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PREFACE

The second conference in the row of PME regional conferences was organized in Mos-
cow, Russia on 18–21st of March 2019. This conference aimed to facilitate a dialogue 
between mathematics education community in Russia and international researchers 
in mathematics education. The conference theme was Technology and Psychology for 
Mathematics education, and the participants primarily focused on the psychological 
aspects of mathematical abilities and mathematical processing, as well as on the ef-
ficiency and particularities of the technologically supported learning. However, there 
was a range of presentations about teacher education, teaching methods for diverse 
students, educational issues from a neuroscience perspective, and other aspects of 
mathematics education. 

Fifty-five Russian participants from 16 Russian regions and 32 international and for-
mer-Russian participants from 15 countries, including India, China, and Nepal took 
part in the conference. The conference spanned over four days and for most of the 
time it was run in 2 parallel sessions. Altogether, there were 61 individual contri-
bution, 5 plenary lectures and 2 plenary discussion. The poster session had 21 pres-
entations. The conference was open to the broad audience and about 200 listeners 
attended the conference sessions. 

WELCOMING NOTES

The International Group for the Psychology of Mathematics Education (PME) exists 
to promote lively and productive interaction between mathematics education re-
searchers across the globe. Before the Moscow regional conference, we have organ-
ized 42 international conferences, the PME conference in 2018 attracting 689 partici-
pants to Umeå, Sweden. Yet, we see that some countries have been underrepresented 
in PME conferences. To make it easier for researchers from these areas to join PME, 
we initiated regional conferences. I am very excited that this second regional PME 
conference is organized in Russia. The Russian mathematics education has a strong 
tradition unlike any other, and it is really a loss for PME that so few Russian mathe-
matics educators and education researchers have participated in PME. This confer-
ence has brought together Russian mathematics educators and active PME members. 
We hope that you make new friends and build new research collaboration networks. 
We hope to see more Russian researchers and educators in the future PME confer-
ences. We welcome you to the PME family. 

Markku S. Hannula,
President of The International Group for the Psychology of Mathematics Education 
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Dear Conference Participants, I’m happy to welcome you in Moscow, at Yandex. Yandex 
technologies would have never developed the way they have without Russia’s strong 
traditions in mathematics and fundamental sciences. We believe it is crucial to sup-
port and stimulate young generations’ interest in mathematics and offer them oppor-
tunities in this field. For this reason, we developed a range of educational programs, 
from courses in programming for high school to advanced courses in data analysis to 
a digital learning platform for primary school. Personally, I have drawn great inspi-
ration from teaching programming and algebra, which I have been doing at Moscow 
State University since 2001, and I am now grateful for this opportunity that we have to 
explore the advances of technology and psychology and their application in teaching 
mathematics. 

Dr Elena Bunina, 
Professor of Higher Algebra at Moscow State University, 

CEO of Yandex in Russia, Human Resources Director at Yandex

Russian mathematical education for gifted students is a unique phenomenon in the 
international landscape. Our school of thought in pure mathematics is well known, 
as well as the outstanding results of USSR and Russian school children at the inter-
national competitions in mathematics. Russian scholars also contributed greatly to 
the field of educational and development psychology, and such names as Vygotsky, 
Leontiev, Davydov, and Krutetsky still inspire many specialists all over the world. The 
dialogue between Russia and other countries in the field of research in mathematics 
education evanesced after 1917. I reckon it should be re-established and maintained 
at the new level, as a joint effort of specialists from the variety of disciplines. I believe 
there are many researchers in Russia, who are curious and excited to investigate what 
it means to understand mathematics. How subtle communication between a teacher 
and a student can support the latter, or which aspects of the teaching process can be 
efficiently outsourced to AI, are just two examples of studies that can prove useful 
to improve learning results across the country. Our conference, themed “Technology 
and Psychology for Mathematics Education”, acted as an invitation for the Russian 
researchers to join the international community and to share their experience, results, 
doubts and inspiration. I am happy that conference days were full of discussions, and I 
am looking forward to collaboration projects originating from this conference. 

Anna Shvarts, 
The Conference Chair



12 PME and Yandex Russian Conference 2019

THE INTERNATIONAL GROUP 
FOR THE PSYCHOLOGY OF MATHEMATICS 

EDUCATION (PME)

The International Group for The Psychology in Mathematics Education has been was 
founded at the Third International Congress on Mathematics Education (ICME-3) in 
1976 and is an official subgroup of the International Commission for Mathematical 
Instruction (ICMI).

All information concerning PME and its constitution can be found at the PME website: 
http://www.igpme.org/

THE GOALS OF PME

The major goals of the group are:

• to promote international contact and exchange of scientific information in the 
field of mathematical education;

• to promote and stimulate interdisciplinary research in the aforesaid area; and to 
further a deeper and more correct understanding of the psychological and

• other aspects of teaching and learning mathematics and the implications the reof.

THE FORMER PME PRESIDENTS

Efraim Fischbein, Israel 

Richard R. Skemp, UK 

Gerard Vergnaud, France 

Kevin F. Collis, Australia 

Pearla Nesher, Israel 

Nicolas Balacheff, France 

Kathleen Hart, UK

Carolyn Kieran, Canada 

Stephen Lerman, UK

Gilah Leder, Australia

Rina Hershkowitz, Israel

Chris Breen, South Africa

Fou-Lai Lin, Taiwan

João Filipe Matos, Portugal

Barbara Jaworski, UK
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Yandex

Peter Liljedahl, Canada

Markku S. Hannula, Finland (present)

PME CONFERENCES

The PME conferences are the main annual meetings for the researchers from all around 
the world who are interested in psychology and other research issues in mathematics 
education. During 5 days, the members of PME have the opportunity to communicate 
personally with each other during working groups, poster sessions and many other 
activities. Every year the conference is held in a different country.

REGIONAL PME CONFERENCES

PME provides annual funding for a regional conference to support researchers in re-
gions currently underrepresented at PME. This initiative aims to supportthe develop-
ment of a regional research community that pursues the goals of PME, and by doing 
so, encourage researchers from that region to actively participate in future PME con-
ferences and help them in preparing top quality PME contributions. The first regional 
PME conference: South America was conducted in Chili in 2018. PME and Yandex Rus-
sian conference is the second conference that is funded by this initiative.

PME MEMBERSHIP AND TRAVELLING SUPPORT INFORMATION

Membership is open to people involved in active research consistent with the aims of 
PME, or professionally interested in the results of such research. Membership is on an 
annual basis and depends on payment of the membership fees. PME has between 700 
and 800 members from about 60 countries all over the world.

There is limited financial assistance for attending PME conferences by the researcher 
from underrepresented countries available through the Richard Skemp Memorial Sup-
port Fund.

YANDEX

Yandex is a technological company that makes intelligent products and services that 
help people solve their day-to-day problems both online and offline. Complex tech-
nologies behind Yandex products and services are unique. That is what enables us to 
do things that once would have sounded like magic.

Our team of specialists represents many scientific disciplines, including mathematics, 
data analysis, programming, linguistics, and many others. Besides working on prod-
ucts and technologies at Yandex, some of our experts teach, lecture and train students 
and young specialists.

We use the leading methodological and technological expertise to develop cut-
ting-edge solutions for digital education. Our education platform facilitates person-
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Conference organizasers

alized education in the Russian language and mathematics for primary school. It has 
been tested by 4,200 students in 73 schools in 15 regions in Russia and has received 
overwhelmingly positive feedback. Analytical tools that we provide allow teachers to 
follow the progress of each of their students, pinpoint factors that boost students’ 
performance, and choose the best tactics to achieve top results.

Read more about Yandex at www.yandex.com/company.

CONFERENCE ORGANIZERS

PROGRAM COMMITTEE

Anna Shvarts, Moscow Lomonosov State University, Utrecht University (Chair)

Angelika Bikner-Ahsbahs, Universität Bremen

Keith Jones, University in Southampton

Roza Leikin, University of Haifa

Elena Kardanova, Nat_ional Research University Higher School of Economics

Sergey Polikarpov, Moscow Pedagogical State University

LOCAL ORGANIZING COMMITTEE, YANDEX

Natalia Chebotar

Lyubov Galitskaya

Alexandra Ledneva

Ekaterina Lomachenkova

Anna Smulyanskaya

Anna Shirokova-Koens

Anna Shvarts (PME representative)

SUPPORTERS OF THE CONFERENCE

International Commission on Mathematical Instruction (ICMI)

Institute of Education, National Research University Higher School of Economics

Institute for Mathematics and Computer Science, Moscow Pedagogical State University

Psychological Institute, Russian Academy of Education

Russian Federal Institute of Education Development

National Institute of Quality Education
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Format of the presentations and Reviewing process

Russian Psychological Society

Freudenthal Institute for Science and Mathematics education, Utrecht University

FORMAT OF THE PRESENTATIONS AND REVIEWING PROCESS

The participants were invited to submit contributions in one of the following formats. 

RESEARCH REPORTS (RR)

Research Report is 20-minute talk presenting original piece of research in mathemat-
ics education, followed by a 20-minute discussion. Proposal for Research Report can 
have the maximum length of eight pages. It should provide the theoretical framework, 
preliminary results, and a discussion of these results. It is important to state what is 
new in this research, how the study builds on past findings, and/or how it has devel-
oped new directions and pathways. 

We have received 48 proposals for a Research Report; each of them was reviewed by 
3 experts (2 international and 1 Russian). Four research Reports were accepted after the 
first stage of review and are 15 RR were accepted after revision. 11 RR were invited to re-
submit as Oral Communication and 12 were invited to resubmit as Poster Presentation. 

ORAL COMMUNICATIONS (OC)

Oral Communication is a 10-minute talk presenting a study in a context of broader re-
search in mathematics education, followed by a panel discussion in a group of authors 
on the same or related subject. Proposal for Oral Communication is one page long. 
The number of submitted OC proposals was 37 and 7 RR proposals were resubmitted 
as Oral Communication. In the end, 25 Oral Communications were accepted for the 
presentation at the conference.

POSTER PRESENTATIONS (PP)

Poster Presentation demonstrates a piece of research in a visual format with a flexibly 
structured discussion during poster session. This format most benefit the research 
that is best communicated visually. The number of submitted PP proposals was 32, 
and 1 RR was resubmitted as a Poster Presentation. In the end, 21 Poster Presentations 
were accepted.

Altogether, we received 123 submissions and 65 of them were accepted for the pres-
entation.

LIST OF THE REVIEWERS

We are grateful to all reviewers who guaranteed the high-level of the scientific pro-
gram:
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Format of the presentataions and Reviewing process

Hatice Akkoç, Turkey

Mette Susanne Andresen, Norway

Samuele Antonini, Italy

Michal Ayalon, Israel

Marita Barabash, Israel

Patrick Barmby, South Africa

Angelika Bikner-Ahsbahs, Germany

Alexey Vladislavovich Borovskikh, 
Russia

Ludmila Ivanovna Bozhenkova, 
Russia

Dmitry Chumachenko, Russia

Csaba Csikos, Hungary

Cris Edmonds-Wathen, Australia

Laurie Edwards, United States

Osnat Fellus, Canada

Emanuila Gelfman, Russia

Raisa Guberman, Israel

Markku S. Hannula, Finland

Keith Jones, United Kingdom

Elena Kardanova, Russia

Mahmut Kertil, Turkey
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Christina Krause, Germany
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THE EVOLUTION 
OF MATHEMATICS EDUCATION RESEARCH: 

RUSSIA'S PLACE IN THIS GLOBAL MOVEMENT

Norma Presmeg
Illinois State University, Normal, USA

After outlining differences between research in pure mathematics, and mathematics ed-
ucation research, I highlight aspects of the founding and evolution of the International 
Group for the Psychology of Mathematics Education (PME), from its inception in 1976. 
This evolution entailed changes in theoretical paradigms, and in methodologies for re-
search in mathematics education that were considered legitimate, ranging from an ear-
ly paradigm in which only rigorous statistical research had scientific standing, through 
several decades of increasing acceptance of the value of qualitative research, to a more 
recent perception that quantitative and qualitative research methodologies have different 
purposes, and that each has its place—resulting in increasing use of conceptual lenses that 
make use of mixed methods of various types. In Russia, the Soviet psychologist V.A. Krutet-
skii was ahead of his time in recognizing the potential for depth in research that involved 
clinical interviewing of ‘capable’ mathematics students with various individual differences, 
in their approach to types of mathematical problems that he collected and categorized. 
I highlight Krutetskii’s book, first published in Russian in 1968, which was translated into 
English in 1976, and which formed a strong theoretical core for my own initial research on 
visual thinking in teaching and learning mathematics, starting in 1982 and continuing for 
several decades.

1. MATHEMATICS RESEARCH AND MATHEMATICS EDUCATION 
RESEARCH. WHAT ARE WE TALKING ABOUT?

Mathematics is central to the endeavors of mathematicians, mathematics educators, 
and mathematics education researchers alike. However, it appears at times as if we 
are talking past each other, because there are distinct fields in question. The debate 
initiated by Ted Eisenberg and elaborated in the book edited by Fried and Dreyfus 
[2014] — Mathematics and Mathematics Education: Searching for Common Ground — is 
still relevant. Thus I constructed a diagram to portray the distinctness of mathematics 
itself, mathematics education, and research in pure mathematics and in mathematics 
education respectively [Presmeg, 2014]. Each of the subsets in the ellipses (Fig. 1) may 
be regarded as the topic of the wider set in which it rests. Mathematics, mathematics 
education, and mathematics education research may be conceptualized as being nest-
ed, like Russian dolls, with mathematics at the center, nested in mathematics educa-
tion, which is nested in turn in mathematics education research. In contrast, the topic 
addressed in pure mathematics research is mathematics. The topic of mathematics 
education is also mathematics; and the topic of mathematics education research in not 
mathematics per se, but mathematics education.
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On the one hand, mathematicians are engaged in research in various fields of mathe-
matics, and in mathematics education insofar as they teach mathematics. On the oth-
er hand, mathematics education researchers are not engaged primarily with research 
in pure mathematics, except insofar as they may be also mathematicians. Their re-
search embraces the nested model of various aspects of the “complex human worlds” 
([Presmeg, 1998], with hints of Bruner’s Actual Minds, Possible Worlds, 1986) involved 
in the teaching and learning of mathematics at all levels. It is clear from this concep-
tualization that mathematics education research cannot simply be a branch of applied 
mathematics. Unlike, for instance, business calculus — which could be regarded as a 
branch of applied mathematics — in mathematics education research we are not ap-
plying the principles of mathematics to the topic of the research, namely mathematics 
education.

As I have pointed out many times (e.g., [Presmeg 1998]), mathematics as a field is 
thousands of years old, and mathematicians have taught mathematics for thousands 
of years, but mathematics education research as a field in its own right is less than a 
century old, notwithstanding the important 1908 meeting in Rome at which the Inter-
national Commission on Mathematics Instruction (ICMI) was founded. The Interna-
tional Mathematics Union (IMU) was founded in 1920 as an international community 
of mathematicians [Furinghetti, Giacardi, 2010] and ICMI is an affiliate of the IMU. 
I attended the bright celebration of the ICMI centenary meeting in Rome in 2008, and 
I appreciated the founding of ICMI, and the founders who were all eminent mathema-
ticians. But mathematics education research has matured as a field in the last half-cen-
tury, as evidenced by a proliferation of journals, conferences, and kinds of research 
that it embraces. Despite the title of Sierpinska and Kilpatrick’s [1998] edited book 
that followed a high-level conference on mathematics education research’s search for 
identity, we are still trying to find out who we are! But it is clear that mathematics ed-
ucation research is now an established field, and many universities internationally are 
acknowledging this fact, e.g., by establishing mathematics education professorships. 

Math 
Education

Pure Math
Research

Math Ed 
Research

RESEARCH
MATHEMATICIAN

MATHEMATICS 
EDUCATION 
RESEARCHER

Contemporary theory
Psychology
Philosophy
Sociology
Linguistics
Anthropology
Etc.

MATH

Fig. 1. Mathematics at the center 
of mathematics research and mathematics education research
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The experience of Sweden in this regard is a case in point [Presmeg, 2014]. I elaborate 
on this evolution as it appears in the history of PME, in the next section.

2. THE INTERNATIONAL GROUP FOR THE PSYCHOLOGY 
OF MATHEMATICS DUCATION (PME)

At the meeting of the Third International Congress on Mathematical Education 
(ICME-3)  in 1976, several eminent scholars, including Hans Freudenthal from The 
Netherlands, decided to establish an international association devoted to mathemat-
ics learning and teaching (PME) which would meet annually in various countries. The 
PME-1 meeting was held at Utrecht in 1977, with 86 participants. PME-2 was in Os-
nabrück, Germany, and PME-3 in Warwick, England. I was privileged to attend PME-4, 
in Berkeley, California, in 1980. With its high-level presentations and valuable inter-
national interaction among participants, it quickly became my favorite conference: 
I have now attended 29 PME meetings, 27 of them consecutively, from PME-12 in 
Veszprem, Hungary, in 1988, to PME-38 in Vancouver, Canada, in 2014, where there 
were 865 participants. This Regional PME conference in Moscow includes an invita-
tion to all Russian researchers concerned with mathematics education to take their 
place in this fruitful international association.

As suggested by the name of the PME organization, psychology was a dominant theo-
retical field in its early years. However, as perceptions of teaching and learning mathe-
matics evolved, it was recognized that social and cultural aspects of this field were just 
as important as individual ones, and for several years in the 1990s there was lively de-
bate about changing the name of PME to be more inclusive in its focus. For historical 
reasons the name did not change, but in its inclusiveness PME has evolved to reflect 
the paradigms of the field, both theoretically and empirically. This evolution of the 
field included changes in conceptual lenses and methodologies, which I address in the 
next section.

3. QUANTITATIVE AND QUALITATIVE METHODOLOGIES

In an age when only rigorous quantitative studies were deemed scientific in Western 
educational research, Krutetskii [1976] wrote as follows:

It is hard to understand how theory or practice can be enriched by, for instance, the research of 
Kennedy, who computed, for 130 mathematically gifted adolescents, their scores on different 
kinds of tests and studied the correlation between them, finding that in some cases it was signif-
icant and in others not. The process of solution did not interest the investigator. But what rich 
material could be provided by a study of the process of mathematical thinking in 130 mathemat-
ically able adolescents! [p. 14]

According to this statement, in the wider field he was ahead of his time. During the 
decades of the 1980s and 1990s, the fine grain of qualitative research to which Krutet-
skii was referring overtook the quantitative paradigm and became dominant. My own 
early research, starting in 1982 and inspired by Krutetskii’s work, involved both mild 
statistical analyses to determine trends, and the deeper think-aloud clinical interviews 
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that he promulgated [Presmeg, 1985]. It was the qualitative methodology, rather than 
the quantitative, that allowed for depth of understanding of the mathematical thought 
processes of the 52 visualizers in my study, and their teachers. Krutetskii’s contribu-
tion is outlined further in the next section. Currently there is greater appreciation 
for the potential and place of both quantitative and qualitative research in our field, 
because their strengths and disadvantages complement each other — they have dif-
ferent purposes. The generalizability of statistical methods is counterbalanced by the 
finer insights of qualitative interviews and observations, resulting in increasing use of 
mixed methods of various types in mathematics education research [Bikner-Ahsbahs, 
Knipping, Presmeg, 2015]. 

In Soviet Russia, no mental testing was done for psychological purposes after 1936, al-
though achievement tests were still used in schools. Krutetskii [1976, Ch. 2] criticized 
the excessive use of psychological testing using factor analysis in the West, although 
he did use factor analysis himself, for the purpose of supporting his position [p. xv]. 
The significance of his work is that he demonstrated powerfully the advantages of 
clinical interview techniques using think-aloud procedures, for depth of understand-
ing of individual differences in children’s mathematical processing.

4. KRUTETSKII’S WORK ON THE PSYCHOLOGY 
OF MATHEMATICAL ABILITIES IN SCHOOLCHILDREN

Vadim Andreyevich Krutetskii (1917–1991) graduated in 1941 with a degree in eco-
nomic geography from Moscow State University, and received his PhD in 1950 from 
the USSR Academy of Pedagogical Sciences in Moscow, where he remained for nearly 
30 years, becoming deputy director of the Research Institute of General and Educa-
tional Psychology (Wikipedia). His work on individual differences became known to 
English-speaking scholars in 1963, when he presented a brief paper on mathematical 
abilities at the 17th International Congress on Psychology in Washington DC. Four 
of his papers were translated into English in 1969 for the publication of Vol. 2, The 
Structure of Mathematical Abilities, in the series Soviet Studies in the Psychology of 
Learning and Teaching Mathematics. However, it was the translation of his 1968 book 
(Soviet monograph, 431 pages, 25,000 copies) into English in 1976 with the title The 
Psychology of Mathematical Abilities in Schoolchildren, that caused the editors Jeremy 
Kilpatrick and Izaak Wirszup to consider the potential impact of his work to be com-
parable to that of Piaget.

Although Krutetskii [1976] on the basis of his research worked out a typology of the 
processes of thinking of “mathematically able adolescents”, his research extended to 
what he called both “capable” and “incapable” high school mathematics students [Kru-
tetskii, 1969], and to the individual differences amongst them. He defined ability as “a 
personal trait that enables one to perform a given task rapidly and well, in contrast to 
a habit or skill, which is a characteristic of one’s activity” [Krutetskii, 1976, p. xiii]. The 
types of abilities (rather than ‘ability’) that he identified based on the extant literature 
at the time, and on his research results, were as follows:
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1. Analytic, with a predominant verbal-logical component; visual-pictorial compo-
nents and spatial concepts are weakly developed, but are not required by capable pu-
pils in this category.

2. Geometric, with a very strong visual-pictorial component dominating an above-av-
erage verbal-logical component. These pupils feel a need for visual thinking.

3. Harmonic, with the verbal-logical and visual-pictorial components in equilibrium. 
One subset of pupils in this category — abstract-harmonic — can use visual supports 
but they do not help; a second subset — pictorial-harmonic — can use visual supports 
and they are helpful.

Krutetskii’s [1976, p. 350] analysis of the structure of mathematical abilities — distin-
guishing what he called “very capable and capable” mathematics schoolchildren from 
those called “incapable” — included the following components:

1. Obtaining mathematical information. The ability for formalized perception of math-
ematical material, for grasping the formal structure of a problem.

2. Processing mathematical information. Abilities for logical thought, generalization, 
curtailment, flexibility, clarity and logical economy, and reversibility.

3. Retaining mathematical information. A generalized memory for mathematical rela-
tionships.

4. General synthetic component. A mathematical cast of mind — seeing the world 
through mathematical eyes.

It is noteworthy that swiftness of processing, computational abilities, memory for 
symbols, numbers and formulas, and even abilities for spatial concepts and visualizing 
abstract mathematical relationships, were not included in this structure — they were 
optional for high performance! These aspects determined the type of mathematical 
processing, not its efficacy.

In the remainder of this paper, I shall concentrate on the strengths and difficulties 
associated with visualization in teaching and learning high school mathematics. As a 
brief introduction, consider a problem from Series XXIII, Vol. 2 of Krutetskii’s [1976] 
problem bank:

How much does a brick weigh, if it weighs 1 kg plus half a brick? [p. 158]

How many of you solved it using an algebraic equation (mentally or written down)?

How many of you used a visual image (either imagined or drawn in a picture)?

Some people imagine a scale with a brick on one pan, and a 1 kg weight with half a 
brick in the other. Then they discard half a brick from both sides: the scale is still in 
equilibrium. Thus half a brick weighs 1 kg, and the whole brick weighs 2 kg.

5. VISUALIZATION RESEARCH BASED ON KRUTETSKII’S FORMULATION

Based on Krutetskii’s work, I used a model (e.g., [Presmeg, 2014, p. 211]) that chal-
lenged the analytical-visual dichotomy that had been used in early research studies in 
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this field (e.g., [Lean, Clements, 1981]). Following Krutetskii’s [1976] formulation, the 
strength of logic (and analysis) determines the effectiveness of mathematical problem 
solving, whereas the presence or absence of visualization determines its type. That 
is, all mathematical thinking involves logic (which could be depicted on the X axis, 
Fig. 2), but mathematical visualization is orthogonal to it (on the Y axis) and could be 
present or absent. My characterization of visualization from the 1980s went beyond 
Bishop’s [1980] distinction between Interpreting Figural Information (IFI) and Visual 
Processing (VP), although these provided a starting point. Krutetskii’s [1976] theoret-
ical formulation was central in my research. For him, strength of logic determines the 
effectiveness of mathematical thinking, whereas visualization is optional. There is no 
duality between logical analysis and visualization in an either-or sense.

My research identified individuals in all four quadrants of this model [Presmeg, 1985] 
according to their mathematical logic and preference. In my work, visualization could 
be of the form of mental visual imagery (internal representations) — but it could also 
be of the form of inscriptions of various kinds (external representations). In keeping 
with the Peircean semiotic framework I used in my later research [2006], my working 
definition is that a visual image is a mental sign vehicle involving visual or spatial in-
formation, whereas inscriptions are external sign vehicles.

PREFERENCE FOR VISUALIZATION IN MATHEMATICS

In mathematics, sign vehicles are often of a visual nature; even algebraic symbolism 
has a structure and needs to be seen, either mentally or in written form. However, one 
might talk more broadly about individual preferences for visualization in mathemat-
ics, and guided by the work of Suwarsono [1982] who worked with seventh graders in 
Australia, I constructed an instrument to measure the mathematical visuality of high 
school students (grades 11 and 12) and their mathematics teachers. Although most of 
the problems of Krutetskii’s Series implicitly imparted information about the prefer-
ences for visual thinking of his interviewees, the instrument I constructed was designed 
to measure such preferences explicitly. I collected a ‘problem bank’ of several hundred 
problems, some of which were drawn from other sources (e.g., [Kordemsky, 1981]) and 

Fig. 2. Orthogonal axes for logic and visualization in mathematics

Strength of logic

Strength of visual processing
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some from Krutetskii’s [1976] Series XXIII–XXVI, although no diagrams were inclu-
ded in my instrument because they might induce visual thinking. These were all ‘word 
problems’ without any figural content, which were rigorously pilot-tested for solution 
with and without visual means. Parts A (6 items) and B (12 items) of the preference in-
strument were designed for students in the last years of high school; Parts B (the same 
12 items) and C (6 more difficult items) were intended for their mathematics teachers. 
After standardization and checks for validity and reliability, the instrument was used 
to select teachers of a range of styles, and visualizers in their grade 12 mathematics 
classes. A visualizer is a person who prefers to use visual methods (including visual im-
agery) to solve problems that are capable of solution by visual and nonvisual means, 
as in my instrument. The frequency distribution graphs of visuality scores indicated 
that for most populations this frequency follows a normal, Gaussian, distribution. But 
there are people at both ends of the scale: some who seldom, if ever, feel the need to 
visualize, and others for whom it is not an option, they always feel the need. Those 
whose visuality scores were above the median were taken to be the visualizers. 

Briefly, the results of this initial research [Presmeg, 1995] were surprising in several 
ways. After a year of intensive observation of lessons in the mathematics classes of 
13 teachers, and clinical interviews with 54 visualizers in their classes, data analysis 
yielded the following results:

• For the teachers, a Teaching Visuality (TV) score (based on triangulation of obser-
vations, interview data with teachers and students, analyzing 12 elements of their 
teaching) was only weakly correlated with the Mathematical Visuality scores they 
obtained on the preference instrument (Spearman’s rho = 0.404). According to the 
TV scores, the teachers fell neatly into three groups (Table 1): visual, nonvisual, 
and a middle group that used visual means in their teaching, but also stressed ab-
straction and generalization. It made sense that some teachers who had little pref-
erence for visual methods in their solving of mathematical problems, would never-
theless use visualization in their teaching because they believed it was beneficial 
for their pupils. 

• For the visual students, five different kinds of imagery were identified as they 
solved mathematics problems of various kinds from the school-leaving national 
examinations of previous years: concrete pictorial imagery; kinaesthetic (involving 

Table 1
Three groups of teachers, according to their Teaching Visuality scores 

Nonvisual Group Middle group Visual Group

Teacher Score Teacher Score Teacher Score

Mrs Crimson 2 Mr Blue 7 Mr Red 9
Mr Black 3 Mrs Turquoise 7 Mrs Gold 9
Mr Brown 4 Mrs Green 7 Mrs Silver 10
Mr White 3 Mr Grey 6 Mrs Pink 9

Miss Mauve 10
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physical movement); dynamic (the image itself is moved or transformed), memo-
ry images of formulas (often involving spatial components); and pattern imagery 
(pure relationships stripped of concrete details).

• All the difficulties experienced by these visualizers involved generalization in 
some way. Prototypical images could curtail flexibility and limit processing. Con-
crete imagery often had mnemonic advantages, but was not helpful unless the lim-
itations could be overcome. There were two ways in which generalization could 
be achieved, namely, through concrete imagery that was metaphoric, capturing a 
mathematical principle or relationship; and through pattern imagery, that was in 
itself of a generalized nature, depicting pure mathematical relationships.

• The visualizers in classes of nonvisual teachers struggled, attempting to memo-
rize blindly. But the visualizers with visual teachers also struggled! Their teachers 
were enthusiastic in their visual teaching, but did not understand the generaliza-
tion difficulties with which their visual students were struggling — which were not 
problems for the teachers themselves. It was the teaching by teachers in the middle 
group that was most beneficial for the visualizers, enabling them to use their pre-
ferred visual mode without its limitations.

When this early research was conducted, there were few studies in this field. Subse-
quently, research on visualization became a mainstream category, as reflected in the 
increasing number of research reports in this area presented in PME conferences (see 
the historical account by Presmeg in 2006, which documents such research in PME 
1976–2006). Many of these later studies addressed how visualization could best be 
incorporated in the mathematics curricula at various levels. There is still scope especi-
ally for research that incorporates the changing nature of visualization caused by the 
explosion of technology and its availability in the classroom. In my chapter in the first 
PME Handbook [Presmeg, 2006], I put forward 13 “big research questions”, many of 
which still offer opportunities for scientific studies that forward our knowledge in this 
field, started by Krutetskii so many decades ago. These questions were used in a clo-
sing commentary to analyze the papers in an issue of ZDM — The International Journal 
on Mathematics Education, which brought the field of research on visualization up to 
date at that point [Rivera, Steinbring, Arcavi, 2014]. These questions were as follows:

1. What aspects of pedagogy are significant in promoting the strengths and obviat-
ing the difficulties of use of visualization in learning mathematics?

2. What aspects of classroom cultures promote the active use of effective visual 
thinking in mathematics?

3. What aspects of the use of different types of imagery and visualization are effec-
tive in mathematical problem solving at various levels?

4. What are the roles of gestures in mathematical visualization?

5. What conversion processes are involved in moving flexibly amongst various math-
ematical registers, including those of a visual nature, thus combating the phenom-
enon of compartmentalization?
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6. What is the role of metaphors in connecting different registers of mathematical 
inscriptions, including those of a visual nature?

7. How can teachers help learners to make connections between visual and symbolic 
inscriptions of the same mathematical notions?

8. How can teachers help learners to make connections between idiosyncratic visual 
imagery and inscriptions, and conventional mathematical processes and nota-
tions?

9. How may the use of imagery and visual inscriptions facilitate or hinder the reifica-
tion of processes as mathematical objects?

10. How may visualization be harnessed to promote mathematical abstraction and 
generalization?

11. How may the affect generated by personal imagery be harnessed by teachers to 
increase the enjoyment of learning and doing mathematics?

12. How do visual aspects of computer technology change the dynamics of the learn-
ing of mathematics?

13. What is the structure and what are the components of an overarching theory of 
visualization for mathematics education? [Presmeg, 2006, p. 227].

6. AFTERWORD: KRUTETSKII’S LEGACY 
IN THE PSYCHOLOGY OF MATHEMATICS EDUCATION (PME)

Krutetskii’s Series of problems in 26 categories [1976, Ch. 8, p. 98ff.], which he used 
for qualitative and quantitative research, are still a treasure trove for researchers 
interested in school mathematics teaching and learning, not only in the area of pref-
erence for visualization in mathematics, but concerning all aspects of the effective 
fostering of the components of mathematical abilities through teaching. His careful 
categorization and gradation of the problems in the Series provides a groundwork 
that has been scarcely touched by researchers. The categories of problems spanned 
all of the elements of the Structure of Mathematical Abilities that his analyses con-
firmed: 

Obtaining mathematical information (interpretation of a problem): Series I–IV

Information processing  (generalization): Series V–XII

 (flexibility): Series XIII–XVI

 (reversibility): Series XVII

 (reasoning and logic): Series XVIII–XXI

Information retention (mathematical memory): Series XXII

Typology (types of mathematical ability): Series XXIII–XXVI

In closing, I illustrate the advantages of visual thinking, especially with the affor-
dances of today’s technology, using some of Krutetskii problems from his Typology 
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series, which were also part of Section C of my preference for visualization instrument 
(called the Mathematical Processing Instrument: MPI). The following problem [Ibid., 
p. 159], which he took from Kordemsky, was the final problem in the section of the MPI 
intended for high school mathematics teachers:

C-6: A train passes a telegraph pole in a quarter of a minute, and in three quarters of 
a minute it passes completely through a tunnel 540 meters long. What is the train’s 
speed in meters per minute, and its length in meters?

The cognitive complexity of this problem seems to reside in synchronizing the pole 
and the tunnel. Many people resort to algebraic solutions. However, a creative visual 
solution to the problem is as follows (Fig. 3).

The first segment of the journey is where the train is before it enters the tunnel. 
Each segment takes the train a quarter minute. It takes the front of the train half 
a minute to go the length of the tunnel. Thus, the speed of the train is 540 × 2 = 
= 1080 metres/minute, and the length of the train is half the length of the tunnel, 
i.e., 270 metres.

In my original research [Presmeg, 1985] some of the participants drew a picture of 
the train, complete with engine and coaches and smoke emerging from the stack, in 
a diagram that elaborated on the abstract one in Fig. 3. The concrete details seemed 
unnecessary. However, Susana Carreira ((Personal email communication, 2014); 
[Presmeg, 2018]) pointed out that with today’s available technology, it is easy to add 
concrete details to the picture, as she demonstrated (Fig. 4). Such details could be im-
portance resources in students’ sense making, and could enhance their positive affect 
and incentive to solve the problem. Unlike the algebraic process, the visual method 
yields an instant solution.

Pole
Bridge 

(or tunnel)

540 m

1/4 minute 1/4 minute 1/4 minute 1/4 minute

Fig. 4. Pattern imagery and concrete imagery: Susana’s creative concrete solution

Fig. 3. A creative visual solution to the Train in Tunnel problem

Pole



29PME and Yandex Russian Conference 2019

N. Presmeg

Two visual solutions provided by interviewees to the third problem in Section C of the 
MPI, are shown in Fig. 5 and 6.

C-3: A boy walks from home to school in 30 minutes, and his brother takes 40 minutes. 
His brother left 5 minutes before he did. In how many minutes will he overtake his 
brother?

Finally, some problems are less visual in the sense that it is more difficult to use a 
visual solution than an algebraic one for most people. Nevertheless, visualizers natu-
rally and creatively solve them visually (e.g., Fig. 7)!

C-4: An older brother said to a younger, “Give me eight walnuts, then I will have 
twice as many as you do.” But the younger brother said to the older one, “You give 
me eight walnuts, then we will have an equal number.” How many walnuts did each 
have?

I have given an account only of the work of Krutetskii in the psychology of mathe-
matics education (PME) in Russia. Taking into account the rich legacy, which will be 
elaborated by others in this conference, of other Russian researchers who have con-
tributed to mathematics education both theoretically and empirically, I look forward 
to Russian scholars’ further contributions to the international field of research in 
mathematics education.

Fig. 5. A visual solution to the boys walking to school problem

Time in minutes
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Fig. 6. A solution using the metaphor of a clockface

Boy leaves at 10:00 (reference point)

Brother leaves at 9:55 

    *Boy overtakes brother

 at 10:15

Brother arrives at 10:35  
Boy arrives at 10:30
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C-4. Solution 2: I drew a diagram to represent the number of walnuts.
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RESEARCHING VYGOTSKY, AND RESEARCHING 
WITH VYGOTSKY IN MATHEMATICS EDUCATION

Stephen Lerman
London South Bank University, London, UK

Vygotsky’s approach to child development has had, and continues to have, a major impact 
on teaching and learning and on research in education. In this talk I will show some of that 
work and its significance in the field of mathematics education, whilst pointing to misun-
derstandings circulating in the community. Vygotsky died young, aged just 37. It is evident, 
given how he developed and changed his ideas as he approached death, that he had so 
much more to say but did not have time to write enough nor elaborate fully his theory. 
Thus we continue to research him and his ideas, as well as work to apply his insights in our 
studies of teaching and learning. I propose future directions for research in mathematics 
education building on Vygotsky’s thought.

INTRODUCTION

The non-Russian speaking world came late to Vygotsky’s work; the education field 
even later. Theories of teaching and learning go back many millennia, in Greece back 
to Socrates through Plato, for example, and many Chinese scholars believe the history 
of education in China can be traced back at least as far as the 16th century BC, with 
Confucius being a major influence from the fifth century BC. For thinkers such as 
these, ideas and concepts concerning how people learn and how people should learn, 
as well as related theories of how teaching should be framed, were derived from their 
philosophies of humanity and culture. In the last 100 years or so educationalists have 
turned, in large part, to theories in psychology and in particular to what psychologists 
have to say about how the human mind develops.

We have been very fortunate to have two great thinkers and researchers in child de-
velopment in the twentieth century, both born in the year 1896: Jean Piaget and Lev 
Semyenovich Vygotsky. We know that Vygotsky read Piaget’s writings. Indeed he wrote 
a preface for the Russian edition of Piaget’s first two books, published in 1932 by Go-
sizdat, the State Publishing House founded in Russia in 1919. Towards the end of his 
life, when writing about verbal communication, he wrote the following:

Piaget: the emergence of dispute = the emergence of verbal thinking. All forms of verbal com-
munication between adult and child later become psychological functions. A general law: Every 
function appears on the scene twice in the child’s cultural development, i.e., on two levels, first 
the social, and then the psychological, first between people as an interpsychological category, 
and then within the child. Cf.: La loi du dkca la ge [The law of “blocking” or shifting-French] in 
Piaget [Vygotsky, 1989, p. 58].

Thus he expressed appreciation of Piaget but also pointed out, there and in many 
other places, where he disagreed with Piaget. It seems that Piaget did not encounter 
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Vygotsky’s work until some decades after Vygotsky’s death. Much has been written 
about the differences between their thinking (see e.g., [Lerman, 1996; Steffe, Thomp-
son, 2000; Lerman, 2000a]) and whether their theories can be somehow merged (see 
e.g., [Confrey, 1994]). Perhaps Bruner’s explanation of their differences is the clearest: 

So should we try to combine Piaget and Vygotsky into a common system in the hope of explain-
ing both extremes of this astonishing human variability? I think that would be naïve. The justi-
fiable pedagogical optimism of cultural revolutionaries is not just the sunny side of the equally 
justified stoicism of principled pedagogical “realism”. The two perspectives grow from different 
world views that generate different pedagogical strategies, different research paradigms, perhaps 
even different epistemologies, at least for a while. Better each go their own way. Let the Diony-
sian partisan activists specialize in finding leverages of change — e.g. how collaborative learning 
environments empower learners, what scaffolding helps learners over what seemed before to be 
“innate” constraints. But also let the Apollonian realists explore “natural” constraints and seek 
out the regularities they impose on development, wherever found in whatever culture [Bruner, 
1996, p. 14].

In my work I have taken the same line in relation to the differences between their 
ideas, as I indicated in my 1996 paper. Before discussing research in our sub-field of 
mathematics education I want to provide some evidence that, as I mentioned above, 
we in the non-Russian speaking world came late to Vygotsky’s whole view of the de-
velopment of mind as a cultural-historical process. In the former USSR well known 
researchers and theoreticians such as Davydov, Zinchenko, Talyzina, [1982] and Il-
yenkov [Davydov, 1994] were developing the work of Vygotsky, Luria, Leontiev and 
others but few outside had access to literature before this time or even that body of 
developing work.

In a search I carried out some twenty years ago I wrote that the earliest references in 
mathematics education to Vygotsky were as follows:

in PME proceedings, Crawford [1988];

in Educational Studies in Mathematics in a review of Wertsch [1981] by Crawford [1985], but the 
first mention in an article, Bishop [1988];

in the journal For the Learning of Mathematics, Cobb [1989];

in the Journal for Research in Mathematics Education, English [1993];

in the Journal of Mathematical Behavior, Schmittau [1993]

[Lerman, 2000b, p. 25].

Vygotsky died more than 50 years before our first acknowledgement to his ideas, as 
revealed in my search. This is not the place to try to identify the reasons for this time 
gap: these reasons include political and language/translation issues. Suffice to say 
that many of us have been working hard to understand Vygotsky’s thought — not easy 
given how young he was when his life ended and how little he was able to develop his 
ideas and carry out research in that short period of time. Indeed it is evident that he 
continued revising quite radically how he understood child development from a cul-
tural-historical perspective even on his deathbed.
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During the first decade of the 21st century, Vygotsky’s descendants have given Ekaterina Za-
vershneva access to the family archive. In the process, she uncovered a wealth of unpublished 
and unheard-of private notes. In these notes that were written near the end of his life, Vygotsky 
expresses discontent with his own theory, the one most people who read Vygotsky think they are 
familiar with; and he deems them insufficient, requiring a complete overhaul and revision. In 
particular, although he had spent much of his scholarly life critiquing and attempting to over-
come the Cartesian dualism that is characteristic of psychology then as now he had failed. In the 
notes, he acknowledges the remnants of Cartesian dualism in his work, including an over-em-
phasis of the intellectual over affect and the practical. The Cartesianism also characterizes cur-
rent theoretical approaches, especially in (radical, social) constructivism; but, as philosophers 
have shown, the spectres of Cartesianism exist even in embodiment and enactivist theory. To 
overcome these remnants in his own work, Vygotsky turned to the philosopher Baruch Spinoza… 
[Roth, 2017, p. vii].

What made the task of understanding and researching Vygotsky’s ideas so difficult for 
us was that our sub-field of mathematics education, and the field of education more 
widely, was profoundly Piagetian. Jean Piaget, born in the same year as Vygotsky, lived 
until he was 84, publishing hundreds of books and articles, and there are any number 
of books and studies by scholars based on his work. This alone is in huge contrast to 
publications by Vygotsky.

In this talk I will begin by elaborating on the originality of Vygotsky’s thought in this 
Piagetian context. I will then review some of the research directions that have been 
taken by mathematics education researchers working with Vygotsky’s thought. I can-
not even attempt to be comprehensive, given such a diversity of rich work going on 
around the world but I will aim to point to some of the major directions, including 
those that have, in my view and those of some others, misunderstood Vygotsky. I will 
end with looking at future directions for research drawing, in particular, on the frag-
ments of his revised thinking at the very end of his life.

VYGOTSKY’S WORK IN A PIAGETIAN WORLD

Bruner [1996, p. 9] expresses well the central question Vygotsky was grappling with all 
his working life in child development: “…the most central question for Vygotsky is how 
a culture’s symbolic tools manage through social interaction to get from ‘outside’ into 
our ‘inside’ repertory of thought.” Of course how that question is answered in terms of 
the role of others informs our role as teachers. The inverted commas in Bruner’s state-
ment imply what we now know was more firmly expressed in Vygotsky’s re-think in 
his last days, that the distinction between outside and inside is misleading, even false.

The history of developing Vygotskian research in education outside of Russia is of 
a community struggling to operationalise what was a body of work slowly emerging 
from decades in which it was just not available, one which ran against the dominant 
ideas at the time, and which was philosophically quite other.

In 1976 Wood, Bruner and Ross coined the term ‘scaffolding’ as a metaphor for the task 
of the teacher, according to Vygotsky’s theory as they interpreted it, in particular the 
zone of proximal development (ZPD). They wrote: 
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…it involves a <…> process that enables a child or novice to solve a problem, carry out a task or 
achieve a goal which would be beyond his unassisted efforts. This scaffolding consists essentially 
of the adult “controlling” those elements of the task that are initially beyond the learner’s capac-
ity, thus permitting him to concentrate upon and complete only those elements that are within 
his range of competence [Wood, Bruner, Ross, 1976, p. 90].

The notion of scaffolding has become widespread, almost ubiquitous, in education, 
particularly that of young children, and it was certainly a worthy attempt to intro-
duce a key element of Vygotsky’s ideas at that time. Educational thought then, and 
still today in most Western countries, was dominated by ‘ages and stages’, the recon-
textualisation of Piaget’s stages of conceptual development to a world in which the 
teacher controlled what and when children should learn based on an understanding 
of conceptual development as a biological process. The elements of Piaget’s construc-
tivist theory that are more difficult to recontextualise to the classroom, namely as-
similation, accommodation and reflective abstraction, are nevertheless central to his 
theory. In our sub-field of mathematics education these elements were taken up and 
addressed seriously, during the 1980s and 1990s, in what became known as ‘radical’ 
constructivism, radical in the argument that these processes can only be carried out 
by the individual. The teacher’s interventions, including in particular tasks to be set, 
are chosen based on the teacher’s ‘knowledge’ of the individual child’s understand-
ing, and are limited to the hope that the task might lead the child towards reflective 
abstraction. I have put ‘knowledge’ in inverted commas because in constructivism, 
especially the radical version, the teacher can never know the child’s constructions, 
the child’s knowledge, she can only conjecture what that might be. The separation of 
the child from the teacher and indeed the world are at the heart of Piaget’s Kantian in-
spired theory of learning and hence teaching. Scaffolding, therefore, is just a different 
way of framing what is seen as the teacher’s control of the child’s learning.

I want to point out here that, in my view, Wittgenstein presents the clearest argument 
against the whole idea of private languages, as is implied by constructivism, in its 
radical version at least. In the book Philosophical Investigations [Wittgenstein, 1958] 
paragraph 243 and from 256 onwards he shows that what words and things mean, or 
signify, is how they are used; there is nothing more. For example:

264. “Once you know what the word stands for, you understand it, you know its whole use.”

Whilst Vygotsky insisted on the recognition that the teacher has to be seen as central 
in the process of the notion of the ZPD, it is much more radical in that Vygotsky in-
tended a quite different role of the teacher. She, together with parents, more knowl-
edgeable others, artefacts, and tools, carry history and culture. The interaction of the 
child with these mediators are central; the child’s consciousness forms as one with the 
interaction. What things mean in a cultural-historical setting constitute the child’s 
mind.

We know the general law: first a means of acting on others, then on oneself. In this sense, all 
cultural development has three stages: development in itself, for others, and for oneself (e.g., 
a demonstrative gesture — at first it is simply a failed grasping movement aimed at an object and 
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designating an action; then the mother understands it as an instruction; and, finally, the child 
begins to point) [Vygotsky, 1989, p. 56].

It is therefore clear and not at all surprising how quite fundamental concepts, such as 
those of space, shape, and number can and do vary hugely across cultures, as anthro-
pologists have demonstrated. In mathematics education the extensive work of Saxe 
[2012] (see also [Morris, 2014] on probability) in investigating different conceptions 
of mathematics in different cultures is further illustration of the fundamental impor-
tance of Vygotsky’s work. Such concepts are not universal. Universality is to be found 
in the process of the formation of mind, which takes place always in a specific cul-
tural-historical setting. This is what Wittgenstein intends, in the quote above, when 
he says: “once you know what the word stands for”, which can only be acquired from 
others, since it precedes the child in that specific culture and history.

What must be kept in mind is that Vygotsky’s theory is a Marxist theory, and is there-
fore driven by dialectical processes, working from the intersubjective to the intrasu-
bjective.

It is not the consciousness of men that determines their being but, on the contrary, their social 
being that determines their consciousness [Marx, 1859, p. 328–329].

The ZPD functions as a symbolic space [Meira, Lerman, 2009] in which dialectical 
forces are at play. The child’s actual development is present as the ZPD emerges and 
confronts the ‘scientific knowledge’ brought to the mediation by the teacher, parent, 
more knowledgeable others, artefacts, and/or tools. Vygotsky has set out the process 
by which concepts develop, from heaps, through complexes, to potential concepts and 
‘full’ concepts, in a dialectical manner. In this way one can see the ZPD as pulling the 
child into her/his tomorrow.

Bruner is right when he suggests that Vygotsky comes from a different theoretical and 
philosophical orientation to Piaget. One should work with Piaget, or Vygotsky, and not 
try to take these two world views together. Further, this requires working with Vygot-
sky (the same applies to Piaget) in his cultural-historical setting, understanding his 
world view, seeing how it has been applied, how it developed, during his short lifetime. 
And it is Vygotskian to see that researchers and writers today must take his work into 
our cultural-historical setting and develop it as we see necessary. In the next section 
I will look at some of that current work, including my own, and re-examine it from 
within a Vygotskian world view.

CURRENT RESEARCH INSPIRED BY VYGOTSKY

Activity theory (AT) and teaching-learning in the ZPD have been major areas of re-
search in mathematics education in the last two decades. Research on collaborative 
work in mathematics classrooms has looked to Vygotsky for the application of notions 
of learning as a social or sociocultural process. In the last decade there has also been a 
substantial new area of work of which he has been a major influence, that of commog-
nition. I will discuss and illustrate briefly each of these areas of research.
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Activity theory

Historically, developments can be seen as beginning with Vygotsky’s meditational tri-
angle, called the first generation AT, through the work of Leontiev, and the concepts 
of activity, action and operation, called second generation, to Engeström’s developed 
meditational triangles, called third generation AT, or actually CHAT, cultural-his-
torical activity theory. Each of these remains a source of inspiration for research in 
mathematics education; it is not the case that each new generation has replaced its 
predecessor. For example, in a study of undergraduates’ choices and uses of tools in 
their study of mathematics, including lecturers’ notes, attendance at lectures, online 
resources, other students, etc., Anastasakis [2018], reviewing literature in the field, 
found support in Kapitelinin and Nardi [2006] in particular for the view that tool use 
is not adequately elaborated in general in recent work in AT and turned to Leontiev’s 
second generation AT for his analysis. He writes:

The main ideas used from Leontiev’s perspective, include the principles of object-orientedness 
(all human activities are directed towards their objects), activities’ hierarchical structure (activi-
ties consist of layers), mediation (our relationship with the “objective” world is mediated by tools) 
and development (activities develop over time). Two modifications of Leontiev’s version AT will 
be also incorporated: the separation of motive and object [Kaptelinin, Nardi, 2006] and the ad-
dition of ensembles/purposes as a fourth layer in an activity’s hierarchical structure [González 
et al., 2009; Anastasakis, 2018, p. 20–21].

A range of studies on AT in mathematics education can be found, in the special is-
sue volume 20 of International journal for technology in mathematics education (2013), 
though there have been several other such collections. These special issues indicate 
the significance of AT in research in our field.

Zones of proximal development

Substantial research has been carried out by mathematics education researchers 
working with Vygotsky’s zone of proximal development. Whilst at first it seems to 
have been taken up by most as a way of structuring teaching, of supporting learning, 
and direction in the choice of tasks by teachers, Vygotsky clearly meant much more, 
as it emerged in his thinking. It is a metaphor for the whole process of learning, from 
the young baby through all adult life. Given his fundamental view of knowledge being 
first on the social plane and then on the internal plane, the ZPD captured how that 
process takes place, by focusing on problem solving. In fact it needs to be seen as the 
mechanism by which the child is pulled into the whole of culture and knowledge at 
that time, in that place, and through which the child is pulled into her/his tomorrow.

I can only give a few snapshots here of work in the ZPD. The three examples I provide 
deal, respectively, with the emergence of a ZPD, the non-emergence of a ZPD and the 
mutual ZPD in a teacher-student interaction.

The first is that of Meira and Lerman [2009], in which a study of a very young, almost 
pre-verbal child’s interactions with his nursery teacher are analysed for how concepts, 
language, and ways to interact with a teacher/adult develop in the interaction.
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Window

Trays with beans

Bookshelf

The child, P
The teacher, T

Photo 1   
Fragment 1 — 8:07:41

1. P: (Walks to teacher) Tia. (A tender nickname for teachers in Brazilian K-4 schools which literally
  means “aunt”.)
2. T: (Turns back and directs her gaze to child) Yeah?

A few minutes past eight o’clock (before class begins), five people were in the room: Pe-
dro, 2yrs 6mths (the oldest pupil), leaning against the window on the left (see Photo 1) 
and looking alternately outside and inside the room; the teacher, collecting class mate-
rials at one end of the room (and not noticing Pedro’s behavior behind herself); the re-
searcher (who did not enter the scene or speak at any time during the filming), controlling 
the video equipment and standing near the camera; and an assistant teacher holding a 
second child in her arms… neither of whom had any direct participation in the episode 
analyzed here. On the bookshelf by the back wall, two plastic trays held an experimental 
horticulture where beans were placed to grow on cotton wool. During the time Pedro 
was at the window (about two minutes), he might have spotted the trays but he paid no 
obvious particular attention to that location, as indicated by the time he spent looking 
in the direction of the bookshelf where the trays stood. Then, Pedro left the window and 
walked towards the teacher calling for “Tia” (see Photo 1). Up to this point, the teacher 
had not paid any attention to Pedro and indeed was gazing in an opposite direction. As 
Pedro walked towards her and called for “Tia”, however, she broke her previous flow of 
action, began a movement of standing up to face the child and replied with “Yeah?”, in a 
way that expressed her openness to the child’s request for attention.

Photo 2   
Fragment 2 — 8:07:42

3. T: (Walks towards bookshelf, closely followed by the child) It’s growing up, isn’t it Pedro?
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Fragment 2 shows a critical passage: the moment when the teacher said “It’s growing 
up, isn’t it Pedro?”, as a clear reference (at least as we take into account what follows) 
to the state of the beans planted in trays located 5 meters away on the bookshelf. 
Notice that Pedro had not yet said anything (other than “Tia” in fragment 1) that 
explicitly revealed the goal of his request for attention. On the other hand, he made 
use of a pointing gesture that seemed to direct the teacher’s attention towards the 
bookshelf (as seen in Photo 2). But the child was pointing backwards, facing the 
teacher, and not looking in any other direction up to the point in which his pointing 
gesture begins to fade down. Pedro’s pointing did not have a well marked target and, 
at 5 meters from the bookshelf, could not indicate the trays to the exclusion of other 
things on the bookshelf, or even inside the room or through the window. In order 
to visualize this, we have drawn shapes on Photo 2 indicating a reasonable area of 
targets for Pedro’s pointing (the ellipse) and the area where the trays were located 
(the rectangle), showing that the first do not totally overlap the second and do in-
clude other possible targets. Notice further that the teacher may have had a different 
visual perspective on Pedro’s pointing, since she stands higher and to the left of the 
camera. Despite the absence of more determined, less ambiguous clues for initiating 
conversation on any specific topic, the teacher replied very promptly with a respon-
sive question which sets the content of the interactions that followed: “It’s growing 
up, isn’t it Pedro?”

What were the circumstances which could account for the teacher replying in such a 
way? In the morning this video was taken, the researcher arrived in the classroom with 
the teacher (before any of the pupils) and witnessed no conversation about the beans 
up to the moment showed in fragment 2. On the other hand, the teacher had declared 
that the plantation on cotton wool seemed to be highly valued by the pupils in this 
classroom, in particular due to her previous indication that she would move the beans 
to the backyard horticulture. Yet, is it possible to determine how did she “know” about 
Pedro’s interest at that specific moment? We suggest that the teacher did not know! 
She could only guess on the basis of underdetermined clues such as previous conver-
sations with this pupil and others, and the child’s pointing to the general location 
where the trays could be found. Whatever set of clues the teacher used to specify the 
content of Pedro’s motives in calling her (assuming he did have one), he reacted as an 
attentive audience by not rejecting the general conversational theme suggested by the 
teacher (the growing beans, so it seems) and following her as she walked towards the 
bookshelf at the opposite end of the room (as seen in the next photo). We see in these 
moves by Pedro and the teacher the emergence of a ZPD, as we shall argue [Meira, Le-
rman, 2009, p. 209–211].

The analysis and discussion go on, but for the purposes of this paper and talk I want to 
emphasise a number of key points:

• the emergence of the ZPD in the moment, it does not pre-exist the interaction. Too 
often the ZPD is seen to be a kind of physical bubble the child brings with her/him 
into the classroom, which the teacher has to ‘see’ or estimate in order to choose 
what task to give the child;
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• the love and care of the teacher as a necessary element for what can be called the 
‘catching of each other’s attention’. She could have continued focusing on her job 
of setting up the room for the day;

• the unity of the child’s development with cultural-historical knowledge of the sci-
entific and horticultural communities. There is no separation of knowledge and 
consciousness, culture and person, external reality and consciousness; they are a 
unity. I will return to this latter point in the final section of this paper.

In this second example, taken from Lerman [2001], a class of 13/14 year olds is working 
on an exercise in simplifying ratios, sometimes presented as fractions, first arithme-
tic and then algebraic. For the algebraic questions the teacher had given instructions 
to use either substitution of numbers for the letters so that students could see how 
to simplify by dividing both terms by common factors, or remain within algebra and 
divide both terms by common letters. The students work in pairs and the following 
analysis was carried out on a transcript of two students called here D and M. In a vid-
eo-stimulated recall interview the teacher said that M was the much more able stu-
dent who was helping D, who would not manage the tasks on his own, and it appears 
from an earlier event that the students were aware of how the teacher perceived their 
respective abilities.

The… extract below is work which D and M undertook… when they began work on part (f), 
[ab : ab = …]

1. M: What? Equals ab? (Pause, D looks on M’s page) Equals ab?

2. D: Yeah.

3. M: No, it equals one.

4. D: Wait a second…

5. M: ‘Cause one, (punching calculator buttons) twelve times tw… no. One, look, look, look. 
One times two, divide one times two… it shouldn’t equal four (M appears to be substitut-
ing the values one and two for a and b).

6. D: (laughs)

7. M: Um, yeah, it’s, ‘cause I’m doing (punching buttons) one times two, divide one times two, 
equals one.

8. D: So that’s cancelled. The two b’s are cancelled out.

9. M: Equals one.

10. D: Right? The two b’s are cancelled out.

11. M: Hey, where’d my pen go? No come on, look, look, look, look. You’ve got to do BODMAS. 
Watch, watch, watch, watch (punching buttons). One times two, divide one… come on, 
one times two. That’s stuffed up (with emphasis). One.

12. D: …I’m going to… this is… better…

13. M: Look, look, look, look at this one, look at this one.

14. D: …Hang on…

15. M: Divide.
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16. D: …I’m going to do these, this one first.

17. M: Equals 1, it does equal 1. I’ve got to do this first [Lerman, 2001, p. 63–64].

In this extract I suggest that a ZPD does not emerge, they do not catch each other’s 
attention, in part because they each chose to use one of the strategies in the teacher’s 
instruction but not the same (lines 7 and 8 show M using substitution and D using can-
celling common terms), in part because the calculator came between the two students, 
both literally and metaphorically, and in part because their relationship was set up by 
the teacher so that D would be led by M. M took on the ‘teaching role’, could not ‘hear’ 
D, and the chance to work together in a ZPD was missed. We might note D’s use of the 
more generalizable strategy at line 8 in relation to the teacher’s judgement of relative 
ability of the two boys.

In the final example, taken from Roth and Radford [2010] we will see the teacher also 
learning.

In this lesson, the children are in the process of classifying “mystery objects” that they are pull-
ing from a black plastic bag. The 22 children sit in a circle, the center of which develops into space 
for a classification of the objects [Fig. 1]. Each child gets a turn pulling an object and then either 
placing it on a colored paper with other “like” objects or create a new group. They are asked not 
to use color or size as a way of distinguishing objects, though most of the children continue to 
do so. The two teachers teaching the unit — Mrs. Turner, who is the regular classroom teacher, 
here in the lead, and a university professor — have stated previously (in their planning meeting 
preceding the lesson) their intent to allow the children to arrive at a classification system in 
which all objects are grouped according to their geometric properties, that is, as cubes, spheres, 
rectangular prisms, and so on. To achieve this end, Mrs. Turner interacts with each child so that 
at the end of its turn, the object has found its place according to what we recognize in the practice 
of Euclidean Tridimensional Geometry, its geometrical properties. 

…For instance, it is Connor’s turn, a child sitting in the circle. He has pulled what he eventually 
comes to know to be a cube, but he has classified it on its own rather than with the other cubes 
on the floor. Following the interactions with Mrs. Turner, he ends up giving his mystery object 
its appropriate place. At this point, Mrs. Turner utters, her intonation falling toward the end as 
if she were making a statement, “em an what did we say that group was about,” while pointing 
from afar toward Connor [Fig. 1]. There is a long pause developing, much longer than research 
has shown to exist in teacher–student interactions. Connor then takes a turn and utters with 
rising intonation characteristic of questions, “What do you mean like?” all the while touching his 
mystery object.

T: Em and what did we say that group was about?*

C: What do you mean like?

T: What was the… What did we put for the name of that group? What’s written on the card?

C: Squares.

T: Square and…

J: Cubes.

T: Cube. Does it meet the criteria of having the square or the cube? 

…
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Yet when we take an approach to the analysis in which each word uttered in the transcript is a 
thing in the consciousness of both, then the analytic situation changes. In fact, we may say that 
not only does Mrs. Turner guide Connor to the point of naming what his group was about, but 
Connor also guides Mrs Turner toward what she needs to do to assist him. Connor, in fact, ex-
hibits considerable cultural competence, which allows the conversation to unfold. Even though 
the intonation of Mrs. Turner has descended as is common in statements, Connor, in responding, 
indicates that he understands her to want something from him. By responding, Connor comes to 
inhabit the public space of interaction and opens up possibilities for intersubjectivity to appear. 
Surely, in doing so, he shows to be ready to engage in actions that are not premeditated. He ex-
poses himself. The question of what she wants is problematic, rather than the fact that she wants 
something from him. He allows her to know more than that he has simply not understood. His 
lack of understanding may have arisen from not listening or not hearing what she has said. But 
in this situation he might have asked, “What did you say?” thereby indicating that the problem 
is a failure to hear rather than a failure to comprehend. In asking Mrs. Turner what she means, 
Connor not only responds by stating a failure to understand what she wants, but in fact guides 
Mrs. Turner through what to do next: state what she really means to say by uttering “what did we 
say this group was about” [Roth, Radford, 2010, p. 300–302].

As in the first example of the very young child in the nursery, the teacher here learns 
what the student needs by catching his attention, his meaning, in order to make a 
decision how to respond. Both are pulled into their ZPDs in this interaction and learn 
from it; the consciousness of both develops. 

Group collaborative work in classrooms
As I indicated in the introduction, there are some misunderstandings in research in our 
sub-field. Perhaps the most common is the assumption that group work and the nego-
tiation of mathematical meaning is inherently Vygotskian. First, I would argue that a 
ZPD can emerge in the interaction between a child (or adult) and an artefact [Graven, 
Lerman, 2014; Abtahi, Graven, Lerman, 2017]; between a teacher and a whole class; a 
teacher and one student (as in Meira and Lerman above); two students, or other situa-
tions. Second, how groups work, how they are managed by the teacher, is an absolutely 
key element in the learning, or otherwise, of students (see e.g., [Boaler, Staples, 2008]). 
Group work that takes place without drawing on elements of the ZPD largely replicates 
the usual organisation of learning in a classroom, in which some students succeed 
and many others do not. Third, knowledge precedes everyone. It can be ‘negotiated’ in 
the sense that the ideas of each person in the group should be acknowledged, but the 
teacher (or a knowledgeable other) is responsible for the shift from the everyday to the 
scientific; put another way, for the ascent from the abstract to the concrete. The notion 
of ‘negotiation’ comes, I suggest, from the social constructivist attempts to incorporate 
Vygotsky’s radical insights into constructivism [Lerman, 1996]. Indeed we can see the 
assumption that group work is inherently Vygotskian as a misunderstanding. Bringing 
everyday notions into the ZPD is essential but it is the teacher who must pull the stu-
dents into their tomorrow through instruction towards scientific concepts.

