the design of 
teacher training programs.  
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PEDAGOGICAL CONTENT KNOWLEDGE FOR TEACHING 
MATHEMATICS: WHAT MATTERS FOR PRESERVICE 

PRIMARY TEACHERS IN MALAWI? 
Everton Jacinto, Arne Jakobsen 

University of Stavanger 
 

This paper examines how Malawian preservice teachers perceive the mathematical 
knowledge needed for teaching in primary schools. Drawing on the practice-based 
theory of mathematical knowledge for teaching, the study highlights the main elements 
constituting the pedagogical knowledge required for teaching mathematics in remote 
areas of scholarly education. Data collection instruments included a questionnaire 
survey and individual interviews with three entrant preservice teachers attending a 
teacher-training college in Malawi. The results yielded by thematic data analysis show 
that preservice teachers conceived components of pedagogical content knowledge in 
different but complementary ways to those noted in pertinent literature. 
INTRODUCTION 
For decades, education researchers have been exploring practices and teaching 
techniques to learn what can improve teachers’ knowledge. They have argued that, by 
possessing a specific type of knowledge, a teacher is able to organize potential 
activities that can transform subject matter content into forms more comprehensible to 
students (Abell, 2007; Grossman, 1990; Hurrell, 2013; Marks, 1990; Shulman, 1987). 
Thus, the knowledge of how teachers think, construe, and evaluate their own teaching 
provides valuable evidence on what comprises and enhances the nature of such 
knowledge. 
A particularly significant contribution to this line of research was the idea of 
Pedagogical Content Knowledge (PCK), developed by Lee Shulman (1986). In his 
view, PCK intersperses pedagogical and subject matter knowledge, and allows teachers 
to make scientific subjects meaningful and useful to learners (Shulman, 1986). This 
idea was further elaborated by a research team led by Debora Ball. The group made 
observations of preservice teachers’ teaching practices and identified six domains 
pertinent to effective teaching of mathematical subjects (Ball, Thames, & Phelps, 
2008). Those domains led to the development of the practice-based theory of 
mathematical knowledge for teaching (MKT).   
Drawing on a larger study about teacher education in Malawi, this paper explores how 
preservice teachers perceive the elements that compose the teacher’s mathematical 
knowledge for teaching, in particular, the PCK for teaching mathematics. 
Consequently, the general goal is to contribute to a new understanding of how those 
domains take place in remote areas of teacher education. 
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TEACHERS’ KNOWLEDGE DOMAINS 
The particular forms of content that embody teachers’ professional knowledge have 
become a central issue of the 21st century educational practice, raising questions whose 
answers can affect many educational institutions around the world. In this context, the 
practice-based theory of MKT comprises of the following six fundamental domains of 
teacher’ knowledge in mathematics: Common Content Knowledge (CCK), Horizon 
Content Knowledge (HCK), Specialized Content Knowledge (SCK), Knowledge of 
Content and Students (KCS), Knowledge of Content and Curriculum (KCC), and 
Knowledge of Content and Teaching (KCT). Together, those domains constitute a 
promising conceptual framework for research on teacher knowledge (Ball, Hill, & 
Bass, 2005). 
CCK is the first domain that incorporates the subject matter knowledge. Ball et al. 
(2008) described it as the type of knowledge “used in settings other than teaching” and 
related to circumstances typically common by others who know mathematics (p. 399). 
In contrast, SCK refers to a specialized knowledge unique to the work of teaching. This 
domain entails the mathematics knowledge and skills that a teacher needs to possess in 
order to create necessary conditions for students to learn the subject. SCK reflects the 
teachers’ capacity for dealing with the teaching tasks, such as “looking for patterns in 
student errors” and “understanding different interpretations of the operations in ways 
that students need not explicitly distinguish” (Ball et al., 2008, p. 400). In addition to 
these domains, HCK concerns “a kind of mathematical ‘peripheral vision’ needed in 
teaching, a view of the larger mathematical landscape that teaching requires” (Ball & 
Bass, 2009, p. 1). HCK helps preservice teachers be aware of “how the content being 
taught is situated in and connected to the broader disciplinary territory” (Jakobsen, 
Thames, Ribeiro, & Delaney, 2012, p. 4642) and “how mathematics topics are related 
over the mathematics span included in the curriculum” (Ball et al., 2008, p. 403). 
The second set of domains (KCT, KCS, and KCC) resides in the pedagogical content 
for teaching—a singular type of knowledge that allows teachers to create and be 
oriented in a conducive learning environment. For Freire (1996), this is the most 
fundamental skill, indispensable from the beginning of teaching, that helps educators, 
teachers, and preservice teachers to understand that “teaching is not about transferring 
knowledge but creating possibilities for its production or its construction” (p. 47) 
(Translation by the authors). 
The domain of KCT addresses methodological aspects that allow teachers to 
understand and choose the appropriate ways to meet students’ learning needs. KCT 
concerns lesson design and use of appropriate activities in the classroom (Herbst & 
Kosko, 2014). Such knowledge helps teachers to develop effective teaching practice 
and conceptualize their own teaching. Additionally, KCT can contribute to the future 
teachers’ learning by addressing specific ways to organize lessons that help to them 
deal not only with the ongoing adaptations in the classroom environment (Goodnough, 
2006) but also with problems that permeate much of our current society (Freire, 1996). 
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The second domain, KCS, pertains to the development of teachers’ specialized content 
knowledge (Philipp et al., 2007). KCS mainly focuses on the students’ mathematics 
learning and understanding, i.e., how they think about mathematics, their limits, and 
difficulties they experience when learning the subject. From this context, Ball et al. 
(2008) explained that: 

When assigning a task, teachers need to anticipate what students are likely to do with it and 
whether they will find it easy or hard. Teachers must also be able to hear and interpret 
students’ emerging and incomplete thinking as expressed in the ways that pupils use 
language. Each of these tasks requires an interaction between specific mathematical 
understanding and familiarity with students and their mathematical thinking. (p. 9)  

While KCS supports teachers’ ability to listen to their students, KCC helps them to 
identify, select, and decide how a particular set of curriculum materials can benefit 
students’ learning. This last domain, in the context of initial teacher education, appears 
as a potent tool for preservice teachers to explore the curriculum and instructional 
materials relevant for teaching (Ball et al., 2008). Possessing an effective KCC, 
however, implies not only knowing the curricular content that need to be followed, but 
also how those content areas can be better introduced in the lessons. 
The introduction of these last three components by Shulman (1986) and their 
reconceptualization by Ball et al. (2008) has been an important step toward a better 
comprehension of teachers’ knowledge. Moreover, as Depaepe et al. (2013) pointed 
out, although a significant body of research on PCK has been conducted in the US and 
European countries, there is evident paucity of studies focusing on the African 
countries. Thus, further research is necessary with the aim of providing not only new 
insights about the idea of PCK, but also discussing the possibilities and limits in 
applying those concepts in African contexts. 
PRESERVICE PRIMARY TEACHER EDUCATION IN MALAWI 
There are eight teacher-training colleges in Malawi. They operate with local primary 
schools in neighboring regions by offering a two-year program for candidates aspiring 
to become primary school teachers. As a part of this program, candidates review the 
basic topics taught in primary schools, analyze lesson models given by in-service 
teachers, and develop teaching activities for lower and upper grades. At the core of 
their training, a modular structural curriculum combines studies with a special focus 
on the pedagogical content knowledge for teaching and competencies for ensuring 
learning with understanding (Malawian Institute of Education, 2017).  
Although this new curriculum appears adequate for preparing preservice teachers to 
teach in Malawi, a recent study conducted at the eight Malawian teacher colleges 
indicated that most preservice teachers begin their college program with a poor 
understanding of basic mathematics. Consequently, their essential knowledge and 
skills for teaching mathematics typically do not improve as a consequence of the 
teacher education (Kasoka, Jakobsen, & Kazima, 2017). These results highlight the 
need to better understand what beginner teachers do in their teacher-training programs 
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in Malawi, how they understand and evaluate their own lessons, and on what bases 
they choose to act in particular ways instead of others.  
THE RESEARCH DESIGN  
The larger research study that this paper draws upon was based on a qualitative 
multiple-case study (Stake, 2009) with 23 primary preservice teachers selected due to 
the diversity in their backgrounds and teaching subject preferences. The broader study 
was divided into three research moments following the teacher-training calendar. The 
first moment consisted of asking all 23 primary preservice teachers to complete a 
questionnaire inquiring into their previous teaching experience and subject preferences 
for teaching, and individual interviews about characteristics of effective mathematics 
teaching in Malawi. The current investigation focuses solely on the information 
obtained within the first moment from three preservice teachers presenting similar 
traits on those criteria.   
The data was organized into three units of analysis bounded by the domains of teachers’ 
PCK (KCT, KCC, and KCS). Based on these domains, three distinct categories 
emerged from the data: Decision-making in teachers’ KCT; Relations between KCT 
and KCC; and Adaptations of the classroom activities from students’ contributions and 
level. These categories provided insight into the particularities of Malawian preservice 
teachers’ perceptions of PCK for teaching mathematics.  
FINDINGS 
Decision-making in teachers’ KCT  
The passage presented in this category occurred during the interview with Martin, a 
preservice teacher with previous teaching experience, and a preference for teaching 
sciences and mathematics in primary schools. The starting point was based on the type 
of “knowledge needed to decide on the best examples and representations to use for 
given instructional objectives” (Herbst & Kosko, 2014, p. 24). This idea is perceived 
as a significant element in KCT, as it is vital for the work of teaching mathematics 
(Ball et al., 2008). The evidence that frames this notion is given below:  

Researcher: Martin, is it important for teachers to think about the design of the lesson 
or any strategy before starting the classes? 

Martin: Yes, it is very important! 
Researcher: Why? Don’t you have a [teacher] manual? You have to follow it, right? 
Martin: Yes, we have to follow the manual! But a good teacher also has to think 

about what is good or bad for the learners. He needs to think about the 
lesson before, so if something happens, he or she can manage what to do. 
The big problem is that, in Malawi, there are so many students, that teachers 
cannot pay attention to everyone all the time. If they do that, they will never 
finish the content. So, the teacher needs to decide when it is time to give 
attention to students and when it is time to move on. 

Researcher: How does he know it is the time to move on? 
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Martin: If the majority understand the topic, it is time to move on. Learners can 
take revision lessons at the end of the term, so there is no problem if one or 
two students have problems. They will have an opportunity to review it. So 
this I something teachers need to consider when they are teaching. 

For Martin, the knowledge about instructional practice design combines the knowledge 
of the organization and conduction of mathematical tasks in classrooms. Decision-
making was also considered as an integral part of the primary school teacher’s skill 
management for teaching, an idea that resembles KCT as the “knowledge of strategies 
and representations for teaching particular topics,” as proposed by Borko and Putman 
(1996, p. 677). However, the context in which such skill is applied was a distinctive 
characteristic in Martin’s view: “The number of pupils in Malawian primary 
classrooms usually ranges from seventy-five to more than one hundred.” Martin also 
implied that teaching under such circumstances should be based on more than 
following manuals; it demands organization, decision-making, and a sense of time and 
place for learning.  
Relations between KCT and KCC 
This section contains a segment of the interview by Carlos, a preservice teacher with a 
similar background and preferences as Martin. Carlos’s responses not only describe a 
singular characteristic for an effective teaching in Malawi, but also show how KCC 
might interact with the domain of KCT from a broad curricular perspective.  

Researcher: Carlos, how do you describe an effective teacher? 
Carlos: Ok…, I think an effective teacher needs to be resourcive [resourceful]. 

He needs to know how to use the right [teaching] resources to engage the 
learners in learning a topic.  

Researcher: How does he know if the [teaching] resource is good or bad for the learners?  
Carlos: If the resource is too complicated, it is, of course, not a good resource.  
Researcher: Can you give an example of a good resource?  
Carlos: It is hard to say because in Malawi we don’t have enough material, you 

know… but… if you are teaching in standard four, you can use small stones 
to teach multiplication by nine, but just multiplication of small numbers. 
Multiplication by nine is part of the curriculum in standard four, you 
know… But, in standard five, if you use stones to teach multiplication of 
big numbers, it won’t be a good idea because it will take too much time 
for the students to count the stones. So, for teaching multiplication 
involving big numbers, you need to think about using other sources.        

In this passage, Carlos used the word “resourcive” to describe the way a teacher 
considers effective teaching resources in the classroom. This characteristic reflects the 
teacher’s capacity for selecting, revising, and using appropriate didactical materials to 
facilitate student learning. Carlos cogitated that if a teacher is capable of discerning the 
advantages and disadvantages of using didactical resources, he/she could create 
conditions that are more favorable for the learners, so that they can learn by doing. If 
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the material is incompatible with students’ learning pace, it would be for the teacher to 
search for proper teaching resources, explains Carlos.  
Although Shulman (1987) described curriculum knowledge as a major category that 
includes “the grasp of the materials and programs that serve as tools of the trade” (p. 
8), the knowledge and skills related to teaching materials were only recently introduced 
into the KCC domain (Sleep, 2009). Thus, the example provided by Carlos—the use of 
small stones to teach multiplication of small numbers by nine—depicted KCC not only 
as the teacher’s ability to familiarize with the tools for delivering mathematical lessons, 
but also his/her capacity for understanding how simple objects can help a concept 
become a learning need for students. 
Adaptations of the classroom activities from students’ contributions and level  
The passage below is an excerpt of the interview conducted with Clara, a preservice 
teacher who also acquired some teaching experience before starting her training 
program. She too has expressed affinity for teaching mathematics and science 
foundations in primary schools. The passage portrays her perceptions of focal features 
in KCS.  

Researcher: If a student uses a different method to solve a problem, what do you think 
the teacher needs to do? 

Clara: I think the teacher needs to consider it because, in Malawi, you know… 
students have many different methods, so the teacher must consider it. 

Researcher: But if you are teaching multiplication, for example, you know… there are 
many ways to teach it. How do you choose it?    

Clara: Well… first, the learners have to learn the method of the teacher. Then, 
you can discuss the other methods. If the teacher stops the class to explain 
every single method, it will confuse those learners who are trying to learn. 

Researcher: But how do you know which method is better? 
Clara: Usually, the method of the teacher is easier. A good teacher will always 

choose the easy way for the learners. 
Researcher: So, would you use the same method in all classrooms?  
Clara: No, it would be different because you have to use the method according 

to the level of students. In standard four, for example, you have to use 
methods that show why this number is like this, why this is this… so the 
method also has to show the details. In standard five, you don’t need to 
explain the details, you can just apply it.   

The transcription above reveals a significant aspect of teachers’ KCS. Although 
students’ ideas should be considered in the classroom, methods proposed by the teacher 
are still dominant. For Clara, the knowledge about the students’ capacities can be 
beneficial for teachers to better understand and react to the students’ ideas while 
teaching, but the use of multiple approaches might not be helpful for those who are still 
learning the content.  
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According to Ball et al. (2008), anticipating what students are likely to think and what 
they can find confusing is an essential skill that helps teachers balance and adapt their 
work according to students’ contributions and level of learning. Moura (2010) reminds 
us that every idea exchanged is valuable for improving the quality of teacher’s work. 
By knowing and interacting with their students, teachers can change their conceptions 
and learn new ways of acting that would incite development of learners’ reasoning 
ability (Moura, 2010). 
CONCLUSION 
All three segments presented in this paper focused on PCK; more specifically, they 
reflected what preservice teachers in Malawi perceived as crucial for the domains of 
KCT, KCC, and KCS. Although each of these components assumed different forms of 
conceptualization, they provide a new perspective on how PCK takes place in remote 
areas of scholar education. Moreover, over the last decades, the concept of PCK has 
received different conceptualizations by the academic community, posing a challenge 
that many educational institutions find difficult to put in practice. These insights are 
relevant not only for teacher educators in Malawi, who can use them to consider their 
activities based on preservice teachers’ specificities and needs for teaching 
mathematics, but also for deepening and developing the theory of MKT.    
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UNDERSTANDING OF WRITTEN SUBTRACTION 
ALGORITHMS: WHAT DOES THAT MEAN AND HOW CAN WE 
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In mathematics education, supporting children in developing strategic thinking and 
therefore conceptual understanding is an important goal. One of the topics that are 
questioned in the light of understanding is written algorithms. To teach an algorithm 
in a way that provides understanding requires having a grasp on what it means to have 
conceptual understanding of this algorithm. To approach this question, we conducted 
an exploratory study with 222 children from 12 fourth-grade-classes. We raised 
children’s conceptual understanding of crossing the tens boundary and developed a 
detailed coding-scheme. In this way, we could work out some key aspects describing 
conceptual understanding of written subtraction algorithms.  
INTRODUCTION: ALGORITHMS AND UNDERSTANDING 
In mathematics education one goal is “to prepare students for a technological society” 
(Anghileri 2006, p. 364) by supporting them to develop strategic thinking and therefore 
conceptual understanding of mathematical contents (see also e.g. Verschaffel et al. 
2007). 
But there are many examples like the following given by Wertheimer that show that 
this goal is not yet reached satisfactorily and too many pupils work mechanically 
instead: Wertheimer gave students problems like  

		375 + 375 + 375
3

=	? 

and had to realize that only a few of them saw the structure of the problem and did not 
solve it in a mechanical way (Schoenfeld 2008, p. 470).  
The requirement of understanding is discussed especially in those mathematical topics, 
where working mechanically seems to be the main goal as standard written algorithms. 
Kamii and Dominick (1998) examined children’s performance in calculating 
comparing children who had learned the standard algorithms and children who had not. 
Kamii and Dominick (1998) conclude that algorithms 

“are harmful to children’s development of numerical reasoning for two reasons: (a) They 
‘unteach’ place value and discourage children from developing number sense, and (b) they 
force children to give up their own thinking” (p. 58)  

or in other words: algorithms prevent children from understanding. Some findings 
support Kamii and Dominick’s statement: Selter (2001) observed children that learned 
different strategies including the written algorithm for addition and subtraction up to 
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1000. His results show that children use a steady procedure regardless of the special 
problem so that some of them (try to) solve 701 – 698 by written subtraction.  
Interpreting these results, one should consider that we know from Brownell and Moser 
(1949) that teaching the algorithms mechanically vs. meaningfully makes a difference 
in the conceptual understanding children gain. With that in mind, it is important to 
recognize that the children that participated in Selter’s study got lessons that 
emphasized the written algorithms instead of strategic thinking (Selter, 2001). Kamii 
and Dominick (1998) do not report the content of the lessons taught in the studied 
classrooms. Thus, the statement of Kamii and Dominick (1998) that teaching 
algorithms “force children to give up their own thinking” (p. 58) should be considered 
with caution.  
Usiskin (1995) expresses another point of view. For him deeper insights in mathemati-
cal structures like the place value ideas can be supported by encouraging conceptual 
understanding of the way of functioning of the algorithm. All these findings, and 
reasons, call for the emphasis of understanding the algorithm instead of only producing 
fast and correct results. A consequence for research and teaching practice is therefore, 
to find a way to soundly analyse children’s understanding of algorithms.  
THEORETICAL BACKGROUND 
Teaching an algorithm in a meaningful way requires having a grasp on what it means 
to have conceptual understanding of this algorithm. In our study, we chose to examine 
the written subtraction because written subtraction can be carried out in different ways 
and the different ways have different requirements concerning understanding. The 
procedures differ by the way the difference is calculated and the way the tens boundary 
is crossed. Calculating the difference x between a and b can be done by subtracting 
(𝑎 − 𝑏 = 𝑥) or by an indirect addition (𝑏 + 𝑥 = 𝑎). The tens boundary can be crossed 
by regrouping (“I change one hundred in 10 tens”) or by equal addition based on the 
equivalence relation between differences (𝑎 − 𝑏 = (𝑎 + 10) − (𝑏 + 10): “I add ten 
tens at the tens place of the minuend and one hundred at the hundreds place of the 
subtrahend”). There is international discussion on which procedure should be chosen, 
and some comparative studies tried to get empirical evidence (e.g. USA: Brownell and 
Moser, 1949, Germany: Mosel-Göbel, 1988; Jensen and Gasteiger, in press, Italy: Fiori 
and Zuccheri, 2005). In Germany it was prescribed to teach indirect addition from 1958 
until 2001 (Kultusministerkonferenz, 1958), now in almost all Federal States of 
Germany the choice for an algorithm is on the part of the teachers. For this choice the 
possibility of understanding the way of functioning by children is an important 
argument (Brownell and Moser, 1949; Mosel-Göbel, 1988; Gerster, 1982/2012). 
There are few studies examining and comparing the conceptual understanding of 
written subtraction procedures resp. crossing the tens boundary. Brownell and Moser 
(1949) and Mosel-Göbel (1988) show better understanding of the “regrouping” than 
“equal addition” but there are several limitations concerning these studies. They were 
conducted more or less long time ago. It can be claimed that compared with today, 
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aims and methods of mathematics education differ in some extend. Furthermore, these 
studies do not hold a replicable coding scheme to comprehend their idea of conceptual 
understanding. Therefore, these studies do not offer a method to measure this 
understanding.  
A possibility to measure understanding could be to ask children to explain their 
approach and to evaluate the explanations. Klein (2009) differentiates an explanation-
HOW as answer to a question “how…” – in this case the answer is a description – and 
an explanation-WHY as answer to the corresponding question “why …” – in this case 
the answer can be characterized as reasoning. Our assumption is that children who 
understand the algorithm will not only be able to describe their approach – and hereby 
demonstrate their ability of mechanical performance – but rather give reason for it. But 
reasoning is not enough to show conceptual understanding, because there are several 
kinds of explanation-WHY: Klein (2009) characterizes different contexts which allow 
different reasonings. For example, in an explanation in everyday life it is legitimate to 
use an intention or an initial situation as reason, whereas this would not be acceptable 
in an academic context. Brunner (2014) describes different kinds of reasoning and 
contrasts this everyday life reasoning as one side of a range with mathematical proof 
on the other side and emphasizes that in mathematics education children should reason 
mathematically and not only in everyday life contexts. 
To approach measuring conceptual understanding in the context of written subtraction 
algorithms we analysed children’s reasons and descriptions of crossing the tens 
boundary to explore whether it is possible to differentiate between the explanation-
HOW and the explanation-WHY and how these explanations can be further 
characterized.   
EXPLORATORY STUDY 
Methodology/Research Design 

To get a better grasp on the conceptual understanding of the procedures “regrouping” 
and “equal addition”, we conducted an exploratory study with N = 222 children from 
five primary schools in Germany – six classes and teachers for each procedure 
(“subtraction with regrouping” nr= 113, “indirect addition with equal addition” ne= 
109). All children learnt the algorithm about nine months prior to our study, so it can 
be assumed that they developed routine in using written subtraction.  
We developed two tasks to raise children’s conceptual understanding of the learned 
way of crossing the tens boundary. The first task was identical for both groups 
(regrouping and indirect addition) and the second one was adjusted on the taught 
algorithm. The first task was to solve a written subtraction and to explain the approach:  
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The second task resented a calculation and the children had to reason the notation: 
task for regrouping:                                                                  task for equal addition: 

 
 
 

 
 

Analysis of children’s conceptual understanding 
For an evaluation of the explanations given by the children in the two tasks the answers 
were analysed with a detailed qualitative content analysis. Because some children 
provided only in one of the two tasks a reasoning through referring on the mathematical 
relation and both explanations complemented each other, the deliberations of both tasks 
of each child were considered in the analysis as one explanation.  
We built categories and characterized them in a way that fits both procedures (see 
table 1).  
To represent the differences in children’s ability of reasoning with a focus on 
substantial mathematical relations, we evaluated two aspects in each category:  

a) On the one hand, we coded how the child described the conducted steps in 
crossing the tens boundary in each of the two involved columns. Therefore, it 
was evaluated how the numbers of bundles and the place value were named 
in each case (from code 1 to 4 described in a).  

b) On the other hand, we evaluated how the child described the relation between 
the conducted steps in the two columns where crossing the tens boundary is 
necessary (described in b). 

