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PREFACE 

We are pleased to welcome you to PME 44. PME is one of the most important international 

conferences in mathematics education and draws educators, researchers, and mathematicians 

from all over the world. The PME 44 Virtual Conference is hosted by Khon Kaen University 

and technically assisted by Technion Israel Institute of Technology. The COVID-19 

pandemic made massive changes in countries’ economic, political, transport, communication, 

and education environment including the 44th PME Conference which was postponed from 

2020. The PME International Committee / Board of Trustees decided against an on-site 

conference in 2021, in accordance with the Thailand team of PME 44 will therefore go 

completely online, hosted by the Technion - Israel Institute of Technology, Israel, and takes 

place by July 19-22, 2021. A national presentation of PME-related activities in Thailand is 

part of the conference program. 

This is the first time such a conference is being held in Thailand together with CLMV 

(Cambodia, Laos, Myanmar, Vietnam) countries, where mathematics education is 

underrepresented in the community. Hence, this conference will provide chances to facilitate 

the activities and network associated with mathematics education in the region. Besides, we 

all know this pandemic has made significant impacts on every aspect of life and provides 

challenges for society, but the research production should not be stopped, and these studies 

needed an avenue for public presentation. In this line of reasoning, we have hosted the 

IGPME annual meetings for the consecutive year, July 21 to 22, 2020, and 19 to 22 July 

2021, respectively by halting “on-site” activities and shift to a new paradigm that is fully 

online. Therefore, we would like to thank you for your support and opportunity were given to 

us twice. 

“Mathematics Education in the 4th Industrial Revolution: Thinking Skills for the Future” has 

been chosen as the theme of the conference, which is very timely for this era. The theme 

offers opportunities to reflect on the importance of thinking skills using AI and Big Data as 

promoted by APEC to accelerate our movement for regional reform in education under the 4th 

industrial revolution. Computational Thinking and Statistical Thinking skills are the two 

essential competencies for Digital Society. For example, Computational Thinking is related 

to using AI and coding while Statistical Thinking is related to using Big Data. Therefore, 

Computational Thinking is mostly associated with computer science, and Statistical Thinking 

is mostly associated with statistics and probability on academic subjects. However, the way 

of thinking is not limited to be used in specific academic subjects such as informatics at the 

senior secondary school level but used in daily life.   

For the PME 44 Thailand 2021, we have 661 participants from 55 different countries. We are 

particularly proud of broadening the base of participation in mathematics education research 

across the globe. The papers in the four proceedings are organized according to the type of 

presentation. Volume 1 contains the presentation of our Plenary Lectures, Plenary Panel, 

Working Group, the Seminar, National Presentation, the Oral Communication presentations, 

the Poster Presentations, the Colloquium. Volume 2 contains the Research Reports (A-G). 

Volume 3 contains Research Reports (H-R), and Volume 4 contains Research Reports (S-Z). 

The organization of PME 44 is a collaborative effort involving staff of Center for Research in 

Mathematics Education (CRME), Centre of Excellence in Mathematics (CEM), Thailand 
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Society of Mathematics Education (TSMEd), Institute for Research and Development in 

Teaching Profession (IRDTP) for ASEAN Khon Kaen University, The Educational 

Foundation for Development of Thinking Skills (EDTS) and The Institute for the Promotion 

of Teaching Science and Technology (IPST). Moreover, all the members of the Local 

Organizing Committee are also supported by the International Program Committee. I 

acknowledge the support of all involved in making the conference possible. I thank each and 

every one of them for their efforts. Finally, I thank PME 44 participants for their 

contributions to this conference. 

Thank you 

Best regards 

Associate Professor Dr. Maitree Inprasitha 

PME 44 the Year 2021 

Conference Chair   

anuch
Stamp
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ENGAGING STUDENTS WITH ONLINE ELABORATED FEEDBACK: 

TWO MEDIATING TOOLS  

Raz Harel1 and Michal Yerushalmy1 

1University of Haifa, Israel 

 

Automatic feedback provided to students’ work has the potential to improve their mathematical 

thinking and skills. A commonly used type of online feedback is elaborated feedback. Engaging 

students with elaborated feedback is a well-known challenge, which we addressed by 

examining two mediating tools that are part of a dynamic diagram environment: self-

assessment, and interactive feedback. We focused on the students’ process of constructing 

position-over-time graphs, while they were working on an online example-eliciting task on the 

Seeing the Entire Picture platform. We present and compare two case studies of students' use 

of the elaborated feedback, engaging both mediating tools, and analyze changes in the students' 

examples after processing the elaborated feedback. 

INTRODUCTION 

Elaborated feedback  

Carless refers to educational feedback as "a dialogic process in which learners make sense of 

information from varied sources and use it to enhance the quality of their work or learning 

strategies" (2015, p. 192). Researchers distinguish between two main types of feedback: 

verification and elaborated. While verification feedback usually aims to ascertain the 

correctness of information, the elaborated feedback is provided to stimulate an explanatory 

dialog regarding the responsiveness of the answer. In the current research, we focused on 

“attribute isolation elaborated feedback,” which prompts the dialog based on mathematical 

characteristics of the objects and processes involved in a task. Provided observations are 

important regardless of whether the referred attributes meet the requirements of the task or not. 

Elaborated feedback provides opportunities for higher-order learning processes in mathematics 

(Van der Kleij, Feskens, and Eggen, 2015). At the same time, the learning that involves 

elaborated feedback is considered to be more complex, and therefore more challenging, as to 

engaging students in the self-assessment process (Shute and Rahimi, 2017).  

Interactive diagrams 

We used interactive diagrams as a digital learning environment. Interactive diagrams include 

an initial example, its representations, and tools to manipulate it. Thus, interactive diagrams 

have the potential to engage students in the inquiry process (Mariotti, 2006). The illustrating 

interactive diagram is one of three types of interactive diagrams (Naftaliev and Yerushalmy, 

2017). It usually consists of a single representation of a sketch example and it doesn't offer 

links between representations. Thus, an illustrating interactive diagram by itself offers fewer 

opportunities for engaging students into inquiry. There is a wide range of problems and learning 

situations, however, that benefit from the use of this type of interactive diagrams. For example, 

constructing graphs by direct manipulation of a given sketch. For the current research, we used 
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the Seeing the Entire Picture (STEP) platform as an interactive environment that supports 

example-eliciting tasks and provides automatic elaborated feedback (Olsher, Yerushalmy, and 

Chazan, 2016). In example-eliciting tasks, students are asked to construct examples in a 

multiple linked representation (MLR) environment to support their answers. Eliciting examples 

is a vital element in the reasoning processes. Elicited examples or learner-generated example 

space may also be indicative of the students’ mathematical reasoning (Zaslavsky and Zodik, 

2014). 

We address the challenge of engagement by creating a problem-solving digital environment 

that is based on illustrating interactive diagram construction tasks and involves inquiry with 

elaborated feedback. We observed the work of students by exploring their work with two 

mediating tools. The first is a self-assessment tool. The self-assessment process has the 

potential to enhance student learning (Stacey and Wiliam, 2013). We used self-assessment in 

which following the task submission, the students are asked to evaluate their work. The second 

tool dynamically provides interactive feedback, which, upon the construction of the required 

graph, verbally makes observations on the requirements of the task. By doing that, the 

interactive feedback acts as a parallel verbal representation. We studied the problem-solving 

process with each tool and sought to identify engagements with the automated elaborated 

feedback that grew out of the experience of the tools. We asked: how did the students use the 

elaborated feedback that follows engagement with each mediating tool? And were there any 

changes in the students' examples inspired by the elaborated feedback following the use of each 

mediating tool? 

METHODOLOGICAL CONSIDERATIONS 

The current study is part of a larger study in which we explore the use of online elaborated 

feedback by students and describe a small-scale experiment that enables qualitative analysis. 

We present two case studies involving 10th-grade math students at an advanced level. Each 

student carried out the same activity within the framework of a task-based interview. The 

activity contained two example-eliciting tasks in which the students were asked to construct 

position-over-time graphs. Each task required to construct and submit three different examples 

that meet specific given conditions. Asking the students to create three examples as different 

as possible aims to achieve a diverse personal example space. The submissions were 

automatically assessed and analyzed with STEP, to produce post-submission elaborated 

feedback for the students (hereafter, post-feedback) (Olsher et al., 2016). Once the students 

submitted their examples to the first task, they received the post-feedback from STEP. After 

processing the post-feedback, they proceeded to the second task. The post-feedback consisted 

of a list of task requirements and a list of mathematical characteristics of the task (see Figures 

5 and 7). The lists were prepared in advance, as part of the task design. STEP can analyze the 

submitted work and mark the identified characteristic of the submitted example. By that STEP 

automatically produced a post-feedback. Figure 1 and 2 present the study procedure and a 

screenshot of task 1 
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Figure 1: Study procedure 

Task 2 contained the same instructions but instead of 4 segments of riding, task 2 included 2 

segments. The use of two almost identical tasks allowed us to analyze the changes as a result 

of post-feedback. The data were collected through the STEP platform, and the students’ work 

was also recorded, to check against the elements collected automatically. We analyzed the 

segments in the interviews where the students used the mediating tools and the post-feedback. 

To detect the effect of the post-feedback, we analyzed the changes in the personal example 

space and in meeting the task requirements in the first and the second task submissions.  

Figure 2: Task1 

Task 2 contained the same instructions but instead of 4 segments of riding, task 2 included 2 

segments. The use of two almost identical tasks allowed us to analyze the changes as a result 

of post-feedback. The data were collected through the STEP platform, and the students’ work 

was also recorded, to check against the elements collected automatically. We analyzed the 

segments in the interviews where the students used the mediating tools and the post-feedback. 

To detect the effect of the post-feedback, we analyzed the changes in the personal example 

space and in meeting the task requirements in the first and the second task submissions. 
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FINDINGS 

Self-assessment – Ela: After reading the instructions, Ela constructed three examples. While 

doing so, she explained that the left blue point on the graph represents the first location Noga 

reached. Later, she submitted three examples represented in Figure 3. 

Figure 3: The three examples Ela constructed 

Had the left point indeed represented Noga’s first location, all the examples Ela submitted 

would have met the task requirements. Yet, according to her interpretation, this was not the 

case. After submission, the interviewer gave Ela a page represented in figure 4 and asked her 

to mark all the characteristics she predicts STEP would identify in her examples. 

Figure 4: Ela's markings 

Figure 4 shows that Ela marked correctly that the starting point and the end point of the right 

and the middle examples are not in the correct position. Namely, during the self-assessment, 

she realized that she had placed the first and last points in the graph incorrectly. Ela also 

identified whether her examples represent situations in which Noga stopped or passed through 

the city from which she started. Regarding other characteristics, Ela marked incorrectly 

whether or not those characteristics existed in her examples. Furthermore, regarding one 

characteristic Ela mentioned that she did not know whether it existed in her examples. Note 

that from the marking, we can obtain information about the knowledge constructs Ela created 

during the self-assessment process, and about those that she has not achieved yet. Figure 5 

presents a screenshot of the post-feedback Ela received following her self-reflection. 
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Figure 5: The post-feedback Ela received 

Below are some of Ela's reactions to the feedback: 

1  E:  (Focused on the middle drawing) Got it! I didn’t address the distance from 

the starting point. 

2 I:  What made you understand this? 

3  E:  That I saw I stayed at the same point (middle drawing). The computer told 

me it was a mistake. So I thought about it one more time. 

4  E:  Now I also know that in the first hour she has reached a distance of five 

kilometres and then she can go back and reach a distance of zero. 

5 I:  What does it mean that she came back to the city which she left? 

6  E:  That she reached the point from which she left. In my drawing, she didn’t 

return. She drove five kilometres and stayed there. 

In line 1 Ela realized that she addressed the starting point incorrectly. In line 3 Ela explained 

that the post-feedback helped her realize it. In line 6 Ela was able to identify the characteristic 

which she didn't know how to refer to during the self-assessment process (Noga ended up in 

the city from which she departed). Thus, Ela was assisted by the post-feedback in her learning 

process. Ela proceeded to the second task. Figure 6 presents the submission she made: 

Figure 6: Ela’s submission for the second task 

All the examples Ela submitted in the second task met the task requirements. We can also 

observe the great diversity of Ela's examples in which four of the five characteristics included 

in the post-feedback existed (Noga changed direction, stopped, progressed at different speeds, 

passed through the city from which she left). 

  



Harel & Yerushalmy 

3 - 6  PME 44 – 2021 

Interactive feedback – Anna: After reading the task instructions, Anna addressed the 

interactive feedback and read the first mathematical characteristic in the list: "starting point." 

She reacted as follows: "Okay, so this should start from here (pointed at the first point of the 

graph)." Anna dragged the first point to the origin and noticed that the first characteristic was 

painted in blue. Then, she completed the construction of the example by placing the second 

point, the third point, and finally the fourth point. Doing so, Anna constructed a graph that 

meets the task requirements (see the example on the right in Figure 7) and all the characteristics 

in the interactive feedback turned blue. It seems that Anna used the interactive feedback to find 

a strategy for constructing the graph by placing the first point and to proceed according to the 

order of the points. Figure 7 shows a screenshot of Anna's submission and the online post-

feedback: 

Figure 7: Anna's submission and elaborated feedback 

Unlike Ela's first submission, Anna’s submitted examples met the task requirements. 

According to Figure 7, Anna's examples were not varied and included only one direction riding. 

Below are some of Anna's reactions to the feedback: 

2  A:  What does it mean that she passed through the city from which she left and she 

ended in the city from which she left? Did she drive in circles? 

3  I:  I cannot answer you. You can choose whether you want to crack it or move on. 

4  A: It can be done in the negative direction. 

5  I:  What made you think of this? 

6  A:  I thought only of the positive direction and then in the feedback it’s written that 

Noga changed the direction. So that gave me the idea. 

In line 1 Anna mentioned characteristics she didn't understand in the post-feedback. As a result 

of the interactive feedback, however, at this point, Anna had to deal only with the part of the 

post-feedback that relates to characteristics. In line 4 Anna expressed a new idea ("negative 
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direction"). In line 6 she explained that she got the new idea from the post-feedback. Figure 8 

shows a screenshot of her submission to the second task: 

 

Figure 8: Anna's second task submission 

Anna indeed constructed graphs that are below the X-axis as she had planned. Moreover, unlike 

her first submission, the second one was very varied and included four of the five characteristics 

from the post-feedback (Noga changed direction, stopped, progressed at different speeds, and 

finished in the city from which she left). Thus, Anna used the post-feedback to diversify her 

examples. 

DISCUSSION AND CONCLUSIONS 

The aim of the present research was to examine two mediating tools for engaging students 

through the post-feedback on their work in a dynamic diagram environment: self-assessment, 

and interactive feedback. To this end, we explored the students' use of the post-feedback with 

each mediating tool, and the changes in the students' examples as a result of the provided post-

feedback. Ela’s self-assessment process helped her compare her predictions and the results of 

the post-feedback. As a consequence, she was able to identify the characteristics in the post-

feedback she misunderstood. Namely, she used the post-feedback that followed the self-

assessment to deepen the learning process. Following the post-feedback, Ela improved the 

correctness and diversity of her examples. The interactive feedback helped Anna construct 

examples that met the task requirements from the first submission. After receiving the post-

feedback, Anna focused on a subset of the characteristics and mentioned that the list of 

characteristics gave her new ideas. We suggest that due to the interactive feedback Anna could 

use the post-feedback to diversify her examples. According to the students’ use of the post-

feedback and according to the changes in the students' examples, we suggest that the mediating 

tools promoted the students' engagement with the post-feedback.  

Shute and Rahimi (2017) noted that complexity is one of the reasons for students' difficulties 

in engaging with elaborated feedback. Both students indeed had difficulty in understanding the 

characteristics included in the post-feedback, but in the end, they were very much engaged. 

Ela’s self-assessment process led her to gradually address characteristics she did not 

understand. The self-assessment process may have helped her with the post-feedback 

complexity. The interactive feedback helped Anna focus on the part of the characteristics in 

the post-feedback, which may have helped her overcome the complexity of the post-feedback. 

Studies have noted the benefit of using self-assessment for the active involvement of students 

(Stacey and Wiliam, 2013). According to our results, the interactive feedback was found to be 

effective as well. To compare the characteristics of the tools, we examined them separately. 

Combining these tools will likely make it possible to significantly promote the use of 
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elaborated feedback by the students. This of course requires further research that may be 

designed on the basis of the current research. 
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The aim of our project is to explore students' conceptions of rotational symmetry at the 

beginning of secondary school. Thereby, we are interested in how children build up a concept 

of rotational symmetry working in a concrete learning environment. In the sense of subject 

didactic development research we performed designed experiments and explored the learner’s 

conceptual ideas about rotational symmetry. This paper presents the concept of the learning 

environment and first reconstructive results based on student conversations using Steinbring’s 

epistemological triangle as an interpretative method. We succeed in identifying central aspects 

of the concept of rotational symmetry in different reference contexts.  

RATIONALE 

Symmetry is an important concept in mathematics and a subject matter from elementary school 

to university (Bornstein & Stiles-Davis, 1984). Although it can be defined clearly, we don’t 

know much about the evolvement of students’ conceptual understanding. At the same time, 

learning environments are used in mathematics classes to initiate an idea of rotational 

symmetry. But are they helpful to build up a fundamental conception? We answer both 

questions with the help of a design-based research project (Nührenbörger et al., 2016), which 

is characterized by the fundamental aspects: (1) designing learning environments for 

classrooms and (2) investigating the initiated learning processes and contributing to local 

theories. So, we ask how learning environments for rotational symmetry can be designed and 

which concepts students develop. Prediger, Schnell and Rösike (2016) identified four 

intertwined working areas in a design-based project, which are connected and passed several 

times: a) specifying and structuring goals and contents of the learning environment, b) 

developing the design, c) conducting and analyzing design experiments and d) developing 

contributions to local theories. We structure our paper according to these working areas. 

a) Specifying the Content: Rotational Symmetry 

A figure is called symmetric, if apart from the identity, there exists at least one other mapping 

which maps the figure onto itself. Each of these mappings beside the identity is called "a 

symmetry” of the figure. In this sense a rotationally symmetric figure as a whole (the hexagon) 

can be mapped onto itself by a suitable rotation: mapping a figure onto itself by rotating it 

(figure 1). In a second perspective it is possible to identify an elementary figure (triangle) from 

which the whole figure can be built by suitable turns: using an elementary figure to build a 

symmetric figure. This elementary figure can then be identified in the overall figure as a 

repeating partial figure (Leuders, 2016). 
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In mathematics education research we know a lot about students’ difficulties with axial 

symmetry and their conceptualization processes in primary and partially in secondary school 

(Bornstein & Stiles-Davis, 1984; Ramful, Ho & Lowrie, 2015). In contrast, rotational 

symmetry is frequently only an additional part when researching students’ difficulties and 

understanding of symmetry, but rarely the exclusive object of research. This also applies for 

the findings of the following studies and makes a research desideratum visible. Aktas & Ünlü 

(2017) identify students’ problems in determining the rotation angle and the direction of 

rotation. This goes along with Küchemann’s (1981) research who classifies children’s 

understanding of reflections and rotations into a number of levels. More recent research 

findings in the area of (rotational) symmetry tend to examine the differences in the use of digital 

and traditional media (e.g. Chan, Leung, & Ong, 2017). Regarding research on the 

conceptualization processes of rotational symmetry Seah & Horne (2019) can be mentioned. 

They deduced that students’ knowledge is fragmented as well as that their reasoning ability is 

poor and more research is needed to describe the underlying learning processes of rotational 

symmetry. It can be stated, that there is a need for research regarding the design of learning 

environments and especially students’ conceptualization processes while learning the concept 

of rotational symmetry. This leads to the following research questions: 

● How can a learning environment for rotational symmetry be designed, which allows 

students to develop an understanding of the concept? 

● Which conceptualization processes regarding the concept of rotational symmetry can 

be reconstructed among learners of grade six? 

● Which reference contexts (in the sense of Steinbring) are used by the learners to 

develop a concept of rotational symmetry? 

b) Developing the Design  

The learning environment is aimed at children of grades five and six in Germany (age 10 to 

11) according to the German curriculum. In order to stimulate a comprehensive understanding 

of rotational symmetry, we have designed the learning environment according to the following 

principles:  

Action-oriented approach: Due to the age of the children and the fact that they deal with 

rotational symmetry the first time, a constructive and action-oriented approach is chosen 

explicitly. Children are given lots of opportunities to explore figures, to move and to rotate 

them and to construct a figure out of elementary figures, which are repeatedly rotated.  

Integrated conception: The environment takes both concepts of rotational symmetry into 

account: a) using an elementary figure to build a symmetric figure and b) mapping a figure 

onto itself by rotating it. Within the learning environment we worked at the beginning with 

rotationally symmetric figures, so-called "windmills" (see figure 2 for some examples, Götze 

& Spiegel, 2004).  

Figure  SEQ Figure \* ARABIC 1: Different perspectives of rotational symmetry (Leuders, 2016) 
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Cooperative realization: Verbalizing, explaining, defending, asking and arguing are key 

activities for productive learning processes (Dekker & Elshout-Mohr, 1998). Cooperative 

learning situations seem to be suitable for such key activities to emerge. Regarding these design 

principles the following tasks are offered after a short introduction to groups of children. 

Creating rotational symmetric figures  

In this part of the learning environment the focus is on action as well as on the perspective of 

an “elementary figure” of rotational symmetry (figure 1). Students work in groups of four and 

everyone gets a geoboard and a workbook on their own. They receive wings of various 

windmills represented on transparencies which they have to share. So, the cooperation between 

the students is fostered on a natural way. They fix the wing at the centre of their geoboards, 

rotate the wing and stretch the figure with the elastics on the geoboard (see figure 2). By 

documenting the whole windmills in the workbook, the students change the perspective from 

an “elementary figure” to the entire rotational symmetric figure. According to their 

competences and speed the children stretch and draw a different number of figures.  

  

Figure 2: Examples of wings of windmills and stretched windmills on a geoboard 

Distinguishing rotationally symmetric and non-rotationally symmetric figures 

A larger number of figures (rotationally symmetric and not rotationally symmetric) are given 

to each group table. Students were asked to judge if a figure is rotationally symmetric or not 

(figure 3). All figures allow to identify an elementary figure, but they are arranged in a way, 

that some are axisymmetric, rotationally symmetric, or not symmetric at all. So, it is not enough 

to focus on the identification of the elementary figure, but the figure as a whole must be 

considered. The students are explicitly encouraged to work together, to discuss and to verbalize 

their judgements. In doing so, they can consider the figure as a whole, rotate it mentally or 

stretch it on the geoboard and rotate the board to solve the task.  

 
Figure 3: Examples of figures to sort 
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c) Conducting and Analyzing the Design Experiments 

The design experiments were carried out in the teaching and learning laboratory at Paderborn 

University. The classes worked in the learning environment for 120 minutes. The groups were 

put together by the teacher, so that within the group children with different competencies work 

together. In this way, a productive discourse about different approaches and concepts may 

come up, which allows to reconstruct students’ conceptual understanding.  

In order to answer our research questions about the reconstructable concept of rotational 

symmetry, a qualitative approach is necessary to analyze students’ actions and statements. 

To characterize the conceptual understanding, we use the epistemological theory of 

Steinbring (2005). Steinbring explains that mathematics, as the knowledge of abstract 

relations, is neither directly accessible by communication nor by the use of signs. Students 

have to interpret mathematical signs and develop a meaning on their own. This meaning has 

to be produced by means of establishing a mediation to appropriate reference contexts or 

objects. “The triangular connecting scheme between the mathematical signs, the reference 

contexts, and the mediation between signs and reference contexts, which is influenced by 

the epistemological conditions of mathematical knowledge, can be represented in the 

epistemological triangle” (Steinbring, 2005, p. 22).  

 
Figure 4: Steinbring’s epistemological triangle 

Thus, the epistemological triangle helps to reconstruct the connection between the concrete 

signs (e.g. symmetrical figures), the verbalized concept (of rotational symmetry) and the 

chosen reference contexts.  

This mutual conceptualization process can be reconstructed by interpreting the statements and 

actions of the students (Steinbring, 2005). Therefore, the groups were videographed and 

corresponding transcripts were interpreted by a group of researchers (Krummheuer & Naujok, 

1999). The aim of the interpretation process consists of reconstructing the ongoing 

development of the knowledge and characterizing typical (pre)concepts of rotational symmetry 

as local theories (Prediger, Schnell & Rösike, 2016).  

Case: Sorting of symmetric and non-symmetric figures  

The episode takes place during the second activity. The students have already sorted some of 

the windmills when the teacher joins the group. 

1 Teacher (T): And how did you sort that out now? Now how did you know it was a 

windmill? 

2 Oskar:  So, if that, so if this is exactly the same on the other side, because then it 

can be better (silenced) … 

3 T:  Mhhh. 

4 Noel: But that is not a windmill (pointing to windmill 1, quiet). 
windmill 1 
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5 T:  You mean this isn’t a windmill. What do the others say? 

6 Julian:  Can I have a look?  

7 Oskar: gives the card with windmill 1 to Noel 

8 Robert:  What's the matter with this one (pointing to “windmill” 2)?  

9 Oskar:  That’s not a windmill, because on the opposite side, it isn’t the same.   

10 Julian:  (speaks to Noel and stretches out his hand) Show! Please! (takes the card 

(windmill 1) in his hand, turns the card clockwise) This is one.  

11 T: Are we gonna say this is one or this isn’t one? 

 

12 Julian:  Because, if you hold in this position, then this is the same as when it rotates.  

The discourse can be divided into two parts, where two reference contexts of rotational 

symmetry can be reconstructed: a) “parts are the same on the other side”, b) “windmills can be 

rotated”. Oskar chooses a figure sorted as a windmill and tries an explanation (line 2). He thus 

selects one concrete object, windmill 1, as his sign to explain the abstract concept of a windmill 

(rotational symmetry). It is not quite clear what he means with his reference to "exactly the 

same" and to "the other side". It could be that he possibly means a horizontal, vertical or 

diagonal axis of symmetry that divides the figure into two subfigures and probably refers to 

axial symmetry. These two partial figures would then be “on the other side” and congruent to 

each other. However, the assumed explanation referring to axial symmetry does not fit exactly 

to his example, because windmill 1 is a rotationally symmetric figure consisting of four partial 

figures and not an axial-symmetric figure, so that his formulations "on the other side" and 

"exactly the same" probably have to have different meanings. With the expression "the other 

side" Oskar could also mean the diagonally opposite partial wings. "Exactly the same" could 

then refer to the individual partial figures in the sense of congruence. Probably, Oskar’s 

strategy is to search for the “elementary figure” of the rotational symmetric figure. Answering 

Robert’s question in line 8, Oskar carries his idea forward, but now uses a new figure, a second 

sign, (“windmill” 2) as a counterexample. He seems to want to check the reference context he 

invokes on a second example, but even at this point it remains unclear what he exactly means 

by "on the other side". Similar to line 2, the wings could be meant diagonally opposite each 

other. "The same" could be an allusion to an even distance between the wings or, as assumed 

in line 2, it could point to congruent wings. His concept of rotational symmetry seems to be 

based on the idea of corresponding parts. 

 
Figure 5: Epistemological triangle of Oskar’s concept 

“windmill” 2 

windmill 1 
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Julian comes up with a different interpretation and a different reference. He turns the windmill 

clockwise and decides "This is one" (line 10-12). Julian verbalizes his decision. If you "hold it 

in this position, this is the same as when it rotates” (line 12). He uses the same sign, but a 

different reference to develop his idea of rotational symmetry. In his statement, it is not entirely 

clear whether he is looking at the entire figure or focuses on individual parts as his classmates. 

But since the individual figure elements are shown in a different position when the figure is 

rotated, it can be assumed that it refers to the entire figure. 

 
Figure 6: Epistemological triangle of Julian’s concept 

d) First Results contributing to Local Theories  

The analysis of this and further episodes shows that students in guided discourse succeed in 

addressing central aspects of the concept of rotational symmetry using various reference 

contexts. The data analysis using Steinbring’s epistemological triangle let us succeed in 

reconstructing two different reference contexts for the (pre)concept of rotational symmetry as 

local theories: a) “parts are the same on the other side”, b) “windmills can be rotated”, whereas 

b) represents the concept to be built of mapping a figure onto itself by rotating. The concept 

regarding the reference context a) is not sufficient from a mathematical point of view, because 

the idea behind holds for axis-symmetry as well. Regarding the examination of used materials 

and methods of the learning environment, it can be supposed that the activity of creating 

rotational symmetric figures encourages these concepts. The repeated depiction of a wing 

might strengthen the reference context of “the same on the other side” while the rotation seems 

to be less important. So, for the next design circle we change the order of the activities. 

Additionally, we give transparencies of the whole figures to the students to validate their 

decisions by rotating the transparency on the geoboard. 

CONCLUSION AND PERSPECTIVES 

In summary, it can be stated that students use the identification of an elementary figure to build 

a symmetric figure as well as mapping a figure onto itself to identify rotational symmetric 

figures in their conversations. Thus, both perspectives from part a) of rotational symmetry kicks 

in. But it remains still questionable in how far students are able to distinguish between the 

different concepts of axial and rotational symmetry, when they mainly focus on the elementary 

figure.  

In further analyses, the development of selected group conversations over a longer period of 

time is examined in order to be able to describe decision-making processes over their entire 
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length. We will try to describe conceptualization processes for the concept of rotational 

symmetry which go beyond individual group discussions. Ideally, these results can be 

abductively condensed into theories concerning the conceptualization processes of learners to 

the concept of rotational symmetry. 
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In this case study of a grade-4 teacher, we address the question: How might a teacher 

conceptualize fractional units as multiplicative relations (measures) while operating on 

continuous quantities? We analyze two video-recorded coaching sessions in which Lily 

(pseudonym) solved tasks she also used for promoting her students’ construction of the 

equi-partitioning scheme. Lily’s case provides a glimpse into how knowledge from research 

on children’s fraction learning can support and be extended to studying teachers’ 

fractional reasoning. We infer and discuss the implications of changes in Lily’s 

coordination of operations on concatenated (composed) sub-units and on those units 

separately, which led to her use of the distributive property for solving tasks she previously 

solved through guess-and-check.  

INTRODUCTION 

In this case study with Lily (pseudonym), a grade-4 teacher, we address the question: How 

might a teacher conceptualize fractional units as multiplicative relations (measures) while 

operating on continuous quantities? Our work with Lily drew on, and extended, research 

that articulated children’s construction of the equi-partitioning scheme (Steffe & Olive, 

2010; Tzur & Hunt, 2015). To this end, researchers engaged children in tasks of iterating 

units as a means for them to conceptualize unit fractions (1/n) as measures (Simon et al., 

2018), that is, multiplicative relations to a given whole (Tzur, 2019). Given a continuous 

whole and the task to share it equally among a given number of people (e.g., 5), a learner 

would estimate the size of one person’s share, iterate it 5 times, and compare the iterated 

whole with the one to be partitioned (see Figure 1a). If not equal – the learner would adjust 

the length of the estimated piece and repeat the process. Simon et al. (2004) called such a 

sequence of actions the repeat strategy. Two issues arise in such adjustment, namely, (a) 

its direction (making the next estimate shorter or longer) and (b) the amount of change, 

including how to improve the estimate by using the difference between the given and 

iterated whole (left-over or overage piece). Hunt, Tzur, and Westenskow (2016) showed 

that children progress through four stages, the last of which involving conceptualization of 

the amount of change as a unit fraction of the left-over (or overage; see next section). In 

Lily’s case study we examined the extent to which her progression would be similar. 

This study contributes to the line of work in which teachers’ fractional reasoning is 

examined by using research with children (Lovin et al., 2018). It provides a glimpse into 

how a teacher may progress to a way of operating on fractional units that lays the foundation 
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for constructing higher-level understandings. Such a way of operating seems a critical 

component of a teacher’s mathematical knowledge for teaching (MKT, see Hill & Ball, 

2004) so she can effectively teach fractions to her students. This study could thus provide 

mathematics educators with an empirically grounded model of what constitutes a teacher’s 

reasoning with fractional units as well as tasks to promote it.  

CONCEPTUAL FRAMEWORK 

We draw on the constructivist research program that has been articulating conceptual 

progressions in children’s schemes for reasoning about fractional units (Norton et al., 2015; 

Steffe & Olive, 2010; Tzur, 2019). The commencing scheme in this progression, called 

equi-partitioning, underlies two related understandings about unit fractions (1/n). First, the 

defining characteristic of such units is their multiplicative relation to another unit 

considered as a whole (a unit of 1). That is, a unit fraction (e.g., 1/5) is determined by the 

whole being 5 times as much of it, which is compatible with the number of times it needs 

to be iterated to fit within a given whole. Second, because iteration of larger units results 

in fitting fewer of them within the whole, an inverse relation is anticipated among unit 

fractions (e.g., 1/5 > 1/6 precisely because 5 < 6). The equi-partitioning scheme is 

postulated to be rooted in a person’s ability to disembed pieces from a whole while keeping 

the whole intact. 

To promote teachers’ (e.g., Lily) construction of the equi-partitioning scheme through 

solving tasks with the repeat strategy, we have been using the French Fry activity (Tzur 

and Hunt’s, 2015). In fact, Lily and her partner had been using this activity in their 

classrooms to foster their students’ learning of unit fractions. Figure 1a shows a computer 

screen with a yellow strip (whole French fry) to be shared equally among 5 people. Below 

it we see that a piece, estimated to be one person’s share, has been iterated 5 times to check 

if it accomplished the intended partitioning. Indeed – it did not, as the iterated, 5-piece 

whole is not equal to the given French fry. A learner would thus face two challenges: 

determine if the next estimate should be shorter or longer than the first estimate – and by 

how much. Hunt, Tzur, and Westenskow (2016) showed that children may progress through 

four stages in resolving each of those challenges. First, they have no conception of the 

nature (direction) of adjustment (shorter or longer). Second, an anticipation of the direction 

is evolving while the amount of adjustment is not yet conceptualized. Third, an anticipation 

of the amount of adjustment is evolving. Finally, both anticipations are integrated into a 

conception underlying both aspects of equi-partitioning (unit fractions as multiplicative 

relations to a given whole and the inverse relations among them). Figures 1b and 1c depict 

the fourth stage, including the two ways in which the left-over piece could be purposely 

operated on (Fig. 1b shows iteration of a unit concatenating the first estimate with 1/5 of 

the left-over piece; Fig. 1c shows separate iterations of those sub-units). When coordinated, 

these two ways provide a basis for using the distributive property while iterating 

(multiplying) continuous fractional units. 
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Figures 1a-1b-1c: Attempts at equally sharing a French fry among five people 

METHODS 

Participant and Settings 

This was a case study with Lily, a grade-4 teacher working at a school in a large US city. 

We chose Lily as her work exemplifies the conceptual transition (similar to children) on 

which this study focused. She participated in a larger project (see Acknowledgements) to 

promote teachers’ understandings of mathematics and mathematical pedagogy.  

Lily’s work took place during coaching sessions with her partner (“V”), conducted after 

they taught fraction lessons to students in one of their classes (with the partner observing 

that class). In those sessions, a researcher from our team led them to reflect on what they 

considered to be critical in the observed lesson. We focused on the teacher’s own 

understanding of mathematical aspects of what students could (or not) do during the 

lessons. To this end, in the coaching sessions we used tasks that mostly followed tasks the 

teachers used, while further probing for their thinking. 

Data Collection and Analysis 

We focus on two coaching sessions with Lily and “V,” involving two graduate students, 

the project’s PI, and another researcher on the team (the first session was led by a graduate 

student, the second by the PI). One graduate student video recorded each session, focusing 

the camera on the teachers’ actions (e.g., hand gestures) and written work. Analysis began 

with each team member observing (individually) the sessions and making detailed logs of 

the main events. Then, the four team members met to discuss what they noticed, and to 

identify themes (and data segments) that later informed the focus of this study. A graduate 

assistant transcribed the selected video segments and the team then discussed and co-

authored the qualitative analysis presented in the next section (including tasks used to 

promote Lily’s progression).  

RESULTS 

We present data excerpts that indicate the transition in Lily’s reasoning about continuous, 

concatenated fractional units. We highlight how she moved from a guess-and-check 

method to purposely partitioning the piece left-over after iterating an estimate of one 

person’s share. She realized that combining 1/n of the left-over with her initial estimate and 

re-iterating it would solve the task of equally sharing a whole through unit iteration. This 

realization indicated her construction of a for of the distributive property for concatenated 

(composed), continuous units. 
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Data in Excerpt 1 (the first, post-lesson session) illustrate the starting point in Lily’s 

reasoning, and thus the conceptual challenge she faced, when having to operate on the left-

over piece for a task of equally sharing the whole among four (4) people. Working on this 

task followed a previous task in which Lily and her partner shared the whole equally among 

3 people. Both anticipated that one person’s share would have to be shorter than the piece 

they iterated to equally share the same whole among 3 people. Thus, the researcher 

followed by asking how much shorter it needed to be, which both teachers did not know. 

(R stands for Researcher, L for Lily, and V for her partner.) 

Excerpt 1 

R: So, I’m just going to guess. Let’s try there (makes a piece shorter than the 1/3 

piece). So, I’m going to measure it (iterates the piece four times along 

the yellow strip; Fig. 2). So, I have this much left-over (points to it). I 

need to make this piece (points to the estimated-then-iterated piece) 

longer or shorter? 

 

Figure 2: Estimated piece iterated 4 times; iterated whole is too short 

L: You need to make them longer. 

R: How much longer [with so] much left over? What would be the way to go about 

it? 

L: Guess and check. [authors italicized words to highlight Lily’s ideas.] 

R: So how much longer? [Lily replies first, then her partner, V.] 

L: A little bit (points to the left-over piece). Like about there.  

V: So, taking this [leftover], splitting it into 4 equal parts, then take that little part 

[1/4 of the leftover] to add on this (the original white part), then 

remeasure.  

R: Why would that work?  

V: Because it is taking the same amount to split four times equally. So, each piece 

has ¼ of this (the leftover part).  

R: (To V) Let’s try Lily’s way, then [yours]. (N iterates Lili’s estimate). Lily, yours 

[now] has this much leftover. Would you make this longer or shorter?  

L: A little bit longer. 

R: How much longer?  

L: I guess a sliver. 

R: Lily, I want to push you. I want to make sure that this makes sense to you. 
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L: I don’t understand why [V’s way] is faster. Because you can eye-ball it easier.  

R: I have these four pieces already and I have this much left-over. Rather than just 

guess and check, why would it make sense to have the precision to split 

this into four pieces and add one of those pieces to my pieces? 

L:  I don’t know. You’re still eyeballing, you’re still guessing the fourth here. 

Excerpt 1 illustrates Lily’s initial idea, which is similar to Ana’s work in the study by Hunt, 

Tzur, and Westenskow (2016). Like Ana, Lily understands the iterated piece needs to be 

longer, but when asked, “How much longer?” she simply says a little bit or by a sliver. Two 

pieces of the data support our inference she is yet to coordinate the left-over piece with 

both the iterated piece and the whole to be shared. First, Lily heard V’s explicit suggestion 

to split the left-over into 4 pieces, but this did not seem to change her reasoning. Instead, 

she followed her own idea and faced yet another imprecise partitioning with some piece 

left-over. This leads to our second point. Lily realized the effect of this activity differed 

from the intended partition. Yet, she continued to suggest changes (“a sliver”) that do not 

account for the number of people among whom the whole is to be shared. We infer that 

Lily’s scheme (guess-and-check, eye balling) precluded assimilating V’s and R’s 

suggestions in a way that would yield her understanding and, hence, shift in operating. This 

could be seen particularly in her comment that what V has been doing is like her own eye 

balling method. For us, this brought forth a perturbation: How might we provoke a change 

in Lily’s reasoning? 

Our plan was to first orient Lily’s attention to and possibly anticipation of the effect of 

adding a small piece (not related to a left-over) to the estimated-then-iterated piece once n-

iterations would be performed. To this end, the project’s PI (last author) joined the team 

for a second coaching session with Lily. For the first task of that coaching session he first 

created a piece and iterated it 7 times, then drew a longer piece considered as an adjusted 

one (Figure 3). Excerpt 2 presents what followed. 

 

Figure 3: A task to bring forth Lily’s anticipation of the effect of iteration 

Excerpt 2 

R: Can you estimate how far we are going to end up [if the blue piece is iterated 

7 times]? Are we going to end up here? Here? (points to different 

places on the bar). Can you see where it would end up before we 

do it? Do you have a way of thinking about it?  

L: (Uses her fingers to measure how much longer (extra) the new piece is, then 

points to where it would end up.) Like, around here.   
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R: And why would that be the place? What were you trying to do with this? 

L: Multiply this (extra only) by 7 [then add it to the original whole].   

Excerpt 2 indicates the task promoted Lily’s attention to the iteration of one piece as if it is 

composed of two sub-units, which she would need to set as a sub-goal for the partitioning 

of a left-over. Instead of asking her to determine how much of the left-over is to be added 

to the initial estimate (original yellow piece), she only had to compare that yellow piece 

with another, given one (blue piece). The task was based on our inference that Lily’s ability 

to decompose whole numbers would enable such a way of operating also on concatenated, 

continuous units. As intended, Lily did not measure the entire (blue) piece and iterated it 7 

times. Rather, she measured just the extra piece she knew to be the difference between the 

yellow and blue pieces – and iterated it 7 times. From her seemingly purposeful actions we 

inferred Lily anticipated that the total of iterating the entire blue piece 7 times would be 

equal to composing the 7-piece yellow stick with the effect of iterating (just) the extra 7 

times. In a continuous context, she could reason about the concatenated aspect of the 

distributive property equation. 

The researcher presented her with a follow-up task of determining the effect of iterating 

just one small (extra) piece. He drew another original (yellow) piece, iterated it 5 times, 

and then added an extra (blue) piece to its right end (Fig. 4). Lily, operating on the added 

(blue) piece separately from the initial (yellow) piece, copied the blue piece, iterated that 

copy 5 times, and pointed to the end of the 5-piece addition as the location of what she 

anticipated would have been produced if the original (yellow) and extra (blue) piece would 

have been iterated 5 times. That is, in a continuous context, she could reason about the 

aspect of the distributive property pertaining to each of the added units multiplied 

separately. To further her reflection on this equivalence, the researcher asked Lily to check 

– which she confirmed by combining a copy of the yellow and the blue piece and then 

iterating the combined piece 5 times.  

 

Figure 4: Lily’s initial step in anticipating the 5-time iteration of an extra piece 

The researcher believed Lily’s reflection on and coordination of the effects of her two 

separate actions could support her transition to operating on a left-over. He inferred from 

her purposeful actions that, for the first time we could observe it, she began operating on a 

continuous piece composed of two sub-units and linking it with the effect of iterating each 

of the sub-pieces separately. He thus presented Lily with a follow-up task intended to 

further promote her coordination of this way of operating with the challenge of using a left-

over in a task to equally partition a given whole. He thus drew a whole (“French fry”) to be 

equally partitioned among 6 people, then a piece estimated to be one person’s share (which 

he purposely made too short) and replicated it 6 times to produce a “too-short” iterated 
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whole. Knowing Lily would think the next estimate would need to be longer than his first 

estimate, he continued as follows.  

Excerpt 3 

R: How much of this left-over should I add to this piece (points to the first estimate) 

so I get it right the next time? 

L: I will take this piece and eyeball six little parts in it (points to the left-over piece). 

R: How many little parts should I eyeball [and] where will you put the mark?  

L: I’m thinking, take this (points to the left-over piece) and splitting it into 6 parts. 

R: Six parts? Why six? 

L: Because you have to add the little part to each of the original ones you had.  

Excerpt 3 indicates the intended transition in Lily’s reasoning. We infer from her 

explanation, prior to any action, that she anticipated the effect of adjustment to the initial 

estimate by purposely partitioning the left-over into the desired number of shares. Having 

worked on the previous tasks, she seemed to bring forth her anticipation of iterating a 

continuous piece composed of two sub-pieces to bear upon the task at hand. Specifically, 

she seemed to coordinate the impact of adding a piece and then iterating it 6 times (which 

she worked on in the previous tasks) with the size of piece relative to the left-over that 

would allow her to accomplish this. In contrast to Lily’s lack of understanding of V’s 

suggestion (Excerpt 1), it then made sense to her that 1/6 of the left-over would produce 

both (a) the entire left-over (if iterated 6 times) and (b) a 6-piece whole equal to the given 

French fry if the extra is first composed with the estimate and then iterated 6 times. She 

conceptualized how the two actions of iterating (multiplying) continuous fractional units—

one for a unit composed of two sub-units and one iterating each of those sub-units 

separately—could lead to the goal.  

DISCUSSION 

Our case study with Lily illustrates how research on children’s fractional reasoning (Steffe 

& Olive, 2010) can support, and be extended, to research on teacher’s reasoning. We point 

out two key contributions. First, we further articulated the fourth stage in Hunt, Tzur, and 

Westenskow’s (2016) study, in terms of conceptualizing the distributive property for 

continuous fractional units. Our starting point with Lily, and the conceptual change she 

went through, were similar to their study of Ana’s case. By paying further attention to the 

coordination in her actions on continuous fractional units (concatenated or separated), we 

characterized this change as learning to apply the distributive property in a continuous 

context. Lily is a case of a person, adult like child, who uses iteration to construct unit 

fractions as multiplicative relations – measures consisting of one or more sub-units (Simon 

et al., 2018). That is, 1/n is a unit fraction in the sense of the whole being n times as much 

of it, regardless of the particular way the continuous unit is composed and/or iterated. We 

do not claim that Lily has conceptualized this at a stage she will not need prompting to 

engage in future tasks. However, her work on the tasks provides a glimpse into how 
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coordinating operations on the left-over piece with the initial estimate may support 

conceptualization of unit fractions by bringing forth the distributive property in a 

continuous context.  

Second, for teaching (and teacher development), our study reveals a crucial way of 

reasoning about fractional units needed to effectively promote students’ understanding of 

fractions as measures. It thus adds to the growing body of knowledge on teachers’ 

mathematical knowledge for teaching (Hill & Ball, 2004). Conceptualizing operations on 

fractional units presented in this study can become a basis on which teachers implement 

practices that build on students’ available understandings. Our work with Lily and her 

partners showed increased abilities to identify where one’s own students are in their 

reasoning and thus set goals and activities for moving them along a similar trajectory.  
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Although the importance of being able to appreciate the aesthetic qualities of mathematical 

objects during problem solving is now clear, there has been little research on facilitating 

students’ appreciation of the aesthetic qualities valued by mathematicians. This paper 

presents a case study on problem solving by pairs of high-school students to describe and 

characterize the process by which learners gain such an appreciation under pedagogical 

interventions. The results show that participants could appreciate aesthetic qualities; and 

that to facilitate learners’ appreciation more effectively, it is necessary to consider the 

curriculum and the order of the mathematical objects presented. 

INTRODUCTION 

By analyzing the mathematical problem-solving processes of experts, the importance of 

being able to appreciate the aesthetic qualities of mathematical objects during problem 

solving has become clear. Some studies have also shown empirically that being able to 

appreciate aesthetic qualities is a characteristic of experts (e.g., Dreyfus & Eisenberg, 1986; 

Silver & Metzger, 1989). Even gifted students tend to appreciate different aesthetic 

qualities than those valued by mathematicians (Tjoe, 2016). 

On the other hand, the subjectivity and contextual dependence of the concept of “beauty” 

have been empirically noted (e.g., Wells, 1990); therefore, some studies have come to 

consider the role of aesthetic judgments, rather than the aesthetic qualities themselves. 

Sinclair (2004) identified three roles of aesthetic judgments in mathematical inquiry— the 

evaluative role, the generative role, and the motivational role. In addition, Sinclair (2006) 

suggested that a “learner’s own aesthetic qualities” could play these roles. However, 

“learner’s own aesthetic qualities” do not necessarily have the roles that Sinclair identified. 

Therefore, in order to enrich learners’ problem-solving process—for example, to increase 

their motivation—it is useful to facilitate their appreciation of the aesthetic qualities valued 

by mathematicians. A method for doing so has not yet been clarified and remains as an 

important research question. 

The purpose of this study is to elucidate a teaching method that helps learners to appreciate 

the aesthetic qualities of mathematical objects. For this purpose, the present study describes 

and characterizes the process whereby learners gain such an appreciation under pedagogical 

interventions (PIs). 
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THEORETICAL FRAMEWORK 

The aesthetic qualities of mathematical objects are often explained by attributes such as 

simplicity and generality (e.g., Hardy, 1956; Poincaré, 1908), but some studies have 

highlighted the subjectivity of these values, or even the concept of “beauty” itself (e.g., 

Inglis & Aberdein, 2014; Wells, 1990), and have tended to avoid clear definitions for 

aesthetic qualities (Davis & Hersh, 1981). However, for the present study, which is aimed 

at helping learners to appreciate such qualities, it is essential to be able to define them. In 

addition, this definition must satisfy the characteristics of the aesthetic qualities valued by 

mathematicians. Hence, the author defines the aesthetic qualities of mathematical objects 

by adopting the following four viewpoints based on the theory of Takeuchi Toshio, a 

Japanese aesthetician, which is in turn based on the principle of “unity in variety” 

(Takeuchi, 1979). The first viewpoint is the “form,” which is the relationship among the 

components of a mathematical object. This viewpoint can be split into (i) “equivalence 

relations” (e.g., proportion) and (ii) “quasi-equivalence relations,” which are not full 

equivalence relations but rather similarity relations (e.g., mappings). The former reasonably 

yields unity among the components and therefore gives rise to the aesthetic qualities of 

perceived objects in a wide area of fields, including mathematics, while the latter unifies 

components according to cultural and individual perception. In mathematics, similarity 

relations such as mappings are very important and give rise to attributes such as simplicity. 

The second viewpoint is the “essence” of a mathematical object, which is the property that 

is preserved during generalization and extension. The third is the “whole” of a 

mathematical object, which is the range in which its “essence” is established. The fourth is 

the “vastness” of a mathematical object, which is perceived through intuition about the 

“essence” and the “whole” of the mathematical object. 

The above four viewpoints and the principle of “unity in variety” are also well suited to the 

below reference by Poincaré (1908): 

What is it that gives us the feeling of elegance …? It is the harmony of the different 

parts, their symmetry, and their happy adjustment; it is, in a word, all that introduces 

order, all that gives them unity, that enables us to obtain a clear comprehension of the 

whole as well as of the parts (pp. 30-31). 

METHODOLOGY 

This paper selects a multiple-cases study as its method based on the methodology of Yin 

(2014). The author observed learners’ problem-solving processes under PIs. Three pairs of 

high-school students were chosen from a school that has among the highest standards in 

Japan, with the expectation that they would be able to use the mathematical knowledge and 

skills learned up to middle school. 

Participants were asked to solve a problem collaboratively (Figure 1). This problem is 

widely used in junior high schools in Japan as a teaching material for the use of the 

symbolic expression 𝑎𝑥 + 𝑏𝑥 = (𝑎 + 𝑏)𝑥. On the other hand, by interpreting this figure as 

“a set of three similar figures sharing a base”, it is possible to understand at a glance that 
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the two routes are equidistant. In other words, by identifying similarity or proportionality 

as a “form,” and at the same time, by intuiting this “form” as an “essence,” the aesthetic 

quality in this study can be appreciated. 

 

<Question>Please prove this property. 

Figure 1: The first form of problem presented to participants 

Last names of authors in the order as on the paper 
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assumed that various symmetries (e.g., trajectory of the position of the empty hole) 

were identified; (III) asking what the cases are in which the common properties 

identified by (II) are not established; (IV) asking to compare the primitive way of 

counting the number of operations while manipulating the clips and the way by 

intuiting the “whole” from the viewpoint of symmetry. 

Takashi and Keiko are thinking about the following property of isosceles triangle [*]. 

 A property of isosceles triangle [*]  

  

 

 

 

 

In the Fig. 1, the triangle ABC is an isosceles triangle 

satisfying AC = BC. The three points D, P, and Q on the 

sides of the triangle ABC satisfy the following: 

AP = PD, DQ = QB 

In this case, the route (i) that departs from A, passes C, 

and reaches B, and the route (ii) that departs from A, 

passes through P→D→Q, and reaches B are equidistant. 

 

 Fig. 1  

[1] Please prove that this property [*] holds. 

 Figure 1: The problem solved by the students.  

 

RESULTS: STUDENTS’ APPRECIATION PROCESS 

 

DISCUSSION 
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The participants received the following PIs from the observer (the author) when their 

thought processes seemed to stop: (PI-i) presenting some derived figures in which the 

triangles are not similar to each other or in which the figures are rectangular (Figure 2); 

(PI-ii) asking the common properties among problems with different figures with two 

equidistant routes; (PI-iii) asking in what cases such common properties as are identified 

by (PI-ii) are established; and (PI-iv) asking to compare the primitive way of proving the 

statement with the means by intuiting the “whole” from the viewpoint of similarity or 

proportionality. These PIs are refinements of the method used in previous studies (Dreyfus 

& Eisenberg, 1986; Tjeo, 2016). 

 

 

 

 

 

 

Figure 2: Derived figures for (PI-i) 

 

 

 

 

 

 

 

 

 
The data obtained from the study are qualitatively analyzed as follows.  

● Identify the point at which the “equivalence relation” was identified and intuited 

by the participants, as well as the point at which the “whole” was intuited by 

the participants.  

● Describe the problem-solving process leading up to the identification and 

intuition of the “equivalence relation.” If a part of this process can be considered 

to play an important role in the later appreciation process, it is also described in 

detail.  
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● Identify the “vastness” felt by the participants from the utterances in the series 

of problem-solving processes and the answers to interview questions.  

RESULTS: AN APPRECIATION PROCESS BY A PAIR OF STUDENTS 

Because a detailed description consumes a lot of space, the problem-solving process 

followed by only one pair of students (S1 and S2) is described here. The processes followed 

by other pairs were almost the same. This pair solved the problem by “detouring” more 

than the other pairs; therefore, they can be expected to obtain rich information. Their entire 

problem-solving process can be divided roughly into two parts. 

Identifying and Intuiting a Parallelism as the “Form” and the “Essence” 

In order to answer the <Question>, the pair constructed the proof as follows: based on the 

fact that the base angles of the isosceles triangles are equal, they claimed that ∠𝐶𝐴𝐵 =

∠𝐶𝐵𝐴, ∠𝑃𝐴𝐷 = ∠𝑃𝐷𝐴, and∠𝑄𝐷𝐵 = ∠𝑄𝐵𝐷. Next, since the isotope angles are equal, 

𝑃𝐶 ∥ 𝐷𝑄, 𝐶𝑄 ∥ 𝑃𝐷, and the quadrilateral PDQC is assumed to be a parallelogram. Finally, 

they explained that the two routes are equal based on the fact that the opposite sides of any 

parallelogram are of equal length.  

Because they stopped thinking after this proof, the author asked them to think about the 

figure on the left-hand side of Fig. 2 as (PI-i) and to clarify the differences between the two 

different figures composed of isosceles triangles as (PI-ii). In response to this question, they 

referred to one of the figures as being composed of similar triangles, and attributed the 

factor of whether the isometric property is established to the presence or absence of a 

parallelogram. In response to their reaction, the author asked them what they would 

consider to be a similar property that could be realized in the case of a rectangle, as (PI-i) 

and as (PI-iii). The author asked them this without giving them the image on the right-hand 

side of Fig. 2, so they drew an image like that presented in Fig. 3. Then, based on the 

attention paid to the parallelogram by S1, they finally saved parallelism as the “essence” 

and identified the set of figures inside the parallelogram as the “whole” by drawing Fig. 4. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: The figure drawn first Figure 4: The figure drawn last 

  
Identifying and Intuiting a Similarity as the “Form” and the “Essence” 

While affirming the focus on parallel by the pair, the author asked them to think about the 

figure on the right-hand side of Fig. 2. They noticed that the route passed through SE twice, 

but could not be convinced that the two routes were of equal distance. 
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Since their thoughts seemed to be stuck, the author asked them to consider the case in which 

the figure was composed of squares as (PI-i). In response, they inductively confirmed the 

property by drawing many figures and explained that the property is satisfied by expressing 

each side length of the two inner squares by symbols.  

In response to their reaction, the author asked them the range of the figure in which 

isometric routes exist as (PI-iii). Then, they considered parallelograms, pentagons, and 

diamonds. They found it difficult to draw a figure composed of pentagons, so they gave up 

drawing it. This confirms that they had not yet intuited similarity as the “essence” at this 

point. When considering diamonds (Figure 5), S1 said, “it will always hold if another shape 

is determined when the first internal shape is drawn.”  

 

 

 

 

Figure 5: The figure composed of diamonds drawn by S1 
 

On the other hand, S2 focused again upon similarity while referring to S1’s remark and to 

the picture drawn by S1; however, S2 was not confident in focusing upon similarity without 

knowing the similarity condition of a square. However, S1 supplemented S2's idea, and 

they began to analyze figures composed of isosceles triangles or squares with a view to 

similarity. Hence, they determined that the similarity of the three figures was a sufficient 

condition to establish the isometric property. In addition, they specifically constructed 

figures containing isometric routes using various rectangles, pentagons, semi-circles, and 

circles (Figure 6). 

 

 

 

 

 

 

 

Figure 6: The figure composed of semi-circles drawn by S2 
 

The “Vastness” Felt by the Participants 

After asking participants to reflect upon the entire problem-solving process, the author 

asked them what they thought or felt. Their responses are shown in Table 1.  
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S1  S2 

Until now, I have solved both this problem 

about the figure composed of isosceles triangles 

and this problem about the figure composed of 

semi-circles. However, there is a great sense of 

accomplishment that can be developed from the 

former problem to the latter problem. Even if it 

has a certain property, even if it is a straight line 

or a curve, it is like a circle with no corners, no 

matter how many corners there are, if we can 

find some common parts, if we can find 

common properties from among them, 

(Interviewer: What is it now?) What is 

similarity now, without being caught in concrete 

cases like isosceles triangles, we can apply them 

to various things. It was interesting to know this. 

 Until now, even if I thought, it was only about 

this problem [1]. Rarely have I developed a 

square or a circle from here. Well, by deeply 

exploring when it holds, I'm interested in the 

question about one case or one problem, 

“What about the other case?” I mean, it's 

good to know that. 

Table 1: What was thought or felt (Translated by the author) 

 
 

DISCUSSION 

The Learners’ Process of Appreciating the Aesthetic Qualities of Mathematical 

Objects 

This study defined the process for appreciating the aesthetic qualities of mathematical 

object as four subprocesses: identifying the “form,” intuiting the “essence,” intuiting the 

“whole,” and feeling the “vastness.” Particularly in this paper, since similarity is regarded 

as the “form” and the “essence”, identifying the “form” and intuiting the “essence” were 

regarded as the same process, without distinction. 

In the case described in this paper, the pair of high-school students followed the above 

process successfully under PIs. They first identified and intuited the parallelism as the 

“equivalence relationship” and then identified and intuited similarity as the “equivalence 

relationship.” It was only in this case that the learners identified and intuited an 

“equivalence relationship” as the “form” and as the “essence” that the author did not 

envision (cf. Hanazono, 2019). 

The particularity of this case is thought to be due to the mathematical task employed in this 

study and the curriculum experienced by participants. In Japan, in the second grade of 

junior high school, formal proof is positioned as a learning objective in the national 

curriculum. When learning to prove things formally, the properties of the parallel lines 

(which are introduced immediately beforehand in the curriculum) are frequently used. As 

these properties are used from the beginning, they will naturally be widely used in 
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subsequent proof problems. Therefore, it is natural for many Japanese learners to focus on 

the parallelism when asked to prove statements. 

The curriculum can also explain why similarity is a viewpoint that is hardly noticed by 

Japanese learners when considering figures other than triangles. In mathematics education 

in Japan, enlargement and reduction are treated in elementary school subjects as being 

directly connected to similarity (Grade 6). Then, in junior high school, the fact that two 

figures are similar when straight lines connecting their corresponding points all intersect at 

one point is again treated (Grade 9). However, after the definition of similarity of triangles 

is handled following confirmation of the definition of similarity in general, many proof 

problems that require the identification of a set of triangles that satisfy the similarity 

condition will be presented. Therefore, as was the case with S2, the concept of similarity 

and the similarity conditions of triangles are strongly linked for many Japanese learners. 

Thus, it can be assumed that similarity will not function adequately as a viewpoint when 

considering a figure other than a triangle. 

In the elementary school mathematics curriculum in Japan, concepts such as parallelism, 

symmetry, and enlargement/reduction are treated as viewpoints for considering figures in 

the context of concept formation for figures. When children learn these viewpoints, they 

recapture the figures which they have already learned from these viewpoints. On the other 

hand, in the junior high and high-school mathematics curricula, the context of concept 

formation for figures may be weakened, and the role of properties as viewpoints for 

considering mathematical objects becomes less noticeable. The curriculum needs to be 

reevaluated to develop educational methods aimed at facilitating learners’ appreciation of 

the aesthetic qualities of mathematical objects. 

Effects and Limitations of PIs 

As mentioned in the previous section, in the case detailed in this paper, a pair of high-

school students who underwent PIs derived from a theoretical framework were found to 

appreciate the aesthetic qualities of mathematical objects. The effects of such PIs have been 

confirmed in other case studies (cf. Hanazono, 2019). In other words, the case study in this 

paper supports the effectiveness of the theoretical hypothesis of the PIs. 

As for the details of the appreciation process, in the case where participants consider figures 

composed of rectangles, it is particularly effective to use PIs that encourage learners to 

consider figures composed of squares or diamonds. By constructing the two inner diamonds 

such that they are inscribed in the outer figure, the three diamonds are similar to each other. 

By considering a figure composed of diamonds (for which similar cases are easy to handle) 

and squares (which are always similar to each other), the author believes that it is possible 

to help learners to pay attention to similarity as a common point for isosceles triangles with 

two equidistant routes.  

On the other hand, in the case of an isosceles triangle in which the isometric property does 

not hold (the left-hand side of Fig. 2), or of a rectangle in which the isometric property 

holds but not the similarity (the right-hand side of Figure 2), learners’ attention to similarity 
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may be hindered. Although it is indispensable to consider the case in which the “essence” 

does not hold in order to intuit the “whole”, there is room for reconsideration of the order 

in which figures are handled. 
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To support academic performance, many schools are increasingly focussed on 

supporting student wellbeing. Yet the high incidence of mathematics anxiety and 

disengagement suggests that many students experience poor wellbeing in many 

mathematics classrooms. This paper proposes a seven-dimensional model of student 

mathematical wellbeing. To test this model, 488 eighth grade students responded to one 

open-ended question; responses were analysed using a combined deductive/inductive 

thematic analytic approach. Findings supported the model. The study illustrates the 

importance of focusing on wellbeing within specific subjects, provides a model for 

studying student wellbeing specific to mathematics education, and points to areas to 

target to improve and develop student mathematical wellbeing.  

BACKGROUND 

Complementing the traditional focus on developing cognitive skills such as numeracy 

and literacy, schools worldwide are increasingly considering strategies for supporting 

holistic student development, including the development of non-cognitive skills and 

student wellbeing. The United Nations includes wellbeing as one of 17 goals for 

sustainable development to achieve by 2030 (United Nations, n.d.), and student 

wellbeing is increasingly included as a key priority within policy and practice 

(NSWDET, 2015; VICDET, 2018). 

Mathematics is a foundational subject within education, as the benefits of attaining 

competence within the subject accrue over the lifespan; enhance employment 

opportunities; inform choices about the environment, health, and wellbeing; and 

correlate with longer life expectancy (Plunk, Tate, Bierut, & Grucza, 2014). However, 

despite significant global financial investments to improve mathematics education, 

student engagement in mathematics generally has remained low, with negative 

emotions and attitudes towards the subject persistently reported by students (Clarkson, 

Seah, & Pang, 2019). Many students experience ‘mathematics anxiety’, and perceive 

mathematics to be boring and unenjoyable (Grootenboer & Marshman, 2015). In 

Australia, the proportion of secondary students taking advanced mathematics has 

steadily been declining over the past three decades (Kennedy, Lyons, & Quinn, 2014). 

These trends all point to poor student wellbeing in mathematics education.  
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Despite the growing focus in education policy and practices on student wellbeing, there 

has been little attention exploring student wellbeing within individual subject 

disciplines, including mathematics. The current study addresses this gap, proposing and 

testing a model of mathematics wellbeing. 

THEORETICAL FRAMEWORK 

Wellbeing – also termed as ‘flourishing’ or ‘thriving’ – can be defined and 

operationalised in a number of ways. We focus on subjective wellbeing, in which 

wellbeing is defined based on a person’s subjective perception of the extent to which 

they are feeling and functioning well across a number of dimensions (e.g., physically, 

mentally, socially, cognitively). Drawing on research and theory from the field of 

positive psychology, a number of frameworks have been applied within schools over 

the past decade within Australia to operationalise student wellbeing (Slemp et al., 2017; 

White & Kern, 2018). For instance, the PERMA model includes five dimensions that 

together support wellbeing: positive emotions, engagement, relationships, meaning, and 

accomplishment (Seligman, 2011). The EPOCH model suggests five positive 

psychological characteristics that support positive development: engagement 

perseverance, optimism, connectedness, and happiness (Kern et al., 2016).  

These various models and frameworks identify general student wellbeing, rather than 

wellbeing within specific subjects. To our knowledge only two studies have specifically 

explored ‘mathematical wellbeing’. Clarkson and colleagues (2010) proposed a three-

dimensional model: cognitive, affective/values and emotions. Part (2011) includes an 

individual’s functioning’s and capabilities. Both frameworks ignore social aspects of 

wellbeing and mathematics learning and lack discrete measurable entities.  

We propose an updated seven-dimensional model of mathematical wellbeing (Table 1), 

which includes seven dimensions that have been linked to positive mathematics 

learning outcomes (e.g., Grootenboer & Marshman, 2015). The model integrates the 

five aspects of Seligman’s (2011) PERMA model, four aspects of Kern and colleagues’ 

(2016) EPOCH model; and two dimensions of Clarkson and colleagues’ (2010) 

mathematical wellbeing model (MWB).  

METHODS 

Our research question was: To what extent do students’ conceptions of wellbeing in 

mathematics education align with our updated mathematical wellbeing model? To test 

this question, we compared our theoretical model with students’ experiences of 

mathematical wellbeing based on the open-ended question: What makes you feel really 

good or function well in maths?  

Participants included 488 grade eight students (223 females) aged 13 - 14 years, from 

nine urban and regional secondary schools (3 private; 4 Government/public; 2 Catholic) 

located in Melbourne and surrounding cities in Australia. Students self-identified their 
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ethnicities as Australian (71%), Asian (14%), European (6%), Indian/Pakistani (6%), 

Indigenous Australian (2%), Middle Eastern (1%), or North/South American (2%). 

Schools serviced socioeconomic neighbourhoods ranging from low to high.  

Dimension Description Source 

Positive Emotions Positive emotions in mathematics e.g., fun PERMA; 

EPOCH; MWB 

Engagement Concentration, absorption, deep intertest, or focus 

when learning/doing mathematics 
PERMA; 

EPOCH 

Relationships  Supportive relationships, feeling valued/cared 

for, connected with others, or supporting peers in 

mathematics 

PERMA; 

EPOCH 

Meaning A sense of direction, feeling mathematics is 

valuable, worthwhile or has a purpose PERMA 

Accomplishment A sense of achievement, reaching goals, or 

mastery completing mathematical tasks/tests PERMA 

Cognition Having the skills, and understanding to undertake 

mathematics  MWB 

Perseverance Drive, grit, or working hard towards completing a 

mathematical task/goal EPOCH 

Table 1: An updated mathematical wellbeing model 
 

Responses were imported into NVivo 11 and analysed using a combined 

deductive/inductive thematic analysis adapted from Braun and Clarke (2006). Initial 

nodes/themes were generated inductively. For example, “having friends in my class to 

support me” was coded as peer support. Nodes were then categorised deductively into 

common themes based on our theoretical model. For example, the nodes peer support and 

teacher support were categorised as relationships. As students often mentioned multiple 

themes, the response for each student could be categorised into multiple nodes and themes 

(for students mentioning the same theme multiple times, the theme was only counted once).  

RESULTS 

Table 2 summaries the final categorisation of nodes into themes and how student responses 

aligned with our theoretical model. Most students associated their mathematical wellbeing 

with positive classroom relationships followed by a sense of engagement, mathematical 

cognitions, accomplishments, positive emotions, perseverance, and meaningful 

mathematics learning. In addition, music was mentioned several times, with numerous 

students suggesting music facilitated engagement and positive mood. As such, music 

appeared to contribute to the other themes, rather than being a separate dimension of 

wellbeing. 
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Themes & nodes Student examples N (%) 

Relationships  200 (32%) 

Teacher support A supportive or good teacher 94 

Peer support Having friends to help me 83 

General support When I get help with my learning 38 

Engagement  126 (20%) 

Interesting/hands on Learning interesting stuff 55 

Focused working Being absorbed in my work 37 

Independent/quietness  When it is quiet and I’m by myself 27 

Music (engagement) Music helps me concentrate well 15 

Cognitive When I understand the material 96 (15%) 

Accomplishment   86 (14%) 

Good marks When I do good in a test 31 

Accuracy When I get the answers right 24 

General mastery When successful at learning something  17 

Completing tasks When I complete my work 13 

Confidence When I’m really confident   3 

Positive emotions  60 (9%) 

Enjoyment/fun/happy If the maths class is enjoyable 47 

Relaxed/no pressure When there is no pressure 12 

Music (emotions) Music to listen to, to enjoy it more 4 

Perseverance  31 (5%) 

Challenge Having work I find challenging 21 

Working hard/practice When I work hard 13 

Music (no reasoning) Listening to music in class 24 (4%) 

Meaning  10 (2%) 

Future skills Knowing these skills will help me in life 5 

Real world relevance I like when problems relate to real life 5 

Table 2: Results, with coded student responses by theme and node 
 

DISCUSSION 

Despite a growing focus in schools on student wellbeing, existing models focus on general 

student wellbeing rather than considering how wellbeing might depend on the context or 

specific subject. Extending existing theoretical models developed within positive 

psychology and mathematics education, we proposed a seven-dimensional mathematical 
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wellbeing model. Based on qualitative data from 488 Australian Grade 8 students that asked 

students about what helps them feel and function well in mathematics classes, we found 

that students’ responses generally aligned with the seven proposed dimensions. Student 

responses also pointed to the importance of music in promoting positive emotions and a 

sense of engagement. Thus, our model offers a useful starting point to explore the factors 

that might promote student wellbeing, specifically within mathematics. 

Most students pointed to the importance of supportive classroom relationships with both 

teachers and peers. Previous mathematical wellbeing frameworks (Clarkson, Bishop, & 

Seah, 2010; Part, 2011) did not include a relationship dimension, pointing to the benefits 

of drawing on models developed through other disciplines. The impact of supportive social 

relationships on wellbeing and academic achievement is well recognised (e.g., Allen & 

Kern, 2017; Hattie, 2008). Within mathematics education, supportive teachers are 

associated with improved student mathematical achievement; positive emotions, academic 

enjoyment and effort; and mathematical engagement (OECD, 2019; Sakiz, Pape, & Hoy, 

2012). Interestingly, a similar proportion of students referenced peer and teacher 

relationships. In many countries, mathematics classrooms are teacher led, with limited 

opportunities for peer-collaboration (Geist, 2010). Peer collaboration can also greatly 

impact on student mathematical learning outcomes, especially students from minority 

cultures (Hill, 2018). The prevalence that students noted the importance of positive 

relationships for helping them feel and function well suggests that greater attention to the 

social aspects of mathematics learning could be beneficial. 

The second most common theme was engagement. Much research attention has focused on 

the impacts of engagement on student academic performance (e.g., Attard, 2013). Our 

findings illustrate that engagement also contributes to mathematical wellbeing. Notably, 

the comments by students pointed to factors that make the classroom more disengaging 

(e.g., distracting peers, repetitive pedagogy) or engaging (e.g., listening to music, 

quietness). Many students find mathematics boring, disengaging and repetitive 

(Grootenboer & Marshman, 2015), especially when teachers rely on textbook focused 

pedagogies (McPhan, Morony, Pegg, Cooksey, & Lynch, 2008). Our findings support the 

incorporation of “fun” pedagogies that have been supported in other countries to increase 

engagement and enhance wellbeing (Clarkson et al., 2019; Hill, 2018).  

The progressive yet linear nature in which mathematics is often taught can contribute to 

fears or anxieties about being left behind in a fast paced mathematics curriculum, resulting 

in greater anxiety and poor learning outcomes (Geist, 2010). Poor performance can result 

in greater pressure to perform well, at the expense of student mental health. Yet recent 

studies suggest that strategies to develop student wellbeing and academic performance can 

be complementary, rather than competing (White & Kern, 2018). Our findings support this, 

pointing to reinforcing spirals in which wellbeing supports performance and performance 

supports wellbeing. Students indicated that aspects such as understanding the problems, 

successfully completing tasks, and correctly solving problems resulted in positive feelings 
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and greater confidence, whilst pressure to not make mistakes and to perform in tests 

promoted negative emotions.  

The low prevalence of perseverance was surprising, considering that perseverance is central 

to student academic achievement and mastery of goals (Duckworth & Gross, 2014). As 

mathematics involves reasoning and problem solving skills, perseverance is particularly 

important for mathematical accomplishments (Sullivan et al., 2013). The low prevalence 

could mean that perseverance is more relevant to achievement than to wellbeing, or as the 

data were based upon qualitative responses, other dimensions may have been more obvious. 

Future studies might use quantitative approaches to test the importance of this theme to 

wellbeing  

Meaning similarly was only mentioned by a small number of students. Meaningful, real 

world or useful mathematical pedagogies are associated with greater student interest and 

motivation, improved effort and engagement, and improved mathematical performance 

(Dobie, 2019). In Western countries, studies point to students desiring meaningful learning 

experiences (Hill, 2018). The sample included a number of non-Western participants, who 

might not value meaningful learning in the same way. Alternatively, as a required subject, 

meaningful learning may be considered less relevant by students. Future studies might 

further explore the role that meaning plays in mathematics education for both academic and 

wellbeing outcomes.  

Pointing to strategies for supporting student’s wellbeing, some students indicated that 

listening to music promoted their mood or engagement. Thus, music appeared to be 

something that supports other themes of our mathematical wellbeing model, rather than as 

representing a separate dimension of wellbeing. Other studies similarly find that 

adolescents often strategically listen to music to enhance their wellbeing, motivation and 

concentration (Papinczak, Dingle, Stoyanov, Hides, & Zelenko, 2015). Future studies will 

benefit from identifying other strategies for promoting the seven wellbeing dimensions 

proposed by our model.  

IMPLICATIONS AND CONCLUSION 

While wellbeing is often considered as a global construct, a key message of this paper is 

that wellbeing is domain specific. Thus, student wellbeing should be explored in individual 

subjects. Using insights from positive psychology to inform mathematics education, this 

study provides a seven-dimensional model that aligns with aspects that help students feel 

and function well within mathematics. Necessary extensions of this research include the 

development of a measure to assess mathematical wellbeing, and understanding what 

factors enable students to thrive in mathematics education.  

Our mathematical wellbeing model points to areas to target to improve students’ 

experiences in mathematics. The model might not apply to students’ experience of 

wellbeing when engaging in other subjects, but the methods proposed in this study can be 

adapted to explore student wellbeing in other academic subjects. Future studies might test 

the relative importance of each dimension, using quantitative methods and extending to 
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other year levels and populations. Cultural, school and gender differences in students’ 

conceptions of their mathematical wellbeing should also be explored.  

The widespread negative reactions experienced by students in mathematics education are 

well publicised, pointing to a poor sense of wellbeing in many mathematics classrooms 

(e.g., Attard, 2013; Fielding-Wells & Makar, 2008). Providing a balance to  the 

considerable research and media attention in mathematics education focused on the 

negative aspects, the ‘gaps’, and what is going wrong in the subject, our study offers a 

glimpse of the aspects of students mathematical learning that are working well and enable 

students to thrive in mathematics education. Considering the somewhat global 

preoccupation with student mathematics (under)achievement (e.g., OECD, 2019), this 

study makes a timely contribution offering a sense of hope that there is more to mathematics 

education than merely achieving academic benchmarks. 
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WHAT DO TEACHERS LEARN ABOUT THE DISCIPLINE OF 

MATHEMATICS IN ACADEMIC MATHEMATICS 

COURSES? 

Anna Hoffmann1 and Ruhama Even1  
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This study investigates the contribution of academic mathematics courses to teacher learning 

about the discipline of mathematics. Analysis of interviews with 14 secondary school 

mathematics teachers, who graduated from a master’s program that included a strong 

emphasis on academic mathematics studies, identified references of contribution to nine topics 

that can be grouped into three aspects of knowledge about the discipline of mathematics: (1) 

essence, (2) doing, and (3) worth. Each of the three aspects was addressed by all or almost all 

the teachers. However, the number of teachers that addressed each topic varied considerably 

among and within aspects. 

INTRODUCTION 

Academic mathematics studies are, in many countries, an important component of the 

professional education of secondary school mathematics teachers. Theoretical contemplations 

and empirical studies suggest potential contribution in two dimensions of subject-matter 

knowledge that appear to be critical for teaching. One dimension is knowledge of specific 

topics, concepts, and procedures (Dreher et al., 2018; Weber et al., 2020), and the other – which 

is the focus of this study – is a more general epistemological knowledge about the discipline 

of mathematics (e.g., Even 2011; Zazkis & Leikin 2010; Ziegler & Loos 2014).  

The existing empirical research literature reports on contribution of academic mathematical 

studies to teaching in relation to knowledge about the discipline of mathematics (e.g., Baldinger 

2018; Even 2011; Zazkis and Leikin 2010). Yet, this literature has shortcomings. First, the 

existing research does not clearly link between academic mathematics studies and 

modifications in teachers’ conceptions about mathematics; findings are commonly based on 

reports from teachers who studied in different academic programs, and, in addition, the course 

instructors’ intentions regarding what to teach these teachers about mathematics has not been 

examined. Second, the contribution of academic mathematics studies, not only to knowledge, 

but to actual teaching, has rarely been examined. Our study addresses these shortcomings. 

The starting point for our investigation are results from a study that examined what 

mathematicians who teach academic mathematic courses to secondary school mathematics 

teachers would like to teach teachers about the discipline of mathematics (Even, 2020; 

Hoffmann & Even, 2018). The findings revealed that enriching, expanding and deepening 

teachers' knowledge about the discipline of mathematics was a central goal of all the 

participating mathematicians. They referred to nine topics that can be grouped into three key 

aspects: (1) the essence of mathematics, which deals with the question: What is mathematics? 
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(2) doing mathematics, which deals with the question: How is mathematics done? and (3) the 

worth of mathematics, which deals with the question: What good is it to engage in 

mathematics? (see Figure 1).  

 

Figure 7: Framework for teacher learning about the discipline of mathematics.  

In the current research, we focus on teachers who studied in these mathematicians’ courses, 

using the conceptual framework in Figure 1 for data analysis, extending Hoffmann and Even's 

(2019) study, which addressed one aspect (the essence of mathematics)  to all aspects and 

topics. The research question is: What do secondary school mathematics teachers learn about 

the discipline of mathematics in academic mathematical courses, and how does this knowledge 

contributes to their teaching? 

METHODS 

Setting and Participants 

The study is situated in a two-year master’s program for practicing secondary school 

mathematics teachers. A major component of the program comprised eight academic 

mathematics courses tailored for teachers, designed and taught by research mathematicians. 

Four of these courses dealt with topics in the school curriculum at an advanced level: algebra, 

analysis, geometry, and probability and statistics. Three courses were devoted to the use and 

application of mathematics in other domains: computer science, applied mathematics, and 

everyday technologies. One course dealt with the history and philosophy of mathematics. In 

addition, a final project was carried out under the guidance of a mathematician. Fourteen 

program graduates participated in the study; ten women and four men. Their teaching 

experience varied 3-23 years. 

Data Collection and Analysis 

The main data source included individual semi-structured in-depth interviews with the 

teachers. The interviews took place between 0.5-2.5 years after graduation, and lasted between 

45-90 minutes. The aim was to learn how the mathematics courses contributed to the teachers’ 

knowledge about the discipline of mathematics, and how that knowledge contributed to their 

teaching. The interview consisted of eight open-ended questions. The main questions were:  

● Has there been any change in the teacher you were before the program and the 

teacher you are today?  
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● The program has two main components: courses in mathematics education and 

courses in mathematics. Have the mathematics courses contributed to you as a 

teacher?  

● Have you learned anything new about what mathematics is from the mathematics 

studies in the program? 

Following each question, the interviewees were asked to explain their responses and to give 

examples from their experiences in the program and their teaching. Additional data sources 

were participant observations in most courses and informal conversations with the teachers. 

The aim was to strengthen the internal validity of the study.  

The interviews were transcribed and then analysed, employing the method of directed content 

analysis (Hsieh & Shannon 2005). First, we marked all excerpts in the transcripts that dealt 

with the contribution of academic mathematics courses to the teachers’ knowledge about the 

discipline of mathematics and changes related to their teaching. Then we used the framework 

in Figure 1 for coding these excerpts, enabling additional categories to be created if needed. 

The analysis was iterative and comparative, and included peer validation. 

FINDINGS 

Analysis of the interviews revealed that reports on contribution of the academic mathematics 

courses to the teachers’ knowledge about the discipline of mathematics and to related changes 

in their teaching were associated with all three aspects and with all nine topics of the coding 

scheme. Also, no additional aspects or topics were mentioned. Whereas each of the three 

aspects was addressed by most of the teachers, the number of teachers that addressed each topic 

varied considerably (1-10 out of 14), and the teachers varied considerably in the number of 

topics to which each of them referred (1-7 out of 9). Below we describe the main characteristics 

of the teachers’ reports for each topic. 

The essence of mathematics  

Twelve teachers addressed this aspect; between four to nine of them addressed each of its four 

topics.  

Wide and varied 

Nine teachers reported on contribution associated with this topic. The teachers reported on 

learning that mathematics is much broader and more diverse than what they had thought; that 

the mathematics they were familiar with is just the tip of the iceberg of the existing 

mathematical knowledge, both in terms of the variety of fields and topics, and in terms of the 

amount of what is known or studied in mathematics. The following excerpt from J’s interview 

exemplifies this. 

Interviewer:  From the mathematical studies, was there anything you learned about what 

mathematics is? ... 

Teacher J:  Mostly perhaps how many areas it covers. Like when I’m studying 

mathematics, I learn that I don’t know... Actually, you see that mathematics 

is like a whole world. It is impossible to know it...You learn whatever you 

learn, but it is more than that. It gives you, like, the feeling of the size… 
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Eight of the teachers reported that their new understanding promoted change in their teaching. 

They try now to extend students’ horizon regarding mathematical questions and mathematical 

domains beyond contents studied in school. For instance: 

…when we study vectors and we learn normals, then every plane has one normal. Today, 

after studying differential geometry, I know that surfaces have normals in different 

directions. I mean, you can talk now about, that a normal is not one normal to a plane. If the 

surface is a bit curved, then you have infinite number of normals. You can convey this to a 

certain extent, just open it, and curious girls fly with it further. (K) 

Lively and developing 

Eight teachers reported on contribution associated with this topic. The teachers reported that 

they learned how and why mathematics has evolved, and that mathematics is an intensely 

researched scientific field also nowadays. For example,  

…it is very significant how mathematics has evolved... Let's say Euclid, his book of the 

elements of geometry, and then over the years how things evolved, and so on, and projective 

geometry, and so on, and then like all the developments of recent years. There is something 

in this conception that straightens out my head. I can understand much more deeply. How 

it was created. (B) 

Seven of the teachers reported on contribution to instruction related to this topic, saying that 

they began to present students with background on the development of the mathematical topics 

they study. For example,  

Interviewer: Is there anything else you teach differently that you can point out? 

Teacher A: …if I talk to them about the development of mathematics then it is to teach 

differently. Most definitely… anything new from the curriculum that I want 

to bring to class… I try not to dump it on them, but to prepare them for it…  

Rich in connections 

Six teachers reported on contribution associated with this topic. The teachers talked about 

contribution to their understanding about the existence, and importance, of connections among 

different mathematical fields, and among different concepts within a field. For instance, “I saw 

the connection between the different topics much more, how one domain uses another in order 

to prove, to make progress, to illustrate” (E).  

All six teachers mentioned contribution to teaching, reporting that they started to look for 

connections among different topics in the curriculum, and that they strive to present 

mathematical concepts in a variety of contexts. For example, C said, “When I teach something, 

I try to connect it to previous and subsequent contents, and to other domains.” She exemplified 

this by describing how she stresses for students that the straight line they sketch in geometry, 

the linear equation 𝑓(𝑥) = 𝑚𝑥 + 𝑛 they see while learning functions, and the equation 𝐴𝑥 +

𝐵𝑦 + 𝐶 = 0 that they meet in Cartesian geometry, are all the same mathematical concept in 

different representations.  

Structured deductively 



Hoffmann & Even 

3 - 44  PME 44 – 2021 

Four teachers reported on contribution associated with this topic. The teachers mainly reported 

on better understanding the role and importance of axioms, definitions and proofs. All four 

teachers reported on contribution to their teaching as well, describing that now they explicitly 

discuss in class the role and importance of these elements in mathematics. For example, K said: 

In any mathematical course. It suddenly pops up. You didn’t look for it until you became 

aware of it. When you are aware that you look for definition of everything, I just look for 

it... I suddenly explain to the kids: That is a definition, you cannot argue about it, let us 

define it properly. I also explain what ‘well defined’ is... I think it made me a much more 

organized teacher, and it makes order in the students’ heads... (K) 

Doing mathematics 

Ten teachers addressed the aspect doing mathematics; between three to eight of them addressed 

each of its four topics.  

Asking questions and explaining why  

Eight teachers reported on contribution associated with this topic. They reported on improved 

knowledge about the centrality of thinking and understanding in mathematics and the way 

questions and explainations advance understanding. The teachers reported also that they now 

pay more attention in their teaching to mathematical inquiry and understanding that involve 

explaining “why”, in contrast to focusing merely on technical aspects and explaining “how”. 

The focus on asking questions and explaining why included not only teachers’ focus on 

explanations and answering “why” questions, but also a strong expectation that their students 

would also do so. For example, by asking students questions that require them to practice 

explaining their reasoning. The following excerpt from E’s interview illustrates this: 

The class discourse is always a discourse of why and of what, and less of how. There is a 

lot of how, a lot, but if you say something, then: ‘Why is this thing true? Explain, prove, in 

your own words, look for justifications, reasons’… I think that it is very very prominent in 

my teaching today, that first it is based on understanding. If I need not to explain something, 

but just to give a formula, I really have difficulty with it. And before I used to live very 

peacefully with it. (E) 

Using intuition and formalism 

Eight teachers reported on contribution associated with this topic. The teachers reported that 

the academic mathematics courses helped them understand the key roles of intuition and 

formalism in the process of doing mathematics. They developed their understanding regarding 

mathematicians’ use of intuition. For example, G described how surprised she was to discover 

that mathematicians examine specific examples when they start working on a problem: 

First of all I learned that also mathematicians can start from examples… I thought they think 

in formulas all their lives… And suddenly I discovered... that when a mathematician wants 

to check something, and he checks that on numbers.... I thought that I do that because I am 

a human being with a limited head and mathematicians don’t do that, they immediately think 

about the general case. (G) 
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The teachers reported learning also that formalism and precision is important in mathematics; 

yet not as a goal by itself, but because intuition could be misleading. Thus, both intuition and 

formalism are needed. For example, C said,  

Another thing that we didn’t talk about… knowing that there is feeling the mathematics and 

then there is the tiring formalism. But there are two stages of the process, and to really 

distinguish between them. I think that it goes with me to the classroom, in explanations and 

also in thinking. (C) 

All eight teachers reported also that their new understandings enabled them to better judge the 

extent of accuracy that is appropriate in different teaching situations.  

Experiencing struggles and insights 

Three teachers reported on contribution associated with this topic while referring mainly to 

their improved understandings about the prolonged mental effort that doing mathematics 

requires and the inevitable mistakes that are done along the way. For example: 

You have to be diligent... it requires effort. Do not give up ... because mathematicians… if 

until today I thought that everything comes to them easily, then I think that, today I 

understand that mathematicians work hard to make discoveries. Work very hard. (G) 

The teachers added that following their new understanding they linger longer on tasks 

discussed in class, and are more open to expose their own struggles to students as a model for 

doing mathematics. For example, after teacher K described her struggels with a piece of 

mathematics during her studies, she was asked how such experiences contributed to her 

teaching. She then said: 

…if I do not know [how to solve a problem in class] ... I'm not ashamed. I will tell them [the 

students] that we will think and figure it out, and we will rack our brains during the break... 

(K) 

The worth of mathematics 

Ten teachers addressed this aspect; all of them addressed the first topic and one teacher 

addressed the second topic as well. 