Commognition
A substantial area of work, informing a greatly increasing body of researchers around 
the world, is that of the so-called ‘commognition’, a term drawing together ‘communi-
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cation’ and ‘cognition’. The programme of Anna Sfard, the originator of the term, is an 
attempt to overcome the separation of mind and society by conceiving of developing 
consciousness using the metaphor of participation in the surrounding discourses, in 
distinction to an acquisition metaphor more commonly held by educational research-
ers, to the extent that even the internal plane is an engagement in communication 
with internalised others. Of course the fundamental notion, as recognised by Sfard, is 
Vygotsky’s. For example, he wrote, in a paper published in 1989 but written by him in 
his final years: 

…thinking is speech (conversation with oneself) [Vygotsky, 1989, p. 57].

Some of the key ideas of commognition are summarised in Thoma and Nardi [2016], 
the references being to Sfard [2008]:

Mathematics is seen as a discourse and doing mathematics is seen as engaging with mathemat-
ical discourse. The rules followed by the participants of the discourse are distinguished in ob-
ject-level rules (“narratives about regularities in the behavior of objects of the discourse” [P. 201]) 
and metarules which “define patterns in the activity of the discursants trying to produce and 
substantiate object-level narratives” [Ibid.]. Discourses are described in terms of four charac-
teristics: word use, visual mediators, endorsed narratives and routines. More specifically, word use 
refers to the use of words specific to the discourse or everyday words (colloquial discourse) which 
may have different meaning when used in this discourse. In the mathematical discourse word use 
includes mathematical terminology (i.e. integers) and some words with special meaning in math-
ematics (i.e. disjoint sets). The visual mediators are objects and artifacts used to describe objects 
of the discourse. Some examples of visual mediators in the mathematical discourse are symbols 
and diagrams (i.e. Venn diagrams). Endorsed narratives are “sequence(s) of utterances, spoken 
or written, framed as a description of objects of relations between objects, or of activities with 
or by objects” [P. 223]. In the mathematical discourse an example of an endorsed narrative is a 
definition or a theorem. Finally, routines are a set of metarules describing patterns in the activity 
of the discursants. Some examples of routines in the mathematical discourse are the routines of 
proving and defining. 

FUTURE DIRECTIONS

It is to be expected that future research will continue to develop ideas of work in the 
ZPD, in the ascent from abstract to concrete, in concept development, in the partici-
pation metaphor and other areas of Vygotsky’s work, including commognition. At the 
same time, as shown by Roth [2017] we are still learning about Vygotsky’s theories, in 
particular those of his final years.

Vygotsky was always concerned with ethics, the relation of the individual to others, 
and in particular the responsibility of society, through parents, teachers and others, 
for bringing children into their futures. How this process takes place was the whole 
theme of his psychological studies. Radford has developed a research programme built 
around the ethics of teaching, learning, relationships in the classroom and identities, 
couched in terms of a theory of objectification [Radford, 2016]. In this respect the eth-
ical ideas of Levinas are central (e.g., [1998]).
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The theme of Roth’s book is Vygotsky’s debt to Spinoza. Indeed Roth refers to ‘think-
ing with the Spinozist-Marxian Vygotsky’ to illustrate the significance of ethics to his 
final ideas. It may well be that it was only in those last months that he clarified his 
own thinking and brought Spinozan ethics more to the fore. Had he lived longer he 
would certainly have revised his ideas in relation to the ZPD and other aspects of his 
pedagogic work.

Vygotsky’s interest in Spinoza was in his monist ethics:

Mind and Body are one and the same individual thing, conceived now under the attribute of 
Thought and now under the attribute of Extension [Spinoza, p. 259].

Roth writes:

One entry in his personal notebooks, dated to some time between 1931 and 1933, reads like a 
programmatic instruction to himself: ‘Bring Spinozism to life in Marxist psychology’. Indications 
of where the thoughts occurring to him were leading are apparent from his personal notes and 
the final pieces of writing that were published only posthumously [2017, p. 1–2].

Vygotsky’s work is essentially Spinozan, since every function of the child is first social 
and then psychological, and hence there is a unity between mind and body. We must 
try, therefore, to perceive where Vygotsky’s theories may have turned if he intended to 
take a deeper Spinozan position.

Roth has brought to the fore Marx’s emphasis on the term ‘societal’. The distinction 
between social and societal is about what is universal within society. When students 
do mathematics together it is social. The interventions of the teacher are societal be-
cause the universal, that is cultural, or ‘scientific’, is brought by the teacher.

I would take this towards Marxist sociology of education, as I have written elsewhere 
(e.g., [Lerman, 2017]). In drawing on Marx sociologists such as Bernstein take the 
same approach to teaching-learning as Vygotsky [Bernstein, 1993; 2000]. Bernstein 
shows how education reproduces social advantage and disadvantage; different social 
backgrounds provide children with different linguistic and therefore intellectual re-
sources. In general children from more advantaged homes acquire the language of 
schooling, that is the scientific or the societal, prior to coming to school. They are 
therefore ready for learning in a way that children from less advantaged backgrounds 
are not (see e.g., [Cooper, Dunne, 2000]). This is not a deficit model but a marking out 
of the Spinozist-Marxian Vygotsky’s identification between societal and individual, 
the methods of differential distribution of symbolic power. Bringing sociological in-
sights and in particular methodologies (see e.g., [Morgan, Tsatsaroni, Lerman, 2002]) 
to other ways of researching Vygotsky and researching with Vygotsky in mathematics 
teaching-learning will enrich and extend our knowledge and our practice as research-
ers and as teachers.

Notes
* The transcript’s format has been simplified here, as there is no space to include information 
about the transcription conventions used by the authors.
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A NEW WORLD: 
EDUCATIONAL RESEARCH ON THE SENSORIMOTOR 

ROOTS OF MATHEMATICAL REASONING

Dor Abrahamson 
University of California, Berkeley, USA

Recent developments in the theory and methods of cognitive science are enabling educa-
tional researchers to evaluate empirically the historical thesis that mathematical concepts 
are grounded in sensorimotor activity. My presentation will survey results from several 
recent design-research studies that have used eye-tracking techniques to capture the mo-
ment at which a student first sees the world in a new way. For the student, this spontane-
ous perceptual construction serves as a handy solution for coordinating the control of an 
interactive system. In turn, through cultural mediation this construction evolves into a new 
way of reasoning that becomes a mathematical concept. I will speculate on implications for 
educational technology.

I would like for you to know what I mean, when I talk about sensorimotor percep-
tion. And I would like for you to realize how new sensorimotor perceptual structures 
emerge through goal-oriented interaction with the environment. I further hope to 
convince you that learning new mathematical concepts begins with the formation of 
new sensorimotor perceptual structures. And I will show you how we can now track 
this process. The better we understand all this, the better we can design for learning.

A NEW WORLD: PERCEPTION REVISITED

Figure 1a is a recent photograph of my father, Dr. Jack Abrahamson, Professor of Sur-
gery. Jack will turn 90 later this year. Don’t worry, he’s not operating any more. The 
picture was taken last year, when he was touring the robotics operating theatre at the 
Medical School, University of California San Francisco. But I want to tell you a story 
about a non-medical experience Jack had. It was 40 year ago. So this is back in the 
70s. The era of Leonid Brezhnev, I guess. I grew up in Israel. One summer we trav-

   a            b                  c

Fig. 1. a — robotics surgery; b — the Red Sea at Sinai; c — a coral reef
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elled south to Sinai, to spend a vacation in a Bedouin village on the coast of the Red 
Sea (Fig. 1b). My brothers and I were underwater divers, so we had seen the coral reef 
before (Fig. 1c). But my father, although he grew up by the sea, in South Africa’s Cape 
Province, and was an able seaman, had never used flippers or snorkel to go down under 
and see what lies below the water surface. Eventually, we talked him into trying. Jack 
put on a snorkel, a mask, and a pair of flippers and swam out to the reef. From far away, 
we watched his snorkel bob over and under the water. Finally, he came out and walked 
back up the beach. We’d never seen him before quite that way. Back then, Dad was a 
very serious person. Now his face was glowing, his jaw dropped, his eyes popped out. 
He uttered only three words: “A new world.”

Now, to be sure, the reef had always been there, just below the water. The point was to 
see it — for him to see it, and, for that, one often needs the right conditions, including 
perhaps some special gear, and possibly some encouragement from those who create 
the conditions and facilitate the encounter. And yet those who create this encounter 
may, too, experience a new world — of witnessing another person learning.

So it’s a new world in two senses. For the individual person — let’s call them a student — 
the activity enables a new perceptual relation with the environment. You apprehend 
details and structures which were always there, even if you’re experiencing them for 
the very first time. You might reflect on what you see and express it to yourself and 
other people. This new world is about a new phenomenal experience in the world as 
you found it. Yet for the observer — let’s call them a researcher — the activity might 
enable seeing what the student is seeing in a way that has not been available before. 
Now, unfortunately, we could not see what Jack saw underwater or how he came to see 
it and make sense of it — we didn’t have access to all that. To achieve that sight, one 
needs to “go underwater,” that is, to use special instruments, like eye-tracking devices. 
This new world is about scientific breakthrough in modeling how new sensorimotor 
perception is formed when a person engages in goal-oriented situated activities, such 
as solving motor-control problems.

A NEW WORLD OF THEORY, TECHNOLOGY, AND METHODS

This paper is about the new world in both of these senses: a world of students seeing 
new structures, and a world of researchers who see this process as it is happening.

Upfront, here’s the paper’s take-home message. Three recent developments in the 
field of mathematics education research — in theory, technology, and methods — have 
been converging in a way that’s enabling us to re-think early stages of conceptual 
learning, to create conditions that foster these stages effectively, according to some 
instructional objectives, and to understand how these early stages play out and how 
they might be monitored and steered. We’re talking about theory of embodied cogni-
tion, technology for embodied interaction, and methods of learning analytics.

These are exciting days to be a cognitive scientist with an interest in the teaching 
and learning of mathematical concepts, because these three developments in the field 
have now matured and have come to a confluence.
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Theory: embodied cognition
One development is in the philosophy of knowledge, epistemology, which is challeng-
ing the theories that researchers have been putting forth and evaluating with respect 
to how people learn. If once it was taken for granted that the brain functions as a 
computer-like central processing unit that is cut off from the sensorimotor modali-
ties, now there is increasing interest in alternative proposals by which all cognitive 
activity is intrinsically perceptuomotor. These ideas, which have loosely been called 
embodiment theory, and include arguments that the mind is embodied, embedded, 
extended, and enactive, are renewing the field’s interest in pre-AI models of the mind 
and of learning processes [Newen, Bruin, Gallagher, 2018; Shapiro, 2014]. Cognition, 
embodiment theorists argue, is not the manipulation of abstract symbols but, rather, 
cognition is perceptuomotor activity. Cognition is modal, in the sense that it is con-
stituted in the various modalities, that is, by the very same type of neural activity that 
enables us to function in the world through sensation, perception, imagination, mo-
tor action, and by engaging cultural forms, artifacts, language, and practices that have 
evolved to support our survival and thriving. And so, how we think depends on how 
we know to move in the world, how we know to operate on various objects. Educators 
can therefore affect students’ cognitive development by shaping their experiences 
with objects. 

Some embodiment theorists claim there is no such thing as abstract entities. Rather, 
there are imaginary concrete forms. These can be complex and counterfactual, in the 
sense that they cannot be materialized. But mathematicians, like fantasy novelists 
and readers, are glad to suspend their disbelief and treat these objects as real or pseu-
do-real. Indeed, these objects may not be directly accessible to our senses as percepts 
in the world, but still they are phenomenologically real. Just as dreams are experi-
enced as real, no matter how fanciful they are (cf. [Hutto, Myin, 2017]). 

Embodiment theory ranges in its philosophical commitments and radicalism. Yet, 
however articulated, it is emboldening us to investigate and leverage the sensorimo-
tor foundations of mathematical concepts [Abrahamson, Lindgren, 2014; Lindgren, 
Johnson–Glenberg, 2013]. 

Technology: human–computer interfaces for naturalistic embodied interaction
Another development is in technology, and in particular in Human–Computer Inter-
action (HCI). HCI is a major branch of engineering concerned with designing and eval-
uating technological systems for humans to interact efficiently with computational 
platforms. Recent advances in HCI include new platforms with human–computer nat-
ural-user interfaces that allow for intuitive, discovery-based interaction with infor-
mation structures encoded in software [Antle, 2013; Dourish, 2001]. These advances 
in HCI are creating opportunities for educational designers to build learning environ-
ments in computational platforms that enable naturalistic inquiry through embodied 
interaction. Of particular interest are environments that implement activity genres 
for mathematics teaching and learning, in which students first build pre-symbolic, 
qualitative understandings of new notions through manual interaction with material 



51PME and Yandex Russian Conference 2019

D. Abrahamson

or virtual objects and only later adopt mathematical formulations of these physical 
movements [Abrahamson, 2014]. For instance, we can cast a mathematical concept 
in the form of an embodied-interaction regimen that privileges particular movement 
patterns, that is, particular enactment of situated skill. This form of computational 
technology thus offers an epistemic interface between a mathematical concept and human 
sensorimotor perception, where both are cast in the movement modality, and the objective 
is for the human, through concerted inquiry, to figure out and match the computer’s hidden 
movement form [Howison et al., 2011].

Methods: eye tracking and multimodal learning analytics
And, finally, as educational researchers, how might we monitor this process? In par-
ticular, how do we capture a student’s sensorimotor perception and any changes in 
this perception as the student engages in embodied-interaction learning activities? 
What might it even mean to know how a child is seeing the world? As I will explain, the 
instruments of eye tracking can help us gain some purchase on determining where a 
child is gazing and, through that, and in triangulation with the child’s actions, speech, 
and gesture, to make educated guesses about how the child is seeing the world she is 
interacting with. Thus, a third development is in methods, in particular, instruments 
for measuring sensorimotor activity in a variety of modalities, then integrating these 
data and presenting them for analysis to search for behavioral patterns and trends in 
these patterns. This means that when students interact with the technological plat-
forms we design for them to learn mathematical concepts, we can monitor our data, 
even in real time, for the emergence, regulation, and refinement of sensorimotor rou-
tines [Worsley et al., 2016]. 

So those are three lines of development in our field that are relevant to the work my 
lab does with our international collaborators — theory of embodiment, technology for 
embodied interaction, and multimodal learning analytics. Combined, these develop-
ments in theory, technology, and methods have created opportunities for the kind of 
research that led me to state that these are exciting days to be a cognitive scientist 
with interest in mathematics teaching and learning.

I would like to tell you about one line of research that our lab began exploring about 
ten years ago, which is building on this synergy of theory, technology, and methods. 
I will start by setting for you the context of this work, and then I will focus on a partic-
ular theoretical construct we call an “attentional anchor.” I will explain this construct, 
and I will present empirical work suggesting that this construct might play a role in fu-
ture research more widely, on both the theory and the practice of mathematics teach-
ing and learning. 

The crux of the innovation is that we can use eye-tracking devices in order to monitor 
for changes in the way that mathematics students perceive the visual displays they are 
studying and manipulating. These changes in perception mark the formation of new 
sensorimotor schemes — new ways of perceiving the world so as to act upon it — and, 
in turn, these new perceptual structures constitute things we can measure, model, 
symbolize, and discuss, so that they become mathematical objects. Having real-time 
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access to how students are perceiving the environment, I will suggest, may change the 
way we teach, both in person and through artificially intelligent interfaces.

These are still early days in this line of research, and so some of the empirical data I 
will discuss are yet preliminary, and the applications are still being engineered. How-
ever, I would like to use the opportunity of this paper to share with you these develop-
ments and hopefully the excitement.

THE WORLD ANEW: LEARNING BY SEEING THINGS IN NEW WAYS

Fig. 2. Friedrich Fröbel “gifts”: a curricular regimen of pedagogical manipulatives

Many of us here are in the business of creating stuff for kids to learn math by. The idea 
goes back at least two centuries, to Friedrich Fröbel (see Fig. 2), who invented kinder-
garten, and it has been popular through the work of Maria Montessori, Caleb Gatteg-
no, Vasily Davydov, Daniil Elkonin, Zoltan Diénès, and many others. Seymour Papert 
called these things “objects to think with.” And many of us have built their academic 
careers around investigating how people learn mathematical concepts through inter-
acting with objects. I’m in this business, too, of creating, evaluating, and theorizing 
pedagogical regimens, including media and activities, for students to learn mathemat-
ical concepts.

Much of the literature in the research field of mathematics education, certainly in the 
collected proceedings from annual meetings of the International Group for the Psy-
chology of Mathematics Education (PME) and its regional subsidiaries, such as this 
inaugural PME Yandex Russia meeting, is on how children learn through engaging 
with pedagogical materials and, therefore, how this learning should be facilitated and 
assessed. And a central idea in this body of research is that through engaging these 
materials, usually in an attempt to accomplish some particular assigned task, the stu-
dents develop new perceptions of the environment that are vital to learning the con-
cept in question. These new ways of orienting toward the environment are designed 
by mathematics educators so as to align with our civilization’s cultural heritage com-
prising productive ways of organizing our collective behaviors. And so these new ways 
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of perceiving the world emerge through, are mediated by, and are integrated in the use 
of new forms of operating on the world; forms that enable students to participate in 
the social enactment of cultural practices. Most parents do this intuitively, when they 
teach their children to count. Educators seek to emulate this naturalistic pedagogical 
acumen by formulating and theorizing effective principles for cultivating mathemati-
cal knowledge beyond counting (e.g., see Fig. 3).

This paper, too, is about children coming to perceive the world in new ways through 
operating on it. Where I am hoping to push the conversation forward is in suggesting 
that mathematics educational research is now at a point where we might revisit what 
we mean when we talk about students learning to perceive the world in new ways. In 
particular, I wish to suggest that we could pay more attention to the physical move-
ments that students enact as they learn. I will argue that by paying more attention to 
how children move, when they learn mathematical concepts, we could do a better job in 
theorizing the cultivation of perception. For researchers, the new world is that, using 
eye-tracking instruments, we can see the moment a child comes to see the world in a 
new way. This insight could lead us to rethink the design of educational artifacts. 

TOGGLING THE WORLDS: PERCEPTION OF AMBIGUOUS FIGURES

Movement is difficult to talk about, because — well…, it keeps moving! So in order to 
say something about the phenomenology of movement, let us step back and begin by 
speaking about the phenomenology of something much simpler — static images.

Ambiguous figures are popular, because, similar to optical illusions more generally, 
they offer an intriguing perceptual experience (see Fig. 4). As we shift our foveal visual 
orientation onto different regions of these images, our perceptual construction of the 
image toggles between two alternative and often mutually exclusive potential mean-
ings of the image [Tsal, Kolbert, 1985]. In turn, reflecting on this experience, we may re-
alize that visual sensory perception is active (not passive), constructed (not inherent), 

Fig. 3. The author and Neomi Sarah, at 4 years old, using hand formations 
to discuss the commutative property of multiplication. Ten fingers are 2 × 5 or 5 × 2
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relational (not monistic), subjective (not objective), and mostly tacit (not conscious). 
Consequently, given these important insights onto sensory perception, these images 
are often used in introductory courses on sensation and perception.

Yet I would like to point out that with all these famous images, we are not asked to do 
anything physical — just to observe and interpret. Can we change how a person sees 
an object by asking them to do different things with that object? To accomplish this, 
it may help to select an object that we commonly use actively as a tool. As in the case 
of the classical ambiguous images, above, I am about to create experiential circum-
stances that could affect how you frame your perception of a sensory display. But, un-
like these images, I will attempt to manipulate your sensory perception of the object 
through changing your motor orientation toward the object. Ready?

AFFORDANCES, THE PHENOMENOLOGICAL QUALITY OF THINGS

Consider a pencil (see Fig. 5).

Fig. 4. Three famous illustrations bearing ambiguous figures. 
From left: Louis Albert Necker’s cube; Edgar Rubin’s vase; and Joseph Jastrow’s duck/rabbit

         

Fig. 5. A pencil — what it is is what you do with it

Now imagine that you are about to use it in each of the following ways: to

• write

• erase

• sharpen

• pop a balloon

• drum

• scratch your back
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• hand it to a child

• twirl it around your finger

• balance it in the middle

• balance it on the tip

• save a ladybird from a puddle

• break it in two

As you considered putting the pencil to these various proposed uses, you may have 
noticed your body orienting in different ways, each appropriate to the object’s specific 
ad hoc utility relative to its proposed function. Your sensory organs, such as your eyes, 
may have shifted to specific regions of the object, such as its middle (to balance it 
there), even as your motor organs, such as your hands, arms, and upper torso, tensed 
and shifted ever so slightly, in preparation to enact a particular form of contact, such 
as a grasp, each type of contact attuned to particular properties of the object. These 
types of sensorimotor impressions, which are both nuanced and ephemeral, bind us 
to objects in the environment by way of proto-action perception, which Gibson [1977] 
called affordances. Note that an affordance is not “in” the object irrespective of the 
observing organism, nor is it “in” the organism irrespective of the object. Rather, an 
affordance is inherently relational [Heft, 1989]. When you consider writing with a pen-
cil, you both see the pencil in a way that is specific to its writing function and you 
organize your motor capacity to enact writing movements.

You have just participated voluntarily in an experimental activity designed to achieve 
two technical objectives: (a) to sever your physical orientation toward an object from 
your sensory perception of the object; and (b) to keep changing the purpose and con-
sequent morphology of your unconsummated imaginary engagement with the object. 
I invited to you engage in this humble introspective exercise, because I could thus 
occasion for you an opportunity to experience the manifold of constituent somatic, 
kinaesthetic, and proprioceptive micro-sensations of your preparatory motor dispo-
sition toward a perceptual construction of the environment. Normally, in the stream 
of doing things with objects, these feeble constituent qualia of sensorimotor activ-
ity — how you are seeing an object, and how your body is preparing to engage it — 
are tacitly and irreducibly enmeshed below the radar of consciousness. As Mechsner 
writes,

affordances are not only perceived as properties of the affording object. By way of an educated 
phenomenological sensitivity we may also experience the specific way our body is related to the 
objects of our interest [2003, p. 240].

In this sense, what an object is, at least in our ongoing unreflective phenomenolo-
gy — which, arguably, characterizes the vast majority of our humdrum hominid expe-
rience — is how we are using it. In fact, the object will not be salient or accessible to 
our consciousness as a thing, unless our flow of immersive being-in-the-world breaks 
down [Koschmann, Kuuti, Hickman, 1998]. But I needed for you to unpack your natural 
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being-in-the-world into its respective sensory and motor factors, because I wish to 
discuss the constitutive role of sensory perception in forming our capacity to engage 
in the motor enactment of movement forms by which we accomplish the control of 
task-oriented manipulation. As such, I needed for you to temporarily experience per-
ception and action as disjoint.

Now, of course, we all know that the image in Fig. 5 is a pencil. That is, we might, on 
the one hand, take the categorial stance that a pencil is a pencil is a pencil; regardless 
of what we intend to do with this pencil, the simple fact stands that this still is no 
more yet no less than just that — a pencil. As such, there would be little to any room 
for ecological psychology in the scholarly work of sorting and defining the phenome-
nal manifold. By this oppositional view, there is much epistemic utility in acknowledg-
ing the objective identity of objects, which transcends all contextual and intentional 
circumstances, impervious to the hazards of the observer’s knowledge, skill, objective, 
sentiment, dispositions, or wherewithal. Notwithstanding, as mathematics-education 
researchers, who care to understand how students learn through manipulating objects 
they encounter in instructional activities, it is, on the other hand, important for us 
to query the source and constitution of a child’s contextual orientation toward these 
objects.

Intellectual concern for the implicit meanings students bear for artifacts they are ma-
nipulating as well as for the emergence of explicit mathematical meanings from these 
activities is typical to scholarship on individuals’ guided mathematical sense-making. 
This concern is discussed from a variety of perspectives in our field’s literature on the 
epistemology, ontology, and ontogenesis of mathematical entities, such as through the 
framework of instrumental genesis [Vérillon, Rabardel, 1995], radical constructivism 
[Steffe, Kieren, 1994] sociocultural theory [Saxe, Gearhart, Seltzer, 1999; Sfard, 2002; 
Stetsenko, 2002], or various semiotic approaches [Bartolini Bussi, Mariotti, 2008; Font, 
Godino, Gallardo, 2013; Radford, 2014].

I draw much inspiration from these contributions to the literature, and yet my interest 
is on what I believe is a giant gap, in most of this work, with respect to modelling how 
humans engage objects and wherefrom concepts therefore emerge. What is missing 
is movement [Sheets–Johnstone, 2015]. In theorizing students’ learning through ma-
nipulating objects, researchers for the most focus on the outcomes of manipulation — 
what the students do with the things, such as sorting, joining, or counting them. What 
is less theorized is how the students manipulate the objects, that is, the movement 
forms that students enact in performing the assigned tasks. I wish to add to the field’s 
conversation on learning-through-manipulating a focus on students’ experience of 
moving — the moving itself that gets things done in the learning space (e.g., see [Sin-
clair, 2018]). Our earlier exercise with the pencil (Fig. 5) was designed to sensitize the 
reader to the tacit phenomenological stuff that, I maintain, much of learning is made 
of. As I now explain, the passage from unreflective phenomenology of movement to 
reflective consciousness of objects hinges on the construction of perceptual struc-
tures. Thus, the very perceptual structures that enable the enactment of movement 
are cognitive grounds for what will become a mathematical notion.
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ENACTIVISM BY DESIGN — FROM PHENOMENOLOGY TO CONCEPTS

If humans’ pervasive phenomenology is unreflective immersive doing in the world, 
where do mathematical concepts come from? And then, once we are satisfied with 
some working hypothesis about the origins of mathematical concepts, how might we 
put this theory into practice, in the form of activities for students to learn mathemat-
ical concepts? As I now explain, my laboratory’s design-based research efforts have 
been inspired by enactivism [Varela, Thompson, Rosch, 1991], a theoretically informed 
and empirically validated epistemological perspective from the philosophy of cogni-
tive science. Still, applying a high-level theory to educational practice often requires a 
mid-level pragmatic framework [Ruthven et al., 2009]. We have been applying enactiv-
ism to our pedagogical agenda by formulating embodied design, a pedagogical frame-
work for mathematics education. Embodied design articulates heuristic principles for 
building and implementing activity genres that draw on students’ naturalistic per-
ceptual and motor capacities [Abrahamson, 2009; 2014; 2015; 2017]. In particular, the 
action-based genre of embodied design delineates steps for engineering learning envi-
ronments that foster conceptual learning at the sensorimotor–sociocultural interface.

In their seminal book, The Embodied Mind, Varela et al. [1991, p. 173] explain their 
philosophy of cognitive science, enactivism, as follows:

In a nutshell, the enactive approach consists of two points: (1) perception consists in perceptu-
ally guided action and (2) cognitive structures emerge from the recurrent sensorimotor patterns 
that enable action to be perceptually guided.

At the Embodied Design Research Laboratory in the Graduate School of Education at 
the University of California Berkeley, we have been evaluating the potential relevance 
of the enactivist position as a guiding framework for building mathematics learning 
activities and examining students’ experiences using these resources. As designers, we 
use the enactivist credo to reverse-engineer our learning environment.

We begin by asking ourselves, what are the cognitive structures we would like our 
students to develop? Answering this question depends on our learning objective. If, 
for example, we would like for the students to develop the concept of proportionality, 
then we consider what might be a dynamic instantiation of this concept; that is, we 
are looking for some movement composition that mathematicians would recognize as 
a clear schematic exemplar of the target concept. Pratt and Noss [2010] use the term 
phenomenalization to capture this creative process of making “concrete” realizations 
of “abstract” concepts. For example, we might determine a movement composition for 
proportionality, in which two objects rise side by side at different speeds (see Fig. 6). 
Once we have designed this movement form, which we call a conceptual choreography, 
we then ask how a student might enact this movement form. This particular move-
ment form of two rising objects could be enacted bimanually, with each hand raising 
one object. As such, we have determined a sensorimotor pattern that students should 
develop through participating in the activity we are about to create. From here, we 
deduce what would be the actions composing this sensorimotor pattern, here it would 
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be a left-hand action and a right-hand action, where each hand is rising. Finally, we 
ask how these actions might be perceptually guided so as to perform the conceptual 
choreography. That is, what could be a particular perceptual orientation toward the 
sensory display of the two rising hands that could facilitate the coordination of this bi-
manual motor action in proportionate form? As we will explain, one way of controlling 
two hands moving at different speeds, which can otherwise be a challenging feat, is to 
focus on the spatial interval between the hands. This gap has to increase as the hands 
rise and decrease as they come back down.

BUILDING A NEW WORLD: EVALUATING EMBODIED DESIGN

I have demonstrated how a philosophy of cognitive science (enactivism) can be im-
plemented in the form of a pedagogical framework (embodied design). In particular, 
I have exemplified how we cast developmental stages of enactivist ontogeny as structural 
and procedural elements in the action-based genre of embodied design for mathematics 
learning. As such, our engineered learning environments, which are carefully designed HCI 
systems, are crafted to simulate the ecological conditions that would elicit from students 
the development of new sensorimotor perceptual structures. We had determined these 
particular structures as pivotal for students to experience the phenomenalization of a 
mathematical concept that is targeted by our design. In turn, students engaged in our 
activities develop these perceptual structures spontaneously, as their pragmatic means of 
solving an emergent motor-control problem they encounter in the course of attempting to 
perform an assigned task involving the manipulation of objects. For example, they con-
struct a new Gestalt — the spatial interval between two virtual objects on a screen — as 
their “steering wheel” for coordinating the bimanual work of moving two objects in 
parallel at different speeds. We use the phrase Mathematics Imagery Trainer to name 
this type of learning environment that we build for students’ sensorimotor perceptu-
al construction of proto-conceptual structures. These sensorimotor perceptual struc-
tures evolve from proto-conceptual to conceptual once students adopt mathematical 
frames of reference, as we explain below. By token of eliciting naturalistic behaviour 

Fig. 6. The author and Neomi Sarah, at 8 years old, using remotes to co-enact 
a conceptual choreography for proportionality, in which two cursors rise at a 1 : 2 ratio
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within a highly crafted environment and nurturing these behaviors into normative disci-
plinary expression, the Mathematics Imagery Trainer fosters conceptual learning at the 
sensorimotor–sociocultural interface.

The Trainer featured in Fig. 6 was the first of our attempts to leverage, evaluate, 
and investigate the enactivist–constructivist thesis — viz. that cognitive structures 
emerge from recurring action-oriented sensorimotor patterns — as a modus operandi 
for crafting educational design. Results from clinical testing of the Trainer were first 
presented at PME-NA 32 [Reinholz et al., 2010]. Students who participated individual-
ly or in pairs in our task-based semi-structured clinical interviews were able to enact 
movement forms that satisfied the task requirement of keeping the screen green while 
raising or lowering the virtual objects. Their multimodal explanations suggested that 
they were developing a succession of increasingly sophisticated strategies for solving 
the bimanual motor-control problem that they encountered in the course of attempt-
ing to perform the task. Through iterated attempts, the study participants became 
conscious of new dimensions of operating the objects, and they explored for optimal 
values along these dimensions.

Figure 7 illustrates paradigmatically the sequence of interaction events commonly 
observed across students, as they figure out that their hands should move not at the 
same speed but at different speeds. 

When we then introduced symbolic artefacts onto the screen — first a grid, and later 
numerals along the vertices (see Fig. 8) — students endorsed these features into their 
sensorimotor scheme, and yet in so doing the scheme changed. We concluded that 

           a             b               c    d

Fig. 7. Solving a movement riddle in the Mathematics Imagery Trainer, 
a child learns to move physically in a new way; she then articulates her movement formally 

as governed by a proportional function

Fig. 8. Three configurations of the Mathematics Imagery Trainer’s computer interface. 
From left: cursors only; with a grid; and with numerals
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students had identified in the figural features of these didactically interpolated symbolic 
artefacts certain relevant utilities for enhancing either the enactment, evaluation, or expla-
nation of their extant control strategy; in so doing, they implicitly assimilated the features 
as frames of reference, thus shifting from naïve to cultural forms of organizing and under-
standing their situated actions. We noted in particular that introducing the grid caused 
students to change their bimanual strategy from moving their hands simultaneously 
through the continuous space and using qualitative language to describe their strategy 
(e.g., “The higher I go, the bigger the gap”) to moving their hands sequentially through 
the discretized space and using quantitative language (e.g., “For every 1 I go up on the 
left, I go up 2 on the right”). As such, the students developed the activity’s intended 
psychological–discursive forms of acting and reasoning without the researchers of-
fering any direct instruction, demonstration, or formatting [Abrahamson et al., 2011].

Participants were also able to coordinate among polysemous visualizations of the en-
vironment, for example explaining why raising their right hand 2 units every time 
they raise their left hand 1 unit (Fig. 9iii) means that the spatial interval between their 
hands should steadily increase (Fig. 9ii). As such, we noted the pedagogical potential 
of the activity design and, specifically, of the Trainer environment, to foster important 
conceptual reasoning using non-inscriptional media, that is, even before pen is set to 
paper [Abrahamson et al., 2014].
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Fig. 9. Student generated solution strategies for the make-the-screen-green problem 
(the case of a 1:2 ratio)

Research efforts are still underway to evaluate how sensorimotor competence, which 
students develop through participating in activities using the Trainer, could possibly 
be cast as constituting forms of knowing that the community of mathematics-educa-
tion researchers and practitioners would recognize as relevant to normative discipli-
nary practice in educational settings. A logical and anticipated way forward here is to 
demonstrate how these ways of knowing play out, when study participants, who have 
engaged with the activities, then set to engage in solving problems that the field gen-
erally appreciates as constituting measures of domain-specific subject-matter content 
knowledge. This approach could potentially translate to methods of assessing what 
students gain conceptually through developing new movement forms for manipulat-
ing objects according to specified task requirements.
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Some studies are showing promise. A multi-classroom-based doctoral dissertation 
[Petrick, 2012] tentatively concluded that students who engaged with the Trainer and 
other analogous activities advanced conceptually more than a comparative group (see 
also in [Abrahamson, 2012]). Related studies resulted in similar empirical findings, 
suggesting the pedagogical potential of Trainer activities in the domains of propor-
tionality [Bongers, Alberto, Bakker, 2018], the Cartesian coordinate system [Duijzer 
et al., 2017], geometrical area [Shvarts, 2017], and parabolas [Shvarts, Abrahamson, 
2019]. For example, Bongers et al. [2018] demonstrated effective semiotic transitions 
from description to inscription (see Fig. 10): Students who had invented and manip-
ulated imaginary sensorimotor perceptual structures on a tablet, as their pragmatic 
solutions to the problem of coordinating the enactment of solution movements, then 
recreated and thus materialized these percepts using pencil and paper; what more, 
they spontaneously used multiplication to measure proportional segments of these 
constructions, such as building a set of dilated similar right triangles. For further re-
view of empirical findings from the project, see Abrahamson and Bakker [2016].

ATTENTIONAL ANCHORS INTO THE STUDENT’S NEW WORLD

As educational designers, we were thus learning more about the action-based activity 
genre of embodied design [Bakker, Shvarts, Abrahamson, 2019]. Yet as design-based 
researchers, we hoped to get a tighter theoretical grip on the evolution of sensorimo-
tor perceptual structures: we wanted to witness and monitor the micro-process of a 
new structure emerging into students’ interaction routines to become an object of 
reflection and mathematical modeling. This is where eye-tracking technology offered 
opportunities. Our study participants were seeing a new world by constructing sen-
sorimotor perceptual structures, and now we, too, were about to see a new world by 
capturing the students’ embodied learning process.

The emergence of a new world means that objects that had been latent to the en-
vironment have become salient to the human subject. Yet how might we theorize a 
phenomenal object that comes forth from the background? Enactivism suggests that 

Fig. 10. A student who had imagined a diagonal line on a tablet, to solve a 3 : 2 
orthogonal ratio problem, now recreates this line on paper, using measurement
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perceptual structures emerge from the background when they repeatedly facilitate 
our engagement in tasks requiring the performance of new movement forms. Yet how 
precisely is this happening? How should we operationalize the micro-process of per-
ceptual emergence? To answer this question, we sought more radical stances.

Hutto and Sánchez–García [2015] propose a radical-enactivist interpretation of 
skilled athletic performance. They interpret skilled performance as utilizing special-
ized action-oriented relations with the environment. These relations are perceptual 
“anchors” into the environment that determine attentional routines guiding effec-
tive motor action. These attentional anchors are thus action-oriented sensorimotor 
perceptual constructions—the perceptual components of affordances. Abrahamson 
and Sánchez–García [2016] borrow the construct of attentional anchors to refer to 
the structures that study participants purportedly constructed to solve Trainer mo-
tor-control problems, such as using the spatial interval between the cursors to facili-
tate bimanual coordination.

Attentional anchors (hence AA) might originate in a gaze that is strategically cast be-
tween two or more manipulated objects, such as the cursors, so as to maintain them 
in peripheral vision, similar to a juggler who gazes not at the balls themselves but at 
an empty spot above her [Hutto, Sánchez–García, 2015]. That is, students discover and 
use an AA, because it enables them to perform movements that conserve a select dynamic 
stability of an emergent system they are thus building and transforming.

The function of perception in organizing motor action is possibly more critical than 
the literature has surmised. Empirical findings from studies of perception and action 
suggest that AAs can be generated independent of sensory access to one’s actuating 
limbs. Thus, perception takes the lead. When participants cannot see their hands, still, 

voluntary movements are organized by way of a representation of the perceptual goals, whereas 
the corresponding motor activity, of sometimes high complexity, is spontaneously and flexibly 
tuned in [Mechsner et al., 2001, p. 69].

As such, generating AA may be a natural inclination of biological organisms’ embod-
ied cognitive architecture. Perception is sentient enactment [Noë, 2006].

Led by collaborating researchers at Utrecht University, the next study applied 
eye-tracking methods to monitor the sensory behavior of students engaged in the 
solution of Trainer motor-control problems. Corroborating and expanding on our ear-
lier clinical findings, we now had a new form of empirical data that we could put forth 
as evidence supporting our hypothesis that students’ task-effective bimanual coordi-
nation is associated with changes in the composition of their perceptual orientation 
toward the sensory display (see Fig. 11). We concluded that attentional anchors serve 
a vital function in the accomplishment of coordinated bimanual action. Moreover, our 
study participants’ mathematical discourse about these perceptual structures suggest-
ed that they constitute important cognitive pivots from unreflective engagement to 
disciplinary reasoning. These findings recur across a set of variants on the original 
Trainer task [Abrahamson et al., 2016].
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NEW WORLD EXPANDING: THE TRAINER BEYOND PROPORTION

Now equipped with these new empirical data of students’ combined multimodal prob-
lem-solving behaviors — both clinical and eye-tracking data — we felt more confident 
in claiming that: (a) the Mathematics Imagery Trainer environment realizes Abra-
hamson’s action-based genre of embodied design; and (b) this genre achieves its ob-
jectives of fostering students’ development of sensorimotor perceptions bearing semi-
otic potential as grounding new mathematical notions. Next we turned to apply these 
theoretical, pedagogical, and methodological ideas to the design of additional Trainer 
activities. Here I will briefly mention two more designs for grounding mathematical 
concepts in sensorimotor perception.

Parabolas
Figure 12 features two configurations of a Trainer for parabolas. Here, the triangle is 
green only when BC = AC. A is fixed at the parabola’s focus, B runs along the horizon-
tal dashed line immediately below C, and the student manipulates only Vertex C. By 
keeping the triangle green while moving Vertex C, the student effectively inscribes a 
parabola curve. (Note that Labels A, B, and C as well as the dashed lines in this figure 
are used only here to illustrate the design for readers of this text: these lines are never 
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  a                      b                             c                              d                              e  

fig. 11. Dynamical gaze patterns reveal a variety of attentional anchors. 
The focal gaze point between the cursors is at an un-manipulated location. 

Pattern b was the most prevalent among participants

Fig. 12. An action-based embodied design for parabolas. 
By manipulating Vertex C, in an attempt to keep the triangle green, 

students find themselves inscribing a parabola
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shown to the students, as they engage in the activity.) Participant college students 
learned to move in green, and then they were guided to derive a definition of the 
parabola from geometrical properties of the isosceles triangle and auxiliary construc-
tions [Shvarts, Abrahamson, 2019]. The key cognitive event, along this solution pro-
cess, was perceiving the isosceles triangle. Once they saw it, participants immediately 
became more fluent in operating the device according to task specifications.

Trigonometry

Fig. 13. An action-based embodied design for trigonometry. 
The frame is green, if the unit-circle’s radian (on left) corresponds 

to the sine-graph’s x-value (on right)

Figure 13 features a Trainer activity for trigonometry. Here, the student slides their 
left-hand fingertip on the perimeter of a unit circle, while sliding the right-hand fin-
gertip on a sine graph. Whenever the radian value on the circle corresponds to the 
x-value in the sine graph, the rectangular frame around the interactive zone becomes 
green. The student needs to keep the frame green while moving both hands. Data 
analysis of a pilot study with participant college students suggests that they imagined 
a horizontal line segment connecting the two fingertips (not shown in Fig. 13).

The horizontal-line attentional anchor seemed to help participants keep the two fin-
gers at the same height. Mathematized, this imaginary line then came to mean that 
the left- and right fingertip positions are equally high or low on the grid, thus sharing 
the same y-value, which is sin(x). This awareness appeared further to support the en-
actment of green-keeping movement [Alberto et al., 2019].

CONCLUSION: THE WORLD TODAY, THE WAY I SEE IT

Mathematical concepts are grounded in sensorimotor perceptions that emerge as prac-
tical solutions for the efficient enactment of goal-oriented ecologically coupled move-
ments. Sociocultural reframing of these sensorimotor perceptions occurs through the 
timely mediation of symbolic artifacts, when learners participate in facilitated cultur-
al practice. Students adopt these artifacts spontaneously as readily available means of 
enhancing their goal-oriented actions, yet in so doing they surreptitiously appropriate 
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heritage conceptual systems that enable them to participate in the discourse and so-
cial enactment of cultural–historical mathematical practice.

I believe it is important to help students maintain their original sensorimotor percep-
tions as their means of grounding mathematical concepts, even as we support them in 
appropriating and exercising the complementary powerful cultural devices of mathe-
matical practice. Just how teachers should do this remains an open question. However, 
I further believe that the multimodal affordance of natural communication, particu-
larly the combination of speech and gesture, bears promise [Abrahamson et al., 2012; 
Flood, 2018; Fuson, Abrahamson, 2005]. As such, one way forward is to study how 
teachers engage with students’ grounded sensorimotor perceptions to sustain ecolog-
ical meaning in mathematical concepts.

MOVING FORWARD: EXPLORING OUR NEW WORLD TOGETHER

It has been thrilling to discover the new world of sensorimotor perception that facili-
tates our engagement with the environment, orienting our every mundane operation, 
and to conjecture as to the horizons this discovery opens up for educational theory 
and practice. There are ethical issues at stake. For example, the action-based genre of 
embodied design is reshaping our approach to the mathematics learning of sensorily 
diverse students, such as those who are blind or visually impaired [Abrahamson et al., 
in press].

Like Columbus, however, it has been sobering to realize that the novelty of this new 
world is truly subjective. This new world as I found it had always been there, eons 
before my collaborators and I came along to first cast our eyes on it and claim it. Yet 
unlike Columbus, this new world that our research is now colonizing has truly always 
been our own — ours, yours, everyone’s. This beautiful coral reef has been there forev-
er below the surface of our own sensorimotor waters, waiting.
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Numbers and calculations elicit brain activity in a set of brain areas. Number tasks refer to 
numerical processes that do not involve formal mathematical operations, whereas calcula-
tions tasks involve operations such as addition, subtraction and multiplication. Functional 
magnetic resonance imaging (fMRI) studies with adults show that the parietal, cingulate 
and insular cortices are critical for processing number tasks; calculation tasks also im-
plicate the prefrontal cortex extensively. Children engage similar areas in posterior parts 
of the brain; however, prefrontal parts of the brain do not show consistent involvement, 
suggesting a reorganization of function across development. Instead the insular cortex, 
a brain area associated with awareness and emotion is highlighted in children’s problem 
solving. Potential implications for education in terms of teacher’s professional develop-
ment and children’s learning experiences are discussed.

SOME BASICS ABOUT BRAIN ANATOMY 

The fact that the brain is made up out of billions of neurons is a relatively new idea. 
In the late ninetieth century Santiago Ramon y Cajal spent a lot of his time trying to 
convince scientists at the time that the brain was made up of individual cells. His dis-
covery was made using tissue-staining methods and his claims were confirmed later 
with the invention of the electron microscope in the 1930s. In 1949 Donald Hebb ex-
plained that neurons that fire together wire together. Indeed, neurons communicate 
through synapses and electrical signals travel across them to take messages to close 
and distant parts of the body [Kolb, Wishaw, 2003]. Recent ground-breaking discov-
eries suggest that neurons not only fire and wire together, they can also change with 
experience (i.e., neuroplasticity) and new neurons can be created (i.e., neurogenesis) 
even in adult brains (e.g., [Drapeau, Abrous, 2008]). These neuroanatomical principles 
are fundamental on how we view the brain and provide a positive message for educa-
tion as a science of training neurons in young minds. 

The brain is anatomically organized in two hemispheres and five lobes (e.g., occipital, 
parietal, temporal, frontal and limbic), connected with a dense bundle of fibbers called 
the corpus callosum [Kolb, Wishaw, 2003]. Serious injuries (i.e., lesions) to any part of 
the brain typically correspond to changes in behavioural functions. Although this pur-
ported that the brain is organized in terms of specific areas of function (e.g., [Broca, 
1861; Wernicke, 1874]), Alexander Luria was likely the first to claim that regions in the 
brain do not act in isolation [Luria, 1970]. The latter relates to identification of several 
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functional networks in the brain that work in consonance to create thoughts, actions 
and emotions in our everyday life.

MATHEMATICS AND THE BRAIN

Mathematics played a key role human history and is fundamental on how we are going 
to evolve as a society. Mathematical cognition is a quintessential ability in humans. 
Young children can quickly decipher which pile has the most candy or who is getting 
the biggest piece of cake. Most children are exposed to formal mathematics during 
school age years or earlier. Our society is driven by knowledge, innovation and dis-
covery, and mathematics serves a fundamental role in this process. According to the 
world economic forum an estimated 65% of children who are now entering elemen-
tary school will graduate to work on completely new occupations that do not exist 
today (Chapter 1: The Future of Jobs and Skills, 2016). Although, our world is changing 
rabidly and future labor market requirements are not fully understood, researchers 
agree that future workforce will have a higher demand for Science, Technology, Engi-
neering and Mathematics (STEM) majors [Fayer, Lacey, Watson, 2017]. Mathematics 
is essential for STEM majors and occupations that are progressively more on demand. 
Traditionally, mathematics has been a core subject in school curricula and research 
shows that success in math relies in part on the child’s age and their readiness to re-
ceive instruction [Agostino Johnson, Pascual-Leone, 2010]. Advances in mathematical 
performance coincide with the development of fundamental cognitive processes such 
as mental competence and the protracted development of brain structures such as the 
pre-frontal cortex (Pascual-Leone et al., 2010). Neuroscientists have investigated the 
brain areas related to numerical and mathematical processes. About twenty years ago, 
a neurofunctional model was proposed to explain the brain areas that support mental 
arithmetic, mainly focusing on the functions of the parietal cortex, in posterior parts 
of the brain [Dehaene, Cohen, 1997; Dehaene et al., 1993]. Although this model was 
based mainly on lesion patient studies, it has stimulated a substantial body of neuro-
imaging research with healthy individuals. 

Magnetic Resonance Imaging (MRI)
MRI is a non-invasive method used to take high-resolution images of the inside of the 
human body. It utilizes a strong magnet and radio waves to provide detailed images of 
the living brain; it does not use x-rays. The same machine can be used to take anatomi-
cal scans or functional scans. Functional MRI measures changes in blood flow that take 
place in an active part of the brain, an indirect measures of neuronal activity. fMRI sig-
nal is used to understand how different mental functions are represented in the brain. 

MRI is safe for children and adults as long as proper safety guidelines are followed. Be-
cause the machine uses strong magnets we must ensure that anyone going in the MRI 
room removes any metallic objects that he or she may be wearing (jewelry, hair clips, 
watches etc.). Importantly, all participants are carefully screen to confirm that they 
do not have any metal implants (e.g., pacemakers), because the magnetic field will in-
terfere with the device. Another important consideration for individuals entering the 
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MRI machine is claustrophobia, a fear of small places. Although an MRI can feel nar-
row for adults, who are bigger, it feels more spacious and confortable for the children, 
who are smaller. Our challenge with children is that we have to make our games (i.e., 
tasks they play while in the MRI) interesting for them so that we keep them engaged 
while we are imaging their brain in action. From experience we figured out that several 
short games (4 × 5 minutes) are better for children than one longer one (20 minutes). 
Moreover, when we are scanning anatomical images that do not require a cognitive 
activity, we play a movie for children so they can stay entertained during that time.

Math games with neuroimaging
Because the MRI scanner is the way it is, cognitive games we show participants need to 
be carefully designed. These games are carefully designed so that researchers know ex-
actly what a participant is looking at what exact time. Very few studies have examined 
complex mathematical problems with fMRI (e.g., [Krueger et al., 2010]). This is in part 
because of increased individual differences in performance levels on more complex 
mathematical problems, as increased individual differences would present themselves 
in different problem solving strategies and in turn variable time to generate a solution. 
The majority of fMRI studies examine simple judgements with numbers and mathe-
matical operations. I call number tasks the math games that have no mathematical 
operations. For example, participants are presented with a group of dots on the left of 
the screen and a group of dots on the right of the screen and asked to indicate with a 
button press which group of has more dots; this is non-symbolic number processing. 
Symbolic number tasks involve symbols (e.g., Arabic numeral) and participants are 
asked to indicate with a button press which number is bigger. Calculation tasks require 
a mathematical operation, addition, subtraction, multiplication and division. The ma-
jority of fMRI studies have examined brain responses to addition problems and the 
least number of studies have examine brain responses to on division problems. 

I started investigating brain responses to numbers and calculations after some work on 
cognitive competence, as this was my main research focus. Specifically, I am interested 
to understand how many things the human brain can hold and manipulate in mind 
before we start going into overload. For my graduate work I had developed some tasks 
that use visual-spatial stimuli (i.e., colours; Colour Matching Tasks; [Arsalidou, Pas-
cual-Leone, Johnson, 2010]) that manipulated difficulty across six levels. Behavioural 
data showed that children and adolescents progressively passed more levels of the 
tasks based on their mental-attentional capacity, which corresponded to their age 
[Ibid.]. These results were consistent with past theoretical predictions [Pascual-Leone, 
1970] and empirical findings [Pascual-Leone, Baillargeon, 1994]. Importantly, when we 
administered this task in the fMRI we obtained graded increases in cortical activity in 
several brain regions that included the parietal, prefrontal and cingulate cortices. We 
replicated findings obtained with the visual-spatial using verbal tasks (i.e., with letters 
as stimuli) that follow the same parametric design with six levels of difficulty [Powell 
et al., 2014]. Numbers however can be considered as visual-spatial and verbal stimuli. 
The neuroimaging literature on numerical processes focused mainly on the parietal 
cortex, which is critical in processing visual-spatial aspects of numbers [Dehaene et 
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al., 2003 for review]. The contribution the prefrontal cortex and other brain regions 
in the healthy human brain is not very well substantiated. Since no single study is 
definitive, we had to look at reported findings using a meta-analyses approach [Arsa-
lidou, Taylor, 2011]. fMRI meta-analyses compile data reported across many studies to 
identify the activation likelihood of any location in the brain to identify concordance 
across studies. So we compiled adult data from fMRI studies that examined number 
tasks and data from fMRI studies that examined calculations task. 

Number tasks showed significant activation likelihood estimation (ALE; [Eickhoff 
et al., 2009]) values in several regions that included the parietal cortex bilaterally 
and the cingulate cortex [Arsalidou, Taylor, 2011]. No significant concordance was 
observed in dorsolateral prefrontal areas, known for higher-order cognition (e.g., 
[Christoff et al., 2009; Arsalidou et al., 2013]). Thus, deciphering the cost of items 
on a menu for example is more likely to engage parietal cortices. Calculation tasks 
showed significant ALE values in the same areas and in addition showed extensive 
activation in prefrontal cortices bilaterally. This area included dorsolateral prefron-
tal cortices associated with coordination of mental actions [Christoff et al., 2009]. 
For individuals who solve math problems regularly and have to plan, strategize and 
coordinate mental action in the service of reaching a solution would activate their 
prefrontal cortex. 

Which hemisphere is implicated in different math problems (i.e., addition, subtrac-
tion, multiplication) remains a question in mathematical cognition. Laterality indices 
from adult fMRI meta-analyses suggest a differential implication [Arsalidou, Taylor, 
2011]. Regions of interest were selected anatomically, using Brodmann areas (BA). 
Korbinian Brodmann was a German neurologist who spends many hours looking at the 
histology of the cells in different parts of the brain. He defined 52 areas as speculated 
that if these cells have different structures they should perform different function. His 
work was published in 1909. Neuroscientists to this day use these cytoarchitechtonic 
mappings to identify with more specificity different locations in the brain. Laterality 
indices in our results show that addition is left hemisphere dominant in parietal (BA 7, 
40) and prefrontal (BA 9, 46) cortices [Ibid.]. Subtraction is more mixed showing both 
bilateral and left dominant areas in parietal and prefrontal cortices. Multiplication is 
mainly right dominant or right lateralized (BA 7, 40 and 46) with the exception of BA9 
in the prefrontal cortex, which was left dominant. 

Right-left-right hypothesis 
Critically, all these mathematical tasks use numbers whether this is addition, sub-
traction or multiplication, thus it is not clear why different hemispheres are implicat-
ed in different math problems. The classic material-specific hypothesis that the left 
hemisphere processes verbal information and the right hemisphere processes visual 
information cannot account for these data. Instead we need to look into other per-
spectives. Specifically, in the Juan Pascual-Leone proposed a hypothesis that stems 
from the developmental literature and strategy use that supports a process-specific 
approach [Pascual-Leone, 1987; Pascual-Leone et al., 1995]. In our recent paper we 
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described it as the right-left-right hypothesis for hemispheric dominance [Arsalidou 
et al., 2018]. It explains hemispheric dominance not in terms of the material in the 
task but in terms of the task familiarity and a trade off between the mental-attentional 
capacity of the individual and the mental-demand of the task. Particularly, when the 
task is very easy such as when we solve simple number tasks, activity should favour 
the right hemisphere. When tasks are effortful but still possible for the individual then 
the left hemisphere should be favoured. When the task is too difficult, often when the 
participant is failing the task, then the right hemisphere should be favoured. We can 
consider the right hemisphere as coming to the rescue of the situation. The brain is 
in a state for looking at well-known ways of doing things in an effort to identify a way 
to solve a very difficulty or novel problem, and this happens usually through trial and 
error. When a method is established the left hemisphere should be able to take over. 
This is a novel hypothesis and we need to investigate it further. A critical point is that 
it is difficult to find brain areas associated with the mental-demand of the task being 
much higher than the mental attentional capacity of the individual. This is because at 
this state, participants start to fail the task. Reasonably, it is customary in fMRI studies 
to report results that are related to correct responses rather that incorrect responses. 
Therefore to test this hypothesis we need original studies that examine this directly 
and encourage future studies to report findings related to incorrect responses so that 
we can use meta-analyses to understand the literature. 

The trade off between mental-attentional capacity of the individual and mental-de-
mand of the task changes as a function of age. According to developmental theory, 
mental-attentional capacity increases by one unit every other year after the age of 
3 years, such that it reaches 7 units in 15–16 years olds and adults [Pascual-Leone, 
1970; Pascual-Leone, Johnson, 2005]. As mental attentional capacity increase what 
used to be a difficult tasks for a child becomes an easy task. Thus, according to the 
right-left-right hypothesis, something that is very easy for older children would en-
gage the right hemisphere, whereas the same task may be effortful (but possible) for 
younger children and would engage the left hemisphere. This hypothesis has indirect 
support from fMRI studies with children that examined number and calculation tasks.

fMRI studies with children and math 
Many studies have investigated brain responses associated with number and calcula-
tion tasks in children. Our meta-analyses have compiled data from 344 children that 
performed number tasks and 501 children that examined calculation tasks [Arsalidou 
et al., 2018]. For both groups the majority of children were between seven to thirteen 
years old. Within this age range mental-attentional capacity ranges from 3 to 5 units, 
according to theoretical predictions, reflecting a different cognitive competence. ALE 
results show that children engage right hemisphere areas in parietal and insular corti-
ces for number tasks, whereas calculation tasks engage left parietal cortex and insular 
cortices bilaterally. Notably, no significant concordance was observed in dorsolateral 
prefrontal cortices for number or calculation tasks. This finding may be due to vari-
ability in problem solving strategies that may be reflected in different hemispheres, as 
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suggested by the right-left-right hypothesis. In other words children at different ages 
may recruit the prefrontal cortex differentially, thus agreement across studies is not 
being observed. Importantly, children implicate extensively the insular cortex when 
solving calculation tasks. The insular cortex has not been previously emphasized in its 
role in mathematical cognition. Instead the insula has been involved in introspective 
processes, awareness and consciousness [Barrett, Simmons, 2015]. It has been impli-
cated in all sorts of qualitatively different mental functions such as emotion, cogni-
tion and sensorimotor processes [Duerden et al., 2013; Uddin et al., 2014; Gasquoine, 
2014; Kurth et al., 2010]. Some have suggested that it is involved in a salience network, 
together with the cingulate cortex, that directs attention to salient information in the 
environment [Uddin, 2015; Menon, 2015]. We suggest that the insular cortex may play 
a critical role in motivated goal directed action [Arsalidou, Pascual-Leone, 2016] that 
is related to task engagement. 

In summary, prefrontal cortices associated with higher order cognition appears to un-
dergo a functional reorganization during childhood and that factors associated with 
motivation and perhaps task engagement is critical for children’s performance in 
mathematical processes.

IMPLICATIONS FOR EDUCATION

Neuroanatomical findings on neuroplasticity and neurogenesis send a positive, em-
powering message to education. Awareness that a change takes place in the brain ev-
ery time a child engages in learning activities can be enormously empowering to ed-
ucators. In other words knowledge that educators can help morph the anatomy of an 
organ in a child is very powerful. These conclusions are not limited to childhood, as 
adult brains can change from learning. Neurofunctional findings suggest that dynam-
ic functional changes occur in childhood and adolescence, such as in the prefrontal 
cortex, structures associated with higher-order cognitive processes. Interestingly, in 
mathematical cognition and other core cognitive processes such as working memory 
[Yaple, Arsalidou, 2018], the insular cortex plays a critical role. As we suggest that this 
is key region related to motivation and task engagement this highlights for education 
the need for appropriate school engagement practices. Teachers are the experts in 
the classroom, and research shows that teaching educators about the brain improved 
teacher knowledge and confidence [Dubinsky et al., 2013]. Perhaps teaching children 
about the brain would also improve their knowledge and confidence, although this 
remains to be substantiated with research. 

Specific findings of neuroscience can highlight mechanisms of learning and lead to 
more powerful evidence-based education. I finish with a positive message of collabo-
ration among neuroscientists, educators that is supported by technology to improve 
methods of teaching and education in the future. 
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COMPUTERS IN THE PRODUCTIVE 
LEARNING OF MATHEMATICS

Sergei Pozdniakov
Algorithmic Mathematics Department

Faculty of Computer Science and Technology
Saint Petersburg Electrotechnical University “LETI”, Saint Petersburg, Russia

The main ideas of productive learning in mathematics appeared much earlier than the 
development of computers. In the works of Wertheimer, Hadamard, Polya, and others, 
the basic principles of a productive approach to teaching mathematics were formulated. 
At the same time, the practice of mathematics teaching did not rely on those results be-
cause of the contradiction of the principles to the current state of learning technologies. 
The emergence of the computers in everyday life has opened up opportunities for tech-
nological support of productive learning methods that were previously technologically 
inefficient. Papert demonstrates in his work the possibilities of using a computer as a tool 
for a student’s development, as it was developed in Vygotsky’s ideas about the role of a 
tool in child development. However, the transition to a new educational system structure 
requires a large period of time, during which a new educational culture will be formed 
on the basis of modern technological capabilities and a new generation of teachers who 
perceive this culture as their own will emerge. This report will present an analysis of the 
possibilities, both realized and unrealized, of using a computer to support productive 
learning.

PRODUCTIVE THINKING IN MATHEMATICS 

Let us consider a teacher’s simple question to students: “Do you know that medians 
intersect at a single point?”

The answer: “Yes!”

Next question: “Do you know why medians intersect at a single point?” In response, 
first a long pause, then uncertainly, “We once somehow proved it, we tried to re-
member.”

What do we want to hear in response to the question “Why”? We are waiting for a jus-
tification of the answer, the proof of this fact. But what do we mean by proof? Do we 
want to hear the memorized text from a textbook, as in the examples that Wertheimer 
gives in his book “Productive Thinking”? [Wertheimer, 1945]

Or do we want to hear an explanation based on understanding, which is manifested by 
one’s ability to provide an explanation in layman’s terms?

If a student does not know how to answer in a reasonable timeframe, it likely means 
that he/she did not “catch” or “seize” this idea (i.e., did not grasp its meaning). In oth-
er words, he/she could not translate it into his/her internal language, after which he/
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she could explain it to him/herself and others without going into details. Let us call it 
understanding.

When speaking about the technological support of teaching mathematics, it is reason-
able to highlight the influence of a computer on the formation of internal intellectual 
mechanisms. Thus, the problem of the computer’s influence on a student’s under-
standing of the material being studied appears interesting.

This topic has many different aspects and titles. For example, Khinchin discussed the 
phenomenon of “formal knowledge” as opposed to thoughtful knowledge [Khinchin, 
1963]. 

What do children want to know when they ask the question “why” or other so-called 
smart questions?

We understand that they are not interested in the true cause of this or that phenome-
non, but they do want to connect something new they have discovered at that moment 
to their already existing ideas about the world.

Genetic mechanisms encourage a person to build a reliable intellectual system in 
which all new information is “comprehended” by binding it to more basic knowledge 
and ideas.

This basis consists of intellectual elements which are connected with human senses 
(such as vision) and of basic ideas received in childhood. Minsky calls this phenome-
non the principle of investment [Minsky, 1986].

Let us return to the question about medians. How many students do you think would 
answer this question?

Among ordinary schoolchildren who do not study in special math schools, and who do 
not plan to become mathematicians upon graduation, we would get very few answers.

This is what Wertheimer wrote about in his book “Productive Thinking”, and what 
Khinchin called formal knowledge. A new idea which is not yet accepted by a student 
remains isolated knowledge, knowledge that does not develop the student's thinking 
and will not be applied in other situations.

What could be the answers to this question? In other words, what answers would show 
understanding? The first possible answer? 

The first answer is based on spatial representations. Medians intersect at a single point 
because three planes intersect at a single point. The answer is unusual, but it can be 
explained with that clear picture (see Fig. 1).