Children’s explanations were analysed according to these two aspects and the results 
were combined to an overall evaluation of the whole explanation of crossing the tens 
boundary.  

Code Approach of the child 

0 Erroneous description: The descriptions of the approach in the columns 
contain errors (e.g. numbers/place values are named incorrectly; approach 
is totally wrong) 

Calculate the task.  

Now explain your approach. 

First I___________________________________________ 
________________________________________________ 

Why was the seven 
crossed out and a six 
was noted above?  

Why a little 
‘one’ was 
noted?  
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1 Description of the notation resp. calculation: a) The child uses 
numbers without naming the place value or names incorrect place value 
or gives a vague description (e.g. “take some away”). b) The child does 
not comment the relation between the two columns.  

2 Description is very vague regarding the naming of the place value and 
without relating the bundles: a) Description remains very vague 
(“some”), place value is used wrong or the name of the bundle is missing 
in at least one of the two columns. b) The child relates the two columns 
but without showing awareness of the bundling of ten.    

3 Description is vague with naming the right place value but without 
relating the bundles: a) The child describes the approach in both 
columns with naming the right place value. b) see code 2 

4 Description of the full procedure crossing the tens boundary with 
naming the right place values and their numbers: a) The child 
describes the approach in both columns with a correct naming of place 
value and numbers of bundles. b) The child relates the two columns and 
refers to the different size of bundles (e.g. ‘ones and tens’ or ‘tens and 
hundreds’).    

Table 1: categories for the evaluation of the explanations given by the children 
Findings 
Our first finding is that it is not trivial to draw the line between an explanation-HOW 
and an explanation-WHY. In the first task all children felt required to describe their 
approach (how). Moreover, some gave elements of an explanation-WHY. In the second 
task, many children gave reasons for their approaches with explicit verbal pointers 
(“because”, “so”, “therefore”).  
For many children it seems to be satisfactory to reason only through the lack of 
possibility to calculate in the present column without crossing the tens boundary: 

“First I calculated from 5 to 7. Then I thought: ‘From 6 to 2 is not possible’, so I 
calculated from 6 to 12. Afterwards I wrote a little 1 as carryover under the 4. And 4+1 
equals 5, so I calculated from 5 to 7.” (All translations from German by the authors.) 

This child reasons a motivation for writing a one as carryover and so this explanation 
cannot be characterized only as explanation-HOW. But this reasoning seems more an 
everyday life explanation than a mathematical reason for the legitimacy of the 
approach, because an initial situation (not possible to calculate from 6 to 2) is used as 
reason. Therefore, an explanation in such a way was not evaluated as a clear 
explanation-WHY (and hence classified as Code 1), because the child does not give a 
mathematical legitimation for using the “12” and for the “little 1 as carryover”. 
From Code 2 on, explanations can be characterized as explanation-WHY and then 
differentiated in their quality. In the following examples (Code 2) the explanations stay 
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vague and it is unclear whether the child has a conceptual understanding of the 
mathematical relations:  

“Why a little ‘one’ was noted? When you calculate from 8 to 4 this is not possible. 
Because of this you have to calculate from 8 to 14. And because of the 10 there gets a 1 
in the next column.”  

“Why was the seven crossed out and a six was noted above? Because you cannot calculate 4-
8, therefore you cross out the 7 and you write a 6 above und 10 are carried to the 4.”   

In these explanations, at least basic approaches of explanation-WHY can be found (in 
the second explanation in a more or less implicit manner) which can be seen as related 
to the mathematical relations.  
The third category is different from the second one accounted for by giving a 
description of a relation between the two columns with right naming of bundles but 
without describing the precise relation between the bundles: 
“…one ten has gone over to the ones.”  

An example for a complete explanation-WHY (Code 4) is the following explanation:  
“First I calculated 7-5, this equals 2. Then the task was 2-6, but this is not possible. So I 
have to take one of the hundreds and make 10 tens out of it. 12-6=6. There are only 6 
hundreds remaining and 6-4=2.” 

This child names the appropriate bundles “hundreds” and “tens” and in addition 
describes the relation between these two kinds of bundles (that one can make 10 tens 
out of one hundred (unbundling)). This explanation can be evaluated as a generalizable 
description of the rules. This aspect of generalizability is an important step towards 
mathematical reasoning and is stressed out in the context of evaluating reasoning skills 
(Brunner, 2014).  
By using the developed coding schemes we found that children could explain 
regrouping much better than equal addition (Jensen & Gasteiger, in press): Most of the 
children that learned the equal addition described it in a mechanical way and no child 
could be evaluated with code 3 or 4. In the “regrouping”-classes, half of the children 
could give explanations in category 2 or higher and five children could give a complete 
reasoning. Altogether three quarters of the children provide no explanation-WHY. 
Discussion and implications 
Our analysis showed a possible way of grasping conceptual understanding of written 
subtraction algorithms and in this way we could show some key aspects in conceptual 
understanding: Referring to the place value and therefore the kind of bundles that are 
worked with are an important indicator for conceptual understanding. However, 
beyond that the relation between the actions in both columns is crucial as reason for 
the way of functioning of the algorithm. This relation is unclear for most of the 
children, so that many of them stay in a mechanical state (explanation-HOW and 
sometimes explanation - WHY but with everyday life reasoning) and do not refer to 
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place value and the meaning of noted numbers. It is already common in teaching an 
algorithm to work with manipulatives like tens blocks that can emphasize these ideas. 
Moreover, our findings give some clues how these actions could be verbalized to get a 
better understanding of the important ideas.  
Developing own strategies and using informal written arithmetic instead of just 
learning the algorithm (e.g. Verschaffel et al., 2007, Treffers, 1983) could help as well 
to get a better understanding. One informal strategy uses the idea of number 
decomposition into its place values. That can lead to calculating column-wise and at 
the same time being aware of the meaning of these columns and in further consequence 
support the aim to lead children to choose the use of written algorithms purposely 
versus mental calculation or informal strategies.  
These approaches get even more importance when regarding Clarke (2005) findings 
that essential basics in calculating that are needed for building the conceptual 
understanding described above are not available.  
Thus, in the discussion about teaching algorithms anyway there should be added the 
idea of delaying the moment for teaching so that there is more room to lay the 
groundwork for conceptual understanding. How this teaching can be designed must be 
content of further research.   
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NOTIONS, DEFINITIONS, AND COMPONENTS OF 
MATHEMATICAL CREATIVITY: AN OVERVIEW  

Julia Joklitschke1, Benjamin Rott2, Maike Schindler² 
1University of Duisburg-Essen, ²University of Cologne 

 

In this paper, we present an overview of notions of mathematical creativity in 
contemporary empirical educational research. We conducted a review using two 
databases and coding articles with respect to definitions and components of creativity 
that were used and/or referred to. By doing so, we found six different notions of 
creativity as reflected in the articles. Statements, which composed creativity, could 
either be assigned to these notions or represent further specifications. 
INTRODUCTION 
The concept of mathematical creativity is difficult to grasp. Are well-known 
mathematicians – as persons – creative? Or is it just their proofs – as products – that 
are creative? Or is it rather the process leading to a solution that is creative? These 
questions refer to Rhodes’ (1961) four Ps of creativity, in which Rhodes distinguishes 
between creativity of a person, a process, a product, or press (the environment). On the 
other side, there are conceptualizations of creativity focusing, e.g., on the moment of 
illumination after some time of conscious and unconscious confrontation with a 
problem (see Hadamard, 1945). Creativity can be examined from different 
perspectives. Research, including research from mathematics education, makes use of 
this diversity and investigates creativity in a multifaceted way. These different 
approaches as well as the increasing interest in this field lead to a growth of research 
on mathematical creativity (Leikin & Sriraman, 2017). The aim of this study is to 
systematically capture and qualitatively illustrate different notions of creativity in 
contemporary mathematics education research. 
THEORETICAL BACKGROUND 
In the following, different perspectives on creativity are described to give a short 
introduction into creativity. Both psychological and mathematics education 
perspectives are taken into account, as both are strongly interwoven in the field of 
creativity. 
One of the pioneers in this field, coming from psychology, was Guilford. In his work 
“the structure of intellect”, Guilford (1956) deals with intelligence, naming convergent 
and divergent thinking as essential components of creativity. In particular, divergent 
thinking is assumed to be composed of fluency, flexibility, originality, and elaboration. 
Torrance (1974) refers to this seminal work and developed the Torrance Test of 
Creative Thinking (TTCT) to measure creativity. Some researchers in mathematics 
education use this framework by assessing creativity through examining students’ 
fluency, flexibility, and originality (e.g., Leikin & Lev, 2013). 
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Hadamard (1945), in the field of mathematics, provides another approach to creativity. 
He describes the path to an invention in mathematics through a sequence of stages of 
initiation, incubation, illumination, and verification, and builds on the fundamental 
example of Poincaré (1948). This approach is also used in mathematical education as 
a framework. Liljedahl (2013), for example, emphasizes the affective moment of 
illumination as an essential part when working creatively.  
In research on creativity, Rhodes (1961) identified the 4Ps of creativity, namely person, 
product, process, and press. Rhodes points out that different aspects can be examined 
and described as creative. For example, people can be considered creative, or only a 
single product or process, such as a famous work of art or a new process. With press, 
Rhodes refers primarily to environmental influences that are in constant interaction 
with the other strands. 
These frameworks are different from each other and address various scopes. It is 
therefore a particular challenge to outline the construct of mathematical creativity as 
clearly as possible in theory, so that the research based on it is coherent and can be 
discussed within the respective framework. Any vagueness in the theoretical 
orientation can lead to difficulties in a discussion, which should be carefully prevented 
(Joklitschke, Rott, & Schindler, 2017). Of course, there have been literature reviews 
before (e.g., Sriraman, 2009); our focus lies on the notions of creativity in 
contemporary research. In order to present this systematically and completely, we 
conducted a systematic review, which is intended to give an overview and facilitate a 
well-founded discussion. Therefore, the following research question arises: Which 
notions of mathematical creativity are referred to in current empirical articles in 
mathematics education research? 
METHODOLOGICAL CONSIDERATIONS 
Searching procedure 
To answer the research question, a systematic review was conducted. Gough, Oliver, 
and Thomas (2013) have described how a systematic review can be realized in the field 
of politics; Nilsson, Schindler, and Bakker (2018) used this approach in order to 
elaborate on theories in statistics education and thus successfully transferred it to 
mathematics education research. In preliminary work, Joklitschke, Rott, and Schindler 
(2018) used this to create a foundation for this article. This article can therefore be seen 
as a continuation of the former article. On the one hand, the paper at hand expands our 
previous by adding a second database (namely MathEduc), which is specific for 
mathematic education research and thus complements the psychological side of the 
database PsycINFO®. On the other hand, this article deals with the qualitative findings 
arising from a systematization of the prior study’s findings: We use the following eight 
keywords that were identified in our previous works, which are used as synonyms for 
creativity and therefore suitable for our literature search: creativ*, invent*, innovate*, 
illuminat*, divergent think*, aha*, overcome* fixation, and bisociat* 
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Thus, two databases were searched for articles: PsycINFO® and MathEduc, with only 
articles that were published in Web of Science listed journals or in A* or A journals 
(Törner & Arzarello, 2012) being included. By using two databases, the psychological 
as well as the mathematical educational perspective was taken into account. 
The search interval for publications is 10 years, ranging from 2007 to 2016 (at the time 
of the search, 2017 and 2018 were not yet fully included in MathEduc). 
Coding of the articles 
The articles found were then analyzed. For this, all parts of the articles up to the 
research question or the methods, respectively, were read and so-called statements 
were coded. Statements are sentences with a reference to the literature that contribute 
to the theory construct of creativity – this means that sentences without reference or 
about empirical findings were not coded. This strict procedure makes it possible to 
work out the theories which the authors of the articles refer to. 
The statements were marked and then inductively merged into categories. In order to 
give a first qualitative insight into the 
notions of creativity, statements of the 
category definitions and components 
were considered in this article. 
Definitions are statements, which 
explicitly define creativity; 
components are statements, which 
name a closed list of properties. The 
definitions were then clustered for 
coherence of content. They therefore 
reflect different notions of 
mathematical creativity. The same was 
done with the components afterwards. 
RESULTS 
Overview of included articles 
In total, 37 articles from two databases 
were included in our analysis (Fig. 1). 
Notions of creativity 
In those 37 articles, the definitions were grouped into coherent groups, thus reflecting 
different notions of creativity. In the following, these notions (which can be recognized 
by the italic headings) are presented and illustrated with examples. 
Person-, process- and/or behavior-based notion of creativity. One of the most 
prominent notions of creativity found in our review focusses on who or what can be 
creative, or on the interplay between these facets, similar to Rhodes (1961). Shriki 
(2010, p. 160), for example, gives the following definition: “Sriraman (2009) […] 
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argues that […] ‘it is sufficient to define creativity as the ability to produce novel or 
original work (pp. 14–15).’” With this statement, Shriki refers to products which can 
be regarded as creative or not. 
Flexibility, originality and/or other aspects as notions of creativity. This notion of 
creativity originates in the works of Guilford (1967) and Torrance (1974). Levav-
Waynberg and Leikin (2012, p. 76) write in their study: “The tool is based on 
Torrance’s (1974) definition of creativity, according to which creativity is based on 
four mutually related components: fluency, flexibility, novelty, and elaboration”, 
referring to the set of four aspects as definition of creativity. The definition by Chen, 
Chang, and Kuo (2016, p. 428), highlighting mental flexibility as a characteristic of 
creativity, is rather focused on one of those facets. Referring to Krutetskii (1976), they 
“define […] mathematical creativity as mental flexibility that enables students to think 
outside the box and apply novel approaches to solve problems (Haylock, 1985, 1987, 
1997; Sriraman, 2004)”. This group of notions also includes many statements of the 
category components. Common are constellations such as fluency, flexibility, and 
originality, but also other combinations such as the one by Leikin and Lev (2013, 
p. 185), which mention the “creation of new knowledge and flexible problem-solving 
abilities” as characteristic. 
Creative mathematical reasoning (CMR) as notion of creativity. This notion of 
creativity differs from other notions because it is inherently linked to reasoning. Lithner 
contrasts creative mathematical reasoning with algorithmic reasoning (see Lithner, 
2008). In this context, Jonsson, Norqvist, Liljekvist, and Lithner (2014, p. 22) refer to 
this definition as follows: “Lithner (2008) defined CMR as fulfilling all of the 
following criteria: (i) Creativity; a new reasoning sequence (new to the reasoner) is 
created, or a forgotten one is re-created, in a way that is sufficiently fluent and flexible 
enough to avoid restraining fixations; (ii) Plausibility […]; and (iii) Anchoring […].” 
Notion of creativity as sequence of stages. This kind of notion of creativity comprises 
statements that could be summarized representing a sequence of phases in a certain 
way. The descriptions of most of the statements go back to the model of Hadamard 
(1945) with his stages of initiation, incubation, illumination, and verification. Liljedahl 
(2013, p. 254) regards Poincaré’s (1948) remarks as so fundamental that he defines the 
illustrations of the passing through the stages and the experience of the illumination of 
these stages as creativity: “[…] so deep were his [Poincarés] insights into his acts of 
invention and discovery that it could be said that he not so much described the 
characteristics of mathematical creativity, as defined them.” 
Notion of creativity as divergent thinking. In our review, we also found statements that 
deal with Guilford’s (1967) and Torrance’s (1974) remarks of divergent thinking in the 
conceptualization of creativity. “[C]reativity is defined in a number of ways by 
scholars, including the capacity to produce ideas related to divergent thinking rather 
than convergent thinking (Guilford, 1959)” (Kim, Roh, & Cho, 2016, p. 39). Other 
authors do not only emphasize the divergent aspect, but in particular argue that the 
interplay between convergent and divergent thinking is characteristic for creativity. 
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Notion of creativity as a learning activity. We found one statement that, in contrast to 
the others, was very wide-ranging. Liu, He, and Li (2015, p. 142) cite this definition 
here: “Similarly, Kember and Leung (2009) defined ‘creative thinking’ as a learning 
activity of students in Hong Kong.”. However, this type of definition has only been 
used once. 
Distinctions from a clear definition. Some statements refer to the fact that there is no 
clear definition or that the authors deliberately distance themselves from a definition, 
e.g., “Mann (2006) argues that there are more than 100 contemporary definitions of 
creativity” (Leikin & Lev, 2013, p. 184). Although this is not regarded as a notion of 
creativity, those statements contribute to the research interest here in the sense that the 
authors explicitly point out how difficult it is to grasp the concept of creativity. 
Additional components of creativity 
Hence, we see that the statements of the category 
definition can be clustered into six different notions of 
creativity (see Fig. 2). If we take a look at the statements 
that have been categorized as components, we see that 
many of those could be assigned to these notions (most 
could be assigned to the notions “flexibility, originality 
and/or other properties as notions of creativity” and 
“notion of creativity as divergent thinking”). However, 
there are also some statements that extend the spectrum 
of notions. In the following, two main groups will be 
presented. 
The statements presented here relate more to the scope 
of creativity. Leikin and Lev (2013, p. 185) formulate: 
“Leikin (2009) suggested that […] creativity […] in 
school-children requires a distinction between relative and absolute creativity.” With 
this assertion, the authors refer to the discussion of who can be creative? Historically, 
mathematical creativity was only assigned to outstanding professional mathematicians. 
Meanwhile, however, research assumes that students can also be creative. In our 
review, some components address this contrast. Other terms than absolute and relative 
in this context are big-C and little-c. 
Another group of components focuses on the range of creativity. Many researchers 
make a distinction between domain-general and domain-specific creativity, such as 
Peng, Cherng, Chen, and Lin (2013, p. 53): “[d]omain-general means that a creative 
individual can extract his/her creativity in any domains, whereas domain-specific 
means that an individual can only extract his/her creativity in a certain domain […] 
(Hong & Milgram, 2010; Silvia, Kaufman, & Pretz, 2009).” Other authors specify this 
further by speaking of subdomain-specific or task-specific creativity. 

Figure 2: Pictograms of the 
notions of creativity  
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In our analysis, we could also find further statements within the category components. 
These could either be assigned to the above notions or to the scopes presented here, or 
did not represent a significant part and are therefore not further discussed here. 
DISCUSSION AND OUTLOOK  
The literature review presented here constitutes a continuation and extension to 
Joklitschke et al. (2018). In the previous study, preparations were made such as the 
search for synonymous terminology, which extend and complete the hits in the search. 
The extracted statements were also grouped into categories. In the present study, a 
further database was added, namely MathEduc, which is specifically directed towards 
mathematics education research. With these two databases, we were able to increase 
the number of journals even further (from seven to eleven different journals). A 
qualitative examination of the coded statements in the definitions category revealed six 
different notions of creativity (see Fig. 2 and subheadings in the results part). This list 
is, of course not irrefutable. In our analysis, we only looked for definitions and 
components and only in well-chosen journals. Some statements also deliberately 
distance themselves from definitions. In addition, the statements of the category 
components were also qualitatively examined and could largely be assigned to the 
perceptions of creativity. Further, components could be clustered into new groups and 
thus represent different areas of application. Here, the comparisons of absolute and 
relative creativity as well as the consideration of domain-related and domain-specific 
creativity are predominant. The additional scopes represented by the components show 
that essential properties often cannot simply be represented by a definition and that it 
is therefore reasonable to have a wider view regarding the notions of creativity. 
There are some limitations to our approach: (1) The coded statements do not 
necessarily reflect the opinion of the authors of the respective articles, but merely 
represent which conceptualizations are mentioned. (2) The propositional content does 
not have to agree with the authors’ opinion of the primary source; there may always be 
different formulations or slightly different interpretations. (3) There were many 
sentences, which conceptualize creativity but were not linked to a reference and, 
therefore, not coded. With this restriction we wanted to make sure that we capture those 
notions that are theoretically based. (4) We have only read those contributions that fit 
under the framework conditions mentioned above. Thus, conference papers or chapters 
in books, older and newer articles, as well as articles of other journals were not 
considered. In order to continue the study presented here, it is now interesting to see 
what other descriptions of creativity are given in the articles considered. Descriptions 
do also form a category within the extracted statements. In addition, statements were 
coded that reflect a relation between creativity and another construct. Here is of interest 
to see in which contexts creativity is addressed. The review reflects the notions of 
mathematical creativity in current research and thus further contributes to the 
theoretical field in this area. 
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SECOND GRADERS’ FIRST MEETING WITH VARIABLE 
NOTATION 
Thomas Kaas  

Aarhus University & University College Copenhagen 
 

This paper reports on an empirical study of second-grade students’ emerging 
understanding of variable notation in the context of functional thinking. I describe the 
mathematical practices that became taken-as-shared in the classroom and the levels 
of sophistication in the students’ thinking about variable notation, as the teacher 
implemented a hypothetical learning trajectory inspired by early algebra research. The 
findings confirm the results of former research on students’ understanding of variable 
notation and contribute with knowledge about the mechanisms that promote shifts in 
young students’ thinking when they explore functional relationships.  
INTRODUCTION 
Generalizing, representing and reasoning with generalizations are widely viewed as 
core aspects of early algebraic thinking (Stephens, Ellis, Blanton, & Brizuela, 2017). 
However, there are different views on the role of variable notation in relation to these 
forms of algebraic thinking. Few would disagree that algebraic thinking ultimately 
involves conventional variable notation, but the question is when and how to introduce 
it? Radford (2011) argues that algebraic thinking in the early grades is not about using 
letters but about reasoning with indeterminate quantities in ways, that do not include 
conventional notation. Fujii and Stephens (2008) argues that number sentences and 
quasi-variable thinking should be used in the early grades as a bridge from arithmetical 
operations to the idea of variables. Finally, Brizuela, Blanton, Sawrey, Newman-
Owens and Gardiner (2015) argue that children should be introduced to variable 
notation from the beginning of their schooling. I address this issue by contributing with 
an analysis of the development in second graders’ (8-9 years) understanding of variable 
notation as it emerged in the classroom. My research questions were: Which conceptual 
understandings related to variable notation can second-grade students develop, as they 
explore functional relationships, and which mechanisms promote shifts in their 
thinking about variable notation? 
Research on elementary students’ understanding of variable notation  
It is well documented that adolescents often have problems with the concept of variable 
and variable notation. The difficulties include understanding the use of letters as 
generalized numbers or as variables (Vergnaud, 1985) and the use of mathematical 
symbols to express relationships between quantities (Bednarz & Janvier, 1996). One 
could expect that such difficulties would be even more conspicuous for younger 
children, but recent research question this. In particular, research on students' 
understanding of variable and variable notation within the context of functional 
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thinking seem promising. In one study, Carraher, Schliemann, and Schwartz (2008) 
found that students in grade 2-4 successfully could use variable notation to represent a 
(simple) linear functional relationship between two amounts of candy. Blanton, 
Stephens, Knuth, Gardiner, and Kim (2015) found that third-grade students 
participating in a 1-year early algebra intervention were more successful representing 
a linear relationship of the form y = mx, m ∈ N, with variable notation than with words. 
Blanton, Brizuela, Gardiner, Sawrey, and Newman-Owens (2015) found that even 
first-graders could represent functional relationships using variable notation and 
develop understanding of variables as varying quantities that can be treated as an object 
in reasoning with general forms. These findings suggest that difficulties with variable 
notation are less about age and premature use of formalism, than about the learning 
opportunities offered to students and the conflicts the notation creates in relation to 
their experiences and understandings from non-mathematical contexts. In this line 
Brizuela et al. (2015) argue that variable notation can act as a mediating tool to 
facilitate children’s reflections about indeterminate quantities and that conceptual 
understanding do not necessarily need to precede the introduction of variable notation, 
but rather that meanings and symbols can co-emerge. The different perspectives 
suggest that more research on how children understand and represent variable 
quantities is needed. The study presented in this paper is based on research that supports 
the belief that understanding of algebraic concepts and symbols can co-emerge, even 
in 2nd grade. It has much in common with a study performed by Blanton, Brizuela, 
Gardiner, Sawrey and Newman-Owens (2017), which presents an empirically 
developed progression in first-grade children's thinking about variable and variable 
notation. 