Practical worth of mathematics 

Ten teachers reported on contribution associated with this topic. The teachers said that their 

academic mathematical studies made them aware of the practical worth of mathematics and of 

the central role that mathematics has in everyday life. For example: 

So what he [the course instructor] actually said, that mathematics, it’s role is, actually, there 

is a problem in life, and one needs to construct a model, a mathematical model, in order to 

solve that problem. That’s basically the role of mathematics. Like to create, like for life, for 

real life. And it was something that was really new and interesting for me to see mathematics 

like this, as a field that solves problems. Beforehand, I viewed it as an intellectual field, 

which is fun to deal with, it is interesting in itself. I did not look at the, at what it actually 

gives in practice. (I)  
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The teachers said that becoming aware of the practical worth of mathematics helped them better 

address students’ questions regarding why they should learn mathematics. For instance, F said: 

“It was interesting to see how it fits into life” and added: “They ask me: ‘Why do I need that?’ 

Then I do tell them… You tell them what it does to cancer patients… It’s of great interest to 

them.” 

Worth per se 

Only one teacher elaborated on the contribution of her mathematical studies to her knowledge 

about the worth of mathematics per se. She said that now she better understands what beautiful 

mathematics means and that she tries to present such mathematics to her students. Several more 

teachers mentioned this topic but they either did not elaborate on it or rather contrasted it (as 

the excerpt’s from I’s interview above illustrates) with the practical worth of mathematics.  

CONCLUSION 

As shown, the conceptual framework we developed, based on interviews with mathematicians 

about what they wished to teach secondary school teachers about the discipline of mathematics 

(Hoffmann & Even 2018), was useful for examining the contribution of academic mathematical 

studies to secondary school teachers’ knowledge about the discipline of mathematics, and in 

turn to their practice. Analysis of interviews with teachers, who graduated from a program in 

which academic-level mathematics that focus on specific fields (geometry, analysis, etc.) 

comprised a main component, generated the same three aspects and nine topics that the 

mathematicians who taught in that program mentioned. Furthermore, no additional aspects or 

topics were mentioned by the teachers.  

Although each of the three aspects was addressed by all or almost all the teachers, the number 

of teachers that addressed each topic of the coding scheme varied considerably among and 

within aspects. For example, most teachers (8-10) mentioned the contribution of the 

mathematics courses they studied to the following five topics: wide and varied, lively and 

developing, asking questions and explaining why, using intuition and formalism, and practical 

worth. However, only few teachers (1-4) mentioned the following three topics: deductively 

structured, experiencing struggles and insights, and worth per se. As expected, analysis of the 

teachers’ interviews indicated that whereas the topics that were adressed by most teachers 

included characteristics that were new and exciting for the teachers, the topics that were 

adressed by a small number of teachers included characteristics with which the teachers were 

already familiar. Yet, the topic experiencing struggles and insights was an exception. It appears 

that for quite a few of the teachers, having to struggle themselves with the mathematics during 

their studies, impeded their ability to view struggles as a general characteristic of doing 

mathematics. Instead, they perceived it as characterising learning mathematics only.  

Our findings suggest that all participating teachers learned something new about the discipline 

of mathematics in the academic mathematics studies. Yet, even though all the teachers studied 

the same academic mathematics courses with the same instructors, different teachers attended 

to different topics. More research is needed to better understand these variances among 

teachers, and how they relate to teacher characteristics and to course instruction. 
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IMPACT OF DIFFERENT PROBLEM CONTEXTS ON STUDENTS’ TASK 

PERFORMANCE IN THE HOSPITAL PROBLEM 
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This paper aims to clarify whether differences in problem contexts affect students’ task 

performance in the hospital problem. Our survey showed that 29/79 students in a Japanese 

junior high school applied different thinking approaches to different problem contexts. 

Some students made decisions based on personal life experience, and some made decisions 

based on their experience of school-based probability education. These results confirm the 

relationship between contextual knowledge and probabilistic knowledge. Our results and 

consequent discussion underline the necessity, when teaching probability, of raising 

awareness of the relationship between probabilistic knowledge and contextual knowledge, 

and of emphasising that examples of “equal likelihood” presented in probability problems 

represent subjective assumptions. 

INTRODUCTION 

In research of misconceptions regarding probability, a commonly highlighted issue is that 

many people neglect to consider the effect of sample size (Fischbein & Schnarch, 1997). 

According to the law of large numbers, the larger the sample size, the smaller the 

fluctuation of the statistic (Fischbein & Schnarch, 1997); however, many people make 

decisions without considering the size of the corresponding fluctuation, meaning they do 

not factor in the effects of the sample size (Fischbein & Schnarch, 1997). This issue has 

been examined across various fields, including mathematics education and psychology; 

notably, it is often investigated through consideration of the “hospital problem” (Figure 1) 

developed by Kahneman and Tversky (1972). 

A certain town is served by two hospitals. In the larger hospital about 45 babies are born 

each day, and in the smaller hospital about 15 babies are born each day. As you know, 

about 50% of all babies are boys. The exact percentage of baby boys, however, varies 

from day to day. Sometimes it may be higher than 50%, sometimes lower. 

For a period of 1 year, each hospital recorded the days on which (more/less) than 60% of 

the babies born were boys. Which hospital do you think recorded more such days? 

(The larger hospital / The smaller hospital / About the same) 

Figure 1: Hospital problem (Kahneman & Tversky, 1972, p. 443) 
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Previous studies on the reasons people do not consider sample sizes in probability problems 

have suggested that both the character of the problems and the respondents’ characteristics 

are influencing factors (Weixler, Sommerhoff, & Ufer, 2019). One such factor is the 

“problem context”; for the hospital problem, the context is the presentation of births in a 

hospital. Weixler et al. (2019) presented subjects with the hospital problem and a similar 

problem featuring a coin-toss situation. They found no difference between the correct 

answer rates for the hospital context problem and the coin context problem. This indicated 

that the problem context has little influence on respondents’ task performance in the 

hospital problem. 

However, Weixler et al.’s (2019) conclusion was only derived from comparing the correct 

answer rate for the hospital context with that for the coin context. It is not clear whether, 

for example, the respondents applied the same task-performance approach in both problem 

contexts or different task-performance approaches across the two problem contexts. The 

latter would indicate that the problem context influences respondents’ task performance in 

the hospital problem. 

Considering the above, the present paper aims to clarify whether differences in problem 

contexts affect respondents’ task performances in the hospital problem. To achieve this, we 

conducted a survey and analysed and discussed the results. From these results, we derive 

implications for the teaching of probability in schools. 

THEORETICAL FRAMEWORK AND RESEARCH QUESTIONS 

The hospital problem and its context 

Several previous studies, such as Fischbein and Schnarch (1997) and Watson and 

Callingham (2013), have considered problem contexts. However, no study has adequately 

investigated the relationship between problem contexts and correct answer rates because 

the problem structure is significantly different from the original hospital problem, or the 

problem structure has a different numerical setting. Weixler et al. (2019) conducted a 

survey of 242 mathematics teacher education students at a German university, using two 

problems that featured the same problem structure and numerical data, but that concerned 

births in hospitals and numbers of coin tosses, respectively (Figure 2). They consequently 

found no difference between the respective correct answer rates for the problem featuring 

the hospital context and the problem featuring the coin context. From this, Weixler et al. 

(2019) concluded that, as the two problems featured the same problem structure, problem 

context has little effect on respondents’ task performance in the hospital problem. 

However, as mentioned above, Weixler et al.’s (2019) results do not comprehensively 

clarify whether problem context influences a change in task-performance approach. 

Respondents may or may not apply the same approach in each context. Individuals who 

select “is less likely than” in the hospital context and “is as likely as” in the coin context 

(both of which are incorrect responses and would consequently, when only correct answer 

rate is considered, be grouped together) may not be applying the same task-performance 
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approach; this would represent problem context influencing respondents’ task performance 

in the hospital problem. 

[Hospital context] 

Children are born again and again in the 

University-Hospital. 

That in 10 births at least 7 times a boy is born 

(is more likely than / is as likely as / is less 

likely than) 

that in 100 births at least 70 times a boy is 

born. 

[Coin context] 

Coins are thrown again and again into the 

Trevi-Fountain. 

That in 10 throws at least 7 times tails are 

face up 

(is more likely than / is as likely as / is less 

likely than) 

that in 100 throws at least 70 times tails are 

face up. 

Figure 2: Part of survey items by Weixler, Sommerhoff, & Ufer (2019) 

Research questions 

Fischbein and Schnarch (1997) and Matsuura (2006; who translated Fischbein and 

Schnarch’s [1997] survey items into Japanese and surveyed a pool of Japanese students 

ranging from 5th grade to university) both found that, in the hospital problem, the more 

knowledge students have of probability, the more likely they are to choose the typical 

incorrect answer “about the same”. This suggests that learning probability alters associated 

thinking approaches. Consequently, along with problem contexts, we sought to examine 

the influence of learning probability on task-performance approaches in the hospital 

problem. Two research questions were developed: 

(RQ 1) How do problem contexts affect students’ task performance in the hospital problem? 

(RQ 2) How does students’ knowledge of probability affect their task performance in the 

hospital problem across different problem contexts? 

METHOD 

Survey problems 

The survey problems used in this paper are shown in Figure 3. These problems were created 

with reference to Weixler et al. (2019) and Kahneman and Tversky (1972). The difference 

between the problems used in this study and those of Weixler et al. (2019) is that the former 

state that the birth of a boy or a girl is generally equally likely and that receiving heads or 

tails in the coin toss is also generally equally likely. In classical probability, it is commonly 

implicitly assumed that individual results (for example, 1 to 6 when we throw a die) are 

equally likely (Borovcnik & Kapadia, 2014); thus, Weixler et al. (2019) did not mention 

events that are equally likely. However, to ensure a uniform interpretation of the survey 

items across the sample, it is necessary to state which events are equally likely. In fact, in 

Weixler et al.’s (2019) coin problem, respondents may consider that the coin is biased. 

Meanwhile, in the real world the respective likelihoods of giving birth to a boy or girl are 

not exactly equal; in Japan, more boys are born annually (see: Portal Site of Official 

Statistics of Japan, 2020). Thus, we decided to explicitly state which events are equally 
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likely. Further, the numerical settings in this study’s problems differ from those in Weixler 

et al. (2019). First, the frequency value was set to 60% instead of 70%. This was because 

Weixler et al.’s is the only version of the hospital problem to feature a frequency value of 

70%; in other studies (e.g., Fischbein & Schnarch, 1997; Watson & Callingham, 2013), the 

frequency matches that used by Kahneman and Tversky (1972): 60%. Next, we used 

sample sizes of 45 and 15 rather than 100 and 10, respectively. Again, this decision was 

based on the approaches used in various previous studies, such as Kahneman and Tversky 

(1972) and Fischbein and Schnarch (1997). 

[Hospital context] 

In a certain town there are two hospitals, a 

small one in which there are, on the average, 

about 15 births a day and a big one in which 

there are, on the average, about 45 births a 

day. The likelihood of giving birth to a boy 

is approximately 50% (nevertheless, there 

are days on which more than 50% of the 

babies born were boys, and there are days on 

which fewer than 50% of the babies born 

were boys.) In the small hospital a record has 

been kept during the year of the days in 

which the total number of boys born was 

greater than 9, which represents more than 

60% of the total births in the small hospital. 

In the big hospital, they have kept a record 

during the year of the days in which there 

were more than 27 boys born, which 

represents more than 60% of the births. In 

which of the two hospitals were there more 

such days? 

a. The big hospital 

b. The small hospital (Correct) 

c. About the same 

[Coin context] 

Kazu and Manabu are both tossing a fair 

coin. Kazu tosses his coin, on average, about 

15 times a day, and Manabu tosses his coin, 

on average, about 45 times a day. For both 

coins, the likelihood of heads occurring is 

approximately 50% (nevertheless, there are 

days on which heads occurs for more than 

50% of the tosses, and there are days on 

which heads occurs for fewer than 50% of the 

tosses). Kazu has kept a record during the 

year of the days on which heads occurred 

more than nine times, which would represent 

over 60% of his daily tosses of the fair coin. 

Meanwhile, Manabu has kept a record during 

the year of the days on which heads occurred 

more than 27 times, which would also 

represent over 60% of his daily tosses of the 

fair coin. Which of the two boys recorded the 

highest number of days? 

a. Kazu (Correct) 

b. Manabu 

c. About the same 

Figure 3: Our survey items 

If, for the problems in Figure 3, respondents select (a, b), (b, a), or (c, c) ([hospital context], 

[coin context], respectively), this would indicate that the problem contexts did not impact 

their task performance. However, selection of any other combination would suggest that 

the problem contexts influenced their task performance. 

Sample and procedure 

The survey was conducted in July 2020 on 39 students from grade 7 (aged 12–13 years) 

and 40 students from grade 9 (aged 14–15 years) of a junior high school attached to a 

national university in Japan. The reason that 40 students were selected from each grade is 

that there are 40 students per class in a Japanese junior high school. The survey was to be 
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conducted on 40 students from grade 7 too, but one of the students was absent on the day. 

In Japan, frequentist probability is taught in the first half of grade 8, while classical 

probability is taught in the latter half of grade 8 and in high school (grades 10–12; Otaki, 

2019). Thus, we felt that junior high school (grades 7–9) students would have a greater 

understanding of the effect of sample size than would students in other grades; notably, in 

Matsuura (2006) the correct answer rate was higher among 8th-grade students (44%) when 

compared to university students (19%). The reason we targeted students in grades 7 and 9 

was that in grade 8, probability is taught using coins and dice as teaching materials (Otaki, 

2019). Therefore, it is possible that 9th-grade students who have learned probability have 

strong familiarity with the problem context of coin tossing, but not with the problem context 

of births in a hospital; alternatively, it is possible that learning probability in grade 8 using 

coins helps students correctly discern solutions even in the context of births in a hospital. 

On the other hand, 7th-grade students, who have not learned probability, may take a 

different approach to the problem context of coin tossing, which they are likely to have 

experienced in their daily lives, when compared to the problem context of births in a 

hospital, with which they would generally be unfamiliar. Pfannkuch et al. (2016) 

highlighted that contextual knowledge and probabilistic knowledge are interrelated. 

In this survey, the [hospital context] and [coin context] problems shown in Figure 3 were 

distributed to the students separately. Students were asked to choose one of the options (“a” 

to “c”), and to provide the reason for their choice. They were informed of the correct 

answers after they had provided answers to both problems. 

RESULTS AND ANALYSIS 

The results are shown in Table 1 and 2. One 9th-grade student did not answer (N) either 

problem, saying that “‘a,’ ‘b,’ and ‘c’ are all incorrect”. This student was considered to 

have applied the same task-performance approach in both contexts. 

First, we examined the relationship between problem context and students’ task 

performance (RQ 1). Overall, 50 of the 79 students were considered to adopt similar task-

performance approaches across the two contexts: those who answered (a, b), (b, a), (c, c), 

or (N, N); ([hospital context], [coin context], respectively). Meanwhile, 29 of the 79 

students were considered to have adopted different task-performance approaches for the 

two contexts. Thus, approximately 37% of the students applied different approaches to the 

two problem contexts. 

Next, we examined the relationship between the students’ existing knowledge and their 

task performance (RQ 2). Overall, 22 of the 39 7th-grade students were considered to have 

adopted the same task-performance approach across the two problem contexts, and 17 were 

considered to have adopted different task-performance approaches. Meanwhile, 28 of the 

40 9th-grade students were considered to have adopted the same task-performance approach 

across the different contexts, and 12 were considered to have adopted different task-

performance approaches. Thus, the percentage of students who adopted the same task-
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performance approach across the two contexts was higher among the 9th-grade students, 

who had learned probability, than the 7th-grade students. 

 
Hospital context 

a b c N 

Coin context 

a 4 5 2 0 

b 9 2 2 0 

c 3 4 8 0 

N 0 0 0 0 

Table 1: Results for the 7th-grade students (𝑛 = 39) 

 
Hospital context 

a b c N 

Coin context 

a 2 9 0 0 

b 5 3 2 0 

c 2 3 13 0 

N 0 0 0 1 

Table 2: Results for the 9th-grade students (𝑛 = 40) 

DISCUSSION AND IMPLICATIONS 

Discussion of the survey results 

The survey results indicate that problem context frequently influence students’ task 

performance in the hospital problem. Some 7th-grade students who selected “b” 

(“Manabu”) for the [coin context] problem and “c” (“about the same”) for the [hospital 

context] problem explained their decisions as follows: Their life experiences caused them 

to believe that people can improve their coin-tossing ability through repetitive practice, and 

can consequently improve their ability to receive heads; thus, they chose Manabu, who 

performed more tosses than Kazu. On the other hand, for births in a hospital, they chose 

“about the same” because they could not judge which was more likely to occur. The factor 

underlying these students’ judgment is their life experiences. According to Pfannkuch et 

al. (2016), contextual knowledge and probabilistic knowledge are interrelated, and different 

probabilistic knowledge is used in different contexts. Therefore, it is considered that 

students who utilise their own experiences as contextual knowledge change their task 

performance depending on the problem context. 

Some 9th-grade students who selected “c” (“about the same”) for the [coin context] and “a” 

or “b” (“the big hospital” or “the small hospital”) for the [hospital context] reported 

selecting “c” (“about the same”) for the [coin context] because they knew from learning 

probability in junior high school that there is an equal likelihood of heads or tails occurring 
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in a coin toss. On the other hand, they knew from probability studies that the likelihood of 

giving birth to a boy or girl is actually not equal. Students make such judgments because 

they think the probabilities they learn in school apply to real-world events (e.g., coin tosses 

and baby gender), even though probabilities apply to our information about that world at 

any given moment in time (Devlin, 2014). Thus, students feel that the presentation in 

education of an event as having an equal likelihood reflects the nature of that event in the 

real world, rather than a human-manufactured assumption. Therefore, for them, the 

likelihood of heads or tails in a coin toss, which is presented in probability education as 

equally likely, is equal in the real world, but the likelihood of giving birth to a boy or girl, 

which is presented in probability studies as being unequally likely, is not equal. This 

thinking approach is natural among students who have learned probability because their 

probability education is based on performing measures of the frequencies by which various 

kinds of outcomes occur (Devlin, 2014). From the above, it can be considered that students 

educated in such probability recognition change their task-performance approach 

depending on the problem context, even if the problem structure remains the same. 

Implications for teaching probability 

The above discussion underlines two elements that are essential for teaching of probability. 

First, teachers and students should be aware that probabilistic knowledge is dependent on 

contextual knowledge. The present results suggest that students may not always answer 

correctly across different contexts, even if the problem structure remains the same. 

Teachers should take this into consideration, and should present in probability class diverse 

problems in diverse contexts. It is possible that exposure to a range of problems and 

contexts can help students acquire sufficient probabilistic knowledge to negotiate different 

contexts; however, it is preferable to present a single problem across various contexts, 

rather than presenting each problem in a unique context. Such an approach may help 

students learn to think critically and avoid erroneous judgments, as it can encourage them 

to self-reflect and change their thinking approaches depending on the context of the 

problem. 

Second, teachers should emphasise which events are assumed to be “equally likely” in that 

problem. Experts in classical probability may be able to apply the correct understanding 

that, even if the assumption is implicit, probabilities relate to our information about events 

in a specific situation. However, this is not easy for students. Our results indicate that 

students think “equally likely” is not an assumption but the nature of the event in the 

problem. Thus, teachers, when presenting probability problems, should state which events 

are equally likely and that this likelihood is not linked to the corresponding real-world event 

but is an assumption. 

CONCLUSION 

The results of the present survey suggest that differences in problem contexts affect 

students’ task performance regarding the hospital problem. This differs from the findings 

of Weixler et al. (2019). Contextual knowledge and probabilistic knowledge have been 
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found to be interrelated, regardless of the problem structure (Pfannkuch et al., 2016); this 

supports the validity of this study’s finding that students’ task-performance approaches can 

differ depending on the problem context. 

A future task is to develop and administer lessons based on the teaching suggestions 

presented in this paper. 
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NOTICING ENHANCEMENT THROUGH THE RECONSTRUCTION 

OF PRACTICAL ARGUMENTS 
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1University of Alicante, Spain 

 

Professional noticing of children’s mathematical thinking implies teachers’ ability to use 

their knowledge to attend to students’ strategies, interpret their understanding and decide 

how to respond. Developing this competence implies a shift from general descriptions to 

descriptions that include teachers’ reasoning based on students’ understanding. Practical 

arguments are post hoc examinations of actions that serve to explain or justify what was 

done. This study focuses on examining to which extent the elicitation and reconstruction of 

practical arguments help pre-service teachers enhance the noticing skill during their 

internship period at school. Participants were 17 pre-service teachers. Results show 

evidence that pre-service teachers were able to develop progressively more complete 

practical arguments during this period. 

INTRODUCTION AND THEORETICAL FRAMEWORK 

Jacobs, Lamb and Philipp (2010) conceptualised professional noticing of children’s 

mathematical thinking as a progression through three interrelated skills: (i) attending to 

children’s strategies (ii) interpreting children’s understanding, and (iii) deciding how to 

respond based on children’s understanding. Professional noticing of children’s 

mathematical thinking implies teachers’ ability to use their knowledge (mathematical 

content knowledge and pedagogical content knowledge) to attend to, interpret and decide 

what to do next (Brown, Fernández, Helliwell, & Llinares, 2020; Thomas, Jong, Fisher, & 

Schack, 2017). Therefore, developing this skill in teacher education programs can prepare 

pre-service teachers for classroom practice. 

Previous research has shown that developing this skill in teacher education programs is a 

challenging task, examining different contexts for its development (Amador, 2020; 

Fernández & Choy, 2020; Schack, Fisher, & Wilhelm, 2017). A crucial common 

assumption underlying them all is that changes in pre-service teachers’ discourse on 

students’ mathematical thinking indicate changes in their noticing expertise. In other 

words, the development of noticing can be inferred from their written professional 

discourse and perceived as a shift from general strategy descriptions, to descriptions that 

included teachers’ reasoning based on mathematically relevant details of students’ 

mathematical thinking (Ivars, Fernández, Llinares, & Choy, 2018). The internship period 

at primary schools is a proper context to develop pre-service teachers’ noticing. However, 

as far as we know, little is known about its development during this period (Fernández, 

Llinares, & Rojas, 2020; Stockero, 2020).  
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The notion of practical argument has been used from general educational perspectives to 

study how pre-service teachers learn to reason about a teaching situation (Fenstermacher 

& Richardson, 1993; Vesterinen, Toom & Krokfors, 2014). Practical arguments are post 

hoc examinations of actions that serve to explain or justify what was done. A complete 

practical argument comprises four types of premises and is concluded with an action or 

intention to act (conclusion of the practical argument; Fenstermacher & Richardson, 1993). 

These premises are: 

● Situational premises: statements that describe the context of the situation. 

● Stipulative premises: statements arising from the theory that interpret what 

happened in the situation. 

● Empirical premises: statements that provide evidence or empirical support for 

future action. 

● Value premises: statements that include information regarding the benefit derived 

from performing a future action. 

In developing reasoning about teaching situations, Fenstermacher and Richardson (1993) 

consider two different processes: eliciting and reconstructing a practical argument. 

Eliciting is the process by which pre-service teachers provide reasoned descriptions of the 

teaching-learning situation and the actions taken. Reconstructing is the process by which 

pre-service teachers assess the practical argument elicited to improve it. From this 

perspective, engaging pre-service teachers in the elicitation and reconstruction of practical 

arguments could help them learn to reason about students’ understanding and decide how 

to respond considering students’ understanding. Therefore, if pre-service teachers provide 

progressively more complete practical arguments (seen as a growth in their professional 

discourse), from the point of view of the premises indicated above, this could reflect the 

development of noticing children’s mathematical thinking skill. 

Thus, in this study, we aimed to contribute to the field of noticing examining to which 

extent the elicitation and reconstruction of practical arguments help pre-service teachers 

enhance the noticing skill during their internship period at school. 

METHOD 

Participants and instrument 

Participants were 17 pre-service primary school teachers (PTs) enrolled in the last year of 

their four-year-degree to become a primary school teacher. They were in the internship 

period at primary schools (8 weeks). In the first two weeks, they had to observe the school 

tutor's teaching and the remaining six weeks they had to plan and implement a lesson. PTs 

had completed two mathematics education courses related to numerical and geometrical 

sense and a mathematics method course. 

Writing narratives can be considered a facilitator for eliciting practical arguments. A 

narrative is a story described sequentially in which the author recounts some events that, 

according to his/her internal logic makes sense to him or her (Chapman, 2008). Moreover, 
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writing narratives can be used as a tool that allows PTs to generate explanatory schemes 

and relationships between theory and practice (Ivars & Fernández, 2018; Schultz & 

Ravitch, 2013). 

Writing narratives provides a context in which: (i) PTs can express and describe what they 

consider relevant in a teaching-learning situation related to students’ thinking (providing 

situational premises); (ii) PTs can interpret students’ understanding using their knowledge 

about mathematics and the teaching and learning of mathematics (providing stipulative and 

empirical premises), and (iii) PTs can propose a learning objective and new actions to 

continue the instruction (providing value premises to conclude the argument). 

PTs had to write two narratives in which they considered that students were developing 

mathematical competence. PTs were provided with the following prompts as a guide to 

write their narratives: 

● Describe in detail a mathematics teaching-learning situation. The task 

(curricula contents, materials, resources…). What did the primary school 

students do? For example, you can indicate some students’ answers to the task, 

difficulties…What did the teacher do? For instance, you can describe the 

methodology and some aspects of the interactions. 

● Interpret the situation. Indicate the mathematical objectives of the task and how 

the implementation of the task pursued the objective. Indicate evidence of 

students’ answers that show how they achieved the objectives (students’ 

understanding of the mathematical content) and/or the difficulties they had. 

● Complete the situation. Complete the situation indicating what to do next to 

support students in their conceptual understanding. 

After PTs had written the first narrative during the observation period, the narrative was 

shared with their university tutor who provided them with feedback. Feedback provided 

are tutor prompts to promote pre-service teachers’ learning, providing information that 

guides them towards the learning objectives (Wang, Gong, Xu, & Hu 2019). In our study, 

the role of feedback is relevant since it can help pre-service teachers to reconstruct their 

practical arguments. The feedback focused on the premises: asking for more detailed 

descriptions of students’ mathematical strategies, interpretation of students’ understanding, 

more evidence to support their actions, and information regarding the benefit derived from 

performing a future action. Afterwards, PTs wrote a second narrative during their practice 

(reconstruction of the practical argument after feedback). Data of this research are the two 

narratives written by PTs. 

Analysis 

In the analysis, we focused on whether the narratives included: 

● Situational premises: whether PTs provided detailed descriptions of the 

teaching-learning situation and students’ strategies. 
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● Stipulative premises: whether PTs interpreted students’ understanding using 

their mathematical knowledge and knowledge of teaching and learning 

mathematics.  

● Empirical premises: whether PTs provided evidence from students’ 

understanding that can support their actions.  

● Value premises: whether PTs provided statements that include information 

regarding the benefit derived from performing a future action. 

Three researchers analysed the two narratives individually, then, compared, and discussed 

their agreements and discrepancies (triangulation process) until a consensus was reached. 

Afterwards, changes in PTs practical arguments regarding the premises were identified. 

RESULTS 

Table 1 shows the changes in the premises included by pre-service teachers in their 

narratives. In the first narrative, nine out of the 17 PTs provided only situational premises. 

These PTs only described students’ strategies identifying some mathematical details. Eight 

out of the 17 PTs also provided stipulative premises interpreting students’ understanding. 

These PTs linked the mathematical details identified with their mathematical knowledge 

and knowledge of teaching and learning mathematics. However, only three PTs provided 

evidence from students’ understanding supporting their future teaching decisions 

(empirical premises) and included information regarding the benefit derived from 

performing this future action (value premises). 

 

Situational 

premises 

Situational premises 

Stipulative premises  

Situational premises 

Stipulative premises 

Empirical premises 

Value premises 

1st narrative 9 5 3 

2nd narrative 2 6 9 

Table 1.  Premises included in the narratives of pre-service teachers. 

In the second narrative, 15 out of the 17 PTs provided situational and stipulative premises. 

Moreover, nine out of these 15 PTs provided empirical and value premises.  

These data highlight that PTs were able to develop progressively more complete practical 

arguments showing evidence of noticing enhancement. This finding suggests that 

reconstructing practical arguments during the period of practices at schools and the 

feedback provided seem to be powerful tools to develop noticing. We are going to show 

extracts of the narratives written by PT03 and the feedback provided as an instance of this 

result. 

The first narrative of PT03 -Eliciting- 

In his first narrative, PT03 described a 2nd-grade classroom teaching-learning situation with 

21 primary school students focused on problem-solving. This PT only provided situational 
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premises describing the problem solved and some students’ difficulties. Following, some 

excerpts from his narrative are shown:  

Maria is saving money to buy a dollhouse in two different piggy banks. There are 325 

euros in the first piggy bank and, 172 euros in the second piggy bank. How many more 

euros does the first piggy bank have than the second one? 

[…] instead of performing a subtraction operation to find out the difference between 

both piggy banks, they performed an addition operation. When the teacher asked one of 

these students: “What should we do to solve the problem?” he said “We have to add” 

“Why? “Because it appears the word more in the problem”.  

When students read the problem, they realised that they had to perform a mathematical 

operation to solve the problem. However, some of them had difficulties since they did 

not identify the correct operation to solve it. 

PT03 focused his attention on the difficulty of performing “the correct operation” since 

students were linking the word more from the problem with the use of addition. Therefore, 

this PT identified and described an important mathematical detail of students’ strategies 

(situational premises). Nevertheless, PT03 associated students’ difficulties with the 

incorrect identification of the operation without providing additional information. He did 

not interpret students’ difficulties; for example, using knowledge of the type of problem 

solved (stipulative premises). For instance, the missing-value is the difference in this 

comparison word problem. These word problems are more difficult than the change, and 

combination word problems (Fuson, 1992) and students try to associate the words that 

appear in the problem with a type of operation (more with addition and less with 

subtraction). 

This PT concluded his narrative providing a future action focused on the use of smaller 

numbers in the problem: 

[…] presenting the problem, first, with smaller numbers to make the situation easier and 

introducing gradually bigger natural numbers […]. 

PT03 focused his future action on using smaller numbers instead of focusing on students’ 

understanding that would imply working on the relationships between quantities involved 

in the problem (identifying the structure of the problem). This part of the narrative shows 

that PTs’ difficulties providing stipulative, empirical and value premises did not let him 

thoroughly interpret the situation to make a teaching decision considering students’ 

understanding. 

Tutor’s feedback 

The university tutor’s feedback focused this PT attention on providing stipulative premises 

to interpret students' understanding: "[…] you should analyse students' difficulties deeply 

considering, for instance, the characteristics of the problem […]". Besides, the feedback 

asked for more concrete future actions based on students' understanding (empirical and 

value premises): "[…]   it would be better to suggest a concrete action focused on students' 
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understanding […]. How would you help them overcome their difficulties with the 

problem?” 

The second narrative of PT03 -Eliciting and Reconstructing-  

In the second narrative, PT03 described a teaching-learning situation that involves the 

subtraction algorithm. He provided descriptions of the teaching-learning situation using 

situational premises: 

I am going to describe a situation that happened in a 2nd-grade classroom of a primary 

school. Students were solving individually different activities involving subtractions. 

PT03 described some students’ difficulties: 

Initially, it seemed that the great majority of students understood what to do. 

Nevertheless, I corrected the subtractions, individually, and I identified that some 

students had difficulties with the subtraction algorithm since they answered “365” as a 

solution for the subtraction 418-173. 

In the following excerpt, PT03 used his knowledge about the characteristics of the decimal 

numbering system (place value and the idea of grouping, Battista, 2012) to interpret 

students’ difficulties with the subtraction algorithm (providing stipulative premises):  

[…] These students seemed to understand that they always have to subtract a smaller 

digit from a bigger one. So, they seemed to have acquired a limited knowledge of 

subtraction; especially they seemed not to understand the place value of the digits and 

how to subtract by regrouping […].  

Moreover, he provided evidence from the situation to support his interpretation through 

empirical premises when he wrote: 

[…] I confirmed my thoughts when I asked one student to explain how she solved the 

subtraction 418-173 and she answered: From 3 to 8, 5, from 1 to 7, 6 and, from 1 to 4, 

3. 

Continuing with his narrative PT03 wrote a value premise when he provided a learning 

objective and included information regarding the benefit derived from performing a future 

teaching action using didactical resources that help students progress in their learning. He 

used his knowledge of teaching and learning mathematics to deal with the situation 

considering students’ difficulties: 

[…] we should work the decomposition of the numbers from the beginning. First, the 

canonical decomposition of the numbers using base ten blocks to help students 

understand that 1 ten is 10 units or that 1 hundred is 100 units or 10 tens. Following, we 

should work with multiple decompositions of the numbers to help students understand 

how to group and regroup numbers and, understand the value represented by a digit in a 

number (place value). For instance, a decomposition of 117 is one hundred, one ten and 

seven units and other decompositions are 11 tens and 7 units or 9 tens and 27 units. 
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This value premise (and implicitly an empirical premise) was followed by an intended 

action linked with the interpretation of the situation considering students’ understanding of 

the subtraction algorithm. 

[…] Working with the different decompositions of the number will help students 

understand how the subtraction by regrouping works. In this case, I would provide 

students with base ten blocks and ask them to represent the quantity of the minuend 

(418) and subtract the quantity of the subtrahend (173). Then, using the base-ten blocks, 

students would realise that to subtract 7 tens to 1 ten they should break a hundred into 

10 tens (418 = 3·100 + 11·10 + 8). 

The more complete practical argument provided in his second narrative (evidenced by the 

premises given) can be considered evidence of noticing enhancement.  

DISCUSSION AND CONCLUSIONS  

Results indicate changes in the PTs’ practical arguments regarding the premises considered. 

These changes derived in providing complete practical arguments progressively. Therefore, 

the reconstruction of practical arguments and the university tutor's feedback allowed PTs 

to explicitly establish the connections between what is observed (data, evidence) and 

theoretical knowledge that can help them to interpret the situation and justify future 

teaching actions (Ivars et al., 2018). This finding suggests that reconstructing practical 

arguments during the internship period at primary schools and the tutor’s feedback seem to 

be powerful tools for the enhancement of noticing.  

The reported changes allow us to identify the potential of the prompts provided to pre-

service teachers to write the narratives and the nature of the tutor’s feedback addressed to 

give more details of students’ understanding and make more explicit the reasons behind 

their interpretations and actions. It seems that the tutor’s feedback pushes PTs to generate 

complete practical arguments providing reasons (premises) for their actions (Vesterinen et 

al., 2014). Therefore, our results contribute to the field of noticing examining other contexts 

for the enhancement of noticing in teacher training programs while pre-service teachers are 

in the period of apprenticeship at schools (Stockero, 2020).   
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We conducted 1-on-1 interviews to investigate how 10 future middle grades mathematics 

teachers in the United States generated equations to express proportional relationships 

between two co-varying quantities. Our analysis revealed the importance of coordinating 

2 perspectives on quantitative relationships we term the co-occurrence and same extent 

perspectives. We argue that past research on school algebra has overlooked as important 

the interplay between the 2 perspectives and demonstrate that the future teachers were 

successful generating normatively correct equations when they accounted for and 

coordinated both. The results provide new insight into proficient reasoning when 

generating equations that model problem situations. 

INTRODUCTION 

We conducted one-on-one interviews to investigate how 10 future middle grades 

mathematics teachers generated equations to model proportional relationships between two 

co-varying quantities. When analysing where these future teachers were more and less 

successful generating normatively correct equations, we came to see that a critical aspect 

of their proficient reasoning has been overlooked by past research. In particular, the future 

teachers succeeded when they coordinated two perspectives on relationships between 

quantities that we call the co-occurrence and same extent perspectives.  

To illustrate the two perspectives, consider a situation in which gold and copper are mixed 

in a 7-to-5 ratio. When generating an equation, teachers or students might intend to express 

weights of gold and copper that co-occur––for instance, 7 ounces of gold co-occur with 5 

ounces of copper. Alternatively, they might intend to express weights of gold and copper 

that are the same––for instance, 5 ounces of gold weigh the same as 5 ounces of copper. 

More generally, a person might want to convey two quantities that co-occur or go together 

or two quantities that have the same extent, such as the same weight or volume. We found 

that when future teachers generated and explained normatively correct equations that 

modelled proportional relationships, they successfully coordinated these two perspectives.  

BACKGROUND 

Past research has delineated different strands of school algebra, and the two strands pursued 

most often have emphasized algebra as an extension or generalization of arithmetic and as 

the study of functions (e.g., Kaput, 2008; Kieran, 1992, 2007). Much of the research on 
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generalized arithmetic has relied on numeric tasks with no reference to quantities in 

problem situations, while much of the research on functions has emphasized expressing co-

occurrence, not same extent, of two quantities. The separate emphasis on these strands is 

one explanation for why the field has overlooked the importance of coordinating the co-

occurrence and same extent perspectives.  

Equations in the context of generalized arithmetic 

Earlier research on school algebra as generalized arithmetic reported difficulties that 

students have with the use of letters (e.g., Küchemann, 1981), rules for transforming 

expressions (e.g., Matz, 1982), and interpretations of the equal sign (e.g., Kieran 1981). For 

purposes of locating the contribution of the present study, an important finding has been 

students’ tendency to use an operator perspective in which the equal sign separates an 

arithmetic expression on the left-hand side from an evaluated answer expressed as a single 

number on the right-hand side. This perspective contributes to students’ tendencies to use 

the equal sign in a chain of computations, as in 2.3 + 3.2 = 5.5 – 1.5 = 4 (e.g., Kieran, 1992), 

and difficulties making sense of equations like _ = 3 + 4, 4 + 5 = 3 + 6, and 2 x 6 = 10 + 2 

(e.g., Kieran, 1981). Researchers have contrasted the operator perspective with a relational 

perspective in which the equal sign indicates two equal values or equivalent expressions, 

which is consistent with same extent. More recent research has continued to rely on 

numerical tasks when assessing students’ interpretations of the equal sign (e.g., Blanton et 

al., 2015, 2019; Carpenter, Franke, & Levi, 2003; Carraher & Schliemann, 2007; Jones & 

Pratt, 2012). Further recent studies of teachers’ attention to the operator and relational 

interpretations have also relied on numerical tasks (e.g., Asquith, Stephens, Knuth, & 

Alibali, 2007; Hohensee, 2017; Prediger, 2010). One finding is that teachers can 

overestimate the frequency with which students use the relational interpretation.  

Equations in the context of functions 

Research on school algebra as the study of functions (e.g., Blanton et al., 2015, 2019; 

Kaput, 2008; Kieran, 1992, 2007) has often focused on connections among tables, graphs, 

equations, and language. We simply point out that tables and graphs are based on ordered 

pairs and, thus, provide students experience using algebraic notation to express co-

occurrence more directly than same extent.  

Equations that model proportional relationships 

One of the best known results about equations that model proportional relationships is the 

so-called Students-and-Professors reversal error (e.g., Clement, 1982). A sample of 150 

college engineering students were asked two write an equation for the following statement: 

“There are six times as many students as professors at this university.” Thirty-seven percent 

answered incorrectly, and two-thirds of the erroneous answers were of the form 6S = P. 

One explanation for the error was that students generated equations left-to-right as they 

read the problem statement phrase-by-phrase. A second explanation was that students 

intentionally compared a larger group to a smaller group. The first error has been termed 
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“word order matching” and the second “static comparison.” Various researchers have 

continued to investigate similar reversal errors.  

THEORETICAL FRAME 

In previous reports (e.g., Beckmann & Izsák, 2015; Izsák & Beckmann, 2019), we have 

explicated an overlooked, yet promising, perspective on proportional relationships we term 

variable-parts. This perspective views quantities in terms of fixed numbers of equal-sized 

parts that can vary in size. Consider again a situation in which gold and copper are mixed 

in a 7-to-5 ratio. From a variable-parts perspective, one imagines fixing seven parts for 

gold and five parts for copper and allowing the units in each part to increase or decrease in 

such a way that the number of units in each of the 12 parts is the same (Figure 1b). We 

emphasized this perspective when designing interview tasks.  

 

Figure 1. Gold and copper in a 7-to-5 ratio from the variable-parts perspective.  

We have found aspects of the knowledge-in-pieces epistemological perspective (e.g., 

diSessa, 1993, 2006) useful for making sense of how future mathematics teachers reason 

about topics related to multiplication, including proportional relationships. The most 

important features of this perspective for the present report are that (a) future teachers can 

hold multiple ideas about a given problem situation that do not necessarily fit together into 

a coherent whole, (b) teachers’ activation of ideas are often sensitive to particular features 

of problem situations, and (c) learning does not proceed through a series of hierarchically 

organized stages but rather through complex processes in which knowledge is refined and 

reorganized. 

METHODS 

Data for the present report come from a larger, multi-year study in which we investigated 

future middle grades mathematics teachers’ reasoning about topics related to 

multiplication. We recruited future teachers enrolled in preparation programs at two large, 

public universities in the United States and used a survey targeting multiplication and 

division with fractions to select a mathematically diverse sample for interviews.  

During the 80-to-90 minute, semi-structured interviews (Bernard, 2006), the future teachers 

worked tasks we designed to engender reasoning about variable parts. Typical follow-up 

questions asked future teachers to explain their thinking in more detail, to discuss any 

additional ways they might have for thinking about a task, and to consider using a drawing. 
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Such questions drew out diverse ways in which the future teachers could think about the 

tasks. 

We recorded each interview using two cameras, one to capture the future teacher and the 

interviewer and one to capture the future teacher’s written work. At the end of each 

interview, we collected all written work for later analysis.  

First, we reviewed the videos and verbatim transcripts independently of each other. We 

generated summaries of each future teacher’s reasoning, then met to compare summaries, 

and resolved discrepancies by reviewing the data in light of points each of us raised. 

Through several cycles of this process, we improved the fit between verbatim statements, 

gestures, and inscriptions we observed and our accounts of the concomitant reasoning. 

Finally, as we identified similarities and differences across cases, we began to suspect that 

ways future teachers did or did not combine the co-occurrence and same extent perspectives 

contributed to important differences in their performance.  

As we sharpened our analysis, we converged on the following research question: How did 

the future teachers’ attention to and coordination of the co-occurrence and same extent 

perspectives contribute to their success when generating equations to model proportional 

relationships? 

RESULTS 

All 10 future teachers attended to both the co-occurrence and the same extent perspectives 

at one point or another during their interviews. Of these, five coordinated the two 

perspectives to a much greater extent than the others and, when so doing, were more 

successful in generating normatively correct equations that modelled proportional 

relationships between two co-varying quantities. We illustrate this result with two cases, 

the first illustrates coordinating the two perspectives to a lesser extent and the second 

illustrates coordinating the two perspectives to a greater extent.  

Nina 

Nina attended to the co-occurrence and same extent perspectives at different times over six 

approaches to the Jewelry Gold task. The initial version of the task read as follows:  

A company makes jewelry using gold and copper. The company uses different weights 

of gold and copper on different days, but always consisting of a total of 7 parts gold and 

a total of 5 parts copper, where all parts weigh the same amount.  

One day the company uses 25 ounces of gold. Please explain a relationship among the 

number of ounces of copper the company uses that day and the 25, 7, and 5. 

For her first approach, Nina quickly set up the following proportion: “7/5 = 25/X.” The 

interviewer did not follow-up to determine how Nina made sense of her equation. 

When the interviewer asked for a solution using a drawing, Nina initiated her second 

approach for which she drew a double number line. One number line showed ounces of 

gold and one showed ounces of copper. She used vertically aligned tick marks to coordinate 
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each 1 ounce of gold with 5/7 ounces of copper (Figure 2a). Thus, at least tacitly, she 

focused on co-occurrence.  

When the interviewer asked for other drawings, Nina’s third approach was to draw a 

rectangular array with 12 parts (Figure 2b) and to write “copper = 5 (25/7).” She expressed 

the ounces in each part correctly, but her explanation of equality was vague:  

You said to write an expression. This isn't really mathematical [gestured across “copper 

= 5(25/7)”], but because you said that, I put an equal sign, just like the copper, colon, 

copper is…like it could have been anything. I just put equal. 

 

  
  

 

(a) (b) (c) 

Figure 2. Three of Nina’s approaches to the Jewelry Gold task  

When the interviewer asked for “other kinds of expressions that you could generate based 

off this drawing that you’ve produced,” Nina generated her fourth approach. She quickly 

wrote “gold = x,” “copper = y,” and “7x = 5y.” The last equation was consistent with those 

characterized as reversal errors. Nina then attended to co-occurrence and same extent but 

expressed uncertainty:  

What I meant was…like for every seven groups of gold there would always be five 

groups of copper, but if I look at it in the drawing, then like these seven group…like it’s 

not actually equal. There’s more [pointed to the seven gold parts] than there is [pointed 

to the five parts copper]…there’s more gold than there is copper. So I feel like that is 

confusing. 

She commented that equations should “balance,” but she was unclear what would balance 

in the mixture situation. She knew to look for, but did not see, same extent.  

Next the interviewer presented a version of the Jewelry Gold task that introduced the letter 

G to stand for the unspecified number of ounces of gold, C to stand for the corresponding 

number of ounces of copper, and a strip diagram showing seven parts for gold and five 

parts for copper (Figure 2c). For her fifth approach, Nina commented:  

I feel like if there were five of these whole things [pointed to the seven part strip for 

gold], it’d be equal to seven of these whole things [pointed to the five parts strip for 

copper], which would change it. 

She then wrote “5x = 7y,” using x and y instead of G and C, and explained that this was 

balanced because both sides indicated 35 total parts. This expressed same extent.  
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When the interviewer asked for any other equations, Nina generated her sixth approach 

by writing G = 7/5C and C = 5/7G. She explained:  

C is five sevenths the size of G makes sense because these are all one seventh of G 

[wrote “1/7” in two parts of the gold strip, Figure 2c] and it’s the size of five of 

them….one seventh, two seventh, three seventh, four seventh, five seventh. That’s the 

size of C. 

She then gave a similar explanation for G = 7/5C and wrote “1/5” in two parts of the copper 

strip (Figure 2c). Finally, she explained that both sides of her equation “would give the 

same number of ounces.” Nina now articulated same extent explicitly. 

Leann 

In contrast to Nina, who initially found coordinating the co-occurrence and same-extent 

perspectives “confusing,” Leann coordinated the two perspectives quickly when using both 

subtraction and multiplication. For her first approach to the Jewelry Gold task (the version 

with the variables C and G), she generated “C = G – 2” and explained:  

The way I was thinking about it was if you have seven gold and you’re using five copper, 

every time you get to seven gold you’ve used five copper, which is two less than the 

number of gold that you used, which would give you the total number of copper that you 

used.  

Leann’s statement that “every time you get to seven gold you’ve used five copper” was 

consistent with co-occurrence, while her statement that the number of copper was “two less 

than the number of gold that you used” was consistent with same extent. 

For her second approach, Leann computed 7 ÷ 5 = 1.4  and explained: 

So for every one bar––is it bar?––one part of copper, they used 1.4 parts of gold. So if I 

used, so I guess I want to say the gold equals the copper multiplied by 1.4 [wrote “G = 

C x 1.4”], since there’s 1.4 more gold than copper every time.  

Leann’s statement that for every one part of copper there would be 1.4 parts of gold was 

further evidence of attention to co-occurrence. At the same time, Leann’s “G = C x 1.4” 

equation combined with her comment that “gold equals the copper multiplied by 1.4” 

evidenced attention to same extent. In subsequent work, Leann produced drawings, made 

co-occurrence statements like “every seven gold is five copper,” and made same extent 

statements such as: “The total gold would equal the total copper plus another two fifths of 

the copper.” Thus, her explanations for correct equations combined the co-occurrence and 

same extent perspectives fluidly.  

DISCUSSION AND CONCLUSION 

Our results suggest that coordination of the co-occurrence and same extent perspectives is 

a subtle, yet important, aspect of school algebra that has been overlooked by past research 

on students and teachers. In contrast to past research on Students-and-Professors and 

similar problems, which has characterized static comparison as an impediment to 
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generating normatively correct equations, in our data future teachers were successful when 

they found ways to account for both perspectives. Nina had to find ways of viewing the 

jewelry gold mixture that fit with the same extent perspective, while Leann moved fluidly 

between the co-occurrence and same extent perspectives. 

Our results have straightforward implications for teacher education programs. We imagine 

discussions in courses that identify the co-occurrence and same extent perspectives, 

highlight where each is useful, and examine how they are not in opposition but can 

complement one another. Such discussions could help prepare future teachers to recognize 

when students are similarly challenged by the two perspectives. 

Finally, the present study is limited both by the small number of participants and the narrow 

focus on a small number of tasks that included the Jewelry Gold task. We imagine future 

research that builds on insights reported here by investigating how future teachers and 

students generate and explain equations using a wider variety of tasks about proportional 

relationships and tasks in which other relationships are central. 
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Mathematical reasoning shows relevance for the support of mathematical giftedness. In 

order to combine both aspects from elementary school age, knowledge on two aspects is 

required: firstly, on changes in mathematical reasoning and secondly on possible 

connections between mathematical reasoning and the mathematical giftedness profile. This 

article takes up already known indicators for changes and connections and presents the 

methodology and results of a longitudinal study with potentially gifted children between 9 

and 12 years. Firstly, a scheme for the analysis of the orally produced arguments is 

developed. Afterwards, a detailed examination of the changes in the categories of Content 

and Validity results in six types that characterize differences in the temporal changes. 

INTRODUCTION 

With emphasis on the goal of training the later ability to prove, the importance of 

argumentation becomes apparent in the support of mathematical giftedness at a young age. 

Nevertheless, the PISA results, for example, show that even mathematically gifted students 

in lower secondary schools still find it difficult to argue correctly, completely and 

conclusively (OECD, 2016). However, it is consensus that the development of the 

giftedness potential is a process that takes several years and that the promotion of 

mathematical giftedness should be designed for the long term (Fritzlar & Nolte, 2019). This 

leads to the question how the long-term training of mathematical reasoning can be 

reconciled with the support of mathematical giftedness. The article takes up this research 

interest in a longitudinal study. After the derivation of the research questions, it presents 

the methodological development of a suitable analysis scheme. This takes into account the 

age of the children, orality as a form of the survey, the product character of the arguments 

and the longitudinal character of the study. Furthermore, the results on typical courses of 

change and their evaluations, as well as on a possible connection between the 

argumentation characteristics and the giftedness profile is emphasized. 

THEORETICAL BACKGROUND 

Analysis of mathematical arguments 

The relevance of mathematical argumentations opens up the need for suitable analysis 

possibilities of arguments. In addition to competence models, e.g. in PISA and TIMSS, this 

is also done with the help of a structural analysis based on the Toulmin scheme. By 

definition, the core of the Toulmin scheme contains the Conclusion, i.e. a statement that 

asks for legitimation, the Data, i.e. the unquestioned statements to which the Conclusion is 
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attributed and the Warrant, i.e. the statement which substantiates the step from Data to 

Conclusion (Toulmin, 2003).  

The occurrence or non-occurrence of these elements does not allow any statement about 

the content or the conclusiveness of an argument (Koleza, Metaxa & Poli, 2017). Especially 

the warrant can be the basis for a distinction whether an argument contains all necessary 

information for the step from data to conclusion and thus is complete, or if the argument 

leaves questions open and has to be evaluated as incomplete. Furthermore, different types 

of arguments give reason to analyze and categorize arguments in detail. Children, in 

particular, do not usually argue on a general level or use mathematical rules increasingly 

as evidence for their arguments (Koleza, Metaxa & Poli, 2017). Therefore, the argument’s 

method can be distinguished, e.g. through being based on an example or on a general 

mathematical statement. In addition, especially oral arguments might be promoted by 

questions, e.g. questions that request an evaluation or questions that request a warrant 

(Cervantes-Barraza & Cabañas-Sánchez, 2020). Therefore, it is possible to analyze the 

independency of the argument and their creation context. 

Mathematical giftedness 

Giftedness at a young age is often defined by means of competence definitions, i.e. a 

potential for an outstanding performance (Lucito, 1964). Such a definition raises the 

question of appropriate diagnostic methods for giftedness. Especially in the area of 

mathematical giftedness, there is a tendency to describe the construct with the help of 

catalogues and systems that contain several characteristics of mathematically gifted people. 

The system for third- and fourth-graders with a potential mathematical giftedness by 

Käpnick (1998) and the counterpart for potentially gifted fifth- and sixth-graders by Sjuts 

(2017) reconcile specific mathematical traits with personality traits of potentially 

mathematically gifted children, e.g. structuring and creativity. So-called indicator tasks are 

based on the idea of operationalizing mathematical giftedness with the help of these area-

specific characteristics.  

RESEARCH QUESTION 

Mathematical argumentation and its analysis play a role in international school 

achievement studies (e.g. PISA and TIMSS), but also in numerous empirical research 

projects (e.g. Reid & Knipping, 2010). The analysis is done either by classification in 

complex models or by recourse to schemata such as the Toulmin scheme. The hereby 

identified characteristics of reasoning are mainly cross-sectionally, i.e. describing 

mathematical reasoning in one specific age. "Real" descriptions of changes in 

argumentation derive from the area of developmental psychology. Piaget's Step Theory 

(Piaget, 2002) and the LOGIK study (Ahnert, Boes & Schneider, 2003) describe cognitive 

changes in logical thinking and provide indicators of changes in children's general 

reasoning without reference to mathematical reasoning.  

Besides the lack of longitudinal studies on mathematical reasoning, the relation between 

mathematical giftedness and mathematical argumentation is still uncertain (Durak & Tutak, 
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2019). On the one hand, it is assumed that there are no differences between mathematically 

gifted and normally gifted primary school students with regard to the need for proof or 

argumentative reasoning (Fritzlar, 2011). Instead, the mathematical intuition is taken into 

account here, which could hypothetically also have a negative impact on the explicitness 

of argumentation. Contrary to this assumption, the hypothesis that "[m]athematically gifted 

students [...] tend to show unusual paths of reasoning" (Gutierrez et al. 2018, p. 170) seems 

to be internationally widespread. This potential for increased reasoning skills is based on a 

possible cognitive advantage and on characteristics of mathematical giftedness, e.g. a 

creative approach to problem solving, special abilities in structuring mathematical facts and 

special abilities in reversing thought processes (Fritzlar & Nolte, 2019). 

With reference to the comparison of the systems of characteristics for potentially 

mathematically gifted third- and fourth-graders by Käpnick (1998) and for potentially 

mathematically gifted fifth- and sixth-graders by Sjuts (2017), a possible temporal change 

of the mathematical reasoning in mathematically gifted children becomes obvious. While 

logical reasoning is not listed in the system for children in the third and fourth grades, it is 

taken into consideration as a gifted-specific characteristic for children in grades five and 

six. This addition is based on empirical studies and a theoretical justification with reference 

to the transition to the formal-operational phase defined by Piaget (2002). This leads to the 

following research question: 

How can typical temporal courses (types) be characterized, evaluated and connected to 

mathematical giftedness?  

METHODOLOGY 

In an explorative approach, the indicators for changes in argumentation are investigated. 

With the emphasis on changes, a longitudinal study with an identical sample and survey 

method is designed. For a detailed overview on the study design see Jablonski & Ludwig 

(2019).  

The sample comprises 37 participating children from the enrichment program "Junge 

Mathe-Adler Frankfurt”. It is an out-of-school program for the long-term, regular support 

of mathematically interested and potentially gifted students from Frankfurt, Germany. The 

children are selected by nomination of their mathematics teachers. The teachers receive 

indicator tasks in advance that operationalize special mathematical giftedness 

characteristics.  

The children's argumentation products and possible changes are recorded with the help of 

problem-oriented interviews with arithmetic tasks. The task formats of the interviews are 

the number pyramid and the numerical lattice as well as the number relations contained 

therein (see Figure 1 and 2; de Moor, 1980).  
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Figure 1: Task format number pyramid 

 

Figure 2: Task formats numerical lattice 

First, a statement is presented in which it is claimed that the order of the basic elements 

(basic stones or arrow numbers) has no influence on the result of the respective format. The 

children are asked to comment on this (false) statement. Afterwards, the children are asked 

to investigate the relationship between the basic elements and the result in more detail, for 

example by asking how they have to be arranged so that the result is maximal. A guideline 

includes that the children firstly formulate discoveries and that – if not independently 

formulated – justifications and generalizations are initiated by the interviewer. In the last 

part of the interview, the children are asked to give reasons for their own "special" number 

pyramid or a "special" numerical lattice. The data collection of the interviews takes place 

every six months. There are four interview surveys in total, so that an observation period 

of 18 months is taken into account. 

The resulting argumentation products are coded with the help of an analysis scheme for 

oral individual interviews in the categories Structure, Content, Validity and Independence 

(see Figure 3).  

On the one hand theory-guided, on the other hand empirically tested on the basis of the 

interviews of the pilot study, the analysis scheme is delimited from already existing analysis 

schemes. Firstly, the involved Toulmin elements are coded. Afterward, the content and 

validity of the conclusion and warrant are analysed. Both happens with regards to the 

context, i.e. whether the element is formulated independently. The scheme is empirically 

confirmed in the context of the study with good values (Kappa between 0.66 and 0.74) of 

intercoder reliability. 
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Figure 3: Chosen Categories of the Analysis Scheme 

For the typology, two comparative dimensions are selected. These are the categories 

Content and Validity, which result in the corresponding feature space: 

 

Figure 4: Feature Space as Basis for the Typification 

The 37 children are ranked for each of the four data collections by means of empirical 

boundaries. Finally, the children are grouped according to their longitudinal classification.  

RESULTS 

Characteristics of the Types 

The children can be assigned to the following six types: 

● Type 1.1 argues stably generally 

● Type 1.2 argues stably generally and completely 
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● Type 2.1 argues stably incompletely 

● Type 2.2 argues stably incompletely and example-based 

● Type 3 argues increasingly generally 

● Type 4 argues increasingly completely 

These types characterize the interindividual differences in the progressions over the study 

period. Two of these types - type 3 and type 4 - also show intraindividual differences over 

the period of examination. 

Their characterization results from the following properties   

(1) concrete numerical examples/direct reference to the material 

(2) beyond concrete numerical examples/general facts 

(3) missing necessary information to complete the argument 

(4) all relevant information for a complete warrant 

In Table 1, these characteristics are assigned to the types, whereby a differentiation is made 

regarding their stability and variability. Additionally, their frequency among the children 

is quantified by N. Especially type 3 is strongly represented empirically. Therefore, a 

hypothetical statement on a group-independent increase of generalizing elements can be 

assumed. All in all, 34 children are allocated to the types, whereby three children show 

irregular courses of change. 

Type Characteristics N 

1.1 Stably: (2) 6 

1.2 Stably: (2) and (4) 5 

2.1 Stably: (1) 4 

2.2 Stably: (1) and (3) 6 

3 Increasing: (2) 10 

4 Increasing: (4) 3 

Table 1: Chosen Categories of the Analysis Scheme 

Problems, Prognoses and Connections to Mathematical Giftedness 

Despite the initial descriptive orientation of the analysis, at this point three evaluative 

classifications of the argumentation characteristics should help in the normative evaluation 

of the types:  

1. The children should be able to formulate a complete warrant.  

2. The children should be able to formulate a general, valid conclusion.  

3. The children should be able to formulate valid warrants according to the task and be able 

to generalize them when asked.  

The combination of the three normative statements allows a one- or two-dimensional 

positive classification of the types 1.1, 1.2, 3 and 4. In contrast, there are no positive 

classifications regarding the types 2.1 and 2.2. On the basis of this evaluative classification, 
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it is possible to formulate problems and prognoses for those types that do not develop 

positively. With the help of a qualitative content analysis of all interviews, there are 

indicators for problems in arguing, especially with regard to types 2.1 and 2.2, e.g. an 

empirical reasoning (a generalizing conclusion is drawn on the basis of an example-based 

warrant) and the lack of need for justification (no independently formulated warrants). 

These problems occur not exclusively, but predominantly in types 2.1 and 2.2. This raises 

the question of the extent to which early diagnosis and support are possible. This is done 

retrospectively with the help of prognoses for a classification in the first data collection to 

a type. According to this, a low rate of generalizing elements on the one hand and a low 

rate of complete elements on the other hand serve as indicators for a later assignment to a 

non-positive type. Conversely, especially the generalizing argumentation can be seen as an 

indication for an assignment to a positive running type.  

Also in the context of generalizing argumentation, there are possible connections to 

increased abilities in structuring and mathematical creativity. In the evaluation of the 

indicator tasks, the generalizing types show, in comparison to the other types, a clearer 

connection to the generalized reasoning of structures. In contrast, the incomplete types 

show difficulties with the complete specification or justification of a structure. They 

primarily formulate a detailed description of the overall situation without explicitly 

presenting what has been discovered.  

CONCLUSION AND OUTLOOK 

The results of the study show that the changes in mathematical reasoning at the age of 

investigation cannot be described one-dimensionally, despite the restriction to a potential 

mathematical giftedness. Nevertheless, the type formation in particular has shown that it is 

possible to structure, group and simplify the course of change. Together with the identified 

problems, prognoses and characteristics of giftedness, it is thus a decisive basis for the 

practical teaching goal of the study, which is to reconcile the long-term support of 

mathematical giftedness with the training of mathematical argumentation. In particular, 

initiation processes and the teaching of methodical argumentation knowledge seem to be 

promising. The formulated results are a first, explorative approach to describe the 

longitudinal change in reasoning of potentially gifted children. This explorative approach 

provides starting points for further questions that may validate the hypotheses. The types 

can be the basis for complex case studies. These could be characterized in detail by further 

categories from the analysis scheme, for example by extending the range of characteristics 

using the category Independence. Also in this context, the inclusion of further mathematic 

specific giftedness characteristics seems promising in order to promote mathematical 

argumentation as a learning goal and basis of understanding in the context of mathematical 

giftedness.  
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Place value understanding plays an important role in children's mathematical learning. 

Various studies show a need for further support of children regarding their development 

of place value understanding. What form such support might take has yet to be clarified. 

While we know from a theoretical point of view that place value understanding is based 

on two key ideas, that can be called “place value principle” and “regrouping 

principle”, empirical results on place value understanding differ considerably 

concerning underlying constructs. Our own study indicates that the two constructs 

place value principle and regrouping principle are two separate constructs. These 

results can contribute to the provision of individually tailored support for children’s 

place value understanding.  

INTRODUCTION 

The development of place value understanding in elementary school is amongst other 

things important for computational competence, e.g., in dealing with crossing the tens 

boundary, and the use of computational strategies (Verschaffel et al., 2007). However, 

place value understanding seems also to be a predictor of mathematics achievement in 

general (Moeller et al., 2011). Various studies show a need for action regarding support 

for children’s development of place value understanding (e.g., Herzog et al. 2019). But 

it is unclear what such support might look like, also because in several studies, albeit 

the authors conceptualize place value understanding similarly on a theoretical basis, 

they use different methods and tasks to examine it empirically. In the following, we take 

a comparative look at some empirical approaches, locating the core theoretical ideas of 

place value understanding. An own empirical study is presented afterwards, in which 

the two core ideas “place value” and “regrouping” were investigated in a comparative 

way. Thereby, our study aims at clarifying the possible contribution of these two core 

ideas in place value understanding in order to provide starting points for developing 

support options. 

THEORETICAL BACKGROUND 

Two concepts, named the “place value principle” and the “regrouping principle” by 

Padberg and Büchter (2019), are consistently described as fundamental properties of 
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place value systems. The place value principle states that each digit gives two pieces of 

information: First, the position indicates which bundling unit the digit stands for, and 

second, the value of the digit indicates the number of represented bundling units. The 

regrouping principle describes that continuously the same number of units is bundled. 

In the decimal system the number of units is ten. Models for developing place value 

understanding have been proposed by Fuson et al. (1997), Ross (1989), Herzog et al. 

(2019), and Fromme (2017), among others. In their empirical studies, the researchers 

capture place value understanding in different ways. In the following, the two principles 

presented are used to analyze the empirical approaches.  

Some authors try to get insight into place value understanding via observation of 

counting processes and solving behaviour in multi-digit addition and subtraction 

(Fuson, 1990; Fuson et al., 1997; Cobb & Wheatley, 1988). In this context the use of 

grouping and regrouping in crossing the tens boundary is considered a crucial indicator 

for place value understanding. Hence, the focus of these studies lies on the regrouping 

principle. However, it should be noted that by observing computational processes with 

regard to the use of tens structures the place value notation plays a subordinate role. 

Another option to analyse place value understanding is to focus on translation processes 

between different kinds of number representations used for example by Ross (1989) 

and Fromme (2017). Both authors draw attention to the differences between the 

procedures the children use. Ross (1989) asked children about the meaning of the digits 

in a two-digit numeral. She distinguishes levels regarding the awareness of the quantity 

of objects corresponding to each digit. Thus, she examines primarily the understanding 

of the place value principle. Ross (1989) notes that some children refer to each digit by 

the names “units” and “tens”, but without associating the tens digit with the 

corresponding number of bundles of tens. Fuson et al. (1997) observe a similar kind of 

approach, when children perform digit-by-digit arithmetic while treating all digits in 

isolation as ones (“concenated single digit conception”). Although Fromme (2017) 

examines translation processes, she works out the problem of bundling as an important 

element. She differentiates two kinds of assigning numerals/number words to number 

representations on the abacus in children’s answers: She highlights whether the children 

use the tens structure compared to counting the objects individually. Here, the focus is 

on using the tens structure analogous to the conceptualization in Fuson (1990), Fuson 

et al. (1997) and Cobb and Wheatley (1988). 

Herzog et al. (2019) develop a competency model based on the models of Fuson et al. 

(1997), Cobb and Wheatley (1988), and Ross (1989), among others, which they 

validated empirically conducting a Rasch analysis. The model consists of four levels 

and the authors differentiate procedural place value understanding and conceptual place 

value understanding. Here, the place value principle as described in the model of Ross 

(1989) is included as procedural place value understanding, which consists of being 

able to name positions by e.g., “tens”, “hundreds” in a multi-digit number or to show 
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the right positions in a multi-digit-number according to the given names (already 

developed at level 1). The regrouping principle is included in the conceptual place value 

understanding, which develops from level II to IV. It consists of understanding the 

relationships between different bundle units, e.g. the relation between tens and ones. It 

is initially at level II still dependent on visual support (e.g., base ten blocks). According 

to Herzog et al. (2019), the ability to translate non-canonical representations such as 3T 

14U into a place-appropriate notation by regrouping ten ones into one ten is crucial for 

the determination of place value understanding. This is accomplished without 

visualization at level III and in larger number spaces at level IV.  

Looking at the presented empirical approaches, Herzog et al. (2019) take up the place 

value principle only as part of the procedural place value understanding at level 1, while 

the regrouping principle seems to be mainly relevant for all higher levels. Fuson et al. 

(1997) and Ross (1989) both point out that the activity of naming positions, that Herzog 

et al. (2019) include in procedural place value understanding, is not yet a sign of a full 

place value understanding. Because of that, the question arises whether place value 

understanding could also be differentiated at higher levels, or at least play a further role 

for place value understanding next to regrouping.  

Insofar it is still an open question, whether the understanding of the meaning of place 

values as described by the place value principle is included in the overall construct of 

conceptual place value understanding and whether it is inseparable of the regrouping 

principle, or if the both principles emerge as separate constructs. To address this 

question, we conducted a study and used tasks in which the children had to consider the 

two principles. Our study aims at examining to which extent the two principles 

contribute to place value understanding. The results may help to diagnose specific 

difficulties in place value understanding and to address difficulties more precisely to 

support children’s development. 

Our research questions are: 

● Is place value understanding a unidimensional construct that combines the two 

principles “place value” and “regrouping” or a two-dimensional construct 

with “place value” and “regrouping” as two separate constructs? 

● If place value understanding proof to be two-dimensional: To what extent 

contribute the understanding of “place value” and “regrouping” each to 

children’s errors? 

METHODS 

To answer our research questions, we conducted a cross-sectional study: 100 third 

graders (8 to 10 years old) from 7 classes in three elementary schools were presented 

with twelve tasks. In the tasks the place value principle (PVP) and/or the regrouping 

principle (RP) had to be considered. In order to test understanding of the place value 
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principle on a higher level than only naming, we chose tasks, in which the correct order 

of bundling units had to be considered. 

● Two tasks addressed translating a representation with base ten blocks into 

numerals. One representation was non-canonical, but sorted by bundling units 

according to the place value representation (RP, see figure 1), the other 

presented unsorted material (PVP).  

 

 

 

 

 

 

 

 

Fig. 1: Task in which regrouping is needed.  

 

● Seven tasks request translations between representation with named units into 

multi-digit numbers e.g., 7U 1H 4T = ______ (PVP), 4H 15T 6U = ______ 

(RP), 7H 3U 19T = ______ (PVP and RP).  

● One task calls for describing material handling with base ten blocks at 92 - 8 

(RP). 

● Two tasks gave prompts to take away tens: a) 1 ten from 305 and b) 14 tens 

from 168 (both PVP and RP).  

For the analysis, we coded first dichotomously true/false and determined the solution 

rates of the tasks. Based on the solution rates, we excluded two tasks from further 

analysis:  

(1) The task for the transition from the representation with base ten blocks with 

unsorted material into a numeral was solved correctly by 91% of the children, the 

nine incorrect answers suggested counting errors instead of comprehension 

problems.  

(2) The task for the description of the usage of base ten blocks for solving 92 – 8 

was not worked on by the majority of the children in the intended sense. Most 

children described taking away a ten and giving back two ones instead of a 

regrouping process (take ten ones for one ten and then take away eight ones) thus 

offers no gain in knowledge for the children's understanding of the regrouping 

principle.  

This leaves ten tasks, three of which require only the observation of the place value 

principle and three of which require only the observation of the regrouping principle. 
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In the remaining four tasks both principles have to be applied (see table 1). To examine 

the extent to which the solution frequencies confirm the two principles as independent 

constructs, a confirmatory factor analysis was performed on the six tasks, that each 

cover only one of the principles (three tasks address the place value principle, the other 

three tasks the regrouping principle). For the one-dimensional model, the latent variable 

is place value understanding, while for the two-dimensional model, the two principles 

are assumed to be two latent variables.  

In order to be able to include the tasks for both principles in the analysis, a reliability 

analysis is carried out over all seven tasks in each of which the regrouping and/or place 

value principle must be considered. The four tasks in which both principles are 

addressed are included in both scales. To examine the causes of the children's errors in 

these tasks with regard to the both principles, the errors are examined qualitatively. For 

this purpose, for each error we analysed, which of the two principles (or both) was 

violated. For example, in 7H 3U 19T = ______ the solution 7193 indicates that the place 

value principle was considered, but the regrouping principle was not considered 

(regrouping error). Solution 749 shows a disregard of the place value principle (place 

value error), and in 7319 both principles are violated (regrouping and place value error).  

To understand whether children are more likely to make errors regarding one of the 

principles we compared the numbers of the two types of errors per child.   

FINDINGS 

Findings of the confirmatory factor analysis 

The mean value of the solution rate is 6 tasks out of ten (standard deviation 2.78). The 

confirmatory factor analysis shows that one-dimensional data does not fit our data well 

as indicated in the comparison of our model and the data as well as in the Fit-indices 

RMSEA, CFI and SRMR. The two-dimensional model however, shows no significant 

difference to our data and fits our data comparably well. If both models are compared, 

the AIC and the sample-size-adjusted BIC also indicate that the two-dimensional model 

represents our data better than the one-dimensional model (see table 1).  

 df χ2 p RMSEA CFI SRMR AIC adjBIC 

1-dim 

model 

9 53.067 .000 .221 

[0.166, 

0.281] 

.645 .104 706.388 696.433 

2-dim 

model 

8 11.766 .162 .069 

[0.000, 

0.146] 

.970 .040 667.087 656.579 

 Table 1: Results of the confirmatory factor analysis 

Note: RMSEA (Root Mean Square Of Approximation); CFI (Comparative Fit Index); 

SRMR (Standardized Root Mean Square Residual); AIC (Akaike Information 

Criterion); adjBIC (Sample Size Adjusted BIC Information Criterion) 
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Reliability analysis across the “place value principle” and “regrouping principle” scales 

(seven tasks each, with four tasks included in both scales) yields a Cronbach's α of .749 

for the place value principle and Cronbach's alpha of .783 for the regrouping principle, 

so that a further analysis of the different kind of errors according to the two principles 

seems to be reasonable.  

Findings of the error analysis 

The solution rate in the three tasks in which the regrouping principle have to be 

considered is 68.33%, the solution rate in the three tasks for the place value is exactly 

the same. In the four tasks in which both principles have to be considered, the solution 

rate is 47.5%. The error numbers in the four tasks regarding both principles are shown 

in table 2.  

Table 2: Numbers of both kinds of errors in the tasks regarding both principles  

 7H 3U 19T 3H 15T Take away 1 

ten of 305 

Take away 14 

tens of 168 

Regrouping 

errors 

41 45 16 30 

Place value 

errors 

38 21 15 45 

The comparison of the numbers of the two kinds of errors per child shows that 33 

children made more regrouping errors than place value errors (in the mean 2,67 more 

regrouping errors than place value errors) and 44 children the other way round (in the 

mean 2.05 more place value errors than regrouping errors).  

DISCUSSION 

The first research question was, whether the two principles “place value” and 

“regrouping” are empirically confirmed as two separate constructs. The results of the 

confirmatory factor analysis express a preference for a two-dimensional model with the 

two principles as separate latent variables over a one-dimensional model.  

The second research question was, to what extent the two principles each contribute to 

children’s errors. The comparison of the solution rate of tasks regarding only the place 

value principle with that of the tasks regarding only the regrouping principle shows, that 

neither principle seems to be more error-prone than the other, because the solution rates 

are exactly the same (68.33%). The solution rate of the four tasks regarding both 

principles is lower (47.5%). We therefore conclude that these tasks seem to be more 

error-prone. Counting and relating the regrouping errors and the place value errors made 

in all tasks show that there is not a great difference in problems with one of the two 

principles in these tasks either. Interestingly, one of the four tasks (3H 15T = ____) 

seems to be more error-prone for the regrouping error. The common error “315” could 

be a result of the fact that the number of digits matches the number of digits actually 
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required at the end. At the same time another task (Take away 14 tens of 168) seems to 

be more error-prone for the place value error. The common error “154” might be due to 

no hundreds beeing left over. Maybe a task like “Take away 14 tens of 268” would lead 

to less errors.   

Our study emphasizes that problems in place value understanding are a highly important 

issue: Only of 60% of the tasks were solved correctly. This comparably low solution 

rate confirms results of other studies that show insufficient place value understanding 

(e.g. Herzog et al., 2019; Fuson et al. 1997). Our results can provide suggestions for 

individual support options. 

Our results indicate, that an understanding of both principles can be more or less present 

in children’s solutions. That is why an understanding for each principle has to be built 

up through mathematics education. 

While overall both principles present equal difficulty, some children show significantly 

greater difficulty with one of the two principles. Insofar, it seems highly important to 

consider children’s individual problems in place value understanding, and in doing so 

to include the two principles both specifically when diagnosing problems in place value 

understanding.  

Finally, our results can serve as an empirical foundation to further differentiate the 

existing models for place value understanding. For this, it might be necessary to 

describe the more or less separate development of both principles at the lower levels. A 

highest level, on which the complete place value understanding is described, would 

have to include the integration of the understanding of both principles.  
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DOES SUCCESSFUL PREPARING AND REFLECTING ON LESSONS 

SUPPORT PRE-SERVICE TEACHERS’ ACTIONS? A MEDIATION STUDY  

Colin Jeschke, Anke M. Lindmeier, & Aiso Heinze 

IPN – Leibniz Institute for Science and Mathematics Education, Kiel, Germany 

 

Pre-service teachers acquire mathematical teacher knowledge at university, but often 

fail to apply that knowledge to spontaneous teaching situations in the classroom. In this 

study, we investigate whether an ability to prepare and reflect mathematics instruction 

may facilitate the application of mathematical knowledge in instructional situations 

under time pressure. For that, we assessed pre-service teachers’ mathematical teacher 

knowledge, their ability to prepare and reflect mathematics instruction and their ability 

to act in time pressuring teaching situations with partly video-based instruments. The 

results show that an ability to prepare and reflect instruction mediates between 

mathematical teacher knowledge and the ability to act in teaching situations. Our 

results give implications for teacher training at university. 

INTRODUCTION 

Teacher education programs at university aim at providing pre-service mathematics 

teachers with mathematical teacher knowledge such as Content Knowledge (CK) and 

Pedagogical Content Knowledge (PCK) (Kaiser et al., 2014; Shulman, 1986). After 

graduating from university, early career teachers have to apply that knowledge to deal 

with the real-life demands of mathematics instruction. However, many of those teachers 

struggle with applying their knowledge in teaching situations under time pressure 

(Rowland et al., 2001; Stender et al., 2017). Regarding this issue, research has not yet 

conclusively explained what enables teachers to apply their knowledge in a teaching 

situation. Prior research suggests that an ability to prepare and reflect on instruction 

may facilitate an ability to apply knowledge for teaching (Stender et al., 2017). So far, 

quantitative empirical support for this assumption has not been provided. The present 

study investigates this assumption by examining relationships between pre-service and 

in-service mathematics teachers’ mathematical knowledge, their ability to prepare and 

reflect instruction and their ability to act in teaching situations under time pressure. 

THEORETICAL BACKGROUND 

Modelling Teacher Competence 

To investigate mathematical teacher knowledge, their ability to prepare and reflect 

mathematics instruction and their ability to act in teaching situations, we use the model 
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of subject-specific teacher competence by Lindmeier (2011). In this model, three 

aspects of teacher competence are differentiated: 

1. Mathematical Teacher Knowledge: This contains a teacher’s decontextualized 

(i.e., independent from specific contexts such as an instructional situation) 

mathematical knowledge. It encompasses content knowledge and pedagogical 

content knowledge. 

2. Reflective Competence (RC): This contains a teacher’s cognitive, motivational 

and affective characteristics that contribute to mastering the typical demands 

of preparing and reflecting instruction. Teachers need RC, for example, to 

plan an upcoming lesson (e.g., to choose content or teaching materials) or 

evaluate past teaching episodes. 

3. Action-related Competence (AC): This contains a teacher’s cognitive, 

motivational and affective characteristics that contribute to mastering the 

typical demands of teaching a subject under time pressure. Teachers need AC, 

for example, to react to a conceptual misconception displayed via a student’s 

statement during classroom discourse or to give immediate feedback to a 

student’s mathematical question. 

In particular, RC and AC contain mathematical teacher knowledge that is applicable for 

mastering demands of preparing/reflecting instruction and teaching situations, 

respectively (Kersting, 2008; Stürmer et al., 2013). To assess RC and AC of 

mathematics teachers, computer-based instruments were developed to approximate the 

typical demands that mathematics teachers may face (Lindmeier, 2011; see 

Instruments). Prior studies using those instruments showed that mathematical teacher 

knowledge, RC and AC are related but empirically separable from each other (Jeschke 

et al., 2019; Knievel et al., 2015). 

How Mathematical Teacher Knowledge Becomes Part of AC 

The theoretical model by Stender et al. (2017) describes how mathematical teacher 

knowledge becomes applicable for teaching situations under time pressure (i.e., part of 

AC). The model refers to the ACT-R theory of cognition (Anderson, 1983). In ACT-R, 

factual, decontextualized knowledge is called declarative knowledge. Declarative 

knowledge can only be applied to a real-life situation, if (1) its level of activation is high 

enough to be triggered in the demanding situations and (2) it underwent 

proceduralization so that the activated knowledge can be executed towards a specific 

goal in a demanding situation. Especially proceduralization is described as a time-

consuming process that is unlikely to be completed in situations under time pressure 

(Anderson, 1983). 

Based on the model of Stender et al. (2017), preparation and reflection of instruction 

can be assumed to facilitate both the activation and the proceduralization of teacher 
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knowledge: (1) Processing teacher knowledge in contexts of instructional preparation 

and reflection increases its level of activation. Thus, it is more likely to be activated in 

teaching situations under time pressure. (2) Anticipating future teaching actions, such 

as reactions to possible student’s misunderstandings, as well as considering past 

teaching experience, such as previous (reactions to) student misunderstandings, 

facilitate the proceduralization of teacher knowledge (details see Stender et al., 2017). 

Thus, by using knowledge for preparation and reflection of teaching, it is structured to 

a form that is easier for a teacher to apply in teaching situations. 

Based on the model described above, it can be hypothesized that RC (as the ability to 

prepare and reflect instruction) might facilitate a teacher’s ability to apply knowledge 

for mastering the demands of teaching (AC) in pre-service teachers. 

Research Questions 

So far, no quantitative study has investigated whether RC facilitates the acquisition of 

AC due to teacher knowledge in pre-service mathematics teachers. Accordingly, we 

approached the following research questions: 

(RQ1) What relationships can be found between mathematical teacher knowledge (CK, 

PCK), RC and AC in pre-service mathematics teachers with little teaching 

experience? 

(RQ2) Is the relationship between mathematical teacher knowledge and AC mediated 

by RC? 

METHOD 

Sample 

In order to investigate our research questions, we examined a total sample of N = 140 

mathematics pre-service teachers (ca. 53% female, mean age ca. 26.3 years) from 10 

federal states in northern and southern Germany. The participants were enrolled in 

university teacher training programs (n = 116, mean semester: ca. 6.4) or in their first 

semester of in-service training (n = 24, on average since ca. 2.7 month in in-service 

training). As the first months of in-service teacher training in Germany is mostly limited 

to observing experienced teachers, it can be assumed that the pre-service teachers in our 

sample had only few opportunities to teach on their own. Participation in the study was 

on a voluntary basis and each participant received a financial compensation. 

Instruments 

In this sample, we administered well-established instruments for AC, RC, and 

mathematical teacher knowledge (Lindmeier, 2011; Loch et al., 2015). The selected 

instruments aim at similar topics within secondary-level algebra, calculus, stochastics, 

and geometry. However, to avoid priming or repetition effects, each task contained in 

the instruments focusses a different mathematical issue (e.g., all instrument address 
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misconceptions of fractions, but no particular misconception is featured more than 

once). The tests were administered in small groups (max. 20 test-takers) and under 

supervision of trained personnel. 

For AC, we used 9 computer-based items (Jeschke et al., 2019; see Figure 1 for an 

example item). Each item contains a short video-clip of a classroom situation typical 

for secondary mathematics instruction. Depending on the item type, the task is to 

provide, for example, an explanation that solves a student’s question or a hint that helps 

students with a mathematical problem without telling them the correct solution. Since 

AC is characterized by its spontaneous and immediate demands, the items had to be 

answered verbally (again, recorded via headset) and under time pressure. 

For RC, we used 9 computer-based items (Lindmeier, 2011, see Figure 2 for an example 

item). The items address demands of evaluating teaching material (4 items; e.g., 

mathematical representations), reviewing students’ homework (2 items; e.g., giving 

feedback to typical mathematical mistakes) and planning mathematics instruction. 

Whereas items for material evaluation and homework review contain a picture (of the 

material/homework in question) and required a written response, items for planning 

instruction contained a video clip of the previous lesson’s ending and required a verbal 

description (recorded via headset) of how the instruction would be continued in the 

following lesson. 

For mathematical teacher knowledge, we used paper-pencil items of mathematics PCK 

and (school-related) CK (for sample items see Jeschke et al., 2019, or Loch, Lindmeier, 

& Heinze, 2015). The scale contained in total 24 items (3 open-ended and 10 closed-

ended items for PCK; 5 open-ended and 6 closed-ended items for CK). 

All responses were scored to 0, 1 (partial credit), or 2 (full credit). Open responses 

(including the audio recordings for AC and RC) were coded and scored independently 

by two trained persons under usage of a detailed coding/scoring scheme. The scheme 

includes item-specific criteria for each item and code. For the scoring, interrater 

agreement (Cohen’s Kappa) was κ = .77–.90 for AC, κ = .80–1.00 for RC, and κ = .70–

1.00 for mathematical teacher knowledge. The three scales showed (marginally) 

acceptable internal consistency (Cronbach’s Alpha) of α = .63 for AC, α = .69 for RC, 

and α = .72 for mathematical teacher knowledge in this study. 

 
Figure 1: Example item for AC (translated and edited for publication).  
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In the video, the students state that they only found 4/8, 5/8 and 6/8. Whilst one student 

claims that there are no more fractions, another thinks that there should be more. The 

test-taker is asked to give the students a helpful hint without telling the correct solution. 

 
Figure 2: Example item for RC (translated and edited for publication) 

The vignette features a lesson in which the students of a class work on different tasks 

in groups. The video shows the end of the lesson and centers one group with the task to 

answer the question ‘What is 0.999… ?’ on a poster. After a short dialogue with the 

teacher about what they learned about 0.999…, one student says ‘0.9… is very close to 

1, almost 1 itself’. The other students of this group agree. The lesson ends in that 

moment. The test-taker is asked to describe how he/she would start the first 15 minutes 

of the subsequent lesson. 

Data Analysis 

Using sum scores for each scale, we conducted correlational analyses and computed 

path models to investigate mediation effects. In those path models, standard errors were 

estimated using bootstrapping procedures (10 000 draws). Missing values 

(Mathematical Teacher Knowledge: 0; RC: 1; AC: 12) were estimated using full 

information maximum likelihood (FIML) methods. The computations were performed 

using R (version 3.6.0) and the package lavaan (Rosseel, 2012). 

RESULTS 

 AC RC Mathematical Teacher Knowledge 

  (1) (2) (3) 

(1) –   

(2) 0.57*** –  

(3) 0.42*** 0.61*** – 

M 7.28 7.21 18.58 

SD 3.29 3.41 6.51 

Max (theoretical) 18 18 47 

Table 1: Descriptive statistics for mathematical teacher knowledge, RC and AC including 

Pearson correlations between those variables. *** p < .001. 
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Table 1 contains the descriptive statistics and Pearson correlations for mathematical 

teacher knowledge, RC, and AC. It shows strong correlations between AC and RC 

(r = .57, p < .001) and between RC and mathematical teacher knowledge (r = .61, 

p < .001). It also shows a moderate to strong correlation between AC and mathematical 

teacher knowledge (r = .42, p < .001). 

However, as Pearson correlations do not control for possible mediation effects, we 

computed a corresponding mediation model with mathematical teacher knowledge as 

the independent variable, AC as the dependent variable and RC as the mediator 

(Figure 3). The results show that the relationship between mathematical teacher 

knowledge and AC is fully mediated by RC (direct effect: .11, p = .20; indirect 

effect: .31, p < .001; total effect: .42, p < .001). 

 

Figure 3: Mediation model with standardized regression coefficients for the relationship between 

mathematical teacher knowledge and AC mediated by RC. Total effect in parentheses. *** p < .001. 

 

DISCUSSION 

Aim of the present study was to quantitatively investigate relationships between 

mathematical teacher knowledge, RC and AC (RQ1), including a possible mediation of 

the relationship between mathematical teacher knowledge and AC by RC (RQ2) for 

pre-service teachers. 

The results show moderate to strong correlations between mathematical teacher 

knowledge and both RC and AC. This is in line with the assumption that mathematical 

teacher knowledge is highly relevant for pre-service teachers’ preparation and reflection 

of mathematical instruction as well as for their actions during instruction. Furthermore, 

the mediation analysis indicates that the relationship between mathematical teacher 

knowledge and AC is fully mediated by RC. This fits the theoretical assumption that an 

ability to apply knowledge to master the demands of instructional preparation and 

reflection (RC) facilitates an ability to apply teacher knowledge in teaching situations 

under time pressure (AC). The present study thus provides quantitative empirical 

evidence for the model by Stender et al. (2017), including first evidence on how teacher 

knowledge and RC relate to teaching actions. 
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Having said this, some limitations of our study should be considered. First, the cross-

sectional design of our study only allows correlational interpretation of our data. 

Furthermore, our results should be interpreted carefully as possible selection effects, as 

well as the limited sample size might have affected the findings. Finally, we might have 

underestimated the strength of correlations due to rather low scale reliabilities, 

especially for AC. 

IMPLICATIONS 

Considering those limitations, future research should reproduce our results with larger 

samples. In particular, as this study is limited to correlational interpretation, future 

studies may investigate how RC affects the acquisition of AC by mathematical teacher 

knowledge with an experimental or longitudinal design. 

If our results find corroboration in future studies, some implications on how to foster 

AC in teacher training programs at university can be derived. First, following the 

assumption that RC facilitates the acquisition of AC, specifically designed learning 

opportunities for RC with focus on anticipating future teaching actions and reflecting 

past teaching experience—explicitly encouraging the inclusion of the own 

(mathematical) teacher knowledge—may foster AC in the university training phase. 

Second, our assessment approach for AC presenting teaching situations via video-

vignettes could be used as a template to develop video-based learning environments for 

AC. Pre-service teachers could use those learning tools to reflect and apply the 

knowledge shortly after its acquisition. In this way, pre-service teachers may be able to 

transform their acquired knowledge into AC while still at university.  