The second answer is based on a concept of physics (see Fig. 2). The medians inter-
sect at one point because it is the center of gravity of the triangle (or of its vertices). 
Surprisingly, within the Russian-language Internet, there is only one picture (left) out 
of several hundred connected with medians. It is the same situation within the Eng-
lish-language Internet (middle). Note that the pictures to the right do not explain 
anything — this is just an illustration of the concept of the center of gravity of a figure.
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The explanation is that we cut the triangle into strips and find out from obvious con-
siderations the centers of their gravity. Then we combine the results, and the centers 
of gravity of the strips lie on the median. And then we “intersect” the results, saying 
that the same considerations can be applied to another median, and therefore the 
center of gravity of the whole triangle will be at their intersection.

The third answer is based on a “geographical” representation (see Fig. 3). The medi-
ans intersect at a single point because if we draw a grid of the straight lines parallel 

Fig. 1. Medians intersect at a single point because three planes intersect at a single point
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Fig. 2. The medians intersect at one point because it is the center of gravity of the triangle
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to two medians and passing through the vertices and the sides’ midpoints, the third 
median will pass through the diagonals of the cells of the grid and therefore neces-
sarily through the intersection point of the two given medians. From this interpre-
tation, it is obvious that the ratio of median’s segments at the intersection point is 
2 : 1.

A mathematician can make a claim to each of the previous examples saying that such 
evidence is not a proof, and he/she will be right.

What is the role of proofs? In the book “Society of Mind”, Minsky presents a perspec-
tive on the proof as building a chain of related judgments so that the destruction of 
only one of its links leads to the destruction of the whole structure [Minsky, 1986].

Thus, the logical conclusion exists not as a way of thinking, but as a way to verify 
knowledge, to ensure the reliability of the building of science. This refers to knowl-
edge in its social, not personal, sense. That is, a person convinces him/herself not by 
a rigorous proof, but by convincing others through proofs which are accepted by the 
community as a format for the preservation and transmission of objective knowl-
edge.

COMPUTER TOOLS: 
EXPERIMENTS, EVIDENCE AND PROOF

Among all approaches to technological support in learning mathematics, Dynamic 
Geometry is the most successful. This fact is confirmed by the large number of imple-
mentations of this idea and the large number of teachers and students taking advan-
tage of its possibilities.

Using dynamic geometry, teachers and authors of educational materials solve various 
problems, from fast drawings of attractive figures to the preparation of tasks for math-
ematical Olympiads.

We will discuss several fundamental possibilities provided by dynamic geometry to 
support productive learning, that is, to support independent search activity. Let us 
consider the problem of constructing an inscribed circle. There are three stages of 
solving the problem of constructing an inscribed circle in dynamic geometry: 

1) a “manual” attempt to touch the circle by the triangle — but the movement of the 
vertices of the triangle destroys the solution;

2) construction of the center of the inscribed circle by the intersection of bisectors, 
and constructing a circle centered at this point — the movement of the vertices 
destroys this solution too;

3) construction of an additional point of the circle which is the base of the perpendic-
ular from the center to the side — the movement of the vertices does not destroy 
this last solution.

There is a serious psychological difference in solving this problem with and without a 
computer (see Table 1).



81PME and Yandex Russian Conference 2019

S. Pozdniakov

Now back to the example of the intersection point of the medians of a triangle. Will 
it be enough for the next experiment to convince students that medians of a triangle 
intersect at a single point? (Fig. 4).

After the experiment, students will agree that the medians intersect at a single point, 
but will not answer the question “Why?” The reason is that this experiment does not 
provide any link between the ideas the student has and the results. Knowledge will be 
isolated, and therefore formal.

Consider the differences in the two given examples of computer experiments. In the 
task of constructing a circle inscribed in a triangle, students answer the question, 
“Why is a circle built like this?” with a response something like: “Because the center 
of the circle lies at the intersection of bisectors, and at the tangency point the radius 
is perpendicular to the tangent.”

At the same time, students may not answer the question, “Why do these bisectors in-
tersect at one point?” But for this task it is not important. More important is that in 
this experiment three facts turned out to be connected together (the inscribed circle, 
the intersection of the bisectors, the perpendicularity of the radius to the tangent). 
It is the connection, not the knowledge of each fact separately, that is the goal of the 
constructive activity.

Table 1
Solving this problem with and without a computer

Without computer: With computer:

A student draws a picture with a circle inscribed 
in a triangle, looking at which the teacher can 
understand that the student understands the 
meaning of the word “inscribed”.

A student constructs the solution and checks it 
him/herself by moving points (which can be done 
by a teacher too).

A student gives explanations to the drawing: 
about fi nding the center of an inscribed circle 
and the point on it (constructing of bisectors 
and perpendicular). The teacher should read the 
explanations and either accept them or indicate 
incompleteness or incorrectness.

The place of explanations is occupied by the 
algorithm of construction, which is indirectly 
expressed by the correct dynamic drawing, 
but can be considered in terms of algorithmic 
operations (script).

If a student has proposed an original solution, 
the teacher will hardly have enough time to 
check it promptly, without stopping to work with 
other students

Novel solutions are checked as well as the 
standard one, and a student can convince him/
herself and the teacher of its correctness simply 
by moving vertices

Fig. 4. Attempt to convince students 
that medians of a triangle intersect at a single point
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Let us summarize this discussion. Why does mathematics teaching need tools? 

From a psychological point of view, Vygotsky showed the role of tools in the develop-
ment of a child: external objects (tools) are the main way to assist a person (child) with 
their intellectual operations [Vygotsky, 1934/1994]. Vygotsky and Leontyev studied a 
mechanism of internalization. If a student does not have some intellectual operation, 
it is necessary to “carry it outward”. After performing actions with this external “re-
flection” “by hand”, external operations will be automatically transferred to internal 
ones, and after the internalization a new psychological tool will be formed [Leontiev, 
1977/2009].

A question arises: what kind of activity with an external instrument will be adequate 
to the internal psychological instrument? There is an example about the development 
of spatial thinking [Yakimanskaya, 1971]: if a student “makes a short stool (taburet-
ka)” manually, most of the problems with the formation of spatial thinking will be 
solved.

From a mathematics point of view, Poincaré noted that mathematics is based on oper-
ating with external tools: “What is geometry for a philosopher? This is the study of a 
certain group. Which one? Groups of rigid body motions. How do you define this group 
without forcing some rigid bodies?” [Poincaré, 1921]. 

From a teaching technology point of view (mathematics and computer science), Pap-
ert studied the creation of “smart things” such as computer instruments (models) as 
a means to carry outward manipulations with mathematical concepts. An example is 
teaching students in differential equations through programming “dynamic turtles”.

Let us return to the example of the experimental verification that the medians inter-
sect at a single point. What intellectual structure will correspond to the process of 
moving a triangle?

According to Minsky, this will be a trans-frame, which is defined by three parameters: 
the beginning of movement, the end, and the description of the transformation pro-
cess.

The fact that it is difficult for us to “experience it yourself” confirms the phenomenon 
of magic tricks, when we see a magician’s actions and know their beginning and end 
but the result nonetheless contradicts our expectation.

That is, a person “loses mental control”, transmits it to a computer, and his conviction 
by this experiment will not be greater than by constructing a triangle with medians on 
paper using a compass and a ruler.

Another perspective is that of kinesthetic sensations and understanding. Papert has 
an observation of how a little girl draws a circle with the LOGO-turtle, making experi-
ments with her body: step forward, turn right at a small angle, step forward, turn right 
at the same angle, and so on, until we return to the starting point [Papert, 1980].

In this example, the dynamic representation of the circle is replaced by the elementary 
and familiar actions of the local movement of one’s body, familiar to every child.



83PME and Yandex Russian Conference 2019

S. Pozdniakov

Is it possible to reduce the movement of the triangle with medians to such local ac-
tions, ensuring that the intersection of the medians is invariant when the position of 
the vertices changes?

This approach is used in some mathematical problems. For example, the classical 
proof of the Pythagorean theorem uses the idea of dissection, based on the visual idea 
that the area of a figure (in fact, the figure itself) does not change when it moves. This 
psychological effect is also reflected in the teaching of mathematics: some mathema-
ticians cannot agree whether congruent (that is, received by movements) figures are 
called equal. Another application in math is the “small movement” (stirring) method.

The use of external objects for internalization in the pre-computer era can be consid-
ered as well. When discussing the issue of launching the internalization mechanism, 
it should be noted that it is constantly used in the teaching of mathematics. Following 
Vygotsky’s idea about replacing the tools of the external world with signs, you can 
look at the language means of mathematics from this point of view. The emergence 
of a geometric view of algebraic concepts, therefore, is a way to use the mechanisms 
of visual thinking to translate into an internal plan of new algebraic ideas. Dieudonne 
proposed a radical idea: not to use drawings in the teaching of geometry [Dieudonne, 
1969]. His motivation can be understood, but it is difficult to agree with such a dis-
missive attitude to the psychology of learning.

Another example is graph theory. It turned out that the visual presentation helps stu-
dents to interpret many problems of the theory of binary relations. This example is 
remarkable as graphs represent artificial objects, a specially created language. The 
effectiveness of graph theory (the language of which no one disputes) shows the im-
portant role of the use of intermediate artificial objects between the mathematical 
concept and its object implementation.

INTRODUCTION OF MANIPULATORS 
IN AN INFORMATION LEARNING ENVIRONMENT

To launch a mechanism of internalization for the formation of mathematical con-
cepts, it is not enough to use only the basic tools and domain models.

Special tools are needed, such that working with them triggers the translation process.

These special tools — let us call them manipulators — should reflect the properties of 
the mathematics objects as well as the features of operating with them mentally. One 
can consider the graph theory as an analogy.

In his preface to the book “Mindstorms: Children, Computers, and Powerful Ideas” 
Seymour Papert writes that he learned how to multiply numbers with the help of gears 
[Papert, 1980]. This implies that operating with gears can lead to the internalization of 
ideas associated with the multiplication of numbers.

In the framework of the “Construct, Test, Explore” contest (in which participants are 
offered dynamic models and constructive tasks), elementary school pupils were asked 
to make clocks from gears.
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Consider some features of using the domain model and a manipulator for this task and 
results obtained in this experiment.

The upper part of Fig. 5 (below) depicts a dynamic model from the “Clock” task of 
the “Construct, Test, Explore” contest [Akimushkin, Majtarattanakon, Pozdniakov, 
2014].

Fig. 5. Interface of the “Clock” task of the “Construct, Test, Explore” contest

Participants construct a clock by adding or removing double gears, changing their lo-
cation and number of teeth. For participants to associate a clock device with factori-
zation, the manipulator used two forms of gearing system presentation: one presenta-
tion based on the physical arrangement of objects on the plane, and another based 
on conditional arrangement in a line with sequential links — a rotation transmission 
scheme. Such a representation of the clock structure allows pupils to operate with 
gears in two “languages” simultaneously: the technical language of gears and the lan-
guage of mathematics by which the multiplication of rational numbers is implicitly 
represented. The presence of such a correspondence allows us to consider the manip-
ulator as a means for launching the mechanism of internalization for the formation of 
ideas about the fractions multiplication: 8/8 × 8/16 × 8/16 × 8/16 × 8/12 = 1/12.

DISCUSSION OF THE EXPERIMENT RESULTS 

The presence of a computer tool led to a large number of original solutions based on 
different factorizations and different locations on the plane (more than 80 different 
principal designs were proposed and there were no two completely identical solutions 
among 647 participants).

Among 647 participants, about 30% found the exact solution. This coefficient shows 
that these participants had the formation of ideas on the relationship of numbers and 
the mechanical interpretation of multiplication; it can also be said that they have cor-
rect ideas about rational number multiplication.
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Effect 1/12 = 0.0833. Some participants from the lower grades (about 3–5%) found an 
approximate solution with great accuracy, but did not understand that the large clock 
hand rotates 12 times faster than the small one.

One of the important conclusions is that operating with carriers of meanings does not 
always lead to elicitation and acceptance of meanings.

Thus, it can be said that only 30% of participants worked with the manipulator, allow-
ing for the construction of a proportion with any rational coefficient and leading to 
elicitation of the concept of the coefficient of proportionality.

This percent value indicates the effectiveness of the manipulator used and the fact 
that operating with carriers of meanings does not always lead to the elicitation of 
these meanings.

DESIGN AND VERIFICATION: 
THE ROLE OF EXAMPLES AND COUNTEREXAMPLES IN TEACHING 

Consider the possibility of efficient communication with “artificial intelligence”: in-
stead of assigning a computer the role of the “teacher” and a student the role of a 
performer, we will change the roles.

The student will design solutions and explain them to a computer program using some 
appropriate language. The computer will verify the solutions based on the given con-
ditions and examples and will produce reasonable comments.

Note that the success of dynamic geometry can be explained by the fact that dynamic 
geometries verify solutions to constructive geometric tasks on an almost infinite set 
of examples.

Let us try to simulate the work of a computer program which does not only check 
the student’s answer, but actively “resists” — it tries to refute the answer, looking for 
counterexamples.

Consider the “Verifier” program and its application in teaching of calculus. “Verifier” 
is a computer program for dialogue with a student through responses of a complex 
structure (predicates). The program is based on parametric classes of functions and 
solutions in the form of predicates. “Verifier” compares the predicate entered by the 
student with the reference answer on a set of examples determined by variation of 
these parameters [Mantserov, 2006].

The result of such a comparison can be one of three types (see Fig. 6):

1. On all generated examples, the entered response and reference answer take the 
same values.

2. On a particular generated example, the entered predicate takes the value “true”, 
but the reference one is “false” (which indicates an extraneous solution).

3. On a particular generated example, the entered predicate takes the value “false”, 
and the reference one is “true” (which means a missing solution).
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In the first case, the system reports that it was not possible to refute the student’s 
solution; in the other two, a generated example is demonstrated within the corre-
sponding environment (for example, a graph with marked signs of inconsistency and 
verbal comments).

Role of examples in teaching. Working with examples and counterexamples has a 
deeper purpose than it seems at first glance.

An analysis of the process of reasoning with general concepts shows that the proof 
is based on the actualization of basic examples by interpreting common actions with 
abstract objects.

It is enough to compare the effect of pronouncing the words “ring”, “field”, and “group” 
with the effect of pronouncing the phrases “ring of polynomials”, “field of residues of 
dividing into a prime number”, and “group of rotations of the tetrahedron” in the first 
courses of technical universities to notice the greater influence of the second set on 
the students’ readiness to perceive the teacher’s further speech.

The use of examples has roots in the instrumental basis of mathematical concepts, on 
the one hand, and ways of “carrying intellectual activity outward” on the other hand.

Role of counterexamples in teaching. The role of counterexamples is to limit the scope 
of interpretations on which a generalization is built.

Note that generalization does not arise due to the actions of the teacher, but appears 
automatically as one of the essential properties of the internalization mechanism.

For example, students easily transfer the properties of operations with real (or ration-
al) numbers to modular arithmetic, but they do not immediately distinguish the fea-
tures of arithmetic with a composite module. Therefore, counterexamples are required 
to show uncertainty in performing the division operation and, due to it, the difference 
between Z/5Z and Z/6Z.

Fig. 6. Task example in the “Verifier” environment: 
For what values of parameters a, k, and b does the function 

graph y = logak(x + b) have no points in the second quadrant?
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USING DIFFERENT INTERPRETATIONS OF MATHEMATICAL CONCEPTS 
TO SUPPORT PRODUCTIVE MENTAL ACTIVITY 

One of the serious mistakes in the development of computer support is the use of only 
a single methodological or psychological theory. Each theory emphasizes only a small 
part of all aspects of learning from dozens or even hundreds of such aspects in real 
teaching. Dynamic geometry became popular because it is not tied to a single peda-
gogical theory. This is just a subject model of the study area.

Thus, the availability of a subject model should be considered an essential aspect of 
high quality technological support for learning.

Similarly, when creating didactic superstructures above the subject model, one should 
not try to solve the problem of supporting all aspects of learning, but select only the 
most essential ones which contribute to the formation of the student’s mental tools.

Let us consider how you can connect dialogue support through examples and coun-
terexamples with an arbitrary object environment (not only with classes of parametric 
tasks).

Let us consider one solution to this problem using an example of the DM&TI Olympi-
ad (Discrete Mathematics and Theoretical Informatics Olympiad), in which traditional 
“Olympiad” tasks combined with constructive activity are supported by a computer 
[Pozdniakov, 2018].

As a part of computer support, manipulators are used that simulate such concepts as: 
graphs, logic schemes, state machines, regular expressions, Turing machines, etc.

Constructive tasks allow for experiments with models, checking solutions with exam-
ples, the set of which a student can change by him/herself. These examples play the 
role of feedback when a student searches for a solution.

However, complete correctness (not only of examples) is verified after the conclusion 
of the Olympiad.

An example of a task on regular sets and expressions is: “Find such a regular expres-
sion that defines words in the alphabet {a, b, c} which does not contain one of the three 
given letters”.

Another interpretation of a similar problem is in terms of the state machine.

Why do we need different interpretations? Different interpretations allow us to create 
meaningful internal links in the material under study.

Feynman called it “the Babylonian tradition”: “I know this, I know that and it is as 
if I know this; from here I conclude everything else. Maybe tomorrow I will forget 
something, but I will remember something, and the remnants will be able to restore 
everything anew. I don’t know very well where to start or how to finish, but I always 
have enough information in my head, so if I forget some of them, I can still recover it” 
[Feynman, 2000]. The presence of several representations (for example, algebraic and 
geometric) allows one to “jump over” from one interpretation to another and thereby 
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to overcome challenging places that can have different subjective difficulties in mul-
tiple interpretations. 

Examples of mathematically equivalent but psychologically different representations 
of mathematical ideas. Three different interpretations of the same idea have been de-
scribed above. Let us add two more:

1. Finite state machine. 

2. Regular expressions. 

3. Regular grammars. 

4. Turing machine.

5. Markov algorithm. 

The first three concepts are mathematically equivalent, but they connect with differ-
ent types of basic ideas:

• A finite state machine is represented by graphs, which rely on visual thinking.

• Regular expressions are represented by algebraic formulas, demonstrating opera-
tional knowledge.

• Regular grammars are a linguistic way of representing.

The other two concepts are equivalent definitions of the algorithm and they psycho-
logically represent its different aspects:

• Turing machine — computing, operational aspect.

• Markov algorithm — linguistic aspect.

Finally, the finite state machine is a special case of the algorithm. All five interpreta-
tions can be used in tasks based on the first three concepts.

When discussing dynamic geometry, we did not pay attention to the following as-
pect: an internal representation of all the geometric objects in dynamic geometry 
is analytic. That is, we are dealing with the environment of analytical geometry. 
However, the language in which the user communicates with dynamic geometry is 
the language of synthetic geometry, the language of constructions, transformations, 
etc.

This suggests that the efficiency of using a computer to support a student’s produc-
tive mental activity can be based on the difference in the ways people and computers 
perform tasks.

Consider this possibility on the example of so-called “smart tasks”.

CAN A COMPUTER PROGRAM CHECK A TASK SOLUTION 
WITHOUT KNOWING THE CORRECT ANSWER? CONCLUSIONS

When using tasks with automatic verification, it is assumed that at first someone will 
invent a task, solve it and enter it into a computer. Then the student will solve the 
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problem and enter the answer into the computer. This answer will be compared with 
the reference one and the student will receive a response to the entered answer.

There are two obvious drawbacks in this “division of labor”. First, if the author makes 
a mistake in the decision, the student will receive an inadequate response. Second, 
when solving tasks which are specially prepared in advance and if the task is difficult, 
the student will not be able to get a response to the subtasks set by him/herself.

Consider such a computer support that allows students to describe task conditions 
themselves and to then check input solutions without knowing a reference answer. 
Let us consider media for support of combinatorics tasks, which are set by the student 
during the solution process. To do this, it is necessary to have a way to adequately 
describe the tasks, which will allow the computer to solve this problem. “Wise Tasks” 
have two possibilities: 1) to use special “combinatorics language” or 2) a simplified 
interface to choose constraints [Bogdanov, 2006].

After the inputting condition, “Wise Tasks” enumerates all combinations and finds 
the answer (it will be a large integer and cannot give any useful information to the 
student).

The student inputs an answer in traditional form using combinatorial operations: 
arithmetic operations with natural numbers, factorial, k-combinations, etc.

The program calculates the result using a “large” integers format and compares it with 
the one calculated by the computer at the previous step.

Thus, this project did not require any serious machine intelligence in order to support 
activity corresponding to the principles described in the works of Polya [1954; 1981; 
2004].

CONCLUSIONS

Learning is a social process and the expediency of using those or other computer capa-
bilities is not obvious. It is necessary to continue searching for new forms of human–
computer interactions aimed at developing students and their deep understanding of 
mathematics.

The introduction of a computer into the educational process should not be related to 
the suppression of mental activity in favor of a computer unless the student operates 
with more general conceptual categories.

There exist successful examples of using a computer to support productive thinking 
and it would be worthwhile to examine the roots of such success and to develop tech-
nologies for effective uses of computer support in actual teaching practice.
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OPENING DISCUSSION. 
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Isak Froumin
National Research University Higher School of Economics, Moscow, Russia

Yury Zinchenko
Lomonosov Moscow State University, Moscow, Russia

Igor Remorenko
Moscow City University, Moscow, Russia

Ivan Yaschenko
Centre of Teaching Excellence, Moscow, Russia

Natalia Chebotar
Yandex, Moscow, Russia

Markku S. Hannula
University of Helsinki, Helsinki, Finland

The conference started by a plenary discussion between the Russian officials, namely, 
Isak Froumin, Yury Zinchenko, Igor Remorenko, and Ivan Yaschenko, Yandex repre-
sentative, Natalia Chebotar and the PME president elected, Markku S. Hannula. They 
discussed the role of mathematics education research in the current societal and eco-
nomic situation. 
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COMPUTER-BASED TECHNOLOGY 
IN MATHEMATICS EDUCATION

Roza Leikin
University of Haifa, Haifa, Israel

Aleksey Semenov
Lomonosov Moscow State University, Moscow, Russia

Angelika Bikner-Ahsbahs
University of Bremen, Bremen, Germany

Vladimir Dubrovsky
Kolmogorov School, Lomonosow Moscow State University, Moscow, Russia 

The second plenary discussion was organized as a debate between two extreme posi-
tions concerning the future transformation of mathematics education under the pres-
sure of technology: a radical change versus an absence of specific transformation. The 
first position “Computer-based technology will change and already is changing math-
ematics education dramatically” was defended by Aleksey Semenov and Roza Leikin 
and the second position “Computer-based technology is just one more tool in teach-
ing and learning mathematics, just like a blackboard or a calculator” was defended by 
Vladimir Dubrovsky and Angelika Bikner-Ahsbahs. 

The following questions were answered by the experts, as they were defending each 
position:

• How does technology influence the goals, scope and expected results of mathemat-
ics education? 

• How does technology influence teachers’ responsibility and role in a classroom?

• How does technology influence the understanding of mathematical concepts? 

• How does technology transform the individualization of mathematics education?
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TECHNOLOGY 
AND PSYCHOLOGY 

FOR MATHEMATICS EDUCATION: 
COLLABORATION OF RUSSIAN AND INTERNATIONAL 

COMMUNITIES

Anastasia Sidneva
Lomonosov Moscow State University, Moscow, Russia

Marie Arsalidou
National Research University Higher School of Economics, Moscow, Russia

Markku S. Hannula
University of Helsinki, Helsinki, Finland

Norma Presmeg
Illinois State University, Russia

Yakov Abramson
Public School ‟Intellectual”, Moscow, Russia

The focus of this discussion was on educational research as an interdisciplinary col-
laboration. Marie Arsalidou explained the role of neuroscience and the need for tight 
collaboration between neuroscientists and educators for achievement of educational-
ly meaningful research results. Anastasia Sidneva clarified the peculiarity of a meth-
odological position that psychological research takes as researchers enter the field 
of education: the tradition of Russian psychology concerns with the investigations 
of educational phenomena from the transformative perspective rather than from the 
that studies processes perspective of independent from researcher. Markku S. Han-
nula explicated the role of PME conferences in international collaboration as an op-
portunity to discuss a concrete educational problem that waits for clarification and 
solution. 

Further, the experts turned to the issue of collaboration between researchers and prac-
titioners. Norma Presmeg highlighted that orientation towards the better teaching is 
not merely a methodological choice, but the goal of mathematics education research 
as a field. Yakov Abramson stressed the importance of choosing a psychological guide-
line for a teacher.

All the conference participants had a chance to contribute their vision of the next 
steps in the development of Russian mathematics education research community. As 
the following steps, there were such initiatives as spreading information through an 
e-mail list between participants, publishing a special issue in one of the specialized 
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Russian journals, organizing the next conference, PME-Russia in Saint Petersburg in 
2021. The discussion was followed by the introduction of the main journals and key 
conferences for the researchers in mathematics education by Anna Shvarts. She spe-
cifically focused on PME conferences and on an opportunity to receive traveling sup-
port through the Skemp Fund.
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ROLE OF THE TOOL FOR TEACHING 
TOWARDS A MODELLING PERSPECTIVE 
ON DIFFERENTIAL EQUATION SYSTEMS

Mette S. Andresen
Mathematics Department, University of Bergen, Norway

This paper reports on a study in progress of the role played by various ICT tools for stu-
dents’ formation of mathematical concepts. In the study experienced teachers (14 in all) 
documented their modelling by differential equations of a system. Their reports were an-
alysed with regard to signs of concept formation and tool use. The aim, data and method 
of the inquiry is presented together with an excerpt from the analysis and reflections upon 
the study so far. 

INTRODUCTION 

The aim of this paper is to discuss the role played by computer-based ICT tools for 
teaching towards a modelling perspective on differential equations (DE) from a math-
ematics education point of view in terms of emergent modelling. Basis for the paper is 
a study in progress of teachers’ written reports from a mathematics education course 
on DE and modelling. The study resumed results and experiences from comparable 
research on the interplay between students’ modelling for concept formation in DE, 
and the use of ICT [Rasmussen, Whitehead, 2018; Ju, Kwon, 2007; Yackel et al., 2003; 
Andresen 2006]. This study will inquire teachers doing modelling projects in a mas-
ters’ course. The teachers used a variety of tools of their own choice during the course. 
The idea of the study was to analyse a more complex situation in the light of results 
from simpler ones and throw light on questions like: Is it possible to identify com-
mon trends regarding tool use in the upper secondary classroom and in the groups of 
teachers? How should the influence of different tools on the modelling processes be 
identified and interpreted? And what does this mean for the learning about DE?

BACKGROUND 

Earlier research had focused on upper secondary school students’ modelling of DE 
with CAS software, based on Blanchard et al. [2002] that take a dynamical systems’ 
view on DE. The main outcome of [Andresen, 2006] was that DERIVE (from Texas In-
struments) had become a supportive tool for students’ concept formation. The use of 
DERIVE combined with the qualitative and dynamical approach showed potentials to 
support the students’ model recognition and capability to understand and criticize the 
use of ready-made models in DE. However [Ibid.] reported that the use of CAS in gen-
eral, depending on the teacher, tended to change the focus of attention into technical 
and practical aspects. The research revealed a potential danger of teaching ‘models 
and modelling’ in a design where mathematics served as a bare tool for prompting 
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solutions and correct answers. Such teaching designs could evolve at the expense of 
‘modelling for concept formation’, which focuses on emergent models and gives the 
students a chance to build up insight into mathematics theory and knowledge, based 
on experiences from their own mathematical activities. The present study was initiat-
ed with the aim to gain knowledge and experiences to avoid such danger.

Research question: 
What roles do computer-based ICT tools play for the concept formation, when DE are 
taught as a means for modelling dynamic systems?

THEORETICAL FRAMEWORK

Modelling for concept formation: ‘Emergent Models’
The studies in this paper were based on the constructionists’ view that learning is a 
process of constructing and modifying conceptions [Cobb, Yackel, Wood, 1992]. They 
were also based on Hans Freudenthal’s view on mathematics as a human activity 
[Freudenthal, 1991]. According to this view, students should have the opportunity to 
reinvent mathematics by horizontal and vertical mathematizing. This view consti-
tutes the basic principles of Realistic Mathematics Education (RME). Horizontal and 
vertical mathematizing may be modelled [Gravemeijer, Stephan, 2002] by the passing 
of four levels of activity (situational, referential, general and formal), where a new 
mathematical reality is created at each level and raising from one level to the next is 
driven by reflections, which substantiate the progressive mathematizing. Gravemei-
jer’s four-level-model of mathematising formed the basis for study of potentials for 
learning mathematics from mathematical modelling, that is, basis for development of 
the design heuristics of emergent models described in [Gravemeijer, Stephan, 2002]. In 
the case of DE models the essential concepts encompass solution, slope field, equilib-
rium solution etc.

Explorative and Expressive Work
At functional level and for concept formation, explorative work is distinct from ex-
pressive work. The modelling process at functional level by Morten Blomhøj and To-
mas Højgaard Jensen [2003] is an example of expressive work: modelling encompasses 
six sub-processes, each of them requiring creative non-routine activities. At function-
al level, explorative work aims at inquiry of existing constructions or artefacts like 
mathematical models or computer standard routines. Expressive work at a functional 
level aims at creation, for example of a solution or description of a mathematical prob-
lem. Following the RME conceptualising of modelling in [Gravemeijer, Stephan, 2002], 
concept formation should take both the explorative and the expressive approach into 
account [Andresen, 2006]. 

Interplay between tool and modelling
According to the theory of Instrumental genesis, an artefact like a laptop with CAS 
software does not in itself serve as a tool for anybody. It becomes useful, and then de-
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noted an instrument, only after the user’s formation of mental utilisation scheme(s). 
[Drijvers, Gravemeijer, 2005]. The instrumental genesis proceed through activities in 
“The two-sided relationship between tool and learner as a process in which the tool 
in a manner of speaking shapes the thinking of the learner, but also is shaped by his 
thinking“ [Ibid.]. In the case of modelling, the dynamical systems’ view on DE will 
generate a learning environment where ICT tools are needed for both expressive and 
explorative work. The tools serve to supply the students’ mathematical activity with 
a technical dimension and to support the students in developing flexibility of the 
mathematical concepts [Andresen, 2006], for example in the form of fluent changes 
between different representations in line with the ‘rule of four’ in mentioned by Ras-
mussen and Whitehead [2018].

METHODOLOGY

Materials for analysis
The study in progress inquires the work of a group of teachers, who followed the course 
‘Modelling in and for mathematics teaching and learning’ in our masters’ programme 
in mathematics education. The programme prerequisites two years of professional ex-
perience as teacher in lower or upper secondary school and at least 60 European Credit 
Transfer System (ECTS) points in mathematics, meaning one year of full-time study at 
university level. The modelling course was a 15 ECTS points course, compulsory part 
of our programme. It was based on the textbook [Blanchard, Devaney, Hall, 2002], and 
encompassed lectures, tasks and two projects. This paper focus on students working 
in pairs on one of the two projects, after their first 36 lessons on first order linear and 
non-linear DE systems, qualitative, quantitative and numerical methods, modelling 
and problem solving, and Laplace transformations. The aim of the project was, ac-
cording to the guidelines: To formulate, complete and present a project that encompass-
es the building and/or revision of a simple differential equation model using appropriate 
digital tools. The guidelines proposed a structure of the report encompassing i) Intro-
duction and research question, ii) Building or description of the model and discussion of 
it, iii) Qualitative and quantitative evaluation of the model, iv) Conclusion and discussion, 
v) Perspectives. Purposes of the project were: 1) to learn about differential equations 
by doing a modelling project, and 2) to get personal experiences with learning math-
ematics from doing a modelling project. The study analyses reports, prepared 2014–
2016 from this project, from all our programme’s students’ modelling with differential 
equations, 14 cases in all. The aim is, in each of the 14 cases to study the interplay 
between the students’ modelling process, and the ICT tool they had used. 

Clusters of reports
After the first reading through, the cases were coded (most of the codes are omitted 
in this paper) according to: i) Mathematical model: Predator — prey models (PP), Ep-
idemic models (SIR), models of a harmonic oscillator (HO), Exponential growth (Ex), 
Logistic growth (Lo), and Others (Ot). All these models were elaborated and illustrated 
in the textbook too; ii) ICT tool: The students’ ICT competencies spanned from almost 
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novice with calculator and Excel, to experienced users of GeoGebra, Mathlab and POL-
YMATH. There are several ready-made ICT tools available on the web for exploration 
and inquiry of differential equations models; iii) Data source: The students found data 
on the web, with a few exceptions who on their own got, or from the beginning had, ac-
cess to suitable data in an area of interest. A few tables in from the textbook were also 
used; and iv) Modelling method: The cases represented a variety of methods. In some 
cases, the students took one model and a seemingly corresponding data set as their 
starting point (Start Mod) and made efforts to estimate the model’s parameters to fit 
to the data. Others described a step- by-step procedure with more and more complex 
models (Step-by-step) aiming at fitting the model to the data. Use of Graphs was com-
mon for checking; some found an analysis solution or numerical solution. Many used 
analytical methods like Jacobi determinant and eigenvalues etc. to check the model.

The qualitative analysis of the 14 cases will be carried out in a series of sub-analyses. 
For each sub-analysis, the cases will be grouped in clusters according to one or more 
of the criteria. The conclusion to the sub-analysis will be reached as synthesis of the 
results from inquiry of each cluster. 

Analysis of concept formation:
The analysis will be based on Gravemeijer’s four — level — model and follow the for-
mat described above. It aims to find signs of emergent models that could indicate 
progress in the students’ concept formation. Such signs are found by identification of 
mathematical activities and reflections, in the form of deductions and statements in 
the reports. They are interpreted as possible single steps in the entire developmental 
progression in the students’ thinking. Meta-statements and reflections about the pro-
cess written in the single reports support the interpretations. 

Example 1: The 14 cases may be grouped in clusters following the codes PP, SIR, etc. 
for sub-analysis of formation of concepts specific for the individual model. Inquiry of 
the clusters might reveal similarities and differences between emergences of mod-
el-specific concepts involved in PP, SIR etc. 

Analysis of tool use
The students’ actual use of one or more tool(s) in each report will be characterised 
regarding being explorative or expressive. The single statements and deductions re-
lated to the tool will be interpreted in terms of explorative and expressive, relating to 
the two sides in the relationship between tool and learner according to the theory of 
instrumental genesis. The single step of the students’ activity will be characterised 
as mainly imposed by the tool or as mainly the students’ own enterprise. Further, the 
analysis aims to study to what degree the students had generated an instrument of the 
ICT tool.

Example 2: For sub-analysis of tool use, to which the mathematical model was par-
ticularly close related in the cases where the tool was a ready-made test box, the cases 
may be grouped in clusters according to criteria i) and ii). It might be the case that 
ready-made tools are used mainly for exploration of the model it was tailored for. 
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DATA AND ANALYSIS
Table 1

Group/Code Reports Characteristics

A 1, 4 (SIR), (Start Mod)
B 2, 13 (PP), (Start Mod)
C 5, 6, 9,10, 11, 14 (PP), (Step-by-step)
D 7, 12 (Lo), (SIR), (Step-by-step)

Table 1 shows an example of sub-analysis from the study in progress. It shows the 
14 cases grouped in cluster A, B, C, D (and none: case 3 and 8) after the criteria i) model 
and iv) method. 

Excerpt from the analysis. Case: Report 12 
‘Development of HIV infected persons in the world’. 

Method: Started with model for logistic growth and found analytical solution. Filled 
in data in a GeoGebra spreadsheet with regression. Estimated the parameters and 
graphed the solution which did not fit. Continued with results of the regression, not 
with the solution. Tested other models by trial and error; cancelled polynomial regres-
sion because the graph fitted badly. Turned into quantitative and qualitative inquiries 
of the SIR model. Summary: Analytical solution of simple equations, regression in 
GeoGebra, Qualitative inquiry based on ready-made test-box.

Concept formation: Horizontal mathematization (data to parameters and variables), 
several shifts between ‘model of’, and ‘model for’ in both directions, shifts between 
representations. Shift from general to formal level (change to SIR) and back (testing 
on data). Summary: Flexible understanding of the SIR model and its content, includ-
ing reflections and critical reflections. 

Tool use: The first parts using GeoGebra dominated by own enterprise; expressive 
use of well-known instruments. Second part with the SIR model: explorations, ap-
parently influenced by the tool (equilibrium points, null-clines), but also alternating 
with expressive modelling (estimation and interpretation of parameters). Summary: 
Well-known tools used as a forerunner for generation of an instrument from the new, 
ready-made test-box.

DISCUSSION

The experienced mathematics teachers in this case documented their mathemati-
cal activities and reflections in their report in a convincing way meaning that they 
seemed to be familiar with the mathematics involved, and with the tools used in the 
first part of the report. For example, they used a first-person perspective in their 
writings in the report (see [Ju, Kwon, 2007]). The teachers, though, were not familiar 
with modelling; neither did they know the differential equations model in advance. 
Therefore, the case could be useful for inquiry of learning by modelling in a favour-
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able context regarding learning potentials in mathematics. There seemed to be a 
successful generation of instrument from the ready-made test-box in the case. It will 
be interesting to see whether this is a common trend in cluster D and whether such 
a trend can be identified in a cluster of cases using ready-made test-boxes. Genesis 
of an instrument might, further, be found as a common trend in a cluster of cases 
using a step-by-step method. Regarding concept formation as well as tool use, it will 
be interesting to relate the results of inquiries of cluster D and cluster A in a search 
for potential similarities and discrepancies between the work with SIR in groups D 
and A. Besides, there may for example be interesting similarities and discrepancies 
between the step-by-step work in groups D and C, with SIR and the predator — prey 
models. 

CONCLUSIONS AND PERSPECTIVES

Andresen [2006] showed that the students became quite familiar with DERIVE and 
used it as their instrument, for example for initial inquiry of tasks or problems. There 
were no apparent examples of tool use that directly supported mathematical concept 
formation in the area of differential equations. The students’ learning outcome was 
mostly within modelling and model recognition. This new study has potentials to go 
deeper into the formation of mathematical concepts during the modelling process 
since the teachers were asked to document this process: The variety of tools used 
combined with the quantity of models gives room for inquiry of interplay between 
tools and modelling. The relatively small number of reports was considered by inquiry 
of each single report as a case and then grouping them into clusters depending of 
the theme of the sub-analysis. Therefore, this new study in progress will, hopefully, 
serve to support development of teaching designs where dynamic and modelling per-
spectives go hand in hand with advanced technology, towards students’ robust under-
standing of differential equations. 
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THINKING INSIDE THE POST: 
INVESTIGATING THE DIDACTICAL USE 
OF MATHEMATICAL INTERNET MEMES
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Ornella Robutti

Università degli Studi di Torino, Torino, Italy

We venture in the almost unexplored field of mathematical Internet memes, with the aims 
of investigating their didactical features in a teaching and learning setting. The work is 
framed within the research field studying the links between emotions and mathematical 
thinking and takes off with a schematization of the meanings carried by a meme, formulat-
ed through an a-priori analysis of spontaneous web productions and results of an explor-
atory experiment. The analysis is then compared to the data collected in a teaching exper-
iment conducted at high school level. Results sustain the conjectured meanings structure 
and elicit evidence of students’ emotions and of their role in the learning process initiated 
by the interaction with memes.

INTRODUCTION: MEMES AS NEW LEARNING OBJECTS

We argue that mathematical Internet memes can morph into effective learning ob-
jects if paired with adequate teaching practices, pointed at harnessing memes’ social, 
emotional and communicative potentials and funnel them into teaching and learning 
assets. The present study aims at verifying the robustness of an a-priori schemati-
zation of the meanings carried by memes and test their didactical use in a learning 
setting.

WHAT IS A MATHEMATICAL INTERNET MEME

Mathematical Internet memes are a special kind of Internet memes, which in turn 
are a subset of memes, “unit(s) of cultural transmission” that propagate themselves 
by imitation [Dawkins, 1976, p. 249]. The common feature that characterizes Internet 
memes is that they are pieces of digital media that spread virally through social chan-
nels, reaching a large audience in a very short time. They are built of “verbal and pic-
torial parts, which unfold their meaning through collective semiosis” [Osterroth, 2018, 
p. 6] they can be in the form of viral images, videos or files created by users following 
collectively established rules that govern the so-called memesphere and they are wide-
ly shared through social platforms with a satirical or humorous intent. According to 
Shifman [2014, p. 15] “while seemingly trivial and mundane artefacts”, memes “reflect 
deep social and cultural structures” and “epitomize the very essence of the so-called 
Web 2.0 era”. Although they score an ever-increasing number of appearances on social 
platforms (the hashtag #memes hit 67 million of occurrences on Instagram in January 
2019), they can be called famous strangers: well known to net citizens worldwide, but 
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totally foreign for those who are not familiar with social media culture. As a matter of 
fact, up to now, they are understudied by academic research.

We start with a web found example: in Fig. 1a, we see the original viral image of the 
Who Killed Hannibal? meme, Fig. 1b and 1c show two mathematical variations.

Which information is necessary to understand them? First, we need to recognize them 
as memes. Second, we have to connect some evidence to the background image: we 
should know the original image to identify the remixing in the mathematical varia-
tions. In Fig. 1b Hannibal is unaffected by the shooter and in 1c he doubles himself as 
a consequence of being shot at. Third, we have to understand the mathematical mean-
ings represented symbolically: in 1b the notion that the exponential function y = ex 
remains untouched by the differential operator and in 1c the fact that y = e2x doubles 
when the first derivative is taken. In our preliminary web survey on social media, we 
have encountered dozens of mathematically-themed groups, with hundreds of users 
reacting, commenting and questioning about the image or the mathematical part of 
memes like the one analysed here. This suggests that only those who succeed in grasp-
ing all levels fully understand the meme, laugh and feel part of this mathematically 
skilled community that emerged spontaneously in the digital world.

THE MEANINGS OF A MEME

In a previous study [Bini, Robutti, 2019], through the a-priori analysis of web produc-
tions and the results of an exploratory experiment, we identified three partial mean-
ings that build up the full meaning of an Internet meme: 

• The first partial meaning is structural and lies in its being a meme, namely to have 
a specific and shared structure and graphics (font, colour, text position).

• The second partial meaning is social and lies in the shared conventions of viral im-
ages, compositional setups and syntaxes (Fig. 1a).

• The third partial meaning is specialised and lies in images, symbols or text referring 
to a specific topic (mathematical, or other) (Fig. 1b and 1c).

Fig. 1. Original template (1a) and mathematical variations (1b and 1c)
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The first two meanings ground in the popular culture rules that govern the meme-
sphere, while the third calls some mathematical knowledge and skills into action. The 
interplay of all three partial meanings is needed to unlock what we call the full mean-
ing of the meme, which triggers a sense of surprise and fun. Here we intend meaning 
within a “sphere of practice”, adhering to a common set of rules, where “mathematical 
meanings are constructed” [Kilpatrick et al., 2005, p. 10].

For students, who are fully fledged net citizens and access the first two meanings eas-
ily, the obstacle in grasping the full meaning usually lays in understanding its special-
ised meaning (the mathematical content). In an educational setting, we hypothesise 
that this final hurdle, that makes the act of cracking the meme even more rewarding, 
could turn out as one of the meme’s significant didactical feature. In fact, the intro-
duction of some attuned desirable difficulties in the learning process can improve long-
term retention, since “in responding to the difficulties and challenges, the learner is 
forced into more elaborate encoding processes and more substantial and elaborate re-
trieval processes” [Bjork, 1994, p. 192]. On the other hand, teachers — who are usually 
not familiar with social media trends — may be shut out of the first two meanings, and 
therefore of the full meaning of the meme. This can be called an undesirable difficulty 
that creates a barrier between teachers and students, grounding on the digital culture 
vs. school culture cliché. This paper aims at opening a breach in this barrier, introduc-
ing the idea of didactical meme: a mathematical Internet meme used in the classroom 
for teaching and learning purposes.

THEORETICAL FRAMEWORK 

Memes are a totally new phenomenon in mathematical education research and there 
is no history in literature of suitable theories to frame them. Our first exploratory ap-
proach [Bini, Robutti, 2019] was based on the results of an a-priori analysis of memes 
and aimed at describing their role in education from a cognitive point of view. The 
Boundary Object perspective, as introduced by Star, Griesemer [1989], and Sfard’s 
[2008] theory about discourse and communicational approach to cognition seemed 
appropriate to ground our analysis on. 

Further investigations, involving new data on the memes design process (described in 
the Data and analysis paragraph), steered our focus from the cognitive to the emotion-
al aspects of students’ interplay with memes. We were faced with evidence that “emo-
tions also affect cognitive processing in several ways: they bias attention and memory 
and activate action tendencies” [Zan et al., 2006, p. 118]. The cultural-historical ap-
proach introduced by Radford [2015], a “cultural conception of emotions and their role 
in thinking in general and mathematical thinking in particular” [p. 26], seems fit for 
our case. In fact, according to Radford, emotion and thinking are strictly connected: 
“from a cultural-historical perspective, emotions are both subjective and cultural phe-
nomena simultaneously; they are entrenched in physiological processes and concep-
tual and ethical categories through which individuals perceive, understand, reflect, 
and act in the world” [p. 35]. In particular, his idea that “contemporary cultural ideas 
of learning and learners are conveyed by schools and other social institutions, family, 
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and mass culture” [Radford, 2015, p. 46] valorize the social value of memes, which, 
through shares and likes, act as social currency in the memesphere.

To sum up, using the words of an anonymous Reddit user, memes are “like inside jokes 
between millions of people”: they find their reason for being in reactions and root 
deeply into emotions. We argue that a didactical meme can be a conveyor of cognitive 
and emotional elements, taking advantage of a fact neural scientists agree on, i.e. that 
“emotional arousal often leads to stronger memories” [LeDoux, 2007], as memories 
about emotional situations are normally stored both in explicit and implicit memory 
systems. The research questions of the study are: RQ0) What is the students’ famili-
arity with social platforms and memes? RQ1) Are the meanings of didactical memes 
recognised by students the same as we described in the a-priori analysis? RQ2) What 
is the role of emotions in a learning process involving didactical memes?

METHODOLOGY

This work presents the pilot study of a PhD thesis (one of the authors’), involving 
a class group of 22 10th grade students, who created their own didactical memes on 
the topic of linear systems and recorded videos with the explanations of the special-
ised meaning. Due to page restriction, didactical memes involved in the study will be 
now on referred to simply as memes. Data collected are: individual entry forms and 
worksheets, memes and videos created at school by students working in pairs (3h), 
screencast and video recordings of the memes and videos production processes by two 
selected pairs, individual feedback forms and reflective worksheets, video recordings 
of the collective discussion guided by the teacher (2h). Observed pairs were picked out 
coupling students with mixed mathematical and linguistic abilities, to facilitate the 
emergence of the expected meanings and their interaction. Students’ creations have 
been gathered in collective spaces (Padlet walls shared via Google Classroom) that 
mimicked the social media environment, allowing the coveted reactions.

DATA AND ANALYSIS

The entry online form answered RQ0, assessing that 100% of the students were familiar 
with social platforms (83% declared to visit them “several times a day”), with memes (“an 
image with funny text”) and had some interaction with general purpose (i.e. non-didac-
tical) memes (100% declared to like and/or share them on 
social platforms, one student identified himself as a meme 
creator). The entry worksheet, administered by the teacher, 
used the meme in Fig. 2 to check if our a-priori identified 
partial meanings matched those recognised by students.

All answers support our a-priori analysis of the partial 
meanings of a meme (RQ1). In Table 1 we show expect-
ed partial meanings (not revealed in the questionnaire), 
questions, and samples of students’ answers (selected be-
cause particularly effective).

Fig. 2. The entry worksheet 
mathematical meme
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Subsequently, we analysed the products (Fig. 3a and 3b) and the production processes 
of the two focus pairs, to identify the interaction between partial meanings.

All memes were created through a Meme Generator website that automatically im-
poses the compositional rules, so we shall take the structural meaning for granted and 
focus on the interplay of the social and specialised ones. Hereafter we summarize the 
key moments of the selected pairs’ memes production processes.

Figure 3a: pair 1 (two girls) started with the idea of creating a meme on what they 
identified as the most difficult aspect of the assigned topic (specialised meaning: 
Cramer’s rule and fractional equations). In the Meme Generator website, they looked 
for a template whose social meaning matched the emotion that these mathematical 
difficulties stirred. In the explanatory video, they connected the two meanings, clar-
ifying that “the expression of the old woman in the meme represents our faces when 
we see [simultaneous] fractional equation to be solved with Cramer’s rule”.

Figure 3b: pair 2 (two boys) browsed through the various templates in the website, 
laughing and quoting a variety of possible captions related to their feelings and expe-
rienced difficulties in mathematics (fractions, binomial expansions, systems), to cre-
ate something funny and original (“in my opinion everybody will use the first [imag-
es], we could differentiate ourselves…”), because if the template and/or subject were 
already used by someone else, there would be less chance of gaining likes.

Table 1
Assessment of the meanings of a meme

Meaning Questions Answers

Structural In your opinion, what leads you 
to say that this is a meme 
and not a cartoon?

S1: From the classic meme font, that is in capital 
letters, and the fact that it is divided into two parts, 
a sentence above and one below that do not cover 
the image

Social What do you think is the 
purpose of the image chosen 
as the background of the meme?

S2: The child’s gesture means “hurray I’ve done it” 
and implies that, as fi nding the middle term 
is diffi cult, when you do you are happy

Specialised Which mathematical topic 
is referred to in this meme?

95% identifi ed and explained the rule applied 
to square a binomial and 81% agreed on the fact 
that the middle term is usually forgotten

                               a                         b
Fig. 3. Pilot study focus couples’ memes (captions translated by authors)
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In both cases, grounding on the shared structural level, we witness something that we 
did not consider in our a-priori analysis: a dynamic interplay between social and spe-
cialised meanings in the design activity, deeply rooted on emotions (Fig. 4). 

Pair 1 follows the left-pointing red arrow and pair 2 the right-pointing black arrow, 
but in both cases students’ facial expressions, choice of words and physical reactions 
showed that emotions — aroused by a dynamic coaction of mathematical content and 
cultural constructs [Radford, 2015, p. 29] — enabled the connection between meanings 
and acted as origin and ultimate goal of the interaction with the meme (RQ2). 

A similar double path illustrates the class group dealing with memes in Fig. 5, created 
by the researcher and presented in a worksheet the following lesson — asking students 
to describe their specialised meanings — as a start off for the discussion.

The meme in Fig. 5a was greatly appreciated (“this is beautiful”): its specialised mean-
ing was immediately understood and connected to the social meaning through an 
emotional interlacing (“it looks like Viola — the smartest student in the class group — 
when we solve problems together”). Here the specialised meaning, i.e. the ability to 
recognize that the given problem is best solved using the elimination method, is pro-
cessed first and then connected to the social meaning resulting in a successful di-
dactical meme that prompted a deep collective discussion: we are moving along the 
left-pointing red arrow in Fig. 4 scheme. 

On the other hand, the meme in Fig. 5b puzzled students: in the worksheet a signifi-
cant share (64%) correctly described the mathematical meaning (“for the comparison 
method we need to apply the transitive property”, “the comparison method is justified 
by the transitive property” (in the Italian curriculum, the comparison method refers 

                                   a                            b
Fig. 5. The reflective worksheet memes

Fig. 4. The meanings interplay and the role of emotions
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to a 2 × 2 linear system solving technique where the same unknown is obtained from 
both equations and then the right-end sides expressions are joined to get a single 
variable equation)). Discussing the meme later, they showed mixed feelings (“I did 
not understand it so well because of this transitive property”). The following excerpt 
clarifies the unfolding of the interplay between the different meanings:

Student: No, I did not remember very well what the transitive property was.

Teacher: But looking at the meme image, what would you say?

Student: That they are two similar things, two equal things (the social meaning of the image is 
to describe situations in which two very similar elements meet).

Upon further inspection, the majority of the students admitted they did not remember 
what the transitive property was and a recap of the property was given by the teacher.

Teacher (after the recap, addressing the whole class group): The things you wrote [in the work-
sheet], those of you who wrote them correctly, did you write them because you remem-
bered the transitive property or just to make sense of this meme and say that they are 
almost the same thing because the image tells us this?

Students yelling in chorus: Because of the meme!

Teacher: I do not know whether to be happy or not, though…

Researcher: Now that we have used this meme to recall that they are the same thing, do you think 
you will remember when you use the comparison method, do you think you will associ-
ate it with the transitive property more consciously?

Students in chorus: Yes, definitely.

In this case, knowledge is built moving along the black arrow of Fig. 4, from the social 
to the specialised meaning and emotions are deeply tangled with the whole path. Fi-
nally, in the feedback questionnaire, 81% of the students answered positively to the 
question whether they had learnt or understood something better (“yes, also checking 
at the other memes created”), 86% scored more than 7 in a 1–10 rating scale question 
about “having created the meme will help you remember this topic better?”. In the 
following days, the teacher reported that “we are working on the transitive property of 
equality: I was amazed by my pupils' attention to names… when I explain I do not give 
much importance to names. But I think it’s for the idea of making a good impression”.

DISCUSSION: A NEW COGNITIVE OPPORTUNITY

To sum up, we started with an a priori analysis that led to the three meanings struc-
ture of a meme and was confirmed by students’ entry worksheets (RQ1). When we 
observed the processes of memes’ creation and interaction with them, we saw that the 
three partial meanings were not handled in a fixed order, but that the development is 
more complex and dynamic, with different access points. Students’ physical reactions 
and utterances showed that emotions drive the relation with memes (both as creators 
and users) and allow shifting from the specialised to the social meaning and vice ver-
sa (RQ2). This emotional involvement turns out as the meme’s most powerful affor-
dance: from the learning point of view it guides and motivates students to understand 
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the meme’s specialised meaning. From the teaching point of view, it can be exploited 
by teachers who can use memes to reply to students’ memes, resulting in a memetic 
adaptation of the semiotic game [Arzarello et al., 2009], focused on the memes’ math-
ematical specialised meanings. This use of memes can foster language awareness and 
further mathematical reflections, as shown by the teacher’s testimony.

Although these results seem encouraging, our work is far from complete, more inves-
tigation is needed to dig deeper into the affordances of memes: for example, a mid and 
long-term assessment to evaluate the connection between the emotional situations 
aroused by memes and students’ retention of the associated knowledge. Anyway, we 
think that this almost uncharted territory is worth exploring, because, even if digital 
culture can be labelled by someone as a non-culture, facing the evidence that our stu-
dents are emotionally embedded in it, we think it would be educationally valuable to 
embrace it and turn it into a cognitive opportunity.
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The article relates the leading determinants of giftedness to the specific example of math-
ematical giftedness. Students and post-graduates of mathematical specialities at pres-
tigious Moscow universities (n = 100) are the participants of the current research. Gift-
edness is diagnosed with a technique designed in the frame of the Creative Field Method 
using mathematical material. The findings are compared with the results of techniques 
that examine intellect and personality. It has been demonstrated that the general intellect 
correlates to successfully mastering mathematical activity, but it cannot definitely predict 
mathematical giftedness. The manifestation of the latter depends on cognitive motivation 
and the so-called “worldview activeness”.

INTRODUCTION

Identifying and supporting children with general and special giftedness is a topical 
issue at the state level in many countries. For the most part, the education of gifted 
children is carried out according to formal criteria, such as school progress and win-
ning various contests. Those circumstances call for a scientifically justified definition 
of giftedness.

THEORETICAL BACKGROUND

When diagnosing giftedness, the established tradition is to reduce it to a high level of 
ability as demonstrated in the work of Binet, Eysenck, Terman, Spearman, Wechsler, 
Stern. However, the results of modern research show the impossibility of explaining 
the achievements of gifted children and adults by the specifics of their intellect. Nu-
merous works cover various traits of a gifted person and his/her motivation [Bogo-
yavlenskaya, 2011; Melik-Pashaev, 2018; Renzulli, 1984; Heller, Perleth, Lim, 2005; 
Csikszentmihalyi, 1997]. Nevertheless, according to Panov, a peculiar “diagnostics 
paradox” can be observed: it is stated in psychology that giftedness should not be re-
duced to the level of ability, and yet it is diagnosed, as a rule, by evaluation of various 
abilities [Panov, 2014].

This contradiction can be seen with utmost clarity in the example of mathematical 
giftedness: the scientific literature shows that it is defined in most cases based on 
individual abilities in mathematical processes [Krutetzkii, 1969; Yakimanskaya, 2004; 
Presmeg, 2006].
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Meanwhile, some studies of mathematical giftedness cover the role of personality traits 
in its structure. Goldin supposes that the student’s affective system occupies a central 
place in his/her cognition and its influence can either raise or lower cognitive activity 
[Goldin, 2002]. Jensen mentions that schoolchildren who are oriented at a problem 
continue to solve it even when difficulties arise. Those who do not have a considera-
ble interest in the problem make an effort only as necessary not to fail [Jensen, 1973]. 
Bargdill and Starko discuss the role of the internal motivation for creativity develop-
ment as well: the higher the level of a child’s internal motivation, the more probable 
are creative solutions and discoveries [Bargdill, Starko, 2006]. McLeod finds a positive 
correlation between the attitude toward a problem and achievements in various class-
es [McLeod, 1992]. Plucker and Renzulli suppose that a positive attitude to the subject 
can be considered as an index of creative potential [Plucker, Renzulli, 1999].

According to our theory of giftedness and creativity [Bogoyavlenskaya, 1971; 2011], at 
the stage of mastering an activity a corresponding level of the general intellect is nec-
essary, but the future performance of the activity is determined by the person’s sys-
tem of motives and values. One person might simply solve the problem. Another one, 
infatuated by the process during problem solving becomes absorbed, considers the 
activity more widely, and beyond reaching the initial goal discovers new regularities. It 
is the development of the activity through one’s initiative that is considered as a unit 
of creativity and characterizes a personality, in whose structure cognitive motivation 
dominates. Yet giftedness is defined as the ability to demonstrate creativity — devel-
oping the activity by one’s initiative. This approach has not been applied previously to 
the topic of mathematical giftedness.

International studies of the specifics of mathematical giftedness in the context of 
problem correlation of general, special and creative abilities is a relatively recent phe-
nomenon [Hong, Aqui, 2004; Kattou et al., 2013; Kontoyianni et al., 2013; Leikin, Pit-
ta-Pantazi, 2013; Pitta-Pantazi et al., 2011; Sriraman, Haavold, Lee, 2013], whereas in 
the Soviet/Russian psychology field the correlation between various kinds of abilities 
has been studied since the second half of the 20th century [Rubinstein, 1960; Teplov, 
1961; Krutetskii, 1969]. In Shadrikov’s theory [Shadrikov, 2010], abilities are under-
stood as characteristics of functional systems: special abilities are considered to be 
general ones which have acquired the characteristic of responsiveness under the in-
fluence of the demands of the activity. Thus, the contradiction dissolves and the issue 
of the nature of special abilities gets a definite answer. Abilities are considered at 
three levels: the level of the individual (natural abilities); the level of the activity sub-
ject (special abilities) and the level of the personality (including his/her moral sphere). 
In Shadrikov’s opinion, abilities at the level of the personality represent giftedness, 
which can transfer to creativity.

EMPIRICAL RESEARCH 

The research aim is the analysis of the psychological structure of mathematical gift-
edness and defining its cognitive and personal components.
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Research hypotheses
1. Successfully mastering mathematical activity should be connected with the level 
of the general intellect, but a high intellectual level without considering personality 
traits does not definitely predict mathematical giftedness.

2. The manifestation of mathematical giftedness should depend on the dominating 
cognitive motivation of the personality (which can be seen in constructive motivation 
and infatuation with the subject) and the so-called “worldview activeness”.

Research method
The Creative Field Method allows diagnosing such personality trait as the Intellectual 
Initiative (II) — the development of an activity by one’s initiative (extending beyond 
the limits of the given task). The method defines three levels of work: (1) successfully 
mastering the given activity (stimulus-productive level); (2) the ability to develop the 
activity by one’s initiative, which allows discovering new regularities (heuristic level); 
and (3) proving the discovered regularities (creative level). In the frame of this meth-
od, the Coordinate System technique, using mathematical material, has been designed 
and applied by researchers [Bogoyavlenskaya, 1971; 2011; Petukhova, 1976].

The advanced Raven’s Progressive Matrices [Raven, 2002] is a non-verbal intellect test 
designed for a finer differentiation when the participant’s abilities exceed the medium 
level. The test includes two series, the first containing twelve tasks and the second 
comprised of thirty-six tasks.

The diagnostics of the motivational structure of personality [Milman, 2005] describes 
the following motivational scales reflecting the main personality orientations:  
consumer tendency (motivation of life support, motives of comfort and safety, status 
and prestige motivation) and constructive tendency (motivation of general activeness, 
motivation of creative activeness, motivation of the public benefit). Each scale is di-
vided into two subscales: the ideal state of the motive and its real state.

The technique of evaluating worldview activeness [Leontiev, Ilchenko, 2007] includes 
13 pairs of statements referring to various aspects of human life. Each pair has the 
same beginning and two variants of an ending (A and B). The participant is asked to 
evaluate the degree of his/her concordance with the variant of the statement from 0 to 
100% (0 — totally disagree, 100% — completely agree). The instruction states that the 
sum does need to be 100%. A participant can also introduce his/her own variants of the 
answer if not satisfied with those provided. There are 4 types of answers: 1) definite an-
swers (A = 100%, B = 0% or vice versa), 2) combinations of two variants (А + B ≤ 100%), 
3) crossing responses (А + B > 100%) and 4) self-contained answers. The first two types 
of answers indicate the worldview passivity of a person, expressed in the uncritical 
acceptance of another's opinion. The answers of the third type indicate the worldview 
multidimensionality, such person has a broader view of the world, assumes that there 
are hidden dimensions in the world. The answers of the fourth type are attributed to 
the highest type of worldview activeness, such people clearly have a desire for change, 
tolerance for uncertainty and a sense of meaningfulness of their lives.
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Research participants
Between 2011 and 2017, 100 participants (68 males and 32 females; ages 18 to 34 years, 
М = 23,55, σ = 2,76) took part in the research. Forty-two of them were students of 
mathematical specialities at Moscow universities (MSU, MIPT, MEPHI, BMSTU), 15 
were PhD students and 43 were mathematicians and programmers, eleven having 
PhDs in physical-mathematical sciences.

RESEARCH RESULTS AND DISCUSSION

As the result of the Coordinate System Technique, the following distribution accord-
ing to the II levels has been obtained: 72 people at the stimulus-productive level; 
24 people at the heuristic level; and 4 at the creative level. For the purposes of statis-
tical processing, the participants at the creative and heuristic levels were united in the 
same group because of the small number of the former. 

The special feature of the Creative Field Method is that it allows diagnosing both the 
intellectual initiative (extending beyond the limits of the given task) and the general 
level of mental capabilities (in the frame of mastering the given layout of the activ-
ity). When comparing the results of the Raven’s Test and the indices of educability 
in the Coordinate System Technique, correlations with the time to solve problem are 
obtained (r = –0.35, p < 0.001). There are no correlations between the results of the 
Raven’s Test and the indices of the intellectual initiative in the Coordinate System 
Technique. The analysis of the results of the two groups of participants shows that 
those at the stimulus-productive level do not differ in the Raven’s Test results from 
the participants at the heuristic level (t = –0.65, p = 0.52). Thus, based on the ob-
tained results, it is possible to conclude that it would not be correct to rely on high 
scores in intellectual tests as the only sufficient criterion for the identification of 
giftedness.