RESEARCH DESIGN 
The study reported here forms part of a long-term early algebra project (2017-2020), 
framed as a classroom design study (Cobb, Jackson, & Sharpe, 2017), in which I 
collaborate with an expert mathematics teacher on ongoing analysis of 2-4 grade 
students’ algebraic learning and how to support this learning. We centre our research 
on the use of a classroom teaching experiments (CLT) and on the design of a 
hypothetical learning trajectory (HLT), consisting of (a) learning goals, (b) an 
instructional sequence and (c) a developmental progression that specifies increasingly 
sophisticated levels of thinking in which students might engage (Clements & Sarama, 
2004). In this study, the HLT was based on findings from early algebra research 
regarding children’s functional thinking, especially findings which show that students 
already in first grade are able to explore correspondence relationships between two sets 
(Blanton, Brizuela, et al., 2015). Lessons in the instructional sequence were based on 
variations of tasks, which have been used successfully in previous research on 
children’s functional thinking (Blanton, Stephens, et al., 2015; Carraher et al., 2008) 
These tasks focused on identifying and representing correspondence relationships 
between two sets and/or to justify and reason with such relationships. The functions in 
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the sequence progressed from the type y=ax, over y=x+b and y=x – b to y=ax+b (See 
Table 1 for examples).  

Week Examples of tasks and function types 
1 “Rectangles with the (fixed) side 4”: y = 4x or y = x + x + x +x. 

Find relationships between the height and the total numbers of unit 
squares in the rectangle. 

2 “Saving”: y = x + 3 or y = x – 3. Lucca and Albert save an equal 
amount of money each week. Before they started saving, Lucca had 
3 d.kr. which she has kept. How can you express the relation 
between how much money Lucca has and how much money Albert 
has? In words? In numbers? In letters? 

3 “Tables and chairs”: y=6x and y=4x+4. Find a relationship 
between the number of tables and chair (in different settings). 

4 “Towers of centicubes”: y=4x + 2. Find a relationship between the 
number of centicubes in a “tower” and the number of visible 
squares on the “tower”. 

Table 1: Examples of tasks in the planned instructional sequence  
We designed the instructional sequence as a four-week course, each week including 
four 45 min lessons. Participants were one second-grade class (25 children) in a Danish 
elementary school. 
Implementation of the instructional sequence  
Each lesson typically consisted of three phases. In the first phase, the teacher set the 
scene for the mathematical problem of the day by telling a story aimed at engaging the 
students in the problem and giving them a context to support their thinking. In the 
second phase, the students worked in small groups with the problem, and the third 
phase consisted of a class discussion on the students' different strategies and solutions. 
In this discussion, the students should focus on explaining their thinking, describing 
their strategies, and justifying their solutions. The teacher was focusing on highlighting 
mathematical points and guiding the students' social and socio-mathematical norms 
(Cobb, 1999), e.g. by emphasizing that, they were expected to try to make sense of the 
explanations given by their peers, to indicate agreement or disagreement and by 
signaling what counted as an acceptable mathematical explanation or an insightful 
solution. As part of the discussion, the teacher introduced variable notation as a way 
(among others) to represent variable quantities. In particular, the teacher introduced 
variable notation in the context of representing student’s rules for functional 
relationships. 
I observed and videotaped the lessons. After each lesson, I met with the teacher to 
discuss observations regarding the students’ thinking about concepts addressed in the 
tasks and to discuss possible revisions for the subsequent lesson. In our ongoing 
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interpretation, we focused not only on classroom tasks and tools, but also on the 
emerging mathematical practices in the classroom and on the nature of the social- and 
sociomathematical norms, and the quality of classroom discourse as potential supports 
for the students’ learning. Thus, we took the position, that students’ mathematical 
learning is situated with respect to classroom social norms and that the teacher and the 
students establish mathematical practices collectively (Cobb, 1999).     
The teacher conducted individual, semi-structured 30-min pre- and post-interviews 
with five students, selected to represent the academic level of the class. Both interviews 
were based on the students' work on function tasks. The purpose of the pre-interview 
was to assess the students' current understanding of concepts related to functional 
thinking and to identify aspects of students’ current reasoning on which instruction 
could capitalize. The purpose of the post-interview was to assess the students’ 
individual mathematical practices as well as to identify levels of sophistication in their 
thinking about variable notation.   
Data analysis 
The empirical data consist of video recordings and the students’ written work from the 
lessons and the interviews. I used a grounded theory approach (Strauss & Corbin, 1990) 
and my data analysis focused specifically on identifying 

• different levels of sophistication in student’s thinking about functional relations 
and representations of these relations 

• mathematical practices that became taken-as-shared in the classroom, that is 
practices that did no longer need explanation or justification (Cobb, 1999). 

I did the analysis in five phases. First, I sorted sequences of the video recordings into 
two groups: 1) the forms of functional thinking that student expressed in the sequence 
(‘Identifying’, ‘Representing’, ‘Justifying’ and ‘Reasoning’) and 2) the social norms, 
socio-mathematical norms and mathematical practices expressed in the sequence. 
Secondly, I focused on 'Representing' and 'Mathematical practices'. I revisited the 
sequences in these categories and constructed memos to characterize the mathematical 
practices the students engaged in, and the incidents in which students used variable 
notation or discussed their understanding of variable quantities. The memos consisted 
partly of descriptions of the mathematical practices and students' thinking, and partly 
of possible interpretations of this thinking. 
In the third phase, I sorted my memos according to the type of practices and the type 
of thinking expressed in them. I gave each group of memos a preliminary code, which 
reflected the type of practice and thinking within each group. Then I organized the 
memos of the mathematical practices according to the temporal order in which they 
appeared in the classroom, and the memos of students' thinking according to the level 
of sophistication expressed in them. In the fourth phase of the analysis, I reviewed the 
video sequences, and coded them according to the mathematical practices and the 
levels of thinking exhibited. Throughout this process, I refined existing codes and 
created new codes to reflect findings from the analysis. I continued this refinement 
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until no new findings emerged in the data. In the fifth phase of the analysis, I focused 
on relationships between the mathematical practices, I had identified, and the 
sequences categorized as social and socio-mathematical norms. My intention with this 
part of the analysis was to describe the relation between the identified mathematical 
practices and the social and sociomathematical norms in the class (Cobb, 1999). 
FINDINGS AND DISCUSSION 
I identified five different mathematical practices that emerged in the class during the 
CTE (See Table 2).  

Practice 
number Classroom mathematical practices 

1 Using a function table to look for patterns 
2 Describing calculations related to functional relations to look for 

patterns in them 
3 Representing (general) functional relationships in different ways 
4 Making sense of expressions with letters and reason with these 

expressions 
5 Representing functional relationships with variable notation  

Table 2: Classroom mathematical practices 
The transition from one of these mathematical practices to another mathematical 
practice involved a shift in the focus of attention and in the nature of the discussions in 
the class. For example, the transition from practice (1) to (2) involved a shift in the 
students' attention from recursive thinking to correspondence thinking. It also involved 
a shift in the nature of the discussions in the class, such that the focus was on the 
relation between the context and the numbers, rather than just on the numbers. One of 
the tasks was about the relationship between the height and the total numbers of unit 
squares in a rectangle with a fixed side length of 4. Most students relatively quickly 
filled out a function table and discovered that the numbers in “the left side” of the table 
grew by 1, and the numbers in “the right side” grew by 4. Their arguments were based 
on calculations of the differences between the numbers. A shift occurred, when the 
teacher asked the students how they calculated the total numbers of unit squares. Some 
students explained that they could see the same number of units four times on their 
drawings of a rectangle, and when they knew the number of units in the height of the 
rectangle, they could just add this number four times. The calculation related to the 
rectangle with the side length 4 was thus 4 + 4 + 4 + 4. In similar ways, other students 
argued that the calculation related to the side length 5 could be 5 + 5 + 5 + 5. In the 
new mathematical practice (2) that emerged attention was thus directed to the 
correspondence relationship, and the students' arguments were based on the quantities 
represented. The mechanisms that promoted the shift can be understood as a 
combination of the task involved, the students’ drawing of rectangles (they could see 
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the total numbers) and the students' mathematical explanations and justifications. The 
students in the class were used to explain and justify their mathematical thinking with 
reference to the quantities represented. Other students therefore had the opportunity to 
interpret the relationship between the independent and the dependent variable in terms 
of actions on e.g. a geometric representation. Along with representations of the 
functional relationships that the students explored, this sociomathematical norm 
supported the emergence of the new mathematical practice (2). It is likely, that the shift 
would not occur, or that the shift would have been different, if the sociomathematical 
norms in the class were different.   
The transition from mathematical practice (4) to (5) provides another example of the 
mechanisms that promoted shifts in students' thinking. To support the students’ 
understanding of variable notation, the teacher focused on tasks, which had algebraic 
notation as a starting point. For example, the teacher described a family's "rules for 
pocket money" with the expression A + 15 and explained that the rule showed how 
much money children in different ages would get. The students' task was to make sense 
of the expression. At the beginning of a class discussion on this issue, a student 
suggested that the term could mean that you would get 15 d.kr. in pocket money when 
you had reached a certain age. Another student suggested that the expression could 
mean that you would get 15 d.kr. more for every year you grew older. However, these 
students changed their perception as a consequence of others' arguments in the 
discussion that had the character of an investigation. In this context, it was crucial that 
it was a social norm in the class to try to make sense of explanations given by others 
and to indicate agreement or disagreement. 
Table 3 summarizes the levels of sophistication that I found in students' thinking about 
variable notation and the following quotes exemplify the levels. The levels show a 
possible progression in the students' development, but students may skip levels or 
revert to lower levels when the settings change. However, the five students in the post-
interview all showed thinking at level 4 or 5. 

Level Code Characteristic 
0 Pre-symbolic No meaning is given to letters in a 

mathematical context 
1 Pre-algebraic Letters are given meaning associated with 

past experiences, but not in a way that is 
meaningful in an algebraic context 

2 Letters as labels Letters denote an object or a person, but it is 
unclear whether the letter at the same time 
represents a number value 

3 Letters as specific 
values Letters denote a specific numerical value 
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4 Letters as variables Letters denote an unknown numerical value 
that can vary within a domain 

5 Variable notation 
as object 

Expressions with letters are perceived as 
objects that can be used to reason with. 

Table 3: Levels of sophistication in children’s thinking of variable notation 

Student 1:  You cannot use letters in mathematics”. (Level 0) 
Student 2: H must be 8, because H is the 8th letter of the alphabet”. (Level 1) 
Student 3: H represents Heidi´. (Level 2) 
Student 4: H represents how many years Heidi is. So it must be 44”. (Level 3) 
Student 5:  S can actually be a lot of numbers. It can be, for example, 4, 10 or 100. It 

can be numbers up to infinity” (Level 4) 
Student 6: 4 ∙ n + 2 cannot be an odd number, because all the numbers in the 4-table 

are equal and they remain equal when adding 2” (Level 5). 

There are some differences between this part of the findings of the study reported here 
and the results of a similar study in an American grade-one classroom (Blanton et al., 
2017). However, the most striking is the similarities between the analyses, which have 
been done independently. Findings in both studies suggests that young students can 
learn to think in sophisticated ways about variable notation, and indicates that 
conceptual understanding of functional relationships and symbols can co-emerge. This, 
of course, does not mean that the question of when and how to introduce variable 
notation is settled. Such a decision should be based on a broader basis. Among the 
questions, whose answers can further inform the role of variable notation in early 
algebra, is the question of how students understanding of variable notation and their 
understanding of functional relationships relate to each other. Answering this question 
requires more studies to shed light on the ways in which students' conceptual 
understandings and understandings of variables co-emerge. 
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This study examines the effects of the fluency, flexibility, and originality components of 
creativity, as reflected in problem-posing, on the problem-solving abilities of 
prospective teachers. A problem-posing task regarding pattern subject and a problem-
solving test were administered to prospective teachers, 12 of whom provided further 
data through semi-structured interviews. Prospective teachers with high scores in the 
flexibility and originality dimensions were found to make more in-depth analyses of the 
math concepts in the task, and were able to come up with more problems involving 
different math concepts. The results of the quantitative analysis showed that flexibility 
and originality scores were better indicators of problem-solving achievement than 
scores related to fluency. 
INTRODUCTION 
Problem-solving (PS) is one of the basic skills emphasized in studies of math 
education. In recent years, two other skills, problem-posing (PP) and creativity, have 
attracted researchers’ attention and have started to be emphasized in education policy 
documents. The PP and PS skills affect each other, and people who are successful in 
one are usually also successful in the other (Xie & Masingila, 2017). Leung (1997) has 
defined creativity as “bringing into being,” and in this context, posing problems can be 
seen as a sign of creativity. The skill of creativity, on the other hand, is usually 
measured using the dimensions of originality, flexibility, and fluency that were 
identified by Torrance (1988). Based on the fact that creativity underlies both the PP 
and PS processes (Silver, 1997), how would the scores achieved in different individual 
creativity dimensions, measured using PP, affect PS achievement? This study aims to 
answer this question through both qualitative and quantitative approaches, and thus 
contribute to a better understanding of the relationships between PP, PS, and creativity. 
THEORETICAL BACKGROUND 
PP is defined as the generation of new problems or the reformulation of existing 
problems. There is a strong relationship between PP and PS, with each contributing to 
the other (Cifarelli & Sevim, 2015; Kilpatrick, 1987). Kilpatrick (1987) defined PP as 
an important component of PS; Kapur (2018), on the other hand, indicated that PP with 
solution generation is a more beneficial preparatory activity than PP without solution 
generation. PP contributes to PS because it is an inquiry-based activity (Silver, 1994). 
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Xie (2016) argued that successful PS depends on the development of an in-depth 
understanding regarding the structure of the problem. In the process of PP, on the other 
hand, the math concepts in the activity are analyzed in depth, and the validity of the 
problems is questioned (Xie & Masingila, 2017). Thus, PP contributes to PS success 
by facilitating the questioning process of the PP structure. In this context, the number, 
variety, and rarity of the problems created in PP tasks serve as predictors of PS 
achievement. Torrance (1988) referred to these phenomena as originality, flexibility, 
and fluency, and defined them as the main components of the creativity skill. While 
fluency deals with the total number of problems posed by each participant, flexibility 
refers to the number of problems with different structures posed by each participant. 
The dimension of originality, on the other hand, refers to the frequency of the posed 
problems that are created by less than 10% of participants (Harpen & Sriraman, 2013). 
There are some studies in the literature combining PP, PS, and the components of 
creativity. Such previous studies measured the creativity skills of students using PP 
(e.g., Harpen & Sriraman, 2013; Yuan & Sriraman, 2011). In the study by Harpen and 
Sriraman (2013), the creativity skills of high school students were examined; the 
authors found that creativity scores were not as high as expected in each dimension, 
and that the problem types posed were concentrated within limited categories, such as 
length and area. Other studies made use of experimental methods and involved some 
of the components of creativity in the process. For example, Chen, Dooren, and 
Verschaffel (2015) found that an intervention based on PP and PS was more effective 
at improving students’ PS skills. In their analysis of the development of PP skills, they 
looked into the dimensions of appropriateness and originality, among which the 
dimension of appropriateness corresponds to the fluency dimension of creativity. The 
authors identified a statistically significant improvement only in originality, in that 
originality requires the addition of new data to the situation described in a problem 
(Yuan & Sriraman, 2011). Accordingly, this component of creativity can be seen to 
make a greater contribution to the development of PS skills by facilitating in-depth 
inquiry. The studies mentioned provide no guidance on which components of creativity 
make a greater contribution to PS achievement, whereas the present study aims to 
answer this question through the combined use of qualitative and quantitative 
approaches.   
METHODOLOGY 
Participants. The study was conducted with the participation of 64 prospective 
mathematics teachers attending the final year of a primary mathematics education 
program at a university. Prospective teachers graduate after a four-year program and 
undergo theoretical and practical training on PP and PS in two mathematical instruction 
courses taken in their third year. All of the participants had PP-related experience, but 
none of them had attended any courses focusing exclusively on PP or PS. Each 
prospective teacher was assigned an identification code (e.g., PT1, PT2).  
Data Collection and analysis. A PP task involving patterns and a corresponding 
problem-solving test (PST) were prepared for the study. The PP task involved a pattern 
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concerning the ordering of blocks. The test was administered to participants during a 
class hour, after which a six-item PST was prepared based on the variety (fluency, 
flexibility, and originality) of the problems posed by the participants. Figure 1 presents 
the PP task and two sample questions from the PST. 

 

Figure 1: Problem-posing task and sample questions from the PST 
Responses to the PP task were subjected to a two-step analysis based on the analysis 
schema used in previous studies (Chen et al., 2015; Harpen & Sriraman, 2013; Yuan 
& Sriraman, 2011). In the first step, the goal was to identify problems that were 
incompatible with the structure of the task or that contained mathematical errors. These 
responses were coded as non-viable problems. In the second step, responses coded as 
viable problems were analyzed on the basis of fluency, flexibility, and originality. For 
the statistical analyses, quantitative scores were calculated for each creativity 
dimension. The fluency score was calculated by assigning one point to every viable 
problem. The first two authors of the study created problem categories by separately 
coding the papers of 20 participants, after which common problem categories were 
created by comparing these analyses. The resulting categories were then used to 
analyze the responses of the other participants. The responses that did not fit into any 
of the categories were discussed again, and new problem categories were added. 
Consequently, a total of 25 problem types were identified in the participants’ responses. 
The flexibility score was based on a calculation of the total number of viable problems 
with different types. To assign the originality score, problem types used by less than 
10% of the participants were identified. Given the total of 64 participants, any problems 
duplicated by seven or more participants were not considered original; following the 
analyses, 13 problem types were coded as original. If participants posed two original 
problems in their responses to the PP task, these participants were assigned an 
originality score of 2.  
To examine the process of PP in terms of creativity, interviews were conducted with a 
total of 12 participants, including both those who produced original answers and those 
who did not. In these interviews, participants were asked to answer certain questions 
such as What was your thinking like when you posed the problem? Are there any 
problems that you consider to be different and interesting among your responses? If 
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so, how was your thinking different when you posed these problems? These questions 
were aimed to clarify the reasons behind the participants’ different fluency, flexibility, 
and originality scores when posing problems.  
The solution to each problem on the PST was scored out of two points. A score of 0 
was assigned if no solution was provided, or if the solution conflicted with 
mathematical rules and procedures; 1 point was assigned if the procedure in the 
solution was logically valid but there was a calculation error; and 2 points were 
assigned if both the approach and the final answer were correct. Thus, the maximum 
total score on the PST was 12 points. A multiple linear regression analysis was 
conducted to examine how creativity scores based on PP could predict PS achievement. 
RESULTS 
The prospective teachers posed 291 problems, averaging 4.55 problems each. Of these, 
17.2% (50 problems) were classified as non-viable problems. A total of 18 of the 
problems in this category contained mathematical errors and 32 were not related to the 
pattern. One of the problems that contained a mathematical error was as follows: Blocks 
with side lengths of 100 cm, 50 cm, and 30 cm are used to form staircase, as shown in 
the picture. Which term corresponds to the stairs with a volume of 1000 m3? (PT2). 
The individual participants posed a minimum of one and a maximum of nine viable 
problems. The mean fluency score was 3.77, and there were 25 problem types in the 
viable problem category (Table 1). The maximum flexibility score received by a 
participant was 8, and the minimum was 1. The mean flexibility score was 3.19. To 
calculate originality scores, problems posed by less than 10% of the participants were 
identified (Table 1: Q3b, Q4(a-b), Q5(a-b-d), Q7, Q9, Q10, Q11c, and Q12(a-b-c)). The maximum 
originality score received by a participant was 3, and the minimum was 0. The mean 
originality score was 0.34. One participant, PT7, posed a problem that was very similar 
to the first sample from the PST reported in Figure 1. This problem asked the color of 
the last step of the eighth term in the pattern and was coded as original. Another 
example that was coded as original was as follows: One step is left when Ali climbs the 
steps three at a time, and two steps are left when he climbs four at a time. Which term 
of the pattern is the first to meet these conditions? (PT8). 
The interviews revealed that the participants took three aspects into account when 
posing problems: i) prior experience, ii) the visual characteristics of the pattern, and 
iii) context and associations. Participants with high fluency and flexibility scores 
emphasized the first and second items, and those with high originality scores 
emphasized the third item. The participants had prior experience with questions similar 
to Q3, Q8, and Q14 from textbooks, and 41.6% of the 291 responses (121 problems) 
featured these types of problems. In addition, 47, 30, and 20 participants posed 
problems regarding one of these categories in their first, second, and third answers, 
respectively. Participants who had difficulties coming up with different problems 
stated that starting out with a problem of this type allowed them to better analyze the 
pattern. Some of the participants said that they were more focused on avoiding any 
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mathematical errors in their problems, and therefore posed routine problems with less 
risk of making an error. One participant, PT9 gave the following explanation: I thought 
really hard about how to come up with a different problem, but this led me nowhere. I 
thought maybe I should start with a simple question and the rest will follow. This is 
why I posed this problem [a problem of type Q8]. We see these types of problems very 
often when studying the patterns subject. 