This study thus paves the way for future strategies on how pre-service teachers can use 

their mathematical teacher knowledge more effectively for teaching mathematics. 
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It is known from several studies, that students have problems when treating 

rational numbers. In this paper, there is a focus on rational numbers as 

equivalent classes, in teaching expressed as extending of fractions. The current 

research shows how three teachers mediate extending of fractions and how their 

students understood this concept. The main outcome of the research is that most 

of the misconceptions were caused by shortcomings in teachers’ subject matter 

knowledge. For that reason, they were not able to find crucial aspects of the 

object of learning. Consequently, their students tried to find other, however 

irrelevant, patterns.  

BACKGROUND 

International research shows students’ problems and misconceptions when 

treating rational numbers (van Dooren, De Bock & Verschaffel, 2010). According 

to Adler and Sfard (2017) this is a problem that can be decomposed into three 

separate issues 

First, how can one explain he is lingering pervasive failure in mathematics 

experienced by so many students around the world […]. How can one transform 

the resulting understanding into educative action? […] How do we enable the 

impact of such interventions, and how do we make sure that local improvements 

or reforms are scaled-up. (p.1)  

To give an answer to these questions we must understand reasons for the student’s 

misconceptions. So, during some years researchers have studied the teaching 

process in 2nd to 8th Grade, in different schools and communities, in order to 

understand how students are initially introduced to fractions and how this is 

followed up during the following school-years. As a part of these studies, a 

special attention was paid to teachers’ content knowledge (Shulman, 1986) and 

how this influenced the object of learning (Marton, 2015). In this paper there is a 

focus on teaching and learning fractions in 4th and 5th Grade.  
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THEORETICAL FRAMEWORK 

Variation and Learning  

Variation theory (Marton, 2015) is a theory of learning that originates from 

phenomenography. A central concept in variation theory is the object of learning.  

The somewhat curious implication of our argument here is that the object of 

learning is constituted while learning. Or to sharpen the claim a touch further, 

learning is the constitution of the object of learning. (p.161) 

This means that the purpose of teaching is to plan and carry through activities that 

make it possible for the student to “constitute the object of learning”. For learning 

to take place, some crucial aspects of the object of learning must vary while others 

must remain constant. From a teacher’s point of view, it requires a good survey 

and insight of the actual content as well as possibilities to identify students’ 

multiple conceptions of the actual phenomenon. If not, it is neither possible for 

the teacher to present a content that makes it possible for the student to find the 

core of awareness, nor to offer a relevant variation.  

Against this background researchers analyzed how teaching of fractions was 

carried though and how learning took place in mathematics classrooms. One 

crucial aspect was to study to what extent teachers were capable to arrange 

learning conditions that gave their students possibilities to experience relevant 

objects of learning and then deepen the knowledge by suitable variation? This 

question is extended in the next section.  

Teachers’ Content Knowledge 

For the teachers to find the crucial aspects of the learning objects and a suitable 

variation, they have to master the current content as well as students’ pre-

knowledge of it and how to teach it. Shulman (1986) describes the concept of 

pedagogical content as an intersection of subject knowledge and pedagogical 

knowledge. However, a crucial question is which type of subject knowledge 

teachers require. According to Ma (1999) teachers need a profound 

comprehension of mathematics to understand the content to teach. Ball, Thames 

and Phelps (2008) call this a Mathematical Knowledge for Teaching (MKT). 

MKT contains two groups of knowledge, namely Subject Matter Knowledge 

(SMK) and Pedagogical Content Knowledge (PCK). According to Ball et. al 

(2008), SMK contains three subsections, namely Common Content Knowledge 

(CCK), Knowledge at the Mathematical Horizon (KMH), and Specialized 

Content Knowledge (SCK).  
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The importance of a developed subject matter knowledge is claimed by Even 

(1993). On the same subject, Stein, Baxter and Leinhardt (1990) wrote: 

[…] limited subject matter knowledge led to the narrowing of instruction in three 

ways: (a) the lack of provision of groundwork for future learning in this area; 

(b) overemphasis of a limited truth, and (c) missed opportunities for fostering 

meaningful connections between key concepts and representations. (p.659)  

At the same time, it is important to remember that not even elementary 

mathematics is superficial and must be studied hard to be understood in a 

comprehensive way (Ma, 1999).  

Rational Numbers and Subject Matter Knowledge  

In his section researchers explain our understanding of CCK as a background for 

our research. According to van der Waerden (1971), rational numbers can be 

defined as a number field Q constructed from the ring of whole numbers Z as a 

Cartesian product, Z x Z = { 
𝑎

𝑏
 : a, b 𝜖 𝑍, 𝑏 ≠ 0}. The rules for calculation are (b, 

d ≠ 0): 

 
𝑎

𝑏
 = 

𝑐

𝑑
 if and only if ad = bc.         

𝑎

𝑏
 + 

𝑐

𝑑
 = 

𝑎𝑑+𝑏𝑐

𝑏𝑑
           

𝑎

𝑏
 ∙ 

𝑐

𝑑
 = 

𝑎𝑐

𝑏𝑑
 .    

 

From this definition we can learn two important properties of rational numbers.  

● As Q is a field, the laws for addition and multiplication are the same as 

for natural numbers. It is just a matter of using them in a new number 

range. 

● In contrast to the whole numbers, the rational numbers consist of 

equivalence classes like  
3

4
 = 

6

8
 = 

9

12
 = 

12

16
 = 

15

20
 = 

18

24
 = … 

 

These two properties are paid too little attention to define teachers’ subject matter 

knowledge. In our opinion, CCK deals with understanding of definitions like the 

one presented above. However, the complexity of CCK requires translations into 

a more comprehensible language, into a theory for practice (Subramaniam, 2019), 

to make it a complement to SCK. 
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Rational Numbers in Teaching and Learning  

In a research agenda for mathematics education NCTM (1988) there is a 

comprehensive survey of the actual research on multiplication and rational 

numbers. Most of it is still valid and make up an important background to our 

research. In the survey, Vergnaud (1988) deals with multiplicative structures, an 

essential background for handling fractions. He emphasizes that  

The concept field of multiplicative structures consists of all situation that can be 

analyzed as simple and multiple proportion problems, and for which one usually 

needs to multiply or divide. […]. A single concept usually develops not in 

isolation but in relationship with other concepts …. (p.142) 

To this, researchers want to add the results from a study in 3rd and 5th Grade 

(Karlsson & Kilborn, 2018) showing that a one-sided focus on multiplication as 

repeated addition caused serious problems in understanding, and carrying 

through, operations with fractions. In the survey, Ohlsson (1988) calls attention 

to the fact that the concept of fraction has several mathematical meanings as well 

as several applicational meanings. He refers to Kieren (1975) who mentions 

seven different interpretations of rational numbers. Three of them are: 

● Rational numbers are fractions which can be compared, added, 

subtracted, etc. 

● Rational numbers are equivalent classes of fractions. This {1/2, 2/4, 3/6, 

…}and {2/3,4/6, 6/9, …} are rational numbers. […] 

● Rational numbers are numbers in the form p/q where 

p, q are integers and q ≠ 0. In this form, rational 

numbers are “ratio” numbers. (Kieren, 1975, pp102-

103) 

METHOD 

The overall design refers to variation theory, where the object of learning can be 

understood at three different levels: 

● The intended object: What the teacher intended to teach. 

● The manifest object: How the object of content in fact was mediated. 

● The experienced object: What the students in fact experienced. 

The correspondence between the intended object and the experienced object is a 

criterion of the quality of the teaching/learning. As the object of learning and the 

crucial aspects are central parts of variation theory, researchers paid certain 
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attention to the teachers’ subject matter knowledge and their ability to find key 

components in a current content  

Material 

In order to study teaching and learning of fractions in 4th and 5th Grade, 

researchers constructed a teaching material inspired by Vergnaud (1988), 

Ohlsson (1988), and van der Waerden (1971) where the object of learning was 

expanding fractions or more formally expressed, rational numbers as equivalent 

classes. In a first step researchers wanted to study the teachers’ ability to 

concretize the idea of expanding the fractions 
1

2
, 

1

3
 and 

2

3
.  

The following type of pictures was presented one by one to the students: 

 

 

By dividing the left figure into two equal parts by a vertical line, and then into 

three equal parts by two vertical lines, the students were supposed to understand 

that 
1

3
 = 

2

6
 = 

3

9
. When the number of rectangles becomes two (three) times as many, 

also the number of painted rectangles becomes two (three) times as many. To 

create variation, this was done for three different fractions, 
1

2
, 

1

3
 and 

2

3
. As the 

object of concretization is abstraction (verbalisation) this activity was followed 

up by the following questions as a basis for discussion and reasoning. 

  Which number is bigger, 
1

3
, 

2

6
 or 

3

9
?  Explain why. 

  Can you find a pattern here? Describe the pattern. 

Is it possible to write 
1

3
 in more ways than 

2

6
 and 

3

9
. Give two more examples. 

After an abstraction, it is time to apply and generalise what is learnt (verbalised). 

For that purpose, teacher and students were supposed to discuss how to reason 

when solving the following types of tasks.   

a) 
1

4
 = 

8
 = 

12
 = 

20
 = 

6
          b)  

3

4
 = 

8
 = 

12
 = 

20
 = 

18
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Participants and Realization 

The participants of the current research were three so called “first” teachers from 

different communities outside Stockholm and their classes, in all 60 students. 

During five lessons the teachers used the teaching material. During three of the 

five lessons, the teaching process was documented by video and an extra 

microphone on the teacher. At the end of the fifth lesson the students got a test 

and after still one week, a sample of the students were interviewed about their 

understanding of fractions. Finally, the teachers were interviewed with focus on 

their subject matter knowledge and how they apprehended their teaching and the 

results. 

RESULTS AND ANALYSIS 

To follow up the experienced object the student was tested and interviewed a 

week after the last lesson. It was quite easy to establish that the students in two 

of the classes had experienced the wrong object of learning. One example of this 

is presented in Table 1. 

Task    
1

3
 = 

2

6
          

2

3
 = 

6

9
  

1

4
 = 

2

8
         

 1

4
 = 

2

8
 = 

4

20
 

3

4
 = 

6

8
         

3

4
 =  

6

8
 = 

15

20
    

T1.  n = 21         19              12               19                18                  18               17 

T2.  n = 20  8                4                10                  3                    1                0 

T3.  n = 19        12               3                14                  8                   14               1 

Table 1. Number of students, taught by teachers T1, T2 and T3, who gave a correct  

answer to a certain task. 
 

According to variation theory, the quality of teaching can be apprehended by 

comparing the intended object and the experienced object. For teacher T1, there 

is a clear relation, however for teachers T2 and T3 the relation is very weak. One 

explanation for the result is that their students usually looked for additive patterns 

like “2-jumps” and “3-jumps”, instead of multiplicative patterns.  

To understand the weak relation between the intended object and the experienced 

object, researchers must study the manifest object, that is what happened during 

the lessons. To begin with, only one of the three teachers apprehended what was 

the crucial aspects of the object of learning, that is to understand the concept of 

extending a fraction. Moreover, only that teacher was able to concretize, that is, 

to transfer a given illustration into abstraction. In the Table 2, there is an overview 

of what the teachers focused on during their lessons. 
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During interviews with the teachers it became evident that just one of the teachers 

had sufficient subject matter knowledge. As the two other teachers lacked durable 

subject matter knowledge, they had problems in finding the object of teaching. 

Consequently, they had also problems to transfer their subject matter knowledge 

into pedagogical content knowledge.  

Teachers        crucial        number          students         concretising into        language and 

focus on        aspects      sequences      pre-knowl.         abstraction                 reasoning 
 

T1                  mostly           no                  yes                     yes                         mostly 

T2                    no            mostly          not enough              no                       not enough 

T3                    no            mostly          not enough              no                       not enough 

 
Table 2. The teachers focus during the lessons 

 

DISCUSSION AND CONCLUSIONS 

From this research, researchers find that variation theory is a suitable tool to 

analyze the quality of teaching, that is, the correspondence between the intended 

object and the experienced object. If the correspondence is insufficient it is 

important to study the manifest object, not least how the teacher mediated the 

object of learning and its crucial aspects. However, to do so, one must leave the 

variation theory and interpret the results from another angle, from teachers’ 

subject matter knowledge.  

Teaching and learning fractions are internationally recognized as a difficult 

domain (van Dooren et al., 2010). A crucial question is ‘why’. The outcome of 

the research shows that only one of the teachers was able to find and mediate the 

object of learning and its critical aspects, while the two other teachers were not. 

The main reason for these differences was the teachers’ subject matter 

knowledge. Without such a knowledge it is not possible to know which pre-

knowledge is required to find the crucial aspects of the object of learning, or to 

decide if an attempt to concretize really ended up in abstraction. 
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DEVELOPING STRUCTURAL THINKING FOR 

EQUIVALENCE OF NUMERICAL EXPRESSIONS AND 

EQUALITIES WITH 10- TO 12-YEAR-OLDS 

Carolyn Kieran1 and Cesar Martínez-Hernández1 

1Université du Québec à Montréal, Canada 

 

In the numerical-algebraic world of school mathematics, equivalence has two faces: 

computational and structural. This paper offers firstly a brief review of the theoretical and 

empirical literature related to equivalence and structure, with attention to the properties 

associated with the structural dimension of equivalence of numerical equalities. It then 

provides a description of the six phases that the participating students passed through in 

shifting their thinking from the computational to the structural dimension of equivalence. 

The discussion focuses on the role of the interviewer’s interventions, as well as the evolving 

usage of the decomposing property that characterized students’ structuring activity. It also 

highlights the support offered by their sense of numerical structure and relationships. 

RATIONALE AND RESEARCH QUESTION 

In the numerical-algebraic world of school mathematics, equivalence has two faces: one, 

computational, and the other structural. For students in primary school, a great deal of 

research has been carried out on expanding their views of the equals sign from that of an 

operator symbol to one that encompasses a more relational interpretation involving 

multiple operations on both sides of the numerical equality. While advances have clearly 

been made in developing their notions of the meaning of the equals sign, the multi-facetted 

aspects of equivalence within a numerical setting remain largely unstudied – despite their 

relevance for later work in school algebra and the importance of beginning to develop such 

algebraic thinking at the primary levels of schooling. The present study aimed at filling part 

of this gap by fostering the growth of 10- to 12-year-old Mexican students’ structure sense 

regarding equivalence of numerical expressions and equalities. The study included tasks 

and group interviews that focused on indicating the truth value of numerical equalities 

within the activity of generating equivalent equalities – where equivalence was grounded 

in properties related to the order and addition structures, as well as in its reflexive, 

symmetric, and transitive properties. The research question addressed by the study was the 

following: What are the ways in which a structural form of thinking unfolds during the 

implementation of tasks related to the generation of equivalent numerical equalities by 

students who are nearing the end of their primary schooling? 
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THEORETICAL FRAMEWORK AND RELATED LITERATURE  

This three-part section on the theoretical framework and related literature deals firstly with 

mathematical equivalence, secondly with structure, structuring, and structural thinking, and 

thirdly with prior research in this area.  

While the actual term equivalence came into its own as late as the 20th century, Asghari (2018) 

recounts the history of this notion as a rather winding path that goes back to much earlier times. 

Eventually, the following definition was arrived at: An equivalence relation is a binary relation 

that is reflexive, symmetric, and transitive. The relation “is equal to” is the canonical example 

of an equivalence relation, where for any objects a, b, and c:  a=a (reflexive property); if a=b, 

then b = a (symmetric property); and if a=b and b=c, then a=c (transitive property). Equality 

is a relationship between two quantities, or more generally two mathematical expressions, 

asserting either that the quantities have the same value, or that the expressions represent the 

same mathematical object, or that an object is being defined.  

With respect to the numerical world, equivalence clearly has a computational dimension. This 

dimension arises from the above definition of the equivalence relation “is equal to” whereby 

the two quantities “have the same value” – as in 5+9+3=10+7 is true because both sides 

evaluate to 17. But, equivalence also has a structural dimension. This dimension arises from 

the same definition of equivalence, but capitalizes on the reflexive property where a=a with a 

being a mathematical expression – as in 5+9+3=5+9+3 where the structure of the non-

computed sum of each side of the initial equality (5+9+3=10+7) is reflected in the same 

decomposition on the two sides of the second equality and whereby the truth value of the 

equality statement is visibly obvious without computing.  

As with equivalence, structure is another of the fundamental ideas of mathematics. However, 

unlike equivalence, which has been well defined, structure is often treated within the 

mathematics education community as if it were an undefined term (Kieran, 2018). While many 

researchers use the term structure, it is just assumed that there is universal agreement on its 

meaning. In fact, Venkat et al. (2019) argue that the community seems to have difficulty in 

defining structure in a coherent way. 

For Mason et al. (2009), the structural is closely intertwined both with the general and with 

attending to properties. We would argue, however, that the intertwining of the structural with 

the general has resulted in giving more emphasis to generalizing within arithmetic and algebra, 

and much less to the structural. To open up the notion of structure and the structural, we turn 

to Freudenthal (1991) who points out that the system of whole numbers constitutes an order 

structure where addition can be derived from the order in the structure, such that for each pair 

of numbers a third, its sum, can be assigned. The relations of this system are of the form a+b=c, 

which he refers to as an addition structure. In his related discussions on the properties of both 

the addition and multiplicative structures, Freudenthal (1983) emphasizes multiple means of 

structuring and properties that can be characterized in a manner not restricted to their axiomatic 

formulation within the basic properties of arithmetic. 

Linchevski and Livneh (1999) have drawn our attention to young students’ difficulties with 

using knowledge of arithmetic structures at the early stages of learning algebra. They suggest 
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that instruction in arithmetic be designed to foster the development of structural thinking by 

providing experience with equivalent structures of expressions and with their decomposition 

and recomposition. Our broadening of perspective on structure and structuring leads us to 

consider decomposing, composing, and recomposing also as properties – properties that are 

tied to the order, addition, and multiplicative structures. The use of these properties is anchored 

in the symmetric property of equality; that is, symmetry allows for the rewriting of the addition 

fact of, say, 5+7=12 as 12=5+7. In other words, 5+7 can be composed into 12, and 12 

decomposed into 5+7, or any of its other combinations.  

During the past several decades, research on the ways that students use the equals sign (e.g., 

Carpenter et al., 2003; Kieran, 1981) has characterized students’ thinking primarily in terms of 

“operator” (i.e., as a “do something signal”) versus “relational” views (i.e., as a “sign denoting 

the relation between two equal quantities”). The kinds of tasks that have generally been used 

in these studies have included: (i) true-false equalities where students are asked to state their 

truth-value and (ii) open sentences requiring them to determine which number will make the 

sentence true. By means of such tasks, Rittle-Johnson et al. (2010) found that by about the 5th 

grade most students can compare both sides of an equation and thus hold a basic relational 

view of equivalence (e.g., they can accept equations with operations on both sides). However, 

very little of the existing research literature on the equals sign and equivalence has included 

explicit attention to decomposing, composing, and recomposing. One exception is a study by 

Warren (2003) who found that only 5% of the 672 7th and 8th graders she tested responded that 

there was an unlimited number of possibilities for answering the question: “Write other sums 

that add to 23; how many can you write?”; and fully one-third of the students failed to respond 

to the question in any way. In sum, little research has focused on the kinds of structural thinking 

involved in the generation of equivalent numerical equalities by primary students.  

METHODOLOGY 

This section presents both general aspects of the methodology, as well as brief information 

related to the design of the tasks. Six students from the 6th grade of a public community 

school in Mexico participated in the first part of the study, which was conducted when the 

students were halfway through their last year of primary school. The second part of the 

study took place when the students were finishing their last year. None of them had had 

any prior experience in structural activity with equalities or, in particular, with generating 

equivalent numerical equalities, but they had been exposed to equalities with numerical 

terms on both sides of the equals sign.   

The data collection technique was that of the Group Interview, a method that involved the 

students first working individually on a given task question or set of questions. This was 

followed by an interviewer-orchestrated, discussion segment where the students would 

share their responses with the rest of the group. During this group sharing, the interviewer 

(i.e., 2nd author) might probe their thinking by asking for clarification or might also pose 

additional questions. 

Data from Part 1 of the study were obtained during three sessions, one session per task-set, 

with sessions lasting about 60 minutes each in one of the rooms of the school. All six 
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students participated in each of the three sessions. Data from Part 2 of the study were 

obtained during one session that lasted about 60 minutes and involved three of the original 

six students. The data sources for both parts of the study include the individual students’ 

worksheets, videotaped footage of the interviewer interacting with the group of students 

and the recording of all their verbalizations, and the researcher’s field notes. All interactions 

and task-sets were in the Spanish language. 

For Part 1 of the study, three task-sets were designed to explore students’ strategies related 

to structure within the equivalence of expressions and equalities. The first two task-sets did 

not include the equals sign. Task-set 3 involved the equals sign in numeric equality 

statements and included two or more numerical terms on each side of the equals sign (i.e., 

4+5=4+3+2, 480+6+123=486+123, 172+10+75=182+50+25, 150-70=125+25-70, and the 

non-equality 2+8=1+1+5). The task-set consisted of two types of questions: one asking 

students whether a given equality statement was true and to explain why, and the other to 

rewrite the true equalities in another way so as to show they were true. 

Due to the computational nature of the results obtained for Task-set 3 in Part 1, a new Task-

set (Task-set 4) was designed for Part 2. This task-set involved true equalities of equivalent 

expressions (10+7=5+12, 530+200=300+430, and 8+2+16=10+12+4). However, the task 

instructions specifically requested that the students not calculate the total of each side in 

order to show that the equality was true, and then to explain their reasoning. The last 

question asked for a generalization of their main strategy. The structural properties that 

would be at play in students’ generation of equivalent numerical expressions and equalities 

would include: composition and decomposition, as well as the common-form property of 

equivalence (i.e., converting pairs of expressions into a common form to indicate 

equivalence) and the transitive property. 

RESULTS 

The development of students’ structural thinking related to the generation of equivalent 

numerical equalities evolved through six specific phases. The students featured in the 

extracts below are two girls (S1, S2) and one boy (S3).  

Phase 1: Computation Without Decomposition 

The first two task-sets evoked computational views. For the first task, Can the number 7 

be written from the numbers 6 and 1? If so, how?, the students answered affirmatively and 

explained their thinking by means of a computation involving the property of composing 

the addends. Similar thinking was evidenced throughout the tasks of the second set. For 

Task-set 3, where all of the questions included the equals sign and involved, for some 

equalities, smaller numbers and for others, larger numbers, the students could accept 

without hesitation equalities in the form of a+b=c+d and justified their truth (or falsity) by 

calculating the result on each side and stating that an equality was true “because we get the 

same result” (see Fig. 1). 
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Figure 1: S3’s computational strategy (English translation also provided) 

Phase 2: Computation with Unrelated Decomposition of Each Side  

Each of the tasks in Task-set 3 also included the question: “In what other way could you 

rewrite the given equality?” While the totals for each side of the given equalities had 

already been computed, the students were still able to generate alternative forms by 

independently decomposing each side (see Figs. 2 & 3). There was no inclination, however, 

to re-express the equalities so that both sides of the equalities looked alike.  

     

 

 

Figure 2: S1’s equality rewriting  Figure 3: S3’s equality rewriting 

Phase 3: Ad Hoc Decomposition of One Side and Copying to the Other Side 

When the students came together for Part 2 of the study six months later, Task-set 4 

requested that they show the truth-value of each of the given equalities, but this time 

without first calculating the total of each side. There were initially looks of puzzlement 

among the students, as if to say, “What other way is there?” Some prompting on the part of 

the Interviewer was necessary (the English transcriptions below are verbatim translations 

of the original Spanish version; I is the Interviewer):  

I:  Would there be a way to write also [referring to rewriting the given equality] but 

using, say, these same numbers? [points to the board to the equality 10+7=5+12] 

S3:  Yes. 5+5+5+2 [verbalizes the expression]. 

I:  Ok, S3 says that this [referring to the left side of 10+7=5+12] could be written as 

5+5+5+2 [writes on the blackboard the expression stated by S3]. Is this OK? 

Observe the following expression: 480 + 6 + 123 = 486 + 123 
Is the equality True or False?   T 

Explain with your own words 
Because we get the same result 

Observe the following expression: 172 + 10 + 

75 = 182 + 50 +25 

Is the equality True or False?  T   

In which other way could you re-write the 

previous equality?   .Yes.  

Why it is correct re-write the expression in such 

a way? 

100 + 72 + 5 + 5 + 60 + 15 = 100 + 82 + 30 + 

20 +20 + 5 

Because I get the same result 

Observe the following expression: 172 + 10 + 75 = 

182 + 50 +25 

Is the equality True or False?  Yes   

In which other way could you re-write the previous 

equality?   .Yes.  

Why it is correct re-write the expression in such a 

way? 

207 + 50 = 150 + 107 
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S1 & S2: Yes [both at once]. 

I:  […] This [referring to the right side of 10+7=5+12], in which other way? Look, 

this [referring to 5+5+5+2] already has a form of, I mean, it [10+7] can be re-

expressed in this way [referring to 5+5+5+2]? 

S3:  Yes. 

S2 & S1: It gives the same [see Fig. 4]. 

However, it was not yet certain whether or not the right side had actually been decomposed 

or simply recopied by S3 on his sheet. With the next equality involving larger numbers, S2 

proposed transforming the left side of 530+200=300+430 to 200+300+30+200. When she 

subsequently and clearly copied this to the other side and was asked how the new right side 

related to the initial right side, she was unable to do so. Eventually, she rewrote the left side 

differently; but this time she could reconcile it with the right side of the initial equality 

when she recopied it to the other side. Then the interviewer returned to the earlier equivalent 

equality that had been generated (see Fig. 4) and inquired into the need (or not) to calculate 

the total: 

I: Is it necessary to add? 

S2:  No, but if it is the same [in the same form], obviously it will give the same [the 

total will be the same]. If the expression is the same, it will be equal, it will give 

the same. 

Phase 4: Decomposition of Both Sides into a Third Common Form 

As the Group Interview progressed, it became obvious that the ad hoc decomposition 

strategy was evolving into a genuine decomposition of both sides of the initial equality so 

as to obtain an equivalent second equality (see Fig. 5). 

 

 

Figure 4: Ad hoc decomposition        Figure 5: S3’s finding a third common form 

The work illustrated in Fig. 5 suggests a structural strategy that involves the search for a 

third common form: Rewrite by decomposing both sides of the equality so as to show that 

both sides are the same – even if the order may be different. This strategy based on 

decomposition differs from the ad hoc decomposition strategy in that both sides of the 

equality are genuinely decomposed and the decomposition of the second side is guided by 

the first decomposition so as to obtain the same common form.  

Phase 5: Decomposition/Composition of One Side to Match the Other Side  

The last step in the consolidation of the common-form strategy was seen when the 

interviewer asked if it would be possible to rewrite the equality 8+2+16=10+12+4 in such 

a way that the common form would be the same as one of the two sides of the initial 
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equality. S3 simultaneously related both sides of the initial equality by composing 8+2 into 

10 and decomposing 16 into 12+4 (see Fig. 6a & 6b).  

a)         b)  

Figure 6: Composing and decomposing the left side (a) into (b) 

Phase 6: Expressing Structural Approaches in a General Way  

The last question was of a more general nature: “What should be done, regardless of the 

numbers involved in the equality and without calculating the total of each side, to show that 

the equality is true?” With generic examples, the students conveyed – even with somewhat 

imprecise language (e.g., S1’s initial response: “We must simplify the numbers, or convert 

them in a different way, but they should be the same”) – the dual aspect of both matching 

both sides of the equality and doing this matching in such a way as to safeguard the 

uncalculated values of each side.  

DISCUSSION AND CONCLUSIONS  

This study has investigated how a group of 6th graders moved from the computational to 

the structural dimension of equivalence with respect to numerical expressions and 

equalities. The excerpts presented above highlight how the interviewer’s responses and 

prompts were crucial to enabling this evolution, especially during the third phase where 

five key interviewer interventions occurred:  

● The first intervention was the request to show that the given equalities were either 
true or false, but without calculating the total for each side.  

● This was supplemented by the suggestion, implicit in the interviewer’s follow-up 

question, that asked if the students could find a way to rewrite the given equality, 

but based on the numbers that were in the equality.  

● When students then decomposed one of the two expressions of the given equality, 

they were asked where the decomposed numbers came from. 

● Since the students then simply recopied the decomposed expression over to the 

other side of the equals sign in order to complete the transformed equality, they 
were asked to justify their recopied expression, that is, to relate explicitly the 

recopied expression to the corresponding expression of the initial equality.  

● The last prompt involved eliciting the awareness that the students no longer needed 

to total each side of an equality in order to determine its truth value.  

From this third phase onward, the realization that equivalence could be shown by 

converting either/both expressions of an equality into a common form was actualized and 

came to be expressed in a generalized, albeit generic, manner.  

In the movement of the students to the structural dimension of equivalence, two features of 

a cognitive nature are noteworthy: (i) the role played by the decomposing property of the 

addition structure in the students’ evolution, and ii) the way in which their use of properties, 

especially that of decomposition, was grounded in their sense of number and computational 

knowledge. Regarding the first feature, the way in which the decompositions of the various 

numerical terms of the expressions were written showed that these students had been able 
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to develop a rather strong number sense in the growth of their computational knowledge 

throughout primary school. Not only could they, as expected, compute forward (as was 

seen in their initial approaches to determining the truth-value of equalities), but they could 

also work backwards by breaking up numbers into their principal structural parts.  

The grounding of the students’ use of decomposition in their sense of number and 

computational knowledge and the role this played in their building of structure sense for 

equivalent equalities relates to the operational-structural theory of Sfard (1994, p. 53), who 

argues that “from the developmental point of view, operational conceptions precede 

structural.” While we do not, in any way, minimize the crucial importance of the structural 

dimension of equivalence that we fostered within our study, we would be remiss if we did 

not raise the point about the significance of students’ number sense and computational 

knowledge in making their transition to the structural. 

Note 

I dedicate this paper to my young co-researcher, Cesar Martínez-Hernández, whose life 

was sadly taken away from him by COVID-19 on December 15, 2020. 
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EXCELLENCE IN MATHEMATICS IN HIGH SCHOOL AND THE CHOICE 

OF STEM PROFESSIONS OVER SIGNIFICANT PERIODS OF LIFE 

Zehavit Kohen1 and Ortal Nitzan 

Israel Institute of Technology, Technion, Israel 

 

The current study investigates the relation between excellence in mathematics in 

high school and the choice of STEM professions over significant periods of life. 

The study employs a big data analysis based on a total of about 550K records 

obtained from the central bureau of statistics over the last decade and a half. 

Main results suggest the importance of studying the advanced level in 

mathematics in high school, as well as the importance of excelling in this field. 

The study suggests theoretical, practical, and methodological contributions in 

relation to the factors that affect and predict STEM choice for study and 

employment in significant periods in human's life: high school, higher education, 

and employment. 

INTRODUCTION AND THEORETICAL BACKGROUND 

Science, Technology, Engineering, and Mathematics (STEM) professions are in 

constant demand (Caprile, Palmén, Sanz, & Dente, 2015). The foundations for 

pursuing a STEM career are laid early in a student’s life. Studies (e.g., Addi-

Raccah & Ayalon, 2008) revealed a correlation between students' experiences in 

high school and their post-secondary pursuit of STEM professions. Another study 

which was reported by Kohen, Nitzan, & Gafni (2019) revealed a similar trend, 

by which students who had studied AP STEM subjects in high school, were 1.6 

more likely to pursue academic studies as junior STEM students, to graduate 

STEM academic studies and subsequently, to pursue STEM careers. Mathematics 

has always been considered an invaluable and imperative component for STEM 

study and for many cases also for career in STEM (Maaß, O’Meara, Johnson, & 

O’Donoghue, 2018). Yet, studies that deal with the relation between excellence 

in high school mathematics and future employment in STEM professions for 

study and career, are not common, specifically studies that combine national 

cohort data in several time points with wide graduates and employee's data. 
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This study aims to investigate the relation between excellence in mathematics in 

high school and actual STEM choice for study and employment, based on records 

retrieved from the central bureau of statistics (CBS). 

The theoretical framework that guided this study is based on Reinhold et al. 

(2018) integrative model. This model is based on the Social Cognitive Career 

Theory (SCCT: Lent, Brown, & Hackett, 1994), but refers to four main phases in 

a person's life which represent different life periods: 1) the pre-decisional phase 

that indicates an interest in some field of study, 2) the pre-action phase that 

indicates an interest with commitment in some field of study, (3) the action phase 

that indicates actual choice of some field for study or career, and finally – (4) the 

post-action phase that indicates that a person pursued a chosen career. In this 

study we focus on the three last phases, which represent a person's actual choices 

in study and/or career and refer specifically to the choice in STEM professions in 

the following life periods: high school, higher education, and employment. 

RESEARCH QUESTIONS 

(1) What are the trends over the past decade and a half in actual STEM choice for 

study and employment in different life periods, by a person's excellence in 

mathematics in high school? 

(2) Can a person's excellence in mathematics in high school affect and predict 

actual STEM choice for study and employment in different life periods? 

(3) Can a person's excellence in mathematics in high school predict future success 

in STEM studies in higher education? 

METHODOLOGY 

The study is based on a big-data analysis, using a systematic sampling data obtained 

from the CBS in our country. The study population for this analysis is 

approximately 350K high school students over the last one-and-a-half decades 

(2001 - 2017), and about 200K bachelor's degree graduates, of whom about 70K 

employees in the industry in our country. 

The codebook that guided the analysis was comprised of the following data: (a) 

students' excellence in mathematics in high school that was defined by study level 

in mathematics: elementary, standard or advanced; (b) field of study in high 

school: STEM (physics, chemistry, biology, computer science, or electronics) or 

Non-STEM; (c) field of study in institutions of higher education: STEM (such as 

computer sciences, physics, or engineering) and Non-STEM; (d) grade in 

graduation from higher education; and (e) employment in the industry: STEM 
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(such as information and communications, or technological services) and Non-

STEM. 

Descriptive statistics and Chi-Square tests were applied to examine trends in choosing 

and persisting in STEM fields throughout students' lifespan (from high school to 

employment in the industry), and their correlation with students' study levels in 

mathematics in high school. Also, Logistic regression analyses were performed to 

investigate the predictability of students' excellence in mathematics in high school, on 

their likelihood to pursue subsequent STEM academic studies and careers. Finally, 

Regression analyses were performed to predict future success in STEM studies in higher 

education, by excellence in mathematics in high school. 

RESULTS 

Responding to the first research question, our findings revealed that on average, 

students who study mathematics at the advanced level in high school are about 3.7, 5, 

and 3 times more likely to choose STEM in high school, to graduate STEM in higher 

education, and to being employed in the STEM industry (Respectively) [compared to 

students who study in the elementary level] and about 1.4, 3, and 1.5 (Respectively) 

[compared to students who study in the standard level]. See Graph 1 (a, b, & c) for 

illustration of these findings in relation to STEM graduation in high school, in higher 

education, and in employment. 

Graph 1 a                                                                                          Graph 1 b 

      
Graph 1 c    

 
 

Figure 1: Graph 1 (a, b, & c) - STEM graduation in high school, in higher education, 

and in employment (respectively), by students' level in mathematics in high school 
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Due to the relatively similar trend that is observed over the years in regard to all 

life periods: high school, higher education, and employment, for responding the 

second research question, we elaborated the definition of excellence in 

mathematics to also inducing students' level of success in the matriculation exam 

in mathematics in high school: excellence; success; moderate; or weak. Our 

findings revealed a rank by which student's STEM choice in different life periods, 

is linearly affected by the combination between students' study level and level of 

success, i.e. the more advanced level you study and the more you succeed, then 

you are more likely to choose STEM for study and for career. Since similar 

findings were found in respect to predicting STEM graduation and employment, 

we illustrate the findings in Graph 2 in relation to STEM graduation in higher 

education. 

  

Figure 2: Graph 2 - STEM graduation in higher education by students' level & 

success in mathematics in high school 

Focusing on the advanced level for predicting STEM graduation in high 

education, the regression model for the comparison between weak learner and 

moderate learner was found to be significant, 2(1,15290) = 19.01, 𝑝 < .001, 

while the chances of a moderate learner to graduate STEM track is about 1.2 times 

more than a waek learner (B= .21, p<.001). Also, the regression model for the 

comparison between moderate learner and successful learner at the advanced 

level was found to be significant, 2(1,28745) = 248.86, 𝑝 < .001, while the 

chances of a successful learner to graduate STEM track is about 1.5 times more 

than a moderate learner (B= .37, p<.001). Finally, the regression model for the 

comparison between successful learner and excellent learner was also found to 

be significant, 2(1,38276) = 733.30, 𝑝 < .001, while the chances of an 
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excellent learner to graduate STEM track is about 1.8 times more than a 

successful learner (B= .58, p<.001). 

Finally, responding to the third research question, our findings revealed that a 

students' future success in STEM studies in higher education is predicted by 

his/her excellence in mathematics in high school. The regression model was 

found to be significant, 𝐹(2,26850) = 1611.86 ;  𝑝 < .001; 𝑅2 = 0.11., and 

indicates that students' level of success in high school mathematics is more 

contributing to future success in STEM studies in higher education, than the level 

of study in mathematics. 

DISCUSSION 

The current study demonstrates a positive relation between students' excellence 

in mathematics in high school and future STEM choice for study and 

employment. The linear rank that was observed in this study suggests the 

importance of succeeding in mathematics, and not just choosing an advanced 

level in mathematics. The most important insight of these findings is that in order 

to choose STEM as a major for study or employment, it is better to choose a more 

advanced level of mathematics in high school, even if you less succeed. 

The big data analysis that was obtained over the last decade and a half enabled us 

to have an objective data about students' actual choice, and to observe the trends 

in choice over the years, as well as in significant life periods. This observation 

enables us to link between global changes and the trend of choosing STEM for 

study and career. For example, the decrease in choosing STEM as a major in high 

school at 2006, might be a consequence of the "dot-com crash" in the STEM 

industry which occurred in 2001. 

The study adds on the literature on career choice, particularly the SCCT, by 

focusing on significant steps in a person's life toward STEM career choice. With 

that the study also contributes practically to the STEM field, as excellence in 

mathematics was found to be significantly contributing to choice of STEM for 

study and career. Methodologically, the study is based on a big-data analysis, 

which is not common in the literature that investigates the relation between high 

school studies and future study and career. Studies in this area are often based on 

prospective or retrospective data, rather that data that is based on a person's actual 

choices, specifically over the years in which these choices might be changed. 
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While gestures are considered an important resource in the mathematics classroom, gesture 

use in bilingual instruction has been largely neglected in research so far. This paper presents 

a case analysis of two teachers’ bimodal bilingual instruction in the context of isosceles 

triangles to show how they coordinate meaning making of content and terminology through 

code-switching and gestures. Based on the analysis, we will introduce the concept of ‘bimodal 

mnemonics’ as means to support learning mathematical terminology together with the 

respective concept and conclude with a brief discussion of our preliminary findings and an 

outlook on future research. 

INTRODUCTION  

Mathematics teachers of English Language Learners (ELL) – and generally of students that 

learn in a second language – face additional challenges as they need to coordinate the students’ 

varying levels of both mathematical proficiency and language proficiency (Moschkovich, 

2013). However, language should not be seen as a barrier to learning that needs to be addressed 

first before it can be engaged with content. While learning mathematical terminology is 

important, “mathematics instruction should address more than vocabulary and support ELL 

participation in mathematical discussions as they learn English” (p. 50). For this, teachers are 

asked to acknowledge the students’ home language as an important resource for meaning 

making rather than seeing it as a deficiency. For example, using two or more languages within 

a single communicative event – a phenomenon referred to as code-switching – can become a 

powerful tool for the teacher to support bilingual learners of mathematics by providing a 

scaffold for accessing mathematical content, and by facilitating links between verbal and visual 

representations of this content (Prediger et al., 2019). Furthermore, Moschkovich (2002, 2013) 

advocates for acknowledging the multiple resources beyond words in the mathematics 

classroom, like objects, drawings, and gestures. In fact, Church and colleagues (2004) showed 

that bilingual students benefit from gesture-rich instruction even more than their monolingual 

peers. It is hence surprising that in the steadily growing research on gestures in mathematics 

instruction (e.g. Alibali & Nathan, 2007; Arzarello et al., 2009), only very few scholars directed 

their attention to the bilingual classroom to understand better how teachers’ gesture use can 

support these students’ learning (e.g. Shein, 2012), and even less is known about how gestures 

interact with the practice of code-switching in bimodal bilingual mathematics instruction. 
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This paper presents an early exploration of teachers’ gestures in relation to their use of two 

languages in bilingual mathematics classrooms, aiming at getting a better grasp of how gestures 

can contribute to instruction to support meaning in mathematics across languages. We will 

present two cases from Farsi-English bilingual classrooms in a complementary school in the 

UK, dealing with the context of isosceles triangles. The cases are analysed for how teachers 

use gestures coordinated with language to navigate the tension between concept and 

terminology. In particular, we focus on the questions: 

(1) How do the teachers use gestures and the two languages Farsi and English in their 

bilingual mathematics instruction of language learners? 

(2) How might bimodal bilingual instruction support learning mathematical content as 

well as the second language? 

Our work is embedded within the larger body of research on bilingual mathematics education 

that adopts a situated-sociocultural perspective (Moschkovich, 2002), emphasizing on the 

social dimension in mathematics teaching and learning, especially on the role of mathematics 

communication in which meaning develops by drawing on social, linguistic, cultural, and 

material resources (ibid.). Learning mathematics can then be understood as increasing 

participation in mathematical discourse practices with the teacher facilitating the students’ 

active engagement in these practices by acknowledging their resources for meaning making. 

Gestures are considered those “idiosyncratic spontaneous movement[s] of the hands and arms 

accompanying speech” (McNeill, 1992, p. 37) that do not serve any practical or manipulative 

purpose. As semiotically different components of a single linguistic unit, speech and gesture 

are coordinated in thinking and expression as embodying “different sides of a single underlying 

mental process” (p.1), collaborating in forming an utterance as well as in its interpretation. 

With respect to the development of mathematical meaning, a special focus is set on 

representational gestures (Alibali & Nathan, 2007): the relationship between the content of the 

verbal utterance and the gestural reference is established through pointing, through perceived 

similarity to a physical object or action (iconic), or by representing an abstract idea mediated 

through concrete reference (metaphoric). The different categories are not mutually exclusive.  

METHODOLOGY 

The data has been collected in the context of a study on multimodal communication in 

multilingual mathematics classrooms (Farsani, 2015), conducted in the UK in a bilingual 

British-Iranian complementary school. In this school, instruction was bilingual in Farsi and 

English and learners were encouraged to value both languages equally. What seemed to be at 

the heart of the school was creating multilingual spaces by using languages flexibly and 

integrating a full range of learners’ linguistic repertoires. This bilingual school welcomed 

teaching strategies that supported learning both content and language simultaneously. The 

students in the recorded lessons were between 14 and 16 years old and of varying proficiency 

of the English language. 

The selected excerpts are taken from longer episodes analysed for the relationship between 

gestures and code-switching in mathematics instruction. They present instances of teachers’ 

use of gesture co-expressive to English and Farsi, in which they provide an additional visual 
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component that enriches meaning making. The audio-visual data was transcribed, 

transliterated, and translated for analysis, with transliteration and translation being carried out 

by the second author (a native speaker of Farsi) and kept as literal as possible while overall 

adopting the language structure of the goal language English. The transcripts as presented in 

this paper have been prepared to visualize the use of two different registers by using a different 

colour for the Farsi register in the original transcript and its translation in the English transcript. 

Simultaneity of performance of gesture (start and end of the main movement) and speech is 

indicated in the transcript using squared brackets. For spatial reasons only selected gestures 

discussed more in detail in the analysis can be represented in pictures. 

A speech-based analysis focuses on the teachers’ code-switching practices as they can be 

identified in the discourse, followed by an analysis of the gestures in context as related to 

speech and inscription. The former was carried out based on the transcripts, the latter by 

additionally reviewing the video.  

CASE ANALYSES 

The two excerpts are taken from different classrooms and display the gesture use of the two 

teachers Ebi – native speaker of Farsi, fluent L2-speaker of English – and Mamad – native 

speaker of Azeri and Kurdish, fluent L2-speaker of Farsi and English.  

In both excerpts, Ebi and Mamad are dealing with the topic of isosceles triangles in the contexts 

of regular polygons. Isosceles triangles are characterized by having two sides of equal lengths. 

While English adopts the Greek terminology of ‘isosceles’, many other languages (such as 

German and Farsi) use a quite literal translation referring to variations of ‘legs of equal length’. 

The Farsi translation for isosceles triangle is motasaavi-al saaghain – literally ‘equal shins’ – 

which will be used in both episodes. 

Excerpt 1  

In the first excerpt, the teacher (Ebi) explains to the students how to find an inner angle of a 

regular pentagon. For this, he divided the regular pentagon into five equal isosceles triangles, 

asking for the angle x located at the centre (see Figure 1a, in the transcript).   

    Original Farsi-English dialogue English version 

1 Ebi That’s a regular pentagon obviously, and 

each side is four, ok.  

That’s a regular pentagon obviously, and 

each side is four, ok. 

2 Ebi Chon regular pentagon-e (points at the 

centre) centre-esh (points briefly towards the 

diagram) [age maa be behesh] (traces lines, 

Fig. 1b) vasl bekonim mitoonim hamash  

(short pause) [isosceles] (points to his eyes, 

Fig. 1c) triangles [peida bekonim, dorost 

bekonim, khob]? (traces all five inner lines 

similar to the three lines in Fig. 1b) 

Because this is a regular pentagon (points 

at the centre), [if we connect] (traces 

lines, Fig. 1b) to the centre, (points 

briefly towards the diagram)   

[it will all become (short pause) 

[isosceles] (points to his eyes, Fig. 1c) 

triangles, okay?] (traces all five inner 

lines similar to the three lines in Fig. 1b) 
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Figure 1: Ebi’s inscription on the white board; (a), Ebi’s gestures co-timed to “age maa be 

behesh” (b) and to “isosceles” (c) 

3 S1 motasaavi-al saaghain Isosceles triangles 

4 Ebi motasaavi-al saaghain Isosceles triangles 

5 Ebi khob, [iino (points at “x” in the pentagon) 

ke peida mikonim] angle of x is equal to 

angle of x equal to angle of x and so on. 

Okay, [when we find this] (points at 

“x” in the pentagon) angle of x is equal 

to angle of x equal to angle of x and so 

on. 

Ebi starts with establishing a common ground of reference by clarifying the figure drawn on 

the white board being a “regular pentagon” (1). While this first introduction into the situation 

is carried out in English, he switches back and forth between English and Farsi in his following 

utterance when explicating how isosceles triangles emerge through construction, using English 

exclusively for the technical terms – “regular pentagon”, “centre”, and “isosceles triangles” 

(2). He ends with ‘okay?’ inviting the students to ask for clarification. To this, one of the 

students reacts by repeating ‘isosceles triangles’ in Farsi – “motasaavi-al saaghain” (3) – 

potentially asking for reassurance that he can draw on his prior knowledge on a concept he 

already encountered in his mother tongue. After Ebi confirms by repeating the Farsi 

terminology (4), he returns to the actual task of finding the angle x, starting with Farsi but 

switching back to English to complete his statement about the central angles all being the same 

(5). His use of Farsi and English seems to emphasize mathematical terminology in the English 

language while using Farsi for the wider explanation that links the mathematical components. 

This reflects in praxis his approach to using English and Farsi in instruction as mentioned by 

him in an interview carried out prior to this study: There he stated that he emphasizes the use 

of English in instruction since “At the end of the day they go to an English school and they 

learn everything in English” but that he uses Farsi to support his students when he notices 

problems in understanding grounded in language use (see Krause & Farsani, under review).  

The gestures Ebi uses during his explanation are reminiscent of gesture use of teachers 

described by Alibali and Nathan (2007) during monolingual instruction in an algebra lesson: 

There, they found gestures to ground instructional language by linking it to physical referents, 

including inscriptions, potentially making “the information conveyed in the verbal channel 

more accessible to students” (p. 350). In line 2, we see two forms of grounding through 

gestures: pointing and tracing. Remarkably, the pointing gestures are all co-timed to the English 

mathematical terminology, while the tracing re-enacting the drawing of the lines that result in 

isosceles triangles (e.g., Fig. 1b) are co-timed with Farsi. Moreover, the gestures accomplished 

co-expressively to English and Farsi differ not only qualitatively, they also seem to offer 

different functions in grounding: The tracing gestures provide additional semantic information 
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to clarify the incomplete/imprecise verbal expression; the pointing gestures can be considered 

semantically redundant to speech but grounding the terminology in the second language 

through providing a visual frame of reference. However, Ebi’s gesture co-timed to “isosceles” 

remarkably appears to be different than the other two as it does not point to the diagram, but – 

seemingly unrelated – to his eyes (Fig. 1c). The pointing can be interpreted as a phonological 

rather than a semantic reference: emphasizing the “i” in “isosceles” by referencing the 

phonologically similar ‘eye’ by pointing to it, the gesture grounds the terminology and offers 

potential to provide a mnemonic device at service for the students with various degrees of 

English proficiencies to recall the technical term. In addition to the deictic reference, the 

concrete shaping of the gesture with two adjacent fingers of the same hand carries a reference 

to the semantic content of speech in the gesture’s iconic dimension, reminding of the two sides 

with equal length an isosceles triangle itself. The gestures’ deictic and iconic reference together 

offer a twofold semantic-phonemic link to both mathematical content and terminology.  

Ebi’s use of gestures coordinated with the two languages offers representational and phonemic 

support to potentially provide a scaffold for engaging in mathematical discourse about the 

respective topic through language and gesture, thereby helping the students learn and remember 

both the new mathematical concept and mathematical terminology. However, given that the 

gestural reference is rather implicit, further analyses of the classroom interaction would need 

to confirm this hypothesis. 

The second excerpt will illustrate a variant of the “isosceles gesture” (Fig. 1c), contrasted with 

a gesture accompanying the teacher’s explanation of the Farsi terminology. For reasons of 

space we will set the focus of our analysis of excerpt 2 on those gestures that are linked to the 

teacher’s code-switching to English. 

Excerpt 2 

The second excerpt is taken from a lesson in which another teacher (Mamad) and some 

bilingual students are reviewing angles in the context of a regular octagon projected on the 

whiteboard. When they encounter isosceles triangles, Mamad (M) uses the occasion to discuss 

the terminology in both Farsi and English, using gestures as visual support.  

    Original Farsi-English dialogue English version 

1 M. aha, Farsi sho baladin bacheha? saagh yanni 

chi? 

Aha/yeah. Do you know what’s the Farsi for 

it guys? What does ‘saagh’ mean? 

2 S1 paa leg 

3 S2 saagh yanni paaiinesh saagh means the lower part 

4 S1 chii bood dobare? What was it again? 

5 

 

M. 

 

motasaavi-al saaghain. [motasaavi yanni 

chi?] (moves both extended index finger 

together and apart, Fig. 2a) yanni equal.  

Motasaavi-al saaghain yanni do ta saghash 

Isosceles. [What does ‘motasaavi’ mean?] 

(moves both extended index finger together 

and apart, Fig. 2a) It means equal.  

Hence ‘Motasaavi-al saaghain’ means both 
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chi-an, [do ta paahash chi-an?] (points down 

his legs, Fig. 2b) 

shins are what, [both legs are what?] (points 

down his legs, Fig. 2b) 

 

                    
Figure 2: Gestures co-timed to “motasaavi yanni chi?” (a) and “do ta paahash chi-an?” (b) 

6 S-s mosavi Is equal 

7 M. mosavi. Englisi besh migan [isosceles] 

(Fig. 3a) yanni dota chesha shabihe haman, 

Irania [migan motasaavi-al saaghain.] 

Is equal. In English they call it [isosceles], 

(Fig. 3a) meaning just like our two eyes. In 

Iranian [it is referred to as ‘equal shins’] 

       
Figure 3: Gestures co-timed to “isosceles” (a),“migan motasaavi-al saaghain” (b) 

Together with the students, Mamad recalls the Farsi term for the concept under investigation – 

motasaavi-al saaghain – and the meaning of its single components (1-6): First, they identify 

the reference to the shin (saagh) – the lower part of the leg (2, 3) – then Mamad asks ‘What 

does motasaavi mean’. He does not wait for a response but provides it himself right away as 

“yanni equal” (5). His following prompt to put both together (‘Hence (…) their legs are what?’) 

is then responded by students with ‘is equal’. Mamad then contrasts the terminologies in 

English and Farsi (which he mistakenly refers to as Iranian), explicating ‘how they call it (in 

English)’ and what the Farsi word refers to as just established, but now showing in the diagram 

(7, Fig. 3b). 

Mamad switches to English twice in this short excerpt – first in line 5 (“equal”) then in line 7 

(“isosceles”). Similar to the use of English in excerpt 1, these switches to English concern 

mathematical terminology: While “equal” (5) is a rather general translation of the Farsi 

motasaavi, the teacher asks for its meaning in the context of the mathematical terminology 

motasaavi-al saaghain. Code-switching here serves the function of expressing meaning in the 

second language, using vocabulary supposedly known by the students. In the second instance 

(7), Mamad explicitly uses “isosceles” as naming the English terminology to refer to the same 

concept, establishing new mathematical vocabulary through code-switching.  

Both instances of using English can be linked to gesture use, even though the first one is carried 

out just before, co-timed to the Farsi equivalent of ‘equal’, carrying the same semantic 

meaning: While asking ‘What does ‘motasaavi’ mean?’ (5), he moves his extended index 
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fingers horizontally and symmetrically together and apart in front of his body (Fig. 3a), adding 

a visual dimension to his question that might be seen as a metaphoric reference to equality, but 

also as iconic indicator of two sides (represented by the index fingers) with equal length. Co-

timed to the English “isosceles” (7), Mamad points to his eyes, similar to what we have seen 

in Ebi’s gesture in excerpt 1, but – different to Ebi – verbally explicating the connection to ‘our 

two eyes’ right after. Again, the gesture grounds the accompanying language phonologically 

and anticipates the verbal reference in Farsi. In its performance, it however shows another 

difference to Ebi’s gesture: Ebi points to his eyes with two fingers of one hand, Mamad’s 

gesture is bimanual, pointing with the index fingers he used earlier in his reference to equality 

(line 5). This might indicate a catchment in the sense of McNeill (2005) – a recurrent discourse 

theme whose link can be identified in the recurrence of gesture features, here the use of the two 

index finger in the gestures for ‘equal’ and “isosceles”. Even though this contextual link is 

made only implicitly, one can argue that gesture and speech are processed and interpreted as a 

unit such that the link carried in gesture can serve as potential additional resource for meaning 

making for both students and the teacher. 

SUMMARIZING DISCUSSION AND OUTLOOK 

The bimodal analyses of the two teachers’ bilingual instruction provided some first insights on 

how bilingual teachers coordinate the use of both languages and gestures and how this might 

support meaning making in mathematical discourse. Similar to what has been observed in 

monolingual classrooms (Alibali & Nathan, 2007), the teachers grounded their instructional 

language in the physical world around them to support the students’ understanding of the verbal 

explanation. However, the bilingual setting also directs our attention to some peculiarities in 

the teachers’ gesture use.   

A striking commonality in both cases is the teachers’ use of gestures as linked to the English 

terminology “isosceles”: Importantly, this does not only concern the phonemic support in the 

reference to the phonologically similar ‘eye’, but the concrete shaping of this reference that 

aligns with representational features of the concept. We see two variants – one-handed with 

two adjacent fingers (Ebi) and two-handed with the two index fingers (Mamad) – that both 

carry a reference to the two sides of equal length, a defining feature of isosceles triangles. We 

do not claim that the teachers established this link to the mathematics consciously – they 

certainly did not make it explicit. However, keeping in mind the multimodal nature of 

communication and speech and gesture being perceived as a unit in interpreting an utterance, 

the combination of gesture and speech can provide assistance for remembering the 

mathematical idea together with its English terminology – a combination we call bimodal 

mnemonic.    

A difference in both cases concerns the focus of instruction, causing differences in the 

coordination of gestures with language. Ebi’s explanation concerns the mathematics towards 

solving the problem with his gestures providing a referential frame to ground the English 

terminology by identifying the respective concepts in the diagram, and specifying the imprecise 

Farsi expression. The gestural reference to the English mathematical terminology is integrated 

implicitly. Mamad foregrounds the terminology in both languages, reflected in his gestures as 

they are largely related to making meaning of this terminology. Here, the gestural reference to 
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the mathematics with respect to isosceles triangles in a regular polygon is rather implicit. In 

both cases, the use of gestures and two languages played an integral role in helping the students 

being engaged with the ongoing flow of the lesson content. 

The analyses presented here are only a first step in investigating the role of gestures for 

coordinating bilingual instruction with mathematical content to support language learners. 

They serve us as a starting point by pointing at different forms and functions of bimodal 

bilingual instruction along the three axes of code-switching, gesture, and focus of instruction. 

Our further research will concern the development of a methodological tool that integrates 

these three axes for systematic analysis. Furthermore, we plan a wider exploration of 

mathematical contexts, including also other language backgrounds in bilingual classrooms.  
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Make a drawing is known to be a powerful strategy for solving mathematical problems. 

But surprisingly, the drawing strategy was found to negatively affect the ability to solve 

non-linear geometry problems. Our study replicates and extends this finding by 

addressing the quality of the drawing strategy, which might explain the negative effect. 

In a randomized controlled trial with 180 students (ninth- to eleventh-graders), we 

enhanced drawing quality by prompting the students to highlight important elements in 

their drawings. Our results replicated the negative effect of the drawing strategy on 

performance and confirmed the quality of the drawing strategy as an important factor 

that affected the number of linear overgeneralizations. The roles of drawing quality and 

other factors that might influence the ability to solve such problems are discussed. 

INTRODUCTION 

The drawing strategy is a heuristic method that is claimed to have strong positive effects 

on problem solving. However, studies that have investigated the effect of applying the 

drawing strategy have arrived at divergent findings. Some studies showed that the 

drawing strategy facilitates problem solving (e.g. Hembree, 1992), whereas others did 

not find any effects (e.g. De Bock, Verschaffel, & Janssens, 1998), and one study even 

provided surprising evidence for a negative effect of the drawing strategy on problem 

solving performance (De Bock, Verschaffel, Janssens, Van Dooren, & Claes, 2003). 

The present study is aimed at replicating the negative effect of applying the drawing 

strategy and elaborating on potential explanations for why applying the drawing 

strategy can hinder problem solving. 

THEORETICAL BACKROUND AND RESEARCH QUESTIONS 

Drawing Strategy 

Applying the drawing strategy involves constructing an external visual representation 

that corresponds to the structure of the mathematical problem. By drawing, the learner 

externalizes his or her mental model of the problem situation. This involves re-

organizing the given information in such a way that important elements and relations 

become visible and can be processed more easily after the drawing is constructed 

(Larkin & Simon, 1987). Hence, drawing makes the key information from the problem 

explicit and facilitates the process of problem solving (Cox, 1999). 
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Empirical evidence for the positive effect of drawing strategy was found in a number 

of studies (Rellensmann, Schukajlow, & Leopold, 2016; Van Essen & Hamaker, 1990; 

Zahner & Corter, 2010). Teaching the drawing strategy was even identified as the most 

effective treatment for improving mathematical problem solving in a meta-analysis 

conducted by Hembree (1992), in which drawing strategy was compared with other 

strategies such as verbalizing concepts. However, drawing strategy does not help all 

students solve the problem. Theoretical models of self-generated drawings emphasize 

that the benefits of applying the drawing strategy are strongly related to the quality of 

the use of the strategy (Cox, 1999).  

The quality of the use of the drawing strategy is reflected in two properties of the 

drawing as the final product of the drawing process: the correctness and completeness 

of the drawing. High-quality use of the drawing strategy implies that students construct 

a correct drawing (correctness) that explicitly represents the key information from the 

problem (completeness). The first evidence for the importance of the quality of the use 

of the drawing strategy comes from research on text-based learning. Supporting 

students’ drawing activities positively affected performance on items that required 

comprehensive elaboration activities (Van Meter, 2001). Moreover, empirical studies 

in science and mathematics confirmed theoretical considerations and revealed that the 

quality of the drawing strategy is positively related to demanding problem solving 

(Rellensmann et al., 2016; Schwamborn, Mayer, Thillmann, Leopold, & Leutner, 2010; 

Uesaka, Manalo, & Ichikawa, 2007). Students who constructed drawings of higher 

quality solved geometrical modelling problems better than other students (Rellensmann 

et al., 2016). The quality of the drawing strategy is expected to be particularly important 

when students are required to build connections and draw conclusions from the given 

information (Van Meter, 2001), as is the case for solving non-routine mathematical 

problems. 

The Drawing Strategy for Solving Non-Linear Problems 

An important type of non-routine mathematical problems is the non-linear geometry 

problem, in which the area or volume of similar figures or solids has to be determined 

by a given scaling factor. For example: “You need approximately 400 grams of flower 

seed to lay out a circular flower bed with a diameter of 10 m. How many grams of 

flower seed would you need to lay out a circular flower bed with a diameter of 20 m?” 

(De Bock et al., 1998, p. 68). This type of problem is important because it addresses 

students’ strong tendency to engage in linear overgeneralizations – the application of 

linear models to non-linear situations – which is known to be a common error in 

problem solving (Van Dooren, De Bock, Janssens, & Verschaffel, 2008). A series of 

studies conducted by De Bock and colleges (De Bock, Van Dooren, Janssens, & 

Verschaffel, 2002; De Bock et al., 1998; De Bock et al., 2003) showed that this type of 
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problem is very difficult for students, who often seem to use the linear model in an 

intuitive manner without being aware of the model they chose (De Bock et al., 2002).  

The drawing strategy can be helpful for solving non-linear geometry problems because 

it provides the opportunity to recognize the non-linear property of the area, and thus, it 

might facilitate the use of appropriate mathematical procedures. A drawing for a non-

linear geometry problem should include the original and scaled figure, which enables 

the use of visual solution strategies aimed at estimating the relation of the areas (e.g. 

paving strategies). Contrary to these theoretical considerations, De Bock et al. (2003) 

showed that applying the drawing strategy did not facilitate the solving of non-linear 

geometry problems and even affected problem solving performance negatively. What 

can explain this unexpected finding? In the drawing condition, students between the 

ages of 13 and 16 were given a drawing that referred to the geometrical object from the 

problem (e.g. a square). They were then instructed to complete the drawing by using 

the given scaling factor to add a scaled geometrical object. Students in the drawing 

condition performed worse than students in the control group, who worked on the same 

problems without receiving any instructions (23% vs. 44%). An in-depth analysis of 

students’ solutions indicated that the drawing strategy did not elicit visual solution 

strategies for determining and comparing the sizes of the areas. This argument provides 

a good explanation for why applying the drawing strategy was not beneficial, but it 

remains unclear why using a drawing negatively affected problem solving in this study. 

Another explanation might be that students use the drawing strategy inappropriately, 

which in turn decreases their performance in solving non-linear geometric problems. 

Because of the surprising nature of the negative effects of the drawing strategy, we 

aimed to replicate De Bock et al.’s (2003) study in order to validate its findings. We 

expected a negative effect of using the drawing strategy on problem solving 

performance for non-linear geometry problems. Further, we expected the use of the 

drawing strategy to increase students’ tendency to engage in linear overgeneralizations. 

As geometrical figures are typically depicted by their circumferences, students’ 

attention is guided toward the linear property of the circumference while drawing 

instead of toward the non-linear property of the area. 

Further, we considered the quality of the drawing strategy as a potential reason for the 

negative effect of using the drawing strategy on problem solving performance. In 

particular, we expected that key information such as the area and its non-linear 

relationship would not be made salient in the drawings so that the quality of drawing 

strategy would be insufficient with respect to the completeness of the drawings. 

Therefore, we expected that increasing the quality by highlighting the key information 

would diminish the negative effect of the drawing strategy on performance because it 

would prevent the linear overgeneralizations that usually result from drawing. 
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RESEARCH QUESTIONS 

These considerations led us to pose the following research questions: 

RQ 1: Does the use of the drawing strategy decrease problem solving performance and 

increase linear overgeneralizations? 

RQ 2: Does increasing the quality by highlighting important information in the drawing 

diminish the negative effects of the drawing strategy on problem solving performance 

and on the number of linear overgeneralizations? 

METHOD 

Participants and Design 

The sample involved 123 students (58.5% female, mean age = 16.19 years) from nine 

classes, including ninth-graders (11.4%), tenth-graders (48.8%), and eleventh-graders 

(39.8%). Students came from four high-track schools (German Gymnasium) and one 

comprehensive school (German Gesamtschule). Students in each class were randomly 

assigned to one of three groups: Students in the experimental conditions received either 

drawing (D) or drawing with highlighting (DQ) instructions, aimed at increasing the 

quality of the drawing strategy. Students of the control group (CG) received no drawing 

instructions. The instructions were embedded in the tasks given on a paper-and-pencil 

test. Figure 1 shows the drawing with highlighting instructions (DQ condition) 

embedded in one of the tasks.  

 
 

Figure 1: Sample item with drawing with highlighting instructions. Tasks were 

adopted from De Bock et al. (2003, p. 449) 

To check the implementation of the treatment, we examined whether students in the 

experimental and control groups followed the instructions by analyzing the numbers of 
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papers with no drawings, drawings (without highlighting), and highlighted drawings in 

the different conditions (CG: 63% no drawings, 35% drawings, 2% highlighted 

drawings; D: 7% no drawings, 92% drawings, 1% highlighted drawings; DQ: 8% no 

drawings, 22% drawings, 70% highlighted drawings). Significantly more drawings and 

highlighted drawings were made in the respective conditions, indicating that the 

majority of students followed the instructions as intended for the non-drawing, drawing, 

and drawing with highlighting groups. 

Measures and Data Analysis 

Students’ performance and the number of linear overgeneralizations were assessed via 

a problem solving test, which included four experimental items and three additional 

buffer items. The experimental items were non-linear geometry problems in which the 

area or volume of a figure (square, circle) or a solid (cube, sphere), respectively, and a 

scaling factor were given with the question to find the size of the area or the volume of 

a similar figure. For example: “The side of square C is 12 times as large as the side of 

square D. If the area of square C is 1440 cm2, what’s the area of square D?” All items 

were taken from the study by De Bock et al. (2003). 

To measure students’ performance, we analyzed whether the solutions were correct 

(coded 1) or incorrect (coded 0). The number of linear overgeneralizations was assessed 

by analyzing if they were based on a linear model (coded 1) or not (coded 0). Two 

independent raters rated 20% of the answers to each problem with sufficient inter-rater 

agreement (Cohen’s κ ≥. 827). Scale reliability was satisfactory (Cronbach’s α = .787 

for performance and .715 for linear overgeneralizations). To address the research 

questions, we compared the mean scores for students’ performance and linear 

overgeneralizations between the CG and D groups (research question 1) and the CG and 

DQ groups (research question 2) by using t-tests. All alpha values we report are one-

tailed due to our directional expectations. For reasons of comparability, we followed De 

Bock et al.’s (2003) procedure and conducted our analysis with only two of the four 

experimental items. The results remained nearly the same when all items were included 

in the analysis. 

RESULTS 

Our first research question was aimed at replicating the negative effect of the drawing 

strategy on problem solving performance. We found that students in the drawing 

condition had significantly lower solution scores than their peers in the control group 

(MD = 0.268, SDD = 0.389; MCG = 0.476, SDCG = 0.460; t(80) = 2.203; p < .05; 

dCohen = 0.488). In line with our expectations, applying the drawing strategy negatively 

affected students’ problem solving performance for non-linear geometric problems.  

The first research question further referred to the number of linear overgeneralizations. 

We found that students in the drawing condition made in tendency significant more 
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linear overgeneralizations than students in the non-drawing condition (MD = 0.390, 

SDD = 0.426; MCG = 0.244, SDCG = 0.389; t(80) = -1.624; p = .054; dCohen = -0.358). As 

expected, applying the drawing strategy appeared to increase the number of linear 

overgeneralizations.  

The second research question referred to the quality of the use of the drawing strategy 

and was aimed at investigating whether the negative effect of the drawing strategy could 

be diminished by increasing the quality. We found that students who used the drawing 

strategy in a high-quality manner (DQ condition) had significantly lower solution scores 

than students who did not use this strategy (CG) (MDQ = 0.220, SDDQ = 0.388; 

MCG = 0.476, SDCG = 0.460; t(77.78) = 2.724; p < .01; dCohen = 0.602). Increasing the 

quality apparently could not diminish the negative effect of the drawing strategy on 

performance. 

However, a high-quality use of the drawing strategy was found to diminish the negative 

effect for linear overgeneralizations. Students who used the drawing strategy in a high-

quality manner made a similar number of linear overgeneralizations as students in the 

control group (MDQ = 0.342, SDDQ = 0.425; MCG = 0.244, SDCG = 0.389; t(80) = -1.08; 

p = .141; dCohen = -0.241). Hence, increasing the quality helped prevent students from 

making linear overgeneralizations, but it did not help them solve the problems. 

DISCUSSION 

One of the goals of the present study was to replicate and extend the findings from De 

Bock et al.’s (2003) study. In line with the previous findings, we found a negative effect 

of the drawing strategy on students’ problem solving performance for non-linear 

geometry problems. Even the solution scores in our study were very similar to the ones 

reported by De Bock et al. (2003), indicating that the negative effect is stable across 

time and different samples. This replication increases the validity of the surprising 

finding that drawing can hinder students’ ability to solve mathematical problems. 

Further, our study was aimed at elaborating on potential reasons that might explain the 

negative effect of applying the drawing strategy. The results confirmed the previous 

assumption that lower performance is caused by linear overgeneralizations (De Bock et 

al., 2003). Applying the drawing strategy without supporting students in using it in a 

high-quality manner increases the number of linear overgeneralizations. The process of 

drawing seems to guide learners’ attention to the linear property of the circumference, 

which they mistakenly transfer to the area or volume of the figure. Moreover, in both 

conditions (D and CG), we found that linear overgeneralizations appeared frequently, 

which, in line with prior research (Van Dooren et al., 2008), highlights the pervasive 

role of students’ tendency to apply linear models. 

With the second research question, we investigated the role of the quality of the use of 

the drawing strategy. We expected that the negative effect of the drawing strategy on 
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performance and on the number of linear overgeneralizations in students’ solutions 

could be diminished by increasing the quality of their strategy use. Quality was 

increased by addressing the important feature of the drawing strategy to represent key 

information (completeness of drawings), which was done by instructing students to 

highlight the area or volume in their drawings. The results partly confirmed the 

expectations derived from the theoretical considerations.  

Contrary to our expectations, improving the quality did not diminish the negative effect 

of the drawing strategy on students’ performance. Hence, even the use of the drawing 

strategy with an increase in its quality had a negative effect on the ability to solve non-

linear geometry problems. A possible explanation is that applying the drawing strategy 

when drawing the geometrical figures might hinder a covariation view (area as an 

alterable value that depends on the length of the side), by leading to a static view of a 

specific figure’s lengths and area. Following this consideration, future studies should 

investigate how the drawing strategy affects different concept images (Vinner, 1997) 

for linear and non-linear functions. A promising approach for fostering the covariation 

view might be to construct a drawing by using dynamic geometry software. 

Regarding the number of linear overgeneralizations, the results confirmed our 

expectation that the quality of the use of the drawing strategy is a crucial factor that 

determines whether the negative effect occurs or not. This finding is in line with 

previous research demonstrating the important role of the quality with which strategies 

are applied. A high-quality use of the drawing strategy helped to prevent at least some 

of the students from falling into the linearity trap, but it did not help the students find 

the correct mathematical procedure. This result indicates that apart from linear 

overgeneralizations, students also encounter other difficulties in solving non-linear 

geometry problems. This highlights the need for qualitative studies to investigate the 

process of solving non-linear geometry problems with the help of the drawing strategy 

in order to get a more complete picture of students’ difficulties.  

Taken together, our findings show that applying the drawing strategy is not a one-size-

fits-all solution. Besides increasing the quality of the drawing strategy, teachers should 

consider that different conceptual images of linear and non-linear functions are essential 

for problem solving. Reflecting on the advantages and disadvantages of various 

representations is an important prerequisite for the beneficial use of this strategy. This 

stresses the need for further investigations on the drawing strategy. 
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Dealing with statistical variation is frequently emphasised as a key component of statistical 

literacy – related abilities should, therefore, be fostered already in the primary 

mathematics classroom. For being able to create corresponding learning opportunities, 

teachers need awareness of statistical variation and related learning potentials, which 

should be fostered during university teacher education. As relatively little is known so far 

to what extent teacher students already have such an awareness, a study was conducted in 

which teacher students’ awareness was compared with the awareness found in a sample of 

in-service teachers. The results imply a need for building up specific criterion knowledge 

with a particular emphasis on a flexible use across different profession-related requirement 

contexts. 

INTRODUCTION 

In the last years, an extensive amount of research has been conducted focusing on how to 

build up foundations for students’ statistical literacy in the primary mathematics classroom 

(e.g. English, 2012). In the related literature, there is a broad consensus on the importance 

of being able to deal with statistical variation for students’ development of statistical 

literacy (e.g. Watson & Callingham, 2003), and there are several classroom studies that 

have shown that engaging students to deal with statistical variation is a feasible endeavour 

(e.g. Ben-Zvi, 2005). Creating appropriate learning environments, however, requires 

teachers to be aware of the relevance of statistical variation and related learning potentials. 

Teachers should be aware of these learning potentials in different profession-related 

requirement contexts, such as task analysis, the analysis of data sets for being used in the 

classroom, or the analysis of classroom situations in which learning opportunities related 

to statistical variation could come into play, for instance. In a prior study with in-service 

primary school teachers (Krummenauer & Kuntze, in press) it has been found that only a 

minority of the participants showed such an awareness when analysing in profession-

related requirement contexts, which points not only to a need of corresponding professional 

development, but also emphasises the importance of building up related professional 

knowledge from university teacher education on. Relatively little is known so far about 

teacher students’ awareness of the learning potentials related to statistical variation. 

Addressing this research need, an empirical study has been conducted in which written 



Krummenauer & Kuntze 

PME 44 – 2021   3 - 135 

analysis products from 57 teacher students have been collected and compared with data 

from 44 in-service teachers. The results indicate that only a relatively low percentage of 

the teacher students was aware of learning opportunities related to statistical variation, as 

it was also the case for the in-service teachers, and that the evidence of their awareness 

largely depended on the requirement context. We conclude that teachers should be 

supported in building up awareness and in its flexible use across different profession-

related requirement contexts. 

THEORETICAL BACKGROUND 

As argued by Cobb and Moore (1997), variation is an omnipresent phenomenon when 

dealing with statistical data. A focus on dealing with statistical variation is thus frequently 

emphasised as a key element of the statistics classroom from primary school on (e.g. 

Franklin et al., 2005). Due to the omnipresence of statistical variation, data provide various 

opportunities for students to engage with statistical variation (e.g. English & Charles, 2000; 

Makar, 2018), e.g. when students interpret distributions (Ben-Zvi, 2005) or identify general 

trends in data, e.g. for making predictions based on patterns of data (e.g. Oslington, 2018). 

Whether or not such learning potentials are used for students’ learning in mathematics 

classroom, however, can be expected to depend highly on whether teachers have an 

awareness of statistical variation and related learning potentials. Awareness has been 

described as a part of professional knowledge which influences the readiness and ability of 

teachers to use related professional knowledge elements in instruction-related contexts 

(Kuntze & Dreher, 2015, p. 298). The awareness of certain criteria – in this case, statistical 

variation and related learning potentials – can hence enable teachers to use relevant 

professional knowledge for analysing in profession-related requirement contexts and, 

therefore, can be expected to influence what learning opportunities teachers are able to 

provide to their students (e.g. Kuntze & Friesen, 2018).  

To what extent teachers are aware of certain criteria becomes apparent when they analyse 

in profession-related requirement contexts (Kuntze & Friesen, 2018). Analysing is 

considered as an “awareness-driven, knowledge-based process which connects the subject 

of analysis with relevant criterion knowledge and is marked by criteria-based explanation 

and argumentation” (Kuntze, Dreher, & Friesen, 2015, p. 3214). As published in Kuntze & 

Friesen (2018), the process of analysing can be described by means of a model with a 

circular structure, similar to the modelling cycle described by Blum and Leiss (2005). The 

model primarily addresses teachers’ analysing of classroom situations, but it can also be 

applied to teachers’ analysing in other profession-related contexts, such as analysing 

students’ answers to tasks or analysing textbook material. In prior research (e.g. Kuntze & 

Friesen, 2018; Krummenauer & Kuntze, in press), the model had already been applied 

successfully. The process of analysing is structured into four phases, which are, however, 

meant to be not necessarily followed by each other in a fixed order, but also can be skipped, 

interrupted, or repeated. In the first phase of the model, teachers generate a situation model 

(“real model”) of the profession-related context they analyse, which is interpreted in the 

subsequent phase based on criteria, which are part of their professional knowledge. These 
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criteria are the basis of models for explaning teachers’ observations and developing 

implications, which subsequently can be validated against the situation model of the 

classroom situation in a further step. Teachers’ criterion awareness plays a key role in this 

cycle, as it activates relevant professional knowledge for an analysis, when a criterion 

appears to be relevant; without the awareness of the relevance of a specific criterion in a 

certain situation, it cannot be used for analysis, even if a teacher in principle has relevant 

professional knowledge.  

 

Figure 1: Model of the process of analysing (Kuntze & Friesen, 2018, p. 277) 

As already introduced before, teachers’ analysing occurs in different profession-related 

requirement contexts, such as classroom situations, choosing material from textbooks, or 

interpreting written student answers. In order to make these different situations accessible 

to teachers’ analysis, different vignettes can be used representing these profession-related 

requirement contexts (Friesen, 2017; Skilling & Stylianides, 2020). In an earlier study with 

N = 44 in-service primary school teachers (Krummenauer & Kuntze, in press), such 

vignettes had been used in order to investigate whether the teachers showed an awareness 

for learning potentials related to statistical variation when analysing the vignettes 

representing several profession-related requirement contexts. Based on the teachers’ 

written answers, a set of categories had been identified representing different types of 

answers. First of all, there were answers indicating an awareness of statistical variation and 

related learning potentials; in such answers, reference to the statistical variation 

implemented in the vignettes was made, and a learning potential related to the statistical 

variation was mentioned, e.g. a corresponding question focussed on engaging students with 

statistical variation or a suggestion on how to deal (better) with statistical variation in a 

classroom situation represented by a vignette. Besides such answers, there were further 

categories of answers which did not indicate an awareness of statistical variation. Some 

answers, for instance, only focused on didactical or pedagogical aspects of the represented 

profession-related context. Further, there were answers, in which teachers mentioned 

statistical variation (and therefore apparently identified it as a relevant criterion for their 

analysis), but it was considered as hindering for students’ learning and suggested to be 

removed from the analysed textbook material. Overall, only a minority of the in-service 
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teachers showed an awareness for learning potentials related to statistical variation. 

Although all vignettes had been designed so that statistical variation played a predominant 

role for students’ learning in the respective contexts, differences in the rates of successful 

answers among the different vignette categories were found, which may indicate that there 

may be a relatively strong interrelation of teachers’ awareness with particular profession-

related contexts. 

These first findings point not only to a need for specific professional development, but also 

appear as highly relevant for university teacher education. However, specific research on 

teacher students’ awareness of learning potentials related to statistical variation is scarce. 

In particular, relatively little is known so far to what extent teacher students’ awareness 

differs from that found in in-service teachers and whether they show that awareness when 

analysing in different profession-related requirement contexts.  

AIM OF THE STUDY AND RESEARCH QUESTIONS 

Consequently, this study addresses this research need; in particular, the following 

research questions have been investigated:  

● Do teacher students show an awareness of the learning potentials related to 

statistical variation when analysing vignettes representing profession-related 

requirement contexts, and to what extent does their awareness differ from that 

found in a study with in-service teachers? 

● Are there differences in the teacher students’ awareness among different 

professional requirement contexts implemented in different types of vignettes? 

SAMPLE AND DESIGN OF THE STUDY 

The data analysed in this study comprises of N=101 data sets from n=57 primary teacher 

students and n=44 in-service primary school teachers (95 % female, 5 % male) from 

southern Germany. About 32 % of the in-service teachers studied mathematics as a major 

subject during their initial teacher education at university, 29 % studied mathematics as a 

minor subject and about 40 % of the teachers had not studied mathematics/mathematics 

education during their university education. The teachers’ classroom experience ranged 

from 1 to 36 years with a mean experience of 8 years (SD = 7). About 70 % of the teacher 

students were in their third semester (M = 4 semesters); about half of the sample studied 

mathematics as a major subject, the other half as a minor subject.  

For collecting data from the teacher students, the same vignette-based paper-pencil 

questionnaire was used as in the prior study with the 44 in-service teachers (Krummenauer 

& Kuntze, in press). The questionnaire consists of several vignettes representing three 

different types of profession-related requirement contexts: analysis of classroom situation 

(requirement context represented by means of a cartoon vignette; one item), analysis of 

learning tasks for students (4 items), and analysis of data sets intended for use in the 

mathematics classroom (2 items). Although the vignettes represent different types of 

profession-related requirement contexts, they are designed in a way so that awareness of 

learning potentials related to statistical variation is needed for creating optimal learning 
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opportunities for students’ learning in the respective requirement context. The sample 

vignette-based items presented in the following will provide insight into how this approach 

was implemented in the questionnaire instrument. 

In Figure 1, a data set is displayed as it was part of a vignette. It shows the fictive 

development of the weight of a newborn including a (possible) drop of the weight in the 

fourth week. These data can function as a starting point for several learning opportunities 

related to statistical data; students, for instance, could be asked what in week four might 

have happened or how the data could continue, how other kids with different birthweight 

may develop. Initiating only basic activities, on the contrary, would indicate that teachers 

are not aware of statistical variation and its learning potentials.  

 
Figure 2: Example of a data set, which is part of a vignette used in the questionnaire. 

In the learning tasks, the second vignette type of the questionnaire instrument, a data-set as 

shown in Figure 2 is combined with a question to students (e.g. “Draw a bar chart.”). The 

third vignette type requires the participants to analyse a classroom situation represented as 

a comic. A key feature of the classroom situation used in the instrument is that statistical 

variation is embedded in a classroom scenario, in which a teacher discusses a task with 

students, in which statistical variation has to be taken into account, but the teacher does not 

take notice of the high relevance of statistical variation. In the questionnaire, all vignettes 

are combined with open questions, which are formulated in a way that they initiate the 

participants’ analysing (e.g. in case of the data set in Figure 2: “Would you use this data set 

in the mathematics classroom? If yes: What questions would you ask the students? If no: 

What would you change?” or in the case of the classroom situation: “How could the teacher 

in the comic sequence do better?”), but without pointing to statistical variation in any way, 

in order to be able to distinguish whether the participants’ identified statistical variation as 

a relevant criterion and were aware of the related learning potentials.  

Data coding 

Based on the coding developed in Krummenauer and Kuntze (in press), the teacher 

students’ answers were subjected to a criteria-based top-down rating on whether the 

answers indicate an awareness of the learning potentials related to statistical variation. For 

a positive rating, the answer had to fulfil two criteria: they had to contain at least one 

reference to the statistical variation in the respective data set/task/classroom situation, and 

a possible learning potential related to statistical variation had to be mentioned. In the case 

of the data set displayed in Figure 2, for instance, the sudden drop of the weight or the 
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development of the weight could be mentioned for fulfilling the first criterion. The second 

criterium (mentioning a related learning potential) is fulfilled, when it is, for instance, stated 

that teachers could engage students to reflect on the rapid decrease in the data set or ask 

students for several scenarios on how the data could develop further. In the case of the 

vignette representing the classroom situation, it is required to identify that the teacher in 

the represented classroom situation ignored the predominant relevance of statistical 

variation in the task and the related learning potential. The coding had been validated during 

the prior study by means of a second rating with a measured overall inter-rater-reliability 

of κ=.84 (Krummenauer & Kuntze, in press). 

RESULTS 

Figure 2 shows the joint results of the coding for both samples of teacher students and in-

service teachers. It can be seen, that the teacher students’ frequencies of answers, which 

indicate an awareness of statistical variation and the related learning potentials, are in a 

similar range compared with the frequencies of the in-service teachers; t-tests did not 

indicate any significant differences of the frequencies of teacher students and in-service 

teachers (p>.20). Further, the results show that the teacher students’ frequencies vary 

among the profession-related requirement contexts almost to the same extent as it has been 

found for the in-service teachers (see Krummenauer & Kuntze, in press). The mean rate of 

answers indicating an awareness is 15.6 % for student teachers ans 18.3 % for in-service 

teachers.  

 
Figure 2: Frequencies of answers indicating an awareness of statistical variation and 

related learning potentials. 

In order to further explore whether the teachers’ and teacher students’ awareness is 

dependent or independent from the different profession-related requirement contexts, bi-

variate correlations between the different categories were computed. In the joint sample of 

teacher stiudents and in-service teachers, a correlation of r=.29 (p<.01) was found between 

the participants’ responses to the data set vignettes and to the comic vignette, indicating a 

joint variance of about 8 %. Between the participants’ answers showing awareness to tasks 

and data sets, we found a weak correlation of r=.22 (R2=0.048, p<.05), while there is no 
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correlation (r=.04) between answers to the vignettes containing learning tasks and answers 

to the comic vignette. 

DISCUSSION AND OUTLOOK 

Addressing the first research question, the results imply that the teachers students’ 

awareness of learning potentials related to statistical variation was very low on average, 

and the evidence resembles the earlier findings from the sample of in-service primary 

school teachers. Although statistical variation has high relevance for students’ learning in 

all vignettes, showing awareness of this criterion in one profession-related requirement 

context appears not to be highly predictive of whether teachers and teacher students show 

this awareness also in other profession-related requirement contexts. Against the 

background that the learning task vignettes mainly differ from the data set vignettes in that 

the given data set had been combined with a question to students, it appears that already 

relatively little changes in the professional requirements can affect whether or not statistical 

variation is used as a relevant criterion in the teachers’ analysis.  

Overall, the rate of answers indicating an awareness of statistical variation and related 

learning potentials is relatively low (mean frequencies below 20 %). As it has to be 

assumed that there is a strong relation of teachers’ awareness and learning opportunities 

teachers are able to provide to their students, there is a clear need both for in-service teacher 

professional development and for building up professional knowledge in university teacher 

education. For strengthening the teacher’s awareness  across different professional 

requirement contexts, a special focus should be given to vignette-based professional 

learning opportunities in a variation of methodological settings: Different types of vignettes 

should provide opportunities for analysis of tasks, classroom situations, data material, or 

written student responses, which show their thinking related to statistical variation. In the 

European project “coReflect@maths”, corresponding vignette-based material for further 

research and for teachers’ professional learning is under development.  
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When confronted with the complexity of classroom situations, mathematics teachers are often 

required to notice aspects of a situation with respect to multiple criteria. Such multi-criterion 

noticing requirements can be assumed to come with high cognitive load for the teacher and 

teachers need multi-criterion awareness as well as corresponding professional knowledge in 

the relevant domains. Despite its importance for mathematics teacher expertise, studies 

approaching multi-criterion noticing in a systematic way are still scarce. Consequently, this 

study examines pre-service teachers’ analyses of a classroom vignette designed to require 

noticing related to several criteria relevant for the students’ learning. The findings provide 

insight into pre-service teachers’ difficulties and point to the complexity of multi-criterion 

noticing. 

INTRODUCTION 

Mastering complex professional tasks in the mathematics classroom often requires that teachers 

analyse classroom situations with respect to multiple criteria. Dealing with students’ 

heterogeneous learning prerequisites is one of such complex professional tasks (e.g., Hardy, 

Decristan & Klieme, 2019): It requires mathematics teachers to draw on a bundle of criteria 

within their professional knowledge, since they have to keep an eye on tasks, on the students’ 

individual thinking, on multiple solution pathways and accesses for learning, while at the same 

time they have to avoid unnecessary obstacles when dealing with representations of 

mathematical objects, amongst others. Therefore, to provide optimal support to students, 

teacher noticing has to focus on multiple criteria. Such multi-criterion noticing is expected to 

be demanding, especially for pre-service teachers. Consequently, research into difficulties 

related to multi-criterion noticing is highly relevant in order to identify possibilities of 

supporting pre-service teachers in developing corresponding noticing competences.  
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THEORETICAL BACKGROUND 

Teachers’ noticing has increasingly been considered as a key aspect of expertise (e.g. Berliner, 

1991; Sherin, Jacobs & Philipp, 2011; Fernández & Choy, 2020; Amador et al., 2021). There 

is a growing body of research about noticing regarding specific criteria, e.g. regarding 

mathematical contents (e.g. Choy, 2014) or regarding how representations are dealt with in the 

classroom (e.g. Dreher & Kuntze, 2015; Friesen & Kuntze, 2016). Noticing in this sense has 

been characterised as a combination of selective attention and knowledge-based reasoning 

(Sherin et al., 2011): Different components of professional knowledge (Kuntze, 2012; 

Shulman, 1986) can be used as criteria which can be connected with observations in classroom 

situations (Sherin et al., 2011; Kuntze & Friesen, 2016). The complexity of classroom 

situations (e.g. Petko, Waldis, Pauli, & Reusser, 2003) implies that multiple criteria are relevant 

for successful noticing in such multifaceted situations, i.e. noticing that enables teachers to 

support their students’ learning optimally (see below for specific examples). By the notion of 

multi-criterion noticing, we emphasise knowledge-based reasoning which draws on multiple 

knowledge-based criteria. As different noticing criteria can be expected to be in a competing 

relationship with each other (see findings of the prior study by Kuntze & Friesen, 2018), multi-

criterion noticing is likely to bring high cognitive load (Sweller, 1994) for teachers who analyse 

classroom situations, particularly for pre-service teachers who are less experienced in noticing.  