The application of Milman’s technique shows that, in the ideal plan, participants at 
heuristic and stimulus-productive levels have similar results. The only difference is in 
the motivation of comfort and safety: in the ideal plan, the motivation of comfort for 
the heuristic level is less important than for the participants at the stimulus-produc-
tive level (t = 4.36, p < 0.001). The main differences can be seen in the participants’ real 
motivation. Thus, those at heuristic and stimulus-productive levels differ in the mo-
tivation of general activeness (t = –4.04, p < 0.001), motivation of creative activeness 
(t = –5.90, p < 0.001) and motivation of the public benefit (t = –3.82, p < 0.001). Accord-
ing to Milman, those three kinds of motivation form a constructive tendency of the 
personality. In the open questions of the questionnaire, the participants at the heu-
ristic level describe real situations from their lives confirming their answer choices. 
Thus, one participant at the heuristic level became the youngest member of the jury 
of the All-Russian Olympiad of Schoolchildren in Mathematics. Another participant at 
the heuristic level is now a Chair of the Organizing Committee of the Tournament of 
the Cities in Moscow and one of three members of the Central Organizing Committee 
with a casting vote.
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According to Leontiev, creative synthesis is defined as finding a new solution by revi-
sion of the question’s statement, from which comes an incompatibility of the expe-
rience elements. In this case, the maximum degree of “worldview activeness” is de-
manded from the participant [Leontiev, Ilchenko, 2007]. It can be rightfully brought 
into correlation with intellectual initiative (see [Bogoyavlenskaya, 2011]) as it relates 
to the going beyond the limits of the given activity as well.

The data obtained in the Technique of Worldview Activeness were recoded from two 
possible variants into four. There were 19.5% definite answers (A = 100%, B = 0% or 
vice versa), 29.1% combinations of two variants (А + B ≤ 100%), 16.4% crossing re-
sponses (А + B > 100%) and 35% self-contained answers. Meanwhile, the participants 
of the heuristic and stimulus-productive levels differed significantly in the distribu-
tion of the frequencies of various answer types (χ2 = 59.579, df = 3, p < 0.001). Ac-
cording to the results of the correlation analysis of the frequencies of various answer 
types in the Technique of Worldview Activeness and main indices of the Coordinate 
System Technique, a correlation between the frequency of the self-contained answers 
and manifestations of the intellectual initiative (r = 0.545, p < 0.001) has been found. 
There is also an inverse correlation of intellectual initiative and the frequency of defi-
nite answers (r = –0.453, p < 0.001) and the combination of two variants (r = –0.219, 
p = 0.029).

To define the interconnection between cognitive and personality components, we car-
ried out a logistic regression analysis. Belonging to the stimulus-productive or heuris-
tic level categories of the II, manifestation of mathematical giftedness is considered as 
the dependent variable. For the predictors at the first stage, we introduced personality 
components: worldview activeness and constructive motivation. At the second stage, 
a cognitive component (Raven’s general intellect index) was added. The prognosis of 
the regression Model 1, including only personality components, proved correct for 88% 
of the participants. When adding the cognitive component (Raven’s general intellect 
index) into Model 2, there were no sufficient changes. Based on the obtained results, 
we accepted Model 1, which shows that worldview activeness (β = 1.15, p < 0.001) and 
constructive motivation (β = 0.455, р = 0.001) are the significant predictors of math-
ematical giftedness. General intellect according to the obtained data does not predict 
the manifestation of mathematical giftedness.

Without knowing it, the research participants gave very precise definitions of how 
various qualities relate to each other in the structure of mathematical giftedness. 

Participant #16 (stimulus-productive level): “Well, kindness or something else… are 
not the qualities to define or not to define a mathematician. The matter is, that what 
can help in the work is needed: diligence, persistence, intuition. If you are talented 
and diligent, that is enough.”

Participant #69 (heuristic level): “In my opinion, interest, motivation and love for 
mathematics — that is all that needed. Interest is quite enough. If a person is really 
interested in something certain, then he can achieve everything no matter what he 
had in the beginning.”
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Participant #98 (heuristic level): “In any case there should be a passion for solving 
the problem, this eagerness to disclose it, to find the unknown. And if there is such 
eagerness, then to master a set of tools or scientific materials, maybe a language to 
read other articles, to communicate with colleagues from other countries will be no 
problem. So, the main thing is passion.”

Those fragments illustrate the differences between participants of the stimulus-pro-
ductive and heuristic levels. If the former talk about the things which are “important 
and needed for work”, then the latter prioritize interest and “passion”, and the other 
qualities by this attitude become just “instruments”. 

CONCLUSION

In the current work, the theory of giftedness and creativity [Bogoyavlenskaya, 1971; 
2011] has been applied to the topic of special giftedness using the example of mathe-
matical giftedness. According to this theory, mathematical giftedness is understood as 
the ability to develop an activity by one’s initiative in the sphere of mathematics and 
is discovered as a system quality, integrating cognitive and personality components 
when cognitive motivation dominates in the personality structure. The participants of 
the current research were not random, it was students and post-graduates of mathe-
matical specialities at prestigious Moscow universities, each one achieved a success in 
mathematics. The study is shown that the general intellect (on the advanced Raven’s 
Progressive Matrices) is connected with mastering mathematical activity (on the Co-
ordinate System technique), but it cannot definitely predict mathematical giftedness. 
Its manifestation depends on the cognitive orientation of the personality (which ap-
pears as constructive motivation for and infatuation with the subject matter) and the 
so-called “worldview activeness”. Thus, based on the obtained results, it is possible to 
conclude that it would not be correct to rely on high scores in intellectual tests as the 
only sufficient criterion for the identification of giftedness The teaching mathematics 
should consist of not only disseminating certain knowledge, but of forming by stu-
dents cognitive motivation (as internal process) in the first place.
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In the paper we consider the characteristics of the perceptive system as a possible basis 
for the well-known prototypical phenomenon in geometry. Analysis of eye-tracking data 
revealed intense involvement of extrafoveal processes in the categorical identification 
of squares and rectangles in canonical orientation, while rotated orientation required 
stronger foveal processing. Also, pronounced individual differences were found in percep-
tual strategies. Identification tasks that relied on an inclusion relation between squares 
and rectangles required more time but not fixations, pointing to logical rather then per-
ceptual difficulty. The results are interpreted in light of the culture-historical approach 
to categorical identification as a functional system of extrafoveal, foveal and logical pro-
cesses.

INTRODUCTION

Investigations of geometrical concepts and their relations with visual representations 
has a long history in mathematics education research. One of the key theoretical chal-
lenges and correspondent learning difficulties is related to the prototypical phenome-
non [Hershkowitz, 1989]: Why is a right triangle better recognised when it has vertical 
and horizontal legs? Why, when being asked about a rectangle, do students first think 
of a shape that is vertical or horizontal? Traditionally, geometrical concepts have been 
considered under the light of the prototypical theory, however this theory states rath-
er than explains the mixed visual and conceptual nature of the concepts. Up to now, 
“the difficulty to interpret the sensory/cognitive dichotomy” remains one of the major 
theoretical issues [Sinclair et al., 2016]. In this paper we question more deeply this 
relation between sensory and conceptual processes in their application to the catego-
risation of geometrical shapes. 

* The results were partically published in Krichevets A., Shvarts A.Yu., Chumachenko D., Drenyeva A. Potential 
of extrafoveal perception of geometrical figures // Voprosy Psychologii. 2017. No. 6. P. 117-128 (in Russian).
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In line with the systemic structure of higher mental functions in culture-historical 
theory [Vygotsky, 1934/1965], we claim that the prototypical structure of geometrical 
concepts might be at least partially explained as a result of the dynamical and systemic 
organisation of a variety of cognitive processes in an identification task. Our systemic 
approach highlights the tight and yet dynamical interrelation between conceptual and 
perceptual processes.

The evidence is based on the analysis of a categorical visual search in which a par-
ticipant is required to identify the shape that corresponds to the target geometrical 
concept as quickly as possible. We use eye-tracking data to explore the relative roles 
of extrafoveal perception (the most automatized and usually preattentive process), 
foveal perception and language processes in geometrical shape recognition. 

Our research questions concern the existence of preferred shapes, which are easier 
to recognise at the periphery. Confirmation of this hypothesis would support the the-
oretical assumption that conceptual processes are deeply intertwined with perceptual 
abilities, including at the level of mostly preattentive extrafoveal vision. We also ques-
tion the factors that influence the involvement of peripheral processes to describe the 
dynamical constitution of possible perceptual strategies.

THEORETICAL FRAMEWORK

Prototype phenomenon 
The theory of prototypes [Rosch, 1978] has been involved in the explanation of the 
phenomenon that students better identify and more often produce images of particu-
lar examples of geometrical shapes [Hershkowitz, 1989]. While in cognitive science 
this theory was developed as an elaboration of the classical concept definition, as a 
conjunction of attributes by adding a weighted role of the attributes, in mathematics 
education the connection with visual experience is widely accepted. One of the clas-
sical attitudes is based on Heile’s theory that considers visual experience as the first 
level of familiarisation with geometrical concepts, and this level needs to be overcome. 
However, the question of whether the levels are consequential and whether the visual 
images behind the concepts need to be overcome or synthetised with the logical con-
straints of verbal definitions is still under consideration [Sinclair et al., 2016]. A spe-
cial and most difficult identification task concerns the inclusion relations between 
geometrical concepts. 

Categorical perception as a higher mental function
According to the cultural-historical approach, higher mental functions emerge as a 
systemic unity, a “meaningful functional system” with “plastic, changeable interfunc-
tional relations” that constitute “complex dynamic systems, which have to be con-
sidered as the result of integration of elementary functions” [Vygotsky, 1934/1965]. 
This systemic perspective of Vygotsky’s heritage contributes to the complex dynamic 
system approaches that attract more and more attention in the educational literature 
(see more in [Jörg, 2016]). When applied to perceptual-categorical processes, this ap-
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proach stresses the qualitative transformation of cultural perception, that is an “im-
mediate fusion of the processes of concrete thinking and perception” [Vygotsky, 1987, 
p. 269] in which “we can no longer separate the perception of the object as such from 
its meaning or sense” [p. 299].

On the one hand, the perceptual processes per se are transformed by mathematics 
education and expertise [Krichevets, Shvarts, Chumachenko, 2014; Radford, 2010]; on 
the other hand, categorisation processes cannot departure from the sensory base. The 
traces of sensory experience and organisation in the functional system of geometrical 
concepts identification are in the focus of this study.

Foveal and extrafoveal processes in perception
Let us focus on human visual abilities. The construction of an eye itself determine that 
visual abilities strongly depend on viewing eccentricity: spatial resolution is high for 
objects in the foveal region and becomes progressively impaired in the periphery [Rova-
mo, Virsu, 1979]. Despite the obvious drawbacks of peripheral (or extrafoveal) vision, it 
plays a significant role in our life. In situations when an object is rather large and sepa-
rated from others, it can be easily detected using only extrafoveal vision [Levi, 2008]. The 
literature on visual search shows that such characteristics as shape, color, orientation, 
depth and motion can be identified extrafoveally and preattentively (for a review, see 
[Wolfe, Horowitz, 2017]). Some papers provide evidence that such a higher-level fea-
ture as direction of illumination can be processed using extrafoveal vision as well [Ram-
achandran, 1988]. Different factors may influence the extrafoveal processing speed and 
performance, including the similarity of distractors to a target [Reingold, Glaholt, 2014].

Canonical spatial directions: horizontal and vertical 
Horizontal and vertical, or canonical, orientations are the best-exposed directions in 
human surroundings, especially if we analyse cultural environments that include build-
ings, furniture and other artificial elements (e.g., [Coppola et al., 1998]). It has been 
shown in many behavioral and neurophysiological studies that a stimulus with vertical 
and horizontal orientations is processed quicker and better in many perceptual tasks 
[Appelle, 1972]. Apparently, the better recognition of vertical and horizontal directions 
in comparison to others has influenced the historical development of mathematical no-
tations, such as Cartesian coordinates [Krichevets et al., 2014]. In this paper we investi-
gate how this natural sensitivity to horizontal and vertical directions might contribute 
to the structure of geometrical concepts and presumably lead to learning difficulties.

METHOD

Equipment and materials. Four geometrical shapes with an approximate size 4–6° 
of visual angle were presented in each stimulus; their centres were placed 12° from the 
screen centre (see Fig. 1).

Stimuli were displayed using SMI Experiment Center 3.3 on a 21” monitor at a 1280 ×
× 1024 pixel resolution and a 60-Hz refresh rate. Participants were seated approxi-
mately 60 cm distance from the monitor. Eye movements of both eyes were recorded 
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with a sampling rate of 120 Hz by SMI RED and iViewX software. Nine-point calibra-
tion was considered valid if the average error in a validation test was less than 0.5°. 

Participants and procedure. 33 undergraduate and graduate students with normal 
or corrected to normal vision took part in the study: 20 in Experiment 1 and 13 in Ex-
periment 2. Participants were required to search for a shape that corresponded to the 
target concept that was named before each trial. The trials were initiated by a 500 ms 
gaze on the fixation cross in the centre of the screen. The instruction was to press the 
space button and name the target area (A, B, C or D, see Fig. 1) as quickly and as ac-
curately as possible. The researcher tracked the correctness of the responses and only 
correct trials were further analysed.

A circle, square, triangle and cross (see Fig. 1a) were the target shapes in Experiment 1, 
which consisted of 24 trials. In Experiment 2 we had three experimentally varied fac-
tors: (1) the target concept: rectangle or square; (2) the distractors that could be either 
similar to the target (square among rhombuses or rectangle among parallelograms) or 
dissimilar to the target (square or rectangle among irregular quadrilaterals); and (3) the 
shape’s position: prototypical (on their base) or rotated. So we had a 2 × 2 × 2 with-
in-subjects design with two levels of each factor. The target area was quasi-randomized. 
Figures 1b and 1c show some samples of the stimuli. Altogether there were 96 trials. 

Data analysis. The screen was divided into five areas of interest (A, B, C, D and center) 
as shown in Fig. 1d. We merged all sequential fixations in the area to one visit and 
then a sequence of visits were analysed to calculate the order number of the first visit 
to the target area (FirstT parameter), and reaction times were also measured. If we 
assume that a participant does not use extrafoveal vision while searching, the target 
area could be visited first, second, third or fourth in the stochastic sequence of visited 
areas, and thus the mean FirstT parameter would be (1 + 2 + 3 + 4) / 4 = 2.5. We com-
pared the parameter FirstT with 2.5 to judge the involvement of extrafoveal analysis. 
SPSS v.22 and Matlab 2008b were used.

RESULTS

Experiment 1 
The results showed clear evidence of an extrafoveal solution of this task: 372 of 480 
trails (77.5%) were solved without any fixations. There were also strong individual dif-

      a           b              c                d

Fig. 1. Examples of stimuli in (a) Experiment 1 and (b, c) Experiment 2. 
(d) Areas of interest for the data analysis
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ferences in the amount of fixations needed (Crosstab 20*5, Chi-Square = 258, df = 76, 
p < 0.000001). In 15% of trials we observed the first fixation to be immediately at the 
target area; one participant solved 14 out of 24 trails with one fixation per trial. This 
implies that in these cases extrafoveal vision is strongly involved, but a person per-
forms an additional saccade for a foveal check. Individual differences revealed that 
participants can choose a more “risky” strategy, or a “safer” one with an additional 
foveal check. Thus the involvement of extrafoveal vision depends not only on physio-
logical mechanisms but also on personal strategies and attitude to the task. 

Experiment 2 
One participant gave 12 wrong answers, so we excluded her results from the group 
statistics. The average FirstT (order number of the first visit to the target area) was 
1.09 (SE = 0.031). Both group (t = –45.3) and individual (t-statistic varied from –5.04 
(p = 0.000002) to 24.9) results demonstrated strong difference from a random sequence 
of the visited areas (hypothetical value 2.5) and evidenced involvement of extrafoveal 
vision. 

484 out of 1241 trails (39%) were solved simultaneously, without any saccades. Cross-
tab analysis demonstrated strong individual differences (Chi-Square is about 500, 
df = 48, p < 0.000001). Table 1 shows the results of some participants with different 
strategies, however there were several participants with each strategy. Participant A 
found the target shapes almost without any fixations, using only extrafoveal vision. In 
contrast, participant D mostly did not use extrafoveal vision and stared at a few areas 
before she found the target one. Interestingly, there is a variety of patterns apart from 
these two: participant B could answer without any fixations, relying on extrafoveal 
vision in some trials, but needed a few fixations and foveal analysis in others. The re-
sults of participant C are particularly interesting: in most of the trials she did one fix-
ation to the target shape, and thus her extrafoveal vision mostly provided the correct 
answer but she performed an additional confirmatory saccade. 

We conducted ANOVA with three factors: target concept and shape, rotation, and similar 
versus dissimilar distractors. All factors highly significantly influenced the number of 
visited areas (FirstT) (factor rotation: F (1, 10) = 31.2, p < 0.0003 and factor distractors: 
F (1, 10) = 37.46, p < 0.0002) and reaction time (factor rotation: F (1, 11) = 134, p < 0.000001 
and factor distractors: F (1, 11) = 219, p < 0.000001) (see Fig. 2). So, the noncanoni-

Table 1
Individual differences in perceptual strategies of some participants

Number of areas visited before target shape was found in each trial

0 1 2 3 4 Sum

A 82 7 5 1 1 96
B 36 30 23 5 2 96
C 11 63 13 9 0 96
D 5 34 38 16 3 96
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cal rotation of the target shape and similarity with the distractors made identification 
task more difficult and the involvement of extrafoveal processes decreased. There was 
also an interaction between factors found for both variables (for FirstT, F (1, 10) = 8.07, 
p = 0.018 and reaction time F (1, 11) = 9.96, p = 0.008): The combination of rotation and 
similar distractors provided more than a cumulative increase of difficulty. The same 
influences of the factors were observed for each of the target concepts. 

The differences between the number of areas visited and time of solving dependent on 
target shape are also very interesting (see Fig. 3). Identification of a square as belong-
ing to rectangles required more time (F (1, 11) = 14.9, P = 0.003), but did not require 
additional fixations (F (1, 11) < 1). We assume that the task of identifying a square as a 
rectangle posed a non-perceptual but logical difficulty for participants.

DISCUSSION AND PRACTICAL APPLICATIONS

As we have demonstrated in the first experiment, extrafoveal analysis is sufficient 
for distinguishing simple geometrical shapes: all participants were able to detect the 
target shape extrafoveally. However, some participants used it to confirm their ex-

                         a                b

Fig. 2. The influence of the factors of rotation and similarity with the distractor 
on (a) the number of areas visited before the target and (b) the reaction time
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trafoveal hypothesis by an additional saccade. This result clearly demonstrates the 
complexity of perceptual processes, and the variety of possible strategies in the cate-
gorisation task in which extrafoveal and foveal processes may play different roles. The 
same principle of systemic organisation of foveal and extrafoveal processes under the 
task constraints was observed in the second experiment: individual differences clearly 
showed a variety of possible strategies. Extrafoveal vision might be involved more or 
less and may be sufficient for the decision or require additional confirmation.

While our participants almost never made identification mistakes, the group tenden-
cies in the involvement of extrafoveal processes demonstrate the possible ground for 
an orientation effect behind the prototypical phenomenon [Herskowitz, 1989]. The 
shapes in canonical orientation were mostly identified by extrafoveal vision, while 
in case of rotated exposure some foveal analysis was often required, especially in the 
cases of similarity between the target shape and distractors. 

The congruence of the results in geometrical categorisation with traditional findings 
in visual search for perceptually given stimuli demonstrates that perceptual processes 
deeply intervene with conceptual processes: we observed the influence of distractor 
similarity [Reingold, Glaholt, 2014] and an orientation effect [Appelle, 1972] in geom-
etry. The level of visual experience is not overcome by later logical processes, as Hiele's 
theory would suppose [Sinclair et al., 2016], and the role of visual perception is not 
limited to a congruency with the frame of reference [Herskowitz, 1989]. Visual percep-
tion, including foveal and extrafoveal processes, appears to take an essential part in 
the complex functional system of categorical identification, dynamically constituted 
under constraints of each task and individual differences.

The third component of this functional system is logical reasoning: the identification 
tasks that relied on inclusion relations required more time but not fixations, thus evi-
dencing logical rather than perceptual difficulty.

Possible educational applications include practice of the functional system as a whole 
in a rich perceptual environment rather than merely discussion of the shapes’ attrib-
utes. A variety of identification tasks in the sets of shapes with different distractors 
and shape orientations might serve as a good ground for the development of stable 
identification and problem solving. In case of inclusion relations, an additional logical 
articulation would be required. 

CONCLUSIONS 

We have demonstrated the relevance of low-level perceptual qualities of the stimuli for 
categorical identification of geometrical shapes. These low-level qualities, such as canon-
ical orientation of the figures, might partially determine the prototypical phenomenon. 
According to our results, the prototypical phenomenon is not limited to distinguishing a 
weighted list of attributes, but can be seen even in the involvement of extrafoveal percep-
tion in different identification tasks. These findings show that perceptual and conceptual 
processes tightly intertwine in the solution of an identification task. Identification that 
involves inclusion relations requires additional preparations independent from the fove-
al or extrafoveal analysis that presumably process logical relations between categories. 
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Strong individual differences in the distribution between foveal and extrafoveal pro-
cesses reveal a complex functional system rather than a particular stable mechanism 
serving the task of categorical identification in geometry. This functional system is 
dynamically constituted as an ensemble of extrafoveal, foveal and logical processes in 
the response to particular task constraints and individual preferences.

ACKNOWLEDGEMENTS

This research was supported by the RFBR #18–013–009869.

REFERENCES
Appelle S. Perception and discrimination as a function of stimulus orientation: The “oblique 

effect” in man and animals // Psychological Bulletin. 1972. Vol. 78 (4). P. 266.

Coppola D.M., Purves H.R., McCoy A.N., Purves D. The distribution of oriented contours in 
the real world // Proceedings of the National Academy of Sciences U.S.A. 1998. Vol. 95. 
P. 4002–4006.

Hershkowitz R. Visualization in geometry — two sides of the coin // Focus on Learning Problems 
in Mathematics. 1989. Vol. 11. P. 61–76.

Jörg T. Opening the wondrous world of the possible for education: A generative complexity 
approach  // Complex Dynamical Systems in Education. Cham: Springer International 
Publishing, 2016. P. 59–92. 

Krichevets A., Shvarts A., Chumachenko D. Perceptual action of novices and experts in operating 
visual representations of a mathematical concept // Psychology. Journal of Higher School 
of Economics. 2014. Vol. 11 (3). P. 55–78.

Levi D.M. Crowding — An essential bottleneck for object recognition: A mini-review // Vision 
Research. 2008. Vol. 48 (5). P. 635–654.

Radford L. The eye as a theoretician: Seeing structures in generalizing activities  // For the 
Learning of Mathematics. 2010. Vol. 30 (2). P. 2–7. 

Ramachandran V.S. Perception of shape from shading // Nature. 1988. Vol. 331 (6152). P. 163.

Reingold E.M., Glaholt M.G. Cognitive control of fixation duration in visual search: The role of 
extrafoveal processing // Visual Cognition. 2014. Vol. 22 (3–4). P. 610–634.

Rosch E. Principles of categorization /ed. by E. Rosch, B.B. Lloyd. Cognition and Categorization. 
Hillsdale, NJ: Erlbaum, 1978. P. 28–49.

Rovamo J., Virsu V. An estimation and application of the human cortical magnification factor // 
Experimental Brain Research. 1979. Vol. 37 (3). P. 495–510.

Sinclair N., Bartolini Bussi M.G., de Villiers M., Jones K., Kortenkamp U., Leung A., Owens K. 
Recent research on geometry education: An ICME-13 survey team report // ZDM — The 
International Journal on Mathematics Education. 2016. Vol. 48 (5). P. 691–719. 

Vygotsky L.S. Psychology and localization of functions // Neuropsychologia. 1934/1965. Vol. 3. 
P. 381–386. 

Vygotsky L.S. Problems of General Psychology / ed. by R.W. Rieber, A.S. Carton. Collected Works 
of L.S. Vygotsky. Vol. 1. N.Y.: Plenum Press, 1987.

Wolfe J.M., Horowitz T.S. Five factors that guide attention in visual search // Nature Human 
Behaviour. 2017. Vol. 1 (3). P. 0058.



130 In Shvarts A. (Ed.). Proceedings of the PME and Yandex Russian conference: 
Technology and Psychology for Mathematics Education. P. 130–137. Moscow, Russia: HSE Publishing House.

SCHOOL PUPILS’ INTELLECTUAL DEVELOPMENT 
DURING MATHEMATICAL TEACHING:
THE ROLE OF EDUCATIONAL TEXTS 

Emanuila Gelfman
Marina Kholodnaya

Mathematics Teaching Department, Tomsk State Pedagogical University, Tomsk, Russia;
Department of Psychology of Abilities and Mental Resources, 

Institute of Psychology, Russian Academy of Science, Moscow, Russia

The main purpose of the research is to show the role of psychodidactic approach in mod-
ern school mathematical education and to present the psychodidactic typology of devel-
opment-focused educational texts for students of grades 5 to 9. Each type of text creates 
conditions for the enrichment of the main components of the mental experience of students 
(cognitive, conceptual, metacognitive, and intentional) as a factor of their intellectual 
growth and the prerequisites for a high level of understanding of mathematical material.

INTRODUCTION

Modern innovative teaching technologies use the psychodidactic approach, which 
switches the main focus when evaluating teaching effectiveness to changes in pu-
pil’s intelligence and personality. Psychodidactics is the area of pedagogy that designs 
content, forms, and methods of teaching based on integrated psychological, didac-
tic, methodological, and subject-matter knowledge while focusing specifically on the 
mental patterns of personality development as a basis for organizing the teaching 
process and general learning environment.

The psychodidactic approach may be used in schools in many ways: by using “didacti-
cal situations”, including metaphor and emotional context [Broussau, 1997]; through 
focusing on learning and conceptualization by selecting mathematical tasks and hy-
pothesizing about how each one influences the learning process (Hypothetical Learn-
ing Trajectory, or HLT) [Simon, Tzur, 2004]; by using basic cognitive actions such as 
recognizing, building, and constructing (RBC model) as a foundation for conceptual 
teaching based on pupils’ own experience [Hershkowitz, Schwarz, Dreyfus, 2001; Bik-
er-Ahsbahs, 2004]; by developing pupils’ creative thinking [Burke, Williams, 2008]; 
and by using “realistic” situations in the learning process [Van den Heuvel-Panhuizen, 
Drijvers, 2014]. 

Our research is carried out within the problem of psychodidactics of school textbooks 
(more widely, psychodidactic requirements for educational texts) [Gelfman, Kholod-
naya, 2006; Kholodnaya, Gelfman, 2016a; 2016b]. We believe that the actual content 
of school subjects is essential to pupils’ intellectual development. It is therefore very 
important to set the requirements applied to the educational materials. This includes 
school textbooks that could be used to implement the psychodidactic approach. А text-
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book should not be structured as a reference book. It should rather be a learner-fo-
cused teaching book since mathematical knowledge can only have a developmental 
effect when it is in harmony with the patterns of the pupils’ mental development, both 
intellectual and personal. 

We developed the Development-Focused Educational Texts (DET) Technology as a part 
of the Mathematics. Psychology. Intelligence (MPI) pedagogical project, for use in mid-
dle-school mathematics teaching (grades 5 to 9). DET Technology focuses on pupils’ 
intellectual development based on the design of mathematics content and on the de-
velopment of special-purpose educational texts, in particular. 

EDUCATIONAL TEXTS AS A WAY 
TO FOSTER PUPILS’ INTELLECTUAL DEVELOPMENT

When assessing the role of education content as a whole and the role of educational 
texts, in particular, one must appreciate the key fact that, from a psychological per-
spective, intellectual development is only possible through learning, processing, and 
producing diverse subject content, ranging from trivial everyday knowledge to sci-
entific hypotheses about the structure of the universe. The richer the subject-matter 
environment (physical, social, and educational) of a preschooler or a schoolchild and 
the more actively they interact with this environment, the greater their intellectual 
abilityes. 

Therefore, the content of school education is a key factor in the development of pu-
pils’ intelligence. Its minimal component is an educational text, which shapes the way 
pupils interact with various content environments. However, we emphasize that not 
every format of educational content and not every type of educational text provide the 
effects of intellectual development of students and a high level of understanding of 
educational material.

The special role of texts in personal intellectual development is noted by many schol-
ars. They see the text as “a thinking structure” (V.V. Ivanov), “a model of thought ad-
ventures” (L.E. Gendenshtein), and “a conversation partner” (M.M. Bakhtin). Texts are 
a natural medium for intellectual development throughout a person’s lifetime. 

In school education, texts are always the focus of attention because of their essential 
role in effective teaching, particularly in the context of reader-oriented theory, which 
suggests that readers actively construct meanings (concepts) as they read, which is 
also true for mathematics textbooks [Weinberg, Wiesner, 2011]. 

Therefore, the use of special development-focused educational texts is a promising 
way to encourage intellectual development. This means that development-focused 
educational texts do not merely present formal mathematical knowledge; they also 
facilitate the development of psychological mechanisms for productive intellectu-
al activity by changing the design of educational material and the ways of its pres-
entation in accordance with certain psychological requirements (in the context of the 
study, we focus on the enrichment of the main components of the mental experience 
of students).
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ENRICHMENT OF MENTAL EXPERIENCE AS THE PSYCHOLOGICAL 
BASIS FOR PUPILS’ INTELLECTUAL DEVELOPMENT

We believe that the psychological basis for intellectual development should be the 
enrichment of pupils’ mental experiences while learning. The structural model of in-
telligence in terms of the architecture of a person’s mental experience outlines four 
levels of mental experience, each with its own purpose [Kholodnaya, 2002]: 

1. Cognitive experience refers to the mental structures (“cognitive schemes”) respon-
sible for presenting, recognizing, storing, and sorting information. Their main role is 
immediate information processing.

2. Conceptual experience refers to mental structures (“concepts”) which generalize and 
transform information through abstraction, idealization, and interpretation. Their 
main purpose is to identify meaningful properties and to reproduce regular and con-
sistent features of the environment.

3. Metacognitive experience refers to mental structures (“metacognitions”) which allow 
involuntary and voluntary regulation of information processing. Their main aim is to 
control the intellectual activity and status of personal intellectual resources.

4. Intentional (emotional and evaluative) experience refers to the mental structures 
(“intentions”) underlying individual cognitive dispositions. Their main purpose is to 
form subjective preferences in selecting subject areas, ways of solving problems, in-
formation sources, etc.

“Enrichment” of pupils’ mental experiences here includes, first, the development of 
every of the above four key mental experience components as a foundation for nur-
turing their intellectual abilities, and, second, creation of the conditions for pupils to 
demonstrate their individual cognitive styles. 

The basic directions of the enrichment of mental experience are as follows:

• Enrichment of cognitive experience. Here we should seek to develop different ways 
of information encoding (verbal/symbolic, visual, substantive/practical, sensory/
emotional) and to widen the range of declarative and procedural cognitive schemes 
for mathematical concepts and activity methods and to increase their flexibility. 

• Enrichment of conceptual experience. Here we aim to improve students’ under-
standing of mathematical language semantics and to expand the semantic fields 
pertaining to mathematical concepts, differentiating and integrating categorical 
structures (and focus on helping students to identify substantial conceptual features, 
links between concepts from different generalization levels, main phases of concept 
formation such as motivation, categorization, enrichment, transfer, and crystalli-
zation). This direction relies on hypothesizing, interpretation, and creating texts in-
dependently.

• Enrichment of metacognitive experience. Here we should help to develop voluntary 
and involuntary controls of intellectual activity, including the abilities to plan, eval-
uate, predict, and self-check. The aim is to increase metacognitive awareness, refer-
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ring to the student’s understanding of how academic knowledge is organized and 
differences between learning methods. We encourage an open cognitive position, 
readiness to absorb “impossible” information, accept an alternative point of view, 
and properly react to discrepancies.

• Enrichment of intentional (emotional and evaluative) experience, which implies 
offering students a choice of how to study educational materials. This direction re-
lies on the pupil’s personal and intuitive experience (pupils are encouraged to share 
doubts, guesses, beliefs, “anticipatory” ideas, and emotional evaluations); it in-
volves play elements and the value-based approach to educational materials and 
should include adopting multiple individual cognitive styles, which reflect personal 
preferences and dispositions. 

THE TYPOLOGY OF DEVELOPMENT-FOCUSED EDUCATIONAL TEXTS

Based on the structural model of intelligence, different development-focused educa-
tional texts were designed for the school mathematics courses (grades 5 to 9). Each text 
type addressed a specific component of the mental experience framework with the 
aim of facilitating its development [Gelfman, Kholodnaya, 2016a; Kholodnaya, Gel-
fman, 2016b]. The text typology is presented in Table 1. 

Table 1 
The typology of development-focused educational texts 

Components 
of mental experience 

Learning activity Types of educational texts

Cognitive experience

Information 
encoding ways

Verbal/symbolic • Learning mathematical symbols
• Finding a formula
• Drafting defi nitions

Visual • Developing a normative image
• Image classifi cation
• Image evolution
• New image motivation
• Conversion from verbal/symbolic to visual encod-

ing initiation of personal imaginative experience
Practical information • Laboratory work

• Situation in practice
Sensory/emotional • Emotional impression

• Metaphor
• Play

Declarative cognitive 
schemes 

Schemes of 
mathematical concepts 

• Introduction of focus example
• Framework
• Summary

Procedural cognitive 
schemes

Cognitive schemes of 
mathematical activity 
methods

• Algorithm (procedure)
• Operation
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Components 
of mental experience 

Learning activity Types of educational texts

Conceptual experience

Semantic 
structures

Mathematical language 
semantics

• Term meaning
• Systematization of term meanings 
• Translation from the native language 

to the mathematical language 
Categorial 
structures

Identifi cation 
of category features, 
establishment of links 
between categories 
and construction 
of concepts

• Identifi cation of concept features
• Selection of concept features
• Establishment of links between concepts
• Concept motivation 
• Verbal and visual categorization 
• Enrichment of conceptual content
• Transfer of a concept to a new situation
• Crystallization of conceptual content

Conceptual 
structures

Hypothesizing, 
interpretation, 
and creation of texts

• Search for and generalization of regularities
• Modeling
• Micro-essay
• Unassisted composition of a text
• Invitation to a project

Metacognitive experience

Involuntary and 
voluntary control

Planning • Program
• Goal selection
• Planning

Predicting • Development of a hypothesis
• Prediction in an uncertain situation 
• Prediction of operation results

Self-checking • Self-checking methods 
• Selection of a self-checking method 
• Search for mistakes

Metacognitive 
awareness

Refl ection on own 
intellectual activity 

• Refl ection on solution methods
• Self-assessment of personal knowledge and skills 
• Educational self-monitoring
• Psychological commentary

Open cognitive 
position

Readiness to work 
with inconsistent 
information

• Problematization
• Alternative
• Collision of contrasting opinions
• Impossible situation

Intentional (emotional and evaluative) experience

Preferences Selection of learning 
method

• Selection of activity methods 
• Selection of cognitive position 
• Individual cognitive styles

Beliefs Use of intuitive 
experience

• Conjecture
• Creative work

Attitudes Value-based 
treatment 
of educational material

• Mathematics in the world around us
• Key directions in mathematics development 
• History of mathematics

End of Table 1
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Let us give an example of a development-focused educational text of the “text—search 
for mistakes” type.

Misha and Oleg found a piece of paper with records.

It was not known who it belonged to; neither the author nor the grade appeared on 
the paper.

“Well, this is not an ‘F’ grade,” — said Misha. — “I see a correctly solved task.”

“The grade couldn't be excellent,” — said Oleg. — “I see an incorrectly solved task.”

Friends began to check everything themselves. However, they found that the answers 
in these two tasks were different in writing, but equal in value. 

The task is to restore the records on the piece of paper and specify the rules of addition 
of natural numbers and decimal fractions.

What words and tasks seem the most important for the addition of natural numbers 
and decimal fractions?

CONCLUSIONS

Noting the importance of educational texts in school mathematics, we can push the 
limits of the popular view that teaching mathematics simply means teaching pupils 
how to solve mathematical problems. We believe that teaching mathematics actually 
means teaching children how to interpret the meanings and implications of mathe-
matical concepts and operations. Thus, the problem of understanding mathematical 
knowledge (mathematical objects, actions, situations) comes to the forefront [Godi-
no, 1996; Simon, 2017]. How can we operationalize the idea of mathematical under-
standing? 

Тhe system of development-focused educational texts provides a tool which encour-
ages pupils’ intellectual development by offering a variety of topics within the school 
mathematics course, facilitating the enrichment of the main components in pupils’ 
mental experience. Mathematics teaching based on the prolonged and systematic use 
of all types of development-focused educational texts promote the growth of pupils’ 
intellectual resources and, as a result, a higher level of understanding of education-
al mathematical material [Budrina, 2009; Gelfman, Kholodnaya, 2006; Gelfman, Pod-
strigich, 2006; Gelfman et al., 2013; 2009].



136 PME and Yandex Russian Conference 2019

E. Gelfman, M. Kholodnaya

REFERENCES

Biker-Ahsbahs A. Towards the emergence of constructing mathematical meaning / Proc. 28th 
Conf. of the Int. Group for the Psychology of Mathematics Education. Valencia, Spain: 
PME, 2004. Vol. 2. P. 119–126.

Brousseau G. Theory of Didactical Situation in Mathematics. Dordrecht: Kluwer, 1997.

Budrina E.G. Dinamika intellektual’nogo razvitiya podrostkov v usloviyach raznuxh modelei 
obucheniya // Psychological Journal. 2009. Vol. 30 (4). P. 33–46 (engl. transl.: Budrina E.G. 
Dynamics of Intellectual Development of Students in Different Models of Education).

Burke L.A., Williams J.M. Developing young thinkers: An intervention aimed to enhance chil-
dren’s thinking skills // Thinking Skills and Creativity. 2008. Vol. 3. P. 104–124.

Gelfman E.G., Kholodnaya M.A. Psichodidaktica shkolnogo uchebnika: Intellektualnoe vospita-
nie shkolnikov. Saint Petersburg: Piter, 2006 (engl. transl.: Gelfman E.G., Kholodnaya M.A. 
Psycho-Didactics of School Textbooks: The Intellectual Nurture of Students).

Gelfman E.G., Penskaya Yu.K., Zilberberg N.I., Demidova L.N. Ob odnom iz podkhodov k otsenke 
rezul’tatov obucheniya v usloviyakh perekhoda na federal’nyy gosudarstvennyy obrazo-
vatel’nyy standart  // Tomsk State Pedagogical University Bulletin. 2013. Vol. 11 (139). 
P. 150–155 (engl. transl.: Gelfman E.G., Penskaya Yu.K., Zilberberg N.I., Demidova L.N. One 
of the Approaches to the Assessment of Learning Outcomes in the Transition to Federal 
State Educational Standard).

Gelfman E.G., Podstrigich A.G. Uchebnyy proyekt kak sposob monitoringa intellektual’nykh 
vozmozhnostey uchashchikhsya na urokakh matematiki // Tomsk State Pedagogical Uni-
versity Bulletin. 2006. Vol. 3 (54). P. 57–60 (engl. transl.: Gelfman E.G., Podstrigich A.G. 
Educational Project as a Method for Monitoring the Intellectual Capacity of Pupils in 
Mathematics Lessons).

Gelfman E.G., Prosvirova I.G., Kholodnaya M.A., Tsymbal S.N. Uchet psikhologicheskikh za ko-
no mer no stey ustroystva ponyatiynogo opyta kak faktor povysheniya kachestva ma te ma-
ti ches kogo obrazovaniya  // Tomsk State Pedagogical University Bulletin. 2009. Vol. 11 
(89). P. 55–60 (engl. transl.: Gelfman E.G., Prosvirova I.G., Kholodnaya M.A., Tsymbal S.N. 
Consideration of Psychological Patterns of Conceptual Experience Structure as a Factor 
in Improving the Quality of Mathematical Education).

Godino J.D. Mathematical concepts, their meanings and understanding / ed. by L. Puig, A. Guti-
érrez. Proc. 20th Conf. of the Int. Group for the Psychology of Mathematics Education. 
Valencia, Spain: PME, 1996. Vol. 2. P. 417–424.

Hershkowitz R., Schwarz B., Dreyfus T. Abstraction in context: Epistemic actions // Journal for 
Research in Mathematics Education. 2001. Vol. 32. P. 195–222.

Kholodnaya M.A. Psichologiya intellekta: paradozu issledovaniya. Saint Petersburg: Piter, 2002 
(engl. transl.: Kholodnaya M.A. The Psychology of Intelligence: Paradoxes of Research).

Kholodnaya M.A., Gelfman E.G. Razvivayushchiye uchebnyye teksty kak sredstvo intellektu-
al'nogo vospitaniya uchashchikhsya. M.: Institute of Psychology; Russian Academy of 
Sciences, 2016a (engl. transl.: Kholodnaya M.A., Gelfman E.G. Development-Focused Edu-
cational Texts as a Mean for Students’ Intellectual Development).

Kholodnaya M.A., Gelfman E.G. Development-focused educational texts as a basis for learn-
ers’ intellectual development in studying mathematics (DET technology) // Psychology 
in Russia: State of the Art. 2016b. Vol. 9 (3). P. 24–37.



137PME and Yandex Russian Conference 2019

E. Gelfman, M. Kholodnaya

Simon M.A. Explicating mathematical concept and mathematical conception as theoretical 
constructs for mathematics education research  // Educational Studies in Mathematics. 
2017. Vol. 94 (2). P. 117–137.

Simon M., Tzur R. Explicating the role of mathematical tasks in conceptual learning: An elabo-
ration of the Hypothetical Learning Theory // Mathematical Thinking and Learning. 2004. 
Vol. 6 (2). P. 91–104.

Van den Heuvel-Panhuizen M., Driyvers P. Realistic mathematics education // Encyclopedia of 
Mathematics Education. Dordrecht: Springer, 2014. P. 521–525.

Weinberg A., Wiesner E. Understanding mathematical textbooks through reader-oriented the-
ory // Educational Studies in Mathematics. 2011. Vol. 76. P. 49–63.



138 In Shvarts A. (Ed.). Proceedings of the PME and Yandex Russian conference: 
Technology and Psychology for Mathematics Education. P. 138–145. Moscow, Russia: HSE Publishing House.

EYE MOVEMENTS DURING COLLABORATIVE 
GEOMETRY PROBLEM SOLVING LESSON

Markku S. Hannula
University of Helsinki, Finland;

Volda University College, Norway

Miika Toivanen
Enrique Garcia Moreno-Esteva

University of Helsinki, Finland

This study examines student eye movements during collaborative geometry problem solv-
ing. Specifically, we are analysing the differences in fixation durations when working on 
paper versus working with GeoGebra. We examined eight students’ fixation durations in 
four classrooms. We found that use of technology influenced the duration of gaze fixations. 
The use of GeoGebra resulted in slightly more short fixations, less medium length fixations, 
and clearly more long fixations. A more detailed analysis suggested that the long fixations 
are related both to instrument manipulation and cognitive processes.

INTRODUCTION

Eye-tracking is a method to get information on student cognition as it happens. Hart-
mann and Fischer [2016] compare eye-tracking information to mind-reading: the tar-
get of a fixation (maintaining of the visual gaze on a single location) tells what we 
think about and the fixation duration corresponds with processing time. Glöckner and 
Herbold [2011] summarize research evidence to suggest that gazes related to more 
automatic processes would have shorter fixations (below 250 ms) and more elaborated 
information processing generally requires long fixations of more than 500 millisec-
onds. However, there is much evidence that sometimes the connection breaks and the 
fixation and thoughts are not aligned (e.g., [Schindler, Lilienthal, 2017]).

Our research will focus on examining student eye movements in the context of collab-
orative problem solving in geometry. This study will address three under-examined 
research areas. First, while eye-tracking research is strong in the context of language 
processing [Rayner, 1998], the method has been far less used in the area of mathe-
matics [Hartmann, Fischer, 2016]. Second, eye-tracking research has mainly been con-
ducted in laboratory situations and studies conducted in real classrooms have only 
recently started to appear (e.g., [McIntyre, Mainhard, Klassen, 2017]). And third, re-
search on multiple persons interacting (e.g., [Rogers et al., 2018]) is so far extremely 
limited. Although methodologically challenging, moving into these poorly explored 
areas is important for mathematics education. Mathematical problem solving takes 
place by social beings in the complexity of the learning environment where multiple 
modalities are present [Radford, 2008; Arzarello et al., 2009] and multiple goals need 
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to be addressed [Hannula, 2006; Goldin et al., 2011]. We need to study mathematical 
behaviour in ecologically valid ways. 

Technology has becoming an important element of mathematics learning environ-
ment, and it seems to have positive effects on achievement [Chauhan, 2017; Li, Ma, 
2010]. Singer and Alexander [2017] found out that technology influences reading com-
prehension: people read longer texts and learn smaller details better on print. We have 
not found eye-tracking studies comparing computers and paper for mathematics, we 
expect to find a difference. We formulate our research question as follows: Does the 
selection of tool (paper vs. GeoGebra) have an effect on student fixation durations 
when students are doing problem solving. Moreover, we will examine the longest fix-
ations when students are using GeoGebra.

METHOD

Participants
The current study examines fixation durations of grade nine students in a Finnish 
mathematics class. The teacher and a collaborative group of four target students vol-
unteered to wear gaze-tracking glasses throughout the lesson. 

Apparatus
We recorded the actions and conversations of the problem-solving session using au-
dio recording and three stationary video cameras in the classroom. The gaze-track-
ing device consisted of two eye cameras, a scene camera, and simple electronics at-
tached to 3D-printed frames. The devices and software were self-made (see [Toivanen, 
Lukander, Puolamäki, 2017]). The camera frame rate depended on lightning condi-
tions, and maximum rate in optimal conditions was 30 frames/second. Data was re-
corded on laptop computers that were carried in backpacks allowing subjects to move 
freely in the classroom.

Procedure for data collection
The data was collected during grade nine mathematics lessons in Finnish lower sec-
ondary schools. The ethics review has approved our research procedures.

In each class, the students solved a non-routine mathematics problem collaboratively 
in groups of four students. The problem solving sessions lasted from 32 to 56 minutes. 
Two of the participating classes worked with GeoGebra software and two solved the 
task using pen and paper. In each of the four classes, the teacher and a collaborative 
group of four target students volunteered to wear gaze-tracking glasses throughout 
the lesson. One student data in the paper and pen setting was lost due to tracker mal-
functioning. 

To reduce the variation of pedagogical choices, we had scripted the problem solving 
session for the teachers. However, there was some variation in how the four lessons 
were constructed, especially with respect to training in GeoGebra before the problem 
task and whether they used extension tasks.
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We identified three types of sequences during the problem solving: (1) sequences hap-
pening only during some of the lessons (e.g. GeoGebra training and extension task); 
(2) sequences that were similar for all lessons and minimally influenced by the choice 
of tool (GeoGebra or paper); and (3) sequences when the activity was done directly 
with the tool. The first type of sequences we excluded from further analysis. Then, we 
used the second type of sequences to identify students whose gaze patterns are suffi-
ciently similar. Finally, we used the third type of sequences to analyse the effect of the 
tool on gaze durations.

We used the following lesson sequences in our analysis: (2a) Teacher gives instructions 
regarding the lesson structure, (2b) Teacher poses the problem and instructs individ-
ual work, (3a) Individual work, (2c) Teacher gives instructions for pair work, (3b) Pair 
work, (2d) Teacher gives instructions for group work, (3c) Group work, (2e) Students 
go to the board to present their solutions, and (2f) Whole class discussion. During the 
type 3 sequences, the teacher was instructed to provide encouragement and to ask 
questions that require students to explicate their thinking but to not provide hints 
on how to solve the problem. When students were working individually, in pairs, or 
in groups of four, the teacher’s activity consisted of roaming in the classroom and 
stopping for scaffolding one group at a time. The teacher was instructed to provide 
encouragement and to ask questions that require students to explicate their thinking 
but to not provide hints on how to solve the problem.

Procedure for data analysis
First we analyzed the descriptive statistics of fixation durations. As the distributions 
were non-normal, we used non-parametric tests in our consequent analyses. We 
used the data from comparable sequences (type (2)) to make pairwise Mann-Whit-
ney U-tests between individual students. When comparing fixation durations of two 
samples, we decided to use the Kolmogorov-Smirnov Z-test rather than Mann-Whit-
ney’s U-test, because it has more power to detect changes in the shape of the distri-
butions. 

The analyses for the tool effect was then done comparing students selected based 
on the pairwise comparison. We compared the gaze distribution for both tool-inde-
pendent and tool-dependent sections using Mann-Whitney U-tests and Kolmogor-
ov-Smirnov Z-test. To further illustrate the differences in distributions, we used the 
data from all students for the whole problem solving session to identify ten equally 
large groups of fixations. We then report frequencies of fixation duration lengths sep-
arately for students using GeoGebra and students using paper and pencil.

Finally, we analyse the longest gazes for the students using GeoGebra. For this, we 
used visual markers placed in the classroom. When a visual marker was identified in 
the student’s eye-tracking video, the location of the fixation was computed in relation 
to the marker. For each visual marker, we collected related fixations visually in one im-
age. From this summary image of multiple video frames we identified fixation targets. 
Information about the moment of the fixation was used to find the video segment 
when the fixation took place for a qualitative examination. 
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RESULTS

The results of the pairwise Mann-Whitney comparisons identified eight students who 
had no statistically significant differences in their gaze durations during type 2 lesson 
sequences. Three of these students were from classes using paper and pencil and five 
from classes using GeoGebra.

Our analysis of the fixation durations shows that even the more sensitive Kolmogo-
rov-Smirnov test found no statistically significant difference in the distributions be-
tween the two tools during the sequences when the tool was not essential (Table 1). 
However, the differences were statistically significant during the times when the tool 
was essential.

To further explore the nature of the difference between paper and GeoGebra for visual 
attention, we looked at the distributions of different fixation lengths. We see a rather 
complex pattern of differences between the conditions for using GeoGebra vs. using 
paper (Fig. 1). When students were working with GeoGebra, they had more fixations in 
the time range 135 ms to 201 ms and also more long fixations (longer than 936 ms) in 
comparison to paper condition. On the other hand, students working with paper, had 
more fixations in the time range 201 to 936 ms compared with GeoGebra.

We then analysed what were the targets of the longest fixations in the GeoGebra 
condition. During the time from the beginning of individual work until the end of 
group work the five students had 1124 fixations longer than 936 ms, which was the 
largest bin in the histogram. Of these fixations 999 (89%) were identified in relation 
to a visual marker. Most of the long fixations (596; 53%) were on own computer 
screen and additional 56 (5%) were on peer’s screen. The remaining 31% of the long 
gazes were mostly on peripheral parts of the computer, other people (Fig. 4), or note-
books.

When watching the long fixations as part of the gaze videos, two different types of 
long fixations were found. Figures 2 and 3 are heatmaps generated based on long 
fixations on screen. Long fixations were located mostly at the left end of the menu 

Table 1
Tool effect on fixation durations

Lesson 
sequences

Tool used 
for problem 
solving

Number 
of fi xations

Median 
for fi xation 
durations (ms)

Mann-
Whitney U

Kolmogorov-
Smirnov Z

Tool independent 
phases

Paper and pencil 2858 240 7728972
(p = 0.19)

1.337
(p = 0.06)

GeoGebra 5504 238
Tool dependent 
phases

Paper and pencil 7828 240 32449039 
(p = 0.02)

3.159
(p < 0.001)

GeoGebra 8464 237
Total 24654 238
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bar and on the figure the students drew on the screen. However, the fixations on 
Fig. 3 were almost exclusively related to the student carefully targeting the mouse 
at the right place and the student did little progress with the problem. While several 
fixations on Fig. 3 were also related to the manipulation of the tool, many of these 
fixations seemed to have more cognitive context. The student seemed to be looking at 
the figure, alternating the gaze target until he had an insight and was able to produce 
a better solution. 

Fig. 1. The distribution of fixation durations (ms) when students were using the tools
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Fig. 2. A heatmap of fixations on and near student’s own screen. 
Based on 54 long fixations of one student
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DISCUSSION

The results show an effect in student fixation durations for the choice between com-
puter and paper as a media to solve a geometry problem. Use of GeoGebra is related 
to increase in relatively short fixations and also increase of long fixations. These dif-
ferences are likely to have different explanations. According to Glöckner and Herbold 
[2011] more automatic processes would have shorter fixations (below 250 ms) whereas 
more elaborated information processing is associated with long fixations of more than 
500 milliseconds. These results suggest that using a digital tool increases the amount 
of both automatic scanning fixations and long fixations related to more elaborated 
processing. However, the qualitative examination of the long gazes in context sug-

Fig. 3. A heatmap of fixations on and near student’s own screen. 
Based on 41 long fixations of one student

Fig. 4. Fixations on and near peer’s head. 
The shapes behind the peer are teacher
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gests that a significant amount of these long fixations are related to interacting with 
GeoGebra, for example when selecting an option from a drop down menu or using 
mouse to place an object in the coordinate system.
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Current study focused on estimation of the effect of phonological ability on math achieve-
ment during first year of schooling and testing the hypothesis that this effect varied de-
pending on students SES. To achieve our aims we used two-waves longitudinal study which 
were conducted on large sample of first-graders (N = 2948) in Tatar Republic (Russia). The 
results revealed that phonological ability had a significant positive effect on math achieve-
ment even when reading achievement, number identification skills and SES were controlled 
for. The effect of phonological ability was higher for students with larger number of books 
at home and who used not only Russian language at home.

INTRODUCTION

Many factors contribute to individual differences in math achievement. Both the cog-
nitive and social predictors of math development were extensively discussed in litera-
ture. Sociologists and policymakers mostly focused on the relationship between math 
achievement and socioeconomic status (SES), whereas cognitive and educational psy-
chologists extensively discussed the cognitive predictors of math achievement such as 
domain-specific (e.g., number sense or spatial ability) and domain-general (e.g., work-
ing memory, phonological ability). To optimize mathematical educational and instruc-
tional practices, it is necessary to understand how these factors interact with each other 
during development. In particular, this study aimed to estimate how SES modulate the 
effect of phonological ability on math performance during the first year of schooling.

Despite a large body of research regarding the relationship between phonological 
ability and math and the effect of SES on math achievement, little is known about how 
SES modulates the effect of phonological ability on math achievement and math pro-
gress. Meanwhile, this issue might be important for planning of remedial programs for 
children with mathematical difficulties or for design of developmental programs for 
children from low socioeconomic families.

THEORETICAL FRAMEWORK AND OVERVIEW OF LITERATURE

Socioeconomic status (SES) is supposed to be one of the strongest predictors of ac-
ademic achievement, both in reading and math (e.g., [OECD, 2010; Sirin, 2005]). Ad-
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vantages of children from families with high SES emerge before the start of school-
ing; these differences might remain or expand through school years [Bradley, Corwyn, 
2002; Caro, McDonald, Willms, 2009]. SES also affected cognitive functions and early 
precursors of math achievement such as number sense and number competence (e.g., 
[Ardila et al., 2005; Jordan, Levine, 2009]). SES can also modulate relationships be-
tween certain types of cognitive predictors and math achievement (e.g., [Demir, Prado, 
Booth, 2015]). Particularly, it was demonstrated that SES moderated the relationship 
between math gains and brain activation in regions related to verbal numerical rep-
resentations and spatial representations [Demir, Prado, Booth, 2015]. 

Several studies have demonstrated that certain types of verbal abilities correlate with 
math achievement (e.g., [Grimm, 2008; Planas, Morgan, Schütte, 2018]). In particular, 
it has been shown that phonological abilities (individual’s sensitivity to the sounds 
of the language [Wagner, Torgesen, 1987] predict some types of math skills (e.g., [De 
Smedt et al., 2010; Hecht et al., 2001; Krajewski, Schneider, 2009]).

Phonological ability has a larger effect on math problem solving when retrieval of 
arithmetic facts strategy is used [De Smedt et al., 2010]. The close relation between 
phonological processing and arithmetic fact retrieval has been also confirmed in neu-
roimaging studies [Arsalidou, Taylor, 2011; Simon et al., 2002; Prado et al., 2011]. The 
predictive role of phonological ability in math has been also demonstrated in the in-
vestigation of children with dyscalculia who have the deficit of fact retrieval and suf-
fer from poor phonological ability [Robinson, Menchetti, Torgesen, 2002; DeSmedt, 
Boets, 2010]. 

However, some studies failed to find significant correlations between phonological 
abilities and math (e.g., [Passolunghi, Vercelloni, Schadee, 2007]). Phonological abili-
ties were found to be unique predictors of reading performance but not mathematics 
[Bryant et al., 1990; Passolunghi, Vercelloni, Schadee, 2007]. Potentially, relations be-
tween phonological abilities and mathematics may be mediated by reading achieve-
ment. Sometimes children with language deficits demonstrated a low level of math 
competencies (e.g., [Koponen et al., 2006; Shin et al., 2013]). Jordan, Kaplan and Han-
ich [2002] found that children who started school with specific reading difficulties 
were at risk for developing secondary or associated mathematics difficulties.

Most previous studies were conducted on small samples, which could lead to biased 
estimations of the effects. There existed also a relative deficit of longitudinal stud-
ies which aimed to estimate both the effect of phonological ability and SES on math 
achievement. Our study aims to overcome these restrictions by using a large sample 
size and longitudinal two-wave design. 

This study has three main goals. The first goal is to estimate the effect of phonological 
ability on math performance controlling for reading achievement and number identi-
fication skills in first year of schooling. The second goal of our study is to estimate the 
effect of SES on math achievement during the first year of schooling. The third aim 
of our study is to estimate how the effect of phonological ability varies for students 
with different SES. We hypothesize that children from high SES families tend to more 
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actively involve verbal processing during math problem solving, hence the effect of 
phonological ability is larger for children with high SES. 

METHODOLOGY

Participants: This study was conducted in Russia (in the Tatar Republic) during the 
2017–2018 academic year. The sample of 3450 first-graders was assessed at the begin-
ning of the first grade (Time 1), and the second stage of the assessment was conducted 
at the end the first grade (Time 2). In the resulting sample only children who partic-
ipated in both waves and whose parents gave information about SES were saved. The 
final sample consisted of 2948 first-graders (49% were girls). The mean age was 7.3 
years at Time 1.

The parents of the respondents gave their informed consent before the start of the sur-
vey. The data were collected anonymously. The Institutional Review Board approved 
the study, and the data were collected according to the guidelines and principles for 
human research subjects.

Instruments and procedure. The Russian version of the iPIPS (international Perfor-
mance Indicators in Primary Schools) instrument was used. iPIPS is based on the Per-
formance Indicators in Primary Schools (PIPS) monitoring system that was developed 
by the Centre for Education and Monitoring at Durham University in the UK [Tymms, 
Merrell, Wildy, 2015]. The Russian version of the iPIPS assessment was developed from 
2013 to 2015 [Ivanova et al., 2016].

This instrument assessed phonological ability, reading performance, and mathemat-
ics performance at the beginning and at the end of the first year of schooling. During 
two assessment cycles, the same sample of children were presented with the same 
set of items. In order to examine the achievement level of students over time, we 
applied the IRT technique, specifically, anchor item equating by performing the di-
chotomous Rasch model [Kolen, Brennan, 2004], using Winsteps software [Linacre, 
2006]. Thus, the items were equated such that a continuous scale was used to assess 
student growth from Time 1 to Time 2. The reliability of the Russian versions of the 
mathematics and reading baseline and follow-up scales varies from 0.8 to 0.9 (Cron-
bach’s alpha).

For estimation of math achievement word problem solving tasks and two-digit arith-
metic tasks were used. In order to assess phonological ability rhyming tasks and word/
pseudoword repetition tasks were used. The number-identification skills were assessed 
with tasks included single-, two- and three-digit numbers. The reading performance 
scale was constructed based on tasks that included letter recognition, word decoding 
and reading comprehension. 

The information about family’s SES was obtained from parents’ questionnaires. We 
used two indicators of family SES: mother’s education (1 — mother has higher educa-
tion; 0 — mother has no higher education) and number of books at home (1 — family 
has more than 100 books at home; 0 — family has less than 100 books at home). We 
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also included variable “language at home” (1 — family uses only Russian language at 
home; 0 — family uses both Russian and not Russian language at home). 

Statistical approach. In order to answer our research questions, we used mixed-ef-
fect models in which Time 1 and Time 2 measures were considered as nested in indi-
viduals. These models allow us to estimate the effect of predictors on outcomes and 
time changes in outcome. Mixed-effect model also estimate between-individuals and 
within-individual variance (random effect). Using mixed-effect models enabled us to 
estimate the effects of both time-varying and time-invariant predictors, so we were 
able to estimate both the effect of phonological ability on math achievement and the 
effect of SES. 

The analysis was performed using Stata 13.0 software [StataCorp., 2013].

RESULTS

Results of mixed-effect analysis are shown at Table 1.
Table 1

The results of mixed-effect analysis for math achievement as outcome 

Variables Model 1 Model 2 Model 3 Model 4

Constant –1.85*** (0.07) –1.85*** (0.08) –1.83*** (0.07) –1.95*** (0.08)
Time 1.04*** (0.04) 1.04*** (0.04) 1.03*** (0.04) 1.03*** (0.04)
Phonological ability 0.19*** (0.02) 0.19*** (0.02) 0.18*** (0.02) 0.27*** (0.03)
Reading achievement 0.16*** (0.01) 0.16*** (0.01) 0.16*** (0.01) 0.16*** (0.01)
Number identifi cation 0.19*** (0.01) 0.19*** (0.01) 0.19*** (0.01) 0.19*** (0.01)
Mother has higher 
education

0.30*** (0.05) 0.30*** (0.05) 0.30*** (0.05) 0.30*** (0.05)

Number of books at home 0.12 (0.08) 0.11 (0.08) –0.04 (0.10) 0.12 (0.07)
Only Russian language 
at home

–0.06 (0.07) –0.06 (0.07) –0.06 (0.07) 0.06 (0.08)

Gender (girl = 1) –0.33*** (0.05) –0.33*** (0.05) –0.33*** (0.05) –0.33*** (0.05)

Interaction effect

Mother’s 
education*Phonology

0.002 (0.03)

Book at home*Phonology 0.09* (0.04)
Language 
at home*Phonology

-0.09* (0.04)

Random effect

Between-individuals 
variance 

0.78 0.78 0.78 0.78

Within-individuals variance 2.00 2.00 2.00 2.00
Log-likelihood –11263.05 –11263.04 –11259.79 –11259.99
LR test (Δdf) 0.01 (1) 6.51* (1) 6.13* (1)

*** p < 0.001, * p < 0.05
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Results revealed that phonological ability had a positive effect on math achievement. 
There were significant difference in math achievement regarding mother’s education: 
the students from families where mother had higher education had a higher math 
achievement. 

Models with interaction revealed that mother’s education did not moderate the effect 
of phonological ability on math achievement. Number of books at home significantly 
moderated the effect of phonological ability on math. The effect was higher for chil-
dren with more than 100 books at home. Interaction between phonological ability and 
language at home was significant and negative. This indicated that the effect of pho-
nological ability was lower for children from families that used only Russian language 
at home comparing to children from families with other language at home.

DISCUSSION AND CONCLUSION 

Our study had three main findings. First, we found that phonological ability affect-
ed math achievement even when reading achievement and early precursor of math 
achievement such as number identification skills were controlled for. Second, we 
found that children with higher educated mother had higher math achievement and 
larger growth in math. 

Third, although number of books at home and language at home did not affect math 
achievement directly, they might modulate the relationship between phonologi-
cal ability and math. Particularly, phonological ability had a higher effect on math 
achievement for children with higher number of books at home. During their devel-
opment children from families with higher cultural capital might learn to better ma-
nipulate verbal representations in general and verbal representations of numerosities 
specifically comparing to lower SES children. As a consequence, high SES students 
may more often recruit phonological processing during math problem solving.