Problem types 

Q1. Volume  

Q2. Viewing the stairs from different perspectives  

Q3. Pattern rule 

a. Asking about the general term 

b. Finding the block numbers that are perfect 
squares   

Q4. Climbing up/down the stairs with a single rule  

a. Given the p-step movement and the total number 
of blocks, asking for the total number of steps to 
climb the stairs  

b. Knowing the position on the stairs according to 
the starting point after moving the p-step backward 
k-times, asking for the total number of blocks  

Q5. Creating new patterns by adding data to the 
existing pattern 

a. Posing problems by placing consecutive 
numbers on the side faces 

b. Coloring the side faces white (W), red (R), and 
blue (B) following an order; asking about the color 
of a block 

c. Asking questions about situations in which each 
block consists of a different number of other 
identical blocks 

d. Coloring the side faces W, R, and B following 
an order; asking about the rule for blocks that 
contain WRB faces 

Q6. Comparison  

a. Multiplication         b. Addition  

Q7. Slope  

Q8. The number of blocks in a given term 

Q9. Climbing up/down the stairs corresponding to a 
term with three steps 

Q10. Asking about the number of rectangles on the 
side at a given term 

Q11. Asking questions given the lengths of edges  

a. Asking about the number of blocks given the 
height of the stairs 

b. Asking about the lengths of the side edges at a 
given term 

c. Asking about the distance from a given point on 
the stairs to another point outside 

Q12. Climbing up/down the steps with two rules 

a. Asking about the total number of steps needed to 
be taken to reach the kth step on the stairs by 
climbing up p1 steps and climbing down p2 steps in 
every round 

b. Asking the location reached after k steps are 
taken by climbing up p1 steps and climbing down 
p2 steps in each round 

c. Asking which terms meet both of the criteria p-
steps at a time + remaining d1 and s-steps at a time 
+ remaining d2  

Q13. Providing prices for coating/painting 
individual blocks and asking about the total cost of 
any stair corresponding to the given term 

Q14. Asking the order of the term by providing the 
number of blocks 

Q15. Area 

Table 1: Problem types identified in the responses of prospective teachers 
Some of the participants said that the visual features of patterns, such as surface areas 
and volumes, attracted their attention, and indicated that they focused on these features 
when posing problems. Categories Q1, Q2, Q6, and Q15 in Table 1 are of this type, and 
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together made up 22% of the responses (64 problems). The participants received higher 
fluency and flexibility scores by identifying a visual feature that attracted their 
attention, and then adapting this feature to problem structures with which they were 
familiar. One participant, PT12 gave the following explanation: I first took note of the 
visual. I thought of volumes because there were blocks, and I posed a volume problem 
(Consistent with these explanations, PT12 posed Q1, Q2, and Q3 type problems, in this 
order.). The generation of original problems, on the other hand, was based on the 
creation of stories that fit the pattern and allowed for associations to be made. 
Participants who posed original problems were focused on creating contexts that fit the 
pattern and adding different mathematical concepts. Creating an interesting problem 
that fit the pattern was found to encourage the use of different mathematical concepts. 
Furthermore, some of the participants said that after creating a well-thought out and 
interesting scenario, a variety of problems followed naturally, contributing to variety, 
which was measured by flexibility. All three of the problems posed by PT5 were coded 
as original, and the participant gave the following explanation:  

I tried to come up with a different problem based on stair. With stairs, you first think of 
asking about the number of steps. I thought about how I could make it more interesting. 
Then, I thought about climbing up and down the steps. I wrote the problem. Then, I wrote 
new questions changing the rules about climbing up and down the steps. For example, I 
thought about moving by turning backward while climbing up/down following a certain 
rule. 

A total of 59 participants were included in the PST, with a mean test score of 8.22 and 
a standard deviation of 2.57. A multiple linear regression was employed to estimate the 
effects of fluency, flexibility, and originality scores on PST achievement. The results 
showed that creativity scores significantly predicted PST achievement (F (3,55) = 
21,642, p <.000, R2 = .516). Thus, 51.6% of the variance in the PST achievement was 
explained by the fluency, flexibility, and originality scores. The standardized 
regression coefficients (β) for flexibility (β = .358, p = .042<.05) and originality (β = 
.291, p = .003<.05) indicated that they make a statistically significant contribution to 
explaining the PST achievement. On the other hand, although the zero-order 
correlation was found to be moderate between fluency and PST, the effect was not 
statistically significant (β = .302, p = .083) at the .05 level. 
DISCUSSION 
The results of this study indicate that the flexibility and originality dimensions of 
creativity predicted PS success, whereas the fluency dimension did not have a 
predictive effect on it. As supporting evidence for this finding, Silver and Cai (2005) 
indicated that fluency scores can be seen as an insignificant way to evaluate students’ 
creativity. According to findings gathered from interviews, we found that participants 
with high fluency scores posed simple problems based on the visuals of the pattern in 
order to avoid making mathematical errors by benefitting from the problem types they 
had previous experience with. Posing these types of problems increased their fluency 
scores, but did not allow an in-depth analysis of the mathematical structure within the 
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PP task. Similarly, Singer and Voica (2015) emphasized that participants began to pose 
problems of familiar models, and that these types of responses limited their creativity. 
On the other hand, participants with high flexibility and originality scores were found 
to examine the pattern conceptually, to involve different mathematical concepts in the 
process, and to care more about quality than quantity. Thus, a higher level of flexibility 
and originality scores allowed the participants to conduct a more in-depth analysis of 
the mathematical concepts in the activity, making a bigger contribution to their PS 
success. This is the main reason why the flexibility and originality dimensions are 
statistically better indicators of PS success. Therefore, we recommended that PP 
training focusing on improving PS skills should try to ensure that the problems posed 
are different and original, rather than emphasizing quantity.  
Even though originality is the dimension that receives the most emphasis in all 
definitions of creativity (Kontorovich, Koichu, Leikin, & Berman, 2011), statistically, 
flexibility was found in the present study to be the dimension with the strongest effect 
on PS success. Arguably, the main reason behind this finding is that the sample size is 
a decisive factor in the determination of originality scores. Similarly, when the 
regression coefficient and the p-value for the fluency score are considered together, it 
can be argued that statistical significance was not achieved due to the small sample 
size. Thus, further studies need to be conducted with broader samples and with 
different grade levels to better understand how the dimensions of creativity predict PS. 
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This paper explores relationships between the amount of time community college 
mathematics faculty spend participating in professional development (PD) and their 
mathematical knowledge for teaching (MKT) with the one measurement of the quality 
of instruction-making sense of procedures. We present the results of an analysis of data 
collected during the Fall 2017 semester from a group of community college instructors 
in the U.S. 
BACKGROUND 
For several decades now, researchers have attempted to identify and describe the 
special effect teacher knowledge plays in student achievement (Hanushek, 1972; Hill, 
Rowan, & Ball, 2005; Rowan, Chiang, & Miller, 1997). Meanwhile other researchers 
have interrogated the impact professional development (PD) experiences have on 
teacher knowledge (National Academy of Education, 2009; Bell et al., 2010) and how 
teacher knowledge influences instructional practices (e.g., Fenema & Franke, 1992; 
Sowder, Phillip, Armstrong, & Shappelle, 1998). It is logical to hypothesize that robust 
teacher knowledge anchors classroom instruction and leads to student success. The 
number of upper-level undergraduate or graduate-level mathematics courses taken by 
community college instructors is a typical measure used in the United States to 
determine their mathematical proficiency. The minimum qualification for a community 
college mathematics-teaching job in the U.S. is a Master’s degree and 18 upper division 
mathematics courses. Unfortunately, this measure (number of mathematics courses 
taken) does not provide an accurate picture of the specific mathematics that teachers 
hold or of how their mathematics knowledge manifests. For example, a study of 
prospective secondary mathematics teachers at three major institutions showed that, 
although they had completed the upper-division college mathematics courses required 
for the mathematics major, they had only a cursory understanding of the concepts 
underlying elementary mathematics (Ball, 1990). As incorporating making sense of 
procedures in instruction is a necessary component of assisting students in seeing 
mathematics as a study of relationships rather than steps to be memorized and without 
sense making mathematical knowledge is “fragile” (Hiebert, 1999, p. 12), thus, it will 
be used as a measure of instructional quality in this paper. We present results from an 
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investigation of the relationship between an instructor’s self-reported hours of 
professional development (PD), their score on a mathematical knowledge for teaching 
(MKT) questionnaire, and one of the measures of quality of instruction-instructors 
sense-making of procedures. 
THEORETICAL FRAMEWORK 
The impact of teachers’ subject matter knowledge on their students’ learning has been 
examined by looking at the quality of instruction the teachers offer their students or by 
investigating their students’ gains. Hill et al. (2008) described research attempting to 
link teachers’ mathematical knowledge with their students’ learning as either deficit or 
affordance. In deficit studies, the instructor’s low mathematical knowledge was 
accompanied by “the presence of mathematical errors and poor mathematical choices 
in the classroom” (Hill et al., 2008), while in the affordance studies teachers with 
deeper mathematical knowledge facilitated richer lessons for their students.  Studies 
using proxies such as number of mathematics and teaching methods courses taken 
(Monk, 1994) have generally shown that there is no positive correlation between the 
number of courses taken by an instructor and student performance data (Hill et al., 
2008).  
Research on teachers’ knowledge has flourished following Shulman’s (1986) 
presidential address at the 1985 American Educational Research Association’s annual 
meeting, where he introduced the idea of pedagogical content knowledge (PCK). This 
knowledge, which Shulman called the “missing paradigm” in research on teaching, 
linked knowledge of teaching pedagogy with knowledge of the specific content that 
was taught. As a result of Shulman’s speech and the research that followed, Ball and 
her colleagues introduced the term mathematical knowledge for teaching (MKT) (e.g., 
Ball & Bass 2002), which describes the mathematical knowledge required for the work 
of teaching.  
While much research has been done to understand the mathematical knowledge needed 
for teaching at the elementary school level (e.g., the MKT instrument for elementary 
and middle school teachers, Hill et al, 2008), significantly less research has looked at 
the mathematical knowledge needed to teach high school and college mathematics. As 
Speer et al. (2015) noted, there are reasons to believe these constructs apply to 
instructors of all levels. However, Speer and colleagues located only five instances of 
empirical investigations of post-secondary mathematics instructors and their practice 
with only two of these instances including an analysis of the instructor’s knowledge. 
These instances were narrowly focused on implementation of inquiry-based 
instructional materials and practices. 
Professional development (PD) of in-service teachers is a common strategy used to 
increase teachers’ MKT and improve their practice. There is little debate among 
policymakers, researchers, educators, administrators and reformers about the 
importance of high-quality, ongoing PD for teachers as a necessary component for 
improving U.S. education (American Federation of Teachers, 2002; National Academy 
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of Education 2009). Further, there is general agreement that features of high-quality 
PD likely impact teacher knowledge and their practice including: (a) focusing on 
deepening subject matter knowledge specific to teaching, including understanding how 
students learn and the specific difficulties they may face in understanding the concepts, 
and (b) involving sufficient time for significant learning (e.g., a program or a course 
lasting 40 or more hours distributed over a year or more, Bell et al., 2010).  
Different instruments and frameworks have been developed and used to observe and 
assess the quality of the interactions that occur between instructors and students with 
mathematical content. Hill et al. (2008) developed the mathematical quality of 
instruction (MQI) instrument which assesses the quality of enactment of elements such 
as richness of mathematics, “the use of multiple representations, linking among 
representations, mathematical explanation and justification, and explicitness around 
mathematical practices such as proof and reasoning” (p. 437). The lack of empirical 
clarity about the relationship between teacher knowledge, teaching practice, and 
student learning suggests that we do not yet have a sound understanding about the 
complex interactions that make professional learning successful (Bell, et al., 2010). In 
this paper we consider the question: What links exist between a community college 
instructor’s hours of professional development (PD), mathematical knowledge for 
teaching (MKT), and their enactment of sense making in the classroom? 
METHODS 
Both quantitative and qualitative methods were used to help us understand the role of 
PD and MKT on the instructors’ quality of instruction. Our data came from 
Intermediate and College Algebra courses taught at six community colleges located in 
three states in the U.S. These courses are often considered a mathematical gateway to 
a career in science, technology, mathematics, and engineering (STEM) as well as 
careers in other fields. Among the topics key to success in future mathematics and 
STEM courses are linear equations or functions, rational equations or functions, and 
exponential equations or functions–topics typically taught in Intermediate Algebra (IA) 
and College Algebra (CA) courses at community colleges. These courses are designed 
for U.S. students who desire to enter a STEM or Business-related field but have 
inadequate mathematical preparation. We collected instructor data via surveys (beliefs, 
MKT, number of PD hours in the last year--self-reported), video data of classroom 
practice, and student data (course grades, beliefs, and performance on a pre/post 
mathematics algebra and precalculus concept readiness (APCR) assessment). We 
hypothesized interesting relationships may be visible when juxtaposing the amount of 
PD hours an instructor reported receiving and their MKT; thus, creating the PD-MKT 
plane (Figure 1).  
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We used median MKT scores and 
median number of hours of PD, self-
reported, to define four quadrants—
Q1 (High PD, High MKT), Q2 (Low 
PD, High MKT), Q3 (Low PD, Low 
MKT), and Q4 (High PD, Low MKT). 
Further, we acknowledge that it is 
unlikely that the instructors’ MKT fits 
perfectly into a dichotomy (High 
MKT vs. Low MKT); rather MKT fits 
on a continuum. Nevertheless, we 
found it helpful to organize the data in 
this manner to allow us to analyse the 
quality of instruction enacted by the 
instructors in different quadrants.  
In addition to the quantitative data in Figure 1, we videotaped each instructor between 
2 and 5 times, depending on the duration of a class period, in the Fall of 2017. The 
class sessions ranged in duration from 45 to 150 minutes and were taught by 37 
different instructors (15 part-time and 26 full-time). Topics taught were linear, rational, 
and/or exponential equations and functions, chosen because they offer opportunities to 
analyse instruction on key algebraic concepts in IA and CA across multiple institutions. 
As part of this study, we developed a video analysis instrument called EQIPM: 
Evaluating Quality of Instruction in Post-secondary Mathematics (Cawley, et. al., 
2018) (see Figure 2). EQIPM was based on the Mathematical Quality of Instruction 
(MQI) instrument by Hill et al. (2008) 
and Quality of Instructional Practices 
in Algebra (QIPA) instrument by 
Litke (2015). EQIPM describes and 
qualifies instructional practices (via a 
score from 1 to 5) from video-
recorded class sessions that are 
deemed representative of the 
instructor’s practice.  
We used the instrument to addresses 
four dimensions of instruction: (a) Features of the Segment, (b) Quality of Instructor-
Student Interaction, (c) Quality of Instructor-Content Interaction, and (d) Quality of 
Student-Content Interaction (see Figure 2). In this paper, we focus on the Instructors 
Making Sense of Procedures code as a way of describing the affordances the instructors 
offered to their students, see rating definitions in Figure 3.  For this code we sought to 
identify ways in which instructors used mathematical relationships or properties to 
motivate a mathematical procedure by capturing all instances in which instructors 
make salient mathematical properties, relationships, and connections embedded in a 

Figure 2.  Structure of EQIPM 
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specific mathematical procedure. We hypothesize instructors’ engaging in sense 
making with procedures elevates the richness of the mathematics afforded to their 
students. 
RESULTS 
Figure 1 shows the classification of the sample of instructors (n=36) on the PD-MKT 
plane. Since the axes (PD median and MKT score median) are arbitrary we chose to 
place instructors who landed on the axes in the higher quadrant. Ten (28%) teachers 
placed in the Q1 (High PD, High MKT), 8 (22%) teachers placed in Q2 (Low PD, High 
MKT), 5 (14%) teachers placed Q3 in (Low PD, Low MKT), and 13 (36%) teacher 
placed Q4 (High PD, Low MKT) quadrants. Instructors who received a high number 
of PD hours are expected to grow in their content knowledge (high(er) MKT scores) 
while instructors with few hours of PD are expected to have low(er) MKT scores. 
Interesting cases lie in quadrants II and IV low (Low PD, High MKT) and (High PD, 
Low MKT), respectively. The mean MKT of the instructors was 26.54 with a standard 
deviation of 4.8. The hours of PD data have a mean of 18.1 hours and a standard 
deviation of 14.5.  
Statistics for Instructors Making Sense of Procedures Code. 
Of the 804 segments in which a procedure was taught, we identified 228 (28%) in 
which instructor sense-making was not present; 223 segments (28%) had a rating of 2, 
256 segments (32%) had a rating 3, while 97 segments (12%) had 4 or 5 (8% and 4%, 
respectively). The mean of the rating for the Making Sense of Instruction code for each 
instructor across all segments coded was highest in Q1 and lowest in Q4. The mean 
rating for this code of individual instructors higher than the population mean in Q1 
only. Also of note, only 2 of the instructors in Q2 had 0 hours of PD in the past 12 
months while the remaining 21 instructors had 6 or more hours of PD in the past 12 
months. Instructors 11022 (Quadrant 1) and 10322 (Quadrant 3) had the highest and 
the lowest average EQIPM ratings for this code (3.417 and 1.33, respectively). 
Discussion of Video Data. 
Of the 808 segments, 353 (44%) were rated 3 or higher meaning that the instructors 
were making a genuine effort to make sense of procedures they were teaching. Nearly 
70% of these segments with a high rating for this code were in Q2. As an example of 
an instructor in Q1, during a lesson on analysing the behaviour of rational functions 
Instructor 11523 used three examples for discussion. In the last segment of the lesson 
focused on horizontal asymptotes, she refers to these examples as Case 1, Case 2 and 
Case 3 because it is possible to “put your rational function into one of these three 
cases”. The instructor asks students to compare the function equation with the graphical 
behaviour in these three cases and to make a generalized statement about this 
behaviour. She states that when the degree of the expression in the numerator is lower 
than the degree of the expression in the denominator (Case 1) the horizontal asymptote 
will always be y = 0 because the leading term in the denominator grows faster than the 
leading term in the numerator and therefore the function “will always approach 0.” The 
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instructor moves to Case 2 in which the degree of the expression in the numerator 
equals the degree of the expression in the denominator. After students observed the 
horizontal asymptote was “y equals the ratio of the leading coefficients”, she asks “Will 
that always happen?” In both cases, the instructor speaks about the behaviour “as x gets 
larger and larger” the leading terms of the numerator and the denominator will 
determine the behaviour of the function still occur to justify the generalization.  
We follow the previous example from Q1 with an example from Q4. While teaching a 
lesson on exponential functions, Instructor 10322 provided students some “rules” for 
transformations of functions. He says, “you can really look at like just what number 
they are adding or subtracting and where they are adding and subtracting and it will 
follow those rules.” The instructor led the students in confirming that the “rules” 
worked by applying them [rules] to three pairs of expressions (2= and 2=8B ),  (2= and 
2=56 ), and (2= and 2= + 2) then identifying how the graph of 2= would be transformed 
to get the second graph. It is important to note that this instructor was speaking about 
transformations of functions but wrote expressions instead. The instructor graphed the 
pairs of functions on his graphing calculator then he sketched them on the board. The 
instructor’s approach for teaching transformations compared the given functions to a 
template that indicated the type of transformation. There was not an attempt to make 
sense of the procedures he was teaching. For example, he did not talk about how 
horizontal shifts of exponential functions impact the input of the function (x-values) or 
attempt to make sense of the impact of the shifts (other than to say the graph goes left 
2). Moreover, he did not highlight differences in the graphs of the FUNCTIONS based 
on the transformations made to the original graph of 2=: for example by noting how 
the coordinates of points change, or using algebraic operations such as 2(=8B) =
(2=)(	2B) = 4(2=) to explain the relative shapes of the graphs. For these reasons this 
segment was rated as a 1 for making sense of procedures.  
CONCLUSIONS 
In our analysis of the EQIPM ratings generated by the Instructors Making Sense of 
Procedures code we were searching for connections between that code and instructor 
knowledge as measured by MKT and hours of PD as reported in the past year. Based 
on our data, the relationships among the three quantities we measured (time of PD 
engagement, MKT and Instructor Making Sense of Procedures as a measure of quality 
of instruction) are somewhat elusive. There does not appear to be a discernible 
underlying relationship when focusing on segments of instructors making sense of 
procedures between the number of hours spent on PD and MKT, with some instructors 
who had few hours of PD scoring high on their MKT. This might be explained by some 
limitations regarding the instructor data. For example, instructors self-reported their 
PD work or professional learning completed during the previous 12-months. An 
additional limitation relates to the MKT scores. As previously noted, little attention has 
been paid to MKT of post-secondary instructors. To measure the MKT of the 
instructors we used an instrument designed for Middle School teachers because it 
focused on the algebra topics we were observing.  We acknowledge that analyses of 
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one code, Instructor Making Sense of Procedures, is not enough to get a full picture of 
mathematical quality of instruction. Future direction of this work will involve 
analysing more data and expanding our analyses to encompass the whole Quality of 
Instructor-Content Interaction dimension. This is acknowledged to be a preliminary 
report of our findings. We are also refining our EQIPM instrument to help us better 
capture the quality of mathematics instruction. For example, following the analyses 
reported on this paper, we have modified the instructor Making Sense of Procedures to 
include instructor making sense of the mathematics because making sense is not limited 
to making sense of procedures. Our next step is to explore our data using the new code 
and an expanded analysis of all the EQIPM dimensions.  
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In this paper we examine how undergraduates bridge the cognitive gap between a 
theorem statement and its proof. Therefore, we analyse nine proof construction 
processes with special regard to the activities that undergraduates apply in service of 
understanding the given statement. The analysis reveals 12 different activities. 
Comparing successful and non-successful proof attempts, three activities seem to be 
crucial for developing an appropriate understanding of the theorem statement. These 
are inferring, enriching and questioning. Leaning on the concepts of cognitive unity 
and mental problem representations, we discuss to what extent each individual activity 
supports the understanding process and, therefore, the proving process in general. 
INTRODUCTION 
There is a broad consensus that analysing a theorem statement before attempting to 
prove it is crucial for a successful proof construction (Selden, 2012). Nevertheless, 
students often consider this first step in proving as obvious and, therefore, lay little 
emphasis on it (Schoenfeld, 1985). Previous research on the process of proof 
construction shows that the time undergraduates spend on understanding the given 
statement varies greatly (Kirsten, 2018). However, there seems to be no causal 
relationship between the duration of analysing and exploring the proving tasks and the 
quality of the written proof. In contrast, in some cases students put a lot of effort into 
understanding the given statement, but could not achieve any solution.  
Hence, in this study we focus on qualitative differences in students’ behaviour instead 
of quantitative time differences. Therefore, we examine the cognitive processes aimed 
at analysing and exploring the given statement on a microscopic level and try to 
identify effective and non-effective ways to develop understanding of the proving task. 
THEORETICAL FRAMEWORK 
The first approach to describe different activities in understanding the given problem 
was made by Pólya (1945). His first principle of problem solving Understanding the 
problem contains various techniques such as restating the given statement, making a 
drawing or clarifying the words used in the statement that are applicable to proving 
tasks. Beside the content of the given statement, Selden (2012) emphasises that in case 
of proving it is also crucial to analyse the statement’s logical structure. This includes 
ascertaining the hypotheses and the conclusion in an informally stated theorem as well 
as differentiating between the if- and the only-if-part. While various manuals exist, in 
which mathematicians and mathematics educators suggest techniques that might 
support understanding, there is a lack of empirical research on the activities 
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undergraduates really perform and deem helpful in constructing proofs. In order to 
investigate different kinds of activities in understanding a stated theorem, we base our 
research on the concepts of mental problem representation and cognitive unity. 
Mental problem representation 
Mathematical problems at school and at university level are usually presented as texts, 
which contain the relevant conditions as well as additional irrelevant information. 
Research on understanding and solving mathematical word problems has shown that 
successful problem solving requires taking the relevant information off the specific 
task-context and transforming the text into a more general problem representation 
(Reusser, 1990). This problem representation can serve as a basis for exploring relevant 
relations and concepts and applying mathematical operations. According to Kintsch 
and Greeno (1985) an appropriate problem representation consists of two components: 
the propositional text base and the situation model. The propositional text base refers 
to the different aspects mentioned in the text and their conceptual meaning. The main 
concepts and relations are summarised, but description remains based on the task-
specific structure. The situation model, instead, concentrates on the concepts and 
relations themselves and is detached from the specific task formulation. Beyond that, 
it includes additional information that are associated with the concepts given in the text 
or derived directly from the text base (Kintsch & Greeno, 1985). Hence, the situation 
model can be regarded as an abstract and enhanced representation of the mathematical 
problem, which supports flexible and creative thinking. This allows the problem solver 
to anticipate possible actions and to select appropriate strategies. 
Transferring the concept of mental representation on proving tasks reveals one possible 
account to explain how an insufficient understanding of the given problem might cause 
impasses in the proving processes. If the understanding of the problem remains limited 
to the text base and its structure, it becomes even harder to choose effective strategies 
and search for promising approaches. Thus, developing an appropriate mental 
representation, which includes the relevant information of the text as well as additional 
inferred information, seems to be crucial for progressing in proof construction. 
Cognitive unity  
The concept of cognitive unity describes the deep connection that under special 
circumstances exists between the production of a conjecture and the construction of its 
proof (Garuti, Boero & Lemut, 1998; Pedemonte, 2007). Students as well as 
mathematicians usually base their proofs on informal arguments developed in 
producing the conjecture. In these cases cognitive unity becomes visible in particular 
content, linguistic or even structural aspects that continue from argumentation to proof 
(Pedemonte, 2007). Empirical research indicates that cognitive unity can foster the 
proof construction process as conjecturing activities support insights into the problem 
situation (Garuti et al., 1998). Conversely, cognitive discontinuity can in some cases 
account for obstacles in students’ proving processes. In common teaching practice, 
undergraduates are often faced with proving tasks that already provide a statement 
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estimated to be true. As there is no need to engage in conjecturing in this case, cognitive 
unity breaks and leaves a gap between the theorem statement and its proof. To re-
establish continuity, it is necessary to reconstruct the conjecturing process by exploring 
the conditions of the given statement (Garuti et al., 1998). Combining the concepts of 
cognitive unity and mental problem representation, producing a conjecture or rather re-
establishing continuity can be considered as one way to develop a situation model. By 
exploring the conditions and limitations of a conjecture, inferences are made and 
relevant relations are highlighted. Thus, a rich representation of the problem is built.  
RESEARCH QUESTIONS 
The aim of the study is to investigate how undergraduates approach to bridge the 
cognitive gap between a statement and its proof when they are asked to prove a specific 
theorem. Therefore, we analyse the different kinds of activities students perform in 
service of understanding the proving task and their potential to develop an appropriate 
problem representation. We suppose students who successfully write a proof having a 
richer situation model than those who do not progress substantially. Hence, comparing 
successful and non-successful proving processes might indicate effective and non-
effective ways of developing a situation model and, therefore, of understanding a 
statement. Moreover, we question the connection between understanding and 
conjecturing by discussing how the observed activities might contribute to re-
establishing continuity. In particular, our research is guided by the following questions: 
(1) What activities do undergraduates engage in when they are trying to develop 
understanding of a theorem statement? (2) To what extend do successful and non-
successful proving processes differ in their approaches to understanding? 
METHODS 
The presented study is part of the project Apropos, in which 21 proving processes of 
undergraduate mathematics students have been analysed according to an adjusted 
version of Boero’s proving model (Kirsten, 2018). The participants had recently begun 
their studies and were attending their first mathematics courses at university. In order 
to create a situation as authentic as possible, data collection was organised during the 
participants’ weekly meeting and they were allowed to work in groups of two or three. 
Each group worked on two proof construction tasks that could be approached by 
applying a prominent theorem of real analysis. Working on these tasks, participants 
were told to write a proof as if they were submitting it like a regular exercise. The 
participants’ proving processes were videotaped, transcribed and finally analysed 
leaning on Schoenfeld’s (1985) method of protocol analysis. Thus, the proving 
protocols were partitioned into phases, each describing a relevant step in proof 
construction (see Kirsten, 2018). Besides analysing the processes, we additionally rated 
the students’ performance in proving. Therefore, each of the written proofs was graded 
by two independent coders on a four point scale, where a score of a 4 corresponds to a 
complete and valid proof and a score of a 0 describes a proving attempt with no 
substantial progress. We consider a proving process successful, if the corresponding 
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proof was graded with a score of a 3 or higher. Interrater reliability in coding was 
satisfying for both types of analysis (partitioning: 𝜅 ≥ 0.81, rating proofs: 𝜅 ≥ 0.74).  
To gain deeper insights into the understanding processes, we selected nine cases out of 
the whole sample for a fine-grained analysis. Following the sampling strategies of 
maximum variation and homogeneous sampling (Patton, 1990), we considered those 
proving processes as information-rich cases that are similar regarding the time spend 
on task analysis, but differ in proving performance. Accordingly, we chose four 
successful and four non-successful proving processes that match spending 
approximately a fifth of the proving process on understanding the given statement. 
Additionally, the proving process of Marcus and Lena was included to the sample, 
because they were the only participants who received a score of a 4. Concentrating on 
processes linked to the phase of understanding, analysis was guided by the principles 
of summarising content analysis according to Mayring (2014). By paraphrasing, 
generalising and reducing, a system of categories was developed that describes the 
different activities participants perform in service of understanding and exploring the 
statement of a theorem to be proved.  
RESULTS 
Analysing nine proving processes, we could identify 12 different kinds of activities 
that contribute to the students’ understanding of the given statement (see Table 1).  