Further, and beyond only possessing (potentially inactive) corresponding professional 

knowledge, teachers need criterion awareness (Kuntze & Friesen, 2018) related to the different 

noticing criteria: this criterion awareness supports analysis cycles, which afford activating 

criterion knowledge and connecting it with observations in the classroom situation (see the 

process model published in Kuntze & Friesen, 2018). Such connections of professional 

knowledge elements with situation observations lead to successful knowledge-based reasoning 

(Sherin et al., 2011), hence successful noticing. In a somewhat similar way, Kersting and 

colleagues (2012) emphasise the aspect of activating professional knowledge elements and 

using them for interpreting observations, namely in their notion of usable knowledge. 

A set of criteria based on mathematics teachers’ professional knowledge which can be seen as 

an example in this context, is needed when teachers have to deal with heterogeneous learning 

prerequisites of students in their classrooms: For analysing classroom situations in which 

heterogeneous learning prerequisites have to be dealt with, noticing criteria often have to 

include several criterion-related foci, among which the following play key roles:  

● a focus on possible obstacles for learning and understanding in tasks (cf. Choy, 2014; 

Vondrová & Žalská, 2013),  

● a focus on the students’ individual thinking, as it can reveal their individual learning 

prerequisites and individual difficulties (e.g. Fernández et al., 2018),  

● a focus on how individual, multiple solution pathways can be supported (Hardy et al., 

2019), and  

● a focus on avoiding unnecessary obstacles when dealing with representations of 

mathematical objects (Ainsworth, 2006; Duval, 2006; Friesen & Kuntze, 2016). 

For eliciting teachers’ analysis of classroom situations in systematically designed research 

settings, vignettes offer various possibilities (Buchbinder & Kuntze, 2018). Vignettes are based 
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on representations of practice, e.g. classroom situations represented in video, text or cartoon 

format, on which teachers can be asked to reflect and/or to report their observations or 

suggestions. The noticing criteria introduced above can thus be implemented in specifically 

designed vignettes so as to create an analysis situation for mathematics teachers in which they 

need multi-criterion noticing in order to detect non-optimal aspects of the classroom situation 

through corresponding knowledge-based reasoning (cf. also Buchbinder & Kuntze, 2018; 

Skilling & Stylianides, 2019). Although vignette-based empirical research offers a broad 

spectrum of possibilities, research about multi-criterion noticing is still relatively scarce. There 

is hence a need of studies exploring multi-criterion noticing, in particular whether and to which 

extent already pre-service teachers are able to show multi-criterion noticing in their analysis of 

classroom vignettes.  

RESEARCH QUESTIONS 

As outlined above, multi-criterion noticing is likely to be associated with high cognitive load 

and to depend on the availability of professional knowledge related to the noticing criteria, as 

well as on criterion awareness supporting the active use of this professional knowledge. In all 

three areas, pre-service teachers can be expected to have lower prerequisites than experienced 

in-service mathematics teachers. As empirical evidence is still scarce despite the high relevance 

for professional growth, this study examines whether multi-criterion noticing is possible for 

pre-service teachers. Moreover, as a second research aim, we explore the role of possibly non-

available professional knowledge and criterion awareness for multi-criterion noticing, by 

offering the pre-service teachers a seminar in which the noticing criteria introduced above are 

focused, and then asking the pre-service teachers to analyse the vignette again. Consequently, 

the research questions of this study are the following: 

(1) Are the pre-service teachers able to analyse situation aspects with respect to several criteria, 

which are relevant for helping the vignette students in their learning? 

(2) To what extent does a university seminar offering learning opportunities related to multiple 

noticing criteria lead to improved multi-criterion noticing? 

DESIGN AND METHODS 

As mentioned above, this study uses a vignette-based approach to address multi-criterion 

noticing in a systematic way. The four noticing criteria introduced in the theoretical 

background section were implemented in the vignette, so that, from a normative point of view, 

an expert mathematics teacher could be expected to notice situation aspects related to these 

four noticing criteria.  

The cartoon-based vignette (shown together with its key design features in Fig. 1) presents a 

classroom situation (material, student-teacher dialogues, students’ notes, etc.) from the 

perspective of a pre-service teacher who reports on his teaching experien-ce in a lesson with 

7th-graders during his school internship. The task, the vignette stud-ents are asked to work on, 

is presented, and the teacher gives some information about his intentions. In the vignette 

situation, two students ask the teacher for help related to the given task. The teacher mainly 

reacts by writing a “hint” on the blackboard, which is however disconnected with the students’ 

thinking and the students’ representations. As the students ask the teacher again by showing 
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him their notes, he does not connect with the students’ ideas and suggests them to use the 

formula he had presented as “hint” on the blackboard. The vignette ends with an analysis 

question: “Give your peer teacher student feedback on the classroom situation shown above. 

Write down everything that comes to your mind when looking at the classroom situation and 

refer as specifically as possible to what has been said in the situation, to materials, etc.”   

 

Figure 1: The vignette and key design features 

Related to this analysis question, an expert teacher can be expected to notice possible 

● learning/understanding obstacles in the vignette task (possibility of entering the work 

on the task at different levels, but need of providing facilitated access for students with 

lower learning prerequisites) (criterion A) 

● learning/understanding obstacles arising from the vignette teacher’s reaction as the 

teacher does not connect with students’ thinking in his answers (criterion B) 

● learning/understanding obstacles in teacher “hint” through an unexplained and 

unnecessary change of representation (including new notions in formalised 

representation) (Ainsworth, 2006; Duval, 2006) (criterion C) 

● learning/understanding obstacles as the vignette teacher insists on his way of solving 

the task instead of supporting the students in further developing their own solution ideas 

(criterion D). 

Based on this study’s theoretical background, we consider these four noticing criteria as 

necessary for a successful analysis of this vignette, hence for successful multi-criterion 

noticing. Of course, further noticing criteria can be used as well for answering the analysis 

question in addition to the criteria given above. As mentioned before, we expect that the 
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noticing criteria are in a competing relationship with each other, making successful multi-

criterion noticing relatively complex.  

The vignette was administered as a paper-and-pencil questionnaire to 20 pre-service master 

students (i.e. bachelor secondary teacher studies completed), at the beginning and end of a 

seminar. In the seminar, opportunities for professional learning related to the criteria A-D 

corresponded to core content goals. Throughout the seminar, several vignettes were used to 

stimulate the participants’ analysis, however, mostly with a focus only on one of the criteria 

A-D at a time. Like this, we expect that professional knowledge and corresponding criterion 

awareness could be built up by the participants. 

For analysing the pre-service teachers’ answers, we used a top-down coding according to the 

four criterion categories (A-D) given above. This criterion-based content analysis (Mayring, 

2015) led to a dichotomous coding whether the pre-service teachers’ answers showed evidence 

that noticing based on the respective noticing criterion had taken place (see Fig. 3 and 4 in the 

results section for coding examples).  

RESULTS 

The first research question concentrates on whether pre-service teachers are able to notice 

situation aspects with respect to several criteria, which are relevant for helping the vignette 

students in their learning. The relative frequencies in Figure 2 on the left, show how many of 

the four noticing criteria were visible in the pre-service teachers’ answers. Before the beginning 

of the seminar intervention, none of the participants used all of the four noticing criteria 

implemented in the vignette, more than 60% of the pre-service teachers used none or only one 

of these noticing criteria.  

 

 

 

 

 

 

 

Figure 2: Number of (coded) noticing criteria used in the pre-service teachers’ analysis 

(beginning and end of the seminar) 

An initial approach explored the role of professional knowledge and criterion awareness by 

focusing on the pre-service teachers’ answers at the end of the seminar (second research 

question). The corresponding relative frequencies are shown in Figure 2 on the right. In this 

context, we recall that these findings are not primarily intended to evaluate the seminar, but to 

explore the complexity of multi-criterion noticing for pre-service teachers. At the end of the 

seminar, there is evidence of successful multi-criterion noticing, even if more than 35% of the 

pre-service teachers used none or only one of the four implemented noticing criteria.  
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Figure 3 allows a closer look at the pre-service teachers’ multi-criterion noticing as visible 

through their written analysis results, i.e. their answers to the analysis question. In this sample 

answer from the end of the seminar, the pre-service teacher first turns to the task and the 

contract offers displayed in it (see Fig. 1). Even if the answer does not give clear suggestions 

how to “change the representation”, we have evidence that the pre-service teacher noticed that 

the representation of the offers is “complex” and “confusing”, which constitutes a potential 

obstacle for the vignette students’ understanding and work on the task. Further, the vignette 

teachers’ reactions are analysed: As far as criterion B is concerned (code B), the pre-service 

teacher appears to have noticed that the vignette teacher did not connect with the vignette 

students’ thinking (“hardly connects with the students’ problems”), which is considered as non-

sufficient (underpinned by the words “just” and “only” later in the sentence). 

 

 

 

 

 

 

 

Figure 3: Sample answer (end of the seminar) 

Mentioning/describing the non-optimal use of representations in the teachers’ hint (“formula”, 

which is incongruent with the representation relevant for the “students’ problems” and later the 

“different representation”) indicates that noticing criterion C has been used in the pre-service 

teacher’s analysis. Finally, the vignette teacher’s non-optimal reaction related to multiple 

solution pathways (“He does hence not let the students calculate in their representation”) is 

also noticed, corresponding to Code D. 

Figure 4 shows a sample answer from the end of the seminar, for which none of the codes A-

D was given, whereas different criteria were focused on. The answer appears to focus on the 

role of the vignette teacher’s “hint” for the other students in the classroom and for their working 

process. This noticing result draws on related, rather pedagogical criteria and mainly stays with 

this criterion domain, possibly together with a suggested different intervention of the vignette 

teacher. 

 

 

 

 

Figure 4: Sample answer (end of the seminar) 
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DISCUSSION AND CONCLUSIONS 

Given the small sample and the explorative nature of this study, the results should be 

interpreted carefully. The results indicate that most pre-service teachers focused on a small 

number of noticing criteria in their vignette analysis. Even at the end of a one-semester 

university seminar in which the pre-service teachers had the opportunity to learn about the 

criteria implemented in the vignette, multi-criterion noticing remained difficult for a majority 

of the pre-service teachers. Therefore, providing professional knowledge learning 

opportunities is not sufficient for succeeding in related multi-criterion noticing. This result is 

in line with previous research focused on providing different theoretical lenses to support 

professional noticing in teacher education programs (a review in Fernández & Choy, 2020). 

The findings also show that multi-criterion noticing is possible already for pre-service teachers 

(there are cases with four noticing criteria), in this case after they have been successfully 

supported in building up professional knowledge and criterion awareness for the corresponding 

noticing criteria.  

Nevertheless, multi-criterion noticing needs focused support in mathematics teacher education. 

Such support could focus on a meta-level and target explicit strategies of monitoring one’s own 

noticing: Pre-service teachers could be encouraged to explicitly monitor whether and how they 

draw on specific noticing criteria within their professional knowledge. Such strategy support 

can be combined with the analysis of vignettes: As vignette-based work is in the focus of the 

European project coReflect@maths (Digital Support for Teachers' Collaborative Reflection on 

Mathematics Classroom Situations, www.coreflect.eu), we expect more insight into multi-

criterion noticing and its support in follow-up studies.  
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NATURAL NUMBERS BIAS IN UNDERSTANDING 

VARIABLES – THE INTEGRITY AND THE PHENOMENAL 

SIGN EFFECT 
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University of Western Macedonia, Greece 

This report aims to present quantitative results from a study where students were asked to 

evaluate a series of statements about the numerical value of algebraic expressions. The 

participants were 138 8th and 9th graders and they were given a questionnaire with 48 

statements about numbers that can or cannot be assigned to six algebraic expressions that 

contained literal symbols (e.g. a, -b, k+3). The results showed that the students tended to 

agree with the statements which were in line with their belief that variables stand only for 

natural numbers and not for rational or real numbers (integrity effect), and that algebraic 

expressions stand for numbers of the same sign as the expressions’ phenomenal sign 

(phenomenal sign effect). It also appeared that the integrity effect was stronger than the 

phenomenal sign effect. 

THEORETICAL AND EMPIRICAL BACKGROUND 

Acquiring the concept of variable is widely recognized as a major challenge for students in 

the transition from arithmetic to algebra (Kieran, 2006). Prior research has shown that 

students initially think that literal symbols stand for abbreviated names of people or objects, 

or as coded numbers, with values corresponding to their positions in the alphabet (Booth, 

1984; Kuchemann, 1981; Wagner, 1981). While such mistakes are usually abandoned by 

10th grade, some other difficulties are more persistent even when students receive detailed 

instructions to correct them. Such is the tendency to think that literal symbols can stand for 

only one, specific, unknown number as opposed to the generalized number which may take 

more than one value (Asquith et al., 2007; Knuth et al., 2005; Kuchemann, 1981).  

A question that is only recently addressed in the literature is what happens when students 

understand that a variable stands for more than one number (Booth, 1984; MacGregor & 

Stacey, 1997): Are they ready to accept that it may represent any real number? Christou 

and Vosniadou embrace the framework theory approach to conceptual change, which 

assumes that, before they are introduced to non-natural numbers, students have already 

consolidated a complex system of interrelated concepts and beliefs, tied around their 

knowledge and experiences with natural numbers. This initial framework theory of number 

underlies students’ expectations about what a number is and how it is supposed to behave, 

ending up in a bias towards natural numbers (Vosniadou et al., 2008). As natural number 

bias is characterized the phenomenon of students using their prior knowledge of numbers 

– which is organized in a coherent body of knowledge with numbers having the properties 

of natural numbers – in situations where this knowledge does not apply (Ni & Zhou, 2005). 
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In a series of studies, Christou and his colleagues (Christou et al., 2007; Christou & 

Vosniadou, 2009, 2012) investigated the hypothesis that this bias would affect the kind of 

numbers that may be associated with algebraic expressions that contain literal symbols. 

This hypothesis was supported by the results of those studies with Greek students and were 

further affirmed from implication studies with Flemish students (Van Dooren et al., 2010). 

Specifically, using open ended questions, students were asked to give numbers that they 

thought could be assigned to specific algebraic expressions that contained literal symbols. 

The majority of the students tended to respond by assigning natural numbers to the literal 

symbols of the expressions, saying for example that a stand only for natural numbers, -b 

stand for negative integers, and k+3 for natural numbers larger than 3. Of course, these 

responses were not incorrect, however they showed a specific tendency on the part of the 

students to think of literal symbols as natural numbers only. When the students were asked 

about numbers that could not be represented by the same algebraic expressions, the 

majority of them replaced literal symbols with negative integers, saying, for example, that 

1, 2, 3,… cannot be associated with -b, and -1, -2, -3,… cannot be associated with a 

(Christou & Vosniadou, 2012).  

Quite the same were the results in the multiple-choice tasks of the Christou et al (2007) 

study where the students were offered a set of possible values and were asked to decide 

whether some of them should be excluded from the range of the values that the algebraic 

expressions could represent. Less than 20% of the students’ responses to the combined 

questions corresponded to the correct answer, which was one of the given alternatives. 

Another 22% corresponded to the values that could not come out of the substitution of 

natural numbers. Finally, around 25% of the choices pointed to students’ reluctance to 

accept that an algebraic expression that appeared to be negative (such as –b) could take 

positive values, and vice versa. This was observed for students who were prepared to accept 

non-natural numbers as possible substitutes for the literal symbols, provided that the 

phenomenal sign of the algebraic expression would not be violated.  

The above results provided some empirical evidence that the natural number bias has a dual 

effect on students’ understanding the use of literal symbols to stand for variables in algebra. 

First, it affects them to perceive literal symbols them as symbols that represent natural 

numbers and not any rational or real number, as they are specifically taught in school. 

Students who may think that literal symbols should be substituted with natural numbers 

only, they would conclude that the phenomenal sign of the algebraic expression is the actual 

sign of the numbers it can only represent. As a result, a second effect of the natural number 

bias would be to think that an algebraic expression can only stand for numbers with the 

same sign as the sign the expression appears to have as a superficial characteristic of its 

form, (e.g. negative in the case of -b and positive in the case of k+3).  

The purpose of the present study was to further test the hypothesis that there is a dual effect 

of the natural number bias which affects students to tend to misinterpret variables to stand 
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for natural numbers only (integrity effect) and algebraic expressions to only represent 

numbers of the same sign as their phenomenal sign (phenomenal sign effect). A new 

methodology was used in this study instead of asking students to assign numbers to the 

given expressions, or exclude specific numbers as numbers that cannot be assigned to them, 

as the previous studies did. In this study students were asked to evaluate a series of 

statements about the numbers that can or cannot be represented by the given expressions. 

This way it could also be tested which effect of the natural number bias is stronger: the 

integrity or the phenomenal sign effect. Additionally, it could also be tested the effect of 

the expression’s form (i.e., whether an expression has an integer-like versus a rational-like 

form, or a positive versus a negative-like form) in the numbers associations that may 

provoke.  

METHOD 

Participants 

The participants were 138 students from two Greek public high schools. Sixty-eight 

attended 8th and 70 attended 9th grade; 61 boys and 77 girls. We chose 8th and 9th graders 

as an interesting age group, because they have in principle all knowledge necessary to deal 

with the research tasks correctly. The participants to our study have been introduced to the 

concept of variable since grade 7, and they had also extensive experience with non-natural 

numbers since they have been introduced to rational numbers already from grade 4. 

Materials 

A questionnaire was administered to the students including 48 statements about the 

numerical value that can or cannot be associated to an algebraic expression. Six algebraic 

expressions (a, -b, k+3, -d-4, 4/5y, -4/5z) were assigned to a different number in each task 

and students were asked to agree or disagree with the given statement. Half of the 

statements were given in an affirmative form (e.g. it is possible for -b to stand for number 

2), in order for the answer “I agree” to be correct, and the other half were given in a negative 

form (e.g. it is not possible for -b to stand for number -8), in order for the answer “I 

disagree” to be correct. 

The above resulted in a design of tasks that were either congruent or incongruent with the 

beliefs about the integrity and the sign of the number that are intuitively associated with 

the algebraic expressions due to the natural number bias. More specifically, congruent with 

integrity (CongInt) were the statements in which natural numbers were assigned to literal 

symbols and thus integer numbers were assigned to integer-like expressions (e.g., it is 

possible for a to stand for 6). Incongruent with integrity (IncongInt) were the tasks where 

fractions or decimals were assigned to integer-like expressions (e.g. it is not possible for a 

to stand for 1/6). Congruent with the phenomenal sign (CongSign) were the tasks where 

the numbers assigned to the algebraic expression were of the same sign as the expression’s 

phenomenal sign (e.g. it is possible for a to stand for ¾). Statements incongruent with the 
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sign (IncongSign) were those in which the numbers had a different sign from the 

phenomenal sign of the expression (i.e. it is possible for a to stand for -2). Thus, four task 

categories were formed depending on whether each task was congruent or incongruent with 

the integrity and with the phenomenal sign at the same time (See Table 1). The 

questionnaires were administered in the students’ classrooms, in the presence of their 

mathematics teacher. The students had approximately 45 minutes to complete the 

questionnaires. 

Task Category  Example 

CongInt / CongSign it is possible for -b to stand for -4 

CongInt / IncongSign it is possible for -b to stand for 2 

IncongInt / CongSign it is possible for -b to stand for -2.8 

IncongInt / IncongSign it is possible for -b to stand for 4/3 

Table 1: Examples of tasks by category of congruency/incongruency with 

integrity/phenomenal sign 

RESULTS  

Students’ responses in the tasks were scored on a right/wrong basis. Overall the 

questionnaire showed high reliability (Cronbach’s Alpha = 0.738). The analysis of 

students’ overall performance showed no main effect for gender [F(1, 134) = 2.36, p = 

0.127] or grade [F(1, 134) = 0.088, p = 0.768]. The mean scores were calculated for each 

category of tasks and are presented in Table 2. 

 Minimum Maximum Mean S.E. 

CongInt / CongSign 3 12 8,38 0,19 

CongInt / IncongSign 0 12 6,01 0,21 

IncongInt / CongSign 1 12 6,11 0,19 

IncongInt / IncongSign 0 12 4,89 0,23 

Table 2: Mean scores for each category of congruent/incongruent tasks with integrity and 

phenomenal sign 

As expected, students’ highest performance appeared in the tasks that were congruent with 

both integrity and phenomenal sign (i.e., CongInt/CongSign tasks) and the lowest 

performance appeared in the tasks that were incongruent with both integrity and 

phenomenal sign (i.e., the IncongInt/IncongSign tasks), which challenged students’ belief 
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than only natural numbers should be associated with literal symbols and only numbers of 

the same sign with algebraic expressions. 

Students’ performance was systematically higher for the tasks that were in-line with their 

belief that variables stand for natural numbers than when the tasks were challenging this 

belief. Specifically, paired-samples t-test showed that the students performed statistically 

significantly higher in the CongInt/CongSign tasks than in the IncongInt/CongSign tasks 

[t(137)=11.064, p<.001, d=0.94], when both kinds of tasks were in-line with their belief 

about the sign of the numbers that can be represented by the specific expressions (CongSign 

tasks). The same was the case for the pair of tasks that were both against students’ beliefs 

about the sign of the numbers that can be represented by the expressions (IncongSign 

tasks); there was significantly higher performance in the CongInt/IncongSign tasks than in 

the IncongInt/IncongSign tasks [t(137)=5.332, p<.001, d=0.45], showing again that 

students tended to misinterpret variables to stand for natural numbers rather than rational 

numbers.  

Considering the phenomenal sign effect, students’ performance was systematically higher 

for the tasks that were aligned with their belief that algebraic expressions represent numbers 

of the same sign as their phenomenal sign than when tasks were presented sentences that 

were against this belief. Specifically, there appeared statistically significant higher scores 

in the CongInt/CongSign than in the CongInt/IncongSign tasks [t(137)=9.267, p<.001, 

d=0.79] when both kinds of tasks were in-line with their belief that only natural numbers 

can be associated with the literal symbols of the expressions (CongInt tasks). The same was 

the case when both tasks were challenging the belief that variable should stand for natural 

numbers only (IncongInt tasks); in those kind of tasks the students scored again 

significantly higher in the IncongInt/CongSign tasks than in the IncongInt/IncongSign tasks 

[t(137)=4.275, p<.001, d=0.36]. These results show that the students tended to misinterpret 

algebraic expressions to represent numbers of the same sign as the phenomenal sign of the 

expression in both categories of tasks.  

In order to test which effect of the natural number bias was stronger between the integrity 

and the phenomenal sign effects, Cohen’s D effect sizes for each of the above mention 

effects was compared. The size of the integrity effect for the pair of CongSign tasks 

(d=0.94) was larger than the size of the phenomenal sign effect for the pair of CongInt tasks 

(d=0.79). That was also the case for the integrity effect which size was larger for the pair 

of IncongSign tasks (d=0.45) than the size of the phenomenal sign effect for the pair of 

IncongInt tasks (d=0.36). Thus, the integrity effect appeared to be overall stronger than the 

phenomenal sign effect.  

In an additional analysis it was tested the way the form of an algebraic expression affected 

students’ anticipation about the numbers that can be associated with the given expression. 

Specifically, it was tested whether expressions that have a form that resembles integer 

values would provoke interpreting them as standing primarily for integer number rather 
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than rational numbers, and accordingly, whether fraction-like expressions would provoke 

more rational number associations. The results showed statistically significantly higher 

performance in the CongSign tasks for the expression that had an integer-like form (e.g., a, 

-b, -d-4) (Μ= 10.31, S.E.= 0.23) than for the expressions that had a rational-like form (e.g., 

4/5y, -4/5z) (Μ= 4.181, S.E.= 0.147), [t(137) = 28.683, p <.001]. 

Considering the effect of the phenomenal sign to positive-like versus negative-like 

expressions the results showed statistically significantly higher performance in the CognInt 

tasks for the expressions that had a positive-like from (e.g., a, k+3, 4/5y) (Μ = 13.29, S.E.= 

0.331), than for those with a negative-like form (e.g., -b, -d-4, -4/5z) (Μ= 11.92, S.E.= 

0.30), [t(137) = 4.127, p <.001].  

DISCUSSION  

This study aimed to further test the hypothesis that there is a dual effect of the natural 

number bias in students’ number associations with the algebraic expressions that contain 

literal symbols, using a new methodology. As natural number bias is characterized the 

tendency on the part of the students to use their initial conception of the number concept- 

which is grounded on the representation and the properties of the mathematical concept of 

natural number- to situations where reasoning with rational or real number should be 

applied. Previous studies (Christou et al., 2007; Christou & Vosniadou, 2009, 2012; Van 

Dooren et al., 2010) have shown that due to this bias, students tend to misinterpret literal 

symbols that appear as variables in algebraic expressions to stand primarily for natural 

numbers rather than for rational or real numbers, as they are explicitly taught in school; this 

was named as integrity effect. Due to this tendency, students also appear to misinterpret the 

phenomenal sign of the algebraic expressions, which is the sign an expression appears to 

have as a superficial characteristic of its form, to be the sign of the numbers it can only 

represent; this was named as phenomenal sign effect. The results from a sample of 8th and 

9th grade students supported the main hypothesis of the study.  

Specifically, considering the integrity effect, the students tended to perform significantly 

better in the tasks that presented statements that were aligned to their beliefs that only 

natural numbers can be associated with literal symbols, e.g. k+3 can stand for 9, than in 

statements that challenged these beliefs, e.g. k+3 can stand for 4/5. These results provide 

further empirical support to previous findings in the field (Christou et al., 2007; Christou 

& Vosniadou, 2009, 2012; Van Dooren et al., 2010). Additionally, the students appeared 

reluctant to accept integer values for fraction-like algebraic expressions (e.g. 4/5y) than to 

accept rational number values for integer-like expressions (e.g. -4/5y).  

Considering the phenomenal sign effect, the students performed significantly better in the 

tasks that were congruent with the belief that numbers associated to an algebraic expression 

should be of the same sign as the phenomenal sign of the algebraic expression (e.g. k+3 

cannot not stand for -1) than in the tasks that challenged this belief (e.g., k+3 cannot not 

stand for 5). Additionally, the results showed that the students were more willing to accept 

negative number values associated with positive-like algebraic expressions (e.g. k+3), than 
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to accept positive numbers associated with negative-like expressions (e.g. -d-4). This 

supports previous findings that students are less likely to be affected by the positive 

phenomenal sign of the given expressions, than by the negative phenomenal one which 

they tend to interpret as the symbol of negativity (see also Vlassis, 2004). 

Overall the results showed that the two aspects of the natural number bias, i.e., the integrity 

and the phenomenal sign effects both affected students’ responses in the given tasks. 

However, effect size comparison showed that the integrity effect appeared to be stronger 

than the phenomenal sign effect.   

The above-mentioned misconceptions do not come without consequences. The findings of 

Christou & Vosniadou (2009) study suggest that students’ limited interpretations of the use 

of literal symbols in algebra caused them great difficulty in drawing graphs of functions, in 

evaluating inequalities, and evaluating equalities that included square root functions. 

Teaching which emphasizes the connection between variables and numbers may enhance 

understanding in all these domains.  

However, addressing the above-mentioned misconceptions is not expected to be an easy 

process, because it requires that the students accept positive and negative rational and real 

number substitutions for the literal symbols that appear in algebraic expressions, and thus 

that they have fully acquired the mathematical concept of variable as a symbol that can 

stand for any real number. For students to expand their conceptual fields beyond natural 

numbers they should address their natural numbers bias which is deeply ingrained in their 

knowledge base (Ni & Zhou, 2005). For students to do that they must reorganize their initial 

knowledge of number which is organized around natural numbers, to an understanding of 

the number concept that is closer to a number concept that resembles the characteristics of 

rational and real numbers. We would expect this to be a gradual and long lasting process 

that would require systematic support. For this reason, it is important for mathematics 

teachers to be familiar with the natural number bias in learning mathematical concepts in 

order to better understand students’ mistakes and the possible reasons why they may 

appear, and reconcile their teaching approach to deal with these mistakes.  

Some promising results comes from a teaching intervention that used a refutational 

argumentation to help students address the phenomenal sign misconception. Refutational 

argumentation consisted of directly stating students’ erroneous conceptions and then 

refuting them by presenting students with alternative viewpoints. The results showed that 

students who attended the intervention did significantly better immediately after the 

intervention and those benefits were maintained in the retention test one month later 

(Christou, 2012). Plausible alternative learning environments that target the natural number 

bias phenomenon need to be designed and applied to school, as long as they, of course, are 

empirically validated. 
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The rise of social media has afforded new opportunities for professional activity around 

mathematics teaching. Thousands of users are posting publicly about their experiences 

with mathematics teaching on an ongoing basis at an unprecedented scale in an 

unprompted, unfunded, and unmandated setting. Given the challenges around engendering 

sustainable professional development, informal professional activity, such as that found 

within a social media setting, is worthy of investigation. This study explores features of one 

such setting, with a specific focus on the underlying social structure that supports ongoing 

engagement. To this end, various social locations in this structure are defined and 

characterized, and modes of engagement in locations are found to vary according to social 

responsibility and ideational alignment. 

INTRODUCTION 

Professional activity around mathematics teaching is considered vital in the improvement 

of mathematics education at all levels (Borko, 2004). Research in mathematics education 

has identified various aspects of teacher professional development settings that make it 

effective at stimulating rich professional activity. For instance, activities should reflect and 

be driven by teacher needs and interests, and community building and networking should 

be at the core (Lerman & Zehetmeier, 2008). While many initiatives prove successful in 

engaging teachers in meaningful activity around mathematics teaching, there is growing 

attention on the sustainability of such activity. As such, informal settings where such 

activity occurs naturally have become of growing interest (e.g., Horn & Kane, 2015).  

With the rise of social media technology in recent years, education professionals are turning 

to resources that are becoming increasingly available beyond the confines of institutional 

boundaries. In turn, many of the constraints of traditional forms of professional activity are 

being bypassed, allowing for informal professional activity to flourish. In some cases, 

collectives of professionals have formed. One such collective, referred to as the Math 

Twitter Blogosphere (MTBoS), has remained resilient for almost ten years, with ongoing 

activity around mathematics teaching occurring daily via Twitter. MTBoS participants also 

have very promising statements about the possibilities for professional growth they 

experience and are often found suggesting that MTBoS is an effective space to share and 

develop ideas for teaching. 
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Following this weird #MTBOS hashtag on twitter has changed my teaching practice in 

so many ways. (@MrOrr_geek, 6 Feb 2018) 

Although communication through Twitter is generally random and unprompted, MTBoS is 

treated as an established space, determined by participation from members who contribute 

and continue to use the MTBoS hashtag. For instance, contributors often refer to it as a 

place rather than a hashtag, and grow to expect like-minded peers to be available there 

(Larsen & Parrish, 2019). Studies have explored various facets of MTBoS, such as around 

content quality (Parrish, 2016), instances of negotiation (Larsen & Liljedahl, 2017), 

participant perspectives (Larsen & Parrish, 2019), and its capacity to support in-person 

conference events (Waddell, 2019). Taken together, these studies reveal strong 

potentialities of MTBoS as a tool for professional growth.  

While most of the investigations of MTBoS to date have taken interest in the ideational 

opportunities in the space, none have focused on the unique nature of the social structures 

that support its ongoing activity. Interestingly, Twitter offers its users unreciprocated 

‘following’ relationships. That is, when a user ‘follows’ (or subscribes to the ‘tweet’ 

activity of) another user, that user need not reciprocate the relationship. This means that 

tweets published by users who are highly ‘followed’ are more likely to be seen and 

interacted with, and those who follow more users who publish ‘tweets’ in their domain of 

interest can build a better view on the activity in that domain of interest. Since all tweets 

made by users one follows are organized in chronological order in one’s newsfeed, this 

means each user has a unique view on the ideational space of MTBoS depending on the 

social relations they choose to create and maintain through both following other users and 

being followed by others. Therefore, following relationships can affect the nature of the 

ideational activity, and in turn, the social structure in MTBoS can influence the production 

and consumption of content. As such, the social location of a contributor could stimulate 

different kinds of engagement.  

Given the interest in engendering communities of practice around mathematics teaching 

and the overall agreeance on the necessity of collaboration within professional activity 

around mathematics teaching, uncovering the implications of the unique social structure in 

MTBoS on professional activity around mathematics teaching is worthy of attention. As 

such, the study presented in this paper is driven by the global question – how and why does 

MTBoS invoke a sustainable form of professional activity around mathematics teaching? 

And more specifically in this paper – what is the social structure in MTBoS and how does 

it drive ongoing activity? 

THEORETICAL FRAMEWORK 

Although a variety of theoretical frameworks were taken into consideration when 

approaching MTBoS as a phenomenon of interest, the primary theoretical perspective in 

this study is drawn from complexity thinking (Davis & Sumara, 2006). Complexity thinking 

provides the tools to describe a system of individual agents who seem to generate emergent 

macro-behaviours from individual autonomous actions. It is best suited for studying 
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decentralized and bottom-up emergent learning contexts, where learning is treated as 

expanding the space of the possible and the “emergence of the as-yet unimagined” (Davis 

& Sumara, p. 135). Since MTBoS has no central organization and is driven by individual 

professionals engaging in activity autonomously while simultaneously contributing to a 

collective that is often treated as a single entity, complexity thinking was the most well-

aligned theoretical perspective for pursuing investigation into this context and served as the 

primary theoretical lens in this study. As such, we highlight some of its key theoretical 

notions.  

Davis and Sumara suggest six interdependent conditions necessary for complex emergence, 

which they organize into three complementary pairs (or tensions): specialization (diversity 

and redundancy), trans-level learning (neighbour interactions and decentralized control) 

and enabling constraints (randomness and coherence). Specialization has to do with the 

diversities and redundancies among agents, trans-level learning has to do with the 

possibilities for individual ideas to ‘bump’ or interact with each other towards a greater 

whole, and enabling constraints consider the points of cohesion in the collective that 

maintain its structure while allowing for enough randomness for adaptation and learning. 

Although the focus in complexity thinking is primarily on ‘collective-knowing’, Davis and 

Sumara state, “the ideational network rides atop the social network” (p. 143). That is, 

through neighbour interactions among ideas, which are driven by agents with enough 

diversity and redundancy with each other, ideational emergence can occur. The strength 

and resilience of a collective is in some sense dependent on the far-from-equilibrium 

behaviour of these conditions.  

Although the goal of complexity theory is not to identify interpersonal collectively, as do 

other social theories of learning, ‘collective-knowing’ cannot be considered without the 

social interactions that bring it to fruition. However, Davis and Sumara indicate these 

aspects should not be collapsed. Since the ideational network of MTBoS has been explored 

elsewhere (Larsen, 2019), the focus of the work presented in this paper is on the social 

network that supports the emergent ideational network in MTBoS. To this end, some 

terminology is also borrowed from communities of practice (Wenger, 1998), such as that 

of the existence of a periphery and a core in terms of participation in a community, and that 

there are trajectories along which participants move as they participate over time. While 

the terminology from communities of practice is used as appropriate, complexity thinking, 

and the conditions for complex emergence serve as the primary theoretical worldview 

underpinning the methods and analysis in this study. 

METHODS 

Towards the construction and examination of the social network underlying the ideational 

network of MTBoS, tweets published on Twitter that included the MTBoS hashtag were 

gathered for analysis. However, the sheer mass of data available on Twitter (and in 

MTBoS) made it impossible to investigate in its entirety. MTBoS has grown over the past 

ten years to include over 6308 users (the number of unique users tweeting with the hashtag 
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at least twice between September and December of 2018), with an average of one tweet every 

two minutes (from this same timeframe). As such, a specific selection of data was chosen for 

analysis. Guided by the insider perspective of the presenting author, who gradually because a 

participant of MTBoS over a five-year period, the selection of data was made based on a 7-day 

period in late September of 2018. This timeframe was chosen strategically to avoid major 

influencing factors such as ‘back-to school’ or ‘midterm grading’ and the length of time was 

chosen to avoid influencing factors of certain days of the week while keeping data size 

manageable. As such, the data set was constructed by collecting all tweets from September 21-

28, 2018 into a spreadsheet along with meta-information such as timestamps and usernames. 

This initial collection included 6146 tweets made by 2948 unique user accounts, 4653 of which 

were direct retweets (exact replicas of original tweets). Given the aims of this study, direct 

retweets were removed. This left 1493 unique tweets made by 694 unique users. However, to 

make the dataset feasible for analysis, 30% of these tweets were randomly selected, resulting 

in a final data set of 444 tweets made by 322 unique users. 

While this data set was analysed in various ways, the study presented in this paper pertains to 

the analysis of the follower relations among the 322 users and the tweet contents they produced 

as relative to their social locations in the social network. To this end, the followers of each of 

the 322 users were identified, and then only those relationships that existed within the set of 

322 users were determined. The unreciprocated nature of these relationships allowed for each 

user to be granted two values: an in-degree and an out-degree, representing the number of users 

in the set they followed or were followed by, respectively. After plotting these values on a 

scatterplot, it became evident there were four possible social locations that corresponded to low 

and high values in each of these two dimensions (of in-degree and out-degree). As such, cut 

values were determined by taking the top 20% of values in each dimension to define what 

counted as high for that dimension. In-degrees of 56 or more and out-degrees of 49 or more 

were considered as high, which came to serve as boundaries for constructing the four regions 

of social location, as determined through this process. 

Tweet data was then organized by social location, and each set of tweet data was examined for 

redundancies and diversities among contributions. To achieve this, various aspects of 

contributions in each set were examined, such as key topics, presence of media in tweets, tone, 

and how content was presented by users. The most fruitful of these investigations was in 

looking at how content was presented. To this end, we drew on Remillard's (2012) distinction 

between forms and modes of address: where forms of address involve “particular ‘looks’ or 

formats that reflect and reinforce the mode of address” (p. 106). As such, each region of social 

location was examined in terms of the forms and modes of engagement used in publicizing the 

content. This was conducted via an open coding process that involved iterative coding with 

attention to redundancies and diversities within and across regions, beginning with tweets in 

the region with high values in each dimension. New codes were generated when necessary until 

a saturation point was reached in that every tweet fit into at least one coding. Overlap was 

permitted, and some tweets were coded with several codes if the tweet revealed multiple forms 

of engagement. The coding was then re-checked with a second pass. Once no new codes were 

found and each tweet in each of the categories was tagged with at least one of the codes, a final 

set of codes was determined. To explore how these forms of engagement compared across 
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regions of social location, the proportions of each code within each region were compared 

across regions. A final pass was then made to interpret the findings within each region of social 

location to build characterizations of the nature of contributions made in each region. These 

characterizations are revealed and interpreted in the results and discussion that follows.  

RESULTS 

After pursuing analysis of all selected tweets from each of the four social locations, the forms 

of engagement identified fell into eight categories: soliciting advice or resources, contributing 

resources or teaching advice, revealing practice, sharing accomplishments, endorsing, 

signalling an identity, advocating an opinion or stance, and building community. These forms 

occurred to varying degrees in each region and served to characterize the kinds of engagement 

prominent in each region. 

Those with relatively low numbers of followers and followings were referred to as newcomers. 

While this title may not be reflective of their longevity of participation, their social position 

and the forms of engagement they evidenced led us to consider them as newcomers in this 

setting. When examining the tweets made by this group, it because evident that they typically 

engaged in primarily practice-oriented ways, with a focus on pragmatism and utility towards 

classroom practice. Although their tweets were generally diverse in terms of topics, there was 

a strong redundancy among their tweets around being focused on either specific mathematical 

content or pedagogy, without making significant connections between them. Their tweets were 

relatively generic and could be considered as representations of the broader populous of 

mathematics teachers in the sense that they lacked reference to popular pedagogical approaches 

of MTBoS such as ‘noticewonder’ or ‘groupwork’.  

In terms of tone, the tweets made by newcomers were often celebratory in nature, with share-

outs of pride and excitement for accomplishments that were most often practice-oriented. For 

instance, in Figure 8a below, the contributor reveals excitement for using technology towards 

improving student ability with evaluating functions. 

  
(a)  (b) 

Figure 8: Examples of practice-oriented contributions  

Although many newcomers offered indication of contributing resources, the resources they 

contributed were often partial in nature without complete enough detail to be used in someone 

else’s classroom. As such, newcomers primarily seemed to use MTBoS to build their identities 

as teachers of mathematics in general rather than specifically as MTBoSers. Their concerns 

were often personally oriented rather than concerned with others and tended to involve 

mathematical content rather than pedagogy. 
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On the other hand, slightly different forms of engagement were evident among users who 

followed more of the others in this dataset while still being not very highly followed. These 

users were referred to as observers due to their heightened capacity to view activity of others 

in MTBoS. Unlike newcomers, observers engaged by tweeting about practice in ways that 

revealed they were implementing pedagogies commonly found within MTBoS activity, such 

as ‘instructional routines’, ‘desmos activities’, and ‘noticewonder’, and not only mathematical 

ones such as ‘geometry’. In such ways, they were projecting their identities as those who 

belonged to MTBoS. The focus in these tweets was around sharing personal accomplishments 

aligned with popular trends in MTBoS and not just in the more generic domain of mathematics 

teaching. For example, in Figure 8b above, one contributor shows excitement for doing a 

hands-on activity that involves group learning and meaning making, as is common in MTBoS 

activity, and reveals an image of students using a hula hoop to explore the unit circle.  

Observers were also overall quite attention-grabbing in how they presented their contributions 

and came across as willing to be vulnerable to ask questions. Although many of their questions 

went unanswered, they revealed sensitive issues such as forgetting how to approach a 

mathematical topic or seeking opinions on an undesirable student response they encountered. 

In one case, an observer stated, “Can’t seem to help students to see variables as possibilities. 

They just want numbers. Any ideas? #mtbos”. In such a query, they suggested their desire for 

helping students understand concepts more deeply while simultaneously indicating their 

inability to achieve this. This aligns with commonplace themes in MTBoS such as helping 

students make meaning and evidencing growth mindset. Overall, observers seemed to tweet in 

ways that positioned them as MTBoSers while maintaining a focus on personal aims and 

interests.  

In contrast to the personally focused newcomers and observers, those with more significant 

followings were more aptly focused on serving their community, such as by providing 

resources or sharing about initiatives. However, those who followed fewer MTBoS 

contributors seemed less aligned with the most central topics of interest than those who 

followed more. As such, highly followed contributors who did not follow as many MTBoS 

contributors were referred to as influencers, while those who also followed many MTBoS 

contributors were referred to as leaders. This distinction had to do with their capacity to view 

ideational trends in MTBoS based on who they followed. 

Interestingly, a similar pattern of misalignment continued for influencers as for newcomers, 

the two social locations that did not highly follow others in the set. While influencers were 

often contributing resources that were specific enough to be used directly in classrooms, their 

resources were often misaligned and sometimes even overly polished or marketed. However, 

unlike their newcomers, influencers used their high social visibility to promote new materials, 

expressions of gratitude, and questions of those who were less followed. In one case, an 

influencer even developed a ‘broken calculator’ tool and used their following to solicit 

feedback on it, with significant response. Leaders, on the other hand, were similarly attentive 

in terms of serving the community and pushing boundaries, but did so in ways that maintained 

alignment with prominent topics and values in MTBoS. For instance, they advocated for 
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building relationships with students (as in Figure 9a), for learning about social justice issues 

(as in Figure 9b), and for welcoming newcomers to MTBoS (as in Figure 9c). 

  

 

(a) (b) (c) 

Figure 9: Examples of advocacy in contributions of leaders  

And when sharing resources, their contributions provided enough specificity that they could be 

used directly by others while remaining within the ideational space commonly found in 

MTBoS. For example, they included hyperlinks to ‘desmos’ activities or to student self-

reflection sheets that reveal student progress. Moreover, they linked pragmatic resources with 

pedagogical descriptions and rationale while also signaling a MTBoS identity. Their capacity 

for visibility and awareness of others was evident, which translated to being community-

oriented, boundary-pushing, but also, aligned. 

DISCUSSION AND CONCLUSIONS 

Taken together, when looking across regions of social location, two key factors emerged as 

pertinent to identifying the modes of engagement evident within each social location in 

MTBoS: social responsibility and ideational alignment. Those who were more highly followed 

seemed to engage with more concern for others, and therefore, with social responsibility, than 

those who were less highly followed. Conversely, those who were following more of the other 

MTBoS contributors in the data set seemed to include prominent topics and ideas commonly 

shared in MTBoS (as determined in previous studies), and therefore, had more ideational 

alignment to prevailing discourse in MTBoS. These findings are summarized in Figure 10 

below. 

 
Figure 10: Modes of engagement in social location – as two dimensions 

This implies that neighbour interactions among agents in MTBoS are not completely random, 

as suggested by complexity thinking, and the social structure is more nuanced than having a 

single core and periphery, as suggested by communities of practice. Rather, neighbour 

interactions are produced and influenced by a sort of social capital that privileges certain ideas 
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and modes of engagement over others. There are also multiple social locations, determined by 

visibility by others and awareness of others, that can be characterized by two related 

dimensions to modes of engagement: social responsibility and ideational alignment. When both 

are invoked, a sort of informed leadership emerges and seems to equip leaders to advocate for 

change, push boundaries, and build community. Combinations of these dimensions offer other 

social locations which may contribute to the robustness of MTBoS by offering sources of 

diversity and redundancy. Various trajectories for engaging in MTBoS over time may also be 

possible to determine with further study. Overall, the features presented in this paper illuminate 

the unique social structure of MTBoS, and in turn, challenge perspectives on social structures 

in professional communities as being centered around a single core. It also suggests further 

attention to the visibility of emergent ideas and opportunities for advocacy in professional 

learning environments. 
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The aim of this study is to analyse the reflection made by a preservice mathematics teacher 

on the role of mathematical modelling for improving an instructional process. The interest 

focuses on the use of didactic suitability criteria as a tool for reflection in his master’s 

thesis. The methodology consists of carrying out a content analysis of his written report. In 

terms of its extension, this is a case study. Based on the analysis of the teacher’s reflections, 

the main results are: on the one hand, the redesign of the implemented lesson plan adds 

more modelling projects to complement the teaching of functions; on the other hand, the 

inclusion of mathematical modelling is mainly related to the improvement of the epistemic 

and ecological suitability of the implemented instructional process. 

INTRODUCTION 

A key aspect in teachers training is teacher reflection on their own practice, in particular, 

the assessment of didactic suitability of instructional processes (Pino-Fan, Font, & Breda, 

2017). Once reflection becomes habitual for a teacher, it can become the main mechanism 

to improve his/her own practice (Schoenfeld & Kilpatrick, 2008; Schön, 1987). 

Various studies have addressed teacher reflection in the training of mathematics teachers, 

specifically, analysing the preservice teachers’ reflection in their Master’s Theses, using 

the didactic suitability criteria (DSC) proposed by the Onto-Semiotic Approach (OSA) 

(e.g., Breda, 2020; Breda, Pino-Fan, & Font, 2016, 2017; among others). In contrast to 

these studies, which analyse the whole teacher reflection, our study focuses on preservice 

teacher’s reflection on the implementation of mathematical modelling for the improvement 

of an instructional process. 

Based on the latter, the following question arises: how do preservice teachers use the DSC 

in their master’s theses to reflect on the implementation of mathematical modelling? In 

order to answer it, we analyse the reflection made by a preservice teacher (Justicia, 2020) 

on the role of mathematical modelling for the improvement of an instructional process, in 

which he used the DSC. Overall, the chosen master’s thesis is a reflection and reformulation 

of the design and implementation of a lesson plan (LP), which contemplates the work with 

mathematical modelling to teach functions in the first grade of baccalaureate (students aged 

16 to 17 years-old). 

THEORETICAL FRAMEWORK 

This section presents the theoretical references considered in this study. 
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Mathematical modelling 

The mathematical modelling process is understood, in general terms, as a transition 

between the real world and mathematics, to solve a problem-situation taken from reality. 

Although different cycles designed to explain this process coexist (Borromeo Ferri, 2006), 

and diverse perspectives on its implementation have emerged (Abassian, Safi, Bush, & 

Bostic, 2020), there is a clear consensus that its inclusion in curricula is necessary to 

improve the learning of mathematics (Kaiser, 2020). 

This study does not adopt any particular modelling cycle or perspective, but rather, we 

consider the following consensual attributes that characterise the work with this process 

through projects. In this approach, a real-world problem (question or task) is posed to 

students, which must be solved in groups over a longer period of time (Blomhøj & 

Kjeldsen, 2006). This problem must be open (not limited to a specific answer or 

procedures), complex (useful information must be distinguished from the rest of the 

wording of the task), realistic (adding elements taken from reality), and authentic (a 

situation consistent with a fact from reality) (Borromeo Ferri, 2018). This kind of projects 

presuppose greater degrees of autonomy and responsibility on the part of students, who 

assume the discussion and resolution of the problem through a constant reflection on the 

situation (Blomhøj & Kjeldsen, 2006). 

Didactic suitability criteria 

In the OSA, the didactic suitability of a teaching-learning process is understood as the 

degree to which it (or a part of it) meets certain characteristics that allow it to be qualified 

as suitable (optimal or adequate) in order to achieve an adaptation between the personal 

meanings achieved by the students (learning) and the institutional meanings intended or 

implemented (teaching), taking into account the circumstances and available resources 

(environment). 

This multidimensional construct consists of six partial suitability criteria: epistemic 

criterion, to assess whether the mathematics that is taught is ‘good mathematics’; cognitive 

criterion, to assess, before starting the instructional process, whether what is intended to 

teach is at a reasonable distance from what the students know; interactional criterion, to 

assess whether the interaction solves doubts and difficulties of the students; mediational 

criterion, to assess the adequacy of resources and time used in the instructional process; 

affective (or emotional) criterion, to assess the involvement (interest, motivation) of the 

students in the instructional process; ecological criterion, to assess the adaptation of the 

instructional process to the educational project of the school, the curricular guidelines, the 

conditions of the social and professional environment, etc. (Morales-López & Font, 2019). 

Each of these criteria has its respective components and indicators (see Breda et al., 2017). 

In the OSA, mathematical modelling is considered as a hyper or mega process (Godino, 

Batanero, & Font, 2007), since it involves other more elementary processes (representation, 

argumentation, idealisation, etc.). Furthermore, within this framework, enhancing 
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mathematical modelling is an aspect that improves the suitability of the instructional 

process (Ledezma, Font, & Sala, 2021; Sala, Font, & Ledezma, in press). 

METHODOLOGY 

In this work, we followed a qualitative research methodology (Cohen, Manion, & 

Morrison, 2018), which consisted of conducting a content analysis of the reflection of a 

preservice teacher in his master’s thesis; and, from the point of view of its extension, it is 

a case study (Stake, 2005). 

Research context 

This research was developed in the context of the Master’s Program in Teacher Training 

for Secondary Education and Baccalaureate (mathematics speciality), taught by public 

universities of Catalonia (Spain), during the academic year 2019-2020. To obtain the 

Master’s Degree, preservice teachers must design and implement a teaching-learning 

sequence, which is determined by the educational institution, the level of students, and the 

time of the academic year in which preservice teachers do their teaching practice. Thus, a 

preservice teacher has many restrictions to work exclusively on mathematical modelling in 

his/her LP, although this is not the case in the redesign that he/she can propose in his/her 

master’s thesis. 

Description of the master’s thesis 

After their teaching practice in the training centre, the DSC proposed by the OSA are 

introduced to preservice teachers, along with a guideline of components and indicators for 

the application of such criteria. Then, in their master’s theses, the teachers are suggested to 

use these tools to assess the teaching-learning sequence they implemented and propose 

changes to improve the suitability of the instructional process. 

The master’s thesis of Justicia (2020) is a proposal to teach functions in the first grade of 

baccalaureate. It consisted of 15 sessions: 4 of them were held in person and the remaining 

11 online, because of the lockdown due to the COVID-19 pandemic. In his master’s thesis, 

the preservice teacher includes a modelling project, which consists of the profitability study 

of a small company. The project develops during two sessions (the fifth and the sixth) of 

his LP. This project is detailed in the next section. 

Content analysis 

The qualitative analysis of the data was developed in four steps, following a methodology 

similar to that used by Sánchez, Font, and Breda (2021): first, 122 master’s theses (from 

the academic year 2019-2020) were classified according to the educational level and the 

mathematical content of the LP; second, a search for keywords related to mathematical 

modelling was carried out (context*, model*, problem*, real*, etc.); third, the master’s 

theses were categorised according to the importance they gave to mathematical modelling 

(used in the implementation, in the redesign proposal, or both); fourth, the assessments of 

DSC were analysed to identify on which ones they focused their reflections on 

mathematical modelling. 
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The master’s thesis of Justicia (2020) was classified in the group of master’s theses where 

mathematical modelling is used both in the implemented LP and in its redesign (step 3), 

that is why we analysed this one. In his master’s thesis, the preservice teacher writes 

evaluative comments related to the different components and indicators of the DSC. In this 

research, comments about working with mathematical modelling are analysed. The starting 

point of the content analysis are a priori categories, namely the criteria, components and 

indicators of didactic suitability to identify which criteria are related to mathematical 

modelling in the preservice teacher’s reflections (step 4). 

ANALYSIS OF THE MASTER’S THESIS 

This section presents the analysis of the assessments made by the preservice teacher on the 

implementation of his LP. To this end, we describe this assessment and, for each DSC that 

is assessed, we point out the comments that justify his thought and that –directly or 

indirectly– allude to mathematical modelling. We also consider the components of each 

criterion to which these comments relate. The analyses focus on the assessment of the 

project Profitability study of a small company (see Figure 1), where the preservice teacher 

makes his reflections explicit. The aim of this activity is “to know, through 

multidisciplinary tools, whether a small business is profitable or not, setting economic 

reference values” (Justicia, 2020, p. 39, authors’ translation). 

 
Figure 1: Extract from the Profitability study statement 

(translated from Justicia, 2020, pp. 39-40) 

Epistemic suitability 

In the assessment of the component ‘richness of processes’, the preservice teacher 

highlights that his Profitability study allows the students to develop the following 

processes: ‘representation’, ‘communication’, and ‘argumentation’, but above all, ‘problem 

solving’ and ‘mathematical modelling’. With this last process, he intends to: 

interpret the properties of functions, checking the results with technological tools 

[software GeoGebra] in contextualised problems, and to extract and identify information 

derived from the study and analysis of functions in real contexts, such as the initial study 

to start a small business. (Justicia, 2020, p. 6, authors’ translation) 

In the assessment of the component ‘representativeness’, he alludes to the fact that this 

project emphasises the partial meanings related to the concept of function (domain, 

codomain, cartesian representation, limit, continuity, etc.). In addition, he considers 

functions as a unifying concept and a useful tool for mathematical modelling. 
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Interactional, affective, cognitive, and mediational suitability 

These four DSC are presented together because the preservice teacher does not make very 

detailed assessments of these criteria. Regarding the component ‘student’s interaction’ of 

the interactional suitability, the preservice teacher highlights the heterogeneous 

arrangement of student groups, the socialisation and collaboration between the students, 

and the minimum intervention by himself –as a teacher– during the tasks related to the 

Profitability study project. In the assessment of the component ‘interests and needs’ of the 

affective suitability, he mentions that this project was used to awaken curiosity and interest 

in his students, and it is related to their own environment. Regarding the cognitive and 

mediational suitability, the preservice teacher does not mention mathematical modelling to 

these criteria in his assessments. 

Ecological suitability 

In the assessment of the component ‘adaptation to curriculum’, the preservice teacher considers 

that the content addressed, the objectives set, and the tasks proposed (Profitability study), are 

in line with what is stipulated by the curriculum for the first grade of baccalaureate 

(Departament d’Ensenyament, 2008). In the assessment of the component ‘intra and 

interdisciplinary connections’, the preservice teacher points out that the Profitability study 

establishes connections with economy, addressing issues such as the identification and 

calculation of costs and incomes of a business, the minimum interprofessional salary, economic 

profitability, etc. In the assessment of the component ‘social and labour utility’, the role of the 

Profitability study stands out, since both the context of the task and the transversal use of 

functions in working life, represent a strong point of this proposal. 

Global assessment of didactic suitability 

Figure 2 presents the global assessment made by the preservice teacher of the didactic 

suitability of the implemented instructional process. This consists of a hexagonal radial graph, 

in which the outer regular hexagon represents an ideal instructional process, and the inner 

irregular hexagon represents the suitability of the implemented instructional process. 

 

Figure 2: Hexagon for the assessment of didactic suitability 

(adapted from Justicia, 2020, pp. 12-13) 
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Lesson plan improvement proposal 

Based on the assessments presented in Figure 2, and in order to redesign his proposal, the 

preservice teacher focuses on improving the following components: ‘representativeness’ 

(epistemic suitability), ‘high cognitive demand’ (cognitive suitability), ‘teacher-student 

interaction’ (interactional suitability), and ‘didactic innovation’ (ecological suitability). To 

this end, he considers that posing more mathematical modelling projects and contextualised 

problems would contribute to the improvement of such components, based on Font’s 

(2011) proposal for the work with functions. Therefore, the preservice teacher adds the 

following new projects: The Changes of phase of water project, whose objective is to 

discover the equations of a line using data from the experiment of boiling water; the 

Maximisation of the volume of a prism project, related to cubic functions, their derivatives, 

and the maxima and minima of these functions; and the Final speed of a car project, which 

considers the problem of maximum speed posed by a car company. 

DISCUSSION AND CONCLUSIONS 

From the analysis of the explanation of the preservice teacher Justicia (2020), the results 

show that his appraisals about the incorporation of mathematical modelling in his LP 

mainly focus on the epistemic and ecological suitability criteria; and to a lesser extent on 

the interactional and affective suitability criteria. 

The preservice teacher mentions mathematical modelling when he assesses the component 

‘richness of processes’ of the epistemic suitability. However, he does not specify whether 

he adopted or not any modelling cycle, although the master’s training includes a 

mathematical modelling sub-module, which introduces, in particular, the proposal of Blum 

and Leiß (2007). Moreover, the preservice teacher did not use this cycle –or any other– to 

describe or analyse his Profitability study project, which could indicate that he did not have 

enough conceptual clarity about theories on mathematical modelling. It should be noted 

that, although the statement posed in Figure 1 meets some of the characteristics of a 

mathematical modelling problem (it is open, complex, realistic and authentic), the 

description of its implementation shows that it was not carried out according to the 

methodology of a project. This is due to the structure of the educational system, where the 

curricular times are limited and mathematical modelling is subject to its treatment, mainly, 

as a competence and not as a content. 

Resuming the research question of this study, we can conclude that the DSC not only 

allowed the preservice teacher to reflect on his teaching practice, but also revealed both his 

conceptual and procedural notions of mathematical modelling, as well as the importance 

he attributes to it in the implemented instructional process. The latter conclusion is 

evidenced by the addition of more activities to develop mathematical modelling in his 

redesign proposal. 
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It is widely acknowledged that engaging young children with mathematics is both possible 

and beneficial. Being that young children spend a great deal of time with adults outside of 

school, this research investigates the beliefs of adults regarding engaging young children 

with number concepts. Questionnaires were handed out to 91 participants, none of whom 

were preschool teachers. In general, participants had positive beliefs regarding supporting 

children’s engagement with various numerical activities. Some differences between 

participants with different backgrounds (e.g., connections with young children, 

professions) were found. 

INTRODUCTION 

Researchers agree that promoting numerical skills, such as counting, comparing sets, 

number composition and decomposition, and recognition of number symbols, is important 

during early childhood (Nguyen et al., 2016). Several studies have investigated preschool 

teachers’ knowledge and beliefs related to teaching early number competencies (e.g., 

Vlassis & Poncelet, 2016). However, young children often spend much of their day in the 

care of other responsible adults who are not necessarily trained preschool teachers. Studies 

suggest that for children to take advantage of the academic opportunities provided at 

preschool, some level of support from the home environment, such as toys that stimulate 

learning number and shapes, is necessary (Anders et al., 2012). Furthermore, adults’ beliefs 

regarding the importance of doing mathematical activities at home was found to be 

significantly related to the frequency with which children reportedly did mathematics at 

home (Sonnenschein et al., 2012). Thus, it is relevant to investigate adults’ knowledge and 

beliefs related to numerical learning during the preschool years.  

Based on our previous work with preschool teachers (e.g., Tsamir, Tirosh, Levenson, 

Barkai, & Tabach, 2015), this paper introduces a framework for investigating adults’ 

knowledge and beliefs related to playfully engaging with mathematics in the early years. 

Researchers use the term “playful” in recognition of the dilemma that early childhood 

educators face, both teachers and researchers, in how to balance instruction and play. 

Playfully engaging with mathematics infers that the child is active, the activities are 

flexible, and an adult is present to guide the child toward a specific knowledge (Hirsh-

Pasek, Golinkoff, Berk, & Singer, 2009). After introducing the framework, the paper 

focuses on beliefs, and describes how this framework was used to investigate adults’ beliefs 
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concerning children’s playful engagement with numerical concepts. Finally, the paper 

presents results regarding those beliefs.  

THEORETICAL FRAMEWORK 

For the past several years, researchers have used the Cognitive Affective Mathematics 

Teacher Education (CAMTE) framework, when investigating and promoting teachers’ 

knowledge and self-efficacy for teaching number, geometry, and pattern concepts (e.g., 

Tsamir, Tirosh, Levenson, Barkai, & Tabach, 2015(. This framework differentiated 

between two components of subject-matter knowledge (SMK): being able to produce 

solutions, strategies and explanations and being able to evaluate given solutions, strategies 

and explanations. In line with Ball, Thames, and Phelps (2008) the framework 

differentiated between two aspects of pedagogical content knowledge (PCK): knowledge 

of content and students (KCS) and knowledge of content and teaching (KCT). In adapting 

the framework for adults, researchers referred to the same aspects of SMK as our previous 

framework. Researchers consider the mathematics knowledge researchers wish to promote 

among young children, and the mathematics knowledge adults need in order to promote 

children’s knowledge (see Table 1, Cells 1 and 2). Thus an example of Cell 1 would be to 

request participants to count a set of objects, and then count them again in a different way 

(e.g., first by counting 1, 2, 3,… and then by skip counting 2, 4, 6,…). 

 Mathematics for adults and children Mathematics Engagement 

 Solving Evaluating Children Playful learning 

K
n
o
w

le
d
g
e 

Cell 1: solving 

tasks. e.g., count 

the number of 

elements in a set 

using a variety of 

strategies 

Cell 2: 

evaluating tasks. 

e.g., evaluate the 

efficiency of a 

counting 

strategy 

Cell 3: knowledge 

of children’s 

conceptions. e.g., 

which number 

symbols do 

children confuse. 

Cell 4: knowledge of 

content and playful 

learning. e.g., which 

activities can foster 

children’s acceptance 

of the one-to-one 

principle. 

B
el

ie
fs

 

Cell 5: 

mathematics 

beliefs related to 

solving tasks. e.g., 

is it important to 

know several ways 

to count the 

number of items in 

a set. 

Cell 6: 

mathematics 

beliefs related to 

evaluating tasks. 

e.g., is it 

important to 

know which 

solution 

methods are 

efficient. 

Cell 7: beliefs 

regarding children 

and mathematics. 

e.g., believing that 

young children 

enjoy learning 

number concepts.  

Cell 8: beliefs regarding 

ways of engaging 

children with playful 

mathematics. e.g., 

believing that adult 

guidance can foster the 

learning of early 

number concepts. 

  

Table 1: The Cognitive Affective Mathematics Adult Education (CAMAE) Framework 

Whereas for teachers, researchers referred to PCK, for adults, researchers refer to 

knowledge needed for engaging children with playful mathematics (henceforth, 
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Mathematics Engagement Knowledge) (Cells 3 and 4). Thus, instead of KCS, researchers 

refer to knowledge of content and children, such as knowing that children aged three may 

not yet have acquired the cardinality principle of counting; instead of KCT, researchers 

refer to knowledge of content and playful learning, that is, knowledge of activities that can 

promote numerical thinking. Researchers call the adapted framework for adults who are 

not preschool teachers, the Cognitive Affective Mathematics Adult Education (CAMAE) 

framework.  

Each knowledge cell has a corresponding belief cell. Whereas for teachers, researchers 

were interested in their self-efficacy for teaching mathematics, in our research with adults, 

researchers were interested in their beliefs regarding what mathematics children (and the 

adults who interact with them) should know, and how children can engage with 

mathematics. That is, researchers consider beliefs related to mathematics (Table 1, Cells 5 

and 6) as well as engagement beliefs, i.e., beliefs related to engaging children with 

mathematics (Table 1, Cells 7 and 8).  

BELIEFS REGARDING PRESCHOOL MATHEMATICS 

Several studies investigated beliefs regarding the importance of learning mathematics in 

preschool. Most studies found that both preschool teachers and parents agree that 

mathematics should be and can be promoted in the years before Grade 1 (e.g., Missall, 

Hojnoski, Caskie, & Repasky, 2015). That being said, when comparing the importance of 

learning mathematics to other subjects, Vlassis and Poncelet (2016) found that first-year 

prospective preschool teachers rated engaging with mathematics in preschool as less 

important than engaging with language, arts, and psychomotricity. Similarly, some home 

day care providers believe it is less important for young children to acquire mathematics 

skills before entering kindergarten, than other social and academic skills (Blevins‐Knabe, 

Austin, Musun, Eddy, & Jones, 2000). Furthermore, parents and caregivers reported that 

mathematics activities at home occurred less frequently than reading or other play. More 

specifically, it was found that parents help their children learn language skills more than 

mathematics in both everyday contexts, such as carrying out household chores, as well as 

during more structured contexts, such as direct teaching (Cannon & Ginsburg, 2008). Some 

participants claimed that teaching mathematics in preschool can hinder social and 

emotional development. These beliefs are in contradiction with educators’ 

recommendations for supporting early mathematics (Nguyen et al., 2016). 

Focusing on mathematical activities at home, Missall, Hojnoski, Caskie, and Repasky 

(2015) listed 19 activities related to number and operations and asked parents to rate how 

often they engaged their children with those activities. Among the most frequent activities 

were counting aloud, counting out several items from a larger group, and reading numbers. 

Among the least frequent activities were skip counting, counting backwards, and 

comparing the number of objects in two sets. Similar results were found by Skwarchuk 

(2009), who also found that many parents incorporated numerical concepts during natural 

settings at home.  
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Parents’ backgrounds might also be related to their beliefs and home mathematical 

activities. For example, Chinese parents thought it was less important to do mathematics at 

home, than American parents (Sonnenschein et al., 2012). A different study found that 

middle socio-economic status (SES) parents were more likely than lower SES parents to 

endorse embedding mathematics in the children’s home routine (DeFlorio & Beliakoff, 

2015). Parents’ educational backgrounds were found to be positively correlated with their 

attitudes towards mathematics, which in turn affected their home numeracy practice 

(LeFevre, Polyzoi, Skwarchuk, Fast, & Sowinski, 2010). Some studies found a positive 

relationship between parents’ beliefs of their own mathematical ability and the types of 

mathematical activities they provide their preschoolers (Blevins‐Knabe et al., 2000).  

The aim of the present research is to investigate adults’ beliefs regarding engaging young 

children in mathematical activities, in accordance with the CAMAE framework described 

above. Previous studies investigated parents’ and home-care providers’ beliefs. Taking into 

consideration that grandparents, aunts, uncles, and other adults may also engage children 

with mathematics activities, this research includes adults who are not necessarily parents, 

as well as adults who have no specific current relationship with young children. 

Specifically, researchers ask: (i) Is there a difference in beliefs regarding engaging young 

children in mathematical activities between adults who have a relationship with children 

between the ages of 3 and 6, and those who do not? Considering that adult’s active 

engagement in mathematics during their daily life might also be related to their beliefs, the 

second research question is: (ii) Is there a difference in beliefs regarding engaging young 

children in mathematical activities between adults that work in a mathematics related 

profession and those who do not? 

METHODOLOGY 

Participants were 91 adults, between the ages of 20 and 60. Of the 91 adults who 

participated, 30 reported working in a mathematics related profession, such as mathematics 

teachers and engineers. The rest were teachers (not mathematics teachers and not preschool 

teachers), psychologists, occupational therapists, and municipal workers. A total of 58 

participants stated that they have some relationship with children between the ages of three 

and six years. Researchers defined relationship as parent, uncle, aunt, grandparent, sibling, 

or other connection deemed close to the child. Questionnaires were handed out individually 

to the adults in the presence of the researcher.  

A nine-Likert-scale questions were designed for this research. The range of the scale was 

from 1 (I do not agree) to 6 (I fully agree). Table 2 presents the questions and their 

relationship to the CAMAE framework. The first two questions relate to general beliefs 

regarding children’s ability to learn mathematics at an early age and their enjoyment in 

doing mathematics. While previous studies investigated adults’ beliefs regarding the 

importance of promoting mathematics at an early age, they did not address beliefs regarding 

children’s enjoyment in doing so. Questions 3 and 4 are similar but have a subtle difference. 

In Question 3, researchers ask participants if it is worthwhile to engage children with 
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number activities, but do not specify why it would be worthwhile. In other words, 

participants may believe that it is worthwhile because it can promote a positive attitude 

towards numbers. In Question 4, the statement is more direct, specifically asking if playing 

with such games can enhance children’s number knowledge. Question 5 addresses 

participants’ beliefs regarding general activities, and not necessarily those that deal with 

number aspects. One may think of eating dinner as a general activity that does not 

specifically deal with number concepts and ask themselves if such an activity can invite 

engagement with numbers. Question 6 is again a rather general question dealing with the 

importance of solving mathematical tasks. On the other hand, Questions 7 and Question 8 

deal with the importance of evaluating solutions. Preschool mathematics educators have 

suggested that evaluating solutions and comparing strategies is beneficial for preschool 

children in learning number sense and examining relationships between numbers (e.g., 

Linder, Powers-Costello, & Stegelin, 2011). Finally, Question 9 focuses on the benefit of 

an adult’s interaction. As can be seen from the questions, this part of the research mainly 

focused on participants’ beliefs regarding engaging children with mathematics. 

Researchers also avoided terms such as instruction, and instead related to activities and 

games, suggesting a playful approach.  

Question Framework 

1. Children enjoy activities/games that deal with number aspects. Cell 7  

2. Children’s number knowledge can be promoted. Cell 7  

3. It is worthwhile to engage children with activities/games that deal with number 

aspects 

Cell 8 

4. Activities/games that deal with number aspects can increase children’s 

knowledge of number concepts. 

Cell 8 

5. Almost every activity/game can invite children to engage with aspects of 

number. 

Cell 8 

6. It is important for children to be able to solve number tasks in various ways. Cell 5 

7. It is important for children to be able to identify if a suggested method for 

solving a number activity/task is correct. 

Cell 6 

8. It is important for children to be able to choose appropriate ways for solving 

number activities/tasks. 

Cell 6 

9. Interaction between a child and an adult while engaging in an activity/game can 

increase the child’s knowledge of number. 

Cell 8 

Table 2: Relationship between beliefs questions and the CAMAE framework 
 

RESULTS 

In general, participants had positive beliefs regarding supporting children’s engagement 

with various numerical activities (see Table 3). Participants were less sure if every 

activity/game can invite children to engage with aspects of number (Item 5) and less 

positive about the need for children to be able to identify if a suggested method for solving 

a number activity/task is correct (Item 7). Researchers also note that Item 5 was the only 
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item where responses ranged from 1 to 6. It also had the highest standard deviation, 

inferring that participants did not agree on this item. 

 Relationship with children Mathematics related profession 

Question Yes (N=58) 

M (SD) 

No (N=33) 

M (SD) 

Yes (N=30) 

M (SD) 

No (N=61) 

M (SD) 

1 5.21 (.93) 5.27 (.98) 5.27 (.91) 5.20 (.98) 

2 5.79 (.61) 5.73 (.57) 5.50 (.90) 5.90 (.30) 

3 5.55 (.84) 5.70 (.59) 5.63 (.72) 5.59 (.78) 

4 5.78 (.56) 5.76 (.56) 5.57 (.73) 5.87 (.43) 

5 4.48 (1.27) 3.70 (1.48) 3.90 (1.37) 4.36 (1.38) 

6 5.24 (1.01) 4.91 (1.01) 4.93 (1.02) 5.23 (1.01) 

7 4.83 (1.14) 5.00 (1.00) 4.93 (1.02) 4.87 (1.13) 

8 5.28 (.89) 5.15 (.80) 5.07 (.91) 5.25 (.93) 

9 5.74 (.61) 5.67 (.78) 5.47 (.97) 5.77 (.64) 

Table 3: General results of the beliefs questionnaire 
 

An analysis of variance showed that the effect of working in a mathematics related 

profession was significant to two items. Adults who were working in mathematics related 

professions believed less in the promotion of early mathematics (Item 2) than did adults in 

other professions, F(1,93) = 5.07, p = .008, η2
p =.102. Mathematics related professionals 

believed less that activities/games dealing with number aspects can increase children’s 

knowledge of number concepts (Item 4) than other adults (M=5.87, SD=.43), F(1,93) = 

3.194, p = .046, η2
p =.067. Regarding adults’ relationship with children, an analysis of 

variance showed that adults with a relationship to young children had a stronger belief that 

almost every activity/game can invite children to engage with aspects of number (Item 5) 

than adults who did not acknowledge a relationship with children, F(1,93)=7.249, p=.008, 

η2
p =.075.  

DISCUSSION 

In this paper researchers introduced a framework for investigating adults’ beliefs regarding 

young children’s engagement with mathematics. Our framework grew out of our work with 

preschool teachers. In answer to our first research question, it was interesting to find that 

the beliefs of adults who have a relationship with children hardly differ from those that do 

not have a relationship with children. The one exception was that adults with a connection 

to children had a stronger belief that almost every activity/game can invite children to 

engage with aspects of number than those with no connection to children. This may be due 

to having more experiences with children in their natural environment and the realization 

that even mealtime may give rise to engagements with number concepts. Educators of 

adults, including preschool teachers, may consider this result, and demonstrate how number 

concepts can arise in almost every activity.  

In answer to our second research question, researchers found that adults working in 

mathematics related professions believed less in the promotion of early mathematics and 
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believed less that activities/games dealing with number aspects can increase children’s 

knowledge of number concepts. Perhaps those adults who have studied mathematics at the 

university level believe that mathematics is a subject best learned formally in school.  

Perhaps this result is related to those adults’ beliefs of mathematics as a domain. Yet, 

previous studies that found parents’ who have a positive attitude towards mathematics 

frequently engage their young children with number activities (LeFevre et al., 2010). This 

is a question for further studies.    

Previous studies recognized that parents ask their children questions such as, how many? 

Or where is there more? However, it is also important for children to know different ways 

for solving a problem and to evaluate given solutions (Linder, Powers-Costello, & Stegelin, 

2011). In fact, studies have shown that some young children can evaluate other’s solutions, 

and can point out mistakes, for example, in one-to-one correspondence (Tirosh, Tsamir, 

Levenson, & Barkai, in press). A notable result of this research is that adults do believe that 

these issues are somewhat important, but believe it is more important for children to choose 

appropriate strategies than to be able to identify if a suggested solution is correct. It could 

be that adults believe that evaluating strategies is a task for a teacher, and not for children. 

Thus, it is important to introduce adults to these types of activities and demonstrate how 

they can be implemented in a playful way with children. The present research and studies 

such as these can help plan appropriate interventions for adults, that may motivate them to 

engage young children with number activities. 
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Taking into consideration that the home environment can impact on young children’s 

mathematical knowledge, this study investigates adults’ beliefs regarding the importance 

of adult interactions with children and mathematics. It also investigates beliefs regarding 

the importance of receiving guidance for these interactions. Results indicated that in 

general, adults, regardless of the types of relationships they had with children, believed in 

the importance of their interactions with children and mathematics, but felt it was less 

important to receive guidance. Participants’ reasons for both positive and negative beliefs 

are explored.  

INTRODUCTION 

The importance of fostering mathematical development during the early years is supported 

by studies that found early mathematics competencies to be a predictor of later school 

success (e.g., Duncan et al., 2007). Acknowledging the importance of these studies, 

mathematics educators (e.g., Ginsburg, Lee, & Boyd, 2008) have become increasingly 

interested in how to foster mathematics knowledge during the preschool years. Ginsburg 

(2016) stated that while researchers may now agree that young children engage with 

powerful ideas of number and shape, the same cannot be said of many teachers and parents.   

Regarding teachers, several countries have instated mandatory mathematics curricula for 

preschools. However, many young children spend a considerable amount of time at home. 

Furthermore, studies suggest that for children to take advantage of the academic 

opportunities provided at preschool, some level of support from the home environment, 

such as toys that stimulate learning number and shapes, is necessary (Anders et al., 2012). 

Thus, if we aim to promote young children’s mathematical knowledge, the home 

environment should also be considered. This study is part of a larger project that focuses 

on adults’ knowledge and beliefs regarding the teaching of number and geometry concepts 

during the early years, and ways of supporting adults’ interactions with children and 

mathematics. In this paper we focus specifically on adults’ beliefs regarding their 

intervention in children’s learning number and geometry concepts and receiving guidance 

for this purpose.  
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THEORETICAL BACKGROUND 

Several studies investigated teachers’ and parents’ beliefs regarding the importance of 

learning mathematics in preschool. Most studies found that both preschool teachers and 

parents agree that mathematics should be and can be promoted in the years before first 

grade (e.g., Missall, Hojnoski, Caskie, & Repasky, 2015). Yet, some home day care 

providers believe it is less important for young children to acquire mathematics skills before 

entering kindergarten, than other social and academic skills (Blevins‐Knabe, Austin, 

Musun, Eddy, & Jones, 2000). In one study, a few participants claimed that teaching 

mathematics in preschool can hinder social and emotional development (Cannon & 

Ginsburg, 2008). Several studies found that parents believe it is more important to enhance 

reading skills than mathematical skills (Sonnenschein, Stites, & Dowling, 2020). 

Beliefs can impact on the amount of time and the types of activities adults engage with 

children at home. Several studies reported that parents help their children learn language 

skills more than mathematics in both everyday contexts, such as carrying out household 

chores, as well as during more structured contexts, such as direct teaching (e.g., Cannon & 

Ginsburg, 2008). In a more recent study (Sonnenschein, Stites, & Dowling, 2020), most 

parents reported engaging children with reading activities every day, while the frequency 

of engaging with mathematical activities varied and occurred sometimes as few as two days 

a week. Looking at specific types of mathematical activities, in one study parents kept a 

diary of mathematical activities carried out at home and were also observed during parent 

child laboratory interactions (Skwarchuk, 2009). Findings showed more activities related 

to number and operations, than geometry and shapes. However, in a different study 

(Missall, Hojnoski, Caskie, & Repasky, 2015), parents reported counting aloud and naming 

simple shapes as among the most frequent activities carried out at home.  

Adult’s knowledge may also impact on parents’ engagement with their children and 

mathematics. In one study (Cannon & Ginsburg, 2008), parents stated that they lacked 

knowledge about early mathematics and were unaware of the goals for learning 

mathematics at a young age. Some parents may be unaware of activities that can be carried 

out home. Sonnenschein, Stites, and Dowling (2020) found that 64% of parents in their 

study wanted to receive information from their children’s preschool teachers regarding how 

to support their children’s mathematics. Most parents wished to receive ideas for carrying 

out fun mathematics activities with their children at home, about a third were interested in 

progress reports from the children’s teachers, and a quarter were interested in worksheets.  

Another factor that might influence adults’ involvement with children and mathematics is 

anxiety. Parents with higher levels of math anxiety engaged less frequently in mathematical 

activities at home than parents with lower levels of math anxiety (Elliott, Bachman, & 

Henry, 2020). Another factor might be parental goals. Elliot, Bachman, and Henry (2020) 

identified two goals that parents held for their children’s learning mathematics: they wanted 

their children to succeed in mathematics at school and they wanted their children to like 

mathematics. These goals led to different ways of interacting with children.  
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While previous studies have focused on parents’ beliefs (e.g., Skwarchuk, 2009), children 

often spend time with a grandparent, aunt, or neighbour (e.g., Pilarz, 2018). Our research 

questions are: (1) Do adults believe that their involvement is important to children’s number 

and geometry development, and what are the underlying reasons for these beliefs? (2) Do 

adults believe they need guidance in order to foster this development, and what are the 

reasons for these beliefs? (3) Is there a difference between parents’ beliefs and other adults’ 

beliefs? (4) Is there a difference between beliefs regarding number concepts and beliefs 

regarding geometry concepts? 

METHODOLOGY 

Fifty-one adults (labelled A1-A51), between the ages of 20 and 60, participated in the study. 

None of the participants were early childhood educators. Of the 51 adults, 22 were parents 

of children between the ages of three and six, and 18 had some other relationship with 

children of this age, either as a grandparent, aunt, or uncle. The rest, 11, claimed to have 

no connection with young children. As this was part of a larger study, participants were 

handed two separate questionnaires, at least a week apart. The first questionnaire related to 

beliefs and knowledge regarding promoting children’s numerical knowledge and the 

second, beliefs and knowledge for promoting children’s geometrical knowledge. In this 

study we analyse responses to two questions from each questionnaire: (1) In your opinion, 

is it important for an adult to be involved in developing preschool (ages 3-6) children’s 

quantitative reasoning? Explain. (2) In your opinion, is it important for an adult to receive 

guidance so that he/she can help foster quantitative reasoning among young children (ages 

3-6)? Explain. (3) In your opinion, is it important for an adult to be involved in developing 

preschool (ages 3-6) children’s geometric reasoning? Explain. (4) In your opinion, is it 

important for an adult to receive guidance so that he/she can help foster geometric 

reasoning among young children (ages 3-6)? Explain.  

A first step in data analysis was to assess the frequency of positive and negative responses 

to the questions. Using grounded theory, a qualitative analysis was then conducted to assess 

reasons participants offered for their responses. Two researchers categorized all reasons. A 

third researcher validated categorization. Initial agreement was 91% for the intervention 

categories, and 88% for the guidance categories. After discussion between the three 

researchers, 100% agreement was reached. 

FINDINGS 

Quantitative results 

Table 1 presents the number of adults that reported positive beliefs regarding adult 

intervention for promoting young children’s number and geometry knowledge, according 

to their relationships with children. It also presents beliefs regarding the importance of 

receiving guidance. As can be seen, nearly all participants believed that adult intervention 

is important for enhancing children’s mathematics knowledge. Furthermore, using a 

McNemar test to compare marginal distributions of the two variables (number and 

geometry intervention), no significant differences were found between adults’ beliefs in the 
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importance of their intervention in number concepts and geometry concepts. In addition, 

no differences were found between parents, adults who have some other connection with 

young children, and those who claimed to have no connection with young children.  

 Number concepts Geometry concept 

 Intervention Guidance Intervention Guidance 

Parents (N=22) 21(95) 12(55) 20(91) 14(64) 

Other relation (N=18) 18(100) 15(83) 15(83) 12(67) 

No connection(N=11) 10(91) 8(73) 10(91) 8(73) 

Total (N=51) 49(96) 35(69) 45(88) 33(65) 

Table 1: Agreement (%) that adult intervention and receiving guidance is important  

When it came to receiving guidance, beliefs were not as positive. Using a McNemar test to 

compare marginal distributions of the two variables (intervention and guidance), for each 

mathematics domain, significantly less participants agreed that guidance was important 

both in supporting number concepts, as well as geometry concepts (p<.01). Although no 

significant differences were found between beliefs in guidance in the number and geometry 

domains, nine adults agreed to the importance of receiving guidance in the number domain, 

but not in geometry. For example, A38 stated for number concepts, “Children’s minds and 

their ways of thinking are different and so you must explain to them in ways they will 

understand.” However, for guidance in geometry A38 stated, “No. Children are too young 

to learn complex ideas in geometry.” Four adults did not believe that guidance was 

important in the number domain, but agreed to its importance in geometry. For example, 

referring to guidance in the number domain, A28 stated, “It’s not necessary. In general, we 

are talking about simple numerical concepts, and in my opinion, any adult with a little 

imagination can explain it to children.” However, in geometry, A28 wrote, “Yes, in order 

to know how to explain concepts correctly and lay the foundation for what comes next.” 

Intervention: Reasons for beliefs 

Although nearly all adults agreed that adult intervention is important, the reasons for these 

beliefs differed. From the data arose seven categories of reasons, quite similar for both 

number and geometry domains. Table 2 presents those reasons along with their frequencies 

of occurrence and examples of participants’ written responses. From Table 2, noting the 

statements given by A21, we can also see that each adult did not necessary give the same 

reason for intervening with numbers as with geometry.  

Among the few adults who were against intervening (two for number concepts and six for 

geometry), two reasoned that children will learn on their own, “by watching an adult or 

other children” (A36). The rest believed that it was the job of the preschool teacher to teach 

mathematics, and not the job of the parents or other non-teachers.  
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Category Frequencies 

Number (N=49) / 

Geometry (N=45) 

Example 

Children need 

adults to teach 

them 

23 / 25 

 

An adult should talk about shapes and their attributes, 

such as the difference between a square and rectangle, 

and that not everything round is a circle. (A21, 

geometry)  

An adult can 

expose children 

to new 

concepts 

9 / 8 

 

The more a child is exposed to concepts and 

possibilities, the more his thinking can improve. (A19, 

geometry) 

Preparation for 

school  

4 / 5 

 

You have to make sure that the child tries to learn 

concepts, so he will not enter first grade without having 

some idea (of numbers). (A45, numbers) 

Mathematics is 

all around us 

6 / 10 

 

To see what things are made from, everything in 

nature, from which shapes they are composed. (A40, 

geometry)  

An adult can 

promote 

practice 

7 / 5 

 

You need to talk to children… because they need more 

practice than what they get in kindergarten. (A1, 

number) 

To promote a 

positive 

attitude 

2 / - 

 

To promote counting, a positive attitude, and connect 

them to numbers. (A21, numbers) 

Age-related 

issues  

4 / - 

 

It’s easy at this age to learn and observe new ideas. (A6, 

numbers) 

Table 2: Reasons for believing in the importance of adult intervention (N=51) 

Beliefs regarding guidance 

As seen from Table 1, most adults agreed that guidance for adults is important. Reasons for 

agreeing with this statement are given in Table 3. As can be seen, most adults simply wished 

to acquire tools that may help enhance children’s mathematics. As with reasons for 

interventions, when someone agreed that guidance in both domains was important, the 

reasons for wanting guidance were not necessarily the same. For example, regarding 

number concepts, A21 agreed to guidance, stating, “So many people are afraid of numbers.” 

For geometry, she agreed to guidance stating, “Adults sometimes use incorrect 

terminology.” Thus, for number concepts, A21 was interested in deflecting adult’s 

mathematics anxiety (an affective issue), while for geometry, she was concerned in 

avoiding mistakes. 
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Category Frequencies 

Number 

(N=35) / 

Geometry 

(N=33) 

Example 

To learn how to 

promote early 

mathematics 

17 / 19 

 

Because I don’t have the tools to teach on my own. (A40, 

geometry) 

To avoid making 

mistakes 

4 / 5 For those who do not know geometry, so they won’t 

make mistakes. (A23, geometry) 

To raise adult’s 

awareness 

4 / 4 To raise parents’ awareness that children’s thinking can be 

developed informally. (A13, numbers) 

To understand how 

children think 

7 / 4 You need to know how to deal with children who are 

slower and those who are more advanced. (A17, 

numbers) 

Affective issues 5 / 1 You have to know how to challenge children without 

frustrating them. (A3, numbers) 

Table 3: Reasons why guidance for adults is important 

Reasons for negating the necessity for guidance are given in Table 4. Recall that a few 

adults believed that interacting with children and mathematics was the job of the preschool 

teacher. So too, a few believed that it is teachers who should receive guidance. However, 

some simply believed that promoting early number and geometry learning comes naturally 

to adults and that the mathematics involved at this age is basic and simple, thus guidance 

is not necessary. 