The results of our study may have several practical implications. First, our results 
demonstrate that phonological skills should be taken into account when planning in-
terventions to improve mathematical achievement. Second, the effect of phonologi-
cal ability varies depending on family SES, meaning that children with low SES were 
less likely to recruit phonological resources for math problem solving. So, in planning 
the training programmes for low SES children it could be beneficial to use less verbal 
instructions and more visual representations of math concepts and tasks. The pres-
entation of math tasks in different formats, verbal and visual, can reduce SES-related 
difference in math, at least, in elementary school.
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MATHEMATICS SELF-EFFICACY
OF SECONDARY SCHOOL STUDENTS IN THE U.K.: 

THE ROLE OF PARENTAL SUPPORT AND PERCEIVED 
TEACHING PRACTICES 

Ka Hei Lei
Maria Pampaka

The University of Manchester, UK

Drawing on data from a large study of secondary school students in the UK which looked 
into the relationship between teaching practices and students’ mathematics learning out-
comes, we investigate mathematics self-efficacy. We are particularly interested in parental 
support and perceived teaching practice and further explore how these relationships are 
affected when considering the individual characteristics of students and other affective 
variables. Our methodological approach includes a validation stage with the use of the 
Rasch model and a modelling stage with multiple linear regression. Results with the re-
sponses of 13643 11 to 16 years old students start illuminating the complex interrelation-
ships of variables with MSE. We discuss these results in regards to their implications for 
mathematics education practice. 

INTRODUCTION

In this study, we focus on the mathematics self-efficacy (MSE) of secondary school 
students in the UK. We focus on Mathematics, because of its importance in formal 
school curriculum in UK but also internationally. Its eminent significance for stu-
dents’ access to STEM (Science, Technology, Engineering and Mathematics) subjects 
is acknowledged, and hence for students’ educational and socioeconomic life oppor-
tunities [Smith, 2017]. The study of students’ mathematics dispositions is also vital 
because it may reveal key influences on their choices and decision-making and hence 
future engagement with STEM.

Previous studies had also identified a plethora of socio-cultural factors which are sig-
nificant in shaping students’ dispositions and choice-making in education in general, 
and in STEM subjects and mathematics in particular: gender, class, nationality, eth-
nicity, parental and peer affects, amongst others. Another important element involves 
the relationship of teaching practices with affective learning outcomes, such as dis-
positions, as in previous work where we showed how mathematics dispositions drop 
throughout secondary school and into post-compulsory education, and this drop is 
associated with traditional transmissionist teaching practices (e.g., [Pampaka et al., 
2012; Pampaka, Williams, 2016]).

However, not many studies focus on the possible influences of the combination of pa-
rental/family and school/teaching practices, as well as the interactions between these 
factors and other attitudinal variables on MSE. So we aim to address this gap. 
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THEORETICAL FRAMEWORK AND OVERVIEW OF LITERATURE

The theoretical perspective underlying this study, and the construction of the instru-
ment for measuring MSE, is largely based on Bandura’s work [1997] who initially con-
textualized the self-efficacy construct and its two dimensions, i.e. personal self-effi-
cacy and outcome expectancy. Bandura [1997] defined self-efficacy as an individual’s 
self-confidence of his/her capability to organise and control over his/her own actions, 
“in order to produce given attainments” [p. 3]. Perceived self-efficacy “refers to belief 
in one’s agentive capability” [p. 382], or in other words, “is a judgement of one’s ability 
to organise and execute given types of performance…” [p. 3]. From this it follows that 
self-efficacy should be contextualised and specific to a discipline (with measurement 
implications). 

In the literature, studies for MSE can be separated into several main themes: applying 
MSE as a predictor of performance, course and career choices, developing measures 
for MSE, exploring the sources of MSE, and investigating cultural differences in MSE. 
In relation to the former, self-efficacy was found as a common non-cognitive predic-
tor of academic performance in a meta-analysis focusing on psychological correlates 
of college students’ academic achievement; in particular, performance self-efficacy 
was found to be the strongest predictor [Richardson, Abraham, Bond, 2012]. With a 
specific focus on mathematics, PISA results [OECD, 2013] show that secondary stu-
dents’ MSE is strongly associated with mathematics performance across OECD coun-
tries. We should note here, however, that most of these studies, including PISA, do 
not use contextualised items for measuring MSE, which is another gap we address in 
this study.

When exploring determinants of MSE, many studies focus on the four sources of 
self-efficacy (i.e. mastery experiences, vicarious learning, verbal persuasion, physi-
ological and emotional state) put forward by Bandura [1997]. Various theories have 
emphasised the crucial role of parents on their children’s learning. For example, the 
ecological theory of development [Bronfenbrenner, 1986] emphasises the dynamic in-
terplay of immediate and distal social systems (e.g., family, school) in shaping chil-
dren’s development; the contextual system model [Pianta, Walsh, 1996] emphasised 
the interconnection of family and school system in shaping students’ academic and 
school outcomes. Furthermore, the academic socialisation model [Taylor, Clayton, 
Rowley, 2004] combines the above frameworks, emphasising that children’s achieve-
ment-related attitudes and behaviours can be shaped by parents via academic social-
isation practices, such as parental involvement and school transition practices. Thus, 
in the present study, we are particularly interested in how parents’ academic support 
practices (e.g., checking and helping homework, giving appropriate encouragement) 
as perceived by UK secondary students can affect their MSE. 

Finally, the general argument for the importance of the quality of mathematics teach-
ing on students’ learning (outcomes) is well documented (e.g., [Askew et al., 1997]), 
and many have argued that formative assessment and more dialogical, connectionist 
pedagogies are required for conceptual, metacognitive, and affective outcomes (e.g., 
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[Wilkins, Ma, 2003]). In our previous work we have also shown how more transmis-
sionist (less connectionist) teaching practices are associated with decline in students’ 
mathematics dispositions throughout secondary and in post compulsory education 
[Pampaka et al., 2012; Pampaka, Williams, 2016].

Some studies have further showed separately that parental involvement [Kung, Lee, 
2016] and teachers’ support [Chouinard, Karsenti, Roy, 2007] are significantly associ-
ated with students’ MSE. However, there is a gap in evidence on combining these ef-
fects and looking at their interactions with students’ emotional/attitudinal variables. 
Thus, in this study, we aim to shed more light on how factors at home (i.e. perceived 
parental academic support) and students’ perception of the teaching practices they 
experience (transmissionist teaching) are related to their MSE, and how these varia-
bles may be interacting with one another in explaining MSE. 

METHODOLOGY 

Project Design and Sampling. The results presented here are part of a larger ESRC 
(Economic Social Research Council) funded study of teaching and learning second-
ary mathematics in the UK (<www.teleprism.com>). The project was largely based on 
longitudinal surveys of students and their teachers in all 5 year groups of secondary 
education, and also included a qualitative case study element (not used here). The 
project was designed to capture the five years of students’ progression in Secondary 
Education (Year 7 to 11, i.e. students aged 11 to 16) in about one year of data collec-
tion: From October 2011 to December 2012. The study employed a varied sampling 
frame to ensure maximum coverage of the schools of England, approaching over 2200 
schools and established collaboration and responses from 40 of them (for more details 
on sampling see [Pampaka, Wo, 2014; Pampaka, Williams, 2016]). For this analysis we 
draw on data from the first data point which includes responses from 13 643 students 
who were in year 7 (N = 3926), year 8 (N = 3039), year 9 (N = 2716), year 10 (N = 2127) 
and year 11 (N = 1835).

Instrumentation. Data collection took place from October to December 2011 in-
volving a questionnaire covering students’ attitudes to mathematics, confidence at 
various mathematical topics (MSE), future aspirations, and their perceptions of the 
teaching they encounter. For the measurement of MSE we followed the same ap-
proach as described in previous work [Pampaka et al., 2011] with items appropriate 
for the involved year groups. Students were asked to report their confidence, using 

Fig. 1. Proposed theoretical model

Parental support

Teaching practice

Emotional/attitudinal factors
e.g., Maths identity, perceived ability

MSE
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a 4-point scale (Not confident at all (1), Not very confident (2), Fairly Confident (3), 
and Very confident (4)) on solving each of the given mathematical tasks (but empha-
sising that they should not solve the problems). Some example tasks are provided in 
Fig. 2. 

Analytical Approach. Our methodological approach includes a measures validation 
and a modelling stage. Validation is performed within the Rasch measurement frame-
work, seeking validity evidence through various statistical indices (i.e. fit and category 
statistics, Differential Item Functioning and person-item maps). The method allows 
for the construction of continuous measures based on the responses to various ordi-
nal items, if the data fit the model and fulfil its assumptions. This applies to all used 
measures in this study (as listed in Table 1). 

Once the measures’ validity is established, we use these new measures in further sta-
tistical modelling (General Linear Modelling in R; [Hutcheson, Sofroniou, 1999]) with 
models where students’ MSE is the outcome, and we explore its associations with stu-
dents’ characteristics, parental academic support and their perception of transmis-
sionist teaching (as per Fig. 1). We add such variables in the models as explanatory 
variables as shown with the regression equation below:

Y ~ X1 + X2 + X3 +…, where Y = MSE and Xs are the explanatory variables. Regression 
coefficients and model fit statistics are used for model comparison.

Fig. 2. MSE items used in the surveys for Year 7 (left) and all year groups (right)

Complete the number machine calculation by filling in the empty box A rugby team played 7 games.

Here is the number of points they scored in each game

                           3           5           8           9           12           12           16

(a) Work out the range.

MSE11 MSE45

6 +3

Table 1
Summary of measures used with their construct definitions

Measure Name ‘Construct’ description 

Maths disposition Measure related to expressions of behavioural intention for future 
engagement with mathematics (the higher the score the more disposed 
the student is towards further study or engagement with mathematics)

Maths identity Measure related to students’ self-concept about maths, constructed 
with items denoting mainly feelings and preferences towards maths 
(the higher the score the more positively the student relates/identifi es 
with maths)

Maths self-effi cacy Confi dence in solving mathematical problems 
Perceived transmissionist 
teaching

The higher the score the more 'traditional' or teacher-centred 
the practices as reported by the students.

Perceived parental support Students’ perceived parental involvement/support
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RESULTS

This section presents the results of the regression models. We had conducted several 
models in order to understand how the different variables of interest explain students’ 
MSE. We adopted a stepwise procedure to input explanatory variables into models fol-
lowing theoretical assumptions (MSE as the outcome variable in all models):

Step 1: Gender and year group of students (Model 1) as the usual controls.

Step 2: Parental academic support (Model 2).

Step 3: Whether parents have been to higher education (Model 3).

Step 4: Students’ perception of transmissionist teaching (Model 4).

Step 5: Mathematics identity (Model 5).

Step 6: Mathematics disposition (Model 6).

Step 7: Perception of mathematics ability (Model 7).

The results of this process with model fit statistics and the coefficients of each model 
are summarized in Table 2. Further explorations informed the need to include inter-
acting variables as with Model 1, where we found a significant interaction between 
gender and year group on MSE, in addition to Model 0 (not presented here). Model 2 
results show that parental academic support is significantly and positively associated 
with MSE, when accounting for the effect of gender and year group (with a sustained 
significant interaction effect). Similarly, Model 3 shows that both parental academic 
support and whether parents have been to HE are significantly associated with stu-
dents’ MSE, with a slight decrease in the effect of parental support; this suggests that 
part of the effect of parental academic support on MSE is mediated by whether parents 
have been to HE or not (this relationship was further explored in [Lei, Pampaka, in 
press]). Results in Model 4 show that students’ perception of transmissionist teaching 
practices is significantly and negatively associated with students’ MSE (when account-
ing for the rest of the variables). Models 5 to 7 progressively included other emotional 
aspects (dispositions, identity and perceived ability), which increased the variance ex-
plained with the models and showed the expected direction of significant effects. They 
unexpectedly, however, changed the direction of the effect of the other variables of in-
terest: When maths identity was entered into Model 6, the previously positive associa-
tion of parental academic support on MSE becomes negative; similarly, the previously 
negative association of perceived transmissionist teaching on MSE becomes positive. 
Moreover, these findings remain even after maths disposition and perception of maths 
ability were entered into the models (Model 6 and 7). Thus, we further analysed these 
patterns with Model 8 where we included the interaction between maths identity and 
perceived transmissionist teaching, as well as the interaction between maths identity 
and parental academic support to explore the potential moderating effects of these 
variables. The effect plots in Fig. 4 illuminate these complex patterns, while Fig. 3 
shows the effects of parental HE background and the interaction between gender and 
year group on MSE in the same model. It is apparent from Fig. 4 that the effect of 
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Fig. 3. Effect plots (Model 8) for MSE by: whether parents have been to HE (left), 
and the interaction of gender and year groups (right)

parental support and perceived teaching practices on MSE are different for lower and 
higher levels of reported maths identity (lines for math identity denote various trends 
with low and high values). 

DISCUSSION AND CONCLUSION

In this study we have focused on using previously constructed measures of MSE, maths 
disposition and identity, parental academic support and perceived transmissionist 
teaching in regression models for MSE (as the outcome). Results provided evidence 
that social contextual factors at home (e.g., parental academic support) and school 
(students’ perception of transmissionist teaching) are indeed significant correlates of 
secondary students’ MSE, when we accounted for the effects of students’ individual 
characteristics and other emotional variables. 

Our findings suggest that the effects of both parental academic support and trans-
missionist teaching practice vary depending on students’ maths identity. That is, for 
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students who identify more with mathematics, parental support seems to have a neg-
ative effect on their MSE. This is consistent with a previous meta-analysis supporting 
that adolescence processed with dramatic cognitive and self development as an auton-
omous/efficacious individual needs less direct parental involvement such as home-
work helping [Hill, Tyson, 2009]. In addition, more transmisionist teaching practice 
at schools can also help enhance the MSE of these students with high math identity 
perhaps because it reinforces their strengths and abilities. In contrast, for students 
who believe that they are not that good at mathematics, more parental academic sup-
port and less transmissionist teaching practice at schools can help increase their MSE. 
Such findings can help teachers and parents adopt approaches with students accord-
ing to their emotional states for better experiences. Our findings while revealing part 
of the complexity in these associations also point to the need for further research on 
MSE and its association with social and contextual factors, especially in light with in-
ternational comparisons which consider such constructs, e.g. PISA. Investigating such 
differences in a robust manner points to the need to explore the universal utility of 
MSE across cultures. 
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Learning ratios is difficult. There is a strong evidence that math curricula fail to provide 
appropriate scaffolding for ratio-based concepts. One of the most psychologically adequate 
Math curricula is based on the idea that number is a ratio between the quantity and its 
measure. Yet it exploits only part-whole relations. As we revise the measurement paradigm 
of Davydov’s curriculum, we see the potential to put the idea of measurement in the context 
of co-measurement, i.e. the coordinated measurement of two different values to control the 
corresponding intrinsic value. Expected benefits in terms of students’ goal-oriented actions 
are discussed. A tentative learning progression based on co-measurement is presented. 

INTRODUCTION

Proportional reasoning and ratio-concepts are known to cause tremendous difficulties 
to students from the moment they encounter these concepts in school and throughout 
all steps of education — both in Mathematics and in Natural Sciences [Nunes, Bryant, 
2015; Lamon, 2007]. As literature analysis shows, this is a worldwide problem [Davy-
dov, Tsvetkovich, 1991; Nunes, Bryant, 2015; Dole et al., 2012; Vysotskaya et al., 2017; 
2018; Van Dooren, Lehtinen, Verschaffel, 2015]. 

Regular textbooks in many countries exploit very similar approaches to introduce frac-
tions, proportions, percent, etc. [Alajmi, 2012]. Throughout the whole 6-years regular 
Math curriculum until the introduction of proportions, only part-whole relationship 
between values is considered in the classroom. In this aspect state Russian textbooks 
do not differ from other countries; neither do our students avoid typical mistakes (e.g., 
[Vysotskaya et al. 2017; 2018; Behr et al., 1984]. Thus, students always deal with one 
parameter only. When at the end of Arithmetic students come to proportions, they 
have no other way to treat this special case than to reduce the situation to part-whole 
task. Unfortunately, it is the same in the Developmental Instruction curriculum. De-
spite all the work done to deepen students’ comprehension of values and numbers, the 
specific ratio-situation (two different values and their changes have to be considered 
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to control the resulting third intensive magnitude formed by their ratio) is still a trap 
for students and a challenge for teachers.

Here are some important trends that researchers suggest to improve teaching:

• Students should learn to distinguish between different parameters beforehand 
(e.g., [Maclin et al., 1997]). 

• Multiplicative thinking should replace additive thinking: 6 cups with 10 spoons 
of sugar is equally sweet as 3 cups with 5 spoons, because it is twice as much (the 
answer: 6 cups and 8 spoons, which is plus 3 units to each parameter, is incorrect). 
(e.g., [Hilton et al., 2016]).

• The part-whole relationship and counting, that stands behind the number-con-
cept, is not enough for treating number as a ratio (e.g., [Tzur, 1999; Schmittau, 
2003]). It is rather a web-like structure [Lamon, 2007].

Our previous findings show [Vysotskaya et al., 2017] that students make mistakes 
while treating numbers as wholes when the numbers represent ratios — an effect 
called whole number dominance [Behr et al., 1984]. Thus, these tasks demand a pos-
sibility to regard them as ratios — even when they are written as wholes. For example, 
75 % means “75 for each 100” or, “five times larger” refers to the ratio: 5 : 1.

Thus, our major question is: “How can a child get such a kind of number-concept that 
can scaffold proportional reasoning and learning ratio-concepts in future, be it Math, 
Science, or every-day life? How can we provide it?”

In this article we present our local instruction theory that we have started this year 
in our experimental class. It is based on our previous work [Vysotskaya et al., 2016; 
2017; 2018] with 5–6th-graders and our main questions now are: will it work for pri-
mary school? What benefits will it bring? What problems thus can be solved? We will 
describe the innovations we made and discuss ways to test the effectiveness of our 
curriculum.

THEORETICAL FRAMEWORK

As we implement Developmental Instruction [Davydov, 2008/1986], we analyze the 
psychological aspects of learning ratios: what actions can mediate acquisition of the 
concepts? Thus, we act as curriculum developers, as we devise local instruction theo-
ries and carry them out in our experimental classrooms to see whether the promotion 
is feasible. We strive to provide students with psychologically adequate learning en-
vironments (including models, situations, instruments, cultural templates, etc.) that 
will scaffold concept development through students’ activity according to the tenta-
tive learning progression that we devised.

The fundamental idea of the Developmental Instruction Theory is: to build robust 
concepts, they should be extracted from student’s own activity as a reflection of the 
guidelines he used. Thus, his action has to reconstruct meaningful, goal-oriented cul-
tural activity — the one that exploited and gave birth to the concept. The role of cur-
riculum designers is to devise learning environment to scaffold this activity.
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MEASUREMENT-BASED CURRICULUM

Taught since 1960s, Davydov’s Math curriculum is built upon the action of measure-
ment. The idea was to introduce the concept of number thus it could evolve into the 
concept of rational and real number from the start. Here is the sequence of prob-
lem-situations that introduces proportions and fractions [Gorbov, Mikulina, Saveljeva, 
2002].

Step 1. Magnitude. Students compare objects based on various attributes; construct 
objects with a given attribute (length, area, weight, amount, volume, etc.).

Step 2. Measure and Number. Students use a measure as a mediator to reconstruct 
or compare magnitudes, in case there is no magnitude of the same size available. Stu-
dents use Numbers as a mean to communicate the result of measurement. 

Task example: “How would you pour the same amount of juice for your friend, if your glasses are 
of different shape and you have only small similar cups?” (It is prohibited to pour juice between 
your glasses.)”

Step 3. Composite unit. Students use a composite unit, when they have to measure 
or construct a much bigger magnitude than the measure provided. This situation can 
develop in several directions: multiplication, place-value principle (when a system of 
measures is constructed), and fractions.

Step 4. Fractions. Fractions appear as a way to write down the result of measurement 
when a measure is bigger than a magnitude, or when it does not fit in the magnitude 
precisely (Fig. 1).

Step 5. Proportions. This step does not imply any actions with hands-on materials. 
A special table (see Table 1 below for a task example) is introduced to write down both 

Fig. 1. Introducing fractions through the composite unit model

Measure Megnitude

Composite unit

A

K

E

8 3

24 Measure Megnitude

Composite unit

A

K

E

8 3

3/8

Table 1
Special table to solve problems on proportions (from Gorbov’s textbook)

Y (distance) X (time) K (speed) Task example: The pedestrian was walking 50 mi-
nu tes, when the bike started after him. Pedestri-
an’s speed is 6 km/h and bicycle goes at a con-
stant speed, making 63 km in 3 hours. What time 
will it take the bicycle to overtake the pedestrian?

Pedestrian 50 min 6 (km/h)
Bicycle 63 (km) 3 (h)
Catching up ?
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values and immediately move to the part-whole relations through corresponding cal-
culation of an intrinsic value. Alongside formulas and rules are given. 

Unfortunately, the sequence proves to be hard to follow: students’ actions should be 
guided too closely by a teacher, and the only explanations behind the introduced in-
struments is “comfort” and “convenience”. We considered such phenomena as a sign 
that students feel a lack of sense and meaning in the actions taught.

For example, when the idea of measure is introduced, most children would prefer to use several 
different magnitudes that would fit instead of measuring it with only one small measure. The 
teacher has to insist on using only one magnitude, saying “it is convenient” which is doubtful in 
real-life situations, when a random measure is most likely not to fit precisely, and to compose 
magnitude of several different pieces is easier.

As we have observed, students have the same problems with proportions as they do in 
regular Math curriculum [Vysotskaya et al., 2017]. We considered measurement basis of 
Davydov’s Math curriculum including construction of various magnitudes as a corner-
stone to build a proper concept of number as a ratio. We suggest making one step ahead: 
putting measurement and construction in the context of ratio. Then the construction it-
self becomes justified by a supreme purpose — to maintain the ratio (see Fig. 2 and Fig. 3). 

Co-measurement
Length A B

Is A/E = B/K ?
Is A/B = E/K ?

E
K —

Value A
is measured

with E

The number
of portions is passed

to the partner

Value 
is constructed

with K

We check
that A and 

are in the same ratio

3

Fig. 3. Co-measurement situation

Fig. 2. Measurement situation

Measurement
Length A Length B

A = B ?

E E

E

Value A
is measured

with E

The number of E
is passed

to the partner

Value 
is constructed

with E

We check
whether A and 

are equal

5
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Let’s consider the difference in the sense of students’ actions. For example, it can be 
a ladder of the length enough to reach the roof. “I am measuring distance to the roof 
with some measure E, than I pass E to my partner and say I need a ladder with the 
length of 5 E. He constructs it (cuts out of paper) and we check, that it fits”.

Or a co-measurement situation: “We are making button loops on a doll’s dress. A string 
of “this” length (measure E) suits to make button loops for three buttons (measure K). 
If we have a string “this” long (length A), how many buttons will we need? I am mea-
suring A with E to pass the number of portions to my partner. Than he constructs the 
amount of buttons (B) with his measure K. After that we can check, laying down our 
portions of buttons and cutting our string that we indeed have the exact amount of 
buttons for the buttonloops that we will make with our string.

Later on the ratio can be concentration or speed, but right from the start it is a sense 
of “fairness”, that all children exploit, but they don’t have instruments for that yet. It 
is our major assumption that to bring sense and meaning to what children do, we can 
exploit co-measurement context starting with the compound measure. It can make 
the “natural” proportional reasoning tangible and manageable for students. The com-
pound measure is a cultural tool, and co-measurement is the cultural activity, that we 
want children to reconstruct. 

CO-MEASUREMENT-BASED CURRICULUM

Below we present a tentative learning progression built upon the action of co-mea-
surement (Table 2). Illustrations are extracted from our previous researches on pro-
portions [Vysotskaya et al., 2016; 2017; 2018]. This progression has been devised 
during these researches, but has never been integrated yet as a part of a basic Math 
curriculum of 1–6 grades. Outlined is only a part of curriculum that presents the de-
velopment of the Number concept.

ASSESSMENT AND DISCUSSION

To empirically verify learning progression, that we have outlined, this year we have 
started 6-year longitude study with one class of 20 children (6–7 years old).

We rely on two indicators to prove effectiveness of the instruction: first and most im-
portant for us is the possibility to proceed with students according to the sequence we 
suggest. Every new step, that students successfully make, encourages us as educators 
and indicates that we are on the right way.

Second is a number of assessments that we have already tested on 5–6th graders in our 
previous research [Vysotskaya et al., 2016; 2018]. These assessments include not only 
paint-mixing and buoyancy problems that are familiar to students but also problems 
that present different contexts (such as efficiency, etc.) to test whether any transfer 
happens. See task examples below. We expect that our 3–4th graders will be at least 
as successful as our former students of middle school were [Vysotskaya et al., 2017; 
2018].
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Table 2
Co-measurement based learning progression

Step Students’ actions and ideas

1. Making sets Students work in pairs — each in charge of his own value. They 
construct and measure “sets” jointly with a compound measure/
portion. One lays down his measure (3 green buttons) and the other 
student lays his part (2 blue buttons). Their aim is to have identical 
sets of buttons for all dolls. The idea is to get the whole picture of 
operating two parameters at the same time to maintain “similarity” 
or “fairness”
“Button-problem”

2. Number of portions The situation evolves to the one where the number is introduced as 
a mean to coordinate the actions of both students. It is necessary to 
construct one magnitude in accordance to the other when the for-
mer one is delayed or distanced (for example, the amount of green 
buttons needed if certain amount of blue is already taken)

3. The 3rd value The cultural contexts of intrinsic properties, such as: buoyancy/
density, concentration, cost, speed, are introduced to scaffold work 
between pairs. The aim now is to maintain some value of interest 
(shade of paint) by passing a recipe (1ml of water and 2 drops of ink) 
to the other pair of students. Thus, the third value is made tangible 
through its smallest “portion”

Photo: “Paint-mixing” [Vysotskaya et al., 2018]
4. Changing the 3rd value Students (still working in pairs) are changing the value of interest 

(for example, making a vessel to sink or to fl oat), coordinating the 
changes, which each of them makes with his parameter. The idea is 
that the 3rd parameter can be changed both ways: “if we cannot add 
weights to sink a vessel, we can take away volumes”

Photo: Graph from “Make it fl oat!” If we know the ship of 5 volumes 
and 15 weights sinks, all the vessels with either more weights or less 
volumes can be marked as sinking [Vysotskaya et al., 2016]

5. Working with objects Students are confronted with a new challenge: parameters cannot 
be operated separately (for example, you cannot take water or ink 
away from paint), and thus, they have to work with objects dealing 
with both parameters at the same time. Another example is adding 
“sinking” vessel to “fl oating” to make a “balanced” one

Figure: A fragment from “Make it fl oat” module
6. Coordinating two ratios Students have to refer to two ratios to control their objects. A meas-

ure for intrinsic property is derived from a compound measure: if 
the density equals 2.5, it means that the object has 5 weights for two 
volumes or 2.5 weighs for 1 volume. This appears as a special tool 
to manage situations where magnitudes are unknown or have some 
part of unknown that cannot be changed
Photo from “Make it fl oat!”: the task is to control buoyancy of a ves-
sel with volumes of unknown weight (light-green)
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Task examples: 

1. A log is floating in the water. Then it is cut in two pieces. One of the pieces is 10 times heavier, 
than the other. Which piece will float and which will sink?

2. Students solved a Math test. Ira was assigned to do 15 problems and she successfully accom-
plished 10 of them. Jura was assigned to do 20 problems and she successfully accomplished 15 of 
them. Who performed better?

3. Kids decided to paint school stadium green, but they had only yellow (y) and blue (b) dyes. 
Each of them took some jars and mixed them in his own bucket as follows:

Kolya: y y y y b b b b b b   Olya: y y b b b 

Tolya: y y y b b b b b b   Grisha: y y y b b b b b

Misha: y b b    Jura: y y b b b b

Ira: y y y y b b b b b

Jura started painting, but his dye was not enough. Does someone else have the same shade 
of green to continue painting? What is the recipe for Jura’s paint?

To conclude, we believe, that students’ well-known problems with fractions and pro-
portions are rather learning impediments than the complexity of the topics them-
selves. If so, the issue could be resolved by revising the teaching approach to numbers 
at the very beginning, and Math curriculum in general. We believe that the design 
research approach within the Developmental Instruction framework can help make 
first steps towards this goal. 
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PREPARING ELEMENTARY SCHOOL 
STUDENT-TEACHERS TO TEACH GEOMETRY 
WITH GEOGEBRA: COMPARING OUTCOMES 

FOR RUSSIAN AND AMERICAN PARTICIPANTS

Irina Lyublinskaya
College of Staten Island, New Yor, USA

Svetlana Tikhomirova
Vladimir State University, Vladimir, Russia

This study analysed experiences of elementary school student-teachers participating in a 
semester-long international collaborative project between Russian and US public universi-
ties to integrate GeoGebra into teaching geometry. The analysis of test results showed that 
Russian student-teachers outperformed Americans in basic geometry knowledge. Survey 
analysis showed that while American student-teachers demonstrated higher anxiety to-
wards mathematics, they showed significantly stronger beliefs about the value of mathe-
matics than their Russian counter-parts. In addition, American student-teachers demon-
strated more positive attitudes towards using computers in teaching. Analysis of lesson 
videos suggested that participants from both countries developed Technological Pedagog-
ical Content Knowledge (TPACK) at different levels with similar distributions; however, 
Russian participants mostly used whole class instruction with technology while American 
participants employed small group instruction with technology.

INTRODUCTION

US education system is well known for inquiry-based approaches to teaching and 
for using technology for student explorations and learning. Russian education sys-
tem is well known for its rigorous approach to mathematics content starting as early 
as elementary school, and for strong foundations in mathematics teaching methods. 
The goals of this project were 1) to combine expertise of university faculty from both 
countries in order to develop and deliver high quality professional development for 
elementary school student-teachers to teach geometry with technology, and 2)  to 
compare US and Russian student-teachers’ mathematics content knowledge, attitudes 
towards mathematics, attitudes towards computers, as well as levels of Technological 
Pedagogical Content Knowledge (TPACK) developed as a result of this project.

In this project, the researchers developed short-term professional development (PD) 
course on integrating GeoGebra™ into teaching geometry in elementary school. The 
project specifically focused on geometry knowledge of pre-service teachers and their 
preparedness to teach geometry. The geometry is a discipline of mathematics where 
foundations for logical and algorithmic thinking, spatial reasoning, and mathemati-
cal literacy can be developed. Consistent introduction of geometry tasks into teach-
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ing mathematics starting at young age results in development of children’s geometric 
thinking, increases their motivation and interest in learning geometry, and leads to 
deeper understanding of geometric concepts. On the other hand, lack of understand-
ing of definitions and properties of mathematical objects, as well as inability to cor-
rectly interpret geometric images leads to misconceptions that children commonly 
have in elementary school. 

This course was taught to a small group of US and Russian elementary school stu-
dent-teachers using Skype as a platform for synchronous team-teaching. As part of 
this course student-teachers developed their own geometry lessons with GeoGebra 
and taught these lessons during student teaching practicum.

BACKGROUND 

Mathematics Content Knowledge (MCK)
The limited mathematical knowledge of elementary school teachers is an internation-
al concern. The areas of mathematical difficulties have been well documented, which 
has led to many universities instituting testing requirements to ensure that preservice 
teachers have appropriate knowledge of primary school mathematics [Meaney, Lange, 
2012; Swars et al., 2007]. Research on mathematics content knowledge (MCK) of el-
ementary school teachers indicates that many teachers do not develop deep under-
standing of mathematics and that most of elementary school teachers in the United 
States do not have conceptual understanding of topics they teach [Bransford, Brown, 
Cocking, 2001]. Multiple studies revealed that pre-service teaches have misconcep-
tions and limited content knowledge [Duatepe-Paksu, Iymen, Pakmak, 2012; Van 
Steenbrugge et al., 2014; Wilkie, 2014]. An attempt to learn from various international 
experiences to prepare elementary teachers to teach mathematics led to studies that 
analysed and compared MCK of elementary teachers in different countries [Schmidt, 
Houang, Cogan, 2012; Blömeke, Suhl, Döhrmann, 2013]. The Teacher Education and 
Development Study in Mathematics (TEDS-M) was the first large-scale assessment 
that compared the knowledge of primary and lower-secondary teachers in the 16 par-
ticipating countries at the end of their training. The significant differences between 
countries in primary-level MCK showed that in some countries primary-level teachers 
lack some of the basic mathematics knowledge that is commonplace among future pri-
mary teachers in other countries [Tatto et al., 2012]. The findings of TEDS-M revealed 
that the preparation of elementary teachers to teach mathematics in the United States 
and Russian Federation is in the middle of the international distribution, along with 
other countries such as Germany and Norway. At primary level, the United States and 
Russian Federation had appropriate courses/content arrangements and, from the view 
of future teachers, met their needs. These two countries demonstrate good examples 
of programs with well-organized curricula. The Russian Federation prepares gener-
alists at the primary level (up to the fourth grade) and specialists in mathematics at 
the upper primary and lower secondary levels. The United States was similar to the 
Russian Federation, the only exception being that there was a mix of generalists and 
specialists at the Grade 4–5 levels [Hsieh et al., 2011].
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Attitudes Towards Mathematics
The research into how students’ attitudes affect learning of mathematics-related sub-
jects has been one of the core areas of interest by mathematics educators. Improving 
the attitudes toward mathematics of pre-service elementary teachers is an important 
concern for university education courses in order to facilitate positive mathematics 
attitudes in future elementary students [Sherman, Christian, 1999]. Some pre-service 
elementary teachers have developed negative attitudes toward mathematics because 
of their weak mathematical background, their experiences with mathematics, lack of 
support from their families, and effect of their previous mathematics classes [Tsao, 
2004]. Pre-service teachers experience higher levels of mathematics anxiety than oth-
er university undergraduate students, with the incidence of mathematics anxiety sig-
nificantly higher among elementary education students [Swars et al., 2007].

TPACK Framework
Technology is essential in teaching and learning mathematics; it influences the math-
ematics that is taught and enhances students’ learning. TPACK was developed as a 
conceptual framework for inclusion of technological knowledge into Shulman’s [1986] 
framework of “Pedagogical Content Knowledge (PCK)”. Mishra and Koehler [2006] ex-
panded Shulman’s framework by adding the knowledge of technology as a separate 
domain and defined TPACK as the nature of knowledge that is required by teachers to 
teach with technology while addressing the complex nature of teacher knowledge for 
specific subject areas (e.g. mathematics or science) and grade levels. TPACK is iden-
tified with knowledge that relies on the interconnection and intersection of content, 
pedagogy (teaching and student learning), and technology [Mishra, Koehler, 2006; 
Niess, 2005]. 

METHODS

The study followed explanatory mixed methods research design and was guided by the 
following research questions:

1. Did the project have effect on pre-service elementary school teachers’ geometry 
test scores, mathematics attitudes, and attitudes towards computers? 

2. How do geometry test scores, mathematics attitudes, attitudes towards comput-
ers, and TPACK levels compare for Russian and American pre-service elementary 
school teachers?

Participants
The project involved ten elementary school student-teachers from each university. 
All participants were females. Comparison of demographics between the groups from 
two countries revealed that US participants represented more diverse group (Table 1).

Majority of American student-teachers were the first to go to college in their families 
(8 out of 10), while only three out of ten Russian student-teachers indicated that their 
parents did not have a college degree. 
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The two universities have similar program plans to prepare elementary school teach-
ers. Typical course of study includes 8 semesters, consists of liberal arts courses and 
education courses, and concludes with student teaching practicum. However, the con-
tent covered in mathematics courses is different for these two programs. Only half of 
mathematics courses in US program focus on foundations for the topics in elementary 
school curriculum and another half focuses on topics in finite mathematics, college 
algebra and trigonometry. On contrary, in Russian program all mathematics content 
courses focused on foundations for the topics in elementary school curriculum.

Procedure 
Prior to the teaching practicum, the researchers developed 10-hour professional de-
velopment course for student-teachers on how to use GeoGebra application to effec-
tively teach geometry in elementary school. This course was team-taught over four 
consecutive Saturdays to all student-teachers using Skype as a platform for synchro-
nous delivery and translation. As part of course requirements, in small collaborative 
groups, student-teachers developed lesson plans that integrated GeoGebra. There 
were three groups of student-teachers in each University according to grade level of 
assigned school classrooms. During the final Saturday session all groups micro-taught 
their lessons to others and engaged in discussions providing each other feedback. The 
project therefore produced six distinct lessons that were then taught in 20 elementary 
school classrooms in New York and Vladimir. The teaching occurred within 3 weeks 
after completion of the course. Lesson plans, videos of teaching, student artefacts, 
project evaluations, reflections about teaching, and journals were collected shortly 
after student-teachers taught their lessons. Focused interviews were held at the end 
of semester as well as 1–2 years after the project.

Instruments
Quantitative data were collected using the following instruments: (1) Geometry Test — 
21 multiple-choice and short response questions measuring basic level of geometry 
knowledge, developed from released questions from 1992–2013 NAEP Grade 4 test 

Table 1
Participants demographics

USA Russia Total

Age Mean
Min
Max

22.1
21
28

20.5
19
21

21.3
19
28

Ethnicity White
Hispanic

5
5

10
0

15
5

Marital status Single 
Married

8
2

9
1

17
3

Employment Full-time
Part-time
Do not work

1
5
4

0
2
8

1
7

12
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(<http://nces.ed.gov/nationsreportcard/>) — administered before and after the course, 
(2) Mathematics Attitudes Scale — 68-items Likert scale survey adapted from Fenne-
ma and Sherman (1976) to measure the attitudes and beliefs of student-teachers. The 
survey assessed confidence, anxiety, value, enjoyment, motivation, and teacher ex-
pectations as defined by Tapia and Marsh [2004] — administered before and after the 
course, (3) Pre-service Teacher’s Attitudes toward Computers — 105 questions with 
10 subscales: interest, comfort, accommodation, interaction, concern, utility, percep-
tion, absorption, significance, and adoption. The subscales were created from a col-
lection of 14 various attitude-related scales, where each scale was tailored to focus on 
items most directly related to computers [Christensen, Knezek, 2000] — administered 
before and after the course. (4) TPACK Levels Rubric measures teachers’ TPACK level 
based on the TPACK model for teacher growth through five progressive levels [Recog-
nizing (1), Accepting (2), Adapting (3), Exploring (4), to Advancing (5)] [Lyublinskaya, 
Tournaki, 2012] — used to assess lesson plans and videos of taught lessons.

Quantitative Data Analysis and Results
Analysis of geometry test scores revealed that there was no difference in participants’ 
performance on geometry pre- and post-tests. Both groups demonstrated solid knowl-
edge of elementary school geometry from the beginning of the project. Russian partic-
ipants significantly outperformed Americans on both, pre- and post-tests (p < 0.001). 
However, the mean difference for Russian participants reduced from 4.6 on pre-test 
to 3.9 on post-test. American participants had wider distribution of scores compared 
to Russian PSTs. The difference in scores was not surprising as Russian students had 
stronger mathematics preparation than Americans.

Analysis of scores on Mathematics Attitudes Scale revealed that there was no differ-
ence in participants’ performance on pre- and post-surveys. Strong correlations be-
tween pre- and post-scores (r-values ranging between 0.504 and 0.868, p < 0.05) were 
observed for all variables except enjoyment. Comparison of attitude scores between 
American and Russian participants indicated that there was a strong positive corre-
lation between Russian participants’ enjoyment of mathematics and motivation to 
pursue additional experiences in mathematics (r = 0.839, p <0.005), as well as between 
perceived expectations they had from their mathematics teachers and confidence 
in their ability to successfully mathematics tasks (r = 0.747, p < 0.05). On contrary, 
there were no significant correlations between different categories of mathematics 
attitudes for Americans. Moreover, American participants had significantly higher 
anxiety towards mathematics (t(18) = –3.080, p < 0.01) and were significantly more 
concerned about their teacher’s expectations of them (t(18) = –2.212, p < 0.05) than 
Russians. Nevertheless, Americans had significantly stronger beliefs about the value 
of mathematics than their Russian counterparts (t(18) = –2.575, p > 0.05). These re-
sults may be explained by the differences approaches to mathematics education in the 
two countries. The perception of teacher’s expectations in Russian students seems to 
lead to more confidence, while in American students — to more anxiety. At the same 
time recent changes in accountability and high stakes tests in mathematics in USA 
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could have led to higher values American student-teachers placed on mathematics 
compared to Russians.

Analysis of computer attitudes scores revealed that there was no significant difference 
in participants’ performance on pre- and post-surveys. American student-teachers had 
much stronger attitudes than Russians on six out of ten scales of the instrument — ac-
commodation, interaction, utility, perception, significant, and adoption (p < 0.005). 
The use of technology in Russian schools is limited by the health regulations. In ele-
mentary schools, students are allowed to be on computer 10–15 minutes per lesson 
depending on the their age, and that time is usually used by computer science teach-
ers. It is not surprising that Russian student-teachers did not see as much value of 
computers for their classrooms as Americans. 

Lesson plans and videos of lessons delivered by participants to elementary school 
students after completion of the PD course were analysed using TPACK levels rubric. 
The analysis revealed that development of TPACK was different for individual partic-
ipants with similar patterns for both groups. The levels ranged from Recognizing (1) 
to Exploring (4) with American participants (M = 2.9) slightly outperforming Russians 
(M = 2.6).

Project Outcomes

The value of the project for Russian and America student-teachers goes beyond the 
scores on the tests and surveys. As researchers complete the analysis of qualitative 
data that is currently in progress, they will be able to better evaluate the impact that 
this project had on teaching and learning. The reflections from participants in both 
countries indicated the value of the project for them:

This project opened my eyes on how I can use technology in math- something that is completely 
overlooked. Before this project I always thought of math being best to learned through the use 
of pencil and paper. My outlook on how to teach math and use technology changed as I now feel 
more confident knowing the many ways I can use GeoGebra within my future math lessons (US 
participant).

I had an interesting experience of communicating and exchanging ideas with international col-
leagues, learning how to work with GeoGebra, learning how to teach with GeoGebra (Russian 
participant).

Based on reflections and interviews, student-teachers gained confidence in using 
technology and in teaching mathematics in general. The researchers followed up with 
the participants of the project two years later to learn that most of them continued to 
use GeoGebra for teaching in their own classrooms:

GeoGebra has given me the opportunity to make learning math a fun and interactive task rather 
than repeated, boring, individual computations. GeoGebra on both school and home devices en-
sures that students can learn here at school, and on their own time (US participant).

We used GeoGebra with children outside of regular classes. Many children who did not under-
stand the topic before now understand better how to find the area and perimeter of rectangles. 
They use it at home and they really like it (Russian participant).
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LEARNING INTRANSITIVITY: 
FROM INTRANSITIVE GEOMETRICAL OBJECTS 

TO ‟RHIZOMATIC” INTRANSITIVITY

Alexander Poddiakov
National Research University Higher School of Economics, Moscow, Russia

A new class of intransitive objects — geometrical and mathematical constructions forming 
intransitive cycles A > B > C > A — are presented. In contrast to the famous intransitive 
dice, lotteries, etc., they show deterministic (not probabilistic) intransitive relations. The 
simplest ones visualize intransitivity that can be understood at a qualitative level and does 
not require quantitative reasoning. They can be used as manipulatives for learning in-
transitivity. Classification of the types of situations in which the transitivity axiom does 
and does not work is presented. Four levels of complexity of intransitivity are introduced, 
from simple combinatorial intransitivity to a “rhizomatic” one. A possible version of the 
main educational message for students in teaching and learning transitivity-intransitivity 
is presented.

INTRODUCTION

In decision making, many researchers consider the transitivity axiom (if A > B and 
B > C then A > C, where “>” means “is preferable to”) as a key component of rational 
thinking. The authors of the Comprehensive Assessment of Rational Thinking (CART) 
declare that if “you have violated the transitivity axiom, … you are not instrumentally 
rational. The content of A, B, and C do not matter to the axiom” (Five Minutes with 
Keith E. Stanovich, Richard F. West, and Maggie E. Toplak, 2016). “Any claim of empir-
ical violations of transitivity by individual decision makers requires evidence beyond 
a reasonable doubt”, according to Regenwetter et al. [2011]. These statements are con-
trary to numerous studies in an adjacent area — math research of various intransitive 
objects and the intransitive cycles between them. The intransitive cycle of superiority 
is characterized by such binary relations between A, B, and C that A is superior to B, 
B is superior to C, and C is superior to A (i.e., A > B > C > A, in contrast to transitive 
relations A > B > C). Various sets of intransitive objects (intransitive dice, lotteries, 
playing cards, etc.) have been invented and many studies of intransitive cycles emerg-
ing between such objects have been conducted (see e.g., [Conrey et al., 2016; Gardner, 
1970; 1974; Grime, 2017; Pegg, 2005; Trybuła, 1961]). They show that, contrary to the 
CART authors’ opinion, the content of A, B, and C does matter (some A, B, and C are in 
transitive relations of superiority, some others are in intransitive ones, and it depends 
on their content). While choosing between intransitive dice, one should prefer dice A 
to dice B in the pair A-B, B to C in pair B-C, and C to A in pair A-C. Currently, numer-
ous educational videos can be found via Internet searches for the terms intransitive 
dice and non-transitive dice (e.g., [Lawler, 2017]). Various problems ranging in com-
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plexity are designed to promote intransitivity understanding in students of various 
ages and educational levels (from secondary to higher school settings) in different 
areas including not only math but also biology, sociology, etc. [Beardon, 1999/2011; 
Scheinerman, 2012; Stewart, 2010; Strogatz, 2015]. One should agree with T. Roberts, 
who writes:

Transitivity and intransitivity are fascinating concepts that relate both to mathematics and to 
the real world we live in. A couple of lessons devoted to this topic are almost certain to interest 
and engage students of almost any age, as they seek to discover which relationships are transi-
tive, and which are not, and further to try to discover any general rules that might distinguish 
between the two [Roberts, 2004].

The only clarification that can be made is that a couple of lessons may be enough for 
students’ primary engagement in the topic, but hardly enough for its detailed anal-
ysis — see, for example, the analysis of intransitive dice by Fields medalist T. Gower 
[2017] in the pages of his Polymath project. If P. C. Fishburn’s [1991] analogy between 
an advanced understanding of intransitivity and non-Euclidean geometry is right (we 
agree with it), the levels of complexity of the issue can very high. Yet the initial levels, 
even related to exact reasoning, can be (unexpectedly) simple. Let us consider this in 
more detail.

All of the intransitive math objects presented in math studies and in problems for 
students deal with numbers, mostly with probabilities which are not evident and 
must be counted. In this article we present geometrical and mechanical construc-
tions in intransitive relations of superiority. From a mathematical view, it is a new 
class of intransitive objects. From an educational view, they can be considered in 
the framework of the Vygotskian theory of cultural tools (e.g., [Erickson, 1999]) in-
cluding manipulatives. “Manipulatives are tools students use to support meaningful 
learning” and to “construct new insights” [Cramer, Wyberg, 2009]. Our manipula-
tives, intransitive geometrical and mechanical constructions, show deterministic 
(not probabilistic) intransitive relations in an evident way. The objects vary in com-
plexity from very simple to advanced. The simplest ones demonstrate such intransi-
tivity that can be understood at a qualitative level and does not require quantitative 
reasoning.

A note on terminology: in the math literature, the terms “intransitive” and “non-tran-
sitive” (e.g., “intransitive dice” and “non-transitive dice”) are used as synonyms in spite 
of some difference between the logical terms “intransitive relation” and “non-transi-
tive relation”. In this article we will use the term “intransitive” as explicitly related to 
the concept of intransitive cycles.

DESCRIPTION OF INTRANSITIVE GEOMETRICAL 
AND MECHANICAL CONSTRUCTIONS

All of the objects are designed as Condorcet-like compositions, in correspondence with 
the structure of the Condorcet paradox (or the voting paradox; [Beardon, 1999/2011]). 
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Our geometrical interpretation of the paradox is that we use chains of geometrical 
elements ordered like elements in the Condorcet paradox (originally, voters’ prefer-
ences, but it does not matter here): ABC, BCA, CAB. One can see that the first element 
of any set moves to the last position in the next set and moves all the other elements 
one position to the left without changing the sequence.

As an example, let us consider such counter-intuitive objects as intransitive double 
gears (or friction wheels). The notation of elements will be the following: X is a larger 
gear (a larger wheel), Y is a smaller gear (a smaller wheel), and Z is an empty part of a 
shaft (without any gear or wheel on it).

Then, in correspondence with the Condorcet paradox:

• the first double-gear (A) will have the element sequence X, Y, Z;

• the second double-gear (B) will have the element sequence Z, X, Y; and

• the third double-gear (C) will have the element sequence Y, Z, X.

Figure 1(c) shows that, if joined in pairs, A’s rotational speed is higher than B’s in the 
pair A-B; the rotational speed of B is higher than that of C in the pair B-C; but the 
rotational speed of C is higher than the rotational speed of A in pair A-C [Poddiakov, 
2010; Poddiakov, Valsiner, 2013].

The same principle of design is applied to other objects. Let us consider three ge-
ometrical blocks modeling tractors with different shapes of towing couplers (see 
Fig. 1d). Tractor A has a triangle lug at the front to be coupled as a trailer by another 
tractor, and a square hole from behind to couple another tractor as a trailer. Tractor 
B has a square lug at the front to be coupled as a trailer by another tractor, and a 
circle hole from behind to couple another tractor as a trailer. Tractor C has a circle 
lug at the front to be coupled as a trailer by another tractor, and a triangle hole from 
behind to couple another tractor as a trailer. A driver stands near the tractors. Which 
tractor should the driver choose as a leading one to sit in it if s/he has an aim to 
bring:

• — couple A-B;

• — couple B-C;

• — couple A-C

to a destination point?

One can see that the driver should choose A in couple A-B, B in couple B-C, and C in 
couple A-C. This model of intransitive relations does not require quantitative com-
parisons, counting, an understanding of probability, or other operations required to 
understand more complex intransitive objects like intransitive dice or playing cards. 
Distinction and comparison of geometrical shapes is all that is necessary here (besides 
an understanding of the task statement).
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Fig. 1. Examples of intransitive geometrical Condorcet-like compositions: 
(a) toy Monkeys feeding one another; 

(b) stylized plastic Mobile Assault Towers marking one another with inserted felt-tip pens; 
(c) Intransitive Double Gears with intransitive speeds of rotation; 

(d) stylized Tractors with intransitive towing couplers; 
(e) Intransitive Double Levers (with the same rotation force applied to the shaft, Lever A

will overpower Lever B, Lever B will overpower Lever C and Lever C will overpower Lever A); 
(f) stylized Combs with Intransitive Ramps (Comb A can serve as a ramp for Comb B

and lift it but not vice versa, Comb B can lift Comb C but not vice versa, 
and Comb C can lift Comb A but not vice versa).

a

b

d

e

A          B B         C C         A

A               B B              C C                A

A             B B              C C                A

A         B         C         

C         

C         

B         

B         

A         

A         

f

DISCUSSION

In spite of a rich tradition of math studies of various intransitive objects, there is no 
appropriate tradition of studies of understanding (misunderstanding) intransitive ob-
jects in cognitive and educational psychology. Owing to the brilliant Piagetian works 
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in the area of cognitive and developmental psychology, the main trend is related to 
studies of abilities to make transitive inferences (if A > B and B > C then A > C) about 
transitive options (e.g., lengths of sticks) [Andrews, Halford 1998; Andrews, Hewitt-
Stubbs, 2015; Camarena et al., 2018; Mou, Province, Luo, 2014; Shultz, Vogel, 2004]. 
Naturally, for such options violations of transitivity are a fallacy. Before math studies 
of intransitivity, this approach could have seemed universal. Even opponents of Piag-
et like Trabasso [Bryant, Trabasso, 1971] questioned not the status of transitivity as 
a normative rule and its violations as fallacies, but only age and conditions in which, 
for example, children already demonstrate that they can master transitivity and not 
violate it. Yet how can people understand mathematical intransitive objects? How are 
they solving intransitivity problems designed by math educators? More generally: how 
are abilities to reveal non-evident intransitive relations and to make inferences about 
objective intransitivity (e.g., about intransitivity of intransitive dice, athletes’ teams, 
game strategies, etc.) developing in different domains (or as a general complex)? How 
are these abilities related to abilities to make “classical” transitive inferences? These 
questions have not yet been answered.

A possible theoretical framework which can include both 1) beliefs about the transitiv-
ity of superiority as an axiom with a ban on its violations and 2) beliefs about intransi-
tivity as an objective property of complex (systems) interactions between multi-vari-
able objects involves the distinction of four types of situations [Poddiakov, 2010].

(1) Relations of superiority between objects are objectively transitive (e.g., in case of 
three sticks), and a problem solver makes correct conclusions about their transitivity.

(2) Relations are objectively transitive, but a problem solver wrongly considers them 
as intransitive. Most studies are conducted in this paradigm. 

(3) Relations of superiority between objects are objectively intransitive (e.g., rela-
tions between three or more sets, each of which contains three or more sticks having 
lengths equal to numbers on sides of intransitive dice, are intransitive — in contrast to 
the situation of a comparison of just three sticks), and a problem solver makes correct 
conclusions about their intransitivity.

(4) Relations of superiority between objects are objectively intransitive, but a prob-
lem solver wrongly considers them as transitive (e.g., because of taking the transitiv-
ity axiom for granted).

Here one can roughly distinguish between four levels of complexity of intransitive 
relations of superiority. This classification is not exhaustive and serves to mark some 
reference points.

(a) Simple combinatorial intransitivity between non-interacting objects (e.g., in in-
transitive dice sets, intransitive sets of sticks, etc.). Each object can be exactly de-
scribed by a few parameters (like numbers on the sides of dice). The parameters are 
additive, without interactions: the sticks’ intransitive sets do not interact with one 
another, only the sticks’ lengths are compared, and comparisons are possible even 
without immediate touching. Information about the objects is complete.
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(b) Interactive intransitivity without qualitative transformations of the objects par-
ticipating in the intransitive relations. Information about the objects and their inter-
actions is complete. An example is the intransitivity between interacting geometrical 
and mechanical objects described above. The intransitive gears are rotating at dif-
ferent speeds as a result of the intransitive interactions, but there are no qualitative 
transformations of the gears. 

(c) Interactive intransitivity with qualitative transformations of the objects partic-
ipating in the intransitive relations. Information about the objects and their inter-
actions is complete. This intransitivity can be observed between pieces’ positions in 
strategy games like chess. Position A for White is preferable to Position B for Black 
(i.e., when offered a choice, one should choose A), Position B for Black is preferable to 
Position C for White, which is preferable to Position D (Black) — but the latter is pref-
erable to Position A (White) [Poddiakov, 2017]. The positions qualitatively transform 
after each move.

(d) Interactive “rhizomatic” (multiple, intertwining) intransitivity of superiority in 
real complex systems. A body of biological studies is devoted to the complex intransi-
tive competitions of various species and individuals in ecological niches; for a review 
see Permogorskiy [2015]. Such competition transforms participants. Information 
about the participants, their features and interactions is incomplete for the partici-
pants and for observers (researchers) because of complexity and the multiplicity of 
interactions and permanent changes of the participants themselves and their strat-
egies.

CONCLUSION

Let us get back to the statement that “if you have violated the transitivity axiom, you 
are not instrumentally rational, and the content of A, B, and C do not matter” in an 
educational context. The main message for students in teaching and learning tran-
sitivity-intransitivity can be more multi-dimensional and not so straightforward. In 
complex and multi-variable situations, intransitive choices are perfectly rational be-
cause the choice options are in intransitive relations of superiority (like intransitive 
dice). That is, transitive choices of intransitive options are a fallacy. Here any attempts 
of linear, transitive ordering of options lead to a loss. By contrast, in situations of ob-
jective transitivity, any intransitive cycle of choices of options ends in a loss, and one 
must solve problems related to the building of linear hierarchies. Various educational 
tools can be used to support students’ understanding of these different types of situa-
tions. The aim of our future research will be testing opportunities that use of some of 
the objects described above to support intransitivity understanding.

REFERENCES

Andrews G., Halford G.S. Children’s ability to make transitive inferences: The importance of 
premise integration and structural complexity // Cognitive Development 1998. Vol. 13 (4). 
P. 479–513.



184 PME and Yandex Russian Conference 2019

A. Poddiakov

Andrews G., Hewitt-Stubbs G. Further exploration of the belief bias in transitive inference / ed. 
by A.M. Columbus. Advances in Psychology Research. N.Y.: Nova Science Publishers Inc., 
2015. Vol. 102. P. 117–129.

Beardon T. Transitivity. 1999/2011. <http://nrich.maths.org/1345>.

Bryant P.E., Trabasso T. Transitive inferences and memory in young children // Nature. 1971. 
Vol. 232. P. 456–458.

Conrey B., Gabbard J., Grant K., Liu A., Morrison K. Intransitive dice // Mathematics Magazine. 
2016. Vol. 89 (2). P. 133–143.

Camarena H.O., García-Leal O., Burgos J.E., Parrado F., Ávila-Chauvet L. Transitive inference re-
mains despite overtraining on premise pair C+D- // Frontiers in Psychology. 2018. Vol. 9. 
P. 1791.

Cramer K., Wyberg T. Efficacy of different concrete models for teaching the part-whole con-
struct for fractions // Mathematical Thinking and Learning. 2009. Vol. 11 (4). P. 226–257.

Gardner M. The paradox of the nontransitive dice and the elusive principle of indifference // 
Scientific American. 1970. Vol. 223 (6). P. 110–114.

Gardner M. On the paradoxical situations that arise from nontransitive relations // Scientific 
American. 1974. Vol. 231 (4). P. 120–125.

Gower T. A potential new Polymath project: Intransitive dice. 2017. <https://gowers.wordpress.
com/2017/04/28/a-potential-new-polymath-project-intransitive-dice>.

Grime J. The bizarre world of nontransitive dice: Games for two or more players // The College 
Mathematics Journal. 2017. Vol. 48 (1). P. 2–9.

Erickson F. Histories, cultural tools, and interactional co-construction in the zone of proximal 
development // Human Development. 1999. Vol. 42 (3). P. 129–133.

Five Minutes with Keith E. Stanovich, Richard F. West, and Maggie E. Toplak. 2016. <https://
mitpress.mit.edu/blog/five-minutes-keith-e-stanovich-richard-f-west-and-maggie-e-
toplak>.

Fishburn P.C. Nontransitive preferences in decision theory // Journal of Risk and Uncertainty. 
1991. Vol. 4 (2). P. 113–134.

Lawler M. Sharing Tim Gowers’s Nontransitive Dice Talk with Kids. 2017. <https://mikesmath
page.wordpress.com/2017/10/14/sharing-tim-gowerss-nontransitive-dice-talk-with-
kids/comment-page-1/#comment-7963>.

Mou Y., Province J.M., Luo Y. Can infants make transitive inferences? // Cognitive Psychology. 
2014. Vol. 68. P. 98–112.

Pegg E. Jr. Tournament dice. 2005. <http://www.mathpuzzle.com/MAA/39-Tournament%20
Dice/mathgames_07_11_05.html>.

Permogorskiy M.S. Competitive intransitivity among species in biotic communities // Biology 
Bulletin Reviews. 2015. Vol. 5 (3). P. 213–219.

Poddiakov A. Intransitivity cycles, and complex problem solving. Paper presented at the 2nd 
mini-conference “Rationality, Behavior, Experiment”. Moscow, 2010. September 1–3. 
<https://www.researchgate.net/publication/237088961>.

Poddiakov A. Rule of transitivity vs intransitivity of choice  // Nauka i Zhizn’. 2017. Vol.  3. 
P. 130–137.<https://www.nkj.ru/archive/articles/30869/ >.



185PME and Yandex Russian Conference 2019

A. Poddiakov

Poddiakov A., Valsiner J. Intransitivity cycles and their transformations: How dynamical-
ly adapting systems function / ed. by L. Rudolph. Qualitative Mathematics for The So-
cial Sciences: Mathematical Models for Research on Cultural Dynamics. Abingdon, NY: 
Routledge, 2013. P. 343–391.

Regenwetter M., Dana J., Davis-Stober C.P. Transitivity of preferences // Psychological Review. 
2011. Vol. 118 (1). P. 42–56.

Roberts T.S. A ham sandwich is better than nothing: Some thoughts about transitivity // Aus-
tralian Senior Mathematics Journal. 2004. Vol. 18 (2). P. 60–64.

Scheinerman E.A. Mathematics: A Discrete Introduction. Belmont, CA: Brooks Cole, 2012.

Shultz T., Vogel A. A connectionist model of the development of transitivity / ed. by K. Forbus, 
D. Gentner, T. Regier. Proceedings of the 26th Annual Conference of the Cognitive Science 
Society. Cambridge, MA: Lawrence Erlbaum, 2004. P. 1243–1248.

Stewart I. Cows in the Maze: And Other Mathematical Explorations. Oxford: Oxford University 
Press, 2010.

Strogatz S.H. Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemis-
try, and Engineering. Boulder, CO: Westview Press, a member of the Perseus Books Group, 
2015.

Trybuła S. On the paradox of three random variables  // Applicationes Mathematicae. 1961. 
Vol. 5 (4). P. 321–332.



186 In Shvarts A. (Ed.). Proceedings of the PME and Yandex Russian conference: 
Technology and Psychology for Mathematics Education. P. 186–193. Moscow, Russia: HSE Publishing House.

INVESTIGATING MATH TEACHERS’ 
PROFESSIONAL COMPETENCIES

N.S. Podkhodova
V.I. Snegurova 

The Herzen State Pedagogical University of Russia, Moscow, Russia

The article describes the results of a research of professional competencies of mathematics 
teachers. Problems of readiness for professional activities were identified. The components 
of the professional competence of a mathematics teacher are highlighted. We also describe 
levels of mastery and teaching tools. 

INTRODUCTION 

The changes taking place in the modern school assume the readiness of mathematics 
teachers to accept the challenges of modern times. This requires the identification of 
problems in their acquisition of professional competencies demanded by the modern 
education system. The concept of “competence” includes knowledge and understand-
ing (theoretical knowledge in the academic field, the ability to know and understand), 
knowledge as an action (practical and operational application of knowledge in a par-
ticular situation), and knowledge as the basis of value relationships in professional 
activities (as an integral part of perception and life in social contact).

But usually teachers are trained and take advanced training courses without taking 
into account individual gaps and difficulties in their professional training. And more 
often, only their mathematical preparation is checked, the first component of compe-
tence, not the ability to solve methodological and pedagogical tasks, which is clearly 
not enough to identify the problems of a particular teacher in his professional train-
ing.

So the main goal of the research is to map current level of mathematics teachers’ 
professional competencies. It is necessary and important to offer teachers adequate 
professional development program and thus to support their mathematics teaching in 
modern schools according to state educational standards. 