Table 1: Activities occurring in the understanding process of undergraduates 

Activity Description 
Extracting Emphasising or copying out relevant information  
Inferring Deriving implicit preconditions, anticipating possible steps in 

proving, identifying informal arguments 
Visualisation Drawing a sketch or illustrating the situation with gestures  
Enriching Adding further information by recalling prior conceptual or 

strategical knowledge or looking up definitions 
Questioning Checking plausibility of the statement, analysing the exact 

formulation of the statement, validating prior considerations 
Repeating Rereading words, phrases or the whole task 
Paraphrasing Restating the statement in their own words 
Transformation Translating natural language into a symbolic notation 
Focusing Restricting one’s consideration to a certain aspect or sector 
Generating examples Considering specific examples 
Analysing special cases Discussing extreme or special cases 
Classification Describing the task as an existential or universal proposition 
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Some of these activities such as extracting, visualisation, enriching or questioning 
occur in nearly all proving processes. Others like focusing, transformation or analysing 
special cases could only be observed in two cases each. As we have analysed proving 
processes of two different proof construction tasks, some of the mentioned activities 
might be task-specific. Activities like generating examples, transformation and 
focusing in our sample only occur in proving processes corresponding to the task 
extreme point, which is related to the sufficient condition of extrema. Beyond that, 
there is a task-related difference in the number and frequency of activities occurring in 
the understanding process (see Figure 1). While students working on the task fixed 
point, which is a corollary of the intermediate value theorem, only used three to six 
different activities, proving processes related to the task extreme point contain eight to 
ten different activities. One exception is the proving process of Marcus and Lena, who 
work successfully on the latter task, but engaged just in four different activities. 

Figure 10: Average occurrence of each activity distinguishing students with highly 
and lowly rated proofs as well as different proving tasks (extreme point and fixed 

point) 
Comparing successful and non-successful proving processes, we focus on the activities 
Inferring, Enriching and Questioning, which seem to be crucial for examining 
differences in how students engage in developing an appropriate problem 
representation of a theorem statement. 
Inferring 
While undergraduates with lowly rated proofs engage more frequently in restating the 
proving task and discussing example functions, students with highly rated proofs 
concentrate on deriving further information from the task context (see Figure 1). The 
following consideration occurred in the proving process of Fiona and Thomas after 
they had made a rough drawing on the fixed point task. 
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Thomas:  this should be 𝑥 … and this 𝑓(𝑥) [refers to his sketch of a function] and the 
function is continuous in this interval…than there is a fixed point … [first 
points at (𝑥|𝑓(𝑥))	and then draws a diagonal]…well, the function and the 
diagonal intersect in any point…that is what we have to show 

In the above excerpt Thomas first recalls the premise and combines it with his drawing. 
Considering the assertion, he recognises that all possible fixed points are located on a 
straight line. Hence, Thomas turns the problem of the existence of a fixed point into a 
similar one of an intersection, which is more familiar for them. Similar to Thomas and 
Fiona, other, mainly successful, students inferred an informal argument by exploring 
the conditions on an operative and semantic level. By doing so, they overcome the task-
related structure and enable themselves to discuss the given concepts agile-minded.  
Enriching 
Enriching occurred, when participants add further information to the text base by 
recalling prior knowledge or consulting a textbook. Although this activity could be 
observed in all single proving processes, there are slight differences in how students 
put this activity into practice. Participants who wrote a lowly rated proof focused much 
on the textbook as they looked up the definitions of unfamiliar terms, worked through 
term-related theorems and examples or leafed through the textbook hoping to find 
clarifying explanations. In contrast, participants being successful in proving more 
frequently recall prior knowledge gained at university or school from memory, discuss 
it on a content-related level and exchange experiences from earlier proving approaches. 
The following consideration occurred in the proving process of Tom and Lukas. It 
illustrates how students use their prior knowledge to make sense of the given assertion. 

Tom:   if the second derivative is greater than zero … well, that means that there exists a 
minimum, doesn’t it … yes, I’m sure … but it’s like this, if it’s less, then it’s a 
maximum, if it’s greater, it’s a minimum… but the text says greater than or equal 
… that means it doesn’t have to be a minimum, it can also be a point of inflection 
as it is in 𝑥p 

Questioning 
Questioning includes checking the plausibility of a theorem statement, validating 
assumptions and drawings that have been made before as well as analysing the 
formulation of the premise and the assertion in detail. Especially the last action could 
be observed more frequently in successful proving processes. Participants discuss what 
the preconditions mean to a concrete function or search for reasons why the assertion 
was formulated exactly in this way. The example below shows Lukas and Tom 
questioning the formulation of the statement and discussing possible consequences for 
their proving approach.  

Lukas: Can’t we just show that a minimum exists and then we are finished? 
Tom:   Yes, that it is, yes, you are right … but then the task could say “there exists a y with 

a second derivate greater than zero”, without the equality… but the task says 



Kirsten 

2 -                                                                                                             PME 43 - 2019 478 

greater than or equal…if we are able to show greater than, it’s okay, but maybe it’s 
not possible to show the statement excluding the equality  

As this excerpt demonstrates, questioning the theorem statement can support students 
to become aware of the decisive aspects of the statement, explore possible as well as 
invalid variations and get a feeling for the statement in general. 
DISCUSSION 
The analysis of nine proving processes reveals particular activities that have the 
potential to support students’ understanding of the proving task and, by doing so, their 
proving process in general. Comparing to students with lowly rated written proofs, 
successful students recall prior conceptual and strategical knowledge, analyse the 
formulation of the given statement in detail as well as derive further information. These 
activities are similar to processes that occur in producing a conjecture as they aim at 
exploring the decisive aspects of a problem situation and (re-)constructing a statement 
formulation. Hence, these activities are supposed to develop a situation model that 
allows agile-minded thinking and anticipating possible approaches to proving. Other 
activities like paraphrasing, visualisation or generating examples may support the 
students making sense of the theorem statement, but in many cases remain task-
specific. Engaging solely in activities like this can account student’s difficulties to 
proof construction as they are not able to overcome a task-related propositional text 
base and, therefore, restrict their thinking to the information given in the task. 
Moreover, we find the proof construction task to be relevant for students’ engagement 
in understanding the theorem statement. While the concept of extreme values is usually 
known from school, the concept of continuous functions is often introduced first at 
university level. Due to an intuitive understanding of the concepts, it might be easier 
for students to apply understanding activities in the task considering extreme values. 
These findings highlight the relevance of conceptual knowledge and rich concept 
images for analysing and exploring the task environment.  
Concluding, we hypothesise that some of the students’ difficulties with proof 
construction is due to their inability to overcome a task-related propositional text base 
and develop an appropriate situation model. Activities such as inferring, enriching and 
questioning can contribute to this process as they reconstruct the conjecturing process 
and, by doing so, bridge the cognitive gap between a theorem statement and its proof. 
To this extent, the study supports the considerations made by Garuti et al. (1998) that 
successful proving requires re-establishing continuity. Further research should 
highlight the importance of understanding processes in proof construction and develop 
effective instructional designs that encourage students to engage in activities such as 
inferring, enriching and questioning in order to build an appropriate problem 
representation. For this purpose, it can be worth considering research into reading 
comprehension regarding mathematical textbooks and especially proofs (e.g. Sheperd 
& van de Sande, 2014; Weber, 2015). 
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THE POWER OF THEIR IDEAS: HIGHLIGHTING TEACHERS’ 
MATHEMATICAL IDEAS IN PROFESSIONAL DEVELOPMENT 

Richard S. Kitchen 
University of Wyoming 

 
In the study discussed here, I examine the potential of noticing and making teachers’ 
ideas the focal point of instruction to develop teachers’ mathematical knowledge and 
contribute to building a community of learners. The theoretical framework used in the 
study is Whiteness. Sample research findings are provided that demonstrate why 
focusing on teachers’ mathematical ideas supports their mathematical learning, while 
also modelling for them the value of being part of a learning community. 
INTRODUCTION 
In my work as a Mathematics Teacher Educator (MTE), I teach content and methods 
courses for prospective teachers as well as lead professional development (PD) 
sessions for practicing teachers. One of my primary goals for PD sessions for 
practicing teachers is to use their ideas as a means to support them developing deeper 
mathematical knowledge and stronger mathematical agency. This involves noticing 
teachers’ mathematical ideas and having them share these ideas with their peers 
(Sherin & van Es, 2009; van Es & Sherin, 2008). More than just noticing their 
mathematical ideas, the focus of instruction in the PD sessions is the teachers’ ideas 
and my instruction is essentially informed by the participating teachers’ ideas. This 
entails working actively to both highlight and build on teachers’ ideas during 
instruction as a means to support teachers reflecting on and potentially revising their 
mathematical thinking (Schoenfeld, 1985). 
In this paper, I describe a research study in which teachers in a series of mathematics 
professional development sessions solved problems and experienced inquiry-based 
instruction as learners. During the 2016-17 and 2017-18 academic years, I led monthly 
full-day professional development sessions for more than 30 primary and secondary-
level teachers of mathematics who teach in culturally and linguistically diverse, rural 
schools in northern New Mexico, USA. The vast majority of the participating teachers 
are culturally and linguistically diverse women, primarily of Hispanic and Native 
American descent. In each “Institute” session offered, teachers regularly engaged in 
problem solving activities, shared their solutions with one another and the whole group, 
and examined other teachers’ solutions. In addition, teachers learned about practices 
that they could use in their instruction that support inquiry, such as establishing 
classroom norms in support of students regularly sharing their mathematical thinking 
with one another (Cobb, & Yackel, 1996). In 2016-17, the problems assigned in the 
sessions were aligned with the Common Core State Standard Mathematics (CCSSM) 
Standard, “Operations & Algebraic Thinking” (National Governors Association Center 
for Best Practices [NGA] & Council of Chief State School Officers [CCSSO], 2010). 
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The United States does not have national mathematics standards, however a majority 
of states have adopted a version of the CCSSM as their state standards. During 2017-
18, problems assigned aligned with the CCSSM Standard, “Number & Operations—
Fractions.”  
One of my primary goals for the Institute sessions was to use participating teachers’ 
mathematical ideas as a means to help teachers develop deeper mathematical 
understandings. I also work to make teachers’ mathematical ideas central in PD 
sessions I lead for the following three reasons: (1) To champion the notion that we all 
bring mathematical knowledge and ideas to bear to solve problems (Schifter, 2005); 
(2) To endorse teachers’ knowledge and ideas as mathematically valid and important; 
and (3) To distribute the mathematical authority in our sessions (Cobb, & Yackel, 
1996). An important consideration for me in designing the Institute sessions is the fact 
that many of the participants are elementary school teachers who are culturally and 
linguistically diverse women whose ideas have not historically been taken seriously in 
the mathematics classroom (Becker, 2003). In my work as a MTE, I work to create a 
community of learners in which every member has opportunities to contribute 
mathematical ideas. The research question for the study described here is: How can 
noticing and making teachers’ ideas the focal point of instruction further develop 
teachers’ mathematical knowledge and contribute to building a community of learners? 
For this study, Whiteness is the theoretical framework. Whiteness in mathematics 
education has historically subjugated culturally and linguistically diverse students, 
while reproducing privilege for white students (Battey, 2013; Joseph, Haynes, & Cobb, 
2016; Martin, 2013). As a PD provider, an important part of my work is considering 
white privilege and how it operates to provide differential educational opportunities 
based upon race and class (Battey, 2013; Martin, 2013). Since the vast majority of 
Institute participants are culturally and linguistically diverse people, it is imperative 
that as a white male I specifically highlight the work of these Institute participants as a 
means to work against white privilege and toward the building of an inclusive 
professional development community. Such noticing is purposeful in that it challenges 
instruction in which culturally and linguistically diverse students are constructed as 
mathematically deficit, while positioning students from the dominant culture as the 
most mathematically capable (Kitchen, DePree, Celedón-Pattichis, & Brinkerhoff, 
2007).  
RESEARCH METHODOLOGY 
To illuminate the value placed on centering the work of the Institute sessions on 
participating teachers’ mathematical ideas, sample tasks developed for use in the 
Institute will be shared, as well sample teacher solutions to those tasks. To study the 
potential of noticing and making teachers’ ideas the focal point of instruction to further 
develop teachers’ mathematical knowledge and build community, I did four things: (1) 
Collected copies of and took photos of teachers’ solutions to tasks posed during 
Institute sessions; (2) Engaged in my own journaling about what transpired during 
sessions; (3) Reviewed video of sessions; and (4) Examined teacher evaluations of 
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sessions. All data subsets were analysed using interpretive methods (Creswell, 2014). 
Each data subset was read or viewed as a whole, followed by a period of open coding 
to allow for the emergence of themes. An iterative process of coding, memo writing, 
focused coding, and integrative memo writing followed (Creswell, 2014). Creation of 
the codes went through multiple revisions, as the data were repeatedly read and 
reviewed to check the consistency of themes. This process continued until either no 
new categories were developed or consistency was achieved. After a set of themes was 
obtained from the dataset, I searched for commonalities and differences in the data 
subsets. I also sought both confirming and disconfirming evidence by searching for 
supportive and non-supportive evidence (Miles, Huberman & Saldana, 2013).   
USING TEACHERS’ IDEAS TO ENRICH UNDERSTANDING 
I offer three examples to address how noticing and making teachers’ ideas the focal 
point of instruction enhanced their mathematical knowledge and contributed to 
building a community of learners. For each example, the teachers solved tasks  that 
were designed to align with a CCSSM Standard (NGA & CCSSO, 2010). Culturally 
and linguistically diverse Institute participants created all the solution strategies 
included below. 
In the first example, I built on a participating teacher’s idea to develop notions of 
number sense through examination of a mathematical property. The following task was 
offered to participating teachers that approximates a fifth-grade CCSSM Algebra 
Standard: Judy says that to find 5 times 26, she can find 10 X 26 (260), and then divide 
this number by 2 to get 130. Write an equation that demonstrates her mathematical 
thinking. 
As teachers worked on the task individually and then with group members, I walked 
around observing and listening to how teachers explained their solutions to one 
another. I then selected one of the participating teachers to share her ideas about how 
to solve the task on chart paper for the whole group to view because I believed that 
through examining her solution with the whole class, mathematical insights about the 
mathematical properties could be derived. After writing her solution strategy on the 
chart paper, she shared this strategy with the entire class: 
(5 X 2) X 26 =  
     ∨ 
    10 X 26 = 260 
 260 ÷ 2 = 130 
In her solution, the teacher noted that multiplying 5 by 2 was equivalent to multiplying 
by 10. She also argued that after multiplying 26 by 10, it was necessary to divide by 2 
to arrive at the appropriate result since 10 ÷ 2 equals 5. The teacher who shared the 
work above, then proceeded to produce the following equation for the whole class that 
synthesized the solutions that she had previously presented: 
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5 X 26 = (10 X 26) ÷ 2 
In the whole class discussion that ensued, I worked to validate and build on the 
teacher’s initial solution to demonstrate how the teacher had used the transitive 
property of equality, namely that if a = b and b = c, then a = c. To do this, I circled the 
first expression (5 X 2) X 26 and labelled it as expression “a”. I continued by circling 
expression b, 10 X 26 and expression c, 260, and then reviewed how a = b, b = c, and 
finally that a = c. 
 a      c 
(5 X 2) X 26 = 10 X 26 = 260 
      b  
Next, I asked whether (10 X 26) ÷ 2 = 10/2 ÷ 26/2? The discussion that resulted 
included consideration of whether dividing the quantity (10 X 26) by 2 should be 
distributed by dividing each term of the quantity by 2. This led to consideration of 
whether 10 X (26 ÷ 2) = (10 X 26) ÷ 2? The realization that these expressions are equal 
led a participating teacher to share how she teaches GEMA (grouping symbols, 
exponential operations, multiplicative operations, and additive operations) rather than 
PEMDAS (parenthesis, exponents, multiplication and division, addition and 
subtraction) to support student learning. 
In the second example, a teacher created a mathematical model that challenged teachers 
to examine their beliefs about what their students are capable of achieving. The 
following sample task was offered to participating teachers that approximates a fifth-
grade CCSSM Fraction Standard: Use a visual fraction model to show (2/3) × (4/5) = 
8/15. (In general, (a/b) × (c/d) = ac/bd.) 
Once again, I walked around observing and listening to how teachers explained their 
solutions to this problem to one another. I then selected a teacher to share his solution 
with the whole class based on my belief that this solution was unconventional and 
would challenge teachers to consider their beliefs about sharing such solutions. 
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Figure 1: A teacher uses a fraction strip model to find 4/5 of 2/3. 
When this teacher presented his solution to the class, there were questions about his 
strategy. First, using a fraction strip to represent a pan of brownies was not intuitive to 
many of the participants. So, the model did not align well with how many of the 
teachers viewed a brownie pan, a rectangle that may even be a square. However, the 
model works, even if it does not align well with a practical context. While I could have 
demonstrated a model similar to this participating teacher’s, through soliciting a 
teacher’s solution to the task, I was able to validate his ideas as mathematically worthy. 
This example also led teachers to reflect on their beliefs about what their students are 
capable of achieving. Some teachers doubted their students could create the 
mathematical model illustrated in Figure 1, while others challenged their colleagues to 
give students a chance to generate models to solve problems without first being shown 
these models.  
In the third and final example, teachers were once again asked to create a mathematical 
model to solve a problem. The following sample task was offered to participating 
teachers that approximates a fifth-grade CCSSM Fraction Standard: There are 64 fifth 
graders at Blanco Elementary. Three-eighths of them bring their own lunch to school. 
Use a mathematical model to determine how many fifth graders bring their own lunch. 
As usual, I selected a teacher to share her model with the whole class after first 
observing and listening to how teachers explained their solutions to this problem to one 
another.  
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Figure 2: Teacher’s representation showing 3/8 or 37.5% of 64 is 24. 