Category Frequencies 

Number 

(N=16) / 

Geometry 

(N=18) 

Example 

Parents intuitively 

know what to do 

8 / 5 It comes naturally to most people that encounter children 

in situations that allow for numerical thinking, and so they 

automatically teach, and children learn. (A2, numbers) 

Preschool 

mathematics is basic 

knowledge 

2 / 1 In general, we are talking about simple numerical 

concepts, and in my opinion, any adult with a little 

imagination can explain it to children. (A28, numbers) 

It is the job of the 

preschool teacher 

4 / 6 It’s important to guide the preschool staff, because that 

is where most of the learning occurs (A2, geometry) 

Age-related issues - / 3 Children are anyway too young to learn complex 

geometry (A38, geometry) 

Table 4: Reasons why guidance for adults is not important 
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DISCUSSION 

The first focus of this study was beliefs regarding adults’ involvement with children’s 

number and geometry development, and the underlying reasons for those beliefs. We found 

that nearly all adults believed adult involvement is important. Furthermore, while some 

studies found that parents engage more with number activities than geometry activities 

(Skwarchuk, 2009), this study found no differences between beliefs in the importance of 

adults’ involvement within these two domains. Perhaps this signifies a gap that needs to be 

filled. If adults believe that adult intervention is important in both number and geometry, 

but report being involved in fewer geometric activities, they might need more support in 

geometry. Significantly, while most previous studies focused solely on parents’ beliefs 

(Missall et al., 2015), this study found that parents, as well as grandparents, aunts, and even 

adults who have no current relationship with young children, believe in the importance of 

adult interactions with children and mathematics. On a practical level, this means that those 

offering workshops for parents might consider opening their workshops to additional 

adults.  

The reasons for adults’ beliefs in the importance of adult interaction with children varied. 

These reasons may impact on the types of activities adults implement at home. A future 

study might investigate if those who believe that mathematics may be found all around us 

tend to engage children with mathematics during daily activities, such as setting the table. 

Might those who believe in the need to prepare children for first grade, engage children 

with more formal teaching activities, such as using flash cards? Interestingly, while 

previous studies found that parents’ mathematics anxiety can impact on their mathematical 

interactions with children (Elliott, Bachman, & Henry, 2020), only a few adults in this study 

related to affective issues.   

The second focus of this study concerned beliefs regarding the necessity for guidance. 

Finding in this respect were less positive. Among those that agreed that guidance is 

important, only a few expressed the need to learn more about children’s ways of thinking. 

While knowledge of students is recognized as an important element of teachers’ knowledge 

(Ball, Thames, & Phelps, 2008), it might also be that this type of knowledge can 

significantly affect the types of mathematical activities adults offer children to engage with 

at home. Understanding why adults may or may not be interested in guidance, might help 

educators attract adults to participate in workshops that encourage adults’, not only 

parents’, interactions with children and mathematics. It is not only the amount of time 

parents spend with children engaging in number concepts, but also the nature of that 

learning experience that is important (Pan, Gauvain, Liu, & Cheng, 2006).  
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We focused on both in-service elementary teachers’ (ETs) confidence about their knowledge 

and the extent of their knowledge of the specific topic of fraction division. The results revealed 

how these ETs’ confidence may or may not be supported by their knowledge for teaching 

fraction division, a concept they are expected to teach as part of the elementary school 

curriculum in China. The results also illustrated the importance of specifying knowledge 

components in mathematics in order to help further or support ETs’ confidence for classroom 

instruction. 

INTRODUCTION 

Worldwide efforts to facilitate teachers’ learning of mathematics for teaching have led to the 

increased emphasis not only on the mathematics training provided through teacher preparation 

programs (e.g., CBMS, 2012), but also on in-service teachers’ learning through teaching (e.g., 

Li & Huang, 2018). It is generally perceived that Chinese mathematics teachers had superior 

understanding of the school mathematics they teach (Ma, 1999). With the inclusion of both 

novice and experienced elementary teachers in her study, Ma indicated that “Chinese teachers 

begin their teaching careers with a better understanding of elementary mathematics than that 

of most USA elementary teachers’’ (p. xvii). However, the results from recent studies that 

involved prospective elementary teachers in China did not seem to support the hypothesis that 

prospective elementary teachers in China may have strong preparation in pedagogical content 

knowledge (Li, Ma & Pang, 2008; Li et al., 2020). The results obtained with Chinese 

prospective elementary teachers prompted us to wonder what may happen to Chinese in-service 

elementary teachers, especially with the dramatic changes in school mathematics and 

instruction happening in China in recent years (Liu & Li, 2010). As part of a large research 

study of elementary school teachers’ mathematical training, this paper focused on a group of 

ETs’ confidence and knowledge of mathematics and pedagogy on the topic of fraction division 

in China. 

The topic of fraction division is difficult in school mathematics not only for students (Li, 2008), 

but also for teachers (Li & Kulm, 2008; Simon, 1993). Mathematically, fraction division can 

be presented as an algorithmic procedure that can be easily taught and learned as “invert and 

multiply.”  However, the topic is conceptually rich and difficult, as its meaning requires 

explanation through connections with other mathematical knowledge, various representations, 

or real world contexts (Greer, 1992; Li, 2008).  The selection of the topic of fraction division, 
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as a special case, can provide a rich context for exploring possible depth and limitations in in-

service teachers’ knowledge in mathematics and pedagogy.  Specifically, this study focused on 

the following two research questions: 

(1) What is the confidence of in-service elementary school teachers regarding their 

knowledge training for teaching? 

(2) What is the extent of in-service elementary school teachers’ knowledge in 

mathematics and pedagogy for teaching fraction division? 

CONCEPTUAL FRAMEWORK 

To be able to help students learn mathematics with understanding, teachers need to have 

mathematics conceptual knowledge for teaching (MCKT; Li et al, 2020). By MCKT we mean 

topic-based conceptual knowledge packages that are needed for understanding, explaining, as 

well as teaching specific mathematics content topics with connections. It can be specified as 

containing the following three topic-based knowledge components that can and should be 

acquired by mathematics teachers: 

(a) Having knowledge and skills directly associated with a specific content topic;  

(b) Being able to connect and justify the main points of a content topic, and to place it 

in wider contexts;  

(c) Knowing and being able to use various representations for teaching the content topic, 

and being able to teach the relations between them. 

Clearly, specific MCKT varies from one content topic to another. The task of specifying 

MCKT is needed but enormous for different content topics. Nevertheless, teachers’ acquisition 

of MCKT would enable them to develop a profound understanding of mathematics content 

topics they teach as termed by Ma (1999). Given the dramatic variations across mathematical 

content topics, we focus on the MCKT that teachers would need to have for teaching fraction 

division. 

The conceptual complexity of the topic of fraction division is evidenced in a number of studies 

that documented relevant difficulties pre-service and in-service teachers have experienced 

(e.g., Borko et al., 1992; Simon, 1993; Tirosh, 2000).  Although both pre-service and in-service 

teachers can perform the computation for fraction division, it is difficult for teachers, at least 

in the United States, to explain the computation of fraction division conceptually with 

appropriate representations or connections with other mathematical knowledge (Ma, 1999; 

Simon, 1993).  Teachers’ knowledge of fraction division is often limited to the invert-and-

multiply procedure, which restricts teachers’ ability to provide a conceptual explanation of the 

procedure in classrooms (e.g., Borko et al., 1992).  Because the meaning of division alone is 

not easy for pre-service teachers (e.g., Simon, 1993), fraction division is even more difficult 

(Li & Kulm, 2008; Ma, 1999).  The findings from previous studies help provide specifics of 

these three components of MCKT as follows: 

(a) Having knowledge and skills about fraction division, including conceptual and 

procedural knowledge (e.g., Borko et al., 1992), and solving problems involving 

fraction division (e.g., Greer, 1992)  
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(b) Mathematical connections and justifications of main points related to fraction 

division, including fraction concept; addition, subtraction, and multiplication of 

fractions (e.g., Ma, 1999; Tirosh, 2000)  

(c) Representational variations and connections for teaching fraction division such as 

explaining the computational procedure for “division of fraction” with different 

representations (e.g., Li & Huang, 2008; Li & Kulm, 2008) 

The specifications of these three components of knowledge provided a framework for the 

current study and served as a guideline for selecting items to examine the extent of ETs’ 

knowledge and specific difficulties with fraction division. 

METHODOLOGY 

Subjects 

The participants were in-service elementary school teachers sampled from three provinces and 

one major city in China.  All of these provinces and city are traditionally classified as 

developing areas located mainly in southwest of China.  190 surveys were distributed, and 180 

responses (returning rate: 94.7%) were collected. All 180 responses (130 females, 44 males) 

are used for data reporting, with 117 (65%) of responses self-indicated from schools located in 

inner city, 16 (9%) responses from sub-urban, 40 (22%) responses from rural areas, and 7 (4%) 

with no indication. 

Instruments and Data Collection 

A survey was developed for this study, containing two main parts with three items for Part 1 

and seven items for Part 2. Part 1 contains items on elementary teachers’ knowledge of 

mathematics curriculum and their confidence in their readiness for teaching. Part 2 has seven 

main items that assess elementary teachers’ three knowledge components of MCKT on the 

topic of fraction division. Most items were taken from previous studies (Li, Ma, & Pang, 2008; 

Li et al., 2019), with some items adapted from school mathematics textbooks and others’ 

studies (e.g., Tirosh, 2000). Given the limited page space, only three items (note: each item 

containing two questions) from Part 2 and ETs’ responses to these items are included for 

analyses to provide a glimpse of sampled ETs’ confidence and MCKT. 

It was impossible to conduct the survey with in-service teachers with specified time and 

location. Thus, the survey was distributed and then collected the next day from in-service 

teachers in many schools, and was given during teachers’ professional development session in 

a few other schools. 

Data Analysis 

Both quantitative and qualitative methods were used in analysing and reporting the participants' 

responses. Specifically, responses to the items in Part 1 were directly recorded and summarized 

to calculate the frequencies and percentages of participants’ choices for each category.  To 

analyse participants’ solutions to the items in Part 2, specific rubrics were first developed for 

coding each item, and subsequently, the participants’ responses were coded and analysed to 

examine their solutions/answers. 
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RESULTS AND DISCUSSION 

In general, the results showed interesting relationships between ETs’ confidence and their 

mathematical knowledge for teaching fraction division, which illustrates the importance of 

specifying knowledge components in mathematical training in order to help further or support 

ETs’ confidence for classroom instruction. 

For ET’s confidence, the results from the survey indicated that (1) participating ETs in China 

did not know well about their national curriculum standards in general; (2) the majority of these 

ETs were confident in the knowledge needed for teaching; and (3) they knew very well about 

selected topic placement in mathematics curriculum. The results suggested that these ETs tend 

not to feel over confident. 

For specific knowledge components of MCKT, these ETs’ performance revealed that their 

mathematical knowledge was sound in the content topic itself, especially in the procedural 

aspect, and relatively weak conceptually in connecting the content topic with other topics both 

mathematically and pedagogically. The seemingly mixed results in their responses actually 

suggest that these ETs’ confidence was built upon or supported by what they know that can 

and should be specified in concrete terms or knowledge components.  The following sections 

are organized to present more detailed findings corresponding to the two research questions.  

In-service Teachers’ Confidence in Elementary School Mathematics 

The following items are from Part 1 of the survey to illustrate ETs’ confidence of their 

knowledge preparation needed for teaching, as related to fraction division. 

For item 1: How would you rate yourself in terms of the degree of your understanding of the 

National Mathematics Standards?  On a scale of four choices (High; Proficient; Limited; Low), 

63% and 1% of the participants chose "Limited" and "Low", respectively.  Relatively smaller 

percentages of the in-service teachers felt to have high (3%) or proficient (33%) understanding 

of their national mathematics standards. 

For item 2-(2): Choose the response that best describes whether elementary school students 

have been taught the topic – Multiplication and division of fractions.  On a scale of five choices 

(Mostly taught before grade 5; Mostly taught during grades 5-6; Not yet taught or just 

introduced during grades 5-6; Not included in the National Mathematics Standards; Not sure), 

92% participants indicated that the topic is “mostly taught during grades 5-6" (a correct choice), 

and most of the remaining (3%) chose the first response ("Mostly taught before grade 5", a 

partially correct choice if only fraction multiplication is considered).  The results, in contrast 

to the participants’ response to item 1, suggested that these ETs know very well about the 

content topic placement in mathematics curriculum, although the majority did not feel 

confident in knowing about their national mathematics standards. 

For item 3-(2): Considering your training and experience in both mathematics and instruction, 

how ready do you feel you are to teach the topic of “Number – Representing and explaining 

computations with fractions using words, numbers, or models?”  On a scale of three (Very 

ready; Ready; Not ready), 69% of the participants thought they were "ready", while 21% chose 

“very ready,” and 7% “not ready.”  The results indicated that the majority of these ETs were 

confident in their knowledge for teaching fraction computations, including fraction division.  
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There was also a small percentage of in-service teachers who are not confident. The diversity 

in responses suggested the need of learning more about their confidence and possible 

connections with their knowledge preparation. 

Taking together, in-service elementary school teachers’ responses to the Part 1 suggested that 

these ETs in China tend not to feel over confident, although they actually knew very well about 

some specifics. In fact, the results are consistent with what has been reported about in-service 

mathematics teachers in East Asian countries (Mullis et al., 2004) and China in specific (Li & 

Huang, 2008).  The consistency in the general response pattern between ETs in the current 

study and in-service teachers in other studies suggested that culture likely plays an important 

role in expressing confidence by teachers in East Asia including China. 

The Extent of i=In-service Elementary School Teachers’ Training in MCKT for 

Teaching Fraction Division 

These ETs’ responses to Part 2 allowed a closer look at the participants’ three knowledge 

components of MCKT, especially on the topic of fraction division.  Results indicated that these 

ETs do very well on items related to fraction division computation and problem solving 

(MCKT knowledge component 1).  For example, for the problem “Say whether 3

2

11

9


 is 

greater than or less than 4

3

11

9


 without solving. Explain your reasoning.”, 98% of these ETs 

answered the problem correctly (i.e., the first numerical expression is greater than the second 

one). Among those who provided the correct answer, 78% did not use fraction division 

computations and explained, “If the divisor is the smaller (and the dividend is the same), the 

result of the division is bigger; 2/3 (8/12) is smaller than ¾ (9/12)”. The other 17.2% used the 

computation rule for fraction division (i.e., converting division into multiplication, then 

followed by comparing 3/2 and 4/3) to reach the correct answer. 4 out of 180 respondents 

(2.2%) used both methods. There were about 2.3% of those sampled in-service teachers who 

either answered incorrectly or did not answer at all. They did not infer further on what would 

be the result of division if the divisor was the smaller. 

Moreover, these ETs also had great performance in solving multi-step word problems that 

involve fraction division. For example, 95% participants solved the following problem 

correctly.  

Johnny’s Pizza Express sells several different flavour large-size pizzas. One day, it sold 24 

pepperoni pizzas. The number of plain cheese pizzas sold on that day was 3/4 of the number 

of pepperoni pizzas sold, and 2/3 of the number of deluxe pizzas sold. How many deluxe 

pizzas did the pizza express sell on that day?  

Specifically, 42% used a multi-step computation method to get the answer (e.g., 24 x ¾ =18, 

18÷2/3 =27), about 49% used a combined computation method (e.g., 24 x ¾ ÷ 2/3 =27), 2.2% 

adopted an algebraic approach to set up and solve an equation for solution, and a few (about 

1.8%) provided more than one solution approach. About 5% of these respondents did 

incorrectly, resulting from either computation errors (e.g., providing a computation as 24 x ¾ 
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÷ 2/3 = 36) or misunderstanding of the problem (e.g., providing a computation as 24 ÷ 2/3 = 

36). 

For the knowledge component 2 of MCKT, ETs were asked to explain “the meaning of fraction 

division, and how fraction division relates to other content topics” that aims to assess their 

knowledge of fraction division and ability of connecting and justifying possible association 

between fraction division and other content topics. The results suggested that 82.3% provided 

one or more correct explanations to the first sub-question. The common explanation provided 

by 53.9% sampled in-service teachers is that “the meaning of fraction division is the same as 

the meaning of the division of whole numbers, and if knowing the product of two factors and 

the value of one factor, it is an operation to find the value of the other factor”. 7.2% explained 

that “the meaning of fraction division is the same as the division of whole numbers”, and 9.4% 

provided their answers as “if knowing the product of two factors and the value of one factor, it 

is an operation to find the value of the other factor”. The rest (17.8%) either indicated “don’t 

know” (6.1%) or did not answer this question (11.7%). For the second sub-question, about 40% 

of them provided correct answers, with 11.1% indicating “fraction division is an inverse 

operation of fraction multiplication”, 10% explaining that “fraction division relates to inverse 

number, e.g., if divided by a number equals to multiplying its inverse number”, 5.6% indicating 

that fraction division relates to ratio, e.g., b
bba

a
a == ：

 (b≠0), 0.6% with other explanation, 

and 12.6% providing two different explanations. There are about 60% sampled in-service 

teachers who either provided incorrect explanation (33.8%), or no answer at all (26.1%). 

There were several items used to assess ETs’ knowledge component 3 of MCKT. As an 

example, ETs were asked to explain how to explain/teach given computations of fraction 

division. In particular, the problem of “How would you explain to your students why 

3

1
2

3

2
=

?; Why 
4

6

1

3

2
=

?” (adapted from Tirosh, 2000) was included in the survey. For the 

first fraction division (i.e., explaining why 2/3 ÷ 2 = 1/3?), 98% provided valid explanations 

and the majority (53%) relied on the meaning of fraction to provide their explanation as 

“dividing a whole into three equal parts, each part should be 1/3, so 2/3 mean to have two such 

parts. Dividing 2/3 into two equal pieces, so each piece should be 1/3.” 19.3% used drawings 

or a number line to explain, and 16% explained using the fraction division algorithm, i.e., flip 

and multiply to get the answer. There are about 9% sampled in-service teachers provided two 

or more different explanations. For the second fraction division (i.e., explaining why 2/3 ÷ 1/6 

=4?), 88% provided valid explanations but the dominant explanation (39.8%) was based 

directly on the fraction division algorithm, that is, flip and multiply to compute. The other 

18.8% provided their explanations mainly as “changing fractions so that they have the same 

denominator first, and then using the meaning of fraction for solution”. 19.3% used drawings 

or a number line to provide their explanations. A few (0.6%) used the first fraction division to 

help explain the second fraction division as “based on the first fraction division 2/3 ÷ 2 = 1/3, 

we can deduct why 2/3 ÷ 1/6 = 4 is correct. That is, keeping the dividend 2/3 unchanged, when 

the divisor 2 is decreased 12 times to become 1/6, the original quotient 1/3 should be increased 

12 times to become 4.” There are about 4.6% respondents provided two or more different 
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explanations. 6.1% failed to provide correct explanations, with either incomplete explanation 

or simply copying the question without explanation. Taking together, these ETs did very well 

in explaining these two fraction divisions (98% and 88%, respectively). Their explanations 

were dominant with an approach that relies on either the meaning of fraction or the fraction 

division algorithm. Moreover, they performed better in explaining a fraction divided by a whole 

number than a fraction divided by a fraction. 

The results from these ETs’ responses on MCKT items revealed their strengths in many aspects 

of MCKT, as specified in the framework.  However, ETs’ strengths across these aspects varied 

to a certain degree.  It appeared that these ETs have solid performance on items related to 

fraction division computation itself, especially in the procedural aspect and problem solving, 

but relatively weak conceptually in connecting the content topic with others both 

mathematically and pedagogically.  

CONCLUSION 

The findings from this study helped shed a light on the relationships between these ETs’ 

confidence and their mathematical knowledge for teaching fraction division. Specifically, these 

ETs didn’t feel over-confident about their understanding of national mathematics standards, 

but they knew very well about the curriculum placement of selected content topics. They also 

had better confidence in terms of their readiness to teach elementary school mathematics. Such 

confidence was likely supported by their solid knowledge and skill directly associated with 

fraction division, a knowledge component that is also typically required for school students. At 

the same time, their relatively weak performance on items that are conceptually demanding in 

mathematics or pedagogy likely failed to support their confidence in readiness for teaching. 

Such knowledge differentiations, as specified in the MCKT framework, help provide an 

important and feasible lens for us to know the strength and weakness of teachers’ knowledge. 

For the case of China in this paper, the results suggested that ETs are likely strong on 

mathematics, somehow less on mathematical pedagogy, and limited on connections of 

mathematical ideas through their teaching practices and professional development. In turn, 

such results helped illustrate what teacher professional development needs to do more in 

mathematical and pedagogical training in order to help further or improve ETs’ confidence and 

expertise. 

References 

Borko, H., Eisenhart, M., Brown, C. A., Underhill, R. G., Jones, D., & Agard, P. C. (1992). 

Learning to teach hard mathematics: Do novice teachers and their instructors give up too 

easily? Journal for Research in Mathematics Education, 23(3), 194-222. 

Conference Board of the Mathematical Sciences [CBMS]. (2012). The Mathematical 

Education of Teachers II, CBMS Issues in Mathematics Education, Volume 17. Providence, 

RI and Washington DC: AMS and MAA. 

Greer, B. (1992). Multiplication and division as models of situations. In D. A. Grouws (Ed.), 

Handbook of research on mathematics teaching and learning (pp. 276-295). New York: 

Macmillan.  



Li, Zhang & Song 

PME 44 – 2021   3 - 197 

Li, Y. (2008). What do students need to learn about division of fractions? Mathematics Teaching in 

the Middle School, 13, 546-552. 

Li, Y., & Huang, R. (2008). Chinese elementary mathematics teachers’ knowledge in mathematics 

and pedagogy for teaching: The case of fraction division. ZDM - The International Journal on 

Mathematics Education, 40, 845-859. 

Li, Y., & Huang, R. (Eds.) (2018). How Chinese acquire and improve mathematics knowledge for 

teaching. Leiden, The Netherlands: Brill|Sense Publishers. 

Li, Y., & Kulm, G. (2008). Knowledge and confidence of pre-service mathematics teacher: The case 

of fraction division. ZDM - The International Journal on Mathematics Education, 40, 833-843. 

Li, Y., Ma, Y., & Pang, J. (2008). Mathematical preparation of prospective elementary teachers. In 

P. Sullivan & T. Wood (Eds.), International handbook of mathematics teacher education: 

Knowledge and beliefs in mathematics teaching and teaching development. (pp. 37-62). 

Rotterdam, The Netherlands: Sense. 

Li, Y., Pang, J. S., Zhang, H., & Song, N. (2020). Mathematics Conceptual Knowledge for Teaching. 

In D. Potari & O. Chapman (Eds.), International Handbook of Mathematics Teacher Education, 

Volume 1: Knowledge, beliefs and identity in mathematics teaching and teaching development. 

pp. 77-104. Leiden, The Netherlands: Brill|Sense Publishers. 

Li, Y., Zhang, H., & Song, N. (2019). Mathematical preparation and confidence of prospective 

elementary teachers in China. In M. Graven, H. Venkat, A. Essien & P. Vale (Eds.). Proceedings 

of the 43rd Conference of the International Group for the Psychology of Mathematics Education 

(Vol. 3, pp. 33-40). Pretoria, South Africa: PME. 

Liu, J. & Li, Y. (2010). Mathematics curriculum reform in the Chinese mainland: Changes and 

challenges. In F. K. S. Leung, & Y. Li, (Eds.), Reforms and issues in school mathematics in East 

Asia – Sharing and understanding mathematics education policies and practices. (pp. 9-31). 

Rotterdam, the Netherlands: Sense Publishers. 

Ma, L. (1999). Knowing and teaching elementary mathematics. Mahwah, NJ: Erlbaum.  

Mullis, I.V.S., Martin, M.O., Gonzalez, E.J., & Chrostowski, S.J. (2004). Findings from IEA’s 

trends in international mathematics and science study at the fourth and eighth grades. Chestnut 

Hill, MA: TIMSS &PIRLS International Study Center, Boston College. 

Simon, M. A. (1993). Prospective elementary teachers’ knowledge of division. Journal for Research 

in Mathematics Education, 24(3), 233-254. 

Tirosh, D. (2000). Enhancing prospective teachers’ knowledge of children’s conceptions: The case 

of division of fractions. Journal for Research in Mathematics Education, 31(1), 5-25. 



3 - 198 

2021. In Inprasitha, M, Changsri, N., Boonsena, N. (Eds.). Proceedings of the 44th Conference of the 

International Group for the Psychology of Mathematics Education, Vol. 3, pp. 198-205. Khon Kaen, 

Thailand: PME. 

THE MATHEMATICAL BELIEFS AND INTEREST 

DEVELOPMENT OF PRE-SERVICE PRIMARY TEACHERS 

Michael Liebendörfer1, Reinhard Hochmuth2, Jana Rode3, & Stanislaw 

Schukajlow4 

1University of Paderborn, Germany  

2University of Hannover, Germany  

3University of Kassel, Germany  

4University of Münster, Germany 

 

We investigated the development of interest in mathematics of pre-service primary 

teachers (N=62) during the transition from school to university using longitudinal data 

and examined whether their beliefs about the nature of mathematics explained their 

future interest. One main result is that although high correlations between dynamic 

beliefs (the process and utility aspects of mathematics) and interest were found in each 

of three surveys, dynamic beliefs did not predict future interest (in addition to prior 

interest). Instead of dynamic beliefs, formalism beliefs formed an additional significant 

predictor of future interest. 

THE SECONDARY-TERTIARY TRANSITION 

The transition to university brings many changes and is often perceived as a stressful 

endeavour (Gueudet, 2008). Many students feel that mathematics has changed without 

being able to handle this new form of mathematics. A fundamental change refers to 

what Tall (2008) calls the formal world. Definitions, logic, and proofs are new to most 

students, whereas calculations now play a minor role. In particular, dealing with proofs 

is difficult for students and may negatively impact their interest in mathematics. 

Consequently, many students lose interest during the transition (Rach & Heinze, 2017). 

Interest and beliefs may be helpful concepts to understand the psychological side of this 

transition. In particular, analysing their relationship may help understanding why some 

students struggle more than others.  

We focus on primary teacher education that has some commonalities with secondary 

teacher education like the new role of formalism and proof. Mathematics in primary 

teacher education is less formal than in secondary teacher education. Unlike in school, 

however, even the primary teachers’ mathematics courses emphasise argumentation and 

reasoning not only in the lectures but also in the homework. This work completes earlier 

analyses presented at PME (Liebendörfer et al., 2014). 



Liebendörfer, Hochmuth, Rode & Schukajlow 

PME 44 – 2021   3 - 199 

INTEREST AND BELIEFS 

We use Krapp’s (2005) interest concept, in which interest is defined as a motivational 

person-object relationship, which is rather stable over time. Interest is specific to a 

person, but, unlike other motivational concepts, it is also specific to a (mental) object 

which, in our case, is mathematics. Interest has a cognitive component, which refers to 

a high personal value, and an emotional component related to positive affect.  

Interest has gained importance as a predictor of good learning processes, such as the 

use of deep learning strategies, effort, and good learning outcomes, as can be shown 

across various disciplines and settings (Krapp et al., 1992; Köller et al., 2001). Pre-

service primary teachers have reported low interest in mathematics. In a study by Abel 

(1996), pre-service primary teachers’ interest scores (N=171) were about one standard 

deviation (SD) below the theoretical mean of the scale and considerably lower than the 

interest scores of pre-service secondary teachers (N=36) who had opted for mathematics 

as the subject of their future teaching careers. Whereas in higher secondary teacher 

education, interest declines during the transition (Rach & Heinze, 2017), this is not the 

case in lower secondary teacher courses that focus less on formalism (Liebendörfer & 

Schukajlow, 2017).  

We use Grigutsch et al.’s (1998) concept of beliefs on the nature of mathematics that 

distinguishes four dimensions: The process aspect describes mathematics as a vivid 

field of trial and discovery. The utility aspect emphasises the usefulness of mathematics 

in everyday life. The formalism aspect characterises mathematics by logic, proof, and 

abstraction. Finally, the toolbox aspect describes mathematics as the application of 

routine skills, formulae, and standard procedures (see also Table 1). The first two 

aspects are rather dynamic whereas the last two aspects reflect a rather static view on 

mathematics. 

Dynamic beliefs are often favoured over static beliefs because they emphasise 

opportunities for learning and improvement. They are further positively correlated with 

students’ interest, whereas toolbox beliefs are negatively correlated (Baumert et al., 

2000). Beliefs generally affect the way we experience and deal with new mathematics. 

In particular, improper beliefs may be seen as one reason for the decline of interest 

during the transition (Daskalogianni & Simpson, 2001) and beliefs that fit to the new 

mathematics students are presented may help them taking interest (Liebendörfer & 

Schukajlow, 2017). Thus, the static formalism beliefs may also be important for 

students’ interest development during the transition as they may help them 

understanding new elements like the role of axioms and definitions. 
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RESEARCH QUESTIONS AND DESIGN 

Our main aim is to describe how pre-service primary teachers’ interest in mathematics 

develops in the first semesters at university and whether beliefs about the nature of 

mathematics may explain this development. 

RQ1: How is pre-service primary teachers’ interest connected to their beliefs? 

RQ2: How do interest and beliefs change during the first year at university? 

RQ3: Do beliefs serve as a predictor of future interest? 

Design of the Study 

We used data from the KLIMAGS-project (Blum, Biehler, & Hochmuth, 2014) 

collected at Kassel University. There, mathematics courses are compulsory for all pre-

service primary teachers. The data were collected in the first (T1) and last lectures (T2) 

of a course on arithmetic during the students’ first semester. The third survey was 

collected at the end of a course on geometry (T3) during the students’ second semester 

in which they also took a course on the didactics of arithmetic. These paper-and-pencil 

surveys were collected over two consecutive years to gain a reasonable sample size. 

The sample consisted of N=62 pre-service primary teachers who participated at all three 

time points, 57 of whom were female. They were on average 21.75 years old (SD 5.06) 

and all but two were first-year students. 

Scale Items Example  (T1-T3) 

Interest in 

Mathematics 
6 

I am not interested in mathematics.  

(reverse scoring) 

.74 / .81 

/.78 

Utility 

Beliefs 
4 

Mathematics is helpful for solving everyday 

tasks and problems. 

.79 / .74 

/.71 

Process 

Beliefs 
4 

Mathematics thrives on inspiration and new 

ideas. 

.80/ .80 

/.74 

Formalism 

Beliefs  
7 

Clarity, accuracy, and uniqueness are features of 

mathematics. 

.63 / .68 

/.76 

Toolbox 

Beliefs 
5 

Mathematics is a collection of procedures and 

rules that specify exactly how to solve tasks. 

.47 /.46 

/.50 

 

Table 1: Scales and their reliabilities 

To measure interest and beliefs, well-tested Likert scales were taken from other projects 

and were modified slightly if needed (words were adjusted; e.g. “university” instead of 

“school”). To measure interest, we used Rheinberg & Wendland’s (2000) scale; to 

measure beliefs, we took Grigutsch et al.’s (1998) scales from the COACTIV (Baumert 
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et al., 2009) version with a 6-point format (1=not at all, 6=exactly). Reliabilities 

(Cronbachs ) ranged from poor to good, see Table 1. In particular, the toolbox scale 

had a low reliability. For the sake of completeness, we included this scale; however, 

results concerning toolbox beliefs should be handled cautiously. 

RESULTS 

We analysed data from a subgroup of the first-year pre-service primary teachers; 

namely, those who answered all three surveys. Using Levene’s tests and t-tests to 

compare the variances and means of the reported constructs, we found no differences 

between this subgroup and students who missed one of the three tests and had thus been 

excluded from further analyses (p>.10 in each case). The means (SDs in parentheses) 

of the different constructs are displayed in Table 2. We found that the interest values 

were below the theoretical mean of the scale (3.5). 

  T1 T2 T3 

Interest in Mathematics 3.36 (0.83) 3.07 (0.92) 3.15 (0.80) 

Beliefs: Utility Aspect 4.59 (0.79) 4.03 (0.88) 4.35 (0.75) 

Beliefs: Process Aspect 4.27 (0.91) 3.99 (0.95) 4.13 (0.88) 

Beliefs: Formalism Aspect 4.21 (0.65) 4.29 (0.68) 4.26 (0.66) 

Beliefs: Toolbox Aspect 4.12 (0.66) 4.13 (0.64) 3.93 (0.61) 

 

Table 2: Means and standard deviations of interest and beliefs 

For RQ1, we found significant correlations between interest and both dynamic beliefs 

and toolbox beliefs on each survey. However, there were no statistically significant 

correlations between interest and formalism beliefs. The correlations between interest 

and the different aspects of belief are displayed in Table 3 for each time point. 

Correlation between interest and …  
T1 T2 T3 

r p r p r p 

… Beliefs: Utility Aspect .46 <.001 .50 <.001 .47 <.001 

… Beliefs: Process Aspect .52 <.001 .52 <.001 .50 <.001 

… Beliefs: Formalism Aspect -.10 .444 -.11 .393 .04 .758 

… Beliefs: Toolbox Aspect -.13 .308 -.28 .026 -.31 .013 

 
 

RQ2 asks for the development of interest and beliefs. Interest was a stable construct in 

our study. Correlations were .66 (both T1-T2 and T2-T3) and .60 (T1-T3). The beliefs 

were also rather stable; correlations ranged from .44 to .59 (T1-T2) and .37 to .43 (T1-
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T3). The changes in mean scores of both interest and beliefs can be derived from Table 

2.  

 Between T1 and T2 Between T2 and T3 

p t(df=61) d p t(df=61) d 

Interest in Mathematics .003 3.14 .33 .423 -0.81 .09 

Beliefs: Utility Aspect <.001 5.95 .67 .003 -3.08 .39 

Beliefs: Process Aspect .006 2.85 .30 .227 -1.22 .15 

Beliefs: Formalism 

Aspect 
.249 -1.17 .12 .706 0.38 .04 

Beliefs: Toolbox Aspect .744 -0.33 .12 .017 2.45 .32 

Table 4: Significance values, t-values, and effect sizes 

Results of paired samples t-test for these differences and the effect sizes (Cohen’s d) 

are shown in Table 4. There was a considerable decline in interest as well as in dynamic 

beliefs during the first semester, followed by a slight recovery in the second semester. 

Static beliefs were less affected; only toolbox beliefs decreased in the second semester.  

Table 5: Results of linear regressions. 

 
Effect on interest at T2 Effect on interest at T3 

β p R² β p R² 

Pre-Interest .615 <.001 

.47 

.666 <.001 

.50 

Beliefs: Utility Aspect .149 .297 -.088 .444 

Beliefs: Process Aspect .093 .462 -.089 .410 

Beliefs: Formalism 

Aspect 
-.168 .326 .292 .013 

Beliefs: Toolbox Aspect .168 .310 -.094 .464 

 

RQ3 was to investigate, whether beliefs could predict students’ future interest. We 

calculated a linear regression and took interest and beliefs at T1 and T2 as independent 

variables to predict interest values at T2 and T3 respectively. In a simple linear 

regression using interest values only, the explained variance of the dependent variable 

(R²) was .44 at T2 and .43 at T3. Including beliefs increased the R² to .47 and .50 for 

T2 and T3, respectively (cf. Table 5). The additional variance in interest explained by 

beliefs was rather low and not significant in the first semester. In the second semester, 

formalism beliefs explained an additional 7% of the variance in future interest.  
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DISCUSSION 

Answers to the Research Questions 

In terms of their general level, the students in our study had little interest in 

mathematics. This result compares to other findings and fits the idea that primary 

teachers often have a stronger pedagogical than content-specific (e.g. mathematical) 

interest (Abel, 1996). In addition, at Kassel University, mathematics courses were 

compulsory for pre-service primary teachers.  

The answer to RQ1 is that the correlations between beliefs and interest during secondary 

school were positive for the two dynamic aspects (utility, process) and negative for 

formalism beliefs. The correlations of interest and beliefs even appeared to be slightly 

higher than those reported by Baumert et al. (2000). The answer to RQ2 for the 

development of beliefs and the interest in mathematics of pre-service primary teachers 

over the first year at university is threefold. For interest and dynamic beliefs, a strong 

decline was followed by a weak recovery. Toolbox beliefs decreased in the second 

semester, whereas formalism beliefs were constant. To answer RQ3, modelling the 

influence of interest and beliefs on future interest surprisingly revealed no effect of 

dynamic beliefs but a significant positive influence of formalism beliefs.  

How can this development and the predictive power of beliefs be explained? Students’ 

loss of interest is similar to the loss of interest reported for future higher secondary 

teachers (Liebendörfer, 2018; Rach & Heinze, 2017). An important reason for their loss 

of interest lies in the restrictions in students’ self-determination. Formal mathematics 

requires competencies in handling symbols and working with definitions, that cause 

students problems in solving their tasks and it may even become difficult to understand 

the task itself. In such situations, competence and autonomy are hard to perceive 

(Daskalogianni & Simpson, 2001; Liebendörfer, 2018); however, they are necessary for 

a positive interest development (Krapp, 2005). Students who share a more formal view 

on mathematics may better handle the “formal world” (e.g. proving theorems) at this 

point and see its elegance and use. The changes in the second semester might then be 

an adaption of the students to the new situation. Our data thus underline the idea that 

beliefs that fit the mathematics addressed in future may help taking interest (Schukajlow 

& Liebendörfer, 2017).  

Strengths, Limitations and Practical Implications 

One strength of our study is the longitudinal sample that revealed differences between 

correlations and predictors. One limitation is that it is possible that more interested 

students have a greater willingness to participate in the testing thus affecting the results. 

We should further mention that our study could not cover students’ prior knowledge, 

performance, and other motivational factors, which most likely interact with interest 

and its development.  
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Our results shed some new light on interventions, which mainly focus on dynamic 

beliefs (e.g., Grootenboer, 2008). Formalism beliefs should not be seen as something 

obstructive but can also help students take an interest in mathematics.  
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Authentic assessment is developed for overcoming the problems caused by standardized 

tests. In mathematics education, many economies regard students' problem-solving ability 

as the essential goal of mathematics education and foster students' mathematical literacy 

by applying mathematics teaching standards related to authenticity assessment.  However, 

implementing authentic assessment in classroom teaching or integrating it with regular 

evaluations is still a challenge for teachers. This holistic review was conducted using the 

EBSCO host Library. Authentic assessment is identified as a tool and as a task in 

mathematics education. The applied characteristics in PISA, STEM, and e-learning 

environment are also summarized to provide suggestions for mathematics educators in 

utilizing authentic assessment.  

INTRODUCTION 

Standardized test popular in the last century can provide evaluation information about 

students’ learning performance in general. However, this form of assessment provides 

inadequate information on students’ learning process, especially without giving diagnostic 

information to instructors (Allsopp et al., 2008). In contrast, some teachers found students 

responded naturally in authentic assessment because they did not realize that they were 

taking a “test” and felt authentic “tests” were easier than standardized tests (Gao & 

Grisham-Brown, 2011). According to Wiggins’s study (1990), the assessment is authentic 

only when it directly examines students’ performance on worthy intellectual tasks. Svinicki 

(2004) further explained that authentic assessment based on students' activities was close 

to real-life performance, instead of imitating by paper-and-pencil or even computer-drill-

and-practice-type tests. In mathematics education, it is important for instruction to provide 

students more opportunities to transfer the knowledge or skills from previous learning 

experiences to new contexts in order to resolve meaningful tasks (Bottge, 2001). Authentic 

assessment could play such a crucial role.  However, there still exists many obstacles for 

teacher to implement authentic assessment in teaching (Gao & Grisham-Brown, 2011; 

Hernández & Brendefur, 2003), such as teachers’ understanding of authentic assessment, 

the times of planning and preparing authentic tasks, and the application of authentic 

assessments in current e-learning environment or science, technology, engineering and 

mathematics (STEM) education.  
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Besides, authentic context is an imperative factor in design authentic activities or tasks. 

However, it can but not necessarily improve students’ motivation since authenticity of a 

task sometimes is not apparent for learners, which means the task designer must foresee 

how students will recognize the authenticity of the context and the question, and whether 

they are capable of understanding in the context of the task (Vos, 2018). Thus, it is 

challenging for teachers to look for authentic and meaningful activities and apply authentic 

assessment to students (Cankoy, 2011). This study conducts a holistic review on authentic 

assessment-related literature and provides suitable suggestions for mathematics teachers or 

educators in the design and application of authentic assessment in practical instruction.  

METHODOLOGY 

The holistic review puts focus on authentic assessment in mathematics education. We 

search full-text articles though priors research terms: authentic assessment, authentic 

intellectual work, authentic instruction (Villarroel, Bloxham, Bruna, Bruna, & Herrera-

Seda, 2018), and authentic task (Murphy, Fox, Freeman, & Hughes, 2017) along with 

“math*” using EBSCO host Library from 1988 to 2020. We have searched 113 articles in 

the initial review work. After removing the external words in the article title, such as 

“historical”, “discourse intonation” and “geographical”, there were 107 articles chosen in 

next phase. The researcher reviewed these articles to judge whether they suited for this 

review study. The topic including criteria is the research issues focus on mathematics 

education and authentic assessment. The former is easy to judge, but some articles study 

area is not clear, especially in some STEM studies. Articles which used “authentic” as a 

descriptor but did not actually focus on real-life contexts or assessment were excluded from 

the review. For example, Swaffield (2011) clarified the meaning of “authentic” as 

“genuine” but did not associate it with the term “authentic assessment”. The frequency of 

the term “authentic” and its synonyms was generally low in these articles. Finally, there 

were around 70 articles retained after two rounds of screening.  

THE NATURE OF AUTHENTIC ASSESSMENT 

The term “authentic” was first used formally in the area of assessment by Archbald and 

Newmann (1988). In their studies, “worthwhile, significant, and meaningful tasks” are 

essential for ensuring the authentic assessment system’s validity. In order to design 

authentic problems or activities, researchers proposed several standards. Wiggins (1998) 

provided six standards for authentic assessment problems. For example, authentic 

assessment problem shall be realistic; it requires judgement and innovation; it asks the 

student to “do” the subject; it replicates or simulates the contexts in which adults are 

“tested” in the workplace, in civic life, and in personal life; it assesses the student’s ability 

to efficiently and effectively use a repertoire of knowledge and skill to negotiate a complex 

task; and it allows appropriate opportunities to rehearse, practice, consult resources, and 

get feedback on and refine performances and produces.  

Based on previous literature, Herrington and Oliver (2000) identified nine elements for 

designing authentic learning. For instance, three authentic related principals of these 
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elements are “provide authentic contexts that reflect the way the knowledge will be used in 

real life”. “provide authentic activities”, and “provide for authentic assessment of learning 

within the tasks” In summary, an authentic learning activity shall contain authentic 

contexts, authentic tasks (activities), and authentic assessment. Meaningful and realistic 

context (authenticity) is a prerequisite for authentic learning, and influences of authentic 

tasks (activities). For example, primary teacher can provide authentic context about money 

in the classroom, and the economic concept of interest can improve students’ computation 

skills if the instructor design suitable authentic tasks and evaluation criteria (Althauser & 

Harter, 2016). 

AUTHENTIC ASSESSMENT IN MATHEMATICS EDUCATION 

Traditional mathematics education isolates content knowledge from real-life situations and 

mainly on tedious and repetitive mathematical problems solving (Kerekes, Diglio, & King, 

2009). However, when learning in this way, children will always easily forget the 

mathematics knowledge and will not know how to apply mathematical knowledge to 

unfamiliar contexts (Freudenthal, 1973).  

A possible way to link authentic assessment and mathematics teaching could be problem-

solving approach, which has been advocated by National Council of Teachers of 

Mathematics (NCTM) in 1989. Instead of rote memorisation, “understanding mathematics” 

and “student-centred” learning is promoted with the reform in mathematics education since 

the NCTM documents of the 1980s (Suurtamm, 2004). To meet the demands in society for 

employable school leavers, more authenticity teaching has led to an increase in the demand 

for authentic assessment in mathematics (Lajoie, 1995). However, Hernández and 

Brendefur (2003) found that most teachers had a relatively shallow cognition of 

authenticity in mathematics education, tending to confine it to daily life and future 

occupation. The main obstacles include many aspects, such as time-consuming on planning 

and preparing tasks, insufficient participants, limited materials and funding, and outdated 

teacher professional development. which put more pressure to teachers, hence move them 

away from authentic instruction (Gao & Grisham-Brown, 2011). Only a few teachers could 

extend the authentic classroom beyond the connection with the real-life context and get the 

chance to problem-solving critically (Hernández & Brendefur, 2003). Below, we will 

interpret authentic assessment in mathematics education from three different perspectives. 

Authentic assessment as a tool 

As an assessment tool, authentic assessment can be carried out during the mathematics 

learning process. There are many different methods, such as cases, portfolios, exhibitions 

of performance, and problem-based inquiries are identified as tools to enhance students’ 

learning and support teachers in the classroom (Darling-Hammond &Snyder, 2000). 

Reikerås, Løge and Knivsberg (2012) found that authentic assessment material may be a 

useful tool to cognize toddlers' mathematical competences for kindergarten teachers. 

Through structured observation performance of young children in their familiar 

environment, preschool teachers can distinguish stimuli of toddlers to acquire various 
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abilities and provide professional help when needed. It also confirms the finding of Gao 

and Grisham-Brown (2011), teachers applied the authentic assessment to gather students’ 

information and found that personalization did not reduce the accuracy of evolution results 

in authentic assessment. Children are relatively fragile in their relationship with adults. 

Hence, authentic assessment is selected for testing and evaluation to avoid mental and 

physical harm to young children, allowing them to fully express themselves in a 

comfortable environment (Reikerås, Moser, & Tønnessen, 2017).  

Authentic assessment as a task 

A situated context is an important element in designing authentic activities. If the context 

is related to daily life in problem-based learning environment, the instruction and 

assessment can improve the learners’ mathematical thinking, understanding, and 

internalization (Kerekes et al., 2009). Authentic assessment results are consistent with 

students’ learning processes from knowledge, competencies, and transfer. Thus, an 

authentic assessment could be regarded as a learning task to students. Through these tasks, 

the students' participation was enhanced in authentic assessment (Newmann, 1996). Some 

assessment tasks that allow students to construct knowledge related to real-world context 

are more meaningful than traditional assessment (Koh, 2011). In a cooperative learning 

environment, it is noted by Lowrie (2011), authentic assessment can be more complicated. 

Authenticity can be shown through solving problems combined with individual experience 

(Lowrie, 2011). Hernández and Brendefur (2003) found that when students have sufficient 

opportunities to explain generalizations, classifications, and relationships related to 

situations, problems, topics, or to defend their ideas, the course is considered more 

authentic. Consequently, emphasising the collaborative situation in authentic assessment is 

crucial. 

Authentic assessment as a process in PISA 

Although Organization for Economic Cooperation and Development (OCED) (2013) 

claims that the assessment materials of Programme for International Student Assessment 

(PISA) emphasize authenticity, and students will achieve authentic assessments. However, 

compared with authentic assessment standards (Wiggins, 1998), some open-end questions 

in PISA merely need students to answer few words or short sentences, which are less 

complicated than tasks in daily life (Koh & Chapman, 2018). In PISA 2012 (OECD, 2013), 

computer-based assessment of mathematics is provided optionally for participants because 

of the high usage of computer competence as a 21st-century skill of mathematics literacy, 

and improvement of interaction, authenticity and engagement. 

AUTHENTIC ASSESSMENT IN CURRENT LEARNING ENVIRONMENT 

With the rapid development of information technology (IT) and its close integration with 

education, the e-learning approach has been advocated at schools. Students are encouraged 

to integrate and apply knowledge and skills in practical situations to meet the changes in 

21st century. In fact, since the mathematics curriculum reform in 2000, learning by using 

IT and across curriculum has been promoted. The foci of assessment forms have been 
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changed from assessment of learning to assessment for learning, and assessment as 

learning. Authentic assessment is closely related to the real world and the learning process 

of students. Because of its characteristic, the authentic assessment is more valuable and 

meaningful under current learning environment. 

Authentic assessment in e-learning environment 

Shaffer and Resnick (1999) maintain that new media can create an authentic situation for 

learning in connectivity, authenticity, and epistemological pluralism. Through informative 

technologies, the communication avoids geographical limitations and changes the quality 

of learning experience; at the same time, these technologies provide an authentic 

environment for assessment (McLoughlin & Luca, 2001). However, authenticity in online 

learning makes teachers' instruction difficult because, in the digital world, regardless of 

academic status, teachers must continuously redefine themselves as lifelong learners and 

set an example for students (Barber, King, & Buchanan, 2015). Additionally, information 

and computer skills and task re-designing are also challenging for teachers (Barber et al., 

2015). Instead of utilizing the software itself, Herrington and Oliver (2000) found it 

necessary to conduct an authentic assessment in multimedia as part of the learning 

environment.   

Authentic assessment in STEM education 

With the development of globalization, to rise the competitive competency, the study and 

careers of information technology and STEM get the world's attention (Koh & Chapman, 

2018). STEM education is used to solve real-world situations through a design-based 

problem-solving process (Williams, 2011). Tan, Nicholas, Scribner and Francis (2019) 

noted the mathematics tasks would become more complicated after integrating into the 

STEM framework. Based on the student-centred instruction and meeting different students’ 

needs, instructors who plan and construct authentic and interdisciplinary classroom 

activities should be encouraged, which is also adopted to foster students’ 21st-century skills 

(Mahanin, Shahrill, Tan, & Mahadi, 2017).  

CONCLUSION 

This article summarizes and identifies the inherent reasons that hinder the application of 

authentic assessment in mathematics teaching. These reasons include student factors (e.g., 

students’ characteristic), teacher factors (e.g., cognitive deviations about authentic 

assessment), and external factors (e.g., lack of time and funding, and insufficient related 

professional development training). Most of the relevant recommendations in the literature 

are for external factors. For example, Dennis and O’hair (2010) proposed that collaboration 

between teachers promotes teachers' professional competencies and saves the overall time 

for conducting an authentic assessment. Many research papers mention a combination of 

authentic assessment and on-going high-quality vocational training to assess instructor 

adapt to the classroom that facilitates assessment and have more chance bring benefits for 

students' learning (Guskey, 1994), and promote 21st mathematics classroom (Mahanin et 

al., 2017). This kind of effort will also alleviate teachers' perception of authentic assessment 
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to a certain extent. Future research should focus on directly solving or reducing student 

factors that hinder the application of authentic assessment in mathematics education. 
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INTRODUCING PROBLEM SOLVING TO A CULTURE OF 

LONGSTANDING HISTORY OF MEMORISATION 
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In light of the ongoing radical national curricular reform agenda, this research aims at 

investigating Egyptian teacher readiness to embrace a shift away from traditional 

instruction and towards the integration of mathematical problem-solving in the context 

of their daily instruction. Grounded on the Task Analysis Guide, the research maps out 

results of four mathematics teacher focus groups all centered around mathematical 

problem-solving task classroom integration schemes. Results confirm the anticipated 

gap between the national vision of the reformed mathematics classroom and the likely 

implementation of the reformed curricular agenda as reported by the teachers. The 

research calls for a contextualized approach to the distribution of the reform agenda.  

INTRODUCTION 

Multiple scholars have contended a repeating historical pattern of educational reform 

initiatives proceeding from a time of political turbulence (Burde, Kapit, Wahl, Guven 

& Skarpeteig, 2017). Cohen and Ball (1999) argue that for such reform initiatives to be 

effective, it is important to fully capture the history and cultural identity of a given 

learning context (Cohen & Ball, 1999). This research particularly focuses on the case 

of the Egyptian system reform in mathematics education which has been recently 

introduced by the Ministry of Education (MOE). It explores how this reform is locally 

and contextually perceived.   

In the recent years, ongoing national and international collaboration schemes are 

operating to serve the purpose of a complete system level reformation in the national 

schooling curriculum (MOE, 2019). Part of this reform targets to incorporate the 

element of problem-solving into the national mathematics curriculum (MOE, 2019). 

The reform is reported to present a radical shift away from the longstanding teaching 

culture of memorization (Megahed, 2017). This research seeks to investigate the 

readiness of ground level practitioners to embrace the reformation, which is mainly 

administered by the MOE. The study of ground level acceptance to hierarchically 

imposed reform in mathematics education is relevant because of its transferability to 

other high distance power relation learning contexts.  
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LITERATURE REVIEW 

The relationship between education and power has received substantial attention in 

scholarship. Multiple scholars (Apple, 1982; Arendt, 1993; Kupfer, 2015) have 

reflected on the Weberian view which envisions education as a tool of control and 

governance in the hands of policy makers. Literature on power and education in the 

Egyptian context has asserted the Weberian perspective (Hargreaves, 2006; Megahed, 

2017). Naguib (2006) argues that educational schemes in Egypt serve the purpose of 

creating and re-creating a culture of despotism. In his works, he investigated the 

different hierarchical stages of the Egyptian educational system, arguing for the 

educational schemes to be created and communicated by decision makers at every level 

of the hierarchical ladder with the target of sustaining power distances and re-creating 

a culture of oppression (Naguib, 2006). According to Naguib (2006), school leaders 

lack the decision-making autonomy. This sense of oppression is cascaded all the way 

down across the schooling hierarchy.   

In their reflections on mathematics curricular reform initiatives in the past three 

decades, Cohen and Ball (1999) acknowledge the incapacity of mere curricular reform 

and teacher training initiatives to capture the full contextual complexity needed in order 

to achieve enduring and sustainable improvement in students’ mathematical classroom 

experiences. According to the Cohen and Ball (1999), schools are complex social 

institutions and a shift in the teaching mindset is only possible when buy in to the reform 

initiative is established at all levels of the schooling enterprise. 

With these perspectives in mind, and in view of the national mathematics curricular 

reform launched by the MOE in Egypt, this research seeks to investigate the ground 

level contextual buy in of Egyptian teachers to a hierarchically channeled (Al-Ashkar, 

2018) reform agenda. The research addresses the following research question:  

● In light of the ongoing government-led mathematics education system reform 

initiative, which targets a shift towards mathematical problem-solving, how 

do Egyptian mathematics teachers relate to a problem-solving oriented lesson 

structure?  

To study the integration of mathematical problem-solving into the classroom context, 

researcher found the work of Stein, Smith, Henningsen, and Silver (2000) to be of 

significant relevance. As part of a wider mathematics education system reform project, 

Stein et. al. (2000) observed mathematics classrooms, where problem-solving was 

incorporated into teachers’ daily practices. Based on their observations, Stein et al. 

developed a schematic to evaluate this integration process. They differentiated between 

two stages of classroom integration; namely the setup stage and the implementation 

stage (Figure 1). The former refers to the timeframe prior to students’ commencement 

of working on the task along with the approach the mathematics teacher adopts during 

this time. The latter refers to the timeframe where students are actively engaged with 
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the task and the approach the teacher adopts during this time. Stein et al. (2000) argue 

that both stages of the mathematical problem-solving task integration are tightly related 

(Figure 1). In other words, it is unlikely for students to experience the mathematical 

task as a problem-solving task during the task implementation stage if already at the 

setup stage, the teacher has reduced the task complexity by, for instance, providing the 

necessary procedure for solving the task.  

 

Figure 1. Two-stage problem-solving task classroom integration scheme 

In their wider study, Stein et al. (2000) present the Mathematical Task Analysis Guide 

as a framework to evaluate mathematical tasks. They distinguish between four types of 

mathematical tasks, namely ‘memorization tasks’, ‘procedures without connection 

tasks’, ‘procedures with connection tasks’, and ‘doing mathematics tasks’ (Stein et al., 

2000, p.20). The four task types vary in view of their cognitive level demand. At one 

end of the cognitive level demand spectrum, memorization tasks are mostly 

straightforward and simplistic. On the other end, the tackling of ‘doing mathematics 

tasks’ requires conceptual understanding, inquiry into the unknown, going through a 

process of constant re-examination of suggested solution approaches and pattern 

matching. Researcher chooses to refer to the ‘doing mathematics tasks’ as ‘problem-

solving tasks’ for the purposes of this research, due to their high resemblance with 

described problem solving task features in literature (Callejo & Villa, 2009; Stylianides 

& Stylianides, 2014). In my investigation, researcher relies on Stylianides and 

Stylianides’s (2014) definition of problem-solving, which in turn relies of Callejo and 

Villa’s (2009) definition of a problem situation. In accordance with this view, the act of 

problem-solving is envisioned as finding a solution to a situation where there is little 

immediate access to a process that relates the data available to a required unknown.  

In this research, researcher investigates how Egyptian mathematics teachers relate to 

the integration scheme of a given mathematical problem-solving task. Researcher bases 

the investigation on the depicted two-stage classroom integration scheme (Figure 1). 

Based on the analysis of the task setup and task implementation stages, researcher then 

utilize the Task Analysis Guide to map the likely mathematical task experience that 

would result from teachers’ reported classroom integration choices.  

METHODOLOGY 

This work adopts a multiple case study methodology, reporting results of a sample of 

four case studies: Each comprising a teacher focus group. Each focus group incorporates 

a group of teachers that teach mathematics at the same school. All schools that took part 
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in this research are schools that adopt the national curriculum of mathematics and that 

are subjected to the suggested reform initiative reported earlier. All schools that took 

part in this research have been operating the highly centralized, highly traditional, 

memorization oriented national mathematics curriculum (Naguib,2006) at least for the 

past 30 years. The aim was to uncover how mathematics teachers, that are expected to 

radically shift from a longstanding history of traditional instruction, relate to 

mathematical problem solving when integrated in everyday practice. The wider study, 

from which this work is derived, also explores how group power dynamics – 

particularly in a collective Middle Eastern culture (Al-Omari, 2003)- influence the 

choice of buy in to problem-solving, being a foreign method of classroom mathematical 

task integration; hence the choice of focus groups as a data collection method.  

The following three-stage data collection protocol was replicated across the four case 

studies. Firstly, teachers were provided with a mathematical problem-solving task and 

were given an open timeframe to grapple with the task. The task was then discussed in 

the group. Afterwards, researcher presented different approaches to tackle the task, each 

ascribing to a different level of mathematical cognitive demand as reported in the Task 

Analysis Guide (Stein et. al., 2000). Secondly, after being presented with the task and 

the various suggested approaches for addressing it, teachers were asked to each design 

their own lesson plan, outlining how they would integrate the presented task into the 

context of their daily instruction. Thirdly, the group was provided with three narrative 

scenarios, each presenting a different classroom integration approach of the same 

mathematical problem-solving task. The group discussion of the narrative scenarios was 

guided by a set of questions, which are theoretically grounded in the two-stage problem 

solving classroom integration framework (Stein et.al.,2000). The idea was to triangulate 

between an inductive and a deductive data collection activity (devising lesson plans and 

reflecting on narrative accounts of lesson plans) in order to ensure higher validity of 

results and to more holistically capture how teachers relate to a mathematical problem-

solving task in view of their daily contexts of instruction.  

The mathematical task, that the data collection activity has been centered around is 

reported by Stein et al. (2000) as being a highly demanding problem-solving task. 

Hence, in view of the problem-solving oriented national reform initiative, this task 

could be considered as a sample mathematical task which Egyptian teachers would be 

asked to integrate in their daily practices. The narrative scenarios present a culturally 

contextualized version of the narrative scenarios outlined by Stein et al. (2000). Setup 

and implementation of the same mathematical problem-solving task vary in each 

scenario, resulting in a different classroom experience of the task in every narrative.  

DATA ANALYSIS AND RESULTS 

Reported lesson plans as well as reported feedback to the three narratives were captured 

for each case study (schools S1-S4). Repeating trends were captured, coded, and 
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mapped in view of the mathematical task features reported in Stein et. al.’s (2000) Task 

Analysis Guide (Table 1) which acts as an analytical framework of this research 

(Robson, 2000). Table 1 presents the resulting coding scheme. It adopts the frequency 

count analysis (Yin, 2009) to denote the most frequent patterns reported in the datasets 

of each case study with an X. The mapping against the Task Analysis Guide features 

targets to unravel the likely classroom task experience for every case study. To ensure 

validity of the results (Yin, 2009), multiple case study results (of schools with a similar 

history in a culture of memorization-based instruction) are cross compared. Table 1 also 

maps the results across the cases against the two-stage classroom integration scheme 

(task setup and task implementation) (Stein et. al., 2000).  

 Mathematical Task Integration Stage Findings from 

schools 

Task Analysis 

Guide Mapping  

 I. Setup Stage  S1 S2 S3 S4  

 I.1 What are students expected to do?      

1 Reproduce memorised knowledge      Memorisation 

2 Adopt an already provided procedure  X  X X Procedure 

3 Relate to presented conceptual knowledge   X   Connection 

4 Develop a yet unknown approach      Problem Solving 

  

 I.2 How are students expected to do it?      

1 Compete against each other to recall a memorised 

method  

X   X Memorisation 

2 Follow the steps outlined by the teacher    X  Procedure 

3 Make use of conceptual knowledge    X   Connection 

4 Construct knowledge by connecting peers’ input in 

order to collectively develop the approach to solve a 

mathematical problem 

    Problem Solving 

 

 II. Implementation Stage  S1 S2 S3 S4  

 II.1 The target of working through the task       

1 The task is worked through with the target of recalling 

a memorised method  

X    Memorisation 

2 The task is worked through as a means to practise a 

studied procedure  

 X X X Procedure 

3 The task is worked through as an application of 

familiar concepts  

    Connection 

4 The task is worked through as a challenge to discover 

new knowledge  

    Problem 

Solving 
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 II.2 The Meaning Making Process      

1 The teacher equips students with the capacity to use 

memorised procedures  

  X X Memorisation 

2 The teacher equips students with as many 

mathematical procedures as possible  

X    Procedure 

3 The teacher draws on conceptual connections    X   Connection 

4 The teacher facilitates a process of continuous inquiry 

to solve the task  

    Problem 

Solving 

 

 II.3 The Task Ownership       

1 The teacher is the sole owner of the task   X X X X Memorisation 

2 The teacher tightly controls the student exploration 

process 

    Procedure 

3 The teacher guides students as they explore the task on 

their own  

    Connection 

4 The teacher avoids offering input as it is viewed as 

disrupting students' independent exploration  

    Problem 

Solving 

 

 II.4 The Time Management       

1 Any lesson time allocated for student exploration is 

considered wasted time  

X   X Memorisation 

2 Minimal time is dedicated to independent student 

exploration  

  X  Procedure 

3 The lesson time is split into teacher explanation 

followed by student application  

 X   Connection 

4 Most lesson time is dedicated to independent student 

exploration  

    Problem 

Solving 

  

 I. 3 What resources are the students provided with?      

1 The worked through sample task     X Memorisation 

2 The presentation of a mathematical procedure    X  Procedure 

3 The presentation of a mathematical concept  X X   Connection 

4 The announcement of the problem without further 

supporting information 

    Problem Solving 

Table 1: Mapping and across analysis of results  

DISCUSSION 

Table 1 shows how across the four schools, there were very little traces of the teachers 

setting up for- and implementing the task in such a way that its cognitive demand on 

problem solving (code 4) gets maintained and fully experienced in the classroom. 

Instead, teachers consistently, in almost all focus groups, seemed to prefer providing 

students with clear instructions on how to solve the task already at the setup stage (Table 

1-I.1). Across all focus groups, teachers unanimously expressed that the implementation 
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of the task was the role of the teacher and that students were viewed as passive recipients 

of the task implementation process (Table 1-II.3). Students were only given the chance 

to work on a mathematical task themselves once a similar task has already been 

presented by the teacher. In two of the focus groups (S1 and S2), there were traces of 

teachers emphasizing the importance of the establishing conceptual connections in 

relation to the mathematical task (Table 1-I.3). The wider focus group discussion 

revealed that in these cases, the task was used as a tool to explain a mathematical 

concept, hence the connection making element would be entirely performed by the 

teacher.  

In line with Cohen and Ball (1999), the results in Table 1 confirm the incapacity of a 

reformed curriculum to alone penetrate the contextual barrier of school micro-cultures 

that have a longstanding history of traditional instruction. This research suggests that, 

beyond the efforts exerted in reforming the mathematics curriculum, the national 

roadmap needs to incorporate locally feasible implementation initiatives tailored to suit 

the unique and complex reality of every school microculture.  

Beyond the case of Egypt, the research offers a framework for studying ground level 

buy in to mathematics reform initiatives in similar high-power contexts. It also sheds 

light on how problem-solving is perceived in the Middle Eastern culture. This 

understanding is particularly relevant, considering the growing global representation 

(Burde et al., 2007) of the Middle Eastern culture in classrooms around the world.  
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This paper presents an experience of Lesson Study involving primary school teachers in a 

school in North Italy. Researcher will show how Lotman’s Semiosphere construct can be 

used to analyze cultural and semiotic aspects of Lesson Study practices inserted in the 

Italian cultural context, as practices intended to enhance collaboration among teachers 

and their critical thinking on professional issues. Researcher will also show how this 

analysis may complement another analysis, performed in the perspective of the 

Chevallard’s Anthropological Theory of didactics, and concerning the institutional aspects 

of the Lesson Study experience. 

INTRODUCTION 

To meet the new challenges of mathematical education related to changes in workplaces 

and more generally in society, the OECD “Teachers Matter” report defines “teacher 

quality” as the “most important school variable influencing student achievement” (OECD, 

2005, p.2). In Italy, the National Plan for the Professional Development of Teachers, 

scheduled for 2016-2019 but still in force, considers the professional development of in-

service (and pre-service) teachers “compulsory, permanent and structural” by law. In 

particular, the plan aims “to promote reflective thinking and collaboration” in all its forms. 

The Lesson Study methodology (LS) can be considered one of the teachers' professional 

development methodologies suited to meet the Italian institutional requirements. Indeed, 

LS is “a teacher professional development approach, originating in Asia” (Huang, 

Takahashi, & da Ponte, 2019, p.3), that focuses on collaboration and co-responsibility. As 

Hummes, Font, and Breda (2018, p.69) exhaustively explain, we can consider LS as “a very 

broad and non-guided reflection phase of the professional development of mathematics 

teachers”. A LS cycle is constituted of three consecutive moments: planning a lesson in a 

given class, teaching and mutual observation, and discussion. After this last moment, the 

LS working group can choose to start the cycle again for a new class. Within this cycle 

teachers are led, and in this free, to reflect for an improvement of the teaching and learning 

process of mathematics. We may observe that the need for a practice like LS is even 

stronger when teachers need to face the contradiction between current beliefs and new 

ideas. This contradiction must be resolved over time in a supportive community with 

mutual trust and respect. LS stimulates precisely an openly critical dialogue among 

educators about the teaching and learning processes collectively observed. 
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Besides, international studies such as the OECD-PISA surveys encourage each of us to 

compare deal with the results of other countries, especially in the area of mathematics, and 

to study teaching and teacher professional development practices that are at the heart of the 

educational success of these countries, analyzing whether and how there can be a 

correlation between student learning and teacher professional development. However, 

studies like those by Kim, Ferrini-Mundy, and Sfard (2012) or Bartolini Bussi and 

Martignone (2013), suggest that teacher professional development is not the only element 

that affects the quality of student learning: We must take into consideration the cultural 

aspects that have an impact on teacher professional development, on teaching and and 

learning. In this perspective, my purpose is to study Lotman's Semiosphere construct 

(Lotman, 1990) as a theoretical lens – prospectively networking with others – to read the 

cultural aspects in teachers' practices. Hence, my research questions are as follows: How 

and which aspects of teachers' culture, relevant for their own professionality, are 

highlighted by the Semiosphere? Which elements of the Semiosphere are effective in 

analyzing teachers' practices? 

The semiotic space is my main unit of analysis, specifically researcher will investigate how 

teachers’ collective practice are observable in it within a LS experience: Since, as Geoffrey 

Saxe (2014) states, it is within collective practices where we can identify firmly the 

relationships between culture and cognition, and therefore between culture and reflection. 

THEORETICAL FRAMEWORK 

In the literature in mathematics education the systemic aspects (Font, 2002, pp.143-156) 

concerning the links between teaching and learning practices and organization and social 

constraints are the subject of important theoretical elaborations, in particular that of Yves 

Chevallard. His object of study is a ternary relation: the didactic system (students, teacher, 

mathematical knowledge), which cannot be understood except in relation to the (external) 

environment that surrounds it, the teaching system and society. The relationship between 

the system and its surroundings passes through the process of didactic transposition that 

converts scholarly knowledge, initially into knowledge to be taught and then into taught 

knowledge - and finally into learnt knowledge. The “intermediate area between the teaching 

system and society” is the space that Chevallard (1981, p.8) defined as “the noosphere: (the 

sphere where one thinks) about the teaching system”. Bosch and Gascon (2006) warn us, 

however, that it can happen that the school may lose the logic of the knowledge to be taught, 

i.e. the questions that motivated the creation of this knowledge, stopping at the lowest levels 

of what Chevallard has defined as didactic co-determination (Figure 1). 

 
Figure 1: Didactic and mathematical co-determination levels (Bosch & Gascon, 2006, p.61). 
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In-service teachers' professional development, focused on critical reflection and on 

experiences of sharing, thinking, and collaborating, are aimed at awakening, or renewing 

the knowledge to be taught. Each choice, each element living within the didactic and 

teaching system, is dictated by one (or many) in-depth reflection on the way this content is 

structured and taking into account the conditions and constraints posed by the different 

levels of co-determination during the didactic transposition process. However, since I could 

not leave aside the cultural and semiotic aspects – since, furthermore, in mathematics the 

signs are themselves objects of mathematics –, researcher attempted to verify if in the 

perspective of Lotman’s semiotics of culture there could exist theoretical tools suitable to 

account for these aspects. 

According to Lotman (1990), semiotic knowledge is embedded in culture, that is a complex 

system of signs. Studying semiotic aspects, we study the correlation between the different 

sign systems that constitute culture. Moreover, the systems do not present elements in 

isolation, but are always immersed in a homogeneous semiotic continuum. In this way the 

idea of culture explains the necessary notion of dependence and reciprocity between 

systems in which the necessity of the other (another person, another culture) is 

fundamental. To express it, Lotman coins the term Semiosphere: 

As an example […], imagine a museum hall where exhibits from different periods 

are on display, along with inscriptions in known and unknown languages, and 

instructions for decoding them; […] imagine all this as a single mechanism (which 

in a certain sense it is). This is an image of the Semiosphere. […] all elements of 

the Semiosphere are in dynamic, not static, correlations whose terms are constantly 

changing. (Lotman, 1990, pp.126-127) 

Lotman's semiotics differs from the others (Peirce, Eco, Greimas) because, instead of using 

unity (sign) as a primary element of study, he believes that only a global understanding of 

the culture system can lead to the recognition of the units that make it up. The smallest 

functioning mechanism of the process by which an expression takes on the value of a sign, 

the unity of semiosis, is not a separate element but the entire semiotic space of the culture 

in question. In particular a specific culture (e.g. the Italian culture of teaching-learning 

mathematics, in our case) is a semiosphere that lives immersed in the global “all cultures” 

semiosphere and it can exist as a system only in relation to the cultures with which it 

continuously exchanges cultural elements: In this sense “it seethes like the sun” (Lotman, 

1990, p.150). The internal translation (in its semiotic meaning) currents express the 

asymmetric character of the Semiosphere. In fact, "besides the structurally organized 

language, [the semiosphere] is crowded with partial languages [semiotically asymmetrical 

– i.e. without mutual semiotic correspondences with the previous], [...] which can be 

bearers of semiosis if they are included in the semiotic context" (Lotman, 1990, p.127-128). 

Asymmetry between languages engenders the dialogue. In fact, the whole for Lotman 

consists of at least two texts, which dialogue with each other thanks to their constitutive 

asymmetry. 
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In potential continuity (to be further elaborated – see Discussion) with Chevallard’s 

systemic-institutional approach, Lotman’s Semiosphere might be considered as a dynamic 

(never motionless, always bubbling and exchanging) integration (considering also the 

semiotic and, more generally, cultural aspects) of noosphere. 

METHODOLOGY AND DATA COLLECTION 

A first experimental activity of LS cycles in a primary school near Turin was carried out starting 

from the LS experiences conducted in Reggio Emilia (Bartolini Bussi & Ramploud, 2018). 

The working group is made up of six people: the researcher (Carola, a PhD student), a 

retired former teacher-researcher (Ezio) and four teachers who teach in different primary 

school classes of the same institute. Three are 1st-grade teachers: Michela is a support 

teacher for low achievers, Nicoletta teaches Italian in her class, Marcello teaches 

mathematics, science, history, geography, and English. Valentina, the fourth teacher, 

teaches mathematics and science in 3rd grade. The Italian school system is characterized 

by high flexibility in teaching in primary school. Teachers teach several subjects and even 

the support teacher, supporting the class in which there is the low achiever, can take charge 

of teaching subjects to the whole class, according to his skills, if the team deems it 

appropriate. 

The first part of the experiment consists of three complete cycles in the three 1st-grade 

classes. The topic of the lesson is the introduction of the “plus” sign for the addition and its 

institutionalization. The specific goal for children is to understand the concept of addition 

as the sum of two quantities in its meaning of “putting together” and relate it to the signs 

of mathematical language. In the second part of the experience, consistently with the 

previous three cycle, a new lesson is carried out in the 3rd-grade. The designed activity is 

part of the educational path that includes the knowledge of weight measurements and the 

study of state transitions, via experiments. The aim is to accompany students in reinvesting 

their mathematical knowledge and argumentation skills with respect to the transversely of 

the disciplines. Each teacher implements the lesson in his or her class but in the total co-

responsibility of the group, which is there in agreement with the school headmaster. During 

the lesson, the other participants play the role of active observers: in 1st-grade classes they 

interact with the students as “hand-lenders”, i.e. they transcribe the thoughts of not yet 

writing-skilled children. 

The experience, covering all four cycles, was carried out from November 2018 to April 

2019. For a total duration of 24 hours of group work. All the design (4 hours of initial 

formation and 8 hours of design de facto, 2 per cycle) and discussion moments (8 hours, 2 

per cycle), but also the classroom lessons (1 hour in each class – cycle –, for a total of 4 

hours), were video-recorded. Some extracts from these recordings were then transcribed by 

the researcher. In addition, for each planned lesson, the group produced a Lesson Plan 

(Bartolini Bussi & Ramploud, 2018): a written document – a table – that collects the entire 

lesson planning, the objectives the group chose for the lesson, the positioning of the lesson 
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within the long-term planning of the class, and the educational intentionality behind each 

choice of the group. 

In the next section researcher will present a first analysis of a small transcription excerpt 

with the Semiosphere. Because of the nature of the Semiosphere, the excerpt is not self-

sufficient: other extracts are required to grasp how the elements external to the teachers’ 

and class’ semiosphere are gradually translated and understood. Researcher uses the 

asymmetry within the semiosphere to grasp how teachers’ collective practices evolve. 

Researcher looks at the teachers’ discourses - i.e. words and vocabulary used, references to 

the institutional and cultural aspects of their professional background. 

SOME EXCERPTS AND THEIR ANALYSIS 

Here is a short extract from the exact beginning of the first meeting of the second LS cycle. 

Among all the data researcher has chosen to report just this because it represents a turning 

point for the teachers of the group: They have “now appropriated the methodology, 

understood its functioning and potential” (in Nicoletta’s words, during the review of the 

first lesson held in her class), but they are still at the beginning of this professional 

development path. The lesson is still to be revisited and questioned in its details. 

Nicoletta has already implemented and discussed the lesson. The LS group are now in the 

planning phase of the same lesson for Michela’s class. Her children, also in Grade 1, have 

never worked in pairs. The lesson planned for LS includes an argumentation exercise in 

pairs on a double purchase: The children in a previous class bought a 12 cents card and 8 

cents sample clips. Some of them paid with 20 cents. The key question is how and why 

they paid 20 if the prices tags were 12 and 8. The LS group is reflecting on what changes 

to make to the lesson for Michela’s class. Here they are thinking about an introductory 

activity to the lesson, to experience the work in pairs for the first time. 

Michela:       Now I am talking nonsense. I looked at the tests you did [referring to Ezio], 

the problem with the balloons: For example, it could be... […] you give it 

to a couple. Because I wanted to rework that one anyway because… I saw 

it, it is really interesting... also the motivations the students gave. But it 

could be an idea! 

Nicoletta: I believe we could also do something about the comics [introduced in the 

previous design]. […] The scheme is that one of this reasoning […] that 

you should... that we want to re-propose: take two reasonings, do what he 

[Marcello] said […] That is: what did the children who said “9 plus 6” think 

before? […] they are balloons, kids […] it's too similar with the LS lesson? 

Marcello:  [shoulders up] in the sense that it is!... in the sense that they put together... 

In this brief dialogue we already note some essential aspects that can only be 

understood if we consider the Semiosphere in which the dialogue takes place: 

● Tasks reported by a teacher [Ezio] recognized as an expert by the LS group are 

chosen instead of those reported in the textbook. The teachers had already 

declared from the beginning that they did not want to rely on the textbook. 
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To better understand the sphere in which this dialogue arises, researcher also report the 

following excerpt. Marcello describes his difficulty in relating to textbooks and institutional 

meta-didactic structures during the group’s first planning meeting. 

Marcello: [...] maybe you find a very fixed structure: Lessons, notebooks, but if 

you don't understand... [...] staring at the notebook and “making the 

notebook” is very far from me, even if it gives you a lot of [confidence]... 

I mean, I live a lot of anxiety, sometimes I get lost, because if you don't 

have a structure... but at the same time, I can't really get into it, because 

I am not interested in doing that. I think the best thing would be to meet 

[each other]. But of course, the times are what they are [...] I had to write 

all the subjects I do. Which is a lot. […] I want to talk to people, I want 

to see the practices, I want to confront myself directly [...] in my opinion 

the university is too tied to the book [...] seeing things together gives you 

a sense. 

Using Chevallard we can say that the didactic transposition of some practices is not 

complete. At least in these teachers' beliefs, such practices have not passed through all the 

necessary levels of co-determination. There is a gap between academic and implemented 

knowledge. Lotman, analogously, could tell us that the Semiosphere of the group sees local 

institutional requests (“making the notebook”) and national ones (mention of university 

practices) as external elements. They are currently “written” in a language that, Marcello 

and Michela declare, is not that of the group today. The identification of critical thinking 

as a practice of semiotic translation allows researchers, but also teachers themselves, to 

analyze these practices from a semiotic and not only institutional point of view: a 

semiospherical dialogue is created. The lens of the Semiosphere allows us to perceive the 

existing asymmetry between the current school reality (many subjects to teach, no time 

available) and the Italian university culture of prospective teachers, that is a training ground 

for the first personal beliefs. 

● Graphic, material, and gestural visualizations are preferred to only written text: 

The idea is to propose to the children a drawing with comics and cartoon price 

tags. Then the group will choose a theatrical performance. 

An excerpt from the implementation of the lesson underlines the embodied feature 

that the group sought to use. 

Michela:  So, now, kids, let us focus and work on what Valentina did in the sketch. 

[…] She took a nice moment to think. She looked at the two prices and 

thought. Did you see Valentina thinking? […] She thought a little before 

giving me the coins. Okay? Good! So, I will put these two prices [on the 

board, so you can see them] ...  Now, each of you will have a moment to 

think to what to say in the couple! Because I am asking you to say what 

Valentina is thinking right now. Nevi, you must do it in pairs! So, you, 

your thought will have to share it with Mattia, and Mattia will say his. 
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Teachers are aware of the Western culture in which they are immersed: Abstract thinking, 

for an Italian primary school child, must be approached gradually (Mellone, Ramploud, Di 

Paola, & Martignone, 2019, p.8). Grasping abstract thought requires time and continuity. 

A theatrical text, using bodily movements, returns the desired continuity: It realizes the act 

of thinking. Then, translating the action into the graphic text (the comics), the group keeps 

track of the signs that mark the passage from concrete to abstract. 

● The shift of attention from the single teacher – who will enter alone in the 

classroom – to the co-responsibility of the group is the main objective, and for 

them the beauty, of this work with the LS methodology. A co-responsibility that 

is not in the usual Italian teachers’ Semiosphere. Nicoletta says: [...] that you 

should... that we want to re-propose the following time [...]. Co-responsibility 

belongs to LS, but not to the Italian class culture. This asymmetry between the 

LS Semiosphere and that of the group allows a cultural transposition (Mellone et 

al., 2019) of the teachers’ practices: During all the meetings the teachers bring 

themselves and their educational intentionality into play. They question their 

teaching practices with the group. Now educational intentionality and objectives 

are shared: They are meaningful for each member of the group. 

● The exact words of the children are repeated. The expression “put together” was 

how the children of Nicoletta’s class had referred to the idea of sum and therefore 

it becomes the pivot sign of the LS group for the institutionalization of the + sign. 

To discuss this last point more thoroughly, researcher adds here a final excerpt from 

the implementation of the lesson in Michela's class. A student is responding to 

the problem posed. 

Student:  Valentina thought a little bit about how she made the 20 cents. 

Carola:  But she has not read 20 anywhere! [...] Was there a 20 written somewhere? 

Student:  […] because she puts them together [the two prices on the price tags]. 

Carola:  What is it that she put together? 

Student:  20 uh... 12 cents and 8 cents. […] she counted in her mind... continually. 

And she realized that 20, uh... 12 cents and 8 cents make 20. 

The task and its implementation guide the children within relational structures, going 

beyond simple calculation. They look at how the numbers relate to each other. The 

Semiosphere of the class sees the relational structure still external to itself, but through the 

pivot sign of “putting together”, it translates its meaning. 

DISCUSSION AND CONCLUSIONS  

In the previous section researcher tried to observe what happened in the LS experience, 

through the Semiosphere lens. It is just one of the possible ways to look at a teachers’ 

professional development practice. 

Researcher can thus answer the research questions; in fact, it is now explicit that asymmetry 

is the effective element in analyzing collective teachers' practices. It allows us to read the 

changes in teachers' daily practices when introducing an element belonging to a different 
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culture, such as LS. Semiosphere allows to keep together levels of signification culturally 

distant from each other. However, there is more, it allows to outline the internal structure 

of our practices: Our Semiosphere. Such a double look helps researcher and teachers to 

read the transpositions of the knowledge through the levels of co-determination. Here the 

critical dialogue and reflection of the teachers, if read through the Semiosphere, do not lose 

contact with the reality in which they are born. So, the problem of possible integration 

between Lotman and Chevallard lenses according to the Networking of Theories approach 

(Radford, 2008) arises spontaneously. The analysis of the institutional aspects and the 

levels of co-determination seems enriched by a dynamic interchange perspective, and vice 

versa this can be integrated with the institutional constraints typical of a school system 

governed by laws. Future studies could tell us about the connection of the two theories as 

lenses for professional development practices. 
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This study aims at exploring new ways to promote mathematical proof comprehension. 

It focuses on students' solutions to a proof activity based on a Proof Without Words 

(PWW). One hundred eighteen students worked in small groups to elaborate a proof, 

while having a PWW as an artifact at their disposal. Each student then individually 

wrote and submitted a proof-attempt and completed a proof comprehension test. We 

investigate the impact of the comprehension test on students' understanding of the 

proofs and their self-assessment. Findings show that students improved their proof-

products in their answers to the test. They also reported higher proof-understanding 

after completing it and reduced their self-given-grades for their submitted proofs. We 

discuss the pedagogical roles the comprehension test served in the proving activity. 

INTRODUCTION 

Proofs Without Words (PWWs) or Visual Proofs are diagrammatical mathematical 

artifacts in which diagrams or graphs allude to the way of proving mathematical 

propositions or theorems (Nelsen, 1993). The diagram may contain some mathematical 

symbols, characters, and calculations to guide the observer, but the use of any written 

word is obstructed in this genre. PWWs are common in many mathematical domains; 

however, this paper focuses on a particular geometry PWW task shown in Figure 1 of 

the Pythagorean Theorem (Garfield's PWW - adapted from Nelsen, 1993, p. 7):  

Figure 1: "discover and write down the proof implied by this diagram."  

Since their appearance in American journals like the Mathematics Magazine and The 

College Mathematics Journal in the seventies, PWWs were designed primarily for 

mathematicians. When having a PWW at hand, experienced mathematicians can rapidly 

perform a set of epistemic mental actions to develop a valid proof: decode and transform 

diagrammatical information into verbalized expressions, construct a chain of warranted 
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arguments, and fill in necessary gaps based on prior knowledge. Such mental actions 

are essential for elaborating an acceptable proof. As Nelsen, a mathematician and the 

author of three books on PWWs affirms: "Of course, 'proofs without words' are not 

really proofs" (Nelsen, 1993, p. vi). Nevertheless, mathematicians seem to enjoy and 

appreciate PWWs because of their elegance, mathematical beauty, and the insights they 

instigate (Arcavi, 2003). Nelsen goes further and suggests that math teachers share 

PWWs with their students (Nelsen, 1993, p. vii). But can high-school students use 

PWWs like experienced mathematicians to elaborate and comprehend proofs? 

Research focusing on PWWs in mathematics education is scarce. Hanna and Sidoli 

(2007) referred to PWWs as a kind of mathematical visualization that represents a whole 

proof-process. Surveying attitudes towards the role of visualization in mathematics and 

mathematics education, they claimed that while the role of visualization as an essential 

aid to mathematical understanding is widely accepted, still, "there is room for more 

effort aimed at better ways to use visualization in this role" (p. 77). This study is one 

such effort, examining students' ability to (re-)construct a proof represented by a 

visualization of a PWW type. Two theoretical concepts are used to assess students' 

understanding: proof-comprehension-test (PCT) and the notion of gap-filling. 

Proof comprehension and proof comprehension tests (PCTs) 

According to Yang and Lin (2008), proof comprehension (PC) means "understanding 

proofs from the essential elements of knowing how a proof operates and why a proof is 

right" (p. 60). They developed a model for PC of geometry proof that includes six facets. 

Their work also emphasizes the immense challenges of observing and assessing PC. 

Based on Yang and Lin's model, Mejia-Ramos, Fuller, Weber, Rhoads, and Samkoff, 

(2012) suggested a general assessment model for constructing PCTs. They called 

researchers to "use our models to document specific types of comprehension benefits 

that their innovative proof presentations may have" (p. 17). We relied on Mejia-Ramos 

et al.'s model to generate a PWW Comprehension Test (PWW-CT), which is a specific 

PCT, to assess students' proof-comprehension of a PWW. 

Since self-assessment methods help students better understand learning goals, be more 

accountable for their learning process, and improve their performance (e.g., Semana & 

Santos, 2010), we incorporated self-assessment items in the PPW-CT to stimulate 

students' reflective thinking and as another means to evaluate their understanding. 

The notion of gaps and gap-filling  

The idea of gap-filling was developed in literary theory, conceptualizing any text as a 

system of gaps, which the reader constantly needs to fill to construct meaning (Perry & 

Sternberg, 1986). Building on Perry and Sternberg's (1986) theory, Marco, Palatnik, 

and Schwarz (2021) suggested gaps and gap-filling as theoretical constructs in the 

domain of proofs in mathematics education. They define a gap as missing information 
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in a proof-document, the filling of which is essential for comprehending the proof and 

making it acceptable in the eyes of a specific reader. Accordingly, gap-filling is 

achieved by performing any action that aims at identifying and closing a gap (Marco, 

Palatnik & Schwarz, 2021). In this study, the notion of gap-filling is used as an 

analytical tool to assess students' proof-products: the more gaps it rightfully fills, the 

higher the proof-product is evaluated.   

Research question 

In a first cycle of a design study, Marco et al. (2021) gave students several PWWs, 

including Garfield's PWW, and invited them to elaborate a proof and to inscribe it 

(Figure 1). They investigated students' proof-products and found that most of them 

managed to develop proof-attempts that included the key idea of area calculations. 

However, these proof attempts lacked some subtleties essential for being considered 

formal proofs. Their results suggest that if it is wished that high-school students 

construct valid proofs based on PWWs, then they need to be trained to do so. This paper 

describes one such pedagogical tool designed and included in a PWW-activity, A 

PWW-CT. The research question is: what are the impacts of a PWW-CT on students' 

written proof-attempts and their self-assessment. 

METHODOLOGY 

The data were collected in different cycles of a design-research program (Cobb, 

Confrey, diSessa, Lehrer & Schauble, 2003) on the pedagogical use of PWWs. Every 

cycle included three phases: designing, testing, and revising-and-redesigning. The 

analysis included questions such as which gaps in the PWW the students tended to 

identify and fill, and which task revisions could support more gap-filling and better 

proof-products. 

The first design cycle was an exploratory case study (Marco & Schwarz, 2019). From 

the second cycle and on, the teaching experiment structure was as follows: (a) the 

students were given a PWW and collaborated in small teams to develop a proof based 

on it; (b) students individually wrote their proof attempt reflecting on their team 

discussions, and (c) completed an online PWW-CT developed to improve their proof-

attempts. Students answered the PWW-CT via personal smartphones or laptops. 