BACKGROUND

The study of readiness of mathematics teachers to carry out professional activities 
abroad was devoted to the research projects: TEDS-M (Martina Döhrmann, Gabriele 
Kaiser, Sigrid Blömeke, 2012), and NorBA, — a comparative study of mathematical ed-
ucation in the North Baltic countries. As part of this study, a questionnaire was de-
veloped that aimed at exploring the beliefs of primary school teachers about effective 
teaching and learning of mathematics [Lepik, Pipere, Hannula, 2011]. The main differ-
ence between this questionnaire and the TEDS-M questionnaire is in its orientation 



187PME and Yandex Russian Conference 2019

N.S. Podkhodova, V.I. Snegurova

to teacher’s practices (studies of beliefs related directly to the teaching activity), while 
TEDS-M examines beliefs about the nature of mathematics and the process of teach-
ing mathematics. In addition to the above studies, the following can be highlighted: 
TALIS [Teaching and Learning International Survey, 2013] and SABER — Teachers. The 
TALIS study focused on the following main areas: teacher installation, rules and prac-
tices, teacher assessment and feedback, and school leadership; it did not set a special 
goal to assess the professional competence of mathematics teachers. The method of 
data collection is questionnaires in a paper or an online version. A review of research 
to identify various types of teacher knowledge that is necessary for teaching mathe-
matics is made in the article by Chapman [2013]. In the study by Koponen et al. [2016], 
the relationship between teachers’ knowledge and their education was explored. The 
researchers developed a 72-item survey to measure teacher educators’ and graduated 
teachers’ perceptions of what graduated teachers have learned well or poorly during 
teacher education. In the field of study of teachers’ knowledge assessment, the Learn-
ing Mathematics for Teaching form (LMT-PR: [Learning Mathematics for Teaching, 
2007]) is also of interest. This instrument was used in the study of Orrill and Cohen 
A.S. for teaching Proportional Reasoning and included 73 unique items. They were 
created to measure common content knowledge and specialized content knowledge 
[Orrill, Cohen, 2016]). Among Russian studies are research projects conducted in four 
countries. The researchers used the questionnaire of NorBA (Nordic-Baltic compara-
tive research in mathematics education [Kardanova, Ponomareva, 2014]). In 2015, the 
approbation of tools for the study of subject competencies of teachers of the Russian 
language and mathematics was conducted at a conference “National Studies of the 
Quality of Education: Results and Prospects” [2015]. 

Thus, the fundamental difference in our study from previous ones is: 1) in the formu-
lation of research objectives, which were identifying competencies necessary for the 
professional activities of the teacher, teachers’ difficulties arising in the process of 
solving professional tasks building personalized advanced training routes focused on 
the identified “pain points”, as well as on the teacher’s “points of growth”; and 2) in 
the toolkit we used, which included a questionnaire to identify contextual informa-
tion, the test aimed at diagnosing a basic level of competence, three methodological 
tasks, a professional task and a video recording of a lesson.

Research questions
This study attempts to answer the following questions: 

What are the levels of professional competencies of mathematics teachers as they deal 
with subject, methodological and professional problems?

How effective is the developed toolkit for identifying problems in teacher training?

METHODOLOGY, METHOD AND TECHNIQUES

The assessment and measurement of a math teacher’s knowledge is a complicated 
process, since professional teacher knowledge is multidimensional. It includes knowl-
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edge of the content of different sections of mathematics, pedagogical knowledge, as 
well as the skills to teach students (e.g., [Ball, Thames, Phelps, 2008; Manizade, Ma-
son, 2011; Shulman, 1986; Silverman, Thompson, 2008]). In this case, it is more expe-
dient to talk about competencies. While Shulman’s [1986] notion of different types of 
knowledge permits us to identify a set of competencies that characterize professional 
activity, it also allows solving the problems arising in professional activities. There-
fore, methodological and professional tasks are the main tool for assessing the profes-
sional competence of teachers.

The ability to solve professional problems offered in diagnostic work, and professional 
tasks within the framework of the lesson demonstrated, allows us to make a conclusion 
about the teacher’s ability to solve professional problems arising unreal situations of 
professional pedagogical activity using knowledge, professional and life experience, 
and personal and professional values. In the conducted research, an understanding of 
the essence of the professional task already formed in pedagogical science was used 
(the Herzen State Pedagogical University of a Russia and NFPK, 2002)

We have identified three levels of the competence. 

Level 
of competence

Characterization of the level

Level I The ability to solve problems of professional activity with a predetermined condition 
(without taking into account the variability of contexts arising in a real situation).

Level II The ability to solve tasks of professional activity in a changing situation, refl ecting 
various real (not planned) contexts (conditions), to propose and, accordingly, 
to choose various means of solving them.

Level III The ability to solve problems of professional activity, acting in a situation 
of uncertainty, which involves not only taking into account the developing 
and increasingly complex contexts (conditions) of real activity, and the variability 
of the means of solution, but also the use of new resources to solve them.

To determine the level of professional competence of mathematics teachers, ensur-
ing the achievement of students’ results in mathematics in accordance with the state 
standards, we developed a model that allows us to identify gaps in the profession-
al training of a mathematics teacher. The model assumes realization of two com-
ponents: performing extended diagnostic work and conducting lessons with video 
shooting.

We have identified three main components of professional competencies possessed 
by the teacher — subject, methodology, professional activity, — and each is based on 
the development of the previous one(s). At the same time, in each component there is 
a basic part, the mastering of which is necessary for the transition to the next compo-
nent.

Diagnostic work contains three parts in accordance with the selected components.

When conducting the research, a demonstration version was available to the partici-
pants. We give examples of some tasks in each part.
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Variant 1
Part 1. Mastery of mathematics teachers by subject-methodological competencies 
(includes two blocks). Means of verification: 12 tests. The tasks are designed in the 
unity of the informative and activity components.

Block 1. Mathematical preparation. To verify the subject preparation, teachers are of-
fered tasks covering the main content of the academic subject, with several variants of 
each task at different levels of complexity.

Block 2. Subject-methodological competencies of math teachers. We control knowl-
edge of the general and private methods of teaching mathematics.

Tasks.

1. In the geometry course, the concept “trapezoid” is inductively introduced. Establish a se-
quence of the teacher's methodological actions with this approach of introducing the concept.

• recalling the use of the term “trapezoid” in everyday life;

• actualization of students’ ideas about the form of objects, in the naming of which the 
term “trapezoid” is used;

• selection of the essential properties of a trapezoid as a geometric figure;

• selection of the minimum set of properties of the trapezoid that are necessary and 
sufficient to distinguish it from a variety of other geometric objects;

• formulation of the definition of a trapezoid.

2. In solving the problem: “Find a natural number x at which 25
9 < x9 < 37

9” the student received 
an erroneous answer х = 26

9. The reason for his error is: a) his ignorance of the order of num-
bers in the natural row (series) of numbers; b) his inability to convert a mixed number into an 
improper irregular fraction; c) misconceptions about the location of fractional numbers on 
the number axis; d) his inability to compare ordinary fractions; or e) a misunderstood task.

Part 2. 

Block 3. Methodological problems. Give an example scenario for solving a method-
ological problem and comments on the evaluation of a detailed response.

Task statement

1. Evaluate the student’s solution of the C4 problem student in accordance with the criteria, 
and justify your assessment.

2. Offer one auxiliary problem aimed at finding a solution to this problem. 

C4. In the acute triangle ABC the height BH is drawn. From the point H the perpendiculars HK 
and HM to the sides AB and BC respectively are drawn.

• Prove that the triangle MBK is similar to the triangle ABC. 

• Find the ratio of the area of the triangle MBK to the area of the quadrilateral AKMC 
if BH = 3, and the radius of the circle described around triangle ABC is 4.

The student’s solution of this C4 problem, and a table with criteria for evaluating the 
response, are proposed. 
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Part 3. Solving a professional problem (for completion within three days).

Each professional problem contains: 1)  the formulation of the conditions of a pro-
fessional task (a description of the situation of the teacher’s professional activities; a 
description of the possible context that reveals the degree of uncertainty of the pro-
fessional situation; and the formulation of the problem in general terms, without re-
gard to the context). For an example “Working with your students, you are faced with 
a pressing problem for today’s teenagers — the low level of development of commu-
nication skills. You are planning a lesson in the form of a game. What elements of the 
subject environment can be used to promote the development of children’s commu-
nication skills in the process of conducting this lesson in mathematics?” 2) a list of 
steps-tasks, the fulfilment of which should demonstrate to the expert the process of 
solving the problem by the teacher; this list of steps covers the field of evaluation of 
all aspects of the teacher’s professional activities. The teacher chooses to solve one 
problem at his or her discretion.

All developed tasks meet the state educational standards, are built according to a sin-
gle structure, so there is no typology of tasks in this part of the diagnostic work.

The study was conducted in 13 regions of Russia, and 2.253 mathematics teachers 
participated. As for the participants of this research, the requirements for the sample 
of research participants (mathematics teachers working in grades 5–11) were formu-
lated:

take into account the age structure of the respondents (from 20 to 30, from 31 to 40, 
from 41 to 50, from 51 and older — in equal share participation);

take into account the qualifications of the respondents (qualification groups: teachers 
who do not have a category, teachers of the highest category, and teachers of the first 
category — in equal share participation). 

According to the selected parameters of the research participants, an analysis of the 
dependence of the results of the diagnostic work on these parameters was conduc-
ted.

RESULTS AND DISCUSSION

The results of the performing part 1 (test) of diagnostic work by teachers are presented 
in Fig. 1. The results allowed us to identify problems and directions of improving the 
first component of the professional competencies of mathematics teachers. The dia-
gram allows making a preliminary conclusion about a lower level of methodological 
training compared to the subject level.

We also considered the dependence of the results of performing part 1 of the diagnos-
tic work on the selected parameters of the research participants, in particular, on the 
experience of work as a mathematics teacher.

The results of the implementation of the methodological tasks (MT) (Part 2) are pre-
sented in Fig. 2.
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Analysis of the results of solving MT 1 by the research participants allows identifying 
the following problems: 

1) Half of the participants (49%) failed to correctly solve the proposed mathematical 
problem of increased complexity;

2) Less than half of the participants (45%) were able to compose a sequence of ques-
tions and tasks for students who seek to find a solution to this problem, this suggests 
that not enough attention is paid to working with the task as a component of educa-
tional material.

Analysis of the results of MT 2 showed: 14% of the participants were able to point out 
all the errors and their causes, but could not show how to organize work to eliminate 
them, 44.7% were able to partially or fully propose an option to eliminate them.

The analysis of the results of MT 3 showed a low percentage of participants who suc-
cessfully completed it (19.6%): the participants could not correctly evaluate the work 
of the students. 

The step-by-step analysis of the presented solutions of general professional tasks 
(Part 3) showed: a) the majority of teachers showed a fairly high willingness to work 
with substantive content; b) the majority of teachers, instead of the context of the 
situation of professional activity, cited general considerations revealing the signifi-
cance of the problem posed; c) some teachers misunderstand the “real professional 
context”.

Fig. 1. The results of solving tasks of part 1
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Fig. 2. The results of solving methodological tasks 1–3
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The matrix of points scored according to the results of performing diagnostic work 
and conducting a lesson and relating the number of points scored from the level of 
competence is presented in Table 1.

CONCLUSION

With the help of the developed tools the level of competencies of every mathematics 
teacher was determined on the basis of performing the diagnostic work (Parts 1, 2 
and 3) by him and conducting lessons with video recordings. Approximately 24% of 
study participants showed professional competencies at the first level, 44% — at the 
second, 9% — at the third level and 23% did not pass the level assessment. Profes-
sional difficulties arising in the process of solving methodological and professional 
tasks were caused by the inability to solve practical tasks of building the educational 
process (organizing work with a mathematical task, searching its solution, evalu-
ating students’ activities, …) and implementing an educational program requiring 
consideration of the real conditions of professional activity that support student 
progress. The identified problems will allow offering adequate professional devel-
opment program to every teacher. The results will be discussed in detail at PME 
conference.
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CONCENTRATED TEACHING 
AND ITS APPLICATIONS IN THE DESIGN 

OF THE UNIVERSITY MATHEMATICAL COURSE

Ildar Safuanov
Moscow City University, Moscow, Russia

The new method of the concentrated teaching of mathematics is proposed and considered. 
It includes requirements related both to the construction of the course as a whole (prepa-
ration, anticipation, repetition and deepening) and to the development of a separate topic 
(combination of functions, linkage). Requirements related to the arrangement of the con-
tent and to the impact on various channels of perception by students are also important. 
The implementation of this method in the course “Algebra and Number Theory” at the 
pedagogical university is described.

1. INTRODUCTION

The theoretical framework of this paper is the theory of genetic teaching of mathe-
matics and also the Vygotskian framework of educational psychology based on the 
concept of activity [Vygotsky, 1996]. Furthermore, various approaches using concen-
tric ways of teaching are taken into account (e.g., spiral curriculum by [Bruner, 1960]). 

The genetic approach to mathematics teaching [Safuanov, 2005; 2007] integrates the 
educational and philosophical ideas of Leibnitz [1880], Diesterweg [1850] a.o., the 
psychological discoveries of Piagetian and Vygotskian schools as well as rich experi-
ence of practice in mathematical education.

The principle of genetic approach in mathematics teaching requires that the method 
of teaching a subject should be based, as much as possible, on natural ways and meth-
ods of knowledge inherent in the science. The teaching should follow ways of the de-
velopment of knowledge. That is why we say “genetic principle” and “genetic method”.

German theologist and educator F.W. Lindner (1779–1851) was probably the first to 
use the genetic principle as a (historical genetic) method of teaching [Lindner, 1808; 
Schubring, 1978]. Prominent German educator F.W.A. Diesterweg (1790–1866) used 
the expression “genetic teaching” in his 1835 “Guide to the education of German 
teachers”: “…The formal purpose requires genetic teaching of all subjects that admit 
such teaching because that is the way they have arisen or have entered the conscious-
ness of the human …” [Diesterweg, 1850].

Genetic approach should be accompanied by several means constituting the method 
that we name “concentrated teaching”. It uses ideas connected with concentric teach-
ing and multiple effect on students.

The term “concentrism” (concentric teaching) is not new; it was introduced in works 
of 19th century German educators, and various authors have attached different 
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meanings to it. The most common understanding is the following: the study subject 
is divided into parts, and the later ones repeat and deepen previous ones to some 
extent. 

As a principle of epistemology, concentrism goes back to Hegel [1959] who understood 
the process of knowledge acquisition not as a series of concentric circles but rather as 
a spiral, the subsequent circles of which return to the previous one, but at a deeper 
level. Thus, concentrism as a principle of teaching is in a certain sense connected with 
the genetic approach (since, by Hegel’s understanding of the process of knowledge, 
concentric learning follows the natural paths of this process).

The most famous version of concentrism in the modern theory of education is the 
“spiral program” by J. Bruner [1960; 1967]; see also [Buchter, 2014].

Wittmann [1997] wrote about ideas similar to concentrism. He argued that the princi-
ple of a spiral is one of the most important didactic principles. He Wittmann deduced 
two principles from the principle of the spiral construction of a curriculum:

“1) The principle of anticipation.

The study of the subject should not be postponed until it becomes possible to consider it in its 
final form; it is necessary to introduce it in a simplified form at earlier stages.

2) The principle of continuity.

The choice and consideration of the topic in a certain place of the curriculum should not be made 
arbitrarily, but in such a way that it will be possible to develop the subject at a higher level. It is 
necessary to avoid those didactic decisions that may result later in the need of reconsidering in 
a different way” [p. 86].

2. THE METHOD OF THE CONCENTRATED TEACHING

We propose the new method of concentrated teaching that should not be confused 
with mere concentric way of teaching. Our method will consist of nine substantial 
elements and only first two of them relate to the concentrism.

Taking into account all above-mentioned ideas, we consider expedient the spiral ar-
rangement of the subject, and, in our opinion, the requirement of the spiral arrange-
ment of the subject can be concretized in the form of two important substantial ele-
ments: 

1) preparation (anticipation) and 2) repetition at a deeper level and increase. Consider 
more concretely the first two elements of concentrated learning.

Preparation is an extremely important element both in teaching and in various kinds 
of art. This element is well known by professional writers and theatrical directors. For 
example, A.P. Chekhov wrote: “If in the first act a gun hangs on the wall, in the last it 
must shoot.” 

Diesterweg [1850] suggested rules close to these elements: “Distribute a material in 
such a manner that at each stage a pupil would be in a position to guess or definitely 
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expect the next stage… Indicate at each stage some elements or parts of the follow-
ing material and, not making essential breaks, cite certain elements from the future 
themes in order to excite inquisitiveness of pupils, not satisfying it, however, fully… 
Distribute and arrange a material in such way that (where possible) at the following 
stage during studying new things the previous elements were repeated.” He noticed 
that mathematics teaching could benefit from the concentric method.

Slightly modifying the classification of Zholkovsky and Shcheglov [1977], one can con-
sider three types of preparation: a) the presentation; b) the anticipation; and c) the 
refusal.

As an example of the “refusal” element, a problematic way of studying a theme can be 
helpful when students are presented with the fact of an absence of the theory for the 
solution of the problem, and then the required is constructed in some way.

The most interesting and fruitful of these elements is, in our view, “anticipation”. In-
dications of this element can be found in many classics of mathematics education. The 
above-cited rules of Diesterweg directly state this requirement. The demand to teach 
pupils to guess is put forward by Polya [1965].

Concerning repetition, note that one can speak not only about the repetition of those 
or other elements of a material, but also about repetitions of the relations between 
objects at various levels in a mathematical discourse.

For example, the relations between objects in the theory of finite-dimensional vector 
spaces in many respects are repeated in the general theory of linear spaces. Likewise, 
the relations between objects in analytical geometry on a plane in many respects are 
repeated in analytical geometry in a space. And the relations between objects in the 
elementary number theory are in many respects repeated in the theory of polyno-
mials. Even more interesting are the repetitions of relations between objects at the 
higher levels of abstraction, such as in abstract algebra. For example, categories and 
functors are in the relation similar to the relation between algebraic systems and ho-
momorphisms; the composition of morphisms in a category is similar to the partial 
algebraic operation.

Preparation (anticipation) and repetition will be first two elements of the method of 
concentrated teaching. Further, we will add several elements connected with selection 
and arrangement of the subject and also with the multiplicity of means of influence 
on students. The following three important requirements serve as the manifestation 
of the psychological principles of integrity, continuity and enrichment.

For the efficiency of the concentric study, anticipation should be based on a very deep 
study of the fundamentals of a subject. The thorough and slow study of the founda-
tions requires the economical and considerate selection of the most necessary materi-
al. It is possible to describe the requirement of a deep and strong study of the carefully 
selected foundations of a discipline as follows (we continue the numeration started at 
the beginning of this section:

3) The requirement of fundamentality. 
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Diesterweg wrote: “Delay mainly on studying the basics!

This rule refers to thoroughness and determines true success. Whoever does not lay 
the proper foundation, is condemned to fix the gaps forever, or must fear the destruc-
tion of the entire building. Any superficiality and frivolous attitude to the real funda-
mentals of the subject inevitably avenge themselves” [Diesterweg, 1850].

4) Combination of functions (the same methods, tasks and ideas are applied in dif-
ferent places of the course or are considered from different angles, and they carry 
different educational functions) and economy. The combination of functions is suc-
cessfully used in art, when, for example, the same objects simultaneously carry sev-
eral meanings: both substantial and compositional, and moreover, for example, sym-
bolical. 

This requirement leads to the careful selection of examples illustrating various con-
cepts. Thus, among groups, one of the best examples is the symmetric group S3, con-
sisting of six different permutations of three elements (with the composition of per-
mutations as a group operation). This group is an example of a finite group, an example 
of a non-Abelian group, an example of a group with elements that are not numbers. 
This group has several subgroups, including those that are not normal (that is, the 
right cosets of such subgroups do not coincide with the left ones). Finally, because it is 
composed of a small number of elements, this group is capable of illustrating complex 
concepts and is not very difficult to learn. Its properties can be viewed using the Cay-
ley table (the “multiplication table” of a group). This example may be, and moreover 
should be, introduced in the course of algebra early on, since permutations are neces-
sary (for example, in linear algebra for studying determinants).

5) Linkage. This method, developed in 19th century German didactics (Verzahnung), 
is mentioned in Shokhor-Trotsky’s book “The Didactics of Arithmetic” (1915). It con-
sists of an interweaving of a subject from one topic into another. So, for example, when 
considering the continued fraction with all elements equal to 1, one can acquaint stu-
dents with Fibonacci numbers and the Golden section. Considering arithmetic opera-
tions on congruence classes modulo m > 1, we can mention groups and rings. Note that 
this method is connected with anticipation.

Thus, the requirements of concentrated teaching are related both to the construction 
of the course as a whole (preparation, anticipation, repetition and deepening) and to 
the development of a separate topic (combination of functions, linkage).

The method of concentrated teaching is also connected with the multiplicity of means 
of influence on students.

Teaching a mathematical discipline is a complex, multi-component activity. A signifi-
cant educational effect is achieved in the mathematical course (or in the textbook, and 
even at the micro level of a single lesson or lecture) by means of not a single tool, but 
using several or many actions directed to the same goal.

By analogy with the creation of works of art and literature (novels, plays, paintings, 
operas, etc.), we can speak here about composition. In this case, we refer to the com-
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position of a mathematical course or textbook, and at a more local level, of a course 
section or separate lecture (or, e.g., a textbook chapter).

Note also important means related to the arrangement of the content:

6) Variation: the explanation of a theoretical concept by a series of different exam-
ples, or, more importantly, the consideration of all major aspects of the subject; such 
a comprehensive consideration was required by Diesterweg [1850, p. 266];

7) Splitting the content into smaller pieces: the requirement to break the material 
into small finished parts was also expressed by Diesterweg [p. 256];

8) Contrast: for example, the less studied method, consisting of the use of very fruitful 
questions of the form “How does Concept (the figure, etc.) A differ from Concept B?”

There are also several requirements related to the impact on various channels of per-
ception of the subject by students during the process of teaching: concretization; 
enlargement; three ways of receiving information about the external (enactive, vi-
sual-pictorial and verbal-symbolical), according to Bruner [1967]; multiple represen-
tations; individual style; surprise and humor. We unite these requirements under one 
name: 

9) Multiple effect. 

3. APPLICATIONS IN THE MATHEMATICAL COURSE DESIGN 
AT THE UNIVERSITY

Thus, the principle of concentrated teaching includes many elements: anticipation, 
repetition, fundamentality, and a combination of functions, linkage, variation, split-
ting, contrast and other requirements related to multiple effect. As these elements 
(separately or together) have been effectively used in art, literature and also in math-
ematics education [Kosmodemyanskiy, 1975; Safuanov, 1995], we think the proposed 
method of concentrated teaching will is capable to improve mathematics teaching. We 
implemented it for several years in teaching various mathematical courses for future 
mathematics teachers.

As the pedagogical activity in its nature carries a creative character, it is important, 
that the future teachers would change their beliefs, gain a wider view of the nature 
of the purposes and methods of mathematics teaching. And for this purpose, along-
side with the appropriate construction of the curricula of didactical courses (e.g. by 
inclusion in them of all modern progressive theories and methods of teaching), it is 
necessary to teach students of mathematical faculties of pedagogical institutes so that 
they would effectively acquire not only knowledge and ways of activity (i.e. ways of 
thinking and acquisition of new knowledge) in the field of mathematics, but also mod-
ern views of mathematical education. Extremely important for this purpose is to try to 
apply new theories of mathematics teaching in standard mathematical courses at uni-
versities and pedagogical institutes. Note that many researchers argue that the meth-
ods of teaching mathematical disciplines in pedagogical universities should serve for 
the students — future teachers as a source of didactical ideas, helping them to acquire 
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modern didactical beliefs and skills, and in some sense as a sample for building their 
future professional activity. This idea ascends to Diesterweg: “The instructor of pro-
spective teachers should not use any methods of teaching except those that can be 
applied in their (prospective teachers’) future work at school” [Diesterweg, 1850].

Very promising seems the idea of intertwining didactical component with mathemat-
ical courses. This idea was suggested by several authors: Wittmann [1992], Reichel 
[1992] and earlier by Polya [1965]. These authors indicate that such integration of 
didactical elements into courses in higher mathematics should be implicit rather than 
explicit.

Thus, we aimed not only at improving mathematical knowledge of our students but 
also at changing their views of mathematics and mathematics and mathematics edu-
cation.

Consider how these elements are used in the construction of the program of our course, 
“Algebra and Number Theory”. Note that preparation and implementation of concrete 
lectures have been similar to those using genetic method [Safuanov, 2005].

Anticipation begins in the first hours of a course. At the introductory lecture, we give 
a brief survey of the whole course. The concepts of a matrix, a system of linear equa-
tions, and determinants of the 2nd and 3rd order are given. Thus, the basic themes 
of the “Linear algebra” unit are anticipated. In the initial lecture, students are first 
acquainted with the concept of a group, which anticipates the study of algebraic sys-
tems throughout almost the entire course. Further in the introduction, the elementary 
concepts of the theory of sets and logic notation are considered. Thus, the introduc-
tion anticipates more serious study of both elements of the theory of sets and math-
ematical logic in the future. Many concepts and objects introduced in the beginning 
of the course are later repeated in various situations. For example, throughout the 
whole course an important role is played by such concepts as mapping, equivalence 
relations and binary algebraic operations. Also repeated are the concepts of permu-
tation, groups, rings, fields, integral domains and congruence classes. In our course, 
the means of combinations of functions is also used, which promotes economy in the 
selection of content. We try to use the same substantial and fruitful examples in vari-
ous situations during the study of various concepts and ideas. The following examples 
(in brackets are the sections in which those examples occur) are used throughout the 
whole course: triangular numbers (proof by induction, number-theoretical functions 
and perfect numbers, Pascal’s triangle); Fibonacci numbers (Pascal’s triangle, con-
tinuous fractions and Golden section); congruence classes (partitions, equivalence 
classes, right and left cosets by a subgroup, cosets of a normal subgroup, of an ideal 
in a ring); groups, rings and fields of congruence classes (finite examples of these al-
gebraic systems, ideals, quotient groups and quotient rings), permutations (transfor-
mations of finite sets, determinants, symmetrical polynomials), symmetrical groups, 
especially S3 (finite groups, non-Abelian groups, subgroups, Cayley’s theorem, nor-
mal subgroups and subgroups that are not normal, cosets of normal subgroups and 
of subgroups which are not normal); the roots of the unit (complex numbers, cyclical 
groups and subgroups, solving equations of the 3rd degree); matrices (non-Abelian 
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groups, subgroups, normal subgroups, noncommutative rings, subrings, ideals, linear 
algebra), etc. 

The next means, “linkage”, is connected to anticipation and also promotes multiple 
effect. We will show some cases of application of means linkage, when the content 
of one topic is intertwined with the content of other topics. So, during the study of 
number-theoretical functions, triangular and perfect numbers are considered. It an-
ticipates some properties of Pascal’s triangle. During the study of congruence classes 
modulo m > 1, groups and rings are introduced, although the appropriate topics are 
considered later. Studying vector spaces with inner product and orthogonal systems of 
vectors in them, we take as an example the space of functions continuous on a segment 
with a system of orthogonal (trigonometrical) polynomials as a base, the expansion of 
functions in a Fourier series, leading up to practical applications such as in the study 
of waves and musical sounds. Considering continuous fractions, for the strengthen-
ing of the effect we consider also infinite continuous fractions and their applications 
for rational approximations, expansion of a square root into a continuous fraction, 
the Golden section, and also various practical applications of continuous fractions. 
Variation is exhibited when considering an object from different sides, illustrating a 
theoretical item on a series of various examples, and considering various proofs of the 
same statement. 

Both in oral teaching and in writing textbooks, the individual style of the teacher (au-
thor) and also elements of surprise and humor are important.

4. CONCLUDING REMARKS

In this paper we have described how to apply a system of concentric teaching in the 
design of a mathematical discipline. So far we successfully realized this system (com-
bining it with the genetic approach) in the Algebra and Number Theory course at the 
pedagogical university. 

Our experience has shown that not only mathematical knowledge of students taught 
by new method has been improved but their mathematical beliefs seriously changed 
and became more progressive and appropriate for modern teaching.

Of course, the concentrated teaching can be applied for the teaching of other mathe-
matical topics and mathematical disciplines.
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In the U.S., English Language learners (ELs) score lower in elementary mathematics compared 
with their English Proficient peers (EPs). To provide information on strategies for enhancing 
learning opportunities for ELs and EPs, we document the efficacy of Learning Mathematics 
through Representations (LMR), a 19-lesson curriculum unit on integers and fractions. LMR 
features the number line as a representational context and the use of embodied representa-
tions to support students as they explore mathematical ideas, construct arguments, and elab-
orate explanations. The lessons were implemented in 11 LMR classrooms and 10 matched 
comparison classrooms. Both theory and empirical results support the value of LMR as a 
math intervention benefitting both EL and EP students in language inclusive classrooms. 

Students classified as English Learners (ELs) in the United States show lower test 
scores in mathematics relative to English Proficient (EP) students at fourth and eighth 
grades on both national assessments and state assessments [Hemphill, Vanneman, 
2011]. The EL-EP achievement gap points to persistent inequities in learning oppor-
tunities for ELs, and educators are only beginning to understand how to address these 
concerns [Hakuta, Santos, 2012]. This paper reports on the efficacy of a 19-lesson ex-
perimental curriculum unit about hard-to-learn and hard-to-teach ideas in integers 
and fractions in language inclusive classrooms (classrooms containing both EL and 
EP students). The unit, Learning Mathematics through Representations (LMR), supports 
learning opportunities for both ELs and EPs through the use of the number line as a 
principal representation [Saxe et al., 2015a]. In this paper, we disaggregate prior anal-
yses that documented the efficacy of LMR [Saxe, Diakow, Gearhart, 2013] to focus on 
the achievement of ELs as distinct from the achievement of EPs. 

LMR: EXPECTED SUPPORT FOR BOTH EL AND EP STUDENTS

The product of design-based research [Saxe et al., 2015b], LMR’s use of the number 
line provides continuity of ideas, supporting students’ as they build on insights from 
prior lessons in subsequent lessons (for related treatment of linear representations, 
see [Davydov, Tsvetkovich, 1991]). In the early integers lessons, students engage with 
activities about positive integers as units and multiunits on the number line; in later 
integers lessons, students extend these ideas to numbers to the left of zero on the 
number line. In the fractions lessons, activities begin with the idea of fractions as 
splitting integers into subunits (equal parts of a unit) on the number line; in later frac-

* An extended version of this paper was published in the Educational Researcher: <https://journals.sagepub.
com/doi/full/10.3102/0013189X19869953/>.
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tions lessons, students extend these ideas to multiplicative relations between fraction 
numerators and denominators. 

LMR’s design-based research approach has some important features. The LMR pro-
ject began with grounded conjectures about the value of the number line for a strong 
instructional treatment of integers and fractions. Early classroom studies revealed the 
diversity of students’ reasoning with the number line (e.g., [Saxe et al., 2013]). Subse-
quent interview studies probed patterns of student reasoning about integers and frac-
tions in different representational contexts (e.g., [Ibid.]). Tutorial studies enabled the 
design and validation of productive learning trajectories when students are provided 
with visual, definitional, and embodied representational supports [Saxe et al., 2010]). 
Results from these studies led back to the classroom to partner with teachers in de-
veloping lesson sequences [Saxe et al., 2015b]. Finally, we conducted an efficacy study 
that provided quantitative evidence of LMR’s effectiveness [Saxe, Diakow, Gearhart, 
2013], and qualitative analyses of effective classroom practices [Saxe et al., 2015a].

Each LMR lesson consists of a 5-phase structure, as depicted in Fig. 1. The structure 
supports teachers’ efforts to build upon student thinking. Lessons begin with non-
routine opening problems that provide a focus for the opening discussion and serve as 
formative assessments. The task featured in Fig. 1, for example, presents an opening 
problem that contains a number line with only the numbers 6 and 7 labelled, and stu-
dents are asked to label a third number at the leftmost position. In the opening discus-
sion students explain their thinking about opening problems, and the teacher reviews 
a mathematical principle to support the resolution of conflicting ideas. For the lesson 
illustrated in Figure 1, the teacher introduces the definitions of interval as “the dis-
tance between any two numbers on the number line” and unit interval as “the distance 
from 0 to 1 or any distance of 1,” and encourages actions on the line such as displac-
ing a unit interval from one position to another. During partner work, students apply 
insights from the opening discussion as they solve problems that are sequenced in 
difficulty. In the closing discussion, the teacher encourages students to communicate 
ideas, and guides the class to resolve disagreements. The lesson concludes with closing 
problems that provide teachers an assessment of student thinking and progress. 

The design of the LMR lesson structure and the 19-lesson sequence builds upon many 
mathematics educators’ thinking about high quality mathematics education for both 
EP and EL students. We review principal dimensions below.

Fig. 1. Five phase lesson structure with an example of a non-routine problem 
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Mathematical communication, argumentation, and problem solving
Many mathematics educators argue that K-12 mathematics education should empha-
size communication and problem solving (e.g., [National Council of Teachers of Math-
ematics, 2000]), and their argument is consistent with established theoretical treat-
ments of cognitive development (e.g., [Sfard, 2008; Vygotsky, 1986]). The idea is that 
all students, including ELs, develop mathematical ability through participation in dis-
course practices such as presenting arguments, responding to others, and explaining 
solutions [Moschkovich, 2002]. The emphasis on communication and problem solving 
is a marked departure from common practices in classrooms serving ELs, especially 
low-income ELs of Latino descent; these classrooms often emphasize learning low-
er-level skills such as computation and rote memorization [Darling-Hammond, 2007]. 
In contrast, LMR professional development and lesson guides introduce instructional 
strategies that enhance students’ opportunities for mathematical communication, as 
we noted in our review of Fig. 1. 

Resources that afford students’ productive use of material, embodied, 
and linguistic representations 
Many education scholars agree that high quality math lessons should encourage stu-
dents to coordinate resources such as visual/physical materials, actions, and linguistic 
representations [Hakuta, Santos, 2012; Moschkovich, 2002]. Consistent with these views, 
LMR lessons engage students with visual and physical representations through use of 
the number line and CuisenaireTM rods to represent linear distances. In early integers 
lessons, for example, students use rods to measure distances on number lines with only 0 
labelled (e.g., locating the integer “3” as a distance of three red rods from 0). In so doing, 
students engage in the actions of placing, iterating, and partitioning intervals as they 
work to quantify linear distances. ELs efforts to make sense of the emergent representa-
tional environments rooted in their actions may be particularly useful for ELs’ mathe-
matical development [Bustamante, Travis, 1999; Piaget, 1970]. In later integers lessons, 
the rods become means for students to measure the distance between labelled points. 
In still later lessons, students investigate ideas like equivalent fractions by using rods to 
split a marked unit interval into “subunit” intervals (e.g., four subunits for fourths). 

Linguistic representations, coordinated with other representational forms, are also 
important features of LMR lessons. LMR’s core mathematical vocabulary, termed 
“number line principles/definitions,” are progressively recorded (with diagrammatic 
support) on a classroom poster to provide all students access to foundational ideas, 
like unit, multiunit, and subunit. LMR’s lesson guides encourage teachers to create 
opportunities for students to use definitions to resolve conflicts and to support ar-
gumentation (one recommended technique is to engage students in correcting the 
incorrect reasoning of a hypothetical person, and justifying their correction with ref-
erence to number line definitions [Saxe et al., 2015a]. 

Productive norms and routines
Classroom norms that value participation and argumentation are regarded by many 
educators as a key feature of high-quality mathematics instruction (e.g., [Yackel, Cobb, 
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1996]). Ramirez and Bernard [1999] suggest that ELs’ mathematical learning opportu-
nities may suffer in lecture-based and textbook-centered classrooms (see also [Fu-
son, Smith, Lo Cicero, 1997]). LMR classrooms support the norms that students should 
(a) reference definitions to support argumentation, (b) offer conjectures and expla-
nations during classroom discussion, and (c) carefully listen and perhaps respond to 
their peers’ ideas in discussions and partner work. 

FINDINGS FROM THE CURRENT STUDY

Previously reported findings showed the efficacy of LMR lessons [Saxe, Diakow, Gear-
hart, 2013], but, to date, no analyses have been conducted on differential achievement 
gains for EP vs. EL students. For reasons reviewed above, we expected that LMR affords 
learning opportunities for ELs beyond the standard integers and fractions curriculum. 
We therefore conducted new analyses that included all participants in the Saxe, Dia-
kow, Gearhart [Ibid.] original study: 571 4th and 5th grade students from three urban 
and suburban school districts in urban language inclusive classrooms. Forty-four ELs 
participated in LMR classrooms (11 classrooms), and 51 ELs participated in Compar-
ison classrooms (10 classrooms). Assignment of classrooms to treatment condition 
followed a stratified random assignment procedure: Teachers were matched on three 
indicators: greatest terminal degree, years of teaching experience, and previous pro-
fessional development, and then assigned to LMR and Comparison groups; assign-
ment was modified so that teachers from different groups did not work at the same 
school (for more information on the procedure, see [Ibid.]).

For reasons described above, we expected the implementation of LMR would support 
learning opportunities for ELs as well as EPs. Accordingly, we assessed students’ de-
veloping understanding of integers and fractions using a set of three linked tests. The 
assessment was administered on four occasions — pretest in September, interim test 
in October (LMR only), posttest in December, and final test (identical to the posttest) 
in May. A set of 18 common items, used in all three assessments, allowed us to link 
student scores from the different time points using item response models [Adams, 
Wilson, Wang, 1997]. Each assessment contained an additional 11–14 unique items 
that were intended to assess specific forms of learning: The unique items were easier 
at pretest and harder at final test, and the content emphasis shifted over time from 
integers to fractions. Item response modelling yielded scores in units of logits, an in-
terval-level unit of measurement in which all assessments were linked to a common 
scale. The assessments contain items adapted from a wide range of sources, and item 
formats balanced number line representations vs. other representations (e.g., num-
bers only, area models).

We had four specific expectations about EL and EP learning gains. We articulate each 
below, and we report analyses that provide empirical support for each. 

(1) LMR efficacy For ELs. We expected that ELs who participate in LMR will show greater 
gains in mathematics than ELs in Comparison classrooms. Figure 2 reveals, as expect-
ed, different patterns of growth for ELs in LMR and those in comparison classrooms: 
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ELs in LMR classrooms show steady growth over time, though less growth during the 
5-month gap between posttest and final test; in contrast, ELs in the comparison class-
rooms showed less growth from pretest to posttest but sharper growth from posttest 
to final test. Statistical analysis confirmed trends observable in Fig. 2. Performance of 
the LMR and comparison EL classrooms was comparable at pretest (p = 0.736), but at 
posttest the achievement of ELs who participated in LMR was 1.52 logits higher than the 
achievement of comparison group ELs (ES = 1.14, p < 0.001). Performance on the final 
test showed that LMR ELs maintained their advantage; LMR EL achievement was 0.90 
logits higher than comparison EL achievement (p = 0.011, ES = 0.68). The growth spurt 
between post and final assessments for comparison ELs may be due to the observation 
that the comparison text spends greater time with integers and fractions in the Spring. 

(2) LMR efficacy for supporting equivalent learning opportunities for ELs and EPs. We 
expected that the rates of learning for EL and EP students in LMR classrooms would be 
similar; thus, while we expected that EPs would outperform ELs at pretest (evidence of 
the pre-existing achievement gap), we would find that both groups would show strong 
gains, and thus the gap between ELs and EPs would not widen at interim, post, and 
final tests. Figure 3 confirms this expectation, revealing similarity in the growth tra-
jectories for LMR ELs and EPs. Indeed, we found between-group differences in gains 
over the year were not statistically significant (p = 0.937). The achievement differenc-
es were stable over time of testing: At pretest, the achievement gap between ELs and 
EPs was 0.47 logits (p = 0.002), and the EL-EP gaps were stable on the interim (0.45 
logits), post (0.58 logits) and final assessments (0.46 logits). We take these findings 
as evidence of strong learning gains for ELs and EPs in LMR classrooms and that LMR 
supported similar rates of growth; however, though the growth rates were similar, the 
gap between ELs and EPs achievement in LMR classrooms were not attenuated.
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(3) LMR efficacy in attenuating the EL-EP mathematics achievement gap. We expected 
that the use of the LMR curriculum would attenuate or eliminate the achievement gap 
between ELs and EPs when ELs in LMR classrooms were contrasted with EPs in com-
parison classrooms. Figure 4 reveals our findings. At pretest, there was a statistically 
significant pre-intervention EL-EP achievement gap estimated at 0.60 SD, with ELs 
demonstrating lower achievement than EP students (p = 0.005). In the first part of the 
academic year, the achievement of ELs in LMR grew sharply relative to the achievement 
of EP students in the comparison group. By the post assessment, the EL-EP achieve-
ment gap had reversed, with ELs in LMR showing greater estimated achievement than 
EP students in the comparison group (p = 0.027; ES = 0.52). The reverse achievement 
gap narrowed between posttest and final test, and, at the end of the school year, the 
final test showed no statistical difference between ELs in LMR and EP students in the 
comparison group (p = 0.608). Thus, the findings indicate that the EL-EP achievement 
gap in integers and fractions achievement was effectively eliminated. 

(4) LMR efficacy for non-number line assessment items. As noted earlier, we included 
items on the linked tests that included and did not include number lines. The reason 
for inclusion of both item types was to determine whether student gains were limit-
ed to the central representational context of instruction, number lines. Because the 
curriculum was engineered to provide support for conceptual understanding, we ex-
pected that ELs would gain proficiency in solving both kinds of problems, though with 
some advantage for number line items, given the non-linguistic support that the lines 
could provide in an assessment context. Figure 5 reveals that our expectations were 
confirmed. The figure shows strong gains for ELs’ and EPs’ on both item types over 
the course of the school year. For EL students, the difference between number line 

Fig. 4. Comparison of ELs 
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Fig. 5. Comparison of EL and EP students′ 
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items and no line items was not statistically significant at pretest (p = 0.807), but ELs 
scored higher on the set of line items than the no line items on the interim (p = 0.015, 
ES = 0.25), post (p = 0.003, ES = 0.30), and final (p = 0.042, ES = 0.21) assessments. 

DISCUSSION

How did LMR support the mathematics strong learning gains of EL students while 
at the same time the strong gains of their EP peers? We expect that features of LMR 
afforded ELs better use of their partial mastery of the English language to build upon 
their prior mathematical understandings and intuitions in ways that are not be pos-
sible with more traditional curricula. In particular, the coordinated support for ELs 
use of visual representations (number lines), verbal and written representations 
(mathematical definitions supported by number line diagrams), and sensorimotor 
representations (manipulation of linear representations with Cuisenaire rods) is dis-
tinctive in the LMR lesson sequence. Further, the five-phase lessons afford teachers 
opportunities to assess and integrate student reasoning in discussions and to adapt 
their instruction as students with diverse understandings and linguistic proficiencies 
reason publicly with varied representational formats. The gains of EP students indi-
cate that they reaped similar advantages in what generally are regarded as “hard-to-
teach” and “hard-to-learn” mathematical ideas. 

Of course, some of the distinctive LMR features may have played a stronger role than 
others, and these roles may have varied across classrooms and students. Our current 
study cannot identify specific features of LMR that supported gains in achievement 
for ELs or EPs. Indeed, we treated LMR and comparison groups as “packaged variables” 
since it was not possible to isolate distinctive features constitutive of LMR. However, 
in light of the documented gains of both ELs and EPs in LMR classrooms, what we can 
assert is that the emergent environments in LMR engaged ELs in ways that provided 
more equitable learning opportunities, though the particular interplay of LMR fea-
tures in student activities may well have varied over students. 

In closing, we regard our design-based research methods involving interview, tutorial, 
and classroom studies rooted in a developmental framework as potentially important 
resources for mathematics education researchers and professionals. We expect that 
the methodology would be useful for developing instructional approaches that engage 
all children with rich learning opportunities regardless on mathematical domain. 
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There are two groups of factors which influence effective learning (EL): psychological and 
pedagogical. Based on the Activity Approach designed by Russian psychologists, we con-
sider that the main predictor of EL is a child’s goal-oriented activity, which should be 
organized. The teacher should choose actions, give students the method, encourage them 
to use it, and organize formation. What about a student who learns effectively? To what 
extent does he or she use these factors? We suppose that the important predictor of EL is 
orientation towards given knowledge (OGK) — the inclusion of the given knowledge into 
new actions. Our main aim is to discuss the nature of OGK, to suggest methods for it’s 
diagnostics and to present a research project of the differences between 4th graders from 
different educational systems.

INTRODUCTION

Educational standards currently implemented in the Russian Federation assign a sig-
nificant role to metacognitive educational outcomes, among which are universal learn-
ing skills [Federal’nyi…, 2014]. All of these skills are about what any student should do 
to learn effectively. The ability to learn (learning-to-learn, L2L) is one of the eight key 
competencies recommended by the European Parliament and the Council of the Euro-
pean Union in 2006 to implement the concept of “lifelong learning” [Steffens, 2015]. 
Our study of L2L is based on the Russian activity approach in educational psychology, 
designed by A.N. Leontyev, P.Ya. Galperin and V.V. Davydov, among others. According 
to this approach, the main factor of effective learning is the child’s goal-oriented ac-
tivity, which should be organized. So, the teacher should choose appropriate actions, 
give students the method for their actions, and encourage them to use such a method, 
in addition to organizing the action’s formation stage-by-stage [Galperin, 1966]. The 
child’s activity can be organized in various ways. Orientation basis of action (OBA) 
is the specific term of Russian Activity Approach. It is the student’s method of action. 
There are 3 types of OBA [Ibid.]. Teacher, who forms 1st type of OBA, does not offer the 
student any method, only demonstrates the action and/or it’s result. So students have 
to look for it independently. When the teacher forms 2nd or 3rd types of OBA he or she 
not only gives to students the method of action, but also encourages them to use it (in 
case if 2nd type its only a algorithm of specific action, in case of 3rd type its general 
method for some actions). According to Galperin, it is essential to form the 2nd and 
the 3rd types of OBA instead of the first one. But what about students, who used to 
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be learning in a way of 2nd or even 3rd type of OBA? Is it possible to say that they can 
use given information for solving tasks instead of finding solution without it? We call 
such ability the orientation towards given knowledge (OGK). Why is it important for 
us to start the study with this particular component? What is the orientation towards 
given knowledge, in general: a property of individual actions or a holistic skill? The 
preliminary answers to these questions are given and the proposed research project is 
suggested.

Orientation towards given knowledge: Concept and research
OGK is the characteristics of student’s OBA, it is the inclusion knowledge, given for 
learning, in the method of solving tasks and transformation these knowledge in that 
direction. Our position is very close to position of L. Radford [2013], who differentiates 
knowledge and knowing. According to Radford knowledge is a “historically and cultur-
ally codified fluid form of thinking and doing’’, it exists independently from human’s 
mind. But real knowledge (“knowing”) exists only in human’s actions. In the Russian 
literature we can find several studies in which the importance of forming an OGK 
is indicated. The first example of such research is represented by the early works of 
Galperin and Talyzina [Galperin, Talyzina, 1957], devoted to the concept’s formation 
in the recognition action. This research showed the importance of using the given 
signs as early as the first realization of the action. Children who, as a result of the 
formation experiment, acquired the general recognition action, then considered any 
new concept from the point of view of the future action of the recognition — would the 
given signs allow recognition to take place? Talyzina distinguished 3 operations in the 
recognition action: a) identifying identification signs; b) the establishment of their 
presence (or absence) in each presented object; c) the conclusion about the belonging 
(or non-belonging) of an object to this class of objects in accordance with the logical 
rule of a recognition action. In this sense, the recognition action is an action that di-
rectly supports the formation of the OGK. Similar results were shown in a study of the 
formation of artificial concepts that was conducted on the material of figures from 
the method of Vygotsky and Sakharov [Teplenkaya, 1968]. In this work, preschoolers 
didn’t demonstrate the stage of mental development described by Vygotsky, because 
they had not only all of the signs for a recognition action but also an ensured reli-
ance on these signs in solving problems. Nevertheless, even in the Vygotsky-Sakharov 
methodology, the concepts were given (although in an implicit form), which lead us to 
the conclusion that the solution to these problems wasn’t understood as an independ-
ent search for guidelines in a situation of direct interaction with objects. It is a cultural 
and social process in which an adult plays an important role. “The aim of learning as 
a specifically social process,” writes Talyzina, “is not to induce the child to rediscover 
this long-ago-open system of signs, but using them as a model to ‘look at’ objects… 
from the side that is presented in this concept” [Talyzina, 1975]. Mandatory OGK 
when performing actions is also supported in Galperin’s theory by encouraging stu-
dents to announce what he or she is doing (speech form of action). This makes sense 
because due to pronunciation it is easy to “not lose” the OBA when the action changes 
to a mental form or to make a generalization. It is shown that generalization is based 
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on signs, which became part of the OBA [Talyzina, 1975]. Traditionally, teachers use 
the method when students receive signs to which they should orient (through defini-
tion), but real orientation on them is not provided. Thus, it makes sense to distinguish 
1)  the assignment of concepts and their signs in learning (explicitly or implicitly), 
and 2) ensuring orientation toward them. If the first is somehow present in school, 
the second is not practically provided. Concerning the 3rd type of OBA, teaching was 
organized in a way that the signs proposed in the OBA scheme were not just part of 
the method of problem solving, but the students also realized the need to use only 
these and not any other signs. This was due to the students’ conscious assimilation 
of the function of these units in the whole system. The search for such a function was 
the purpose of a specific orientation action, which is called a learning task later (in 
the theory of Developmental education of Elkonin and Davydov). For example, in the 
studies of Aydarova [1968], learning to distinguish a morpheme was based not only 
on its formal features (signs of a prefix, suffix and so on), but on their “functional” 
meaning — the transmission of a specific message. Later these and other results were 
summarized by Galperin, who said that the main purpose of teacher who tries to use 
the 3rd type of OBA is transferring the function of a set of objects expressed by the 
concept [Galperin, 1966]. Authors of other experiments emphasized similar things: we 
need to give children the orientation meaning of features on which it is necessary to 
rely in order to properly perform an action [Venger, 1969; Podolsky, 1987]. 

In cognitive psychology, the problem of students’ orientation toward given knowl-
edge can be described in terms of the relation between declarative and procedural 
knowledge and their use in solving problems. There are many studies that show that 
even with clear procedural knowledge in the text, students have difficulties in using 
them for solving problems, which researchers attribute to a lack of certain metacogni-
tive components in such students [Kendeou et al., 2014; Duke, Pearson, 2009]. A more 
complicated situation is the possibility of transforming declarative knowledge into 
procedural knowledge, the opportunity to see the actions as connected with concepts. 
Interestingly, the establishment of semantic links in the text is significantly improved 
in a situation where students are invited to ask questions about this text (independent-
ly or on the basis of a generalized list of questions) [King, 1994; Oleynikova, 2012]. In 
fact, asking questions prompts students to find actions for which the knowledge given 
in the text will become indicative, which contributes to understanding. Thus, students’ 
lack of learning skills in working with texts (highlighting the main point, systemati-
zation, summarizing, etc.) can be understood as a lack of OGK, including the target 
attribution to the perception of knowledge as orientation and the ability to choose 
actions that are adequate to a given knowledge. Another area of   research of similar 
phenomena is the study of conceptual changes [Posner et al., 1982; Vosniadou, 2013]. 
Resistance to conceptual changes can also be associated precisely with the inability of 
students to relate the knowledge gained to their own actions. Often this is associated 
with the formation of meta-learning — student’s theories about their learning and ap-
proaches to learning [Entwistle, 2000]. Thus, with a superficial approach, the student 
perceives teaching as a memorization of facts and their reproduction, referring to the 
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given knowledge as something that needs to be simply reproduced. With a deep ap-
proach, the text is understood from the point of view of the presence of connections 
in it — a certain system. Accordingly, the student has an opportunity to discover the 
actions and their elements in the text.

Thus, according to our assumptions, a student who knows how to learn effectively will 
a) rely on the given knowledge in the process of solving problems, b) in the process of 
working directly with the given knowledge (reading texts, working with lesson materi-
als, listening), connect such knowledge with possible actions, the guidelines of which 
can be extracted from it. A complete orientation to a given knowledge, according to 
our assumption, should include both of these. For us also it is interesting to answer 
the question, if students don’t use given knowledge, why they don’t it? Is it because 
they can’t or because they havn’t such a goal? In other words — is OGK only ability 
or also an intention? Another question — is there any differences between OGK in 
different educational systems — Developmental Education (DE), designed by Elkonin 
and Davydov and Traditional Education (TE)? DE implies a change in the education’ 
content, which means including to content general methods of action and theoretical 
concepts (it’s close to third type of OBA). We use 2 groups of DE: DE-2 is different 
from DE-1 only in aspect of special attention in reading comprehension. So, our tasks 
was as follows: (1) Choosing the appropriate diagnostic methods for the OGK in direct 
(OGK-D) and indirect (OGK–I) instruction; 2) Comparison of OGK among students of 
different systems (TE, DE-1, DE-2).

Hypotheses
1. OGK-D will be significantly better then OGL-I. 2. Reading comprehension will pos-
itively correlate to both OGK-D and OGK-I. 3. DE students (all 2 groups) will demon-
strate higher levels of OGK then TE. 4. DE-1 students will demonstrate higher levels 
of OGK then DE-2 students

METHOD

Participants 
Participants were 63 fourth graders drawn from one public school in Moscow, 33 boys 
and 30 girls (average age was 10.7). All participants were divided into 3 groups: 22 stu-
dents educated in the TE, 20 students, educated in the DE-1 and 21 students, educated 
in the DE-2 (with special attention to formation reading skills).

Methods of OGK’ diagnostics 
For our purpose we chose a concept’s recognition tasks. The general principles of such 
diagnosing are described in the works of Talyzina [1975]. The participants were of-
fered 2 groups of tasks; each group was built on the same structure: students were 
given definition of concept and then objects that need to be recognized (these objects 
were given verbally, through a description or with the help of pictures). For each con-
cept, ten tasks are proposed: 1) 5 tasks with all necessary and sufficient conditions, 
2) 1 task with all necessary and sufficient but also redundant conditions, 3) 1 task with 



214 PME and Yandex Russian Conference 2019

A. Sidneva, E. Vysotskaya

some necessary conditions, 4) 1 task that lacks of some necessary conditions and has 
the presence of excess, and 5) 1 task, in which description and picture didn’t match. 
It was not the correct result that was evaluated, but rather whether this result was 
justified by the given knowledge. Suggested concepts for recognition were: “straight 
line”, and “mammal”. For “straight line” it was an indirect instruction (after definition 
it was given the task — “choose ‘+’, ‘–’ or ‘?’”). For “mammal” it was a direct instruction 
(after definition it was instruction (“You should help to a little girl to find mammal 
among other animals using short texts”) and task — “choose ‘+’, ‘–’ or ‘?’”). In total, the 
student solves 10 problems in condition of indirect instruction and 10 in condition of 
direct instruction.

Method of reading comprehension’ diagnostic
The technique was developed specifically for students in grades 4–5 based on a mod-
ification of the method “Choice of main sentences” intended for high school students 
[Ilyasov, Malskaya, Mozharovsky, 1984]. The student is offered a text and is given the 
task “Underline the main sentences of this text.” The text is composed in such a way 
that 8 out of 16 sentences are significant (describe the basic definitions, facts and 
their explanations) and 8 are not (statements, similar in form to the present defini-
tions, dates, statements about the significance, etc.). The authors of the methodology 
developed it as a technique that diagnoses the ability to find out the most important 
sentences in the text. From our point of view, the ability to find out the main idea is 
connected with the fact that the student perceives the text as an orientation for solv-
ing a specific task — the task of presenting and explaining the facts. The evaluation of 
the quality is carried out on a scale from 0 to 8.

RESULTS

Correlations between OGK-D, OGK-I and reading comprehension, the mean values 
and standard deviations are presented in Table 1. 

As we can see reading comprehension positively correlates with OGK with direct in-
struction (k = 0.352, p < 0.01). Also OGK with indirect instruction was more difficult for 
students then indirect (p < 0.001, Wilcoxon Signed Rank Test).

Table 1
Means, standard deviations and correlations between OGK-D, 

OGK-I and reading comprehension 

Mean SD Reading 
comprehension

OGK — I OGK — D

Reading 
comprehension

4.00 0.97 0.109 0.352 (*)

OGK — I 0.86 1.19 0.203
OGK — D 3.77 3.11

Note: * p < 0.01, two tailed, N = 58. 
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Differences between three groups of students (TE, DE-1, DE-2) are presented in 
Fig. 1.

As we can see both groups of DE were demonstrated higher levels of OGK (in case of 
both types of instruction) then TE (p < 0.05 in case of direct instruction and p < 0.01 
in case of indirect instruction, Test Mann-Whitney). But DE-2 group demonstrates 
higher results then DE-1 (p < 0.05 in case of direct instruction and p < 0.01 in case of 
indirect instruction, Mann-Whitney Test). Interesting, that there is no differences be-
tween results of diagnostics of reading comprehension between DE-1 and DE-2.

DISCUSSION

When we were planning this study, we first suggested that the results of OGK-D’ di-
agnostics will be significantly better then the results of OGK-I’ diagnostics. This as-
sumption was confirmed. So, we can say that if even students don’t use given knowl-
edge it doesn’t mean that they can’t do it. They can, but they are not used to using it. 
Thus, children can work with text very well, they can find any required information in 
any text if teacher ask them. But text doesn’t have orientation function for problem 
solving. Perhaps the ability to perceive the text as orientational and to solve problems 
based on a given knowledge represents two different aspects of the OGK. So we should 
think about further research, perhaps a more detailed study (for example, using texts 
and concepts from another subject area, etc.). Results of 2st hypothesis’ checking 
confirm partially: reading comprehension very positively correlates with OGK-D and 
has no correlation with OGK-I. Probably it can be explained by the same reason as 
previous. Our third hypothesis is confirmed partially. DE students (all two groups) 
were demonstrated higher levels of OGK then TE students. But, as we suggested, DE-2 
students were demonstrated higher levels of OGK-D and OGK-I then DE-1 students. 
Probably it can be explained by differences in DE educational programs (as we said, 
in DE-2 teachers pay special attention to formation of reading skills). Anyway it will 
be necessary for us to refer to the real lessons and to analyze them precisely from 

Fig. 1. Average number of tasks, where participants were demonstrated OGK 
in case of direct and indirect instruction
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the point of view of how much the OGK is maintained in them. In this paper we can’t 
discuss all results and, that more important, all limitations of our study (for example, 
influences of given concepts’ specifics or number of respondents). It was the one of 
the possible way for investigation of OGK and it requires future modifications. Actu-
ally, we would like to emphasize significance of the research problem of orientation 
towards given knowledge.
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Not-knowing is an underexplored concept defined by an individual’s ability to be aware of 
what they do not know as a means to plan and more effectively face complex situations. 
This qualitative study focuses on analyzing students’ ability to express their “not-knowing” 
while completing tasks and reflecting periodically. It becomes evident rather quickly that 
the students have difficulty expressing their not-knowing. Through transcription analysis, 
reflection coding, and interviews, four recurring themes emerge that could possibly de-
termine why students have difficulty expressing their not-knowing. These four themes are 
deflection, student pressure, lack of heuristic sense, and fractured knowledge. Each one 
of these themes will be discussed addressing challenges in relation to students’ ability to 
express not-knowing.

INTRODUCTION

Not-knowing is the first step to understanding, carrying an important value in learn-
ing. Mason and Spence [1999] claim, “awareness of knowing and of not knowing is cru-
cial to successful mathematical thinking.” Tahta [1972] uses not-knowing as a means 
to describe the algebraic process of finding what we do not know with the use of what 
we do know. Shah (1968) quotes ancient wisdom according to which not-knowing is a 
critical state because, from it, knowing can follow. However, a little research has been 
done to understand the not-knowing phenomenon. In this study, we are examining 
the following research questions: how do students express what they do not know? 
and, what challenges do they face in externalizing the not-knowing?

FRAMEWORK

The theory of unconscious thought [Dijksterhuis, Nordgren, 2006] is closely related to 
the main construct and the unit of analysis of this study. Addressing the theory, Funke 
[2017] elaborates, “the basic idea is that the quality of decision-making depends on 
conscious and unconscious thought simultaneously. The term conscious thought  is 
understood to mean a mental state that encompasses a person’s rational awareness, 
whereas the term unconscious thought refers to the underlying influence, of which 
one is typically unaware and which has an impact on one’s behavior. Unconscious 
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thought tends to outmatch conscious thought, especially in complex and untranspar-
ent situations. Unconscious thought takes place when conscious attention is directed 
elsewhere [Funke, 2017]. Analysis of conscious attention, such as that of awareness of 
not-knowing [Mason, Spence, 1999], can be considered as an important step in a stu-
dent’s decision-making process in complex problem-solving situations. 

Being aware of one’s own not-knowing is a spark that could potentially ignite inert 
knowledge. Renkl, Mandl, and Gruber [1996] suggest that “the problem of inert knowl-
edge is surely of major educational importance.” If awareness of not-knowing is a po-
tential solution to inert knowledge, it is a topic that needs to be further explored. 

Along with recommendations to effective problem solving, scholars [Carlson, Bloom, 
2005; Perkins, 2000]  identify some common barriers to successful problem solving 
such as an inability to identify and connect the relevant knowledge (e.g. in the Results 
section we refer to this challenge as “fractured knowledge”), a lack of experience with 
how to go about solving problems (e.g. lack of heuristic sense), a false belief that you 
either know how to do something or you don't and that if you don't there's not much 
point trying beyond a few minutes (e.g. pressure), seeing errors as indicating incompe-
tence rather than just an inevitable and necessary part of learning, going with the first 
solution approach which comes to your mind rather than trying to determine what the 
possible options might be (e.g. deflection), etc. 

Furthermore, Carlson and Bloom [2005] claim that a good problem solver exhibits flex-
ibility as well as powerful mathematics related processes to arrive at their solution. 
They also state that those who solve the problems do not solely rely on heuristics. The 
awareness of not-knowing through understanding the barriers to successful problem 
solving opens the doors to becoming more flexible at solving problems while less de-
pendent on heuristics — an ability which Simon [1996] details through the construct 
of “transformational knowledge” as a way to assess a given situation and select the 
best possible outcome. This line of thinking could potentially be achieved if students 
become aware of their not-knowing and use it as a means to understand a situation. 

Therefore, not-knowing could be considered as the first step to effective problem-solv-
ing. This is one of the key motivations for conducting the study, as it aims to uncover 
how not-knowing can help students understand their own thinking and develop more 
effective problem-solving strategies. 

METHODOLOGY

This qualitative study focused on students’ articulation of not-knowing and the chal-
lenges they faced during this process. Ten students were selected for the study at a 
university in the southwestern border region of the United States. These students were 
enrolled in the course on Geometric Reasoning, which focused on problem-solving 
using a tangram (a seven-piece puzzle) to construct squares with a different number 
of pieces. This setting was used to collect data and analyze student externalization of 
their not-knowing. Data sources consisted of audio recording, reflections, and inter-
views described below. 
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Recordings and Transcriptions 
At four different points during the course, students paired up and audio-recorded each 
other depending on who was attempting to create a given square using the tangram 
pieces. The task was to attempt to complete the square using the given pieces while 
vocally expressing what they knew and did not know at that specific moment. First, 
the participants recorded the seven-piece attempt, followed by a second attempt at 
the seven-piece, then the six-piece, and finally the five-piece. 

The audio recording of the participants while attempting the task should bring forth 
their thought process while focusing on voicing what they knew and didn’t know at 
the time. This was the reasoning behind the audio recordings, as it was thought to be 
a way of encapsulating students’ not-knowing as a data source for analysis. 

Reflections 
Two major reflections were assigned: post-activity reflections and post-lesson plan-
ning reflections. These reflections contained three and five questions respectively. 
The participants were tasked to reflect on certain ideas discussed as well as their 
knowing and not-knowing. Since these reflections asked the participants what they 
didn’t know directly, their answers could be used to analyze how they expressed their 
not knowing. 