In this case, a teacher solved this problem in a way that I did not anticipate. Moving 
from left to right, she constructed a rectangle with 6 rows and 10 columns, increasing 
the number of rows to 7 by the 7th column so that she could have a total of 64 squares 
to represent the 64 total students. Dividing the total number of squares (64) into 8 
groups, she then shaded 3 of her 8 groups, demonstrating that 24 students (24 shaded 
squares) at Blanco Elementary brought their lunch to school. 
When this teacher presented her solution to the whole class, I worked to support her 
ideas because they are mathematically valid, knowing some might criticize her less 
than conventional model. My goal here was two-fold: First, I wanted to validate a non-
conventional solution strategy that was mathematically correct. This was done to 
pursue a second goal, which was to once again challenge teachers to consider their 
beliefs about what their students could achieve. While an 8 X 8 square would be the 
model that many would most likely choose to solve this problem, I wanted teachers to 
consider how students may actually have novel mathematical ideas that could serve to 
enhance other students’ mathematical understandings.  
DISCUSSION AND IMPLICATIONS 
In this study, I examined how noticing and making teachers’ ideas the focal point of 
instruction could further develop teachers’ mathematical knowledge and contribute to 
building a community of learners. Using Whiteness as a guiding framework, culturally 
and linguistically diverse participants’ mathematical ideas were continually on display 
throughout the Institute, and these ideas were intentionally used as a means to further 
develop teachers’ mathematical knowledge. In their evaluations of the Institute, 
teachers wrote that they liked having their ideas highlighted throughout. Some teachers 
also promoted the idea that they needed to provide more space in their classrooms for 
greater inclusion of their students’ mathematical ideas. 
In the first example, I deliberately selected a teacher’s solution that incorporated the 
transitive property of equality; a powerful property that I knew teachers had some 
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exposure to but lacked understanding of. The examination of order of operations was 
inspired by the teacher’s final equation that I knew from experience was worthy of 
consideration since so many teachers teach PEMDAS in a manner that can lead to 
miscalculations (Dupree, 2016). An intentional strategy here was to take advantage of 
participating teachers’ mathematical ideas to organically push their thinking to 
consider ideas that most certainly will emerge in their instruction. The final two 
examples supported the development of teachers’ mathematical knowledge, while 
inspiring reflection among them about the capacity of their students to generate 
mathematical models to solve problems. From participating teachers’ responses to their 
colleagues’ mathematical solutions and from information gleaned from evaluations 
completed, teachers frequently offered how the Institutes helped them learn 
mathematics and become more confident in their mathematical abilities. 
In the final example, I chose to validate a particular teacher’s non-conventional 
solution, which also extended participating teachers’ mathematical knowledge. This 
teacher is a Native American woman. By highlighting and validating her ideas, I 
demonstrated that I valued the contributions that every member of the group makes. In 
addition, intentionally having women and culturally and linguistically diverse teachers 
publicly share their mathematical solutions to problems granted legitimacy to their 
thinking and removed me as the sole mathematical authority in the room. As a white 
male, it is imperative in this work that I explicitly notice and then affirm the 
contributions of the Institute’s diverse participants. Displacing myself as the white 
male who possesses all mathematical knowledge highlights that I am serious about 
building a community in which every participate is valued. 
An implication of the research findings of this study is that noticing and making diverse 
teachers’ ideas the focal point of instruction is a practical approach to incorporate 
equity and access to mathematics in one’s teaching. Such instruction is equitable for 
the simple reason that it validates the ideas of members of underrepresented groups in 
the learning process, highlighting that everyone has ideas to contribute to the group. 
Furthermore, teachers have indicated that they feel a sense of ownership and belonging 
in the community we have developed and that they are willing to defend it. This came 
became clear recently when a male principal who is a former mathematics teacher 
joined our group and attempted to demonstrate his mathematical superiority on several 
occasions. During some heated discussions that took place, some participating 
teachers, culturally and linguistically diverse women asserted that this was their 
community and that he was welcome to join but needed to respect them and their ideas. 
Lastly, after experiencing instruction that supports them to develop deeper 
mathematical understandings through actively constructing mathematical ideas 
(Gravemeijer, Bruin-Muurling, Kraemer, & van Stiphout, 2016), teachers want the 
same for their students. Specifically, that their students will experience mathematics as 
a sense making activity (Kitchen et al., 2007).  
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In this study, we investigated whether teaching graphing formulas by hand could 
promote students’ symbol sense. During five lessons of 90 minutes, 21 grade-12 
students worked on graphing tasks. To assess the effects of this intervention, nine 
months later, a symbol-sense test was administered to these students and to a control 
group of 93 students. Six students from the treatment group, who thought aloud during 
the test, showed their graphing-formulas symbol sense, but also some transfer, i.e., 
using symbol sense when solving algebraic problems, like taking a global view, 
switching of representation, and qualitative reasoning. The treatment group used more 
symbol-sense and scored significantly higher on the test than the control group. The 
results suggest that graphing formulas might be a means to teach symbol sense. 
INTRODUCTION 
Many students in secondary school have difficulties with algebra, in particular with 
developing symbol sense (Arcavi, Drijvers, & Stacey, 2017; Kieran, 2006). Regular 
education often focuses on basic skills, and not on symbol sense. A lack of symbol 
sense leads to defensive strategies, like learning procedures, and to an overreliance on 
basic skills (Arcavi et al., 2017). Symbol sense is difficult to teach (Arcavi et al., 2017; 
Hoch & Dreyfus, 2010). In a previous study, we found that graphing formulas by hand, 
based on recognition and heuristic search, improved students’ insight into algebraic 
formulas, i.e., the ability to identify the structure of a formula and its components, to 
decompose formulas into sub-formulas, and to reason with and about formulas (Kop, 
Janssen, Drijvers, Van Driel, submitted). In this study, we investigated whether 
teaching this would enable students to use this insight and other aspects of symbol 
sense when solving algebraic problems.  
THEORY 
Symbol sense has many aspects, among which the ability to read through an algebraic 
expression, to make rough estimates of the pattern that would emerge in a graphical 
representation, and to have a feeling for the power of symbols and know when to 
abandon symbols (Arcavi, 1994). Drijvers (2010) described symbol sense as 
complementary to basic skills. Basic skills involve procedural work with a local focus 
and an emphasis on algebraic calculations, whereas symbol sense involves strategic 
work with a global focus and an emphasis on algebraic reasoning, and so it functions 
as a compass when using basic skills. It is needed in all phases of the problem-solving 
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cycle, from a realistic world problem, via a mathematical problem and a mathematical 
solution, to a real-world solution. Pierce and Stacey (2001) used algebraic insight to 
capture the symbol sense involved in the transformation of a mathematical problem to 
a mathematical solution. This algebraic insight has to do with recognition of objects, 
key features, dominant terms, and the meaning of symbols, and with the ability to link 
representations (Pierce & Stacey, 2001). In this paper we use the term symbol sense to 
refer to these aspects. To promote students’ symbol sense, we taught them how to graph 
formulas by hand. 
In expertise research, it has been established that to graph formulas effectively and 
efficiently, one needs recognition and heuristic search (Kop, Janssen, Drijvers, & Van 
Driel, 2015). A repertoire of basic function families with features is needed for 
recognition (Slavit, 1997). Heuristics like decomposing a formula into sub-formulas 
and qualitative reasoning are needed when graphing more complex functions and 
recognition falls short. Qualitative reasoning is about the global features of a function, 
such as its global graph and infinity behavior and is characterized by estimation and 
approximation. 
Graphing formulas based on recognition and heuristic search involves many aspects of 
symbol sense. One has to start with a global view to identify the structure of a formula 
and to recognize the building blocks (basic functions) of the formula and the key 
features of the graph. If needed, a formula might be decomposed into basic sub-
formulas and/or qualitative reasoning can be used to transform basic function, to 
compose the sub-graphs, and/or to find the key features of the graph.  
In short, graphing formulas requires a great deal of symbol sense. However, symbol 
sense involving the solution of algebraic problems is broader. One has to start the 
problem solving with a global view to consider different strategies: for instance, to 
abandon a symbolic representation in favour of a graphical representation or to use 
qualitative reasoning instead of starting (error-prone) calculations, and to predict and 
monitor results during the problem-solving process. Below is an example to illustrate 
these aspects of symbol sense: 

Task: Can the outcome of  be larger than 70? 

Approach: First one can consider a strategy like translating the problem into an inequality 
….>70, using a global view on the equation = 70 and 
reason like: 2nd degree polynomial + 40/’something with x’ = 70 gives a 3rd degree 
polynomial equation, that almost certainly cannot be solved exactly. Another strategy 
could be linking it to a graph; with a global view one sees a ‘parabola with a maximum + 
a broken function’. Can this function be larger than 70? Looking at the tails of the graph 
or ….? The parabola might give a maximum larger than 70; therefore, calculations are 
needed. On the other hand, the broken sub-function has a vertical asymptote, so, in the 
neighborhood of x=3, when x is a little bit larger than 3, the function has to be larger than 
70; and there are no problems with the outcomes of the parabola.  

0.1( 3)( 10) 40 / ( 3)y x x x= - - - + -

0.1( 3)( 10) 40 / ( 3)y x x x= - - - + -
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In regular education, attention is paid to basic function families, but symbol sense 
(Arcavi et al., 2017) and graphing formulas by hand are largely ignored. We expected 
that explicit teaching of graphing formulas by hand would teach students to take a 
global view, to develop a repertoire of basic function families, and to learn qualitative 
reasoning when graphing formulas. We also expected some transfer, i.e., using this 
symbol sense when solving algebraic problems. This led to the research question: How 
can explicit teaching of graphing formulas be a means to promote students’ symbol 
sense?  
METHOD 
In this study a written symbol sense test of 45 minutes, consisting of eight explicit 
graphing tasks and 12 algebraic problems, was administered to 114 grade-12 students 
from six different schools. We report in this article on the algebraic problems, all of 
which could be solved by using graphs and/or qualitative reasoning. The treatment 
group consisted of 21 students (from the author’s school). The intervention, a series of 
five lessons of 90 minutes about graphing formulas, took place nine months before the 
test. During these lessons, the students were taught, using whole tasks and reflection 
questions, to graph formulas by hand, using basic function families and qualitative 
reasoning. The whole tasks were related to different levels of recognition, which were 
found in expert research: instant recognition of the graph or recognition of a function 
family, decomposition of a formula into sub-formulas, recognition of key graph 
features, and no recognition of the graph and using strategical search for graph features 
(Kop et al., 2015). 
Two examples to illustrate these whole tasks are given below: 

Task 4 about the recognition of key graph features (inspired by Swan (2005)):  
Given two equivalent formulas and a graph, what features of the graph can be read from 
the formulas?  
 
   

 
 

  

Reflection question: Give three formulas of functions from which you can simply read 
the zeroes of the functions.  
Task 5: What happens to the y-values of the functions: = 0, 6= ⋅ 𝑥tu ;                        𝑦 =
(4𝑥p − 6)/(𝑥 + 3)B; 𝑦 = 52.7/(1 + 62,9 ⋅ 0,692=), when ? Choose between: 
𝑦 → +∞;	𝑦 → 𝑎 ≠ 0; 𝑦 →0;	𝑦 → −∞ 

The test questions were based on problems that have previously been used in assessing 
students’ algebraic competencies. Students were asked to explain their answers. The 
internal consistency of the questions was acceptable: Cronbach’s Alpha was 0.72. 
Below some examples of the algebraic problems:  

2) Give the number of solutions of the equation:  

2( 4) 1y x= - -
( 5)( 3)y x x= - -

x® +¥

1
25ln( ) 10x x= -
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3) Give the number of solutions of the equation ? 
4) Can the outcome of  be larger than 70? 

7) What outcome(s) can y have when ? 

8) When  is very large, the function  can be 
approximated by:  Pick the best alternative out of :  A. ;  B. ;  C. 

;  D. ;  E. none of these 

14) Pick the correct alternative: A maximum of the function 
is situated in A. [-4;0]; B: [0;4]; C: [4;7]; D: [7;14] 

The written material was analysed to determine correctness and strategies: using a 
graph, using qualitative reasoning, using calculations and/or algebraic manipulations.  
Written tests give only limited information about students’ thinking processes. 
Therefore, six students from the treatment group were asked to think aloud during the 
test. This was videotaped and transcribed. The thinking-aloud protocols of the six 
students were analysed in greater detail. It was registered whether the students used 
qualitative reasoning (Q), recognition of function families and/or key features (R), or 
strategic work, e.g., changing representation or monitoring (S), and whether they 
showed a lack of symbol sense (starting calculations/manipulations (C), e.g., 
expanding brackets, when not needed). In one problem, more than one strategy could 
be used. 
RESULTS 
We first present the results of the six students who thought aloud during the test. We 
give examples of their symbol sense and of their lack of symbol sense. We then 
compare the results of the written tests of the treatment group with those of the control 
group.  
In problem 2, student S instantly switched to a graphical representation and used his/her 
knowledge of the logarithmic function family:  

“ goes like this (draws a graph); goes not that steep; this one ( ) goes 
flatter here; here, there is an intersection, and here too; so, two solutions” (encoding: S,R). 

In problem 4, student A started to make calculations but monitored his/her progress 
and reconsidered his/her strategy; then s/he recognized a vertical asymptote and used 
qualitative reasoning (what the graph looks like near the vertical asymptote): 

“First expand the brackets  ; can this be larger than 70?; I’m going 
to try to find the turning point; then see whether it is a parabola with a max or something 
like that, but there is also a broken function; let’s see whether it is a parabola and see 
whether the turning point is beneath or above 70 and then 40…..?  (tries to calculate) No, 
this will not work; I think I will calculate some points; There is a vertical asymptote at x=3;  
so, when x-3 is very small then this part becomes very large and dominate the rest of the 

2 2 3x x-= +

0.1( 3)( 10) 40 / ( 3)y x x x= - - - + -

424 0,01( 5)y x= - +

x 2 2 3 4( ) (3 ) 70 /xf x e x x- += +
6y x= 5y x=

470y x-=
2327 xy e-=

(14 2 )(8 2 )y x x x= - -

5ln( )x 1/ 2 10x - 5ln( )x

2 13 30 40 / ( 3)x x x- + + -
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function; …x-3 can be infinity small and then the fraction will be very large and easily 
above 70” (encoding: R,Q) 

In problem 7, student K used qualitative reasoning:  
“To the power of 4 means that the outcome will be positive, regardless of the value of x; 
so, the whole ( ) will be negative and the maximum value 24; and further, the 
larger x the larger the whole will be and so, the more negative it will be” (encoding: Q) 

In problem 8, student Y used decomposing the function in sub-functions and used 
her/his repertoire of function families: 

“When  is very large then fades because it becomes very small, approaches 0; 
therefore alternative C is not correct; when  is very large then  is very large then 

; it becomes ;  becomes almost 0, so, when substituting something very 
large in it approaches 0; only is left; I doubt 5 or 6, but it is multiplying, so answer 
A” (encoding: R,Q) 

In problem 14, student S considered his/her strategy before switching to a graph, 
recognized key features of the graph (the zeroes), and used qualitative reasoning about 
infinity behaviour of the function:  

“Hmm, not nice to expand the brackets and to differentiate the function; but is there a better 
way to do it? We can say that there will be a zero at 0, and when , so, at 7 and 
at 4; what shape do we get? For large it is positive multiply negative multiply negative, 
so positive; for a very negative number we get a negative outcome (followed by a graph 
and the correct answer)” (encoding: S, R, Q, S) 

Examples of students’ lack of symbol sense were also found.  
In problem 2, student I started with manipulations that did not lead to a solution:  

 “Long time since I did one like this. How do I do it? I transform this equation: 
(thinks). Can I solve this equation? I can transform it into , but 

do you make any progress with this? can only be positive or negative. No, I do not 
know.” (encoding: C)  

Student A solved problem 2 correctly, but used a lot of calculations instead of graphs: 
 “How do I find the zeroes? I just solve it; I think because there is no quadrate in 

 that …; first make a derivative: and looking for a turning point; 
so, make it equal to 0; we see that there is one turning point at and when we substitute 
10 we get two zeroes.” (encoding: C) 

Student S solved problem 4 incorrectly, because s/he only paid attention to the infinity 
behaviour of the function 

“Let’s see, when is very large then this is very small ( ); but it is only positive; 
the zeroes are at 3 and 10 and for large values of this will be very large, this very large, 
but then negative, so, it is negative (looks at ); then +40; turning point is 
in between, that is at 6.5; there it will not be very large, definitely not 70; for small values, 
much will be subtracted; no, it cannot be larger than 70”  

40.01( 5)x- +

x 470 / x
x x

xy e-= 6y x= argl ee-
2xe- 2 3( )x

14 2 0x- =
x

5 1
2log ( ) 10e x x= -

1
2 105 xx e -=

5x

5ln( ) 1/ 2 10x x- + 5 / 1/ 2x -

10x =

x 40 / ( 3)x -
x

0.1( 3)( 10)x x- - -
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Table 1 shows the numbers of correct answers and the number of problems in which 
the strategies qualitative reasoning and recognition (Q and/or R), switching of 
representation (S) and calculation/manipulation (C) were used. For example, student Y 
had a score of 3.8 (on 12 problems) and used recognition and/or qualitative reasoning 
(R, Q) in 11 problems; s/he used the strategy changing the representation (S) six times, 
and calculation/manipulation (C) five times. See Table 1. 

Student Score Q and/or R  S  C 
I 4.5  10  3 5  
Y 3.8 11  6 5 
K 9 11  6 1  
S 8 12 7 1  
M 4 11  5 4  
A 7 9  6 6  

Table 1: Scores and strategies from the thinking-aloud protocols 
All students’ written materials were analysed to determine their correctness and 
strategies (using a graph, qualitative reasoning, calculation/manipulation). The 
differences in strategy use between the treatment group (T) and control group (G) are 
shown in Table 2.  

 
 
    
 
 
 
 
          

Table 2: Strategy use of treatment group (T) and control group (G) 
The mean score of the treatment group was 5.29 with a standard deviation of 2.20, 
whereas the mean score of the control group was 2.53 with a standard deviation of 
1.59. This difference was significant (t(24,95)=5.46; p<0.001) and the effect size was 
huge (Cohen’s  d = 1.74). 
CONCLUSIONS AND DISCUSSION 
The aim of the current study was to investigate whether students in the treatment group 
would use symbol sense, which they had learned during the teaching of graphing 
formulas, to solve algebraic problems. The thinking-aloud protocols showed that the 
students used their repertoire of basic function families for recognition and qualitative 
reasoning if they used the graphing of formulas to solve the algebraic problems. But 
they also used symbol sense in a broader sense: for instance, abandoning a symbolic 

Percentage Qs 2  
T     G 

Qs 3  
T     G 

Qs 4 
T     G 

Qs 7 
T     G 

Qs 8 
T     G 

Qs 14 
T     G    

Blank  0    31 24   44 14   23 29   52 10   26 19  52 
Calculation 38   31 19   27  5    42  0    15  0      1 19  38 
Graph 52   23 52   20 81   33 24     2 91   72 33   2 
Reasoning 10   14  5     9  0      1 43   28  0      1 29   9 
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representation in favour of a graphical representation, using qualitative reasoning 
instead of starting calculations, and working strategically during the problem-solving 
process. Although we also found examples of a lack of symbol sense, the results seem 
to suggest that there was some transfer: the students used symbol sense learned through 
graphing formulas to solve algebraic problems.   
The analysis of the written tests indicated that students in the treatment group used a 
graph and/or qualitative reasoning more often and that they were more successful in 
solving these algebraic problems. The explicit teaching of graphing formulas, based on 
recognition and qualitative reasoning, might explain the differences we found in scores 
and strategies between the treatment group and the control group. The findings of this 
study suggest that explicit teaching of graphing formulas might be a means to promote 
students’ symbol sense. As there was only one treatment group and there was no 
randomized experiment, more research is needed. The algebraic problems used in this 
study were limited to those that could be solved using graphs and/or qualitative 
reasoning, so without much calculation and manipulation. For future research we 
suggest continuing on this path. Often, when symbol sense is taught, manipulations of 
algebraic formulas play a large role. We expect that technology in the future will do a 
lot of the algebraic manipulations, and that qualitative reasoning will become more 
important. Qualitative reasoning, with its global approach and estimation, was an 
important factor in our intervention. Unlike in regular textbooks, the focus from the 
start was on global shape, rough sketches, and approximations. Experts use this kind 
of reasoning often, but it is hardly taught in secondary school and it was very new to 
these students.  
Before the intervention, students in the treatment group had problems with the 
sketching of basic functions. This suggests that, without explicit teaching of graphing 
formulas, Dutch students in grade 12 were not able to graph formulas using basic 
function families and qualitative reasoning. As a consequence, they would not be able 
to use these aspects of symbol sense to solve algebraic problems. This seems to be 
supported by the results of the control group in this study. A limitation of this study 
was that only Dutch students were involved. However, we expect that grade-12 
students in other countries are in a comparable position; we have confirmed this 
through personal discussion with teachers from other countries.  
Symbol sense is a broad concept with many aspects. A lack of symbol sense results in 
problems with solving algebraic problems. Symbol sense is difficult to teach (Arcavi 
et al., 2017; Hoch & Dreyfus, 2010). Suggestions for the teaching of symbol sense have 
been given in the literature, but these often require use of small tasks and/or snapshots 
(Friedlander & Arcavi, 2012; Pierce & Stacey, 2007). These seem to be small and local 
interventions. Graphing formulas might be a more structural and integrated way (using 
symbol sense in combination with basic skills) to pay attention to the development of 
symbol sense. 
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TOWARDS COGNITIVE FUNCTIONS OF GESTURES –  
A CASE OF MATHEMATICS 

Christina M. Krause1, Alexander Salle2 
1University of Duisburg-Essen; 2Osnabrück University 

 
Despite the growing body of research on gestures in mathematics education, little is 
known about the self-oriented functions gestures can play in mathematical cognition. 
This paper adapts a framework from psychology suggesting four cognitive functions of 
gestures and explores its potential for the context of mathematics. We present an 
example from an interview on fractions to illustrate the manifestation of the cognitive 
functions in a mathematical context. Furthermore, we discuss the potential of the 
framework in the context of mathematics. 
INTRODUCTION 
Over the last 20 years, an increasing interest in understanding better how gestures 
influence mathematical thinking and learning becomes apparent in the literature. A lot 
of research, especially in mathematics education, focuses on gestures as semiotic 
resource (e.g. Arzarello, et al., 2009), shaping the social interaction and the learning 
process through fulfilling representational and epistemic functions (Dreyfus et al., 
2014; Krause, 2016). Research based on embodiment theories also suggests that 
gestures fulfil cognitive functions (Clark, 2013) but little is known about how gestures 
contribute concretely to cognitive processes in mathematics.  
Studies from the field of psychology, carried out in clinical settings and dealing with 
arithmetic equivalence problems, suggest that gesturing can help solving such 
problems through reproducing a grouping strategy (e.g. Goldin-Meadow, Cook, & 
Mitchell, 2009), which can lighten the cognitive load (Goldin-Meadow, Nusbaum, 
Kelly, & Wagner, 2001), and can lead to a more general conceptual understanding of 
arithmetic equivalence (Novack, Congdon, Hemani-Lopez, & Goldin-Meadow, 2014). 
However, although this research suggests potential cognitive functions, we claim that 
these results cannot be generalized for mathematics in general. 
But what do cognitive functions of gestures in the context of mathematics look like? 
In our paper, we adapt a framework for cognitive functions of gestures from 
psychology (Kita, Alibali, & Chu, 2017)—a framework that also includes the 
abovementioned Cognitive Load Reduction Hypothesis (Goldin-Meadow et al., 
2001)—to test its applicability for the context of mathematics. In particular, we present 
the first part of a larger study on gestures’ self-oriented functions in mathematical 
cognitive processes. In this first part we re-analyze existing data to explore how the 
four cognitive functions of gestures proposed in the framework manifest themselves in 
the context of mathematics. We will provide an illustrative example of the on-going 
analyses and discuss preliminary results. 
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THEORETICAL FRAMEWORK 
Theories of embodied cognition assume that all thinking, in our case, mathematical 
thinking, is deeply influenced by our interaction as humans in the physical and cultural 
world (Barsalou, 2008), assigning perception and action an integral role in 
(mathematical) cognitive processes. Gestures can now be understood as some kind of 
physical interaction with the world, grounded in the same generating system as 
concrete actions. In particular, representational gestures denote those “gestures that 
depict action, motion or shape, or that indicate location or trajectory”, (Kita et al., 2017, 
p. 245) an understanding of gestures that encompasses the often applied taxonomy of 
deictic, iconic and metaphorical dimensions of gestures as introduced by McNeill 
(2005). However, representational gestures embrace gestures in a wider sense, not only 
considering those movements performed in presence of speech (co-speech gestures), 
but also those performed in thinking processes that lack simultaneous verbal expression 
(co-thought gestures). Both of these potentially have self-oriented functions in that 
their “production also affects gesturers’ own cognitive processes and representations” 
(Kita et al., 2017, p. 245). 
The Gesture-for-Conceptualization Hypothesis 
Based on an extensive corpus of empirical research in psychology, Kita, Alibali and 
Chu (2017) organize findings and theories concerning self-oriented gestures and how 
they can influence and enhance problem solving performance and synthesize them in 
their Gesture-for-Conceptualization Hypothesis (GFCH): 

The key theses of the gesture-for-conceptualization hypothesis are (a) gesture activates, 
manipulates, packages, and explores spatio-motoric representations for the purposes of 
speaking and thinking and (b) gesture schematizes information, and this schematization 
process shapes these four functions. (p. 246) 

Following Kita et al. (2017), gestures schematize information in that they represent 
information in a condensed manner, focusing on a subset of aspects potentially relevant 
for the gesturer for solving the task at hand while leaving out other aspects.  
Activating spatio-motoric representations through gesture means to call up inactive 
representations or to inhibit active representations from vanishing, e.g. by ephemerally 
reproducing them, also in a condensed manner. Manipulating such representations 
through gesture can facilitate the enactment of demanding mental operations, e.g. by 
virtually enacting the actual or imagined action, like in mental rotation tasks. Through 
packaging information, gestures can support the building of information units to 
organize spatio-motoric information relevant for processing or expressing complex 
ideas. Exploring spatio-motoric information through gesture can help to examine 
complex situations to find and focus on the information most useful and helpful in 
order to solve the task (Kita et al., 2017). 
Investigating how far this framework is useful for understanding better students’ 
cognitive processes when dealing with mathematical problems we ask the following 
question, focusing on the four cognitive functions: 
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How do the cognitive functions of activating, manipulating, packaging and 
exploring manifest themselves in mathematical situations? 