The PWW-CT was tailored for Garfield's PWW (Figure 1) but was based on the Mejia-

Ramos et al.'s (2012) model for building PCT. It was used to inform future design cycles 

and as a didactical tool. It aimed at prompting students to reflect on their work, revise 

their written proofs, and attend gaps they might have overlooked. The PWW-CT 

included a mathematical and a reflective section. The mathematical section relied on 

the categories elaborated by Mejia-Ramos and colleagues in their model (Mejia-Ramos 

et al., 2012). The PWW-CT was revised several times after each testing phase, and in 

its final version, it consisted of six items of the type "meaning of terms and statements" 
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(i.e., "what is the formula for trapezoid's area?"); two items of the type "justification" 

(i.e., "is the whole figure a trapezoid? How can you know it?"); one item of the type 

"summarizing via high-level ideas" (i.e.," 'what is the key idea of this proof in your 

opinion?"), and one item of the type "identifying modular structure" addressing the 

mechanism that endows the proof of its generality ("Do you think this proof shows that 

the Pythagorean theorem holds for all right triangles? Why?"). An open-ended item was 

added at the end of the mathematical section: "Which improvement would you 

incorporate into the proof you submitted?" After each testing cycle, the PWW-CT was 

revised to support more students' gap-filling. 

The reflective section included two open-ended items and eight 10-point Likert scale 

items. Two of the 10-point Likert scale items are reported here: (1) "To what extent do 

you feel you understand the proof by now?" and (2) "What grade would you give 

yourself for the proof you submitted?" These two items appeared before and after the 

mathematical section, to check whether students' answers changed after completing the 

mathematical section.  

Participants 

A total of 118 tenth grade students from the second (N=37), third (N=10), and fourth 

(N=71) testing cycles answered the PWW-CT. Most of the students were high-achievers 

in mathematics, and only a small minority were average or low-achievers. Forty-two 

students refused to participate or did not submit the proof or the PWW-CT, and their 

data were excluded from the analysis.  

Data gathering and analysis 

Data from two sources were analyzed: the students' submitted proofs developed based 

on Garfield's PWW (Figure 1) and their answers to the PWW-CT. Two-tailed paired 

sample t-tests were undertaken to assess the mathematical section's impact on students' 

reported understanding of the proof and the self-given grades. The null hypothesis was 

that there would be no difference before and after completing the mathematical section 

of the PWW-CT. Effect sizes were calculated. A gap-filling rubric containing nine gap-

filling actions was used to evaluate students' written proofs and the improvements found 

in the answers to the PWW-CT. Due to space limitations, this paper will focus only on 

the following three gaps: 

● Gap-i - why is the middle isosceles triangle right-angled? 

● Gap-ii - why is the whole figure a (right) trapezoid?  

● Gap-iii - why is Garfield's PWW a general proof for the Pythagorean theorem? 

Each gap was coded as fully filled, half-filled, or not filled. For each gap, the average 

rates of filling were calculated. Our method is exemplified in the next section. 
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An example of analysis 

Dan and Shira (pseudonyms) are two students who participated in the fourth testing 

cycle. Figure 2 shows Dan's submitted proof developed based on Garfield's PWW 

(Figure 1), in which he did not fill gaps-i-ii-iii. Dan improved his proof-attempt in the 

answers to the PWW-CT, while Shira's responses did not exhibit much improvement. 

Figure 2: Dan's submitted proof (translation from Hebrew added by the author) 

For the PWW-CT item "Can the middle triangle's bottom angle be known? If yes, how?" 

(In the version of Garfield's PWW that Dan and Shira had, this angle was not marked 

as right) Dan wrote: 

Dan: Yes, it is 90° because the two triangles are congruent, and therefore their 

corresponding angles are congruent, and thus a straight angle minus two 

angles whose sum is 90° gives an angle equals to 90°. 

We can see that through angle calculations, Dan fully filled gap-i and partially filled 

another gap - the congruence of two triangles, that did not appear in his written proof 

(Figure 2). For this same item, Shira wrote:  

Shira: Yes, we can (calculate) because, in every right triangle, the angles are 

always  30°, 60°, and 90°... So, we will assume that the small angle 

is 30° and the other one is 60°, so from both sides of this angle lie 

angles of 30°, 60°. to complete it to 180° it must equal 90°. 

Even though Shira mentioned the idea of subtracting two angles that complement to 

90° from a straight angle, the gap was considered as not filled because her inference 

was based on a wrong assertion ("in every right triangle, the angles are always  30°, 60°, 

and 90°"). For the item, "Is the whole figure a trapezoid? How can you know it?" Dan 

explained that the whole figure is a quadrangle with two parallel sides due to equal 

corresponding angles and received a top grade for filling gap-ii. Shira wrote: "This is a 
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trapezoid because it has two parallel sides and two sides that are not parallel." Besides 

mentioning a correct definition of a trapezoid, Shira did not justify her assertion. Hence, 

we gave Shira half the points for filling gap-ii. To the item "Do you think this proof 

shows that the Pythagorean theorem holds for all right triangles? Why?" Dan received 

a maximum grade for responding: "Yes. Because we did not substitute any particular 

values for the sides nor the angles. We did it on a general case so that it will work for 

every right triangle". Shira wrote she thinks it is a general proof but did not reveal why, 

so she received no points for this answer.  

General results 

Dan's submitted proof (Figure 2) represents a general proof-product pattern in the data.  

In 44% of the submitted proofs, students expressed the key-idea of calculating the 

trapezoid area in two different ways. They simplified the equation to derive the theorem 

without filling any of the three gaps above. By completing the PWW-CT in the second 

(N=37), third (N=10), and fourth (N=71) testing, 62%, 70%, and 88% of the students 

gap-filled at least one of these gaps, respectively. Table 1 shows the average rates of 

filling the three gaps above in the written proof-attempts and in the PWW-CT's answers 

(if the gap was not filled in written proof). Revision of the PWW-CT before the 4th 

testing cycle increased filling gap-i rates from 3% and 5% in the 2nd and 3rd testing 

cycles to 70% in the 4th. 

 

 

 

Testing cycle: 

Gap-i - why the 

middle triangle is 

right? 

2nd    3rd    4th 

 Gap-ii - why the 

whole figure is a 

trapezoid? 

2nd    3rd    4th 

Gap-iii - why is 

this PWW a 

general proof? 

2nd   3rd   4th 

Rates of Gap-filling in 

submitted proofs 

 

18% 10% 50% 

 

24% 0% 45% 

 

0% 0% 2% 

Percentage of gap-filling in 

the PWW-CT* 

 

3% 5% 70% 

 

59% 55% 66% 

 

31% 50% 54% 

* From those who did not gap-fill this gap in their submitted proof. 

Table 1: Rates of gap-filling actions in submitted proofs and answers to the CQ. 

Table 2 shows the average self-reported proof understanding and self-given grade 

before and after completing the PWW-CT.  

  Mean SD p-value Cohen's d 

"To what extent do you feel 

you understand the proof by 

now?"  

Pre-CT 

Post-CT 

8.35 

8.76 

 

1.99 

1.26 

 

 

<.01 

 

0.242 

"What grade would you give 

yourself for the proof you 

submitted?" 

Pre-CT 

Post-CT 

7.6 

7.132 

1.95 

2.29 

 

<.001 

 

0.219 

Table 2: Average self-reported proof understanding and self-given grades before and after 

completing the PWW-CT. 
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We see that the PWW-CT significantly increased the students' reported sense of 

understanding and significantly reduced their self-given grades. However, the effects of 

the PWW-CT on reported understanding and self-given grades were only minor. 

DISCUSSION 

This study contributes to the mathematics education literature on proof learning by 

pioneering empirical examination of students' activity around a PWW. It shows that 

students can develop proofs based on a PWW that includes its main idea but lacks 

essential details for being considered valid. A PWW-CT, accompanying the PWW 

activity, can improve students' proof-products, leading to better proof understanding, 

thus supporting proof learning.  

The PWW-CT significantly increased students' sense of understanding and caused them 

to give themselves lower grades for their submitted proofs (both with small effect sizes). 

These results can be interpreted with the Dunning-Kruger effect; the more ignorant a 

person is in a subject, the more likely s/he is to overestimate her/his performance 

(Kruger & Dunning, 1999). Training in a task alleviates this effect and increases 

calibration – self-assessment accuracy. What substantiates this effect is that the 

knowledge necessary for self-assessment is the same knowledge that the person lacks. 

Reducing their grades after completing the PWW-CT reinforces the claim that they 

became more knowledgeable. 

Pointing at the mechanisms that underlie the effectiveness of the PWW-CT requires 

further investigation. One possible explanation is that it functions as a didactical 

interview done by a teacher. It helps students doubt what seems apparent and recruit 

their mental resources to elicit uncertainties and fill gaps within their proof-product. 

The PWW-CT stir students' attention to identifying gaps they might have overlooked. 

Once students identify a gap, they are more likely to fill it. Repeatedly using PWW-CTs 

for different PWWs may develop students' ability to identify gaps by themselves.  

The PWW-CT role could also be seen as setting proof-writing standards. In the 

collaborative learning part of the activity, some students may have filled some gaps that 

they did not write down in their submitted proofs. That might suggest they did not 

perceive these gap-fillings as essential details. If that is the case, the PWW-CT served 

as an indicator of the author's mathematical standards and expectations regarding the 

elements that students should elaborate on in written proof. To put it another way, it 

might be that the PWW-CT taught the students what should be written in a proof and 

did not necessarily help them generate new gap-filling actions. This way or the other, 

the data show that such PWW-CTs can facilitate high-school students' proving activity 

around PWWs and make PWWs more accessible and beneficial for them. The 

pedagogical approach of using such PCT can be well applied to proving activities based 

on other PWWs and other kinds of proof texts.  
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This study investigated how Japanese preschoolers (5–6-year-old children) understand the 

mathematical concepts of length, area, and volume, as mathematics is not part of the preschool 

curriculum. Researchers conducted structured clinical interviews with 32 children to 

investigate their mathematical content knowledge, skill, and problem solving ability. The 

interviews were statistically and qualitatively analyzed. The results indicated that children 

could perform direct comparisons in length, area and volume, but the challenge was found that 

they were not able to measure a few comparable objects with subtle differences correctly. 

Children’s difficulty measuring correctly suggested that the future mathematical programs 

could enhance integrated learning, dealing with length, area, and volume simultaneously. 

INTRODUCTION 

Many studies have focused on elementary mathematics education for preschool and lower 

elementary school children (e.g., Brandt, 2013; Lin, 2013). However, measurement knowledge 

has not been sufficiently incorporated into these studies (e.g., Kotsopoulos, Makosz, 

Zambrzycka, & McCarthy, 2015; Smith, van den Heuvel-Panhuizen, & Teppo, 2011; Szilágyi, 

Clements, & Sarama, 2011; Tzekaki & Papadopoulou, 2017), even though it is an essential 

mathematical skill that is frequently used in everyday life (Clements & Sarama, 2009). 

Wilkening (as cited in Ebersbach, 2009) stated that preschoolers have been shown to have two-

dimensional reasoning despite Piaget’s earlier notion that young children could not reason 

beyond the number one; Ebersbach’s study (2009) further supported this finding. Zöllner and 

Benz (2013) reported that four- to six-year-old children are competent in the normative aspects 

of indirect comparisons of mathematical concepts. This article, therefore, seeks to extend the 

research on multidimensional reasoning—especially when comparing length, area, and 

volume—among young children, particularly for those who do not study mathematics as a 

subject in school. The research question is: How do Japanese preschool children use multi-

dimensional reasoning in a play-based setting?  

Preschool Education in Japan  

Teaching and learning in Japanese public preschools focuses on fostering three to six-year-

olds’ mental and physical development and is activity-based, not subject-based (Japanese 

Ministry of Education, Culture, Sports, Science and Technology [MEXT], 2018). Children are 
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expected to develop through play. According to MEXT (2018), kindergarten teachers should 

focus on developing children’s learning of numbers, quantities, and geometric figures, which 

comprise the foundation of elementary mathematics skills and should consider children’s 

interests when teaching them. 

The Project and its Theoretical Underpinnings 

The article is part of our preschool mathematics education program in Japan. The aim of the 

project was for inexperienced preschool teachers to understand how to incorporate 

mathematical content into children’s play and recognize activities that cause children to think 

and act mathematically. The theoretical and methodological underpinnings of the program 

were mathematical guided-play (Weisberg, Hirsh-Pasek, & Golinkoff, 2013) and the Structure 

of the Observed Learning Outcome (SOLO) taxonomy (Biggs & Collis, 1982). In the project, 

fundamental mathematical programs were developed within a framework of learning activities, 

educational objectives, and the child’s expected thinking and learning processes (Clements & 

Sarama 2009) to enable a smooth transition from preschool to elementary school (Matsuo, 

2017).  

DESIGN AND METHODS 

Research Participants  

One kodomoen—a type of hybrid day care and preschool in Japan—took part in our pilot study. 

This kodomoen focuses on mathematical activities. A retired professional with experience in 

both kindergarten and elementary school settings supports the research and training of novice 

teachers in kodomoen, and she can help develop and disseminate early childhood informal 

mathematics educational activities. Children attending this school do not formally learn 

mathematics, although they engage in mathematical activities to a limited extent, but there are 

no measurement activities. In total, 32 of the children—18 boys, 14 girls, aged five and six 

years—were selected for participation from the graduating classes. Of them, 30 were Japanese 

and 2 were non-Japanese, and they were from middle- and upper-middle-class families. 

Data Collection and Analysis  

We evaluated the children’s performance on tasks incorporating numbers, shapes, and 

measurement, focusing on how well they measured length, area, and volume, using both direct 

and indirect comparison. The researchers developed a structured clinical interview (Goldin, 

1998) with 21 mathematical content items, 8 of which were on mathematical measurement 

quantified by 16 questions. The questions covered the following areas: Q1-7 on length, Q8-11 

on area, and Q12-16 on volume. The questions were developed referring to the framework for 

early childhood mathematical curricula (Matsuo, 2017), with theoretical and methodological 

underpinnings from mathematical guided-play (Weisberg, Hirsh-Pasek, & Golinkoff, 2013) 

and the Structure of the Observed Learning Outcome (SOLO) taxonomy (Biggs & Collis, 

1982.) The interviews took place in January 2019 and each lasted about an hour. The 

interviewers were the first author and co-researcher of this paper. The children were randomly 

selected for interview order. Both interviewers sat in front of the child and took turns asking 

questions. The interviews were video recorded. The researchers analyzed the data statistically 

and qualitatively, scrutinizing each child’s actions on the video as well as their transcript. 
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S/N Questions 
Mean score (standard 

deviation) 

1 
Which pencil is longer? (direct comparison of the lengths of 

two pencils) 
96. 9 % (0.1740) 

2 
Why did you give that answer in Q1? (the reason why you 

selected a longer pencil in Q1) 
75.0 % (0.4330) 

3 

Which pencil is the longest? Which pencil is 

longer? (indirect comparison of three pencils 

drawn on the paper) 

96.9 % (0.1740) 

4 
Why did you give that answer in Q3? (the reason you gave 

using mediation etc. in Q3) 
31.3 % (0.4635) 

5 
Did you know how long 10 cm is? (knowledge of the word 

and meaning of 10cm) 
65.6 % (0.4650) 

6 Can you draw a straight line of 10㎝? 21.9 % (0.4134) 

7 Can you measure an 8 cm line drawn with a ruler? 34.4 % (0.4750) 

8 

Which card is larger? (comparison 

between two cards (rectangles) drawn on 

paper) 

59.4 % (0.4911) 

9 

Can you compare two cards using the yellow card as an 

intermediary? (The area of yellow card is as same as the area 

of red card, but smaller than blue card.) 

90.6 % (0.2915) 

10 
Can you put four cards of different sizes in order? (comparison 

among four cards (rectangles)) 
78. 1 % (0.4134) 

11 

Why did you give that answer in Q10? (the reason you gave is 

that the longer length means larger area while focusing on a 

particular part such as height in Q10) 

84.4 % (0.3631) 

12 

Which cup of water has more water in it? 

(comparison between the volume of two 

cups of water drawn on paper) 

96.9 % (0.1740) 

13 Why did you give that answer in Q12? 75.0 % (0.4330) 

14 
Did you compare the volume of the two cups of water in Q12 

in terms of depth? 
93.8 % (0.2421) 

15 Do you know how much 1L of water is? 53.1 % (0.4990) 

16 

Can you select 1L of water from four different volumes of 

water? (The interviewer reminds children of a 1L carton of 

milk and asks them to choose from four options (500ml, 

800ml, 1L, and 1.5L).) 

28.1 % (0.4996) 

Table 1: Question items and mean scores of correct answers 
 

RESULTS  

The interview questions were scored as 1 point for every correct response and 0 for incorrect 

response. The highest score possible was 16 points. The researchers calculated the participating 
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children’s total score and the average percentage for each question item, the mean score. The 

average total interview score was 10.81. Table 1 shows the question items with the mean score 

of the correct answers.  

 

Correspondence and Cluster Analysis: The Relationship of Answering Patterns with 

Question Items 

Semantic similarities among interview items were investigated using correspondence analysis 

and cluster analysis, this included all 16 question items with average percentages of correct 

answers. Figure 1 shows the results of the interview, the correspondence analysis is on the left 

and the cluster analysis on the right. The numbers correspond to the numbers of the interview 

items. The correspondence analysis shows the contribution ratio of the first and second axes 

are 28% and 23%. The cluster analysis shows three groupings, (G1) (Q4, and Q15-16); (G2) 

(Q3, Q10, Q2, Q11-13, Q1, Q9 and Q14); and (G3) (Q5-8). These groups show the differences 

in children’s answer patterns. G1 and G3 show relatively lower achievement in their patterns. 

In G1 and G3, the question items were related to the context of comparisons, moreover, G1 

contains an item on explaining length and volume, and G3 includes length and area. Looking 

at G1 and G3 in detail, in Q15-16, twenty-three children did not identify the exact 1L amount 

by comparing it with the other quantities of water. Instead, on Q16, they selected the similar 

quantity, 1.5L, out of the four options (500 ml, 800 ml, 1L and 1.5L). This result indicates that 

children found it difficult to compare a particular volume with the other volumes of a given 

liquid. This could be resolved similarly to Q4. In Q4, children were expected to describe their 

reasoning when comparing the lengths of the three drawn pencils shown in Q3. It was not 

possible for young children to use a particular length, that is, a ruler or paper clip intermediary 

when they compared the lengths. Thus, making the comparison of similar quantities was 

challenging for children.  

In G3, knowledge of length (Q5) and measurement of length (Q6 & 7) were related questions. 

Drawing a 10㎝ length and measuring the 8㎝ line were related to the skill of reading a 

measurement scale. Children also needed to capture the subtle differences between two areas 

of sheets of paper in Q8. They also had to make a comparison of the area of rectangles that 

were different in height (equal in width but slightly different in height). Thus, these three 

questions (Q6-8), which were categorized in the same group in the cluster analysis required 

children to show the correct skills for measuring things.  

 
 

Correspondence analysis  Cluster analysis 

Figure 1: Correspondence and cluster analysis 
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DISCUSSION 

The statistical analysis did not show any differences in answering patterns between direct and 

indirect comparisons. Children’s achievement in these two areas is crucial for their learning.  

Direct Comparisons 

There were 5 direct comparison questions (Q1, Q3, Q8, and Q12). Q1 required a direct 

comparison of length, Q3 required a comparison of length by judging appearance, Q8 required 

a comparison of area by judging appearance. Q12 also required a direct comparison of volume 

(a comparison of water in the same glass as drawn on paper; see Q12 in Table 1). Except for 

Q8, the number of correct answers for items related to direct comparisons was relatively high, 

showing that children performed direct comparison of length, area, and volume well (Zöllner 

& Benz, 2013).  

Indirect Comparisons 

The results varied when taking a closer look at existing knowledge applied across concepts, 

and this was not an aspect discussed in the statistical analysis. First, the research considered 

length measurement. Q4 required an indirect comparison of length. Children had to order the 

length of three pencils drawn on paper using another medium, such as a ruler, or a paper clip, 

and their performances were considerably poor. Moreover, in Q5-7, twenty-one children 

answered that they had heard of the standard unit of length, a centimeter, but they did not 

explain the concept well and could not measure or represent the length of an object in 

centimeters. Second, are measurement was considered. The result of Q8 showed that some 

children had a weak understanding of area measurement. However, when a medium for indirect 

comparison was provided (in the form of a yellow card the same size as the red square), ten 

more children succeeded in comparing area and answered correctly on Q9. This clearly 

indicated that simple interventions allowed children at these ages to be able to make indirect 

comparisons. Regarding Q10, twenty-five children answered correctly, but they may have 

judged the ordering of areas based on length without considering width. There was a possible 

misconception as it was difficult to arrange these cards in order of width: 12 cm × 12 cm, 11 

cm × 11 cm, 9 cm × 15 cm, 9 cm × 9 cm; this result is consistent with that of a previous study 

(Skoumpourdi, 2015). Third, volume measurement was considered. As seen in the Q12 results, 

it seemed an easier task for children to compare the amount of water in a drawing on paper; 

they correctly identified the larger volume in the interview (Q14). Most children compared the 

volume of water by its depth (Q13); even when they looked at the same amount of water in 

different shaped glasses, they judged the difference in volume by comparing only the heights 

of the liquid in each glass. Similarly, in Q15-16, half of the children had heard of the standard 

unit, a liter, but could not express a concrete image of the volume. 

Relating Mathematical Concepts 

The analysis revealed that children were confused about the mathematical concepts of length, 

area, and volume (Skoumpourdi, 2015). Other previous finding (Nakawa, Watanabe & Matsuo, 

2019) also found out the same results even with some interventions for two- and three-

dimensional shapes. In particular, children were able to compare lengths well, but that 

knowledge was misleading when they applied it to area and volume measurement. When 
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analyzing the performance of the 13 children who could not compare the area of two cards 

(Q8), only two of those children were able to explain, in Q4, how to compare length correctly 

using a medium (p = .02246 < 0.5). It can be inferred that children might not be able to compare 

the area correctly if they were not able to compare lengths. Furthermore, the number of correct 

answers was higher when comparing the volume of water in the same shaped glass than when 

comparing the area of cards. In the case of volume, children could compare the amount of water 

by its depth, but they could not in the case of area. Children were likely to compare area based 

on length, even if they noticed differences in the width of the cards. One reason could be that 

Japanese children often deal with height in day-to-day life. For example, teachers often 

measure the height of children or compare their height; they may teach children to observe 

plant growth and record height, and so on, but they get little experience with area or volume. 

Finally, even when children are able to act mathematically in specific activities (for example, 

Q12) in day-to-day life, they are not able to acquire the concepts for quantities such as 1L, 10 

cm, and skills for describing the results of measurement. This should motivate better 

mathematics teaching. 

CONCLUSION  

The analysis showed that fifteen (47%) children in the interviews could perform direct 

comparisons of length, area, and volume. However, the analysis also showed that in cases 

where they did not do well on length comparison, it was also challenging for them to compare 

area correctly. In particular, it is difficult for children to make a comparison using a third 

vehicle or to make a detailed and accurate comparison. The comparison of length, size, and 

volume is closely related, and it was also revealed that children who could not compare lengths 

could not compare area. We need to develop children’s understanding of measurement and 

consider how the individual concepts of length, area, and volume, which are currently learned 

separately, can be integrated with one another. Future research should analyze a larger number 

of children and develop an early mathematical educational program through which children 

can learn how to compare related mathematical concepts and gain better mathematical content 

knowledge and skills. 
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Situational affect (emotions and motivation) in first year mathematics courses in US 

high schools was studied using Experience Sampling Methods and Latent Path 

Analysis. Seven Hundred forty-six students from two US states were surveyed using 

Experience Sampling Methods. The results of a latent path analysis suggest that 

situational emotions can be distinguished by the objects to which they are directed, and 

that students interpret their engagement in mathematics tasks using both positive and 

negative emotions simultaneously depending on to whom or what they are directing 

their emotions. Finally, the objects to which emotions are directed are key determinants 

of the motivational outcomes they impact in mathematics classes. 

INTRODUCTION 

The role of emotion in students’ motivation and success in mathematics is well 

established (Hannula, 2006; Hannula & Laakso, 2011). Emotions have been projected 

as the primary link between experiencing mathematics and one’s motivation to engage 

(Hannula, 2006). The consensus in educational psychology and mathematics education, 

assumes that the role emotions play in self-regulated learning is complex. For example, 

in the psychological literature there is strong evidence that experiences promoting 

positive emotions improves student learning (Pekrun, Elliot, & Maier, 2009). Positive 

emotions (such as joy or hope) tend to be related to higher levels of self-efficacy and 

effort students are willing to expend on a task. But there is also evidence that positive 

emotions can have no effect or even negative effect on learning (Trevors, Muis, Pekrun, 

Sinatra, & Winne, 2016). Negative emotions, (such as anger or hopelessness) likewise, 

can have both positive and negative effects, depending on the constraints of the learning 

situation (Goldin, Epstein et al., 2011). 

As a case in point, Muis, Pekrun et al., (2015) show that in a computer-mediated 

environment, students’ emotions while engaged in the task impacted the self-regulated 

learning strategies they utilized in the task. Importantly, “positive” and “negative” 

emotions did not fall neatly into simple categories. Curiosity (a “positive” emotion) and 

anxiety (a “negative emotion”) together, for example, contributed positively to more 

critical thinking in the assigned tasks. Likewise, confusion and curiosity together 

contributed positively to metacognitive self-regulation. 

https://www.tandfonline.com/doi/full/10.1080/00461520.2017.1421465
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One of the hypotheses that explains such conflicting evidence is that emotions, rather 

than being general affective responses to a task, instead are directed at particular objects 

in the environment. Middleton, Jansen, & Goldin (2017) propose that each emotion one 

experiences is directed at some object such as the teacher, oneself, one’s peers, or the 

mathematics in which one is engaged.  One can simultaneously be frustrated with the 

mathematics, but excited about the teacher or one’s peers. There is some evidence that, 

given the multiple potential objects to which a student may direct their emotions, and 

given the multitude of emotions one may experience relative to those objects, there is 

no wonder emotional responses generate conflicting evidence related to learning 

outcomes. Mathematics and the teacher and peers in math class are prime objects. 

Recently, Vollstedt & Duchhardt (2019) show that students take both the academic and 

social features of their environment into account, and think about them separately when 

framing the meaning their mathematics engagement has for them (see also Botah & 

Hannula, 2019). 

The pattern of emotions one displays in a learning environment and the subsequent 

personal meanings of the task one constructs through appraisal of the objects of one’s 

emotions can be termed, situational affect in much the same way as the interest one 

experiences in a learning episode can be termed situatonal interest. In fact, situational 

interest can be thought of as one feature of situational affect. Other features such as 

mathematical self-efficacy, feelings of social inclusion, and personal relevance of the 

mathematics can also be seen as part of situation affect (Wiezel, Middleton, et al., 2019). 

The distinctions between situational affect and longer-term, trait-like beliefs are 

reviewed thoroughly by Middleton, Jansen, & Goldin, (2017). Like situational interest, 

situational emotions can sustain persistence in the task, while longer-term moods and 

affective structures tend to direct whether or not one chooses to engage in mathematics-

related activity in the future (e.g., Hannula, 2006). Together, aspects of situational 

affect, broadening the “catch and hold” theory of the transition of situational interest to 

personal interest (Mitchell, 1993), may contribute to long-term, trait-like approach 

orientations. 

Recently, Wiezel, Middleton et al., (2019) found that positive and negative emotions 

were significantly associated with students’ mathematical self-efficacy and interest, but 

not with other motivational factors. Moreover, both positive and negative emotions 

appear to exist simultaneously in students’ experiences and contribute to their 

interpretation of their mathematical engagement. The present study builds on these 

findings. Whereas in that earlier study, we found that situational affect impacts 

situational motivation, the subtleties of emotional object, and measurement of 

situational affect were not measured at the task-level.  

In the present study, our working hypothesis was that situational emotions, if 

distinguished by object (e.g., teacher, classmates, self, or mathematics) would manifest 

different effects across the situational motivational variables. Following Muis, Pekrun 

et al., (2015) we expected to see both positive and negative emotions contributing 
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simultaneously to the motivational variables, with valences that would suggest that 

students may hold two or more emotions with different valences simultaneously.  

Evidence of these patterns would support the theory that: 1) Situational emotions are 

directed at objects; 2) Students may interpret a situation using both positive and negative 

emotions; and that 3) The objects to which emotions are directed will be a primary 

distinguishing feature of the motivational outcomes they impact. 

METHOD 

Participants 

Participating students were recruited from 42 classes, taught by 17 teachers (8 in a Mid-

Atlantic US State, and 9 in a Southwest US State). Forty-five percent of the students 

identified as Male, 52% identified as Female, and 4 % identified as “Other.” Fifty-nine 

percent of our students identified as Hispanic/Latinx, 14% identified as /White, 14% 

identified as African-American, 2% American Indian/Alaska Native, and 2% identified 

as Asian, 2% identified as Other, and 8% identified with more than one category. All 

students were enrolled in a mathematics course designated as “first-year high school 

mathematics.” The majority first year mathematics courses in the Mid-Atlantic sample 

were semester-long integrated mathematics focusing more heavily on Algebra, whereas 

in the Southwest, first-courses were year-long, traditional Algebra 1 content.   

Measures 

We assessed students’ situational affect using Experience Sampling Methods (e.g., 

Shernoff, Kelly et al., 2016). A short survey (Wiezel, Middleton, Zhang, Tarr, Jansen, 

2018) was designed to assess students’ situational affect and motivation during a focal 

class activity. This instrument featured a set of situational emotion checklists including 

16 emotions (angry, anxious, ashamed, bored, confident, embarrassed, excited, 

frustrated, happy, hopeful, hopeless, interested, proud, relieved, satisfied, and worried). 

Emotions were directed toward four possible objects in the students’ mathematics class 

(the math activity, themselves, their classmates, and their teacher), yielding a matrix 

containing 16 emotions x 4 objects. Students were asked to check a box in the matrix 

corresponding each emotion they felt towards each object. 

Factor analysis of these items revealed 4 separable factors:  Negative emotions directed 

towards the teacher/class (4 items e.g., Bored about/by Teacher); Positive emotions 

directed towards the teacher/class (16 items e.g., Excited about/by Teacher); Negative 

emotions directed towards the mathematics (6 items e.g., Anxious about/by Math); 

Positive emotions directed towards the math (7 items e.g., Excited about/by Math). 

Chronbach’s alpha for these 4 scales were 0.72 for Positive math emotions, 0.76 for 

Negative Math emotions, 0.37 for Negative class/teacher emotions, and 0.84 for 

Positive Math emotions. 

The low reliability for Negative class/teacher emotions indicates that findings that show 

an impact of this factor on situational motivation should be taken with caution. There is 
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current debate on what reliability means for experience sampling methods, wherein one 

“experience” may be quite different, qualitatively from another, even in the same 

mathematics class. We include this factor despite its low internal consistency, keeping 

this caution in mind. 

Situational motivation variables were measured on the survey using a set of 5-point 

Likert items arranged in 5 factors (1 corresponding to a low rating and 5 being a high 

rating):  Effort (4 items e.g., How hard were you trying during the activity you were just 

working on?), Self-Efficacy (2 items e.g., I felt successful in the activity I was just 

working on), Social Engagement (4 items e.g., I felt like my contribution was respected 

during this activity I was just working on), Perceived Instrumentality (4 items e.g., How 

I performed on the activity I was just working on will affect my future success); and 

Interest (2 items e.g., I think the topic covered in the activity I was just working on is 

interesting). Chronbach’s alpha for these scales ranged from a low of 0.71 for Effort, 

and a high of 0.85 for Interest. 

Procedure 

Students were surveyed in the Fall of 2018 and Spring of 2019. Researchers asked 

teachers to identify an activity in their classroom that had the potential for engaging 

students in the mathematics. The entire class session was observed, and when the 

identified activity was completed, each student was asked to complete the ESM survey. 

Surveys were completed electronically, primarily, using the students’ phones, or school 

laptops. Several classes did not have universal access to these devices so the surveys 

were administered using paper-and-pencil. Surveys took less than 5 minutes to finish. 

This resulted in 746 returned surveys, each assessing the student’s emotions and 

motivations in the immediate situation they were studying. 

RESULTS 

Goodness 

of Fit 

Index 

Estimate 

χ² 2013.86 (p<.0001) 

df 1091 

RMSEA 0.034 (0.031, 0.036) 

CFI 

TLI 

0.85 

0.83 

Table 1. Goodness of fit indices for the Latent Path Model 

We fit a hypothesized latent variable path model to the data using Mplus software 

(Muthén & Muthén, 2017).  Each item on the survey was treated as either binary (for 

emotion items) or ordinal (for motivation items), and each scale was estimated as its 

own latent variable. To address the ordinal nature of these variables, polychoric 
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correlations (which can handle both binary and ordinal data in the same analysis) and 

WLSMV estimations were used in our models.  

Standardized Regression Coefficients  

 +Class 

Emotions 

+Math 

Emotions 

-Math 

Emotions 

-Class 

Emotions 

Interest 0.17***  0.54*** -0.25*** -0.28*** 

Self-Efficacy -0.02 0.66***  -0.63*** 0.17 

Social 

Engagement 

0.24***  0.34*** -0.25*** -.26*** 

Instrumentality 0.26*** 0.25*** -0.06 -0.29*** 

Effort 0.08 0.07 0.28*** -0.50*** 

Table 2. Relationships Among Latent Variables  

Overall, the model fit relatively well (see Table 1 for fit statistics). Although our chi 

square was significant [χ²(1091) = 2013.86, p < 0.0001], the rule of thumb that χ²/df be 

less than 3 shows that our model has adequate fit. The RMSEA was 0.034 with a 90% 

confidence interval between 0.031and 0.036, which indicated very good model fit (Hu 

& Bentler, 1999). However, the CFI and TLI indices of 0.85 and 0.83 indicate 

moderately good fit.  

In the hypothesized model, we found was a significant, positive standardized regression 

coefficient between emotion factors and all motivation outcomes. The pattern among 

the effects indicates that the object of the emotions determines, in part, the motivational 

variables impacted.   

Positive Math Emotions, for example, is positively related to all motivational outcomes 

with the exception of effort. Effort expended in the task is predicted by experiencing 

more negative math-oriented emotions, but by having fewer negative teacher/class-

oriented emotions. Positive emotions show non-significant relationships, regardless of 

object, towards effort students were willing to expend on the task. 

The remaining significant effects in the model are as follows. Situational interest is 

positively associated with positive class- and mathematics-related emotions, and 

negatively associated with negative emotions. Task-based self-efficacy is positively 

associated with positive math emotions and negatively associated with negative math 

emotions. Emotions directed towards the class were not significantly associated with 

Self Efficacy.  Social Engagement—the belongingness and support students felt in the 

task is positively associated with both positive class- and math-related emotions and 

negatively associated with both negative class- and math-related emotions. Perceived 

instrumentality appears to be associated with positive class and math emotions, and 
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negatively related to negative class emotions. Perceived instrumentality was unrelated 

to negative math emotions. Figure 1 provides the full path model. 

 
 

Figure 1: Latent Path Model of Situational Emotions by Object and their 

Hypothesized Relationship with Situational Motivation 

DISCUSSION 

Results confirm our hypothesis that situational emotions are directed at objects, and if 

these objects are taken into account when assessing situational affect, they explain some 

of the perplexing findings in the field related to seemingly conflicting emotions 

appearing simultaneously in the same experience. We found that, when we accounted 

for math-related and teacher/class-related emotions, the different emotional objects 

appear to impact aspects of situational motivation differently.   

In particular, the role of “negative” emotions is fascinating, as negative math-related 

motivations appear to positively impact, or at least interact with, effort students are 

willing to expend in mathematics learning. The finding that positive emotions appeared 

to have little to no relationship with effort, but that negative emotions appear to 

stimulate effort is a fruitful area for followup research. Goldin, Epstein et al., (2011) in 

discussing affective structures make the point that frustration and other “negative” 

emotions may be interpreted by students as calls to expend more effort in order to learn 

or at least show some success in the task. How this plays out is uncertain, but our 
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confirming evidence of this seems to indicate that challenging tasks, with support, are 

critical for students to feel that a task is worthy of effort. 

Social-related emotions—those pertaining to the teacher/class as objects—are 

interesting for their part. Self-Efficacy appears to be fairly unrelated to social-oriented 

emotions compared to those focused on mathematics as the object. This makes sense, 

in that task-related efficacy beliefs are tied to feelings of success, and in the US, 

mathematics tasks are predominantly tackled individually, or even if done in groups, 

are assessed individually.   

Some limitations to our work here must be noted, however: First, our negative class 

emotions scale had low reliability. This makes the findings related to that scale 

somewhat suspect. Further research and refinement of this scale is warranted.  Second, 

our fit indices were inconsistent. Followup studies with larger samples should provide 

better estimates, particularly if the negative class emotions scale is improved. 

In summary, this research contributes three important ideas to the literature worth 

further pursuit: 1) situational emotions are directed at objects; 2) students do tend to 

interpret learning situations in both positive and negative terms depending on to whom 

or what they are directing their emotions, and 3) the objects to which emotions are 

directed determine, in part, motivational outcomes of mathematics learning 

experiences. 
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Building on Fischbein's notion of figural concept, this paper introduces a cognitive model 

of geometric prediction (GP) processes and proposes a revised definition of GP as the 

mental process of generation of a new geometrical object through the manipulation of 

figural elements that maintain invariant certain theoretical elements belonging to the 

solver’s Theory of Euclidean Geometry. The model was developed during my doctoral 

study aimed at investigating cognitive aspects involved into processes of prediction in 

Geometry. I introduce the model and provide an example of the qualitative analyses that 

can be carried out through it. Specifically, I focus on the central role played by theoretical 

control and dynamism within the process. 

INTRODUCTION 

This paper reports on the main finding of my doctoral study, aimed at investigating 

cognitive aspects involved in a cognitive process carried out in the domain of Euclidean 

geometry: geometric prediction (GP). GP is a theoretical construct that was first presented 

at the 42nd PME conference (Miragliotta & Baccaglini-Frank, 2018). This was the very 

beginning of our studies on prediction processes. Although the theoretical construct of GP 

still needs further investigation, here I continue my discussion of GP within the PME 

community by reporting one of the main findings of the study: a revised definition and a 

model through which GP can be analyzed.  

The study is situated within the wide domain of research on visualization in geometry, 

following Presmeg's definition (2006): 

[...] visualization is taken to include processes of constructing and transforming both 

visual mental imagery and all of the inscriptions of a spatial nature that may be 

implicated in doing mathematics (p. 206). 

Indeed, concerning the research on mental images involved in doing mathematics, 

processes of GP can be considered elaborations and processing of mental images. 

Moreover, when discussing the processes accomplished by a solver facing a geometrical 

task, Mariotti and Baccaglini-Frank (2018) highlight that it is rather frequent to use 

geometric prediction “to mentally manipulate a figure and imagine how it will change given 

certain constraints, that is, maintaining certain properties invariant” (p. 156). Since the 

authors highlight that this process is common among the solvers, this study is meant to 

contribute to this topic by providing a precise definition and a fine-grained description of 

GP. 
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In order to gain a deeper insight into GP processes, building on the Theory of Figural 

Concept (Fischbein, 1993), we have constructed a model (Miragliotta, 2020) of the process, 

seeing it as a mental action of productively and dialectically combining figural and 

theoretical elements under the solver’s theoretical control. The model that I will introduce 

was developed, refined, and tested, to ensure that it provides a suitable lens for observing 

GP processes and has the potential to explain a variety of students' difficulties. In this paper, 

I use the model to describe different kinds of GP processes, highlighting especially the role 

of theoretical control and manipulation.  

THEORETICAL FRAMEWORK 

Within the domain of geometrical reasoning, generating a prediction is a process that 

involves the solver's use of and interaction with geometrical objects. These are very 

particular mathematical entities. As highlighted by Hershkowitz et al. (1989), geometry as 

a mathematical theory is a cultural artifact, whose objects belongs to a logical system, and 

therefore are ideal; however, unlike other mathematical domains, geometry relies on a 

natural conceptualization of space, and its objects maintain a strong connection with 

material objects (solids or drawings). So, from an educational point of view, for observing 

and describing personal processes of prediction, we need a theory that describes this 

multifaceted nature of geometrical objects when they are used and conceived by a solver.  

This is the key reason why we grounded our study on the Theory of Figural Concepts 

(Fischbein, 1993), which sees geometrical objects as composed by different – but strongly 

intertwined – aspects. Indeed, when a solver is approaching a geometrical task, s/he deals 

with figural concepts. A figural concept is neither a pure concept nor a pure image; it is the 

fusion between the conceptual and the figural components of a geometrical object as it has 

been thought by the solver. In Fischbein’s words: figural concepts “reflect spatial properties 

(shape, position, magnitude), and at the same time, possess conceptual qualities – like 

ideality, abstractness, generality, perfection” (Fischbein, 1993, p. 143). So, from a 

psychological and educational point of view, when people use or refer to ideal geometrical 

objects they are thinking in terms of figural concepts.  

As a consequence, the solver’s figural concepts can be very close or quite far from the 

corresponding geometrical objects. Such a distance can be more or less wide depending on 

the solver’s use of a system of control. Recently, building of Fischbein’s work, Mariotti 

and Baccaglini-Frank (2018) have provided an explicit definition of theoretical control as 

the act of “mentally imposing on a figure theoretical elements that are coherent in the theory 

of Euclidean geometry” (p. 156). Theoretical control has several functions (see, Mariotti, 

1992, for further details). For example, when the solver needs to rearrange (through 

rotation, translation, reflection, …) figural components of a given drawing or imagined 

figure, s/he needs to theoretically control the figure in order to check the possibility of the 

transformation and its consistency within the mathematical reference theory (Mariotti, 

1992); in this study the reference theory is the Theory of Euclidean Geometry (TEG). 

Generally speaking, the theoretical control supports the coordination between an image of 
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a figural concept (the figural component) and its geometrical definition (the theoretical 

component). 

The model of GP in a nutshell 

In light of the theoretical framework and supported by data analyses, a new definition of 

GP was proposed in (Miragliotta, 2020) and here reported. Geometric prediction can be 

defined as: the mental process of generation of a new geometrical object through the 

manipulation of figural elements that maintain invariant certain theoretical elements 

belonging to the solver’s TEG. Manipulation can be physically performed or only 

imagined. Depending on the solver’s theoretical control, products of GP can be coherent or 

incoherent with respect to the given theoretical constraints within the TEG. 

Data analyses revealed that GP processes are composed of general and stable components, 

following described. Theoretical elements, recalled by the solver through introduction of 

new elements or interpretation of the given ones; these are elements of the solver’s 

productions that belong to the TEG; they include all the properties that solvers give to the 

figure (or part of it), theorems and mathematical results. Figural elements, on which the 

solver focused, and which can be manipulated; these are elements of the solver’s 

productions that belong to the figural domain in a specific moment related to the image of 

the figure in front of the solver. Depending on how these components interact and come 

into play, they produce a process of GP with specific characteristics. Looking at the 

diagram (Fig. 1), the arrows make explicit the connections between the components and 

their possible features. 

 
Figure 1: Visual diagram of the GP model 

Starting from the upper left side of the diagram above, when a GP process starts, a 

geometrical figure is interpreted by the solver, who recalls or introduce theoretical elements 

that characterize certain figural elements. Figural and theoretical components are always 

intertwined (see the red arrow) and one can recall the other at any time. Theoretical control 

(Mariotti & Baccaglini-Frank, 2018) envelopes and harmonizes these two components (see 

the funnel in the centre). Moreover, using theoretical control the solver manipulates or 

decides to focus on particular figural elements (see the blue arrow on the right), allowing 

solvers to obtain new figural elements or additional theoretical properties of the figural 
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elements. Manipulations can be accomplished in two ways: continuously, that is solvers 

can imagine, perform or mimic a continuous movement of one or more parts of the 

configuration (i.e., points, segments); discretely, that is solvers can locate these parts at a 

specific position on the plane and reconstruct the corresponding configuration. The cycle 

described can be repeated. 

A GP process does not produce either a pure theoretical or a pure figural object: it produces 

an object that is a composition of the two. This object can be drawn out or conceived only 

mentally, according to the theoretical control that the solver exercises. The coherence of 

such a product within the TEG also depends on the theoretical control. 

METHODOLOGY 

The data collected for this qualitative study comes from 60-minute individual interviews in 

which solvers were assigned as many prediction open problems (i.e., open-ended task 

focused on prediction) as they could solve in the given time. Data consists of audio, video 

recordings, and drawings produced by each solver. The participants are from a convenience 

sample of 37 Italian solvers who volunteered to take part in the study. Among them there 

are 32 high school students (ages 14-18), 5 among undergraduate, graduate, and PhD 

students in Mathematics (ages 23-35). Tasks were proposed through task-based interviews. 

The first question was always the same; then there was a sequence of questions defined a 

priori and a set of stimuli to obtain solvers’ comments or clarifications. In this paper I will 

refer to the following task: 

“Imagine a triangle ABC. Consider the midpoint of the side AB and call it M. Imagine 

tracing the segment CM. Imagine that A and B are fixed. Make a prediction: is it possible 

that CM is congruent to CB?” 

Solvers can reason in different ways. One of the possible resolution paths consists of 

recognizing CM as a median of the triangle ABC; focusing on the triangle CMB and 

interpreting the theoretical element “CM is congruent to CB” as the constraint “CMB is an 

isosceles triangle”. Starting from a first prediction about a position for C so that CM is 

congruent to CB, the solver can imagine moving C to explore other positions of C that 

maintain the given constraints. This way, the solver can predict or recognize an entire locus 

for C. Instead, the solver may directly recall a figural concept, that is “the axis of a 

segment”, and its definition as the locus of points equidistant from two given points (M and 

B). 

When the model is used for describing GP processes, the researcher needs to make explicit 

all the theoretical and figural elements that are involved. The solver can explicitly mention 

some of these elements, but others need to be inferred; inferences can be drawn by looking 

diachronically and synchronically at all the solver’s productions (i.e., utterances, gestures, 

drawings). Theoretical control can be inferred by looking at how theoretical and figural 

elements are blended within the process, more or less coherently with the mathematical 

reference theory. 
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CASE ANALYSIS  

Among the data collected, I chose key excerpts from Sam’s interview to be presented here, 

since they provide (in a quite short timespan) an example of different kinds of GP processes 

accomplished by the same solver. When the interview took place, Sam was a 10th grade 

student. In the following transcriptions, I make use of bold font and underlying to highlight 

theoretical and figural elements, respectively. 

Right after the first question, Sam expresses his first product of GP, stating that CM does 

not be congruent to CB (GP1) and explain why, as follows. 

1  Sam: Because the side CM would represent, in any way, the height of the 

triangle that I imagined and therefore could not reach the length of the 

side BC anyway. 

According to the model, initially, Sam introduces new theoretical elements: he sees CM as 

the height of the triangle ABC. His theoretical control is not strong enough to recognize the 

inconsistency (or at least the lack of generality) of this interpretation and to support 

manipulations of figural elements.  

The interviewer asks Sam to make a drawing of what he has imagined (Fig. 2a), and then 

she repeats the question. Sam’s answer is the following: 

2  Sam: Because the side CM, that represents the height, is in any case... since 

it is perpendicular to the sides AB that are fixed points, it is shorter 

than the side CB since it is slanted instead with respect to the side AB. 

The drawing supports Sam’s first interpretation of the configuration and the perpendicular 

relationship between CM and AB is a new theoretical element, which is directly drawn 

from the theoretical element “height”. This relationship is coherent within the solver’s TEG 

and interpretation, but it does not coherently fit with the given constraints, since CM is 

given as a median of ABC. Until Sam conceptualizes CM as a height, he does not seem to 

be able to overcome this very fixed interpretation. 

Now the interviewer asks Sam if he thinks he can move C so that CM is congruent to CB. 

Sam says that he does not think so, and he starts arguing why, but then he suddenly stops; 

after a long silence (8 sec) he states the following. 

3  Sam: No! No, no, there would be one point. I should...I should move C 

perpendicularly to the midpoint of segment MB [he points at a 

specific position, Fig. 2b] and therefore these two, these two [CM,CB] 

sides would be identical. 

He performs a drawing of the new configuration (Fig. 2c). Line 3 provides an example of 

a GP with different features. The interviewer's question seems to promote Sam's mental 

manipulation of figural elements (i.e., point C, segments CM and CB). He does not perform 

such a manipulation only figurally to reach a position for C so that CM “appears” equal to 

CB, but an important role is also played by theoretical elements. Indeed, Sam points at the 

position and, at the same time, provides theoretical elements (i.e., “midpoint”, 
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“perpendicularly”) used to find this position. Looking at his utterance we can see that CM 

is no longer conceptualized as a height, but as a side (of a triangle). We can infer that Sam 

is activating theoretical control over the figure, which allows him to coherently manipulate 

figural elements, take into account all the theoretical constraints which characterize the 

figure, and drop the idea that CM must be the height. At the end of the process, Sam has 

reached a new product of GP: C on a perpendicular segment through the midpoint of MB 

(GP2). The manipulation was discrete: Sam has pointed at a specific position within the 

plane and then mentally reconstructed the sides (“therefore would be equal”). Good 

theoretical control and discrete dynamic interaction with figural elements are the main 

features of this GP. 

When the interviewer asks him for other ways for CM to be congruent to CB, he says: 

4  Sam: Ehm... the other points would be moving point C perpendicularly to 

MB, I mean raising it [he points at C and mimics a straight trajectory 

that is perpendicular to MB, see Fig 2d] or lowering it [he mimics the 

trajectory, see Fig 2e] and, bringing to the other side, raising it or 

lowering it. Yes, moving point C only perpendicularly to MB. 

Sam’s utterances and gestures depict a new product of GP, by describing an entire locus 

for C. GP3 (C on a line perpendicular to MB through the midpoint of MB) constitutes a 

refined version of GP2. The dynamic dimension embedded into the process is evident: Sam 

continuously manipulates the figural element C for describing the locus that constitutes his 

prediction. This is a different way of accomplishing a GP. 

 

Figure 2: The drawings and gestures performed by Sam during the interview 

Looking at the whole excerpt (lines 1 – line 4) we can notice how movement is more and 

more intergraded into the GP processes, realizing an evolution from a very fixed 

configuration to a continuous manipulation of figural elements, passing through a discrete 

approach. Supported by the interviewer’s requests for alternative configurations that could 

realize the congruence between CM and CB, Sam undertakes three processes of prediction 

with different features. The first process is characterized by a misleading interpretation of 

the given constraints that reveals a solver’s lack of theoretical control, leading to the 

fixedness of the whole figure. Sam's exploration is limited to the left part of the model; GP1 

is only the description of the very first triangle that Sam has imagined. The last two 

processes are both characterized by good theoretical control which supports the solver in 

completing the cycle of prediction. More precisely, the process that leads Sam to 

communicate GP2 is characterized by the introduction of new figural concepts (the 

midpoint and the perpendicular segment). The theoretical elements that compose these 
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figural concepts are verbally described; instead, the figural counterpart is performed 

gesturally (Fig. 2). The good theoretical control allows the solver to recall (eventually 

implicitly) the most suitable fragment of theory and ignore the first figural concept (the 

height of the triangle). A discrete manipulation of figural elements (i.e., C, CM, and CB) 

supports the prediction process. So, we can say that good theoretical control and (discrete) 

dynamism are the main features of this process. The last GP process manifests a prominent 

dynamic dimension, as well: seemingly, the locus is reached correctly because the solver 

is willing to manipulate figural elements (C, CM, and CB) continuously. While Sam is 

moving C, he constructs the locus; indeed, he starts moving C above the segment AB, and 

during this manipulation the idea of also moving C under the segment emerges. The last 

utterance suggests the intervention of the solver’s theoretical control to maintain the 

coherence of the manipulation; indeed, a theoretical counterpart is added. 

CONCLUDING REMARKS 

Analyses reveal that there is not only one single process of prediction with certain fixed 

characteristics; more likely there are stable components (theoretical and figural elements, 

theoretical control) whose different interaction gives rise to a process of GP with specific 

features. As far as this report concerns, I focus particularly on the role played by theoretical 

control and dynamic dimension. The case study in this paper provides an example of three 

different processes of GP that were accomplished by the same solver as he solved a given task. 

The first process is characterized by a lack of both theoretical control and dynamism; 

theoretical control, coupled with dynamic interactions with figural elements (discrete and 

continuous, respectively), characterizes the last two. 

Theoretical control is at the heart of the model; it has a crucial role in all the processes. For 

example, it is key for controlling the coherence of the manipulation of figural elements (line 

4); for recalling suitable figural concepts (line 3); for taking into account all the theoretical 

constraints given by the problem or deduced from those (lines 3-4). Moreover, this report 

focuses especially on the function of a dynamic dimension as a catalyzer of GP processes: the 

possibility of considering several configurations that change dynamically (in a discrete or 

continuous way) has revealed to be central for reaching a coherent product of GP. This is 

consistent with Presmeg’s findings on dynamic imagery (1997) which is revealed to be very 

effective and “especially powerful in facilitating the mathematical problem solving of the 

students who used them” (Presmeg, 1997, p. 305). Sam’s excerpt also provides an example of 

a (quite) instantaneous breakthrough in the situation which allows the solver to undertake 

effective GP processes right because he is willing to explore the configuration dynamically. 

For other students who have interpreted CM as a height, the interviewer’s request for other 

positions does not seem to trigger a more dynamic exploration, and they remain fixed in their 

first interpretation. Here is one of crucial roles played by the theoretical control: it makes the 

solver able to coherently reconceptualize the figure. In the excerpts, the interviewer’s questions 

simply activate Sam’s theoretical control. 

The model provides insights into the GP process of a particular solver at a given moment while 

that solver is solving specific prediction open problems. Although findings from this study 

have no statistical ambitions because of the limited number of cases analyzed, the fine-grained 
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qualitative analyses that were carried out have provided a richness in detail and depth which 

would not have otherwise been possible. 

I see great educational value in tasks that explicitly ask students to make geometric predictions. 

Indeed, at the end of each GP process, solvers gain new insights into the initial geometric 

configuration; simultaneously such insight enriches the personal figural concepts with new 

figural and theoretical components that emerge during the process. Moreover, asking for a 

prediction sheds light onto the features of students’ figural concepts, and consequently provides 

teachers insightful information for designing geometrical activities aimed at strengthening 

students’ theoretical control. This is a new hypothesis that needs to be further investigated. 

However, in my view, considerations emerging from this paper can inspire educators to 

establish educational goals and “good practices” within the teaching and learning of Geometry. 
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TEACHING–LEARNING STRUCTURES IN MATHEMATICS 

INSTRUCTION FROM A MULTIMODAL PERSPECTIVE  
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This article focuses on structures of teaching and learning in mathematics classrooms, 

which are observed in everyday teaching. They are designed by the teacher. The goals and 

motivation for the design are to activate the learners’ previous knowledge, to enable and 

to reflect mathematical explorations, as well as to structure and link new knowledge 

content. Different types of teaching–learning structures are analysed in more detail and 

examined for connections between their function in the teaching practice and the utterances 

of the teacher. With the help of the Content Structuring according to Mayring (2014), 

authentic teaching material is analysed. A characteristic use of modes is revealed for 

certain teaching–learning structures.  

INTRODUCTION  

In order to make mathematical learning as meaningful and supportive as possible, teachers 

vary teaching–learning structures and thus set different emphases for the design of the 

mathematical learning process (Steinbring, 2005; Barzel et al., 2013). At the center of these 

structural units is the object of learning, which is elaborated, illustrated, and made tangible, 

in the interaction between teacher and learners or in negotiation processes between learners, 

and can therefore lead to mathematical knowledge growth. Teachers design teaching–

learning structures in different ways. The teacher’s task is to prepare what is to be learned 

according to teaching–learning theories and to activate, enrich, and structure what has been 

learned in order to initiate mathematical learning processes. In this paper, the focus is on 

the teacher's design of mathematics lessons and its importance for the students’ learning 

activities.  

The teacher's instructions and the interaction situations are not only in speech, but are also 

accompanied by other modes, such as gestures and inscriptions. Modes are often not used 

separately or sequentially, but the subject matter is explained, structured, repeated, and 

applied in new contexts through multiple modes simultaneously (Alibali et al., 2014).  

THEORETICAL FRAMEWORK  

Multimodality 

Interpersonal interaction in everyday situations, but also in the context of learning 

processes, is characterised by the use of varied signs. Kress (2010) focuses in his semiotic 

interpretation on the relation between the design of the sign, called form, and its meaning. 

The specific configuration of signs is produced in interaction and is thus part of the semiotic 
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resources of a culture. This means, for example, for mathematical learning processes, that 

fractions are inscriptively represented in mathematics classes in two dimensions with 

numerator and denominator. A specialist mathematician, on the other hand, often chooses 

the one-dimensional pair representation. The respective cultural context, i.e., the 

mathematical subject culture or teaching culture, shapes the design of the sign.  

“Mode is a socially shaped and culturally given semiotic resource for making meaning. 

Image, writing, layout, music, gesture, speech, moving image, soundtrack and 3D 

objects are examples of modes used in representation and communication.” (Kress, 

2010, p. 79).  

In the present research context of authentic mathematics teaching, the main observable 

modes are speech, gestures, writing, and typical iconic images used in mathematics and 

mathematics teaching (including layout).  

In the context of mathematics education, speech is differentiated into technical language 

and academic language, which are used for interaction in mathematics lessons in addition 

to everyday language (Vogel & Huth, 2020). It can be stated that the academic language is 

shaped by the prevailing classroom culture, which in turn is strongly influenced by the 

teacher. The amount of technical language often varies greatly and depends on the teacher’s 

professional self-image. Speech differs from writing primarily in its grammatical structure 

and medial implementation form (graphical and phonetical signs). In mathematics 

instruction, written language is often used in the form of a notebook entry or in the written 

formulation of mathematical rules (e.g., in a rule book). 

Gestures as the result of hand movements in space (Goldin-Meadow, 2003) are described 

by Huth (2014, p. 151) as  

“stable components of the semiotic repertoire that it is probably almost impossible to 

suppress them for any length of time. But not only for the producer of gestures, but also 

for the reader or rather interpreter of them, they seem to be important in relation to the 

speech used, as indicated by Kendon (2004): ‘The meanings expressed by these two 

components [gesture and speech] interact in the utterance and, through a reciprocal 

process, a more complex unit of meaning is the result.’ (ibid. 108 f.) ”. 

In addition to written language, iconic signs (images) are significant in teaching contexts 

for the representation of mathematical relations or for the illustration of ideas that have 

become established in theories of mathematical learning. Such “written-graphical 

products” (Schreiber, 2013, p. 54), generated by learners and teachers alike, are called 

“insciptions” by Latour and Woolgar (1986).  

“Inscriptions are seen by Latour and Woolgar as a very ductile means of representation 

that is continuously changing and improving. ” (Schreiber, 2013, p. 54). 

This processual character of inscriptions can be used for mathematical learning processes 

in a special way. On the one hand, they are temporarily fixed and on the other hand they 

can illustrate transformation processes due to mobility and changeability. 
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Structures in mathematics instruction 

The design of mathematics instruction is shaped by the teacher’s intended learning goals, 

which are determined by the mathematical content of learning and the mathematical 

concepts relevant to the process of understanding. These mathematical foundations are 

framed by mathematics teaching principles of creating instructional situations and 

teaching–learning arrangements. Thus, Barzel et al. (2013) formulate “four main phases” 

(p. 287) to design teaching–learning arrangements that are oriented to the functions of 

learning and teaching and the learning activity initiated by it. For further analysis, the 

authors differentiate these into six teaching–learning structures.  

By activating students’ experiences from previous lessons and everyday experiences 

outside the classroom, existing knowledge is made accessible for the current learning 

content of mathematics lessons (Activating). Learners can refer to already existing 

knowledge and use it for the development of new learning content. While Explorating, 

learners discover and experience initial approaches and aspects of the new learning content 

(e.g., in authentic contexts). These findings can be shared informally within the learning 

group at first. By systematically observing the increase in knowledge, the learners become 

aware of the newly gained insights, so that an initial structuring is made possible (Reflecting 

& initial Regularizing). The pre-structured knowledge can be further abstracted, compared 

to previous mathematical knowledge, and linked to it (elaborated Regularizing & Linking). 

In this way, the experiences of the exploration are condensed to their mathematical essence. 

The knowledge condensate, in the form of regularized and linked knowledge, is 

documented in writing and thus fixed for later access (Securing & Preserving). The 

described structures of initial Regularization, Linking, and Securing are summarised by 

Barzel et al. (2013) as “organization of knowledge” (p. 285). The framework for practicing 

the newly acquired learning content and transferring it to new contexts is provided by the 

teaching–learning structure Practicing. The challenge for the teacher is to identify suitable 

tasks (Watson & Sulivan, 2008), to offer adequate support, and to ensure that 

differentiation potential is available for specific target groups.  

These six teaching–learning structures can occur several times in the mathematics 

classroom or can be observed in different sequences. They are used variably by the teacher 

to enable an effective learning process for the students.  

PURPOSES AND METHODOLOGICAL ASPECTS  

The following research questions guide the analysis: 

(1) Which teaching–learning structures can be identified in authentic mathematics 

instruction? (2) In which modes does the teacher utter in these teaching–learning 

structures? (3) Is there a connection between the function of the teaching–learning 

structures and the modes of the teacher’s utterances?  

The empirical findings presented refer to a lesson of 90 minutes. The lesson focuses on the 

introduction of addition and subtraction of like-named and unlike-named fractions in a 6th 
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grade class of an integrated comprehensive school. The authentic lessons were videotaped 

and analysed using Content Structuring according to Mayring (2014, p. 104). For the 

analysis, two category systems were developed based on theory. One category system deals 

with teaching–learning structures and their importance for the instructional mathematical 

learning process. The following main categories are defined: Activating prior knowledge 

and experience (a), Exploring and elaborating knowledge elements (e), reflecting and 

initial Regularizing (r), elaborating Regularizing and Linking (l), Securing and preserving 

(s), Practicing in selected tasks (p), and other structures (Other). The main categories are 

differentiated into subcategories. The observable interaction structure (instructions by the 

teacher or interactions between the teacher and individual students or a group of students) 

is considered here. Except for the main category Practicing, pure instructional situations 

can be identified in which the teacher refers to previous learning content or explains new 

learning content. In addition, interactions with individual students, groups of students, or 

the entire class can be observed, each of which is coded in a subcategory. The category 

Other focuses on the teacher’s organisational activities. A total of 502 time intervals of 10 

seconds each are coded with this category system. The coding is done by two coders. An 

intercoder reliability of 0.89 (according to Holsti, 1969, p. 140) is achieved. The second 

category system deals with the semiotic resources (signs) used and their configuration 

(modes). For this purpose, the classical modes are used first: speech (sp), gesture (gs), and 

action (a). After coding, the authors decide not to consider the action mode.The actions 

observed by the teacher only have an organisational function and thus only have flanking 

significance for the learners’ discussion of the content, e.g., opening the pen to write on the 

board or leafing through documents and the textbook in order to set further tasks. The 

inscriptional expression is split into two modes: written text (w) and signs, used in 

mathematics and mathematics teaching, as well as their arrangement, hereafter called image 

(i). For example, the two-dimensional representation of a fraction, an equals sign, or the pie 

model of fractions are likewise coded as image. In addition to the coding of single modes, 

combinations of modes are also included in the category system. Situations with signs that 

do not show any of the mode interpretations described above are coded as other (0). The 

intercoder reliability achieved here is 0.82 (according to Holsti, 1969, p.  140). 
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RESULTS  

  

Figure 1: Modes of teacher’s utterance in progress of coding intervals, 

modes: speech (sp), gesture (gs), image (i), writing (w) 
 

(1) Which teaching–learning structures can be identified in authentic mathematics 

instruction?  

Each teaching–learning structure is condensing at certain times during the lesson. 

Activating previous knowledge can only be identified at the beginning of the lesson (see 

Figure 1, Activating). In the analysed introductory lesson, the teacher makes prior lesson 

content available by activating learners’ concepts of fractions (e.g., through iconic 

representations on the whiteboard). Early on, the teacher weaves explorations of the new 

learning content addition and subtraction of fractions with like and unlike denominators 

into the repetitive instructional segments of activation (see Figure 1, Explorating). This 

interlacing of previous knowledge (concept of fractions, comparison of fractions with the 

same name and fractions with different names, shortening and extending) and new 

knowledge elements is superseded by an interlacing of Exploring and Regularizing 

intervals (see Figure 1, Regularizing). In this process, new knowledge elements are 

provisionally reflected orally and increasingly systematised. The teacher therefore 

addresses the central mathematical aspects of the lesson at the beginning and systematises 

them successively in the teaching–learning structure, Regularizing. 

Subsequently, the new knowledge content is further systematised by an alternating 

sequence of Regularizing and Linking intervals to support the embedding in the  previous 

knowledge of the learners (see Figure 1, Regularizing & Linking). From interval 130 

onwards, this combination of teaching–learning structures is replaced by an interplay of 

linking and Practicing intervals (see Figure 1, Linking & Practicing). While the students 
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apply the new knowledge with textbook exercises, the teacher interrupts several times to 

discuss difficulties and errors observed by students’ representation. Finally, the learning 

content is preserved by documenting it in the rule book (see Figure 1, Securing). This 

structure appears exclusively at the end of the lesson and picks up both the new learning 

content as well as connectable content from the previous lessons. 

The subcategories of the category system of the teaching–learning structures show that the 

teaching practice is characterised by common dialogue between the learners and the 

teacher. This suggests that the teacher’s spoken and gestural expressions concentrated on 

stimuli for the active participation of the learners in the mathematical lessons. At the same 

time, however, it is clear that the teacher very much moderates, complements, and drives 

the lesson and thus the teaching practice is very much directed by the teacher.  

(2) In which modes does the teacher utter in these teaching–learning structures?  

Across all coded intervals, speech emerges as an extraordinarily pronounced mode 

(approximately 91%), which substantially shapes the development of the mathematics 

lesson. Gestures are coded in more than half of the intervals, so that they are also attributed 

as a central part in the lesson’s progress (see Table 1). Moreover, this introductory lesson 

reveals the close intertwining of speech and gesture, which is complemented by the 

inscriptional mode writing in the teaching–learning structures Linking, Securing, and 

Practicing. 

(3) Is there a connection between the function of the teaching–learning structures and the 

modes of the teacher's utterances?  

Similar modes can be identified in the teaching–learning structure Activating as well as in 

Exploring (see Table 1). In addition to speech and gestures, images such as mathematical 

signs, which are relevant for the mathematical learning process, as well as graphical 

highlighting (e.g., framing important examples) are used for visualisation and structuring 

(approximately 43%). In this way previous knowledge and new learning content are 

structured and networked for all learners. The teaching–learning structure initial 

Regularizing is intertwined with the teaching–learning structures Activating and 

Explorating and is characterised by its oral and gestural character (see Table. 1). In this 

first oral reflection and systematisation, the teacher refers gesturally to inscriptions on the 

whiteboard, created in Activating and Explorating. Based on the work with already existing 

inscriptions, the teacher is not dependent on the conception of new inscriptions. In the 

interplay of gesture and inscription, mathematical representations are compared with each 

other, and their respective characteristics are highlighted. Likewise, the teacher also uses 

fewer images (approximately 34%) in intervals of the teaching–learning structure Linking, 

with a comparable gesture percentage to the intervals of Activating and Explorating This is 

due to the gestural references of the teacher to already existing images on the board. Thus, 

the teacher works with the existing inscriptions, which are already familiar to the students 

from the other teaching–learning structures and uses them for the elaborated regularisation. 

During the Securing and Practicing  of the learning content, the number of gesture codes 
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decreases (approximately 40%), while the proportion of speech codes remains 

unexpectedly high. While the learners are working on tasks, the teacher comments on the 

further organisational workflow and gives content-related hints for the processing of the 

tasks. In doing so, the teacher mostly holds the solution book in his hand, which explains 

the relatively low number of gesture intervals (approximately 54%). As expected, the 

Securing, as a structure of written documentation, contains the highest proportion of written 

language. 

Table 1: Distribution of teaching–learning structures and modes among the intervals 

 speech gesture image writing 0 interval 

Activating  42 33 19 0 0   42  (8,37%) 

Explorating 39 30 17 0 0   41  (8,17%) 

Regularizing 18 16 4 2 0   18  (3,59%) 

Linking 59 46 21 0 2   62  (12,35%) 

Securing 53 26 24 13 6   72  (14,34%) 

Practicing 194 97 30 7 12   215  (42,83%) 

Other 52 21 3 4 0   52   (10,36%) 

 458 269 118 26 20   502  (100,00%) 

 

FINAL REMARKS 

Overall, the teacher’s spoken utterances are omnipresent in the lesson under consideration. 

This is explained by the teacher’s self-image as an expert, who models the process of 

exploration, reflection, and structuring in the sense of the “Cognitive Apprenticeship-

Approach” by demonstrating how to work mathematically (Vogel, 2001). Intermodal and 

intramodal coherences of speech and gesture parts in the teaching–learning structures of 

Activating, Explorating, and Linking, as well as the high gesture part of the intervals of 

Regularizing, represent the initial point for further detailed analyses. Here, the focus will 

be on the respective concrete characteristics of the modes and their meaning for the 

mathematical content, and thus for the instruction and interaction between teacher and 

learners. The next step of the research will be to analyze and compare other teachers’ 

introductory lessons in addition of fractions and written arithmetic operations in order to 

identify differences or rather similarities. 
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This research explores engineering students’ math anxiety and math self-efficacy levels 

aiming to determine if there is a gender gap for this specific population. Data were 

collected from 498 students using adapted items from existing validated surveys. These 

items were translated to Spanish and validity tests were used to establish content 

validity and reliability. Student t-test and analysis of covariance (ANCOVA) were used 

to determine possible differences between male and female math anxiety and math self-

efficacy levels. Male engineering students reported higher self-efficacy and lower math 

anxiety levels. However, the ANCOVA results showed that only the math test anxiety 

construct was significantly different. These results could help engineering educators to 

design strategies aiming to ameliorate female students’ math anxiety feelings.      

INTRODUCTION 

It is clear that enough engineers must be educated to be able to address society’s most 

relevant problems through developing new technologies. Many countries are employing 

strategies to attract and retain engineering students, and there is a special interest in 

attracting more females to engineering majors due to their under-representation in this 

field (Chubin, May, & Babco, 2005). 

This research focuses on two factors that have been shown to be relevant in students’ 

decisions to pursue and successfully complete an engineering major: mathematics self-

efficacy (Hackett, 1985; Lent, Lopez, & Bieschke, 1991) and mathematics anxiety 

(Maloney & Beilock, 2012; Suinn & Winston, 2003). Self-efficacy refers to “people’s 

judgments of their capabilities to organize and execute courses of action required to 

attain designated types of performances” (Bandura, 1986, p. 391). Richardson & Suinn 

(1972) defined math anxiety as “feelings of tension and anxiety that interfere with the 

manipulation of numbers and the solving of mathematical problems in a wide variety 

of ordinary life and academic settings” (p. 551). Analyzing students’ reactions and 

behaviors in math-related activities through the lens of their math self-efficacy and 

anxiety levels could help engineering educators to develop strategies to motivate and 

guide students in completing mathematics courses in engineering curricula. This is 

important because the lack of adequate mathematical preparation of engineering 

students as they complete their first semesters of engineering education is a challenge 
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for educators; struggling to understand math topics and failing math courses is one of 

the main reasons for students leaving engineering majors (Kokkelenberg & Sinha, 

2010). Strategies designed with students’ math self-efficacy and math anxiety in mind 

could have additional positive effects if they specifically  address the needs of students 

from under-represented populations in engineering such as women (Marra, Rodgers, 

Shen, & Bogue, 2009).  

The literature shows a gender gap in students’ math self-efficacy and math anxiety, 

however most studies addressing this issue usually report analysing precollege 

populations (Chen & Zimmerman, 2007; Hill et al., 2016). The purpose of this research 

is to document the math self-efficacy and math anxiety levels of students after their high 

school experiences, focusing on engineering students and possible differences based on 

gender. This research aims to expand current literature about engineering students’ math 

self-efficacy and math anxiety due to the lack of focus in the gender gap of this specific 

population. This study was led by the following research question: Is there a gap 

between math self-efficacy and math anxiety levels of female and male engineering 

students in Mexico?  

MATHEMATICS SELF-EFFICACY 

Literature suggests that high math self-efficacy is related to increased interest in 

pursuing a math-related major (Hackett, 1985). One study suggests that students with 

low math self-efficacy are more likely to avoid math-related activities, making it more 

difficult to overcome struggles they may experience in their math courses (Cooper & 

Robinson, 1991). Conversely, students with high math self-efficacy are more likely to 

perform well in their math courses and persist in math-related tasks even if they 

experience struggles learning complex math topics (Williams & Williams, 2010). The 

relevance of math self-efficacy beliefs and their influence on students’ performance in 

math courses is well-documented, and it is consistent for different contexts, cultures, 

and populations (Marra et al., 2009). But there is very little research focusing on how 

math self-efficacy can affect engineering students’ performance in math courses and 

their motivation to successfully complete their major. Math self-efficacy is also relevant 

to students’ decisions to leave STEM majors, with current literature suggesting that 

students’ math self-efficacy was lower for students leaving STEM majors; this factor 

was more significant for students leaving college during their first semesters (Eris et al., 

2010). Retaining students that are enrolled in engineering degree programs is important 

for industry to meet its global technological work force needs (Chen & Soldner, 2013). 

Math self-efficacy beliefs could play a key role in engineering students’ motivation for 

successfully completing their major, influencing students’ performance in math-related 

courses that have shown to be significant predictors of student retention in engineering 

(Middleton et al., 2015). 
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Previous studies have found that math self-efficacy beliefs of males are significantly 

stronger than those of females, and these findings seems to be similar in different 

contexts and populations (Gwilliam & Betz, 2001). Female students usually report 

lower math self-efficacy beliefs than male students even after performing better in their 

math courses, getting similar or even better grades than their male peers (Reis & Park, 

2001). This math self-efficacy gender difference favoring male students could lead 

female students with similar math abilities as their male peers to perform at different 

levels, making them more likely to face difficulties performing math and jeopardizing 

their possibilities to complete the math courses required for an engineering major. 

MATHEMATICS ANXIETY 

Math anxiety is linked to students’ perceptions of low math ability, prior unsuccessful 

experiences, and lack of studying or test preparation skills (Hoffman, 2010). Math 

anxiety comprises a set of feelings that affect students’ performance in math that may 

lead to avoidance of math courses and math-related activities (Pajares, 1996). High 

math anxiety has been identified as a significant predictor of poor math performance, 

and is also negatively correlated with the decision to pursue a math-related major 

(Maloney & Beilock, 2012). Although moderate anxiety levels may actually facilitate 

performance and motivate students academically, high anxiety may hinder students’ 

performance and interest in certain academic activities (Skemp, 1986). Students’ math 

anxiety levels could be influenced by the importance they attribute to performing well 

in math, especially if their academic success involves math calculations (Wigfield & 

Meece, 1988).  

Although male and female students seem to place equal importance on math-related 

activities and courses in their academic preparation, female students have shown to be 

more likely to report feelings of stress and anxiety when they perform math (Karimi & 

Venkatesan, 2009). This math anxiety gender gap is more evident with college students, 

with female college students reporting higher math anxiety levels than males. In 

contrast, research with younger populations such as primary school students rarely 

report gender differences in math anxiety (Harari, Vukovic, & Bailey, 2013). These 

findings suggest that the math anxiety gender gap emerges in the secondary level, 

showing that female students experience more anxiety when performing math-related 

activities than males when they are facing higher educational demands (Hill et al., 

2016). Higher math anxiety could negatively influence females in their decisions to take 

math courses or get involved in math-related activities, making them less likely to 

pursue a math-related major like engineering. 

METHODS 

Participants for this study were selected from a Mexican university with only 

engineering majors. All participants were first year students taking the first math course 
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required in their engineering curriculum during the Fall 2018 semester (n=498), with 

203 female (41%) and 295 male students (59%).   

Participants answered a paper-based survey during their math class time. The survey 

was an adapted version of the Mathematics Self-Efficacy Survey (MSES) developed by 

Betz and Hackett (1983) and the 30-item Mathematics Anxiety Rating Scale (MARS 

30-item) developed by Suinn and Winston (2003). The MSES assesses math self-

efficacy with 52 items within three constructs, asking participants to rate their level of 

confidence performing math-related activities on a scale from 1 (“no confidence at all”) 

to 10 (“complete confidence”). The MARS 30-item assesses math anxiety levels with 

Likert-type items considering two constructs with scores from 1 (“not anxious at all”) 

to 5 (“very anxious”). Items from these surveys were translated to Spanish and adapted 

to the Mexican engineering students’ context to represent relevant daily activities and 

problems related to the math topics in their first semester math course. The adapted 

items were presented to professors and students at the research site for face and content 

validity. Minor adjustments were made based on to their feedback. Maximum 

likelihood exploratory factor analyses were conducted on each survey to demonstrate 

validity, with three constructs for the MSES items: 1) math problem-solving, 2) 

everyday math activities, and 3) math courses; and with two constructs for the MARS 

30-items: 1) math test anxiety and 2) math activities anxiety. An oblique or promax 

rotation was used due to correlations found among factors within constructs. Items 

showing a correlation factor below 0.40 for each construct were deleted from the final 

version of the survey. The final version of the MSES retained nine items for math 

problem-solving, nine items for everyday math activities, and six items for math course 

self-efficacy; for MARS, seven items for both math test anxiety and math activity 

anxiety constructs were retained. Additionally, Cronbach’s alpha values were used to 

evaluate the internal consistency reliability for all constructs for this specific 

population; all showed a Cronbach’s alpha value above 0.8.    

Averages of all the items within the three math self-efficacy constructs (on a scale of 1-

10) and two math anxiety constructs (on a scale of 1-5) were calculated, and total math 

self-efficacy and math anxiety averages were determined for all participants. Seven 

Student t-tests were conducted to identify possible differences between the math self-

efficacy and anxiety levels of male and female engineering students: three for the math 

self-efficacy constructs, two for the math anxiety constructs, and two for the total 

averages. Additionally, an analysis of covariance (ANCOVA) was conducted to 

determine if there was a difference between the constructs of math self-efficacy and 

math anxiety levels (7 independent variables) of male and female engineering students. 

The ANCOVA model was used for testing significant differences among all the 

constructs while controlling for confounding variables, and compare these results with 

the t-test analysis. All statistical tests were run using the statistical software R. 
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RESULTS 

The math self-efficacy levels of male engineering students were higher than those for 

females for all constructs (see Table 1), and t-tests showed significantly higher average 

math self-efficacy scores for male versus female students. No significant differences 

were found between males and females for math problem-solving and math courses 

constructs; everyday math activities scores were significantly higher for male students.   

Math  

self-efficacy 

Female  

(n=203) 

Male  

(n=295) 

St. Dev. p-value 

Math problem-solving 6.09 6.33 1.69 Not Sig. 

Everyday math activities 8.05 8.37 1.43 0.015 

Math courses 6.88 7.17 1.95 Not Sig. 

Math self-efficacy (total) 7.01 7.29 1.37 0.022 

Table 1: Scores (mean and standard deviation) for math self-efficacy constructs for male and 

female engineering students (n=498), and t-tests results (p-values) 

Math anxiety levels of female engineering students were higher than those of males for 

both constructs (see Table 2), and the t-tests results showed that the difference between 

the average math anxiety was significantly higher for female students. While the math 

activities math anxiety construct was not significantly different between female and 

male students, the math test anxiety construct showed a very significant difference with 

higher levels for female students (see Table 2). 

Math anxiety Female  

(n= 203) 

Male  

(n= 295) 

St. Dev. p-value 

Math test 3.87 3.43 0.90 < 0.001 

Math activities 2.03 1.98 0.74 Not Sig. 

Math anxiety (total) 2.95 2.70 0.66 < 0.001 

Table 2: Scores (mean and standard deviation) for math anxiety constructs for male and 

female engineering students (n=498) and t-test results (p-values) 

The ANCOVA analyzed the math self-efficacy and math anxiety constructs together, 

and showed that higher math self-efficacy average for male engineering students was 

not statistically significant, while the math test anxiety difference was significantly 

higher for female students (see Table 3). No significant differences were found between 

male and female students for the other math self-efficacy and anxiety constructs, 

indicating that math anxiety is a covariate with math self-efficacy.          

Construct F-ratio p-value 

Self-efficacy - Math problem-solving 2.61 Not Significant 

Self-efficacy - Everyday math activities 3.39 Not Significant 

Self-efficacy - Math courses 0.87 Not Significant 

Math self-efficacy (average) 3.71 Not Significant 

Anxiety - Math test anxiety 24.12 < 0.001 
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Anxiety - Math activities 1.32 Not Significant 

Math anxiety (average) 0.78 Not Significant 

Table 3: Results of ANCOVA identifying significant differences between male and female 

student math self-efficacy and math anxiety levels 

DISCUSSION AND CONCLUSIONS 

There are significant differences between male and female engineering students’ scores 

on two of the math self-efficacy constructs based on t-test results, with males showing 

higher math self-efficacy for everyday math activities and total the total average. 

However, these difference drop out from the results of the ANCOVA, indicating that t-

test results may have been subject to a Type 1 error due to multiple t-tests on the same 

data set. The average math self-efficacy for both male and female engineering students 

was above 7 on a scale of 1 - 10, suggesting that engineering students are confident they 

can perform math-related activities well and successfully complete math courses. 

Although math self-efficacy scores were high for both male and female students, male 

students tend to have higher self-efficacy for performing everyday math activities such 

as calculating the mileage that a car can travel with 15 gallons of gasoline. Math 

problem-solving self-efficacy was the lowest math self-efficacy construct for both male 

and female engineering students.               

The math anxiety levels of male and female engineering students were relatively low, 

with an average math anxiety below 3 on a scale of 1 – 5. Although math anxiety 

average was significantly higher for female students based on t-test results, like math 

self-efficacy, this difference dropped out based on ANCOVA results. The math test 

anxiety construct was higher for both male and female students, and both statistical tests 

showed a strong significant difference between male and female engineering students, 

with female students reporting higher math test anxiety. A significantly higher math test 

anxiety could be a reason why female engineering students experience more stress and 

anxiety performing math in general. Experiencing higher math test anxiety than their 

male peers could be negatively affecting female students’ math performance, and this 

could be seen at high school level where a gender performance gap starts to emerge 

(Ganley & Vasilyeva, 2014), with male students traditionally outperforming females in 

achievement and selection tests.  

When math self-efficacy and math anxiety were tested in the same statistical model 

(ANCOVA), average differences were no longer significant. This indicates that these 

two factors could be covariates, or interacting with each other. This agrees with prior 

literature; according to Bandura (1986), math anxiety has an inverse relation to math 

self-efficacy levels. Any effort aiming to increase math self-efficacy may help students 

to decrease feelings of anxiety when they perform math-related activities. Math and 

engineering educators should consider developing environments that help students to 

learn math topics without generating feelings of stress and anxiety. Developing 
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strategies to motivate female engineering students to feel more confident about their 

math abilities could help them deal with their high math anxiety and avoid negative 

feelings towards math courses. Decreasing math anxiety feelings could have a positive 

impact in female students’ math performance, making them more likely to get involved 

in math-related activities and increase their interest and persistence in math-related 

majors such as engineering, which ultimately could help close the gender gap in these 

fields. 
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We use eye tracking to investigate the development of ideas in mathematical problem 

solving as three students equipped with eye trackers attempt to solve a geometrical 

problem. The problem has a rich solution space, and the eye trackers allow us to follow 

the students’ thinking as they generate plausible solutions to the problem and as they 

look at the different pictures representing the solutions they have already generated. 

We syntehsized the student eye movements into scanning signatures. These signatures 

revealed two of the students shifting their attention from more optimal to a less optimal, 

but more complex solution that served as a stepping stone on the way to the optimal 

solution. 

INTRODUCTION 

There is a rich body of literature on eye tracking, cognition, and expertise. Gaze is an 

early indication of the ultimate solution as that attentional gaze is more likely to be 

directed towards preferred (i.e., ultimately chosen) than unpreferred (i.e., rejected) 

options (Tsai, Hou, Lai, Liu & Yang, 2012). Experts more expediently locate relevant 

visual features than novices when performing a task (Gegenfurtner, Lehtinen, & Säljö, 

2011). Novices display significantly more attentional transitions than more advanced 

problem-solvers (i.e., experts) while less advanced participants also use longer gaze 

sequences (called scanpaths) for each problem-solving task, compared with more expert 

counterparts (Kim, Aleven & Dey, 2014). Knoblich, Ohlsson, and Raney (2001) point 

out that even novices succeed more often if they attend to relevant features. Specifically 

in the context of geometry problems, Kim et al. (2014) highlight the value of attentional 

transitions. 

The question arises whether eye-tracking data can provide information about cognitive 

processing during mathematical problem solving. In some cases, mathematical tasks 

have multiple possible solutions. Leikin and Lev (2007) identify alternative solution 

spaces for such problems. Expert solution spaces are the collection of solutions that 

expert mathematicians can suggest to the problem. Personal (available) solution spaces 

include those solutions that one is able to present independently. Potential solution 

spaces include also such solutions that once can produce with help. Collective solution 

spaces include solutions that a group can generate. In our study, we are interested in 
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personal, potential, and collective solution spaces and especially how the potential 

solutions enter the realm of individual and personal solution spaces. In other words, 

how people create new solutions. We also acknowledge that the new solution can be 

either incrementally improved from an earlier solution (refining an idea) or a 

qualitatively novel solutions (creating an idea). The distinction between these two 

processes would be similar to, just less radical, than the difference between gradual 

development and conceptual change (Vosniadou, Vamvakoussi, & Skopeliti, 2008). 

In this study, we used a geometrical optimization problem that has a large potential 

solution space, even though there is a unique optimal solution. Moreover, we consider 

some ideas qualitatively different from some other solutions. In this article, we study 

the development of ideas during a collaborative mathematical problem-solving task 

using eye tracking. We analyze the evolving visual attention to different solution 

attempts using the “scanning signatures” (Garcia Moreno-Esteva, Kervinen, Hannula & 

Uitto, 2020) of each problem solver before a significant novel idea is accepted.  

METHODS  

Participants 

Three mathematics teacher students Meri, Tiina, and Toni, volunteered for wearing eye-

tracking glasses in their mathematics education class in a Finnish university. They 

worked together as a group with a fourth student who did not wear eye-tracking glasses. 

Apparatus 

We recorded the group’s work using audio recording and two stationary video cameras. 

The eye-tracking device had two eye cameras, a scene camera, and simple electronics 

attached to 3D-printed frames (see, Toivanen, Lukander, & Puolamäki, 2017). 

Toivanen built the glasses for our project. The data was recorded on laptop computers 

carried in backpacks allowing subjects to move freely. 

A priori task analysis 

In this study, the students were solving a four-point Euclidian Steiner tree problem. The 

teacher asked the students to find the shortest way to connect the four cities located on 

the corners of a square with fiber-optic cable. Here, we present the solutions collective 

solution space (Leikin & Lev, 2007), with the highest relevance to the group’s problem 

solving process. There were also other solutions, but they received less attention from 

the students. The Figure 1 shows the most relevant solutions that students generated 

during the process. These solutions have varying degrees of optimality and complexity.  
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Figure 1. The student solutions that are relevant in this analysis are, from left to right, 

C, Z, T, H, X, odd Z, and double Y. 
 

With optimality, we refer simply to the total length of the path. The shorter the 

connecting path, the more optimal the solution is. We are only interested in the order of 

solutions by their optimality. Hence, we use the path length as an ordering criterion, not 

as a continuous measure. We classified the solutions in five categories of optimality. 

Two solutions (Z and T) belong to the least optimal category, C and H belong to the 

second category, then follow odd Z, X and double Y, each in their own category.  

As the measure of complexity, we use the number of nodes in the graph. In the task, 

there are four points to connect, so the lowest complexity solutions have four nodes. 

The optimal solution (double Y) and some suboptimal solutions (H and odd Z) have six 

nodes. There are several five-node solutions but we discuss only the optimal of these 

that connects the corners along the diagonals (X). While adding complexity makes it 

possible to find a shorter path, increasing complexity does not automatically make the 

solution more optimal. For example, the five-node solution X is shorter than any of the 

four node solutions, but the six-node solution H is as long as the four node solution C. 

It would be expected that the solutions C, Z, T, and X are the easiest to find, as they 

simply connect the given points with direct lines in different ways. Of these, C and X 

are obviously shorter than Z or T, and the comparison between C and X lengths might 

be possible purely visually or, at least, through measurement or calculation. 

H is relatively similar to C, with only one line positioned differently, so this might 

logically follow as the next solution idea. The optimal solution could be seen either as 

a modification of the solution X or of the solution H. As the solution H has already six 

nodes, this might better serve as a springboard towards the optimal solution. However, 

if the students already have concluded that X is shorter than C or H, their path could 

rather follow from there. The solution idea odd Z could be seen as a combination of the 

ideas X, Z, and H.  

Procedure for data collection and analysis 

The course teacher agreed to engage his class with a problem presented above. Students 

first worked on the problem individually, then with a partner, and then in groups of four. 

The fourth student in the group did not wear an eye tracker.  