Interviews 
Two students out of ten were selected for semi-structured interviews conducted at the 
end of the course to analyze student reflective thoughts on the course. The interview 
consisted of thirteen questions focused on extracting student not-knowing in a reflec-
tive fashion, which was audio recorded. The audio recordings were then transcribed 
and analyzed. 

Data Analysis 
In order to analyze the transcriptions, reflections, and interviews, meaning coding, 
meaning condensation and interpretation techniques were used [Kvale, Brinkmann, 
2009] as the main methods of analysis. The first set of analysis consisted of tran-
scriptions from the participants’ attempts at creating the seven, six, and five-piece 
squares using the tangram while voicing their knowing and not knowing. There were 
two methods of analysis used for this part. First, the transcriptions of each individu-
al participant were separated and analyzed to examine how well the participant ex-
pressed their not knowing at different points in time during the course. Second, an 
analysis of the transcriptions as a whole was conducted, in an effort to encompass key 
similarities between them. The second set of analysis was two reflections in which 
students reflected on what they knew and did not know at the given time based on 
the course. Meaning coding technique was used to interpret their ideas and make con-
nections to their transcriptions. Finally, the last part of the analysis included the two 
interviews. The interviews are meant to provide a closer look into the thoughts of the 
two participants. The questions are aimed at evoking not-knowing reflectively and ac-
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tive not-knowing while the interview is being conducted. Meaning interpretation and 
meaning condensation were the primary tools in analyzing this data to make connec-
tions between other forms of not-knowing expressed throughout this study. 

FINDINGS

The data analysis clearly demonstrated that the participants had difficulties express-
ing their not-knowing. The analysis shows that there are several recurring statements 
made by the participants. These statements were categorized and the following four 
major themes emerged that will be described below. 

Deflection 
Deflection of not-knowing can be identified as avoidance of challenge when an in-
dividual shifts the focus of their not-knowing somewhere else besides themselves. 
Below is an example of the participant’s response, which demonstrates deflection of 
not-knowing: 

Student: I know as far as formulas and all that they are not going to help me at all. It’s more of 
a pattern thing and if students tried to do this it would be the same thing for them… 

The participant makes it a case that she believes formulas will not help her at arriv-
ing at a solution, inferring that she does not know how to arrive at the solution. Her 
thought of not-knowing takes a shift stating that if students tried, it would be the 
same for them. Why is it that when asked about her own not-knowing she deflected? 
Instead of being aware of her not-knowing as a first step to finding the answer, the in-
dividual deflects to what she believes others don’t know. A total of five out of the ten 
participants deflected at one point or another throughout the analysis. 

Pressure 
Participants demonstrated pressure through direct vocalization, frustration, or sense 
of urgency. Every one of the participants demonstrated pressure at different points 
during the transcription and reflection sections. Look at these two statements below: 

Student 1: Makes no sense to me. Jesus… Ok, so it doesn’t make sense… Jeez. It’s almost some-
thing. Oh, God. Can I make a rectangle? 

Student 2: This is ridiculous [laughs]. Putting these squares together. It’s a lot harder than I 
thought it would be. It’s destroying my idea of what a square is… Maybe if I … no. Oh 
my God, this is so much harder than I thought it would be. I think you did that. Then 
we can put a little triangle here. I think that’s what you had isn’t it? No. Argh, this is 
so frustrating. 

These two students demonstrate pressure, which may be a factor impeding aware-
ness of not-knowing. The first student demonstrates clear frustration throughout his 
thought process at his inability to make sense of the situation. The second student 
directly expresses her frustration, derived from expecting the task to have been easier 
than expected. 
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Lack of Heuristic Sense/Trial-and-Error 
Every single participant attempted the first task through trial and error as demonstrat-
ed by his or her transcriptions. We hypothesize that in seeking the solution, students 
may become “tunnel visioned” in the process of trial and error, clouding their aware-
ness of not-knowing. Below is part of a transcription, where a participant demonstrat-
ed “tunnel vision.” 

Student:  I am going to start with the parallelogram just because it has the oddest shape. And… 
I’m going to try to make the sides even, and I’m just trying to add from there but it 
doesn’t fit. So I don’t know how to get the sides to be straight without having any 
leftovers. Ummm… ok. No, I’m going to start again. I’m going to start with the big 
pieces now. I’m going to put the two triangles together. Okay, I’m going to put the 
two big triangles and try to make everything fit in the middle. Okay, so I’m putting 
some and they don’t fit but I’m kind of getting the shape, kind of not. 

Most of the participants, even with new knowledge, stuck to trial and error to the very 
end. Perhaps, inability to evoke awareness of their not-knowing was a factor that led 
to not solving the tangram. 

Fractured Knowledge 
Fractured knowledge is present when a participant may have knowledge gaps within 
the given topic, have misunderstandings of said topic, or simply lack the prior knowl-
edge required for the given topic. We argue that if an individual has fractured knowl-
edge, it will directly impede their ability to use not-knowing as a means to gather 
knowledge that simply is not there or is “fractured.” Below is a representation of a 
participant with fractured knowledge:

Student: Ok, so that might be too long. So, I think it has to be smaller than 2 and square root 2. 
Maybe it can be 3? I will try for 3.

While attempting to find the side length of a square that must be constructed, the 
participant makes the revealing statement above. There is a clear misunderstanding of 
the number 2 (“two square root of 2”) in comparison to the number 3. The participant 
believes that 3 is smaller than 2 and carries on without a second thought, guiding her 
down the wrong path. 

These four themes frequently emerged throughout participant transcriptions, reflec-
tions, and interviews. Even though some of these themes emerged less than others, 
they all hold importance, as they reflected challenges in participants’ ability to ex-
press not-knowing. 

Connections to Learning
The data gathered from the students clearly demonstrated the difficulty faced when 
reasoning with the tangram activity. The audio recordings displayed growth in under-
standing from all students, some better than others. Once the lesson was over, two 
students stood out who displayed almost complete mastery of the tangram. While all 
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the first audio recordings displayed difficulty in student ability to express their not 
knowing in the moment, these two students demonstrated to be very active thinkers 
as they attempted the task. Even though they also faced difficulty clearly expressing 
not knowing, they demonstrated more effective attempts as opposed to counterparts 
seemed to have contributed to their learning. These two students were interviewed as 
a means to better understand the progress made. Their interviews gave insight into 
their thinking during the attempt to construct the tangram. Both students expressed 
their “hate” for having to express what they didn’t know in the moment. One student 
stated that the question of “what don’t you know?” seemed like a really simple ques-
tion, but in fact found it to be really hard to answer. It appeared that these students 
disliked the question because it was difficult to articulate what they didn’t know at the 
moment. The important factor is that these students made the attempts to express 
their not knowing. Let’s take a look at these two excerpts below:

Student 1: So I have this big triangle in the corner and I keep putting it there because it seems 
like it makes sense there but I don’t know if this is the right way to go I wonder if 
there is more than one way to do it.

Student 2: It can’t be two square root of two, I tried that already. So it can’t be two square root 
of two because it’s the largest we can have which will give me an area of eight. So it 
has to be less than two square root of two and I tried side length of 2, but it limits the 
amount of pieces I can use. I am wondering if this is even possible.

Student 1 attempt may have been flawed, but her ability to step out of the problem 
and question if there are different possible ways to go about it is a line of thinking that 
may have led her to her correct answers later on. Student 2 struggles with constructing 
a square with 6 pieces, however, her not knowing leads to think about what she does 
know, arriving at her conclusion. 

These two students responses and performance contrast directly with other participants 
who made little to no attempts at expressing their not knowing or simply lacked the 
ability to do so. Those who made little attempts of expressing not knowing throughout 
the lessons seemed to have struggled more extensively. While both parties attained new 
knowledge from the course, the results indicate that those students who more actively 
sought to express their not knowing gained a better understanding of the concept. 

DISCUSSION AND CONCLUSION

Individuals “deflecting” their not-knowing should not come as a surprise, as not many 
individuals are fond of admitting their lack of knowledge or understanding. Never-
theless, the presence of deflection in the analysis shows how someone may shift their 
not-knowing onto someone else, rather than accepting their not-knowing and use it as 
a means to find a solution to a given problem.

The theme of “pressure” did not come as a surprise either. It may be closely related to 
Krashen’s affective filter hypothesis (1985), which details students’ abilities to learn 
based on what other thoughts might be on their mind. In this study, we saw pressures 
caused by time, frustration, and even fear of being judged by others. 
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The “heuristic sense” theme observed in the study is one deeply rooted in students’ 
minds. Since one of the most fundamental heuristics is trial-and-error it is easily 
available for anyone to use. Trial-and-error was the guiding force in decision making 
for many participants from the start of the course, and in some cases, to the end of 
the course. Students may be diverting to trial-and-error heuristic to ease the cognitive 
load.

Not-knowing can serve as a spark in creating a plan to solve a problem, but if fractured 
knowledge exists, it is likely that not-knowing will not cause yield an incorrect answer. 
Just like in the example concerning fractured knowledge, it can be determined that as 
long as the individual has “fractured knowledge”, it will impede the initial awareness 
of not-knowing.

These themes seem to be closely related to Funke’s [2017] theory of unconscious 
thought. All recurring themes could potentially be unconscious thoughts. Not being 
aware of such thoughts could prove more difficult for individuals to overcome.

Mason and Spence [1999] make it clear how important not-knowing is as a first step for 
knowing to occur. This study focused on finding out how students are expressing their 
not-knowing. Results demonstrated that the participants had difficulty expressing 
their not-knowing. Four recurring themes came to light from analyzing participants’ 
transcriptions, reflections, and interviews. Examples of deflection, pressure, heuris-
tic sense, and fractured knowledge were discussed to demonstrate how each affected 
not-knowing awareness. Understanding these themes can better help in minimizing 
the problem while maximizing the potential of not-knowing as a lead to knowledge 
and understanding. The findings might serve as a stepping stone to further research 
of not-knowing.
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Solutions of mathematical word problems are moderated by the semantic alignment of re-
al-world relations with mathematical operations. The current study examined evidence for 
semantic alignments in Russia in comparison to the USA and South Korea. Textbook anal-
yses revealed semantic alignments for arithmetic word problems, but not for rational num-
bers. However, Russian college students showed semantic alignments both for arithmetic 
operations and for rational numbers. Since Russian students exhibit semantic alignments 
for rational numbers in the absence of exposure to examples in school, such alignments 
likely reflect people’s everyday experience with and natural understanding of mathemati-
cal representations of real-world situations.

THEORETICAL FRAMEWORK

When applying mathematics to real-world situations, students must understand how 
to construct mathematical representations of the situations they encounter. Educators 
try to teach this process by approximating real-world situations with word problems. 
Previous research has shown that the process by which people coordinate situation 
and mathematical models is often guided by semantic alignment (e.g., [Bassok, Chase, 
Martin, 1998]).

Semantic alignment is a process of analogical mapping between semantic relations 
implied by the objects in the problem situation, and potential mathematical relations 
[Ibid.]. For example, flowers and vases evoke the semantic relation contain [flowers, 
vases], which is asymmetric (because vases normally contain flowers and not vice ver-
sa). This semantic relation aligns structurally with the mathematically asymmetric re-
lation divide [dividend, divisor]. The semantic alignment for the objects tulips and roses 
naturally evoke their shared categorical superset relation, both-flowers [tulips, roses]. 
Unlike the tulips-vases pair, tulips and roses play symmetric roles in the “both-flow-

* The results of Experiments 1 and 2 were already published in Tyumeneva Y.A., Larina G., Alexandrova E.,
DeWolf M., Bassok M., Holyoak K.J. Semantic alignment across whole-number arithmetic and rational num-
bers: Evidence from a Russian perspective. Thinking and Reasoning. 2017. <https://doi.org/10.1080/135467
83.2017.1374307>.



227PME and Yandex Russian Conference 2019

Y. Tyumeneva, G. Larina, E. Alexandrova, M. DeWolf, K. Holyoak, M. Bassok

ers” relation, which aligns structurally with the symmetric mathematical relation add 
[addend 1, addend 2].

A different type of semantic alignment, based on the distinction between discrete and 
continuous quantities, has also been observed. Bassok and Olseth (1995) found that 
the discreteness versus continuity of the entities described in a problem (e.g., salary 
increases versus increases in the value of a coin in $/year) affects the way people repre-
sent problem structures, and therefore impacts transfer of learned solutions. The same 
alignment process affects how people choose a format for rational numbers (fractions 
versus decimals) to represent discrete versus continuous entities [Rapp et al., 2015]: 
college students and textbook writers show a preference for representing relations 
between discrete or countable entities with fractions (e.g., 3/4 of the marbles), and for 
representing magnitudes or measures of continuous entities with decimals (e.g., 75 L 
of water). Thus, alignment not only influences the generation of concrete instantia-
tions of mathematical representations (the focus of the present paper), but also the 
generation of mathematical representations to match given concrete situations.

The nature of semantic alignment highlights a critical theoretical question: whether 
people’s preferred semantic alignments reflect a basic understanding of mathemati-
cal representations as analogical models of real-world situations, or reflect a history 
of specific learning experiences and therefore correlate with instructional practices. 
Although that question was addressed in [Lee et al., 2016; Rapp et al., 2015], the se-
mantic alignments in both nations appeared in textbooks; hence that question still 
remains unclear. 

Cross-national difference in curricula
The goal of the present paper is to address this question by expanding the cross-na-
tional exploration of semantic alignment to the Russian Federation, where the math 
curriculum differs radically from that found in either the U.S. or South Korea. 

Two major features of the Russian math curriculum may influence the degree to which 
students’ mathematical thinking is guided by semantic alignment. The first is abstrac-
tions. Russian children are taught the beginnings of algebra as early as elementa-
ry school, including skills such as building and solving equations. Although abstract 
thinking in math is also promoted in the U.S. school system, this emphasis is nowhere 
near as strong as in Russia. This focus on abstraction in the Russian curriculum might 
be expected to diminish the impact of semantic alignment, which depends on the 
more concrete properties of the objects involved in mathematical problems.

The second distinguishing feature of the Russian math curriculum is the strong focus 
on magnitude and measurement which would seem likely to promote general domi-
nance of continuous over discrete magnitudes, thereby diminishing semantic align-
ment of discrete magnitudes with fractions and continuous magnitudes with deci-
mals. In addition to the focus on measurement, fractions and decimals are introduced 
simultaneously within the Russian curriculum (in contrast to the U.S., where fractions 
are typically introduced to students at least a year prior to decimals). Coupled with the 
strong focus on measurement, which unifies continuous and discrete entities, simul-
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taneous learning of the two notations for rational numbers might further reduce any 
selective semantic alignment of number format with entity type (for a full discussion 
of the math curriculum in the Russian Federation see [Davydov, 1990]).

Thus, in our study we examined whether the patterns of semantic alignments for basic 
arithmetic operations and for rational numbers, previously found in the textbooks and in 
the performance of students in the U.S. and in South Korea, will also be observed in Rus-
sia. We examined whether the focus on abstraction would diminish the magnitude of se-
mantic alignment in textbook word problems and in subsequent students’ performance.

ARITHMETIC TEXTBOOK ANALYSIS

In order to determine whether Russian textbooks show semantic alignment for basic 
arithmetic problems (addition: symmetrical, division: asymmetrical), we conducted a 
textbook analysis of 4th and 5th grade textbooks. We analyzed two textbooks for Grades 4 
and 5 [Moro et al., 2011; Vilenkin, Zhokhov, 2008], which have a large market share 
and are widely used across Russia. We analyzed all word problems involving addition/
subtraction (n = 419) or else division/multiplication (n = 321), a total of 740 problems. 

In result, almost all of the addition and subtraction problems (99%) involved symmet-
ric object pairs, whereas the great majority of the division and multiplication prob-
lems (88%) were asymmetric. There was a significant relation between arithmetic op-
eration and semantic structure (χ2(1) = 578.797, p < 0.001). This finding replicates the 
pattern of results observed in American textbooks, in which 97% of addition problems 
involved symmetric relations and 94% of division problems involved asymmetric rela-
tions ([Bassok, Chase, Martin, 1998]; Experiment 3). 

EXPERIMENT 1. ALIGNMENT WITH ARITHMETIC IN UNDERGRADUATES

Participants were 77 undergraduate students from the Faculty of Psychology, NRU 
“Higher School of Economics” (72 females and 5 males). The experiment was con-
ducted at the beginning of the school year and only 1st-year students were selected, 
thus minimizing the influence of university education on students’ performance. The 
materials were adapted from Bassok et al., Experiment 2 (1998). Participants were ran-
domly assigned to receive an addition (N = 40) or a division (N = 37) booklet. Three 
types of object pairs were used: symmetric (e.g. boys-girls), subset-set (e.g. boys-chil-
dren) and asymmetric (e.g. boys-school). They were asked to create math word prob-
lems involving addition or else division for each of the six object pairs in the booklet. 
The allotted time was limited to 20 minutes. In total, participants constructed 240 ad-
dition word problems and 222 division word problems. 

The generated problems were coded in the following four categories based on the 
equation required for the problems’ solution: Mathematically direct (MD, the equa-
tion related the given sets directly by the required arithmetic operation), Complex 
mathematically direct (complex MD, the equation related the given sets directly but 
included further computation), Semantic escape (SE, problems where some require-
ments were not fulfilled), or Other.
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Figure 1 shows percentages of MD, complex MD, SE and Other problems constructed 
for each pair type by participants. In the Addition condition, the relative frequency 
of MD problems was higher for aligned symmetric pairs (45%) than for misaligned 
asymmetric pairs (10%), with the frequency for subset-set pairs falling in between 
(13%). The pattern for generating Complex MD problems generally matched that for 
MD problems, being higher for symmetric pairs (37%) than asymmetric pairs (4%), 
with subset-set pairs intermediate (11%). The opposite pattern was observed for SE 
problems, where the percentage was higher for asymmetric pairs (80%) than for sym-
metric pairs (13%), with subset-set pairs intermediate (69%). 

These patterns generally reversed in the Division condition. The percentage of MD 
problems was far higher for aligned asymmetric pairs (63%) than for misaligned sym-
metric pairs (10%), with the frequency for subset-set pairs falling in between (31%). 
Complex MD problems were seldom generated in the Division condition (8%, 0% and 
5% for symmetric, subset-set, and asymmetric pairs, respectively). The relative fre-
quency of SE problems in the Division condition was higher for misaligned symmetric 
pairs (78%) than aligned asymmetric pairs (23%), with subset-set pairs intermediate 
(61%).

In general, the results obtained from the Russian sample closely matched those ob-
tained using the U.S. sample tested by [Bassok, Chase, Martin, 1998, p.17]. In the case 
of word problems based on natural number arithmetic, Russian educators use arith-
metic problems that are consistent with semantic alignment in a manner similar to 
their use by U.S. educators. Similarly, Russian adults show the same pattern of align-
ment with addition and division problems as U.S. adults.

Fig. 1. Percentages of MD, Complex MD, SE, and Other problems constructed 
in addition/subtraction and division/multiplication conditions for each of semantic relations 

(U.S. sample: data from [Bassok, Chase, Martin, 1998, p. 117])
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RATIONAL NUMBER TEXTBOOK ANALYSIS

We examined three textbooks for grades 5, 6 and 7 [Vilenkin et al., 2005; 2008; Makary-
chev, Mindjuk, Meshkov, 2008]. Books by these authors (for different grades of second-
ary and higher school) are recommended by the Russian Ministry of Education. They 
have a very large circulation, and are chosen by great number of Russian teachers. 
Only word problems containing fraction or else decimal numbers were analyzed. Prob-
lems consisting of several parts or containing several fraction/entity pairs were coded 
separately as different problems. In total, 476 problems were examined, of which 216 
included decimals and 260 included fractions. 

The great majority (91%) of the decimal problems used continuous entities. However, 
in stark contrast to findings in comparable analyses of similarly popular textbooks 
used in the U.S. and South Korea (described by [Rapp et al., 2015; Lee et al., 2016], 
respectively), most fraction problems (87%) also used continuous entities. A test of 
independence between number and object type showed that the two factors were not 
reliably associated, χ2(1) = 2.55, p = 0.11. Thus, the findings from the textbook analysis 
indicate that students in Russia are not exposed to any systematic alignment of for-
mats for rational numbers with types of entities. 

EXPERIMENT 2. ALIGNMENT WITH RATIONAL NUMBERS 

Sixty-four undergraduates (mean age 20 years; 42 females and 22 males) from the De-
partment of Computer Sciences, NRU ‘Higher School of Economics’, were asked to take 
part in the experiment in lieu of their regular class. The instructions given to the partic-
ipants were exactly the same as those used in Experiment 1 from [Rapp et al., 2015] and 
Experiment 1 from [Lee et al., 2016]. Each of them was given a sheet of paper containing 
three examples of simple word problems with whole numbers. First, the constructed 
problems were divided into decimals or fraction problems; then, they were classified as 
continuous or discrete depending on the type of entity used in problem. All the gener-
ated problems were coded using criteria based on the study by [Rapp et al., 2015].

As seen in Fig. 2, Russian college students more often used continuous entities with 
decimals (74%) compared to using continuous entities with fractions (51%). Converse-

Fig. 2. Percentages of decimal and fraction problems constructed by Russian college students 
in continuous or countable entity conditions. (U.S. sample: data from Rapp et al., 2015, p. 50)
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ly, they used discrete entities more often with fractions (49%) than with decimals (26%). 
A test of independence between number and object type confirmed that number type 
and continuity were significantly associated, χ2(1) = 6.76, p = 0,009; Phi = 0.224. This 
pattern of alignment is strikingly similar to that found with American students tested 
by [Rapp et al., 2015] and as well as by South Korean students tested by [Lee et al., 
2015]. In summary, Russian college students, like their counterparts in the U.S. and 
South Korea, and unlike Russian math textbooks, tend to use decimals to represent 
continuous entities and fractions to represent discrete entities.

We might expect that a rapid transition from concrete objects to abstract algebra in 
the Russian curriculum would attenuate natural alignment patterns. However, despite 
the absence of such alignments in math textbooks in Russia, the results showed that 
Russian college students have aligned the type of rational numbers with the type of 
entities. In other words, the outcome of a markedly different curriculum in Russia is 
much the same as the outcome in the United States and South Korea. It seems that 
people naturally anchor their mathematical reasoning (at least with rational num-
bers) in properties of concrete entities, even against the curriculum.

However, it is also possible that the curriculum itself was effective enough to change 
this natural alignment pattern, although for a shorter time period. Indeed, our par-
ticipants had been exposed to not-aligned word problems over several years. What if 
the curriculum had affected the natural alignment pattern, but subsequent everyday 
activity annulled the effect?

EXPERIMENT 3. ALIGNMENT IN EIGHTH-GRADERS

We hypothesized that the effect of non-aligned word-problems in Russian textbooks 
is to be found in younger students who had just completed their basic drilling in mod-
eling discrete and continuous objects with fractions and decimals. Therefore the goal 
of the study was to examine the accumulated effect of not-aligned textbook problems 
in a sample of eighth-graders. Mostly, Russian eighth-graders have already finished 
studying word-problems and continue dealing with fractions in algebra where no real 
objects are supposed to be used.

Thirty-six eighth-grade students from a public school in Moscow (Mage = 14), were asked 
to take part in the experiment during a regular lesson. The instructions given to the par-
ticipants exactly replicated the instructions in Experiment 2 with college students. The 
constructed problems were coded using the procedure and criteria from Experiment 2.

Generally 72 word problem were produced. As it seen in Fig. 3 the eighth-graders did 
not show any clear tendency either towards of continuous or countable objects: they 
modeled with decimals or fractions with almost equal probability (in 60% of cases 
continuous objects are associated with decimals and in 50% — with fractions). A test 
of independence between number type and object type showed that these two factors 
were not significantly associated, χ2(1) = 0.839, p = 0.36; Phi = 0.115.

The absence of semantic alignment in eighth-graders was consistent with the text-
book analysis results, and contrasted with the strong alignment pattern of college 
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students. These findings support our hypothesis that the curriculum can change the 
natural alignment pattern of pupils, which, however, could return after some time (at 
least in non-mathematicians).

GENERAL DISCUSSION

The primary goal of the study was to compare patterns of semantic alignment in dif-
ferent educational approaches to teaching basic arithmetic and rational numbers. We 
examined whether the strong focus on abstraction and magnitude and measurement, 
which is the distinguishing feature of the Russian math curriculum, would diminish 
the semantic alignment in textbook word problems and in the subsequent perfor-
mance of students. We found that in the case of arithmetic Russian educators use 
aligned arithmetic problems in textbooks in a manner similar to their use by U.S. and 
South Korea educators. Similarly, in dealing with arithmetic problems, Russian adults 
showed the same pattern of alignment as adult Americans and Koreans.

However, in the case of rational numbers, Russian textbooks demonstrate no alignment 
in modeling discrete and continuous objects relative to rational number format. More-
over, only a very small proportion of the total problems in textbooks involve discrete 
objects (< 5%). Both fractions and decimals are highlighted as tools for continuous 
measurement. This was not very surprising given that the concepts of magnitude and 
measurement play a key role in teaching math in Russia. The issue of the developmental 
effects of the non-aligned curriculum is more interesting. The eighth-graders, who had 
recently been exposed to extensive practice with non-aligned word problems, didn’t 
show alignment in solving word problems with rational numbers. But college students, 
who had finished with that part of curriculum years before, did. Russian alignment pat-
terns were actually very similar to the ones the U.S. and South Korea students showed, 
even though latter groups were exposed to drastically different curriculum. 

The first question which arises is what is going on with the understanding of rational 
numbers when they are taught as dependent on or independent of the object they 
model. Possibly, the Russian emphasis on continuous measurement, independent of 
rational number format, may provide an advantage for magnitude assessments of ra-

Fig. 3. Percentage of decimal and fraction problems which were countable or continuous 
(Experiment 3)
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tional numbers — especially those of fractions, which students over the world struggle 
with more than decimals (e.g., [Lee et al., 2016]). On the other hand, emphasis on 
magnitudes may hamper relational reasoning with fractions, since a fraction also rep-
resents the relation between the cardinalities of two sets.

Another question is whether acquiring semantic alignments is in fact desirable. For a 
mathematical concept it doesn't matter which kind of concrete objects to substitute. 
Examples aligned with concepts might help students at the initial stages of learning. 
However, it remains unclear whether there are any negative implications of semantic 
alignment, e.g. whether they do not artificially limit the range of concrete objects that 
a mathematical concept can describe. In any case, to improve our knowledge of these 
issues, alignment patterns should be explicitly stated by educators and highlighted for 
students.
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named after S.I. Vavilov, Moscow, Russia 

The emphasis laid upon the skills of numerical calculations and algebraic transformations, 
which dominated the pre-computer era, is gradually losing its significance. Today math-
ematical education is viewed as aiming at the formation of scientific thinking skills. The 
paper suggests an approach to mathematical education based on the concept of object-ori-
ented mediation. The characteristic feature of this approach consists in that the student is 
placed in conditions similar to those that historically led to the formation of new sections 
of mathematics. 

Computerization, which during the past decades changed dramatically the outlook of 
modern scientific and educational culture, has also led to the need of rethinking the 
aims of school education, especially in mathematics. In the pre-computer era, mathe-
matical education was mainly aimed at mastering the skills of numerical calculations 
and symbolic (algebraic) transformations required in various fields of applied science 
and industry. The main efforts of teachers were directed to this objective. Currently, 
the widespread use of computer technology has made this goal obsolete, at the same 
time posing new challenges for school teachers and methodologists. Besides the mas-
tering of the subject-matter, one expects from modern students the achievement of 
goals that go beyond mathematics itself. In particular, a greater emphasis is laid now-
adays upon the development of scientific thinking by means of mathematics. 

The distinctive character of scientific thinking consists in that it reveals essential con-
nections between various aspects of reality that remain hidden to ordinary conscious-
ness. In solving problems, the recognition of these connections consists in finding 
“intermediate situations” (one or many), which are somehow “in between” the two 
opposites — the source data and the desired result. In philosophical parlance, such 
“situations” are called mediations (Vermittlungen). Teaching the art of mediation by 
solving mathematical problems may be considered as an effective means of forming 
scientific thinking skills [Bytchkov, Zaytsev, 2015].

A special role in developing these skills belongs to geometry. This fact has been long 
recognized by the theorists of mathematical education. Thus, Hans Freudenthal, among 
others, insisted that geometry has a special potential for the development of creative 
thinking since it can be taught — at least at the earlier stages — in terms of operations 
with real tangible objects in the real three-dimensional space [Freudenthal, 1972]. 
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The main idea of this paper consists in that the special role of geometry in education 
is due to the diagrammatic character of its content, rather than the axiomatic-de-
ductive form of its exposition. This means that practical operations with geometrical 
objects are valuable not only as prolegomena to the study of logical structure of the 
corresponding theory. Their pedagogical value is determined by the fact that “think-
ing with objects” compels students to solve problems, that is, find “intermediates” be-
tween what is done and what should be found by drawing new auxiliary constructions 
consisting of points, lines or figures, and not by selecting appropriate propositions 
from a fixed list of axioms [Bytchkov, 2014].

Let us first give an example of how an object-oriented mediation may be accom-
plished using a rather simple subject “the area of triangle.” The usual practice of mas-
tering this topic — let us say it frankly — consists in memorizing the formula S = ½ ah 
(where a is the base and h the height of the triangle) and repeatedly applying it for 
solving problems. Needless to say, that such an approach can contribute neither to 
the understanding of the rationale behind the formula, nor to the formation of crea-
tive thinking. 

The situation is different when the student, asked to find the area of a triangle, is 
obliged to solve the problem by drawing an appropriate diagram. The resolution of a 
problem consists — to use a popular truism — in reducing it to the problems that have 
already been solved. This means — in terms of object-oriented mediation — that in 
order to calculate the area of triangle a figure should be found to which triangle can be 
“reduced” by means of practical operations and for which the problem of finding the 
area has already been solved. 

The easiest way to verify the correctness of the formula S = ½ ah is by inspecting the 
following diagram (Fig. 1) [Lockhart, 2009]:

When the figures are drawn and the reduction of the triangle to the half of the rec-
tangle accomplished, the solution of the problem becomes obvious. But how can one 
guess that a rectangle should be described around the triangle and the height dropped 
from its vertex? In order to answer this question, let us turn to the history of the con-
cept of area [Bytchkov, Zaytsev, 2006]. What geometrical figure is — from a historical 
point of view — at the origin of the notion? Such a figure is a rectangle whose area 
is reduced to the sum of the areas of (unit) squares. The school course of geometry 
follows essentially the same strategy: the area of rectangle is calculated as the sum of 
the areas of unit squares. This means, that one should link the triangle with a certain 
rectangle. It is obvious, that the rectangle described around the triangle is the one 
which is “most closely connected” with the triangle in question. The idea of dropping 
the height from its vertex is somewhat more complicated, but a targeted use of ob-
ject-oriented mediation can help in this case too. What figure constitutes the “link” 
between the two figures — triangle and rectangle? It is clear, that such a figure will be 
right-angled triangle. Since the finding of its area by means of the described rectangle 
is rather easy, one should only guess how to reduce the case of arbitrary given triangle 
to that of the right-angled one. This is not very difficult. Thus, the entire chain of me-
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diation, displayed in Fig. 1, is restored. In describing the steps leading to the solution, 
we have paid special attention to the targeted nature of the search for links between 
the given data and the desired result. Being truly creative, such a search would even-
tually contribute to the formation of scientific thinking skills.

Two educational strategies — the one basing on formal-analytical inference and the 
other on object-oriented mediation — have their counterparts in the real history of 
mathematics. In the historical development of almost all of its branches object-ori-
ented procedures always preceded the formal-analytical and axiomatic-deductive 
ones [Zaytsev, 2011; 2018]. The example of algebra will help to familiarize with the 
idea. Nowadays, at the heart of the course of algebra is a formal approach that goes 
back to F. Viète and R. Descartes. The mastering of this approach essentially consists 
in memorizing the rules of manipulation of algebraic symbols. The substantial part 
of the course is devoted to the solution of quadratic equations, which is carried out 
in a purely formal way: by reducing these equations to the canonical form and apply-
ing to it the standard formula for the calculation of roots (“through discriminant”). 
The only result of this educational strategy consists in that students acquire skills 
in symbolic transformations and substitutions of parameters by numerical values. 
Obviously, this is not an approach that could contribute to the formation of scientific 
thinking skills. 

As an alternative, we propose to use in this context an object-oriented construction un-
derlying the formula of the roots. This construction is designed within the framework 
of the so-called “geometric algebra.” Originated in ancient mathematics (Babylonian, 
Indian and ancient Greek), geometric algebra is a discipline that studies the mag-
nitudes by presenting them as geometrical formations. Within such framework one 
can establish properties of linear and plane magnitudes, accomplish transformations 
of complex expressions, and find solutions of linear equations with one unknown. It 
can also be used to demonstrate certain algebraic identities of the second degree and 
solve quadratic equations (and systems of equations of the second degree with two 
unknowns) by interpreting algebraic symbolisms in terms of geometry. The main di-
dactic advantage of geometric algebra consists in that it not only provides the desired 
result (as symbolic algebra does), but also reveals the reason why this result is actually 
correct. The answer to this question can be read off the accompanying diagram. 

Let’s look at some examples starting with a well-known geometric demonstration of 
algebraic identity

(a + b)2 = a2 +2ab + b2. (1)

Fig. 1



237PME and Yandex Russian Conference 2019

S. Bytchkov, E. Zaytsev

► Let’s represent the magnitudes a and b by line segments. The expression on the left 
side of the identity (1) is a two-dimensional magnitude, viz. the square with the side 
a + b (Fig. 2). Its area is equal to the sum of the areas of its parts — two squares with the 
sides a and b, respectively, and two equal rectangles with the sides a and b. 

Let us now write down the identity (1) by means of abbreviations that better express 
the idea of underlying geometric figures: □(a + b) = □a + 2□a b + □b. 

As a second example, let us consider the demonstration of algebraic identity

    (a + b)2 = 4ab + (a – b)2, provided that a > b. (2)

► Let us construct a square with the side a + b using four equal rectangles A = ab, 
attached to each other, as shown in Fig. 3. After the construction of the square is com-
plete, one finds in its middle a small square with the side a – b.

The diagram in Fig. 3 looks as the stylized propeller, the inner “axis” of which is con-
stituted by the square with the side a – b, while the “blades” are four equal rectangles 
A with the sides a and b. From the drawing it follows that the area of the large square 
is equal to the sum of the areas of the four rectangles A and the small square with 
the side a – b. This may be better expressed by means of the abbreviated notation 
□(a + b) = 4·A + □(a – b) equivalent to the identity (2). 

The idea of representing squares as a “propellers,” that is as the combinations of four 
rectangular “blades” and square “axes” can be used as an alternative to solving quad-
ratic equations by means of the usual algebraic formula “with discriminant.” The ad-
vantage of this diagrammatic method over its formal counterpart consists in that it 
involves the construction of a square which is used as the mediating link between the 
given and the sought magnitudes. To begin with, it is necessary to distinguish three 
canonical types of equations of the second degree, depending on the signs of the co-
efficients:

x2 + px = A or □x(x + p) = A, (3)

x2 – px = A or □x(x – p) = A, (4)

px – x2 = A or □x(p – x) = A. (5)

Fig. 3Fig. 2
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To provide the geometric rationale behind these algebraic equations, let us assume 
that the unknown x and the coefficient p are linear magnitudes (line segments), while 
the known term A is a plane figure (rectangle). 

In each of the three cases, we should find an unknown magnitude x, given the known 
magnitudes p and A.

Let us start with the solution of the equation (3). 

► To solve this equation, let us build a square by attaching to each other four equal 
rectangles A = □x(x + p), as shown in Figure 4. The “axis” of the propeller will be then 
a square with the side p. It follows from the diagram that the square with the side 
2x + p is equal to the sum of four rectangles and a square; this is expressed by the 
formula:

□(2x + p) = 4·A + □p. (6)

We find the square of 2x + p by calculating the sum of four rectangles A and the square 
with the side p. Then, by extracting the root we find 2x + p, and finally, x. 

Let us now solve equation (4). 

► Let us construct a square with the side 2x – p by adjusting rectangles A = □x(x – p), as 
shown in Fig. 5. The “axis” is the inner square, the side of which is equal to p. The de-
composition of the larger square into four equal rectangles (“blades”) and the smaller 
square (“axis”) can be expressed by the formula:

□(2x – p) = 4·A + □p. (7)

Calculating the right part of the identity (7), we will find the square of 2x – p, then, 
extracting the root, the magnitude 2x – p itself, and, finally, the value of x. 

Finally, let us consider equation (5). 

► Let us take as “blades” of the “propeller” four rectangles A = □x(p – x). Since it is a 
priori not clear which side of the rectangle is larger than the other, two cases should 
be considered.

Case 1: x > p – x, that is x > p/2 (Fig. 6). 

Fig. 5Fig. 4
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In this case, the large square has the side p and the inner one has the side 2x – p. The 
decomposition of the larger square into four equal rectangles and the inner square is 
expressed by the formula □p = 4·A + □(2x – p), which is equivalent to 

□(2x – p) = □p – 4·A (8)

Calculating the value of the plane magnitude in the right part of the formula (8), we 
find the square of the unknown magnitude 2x – p, then the magnitude 2x – p itself, 
and, finally, the value of x. 

Case 2: x < p – x (Fig. 7). 

Now the larger square has the side p, and the inner one has the side p – 2x. The decom-
position of the larger square into four equal rectangles and the inner square gives the 
formula: □p = 4·A + □(p – 2x) which is equivalent to 

□(p – 2x) = □p – 4·A. (9)

Calculating the right part of the formula (9), we find the square of the unknown mag-
nitude p – 2x, then the magnitude p – 2x itself, and, finally, the value of x. 

In a similar way, by constructing a suitable diagram in form of “propeller,” one can ob-
tain diagrammatic solutions of systems of two equations of the second degree. Thus, 
this method of solution is a rather general one.

Its obvious shortage consists in the separate consideration of the three types of quad-
ratic equations. In addition, it is impossible — within its framework — to obtain neg-
ative solutions. Here we have to turn to the usual algebraic technique based upon 
symbolism. 

Given the pros and cons of the approach, we propose to introduce elements of geomet-
ric algebra as a propaedeutic complement to the ordinary course of symbolic algebra. 
The mastering of the diagrammatic reasoning at an earlier stage will allow students 
better understand the geometric origins of algebraic technique and increase motiva-
tion for its study. Geometric solutions of algebraic problems can be found by drawing 
diagrams with pencils and markers of different colors, or with the help of computer 
graphics, which will make the study of this technique more attractive for modern stu-
dents. 

Fig. 7Fig. 6
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In favor of the object-oriented teaching strategy, the following historical arguments 
can be also adduced [Zaytsev, 2011]. First, history of mathematics attests, that the 
stage of object-oriented mathematics always preceded its development as an axiomat-
ic-deductive or symbolic system. History also testifies, that this preliminary stage — 
during which the mathematicians literally thought with objects — was more creative 
than the periods of formalization (this is certainly true for the main sections of school 
mathematics). This circumstance can be used in school teaching: putting the student 
in conditions similar to those that led to the development of mathematics at its ear-
lier stages (of course, these conditions must be competently modeled by teachers), 
we thereby can create the prerequisites necessary for the development of his or her 
own creative abilities. Another advantage of object-oriented mathematics is that it 
usually relies on a very limited set of elementary technical means. This means that in 
the course of education teachers will not have to spend much time and effort on the 
preliminary training of formal techniques, but could at once proceed to the exposition 
of the main subject. Within this approach, the student will be lead not by the “logic” 
of constantly complicated formal rules, but by the “logic” of the subject itself. Third-
ly, the use of object-oriented teaching will help loosen the rigid sequence of study of 
mathematical disciplines (which is now being criticized). While within the framework 
of formal approach, learning of subsequent sections requires a solid knowledge of the 
technique, mastered in the previous stages (for example, symbolic algebra is neces-
sary for the study of mathematical analysis), the object-oriented teaching can ignore 
this condition. Finally, the use of diagrammatic reasoning can be justified by the fact 
that with the introduction of a narrow disciplinary specialization (this is the case in 
Russian schools) a group of students will appear that will not study mathematics at 
the advanced level, but would prefer the basic, i.e. minimal, one. At this level, empha-
sis could be placed at the acquisition of basic skills of “thinking with objects,” rather 
than at mastering the application of memorized formal rules. Finally, we assume that 
“thinking with objects” would help students with disabilities.
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ON THE CONTENT AND METHODS OF TEACHING 
MATH IN ELEMENTARY SCHOOL FOR GAT STUDENTS
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The pedagogical experiment in teaching mathematics which has been implementing 
over decades in different settings was set in motion under the psychological guide-
lines of the theory of step by step formation of mental actions and concepts of Prof. 
P.Ya. Galperin [Galperin, 1985]. This presentation focuses just on teaching in Elemen-
tary school and for GAT students.

The goals of the research were to check whether the change of the content and se-
quence of presenting themes along with interactive way of teaching could cause a 
substantial turn in motivation of students and make a difference in the development 
of their math concepts.

There were 2 groups of students, 16 students in each one, who came through this ex-
periment and two other groups of same size are currently continue participation. All 
students were previously selected before enrolling in 1st grade; the selection of stu-
dents was based on their general cognitive abilities. 

Relying on the 3rd type of education [Galperin, 1976] and rearranging core curricu-
lum completely, we’ve achieved the following results. The first-grade students have 
learnt all four arithmetic operations with natural numbers and got acquainted with 
basic geometric concepts. During the second year they expanded their knowledge of 
numbers on integers. They knew to draw graphs of functions on integer plane like 
y = ax + b, y = ax2 + bx + c, y = |x| and their compositions. They knew the transformations 
of graphs. During their third grade, they got acquainted with the language and basic 
concepts of mathematical logic and set theory, continued to prove theorems in plane 
geometry, factor polynomials, solve (in integer numbers) systems of linear equations 
and quadratic. By the completion of their fourth year of studies, they knew integer 
powers and many other things which do not present currently in math manuals for el-
ementary students. But most important, we can state they met this challenging course 
with great enthusiasm and that was the major factor which made such accelerated 
studies possible. 

The method can be applied not only far beyond the elementary years and can level 
the graduate requirements in mathematics at least for AP students to those of soph-
omores with major in mathematics, but also to other subjects like physics, computer 
studies, languages and even history. 
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SECONDARY MATHEMATICS TEACHERS’ DISPOSITION 
AND POSITIONAL FRAMING TOWARD ERRORS
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This mixed methods study examines how teachers’ disposition and positional fram-
ing toward errors are intertwined during teacher and students’ moments in classroom 
interaction. The quantitative phase included the Error Orientation Questionnaire to 
measure secondary mathematics teachers’ disposition toward errors. The qualitative 
phase involved semi-structured interviews and classroom observations of two teach-
ers assessing their positional framing. 

This paper focuses on the qualitative phase of the study. Data analysis was conduct-
ed using meaning coding technique from the grounded theory to generate themes 
across teachers’ disposition toward errors and their positional framing based on Bey-
ers’ [2011] dispositional functioning framework along with the construct of positional 
framing [Greeno, 2009]. 

The initial findings suggest that there are multiple emerging themes in teacher pro-
ductive disposition toward errors such as error usefulness, error communication, error 
reasoning. The emerging themes in teacher non-productive disposition are error use-
lessness, covering errors, error weakness, to name few. The study also found that the 
activation of different types of dispositions (cognitive, conative, affective) by the par-
ticipating teachers is aligned with the way in which they position themselves and their 
students. During an interview, Angela (pseudonym), a teacher with a non-productive 
disposition toward errors, expressed: “When I make a mistake during my teaching, I 
point it out immediately and I try to correct it as soon as possible”. During her teach-
ing, Angela frames errors by focusing her teaching on the answers rather than the 
processes and correcting errors by herself. In contrast, Damian (pseudonym) commu-
nicated his productive disposition toward errors as saying: “When I make a mistake 
during the lesson and I tried to stop right there and ask some guiding questions to 
make them [students] see the mistake. So, instead of just telling them right away oh 
this is wrong, I try to see if they can figure it out”. Accordingly, his positional framing 
in the classroom is focusing on a systematic connection between error analysis and 
learning, dedicating time for discussion about errors and involving students in the er-
ror correction process. The significance of this study unfolds the relationship between 
teachers’ disposition and positional framing toward errors. 
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EXPLORING FRIEZES AND ROSETTES: 
AN EXPERIENCE WITH FUTURE TEACHERS
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This study, part of an ongoing project, analyses the performance of future teachers of 
primary education (3–12 years old) in identifying and constructing symmetries, espe-
cially friezes and rosettes, with different resources (paper/pencil; software).

Geometric transformations are one of the most important applications of mathemat-
ics in daily life, allowing the establishment of rich connections. It enables students to 
explore/create patterns, solve problems and think spatially. However, students gener-
ally show a low level of learning when geometric transformations are concerned (e.g., 
[Swoboda, Vighi, 2016]). Research supports the assertion that appropriate technology 
and media-supported instruction can help with learning in a variety of domains, in-
cluding geometric transformations [NCTM, 2014]. So, technological tools may be use-
ful to develop visual skills and overcame some difficulties. 

To conduct this exploratory study we followed a qualitative approach. The participants 
were 14 future teachers of primary education. Data was collected during the classes 
of a Didactics of Mathematics course, through: observation, written productions and 
photos. They were exposed to the teaching of geometric transformations (transla-
tions, rotations, reflections and glide reflections), analysing examples of applications 
in mathematics and other areas. The students were also motivated to identify/con-
struct friezes and rosettes, using paper and pencil. After a period of appropriation of 
the processes involved, they were invited to explore the same aspects in a dynamic 
environment provided by the software Gecla. The functions used were: Search for sym-
metries, Classify/Generate Friezes and Rosettes. 

Preliminary results show that these students easily identify symmetries with both re-
sources and are confortable with the construction/generation of friezes and rosettes, 
since it is a step-by-step process. These students exhibited difficulties in identifying 
the motif/module that generates some friezes/rosettes. Gecla aloud them to develop 
an intuition in some of these cases and increased their motivation, however certain 
students referred that the software could show the composed motif besides the mini-
mum motif.

REFERENCES

NCTM. Principles to Actions: Ensuring Mathematical Success for All. Reston, VA: NCTM, 2014.

Swoboda E., Vighi P. Early Geometrical Thinking in the Environment of Patterns, Mosaics and 
Isommetries. Cham, Switzerland: Springer, 2016.



246 In Shvarts A. (Ed.). Proceedings of the PME and Yandex Russian conference: 
Technology and Psychology for Mathematics Education. P. 246. Moscow, Russia: HSE Publishing House.

QUALITY OF DIFFERENTIATION 
WITH TECHNOLOGY IN MATHEMATICS INSTRUCTION 

BY PRE-SERVICE ELEMENTARY SCHOOL TEACHERS
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Research shows the positive effect of differentiated instruction on engagement and 
performance in mathematics [Konstantinou-Katzi et al., 2013], and outline tools, 
technologies, and practices to support differentiation in the mathematics classroom 
[Cabus, Haelermans, Franken, 2017]. However, there is lack of research that focus on 
assessment of the quality of differentiated instruction in mathematics classrooms. 
The purpose of this study is to analyze differentiation skills with technology of el-
ementary pre-service teachers (PSTs) enrolled in a graduate level pedagogy course, 
focusing on integrating technology in special education and inclusive classrooms. 

The authors developed and validated the Differentiated Instruction Rubric (DIR). The 
DIR uses two categories suggested by [Roy, Guay, Valois, 2013] — Instructional Adapta-
tions (IA), and Academic Progress Monitoring (APM). Content validity and inter-rater 
reliability were confirmed by two independent raters with Pearson r-values ranging from 
0.723 to 1.000 (p < 0.001). Cronbach’s alpha confirmed internal consistency (α = 0.830).

Lesson plans and videos of math lessons taught by 170 PSTs in grades 1–5 were scored 
using the DIR. The scores in two categories were compared using a paired sample 
t-test. The results indicated that IA scores were significantly higher than APM scores 
(p < 0.001) with small effect size (Cohen’s d = 0.212). The scores also indicated that 
PSTs interpreted differentiation only as adaptation for students with special needs, 
but demonstrated lack of differentiation necessary to meet the needs of all students. 
The study is currently in the stage of qualitative data analysis that will shed more light 
on approaches PSTs used to differentiate mathematics instruction with technology. 
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VIEW ON EQUATIONS–SEQUENTIAL VERSUS RELATIONAL

Angelika Bikner-Ahsbahs, Thomas Janßen
Stefan Bollen, Dmitry Alexandrovsky

Tanja Döring, Rainer Malaka, Anke Reinschlüssel 
University of Bremen, Germany

The solving of linear equations has been intensively investigated in mathematics 
education research. In order to solve mathematical problems with linear equations 
successfully, students need to (1)  translate them into a linear equation and (2) use 
equivalence transformations to solve the equation. We assume that — after a teach-
ing period in algebra — students, who have not yet understood how to apply linear 
equations would meet obstacles when they are asked to use a representation system 
that is new to them. Our aim is to identify such obstacles. For our study, we have 
used the MAL-System (MAL stands for Multimodal Algebra Learning [Reinschlüssel 
et al., 2018]) as a new representation system; this is a digital system implemented into 
a tablet where tangibles (or tiles) represent numbers and variables in two versions, 
(1) purely digital or (2) as a hybrid version of haptic tangibles combined with digital 
feedback. On the tablet screen the two sides of an equation are represented in a mat. 
A colored vertical line in the middle offers feedback, yellow says there is no mistake, 
red means there is a mistake and green indicates that the task is solved. Colors of the 
tiles represent signs, blue the positive and red the negative sign. Squared tangibles are 
units and lengthy tangibles variables. In the course of the solving process, equations 
are also represented by algebraic symbols on the screen. 22 students from a school 
with highly proficient students of grade 7 are asked to solve five tasks with one of the 
two systems. Student pairs of similar achievements in algebra used either the digital 
or the hybrid version. Data consists of video recordings of the solving processes and 
the students’ post descriptions of how they solved the tasks. The video data are ana-
lyzed to reconstruct obstacles. The system turns out to be quite intuitively accessible 
for the students. In most cases, they try to solve the tasks by first translating them into 
symbolic algebraic expressions in their imagination and then they translate this ex-
pression into the new system. Preliminary results show three main obstacles: (1) tiles 
with a negative sign are difficult to handle, (2) the product of a number and a variable 
like 2x is often misinterpreted (one tile for x and 2 unit tiles), (3) the students inter-
pret application tasks sequentially, word by word, rather than relationally. The third 
obstacle seems to cause in-depth difficulties, e.g. all the students made the inverse 
error and several students tried to solve the equation by manipulating just one side. 
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THE PROBLEM OF CONNECTION 
BETWEEN PEDAGOGICAL SCIENCE 

AND TEACHING PRACTICE

Alexey V. Borovskikh
Lomonosov Moscow State University, Moscow, Russia

It is well known that numerous studies, both pedagogical and psychological, are com-
pletely unclaimed in practice. What is the problem? Is it laziness or illiteracy? Is it 
the absence of an organization? Is it the incomprehensibility of scientific reasoning? 
These and many other questions frame two main ones: why is this happening and how 
can it be fixed? We try to answer these two burning questions. 

The problem, as it turns out, is that pedagogical science is in a state of intra-scientific 
crisis, the protracted nature of which is determined by the specifics of pedagogical 
activity. The key concept which discover the essence of this crisis is differentiation of 
the phenomenological and empirical knowledge. 

This differentiation is based on the methods of obtaining the knowledge, it is obser-
vation in the first case and experiment in the second one. The first method produc-
es phenomenon which is usually structured and described by external (with respect 
to the object of observation) means appeared to be metaphorical. Phenomenological 
knowledge describes only “what may occur.” 

To the contrary, the empirical knowledge describes the object in terms of it’s own 
properties shown in the act of changing of this object and has the strict form “condi-
tions-action-result” which allow to reproduce the same action at the same conditions 
and obtain the same result. 

The problem of the pedagogical science is that it is almost pure phenomenological 
and can’t pass to the empirical state (we call it “phenomenological crisis”). The cause 
is the simple fact that the pedagogical action is unreproducible because the condi-
tions could never be “the same.”

The proposed solution to this problem consists in the constructing the reproducible 
result not in terms of the acting but just in terms of the thinking. The thinking by 
means on the schemes, which allow in any particular situation construct the action 
giving the result we need. It is not a fantastic idea but the practice of the pedagogical 
education at MSU. Instead of the discussion “what to do” at this or that situation we 
discuss “what and how to think”, and this provide the reproducible results.

Development of pedagogical thinking in our practice at the present time is based on 
about 30 schemes and principles that allow build an adequate pedagogical action 
solving almost all typical pedagogical problems (as, for example, the problem of the 
self-control, motivation, communication, and others).
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COMPUTER RESEARCH IN TEACHING 
GEOMETRY AT THE UNIVERSITY

Aliya Bukusheva
National Research Saratov State University 

named after G.N. Chernyshevsky, Saratov, Russia

Many pedagogical studies have theoretically proven and experimentally confirmed 
that empirical research activities in education has great potential, since students 
best learn information that they have discovered independently. The challenge of 
constructing a technique for teaching Bachelors-level Geometry (for students in the 
field of Mathematics and Computer Science) with elements of computer research and 
experiments is examined in this paper. The methodology of the research comprises 
the analysis and generalization of the scientific research results made by Russian and 
foreign scientists specialized in the sphere of teaching Geometry in the framework 
of higher education and based on productive, academic and objective approaches. 
Some peculiarities of the educational process of classical universities in developing 
the methodology of experimental research were taken into account, including: the 
study of the fundamentals of science, of science itself in development; the link be-
tween the independent work of students with the research work of teachers; and the 
unity of scientific and educational foundations in the activities of a teacher. The use 
of computer research and experiments in teaching Mathematics in the framework of 
higher education allows us to improve the content of academic courses, to increase 
the number of tasks and exercises for self-study, to develop practical skills for con-
ducting mathematical reasoning and to simulate and illustrate the concepts and ob-
jects being studied. These aspects will provide an opportunity to explore certain topics 
thoroughly, to motivate students and to increase interest in the discipline as a whole. 
Furthermore, the use of computer research allows us to bring the scientific work of 
students in Mathematics to a fundamentally new level. The article also touches upon 
the role of the problem as an invariant of methodological support of teaching Geome-
try and changes in its structure in conditions of using computer tools. The content and 
organizational conditions for the implementation of the experimental and research 
trainings in Geometry are studied, and examples of research problems in Geometry 
with various degrees of complexity are examined.
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SCHOOL ENGAGEMENT AND MATH PERFORMANCE: 
RATINGS FROM STUDENTS AND TEACHERS IN RUSSIA
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Higher School of Economics, Moscow, Russia
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Department of Psychology, National Research University 

Higher School of Economics, Moscow, Russia;
Department of Psychology, York University, Toronto, Canada

School engagement reflects children’s investment in learning at their school. Math-
ematics is core in school curriculum and fundamental for children’s scholastic and 
career success. Critically, it is unclear how school engagement relates to mathematical 
performance in Russian children. This study aims to determine the degree to which 
student school engagement and teacher’s assessment of school engagement of stu-
dents can predict math grades in the classroom. To test this hypothesis, 100 Russian 
school-aged children (ages 6–12 years) and their teachers were chosen using simple 
random sampling method from schools in Moscow. Students were asked to complete 
a school engagement scale that addressed emotional, behavioral and cognitive factors 
associated with school activities. Also, we developed a new scale to evaluate teacher’s 
assessment of student’s school engagement. Teachers were asked to complete this 
scale that addressed emotional, behavioral and cognitive components of student’s 
school engagement. In addition, we collected data on children’s classroom perfor-
mance in math, science, language and reading. Results showed that both teachers’ 
and student’s evaluation of cognitive school engagement were predictors of math and 
science marks, and as expected the teacher’s evaluations were stronger. Both teachers’ 
assessment of behavioral school engagement of students and behavioral school en-
gagement of students predicted language and reading marks than other components. 
Interestingly, behavioral school engagement of students was a stronger predictor of 
language marks than teachers’ assessment of the same component. Furthermore, 
teachers’ assessment of students’ behavioral school engagement was a stronger pre-
dictor of reading marks than behavioral school engagement. Together these findings 
suggest a relation between teacher’s and student’s assessment of school engagement. 
Theoretically, these findings aid psychologists and educators to design interventions 
and to develop instruments to track the student performance in different subjects 
more precisely. Practically, shared assessment can serve as an improved approach for 
educational assessments. 
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A PRIMARY PRE-SERVICE TEACHER´S INSTRUMENTAL 
ORCHESTRATION OF ROTATIONAL SYMMETRY

Shajahan Haja-Becker
University of Saarland, Saarbrücken, Germany

The study investigates the explanatory power of Artifact-Centric-Activity-Theory 
(ACAT) framework [Ladel, Kortenkamp, 2016] through its confrontation with a primary 
pre-service teacher’s (JS) teaching episodes, in which JS orchestrates her dynamic ge-
ometry concept with 17 children (6 girls, 11 boys) of Grade 4 in a computer based teach-
ing-learning environment. An adapted ACAT model (figure) for this study describes the 
process of instrumental genesis (Artigue, 2002), the different levels of activity theory in 
internalization and externalization mediated by dynamic geometry artifacts, and social 
interaction in primary classroom in view of the instrumental orchestration (Drijvers, 
Trouche, 2008). JS introduced GeoGebraClassic (Geometry) dynamic geometry system to 
the children who are using it for the first time. In the following week, JS orchestrated 
the “rotational symmetry” episode with the children. Her instrumental orchestration 
is interpreted through a didactical configuration, an exploitation mode and a didacti-
cal performance (Drijvers, 2012). JS used a central screen; the children were working 
individually on computers following JSs instructions. They engaged themselves with 

the instrumental genesis using the in-
strument “rotate about a point” of Ge-
oGebra pacing differently correspond-
ing their heterogeneous performance 
levels. Observation, JSs lesson plan, 
screen recording of children’s work on 
computers and interview are used to 
collect data. Analysis of the data sug-
gests that the ACAT framework is pro-
ductive for analyzing JSs competencies, 
particularly in combination with the 
theory of instrumental orchestration 
perspectives. Some children (S4, S6) 
had difficulties with instrumentaliza-

tion. JSs orchestration found to be generally effective, as almost all the children appro-
priated the instruments to rotate the triangle about a point bonus with the fascination 
of animating the triangle through 360° illustrated with a windmill rotation.

REFERENCE

Ladel S., Kortenkamp U. Artifact-centric activity theory — a framework for the analysis of the 
design and use of virtual manipulatives  / ed. by P.S. Moyer-Packenham. International 
Perspectives on Teaching and Learning Mathematics with Virtual Manipulatives. N.Y.: 
Springer, 2016.

In Shvarts A. (Ed.). Proceedings of the PME and Yandex Russian conference: 
Technology and Psychology for Mathematics Education. P. 251. Moscow, Russia: HSE Publishing House.

Fig. 1. An adapted ACAT model

Activity: rotation symmetry through 360°
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THEORETICAL JUSTIFICATION OF A STRUCTURE MODEL 
AND THE FORMATION OF MATHEMATICAL THINKING 

I.J. Kaplunovich
S.M. Kaplunovich

Novgorod branch of Academy of National Economy and Public Administration 
at the President of the Russian Federation, Novgorod, Russia

In the psychological-pedagogical literature, there is a large number of works describ-
ing empirical observations and conclusions about the structure and patterns of the 
formation of mathematical thinking. But quite rarely, these studies has a theoretical 
rationale and foundation. The intent of our research — to build a model of the struc-
ture of mathematical thinking and to describe the laws of its development, based on 
methodological and theoretical principles of psychology.

According to J. Bruner, the curriculum must reflect the structure of the studied sci-
ence, which can even be abstracted. However, the difficulty is that we do not yet know 
how exactly the basic structures (reference axes) of the discipline should be formed. 
Answering this question, A.Poincare. R.Tom, M.Minsky suggested that the most of ab-
stract structures (Boolean algebra, topological structures) are always present in an 
implicit form in the child's psyche. Having traced their genesis, J.Piaget [1995] estab-
lished the sequence child's appearance of the basic mathematical substructures iden-
tified by N.Burbaki. 

Based on these and other theoretical positions, we modeled the structure of mathe-
matical thinking. It represents the intersection of five main clusters (substructures of 
thinking) that are homomorphic to the main mathematical structures: topological, 
projective, ordinal, metric and algebraic (N.Burbaki, J.Piaget). 

It turned out that this mathematical structures play a different role in thinking and 
each individual has his own hierarchy and a dominant cluster. We have established 
that the dominant cluster manifests itself in all mathematical actions, and depending 
on it, each chooses his own individual solution method adequate to his cluster. The 
process of thinking through the dominant cluster is carried out "automatically", si-
multaneously and minimized. The teacher's help to the student should be to provide 
this reformulation. Finally, for the development of mathematical thinking it is enough 
developing only the dominant cluster. It influences and leads the development of oth-
ers clusters that are developing, thanks to the “formal effect of learning” [Vygotsky, 
1982]. 
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ROOT OF 4 
AND MATHEMATICS TEACHER TRAINING

Margo Kondratieva
Memorial University, Canada

It has been shown by several studies that while the symbol √4 is familiar to students 
of mathematics starting from the middle school, some believe that the value is 2 as 
others insist on two values ±2. The concept of square root is used in algebra, calculus 
and complex analysis. Undergoing didactic transposition in presentation by textbooks 
and instructors, it may produce students’ confusion. Our research question is: how 
can one improve the situation at the level of teacher training? Our data was collected 
from 60 pre-service teachers in Canada, 67% of whom had confusion about radicals. 
While confirming the presence of diverging opinions, we disagree that square root is a 
concept that “lacks a consensual approach in the mathematical community” [Kontor-
ovich, 2018] and question the proposal to reconsider the labels ‘erroneous’ and ‘cor-
rect’. Instead we claim: 1. The mathematical community that upkeeps a theoretical 
basis of modern technology does have a consensus on the matter, as consistency is one 
of the main principles of science. The community distinguishes concepts of a square 
root of 4 (which is 2 or –2) and the (principal, or arithmetic) square root of 4, denoted by 
√4 = 2. There is the univalent square root function y(x) = √x and y(x) = 2. In algebra, the 
two roots of the equation x2 = 4 are ±√4. In complex analysis there is the multi-valued 
root function (inverse to z → z2) and its principal branch. 2. The inconsistency of pres-
entations by textbooks and teachers and also of students’ conceptualization is rather a 
characteristic of a subcommunity where individual meanings of the concept are being 
constructed. These should be carefully compared against the professional “cultural 
meaning” and corrected accordingly. 3. The corrections could result from resolution of 
inconsistencies, a process that mimics the scientific development. Such tasks are ap-
propriate for shaping teachers’ content knowledge. In our setting, students contextu-
alized their views by answering more elaborate questions than just a root evaluation. 
They also made their own questions, such as: If √* is multivalued, what becomes of 
equation √3 + 2x  = –x?; By uniqueness, limx → 0√4 – x  = ±2 can not exist, does that agree 
with the graph (on my gadget) of the function y = √4 – x  at x = 0? The instructional 
practices of either telling tricks for exam or letting students keep their misconceptions 
and inconsistent reasoning are equally irresponsible. As students’ survey showed, 90% 
of them benefited from discussions where the source of contradiction was explicitly 
articulated and marked as erroneous.
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PRE-SERVICE MATHEMATICS TEACHERS’ 
TEACHING AND LEARNING CONCEPTIONS

Wilfred W.F. Lau
The Chinese University of Hong Kong, China

Teaching and learning conceptions often refer to teachers’ beliefs about their pre-
ferred ways of teaching and learning. Studying teaching and learning conceptions of 
pre-service teachers has been vital. Pre-service teachers bring in existing beliefs about 
the teaching and learning of different subject areas as they enter university. However, 
these beliefs may not align with those advocated in the curriculum. If misaligned be-
liefs remain unchallenged, they are likely to be perpetuated among students and thus 
hinder their conceptual understanding of subject matter. 