However, the analytical approach is a deductive one, aiming at testing the hypothesis 
in a new context. Developing further functions—perhaps specific to mathematics—is 
not within the scope of this paper but will be addressed in the ongoing study.  
METHODS 
To integrate a wide pool of settings and mathematical topics, we considered and re-
analyze data from some of our different past and ongoing studies in which we focused 
on gestures’ role in mathematical thinking and learning (e.g. Krause & Salle, 2018). 
These settings include open interviews, task-driven interviews, and working with 
worked-examples while thinking aloud, dealing with functions, basic arithmetic, 
fractions and complex numbers. 
In all cases, video data was collected and transcribed, where the transcripts considered 
the co-timing of speech and gesture by using squared brackets to indicate the beginning 
and the end of a movement of the gesture and provided a description of the movement. 
For gestures performed in absence of speech, this description is given within the 
brackets, in for co-speech gestures the description follows the brackets. 
The analysis consisted of three steps: First, we identified episodes and scenes that 
include gestures. Second, the gestures were interpreted in the context of the situation 
and, in the case of co-speech gestures, related to the spoken utterance. Third, the 
gestures were examined with respect to their potential to fulfil one of the cognitive 
functions stated in the GFCH. For this, evidence for a gesture to fulfil a cognitive 
function is drawn from gestures’ potential contribution towards solving the task.  
THE CASE OF THEO 
The following case presents the analysis of a part of an interview with Theo, a 6-year 
student, against the background of the cognitive functions of gestures. It illustrates how 
the gestures help Theo to find an explanation for why not adding the denominators 
when adding two fractions.  

1 Well ,if one now this … (puts both his hands on the table, Fig. 1a) [two thirds] [plus 
(moves the right hand slightly up and down on the table) ..] plus [seven ninth] (moves 
both hands equally on the table to a location slightly below) for example (moves the 
left hand with open palm towards the right hand on the table) [calculates directly] (s. 
Fig. 1b) 

2 Eh one gets an entirely different number. Ehm .. that ,well one is just not allowed to 
[add’ the denominators (locates both hands with slightly opened palms such that 
finger tips touch the table) … (smiles) stooooop] ,is complicated 
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Figure 1a and 1b 

3 ,ehm seven twelfth. …I 
could you maybe again with pizzas, don’t know if that is easier for you if you for example- 
4 eeeh (puts both hands on the table again) (incomprehensible) 
5 Yes ,for pizzas. for [one pizza          ] (s. Fig. 2a) 

   
Figure 2a, 2b and 2c 

6 If one by [  ..  ] (moves the right hand on the table where he drew the circle before) 
ehm ,nine I think .. is not that good- by six. If one divides by six-   [    (draws 
straight lines with his right hand approximately on the right side of the circle he drew 
before in gesture; first one vertical line, then several straight lines in different angles 
to the right)  (.) ]  

   

Figure 3a, 3b and 3c 
7 ,so (puts both hands on the table, s. Fig. 2b) [by-] first (s. Fig. 2b and 2c) [[divides] 

[by the half’]] then (puts the right hand on the right side of the table, palms open and 
directed down) [one have once] (lifts the hand slightly and puts it back down) [one 
half’] plus (s. Fig. 3a) [one half.] makes (moves both hands together on the table and 
back apart, Fig. 3c) [one whole.]  

8 if one [divides this again] (slightly moves the open right hand above the table such 
that the tip of the middle finger touches the table) in- (moves the hand over the table 
in a straight line) [  the-] (briefly holds the right hand above the table) [the one half’] 
in [th-r-ee’] (s. Fig 3c) 
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Figure 4a and 4b 

9 then one has (places the open right hand on the table) [   ] (s. Fig. 4a) [three-] thirds’ 
(moves the hand back up) [ehm no.] not correct. But yes (places the hand on the table 
again and moves it down on the table) [three thir-] no. 

10 [[three sixths] (moves right hand approx. 30cm above the table and then moves it 
towards him, similar to before on the table; then holds the right hand above the table 
in the air) of the whole pizza’]  

11 plus (Fig. 4b)  [one half.]  
12 and (moves the left hand down on the table similar to the right hand before but in a 

smaller movement) [three sixths] plus one half would then be four- sevenths. And 
four sevenths [would then be] (moves the hands, slightly open, palm directed down, 
together above the table)  

13 would have to be [a whole pizza] (moves both hands in two half circles symmetrically 
and through this draws a circle on the table) but that cannot be. 

Theo provides a first, innermathematical and example-based approach to his 
explanation (lines 1-3, “you get an entirely different number”), that however seems to 
leave him unsatisfied (2: “is complicated”). Taking up a suggestion by the interviewer, 
he then frames a second approach in the concrete, real-life context of dividing pizzas 
and constructs a counter example for his explanation.   
These two approaches are reflected in Theo’s gestures:  
First, he refers to a top-bottom structure of the symbolic notation of fractions as top-
bottom-structure while referring to the two fractions in speech. In this, the first fraction 
seems to be located on the left side of the table, affiliated to the left hand (1: “two 
thirds”, Fig. 1a). While recalling the second fraction (1: “plus …”), his right hand 
wanders above the table in a downward movement, perhaps anticipating the reference 
to the fraction as performed with the left hand before. However, the delay in 
verbalization might lead to both hands moving simultaneously co-timed to “seven 
ninth” (1) before moving the left hand towards the right hand while saying “calculates 
directly” (1, Fig. 1b). By this ‘calculating directly’ he might refer to the separate 
addition of numerator and denominator, since “one gets an entirely different number” 
(2). Moving the left hand to the right hand at the same time, he might indicate the 
addition of the one fraction to the other by joining them metaphorically. 
When starting his second approach to the explanation, Theo establishes the simplified 
representation of “one pizza” (6) by drawing a circle in front of him on the table (Fig. 
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2a). He then starts visually dividing the imagined circle into parts by drawing straight 
lines with his finger (6). Seemingly not satisfied with this approach, he starts over, 
clarifying to “first divide by the half” (7), dividing the imagined circle first with his 
hands through ‘cutting’ a straight line through the middle (Fig. 2b), before separating 
the two halves by moving his hands away from each other to the left and right on the 
table (Fig. 2c). Following this, he locates “one half” and “one half” with each hand on 
one side of the table (Fig. 3a), moves the hands together to join them to “one whole” 
(7) and then immediately back apart to where the two imagined halves are located on 
the table (Fig. 3b). He divides the right half in “th-r-ee” (8, Fig 3c) by drawing two 
straight lines and while naming the fraction represented by this, his gesture refers to 
the top-bottom-structure of the symbolic notation again (9, 10, Fig. 4a & 4b). In his 
gesture, he established a representation of “three sixths of the whole pizza” (10) on the 
right side and one half on the left side (11). Theo then argues that adding these two 
fractions by adding the numerators and denominators “would then be four- sevenths” 
(7) but, at the same time, a whole pizza, reminding that the two sides joint make one 
whole by moving both hands—thus both halves—towards each other, a claim he 
established earlier (see line 7, Fig. 3a).  
The cognitive functions of Theo’s gestures   
Within both approaches, gestures activate spatio-motoric representations that 
potentially help Theo structure his explanation. This concerns first the symbolic 
representations of the two considered fractions as top-bottom-structure on the two sides 
of the table. The symbolic top-bottom structure reduces the concrete fractions to 
schematic representations. Locating them on two opposite sides of the table, associated 
with two different hands allows Theo to treat them metaphorically as objects that can 
be ‘put together’. 
In the pizza-context, Theo activates the spatio-motoric representation of a pizza, 
simplified to a circle in front of him on the table. Using this schematic representation, 
he can now explore this representation and with that the situation used for his 
explanation, as can be seen in line 6, where he first divides the right half of the imagined 
circle in parts by drawing straight lines. In this instance, the manipulation of the circle 
through his gestures seems to show him that this subdivision does not work for him, 
though it is hard to say whether he does not consider it appropriate for constructing his 
explanation or for communicating his train of thoughts. However, in both cases it fulfils 
a self-directed function in the sense of the GFCH.  
He furthermore manipulates the spatio-motoric representation through gestures when 
he develops it further by dividing it in two halves. As before, the two halves—and the 
respective associated fractions—are associated with one side of the table. Since this 
helps him to organize his complex thought into smaller meaning units, this can be seen 
as a case of packaging spatio-motoric information. Having broken down the 
complexity and reduced the amount of aspects to consider for one stream of his 
argumentation, he can combine both schematic representation—the symbolic top-
bottom-structure and the circle representing the pizza—for his explanation. 
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In short: He activates spatio-motoric representations that help him capture the 
situations in two different ways that are eventually combined. Through manipulating 
these representations, he can explore the situation to construct an example—and its 
representation—to carry out his explanation. Packaging the information by 
metaphorically locating different components in space and reducing the focus on one 
of them furthermore supports Theo’s cognitive processing towards constructing his 
explanation. 
FURTHER COMMENTS AND DISCUSSION 
This paper aimed at presenting a potential framework on cognitive functions of 
gestures in processes of mathematical thinking and learning. The case study we 
presented reflects mainly two phenomena that have been found so far across the data 
we consider in our ongoing study: 
First, the vast majority of scenes in which we identified a cognitive benefit of gestures 
did not restrict themselves to one gesture with one cognitive functions but rather to 
multiple functions that synergized. The necessity to verbalize thoughts–through 
thinking aloud or through responding to an interviewer–might lead to more gestures, 
considering that gesture and speech production are strongly related (McNeill, 1992). 
In particular, we noticed that the activation of spatio-motoric representations played an 
important role, especially when no further representations were provided. Perhaps not 
surprisingly, the students first need to establish a representation in order to be able to 
manipulate or explore it in the cases and gestures provide a powerful tool to provide 
idiosyncratic representations as ‘tool for embodied thinking’. 
Second, we faced methodological issues across the data, probably related to them all 
requesting to verbalize their thoughts and train of actions. Different to the studies on 
which Kita et al. (2017) base the GFCH, our methodology does not use experimental 
settings but detects potential cognitive functions of gestures within an interpretative 
approach. This made it rather difficult to identify cognitive functions in the existing 
data since the component of communication ideas to a third person was a strong one. 
While gestures certainly can fulfil cognitive and communicational functions at the 
same time, it often seems hard to get evidence for a self-oriented function. While as 
one source of evidence for a self-directed function of the Theo’s gestures we 
considered his gaze—he constantly looked at the gestures he produced but stared in the 
air to the upper left while gesturing when he seems to struggle with an idea (Zurina & 
Williams, 2011)—future research needs methodological revisions. For example, data 
could be gathered by capturing the students process of engaging with and solving a 
task but might request the verbalization of a solution just subsequently. While this leads 
to different difficulties with respect to the interpretation of gestures, it might facilitate 
a focus on co-thought gestures.  
It has to be kept in mind that it is not within the scope of the preliminary study to 
identify all gestures fulfilling cognitive functions and to describe the data 
comprehensively but rather to test the waters for adapting the framework and to see 
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how the functions can manifest themselves within the mathematical contexts. Further 
research should extend this scope to get more insights about the how of the cognitive 
benefit of gestures. 
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Though teacher knowledge has been assessed using paper-pencil tools, little is known 
about how teachers use their mathematical knowledge for teaching in in-the-moment 
challenging instructional situations while attempting to change their practice to 
encourage student reasoning. This paper illustrates using the case of teachers’ 
discussion on class inclusion, how analysis of these challenging situations serves to 
not only identify the knowledge demands for teaching geometry but also illustrates the 
dynamic nature of mathematical knowledge for teaching as it may support use and 
development of Subject Matter Knowledge (SMK) and Pedagogical Content 
Knowledge (PCK) to structure the classroom discourse. The need for safe space for 
teachers to explore their teaching and learn from their mistakes is needed by reflecting 
on and discussing their teaching with other educators.  
INTRODUCTION 
Teachers’ knowledge of geometry has been studied mostly in the context of measuring 
prospective or in-service teachers’ knowledge through the development of paper-pencil 
tools and have been found to be dismal (Jones, 2000). These tools have been largely 
based on two major frameworks prevalent in literature. One of these frameworks is van 
Hiele’s theory (1959) which has been used for over 50 years since it was proposed and 
has been used to assess both students as well as teachers’ knowledge of geometry. 
Another framework is by Ball, Thames and Phelps (2008) about Mathematical 
Knowledge for Teaching (MKT). However, these paper-pencil tools have the limitation 
of not being able to capture the situations in which this knowledge is used or developed 
“in-situ” in the process of classroom interaction. Further, the use of tests to show 
deficits in teacher knowledge may lead to teachers’ distrust towards researchers. In the 
Indian context, where we are faced with a situation of lack of highly qualified 
mathematics teachers, we need to characterise the challenging situations that teachers 
face in addressing students’ learning and the topic-specific knowledge of mathematics 
for teaching that is required to overcome that challenge while working with the teacher.   
Attempts have been made to identify topic specific knowledge of geometry used by 
teachers in the moment of teaching. A study by Chinnappan, White and Trenholm 
(2018) identified a symbiotic relationship between the SMK and PCK. In this paper, 
we illustrate and use a topic specific framework to identify knowledge demands and 
relation between SMK and PCK, while analysing classroom interactions of teachers 
making an attempt to change their instructions to encourage student reasoning. The 
main research question addressed in this paper is 
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How can analysis of challenging instructional situations contribute to our 
understanding of knowledge demands for teaching geometry, particularly class 
inclusion? 
RELATION BETWEEN TEACHERS’ CONTENT KNOWLEDGE AND 
TEACHING OF GEOMETRY 
It has been well recognised that both SMK and PCK play a crucial role in determining 
the quality of instruction (Hill, Blunk, Charalambous, Lewis, Phelps, Sleep, & Ball, 
2008). However, the relationship between SMK and PCK has not been explored at 
depth especially in in-situ situations that illustrate the dynamicity of this knowledge 
(Takker & Subramaniam, 2017; Chinnappan, White & Trenholm, 2018).  
SMK for teaching class inclusion can be identified using van Hiele theory (1959). 
According to van Hiele theory, the concept of class inclusion develops at level 2 when 
the learner is able to establish interrelationship between properties within and among 
figures, create and identify figures as examples and non examples of a class, deduce 
properties of figure, identify similarities and differences in figures and is able to 
classify correctly. It also includes giving and evaluating the alternative definitions for 
their correctness and knowledge of necessary and sufficient properties to arrive at the 
minimal definition, give figures as examples, non examples and also be able to evaluate 
non-routine figures for recognising a shape. A common theme that runs across the 
development of knowledge of geometry is understanding that the process of 
generalisation is a deductive process, often mistakenly assumed to be an inductive 
process.  
A teachers’ knowledge of the teaching of geometry or PCK is built over these 
foundation blocks, wherein a teacher uses this knowledge to generate and sequence the 
tasks for teaching or assessment. A teacher uses the knowledge of students’ thinking 
combined with SMK to come up with examples, challenging examples and even 
counterexamples to make students think and focus on a particular or connected 
property of a shape. The understanding of correct and minimal definition guides the 
task implementation as well as evaluation of alternative and partially correct definitions 
given by students. A teacher may use the knowledge of different representations to 
depict and elicit statements of class inclusion from students and work on their 
alternative conceptions of shapes and hierarchical classification. The knowledge of 
deductive process of generalisation guides the norms of classroom interaction and how 
the generalisations are stated and validated. Teacher’s response to visual and perceptual 
approaches by students are guided by this knowledge of the nature of mathematics.  
METHODOLOGY 
The instructional episodes reported in this paper are selected as cases from two teachers 
(Sunil and Shruti – Pseudonym) from a cohort of 10 teachers associated with 
Connected Learning Initiative (CLIx)1 since 2016 to support the implementation of 
Geometric reasoning module. The selection of the instructional episode case was done 
based on similar content used in lesson and then within case and cross case patterns 
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were analysed to come up with the theory of role of challenging situations in teacher 
learning (Eisenhardt, 1989).  
All teachers belonged to and worked in a rural setting in the state of Chattisgarh, India. 
The teachers were associated with the initiative since 2016 and had undergone around 
9 days of face-to-face time in workshops prior to study. Based on reports of challenges 
faced in managing classroom discussion, follow up classroom support of around 4 
weeks was provide to teachers by research team after a two-day workshop discussing 
the module in detail. During the follow up, researchers did classroom observations and 
follow-up discussions to discuss the activities, lesson plan, content related doubts and 
analysis of students’ understanding. The data from the professional development 
workshop and classroom observations was collected by writing detailed notes by the 
researchers through participant observation and in some cases, audio was recorded after 
teachers’ permission.   
Sunil was 39 years old high school teacher (Male), had 8 years of experience of 
teaching high school maths and has the qualification of M.Sc in Physics and diploma 
in IT, though no formal qualification in the education field. Shruti was a 42 years old 
high school teacher (Female) with 11 years of experience and had M.Sc maths and B. 
Ed as a formal qualification. Both the teachers were motivated to implement the 
modules and engaged heartily with the researcher team on the discussions of content, 
pedagogy and student learning. However, Sunil had a very relaxed and conversational 
approach to teaching mathematics making students comfortable in expressing their 
thoughts and trying to engage all learners in classroom discussion. Shruti was a bit 
authoritative in classroom transaction. She felt that mathematics is too difficult for 
some students though she understood the importance of engaging students in 
discussion and supporting reasoning and expressing their thoughts. 
FINDINGS 
In this section, we report challenging episodes that made gaps in teachers’ knowledge 
explicit and provided opportunities to us as teacher educators or teachers’ themselves 
to reflect on their knowledge. These challenging events arose in situations when 
teachers attempted to support students’ engagement in reasoning about shapes and 
came across contingent situations in practice.  
The normal instruction for teaching geometry in these rural schools was that of a 
teacher explaining concept of shapes through examples of stereotypical figures from 
the textbook, listing its properties and definition and expecting students to memorise 
them. The teaching involves explanations of concept or definition followed by 
questions, most of which are replied in chorus or in few words. The attempt in the CLIx 
initiative was to encourage teachers to focus on developing property based reasoning 
through challenging and non-routine shapes for recognition and classification of shapes 
thereby developing the meaning of the definitions which may have been learned by 
rote by the students in earlier grades. The pedagogical pillars to provide safe space to 
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students to learn through their mistakes and learning through collaborative work was 
emphasised in the workshops. 
The transcripts presented from both the lessons are one week after the intervention 
started. Teachers were discussing tasks of class inclusion using several challenging 
figures, for example, if the particular figure is a square or not, identify the shape if it 
was not a square and give reasons based on properties of shape. 
Sunil’s discussion on class inclusion 
The lesson from which the episode is discussed, Sunil was discussing several figures 
from the task described above and one of them was a rectangle. He started the 
discussion on rectangle as indicated in the transcript below. In the transcript, T 
indicates the teacher, Sn indicates the different students speaking and Sch indicates 
chorus response of students.  

36 T:  What is a rectangle?  
37 S1:  One which has opposite sides equal.  
38 Teacher draws a parallelogram in figure 1 and labels the 

opposite sides as 2 and 7 cm respectively. 
40 T:  Would you call this a rectangle?  
41 S chorus:  Yes  
42 T:  Arre? (what!!) 
45 S chorus :  No 
46 S2:  Because all its angles are not 90 degree 

In the above episode, one needs to note that instead of responding to the student’s 
incomplete definition of rectangle with an evaluative statement or explanation of the 
correct definition, the teacher responded by making a figure which satisfies the 
property given by the student but is not a rectangle. It is thus a counterexample given 
by the teacher which is contingent on the response given by the student. Knowledge of 
geometry is involved in both the pedagogical tasks, but giving a counterexample based 
on student response requires in-the-moment use of both SMK and PCK to respond in 
mathematically appropriate way to students’ definition of rectangle. The teachers made 
the figure having the property of opposite sides but varied the angle using the 
knowledge of similar and different properties of parallelogram and rectangle. However, 
the decision to respond by drawing a counterexample figure rather than the correct 
definition involves knowledge of PCK of how to draw students’ attention towards the 
missing necessary property of the ninety degrees angles of the rectangle. He expected 
that students would experience conflict through the figure, identifying that the property 
is same but the figure looks different from rectangle, but is surprised when student 
agrees. It made student realise the mistake and change the answer. However, in 
continuation of the pattern of giving reason and justification for their response in 
previous task, the student S2 justifies their response by identifying that angles are not 
ninety degrees which is the necessary property of the rectangle. Thus, by using the 

 Figure 1: Parallelogram 
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counterexample, the teacher was able to highlight the need of the necessary property 
of angles being ninety degrees and help students take the step towards arriving at the 
minimal definition. One can still doubt, however, that whether the students have 
understood the concept of opposite sides being parallel too since this property can be 
deduced from opposite sides being equal. Identifying that this point needs to be 
discussed, again involves both SMK of properties and PCK of selecting the points to 
be discussed an assessed for understanding. The discussion returns to this point in the 
following transcript when the teacher asked the students to recognise a rotated 
parallelogram (not in horizontal or vertical orientation).  