As students tried to solve the problem, they invented several possible solutions, 

concluding that X was the best solution. However, they continued to work together, 
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comparing each others’ solutions and generating alternative solutions for approximately 

ten minutes as their teacher challenged them frequently to search for a better solution. 

Both the odd Z and double Y solution were first produced by Tiina. In our analysis, we 

examined how the student solutions developed in complexity and optimality through an 

analysis on the students’ visual behavior during this time. 

The software used the information from the camera’s focused on the eyes to produce a 

marker of the gaze location on each frame of gaze video. The researchers and a research 

assistant then annotated the targets of each student’s every gaze manually.  

From the temporal dwell sequences, we computed scanning signatures (Figure 3) 

(Garcia Moreno-Esteva, Kervinen, Hannula & Uitto, 2020). In a scanning signature, 

nodes in a network represent the areas of interest (AOI), i.e. the relevant features of the 

scene. The relative size of the node tells the frequency with which a student was 

attending to that feature during the process. If student gaze moved directly from one 

feature to another feature, it is represented as an arc connecting the respective nodes. 

The thickness of the arc reflects the frequency of a such transitions during the process. 

Finally, we use colors to represent the temporal order in which features are observed 

and in which feature transitions (which indicate visual comparisons) take place on 

average.  

The scanning signature thus tells how much attention, relatively speaking, the student 

devotes to each solution (size of the node), how common are transitions (which indicate 

comparison) between different solution attempts (width of the arrow), and in which 

temporal order these nodes and transitions occur (colors from red to blue). Moreover, 

we computed the average order in which the students attended to different gaze targets 

(Figure 2).  

Results  

In Figure 2, we present how the focus of attention for all three students developed during 

the problem solving session, using the “average order” measure of scanning signature. 

One thing to notice is how two students moved from a shorter solution to a more 

complex solution that is longer. This suggests that it is important to introduce 

complexity even if it leads to solutions that might not be near optimal in order to make 

the cognitive leap to discover solutions of higher complexity, potentially leading to the 

optimal solution. We see that the students have individual patterns before focusing on 

the odd Z solution. After attending to odd Z, all students progress to focus on the optimal 

solution. This reflects the observable progress in the group where they figured out the 

optimal solution after discussing the odd Z solution together. 
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Figure 2. The gaze trajectory of each student: Toni/Red {Z,C,T,X,H,OZ,YY}; 

Tiina/Green {C,X,OZ,T,Z,H,YY}; Meri/Blue {T,C,H,X,Z,OZ,YY}. 

The scanning signatures of the three students (Figure 3) before discussing odd Z indicate 

differences in how they analyzed the solution space in their search for a novel idea. All 

three have spent most of their attention on X, which they considered as their best 

solution. Toni had compared it with Z and to some extent also with H. Meri had 

compared X with C and H. Tiina, on the other hand, had examined rather evenly all 

other solutions, including a half-completed double Y, which she had drawn herself. 

Unlike Toni and Meri, her visual process reveals her not only comparing other solutions 

with X, but also comparing these other solutions to each other.  
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Figure 3. Scanning signatures for Toni, Tiina, and Meri before they discuss the solution 

odd Z. In this figure, 1 is the problem statement, 2 are some presolutions (e.g two of the 

four dots connected), 3 is C, 4 is H, 5 is Z, 6 is T, 7 is x, 8 is the odd Z, 9 is the double 

Y, 10 are variants of the double Y, and 11 are areas with computations. 

DISCUSSION 

Our study sheds light on mathematical problem solving as a process. There are two 

different observations that we make from this case study that highlight the importance 

of opening up solution space when searching for novel solutions. First, the pathway for 

all students in the group from a suboptimal solution (X) to the optimal solution (double 

Y) went through an intermediate solution (odd Z) that was less optimal than X, but had 

the same, higher level of complexity, as the optimal solution. Second, the student who 

was successful in generating novel solutions used a different visual strategy for working 

with existing ideas than the two students who were not successful. While the 

unsuccessful students focused on the so far best solution (x) and mostly compared other 

solutions to it, the successful student was comparing solutions in a more uniformly 

distributed way. 

While our study is a small-scale case study, it presents how the scanning signatures can 

synthesize the complexity of eye-movement behaviour in a meaningful way. The time 

series representing a visualization process is a complex data set with thousands of data 

points for each student. Hence, it is challenging to synthesize the eye-movement process 

in a phenomenologically meaningful way, which is both, intuitive, as well as 

quantitative. Unless the data can be quantified, it cannot be analyzed further with 

mathematical or statistical tools.  

When analyzing eye-tracking data, it is natural to ask the following questions: 

a) What are the salient features in the scene that the subjects observe? 

b) Are there salient feature comparisons? 

c) Is there an overarching temporal order in which the different features of the scene 

are observed? 
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Scanning signatures are designed to synthesize the eye-movement information both, in 

an intuitive and visual way, and in a quantitative way allowing further mathematical 

and statistical analysis. The information in a scanning signature helps us answer 

questions such as 

a) What did the observer look at first? What did she look at towards the end? And 

during the rest of the observation process? 

b) On what features of the scene did the observer focus her attention? 

c) Did the observer compare certain features? At what stage of the observation 

process did this happen mostly? 

In our study, the subjects were mostly looking at diagrams or drawing plausible 

solutions to the problem that was given for them to solve. They scanned different 

solutions, and while they discussed some of their ideas, the verbal information covers 

only a fraction of what we see in the eye-tracking data. Scanning signatures help us to 

understand how the participants navigated the solution space of already produced 

solutions as they attempted to find an even better solution that the teacher hinted there 

to be. Each of the representations draws upon a particular idea for its production. It is 

in this sense that navigating the visual space provided by the drawings reflects a 

trajectory in a cognitive space of ideas required to produce the representations as 

plausible solutions to the problem. And thus, we are able to analyze meaningfully, the 

flow of ideas that leads to the discovery of the optimal solution of the problem.  
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This paper reports on findings from a study focused on developing early number skills in a 

context of widespread low learner attainment in number. Positive learning gains achieved 

through Wright et al.’s (2006) Maths Recovery (MR) programme provided the rationale 

for a grouped intervention trial with comparison individual intervention cases 

incorporated. Learner pre- and post-test data around the relatively short intervention 

indicated comparable learning gains made by a sample of middle- attaining Grade 2 

learners across the grouped and individual intervention formats. Gains made by the 

intervention group also compared favourably to those made by a matched control group. 

This is an important finding in any context of highly inequitable learning outcomes coupled 

with ‘lags’ in number learning on the ground. 

INTRODUCTION  

The number skills children learn during their first years of schooling are considered by 

many researchers as the key foundation upon which all understandings of mathematics are 

built (Reys et al., 1999). Most of the mathematical concepts children learn during primary 

school are based on a sound understanding of number (Perry & Dockett, 2008). Poor 

number skills in young children, which are evident as early as pre-school, have far-reaching 

consequences as these learning ‘deficits’ tend to snowball rather than decrease over time 

(Spaull, 2013), thus the need for early intervention. Researchers agree that early 

intervention for children who fall behind the mainstream in hierarchical subjects like 

mathematics yield better learning gains over time than intense input during later years of 

schooling (NCTM, 2000). The importance of a solid foundation in early number skills, 

coupled with evidence of substantial differences in these skills among children in the early 

grades, prompted the development of Mathematics Recovery (MR). 

THE MATHEMATICS RECOVERY (MR) PROGRAMME  

The MR programme has been used successfully in many developed countries to improve 

low attainers’ early number learning (Wright et al., 2006). Wright and colleagues make a 

strong case for individualised intervention that grows out of initial, comprehensive 

assessment of the child’s current number knowledge which then forms the basis for 

instruction that is aimed ‘just beyond the cutting-edge of the child’s current knowledge’. 

The widespread success of this programme has caused it to evolve over time to the place 

where it is now also used as a daily classroom numeracy programme, addressing the needs 

of all ages and levels of ability. 
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The Learning Framework in Number (LFIN) is a key part of the MR programme which 

guides teaching and assessment and provides a trajectory charting children’s learning. The 

LFIN enables summary profiling of children’s number knowledge which is an important 

first step for intervention and forms the basis for instruction. Learner profiles are created 

using several interrelated aspects of early number delineated in the framework: Stages of 

Early Arithmetical Learning (SEAL); Base-Ten Arithmetical Sequences; Forward Number 

Word Sequences and Number Word After; Backward Number Word Sequences and 

Number Word Before and Numeral Identification (Wright et al., 2006). An explanation of 

the SEAL and Base Ten aspects follow as the rest of the LFIN aspects are fairly self-

explanatory. 

Strategies for Early Arithmetical Learning (SEAL) focuses on children’s most 

sophisticated strategies for solving additive tasks. The SEAL profile is the most important 

part of the LFIN and is the only aspect where progression is described in terms of stages. 

In every other aspect of the LFIN, progression is described in terms of levels. In MR, every 

new stage is likened to a “plateau” and is characterised by “a qualitative advancement in 

knowledge” while a level is regarded as “a point on a continuum” (Wright et al., 2006, 

p.190). In this interpretation, progressing from one SEAL stage to another involves a bigger 

shift in conceptual understanding than moving across levels in other LFIN aspects. The 

SEAL stages are: 

SEAL Description of learners’ additive strategies 

Stage 1 can only count perceivable items 

Stage 2 solves additive tasks using the ‘count all’ strategy 

Stage 3 uses curtailed counting strats like ‘count on’ and ‘count-down-from’ 

Stage 4 uses ‘count-down-from’ and ’count-down-to’ efficiently 

Stage 5 solves 2-digit tasks using ‘non-count-by-one’ strategies like derived facts, 

N-10  and compensation without the support of materials 

Table 1: Description of SEAL stages 

Using base-ten involves the organisation of numbers and calculations into 1s, 10s, 100s and 

1000s and is premised on children seeing/using ten as a unit. ‘Base-ten thinking’ draws on 

children’s ability to reason in tens and ones which is linked to informal place value 

knowledge. Children’s ability to skilfully structure numbers and calculations using ‘base-

ten thinking’ helps them to get a handle on working with numbers larger than twenty 

(Wright et al., 2012). A focus on developing ‘base-ten thinking’ emerged during 

intervention when learners struggled to increase and decrease a quantity (shown with 

bundling sticks) by ten without counting-in-ones. Placing learners at particular Base-Ten 

levels requires determining their facility with using ten as a unit to solve additive tasks 

(Wright et al., 2006). The Base-Ten levels are: 
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Base Ten Description 

Level 1 solves additive tasks involving tens by counting-in-ones 

Level 2 uses ten as a unit to solve additive tasks involving 10s and 1s but needs 

a tens-based setting (e.g. rek-en-rek) to do so 

Level 3 solves additive multidigit tasks using ten as a unit, without materials 

Table 2: Description of Base Ten levels 

Children’s understanding of ten as a collection of ten ones and as a single unit of ten is 

crucial for solving 2-digit by 2-digit number problems (Steffe et al., 1988). So, to achieve 

the highest SEAL stage – which involves solving 2-digit additive tasks mentally without a 

concrete tens-based setting – learners need an understanding of base-ten. This means that 

learner’s facility with using ‘base-ten thinking’, as opposed to counting-in-ones, is 

fundamental to their progress along the LFIN SEAL trajectory. 

EARLY NUMBER LEARNING IN THE SOUTH AFRICAN CONTEXT 

Researchers rightly describe mathematics learning in South Africa as being in a state of 

‘crisis’ (Fleisch, 2008) when seen in light of national, regional and international 

comparative studies. An over-emphasis on counting-in-ones, the use of concrete materials 

and the lack of progression from counting to calculating strategies underlie the poor early 

number development seen on the ground (Hoadley, 2012). Challenges that impede 

children’s early number learning in this context are found to apply more to poorer or 

working-class learners who attend no-fee public schools – who make up roughly the bottom 

60% of children attending public schools (Ramadiro & Porteus, 2017). Individualised 

intervention in a context where the majority of learners in public schools are falling behind 

curriculum attainment targets (Ramadiro & Porteus, 2017) is impractical. Highly structured 

remedial interventions are considered key in addressing wide-spread low number 

attainment (in the midst of limited pedagogical content knowledge) in South Africa (Spaull, 

2013). In light of the importance of developing children’s early number skills and the scale 

of the problem in South Africa, I considered investigating whether short, structured 

intervention using Mathematics Recovery for grouped and individual intervention could be 

effective in developing the early number learning of a sample of Grade 2 learners in the 

South African context. 

METHODOLOGY  

Twenty Grade 2 learners from a public primary school were purposively selected to make 

up the control and intervention groups (10 learners each). Results from Annual National 

Assessments and an adapted Leverhulme test (Brown et al., 2008) conducted with Grade 

1s at the end of 2013 were used to select 35 middle-attaining Grade 2 learners at the start 

of 2014. Middle-attainers were selected because they were more likely in the country’s 

skewed international performance to gain from a short-term structured intervention than 

low-attainers. These 35 learners were then tested using a shortened version of MR 

Assessment 1.1 to select 20 matched learners for the intervention and control groups. 

Intervention learners were equitably split into two quartets (4 per group) and two 



Morrison 

3 - 288  PME 44 – 2021 

‘singletons’ based on test results and pragmatic reasons. Each group and each singleton 

were withdrawn from class twice a week for 18 intervention sessions of 40 min, which 

totalled 12 hours. A ‘teaching experiment’ was the approach used and the ‘test-teach-test’ 

model was followed: individual pre-test interviews using MR assessments followed by 18 

grouped/individual intervention sessions based on Maths Recovery and then the same 

individual post-test interviews.  

All intervention sessions and interviews were video-recorded (and later transcribed) so that 

focus could be placed on learners’ verbal responses and gestures. Thus, two sets of 

transcriptions were generated. Based on Cobb & Yackel’s (1996) Emergent Theory, which 

is framed by a social constructivist paradigm, the original study coordinated an individual 

constructivist perspective with a social interactionist perspective to analyse the different 

data sets. For this paper I only focus on participants’ pre- and post-test interviews which 

were coded using the LFIN descriptors outlined earlier. Through this individual 

constructivist analysis a pre- and post-test summary profile was created for each participant. 

While Wright and colleagues do not ascribe numerical stage/level descriptors in the LFIN, 

for the purpose of exploratory comparative analysis I followed Venkat & Weitz (2013) in 

interpreting levels attained on the LFIN as scores. The SEAL stage achieved was doubled 

for use as a score (hence the superscript x2) to reflect the qualitative difference between 

stages and levels in LFIN noted earlier. My dual roles as intervention teacher and researcher 

created an expected tension that was managed through ‘reflective practice’ (Schwab, 1959).  

RESULTS  

The results presented here only focus on the SEAL and Base-Ten aspects of learners’ 

(named using pseudonyms) pre- and post-test LFIN profiles. This is because of the 

importance of SEAL stages in the LFIN and the emergent focus on ‘base-ten thinking’ 

during intervention. Learners’ scores, shown according to the mode of intervention, are 

shown side-by-side in Tables 3, 4 and 5 (post-test scores in bold). The highest possible 

score for each LFIN aspect in learner profiles are: SEAL – 5x2, Base-Ten – 3, and a total 

score of 13. 

                               Khanye                            Josh                   Total Gains 

                           Pre       Post                    Pre      Post 

SEAL                  3x2         5x2                     2x2         3x2                   6 

Base-Ten             2           3                                     1                     2 

Totals                  8          13                       4           7                     

Gains                        +5                                    +3                        +8 

Table 3: Pre- and Post-test SEAL and Base-Ten scores for Singletons 

The ‘singletons’ scores in Table 3 show that Khanye, who started from a stronger base, 

made a higher gain in the SEAL aspect of the LFIN – an improvement of 2 SEAL stages – 

while both learners improved by 1 level on Base-Ten. Khanye made the highest overall 

gains for these aspects (+5) and the mean gain for singletons was +4.  

 



Morrison 

PME 44 – 2021   3 - 289 

 Bongi Mali Jenna Sibu Gains 

   Pre Post   Pre Post   Pre Post   Pre Post  

SEAL    3x2  5x2    3x2  4x2   3x2  4x2    2x2  4x2 12 

Base Ten     1  3     1  2 1  2   2 6 

Totals     7       13     7      10     7      10     4      10  

Gains         +6         +3          +3          +6 +18 

Table 4: Pre- and Post-test SEAL and Base-Ten scores for Group 1 

In Group 1 the highest SEAL and Base Ten gains were made by the strongest and weakest 

members of the group, namely, Bongi and Sibu – each improved by 2 SEAL stages and 2 

Base-Ten levels. By way of example, in his pre-test Sibu found solutions to tasks like 5+4 

(both addends screened) by counting from ‘one’ to ‘five’ on one hand, then counting from 

‘one’ to ‘four’ on the other and finally counting all his raised fingers from ‘one’ to ‘nine’. 

This ‘count all’ strategy placed Sibu at SEAL Stage 2. During his post-test Sibu used 

‘count-down-from’ to solve removed items tasks (9-4 and 15-3) and ‘count-down-to’ for 

missing subtrahend tasks (12-☐=9 and 15-☐=11). His judicious use of these advanced 

strategies put Sibu at SEAL Stage 4 for the post-test. The average overall gain for Group 1 

was +4,5 which was slightly better than the singletons’ mean gain.  

 Julie Khosi Kyle Kgomo Gains 

 Pre Post   Pre Post   Pre Post   Pre Post  

SEAL   4x2  5x2    3x2  5x2    2x2  4x2    3x2  3x2 10 

Base Ten 1  3 1  3   1  1  2 6 

Totals 9 13 7 13  4  9  7  8  

Gains       +4 +6  +5 +1 +16 

Table 3: Pre- and Post-test SEAL and Base-Ten scores for Group 2 

The highest SEAL gain in Group 2 was achieved by Kyle and Khosi. For Base-Ten the two 

stronger attainers at the time of the post-test (Julie and Khosi) gained 2 levels each. For 

example, in her pre-test Khosi counted-on in ones (using fingers) to solve 13+10 and 40+10 

posed with dot strips. She was thus placed at Base Ten level 1. But, solving additive 

problems in her post-test using base-ten strategies without the support of a tens-based 

setting qualified Khosi to be at Base Ten Level 3. For example, Khosi correctly solved all 

eight additive and subtractive 2-digit horizontal number sentences (like 38+24 and 43-15) 

in her post-test using mental jump (N10) and split (1010) strategies. The mean gain for 

Group 2 was the same as that made by singletons: +4.  

Next I compare SEAL and Base Ten results between intervention and control groups. For 

a nuanced comparison of the gains made in these aspects I will look at what was invariant 

between groups at the pre-test and what changed at the time of the post-test.  
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Intervention: Top 

4 learners    

Pre-

Test 

Post-

Test 

 Control:         Top 

4 learners 

Pre-

Test 

Post-

Test 

Julie 1 3  Yazu 1 1 

Kamo 2 3  Rila 2 2 

Bongi  1 3  Nozi 1 1 

Khosi  1 3  Olsen 1 1 

Table 4: Intervention and Control Top 4 learners’ Base-Ten scores 

Table 4 shows that in the pre-test 1 of the top 4 learners in each group could use ten as a 

unit with the support of a tens-based setting (level 2) while 3 of the 4 could not use ten as 

a unit (level 1). Post-test results show that while all 4 intervention learners could now use 

ten as a unit without the support of a tens-based setting (thus reaching Base Ten level 3), 

the control groups’ Base Ten results remained unchanged.  

Intervention 

learners at 

SEAL 3 for 

Pre-test 

Post-Test  

SEAL Stages 

 Control 

learners at 

SEAL 3 for 

Pre-test 

Post-Test  

SEAL Stages 

3 4 5 
 

3 4 5 

Khanye   Khanye  Nozi  Nozi  

Bongi    Bongi  Olsen Olsen   

Khosi   Khosi  Ntlako  Ntlako  

Mali  Mali   Sipo  Sipo  

Kgomo Kgomo    Bonang  Bonang  

Jenna  Jenna   Rhaka  Rhaka  

6 1 2 3  6 1 5 0 

Table 5: Intervention and Control Group SEAL Comparison 

Both groups had the same number of learners who achieved SEAL Stage 3 (the ‘counting-

on’ stage) at the time of the pre-test, i.e. 6 learners each. At the time of the post-test, 1 of 

these learners from each group remained at SEAL Stage 3, i.e. Kgomo and Olsen. The 

biggest difference in groups’ post-test results was that half of the 6 intervention learners at 

SEAL Stage 3 at the time of the pre-test had achieved SEAL Stage 5 in the post-test (i.e. 

they could use various non-count-by-one strategies to solve additive tasks). But, none of 

the control learners who were at the ‘counting-on’ stage at the pre-test reached SEAL Stage 

5 at the time of the post-test. 

DISCUSSION AND IMPLICATIONS 

The biggest gain for intervention learners was made in the SEAL aspect of the LFIN. This 

result may seem unsurprising as intervention centred on improving learners’ strategies for 

solving additive tasks. Yet, the SEAL gains certainly surprised me as I did not expect such 

a relatively short intervention to produce the cognitive reorganisation required for learners 

to make big shifts. But, in the absence of a delayed post-test one cannot be certain to what 

extent these gains were sustained over time.  
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The biggest individual gain across these two LFIN aspects was made by Bongi, Sibu and 

Khosi – who all received grouped intervention. These learners had very different pre-test 

profiles. Both Bongi and Khosi were at the ‘counting-on’ SEAL stage but could not use ten 

as a unit when solving multi-digit tasks. Sibu, not placed on the Base-Ten model, solved 

additive tasks using ‘count-all’. The significance of this result is that gains were possible 

to achieve across the attainment range in the sample.  

Khosi had the highest overall gains for SEAL and Base Ten in Group 2, despite having 

begun intervention ostensibly from the same place on the LFIN framework as Kgomo who 

made the least gains in Group 2. This result shows that children’s acquisition of early 

number is an individual process even in the midst of the social construction of knowledge 

taking place within the microculture of a group.  

Both intervention and control groups had similar pre-test Base Ten results for their top four 

learners but the post-test results differed considerably – with higher attainment for 

intervention learners. This result speaks to the value of ‘base-ten thinking’ as a key 

contributor to the use of more sophisticated mental strategies for solving additive tasks.  

CONCLUSION 

The comparable mean learning gains made by learners who received one-on-one 

intervention and those who received grouped intervention is an important result as this 

outcome points to the efficacy of both intervention formats. This is an encouraging outcome 

in our current context of highly inequitable learning outcomes and the scale of the maths 

crisis on the ground (Schollar, 2008) where it is reported that 75-80% of children in South 

African public schools are two to four grade-levels below the grade-appropriate levels 

outlined in the curriculum (Spaull, 2013). Further, the higher gains made by intervention 

learners in the SEAL and Base Ten aspects compared to matched control learners is a 

promising outcome from short-term intervention using Maths Recovery which suggests 

that a broader trial into the use of MR for intervention in similar contexts is warranted. 
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In this paper we focus on students’ view of difficulty in solving mathematical exercises in 

order to study how the “learning to learn” competence may occur in the specific case of 

learning mathematics. Preliminary results give insights into “learning to learn” 

competence in mathematics and suggest directions for intervention in case of difficulty. 

Moreover, results show the importance of co-responsibility between teacher and student in 

learning and the crucial role of the teacher in helping students to overcome learning 

difficulties. 

INTRODUCTION AND BACKGROUND 

The European Union recommendations (Education Council, 2006) identify “learning to 

learn” competence and mathematical competence as two of the eight key competencies for 

lifelong learning.  

“Learning to learn” competence is defined as “the ability to pursue and persist in learning, 

to organise one’s own learning, including through effective management of time and 

information, both individually and in groups” (European Council, 2006 annex, paragraph 

5). Such a competence consists in being aware of one’s learning process and needs and 

being able to overcome obstacles, also through external guidance, with the final aim of 

learning. In such a definition, motivation to learn (especially a specific discipline) and self-

confidence are crucial.  

Mathematical competence is defined as “the ability to develop and apply mathematical 

thinking in order to solve a range of problems in everyday situations, with the emphasis 

being placed on process, activity and knowledge” (European Council, 2006). The notion of 

mathematical competence is crucial yet problematic, as outlined by Maracci & Martignone 

(2016) who point out that mathematical competence can be considered a “boundary object” 

across the institutional context, pedagogy and mathematics education. In the field of 

mathematics education, Niss (2003) refers to mathematical competence as “the ability to 

understand, judge, do and use mathematics in a variety of intra- and extra-mathematical 

contexts and situations in which mathematics plays or could play a role” (p.7) and takes 

into account a set of components: “thinking mathematically, posing and solving 

mathematical problems, modelling mathematically, reasoning mathematically, 

representing mathematical entities, handling mathematical symbols and formalisms, 
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communicating in, with, and about mathematics, and making use of aids and tools” 

(Maracci & Martignone, 2016, p. 263). This definition applies to specific mathematical 

activities and refers to all mathematical fields and all school levels. However, as Maracci 

and Martignone point out, it doesn’t take into account metacognitive abilities and affective 

and volitional resources. On the contrary, we take as a starting point the relevance of 

affective factors in mathematical activity (McLeod, 1992). As Goldin (2002) put it: “When 

individuals are doing mathematics, the affective system is not merely auxiliary to cognition, 

it is central” (p. 60). Hence, we propose to consider attitude towards mathematics as a key 

component of mathematical competence. Di Martino and Zan (2011) propose a 

multidimensional model for attitude towards mathematics characterized by three 

interconnected dimensions: emotional disposition towards mathematics, vision of 

mathematics, perceived competence in mathematics. 

In this paper we are interested in the way “learning to learn” competence may be described 

in the special case of mathematics and its possible links with attitude towards mathematics 

and connected affective constructs. More specifically, we investigate the way secondary 

school students interpret a situation of difficulty in mathematics, and how they are (or are 

not) resilient to difficulty and failure. The study may provide new insights to help teachers 

in helping students in difficulty, from the perspective of instructional design and formative 

assessment of learning. 

As pointed out by Lutovac (2019), research rarely addressed the issue of failure from a 

qualitative and subjective perspective. Lutovac analyzes pre-service teachers’ narratives of 

failure, showing that the concept of failure is highly subjective and is shaped by students’ 

goals and expectations. Lutovac claims that failure resilience should be addressed as “an 

adaptive process, including the variety of strategies that allow students to not only cope 

with failure, but also adapt and respond to it in ways that allow them to maintain their 

identities and continue learning, developing and changing” (p. 243).  

In order to study students’ interpretation and reaction to a situation of difficulty, we also 

refer to two constructs. The first one is causal attribution, that is what subjects perceive as 

cause of the successes and failures (Weiner, 1980; Clarkson & Leder, 1984). Weiner (1980) 

categorizes attributions and perceptions of success and failure along three main 

dimensions: locus (internal vs. external), stability (stable vs. unstable), controllability 

(controllable vs. uncontrollable) of the causal agent. The second one success theories, that 

is what students believe to promote success and understanding in mathematics. For 

instance, students (especially those that are task-oriented) think that effort and cooperation 

with peers may promote success (Nicholls, Cobb, Wood, Yackel, Patashnick, 1990). 

METHOD  

As noted by Di Martino and Zan (2015), interpretive methods are more and more used in 

mathematics education research, thus shifting the attention from “measuring” or explaining 

in terms of causal relationships to understanding complex phenomena. In this paper we 

adopt an interpretive approach. An element of originality is the starting point, which is 
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“fictional”. Students were proposed a comic strip that tells a story of difficulty in 

mathematics (Figure 1). The last drawing is empty and the students were asked to fill it, 

according to their personal interpretation of the story. Data consist in written texts for the 

last strip (in the following, we’ll refer to them as “answers”). This means that, rather than 

asking directly students’ views about difficulty and failure, students were involved in a 

fictional narrative situation of difficulty and failure and led to give it a sense.  

 

Figure 1 – Translation of the strip: 1. Ms Swanson, I don’t understand the fourth exercise. 

2. Obviously, I don’t understand very much also the other three exercises. 3. To tell the 

truth, I don’t understand mathematics at all. 4 Empty balloon to be filled 

The written answers were collected during a university orientation workshop (in 

collaboration with ALISEO - the regional Student Orientation Agency) for secondary 

school students, aimed at presenting them different options for their university career. More 

specifically, the data collection took place in front of the information desk for the science 

of education department. Totally, 355 secondary school students provided their answer. 

They came from secondary schools with different orientation. They could answer in an 

anonymous way and chose voluntarily to take part into the study.  

Data were initially coded adopting two perspectives: 1. “learning to learn” competence 

(code assigned by author 3, researcher in education) 2. attitude towards mathematics and 

connected affective constructs (code assigned by authors 1 and 2, researchers in math 

education). For each answer, a minimum of 1 code and a maximum of 5 codes per 

perspective were attributed. For instance, answer 110 (“I don’t feel like doing the exercises, 

I give up, I don’t like”) was coded as “drop out” and “no motivation” from the “leaning to 

learn” perspective, and as “negative emotional disposition” for the perspective of attitude 

towards mathematics and connected affective constructs. Once coded all the answers, we 

looked for co-occurrences between couples of codes or code groups (one referring to the 
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“learning to learn competence”, one referring to affective constructs) that seemed to be 

interesting in order to study how the “learning to learn” competence may be related to 

mathematics learning and to difficulty and failure in mathematics. Results in terms of 

occurrences of codes and co-occurrences of codes are discussed in the subsequent 

paragraph.  

RESULTS 

As already mentioned, we collected 355 answers. Only 8 of them were out of topic and 

were not taken into account for our study. This is a good result, since almost all students 

accepted to “put themselves” into the situation of the comic strip. The answers were 

analyzed using the textual analysis software Atlas.ti (v. 8), which generated the relevant 

Code-List, Code-Books and Code-Manager files. Totally, we used 143 codes (98 referring 

to “learning to learn”, 45 referring to attitude towards mathematics and connected affective 

constructs). Since for each answer it was possible to use up to 10 codes, we found 1499 

occurrences of codes (790 referring to “learning to learn”, 709 referring to attitude towards 

mathematics and connected affective constructs). To organize results, we decided to group 

codes into 17 code groups. For instance, the group-code “internal strengths”, referring to 

those resources that can promote “learning to learn” competence, comprehends the 

following codes: “engagement”, “awareness”, “motivation”, “improvement”, 

“collaboration”, “communication”, “complicity”, “resolution”, “self-confidence”. 

First of all, we report on those code groups that were most represented. For the “learning 

to learn” competence, the relevant code groups are “help request” (71 occurrences) and 

“internal strengths” (114 occurrences). Being aware of one’s needs and searching for 

external help are important components of the “learning to learn” competence. Concerning 

“help request”, we note that only 2 answers refer to a peer/classmate. 

Concerning attitude towards mathematics and other related affective constructs, we 

mention the group-code “low perceived competence in mathematics” (172 occurrences). 

We may note that, within that group-code, the most represented code is understanding (36 

occurrences). The group-code “view of mathematics” occurs 24 times, while “negative 

emotional disposition” (the third component of the tripartite model of attitude, according 

to Di Martino & Zan, 2011) occurs only 9 times. The situation of failure seems to call into 

action the perception of one’ competence, rather than the other two components of attitude.  

Two connected constructs that emerge are “causal attribution” and “success theories”. 

“Causal attribution”, that is the process of looking for causes for failure, appears 35 times. 

Interestingly, only 8 occurrences represent external causal attribution (for instance, in 

answer 279 the student Patty says to Mrs. Swanson “Maybe you should learn how to explain 

better”), while in all the other occurrences the students identify an internal cause for failure 

(for instance, in answer 27: “I should listen to the lesson more carefully”). Being aware of 

a possible cause of failure is a good starting point for overcoming the difficulty, if the cause 

is perceived as controllable (e.g., attention during the lesson). 



Morselli, Robotti & Traverso 

PME 44 – 2021   3 - 297 

220 students try to identify some strategies to overcome difficulty. We coded such answers 

as “success theories”, since they give us some insight into what is perceived by students 

as way to promote learning and reach success. The group-code “success theories” contains 

for instance the following codes: “looking at future”, “engagement”, “explain again”, 

“remedial course”, “sense of the task”, “wake up”.  The most represented codes within the 

group-code “success theory”, apart from “looking at future” (73), that is a general 

disposition to overcome difficulty by changing some habit, are “explain again” (59) and 

“engagement” (50). Indeed, those are not necessarily very efficient strategies. “Explain 

again” refers to a mere repetition of the lesson. Engagement in terms of willingness to listen 

again the same explanation is not necessarily efficient. 

In front of difficulty and failure, also “math avoidance” is widespread (72 occurrences). 

Math avoidance (Di Martino & Morselli, 2006), as the decision to choose the kind of 

school/university that provides the least amount of hours of mathematics in order to avoid 

difficulty (e.g. answer 3: “Then, scientific-oriented secondary school is not for me”), can 

be seen as the extreme way of giving up and not trying to overcome difficulty. 

Overall, the analysis of occurrences gives us a first glance on “learning to learn” 

competence and affective constructs, in front of failure. In order to gain more insight on 

what students need in order to overcome difficulty, we also study co-occurrences. For our 

aim, we confine our analysis to specific couples of code groups and codes.  

The first couple of code groups we take into account is “success theories” and “learning”. 

The most relevant co-occurrence of “success theories” is with the specific codes “after 

school tutoring” (61 occurrences) and “explain again” (26 occurrences). Hence, we may 

say that students recognize to after school tutoring a key role in overcoming difficulties. 

Students seem to perceive the class as the place of "explaining": if the action of explaining 

does not lead to understanding, a new explanation is asked - not different or better, but 

simply a “replay”. Understanding often is reached at home with the help of another adult 

(“after school tutoring”). Knowledge construction and recovery after failure don’t take 

place, as one might think, at school (also understood as an interpersonal relationship with 

teacher and classmates) but out of school, with a tutor, who totally assumes the 

responsibility of the student’s learning. 

If we look at the couple “success theories” and “learning strategies”, we find that the 

specific code “looking at future” (to face failure situation) has interesting co-occurrences 

with “understanding” (23), “reflection” (14), “method of study” (12) and “classroom 

concentration” (11). More in details, two specific codes belonging to “success theory”, 

that is to say “engagement” and “explain again”, have good co-occurrence with the code 

“understanding”. Once again, "engagement" and "explain again" seem to be fundamental, 

also with respect to learning strategies. In reference to the method of study, we wonder 

which kind of resources students identify to overcome difficulty. If we look at resources 

for learning, we find that “success theory” has a good co-occurrence with “engagement” 

(69), “motivation” (39), “awareness” (33) and “attention” (28). This shows that students 
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are aware of the importance of internal resources. At the same time, they do not seem to 

have at disposal useful strategies to activate both engagement and motivation. In other 

words, students are willing to engage, but do not know how to “direct” such engagement. 

Indeed, “engagement” is associated with “attention in the classroom” (10), “collaboration” 

(1), “concentration” (3), “engaging in class” (1), “listening” (1), “practicing” (4), “doing 

exercises” (7), that are not necessarily efficient in terms of learning. Even “after school 

tutoring” is strongly associated with “engagement” (28 occurrences), but it is not well 

explicated what engagement means. Only 5 students interpret the engagement in terms of 

"study" (e.g. answer 58: “You can see that I did not study, next time I’ll have to study 

more”). Here we see the crucial role a teacher should play in promoting engagement and 

providing strategies to overcome difficulty. 

If we focus on the method of study, which is a relevant part of the “learning to learn” 

competence, only 9 students mention it. Moreover, if we look in details, we find that only 

1 of these really refers to a method of study in terms of metacognitive awareness (answer 

331: “Couldn't you help me or advise me what to do?”). Only in this case, we note a co-

construction of learning, that is a relationship between teacher and student in order to 

construct learning.  

PRELIMINARY CONCLUSIONS 

In the present study we investigated students’ views of difficulty and failure in 

mathematics, as a preliminary step to identify their needs and, consequently, approaches to 

help them in class. To this aim, we studied students’ ways of addressing a fictional story of 

difficulty and failure in mathematics. The analysis of their answers provided information 

on students’ attitude towards mathematics, as well as their learning to learn competence in 

the special case of mathematics.   

We found that students link failure to a low perceived competence, rather than to the other 

two components of attitude towards mathematics (view of mathematics and emotional 

disposition). In connection, we also evidenced a widespread phenomenon of mathematics 

avoidance. Those cases represent a first type of reaction to failure, that is to say just 

“assuming” difficulty, without any attempt to overcome it. Another reaction to failure 

consists in searching for causes, that is the process of causal attribution. Interestingly, we 

found that most causal attribution is internal. For all the aforementioned reactions to failure, 

we find a confirmation of the fact that an intervention at affective level could be efficient, 

as already discussed in the literature (Di Martino & Zan, 2011). 

Most students complete the comic strip with a final sentence that refers to something that 

can be done to overcome the situation of difficulty and failure. Most students look for an 

external help, which is in principle a good approach. However, some elements are striking. 

First of all, the kind of help that is required is a mere “explanation”. There is no reference 

to alternative ways to reach understanding, nor to class activities different from a frontal 

lesson. It is significant that only two students ask the help from a classmate. Moreover, 

many students refer to after school tutoring as the way of overcoming difficulty. This sheds 
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light on their view of the mathematics lesson at school, that is the moment when 

explanation is given, versus home tutoring, the moment when difficulty is treated. Hence, 

the teacher is seen as the mere provider of explanation, rather than a mediator in the process 

of learning. Students don’t require the co-responsibility for their learning with the teacher 

and such a responsibility is given to another adult, the tutor, outside the school. Thus, the 

students seem to reject the implicit pact of co-responsibility in learning that should be 

present in school. 

Finally, many students are aware of the importance of relevant resources, such as 

engagement and motivation, but do not seem to have at disposal useful strategies or 

methods of study. Engagement, without having at disposal alternative learning strategies, 

risks to be non-relevant. Hence, internal resources are not used to support some learning 

strategies that are deemed to be effective for overcoming failure in mathematics.  

As a preliminary conclusion, our study highlights the crucial role of the teacher in creating 

a learning environment where students learn together, with the mediation of the teacher, 

and are actively involved in doing mathematics, not just listening to explanations (Goos, 

2004). In such an environment, alternative ways of learning are promoted and each student 

is at the same time responsible of his learning and resource for the classmates, as advocated 

in the formative assessment approach (Black & Wiliam, 2009). We mention here the project 

by Lee & Johnston Wilder (2013), where students are involved as co-researchers and led 

to experience alternative ways of learning and models of resilience. In this way, students 

are given the opportunity to express their voice and become “active, resilient participants 

in the learning process” (p. 175).  

In this way, the teacher could also address students’ perceived competence in mathematics. 

We mention here the study by Heyd-Metzuyanim (2013) who shows the crucial role of the 

teacher in the construction of an identity of math failure. Hence, we argue that the teacher 

can also have a role in turning difficulty into a success story. 
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This study investigates the contribution of academic mathematics studies to classroom teaching 

of topics from the high-school mathematics. Data sources included interviews with five 

teachers who taught high-school mathematics before, during, and after their academic 

mathematics studies. All teachers exemplified changes in classroom teaching of various topics, 

which they linked to knowledge they acquired in the academia. The domain of analysis and the 

topic of integrals were central in the reports. Use of the Essence-Doing-Worth framework 

revealed that the contribution of academic mathematics studies to classroom teaching was 

mostly related to: essence of the topic and topic-related calculations; the worth of the topic 

was seldom mentioned.   

INTRODUCTION 

In many countries, the education of high-school mathematics teachers traditionally includes a 

strong emphasis on academic mathematics courses. The assumption underlying this tradition 

is that academic studies of mathematics are relevant to teaching high-school school 

mathematics. Yet, the scholarly literature on the contribution of knowledge of academic 

mathematics to school teaching is rather limited. It mainly comprises theoretical 

contemplations of potential contribution, and offers only limited empirical research-based 

information (Even, 2020). Review of the literature suggests that teachers often do not regard 

their studies of academic mathematics as having any contribution to their teaching. When they 

do, they tend to refer to contribution to their knowledge about the nature of the discipline of 

mathematics (e.g., Hoffmann & Even, 2019; Baldinger, 2018), and sometimes mention 

responding to students’ questions or enriching topics taught (e.g., Even, 2011; Shamash et al., 

2018). Reports on contribution of knowledge of academic mathematics to teaching specific 

high-school topics are rather rare. This is the focus of our study.  

The literature that centers on the contribution of academic mathematics studies to teaching 

specific mathematical contents mainly focuses on identifying and making explicit connections 

between specific contents in academic mathematics and contents in school mathematics (e.g., 

Wasserman, 2018). Most of this literature centers on abstract algebra and to some extent 

analysis. For example, connections between group axioms studied in abstract algebra and the 

conventional procedure for solving equations in secondary school (Suominen, 2018), or 

between group axioms and the concept of inverse function (Zazkis & Kontorovitch, 2016).  

Whereas the study of connections between specific contents in academic mathematics and in 

school mathematics is growing in recent years, it is not clear yet, how knowledge of such 

connections contributes to the actual teaching of mathematics in secondary school. The scarcity 
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of teachers’ reports on contribution of their knowledge of academic mathematics to their 

teaching of specific secondary school topics may reflect the marginal role that such knowledge 

plays in teaching such topics. Yet, results of recent intervention studies that aimed at supporting 

teachers in connecting university to secondary mathematics (e.g., Wasserman et al., 2019) 

suggest that knowledge of connections between specific contents in academic mathematics and 

in school mathematics has the potential to contribute to the teaching of mathematics in 

secondary school, when academic mathematics courses purposely focus on helping teachers 

notice these connections. 

Thus, an alternative explanation of the scarcity of teachers’ reports on contribution of academic 

mathematics studies to the teaching of specific secondary school topics could be that such 

contribution may exist even when academic mathematics courses do not purposely focus on 

helping teachers notice these connections. It could be that teachers are simply unaware of this 

contribution. The limited teaching experience of prospective teachers may hinder their 

capability to recognize such contribution. And practicing teachers, who commonly start 

teaching after finishing their academic studies, may take their knowledge for granted, making 

it difficult for them to notice the contribution of their knowledge of academic mathematics to 

their classroom teaching of specific topics in school mathematics.  

Our study addresses this issue by focusing on a special group of teachers, who are likely to 

have greater capability to notice contribution of their knowledge of academic mathematics to 

their teaching of specific secondary school contents. These are teachers who began their studies 

of academic mathematics after several years of teaching high-school mathematics, and 

continued to teach in parallel with, and after their studies, at the same grade levels they taught 

prior to their academic studies. The research question is: How do teachers, who taught high-

school mathematics before, during, and after their academic mathematics studies, regard the 

contribution of academic mathematics studies to teaching topics from the high-school 

mathematics curriculum? To address this question, we adapt the EDW (Essence-Doing-Worth) 

conceptual framework developed by Hoffmann and Even (2018, 2019), and examine the 

contribution of academic mathematics to teaching specific mathematics topics, using three 

aspects: (1) essence of the topic, (2) topic-related calculations, and (3) worth of the topic.  

METHODS 

Five high-school teachers participated in the study. All of them started teaching high-school 

mathematics, with no academic education in mathematics. After several years of teaching, 

these teachers enrolled in a B.Ed. program in mathematics education, that included 

academic mathematics courses whose scope and level were parallel to B.A or B.Sc. 

university mathematics programs. The teachers taught in Girls’ high-schools (single-gender 

education) the same grade levels before, during, and after their academic mathematics 

studies.   

Data sources included individual semi-structured in-depth interviews with the teachers. The 

aim was to learn how the academic mathematics courses contributed to their teaching. The 

interview consisted of two main open-ended questions: (1) Has there been any change in 

the teacher you were before the program and the teacher you are today? and (2) Has there 
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been any contribution of the mathematics courses you studied to your work as a teacher? 

Following each question, the interviewees were asked to explain their responses and to give 

examples from their experiences in the program and their teaching. In addition, the teachers 

were shown artifacts that we had expected would help to refresh their memory, such as, the 

academic courses syllabi and list of topics in the national mathematics high-school 

curriculum.    

The interviews were transcribed and then analyzed, employing the method of directed 

content analysis (Hsieh and Shannon 2005). First, we marked all interview excerpts in the 

transcripts that included reports on changes in classroom teaching of mathematics topics 

that were explicitly linked to new knowledge acquired in the academic mathematics 

courses. Second, we marked the mathematics domain and the specific topic of each reported 

change, and using the EDW framework (Hoffmann & Even, 2019) we coded each change 

as contribution to teaching pertaining to: (1) essence of the topic, (2) topic-related 

calculations, and (3) worth of the topic. The analysis was iterative and comparative, and 

included peer validation. Finally, we focused on the topic mentioned the most in the 

interviews – the integral – and conducted a similar in-depth analysis of the changes reported 

regarding its teaching.  

FINDINGS 

Below, using the three EDW aspects, we briefly describe the contribution of academic 

mathematics to teaching different mathematics domains and topics. Then we elaborate on 

the topic of integrals that was rather central in the teachers’ reports.  

Contribution to teaching different mathematics domains and topics 

Analysis of the interviews revealed that all five teachers reported on changes in their 

classroom teaching of selected mathematics topics, which they explicitly linked to new 

knowledge they acquired in the academic mathematics courses. These changes in 

classroom teaching were associated with a variety of topics in different mathematics 

domains. All five teachers reported on changes in their teaching of selected topics in 

analysis; four teachers in selected topics in each of the domains of algebra and probability; 

and three teachers in selected topics in geometry. The topic of integrals was mentioned by 

four teachers; all other topics were mentioned by 1-3 teachers. 

The teachers reported mainly on contribution related to two aspects: essence of the topic, 

and topic-related calculations. The aspect, worth of the topic was hardly mentioned in the 

interviews.  

Regarding the aspect essence of the topic, the teachers reported changes associated with 

frequently used mathematical concepts and topics, such as, extremum point, derivative and 

integral in analysis, conditional probability and complementary events in probability, 

solution of equations in algebra, and Euclidean geometry in geometry. The teachers 

explained that following their academic studies, they modified the way they have presented 

these concepts in class. Such changes, they said, helped them to present concepts as they 
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are in mathematics, and to overcome difficulties they had previously encountered in their 

teaching when using inaccurate definitions. In the following we exemplify changes 

Teachers A and D made in the definitions of extremum point of a function that they had 

previously used in their teaching (which did not cover all possible cases of extremum 

points) after learning at the academia a definition that was based on the notion of 

neighborhood of a point.  

Teacher A’s original definition was based on finding points of “transition from increasing 

to decreasing” and vice versa. In the interview excerpt below, she explains the reason for 

the change she made:  

Teacher A:  Let’s say extremum points. Then, in the past, in high school, I could 

have said, point of change. Today I will never say that... that an 

extremum point is a transition from increasing to decreasing. [Today] I 

will say, this is a point that is the highest or the lowest in its 

neighborhood. The definitions would be more accurate today.  

Interviewer:  Why? 

Teacher A:  Because there are endpoints that are extremum points. So, when we get 

to the root function, I will not tell them that it is at the end. Then, I will 

define in advance that in my neighborhood, the point that is the highest 

in its neighborhood. 

Teacher D’s original definition was based on finding points for which the derivative was 

zero. In the interview excerpt below, she explains why she changed it: 

Can I say that extremum is everywhere the slope is zero? No, this is not the definition 

of extremum. It is a point that is the highest or the lowest in its neighborhood.  Then all 

questions regarding functions with absolute value automatically disappear: Is this 

peak… is it an extremum point? It is not differentiable, then, is it not an extremum point? 

[Or] is it an extremum point? If the definition is precise and correct, then there won’t be 

questions regarding these places, which actually it is unclear what happen with them, 

the points which are not differentiable. If it were before I learned all that I learned [in 

college], then for me, [to find] an extremum point, okay, then I do derivative equals zero, 

[and this way I] find the extremum points… No, there could be extremum points which 

I didn’t find: extremum points which are endpoints… [and] as we say, in absolute value 

functions.   

Regarding the aspect topic-related calculations, the teachers mainly reported changes 

associated with justifications of various methods of calculation, such as, differentiation and 

integration rules in analysis, and computing binomial distributions in probability. There 

were also a few reports related to learning new methods of calculation in the academic 

courses, which the teachers then incorporated into their classroom teaching. The teachers 

explained that their academic studies enable them to justify in class methods of calculation, 

which previously they presented to students as rules to follow only. The following excerpt 
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from the interview with Teacher E demonstrates her changed practice that includes now 

justification of differentiation rules: 

Interviewer:  Has there been any change in the teacher you were before the program 

and the teacher you are today? 

Teacher E:  I really give them proofs from calculus… Derivative, proof, these are 

actually things that I got from the college… I was not used to get to 

this… proving derivatives… You start with y=x2, and demonstrate the 

whole process on the board, with the limits, that is, with the approaching 

to zero… of the limit of the slopes of the secant lines… With the more 

complicated derivatives I also demonstrate it to them...       

Contribution to teaching the topic of integrals 

Four teachers reported on changes in their classroom teaching of the topic of integrals, and 

explicitly linked these changes to new knowledge they acquired in the academic 

mathematics courses. All four teachers mentioned contribution of their academic studies to 

their teaching of the topic of integrals in relation to two aspects: essence of the topic and 

topic-related calculations. None referred to the aspect worth of the topic.  

The main contribution reported by the teachers regarding the topic of integrals was related 

to the connection between two forms of the integral: the indefinite and the definite integral. 

The teachers explained that prior to their academic studies they did not really know what 

an integral is. They described their teaching of this topic as focused on how to calculate 

areas using integral as a formula. Following their academic studies, which included formal 

definitions of central concepts and proofs of key theorems, three teachers reported that they 

made substantial changes in their teaching of the topic of integrals (the fourth teacher made 

only a minor change). They incorporated into their classroom teaching the use of limit of 

sums of rectangles in order to justify the calculation of an area bounded by the graph of a 

function defined on an interval and the x-axis (definite integral), and then connected it to 

the antiderivative function (indefinite integral) and the Newton-Leibniz formula 

(∫
𝑏

𝑎
𝑓(𝑥)𝑑𝑥 = 𝐹(𝑎) − 𝐹(𝑏)). 

In the following interview excerpts, Teacher D demonstrated this change in her classroom 

teaching, which she connected to the knowledge she acquired in her academic studies. The 

first excerpt describes her teaching of the topic of integrals before her academic studies:  

And before I studied calculus at the college, I also didn’t know about the deep connection 

between area and integral. I didn’t really understand. I thought, okay, to find area, this 

is what I am supposed to do [∫
𝑏

𝑎
𝑓(𝑥)𝑑𝑥 = 𝐹(𝑎) − 𝐹(𝑏)], and this is what the girls 

[students] need to do. So, I automatically taught technically what needs to be done. Not 

where it came from, and what it is, and so on. And that it doesn’t have to be area, the 

integral, like it can be many other things. And this is why an integral can be negative, 

the definite integral, it can be negative and not only positive... 
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She then moved to describe the change she made in her teaching practice following her 

academic studies, and explained how she works now with her students: 

The goal was, okay, how do I find area without knowing the concept of the integral. 

How do I find the area between the function and the x-axis?… And then we really started 

to break it [the area] down into rectangles, together with the girls [students], and take 

the maximum of the areas of the rectangles, and take the minimum... So, the area should 

be in the middle. And then of course I introduced them to the theory of limits … And 

we did algebraic operations, and suddenly they see that the derivative function was 

created… And then they say: Ah, okay, then the area should be in the range between 

this and this… we [then] reached the inverse operation of derivative. And that was it, 

this is where it came from. And then we also proved the fundamental theorem of 

calculus, and so on. 

As demonstrated above, this change in classroom teaching was related to both aspects: 

essence of integral and integral-related calculations. The teachers used the knowledge they 

acquired regarding the connection between the indefinite and the definite integral to explain 

in class what an integral is; an explanation which served also to justify the way the definite 

integral is calculated. In addition to this significant change in classroom teaching, two 

teachers reported on three less substantial changes related to the indefinite integral, which 

were associated with the aspect integral-related calculations. Each of these changes was 

mentioned by one teacher. 

Two of these changes were mentioned by Teacher C. She described how before her 

academic studies, she used to teach her students a large number of formulas for finding the 

antiderivative function. During her academic studies she realized that quite a few of these 

formulas are actually specific cases of general formulas. This insight led her to change the 

way she presents and uses in class formulas for finding antiderivative functions. Instead of 

providing her students with a long list of formulas, she switched to presenting only general 

cases and to guide her students in using these general formulas in specific cases. For 

instance, ∫ 𝑓(𝑥)𝑛𝑑𝑥 =
𝑓(𝑥)𝑛+1

(𝑛+1)∙𝑓′(𝑥)
  when the function 𝑓(𝑥) is linear, is used in her class 

as a general case for finding the antiderivative of the function g(x) =  
1

(3𝑥+5)2
 . 

This teacher mentioned also that learning about the notion of integrability in her academic 

studies enable her to respond to students’ common claim that it is possible to find the 

antiderivative for all functions:  

Because often girls tell me: ‘It is possible to find the antiderivative of every function.’ 

Then I show them that there are many more functions that don’t have antiderivatives. 

And many more functions for which is it very complicated to find their antiderivative, 

or that it is known that they have antiderivatives, but not how to find it. 

Another specific change was mentioned by Teacher D. She was introduced in her academic 

studies to the method of integration by substitution for calculating integrals. Even though 
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this method is not part of the high-school curriculum, she decided to teach it to her students 

because it is useful: “They use it a lot, and they also understand where it came from… why 

I can switch dx with du.” 

DISCUSSION AND CONCLUSION 

The starting point for our study was the intriguing scarcity of secondary school teachers’ 

reports on contribution of their academic mathematics studies to their teaching of secondary 

school mathematics topics. We posited that a reasonable explanation for this situation could 

be not the absence of such contribution, but instead, teachers’ restricted capabilities to 

recognize such contribution. Consequently, we focused in our study on a unique group of 

teachers who we expected to have greater capability to notice contribution of their academic 

mathematics studies to their teaching of secondary school topics. These were teachers who 

began their studies of academic mathematics after several years of teaching high-school 

mathematics with background in high-school mathematics only, and then continued to 

teach in parallel with, and after their academic mathematics studies, at the same grade levels 

they taught prior to their academic studies.  

And indeed, all five teachers who participated in our study provided tangible examples of 

contribution of their academic mathematics studies to their teaching of various topics from 

the high-school mathematics curriculum. The domain of analysis in general, and the topic 

of integrals in particular, were central in the teachers’ illustrations of changes they made in 

their teaching. Thus, the results of our study add important insights to current literature, 

which mostly deals with the domain of algebra (e.g., Wasserman, 2018).  

The use of the EDW framework (Hoffmann & Even, 2018, 2019) revealed that the 

contribution to teaching mentioned in the teachers’ reports was mostly related to two 

aspects: essence of the topic and topic-related calculations. The changes in classroom 

teaching reported by the teachers were mainly related to presenting mathematics concepts 

more accurately (e.g., extremum point, integral), and to justifying procedures used in class 

(e.g., rules for finding derivatives and definite integrals). Examination of these changes in 

light of the national high-school curriculum (Ministry of Education, 2019) suggests that 

these changes reflect a broader interpretation of the high-school curriculum, which 

previously was interpreted at face value.     

In contrast with the findings of another study (Hoffmann & Even, 2019) which used the 

EDW framework to study the contribution to secondary school teaching of academic 

mathematics studies in a different program, the aspect worth of the topic was seldom 

mentioned by the teachers in our study. This discrepancy between the results of our study 

and that of Hoffmann and Even might be related to the nature of the mathematics courses 

included in each of the different programs. More research is needed to better understand 

this discrepancy. 
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This research focuses on 9th grade students’ learning processes while playing 

mathematical games. We adopt the commognitive lens and ask: how do the discursive 

processes around a board-game about quadrilaterals afford explorative participation? We 

found four main routines followed by the participants: two relating to the mathematical 

objects and two relating to the rules of the game. These routines were organized in 

patterned ways where the mathematical routine usually preceded the game-playing 

routine. In addition, subjectifying discourse was relatively neutral in the mathematical 

discourse while competitive and identifying in the game-discourse. In this way, the 

mathematical routines served as a gateway and a resource for the main goal of winning 

the game.  

INTRODUCTION  

Several studies have shown that mathematics game-playing can promote motivation and 

engagement (Orim & Ekwueme, 2011; Parsons, 2008). These studies join the contemporary 

enthusiasm about gamification and game-based learning in education (Gee, 2008; Hays, 

2005). However, not much is known about the processes of learning happening through 

these games. Even less is known about how students learn mathematics through game-

playing. Having a long experience with teaching mathematics by game-playing in middle-

school mathematics classrooms (2nd author), we designed a study that aims at identifying 

the learning opportunities that students are provided with during mathematics games. In 

the current paper we report on students' discourse around a board-game about 

quadrilaterals, and how the organization of this discourse affords explorative participation. 

GAMES IN CLASSROOMS AND LEARNING THROUGH GAMES 

Teaching through games is well supported by the constructivist theory since games are 

natural activities for children (Vankúš, 2005) and provide them with opportunities to 

explore their ideas and create strategies through trial and error without being concerned 

with outcomes in real life. That is, mistakes which are done during games will not influence 

the players’ real lives when compared with mistakes done in a test (Hays, 2005). With no 

outcomes in reality, students are more motivated to explore the subjects through the game. 

Their social skills and emotional regulation can be improved as well as their ability to better 

understand and remember what they learn (Gee, 2008; Hamari, Koivisto & Sarsa, 2014; 
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Stott & Neustaedter, 2013). Various studies detail possible contributions of game-playing 

to mathematics learning. Those include: improving  mental calculations, providing an 

environment in which students generate their own mathematics questions and problems 

along the game (Parsons, 2008), helping to conceptualize mathematics problems, 

improving students' attitude towards mathematics, motivating students to practice in an 

enjoyable way, learning mathematical vocabulary and ideas, improving math reading 

(Henry, 1973) and improving logical thinking (Orim, Ekonesi & Ekwueme, 2011). It could 

also enhance social and communicational skills and competencies (Gee, 2013; Higgins & 

Chaires, 1980). Literature relates to different types of games. In this study we focus on 

students playing one game which complies with the following definition: “A competitive 

interaction based on mathematical principles. This interaction must include at least two 

players that are committed to the same set of rules and are free to choose their own strategy 

and moves based on mathematics and luck”. This definition is based upon various other 

definitions for games (e.g. Gough, 1999; Orim & Ekwueme, 2011). 

While studies about game-playing in educational settings have been growing in number 

and scope, studies about the learning processes involved in learning with mathematical 

games is still lacking. For studying such processes, a discursive lens, which focuses on 

students' communication while playing, can be beneficial. Adequate methodological tools 

would have to be able to analyze mathematical discourse among students and the way their 

identities and emotions are expressed during the games. Commognition theory (Sfard, 

2008) has proved useful in the past for examining processes of learning, and in particular, 

for examining affective aspects of communication as they interact with mathematical 

activity (Heyd-Metzuyanim & Sfard 2012). Next we detail about the commognitive 

framework. 

LEARNING AS BECOMING AN EXPLORATIVE PARTICIPANT 

According to the commognitive framework, learning mathematics is a change in one's 

mathematical discourse, towards becoming an explorative participant in the discourse 

(Lavie, Steiner and Sfard, 2019). Such participation is characterized by the students' 

authoring of narratives about mathematical objects. The learner chooses between 

alternatives according to the task at hand and considers alternative processes. She is 

expected to make independent decisions on the way. This, in contrast to ritual participation 

which is characterized by rigidly following rules according to others' authority and focusing 

on the doing and not on the goal.  

To learn about the type of student participation while playing in the mathematics classroom, 

whether more ritual or more explorative, we look at the routines that they perform. Routines 

are patterns that are repeated in similar situations. We identify routines as pairs of tasks and 

procedures: the task one sees herself performing together with the procedure she executed 

to perform the task (Lavie, Steiner and Sfard, 2019). That is, when a person faces a new 

task, she is able to act thanks to her previous experience, past situations that she interprets 
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as sufficiently similar to the present one to justify repeating what was done then, whether 

it was done by herself or by someone else.  

As mentioned above, game-playing is often characterized as promoting motivation and 

emotional engagement (Hamari, Koivisto & Sarsa, 2014; Parsons, 2008). Taking a 

discursive lens we use the terms of subjectifying and mathematizing to analyze these 

affective aspects in students' communication. By subjectifying we mean communication 

about the participants of the discourse, including statements about one's actions, thoughts, 

feelings and general attributes. These communicative actions are often accompanied by a 

distinct emotional hue – that aspect of the utterance that is interpreted by the audience as 

indicating how the communicator is feeling. By mathematizing we mean communication 

about mathematical objects. Previous studies (e,g, Heyd-Metzuyanim & Sfard, 2012) have 

found that subjectifying can interfere with mathematizing. For example, when students are 

focused on subjectifying negatively about each other (e.g. in relation to who is smarter, 

who is better understood, etc.), the effectiveness of the mathematical communication may 

suffer. These studies, however, did not relate to playful or game-playing situations. There, 

subjectifying may be intense due to the competitiveness of the game (the individual's goal 

to win), yet it is unexplored whether such subjectifying is beneficial or detrimental for 

learning.  

The goal of the present study is to examine students' communication around game-playing 

to better understand the affordances of this teaching practice. Therefore we ask: How do 

the discursive processes around a board-game about quadrilaterals afford explorative 

participation? 

METHOD 

In this paper we closely look into students' playing of one geometric game, the 

"quadrilaterals Totem game", inspired by a game named Totem. It is a board game with 

10x10 ellipses (Figure 1). On 96 ellipses, a name of a quadrilateral is written. The other 4 

ellipses are empty. The game includes a stack of property cards. On each property card, a 

geometrical property is written, for example "two adjacent angles sum to 180". The players' 

goal is to move their 4 plastic chips from one side of the board to the other according to the 

property card. In each turn it is possible to move one chip in one direction through as many 

ellipses that comply with the written property. For instance, if the property card says, "all 

sides are equal", a player can move in one turn one plastic chip in one direction but it can 

pass through all sequential ellipses that comply with the property. Once a student reaches 

an empty ellipse, players draw a new card. 
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Figure 1: The Totem game board – a sketch and in reality 

The data for this paper includes a videotaped 9th grade mathematics lesson in which 

students were playing the quadrilaterals Totem game. We focus on two groups of four 

students each. Both groups played for the whole lesson (about 30 minutes). One group 

played eight rounds and the other – five. The videotapes were transcribed and analyzed in 

three steps. First, utterances were identified as either relating to the mathematical discourse 

(talk about mathematical objects) or to game-discourse (talk about the game). Second, we 

identified routines that the participants performed in each of the discourses, by identifying 

the tasks that they set before them. To identify the task, we look at what the participants do 

and consider the possible task that she tries to perform. For example, if a player says: "it's 

a rhombus because it has four equal sides", we could interpret her task to be "justify your 

identification of shape". Third, we identified all subjectifying talk and identified its 

emotional hue. 

FINDINGS 

Finding 1. We found that while playing, students talked either about the game or about the 

mathematics. That is, they participated in two discourses – game and mathematics 

discourses. Only 1% of students' talk was about other issues. This implies that students 

were engaged with the game and did not talk about other topics. 

Finding 2. When looking at students' organization of the discourse in all rounds, we found 

that after picking a card and reading the property, students first jointly discussed which of 

the quadrilaterals comply with the property and which do not. They also clarified words 

that were written on the card. Later, students negotiated about specific mathematical 

narratives produced – they challenged narratives formerly endorsed by the group and 

justified narratives about the shapes. In those parts, students raised doubts, tried to convince 

others and addressed their peers' questions. After mapping the shapes as complying / not 

complying with the given property, players shifted to talk about the game. Here, students 

talked about game strategies and negotiated options and choices of moves that they could 

or should take. We conclude that during the game students' discourse included the 

following four routines of participation: (for each routine we specify the task that defines 

the routine). Math_a:  Laying the mathematical ground. This routine includes the task: to 
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produce mathematical narratives that are required to play and win the game. This routine 

was initiated in every round right after reading the property card. Math_b: Negotiating the 

mathematical narratives. Task: to challenge and reason about formerly produced 

mathematical narratives. This was initiated when a certain shape was not checked earlier 

(after starting to play) or when an agreement about a shape was questioned. Game_a: Game 

strategy. Task: to identify the best strategy/moves to win. This was initiated after mapping 

which shapes comply (or not) with the property. Game_b: Negotiating game-moves. Task: 

to determine which moves are allowed according to the game rules.  

Episode 1 illustrates the Math_a routine. 

Episode 1: Laying the Mathematical Ground 

Turn name what was said (what was done) 

196 H (Picks up a card and reads) Every pair of adjacent angles sums 180 

197 N Every pair of adjacent angles  

… 

201 S Ahh in a rectangle? What is adjacent? 

204 N Adjacent is, one (angle) next to the other (using hand gestures). Those 

are 180 

205 S So also in a square, in a rectangle, in a parallelogram 

206 H Almost every shape 

207 S In parallelogram? 

208 H Almost every shape except 

209 S Trapezoid 

… 

214 H Everything that includes, let's say, kite and rhombus 

215 S Great, my turn 

The routine is initiated by picking up a card and reading the property (196). The task that 

students were performing during this episode was to produce mathematical narratives that 

are relevant to moves required in the game. The sub-tasks that students performed towards 

this goal were: (a) clarify mathematics words that are unclear (201, 204), and (b) determine 

the shapes that comply (or not) with the given property (201, 205-209, 214). 

Episode 2: Negotiating the Mathematical Narratives 

The next episode illustrates routine Math_b. The routine was initiated when a player 

challenged narratives that were formerly accepted by the group. The students' mathematical 

discourse during this routine usually included mathematical explanations and justifications. 

This episode refers to the property card “All opposite sides are equal” and was initiated 
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when student M challenged a narrative formerly accepted by the group, that "in a rhombus 

all opposite sides are equal". 

Turn Name what was said (what was done) 

196 M In a rhombus opposite sides are eq(ual) not equal 

197 T In rhombus all sides are equal. 

198 M But it doesn’t mean that they, like the opposite have to be equal, (but 

just) the adjacent are equal. 

199 A But all sides are equal 

200 T But all sides are equal in a rhombus, it’s like a square 

201 R Listen if it (the rhombus sides) were four four four four (each side equals 

4 length units), so four equals to four (pointing at opposite sides), four 

equals four 

202 M Well. So, OK 

Here, students T, A and R justify the formerly accepted narrative by using three 

justifications: (a) if all sides are equal then a sub-set of them would necessarily be equal 

(197, 199, 200); (b) making an analogy to a different shape (a square, (200)) that was 

formerly accepted as being complying with the property due to a similar reason (all sides 

are equal); and (c) by giving an example by attributing specific length (four) to the sides 

(201).  

The sub-tasks that students perform here are "challenge a formerly accepted narrative", 

"justify a mathematical narrative" and "accept a suggested mathematical narrative".  

Finding 3. Performing routines Math_a and Math_b resulted in students' production of 

multiple narratives. For example, during the performance of routine Math_a  for the 

property-card: Every pair of adjacent angles sums 180 (episode 1), students authored the 

following narratives: (1) adjacent angles are next to each other (204); (2) Each pair of 

rectangle’s adjacent angles sums 180 (201, 205); (3) Each pair of a parallelogram's adjacent 

angles sums 180 (205); (4) Each pair of a square's adjacent angles sums 180 (205); and (5) 

In a trapezoid, not every pair of adjacent angles sums 180 (208-209).  

Finding 4. In all 13 rounds that were analyzed, the activity structure that we identified was 

Math_a - Game_a - Math_b OR Math_a - Math_b - Game_a. The Game routines never 

started the round, and Game_b did not always occur. In cases in which it did, it followed 

Math_b or Game_a. 

Finding 5. In both discourses - the mathematics and game, subjectifying utterances were 

found. However, most subjectifying took place the game discourse, that is, while 

performing routines Game_a and Game_b. We found that 26% (76/287) of the utterances 

in routine Math_a included subjectifying, and 22% (68/305) in routine Math_b. In contrast, 

78% (208/267) of the utterances in Game_a and 64% (190/299) of utterances in Game_b 

included subjectifying.  
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Finding 6. Subjectifying differed not only in quantity but also in quality: whereas routines 

Math_a and Math_b included neutral or positive subjectifying and call for collaboration, 

routines Game_a and Game_b included negative (mostly humorous) subjectifying 

narratives.  

Episode 3: Negotiating Game-moves 

Turn name what was said (what was done) [emotional hue] 

321 M You can’t come back to where I am [Worried about T’s move] 

322 T I can do whatever I want to and you won’t tell me what to do [annoyed] 

323 A So eat him (plastic chip), eat him [excited] 

324 R T is getting into a game mode (laughing) [cynical] 

… 

328 M No, where are you going? [surprised] 

329 T BOOM! No (lands on M’s chip and takes it backwards). [Pride and slight 

aggression] 

330 A Your turn (turns to R)  

331 T You don’t mess with T! [Arrogance and pride] 

In episode 3 we can see that the subjectifying during game discourse is mainly about 

winning, competing and teasing each other. This can be seen through the aggressive and 

exited emotional hue within the game-discourse, that was totally absent during the math-

discourse. 

DISCUSSION 

Our question in this research was how do discursive processes around the game of 

"quadrilaterals Totem" afford explorative participation in mathematical learning. We found 

that students' routines of participation were organized in patterned ways, where the 

mathematical routines usually preceded the game-playing routines. This pattern promoted 

explorative participation since every time students wished to reach the actual game-playing 

(routines Game_a and Game_b), they needed to pass through the mathematics (routine 

Math_a). Also, while participating in the game, students authored multiple mathematical 

narratives: they determined whether to produce a narrative, which narratives to produce, 

whether to question a narrative stated by others or when and how to justify narratives. Also, 

they often did not have a ready-made procedure to follow while producing or justifying 

narratives. In addition, the mathematics discourse hardly included subjectifying narratives, 

unlike the game-discourse. This allowed relatively free engagement with authoring 

mathematical narratives devoid of the potential negative consequences of authoring wrong 

mathematical narratives. At the same time, the motive to win, and the emotional enjoyment 

related to that was channeled to the game-playing discourse.  

The use of mathematical games in class may divert traditional narratives such as "being 

good/bad in mathematics" to two discourses with new narratives: the game discourse which 

is mainly about the narrative of "I want to win", and the mathematical discourse which is 

about collaborating to produce mathematical narratives that will serve the main narrative 
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of the game. That is, the mathematical routines served as a gateway and a resource for the 

main goal of winning the game. 
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The article reveals how the processes of subjectification and objectification proceed in a 

mathematical activity at a Japanese preschool and how the roles of finger gestures change 

for children during these processes. The theoretical construct used was joint labor as 

proposed by Luis Radford throughout his work. We relied in part on his methodology and 

in part on a microgenetic approach to analyze a scene of addition involving children and 

a teacher in a Japanese preschool. The analysis captured children obtaining help from the 

teacher to reconstruct the meaning of fingers as tools for solving quizzes rather than 

preserving the meaning through unprompted practice. The analysis also showed that the 

role of finger gestures was reconstructed in class to solve a conflict between children’s 

differing solutions to an addition problem.  

INTRODUCTION 

In recent decades, studies examining young children’s mathematical abilities and skills in 

various areas from a constructivist point of view have accumulated (e.g., Duncan et al., 

2007; Lin, Tsamir, Tirosh, & Revenson, 2013). Some have investigated children’s gestures 

during geometrical problem-solving (Elia & Evangelou, 2014; Elia, Hadjittoouli, & van 

den Heuvel-Panhuizen, 2014). Moreover, socio-cultural issues, which are not intensively 

discussed in constructivist research on young children, have been examined in the context 

of research on preschool children in recent studies (Dijk, Oers, & Terwel, 2004; Radford, 

in press), drawing attention to the socio-cultural nature of the early development of 

mathematical abilities. Gestures, as well as other embodied actions with verbal languages, 

were regarded by Radford (2012), as the integral part of children’s cognitive functioning. 

From this point of view, the purpose of this paper is to reveal finger gestures’ mathematical 

roles, especially in the context of socio-cultural settings. To explore such roles, we refer to 

Radford’s theoretical construct of joint labor (2016a, 2016b) and analyze Japanese 

preschool children’s mathematical behaviors from a socio-cultural perspective. The 

Japanese Ministry of Education, Culture, Sports, Science and Technology’s Course of 

Study for kindergartens (2017) does not explicitly define school subjects, including 

mathematics, and expects groups of same-aged children to acquire mathematical concepts 
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and skills through integrated play. Individual preschools are responsible for designing 

mathematical (and other) activities. The authors believe that observing a mathematical 

group activity in a Japanese preschool provides an opportunity to analyze the mathematical 

roles of finger gestures.  

THEORETICAL FRAMEWORKS AND RESEARCH QUESTIONS 

In the process of illustrating his theory, Radford (2016b) proposed the idea of joint labor—

where students and teachers work together to create common work—as a key theoretical 

construct. The theory is built on a Vygotskian view of activities, the aim of which are 

the dialectic creation of reflexive and ethical subjects who critically position themselves 

in historically and culturally constituted mathematical practices and ponder and 

deliberate on new possibilities of action and thinking. (Radford, 2016a, p. 4) 

Radford (2016a, 2016b) calls such specific activities joint labor, arguing that 

subjectification and objectification are two sides of the same coin. These processes occur 

simultaneously during an activity: 

Learning can be theorized as those processes through which students gradually become 

acquainted with historically constituted cultural meanings and forms of reasoning and 

action. Those processes are termed processes of objectification (Radford, 2015, p. 551, 

italics in the original) 

[O]bjectification is more than the connection of the two classical epistemological poles, 

subject and object: it is in fact a dialectical process—that is, a transformative and 

creative process between these two poles that mutually affect each other […] 

Subjectification is the making of the subject, the creation of a particular (and unique) 

subjectivity that is made possible by the activity in which objectification takes place. 

[…] [L]earning is both a process of knowing and a process of becoming (Radford, 2015, 

p. 553) 

The concept of joint labor, thus, reconceptualizes teaching. A mathematics teacher both 

objectifies a new aspect of the mathematical concept to be taught and subjectifies herself 

as two sides of the product of a collaborative activity with her students. Radford (2016a) 

views: 

[T]eaching and learning not as two separate activities but as a single and same activity: 

one where teachers and the students, although without doing the same things, engage 

together, intellectually and emotionally, toward the production of a common work. 

Common work is the sensuous appearance of knowledge (e.g., the sensuous appearance 

of a covariational algebraic or statistical way of thinking through collective problem 

posing and solving and discussion and debate in the classroom). […] The joint labor-

bounded encounters with historically constituted mathematical knowledge materialized 

in the classroom common work are termed processes of objectification. (p. 5, italics in 

the original) 
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Based on the abovementioned theoretical frameworks, our research questions are as 

follows: 1) How does the process of subjectification and objectification proceed in a 

mathematical activity at a Japanese preschool? and 2) How do mathematical roles of finger 

gestures for preschool children change in the process? 

METHOD 

Research Design 

As mentioned, Japanese preschools design and implement the annual plan for activities on 

an individual school basis. The present authors have an interest in the development of 

children’s mathematical abilities during activities implemented as a part of the curriculum. 

The first author of the current paper has collaborated with a Japanese private preschool on 

the development of a mathematics curriculum. That school participated in the study.  

From the perspective of joint labor, we focus on an activity featuring mathematical quizzes 

where students and teachers quiz each other regarding the number of bananas belonging to 

a monkey. The episode of activity presented in the paper is short-term; longitudinal 

research on joint labor is recommended for documenting processes of objectification and 

subjectification (cf. Radford, 2015, 2011). Instead of the longitudinal track of studying 

children’s mathematical development, we adopted a microgenetic approach to capture the 

processes of developmental changes themselves in short-term episodes rather than only 

milestones, or snapshots of development (Lavelli, Pantoja, Hsu, Messinger, & Fogel, 

2008). Indeed, even Radford reported a set of short-term episodes as parts of the historical 

processes of objectification and subjectification (e.g., Radford, in press, 2016b, 2011). 

Accordingly, we recorded the entire session and then selected a salient segment to analyze 

in terms of joint labor. We did not follow the remaining procedures proposed by Radford 

(2015) because our focus on joint labor is a relatively new application of his theory, and its 

means of identification have not yet explicitly emerged in his methodological formulations 

(2015). Instead, our analysis was inspired by the steps used in the microgenetic approach 

(Lavelli et al., 2008): (1) roughly identify stable and changing components of the 

relationship between children and teacher through repeatedly watching a clip; (2) transcribe 

the clip chronologically; (3) divide the transcription into several frames; and (4) create a 

storyline synthesizing the frames to explain the stable and changing components.  

Procedure (4) for creating the storyline is further divided into four steps: (4.1) identify joint 

labor based on stable and changing components of the relationship between children and 

teacher; (4.2) interpret the algebraic knowledge which emerges through the joint labor; 

(4.3) interpret how it emerges, i.e., how it is objectified; and (4.4) interpret how the children 

subjectify themselves. 

RESULT 

Children’s Activity  

In the implemented activity, after the children watched a video clip on wild animals, the 

teacher introduced an activity about monkeys and their lives. When the children and teacher 
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sang a song about monkeys, she introduced questions about 1-digit addition and 

subtraction. Children were encouraged to use their fingers, with each finger representing 

one of the monkey’s bananas. As she quizzed the children regarding the number of bananas, 

they calculated their answers by watching and counting the teacher’s presenting fingers. 

After that, the children indicated that they wished to share their own quizzes by raising their 

hands. The teacher selected students one by one, and each in turn came to the front of the 

class and took on the teacher’s role. Their questions followed the sentence format for verbal 

expressions provided by the teacher, a common pedagogy at the school. Children provided 

simple addition and subtraction problems, including 10 - 5, 4 - 1, 10 - 8, 10 - 5, 10 + 2, and 

11-3, to their seated peers, who listened and answered the quizzes together by counting the 

presenting student’s fingers. Student presentations were followed by additional 

presentations from the teacher, followed by presentations from the remaining students who 

quizzed their peers on 10 - 9, 10 - 7, 5 + 4, and 9 + 1.  

The focal scene comprised the penultimate question asked by a student. Following the third 

procedure for microanalysis, the transcription was divided into six frames. All the 

conversations were in Japanese and were translated into English by the authors. All 

children’s names are pseudonyms.  

Frame 1 features a male child’s question.  

182 Yu: (Singing a song.) Quiz, quiz  

183 SS&T: What is the quiz? 

184 Yu: (Singing.) Quiz of answering the number of bananas. 

185 SS&T  What is the question? 

186 Yu: Here are 12 bananas. A monkey put 5 more bananas. How many bananas 

are there altogether? 

After Yu’s question, the teacher wryly smiled, likely due to the large size of the number, 

considering the ages of the children, but decided to continue the game.  

187 T: It seems more difficult than before. Okay, okay. Let us try.  

188 SS: (Raising their hands.) Yes, me.  

 Frame 2 shows the teacher’s confirmation of the content of the question. 

189 T: How many bananas were there in the beginning?  

190 Saki: 12. 

191 T: 12. And how many bananas were added? 

Frame 3 shows a conflict between children.  

192 Yu: (Pointing to a child, saying her name.) Hiroko.  

193 Hiroko: 17. 

194 Yu: Wrong. 

Though Hiroko correctly and quickly answered, Yu did not seem to correctly understand 

what she said. After denying her answer immediately once he put a troubled look on his 

face. 

Frame 4 shows the conversations between Yu and teacher to reconfirm the question.  

195 T: Let us think together.  
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196 Yu: Wrong.  

197 T: Wasn’t it right? What was the answer?  

198 Yu: 16. 

199 T: 16. Well, let’s think together. It became more challenging than before.  

200 Yu: There were 12 bananas and the monkey added 5 more bananas, and 

then…  

Frame 5 shows the start of a collaborative discussion using finger gestures.  

201 T: Well, in the beginning, the monkey had 10 and 2 bananas. (Showing her 

10 fingers and using 2 of Yu’s right fingers.)  

202 T: So, there are 12 and it added 5 more… (Showing 10 with her hands and 

letting Yu show 7 more with his hands.)  

203 Konoha: There are 16 bananas.  

204 T: 16 bananas?  

205 Yu: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17.    

206 T: Thus? Right! Wonderful! (Clapping) It became difficult gradually.  

The teacher demonstrated the use of finger gestures, and the children followed her lead, 

actively counting using finger gestures.  

Frame 6 shows Hiroko’s reasoning about the solution to 12 + 5. Immediately after 

recognizing that her friends obtained the same answer she had, 17, by using finger gestures, 

she saw the connection between 12+5 and 2 + 5 and argued the point.  

207 Hiroko: Well, 2 + 5 = 7. (Showing her 2 and 5 fingers together) 

208 T: Wow, well, you counted! I see, so let us do the final one? Please.  

Created Storyline 

The activity presented constitutes joint labor between children and teacher. We regarded it 

as joint because its production was considered historically contingent. The quiz was given 

by Yu, a child, not by the teacher (Frame 1). Following her song format he invented a quiz 

by selecting the numbers 12 and 5 by himself. Although his quiz was relatively difficult for 

most children besides Hiroko, they finally obtained the answer ‘17’ with the assistance of 

the teacher (Frame 5). The role of the teacher was to provide neither the quiz nor the answer. 

She only provided the format of the activity and demonstrated the use of finger gestures. 

That is, her role of supporting the children did not change when they presented quizzes. 

Instead, the children were free to decide (Frame 5) whether to count on their fingers as the 

teacher had modeled. The children’s focuses actively changed following their interactions 

with the teacher. Their joint labor was visible in that particular scene. 

During the joint labor, three kinds of algebraic thinking emerged as common work. First, 

Yu proposed new numbers: 12 and 5. The teacher’s smile indicated that she did not expect 

her children to use a number as large as 12. However, contrary to her expectations, Yu 

realized that he could use larger numbers for quizzes. In the beginning, the teacher 

controlled the rules, but ultimately such role was delegated to the children, which might 

have prompted Yu to further develop the scope of the questions. In this process, the children 
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objectified the new numbers as part of the quiz and gradually subjectified themselves as 

new quiz producers. 

Second, the children used finger gestures to determine the number of bananas. They did so 

under the teacher’s facilitation. For example, since the number 17 was too large for the 

children to quickly count, Konoha counted her fingers in error (Frame 5). The finger 

expressions of the number, however, spatially maintained the initial assumption of the quiz 

that there were twelve and five bananas and mediated the children’s repeated and careful 

counting. Therefore, adding and counting, kinds of algebraic thinking, are re-embodied and 

re-mediated by the artifactual use of the fingers by the teacher. The children re-objectified 

finger gestures as tools for solving the conflict over the solution and re-subjectified 

themselves as the finger gesture users in solving the quizzes. 

Third, Hiroko realized that 12 + 5 was separable into 10 and 2 + 5. Since she immediately 

answered the quiz, she might have already known how to calculate this way before the joint 

activity. Only the teacher recognized what Hiroko asserted; the other children, including 

Yu, did not respond to her. Her separating strategy was difficult for the others, who 

depended on the finger gestures. She objectified the separating strategy as a tool for solving 

the quizzes, but her subjectification could not be determined from this observation. When 

she uses the strategy again in the future, her subjectification might be gradually determined, 

depending on the responses from members of her community. 

DISCUSSION AND CONCLUSION 

Our observation of the children’s reuse of finger gestures shows that spatial and numerical 

structures are linked in accord with Radford’s (2011) claim that algebraic thinking is by 

nature embodied and mediated by artifacts. On the other hand, the children needed the 

teacher’s suggestion to finger gestures. Although they repeatedly used finger gestures 

before the focal scene, they did not themselves propose to use them to resolve Hiroko’s and 

Yu’s conflicting solutions. This fact does not completely fit into Radford’s (2008) 

theoretical assumption that humans on their own preserve artifacts’ meanings. The children 

appeared to obtain help from the teacher to reconstruct the meaning of fingers as a tool for 

solving quizzes rather than demonstrating the preserved meaning in practice. Although the 

ability to preserve the meaning of artifacts might be built into human beings by nature, we 

may need to be taught to demonstrate such ability. 

However, that the children did not use finger gestures should not be construed negatively. 

Instead of focusing on the intermediate process of the finger gestures, they seemed to focus 

on input and output. This could be an origin of flexible thinking, also called proceptual 

thinking (Gray & Tall, 1994), which is based on a focus on the relationship between input 

and output. It is natural and mathematically appropriate for finger gestures to lose their 

artifactual meaning for children as they master adding two numbers mentally. 

We agree with Radford’s (in press) argument that social rules and mathematical content in 

classrooms are part of the fabric of children’s subjectivities. Our interpretation and analysis 

corroborate this. We draw one possibly important implication: the role of the 
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knowledgeable other, in this case the teacher, in solving conflicts between learners’ 

idiosyncratic rationalities. The observed children showed their own valuable abilities: Yu’s 

ability to generate a new quiz, Hiroko’s strategy for addition without counting, and other 

children’s focus on the input-output relationship. However, these are still potential abilities 

and are not always performed in appropriate situations. Teacher intervention may 

potentially show them when to perform their abilities. We argue, therefore, that the 

traditional constructivist focus on learners’ own idiosyncratic rationality (Confrey, 1991) 

can be more widely investigated from Radford’s theoretical perspective. 

Let us finally answer our two questions. First, in accordance with Radford’s theory, the 

subjectification and objectification proceeded in the scene of preschoolers’ and teacher’s 

conversations regarding addition; joint labor in a classroom activity offers a valuable 

opportunity to investigate these processes. Second, through teacher mediation, the role of 

finger gestures was reconstructed to solve a conflict over a mathematical problem. In 

addition to Radford’s assumptions about the ability of human beings to preserve the 

meanings of artifacts, we suggest that for young children, learning may be part of that 

process. As our methodology is, at this stage, suggested, our interpretations will be refined 

each time we obtain new empirical data. 
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CROSSING THE BOUNDARIES OF MATHEMATICS 

ASSESSMENT THROUGH SUMMATIVE SELF-

ASSESSMENT 
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The idea of 'Assessment for Learning' is widely encouraged in education, but mathematics 

assessment lags behind. In Finland, mathematics is mainly assessed through exams. 

Implementing alternative assessment practices might cause resistance, from both teachers 

and students. The present study, conducted in the context of undergraduate mathematics, 

introduces summative self-assessment that includes the element of self-grading as an 

assessment model that violates the norms of mathematics assessment. Utilising the 

discursive framework of boundaries, it was observed whether students were able to cross 

the boundaries of mathematics assessment. 

INTRODUCTION 

“Cultures of assessment” are often advocated as beneficial for students, but they might 

actually hinder learning. This might be true in university mathematics, where the 

assessment culture is heavily based on examinations and students even prefer these 

traditional ways of assessment (see, e.g., Iannone & Simpson, 2015; Nieminen, 2020). The 

situation does not seem to differ too much at lower levels of education, either. A recent 

Finnish national report (Atjonen et al., 2019) revealed that mathematics teachers mainly 

assessed learning through traditional methods such as exams, although this is clearly 

against the ethos of the National Curriculum that calls for “Assessment for Learning”. For 

example, the STEM subjects, with mathematics included, scored the lowest of all of the 

school subjects in the use of peer-, self-, and group-assessment. It seems that if assessment 

is to truly “reflect the mathematics that is important to learn and the mathematics that is 

valued” (Suurtamm, 2016, p. 5), there would need to be a substantial rethink of the culture 

of mathematics assessment. 

The present study introduces an attempt to challenge the culture of Finnish university 

mathematics assessment that as such reflects the current international culture of 

undergraduate mathematics education (Iannone & Simpson, 2015; Nieminen, 2020) and 

the culture of lower levels of Finnish mathematics education (Atjonen et al., 2019). The 

aim of this study is two-fold: By reporting on an empirical study of an innovative 

assessment model, the study seeks both to highlight the outlines of the usual norms of 

mathematical assessment culture and to reimagine them. Following Ben-Yehuda and 

colleagues I argue that “a norm becomes explicit and most visible when violated” (2015, 

p. 183). Here, student perceptions of an implementation of a summative self-assessment 
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model are reported (see Nieminen, Asikainen, & Rämö, 2019). In a linear algebra course 

we asked students to self-grade, therefore challenging the usual norms of summative 

assessment in mathematics. I call this a “shaking up method”, since rather than simply 

interviewing students about the norms of mathematics assessment these norms were shaken 

up by self-grading to make their outlines more visible. 

In the field of higher education, it has been suggested that mathematicians are to be held 

responsible for their resistance to developing new assessment practices (Burton & Haines, 

1997). However, as they have been shown to favour traditional assessment methods in 

university mathematics (Iannone & Simpson, 2015), the students themselves might also 

show resistance towards non-traditional assessment practices. Furthermore, implementing 

alternative assessment methods in mathematics would require students to adapt to these 

practices by changing their concept of learning (see Martínez-Sierra et al., 2016). However, 

exactly how this is achieved is rarely covered in the literature. The present study approaches 

the concept of mathematical assessment culture by utilising the theoretical framework of 

boundaries, aiming to understand how students both challenge and co-create the cultural 

norms of assessment. 