This study assessed teaching and learning conceptions of 80 pre-service mathematics 
teachers (PMTs) with the Teaching and Learning Conceptions Questionnaire [Chan, 
Elliott, 2004] on a 5-point Likert scale (1: Strongly Disagree to 5: Strongly Agree). 
Parallel analysis of the data found two correlated conceptions, namely the tradition-
al conception (TRAC) with 17 items and the constructivist conception (CONC) with 
12 items. Alpha reliabilities for the TRAC and the CONC were 0.880 and 0.825 respec-
tively. On average, the PMTs held a more CONC than a TRAC. Whereas female PMTs 
were more likely to hold the CONC than male PMTs, the two conceptions were not 
associated with year of study, number of professional courses completed, and number 
of teaching practicum completed. 

This study offers empirical findings for PMTs to reveal their teaching and learning 
conceptions and make informed pedagogical decisions, which constitute part of the 
professional competence for future teachers [Blömeke et al., 2008]. Teacher educators 
may design learning experiences for PMTs to consolidate or moderate conceptions 
that align or contradict with existing beliefs. More research is needed to identify other 
factors that may predict teaching and learning conceptions of PMTs, including math-
ematical beliefs, mathematics self-efficacy, and mathematics teaching efficacy.
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CULTURAL TRANSPOSITION AND HYBRID LESSON STUDY
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The Lesson Study (in Mathematics) has become a very popular topic in the research 
on teacher education in the last twenty years. The model was born in the East, in the 
so-called Confucian heritage culture area, developing primarily in Japan (jugyokenkyu), 
then in China (guan mo ke) and later in other east countries. Afterwards several real-
izations have been developed in many other countries, also in the Western area. One 
of such realizations considers a perspective of an Hybrid Lesson Study — HLS [Ribeiro 
et al., 2018]. Nowadays the debate of how much these HLS, spread all over the world, 
respect or not the “original” nature of the East Lesson Study is very hot. In this scenario, 
we propose a different perspective in which, according with the Cultural Transposition 
(CT) framework [Mellone et al., 2019], we look at the contact with education practices 
coming from different cultural contexts as condition for decentralizing the assumptions 
rooted in specific cultural paradigms. In this sense, we think that the implementation of 
HLS in different contexts, when accompanied with a suitable cultural sensitiveness, can 
represent an opportunity to develop an awareness of the educational intentionality em-
bedded in specific cultural contexts, in particular our own ones. In this communication 
we will illustrate the CT framework, together with some examples of HLS, inspired in the 
Chines Lesson Study, implemented in Italy within the scope of the last three years of ex-
perimentations. According with the CT framework, we will discuss how the implemen-
tation of these HLS let us to recognize some contrast features, assumptions embedded 
in Chinese and Italian educational culture (e.g., the recognition of the class as public vs 
private space; the important role played by imitation or discovery in the learning pro-
cess; the care to the short or long term goals of teaching; the hierarchy relationships 
implicit within the class vs a practice guided by the principles of dialogue in democracy). 
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PREPARING MATH TEACHERS FOR SCHOOL DISCOURSE

Svetlana Mugallimova
Surgut State Pedagogical University, Surgut, Russia

Current research in various fields, including in pedagogy, appeals to such concepts 
as discourse, language personality and language behavior. The emphasis on language 
and speech seems to be quite promising for research in mathematics teaching meth-
ods. In our previous study [Mugallimova, 2015], we singled out the concept of mathe-
matics learning discourse, referring to a set of communication tools in an educational 
situation that are grouped around mathematical texts and students’ subjective expe-
rience in their mutual semantic content.

At present, we use the term “educational mathematical discourse” with the follow-
ing interpretation: educational mathematical discourse is the practice of organizing 
educational activities based on working with mathematical texts in accordance with 
accepted rules of mathematical activity and the norms of mathematical culture.

Such an interpretation of the term differs from that adopted in the English-language 
literature, where discourse refers to dialogue in a lesson, such as a question-response 
activity. Our understanding of the concept under consideration is close to the formula-
tion proposed by E.A. Kozhemyakin [2009]. Based on this, we understand the discourse 
space as a metaphorical representation of various teaching tools and tools used in the 
educational space such as elements of the educational environment, ways of presenting 
educational information, ways of organizing communication in the learning process, 
etc. — that all directly or indirectly involved in immersion in educational discourse. 

Thus the teacher is a subject carrying mathematical texts. We can formulate the in-
formative characteristics of the discursive competence of a mathematics teacher, im-
plying at the same time an integrative characteristics of professionally significant 
qualities, which includes:

1) knowing the principles of constructing a mathematical text and the rules of peda-
gogical communication;
2) the ability to select texts in accordance with the studied material and educational 
situation;
3) skills of perception, generation and interpretation of educational mathematical 
texts, and
4) experience in planning and managing communication in an educational situation 
using mathematical texts.
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AN INVESTIGATION OF STUDENTS’ RECOGNITION 
OF GEOMETRIC SHAPES IN THE ARTS STUDIO 

Mehtap Ozen-Kus 
Erdinc Cakiroglu 

Middle East Technical University, Ankara, Turkey

Spatial thinking forms the basis for learning mathematics [Clements, 2004] and visual 
arts [Goldsmith et. al., 2016]. It is seen as an overlap between visual arts and mathe-
matics. However, there is a need for studies with theoretical basis that provide strong 
evidences of what kind of thinking processes evolved in such an overlap. This study 
investigates students’ ways of recognition of geometric shapes, considered as one 
of the indicators of spatial thinking, in an arts studio environment. It was designed 
by the researchers based on artful and studio thinking frameworks [Hetland et al., 
2013; Tishman, Palmer, 2006]. Three studio works with spatial content were imple-
mented in this environment. Each studio works consists of three structures: observ-
ing geometric artworks, creating artworks, and describing and evaluating artworks. 
This environment was used as a tool to make students’ thinking visible and investi-
gate students’ recognition of geometric shapes. The participants of this environment 
were six seventh grade students in a public middle school. The data sources of the 
study were interviews, observation notes, and students’ documents (sketches, art-
works, and notes). The studio works and interviews were audio and video recorded. 
The data analysis was conducted on the basis of studies on spatial thinking [Clem-
ents, 2004]. The findings of the study revealed that students reflected four ways of 
recognizing shapes in such environment: (1) relating geometric shapes with real life 
objects, (2)  identifying geometric shapes and their properties, and (3)  identifying 
shapes from different perspectives, (4) identifying shapes through disembedding and 
embedding. Therefore, the study suggests that this environment has a potential for 
eliciting students’ recognition of geometric shapes and other ways of spatial thinking 
in the future studies.
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PROSPECTIVE MATHEMATICS TEACHERS’ ATTITUDE 
TOWARDS THE USE OF HISTORY OF MATHEMATICS 

IN MATHEMATICS TEACHING 
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The purpose of this mixed research study was to explore the prospective mathematics 
teachers’ (PMTs) attitude towards the use of history of mathematics (HM) in teaching 
mathematics. HM is considered as an alternative approach in mathematics teaching 
based on utilizing mathematics’ primary and secondary sources of HM [Tzanakis, Ar-
cavi, 2000]. In the context of using HM, Sullivan [2000] revealed that incorporating 
history in teaching mathematical concepts had positive effects on pre-service sec-
ondary mathematics teachers’ attitude. Regarding this issue, this study investigated 
the PMTs’ attitude on the basis of Tapia’s [1996] attitudinal four dimensions: value, 
enjoyment, self-confidence and motivation. Exploring the PMTs’ attitude towards the 
use of HM, researcher utilized sequential explanatory research design. A survey and 
semi-structured interviews were conducted into two sequential phases by utilizing 
Attitude Scale and Semi-structured Interview Guidelines respectively. The content 
and construct validity of the instruments were assured by scrutiny through 5 experts 
and factor analysis; and reliability was maintained by Cronbach alpha (α = 0.875, 
N = 305) to assess the internal consistency of the Attitude Scale items. The Attitude 
Scale was administered to 305 PMTs in Phase I; and interviews were conducted on 
8 PMTs in Phase II. The five point Likert survey data were analysed through the de-
scriptive and inferential statistics; and semi-structured interviews were analysed by 
coding and categorizing themes. The findings derived from the analysis of both types 
of data were connected in Phase III and revealed that the PMTs had high attitude 
towards the use of HM. The findings indicate that PMTs open to use the HM in their 
future professional life due to their higher attitude towards it. A further study might 
be conducted among in-service teachers to strengthen the argument of using HM in 
pre-service programs.
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FIRST-YEAR STUDENTS' 
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Higher mathematical education is traditionally one of the more difficult for students 
due to the high level of material content complexity itself and its large volume. The 
present study was implemented at Perm State National Research University. Accord-
ing to an analysis of student number dynamics at the Mathematics and Mechanics 
Faculty, the number of graduates who successfully completed their studies did not 
exceed 45% of the number of those who entered the first year.

In order to improve the success of the curriculum development, an empirical study 
was organized and conducted, aimed at exploring students’ personal characteristics 
and academic motivation. We were guided by the data obtained in the studies con-
ducted by Ovcharova [2013] and Trofimova [2013]. The results showed that first-year 
students have high socio-psychological disadaptation indicators, characterized by a 
lack of self-awareness and communication skills, as well as low levels of personal ac-
tivity and social status. These personal features contribute to difficulties in adaptating 
to student groups, and cause problems in subject mastery.

The results of our study describe those personal characteristics of first-year students 
that determine difficulties in the academic process. Among them are a low level of 
subject preparation, unformed motivation, a low level of socialization, and the ab-
sence of a clearly understood system of value orientations. A program of psychological 
and pedagogical support for students that aimed to create motivation was also devel-
oped in order to increase their adaptability and academic success. Educational and 
methodological recommendations were developed that reflect the necessary changes 
in curricula and applied pedagogical technologies. A program of psychological sup-
port for students and teachers in individual and group formats is proposed. 
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Traditional curricula in many countries dictate the study of arithmetic operations 
prior to solving problems of multiplicative structures. In these contexts, in order to 
understand and solve a problem, students are expected to apply their knowledge of 
operations. In our 3-years research project, we try to inverse this order. Following and 
extending Davydov’s [2008] idea of quantitative relationships, we designed multiple 
learning activities. Teacher participants tested and discussed these activities and then 
implemented them in their classrooms. These activities focus on turning students’ 
attention to the multiplicative relationships between quantities rather than to num-
bers and key words. The discussion about the meaning of these relationships and their 
visual representations (schematizing and modelling) took the main bulk of each activ-
ity. Rather than using arithmetic operations as a mere tool to understanding a given 
problem, the identification of arithmetic operations was reached at as a result of sense 
making of quantitative relationships involved. 

Data comprised video-recordings of interviews with teacher-participants and of les-
sons as well as students’ written work on problem solving that was administrated at 
the end of the third year of the project. Following the use of action research and itera-
tive rounds of analyses of the interview data, the recorded lessons, and students’ work 
our findings show: 

1. Teacher-participants witness important changes in their understanding of the un-
derlying principles in the teaching of mathematics. They specifically foreground doing 
mathematics together with students, listening to students’ thinking and reasoning, 
taking time to discuss students’ reasoning, probing students’ thinking by provoking a 
doubt in the obtained answer, and focusing on long-run learning achievements rather 
than on the immediate success of solving one particular problem. 

2. Students demonstrate more inclination to discuss ideas, defend their reasoning, 
and elaborate on their thinking processes while paying attention to quantitative rela-
tionships thus reflecting better understanding in solving problems.
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The development of mathematical concepts, regardless of the stage of training, is 
characterized by the necessity for acquisition of mathematical symbolism. 

G. Piaget [2003] viewed the symbolic function as the ability to represent a missing 
object or event with symbols or signs not directly perceived. As an individual mech-
anism which is manifested in various systems of representations, it is essential for 
the emergence of mental interactions between individuals and for acquiring collective 
meanings. 

The world is represented and perceived by man using objects and cultural artifacts. 
They are represented by means of artificial languages, which are holistic systems. 
Mathematics has a special language which allows representing special, quantitative 
relations of “man-the world”. The mathematical language is the first scientific lan-
guage for a child. Scientific language does not record obvious, indisputable objects, 
phenomena and processes. 

With the help of conventional symbols, a mathematical language shows integrity, 
particularity, functional relations, change of states, time reference and so on. An im-
portant part of the mathematical language is the alignment of the system based on 
a certain measure. Measure performs the same function in mathematics as tone in 
music or point and line in painting. In this case, the measure acts as a constant value 
only for a particular system. This arbitrariness gives the mathematical language its 
flexibility, which makes mathematics the universal language of science. The main task 
of mathematics education is the development of skills to determine the measure and 
build a system.
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THE RELATIONSHIP 
OF ‟FIELD INDEPENDENCE/DEPENDENCE” — 

COGNITNIVE STYLES WITH SUCCESS IN MASTERING 
MATHEMATICS

I.V. Seifert
O.V. Silvanovich

ITMO University, Saint Petersburg, Russia

The study aimed to determine the general cognitive abilities that contribute to suc-
cessfully mastering mathematics by students of different specialties. It was performed 
over a period of five years at ITMO University. 

A significant correlation between the ability to construct mathematical concepts and 
the general ability to operate mental images is presented in one of the first empirical 
studies of its kind [Seifert, Osorina, 2015]. Two cognitive styles, “field dependence” 
and “field independence” were studied to identify differences in personal characteris-
tics [Sternberg, 2009]. 

The research involved 93 first- and second-year students (average age 18.3 years, 22% 
girls and 77% boys). Gottschald’s figures were used as a research method. The subjects 
were offered 30 disguised figures, each required to find one of five reference figures 
and specify it. The results were compared with the success of mastering mathematics 
as evaluated by mathematics teachers using a quantitative scale from 0 to 20. Correla-
tion analysis revealed a significant correlation between these indicators (r = 0.72, p < 
0.001) in the whole sample (N = 93). However, the correlation was insignificant for some 
groups. A subsequent cluster analysis clarified the situation. The results are interpreted 
as follows: 1. Since the solving of mathematical problems in most cases requires division 
of context typical of the field-independent style, followed by its restructuring, intensive 
study of mathematics contributes to the development of the field-independent style of 
perception and information processing. 2. Field independence is among those cognitive 
features of perception and information processing that provide assimilation of math-
ematical concepts. Therefore the “threshold” value of the field independence factor is 
required to master mathematics. 3. “Field dependence/or field independence” cognitive 
style is one of the necessary conditions for mathematical thinking, along with the abil-
ity to operate mental images. 4. The results of this pilot study support the hypothesis 
of field dependence as a cognitive ability that, provide analytical functions of thinking.
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QUALITATIVE ANALYSIS OF LOWER SECONDARY SCHOOL 
MATHEMATICS TEACHERS’ TOPIC-SPECIFIC CONTENT 
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Conducting cross-national studies allow comparing, sharing, and learning about is-
sues in an international context which in turn helps researchers understand their own 
context, teaching practice, teacher knowledge, and student learning. The field lacks 
research that provides an in-depth analysis of the various facets of teacher knowledge 
at a topic-specific level. This study examines the U.S. and Russian teachers’ content 
knowledge through the lens of topic-specific context — division of fractions. 

This interpretive cross-case study aimed at the examination of the U.S. and Russian 
teachers’ topic-specific knowledge of lower secondary mathematics. In total, N = 16 
teachers (8 — from the U.S., and 8 — from Russia) were selected for the study using 
non-probability purposive sampling technique. Teachers completed the Teacher Con-
tent Knowledge Survey which consisted of multiple-choice items measuring teachers’ 
content knowledge at the cognitive levels of knowing, applying, and reasoning. Teach-
ers were also interviewed on the topic of fraction division using questions addressing 
their content and pedagogical content knowledge. In order to analyze the qualitative 
data, we conducted meaning coding and linguistic analysis of teacher narratives as 
primary methods of analysis.

The study revealed that there are explicit similarities and differences in teachers’ con-
tent knowledge as well as its cognitive types. One of the key points of similarity was 
observed in teachers’ responses to the question on important objectives of the fraction 
division at different cognitive levels. On the other side, one of the revealing differenc-
es was reported in teachers’ use of mathematical vocabulary: Russian teachers were 
inclined to use more accurate terminology than their U.S. colleagues in explaining 
fraction division. The most evident difference between two groups of teachers was ob-
served on the question examining meanings of fraction division (χ2 = 9.474, p < 0.05). 
Thus, results of the study suggest that in the cross-national context teachers’ knowl-
edge could vary depending on curricular as well as socio-cultural priorities placed on 
teaching and learning of mathematics.

The study’s main findings contribute to the body of literature in the field of cross-na-
tional research on teacher knowledge with a narrow focus on a topic-specific knowl-
edge. It suggests close comparison and learning about issues related to teacher knowl-
edge in the U.S. and Russia with a potential focus on re-examining practices in teacher 
preparation and professional development. 
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THE INFLUENCE OF MOTIVATION ON STUDENTS' 
ACHIEVEMENTS WHEN STUDYING MATHCAD
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For every teacher, the interest of his students in the subject of study is important. 
When the students themselves seek to obtain high-quality knowledge, they do not 
need additional external motivation. It has been shown that the growth of academic 
achievements at the beginning of training strongly correlates with the level of stu-
dents’ intelligence, while further growth of academic achievements is more associated 
with the trainees’ motivation [Murayama et al., 2013]. This is partially confirmed by 
our research [Lazareva, Ustinova, 2018], in which it is shown that the achievements of 
students in mastering a course may not be related to their initial preparation. 

The purpose of this work is to study whether it is possible to influence the achieve-
ments of students with the help of learning motivation. The teacher informs students 
that they will need to use MathCad in another course. The task of the research is to 
find out whether such motivation influences students’ achievements when studying 
the MathCad package. 

For the study we selected first-year students (first group) studying the MathCad sys-
tem in an informatics course and second-year students (second group) who became 
acquainted with this system and used it in laboratory work on the theory of probability 
and mathematical statistics.

Students of both groups passed the same control test on knowledge of MathCad. In 
accordance with the Mann-Whitney criterion, it was found that the distinction in test 
scores is significant. The first group of students showed better results than the second. 
We believe that this can be explained by a higher internal motivation of students stud-
ying computer science. This result may also be associated with a greater interest in 
studying that first-year students have in comparison with second-year students. Our 
research showed that it is very difficult to increase the internal motivation of students.
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This paper presents part of a project about the potential of visual strategies in problem 
solving by preservice teachers. The aim of the study was to identify and understand 
the contribution of a gallery walk (GW) to foster productive discussions about solving 
problems, as well as the participants’ reaction to the GW.

School mathematics requires effective teaching that engages students in meaningful 
learning through individual and collaborative experiences, giving them opportunities 
to communicate, reason, be creative, think critically, solve problems, make decisions, 
and make sense of mathematical ideas [NCTM, 2014]. Assuming that the tasks used in 
the classroom are the starting point of students’ learning, teachers should orchestrate 
productive discussions emerging from tasks that allow multiple (re)solution strate-
gies and provide the use of different representations, in particular visual ones (e.g., 
[Ibid.]). We argue that mathematical learning should lead students, including preser-
vice teachers, to think visually and develop this ability through experiences that re-
quire such thinking (e.g., [Presmeg, 2014]). The GW [Fosnot, Dolk, 2002] emerges as an 
instructional strategy to contemplate in classroom practices, which allows students to 
share their productions in posters fixed around the classroom and receive feedback, 
requiring them also to move around the room, and engage in collective discussions

We adopted an exploratory qualitative approach. Data was collected through obser-
vations and written productions, regarding the proposed tasks and written comments 
from a teaching experience carried out in a curricular unit where a GW was imple-
mented to solve problems. The results allowed to identify the strategies used by future 
teachers, that appeal to visual resolutions, and to verify the potential of the GW for 
the improvement of the discussions that contributed for the enlargement of their rep-
ertoire of strategies and engagement on the GW instructional strategy.
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RATIONALE

Children’s early understanding of the association between symbolic numbers and 
corresponding magnitudes (“number sense”) plays a key role in math learning. The 
current study tested a novel way of facilitating number sense in young learners. It 
examined whether engaging children in measurement instruction improves their un-
derstanding of numeric magnitude. Measurement activities provide an excellent op-
portunity to link spatial and numeric reasoning. We hypothesized that measurement 
presents a useful context not only for the acquisition of measurement skills but also 
for the development of numeric magnitude understanding. 

METHOD

The study included 88 kindergarten students from Moscow, Russia (45% girls, mean 
age: 77 months). All participants took part in a 5-week training. They were randomly 
assigned to experimental or control condition. In the Exp. condition, they engaged in 
measurement activities that focused on developing the understanding of unit and the 
relation between the size and number of units. In the Contr. condition, children en-
gaged in math activities on topics covered during regular class time. Before and after 
training, children’s understanding of numeric magnitude was assessed using exper-
imental tasks. For example, the Number Distance task required identifying which of 
the two numbers (e.g., 4 or 9) was closer to the target number (e.g., 6).

RESULTS AND CONCLUSIONS

On the Number Distance task, there were no pre-test differences between the Exp. and 
Contr. conditions (32% and 30% correct, respectively). However, after training, the Exp. 
group performed better than the Contr. group (66% and 53%, respectively). The same 
pattern of results was obtained across other measures of numeric magnitude. The 
findings showed that measurement activities focused on conceptual understanding of 
units provide a powerful tool for developing number sense in kindergarten students.
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The development of the preschoolers’ executive functions (EF) is a powerful predictor 
of the success of mastering early math knowledge and skills as well as the further math 
achievements in school (e.g., [Bull, Lee, 2014; Fuhs et al., 2014]). However, the vari-
ous components of EF may correlate differently to mathematical achievements at the 
preschool age [Yeniad et al., 2013]. This longitudinal study aims to investigate the de-
velopment of the three main EF components (working memory, inhibition, cognitive 
flexibility) and the math skills of children throughout preschool age. The first phase 
of the study has included assessment of 378 children 5–6 years old (M = 5.6 years; 
198 boys). On the second phase of the study, 230 children aged 6–7 years were tested 
again at the end of last kindergarten group (one year later). The study used NEPSY-II 
diagnostic complex subtests and the DCCS method for assess the level of EF [Alm-
azova et al., 2017]. Five math tasks were administered to measure different aspects 
of number knowledge: Counting, Number Identification, Number Reading, Number 
Writing, Number Comparison [Vasylieva et al., 2018].

The results show that children who had a high level of EF coped with all the mathe-
matical tasks more successful then children with low EF level. Based on the linear re-
gression analysis it was concluded that visual working memory and inhibitory control 
have the greatest influence on the development of the mathematical skills then verbal 
working memory and cognitive flexibility. Thus, the research has shown the influence 
of EF components on the various mathematical skills in senior preschool age. 
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A PHENOMENOLOGICAL APPROACH TO MATHEMATICAL 
LIVED EXPERIENCE: TOWARDS A RADICAL CHANGE 
OF ATTITUDE TO STUDENT’S (MIS)CONCEPTIONS 

Andonis Zagorianakos
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The current research is based on a case study, from a course that took place in the ac-
ademic year 2010–2011, involving 13 students training to be teachers of mathematics 
in British secondary schools. Having as a starting point the case of Diana (pseudonym), 
and the student’s arduous course towards achieving “mathematical confidence” I 
sought for the genetic relation between her mathematical intuition and the radical 
consequences that it had for her long-rooted conceptions on learning and teaching, 
and for her according attitudes. I followed the effect that the student’s mathematical 
activity had for these conceptions, and I analysed phenomenologically the relation 
between her initial intuition and the ensuing ones. The findings of this research are 
encouraging for the better understanding of how a change of attitudes may take place, 
and its close relation to intuitions in Husserl’s sense — namely as an immediate fulfill-
ment of intentionality, filled with certainty, without conclusive material at hand (at least 
not in a formal, significative sense), yet with an apodictic and generalising tension and 
seal. This approach to intuitions allowed the connection between the student’s math-
ematical intuition (which served the purpose of the open task, in the classroom) and 
the intuitions that learning that derives from one’s own perceptions and intuitions, 
and teaching based on intuitive learning, can release new possibilities for her future 
as a teacher. It also helped her immensely in dealing with the course’s non-guiding 
teaching line, since this experience was a turning point in starting appreciating the 
course [Zagorianakos, 2013]. The link between the intuitions on learning and teaching 
mathematics and her mathematical intuition is epitomised in her transition from an 
attitude that concerned an answer feeding model, as soon as the problem is posed to 
the students, to an attitude where the students are given space in order to shape their 
own understandings, before the answer is given. I noticed during the two remaining 
years of her studies (in order to become a teacher of mathematics) that her new atti-
tudes persisted, during other courses that I was also observing. The phenomenological 
analysis of Diana’s radical change of attitudes allowed a novel view of the teacher’s 
legitimisation of her mathematical intuition: it was the teacher’s legitimisation that 
made possible the student's appreciation of her learning experience and the changes 
of her attitudes on learning and teaching mathematics that followed, and it calls for a 
radical change of attitudes towards the students’ (mis)conceptions.
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A multidisciplinary methodology is proposed that details certain aspects of Smart-Ed-
ucation. The methodology includes the structuring of the studied material [Ellenberg, 
2014; Propp, 2009] in conjunction with an analysis of the cognitive profiles of stu-
dents.

The purpose of the study is to determine ways of customizing the material being stud-
ied to the method of teaching for a specific group. The cognitive profiles of the stu-
dents are determined by a method [Linksman, 2013] similar to the Myers-Briggs MBTI 
test.

The preliminary result at the seminars is achieving a better understanding. We do 
not want to analyze the components. We will evaluate the graduation thesis of every 
student using the assessment methodology of the University. It assesses scientific cor-
rectness, presentation logic, and originality. We assume that these estimates will be 
higher with each release, since the students get key competencies.

The new knowledge is a novel method of system analysis of the studied discipline and 
individual characteristics of the people involved in the learning process. This tech-
nique serves as a prototype for creating similar techniques for the mutual adaptation 
of participants and learning resources.

In the presentation, the methods and results will be discussed in detail.
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STORYTELLING 
AND EARLY MATHEMATIC ACHIEVEMENT

Taylor Crawford
Nancie Im-Bolter

Trent University, Ontario, Canada

Children are exposed to narratives at an early age, reading stories and co-constructing 
narratives with adults. The narrative framework is also taught for communicating in 
school [Feagans, Appelbaum, 1986]. Narratives appear to be interwoven with many 
important aspects of children’s lives, which poses a question about the influence it 
may exert in the development of other skills. Although narrative ability is a compo-
nent of general language skill, it has been suggested to be a stronger predictor of 
school achievement than general language ability itself [Ibid.]. Few studies, howev-
er, have investigated the specific relation between narrative ability and mathematical 
skill. The two studies that have focused on this relation show that narrative ability in 
childhood is predictive of later mathematical achievement [Ibid.; O’Neill et al., 2004]. 
The current study seeks to fill the gaps in the literature: first, by examining person-
al narratives (rather than fictional narratives), which approximate natural storytell-
ing between children and their parents; and second, by examining specific aspects of 
narrative ability in preschool children that predict specific emergent numeracy skills 
eight months later.

Twenty-two children aged 3–4 years participated in this study (male = 12). Each child 
was asked to construct three personal narratives. Eight months later, these children 
completed tasks measuring their early numeracy skills. After controlling for IQ and 
general language skill, analyses showed that conjunction use and perspective shift in 
children’s narratives predicted knowledge of counting. In contrast, the total number 
of words and content words in children’s stories predicted performance on an object 
based arithmetic task. These findings highlight the broad impact of children’s growing 
ability to tell stories, suggesting that storytelling in preschool could be a simple, yet 
effective, method to encourage early mathematic achievement. 
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WHAT f’(x) / TELLS US ABOUT f(x): 
A GEOMETRIC AND GRAPHICAL APPROACH

Maria Madalena Dullius
Gisele Scremin

Univates, Lajeado, Brazil

The derivative is one of the fundamental concepts in the learning of mathematics 
in university courses, being fundamental in the construction of more advanced con-
cepts. Results from the national and international literature have pointed out that 
students have presented difficulties in learning this concept, which, for the most 
part, is related to the lack of conceptual understanding. In this sense, this qualita-
tive research was based on studies about the importance of the use of computational 
technologies in situations of teaching and learning of Mathematics and Calculus, 
aimed to develop a pedagogical intervention for the teaching of derivatives through 
activities developed with the support of software Desmos, in order to verify the pos-
sible potential of the use of this tool for the understanding of the derivative. During 
the study, data were collected via recording responses of the activities carried out 
by the students (paper), proposal evaluation questionnaire, audio, photos and the 
researcher’s field diary.

The intervention was developed in the form of a Pedagogical Workshop with a group 
of students that were enrolled in the Degree Course in Mathematics of an Institution 
of Education of private network of the State of Rio Grande do Sul. The analysis of 
episodes indicates that the use of a computerized environment can help students to 
become more active in the teaching and learning processes, feel encouraged to think, 
experiment and test what is often transmitted to them as a ready and finished knowl-
edge, motivated to participate and share ideas, making socialization of knowledge un-
der construction. The visualization and experimentation provided through manipula-
tion of the graphs, construction of tables, marking and selection of points, which were 
mediated by the proposed activities, enabled the understanding of the derivative in a 
more enriching way, in geometric and graphic aspects.
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CRISIS OF MATHS THINKING IN THE 21st CENTURY: 
MYTH OR REALITY

E.I. Gоlishnikova, E.E. Nikiforova
Murmansk Arctic State University, Russia

In the context of the development of the modern society and a new stage of education 
reform, urgent is considered the problem of lack of educated people who can work in a 
team, make decisions quickly enough in changing conditions, those who have concep-
tual and verbal-logical thinking, adequately understand the real situation and make 
the right conclusions. A modern and future employer is interested in such an employee 
who is able tо think independently and apply an acquired knowledge to solve certain 
problems, has mathematical, critical and creative thinking, a rich vocabulary based on 
a deep understanding of humanitarian knowledge. We must talk about Maths skills of 
people in the 21st century. Nowadays we have a crisis of Maths education because a lot 
of Maths skills have been lost.
The development of science and technology, the universal computerisation and promo-
tion of information and communication techniques in our time determine an increas-
ing role of mathematical training of the younger generation. Modern psychological 
and pedagogical requirements for mental activity of the child are based on the devel-
opment of his ability to choose and carry out activities using active search actions, 
correlate actions with the result, strive for the ultimate goal on the basis of forecasting, 
objectively evaluate the result, comparing it with your own setup. All these skills are 
directly related to Mathematics and the development of mathematical thinking. 
The data presented in the histogram 1 were obtained in a survey conducted by the 
Levada Center on August 26–29, 2016. The survey involved 1600 adult urban and rural 
residents from 48 regions of the country (Russia). Answering the question “In your 
opinion, which school subjects should be given the most attention now?”: 68% of re-
spondents indicated “Russian language”. On the second place (53%) — Mathematics. 
This is followed by: History (33%), Literature (32%), Foreign languages (27%), Infor-
mation Technology (23%) [Levada, 2016].
It should be noted that only half of the respondents consider Mathematics as an im-
portant subject. Accordingly, if adults (parents, teachers, teachers of Universities and 
colleges, and others — not mathematicians), think so, and they will convey that point 
of view to their children and students. And even before trying to understand this issue 
on their own, children and students will think that Mathematics is one of the most 
complex educational areas of knowledge and they doubt whether it is necessary to 
study it. Maths education plays a significant part in intellectual development of chil-
dren starting with pre-schooling, including children with special needs.
Thus teaching mathematics includes methods that allow you to get not only mathe-
matical knowledge, but also General intellectual development.
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K-12 NAMIBIAN TEACHERS’ VIEWS 
ON LEARNING DIFFICULTIES IN MATHEMATICS: 

SOME REFLECTIONS ON TEACHERS’ PERCEPTIONS

Shemunyenge Taleiko Hamukwaya
Harry Silfverberg 

University of Turku, Finland

This study explores K-12 Namibian mathematics teachers’ perceptions of the diffi-
culties associated with learning mathematics and examines the problems that affect 
Mathematics Learning Difficulties (MLD). In this study, learning difficulties are re-
ferred to as obstacles that lead to difficulty learning mathematics [Karagiannakis, 
Baccaglini-Frank, Papadatos, 2014]. SACMEQ II and III report that Namibian stu-
dents performed poorly in mathematics, only 6.2% achieved the competent numer-
acy level. The reports highlight that students perform poorly at both school levels. 
From a psychological perspective, researches identify causes of MLD, such as poor 
foundation in learning mathematics. A wide of opinions have been develop about the 
nature of mathematics based on ‘knowledge’ of own experiences acquired through 
teaching practice [Ernest, 1989]. These perceptions, are likely to be associated with 
teachers’ beliefs and their impact on teaching students with MLD. Bearing in mind 
the importance of teachers’ perceptions, this study aims to answer the following 
questions: 

1. To what extend do mathematics teachers define MLD in an inclusive setting?

2. What problems do mathematics teachers identify when teaching students with 
MLD and what measurements are used to overcome them?

A total of 231 mathematics teachers (100 primary and 131 secondary teachers), who 
teach in inclusive classrooms, completed the survey. Responses were analysed using 
Ritchie and Lewis thematic framework. The survey reveals teachers who frame a stu-
dent’s difficulties within a deficit framework and also perceived the student’s difficul-
ties to emanate from a cognitive disability and it indicate how beliefs negatively in-
fluence teaching practice. This paper examines the potential causes of MLD according 
to survey participants and suggests alternative measures, and concludes with sugges-
tions, broadening data source as one way the study can be extended. 
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THE MATHEMATICAL SUCCESS DIARY 
AS A METHOD OF INCREASING SELF-CONFIDENCE 

AND THE EFFECTIVENESS OF LEARNING MATHEMATICS

Tatiana Kigel
Learning center ‟Bahazlaha”, Petah Tikva, Israel

Fundamental studies of a sense of self-efficacy, confidence in one’s abilities, level 
of anxiety in the field of mathematics were conducted at OECD in the 21st century 
[OECD, 2013]. The problem of increasing self-confidence has been extensively studied 
in psychology, but we are not aware of pedagogical experiments using the Mathemati-
cal Success Diary (MSD) to increase self-confidence, motivation to study mathematics, 
level of activity in mathematics lessons and mathematics achievements [Ackerman, 
Ugelow, 2018].

The aim of the research is to increase the efficiency of teaching mathematics through 
a pedagogical experiment using the MSD. The hypothesis of the experiment is the 
assumption that as a result of keeping the MSD, pupils of the 5th grade of elementary 
school, showing a lack of self-confidence and low mathematics achievements, will sig-
nificantly increase their motivation, mathematical self-esteem, degree of activity on 
lessons and academic achievements.

In the MSD, which is conducted by the student together with the teacher, positive 
points are noted in the process of studying mathematics, such as: showing patience, 
perseverance, endurance and faith in success in solving difficult examples and prob-
lems, formulating a question and finding theoretical and practical material in text-
book or notebook, asking for help from classmates or a teacher, raising a hand for 
answer a question, solving an example or problem on the blackboard, correct answers 
and solutions of examples and problems, improving the control mark on the exam.

The research will be conducted in the 2018–2019 school year among pupils of the 
5th grade of elementary school. During the ascertaining stage, we selected pupils par-
ticipating in the experiment, used observation methods, interviews, questionnaires, 
self-assessment and peer review, as well as school documentation data.

The expected results of the research would be caused by keeping MSD that marks the 
pupil’s goals, the progress in achieving them, tranquility of the mind, control, confi-
dence and enthusiasm in learning mathematics.
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MATHEMATICAL PROBLEM SOLVING: 
BEHAVIORAL AND NEUROIMAGING STUDIES

K.V. Konopkina, I.S. Matiulko
Department of Psychology, National Research University 

Higher School of Economics, Moscow, Russia

M. Arsalidou
Department of Psychology, National Research University 

Higher School of Economics, Moscow, Russia;
Department of Psychology, York University, Toronto, Canada

The current study has three components: (a) a functional magnetic resonance imag-
ing (fMRI) meta-analyses of past literature on mathematical operations; (b) a behav-
ioral study to validate a math protocol with parametric changes in the difficulty of 
math problems that use addition, subtraction, multiplication and division; and (c) an 
fMRI study that examines the brain correlates of mathematical operations (addition, 
subtraction, multiplication and division) in relation to subjective effort.

This project investigated for the first time the Right-Left-Right hypothesis using func-
tional brain indices related to solving addition, subtraction, multiplication and divi-
sion problems. The classic ideas of hemispheric dominance (i.e., visual-spatial abilities 
in the right hemisphere, verbal ones in the left hemisphere) cannot explain the study’s 
findings as the material provided were all numerical. We adopt a hypothesis derived 
from cognitive development to predict that hemispheric involvement stems from an 
interaction between an individual’s mental-attentional capacity and the mental de-
mand of the task [Pascual-Leone, 1987; Arsalidou, Pascual-Leone, Johnson, 2010]. To 
test this hypothesis, we adopted a parametric design with several levels of difficulty 
(easy, within the individual’s competence level and above the individual’s competence 
level). Our results provide new insights on the brain correlates of mathematical prob-
lem solving as a function of operation and difficulty. 
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RELATIONSHIP BETWEEN TEACHING 
PRACTICES AND MATHEMATICAL PROCESSES 

OUTCOMES IN SECONDARY SCHOOL: 
BASED ON A LONGITUDINAL TIMSS-PISA STUDY

Galina Larina
Anastasia Kapuza 

National Research University Higher School of Economics, Moscow, Russia

The competence of mathematical modelling is well conceptualized, thought a 
much-debated question is how to develop it in schools. International achievement 
test PISA consider mathematics achievements from the modelling perspective (for-
mulating, employing and interpreting), and provides us with comprehensive data to 
analyze a school factors in math results from the comparative perspective. The goal of 
our study was to estimate the effect of teaching practices on students’ achievements in 
different PISA mathematical processes while controlling prior achievements (TIMSS). 

The paper is based on two waves of a unique longitudinal data of Trajectories in Ed-
ucation and Careers study in Russia (TrEC <http://trec.hse.ru>). The first wave of the 
TrEC was TIMSS 2011 (8th grade), and the second wave was PISA 2012 oversampled for 
this study (9th grade). The final sample consists of 3555 students and 185 math teach-
ers. Firstly, we used CFA to construct indexes of teaching practices and, secondly, then 
we used SEM to estimate the relationship between teaching practices and students’ 
math outcomes. We took information about teaching practices, school characteristics 
and students’ background from TIMSS questionnaire and students’ math scores from 
TIMSS and PISA. 

Two groups of teaching practices were identified according to the theoretical frame-
work of Bloom’s taxonomy of cognitive skills [Anderson, Krathwohl, 2001]: the first 
group focuses on the lower-order thinking skills, the second one focuses on the high-
er-order thinking skills. In result, high-order teaching practices (ex., let students de-
cide on their own procedures for solving complex problems) teaching practices have 
a larger effect on the first two stages of the modelling process — formulating and 
employing, whereas family background has a larger effect on the last stage of the mod-
elling process — interpreting. Low-order teaching practices are insignificantly related 
to the modelling processes.
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MEASURING MATH SELF-CONCEPT 
AMONG MIDDLE SCHOOLERS: QUESTIONNAIRE 

DEVELOPMENT AND VALIDATION

N.V. Lebedeva
K.A. Vilkova

National Research University Higher School of Economics,, Moscow, Russia

Self-concept forms individual’s progress throughout his life. It is important to con-
sider self-concept as a multidimensional construct. It reveals a person from different 
aspects, describing one’s strengths and weaknesses [Marsh, Shavelson, 1985].

Due to the lack of a valid and reliable measurement of math self-concept among Rus-
sian middle schoolers, it is necessary to develop a questionnaire. In our paper we set 
following objectives: (1) questionnaire development, (2) questionnaire factor struc-
ture confirmation, (3)  questionnaire psychometric characteristics assessment, and 
(4) validity support.

The questionnaire for measuring math self-concept is based on Marsh and Shavelson’s 
multidimensional model [Ibid.]. The questionnaire consists of 8 items, which are rated 
on a 5-point Likert scale. The study was a part of Student Achievements’ Monitoring 
(SAM). A total of 316 fifth-graders from three schools (The Republic of Tatarstan, Rus-
sian Federation) participated in the study. The mean age of participants was 11 years 
(SD = 0.33), 56% of them were girls.

The results of confirmatory factor analysis (CFA) provided strong support for one-fac-
tor model, given the theory. In order to improve the model, we excluded 3 items with 
low factor loadings (≤ 0.4). Based on fit indices, we chose the model that consists of 
5 items. The psychometric characteristics of the questionnaire were investigated us-
ing Classical Test Theory (CTT). Psychometric properties are acceptable: reliabili-
ty Cronbach’s Alpha = 0.7; mean difficulty = 0.73; item discrimination index = 0.45. 
Statements are comprehended by boys and girls in the same way (Differential Item 
Functioning, Mantel-Haenszel criterion). Concurrent validity was accessed through 
correlation of the questionnaire scores and math results. High self-concept scores are 
associated with high results on SAM (r = 0.45, p ≤ 0.001).

The questionnaire can be useful for career guidance among Russian middle schoolers. 
It is crucial to measure math self-concept because it associates with academic perfor-
mance and interest in this subject [Ayodele, 2011].
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I.S. Matiulko, K.V. Konopkina
Department of Psychology, National Research University 

Higher School of Economics, Moscow, Russia

S.P. Kulikova
Laboratory of Interdisciplinary Empirical Studies, National Research University 

Higher School of Economics, Perm, Russia

M. Arsalidou
Department of Psychology, National Research University 

Higher School of Economics, Moscow, Russia;
Department of Psychology, York University, Toronto, Canada

Processing of mathematical operations and solving numerical tasks implicate a dis-
tributed set of brain regions. These regions include the superior and inferior parietal 
lobules that underlie numerical processing such as size judgments, and additional 
prefrontal regions that are needed for formal mathematical operations such as addi-
tion, subtraction and multiplication [Arsalidou, Taylor, 2011]. Critically, little is known 
about the connectivity between these regions and the association between math per-
formance and the anatomical structure of white matter tracts.

The present study investigates connectivity and white matter tracks associated with 
networks related to math performance: arcuate fasciculus (AF) and superior longitu-
dinal fasciculus (SLF). Participants performed a computerized task with mathematical 
operations (addition, subtraction, multiplication, and division) with three levels of 
difficulty; accuracy and reaction time were recorded. Diffusion tensor imagining (DTI) 
recordings provided indices on fractional anisotropy (FA) — a measure of the direction 
of white matter tracks in the brain. The relation between FA and math performance 
scores is reported.

Results are expected to that math performance is associated with integrity of both AF 
and SLF. In addition, improved scores on math performance, specifically in relation to 
reaction time, are related to FA values in AF and SLF.

Concluding, findings will be discussed in terms of the models of mathematical cogni-
tion and developmental theories of cognition and education.
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FORMING IDEAS 
ABOUT GRAPH ISOMORPHISM 

IN MASS CONTESTS WITH COMPUTER SUPPORT

Athit Maytarattanakhon
Saint Petersburg Electrotechnical University, Russia

In the report we consider the role of computer tools, when conducting distance com-
petitions in mathematics and computer science. We discuss the differences in hold-
ing competitions with and without computers. The experiment involved more than 
50 people of different ages and classes. The pupils were offered the task to build a 
solution on paper. The task is based on the idea of using constellations to describe 
graph theory concepts. Participants should first create as many non-isomorphic con-
stellations as possible. The second criterion is the total number of constellations (even 
isomorphic), and the last criterion is the total length of the constellations’ segments. 
This task interface includes means of visual feedback (namely, highlighting objects), a 
change of which could improve the result. The best solution of each student is saved 
automatically. The following represent other experimental results, which from our 
point of view are more important

1. Use of the paper version required the preparation of printed sheets for the partici-
pants’ work, and manual analysis of the results might reveal non-obvious calculations 
of the components of the graph with the desired properties, an advantage in case of 
errors in the calculations (human factor). Thus the complexity and cost of such a for-
mat is determined by the number of participants. At the same time, the use of a com-
puter required the creation of a computer model only once, and the remaining stages, 
such as performance evaluations and comparative analysis of the results, were carried 
out instantly

2. The use of the model allows the introduction of deep new ideas into the compo-
sition of the concepts being studied, such as isomorphism, which, upon initial intro-
duction, require basic concepts that students should receive from the outside world. 
At the same time, for the concept of isomorphism, there are no representations that 
could have been formed spontaneously as a result of operating objects in the external 
world. Thus, the simulated virtual reality allows students to provide the ideas neces-
sary for the formation of abstract mathematical concepts

CONCLUSION 

After plotting the graph on paper, they do the same task on a computer. While per-
forming the computer implementation of the task, 32 people improved their deci-
sions, the optimal solution was achieved by 29 participants, 2 people showed the same 
results, and 1 participant worsened their decision. Some features of the software tool 
provide the participant with an improved understanding of the task.
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PHOTOGRAPHY AND MATHEMATICS STUDENTS’ GAZE 
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To make connection from objects in everyday life to mathematics is essential for giv-
ing meaning in math class. Using a camera expands perception for objects otherwise 
unnoticed [Barasch et al., 2017]. Herein, we explore the influence of a photography 
activity on mathematics teachers’ visual behaviour.

Using a design-based approach with 43 in-service teacher students, we have devel-
oped a photography-based learning activity in three cycles. Based on their own photo-
graph and discussions students designed and conducted a problem-solving task with 
their own math class. In the second cycle visual attention of two students were collect-
ed [Meier, Hannula, Toivanen, 2018], showing an increased number of fixations and 
longer dwell time on those objects photographed and discussed. In the current, third 
cycle we explore how photography and discussion influence students’ fixation dura-
tion and occurrence. To study students’ visual behaviour, four students wore mobile 
eye-trackers. We compared two conditions: during a walk with a camera and a task, 
and during a walk without. Between the two walks students discussed the mathemat-
ical content of their pictures and how to use them to design a problem-solving task 
for their students. Analysis of fixation durations revealed significant differences for 
the two walks. For all participants, the median duration was higher for the walk with 
photography. Although the effect size was small, the results suggest more conscious 
looking and interest when taking photographs. In the poster presentation, further re-
sults and examples of student’s work will be reported in detail.

Visual attention in natural environments is a new area of educational research. This 
study provides new information on how the activity of taking photographs and discuss-
ing photos influences mathematics teacher students gaze behaviour and their teaching.
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UTILITARIAN MATHEMATICAL DISCOURSE 
ON SOCIAL MEDIA 

Kumar Gandharv Mishra
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The paper tries to highlight an aspect of mathematics teaching through social me-
dia (in Indian context). Mathematics has marked its presence on social media and 
platforms like YouTube and Facebook have helped spread mathematical discourse in-
formally. A part of such mathematical discourse also emphasises mathematics as a 
subject to be dealt with formulas, short tricks and quick calculations. Social media has 
got flooded with videos on mathematics by several persons and includes some math 
coaches which have millions of followers and views on social media.These also make 
money based on the number of views on their video. The video is aimed at youth, 
especially school pass outs who prepare for competitive examinations leading to em-
ployment opportunities. These contents are made catchy with captions and thumb-
nails like “Solve within 3–4 seconds”, “Quickest Method” etc. The viewer’s generally 
respond to such content in an excited way by sometimes applauding the trainer for 
his trick or sometimes treating the trainer as ‘God’ of mathematics. Such discussions 
or discourse are common on social media. For example: A trainer on YouTube teaches 
to multiply two two-digit numbers quickly. In his trick he shares some steps to place 
numbers and get the result. However, it lacks mathematical explanation and also it is 
helpful when the numbers are close to 100 or 50. For this video, a viewer comments, 
“Sir, you are god of mathematics.” Another viewer comments, “Sir, your mind is com-
puter.”

Sam [1999] in his doctoral study finds out that majority of the adult held utilitarian 
view on mathematics. Some comments by viewers also reflect similar images of math-
ematics. In a populated country like India, cracking examinations for jobs requires 
fast calculations. There is evidence that students who speed through content without 
developing depth of understanding are the very ones who tend to drop out of mathe-
matics when they have the chance (Boaler, cited in [Larson, 2017]). These job seekers 
may form the image of mathematics as a subject to be dealt with tricks and formulas. 
They go through a process of sprint. Perhaps, mathematical learning doesn’t seem 
their goal and it can put threat for mathematics education.
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ASSOCIATIONS WITH THE WORD “MATHEMATICS”: 
THE EMOTIONAL VALUE COMPONENT

O.A. Pavlova
Kaluga State University them. K.E. Tsiolkovsky, Russia

The role of the first-year teacher in forming a positive attitude towards mathematics 
is important. Therefore, it is relevant to perform а scientific search for mechanisms for 
building an emotional value component in the preparation of future teachers.

An “auction” of mathematical terms is enacted that should quickly update and sys-
tematize multiple mathematical concepts in the mind of freshmen. Students have a 
task to write 20 words they associate with math in five minutes. The students then call 
out the words in turns, defining the content of the term and naming related concepts. 
For example, a “circle” is a planar geometric figure, like a square and a trapezium. Al-
ready named terms are marked. A student who names the last unmarked word “wins”.

It is possible to repeat at a fast pace: types of numbers; arithmetic operations; one-di-
mensional, two-dimensional and three-dimensional geometric figures; functions; 
sections of mathematics; mathematicians; and so on.

Analysis of the accumulated empirical material demonstrates the appearance of words 
describing feelings (both positive and negative). Students experience these feelings 
when confronted with math. The qualities that mathematics has, according to stu-
dents, are also indicated. Two examples are “fear” and “coldness”. During a conversa-
tion, the teacher should update the experience of positive emotions related to maths 
and specify the reasons for negative ones. It should be realized that emotions are born 
inside a person in interaction with some object: a book, a picture, music, and equally 
with math.

We have found that people associate mathematics with color, including cases of syn-
esthesia. Sometimes there are bright visual images of the named objects, as in, for 
example, “a mountain of figures”. It is also found that concepts associated with math-
ematics among sociological students are socially oriented.

We link the further direction of research with a more detailed construction of frames 
of mathematical concepts reflecting the experience of a particular person (people of 
different professions). The dynamics and stability of the neural network (the connec-
tion between the old and recently learned mathematical concepts) of a particular per-
son is also interesting for research.

At the same time, we assume that the involvement of a large number of aspects (visual 
images, emotions, nonmathematical concepts valuable to a person in their relation-
ship with mathematical concepts) can play an important role in forming a harmoni-
ous (non-negative) mathematical picture of the world in a child. Correction of the 
emotional image of mathematics from a negative one to a positive one or fixing it in a 
positive area is important for future teachers of mathematics.
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LOCAL INTERPRETATIONS OF GLOBAL COMPARISONS: 
MEDIA CONTENT ANALYSIS IN TURKEY

Seyma Pekgoz
Teachers College, Columbia University, New York, USA

Countries have been benefiting from the results of international assessments, e.g., 
TIMSS and PISA, to analyze the level of their education systems globally and to im-
plement educational policies and reforms. Media analysis has expanded researchers’ 
understanding of how, why and under what circumstances international assessments 
are used across altering national contexts [Saraisky, 2015].

In 2016, Dr. Pizmony-Levy conducted a study called “Ranking Storm Project” which 
includes two parts: Public Opinion Survey and Media Analysis. Here, in this presenta-
tion, only Turkish media will be analyzed. The research questions are:

• How does the media present the results?

• Which interpretations and voices are common?

The sample from Turkey comprises 22 articles from 3 newspapers with different po-
litical leanings. These articles were published in early December 2016, in the first two 
weeks following the release of the results for both TIMSS and PISA. The researcher 
analyzed the data by using the codebook developed by Pizmony-Levy [2018].

Media analysis shows that educators and experts attribute Turkey’s results to a mul-
titude of factors, such as educational gaps between different types of schools, recent 
changes in the educational system in Turkey, money spent per student, memorization 
rather than construction of knowledge, etc. Furthermore, this media analysis reveals 
that the political leaning dictates the tone of the articles. 

Since OECD will release the PISA 2018 results in December 2019, a broader study may 
give better insight about the changes of public discourse over time by the political 
changes and educational reforms in Turkey.
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BRIDGING TWO THEORIES: 
THE THEORY OF DIDACTICAL SITUATIONS 

AND THE THEORY OF DEVELOPMENTAL INSTRUCTION

Elena Polotskaia
Helena Boublil-Ekimova

Université du Québec en Outaouais, Canada;
Université Laval, Canada

In different parts of the world, researchers question the teaching and learning of 
mathematics and look at it from various perspectives. These efforts unfold different 
processes of theorization and produce diverse sets of concepts. The theory of didac-
tical situations, developed in France by Brousseau [1998] between 1970–90 has be-
come central to the study of didactics of mathematics in French-speaking countries. 
Concurrently, in Russia, Davydov [2008] and his colleagues built a theory of develop-
mental instruction. Based on the Vygotskian idea of the cultural-historical nature of 
teaching and learning, Davydov’s theory has informed research and practice in Rus-
sia and other countries worldwide. While the teaching and learning of mathematics 
is the subject matter for both theories, the philosophies behind the two theories are 
distinct thus producing distinct sets of concepts. Rather than treating these theories 
as categorically different, we ask what conceptual links can be drawn between the 
two theories. What would be some potential affordances in highlighting the similar-
ities between the two theories to mathematics education? The theory of didactical 
situation operates the concepts such as didactical situation, learning obstacle, didac-
tic contract, fundamental situations. The theory of developmental instruction speaks 
about empirical thinking and theoretical thinking, learning activity, and learning tasks. 
While both theories contribute to our understanding of teaching/learning process 
and both propose important ideas about mathematics education, we turn attention 
to whether and how both theories can be considered simultaneously. We thus high-
light tenets and principles from both theories to show the complexity of the subject 
matter and to contribute to the need for further theoretical work in connecting dif-
ferent bodies of knowledge in order to understand the teaching/learning phenomena 
in mathematics. 
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THE IMPACT OF GENETIC TEACHING 
ON PRE-SERVICE TEACHERS' VIEWS OF MATHEMATICS 

AND ITS TEACHING

Ildar Safuanov
Moscow City University, Russia

The theoretical framework of this paper is theory of mathematical beliefs (see e.g., 
[Pehkonen, Toerner, 1996; Pehkonen, Safuanov, 1996]) of pre-service mathematics 
teachers. Pehkonen [1994] indicated the importance of changing teachers’ beliefs for 
the effectiveness of their teaching. Extremely important for this purpose is to try to 
apply new theories of mathematics teaching in standard mathematical courses at uni-
versities and pedagogical institutes. Note that many researchers argue that the meth-
ods of teaching mathematical disciplines in pedagogical universities should serve for 
the students — future teachers as a source of didactical ideas, helping them to acquire 
modern didactical beliefs and skills, and in some sense as a sample for building their 
future professional activity. 

During 2015–2018 academic years, Mathematics majors in their first year of study at 
the Moscow City University have been divided into two groups. One of the groups has 
been taught Algebra and Number theory course using genetic method. Another group 
has been taught the same course using traditional (reproductive) methods. The aim of 
this study is to reveal the impact of such teaching on students’ beliefs about mathe-
matics and mathematical education. 

The questionnaire of 29 questions on mathematics teaching was administered in these 
groups twice: prior to the course and upon the finishing the course.

The results of the questionnaire administered prior to the course indicated that among 
students the conviction in effectiveness of explanatory-illustrative and reproductive 
methods of teaching still predominated.

The questionnaire administered upon the finishing our experience of teaching math-
ematics by genetic method (taking also into account affective and emotional aspects 
of teaching) has shown that pre-service teachers’ views of mathematics teaching se-
riously changed and became more progressive and appropriate for modern teaching.
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INFLUENCE OF VERBALIZING GEOMETRY RULES 
ON THEIR TRANSFER IN PRIMARY SCHOOLERS

Yulia Sudorgina
Alexey Kotov 

National Research University Higher School of Economics, Moscow, Russia

Inductive reasoning involves making predictions about novel objects or situations 
based on existing knowledge. This kind of reasoning is crucial for mathematical learn-
ing, where the ability to transfer acquired mathematical knowledge to analogical tasks 
or situations is substantial. One of the possible factors that contribute to transferring 
found solutions to similar tasks is verbalization, i.e. the process of saying task solution 
out loud. Our research showed that adult participants who verbalized solutions for in-
duction tasks transferred found solutions to similar tasks faster than participants who 
did the tasks tacitly. The present study aims to test the hypothesis that verbalization 
will similarly influence on transfer performance in primary schoolers. We will conduct 
the experiment where 7–10-year-old children will solve simple geometry tasks called 
“Bongard problems” [Bongard, 1970]. Each Bongard problem consists of two groups 
of geometrical objects, and participants will have to induce the basis for the classifi-
cation by finding out what feature of the objects is relevant. The experimental group 
will explicitly verbalize the solution for set of Bongard problems, whereas the control 
one will solve the tasks tacitly. In the test phase we will measure and compare how 
students from both groups solve the same problems but with new objects. The results 
and comparison of children’s and adults’ performance will be presented and discussed 
at the conference.

The research was prepared within the framework of the Academic Fund Program at 
the National Research University Higher School of Economics (HSE) in 2018 (grant 
No. 18–05–0001) and by the Russian Academic Excellence Project “5–100”.
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DIRECTIONS AND TRENDS IN THE IMPROVEMENT 
OF MATHEMATICAL EDUCATION

V.N. Ustinova
I.G. Ustinova 

Tomsk Polytechnic University, Russia

Currently, the trend in education is the introduction of innovative educational tech-
nologies [Ustinova, Podberezina, Shefer, 2017; Tarbokova, Ustinova, Rozhkova, 2018]. 
The article considers the following techniques: fishbone, flipped classroom, proj-
ect-based learning. “Fishbone” technology was used by us in mathematics classes in 
the presentation of the material of one of the most complex topics of mathematical 
analysis “Indefinite integral.” The project method was applied in the lessons of Linear 
algebra and analytical geometry. Each student of our course was offered to implement 
the project “Analytical geometry of straights and planes”. We used the technology of 
flipped classroom in the course of linear algebra and analytic geometry. 

The aim of this work is to compare different innovative educational technologies in 
teaching mathematical disciplines. In addition, our task was to study the impact of 
innovative educational technologies on the achievements of students. 

For the study were selected first-year students studying the course of linear algebra 
and analytical geometry using the method of projects (the first group), with the use of 
the technology of flipped classroom (the second group) and students (the third group), 
which with the use of “Fishbone” technology studied the topic of indefinite integral 
of course of mathematical analysis. As a result of entrance control of knowledge it 
has been established that the level of proficiency in mathematical skills in controlled 
groups was approximately identical. Students of three groups passed the control test 
on knowledge of a subject which was estimated by identical quantity of points. The 
null hypothesis of equality of average scores in the control groups was tested using the 
analysis of variance. The highest average score was in the third group. On the basis of 
statistics it was found that the use of these technologies can significantly increase the 
level of new information assimilation (approximately 19%).
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RATIO-CONCEPTS THROUGH JOINT ACTIONS

Elena Vysotskaya, Mariya Yanishevskaya
Psychological Institute of Russian Academy of Education, Moscow, Russia

Anastasia Lobanova
School 2101, Moscow, Russia

Iya Rekhtman
Introchemist association, Moscow, Russia

As we approach the problem of learning ratio-concepts [Dole et al., 2012] from the 
position of Activity Theory, we have to search for special students’ actions, in which 
these concepts can be “loaded”/embedded. In ratio-concepts, we have to consider both: 
operating separate parameters and coordinating their change. The latter is the most 
important for learning ratios — thus, we have to make it a special subject for children. 

We assume that distributing the work over the ratio between two students is a feasible 
way to learn ratios. This way, ratio-concepts derive from students’ attempts to coordi-
nate parameters’ change. The means of this coordination (multiplicative thinking — 
laying portions after portions) is the essence of the concept of ratio.

The computer simulation was devised so it would scaffold joint actions. In it students 
are to construct a vessel that will sink, float or stay balanced. Each in pair is given con-
trol (through the shared keyboard) over only one parameter — either the size of the 
vessel, or its’ weigh. The tasks can also be done individually.

Task progression allows changing the coordination scenario. The progression is as fol-
lows. 1) Students are “playing against” each other, working to “fix”, what the other has 
done, as his changes cannot be undone: for example, he made the vessel sink, putting 
more weighs. Now his partner cannot take them away, but can add volumes. 2) Stu-
dents are working together to make the vessel balanced. So they have to coordinate and 
consider the changes, which they make to their parameter. 3) Due to restrictions of the 
tasks students have to plan their coordination beforehand.

Two groups of students of 3–4th grade (9–10 years of age), 20 students in each, — par-
ticipated in the study. One group was doing the tasks individually (each student could 
change any parameter), while students of the other group were working in pairs chang-
ing the parameters jointly. Post-test showed, that those, who learned through joint 
actions, did better.

Joint actions, as they coordinate changes of two parameters, bring students to using the 
compound measure (2 volumes and 5 weighs). In its turn the compound measure is the 
first step to introducing fractions.
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EXAMINATION OF THE PERCEPTIONS OF THE PRE-SERVICE 
ELEMENTARY MATHS TEACHERS TOWARD THE INTEGRAL

Özkan Ergene
Sakarya University, Turkey

Ahmet Şükrü Özdemir
Marmara University, Turkey

Many researchers have revealed the difficulty in understanding the integral concept 
[Sealey, 2008; Orton, 1983]. It can be thought that the difficulties faced by the students 
regarding the integral concept may change their perceptions of integral. In the light of 
this idea, the purpose of this research is to examine the perceptions of the pre-service 
elementary maths teachers (pre-service EMTs), who attended a teaching experiment 
in which real life problems were used, toward integral concept within the context of 
anxiety, attitude, and daily life usage. 

In this research, qualitative and quantitative data were collected simultaneously. While 
the quantitative data of the research were collected via one group pretest-posttest ex-
perimental design, the qualitative data were collected via case study. The study group 
of the research consists of 28 pre-service EMTs who attend Faculty of Education in a 
state university located in the Marmara Region of Turkey. A teaching experiment en-
riched with 8 real-life problems created by using Riemann sums and definite integral 
was implemented to the pre-service EMTs. While the quantitative data of the research 
were obtained from the scale for the concept of integral that was developed by the 
researchers and whose validity and reliability studies were conducted, the qualitative 
data of which were obtained from the semi-structured interview form. 

It was seen that while the pre-service EMTs’ anxiety levels (Mean = 26.86, SD = 5.45) for 
the integral concept were high, their attitudes (Mean =21.14, SD = 4.27) and awareness 
levels about its daily life usage (Mean = 18.82, SD= 2.80) were low before the teaching ex-
periment. It has been concluded that the anxiety levels of the Pre-service EMTs toward 
the integral concept decreased (Mean = 24.393, SD = 5.20) and their attitude (Mean =
= 23.93, SD = 4.77) and awareness levels about its daily life usage (Mean = 20.29, SD = 
= 3.18) increased after the teaching experiment enriched with real-life problems. It was 
found that there is a statistically significant mean difference between the pretest and 
posttest scores of pre-service EMTs at p = 0.05 level in terms of anxiety, attitude and 
awareness levels. This situation supports the findings obtained from the interviews.

As a result of the research, it has been seen that the teaching experiment enriched with 
the real-life problems decreased the anxiety levels of pre-service EMTs toward integral 
and increased the attitude and the awareness levels regarding its usage in daily life. 
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