67 T: What is this? 
68 S chorus: Rectangle  
69 S1: In rectangle opposite sides should be equal and ninety degree angle should 

be there. (In response teacher points to the figure drawn earlier of the 
rectangle and the parallelogram.) 

70 S2: Opposite sides are equal but … 
71 S3: First one is a rectangle because opposite sides are equal. In parallelogram, 

it is not necessary to have a ninety degrees angle.  
73 S4: Rectangle can be called as parallelogram because… but we cannot call a 

parallelogram as a rectangle.  
75 Teacher repeats the assertion by S4 followed class repeating it in chorus. 

In the above episode, all the students were able to successfully identify a rotated 
rectangle as a rectangle, thus were able to understand that orientation of the figure does 
not constitutes as the property of the figure itself. The students then gave their 
observations which represents the modified definition including the necessary property 
and statements of generalisations about parallelogram by S3 and relation between 
rectangle and parallelogram by S4. The generalisation by S3 is correct while that of S4 
is partially incorrect. Teacher not evaluating and repeating the S4’s assertion in line 73 
indicates gap in SMK of not being able to correctly evaluate a generalisation which is 
behind the gap in PCK of not identifying students’ misconception and ways to address 
students’ misconception. In line 73, student is arguing visually considering the static 
figure of a parallelogram always having two acute angles and two obtuse angles and 
thus excluding the rectangle from the category of the parallelogram. It is confirmed 
that the teacher agrees with this line of thinking, since in the next task of analysis of 
square and rectangle, the teacher concludes that square can be a rectangle since it fulfils 
all the necessary properties of the rectangle (correct) but incorrectly concludes that 
rectangle cannot be made into a square and thus is not a square. This is also reasoning 
based on empirical nature of drawing where the argument is based on physical 
properties of drawing rather than mathematical properties. There is also a gap in the 
use of mathematical language as the teachers is not careful in use of qualifiers or terms 
that indicate generality like “All squares are rectangle” is a different statement from 
“A rectangle can become a square” constraining thinking in generality of shapes. Thus 
although the norms for giving reasons and articulating thinking have been established, 
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the knowledge demands during teaching indicate gaps in teachers’ knowledge about 
the process and nature of class inclusion especially the process of generalisation and 
therefore students’ understanding fall through the cracks. 
Shruti’s discussion on class Inclusion 
We now discuss an episode from Shruti’s class on 30 July 2018 wherein a similar 
discussion took place about the relationship between square and the parallelogram. 
Here the teacher was discussing a challenging example from the module (rhombus) 
and was asking students to evaluate if it was a square or not. Students identified that it 
is not a square and some identified it as a rhombus while others as a parallelogram. 
When students were not able to articulate what a parallelogram is, the teacher asked 
the students to make different figures of parallelogram and herself identified the 
property of a parallelogram as “one who has opposite sides equal and parallel”. What 
happened afterward is given in transcript below. 

96 S4:  2 acute angles and 2 obtuse angles  
97 T:  Very good! What is the main property? 
98 S chorus:  All sides equal  
99 T:  It is not necessary. (Draws a parallelogram with one pair of sides longer in 

horizontal orientation) Is this not a parallelogram? 
100 S chorus:  Opposite sides are parallel… 
101 T:  (Draws a rectangular candy and explains) Opposite sides will not ever meet, 

the angles of the parallelogram cannot be ninety degrees…. It is always 2 
acute angle and 2 obtuse angle…. Or in some case, it may be possible…. In 
some cases, rectangle can also be a parallelogram.  

In the above episode, in line 96 the student gave the property of 2 acute angles and 2 
obtuse angles for a parallelogram based on a visual stereotypical image of it. Though 
wrong, teachers praised the student indicating it to be correct but tried to make student 
think about the necessary property as the “main property” and also gave a correct 
counterexample when students responded as “all sides equal” based on the visual figure 
of rhombus in front of them. Just like Sunil, she was also using her knowledge of SMK 
of necessary properties to generate PCK through the use of counterexample in the 
moment of teaching. However, the most interesting part in this episode is when teacher 
realised her own mistake of giving the property on the basis of visual diagram of the 
parallelogram rather than based on its necessary properties in line 101. While 
discussing the properties of the parallelogram, she at first said that angles of a 
parallelogram cannot be ninety degrees but in the next instance after a long pause and 
looking at diagram, she realised that a rectangle is a parallelogram and in that case the 
angles would be ninety degrees. Here we see an instance of teacher deepening her own 
SMK while responding to student’s incorrect assertion. It is possible that this reflection 
may not have occurred during the classroom, would have occurred later or not at all. 
However, the potential of development of SMK as well as PCK while responding to 
and evaluating students’ assertions cannot be denied. 
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THE WAY FORWARD  
The analysis of challenging episodes related to class inclusion from the teaching of two 
teachers struggling to change their practice to encourage students’ reasoning indicates 
how this type of analysis can shed light on the knowledge demands for teaching class 
inclusion in terms of both SMK and PCK and their interdepenencies. The main 
knowledge demand is knowing and supporting the process of generalisation among 
students and to be able to consistently operate at the level of analysing properties of 
figures mathematically rather than perceptually in contingent situations. The episodes 
also illustrate the dynamic nature of mathematical knowledge for teaching. The 
classroom interaction not only gave opportunity for teachers to develop their PCK 
contingent to student responses to develop their thinking through use of 
counterexamples and to identify necessary properties of the shape but also allows 
opportunities to deepen their own SMK through reflection and student engagement. 
However, to support teachers’ exploration and learning from practice one need to 
create safe space for teachers to explore their teaching and learn from their mistakes 
perhaps by reflecting on their teaching with other educators. 
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Research on psychosocial classroom learning environments has a strong tradition due 
to the early discovery of a relationship between positive classroom climate and 
academic performance and motivation, engagement, participation, and attitude 
towards school and teaching. But only recently has attention turned to mathematics 
classroom climate, and more research is needed in this context. In this paper, we 
propose a possible further development of existing classroom climate models 
specifically designed to assess students’ perceptions of psychosocial classroom 
learning milieu in the context of school geometry by using drawings. The results are 
discussed not only with regard to the further development of the adapted classroom 
climate model but also with regard to their theoretical and practical implications. 
INTRODUCTION 
Classroom is a social context for learning, which with time develops a distinct social 
climate having certain demand characteristics (e.g., Evans, Harvey, Buckley, & Yan, 
2009; Moos & Moos, 1978; Trickett & Moos, 1973). As such, classroom climate 
influences students’ growth, and their academic, social and emotional development 
(Evans et al., 2009). The nature of climate in every classroom is unique, as it is a 
function of its different factors, such as norms and rules, student task-related 
interaction, styles of leadership, composition of the group members (e.g., Moos & 
Moos, 1978; Trickett & Moos, 1973). According to Bülter and Meyer (2015) and 
Gruehn (2000), the climate-creating determinants help the teacher to create a working 
alliance with the students, and thus, to achieve positive effects with regard to each 
student’s self-confidence, social behavior, performance, and attitude towards school. 
In contrast, a negative classroom climate may lead to social and emotional behavioral 
disturbances, and thus, have a negative impact on students’ performance (Evans et al., 
2009). Mainly questionnaires have been employed to research this complex construct 
(e.g., Bülter & Meyer, 2015; Fraser, 1989, 1998). However, the use of creative 
methods, such as drawings provides a multi-dimensional, and holistic view of young 
students’ latent experiences in the mathematics classroom (e.g., Ahtee et al., 2016; 
Kuzle, Glasnović Gracin, & Klunter, 2018; Pehkonen, Ahtee, & Laine, 2016).  
Despite several decades of research (e.g., Bülter & Meyer, 2015; Evans et al., 2009; 
Fraser, 1989, 1998; Moos & Moos, 1978) concerning students’ perceptions of the 
classroom learning milieu (e.g., cohesiveness, satisfaction, goal direction), the research 
area on social aspects of classroom environment (e.g., communication, interaction, 
social working structures, norms) is still considered a fruitful and interesting research 
direction (e.g., Hannula, 2012). Furthermore, studies in this area (e.g., Ahtee et al., 
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2016; Pehkonen et al., 2016) do not holistically assess the classroom social 
environment, but rather focus on its few aspects, and thus, do not give a comprehensive 
picture of what is happening in the classroom. In this report, we focus on the classroom 
social climate in the context of school geometry. The goals of this report are twofold: 
(1) to present a modification and further development of existing classroom climate 
models in the context of middle school geometry, and (2) to empirically evaluate its 
utility when using participant-produced drawings. 
THEORETICAL PERSPECTIVE 
The classroom climate refers to shared subjective representation of important 
characteristics of the classroom as a learning environment involving the physical 
environment of the classroom, the social relations between teachers and students or 
students among each other, expectations with regard to performance and behavior, the 
way in which teaching and learning processes take place, and the specific norms and 
values in the classroom (Eder, 2002). Within different disciplines various approaches 
to the conceptualization and assessment of environments have been used (e.g., Trickett 
& Moos, 1973). One often-pursued of these approaches is based on the concept of 
“perceived environment” (e.g., Eder, 2002; Moos & Moos, 1978; Trickett & Moos, 
1973). This approach is characterized on the contention, that the environment of a 
particular setting is defined by the shared perceptions of its members along a number 
of environmental “dimensions” over a longer period of time (Moos & Moos, 1978). 
According to Trickett and Moos (1973), nine dimensions of classroom climate can be 
used in conceptualizing the individual dimensions characterizing diverse psychosocial 
environments. These fall under three general conceptual categories: (1) relationship, 
the degree to which individuals in the environment help and support each other, and to 
which they are involved in the class and its activities (i.e., involvement, affiliation, 
teacher support); (2) personal development, the degree to which self-enhancement can 
occur (i.e., task orientation, competition); and (3) system maintenance and system 
change, the degree to which the environment is orderly, clear in expectations, maintains 
control, and is able to change (i.e., order and organization, rule clarity, teacher control, 
innovation). On the other hand, Evans et al. (2009) conceptualized classroom climate 
as a function of three different components: academic, referring to the pedagogical and 
curricular elements of the learning environment; management, referring to discipline 
styles for maintaining order; and emotional, referring to the affective interactions 
within the classroom. Thus, the classroom climate is a multi-faceted construct “made 
up of a large number of components, which can be reduced to factors in a variety of 
ways” (Evans et al., 2009, p. 141) depending on the type of the environment (Fraser, 
1998). 
We propose a possible further development of existing classroom climate models (e.g., 
Eder, 2002; Evans et al., 2009; Fraser, 1989, 1998; Trickett & Moos, 1973) to better 
understand structure, functions, and processes in a mathematics classroom. This was 
guided by three principles. First, consistency with literature describing characteristics 
of the mathematics classroom. Secondly, individual insider characterization of the 
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classroom through students’ eyes by using drawings. Thirdly, the age-appropriateness 
of the model without sacrificing its depth. We conceptualize classroom social climate 
as a function of three conceptual categories, namely Interpersonal Relationship, 
Personal Growth, and Order. 
Interpersonal Relationship refers to nature, the intensity of personal relationships, and 
the mutual influences of the teacher and the students within the classroom, including 
social, pedagogical and mathematical aspects. The Verbal and non-verbal 
communication of the teacher, Verbal and non-verbal communication of the students 
and Organization are conceptualized as relationship dimensions (see Table 1). 
Dimension Subdimensions Scales 
Verbal and 
non-verbal 
communication 
of the teacher 

Teacher’s position in 
the classroom 

In front of the blackboard, Among 
students, At the desk, Somewhere in the 
classroom 

Support by the teacher Assistance, Positive feedback, Negative 
feedback, Mathematics related question, 
Mathematical statement, Observation, 
Non-mathematical comment, Passive 

Verbal and 
non-verbal 
communication 
of the students 

Students’ position in 
the classroom 

At the blackboard, At the table, Next to 
the teacher, In front of the blackboard, 
Amongst other students, Somewhere in 
the classroom 

Participation Working on assignments at the table/on 
the blackboard, Listening, Responding, 
Questioning, Asking for assistance, 
Review, Discussion, Positive expression, 
Negative expression, Non-mathematical 
comment, Passive 

Affiliation No communication with other students, 
Student-student communication, Student-
student encouragement, Student-student 
help request, Student-student support, 
Negative comments towards other 
students 

Organization 
 

Working method 
 

Teacher-centered instruction (frontal), 
Individual work, Group work, Working 
with a partner, Work/discussion while 
sitting in a (half-) circle 
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Classroom seating 
arrangement 

Traditional classroom arrangement, U-
shaped arrangement, Mixed arrangement, 
(Half-)circle arrangements, Group tables 

Table 1: Description of Interpersonal Relationship category. 
Personal Growth refers to the goal orientation and clarity of the lesson objective. On 
the one side, a lesson goal can be clearly represented by mathematical content or an 
assignment on the backboard, the teacher identifying the goal of the lesson or students 
working on their assignment. On the other side, the lesson objective can be pursued by 
using different teaching materials specific to geometry (e.g., geometric forms, models, 
tools), which can be utilized by class protagonists (teacher, students).  
Order refers to the social norms and maintenance of order in the classroom. Since 
social norms are shared principles of behavior that are considered acceptable in a 
group, not only the teacher, but also the students are responsible for proper conduct, 
keeping order, and behaving properly. 
RESEARCH PROCESS 
For this study, an explorative qualitative research design was chosen. The study 
participants were grade 3-6 students. For the purposes of this paper, we report on 
drawings of 30 grade 5 students from several urban schools in the federal state of 
Brandenburg (Germany). This age group was optimal for the purposes of this paper as 
the quality of drawings was high, and allowed for rich insights into classroom social 
climate. Typical case sampling as a type of purposive sampling was utilized as a way 
of collecting rich and in-depth data. 
Three main sources of data were audio data, student work, and a semi-structured 
interview. Student work was based on an adaptation of the instrument from the work 
of Ahtee et al. (2016) and Pehkonen et al. (2016). The research data were collected in 
a one-to-one setting between a student and the first author of the paper. Each student 
was given a blank piece of A4-paper with an assignment given by a fictional 12-years 
old bright girl by the name of Anna: “Dear _________, I am Anna and new to your 
class. I would like to get to know your class better. Draw two pictures of your 
mathematics lessons. The first drawing should show what your arithmetic lessons are 
like and how you view them. The second drawing should show what your geometry 
lessons are like and how you view them. Include in each drawing your teaching group, 
the teacher, and the pupils. Use speech bubbles and thought bubbles to describe 
conversation and thinking. Mark the pupil that represents you in the drawing by writing 
“ME”. Thank you and see you soon! Your Anna.” After the students had finished 
drawing, the drawings were used as a catalyst for a semi-structured interview. Multiple 
data sources were used to assess the consistency of the results, and to increase the 
validity of the instruments. 
The analysis of drawings involved the first author and another coder coding the data 
independently. The analysis contained the following steps: (1) analysis of drawings 
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with respect to our conceptualization of classroom social climate, (2) confirmation of 
the interpretation by content analysis of the data from semi-structured interview, and 
(3) coding of dimensions and respective subdimensions included in the student oral 
data. Different components of the classroom social climate were first assigned one of 
the categories (1 and 2), before assigning specific subdimensions (3). If the descriptor 
was not given, then both coders discussed together the nature of the classroom social 
climate element before developing a new scale and extended the coding manual. These 
were then validated through an iterative process, and constant comparison in order to 
obtain full agreement. Lastly, the descriptive statistics were calculated. Figure 1 
illustrates the coding with accompanying codes (e.g., D = dimension, letters A to C = 
subdimensions, ordinal numbers = subscales, T = teacher, S = student). The number in 
brackets gives the number of drawn persons who fall into this category. 

 

Coding of 1. category “Interpersonal 
Relationship”: 
D1A.1.T: position in the classroom; in 
front of the blackboard  
D1A.11.T: support by the teacher; 
mathematical statement (“We do 
geometry always with a ruler.”) 
D1B.2.S (8): position in the classroom; at 
the table 
D1B.11.S (8): participation; listening  
D1B.29.S: affiliation; unidentifiable 
D1C.1: working method; frontal 
D1C.7: seating arrangement; traditional 
Coding of 2. category “Personal 
Growth”: 
D2.A1: orientation; goal of the lesson  
D2.B1; teaching material; 2D shapes  
D2.B2; teaching material; 3D shapes  
D2.B3; teaching material; 2D models  
Coding of 3. category “Order”: 
D3A.3: keeping order; unavailable  

Figure 1: An example of coding. 
FINDINGS 
The analysis of the students’ perceptions of geometry classroom learning milieu 
showed that all conceptual categories and respective dimensions of our classroom 
social climate model were present in the students’ drawings. Category Interpersonal 
Relationship: Verbal and non-verbal communication of the teacher was represented 
through the teacher’s position in the classroom and support during the geometry 
lessons. In 70% of the drawings the teacher stood in front of the blackboard, otherwise 
the position of the teacher was at the desk (13.3%), among students (10%) or was not 
drawn (6.7%). In 50% of the drawings, Support by the teacher was not shown or not 
possible to identify. Otherwise, mathematical statement (26.7%), assistance (16.7%), 
and mathematics related question (16.7%) scales dominated. Similarly, Verbal and 
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non-verbal communication of the students was represented through its respective 
subdimensions, namely Students’ position in the classroom, Participation, Affiliation. 
Slightly more than half of the students (56.7%) sat during their geometry lessons at 
their tables and worked on their assignments (26.7%). However, 30% of the drawings 
did not reflect any mathematical thoughts, but included statements such as “I’m tired”, 
“What’s for lunch?”. The drawings did not reveal any elements pertaining to asking 
questions, asking for assistance or making negative statements about geometry. In 
33.3% of the drawings, Participation of the students was either not shown or 
unidentifiable. Affiliation of the students (i.e., cooperation and mutual acquaintance of 
the students among themselves in the classroom) was in 60% of the drawings not 
shown or not possible to identify. However, when this aspect was identified in the 
drawings, the students did not discuss the assignment with other students but rather 
worked quietly on the assignment. The students’ drawings also revealed the overall 
Organization of the assignments and the classroom. With respect to Working method, 
the teacher standing in front of the classroom and teaching, with students making notes 
was present in 50% of the drawings, followed by student individual work (13.3%). 
Group work was represented in one drawing only. In addition, in 26.7% of the 
drawings, the working method was not shown. The chosen working method was 
associated with Classroom seating arrangement. Nearly half of the drawings (43.3%) 
reflected a traditional classroom arrangement with tables in rows. Only a few drawings 
portrayed tables being arranged in U-shape or in groups. However, in 30% of the 
drawings either one table or no tables were drawn so that the classroom seating 
arrangement could not be identified. 
With respect to the category Personal Growth both dimensions, namely Orientation 
and Teaching material were represented in the students’ drawings. The goal of the 
lesson was transparent in 93.3% of the drawings (e.g., mathematical content or 
assignments were illustrated on the blackboard). In addition, in one-third of the 
drawings the mathematical content was indicated by the teacher (e.g., the teacher 
explained how to solve a mathematical problem, the teacher informed the students 
about the lesson plan). To reach the lesson goals, different Teaching materials specific 
to geometry were illustrated, such as 2D shapes (66.7%), 3D solids (26.6%), and 3D 
models (16.7%). Lastly, with respect to the category Order in the majority of the 
students’ drawings (86.7%), behavioral demands on the part of the teacher or the 
students were not drawn. Altogether there were only five instances in three drawings 
where either the students or the teacher instructed students how to behave. 
DISCUSSION AND CONCLUSIONS 
Characteristics of learning environments are powerful predictors of students’ academic 
success (e.g., Evans et al., 2009; Gruehn, 2000). The study results showed that our 
model of classroom social climate was theoretically coherent, and consistent with the 
data generated in the geometry context, with all categories and dimensions being 
present in the students’ drawings. Most students’ drawings represented episodic-
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autobiographical images (De Beni & Pazzaglia, 1995) illustrating the occurrence of a 
single episode (i.e., geometry lesson) at a particular time and place.  
The study results show that positive indicators of classroom social climate were present 
in grade 5 students’ drawings of their geometry lesson. The high proportion of not 
drawn behavioral demands on the part of the students and teachers (86.7%) in the 
category Order is an indicator that the geometry lessons are orderly regulated. If rule 
clarity was not clear, and the teaching discipline explicitly lacked, the share of 
behavioral cues would have been higher. A small percentage (16.7%) of behavioral 
demands on the part of both teachers and students can be an indication that social 
behavior or discipline is insufficient, and thus, would represent a negative teaching 
climate (Evans et al., 2009). Nonetheless, the lack of behavioral demands clearly 
prevails, which is an indication of well-designed lessons with good teaching discipline 
and social behavior of the students (Bülter & Meyer, 2015).  
According to Evans et al. (2009) and Gruehn (2000), improved school performance is 
a favoring factor of a positive classroom climate. This indicator was not explicitly 
found in the data. However, in 93.3% of the drawings the goal of the lessons was clearly 
identified from the students’ perspective. This indicates that in geometry lessons a 
specific teaching goal is being pursued, which may guide the students in the direction 
of increased performance, and the formation of interest in the subject. Bülter and Meyer 
(2015) and Evans et al. (2009) also argued that in classes with positive classroom 
climate increased engagement, and participation can be observed. The drawings 
revealed a broad spectrum of Participation in geometry lessons; while 43.4% of the 
students worked on the assignment at the table or blackboard and 6.7% of the students 
participated in the discussion of the tasks, almost a third of the students (30%) did not 
follow any mathematical thoughts. These divergent results do not allow any conclusive 
statements about the classroom social climate since none of the scales from the 
Participation subdimension clearly dominated.  
This study was an exploratory study with a small sample, so not all elements our 
classroom social climate model were present in the students’ drawings, nor can we 
generalize the results. Furthermore, the absolute frequencies of “unavailable” and 
“unidentifiable” codes of some scales were high. This may indicate that some students 
had difficulties drawing, some aspects can be expressed by drawing in a limited way, 
and the necessity to improve the semi-structured interview guide. 
Despite these drawbacks, drawings have opened up a new way of gaining insight into 
students’ perceptions of psychosocial classroom learning milieu in middle school 
geometry. In practice, the drawings may be used as a classroom tool to promote a 
dialogue between students and their teachers (Anning, 1997). Additionally, they may 
provide teachers with feedback about how their lessons are perceived by students, and 
to plan and implement changes for the future lessons (Anning, 1997). 
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