THEORETICAL FRAMEWORK: BOUNDARY CROSSING 

The present study conceptualises the assessment culture of mathematics through the 

framework of boundaries. The approach draws on discourse analysis by defining cultures 

of assessment as the outputs of discursive practices. This theoretical lense allowsme to 

capture the two-fold nature of assessment cultures, both as the overarching artefact of the 

way assessment is done and simultaneously as a factor influencing the assessment practices 

and students’ perceptions of those (Fuller & Lane, 2017). Connecting the framework of 

boundaries with that of discursive practices shifts the focus from “what are the boundaries 

of mathematical assessment culture?” to “how are the boundaries of mathematical 

assessment culture constructed?” 

Boundaries have been defined as ‘socio-cultural differences leading to discontinuity in 

action or interaction’ (Akkerman & Bakker, 2011, p. 132). Therefore, boundaries are 

constructed to maintain sameness and continuity through categorisation. These categorical 

boundaries organise social life and maintain social order (Lamont & Molnár, 2002). A 

person’s transition between different fields has been characterised as boundary crossing 

(Engeström, Engeström, & Kärkkäinen, 1995). Boundary crossing involves entering a new 

territory through negotiation of the boundaries themselves – for example, crossing the 

boundaries of mathematics assessment through self-assessment might leave the students 

feeling unqualified to assess their own learning if the transition is not truly made. Boundary 

objects (Star, 1989, cited in Akkerman & Bakker, 2011, p. 133) are used to bridge various 

fields in the process of boundary crossing. Here, these objects refer to concrete actions and 

artifacts that are conducted to help students cross the boundaries of mathematics 

assessment. In the present study, personal boundary crossing is defined to have happened 
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when the new norms of mathematical self-assessment are internalised in the discourse of a 

student. 

In the present study, the boundaries of different assessment cultures are not taken as given; 

rather, they are actively constructed by various actors in the field through boundary-work 

(Lamont & Molnár, 2002). It is notable that boundary-work is not always purposeful. As 

Tan (2012) has argued, both teachers and students bring their previously learned 

assumptions and roles into the assessment process. Since both may have been conditioned 

to these roles in assessment, boundary-work done by students occurs only within the 

restricting effects of the assessment culture itself. However, the present study aims to see 

students not as passive recipients of the assessment culture but as active agents co-

constructing the boundaries of assessment cultures through their own boundary-work (see 

Raaper, 2019). Finally, boundary-work does not always lead to boundary crossing 

(Akkerman & Bakker, 2011). The present study utilises a ‘micro perspective’ as suggested 

by Akkerman and Bakker to investigate whether boundaries are crossed in students’ 

discourses, and how this is conducted. 

THE OBJECTIVE OF THE STUDY 

The present study uses summative self-assessment as a concrete example of an assessment 

model that demands that students cross the usual norms and boundaries of mathematics 

assessment. By observing university students’ discourses, the study aims to understand 

students as active co-constructors of the assessment culture of mathematics. The research 

questions were formulated as follows: What kind of boundary-work did the students take 

part in when they negotiated the boundaries of mathematics assessment after taking part in 

summative self-assessment? What kinds of boundary objects did they use to cross these 

boundaries? 

METHODOLOGY 

The course design: Summative self-assessment in action 

This study utilises the concept of summative self-assessment (Nieminen, 2020; Nieminen 

et al., 2019) to refer to a self-assessment model that builds on formative self-assessment 

but also includes the element of self-grading. Most often higher educational studies 

recommend using self-assessment as a formative tool for learning that would help students 

to monitor their own learning (see Brown & Harris, 2013; Panadero et al., 2016). This 

means that during the learning process, the teacher would provide some kind of self-

assessment tasks that would prompt self-reflection on one’s actions, therefore leading to a 

better quality of learning (Brown & Harris, 2013). However, it has been argued that 

effective self-assessment models would not just allow students to compare their skills and 

knowledge with teacher-generated criteria, but would give them power over their own 

grade. Hence, in the summative model the students can decide their own grade, but only 

after a longer process of engaging in practicing self-assessment. 
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The study took place at a large undergraduate mathematics course (313 participants) in a 

research-oriented university in Finland. The proof-based course addresses linear algebra 

and matrix computations and is usually one of the first courses students take in their 

mathematics studies Assessment in the mathematics department of this university is heavily 

based on individual exams. On this course, the traditional course exam was replaced with 

summative self-assessment; the students graded themselves on a scale of 0 (‘fail’) to 5 

(‘excellent’). During the course, self-assessment was practised through formative self-

assessment. Digital feedback on students’ self-assessments was offered, and students could 

reflect in writing how that feedback represented their skills and knowledge. The feedback 

processes were designed as dialogic and sustainable, and students were prompted to act on 

the feedback they received from their peers, tutors and themselves (cf. Carless et al., 2011). 

Self-assessment was based on a learning objective matrix (rubric), making the learning 

objectives transparent. For further details about the course arrangements, see Nieminen et 

al. (2019; also Nieminen, 2020; Nieminen & Tuohilampi, 2020). 

Data collection and analysis 

In total, 26 students were interviewed after the course about their experiences of summative 

self-assessment. Eight of the participants were majoring in mathematics and the rest 

studied, for example, computer science and chemistry. None of the participants reported to 

have any previous experience of self-assessment practices in mathematics. 

The analysis draws on discourse analysis. First, the interview data was reduced through 

thematic analysis, using in vivo coding to capture the words and meanings by the students 

themselves. After the data had been structured into meta-themes, further discourse analysis 

followed. 

FINDINGS 

Crossing the boundaries: “Finally studying for myself” 

Many students described how summative self-assessment enabled them to study in a way 

that was not aimed at succeeding in an exam but rather at gaining personal mathematical 

knowledge. These accounts were coded to reflect boundary crossing, since the students 

needed to internalise the new cultural norms of summative self-assessment. 

Student: It supported independent studying [studying through summative self-

assessment]. Acknowledging that encouraged me to think that there’s some sense in 

assessing yourself, and that was inspiring. 

*** 

Student: I took more responsibility of my learning. Now I didn’t need to stress about 

any exams, but I could challenge myself with a good feeling. 

Quite soon in the analysis it became evident that boundary objects were needed to support 

students in their boundary-work. As one student put it: 
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Interviewer: Will you continue assessing your own mathematical skills after this course 

as well? 

Student: I guess I should (laughs). It would be bad to just leave it here. But it’s another 

thing if you are offered tools for that. 

The most frequently described boundary object was the detailed rubric with exemplars. A 

frequent theme in the data was that students felt that self-assessment was strange and 

complicated at first, but could be conducted after becoming familiar with the transparent 

learning objectives of the course. Overall, the formative self-assessment tasks were 

described as important boundary objects that taught goal-setting and self-reflection skills. 

In particular, the feedback offered from the digital self-assessment tasks was described as 

a crucial boundary object. 

Student: In the beginning of the course it [self-assessment] felt more like, well let’s just 

write something here according to my feelings. The learning objective matrix included 

many confusing concepts that you couldn’t even define at the time. But during the course 

you digged deeper to it, you could learn those skills. 

Reflection (Akkerman & Bakker, 2011) was the discursive practice that was connected with 

boundary crossing while the students negotiated the boundaries of mathematics assessment. 

Summative self-assessment forced the students to reflect on why it challenged the usual 

norms of mathematics assessment. Furthermore, this process enabled them to critically 

reflect on those usual norms. Thus, summative self-assessment did not just generate simple 

boundary crossing, but rather encouraged students towards critical boundary-work. 

Student: If I’m studying for an exam, I often feel like now I’m studying for that exam. 

And for the fact that I would get a good grade. Now I felt more like I would have been 

learning to be able to use these skills in the future. 

Student: I feel it was so useful and should be used in studying everywhere. Once in a 

while you stop and think about what you really know and what you don’t know. 

Strengthening the boundaries: “Self-assessment belongs to humanistic disciplines” 

Across the whole dataset, summative self-assessment was largely described as a new, 

strange, and even radical kind of assessment method. Not all of the students’ discourses 

reflect boundary crossing - many of them were not willing or able to cross the boundaries 

as the course teacher wanted them to. In these cases, the boundaries of mathematics 

assessment with their usual norms were strengthened further. Two discursive practices 

were identified when the students resisted internalising the norms of summative self-

assessment: Naturalisation and illegimatisation. 

Naturalisation was identified when the students leaned on simplifications of the assessment 

culture of mathematics; when socially constructed discourses and practices were taken as 

natural and even connected to the nature of mathematics itself. For example, the students 

often naturalised the traditional practices, framing the use of exams as a given. These 

accounts underlined that mathematics must be assessed with exams. This was seen as the 
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nature of mathematics assessment: Because summative self-assessment does not belong to 

this nature, it should not be used. 

I think self-assessment belongs to humanistic disciplines. Somehow in mathematics I’m 

used to the fact that knowledge has to be assessed brutally. 

The teaching culture of mathematics has never before guided us towards self-

assessment, so I can’t say it would have felt natural. 

Illegitimating the process of summative self-assessment was also a common discourse 

aiming to frame it as an inadequate assessment model. Many students thought that self-

grading is not an adequate way of determining one’s grade since it might not reflect one’s 

real skills and knowledge. Often, the legitimacy of summative self-assessment was only 

doubted in certain contexts or with certain student groups. For example, it was pondered 

whether this assessment model was suitable for ‘lazy’, ‘young’ and ‘mathematically weak’ 

students. Self-assessment was constantly compared to exams, and many students thought 

that the validity of summative self-assessment could be improved with an external exam. 

Maybe this kind of self-assessment would be suited better for advanced mathematics 

courses later on in the studies. So that in the beginning of your studies you would get a 

certainty of the level of your knowledge by doing an exam. 

I would combine the methods of self-assessment and exams. Just because an exam 

would really show whether you have really learnt or not. 

DISCUSSION 

The present study investigated university students’ discursive boundary-work after taking 

part in a mathematics course drawing on summative self-assessment. Seeing students as 

active negotiators of the assessment culture (Nieminen, 2020; Raaper, 2019), this study 

sought to understand how students either crossed the boundaries of mathematics 

assessment and adjusted to summative self-assessment or resisted this by further boundary-

work that re-established the frontiers already existing. 

The results underline the importance of offering adequate boundary objects (e.g. rubrics) 

to students when asking them to negotiate the boundaries of the culture of mathematics 

assessment. None of the students reported having any earlier experience of self-assessment 

in mathematics, which calls for a careful scaffolding of self-reflection. These findings 

reflect earlier research on self-assessment in higher education; for example, studies 

highlighting the importance of practicing self-reflection skills based on transparent learning 

objectives (Brown & Harris, 2013; Panadero et al., 2016). I argue that these kinds of 

concrete support systems are especially important in the exam-driven culture of 

mathematics. Here, the students were not only required to learn new mathematical content 

but to adjust to new cultural norms as well, each of which is quite demanding in themselves. 

Through carefully designed boundary objects some students were able to critically reflect 

(Akkerman & Bakker, 2011) on the boundaries of mathematics assessment. As noted 

above, a certain structure was needed to support students in this process. However, the 
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results of the present study emphasise the power of offering students alternative 

experiences of mathematics assessment. I argue that this method of ‘shaking up’ the 

boundaries of assessment offers a powerful tool not only for practice but for future research 

as well. The present study showed that summative self-assessment was able to generate 

reflection; would formative self-assessment, added on top of external summative testing, 

truly challenge the boundaries the assessment culture of mathematics in the same way? 

Not all of the students were able - or willing - to cross the boundaries of mathematics 

assessment. Two discourses were identified as boundary work: naturalisation of the usual 

norms of mathematics assessment and illegimitation of summative self-assessment. These 

findings remind us that students are active co-constructors of assessment cultures. Their 

perspective must be considered while re-imagining mathematics assessment, and especially 

while evaluating whether boundary crossing has actually occurred. It is notable that 

naturalisation and illegimitation can be made visible to the students themselves through 

reflection (Akkerman & Bakker, 2011). However, the two-fold nature of assessment 

cultures (Fuller & Lane, 2017) creates a challenge, as students both co-construct the cultural 

norms and are restricted by them. We call for future research to tackle this methodological 

issue by further understanding assessment practices as discursive practices; as shown here, 

the framework of boundary crossing can offer an adequate tool for this. 

CONCLUSIONS 

Finally, I argue that mathematics educators have an ethical responsibility to actively try to 

reconstitute the exam-driven assessment culture of mathematics. Even though the present 

study examined the viewpoint of the students, the teachers - and researchers! - need to do 

boundary-work as well. It is argued that the least mathematics educators could do is to 

avoid strengthening the boundaries of mathematics assessment through offering alternative 

discourses such as those identified in this study. If new frontiers are not reached in the field 

of summative mathematics assessment, it might be that external testing and validation will, 

by default, keep dominating what is seen as ‘valued mathematics’ (Suurtamm et al., 2016). 

Finally, there is a need for future research that would boldly initiate innovations in 

mathematics assessment. A vast amount of literature on sustainable assessment practices 

already exists - it is time to take that knowledge into mathematical classrooms. 
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THE USE OF QUANTITIES IN LESSONS ON DECIMAL FRACTIONS 

Kazuhiko Nunokawa1 
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As numbers and quantities are closely related, it is sometimes recommended that situations 

including quantities are used so that students can understand numbers and their operations 

well. The purpose of this paper is to analyze the lesson on decimal fractions in order to get 

insights into such a use of quantities in learning numbers. The analysis using the 

framework, which distinguishes two different relationships between numbers and 

quantities, showed that while the use of quantities helped the students develop their own 

explanations, it enabled them to bypass the reasoning process critical for achieving the 

goal of the lesson. This result suggested that the use of quantities should reflect the 

structures of numbers necessary for learning of the lesson. 

INTRODUCTION: NUMBERS AND QUANTITIES 

As younger students’ understanding of numbers is closely related to their experiences of 

quantities (Irwin, 2001; Krajewski & Schneider, 2009), it is natural that some researchers 

recommended using situations with quantities and measurement in learning numbers 

(Astuti, 2014; Rahayu, 2018).  

Nunokawa (2001) extended the scheme of mathematical modeling and introduced the 

“Manipulations in Real World” component (Figure 1a). When applying this extended 

scheme to situations including quantities, we can get the scheme in Figure 1b. 

 
 

Figure 1: Relations between numbers and quantities 

It shows the following process: (a) some relations among quantities in a situation are 

expressed by arithmetic expressions; (b) calculations in the expressions are performed and 

their answers are found out; (c) new information about the situations is obtained based on 

those answers. The dotted line indicates manipulations of quantities. The results of these 

manipulations can be inferred, however, by the operations in the number system even when 

relevant quantities are not actually manipulated. 

But, when students begin to learn decimal fractions, they do not yet know how to 
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perform operations on decimal fractions. That is, the arrow in the Number System box is 

not yet established and will be established through lessons on decimal fractions. In the 

lessons where teachers utilize realistic situations with quantities, it may be expected that 

students construct operations on decimal fractions (e.g. 0.4+0.5) by referring to 

manipulations of quantities and their results (combining 0.4 L- and 0.5 L-milk). The 

scheme in Figure 1c shows this process: (a) an operation on numbers, represented by the 

dotted line, is temporally considered in a realistic situation; (b) corresponding quantities 

are manipulated; (c) the steps and the result of the operation of numbers are established by 

referring to the steps and the result of the manipulation of quantities. 

Nunokawa (2019) used these schemes to analyze textbooks and found that there are some 

pitfalls from the perspective of the relationship between numbers and quantities in learning 

fractions, which might provoke the difficulties students often face. It may be also possible 

to find such pitfalls in mathematics lessons on fractions if we analyze lessons using the 

above-mentioned relationship between numbers and quantities. 

The purpose of this paper is an attempt to analyze a mathematics lesson from the 

perspective of the relationship between numbers and quantities in order to get insights into 

the use of quantities in learning numbers. 

THE LESSON ANALYZED 

The lesson analyzed here was recorded in a third-grade classroom (8 or 9 year-old), whose 

goal was to understand how to calculate additions of decimal fractions. For this goal, the 

teacher posed the following problem to the class: “The teacher’s family drank 0.4 L milk 

at breakfast and 0.5 L milk at lunch. How many liters milk did the family drink in all?” 

According to her lesson plan, the teacher planned to ask her students to explain why the 

answer of 0.4+0.5 is 0.9 so that they became able to understand how to add two decimal 

fractions deeply. She expected that through devising their explanations, the students would 

pay attention to 0.1 as a unit of decimal fractions and understand that they can reduce the 

addition of decimal fractions (0.4+0.5) to an addition of natural numbers (4+5) by 

considering the numbers of this unit 0.1. In other words, it might be expected that her 

students would not understand the procedure of additions instrumentally: Removing 0 and 

decimal points, adding resulting integers, and bring back the removed 0 and decimal points. 

The outline of the lesson 

At the beginning of the lesson, the teacher reviewed the knowledge of decimal fractions, 

which the students had learned before and they could use to make their explanations in this 

lesson. The teacher asked how many liters the drawings in Figure 2a show, how many 

deciliters 0.1 L and 0.2 L are equal to (Figure 2b), and how many 0.1s 0.7 and 0.3 are equal 

to (Figure 2c). The students could respond to these questions immediately. 

After the review, the teacher posed the above problem. She put two one-liter measures on 

a table (see Figure 3a) and poured 0.4 L- and 0.5 L-milk in each one-liter measure. Showing 

these one-liter measures, she wrote the problem on the blackboard. 
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b. 

 

 
 

 

c. 

Figure 2: The review at the beginning of the lesson 

The students noticed soon that they could find out the answer by addition 0.4+0.5. Many 

students also told that the answer probably became 0.9 L. The teacher invited her students 

to explain this probable result and required them to explain why combining 0.4 L and 0.5 

L makes 0.9 L. The teacher wrote on the blackboard the numerical expression 0.4+0.5=0.9 

and the goal of the activity as follows: “Let us explain the reason why 0.4+0.5 becomes 

0.9.” 

When the teacher asked them about ideas usable for explanations, the students proposed 

the following ideas: (a) Converting L to dL; (b) Actually combining 0.4 L- and 0.5 L-milk; 

(c) Using drawings; (d) Using a number line. The teacher pointed to Figure 2c and asked 

whether they could use this idea. Then, one student mentioned using the number of pieces 

after dividing it into 10 equal pieces (the idea (e)). 

All the above five ideas were observed when the students attempted to build their 

explanations for the reason why combining 0.4 L and 0.5 L makes 0.9 L. There were 

students who first went to the teacher’s desk and poured the milk into another one-liter 

measure (Figure 3a). Some of them tried to represent what they had observed using 

drawings or number lines. Many other students also used drawings or number lines. The 

students who used a drawing represented 0.4 L-milk in a one-liter measure and then found 

the drawing of the combined milk by adding 0.5 L-milk to it on the drawings (Figure 3b). 

The students who used number lines marked the fourth tick mark on the number line and 

found the tick mark corresponding to the answer by taking five steps forward (Figure 3c). 

Some students used the idea (a). They converted 0.4 L and 0.5 L into 4 dL and 5 dL 

respectively and then converted 9 dL into 0.9 L to answer the “How many liters” question 

(Figure 3d). Most of those students also drew drawings of one-liter measures. Only a few 

students used the idea (e) (Figure 3e). 

After the students worked individually for about 10 minutes, the teacher asked them to 

present their explanations to their neighbors. Finally, the teacher chose four students and 

asked them to present their explanations to the class. The explanations of those students 

were the ones based on the idea (c), (e), (a), and (d) respectively. Figure 3b, 3e, 3d, and 3c 

are the worksheets which these students presented to the class. The teacher also reviewed 

these four explanations after the four students presented their explanations (Figure 4). As 

most of the students came to know the explanations new to them, the teacher encouraged 

them to try the new types of explanation by themselves. 
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a. b.  

 

 

c. 

 
 

Figure 3: The strategies the students adopted 

  

 
 

Figure 4: The teacher’s review of the four explanations 

At the end part of the lesson, the teacher attempted to summarize the students’explanations 

first. She asked the students what a kind of computation they performed when finding the 

answer of 0.4+0.5. The students immediately said, “An addition.” When the teacher 

questioned them what plus what, the students told 4 plus 5. The teacher checked that all the 

four explanations included the addition 4+5 as a part of them. In order to clarify the main 

point of this lesson, the teacher asked the students what to think when we add decimal 

fractions. One student answered spontaneously that they should change an addition of 

decimal fractions into an addition of integers. Following this student’s answer, the teacher 

began to write the summary of this lesson on the blackboard as follows, by interacting with 

the students: “An addition of decimal fraction gets easier by thinking of it using integers.” 

Here the phrase of “gets easier” was proposed by some students. The students first proposed 

“by changing it into integers,” instead of “by thinking of it using integers.” As the teacher 

seemed unsatisfied with that proposal, the students suggested other expressions and the 

teacher adopted the phrase “by thinking of it using integers.” When she finished writing 

the above summary, however, the teacher tilted her head and still looked unsatisfied. 

Then the teacher asked the students to calculate 0.2+0.7 and 0.5+0.1 as a practice. The 

students seemed able to calculate them easily. The lesson ended with individual reflections 

of the lesson. 
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QUANTITIES IN THE LESSON 

On the one hand, in this lesson, the students could translate the situation with quantities 

(i.e. drinking milk) into the arithmetic expression 0.4+0.5. Moreover, they could find out 

the answer 0.9 L and develop their own explanations of the reason why the answer became 

0.9 L. On the other hand, although the teacher expected that the students would pay 

attention to 0.1 as a unit of decimal fractions and understand how to calculate additions of 

decimal fractions focusing on the numbers of the unit 0.1s, the idea of the numbers of the 

unit 0.1s was not mentioned by the students when the class made up the summary of this 

lesson and the teacher looked unsatisfied with this summary. That is, this lesson seemed 

successful on the one hand but also seemed unsuccessful on the other hand. In the rest of 

this paper, this consequence of the lesson will be analyzed from the perspective of the 

relationship between numbers and quantities. 

Quantities’ support for students’ thinking 

The teacher’s use of the situation with quantities in this lesson enabled her students to adopt 

at least three strategies for thinking about the addition of decimal fractions: (a) Converting 

L to dL; (b) Actually combining 0.4 L- and 0.5 L-milk; (c) Using drawings representing 

milk in one-liter measures. Because they understood well that 0.1 L is 1 dL and 0.2 L is 2 

dL and so on (Figure 2b), the students could translate 0.4 L and 0.5 L into 4 dL and 5 dL 

respectively and find the resulting quantity by calculating 4+5. Here, the students 

transformed the original situation a little by converting the units so that they could apply to 

this situation the mathematical knowledge they had already learnt (Figure 5a). Two one-

liter measures and a pack of white-water representing milk provoked the idea of pouring 

one measure of milk into another to combine them, which is a manipulation of quantities. 

The students who used this idea could confirm the resulting quantity by the direct 

manipulation of quantities (Figure 5b). 

 
 

Figure 5: Strategies supported by the use of quantities 

When they used the drawings, the students drew the pictures of milk in one-liter measures, 

the quantities in the situation. The student who presented her explanation based on the 

drawings (Figure 3b) to the class explained that she “added the tick marks of the 0.5 L-milk 

measure (i.e. 5 ticks) to the drawing of the 0.4 L-milk measure.” Her explanation implied 

that she simulated the quantitative manipulation of pouring milk on her drawings. That is, 

her strategy was based on the manipulation of quantities (Figure 5b). 
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The operations on number lines can be considered operations in a number system. Seeing 

the number line in Figure 3c, which was drawn by the student who presented her 

explanation based on the idea (d) to the class, however, even number lines might be 

influenced by the use of quantities in this lesson. This number line has the following 

elements: (1) the picture of one-liter measures (boxes) and liquid (pained parts in the 

boxes); (2) natural numbers 1, 2, …, 9 written at the tick marks instead of 0.1, 0.2, …, 0.9; 

(3) the quantities 0.4 L and 0.5 L written at each interval on the number line instead of 

decimal numbers 0.4 and 0.5. In other words, this number line has the feature similar to the 

drawings discussed above. This suggests that the reasoning similar to the drawing strategy 

might be used even when the students used number lines, and their use of number lines was 

supported by the use of quantities in this lesson (Figure 5c). 

The situation with quantities might remind the students of their experiences of manipulating 

quantities, and such experiences could help the students develop their own explanations of 

the reason why the answer became 0.9 L. 

 

Quantities’ interruption in students’ thinking 

The student who presented her explanation based on the idea (e) to the class wrote the 

following explanation without using drawings and number lines: “0.4 is four 0.1s, 0.5 is 

five 0.1s, when combining four 0.1s and five 0.1s, because 4+5=9, then the answer is 0.9L.” 

This explanation is based only on the structures of decimal numbers 0.4 and 0.5, which 

consists of four and five 0.1s respectively, and on the operation on those structures: 

4×0.1+5×0.1=(4+5)×0.1. In this sense, her explanation can be schematized as Figure 6. 

And this is the explanation the teacher seemed to expect her students to attend to at the end 

of this lesson, as her lesson plan shows. In fact, the teacher pointed to Figure 2c and tried 

to remind her students of the structures of decimal fractions. And it might be the reason 

why the teacher asked how many 0.1s 0.7 and 0.3 are equal to at the beginning of this 

lesson. 

 

Figure 6: Explanation in number system 

Contrary to the teacher’s expectation, the students did not mention the numbers of 0.1s in 

making the summary of the lesson. The students paid their attention to the additionof 

natural numbers 4+5, but did not focus on 0.1 as a unit of decimal fractions. 



Nunokawa 

PME 44 – 2021   3 - 339 

Seeing the students’ explanations shown in Figure 3, all of them except Figure 3e did not 

include 0.1s as a component of the explanations. That is, most of the students did not use 

the idea of 0.1 as a unit of decimal fractions in constructing their explanations. The students 

who combined milk or used drawings or number lines attempted to explain the resulting 

quantity on the basis of the number of the tick marks. The students who converted L into 

dL attempted to explain it referring to the numbers of 1 dL, instead of the numbers of 0.1 

L. Even when they calculated 4+5=9, these students used this calculation to find the total 

number of ticks or 1 dL. The students could pay attention to the natural numbers and their 

addition, which represented the numbers of ticks or dL. That is the reason why the students 

focused on the idea of “thinking of [an addition of decimal fraction] using integers” in 

summarizing the lesson, but could not pay attention to 0.1 as a unit of decimal fractions. 

Furthermore, the students could develop such strategies because they could resort to 

reasoning about quantities. Adopting manipulations of quantities, the students could bypass 

the conversion of 0.4 and 0.5 to four 0.1s and five 0.1s (Figure 7a). The situation with 

quantities allowed the students to use their knowledge and experiences about quantities to 

make their explanations, and those knowledge and experiences in turn made it possible for 

the students to convert L into dL or translate the quantities of milk into the numbers of tick 

marks. In other words, the use of quantities in the lesson might facilitate bypassing the 

conversion of decimal fractions to multiples of 0.1s. 

 

Figure 7: Bypass of conversion of 0.4 and 0.5 

In fact, the use of quantities can facilitate converting decimal fractions into multiples of 

0.1s. In order to make the use of quantities facilitate this conversion, the way in which 

quantities are used should reflect this conversion of decimal fractions. That is, 0.4 L and 

0.5 L should be converted into four 0.1 L and five 0.1 L, instead of 4 dL and 5 dL. Even 

when 0.4 L and 0.5 L are represented by drawings or number lines, it should be highlighted 

that a tick mark represents 0.1 L, and the numbers of 0.1 L, rather than the numbers of tick 

marks, should be focused on. This conversion of 0.4 L and 0.5 L might be able to facilitate 

the conversion of 0.4 and 0.5 into four 0.1s and five 0.1s by the translation of the structures 

of quantities into the structures of numbers (Figure 7b). The fact that this conception of 0.4 

L and 0.5 L, i.e. four 0.1 L and five 0.1 L, was not highlighted during the lessons can be 

considered the reason why the students did not mention the numbers of 0.1s in making the 

summary of the lesson. 
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Furthermore, seeing the activities at the beginning of this lesson, the students could convert 

0.7 and 0.3 into seven 0.1s and three 0.1s without much trouble. If the students could carry 

out this conversion without referring to quantities, it should be examined whether it was 

really necessary to adopt the learning process shown in Figure 1c. The learning process 

shown in Figure 1b could have been also adopted in this lesson. That is, a situation with 

quantities is used only to introduce additions of decimal fractions and students attempt to 

develop their explanations why 0.4+0.5=0.9, without referring to 0.4 L+0.5 L=0.9 L, based 

on the structures of 0.4 and 0.5, i.e. consisting of four and five 0.1s respectively. 

CONCLUDING REMARKS 

The above finding has some implications for teaching numbers using quantities. First, while 

the use of quantities can be helpful for learning numbers, the ways of using them must 

correspond to the ways of seeing numbers which are necessary for achieving the goals of 

lessons. If students are expected to use a certain structure of numbers in a lesson, a teacher 

should introduce the situation which enables students to attend to the aspects of quantities 

corresponding to that structure. 

Second, the use of quantities does not necessarily lead to learning of numbers which 

teachers expect to occur in students. Unless using quantities makes students deal with 

necessary structures of numbers more easily than directly dealing with numbers and 

manipulations of quantities can substantially support students’ operations on numbers 

(Figure 1c), it may be unnecessary to use quantities in learning numbers and operations on 

numbers. The relationship between quantities and numbers which can be helpful for the 

learning expected in a lesson should be examined in advance and highlighted during the 

lesson. 

References 

Astuti, P. (2014). Learning one-digit decimal numbers by measurement and game 

predicting length. Journal of Mathematics Education, 5 (1), 35-46.  

Irwin, K. C. (2001). Using everyday knowledge of decimals to enhance understanding. 

Journal for Research in Mathematics Education, 32 (4), 399-420. 

Krajewski, K. & Schneider, W. (2009). Early development of quantity to number-word 

linkage as a precursor of mathematical school achievement and mathematical 

difficulties: Findings from a four-year longitudinal study. Learning and Instruction, 19, 

513-526. 

Nunokawa, K. (2001). Surprises in mathematics lessons. For the Learning of Mathematics, 

21 (3), 43-50. 

Nunokawa, K. (2019). Descriptions of patterns and objectifications of patterns in learning 

fractions in textbooks. Journal of Japan Society of Mathematical Education, 101 (12), 

2-15. 

Rahayu, A. P. (2018). Learning process of decimals through the base ten strips at the fifth 

grade. International Journal of Instruction, 11 (3), 153-162.



3 - 341 

2021. In Inprasitha, M, Changsri, N., Boonsena, N. (Eds.). Proceedings of the 44th Conference of the 

International Group for the Psychology of Mathematics Education, Vol. 3, pp. 341-348. Khon Kaen, 

Thailand: PME. 

FACTORS AFFECTING MIDDLE SCHOOL SIXTH GRADE 

STUDENTS’ PROBLEM-POSING PROCESSES 
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This study aimed to examine middle school sixth grade students’ thinking processes during 

posing problems and to discover the determinants of their problem-posing processes. Eight 

students were asked to write three problems for each of the two semi-structured problem-

posing tasks, and then interviews were conducted with them. The data were analyzed by 

means of the thematic analysis method. The findings of this study indicated that students 

were affected by the mathematical structure of the activity and their own situations when 

they were posing problems. In addition, eight codes were determined under these themes, 

and it was observed that students tended to use multiple codes together for different 

problems.   

INTRODUCTION 

Problem posing (PP) has interested mathematics education researchers for more than 30 

years. Silver (1994) defines PP as producing new problems or reformulating an existing 

problem. Kilpatrick (1987) argued that “the experience of discovering and creating one’s 

own mathematics problems ought to be part of every student’s education” (p. 123). 

Although students are interested in engaging in PP activities, our knowledge of the 

processes involved when generating problems is still limited (Cai & Leikin, 2020). In 

support of these results, Lee (2020), who reviewed the articles published in 13 mathematics 

education journals, found that only a small portion were related to PP (62/17456 about 

0.4%), and only four examined the students’ thinking processes. This study is stimulated 

by these limitations and aimed to examine the middle school sixth grade students’ PP 

processes and thus to discover the determinants of their PP processes. 

 

THEORETICAL BACKGROUND 

Based on previous studies, Kontorovich et al. (2012) presented a theoretical framework 

regarding the complexity of students’ PP in small groups. According to this framework, the 

PP process is influenced by task type and organization, mathematical knowledge, and 

individual considerations of aptness, as well as PP heuristics and schemes, and group 

dynamics and interactions. Stoyanova and Ellerton (1996) classified PP activities as free, 
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semi-structured, and structured, and studies have indicated that PP performance 

differentiates in line with these activity types (e.g., Silber & Cai, 2017).  PP also requires 

strong mathematical content knowledge (Harpen & Presmeg, 2013). This is because the 

data in the activity should be analyzed in depth and the problem should be associated with 

the added mathematical concepts to write mathematically valid and complex problems 

(Leung & Silver, 1997). Kontrovich et al. (2012) also stated that the process of posing a 

problem within the scope of individual considerations of aptness was influenced by the 

intrinsic satisfaction of the problem poser about the nature of the problem, how other 

individuals would evaluate this problem, or whether it was suitable for potential solvers. 

For example, Lowrie and Whitland (2000) indicated that third grade students took into 

consideration the interests of the problem solvers in addition to the mathematical structure 

of the problem (e.g., number magnitude and operation complexity) when they were posing 

problems for second and fourth grade students.  

Christou et al. (2005) pointed out two important cognitive processes that characterize 

successful PP performance: editing (generating meaningful problems on the tasks by 

organizing their data) and selecting (selecting the data for a specific answer). The 

researchers indicated that these two processes were used more dominantly in PP tasks for 

open-ended stories or pictures. Silver and Cai (1996) asked elementary school students to 

pose three problems for an open-ended story (see Figure 1, task 2). The results of the study 

showed that students posed their second and third problems based on the first problem in a 

chained manner, and the complexity of problems tended to increase. 

As a result, the presented literature indicates that there are various factors affecting PP 

performance. However, the current literature does not provide any conclusive data in detail 

about the factors students effectively use (particularly for editing cognitive process) for 

open-ended PP tasks and how they use them. This study aimed to clarify this situation by 

adopting qualitative approaches.  

METHODOLOGY 

Participants 

This study was carried out with the students of a teacher experienced with PP, who had 

taken a master’s course and was also conducting a thesis on PP. The school was located in 

the rural areas of the city center and reflected the middle and low socioeconomic groups. 

There was only one classroom for sixth grade students, and this was composed of nine 

students. Although the researchers planned to conduct the interviews with all students, 

since one student did not want to attend the study, it was completed with eight. The 

mathematics teacher rated the math achievement of four students as high and the others as 

moderate or low. She stated that high-achieving students were able to establish strong 

connections between newly learned and previous content, show high performance in 

solving problems, provide alternative solution strategies to the problems, and have low 

error rates in arithmetic operations compared to others. She also indicated that tasks such 
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as PP for open-ended stories were used in her lessons, but PP tasks for symbolic operations 

were used more frequently. Each student was assigned a pseudonym.  

Data collection and analysis 

In this study, semi-structured PP situations (Stoyanova & Ellerton, 1996), which gave 

opportunities for students to pose various problems based on their knowledge and 

experiences (see Figure 1), were used. Both tasks were related to daily life. The tasks 

differed from each other in terms of their mathematical structure (quantitative data and the 

relationship between these data). In the first task, the variables (prices for pizza, cherry 

juice, and balloons) were not expressed in terms of others. When constituting the second 

task, on the other hand, the relational data, in which some quantitative data in the problem 

were described over others, were presented. In this context, a widely used PP task in 

different studies was applied to the students in this study.  

An incomplete problem sentence is given below. Imagine (consider) you wrote 

down the problem and brought it up to this part. You can complete the rest of the 

story as you wish. Write three problems for each task by using your 

mathematical knowledge and experience. 

  

Task 1: Pizza, cherry juice, and balloons are ordered for the birthday party. The 

prices of small, medium, and large pizzas are 18 Turkish Liras (TL), 24 TL, and 

32 TL, respectively. The price of one liter of cherry juice is 3 TL, while a two-

liter cherry juice is 5 TL. The price of each balloon is 5 TL.  
 

Task 2: Mehmet, Ali, and Hasan went on vacation in a car together. During the 

trip, Hasan drove 80 km more than Ali. Ali drove twice as many kilometers as 

Mehmet. Mehmet drove the car for 50 kilometers. 

Figure 1: PP tasks 

The tasks with each of the eight students were held on different days. First, the students 

were given 30 minutes for the PP test and asked to write three problems for each task. Then, 

a break was given. The teacher examined the problems posed by the students. After the 

breaks, interviews were conducted ranging from 11 minutes to 22 minutes with an average 

of 17 minutes. The focus of the interviews was on how students thought and considered 

different problems. In this context, interviews were conducted around two questions, and 

these questions were directed to the students for all the posed problems: i) Can you explain 

what you thought when posing the problem? and ii) How did you differ this problem from 

your previous problem(s)? (What do you think about the difference between this problem 

and your previous problem(s)?)  

The data were analyzed according to Braun and Clarke’s (2006) thematic analysis process, 

which “minimally organizes and describes your data set in (rich) detail” (p. 79). First, the 

interviews were transcribed. Then, the two researchers, who were the authors of this study, 

independent of each other, read the transcripts many times to become familiar with the data 

and create the initial codes. Each of these two researchers created the initial codes by 
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considering the factors in the related literature affecting PP performance. Then, they came 

together and compared the coding. They composed the codes and themes, which reflect the 

entire data set. A total of eight codes were determined, and they were presented under two 

main themes (see results section).  

RESULTS 

The codes regarding the factors that students took into consideration when posing problems 

were categorized under the following themes: considering the task structure (CTS) and 

problem poser’s own situation (PPOS).  There were three codes under the CTS theme: i) 

focusing on the operations evoked by the data, ii) separating the data set into independent 

parts, and iii) increasing the amount of data. Five codes were observed under the PPOS 

theme: i) experience, ii) interest area, iii) mathematical knowledge limitations, iv) testing 

the mathematical knowledge, and v) understanding the task (some codes are explained in 

this paper, but others will be presented at the conference due to page limitation).   

Students focused on mathematical data in the task and the nature of the connections 

between these data in the CTS theme. The code focusing on the operations evoked by the 

data was frequently considered by the students, and it was emphasized that the presented 

data encouraged students to write some problem types. For example, providing the prices 

of the objects in the birthday task encouraged them to ask the amount of money to be paid 

if a certain number of them were purchased. For example, the problems posed by Kerem 

were as follow:  

Problem 1: According to this, how much money will he pay if he purchases 2 large size 

pizzas, 3 cherry juice and 1 balloon? 

Problem 2: According to this, how much money will he [the buyer] pay if he purchases 4 

medium size pizzas, 6 cherry juice and 2 balloons? 

Problem 3: According to this, how much money will he pay if he purchases 3 small size 

pizzas, 2 cherry juice and 3 balloons? 

A script from the interview with Kerem was as follows: 

Researcher: Can you explain how you posed your first problem? 

Kerem: As seen, a text is provided. The prices of the pizzas, cherry juice and 

balloons were given.  The pizzas are given in small, medium and large 

sizes. We are asked to write three problems. In the first problem, I wrote 

how much money will be [the buyer] paid if 2 large pizzas, 3 cherry 

juice and 1 balloon are purchased.  

Researcher: Ok. After reading the task, what attracted your attention when writing 

your problem?  

Kerem: There are pizzas, cherry juice and balloons. The prices were given there 

[data on the tasks is meant]. I thought it would be a good result by 

summing them up.  

Since the students were asked to write three problems, in the separating the data set into 

independent parts code, they separated the data in the task into three independent parts and 
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used each part in a different problem. This approach was observed in Ayşegül’s paper. 

Three problems were posed by Ayşegül in the birthday task, and a script from the interview 

with her was as follows:  

Problem 1: Ahmet brought a small, a medium, and a large pizza to Ayşe’s party. The 

small pizza costs 18 TL, while the medium pizza costs 24 TL and the large 

pizza costs 32 TL. How much money in total does she pay? 

Problem 2: Sultan will buy cherry juice for Ayşe’s party. If a one-liter container of cherry 

juice costs 3 TL and a two-liter cherry juice costs 5 TL, what is the total 

amount of money to be paid for 4 one-liter and 4 two-liter cherry juices? 

Problem 3: If Erol buys 100 balloons, how much will he pay?  

Researcher: Can you explain how you posed your third problem?  

Ayşegül: In fact, I wanted to write it first. But since I went in order, I wrote 

this at the end. It was an easy problem as I solved it in my mind. 

Researcher: Why did you use the story by separating it into parts? 

Ayşegül: Because, how can I say, it says three problems here. The first 

problem could be pizza. Or it could be cherry juice or a balloon. 

That’s why I wrote pizza in the first problem. I wrote cherry juice 

on the second problem and balloons on the third problem. I went in 

order.  

Researcher: You could write a problem by using them all. In this way, was 

there a reason to use it in order? 

Ayşegül: First, I wrote pizza since it was in the first place. I went like that. I 

used the order. I also like to follow the order.  

In increasing the amount of data code, students tried to make the problem difficult by 

focusing on increasing the volume of the data. By adopting this code frequently, students 

tended to pose their problems from simple to complex. In this context, they either increased 

the number of the operations in the posed problems, changed the magnitude of the numbers 

in the task, or tried to add different mathematical concepts, such as fractions. For example, 

Erol explained the rationale for writing difficult problems as follows: Difficult problems 

become more different and beautiful. The simple problems are generally the things we have 

learned. They do not look very beautiful. It is better to struggle and find something difficult. 

Within the scope of this code, students’ second problems commonly contained more data 

than their first problems. However, they experienced difficulty in the third problem by 

adding more data than their second problem. For this reason, students either left the third 

problem empty or opted to write an easier problem than their second problem. Beril’s 

opinion reflecting this situation was as follows: This [her second problem] was the hardest 

one for me. I wrote the second problem with difficulty. I thought what I could write 

differently. I did not think of anything more to write. It was simpler than this [her third 

problem].  

Within the scope of PPOS, some students also considered their mathematical knowledge 

limitations when posing their problems. For example, Yağmur considered her limitations 
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in the mathematical knowledge in the vehicle task. Yağmur indicated in her explanations 

that the unit of kilometer was very large, and she had not been able to understand this 

concept since primary school. She also stated that she had difficulty in understanding this 

concept, and therefore, she focused on posing short problems for this task. A part of her 

explanations was as follows: I have been confusing kilometer problems since primary 

school years. That’s why I always wanted to write short... When I think of kilometers, I 

think of huge lengths. I'm afraid of doing operations with them. She asked the difference 

between the lengths of the trip that Mehmet and Ali took in the first problem, while in the 

second problem, she asked three times about the total of the trip Ali and Mehmet traveled. 

Parallel to her explanations, it was understood that the problems she posed were in a form 

that did not require analyzing the data set.  

Some students, on the other hand, posed problems that tested the limits of their 

mathematical knowledge or improved their understanding of the connections among the 

data set in the task. For example, Engin posed two problems for birthday tasks and indicated 

that the second problem was more difficult. Engin stated that the purpose of posing a 

difficult problem was to see how hard the problem he could pose. Therefore, he indicated 

that he did not pose a third problem because he could not think of a more difficult problem. 

A part of the interview conducted with Engin was as follows:  

Researcher: You stated that you thought of posing a longer problem in the second 

problem. Why did you think like that?  

Engin: I wanted to test myself, whether I could solve my own problem or not. 

Researcher: Why did you not write your third problem? 

Engin: Third problem. Since I got confused in the second problem, the third 

one did not come to my mind.  

Understanding the task code was observed only in Engin’s explanations about why he 

posed his first problems. In his problem, Engin asked the total amount of money to be paid 

if two large-sized pizzas, two two-liter cherry juices, and 20 balloons were purchased. 

Engin emphasized that this problem was a simple one. He indicated that this kind of simple 

problem helps to create different problems. A part of Engin’s explanations was as follows: 

First, I decided to write simple.… I said two large pizzas because they had many friends. 

Again, two of two liters of cherry juice. And balloons, too. I said there should be 20 

balloons. I did that way.... A simple problem. Because sometimes when I pose a simple 

problem, I think of other problems. 

DISCUSSION 

The results of this study support the fact that PP is a multifaceted and complicated task 

(e.g., Leavy & Hourigan, 2019). This study reveals important results about students’ PP 

processes. First, it was determined that the students looked at the data in the task from the 

perspective of their own mathematical understanding, interests, and experiences. In 

particular, it was pointed out that how students perceive their mathematical understanding 

was an important factor affecting PP products. These results underline the effect of 

metacognitive factors on PP processes. Second, previous studies indicate that participants 
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consider the problem solver’s or problem-solving group’s interest areas when posing 

problems (Lowrie & Whitland, 2000; Kontorovich et al., 2012). This situation was not 

observed in this study. This might be due to the differences between the directives of the 

PP tasks used in the present study and in other related studies (e.g., pose problems for your 

friends).  Third, students also frequently tended to make the problem more difficult in this 

study. They tried to add more operations to their second problems compared to their first. 

When some students thought that they could not write more complex problems than the 

ones they posed in their second problem, they either did not write the third problem or 

posed a simpler one. Therefore, the tendency to increase the difficulty of the problems 

could not be maintained systematically. These results differ from the studies identified in 

the literature (e.g., Silver & Cai, 1996) that students’ second and third problems tended to 

be more complex than their first. Fourth, the tendency to increase the difficulty of the 

problems was also a factor in the number of posed problems. The quantity indicating the 

number of problems posed for the tasks is an important component in PP analyses (Silver 

& Cai, 2005). The results of this study revealed that having a small number of problems 

stemmed from students’ inability to produce complex problems. From this point of view, 

this study indicated that some students gave more importance to posing complex problems 

than the number of problems they posed. 

“Although interest in integrating mathematical problem posing into classroom practice is 

growing, implementing this integration remains a challenge” (Cai et al. 2020, p.2). We 

believe that the results of this study, which aims to expand our knowledge about what 

students do and how they think in PP tasks, will contribute to the efforts to make PP an 

important component of mathematics classrooms. 
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This case study investigates how ninth-grade students enhanced their geometric thinking from 

van Hiele’s third level toward the fourth level through lessons on the inscribed angle theorem. 

We found that students’ reasoning went beyond the third level when they discussed how to 

construct case proofs, compared them with each other, and integrated them into one overall 

proof as follows: 1) developing the proof using semiotically guided analogical reasoning, 2) 

standardizing symbol use, 3) identifying the case proofs as being the same based on their 

identical linguistic descriptions, 4) conceptualizing the proof as a description package when 

comparing the case proofs with each other, and 5) interpreting all of the case proofs in terms 

of one description (by introducing zero degree and negative degree angles). 

INTRODUCTION 

The basic understanding of a geometric proof corresponds to van Hiele’s third level of thinking 

(in his revised model incorporating levels 1 to 5). However, how do students who have 

achieved this level progress toward the fourth level, and what type of learning environment do 

they require? Van Hiele (1985, p. 48) describes these levels as follows: “Properties are ordered. 

They are deduced one from another: one property precedes or follows another property. At this 

level the intrinsic meaning of deduction is not understood by the students” (third level), and 

“Thinking is concerned with the meaning of deduction, with the converse of a theorem, with 

axioms, with necessary and sufficient conditions” (fourth level). Numerous studies on proofs 

and proving have focused on how students can achieve the third level of thinking, but only a 

few studies have been conducted on the learning necessary to enhance students’ geometric 

thinking beyond the third level (e.g. van Hiele, 1986; Battista, 2007), although there have been 

related studies on levels of proof writing (Yang and Lin, 2008; Zazkis & Zazkis, 2016). 

  

What type of learning environment helps students to progress beyond the third level of 

thinking? In this study, we analyzed ninth-grade students’ learning of the inscribed angle 

theorem (IAT) and its proof in the classroom setting. The proof of the IAT involves combining 

the proofs of three separate cases based on the relationship between the inscribed angle and the 

middle of a circle. In exploring the IAT, it is expected that students will compare the proofs of 

the three separate cases and investigate them from a higher point of view. If we categorize 

proofs by cases when solving the problem, this enables us to identify all appropriate situations 

necessary to solve the problem (Boero, 2011). Thus, a dilemma arises: the cases are determined 

only after completing the proof, although the proving begins only after deciding on the cases. 
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We believe that the point at which a person understands the structure of proofs by cases is 

achieved through a mutual process of deciding on the cases and constructing the proof of each 

case. 

The main purposes of this study are to clarify how ninth-grade students display their geometric 

thinking beyond van Hiele’s third level through learning the proof of the IAT and to 

theoretically explain their thinking. 

THEORETICAL BACKGROUND 

Understanding the proof of the inscribed angle theorem 

The IAT is proved using the following three cases (see Figure 1), which differ in terms of the 

relationship between the inscribed angle and the middle of a circle. 

Case 1  Case 2 Case 3 

 
  

Figure 1: The three cases used to develop the proof of the inscribed angle theorem. 

To understand the proof of the IAT, students need to overcome two key difficulties. 

First, the proof of case 3 is more difficult to construct than those of case 1 and case 2. Case 1, 

the fundamental case, can be proved by using the relationship between the isosceles triangle 

composed of two radii and the exterior angle. Case 2 can be proved by first drawing the 

auxiliary line and then applying the proof of case 1 twice. The proof of case 3 is basically 

equivalent to that of case 2. However, the figure configuration of case 3 may be harder to see 

in terms of where the auxiliary line is drawn, where two isosceles triangles exist, and how the 

angles can be dealt with. In particular, it is necessary to obtain the proof of case 3 using 

subtraction of the angles, while that of case 2 is obtained by addition of the angles. 

Second, it may be difficult to understand why investigating just three cases satisfies all of the 

phenomena related to the IAT. For example, students may ask whether it remains true if the 

central angle changes, or whether it is true if the point on the circumference falls within the arc 

of the central angle. Furthermore, they may wonder why it is necessary to compare the three 

cases. 

We assume that the students’ new level of thinking can emerge when they discuss and 

overcome these difficulties. In the following section, we use two theories to capture their 

learning process: relational analogical reasoning and semiotic change. 

Relational analogical reasoning and the integration of symbolic expressions 

Analogical reasoning refers to the transfer of structural information from one system (the base) 

to another system (the target). English (1997, p. 198) stated that “this transfer of knowledge is 

achieved through matching or mapping processes, which entail finding the relational 
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correspondences between the two systems. It is this emphasis on corresponding relational 

structures that has significant implications for mathematics learning.” We examine how the 

relational structure of the proof is transferred from one deductive system (proof as a base) to 

another system (proof as a target). 

In this respect, we refer to the process of semiotic change in terms of the diverse representations 

and the mutual changes among them that are involved in mathematics learning. Duval (2008) 

calls the semiotic change within the same kind of representation “treatment,” and that between 

the different kinds of representation “conversion.” Treatment is the transformation guided by 

the potentials and rules that are intrinsic to the representation, based on which some explanation 

or proof is achieved. This transformation includes not just the algorithmic change of symbols, 

but also the change between drawings or the change from one figure configuration to another. 

Conversion provides a means of truly distinguishing the difference in meaning between two 

statements that look alike and determining which statements’ meanings are mathematically 

relevant (Duval, 2008). Duval notes that thinking in mathematics involves synergy between at 

least two mobilized registers, even when a person works explicitly in only one register. 

We can observe how a proof is semiotically constituted by relational analogical reasoning. 

First, the proof of case 1 may be used for the construction of the proof of case 2. Then, a 

figurative or graphical argument is useful for supporting the construction of proofs. Mason and 

Pimm (1984) presented a generic example of a mathematical representation that presents the 

context and powerfully influences problem solving. From this viewpoint, the figurative pattern 

of case 1 may work as a generic example for the construction of the other proofs. However, the 

transition from the figurative pattern of case 2 to that of case 3 may be difficult for students. 

One option may be to construct the proof of case 3 after students first consider the analogical 

reasoning in relation to the differences in symbolic-linguistic representations between cases 2 

and 3, followed by the conversion of case 3 from a symbolic-linguistic representation to a 

figurative pattern. Regardless, we need to examine how students’ semiotic changes are 

implemented within/between representations (symbolic-linguistic and figurative) in the 

analogical relationships between the case proofs. 

Furthermore, it is necessary to synthesize or integrate the proofs constructed for each case into 

a single overall proof. Students may then focus on the analogical and semiotic correspondences 

among the proofs of the cases and reflectively abstract the essential components necessary for 

proof construction. We consider this process as the beginning of the formal deduction 

necessary for understanding proofs and proving. 

METHOD 

In this study, we used data obtained from two ninth-grade classrooms, I and II, in a junior high 

school attached to a national university. There were three one-hour lessons in each classroom 

in which the IAT and its proof were dealt with. The teacher had 19 years of teaching experience, 

and the students had a higher level of scholastic ability than public school students because 

they had already mastered the skills involved in proof construction using basic knowledge such 

as the properties of a triangle and the conditions for congruence/similarity among triangles 

before learning the IAT. However, the students had not experienced the process of developing 

a proof after dividing the conditions of the theorem into various cases. 
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We asked the teacher to first prepare a lesson on the proof of the IAT that enabled the students 

to freely divide the phenomena in the theorem into several cases that they felt were necessary 

to prove the IAT and to construct the proof for each case, and then to discuss whether all of the 

cases they had created were necessary, and if so, why. 

We videorecorded the lessons and created transcripts of the discussions. Then, we undertook 

qualitative analysis using these transcripts, our research notes, and the students’ worksheets. 

Our analysis focused on classroom episodes in which it seemed that the students had progressed 

beyond van Hiele’s third level of thinking during discussions on generating and evaluating 

their proof for the IAT, and analyzed whether and how their thinking could be perceived 

through the theoretical lenses of semiotic change and relational analogical reasoning. 

RESULTS 

We identified 26 episodes in classroom I and 27 episodes in classroom II, in which we found 

four different types of episodes related to the students’ thinking that indicated progression 

beyond van Hiele’s third level. Below, we discuss these episodes, labeled episodes 2 to 5, in 

addition to episode 1, which involved the students’ initial selection of cases. We used data from 

classroom II for episodes 1 to 3 and data from classroom I for episodes 4 and 5, as our aim is 

not to identify the process of understanding, but rather to identify the aspects of the students’ 

thinking regarding the proof. 

Episode 1: The students’ initial selection of cases for proving the IAT 

In the first lesson, the students’ initial selection of cases necessary for the proof of the IAT 

resulted in five different cases (see Figure 2) after the teacher asked them to draw the figures 

necessary to prove the IAT. 

 

Figure 2: The five cases initially selected for proving the IAT. 

The cases were characterized in terms of the position of points and straight lines as follows. 

Case a: points A, O, and P are on a straight line; case d: points A, O, and B are on a straight 

line; and case e: line AP intersects line OB. Furthermore, cases b, c, and d differed in terms of 

the size of the central angle. In case b, the central angle was less than 180 degrees, in case c, 

the central angle was greater than 180 degrees, and in case e, the central angle was exactly 180 

degrees. The students were given two tasks: to construct the proof for each case, and to 

determine whether the proofs of all of the cases were necessary to prove the IAT. 

Episode 2: Developing the proof for the case with a complex composite figure 

In the second lesson, the teacher first requested the students to develop proofs of all of the cases 

in alphabetical order. They obtained the proof of case a by using the isosceles triangle POB 
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and the relationship between the two base angles and the exterior angle. In 

this proof, the students perceived the configuration as representing a 

person’s slipper, which provided the figurative generic example used to 

generate the proof (see Figure 3). They were also able to use this idea to 

obtain the proofs of cases b, c, and d. 

However, approximately 50% of the students could not construct a proof 

for case e. For example, although Nana could find the isosceles triangle 

AOB and mark the base angles, she had difficulty finding the other 

isosceles triangle, either OAP or OBP. We believe that this was primarily 

caused by the students’ difficulty in extracting the appropriate figures from the complex 

composite figures. In addition, because two slippers overlapped, it may have been harder to 

find them, and thus the figurative generic example was not helpful in this case. 

Conversely, we found that the students who could find the two isosceles triangles, OAP and 

OBP, for case e referred to the proof descriptions of the other cases. In particular, they either 

viewed case e in terms of an analogy with cases b, c, and d, or related all cases with each other. 

Thus, we believe that it may be difficult to successfully focus on the slippers as the figurative 

example to generate the proof for case e if the students have not paid attention to the symbolic-

linguistic descriptions of the other cases. 

Episode 3: Standardizing symbol use across all cases and identifying some cases as the 

same in terms of their symbolic-linguistic description 

In the third lesson, when the teacher asked the students to discuss the 

proofs of the five cases, they tried to conceptualize the proofs in a 

consistent manner. Most of the students who completed the proof for 

case e adopted the same use of symbols, labeling the angle OPA as a 

and the angle OPB as b. Then, because the angle APB was represented 

by −𝑎 + 𝑏, the angle AOB was represented by −2𝑎 + 2𝑏, and thus case 

e was proved. 

One student, Kura, proposed a proof of case e by labeling the angle OPA as a and the angle 

APB as b (see Figure 4). While several students accepted his proof after examining it, they 

suggested that he should standardize his use of symbols, stating that “the way you have used 

the label b differs from the proofs for the other cases.”   

Then, the teacher again asked if the five cases were necessary for the entire proof. Several 

students responded that just three cases, a, b, and e, were sufficient for the entire proof because 

cases b, c, and d had the same description. 

 

Figure 3: the 

figurative generic 

example perceived as 

a person’s slipper. 

 

Figure 4: A 

different figure 

configuration. 
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Episode 4: Conceptualizing the proof as a package of symbolic-linguistic descriptions 

In the third lesson in classroom I, when the teacher asked the 

students if all five cases were necessary for proving the IAT, 

several students responded that all of the proofs had almost 

the same description. Then, one student, Yuwa, stated that all 

of the cases could be understood using just one proof, that of 

case b. Then, the teacher confirmed that the descriptions in 

relation to case a had been used twice for case b, and that the 

proof of case a could not be used as a substitute for the proof 

of case b (see Figure 5). Yuwa responded by stating that “The 

opposite is possible.” A comparison of the proofs showed 

that cases b, c, and d were identical in terms of their 

descriptions. Here, it was clear that the proof of case a was conceptualized as one package of 

description, and that the necessary and sufficient conditions were contained in the other proof 

descriptions, as Yuwa had suggested.  

Episode 5: Interpreting the proofs for all of the cases in terms of one description 

The teacher and the students continued to discuss Yuwa’s idea using the figures for case a and 

case b. Then, Yuwa again proposed the idea of integrating the phenomena of case a into case 

b by considering the angle PBO as an angle of 0 degrees. 

1  Yuwa: If we just write the proof of case b, we have the proof for all of the cases. 

2 Teacher: All of the cases? But in the figure for case a, the angle AOC does not exist. 

3 Yuwa:  Uh…if we consider the angle PBO in case b as being 0 degrees, … If point 

C in the figure for case b arrives at point B, we can regard the situation as 

the same as in case a. (Note: point C is the intersection of line PO and the 

circumference.) 

In addition, the idea of integrating case e into case b was discussed. Yuwa tried to integrate 

them by considering the angle PBO as a variable, saying that “If we consider the angle PBO as 

a negative angle for case e, the proof of case e can be regarded as being the same as that of case 

b.” Moreover, Kana explained that “While the expression is 𝑎 + 𝑏 for cases b, c, and d, in case 

e it becomes 𝑏 − 𝑎, and thus the sign changes.” Here, we note that her idea of integrating the 

proofs by changing from a plus sign in cases b to a minus sign in case e was based on the 

symbolic-linguistic descriptions. 

At the end of the third lesson, the teacher summarized the activity by stating that the proof of 

the IAT consisted of the proofs of three cases, a, b, and e, based on the students’ considerations. 

Even Yuwa finally realized that there were limitations to his idea of integrating all of the cases 

using just one proof because of the complexity involved in Kana’s proposal to incorporate 

negative angles. 

DISCUSSION 

Five aspects of proof understanding were identified in the process of learning the proof for the 

IAT: 1) developing the proof using semiotically guided analogical reasoning, 2) standardizing 

 

Figure 5: the proof as a 

package of symbolic-linguistic 

descriptions. 
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symbol use throughout all case proofs, 3) identifying those case proofs with identical linguistic 

descriptions, 4) conceptualizing a proof as a package of symbolic-linguistic descriptions, and 

5) interpreting all of the case proofs in terms of one description. 

The first aspect refers to connecting the case proofs with each other in terms of the relational 

correspondences between the symbolic-linguistic descriptions and between those and the figure 

configurations. Approximately 50% of the students could not construct a proof for case e, while 

they could indicate van Hiele’s third level of thinking for cases a and b, as shown in episode 2. 

The reason seemed to be the lack of relational analogical reasoning in moving from case b to 

case e. We believe that students who were able to derive the proof for case e had achieved a 

level of proof understanding that enabled them to use the links among the proof descriptions. 

We identified two of the abovementioned aspects in episode 3. The first (aspect 2) involves 

being able to identify the unification of symbol use throughout all of the case proofs, with the 

students able to recognize another proof involving different use of the symbols. We believe 

that the ability to identify consistencies among various cases goes beyond merely being able to 

construct the proof for a case. The other aspect (3) involves being aware of the proof 

descriptions and being able to integrate cases that were initially seen as different because of 

differences among the figure configurations. Because the figure configurations for cases b, c, 

and d had very different appearances as a result of changing the central angle, the students 

initially regarded these cases as requiring different proofs.  

The fourth aspect involves conceptualizing a proof as a package of symbolic-linguistic 

descriptions when comparing proofs. This was seen in episode 4, in which the description of 

case a was twice used for the proof of case b, while acknowledging that the proof of case a 

could not be used as a substitute for the proof of case b, even though the reverse was possible 

in terms of the necessary and sufficient conditions contained in the proof descriptions. 

Regarding the fifth aspect, one student attempted to unify the interpretation of all of the case 

proofs using only case b, as seen in episode 5. Then, he introduced the concept of a zero degree 

angle for case a and negative degree angles for case e, while another student symbolized these 

angles as 𝑏 − 𝑎.  

In summary, we consider that the students’ reasoning identified in this case study is based on 

two kinds of correspondences. One is between the symbolic-linguistic description and the 

figure configuration within each case proof, and the other is between either the figure 

configurations or the symbolic-linguistic descriptions of the various case proofs. Specifically, 

we believe that the students conceptualized the proof as an object for their thinking, focused 

on the proof structure, compared the proofs semiotically, and then tried to integrate them into 

one proof. The idea of connecting the relationships within and between the case proofs appears 

to be a new level of proof understanding, one that seems to move beyond van Hiele’s third 

level. In particular, we believe that understanding the proof structure is an important first step 

in progressing toward van Hiele’s fourth level. We recognize that these five aspects of thinking 

are not sufficient for students to attain van Hiele’s fourth level of thinking. Nevertheless, we 

believe that they signify progress by the students beyond merely constructing the proof. We 

reiterate that these aspects of thinking occurred when the students discussed how the cases were 

determined after developing the proofs for the various cases. In other words, these would not 
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have occurred if the teacher had treated the cases as pre-determined before constructing the 

proof. 

In future research, we aim to investigate new qualities in relation to proof understanding 

regarding other content and to further clarify the learning process necessary to attain Hiele’s 

fourth level of thinking. 
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It is well established that digital formative assessment can support student learning, for 

example by means of digital automatic-assessment of students' work in rich digital 

environments. However, at the same time self-assessment is regarded as important in order 

to support students’ meta-cognitive skills and to put learners in a key position where they 

develop responsibility and ownership of their learning. Yet, little is known about combining 

automatic- and self-assessment. In this pioneering research study, we investigate the 

interplay between automatic-assessment and self-assessment in the context of Example-

Eliciting-Tasks. Based on quantitative and qualitative data we demonstrate the potentials 

of combining self- and automatic-assessment and outline obstacles that can inform design 

principles for combining both forms of assessment.  

INTRODUCTION & THEORETICAL BACKGROUND 

The Interplay between Self-assessment and Automatic Digital Assessment project (ISAA) 

is a design-based research project that aims at scrutinizing how students’ self-assessment 

and digital automatic-assessment can be combined in order to support student learning in 

the context of formative assessment. The research reported in this paper reports on results 

from the first design-cycle of the project.  

Formative assessment 

Formative assessment can be conceptualized as “all those activities undertaken by teachers, 

and or by their students, which provide information to be used as feedback to modify the 

teaching and learning activities in which they are engaged” (Black & William, 1998, pp. 

7–8). With respect to formative assessment, it is well established that feedback is essential, 

and that the effectiveness of formative assessment will therefore depend to a great extent 

on the nature of the feedback (Hattie & Timperley, 2007). Feedback can range from simple 

verification feedback, which merely provides information about whether or not the 

student's answer is correct to more elaborated forms of feedback. For example, “attribute 

isolation feedback” presents information regarding central mathematical attributes of the 

student solution. The meta-analysis by Van der Kleij et al. (2015) shows that elaborated 

forms of feedback are more effective for higher-order learning outcomes in mathematics. 

We view feedback not only as a singular event but rather as a more holistic, bi-directional 

ongoing process of interaction between the student and various parts of the activity in which 
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both sides of the interaction (e.g., student, technology) are affected and modified by actions 

of the other side. 

Digital formative assessment with example-eliciting-tasks 

Technological tools can support formative assessment by providing immediate and 

automatic feedback to students. For example, Harel et al. (2019) use “attribute isolation 

elaborated feedback” (AIEF) to support students learning when working with “Example-

eliciting-Tasks” (EET). EETs are a special kind of formative assessment tasks that are built 

on the notion that the examples that students generate are indicative of the students’ 

mathematical reasoning (Zaslavsky & Zodik, 2014). For example, the EET depicted in 

figure 1 was designed by Harel et al. (2019) to support the students in raising conjectures, 

as part of a guided inquiry activity. In this EET students investigate the relations between 

two non-constant linear functions and their product function in a multiple linked 

representation (MLR) interactive diagram. For this, students can dynamically drag points 

on the linear functions to create multiple examples and can display the product function by 

pressing a button. Then, they are asked to formulate a conjecture about which types of 

product functions can be obtained and to construct three examples that support their 

conjectures. Subsequently students receive AIEF that provides feedback on whether certain 

predefined characteristics are fulfilled in their examples (see figure 1, characteristics that 

are fulfilled are highlighted in yellow). Harel et al. (2019) show, that iteratively working 

with the EET task and the AIEF can support students in improving their conjecture.  

 
Figure 1: Example of an EET with attribute isolation elaborated feedback (characteristics that 

are fulfilled by the examples are highlighted in yellow) 
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Self-assessment 

Besides automatic-assessment, student’s self-assessment has intensively been researched 

as an essential element of formative assessment (Black & William 1998; Cizek, 2010). For 

example, Cizek (2010) highlights that current usage of the term formative assessment 

“equally, if not to a greater extent, highlights the notions of student engagement and 

responsibility for learning, student self-assessment, and self-direction” (Cizek, 2010, p. 7). 

This reflects more holistic approaches to formative assessment where assessment is “not 

just ‘done’ to students, but rather something in which they participate and have some 

element of ownership” (Bull & Mc Kenna, 2004, p. 13). This could be achieved with the 

self-assessment being part of an ongoing feedback process. In particular, self-assessment 

is regarded as important as it can support students to develop meta-cognitive skills which 

are urgently needed if students should become self-directed learners in a fast-changing and 

complex world. Despite this, in many cases self-assessment is rarely implemented in 

classrooms (e.g., Kippers et al. 2018).  

 

RESEARCH QUESTIONS & METHODOLOGY  

Research questions 

While self- and automatic-assessment both carry much potential to enable rich formative 

assessment the lack of integrated research that investigates the combination of both forms 

of assessment in order to support student learning is stunning. Little is known about how 

to best integrate both forms of assessment in a learning environment and which 

opportunities and obstacles arise from an amalgam of both forms. This study addresses this 

research gap by exploring the interplay between self- and automatic-assessment in the 

context of an EET learning environment. In particular the study addresses the following 

research questions (RQ): 

RQ1: To what extent are students' able to self-assess the EET characteristics? 

RQ2: Does the self-assessment of the students improve when combining self- and 

automatic-assessment with EETs?  

RQ3: What potentials and obstacles can be identified with respect to the interplay of self- 

and automatic-assessment of EET characteristics? 

Methodology 

To answer these questions, we used the Seeing the Entire Picture (STEP) platform (Olsher, 

Yerushalmy & Chazan, 2016) which is a digital environment that supports example-

eliciting tasks. We combined self- and automatic-assessment using the EET described 

before (see figure 1) in the following way: 

A) Creating examples and formulating conjectures: Students first created three examples 

and elaborated about the types and characteristics of quadratic functions that can be 

obtained from multiplying two non-constant linear functions.  
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B) Self-assessment: Instead of receiving the automatic-assessment right away, students 

were now asked to self-assess whether the characteristics depicted in figure 1 were fulfilled 

or not. Besides the categories “fulfilled” and “not fulfilled”, we included the categories 

“unsure” and “I don’t understand the characteristic”. The students were provided with a 

pre-structured paper sheet where they could mark which characteristics were fulfilled for 

each of their three examples.  

C) Comparing self-assessment and automatic-assessment: After finishing the self-

assessment students received the automatic-assessment report. The report indicated which 

characteristics were fulfilled in the examples that were submitted by the students (part A), 

by highlighting them in yellow (see figure 1). Students were now asked to compare their 

self-assessment (part B) with the automatic-assessment.  

In order to gain more insight into how students experienced parts A-C, students 

subsequently answered various multiple-choice questions about their experience. For 

example, one question asked students whether the comparison between self- and automatic-

assessment brought new insights or was surprising. Another question captured whether 

students preferred the self-assessment, the automatic-assessment or a mixture of both. After 

finishing these questions students entered a second cycle working through the previously 

described parts once more.  

 
Figure 2: Self- and automatic-assessment when working with EET 

Nine pairs of students from grade 9 of a German upper secondary school were video-

recorded. Data was analysed in two ways. To answer research questions 1 and 2 we 

captured how often students' self-assessment was correct, and how often students choose 
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the options “unsure” or “I don’t understand the characteristic”. Students' self-assessment 

was rated correct if a characteristic was fulfilled in the submitted example and the student 

realized this in their self-assessment or if a characteristic was not fulfilled in the submitted 

example and the student realized this in their self-assessment (see figure 2). To identify 

potentials and obstacles with respect to the interplay between self- and automatic-

assessment (research question 3) we analysed the parts of the video-recordings where 

students self-assessed themselves and where they compared their self-assessment with the 

automatic-assessment. Analysis was done in an exploratory manner with a focus on how 

students engaged in self-assessment and comparing both types of assessment.  

RESULTS 

Quantitative results 

Table 1 shows the frequencies on how often students’ self-assessment (SA) was correct, 

incorrect and how often students chose the option “unsure” or “I don’t understand the 

characteristic”. As we had nine pairs of students, nine characteristics per example and three 

examples submitted per cycle, there were in total 486 (=9·9·3·2) characteristics that the 

students had to self-assess.  

 1st Cycle n=243 2nd Cycle 

n=243 

Difference % 

SA correct 150 194 29.33 

SA incorrect 43 31 -27.91 

Unsure 20 6 -70 

Don't understand 24 12 -50 

Missing  6 0 -100 

Table 1: Students self-assessment (SA) across the two cycles 

With respect to research question 1, it can be seen that in the first cycle roughly only 61% 

(150/243) of the self-assessments were correct, indicating that self-assessment was not an 

easy endeavor for students. However, the self-assessment improved remarkably (research 

question 2) as the number of correct self-assessments increased substantially in the second 

cycle to 194 which corresponds to an increase of roughly 30 percent. These trends will also 

be statistically analyzed for significant differences.  

 S1 S2 S3 S4 S5 S6 S7 S8 S9 

C1 20 20 14 22 17 20 6 6 25 

C2 27 21 20 21 24 26 14 16 25 

Table 2: Number of correct self-assessments in cycle 1 (C1) and cycle 2 (C2) for each 

pair of students (S1-S9) 

Pair 
Cycle 
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Table 2 shows that almost all pairs of students improved with respect to the number of 

correct self-assessments. The increase in correct self-assessments was not only due to a 

reduction of incorrect self-assessment: In addition, students reported in fewer cases that 

they were unsure about whether a characteristic was fulfilled or not, or that they do not 

understand a characteristic.  

In line with these results, the answers of the students to the questions that were asked after 

the completion of each cycle, indicate the great appreciation of the combination of self- and 

automatic-assessment by the students. Eight out of nine pairs stated that comparing the self- 

and automatic-assessment brought new insights or encouraged them to think differently 

and that they prefer a mix between self- and automatic-assessment. Interestingly five 

groups stated that they were surprised that there were any differences between their self-

assessment and the automatic-assessment. These findings can be further elaborated using 

the qualitative results presented in the following section. 

Qualitative results 

The analysis of the segments where students self-assessed their work (part B) and where 

they compared their self-assessment with the automatic-assessment (part C) brought to the 

forefront the following four central aspects related to the potentials and opportunities of 

combining self- and automatic-assessment (research question 3).  

High cognitive activation during self-assessment  

During the self-assessment (part B) students often discussed whether a certain 

characteristic was fulfilled or not. As mentioned before, many times students did not self-

assess the characteristics correctly (see table 1) which was often due to students limited 

concept images. For example, one pair of students held the concept image that a quadratic 

function is always opened upwards and therefore the parabola in their example which was 

opened downwards could not be a quadratic function. Another pair of students noted that 

the two linear functions that they had produced have slightly different slopes, however they 

argued that the slopes are sufficiently similar to say that they are actually the same 

(characteristic 4).  

Comparing self- and automatic-assessment can lead to new insights 

The combination of self- and automatic-assessment (part C) has the potential to lead to new 

insights as illustrated by the following example from the first cycle. Two students had 

generated the linear functions f(x)=-2.01x+10 and g(x)=-0.4x+2. In the self-assessment the 

students had marked the characteristic “The product function has exactly one zero point” 

as fulfilled. When they compare their self-assessment with the automatic-assessment they 

realize that the automatic-assessment has marked this characteristic as not fulfilled. They 

look at the graph and are surprised because the product function appears to have only one 

zero point (see figure 1, second example). Then one student started to investigate the graph, 

zooms into the zero point and concludes that they probably have not looked close enough. 
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Hence students encountered a cognitive conflict, and resolved it by reanalyzing their 

example.  

High cognitive load when comparing self- and automatic-assessment 

Even though some cases appeared where students investigated conflicts between self- and 

automatic-assessment (part C)) these investigations were quite rare. A possible reason for 

this was that before investigating possible differences between self- and automatic-

assessment students had to identify whether their self-assessment was aligned with the 

automatic-assessment or not. Figure 2 highlights the complexity of this evaluation process 

as students have to distinguish between four cases. While most students managed to 

identify their self-assessment as aligned if a characteristic was fulfilled in self- and 

automatic-assessment (upper left square in figure 2), the other cases were considerably 

more difficult for students to evaluate and led to high cognitive load just to manage the 

evaluation of the self-assessment. This cognitive demand was additionally increased by the 

fact the automatic-assessment was displayed on the screen while the students’ self-

assessment was done on paper. Students had to constantly move back and forth between 

screen and paper which made the comparison between self- and automatic-assessment quite 

tedious.  

Making graph and algebraic expressions easily accessible 

Another reason that impaired student’s investigation of the differences between self- and 

automatic-assessment was that the tablet which students used could not display the 

automatic-assessment and the submitted examples of the students (e.g., the graphs) at the 

same time. Most students scrolled down to easily oversee the yellow highlighted 

characteristics but did not bother to scroll back and forth between seeing the characteristics 

and the graphs of their examples.  

SUMMARY AND DISCUSSION 

The Interplay between Self-assessment and Automatic Digital Assessment project (ISAA) 

aims at scrutinizing how students’ self-assessment and automatics assessment can be 

combined in order to support student learning. The results of the first design-cycle show 

that students’ self-assessment did improve remarkably throughout the two cycles (table 1 

and 2). This is particularly striking since this improvement was not moderated or scaffolded 

by any teacher intervention. Rather, one of the likely reasons for the improvements was the 

fact that students worked in pairs which allowed interactions and discussions between the 

group members. The qualitative analysis revealed how the comparison of differences 

between self- and automatic-assessment can create cognitive conflict that can lead to new 

insights. However, we also identified several challenges that can inform the design of 

learning environments that combine self- and digital automatic-assessment. First, 

evaluating the self-assessment with respect to the automatic- assessment was not easy for 

students and created high cognitive load which impeded a deeper engagement with the 

differences between self-and automatic-assessment. A possible way to reduce cognitive 

load would be to embed the self-assessment into the digital environment, and automatically 
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highlight differences between self-assessment and automatic-assessment within the digital 

environment. This would allow students to immediately investigate the difference between 

the two forms of assessment. Another aspect would be to increase the simultaneous 

accessibility to all relevant information for example by presenting the interactive diagram 

on the same screen as the report without having to scroll between them. 

Self- and automatic-assessment carry both tremendous potentials to support formative 

assessment. We have shown that combining self-assessment and automatic-assessment has the 

potential to enhance students learning and outlined important design considerations. However, 

while we gained many important insights, the results of this study are somewhat limited by the 

small number of students that were investigated. The next design cycle of the ISAA project 

will comprise a larger group of students, a further development of the technological 

environment with the goal of supporting an easier and deeper engagement with the differences 

between self- and automatic-assessment. Furthermore, we will investigate whether the 

combination of self- and automatic-assessment increases the quality of students conjectures in 

the EET. 
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This study used exploratory factor analysis to explore and compare Filipino and Taiwanese 

students' perception of effective mathematics teaching behaviors, which help students 

understand, focusing on the dimensions of representation, teaching methods, and problem-

solving strategies employed by the teacher. Every dimension yielded two factors. On 

representation: Filipino students endorsed "formal and symbolic" and "concrete and real-

life" similarly while Taiwanese students endorsed the second more.  On teaching methods: 

"teacher-supported student active learning activities" and "teacher-led heuristic inquiry 

opportunities," and on problem-solving: "lecture centered approach" and "teacher-

facilitated multiple self-discovery opportunities" where both countries endorsed the second 

factor higher than the first. 

INTRODUCTION  

The past years have seen the Philippines participate in various international assessments 

for mathematics given to students. Unfortunately, results from both assessments, PISA 

(2018) and TIMSS (2019), show the Philippines at the bottom of mathematics competency 

standings. In contrast, Taiwan and its other East Asian neighbor countries have always been 

consistently placed on top of these assessments. This prompted cross-country-comparative 

research on students' various preferences of effective mathematics teaching behaviors that 

may give hints as to why they learn well or not.  For example, Hsieh et al. (2020) found 

that students in high achieving countries, China and Taiwan, endorsed formal and symbolic 

representation to a higher degree than their teachers and concluded that this might relate to 

students' pursuit of academic achievement.  It is thus interesting and helpful to see how 

Filipino students fare compared to their neighboring country and see commonalities or 

differences that might explain the gap between achievement in international mathematics 

assessments.  This might influence educators' view as to what teaching behaviors to tweak 

to ensure effective mathematics teaching, as reflected in students' mathematics 

understanding. 

Effective mathematics teaching 
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Many studies about what can be considered as effective mathematics teaching between 

countries have been done in the past decade.  This range from cultural contexts (Cai & 

Wang, 2010) to belief systems (Purnomo, 2017; Yu, 2009) to values (Seah & Peng, 2012) 

and to many other topics in between.  Many pertinent studies consider effective teaching 

as whether the instruction done by the teacher cultivates student understanding of 

mathematics. In a study done by Correa et al., (2008) it was found out that US teachers tend 

to favor hands-on activities, whereas Chinese teachers tend to favor linking mathematics to 

real-life situations in their instruction.  Others asserted that it might have something to do 

with one's race, like the premise of the study done by Jerrim (2015).  Other studies focused 

on teaching behaviors and the role of teachers in mathematics instruction.  In their paper, 

Ismail et al. (2015) stressed the vital role of teachers in ensuring classroom instruction 

effectiveness. They further mentioned that for mathematics teaching to be effective, a 

teacher must be both an explainer and an inquirer, highlighting the interplay of teacher-led 

and student-centered instruction.  Thus, it shows that the teacher's teaching behaviors are a 

great contributor to developing and nurturing a students' mathematics understanding. A 

consensus exists in the literature that effective mathematics teaching measures may consist 

of a. ways that teachers present mathematical concepts and ideas through representation 

(Capraro et al., 2010) and teaching methods (Cai & Wang, 2010), and b. ways to help 

students understand problem-solving solutions (Ambrus & Barczi-Veres, 2015). Thus, in 

this study, the conceptual framework focused on the teachers' use of representation and 

teaching methods to help students understand mathematics content and strategies and 

methods in teaching problem solving to help students understand solutions (see Figure 1). 

 

Figure 1: The framework of this study 

Research questions 

This research aims to answer the following questions: 

1. What factors of teaching behaviors are preferred by students from Taiwan and the 

Philippines to better understand mathematics? 

2. Are there commonalities and significant differences in the preferred factors that help 

mathematical understanding between students from Taiwan and the Philippines? 

METHODOLOGY 

The survey instrument 

The research proponents adopted an instrument used by Wang & Hsieh (2017) for gauging 

the perspectives on effective mathematics teaching behaviors of Taiwanese high school 
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students.  The dimensions tested for this study were on representation, teaching methods, 

and how teachers teach problem-solving.  A common prompt of what they think helps them 

understand mathematics better is used throughout the study.  Use of representation was 

composed of 11 items, teaching methods 17 items, and problem-solving 15 items.  A 

sample of survey questions is found below in Figure 2. 

 

Figure 2: Sample questions used in the instrument 

Participants and data collection 

An initial pilot study consisting of 100 high school students and 56 mathematics teachers 

was conducted to determine the instrument's validity and reliability in the study as it applies 

to the Philippine setting.  Reliability was computed using the KR20 formula for 

dichotomous variables in SPSS and yielded a result of 0.929, indicating that it is suitable 

for use in the Philippine setting.  

A formal survey was conducted with students from four different high schools in three 

cities in Metro Manila. The total number of participants for the two countries combined 

was 1819, Philippines: 600, Taiwan 1219. Kaiser-Meyer-Olkin Measure of Sampling 

Adequacy result was 0.895, indicating that the data is suitable for factor analysis to be 

conducted.  Exploratory factor analysis was done using MPlus software on each dimension 

to identify the factors contributing to students' perception of effective mathematics 

teaching.  Fit statistics, including CFI, TLI, RMSEA, and SRMR, were used. 

RESULTS AND DISCUSSION  

On the use of representation 

Teachers' use of representation in presenting and explaining mathematical concepts and 

ideas showed two factors extracted after running the EFA.  Fit statistics for the data are as 

follows: CFI = 0.969, TLI = 0.950, RMSEA = 0.061, and SRMR = 0.059.  All the factor 

loadings reached an adequate level of greater than 0.3. 

Figure 3 shows the percentages of picking (POP) of the items of the two factors extracted, 

F1: Formal and Symbolic representation and F2: Concrete and Real-Life Representation.  

Formal and symbolic representation involves using formulas, symbols, proofs, and other 

abstract means to present new concepts or ideas.  Concrete and real-life representation 

consists of manipulatives, graphs, or stories, tangible, concrete, and related to real-life 
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situations. The POPs of F1 and F2 are 29% and 28% and 27% and 50% for Philippines and 

Taiwan. From the figure, it can be seen that Taiwanese students overwhelmingly preferred 

the second factor with a 50% percent of picking and with five (R8: use of graphs, R11: use 

of examples, R6: use of appropriate metaphors, R9:use of things in real-life, and R10: use 

of demonstrations) out of the six descriptors for the factor clustered in the top five slots as 

opposed to their Filipino counterparts where the descriptors were scattered, and where the 

first factor was endorsed more than the second (29% vs. 27%).  The R11: use of examples 

was both highly favored by Filipino and Taiwanese students, where it ranked first and 

second place, respectively, at 50% and 60% POP.  On the other end, the R1: use of abstract 

symbols (POP: 12%, 9%) and R7: use of stories (POP: 25%, 8%) were both not highly 

favored. Differences can be seen in the preference for the R6: use of metaphors, where 

Taiwanese students endorsed it at 55%, whereas it is one of the least preferred by their 

Filipino counterparts at only 9%.  Filipino students supported the R5: use of formulas highly 

at 48% (ranked 2nd), whereas their Taiwanese counterparts endorsed it at only 22% (ranked 

10th).  The R4: use of the formal approach is also supported more by Filipino students at 

39% (ranked 3rd) as opposed to the 34% (ranked 8th) given by their Taiwanese counterparts.  

Results indicate that Filipino teachers prefer to use a more straight-forward approach to 

teaching instead of using other forms like stories or graphs. In contrast, Taiwanese students 

prefer alternative representations that are not purely numerical and symbolic.  The reason 

may relate to the different difficulty levels of curriculum or examinations. 

 

Figure 3: Percentages of pickings for the use of representation  
 

On teaching methods 

The EFA had to be done twice because, in the first run, one of the indicators (Adopt 

lecturing as the main teaching form to avoid wasting unnecessary time) did not load to any 

of the two factors extracted. After deleting this item, the second EFA still had the same 

number of extracted factors and had desirable model fit statistics as follows: CFI = 0.984, 

TLI = 0.979, RMSEA = 0.041, and SRMR = 0.041.  All the factor loadings reached an 

adequate level of greater than 0.3. 
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Figure 4 shows the POP of the items of the two factors extracted: Factor 1: Teacher 

supported student active learning activities, and Factor 2: Teacher-led heuristic inquiry 

opportunities. Factor 1 is more student-centered; the teacher plays more of a supportive 

role in providing students with worksheets, learn through games, work in groups, and 

employ various teaching methods in a class.  Factor 2, on the other hand, is centered more 

on the teacher as he/she leads the students to self-discovery opportunities by facilitating 

inquiry from students, clear explanations in class, and emphasizing critical ideas in class.    

 

Figure 4: Percentages of pickings for teaching method  

Both countries endorsed the second factor (Average POP: Taiwan - 55%, Philippines – 

29%) higher than the first factor (Average POP: Taiwan - 33%, Philippines – 25%). Both 

countries students also shared four items that are on the top five of their preferences 

(TM13:introduce new concepts from easy to difficult levels, TM16: use simple and clear 

words to introduce new ideas, TM15:explain to clarify our doubts and confusions, and 

TM14: guide us in observation and induction to develop our concepts).  Students do not 

prefer teachers TM1: employing small group learning in both countries, ranking it 15th and 

16th for Taiwan and the Philippines, respectively.  Completing their top 5 preferences, 

Filipino students included TM8: provide hands-on activities for us to understand 

mathematics in class (40%) ranked 2nd while Taiwanese students have TM11: emphasized 

critical ideas repeatedly in class (63%) ranked 3rd.  The indicators TM4: use well-designed 

worksheets to teach, and TM3: allow us to learn through games in class, are part of the 

bottom four of preferred teaching methods by Taiwanese students (rank 14 th and 16th). In 

contrast, the Filipino students ranked it relatively higher (rank 10th and 11th) based on their 

POP values.  The most significant difference in preference is on TM11: emphasizing 

critical ideas repeatedly in class, with Taiwanese students ranking it 3rd at 63%, whereas 

their Filipino counterparts ranked it at 12th at 22%.  On the other hand, Filipino students 

favored if they were TM7: asked to solve problems on the board to enable them to learn 
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how others solve the same problems, which they ranked 6th at 33% compared to rank 14th 

(also at 33%) by their Taiwan counterparts.    Results would show that indeed students from 

both countries favor teacher-led heuristic inquiry opportunities over that of teacher-

supported active learning activities.  Results may indicate that many students still rely 

heavily on or feel confident in teacher guidance and instruction in both countries.  Students 

would rather want to be taught that way than making the discoveries for themselves via 

prepared worksheets or small group activities to play a more significant part in their 

learning.  It is also evident that there is a rather large gap with Taiwanese students' 

preference between the factors. In contrast, it is not as heavily pronounced in their Filipino 

counterparts. 

On teaching students problem-solving 

Teachers' ways of teaching students how to solve mathematical problems in class, as shown 

in the EFA results in Figure 4, showed two factors extracted.  Fit statistics for the data are 

as follows: CFI = 0.993, TLI = 0.991, RMSEA = 0.028, and SRMR = 0.034.  All the factor 

loadings reached an adequate level of greater than 0.3. 

 

Figure 5: Percentages of pickings for teaching problem solving 

Figure 5 shows the POP of items of the two factors extracted: Factor 1: Lecture centered 

approach, and Factor 2: Teacher facilitated multiple self-discovery opportunities.  The first 

factor deals with teachers immediately solving problems on the board once presented, going 

over only on the important steps rather than every single one when solving a problem, and 

using challenging problems as examples and using it for examples, as can be seen heavily 

teacher-centric.  Factor 2, on the other hand, involves the students more as they go through 

the problem-solving process; they are allowed to work on the problems first, elaborate their 

ideas, work on similar problems, look back at the way the teacher solved the problem to 

see how it was done, this is more student-centered, and needs more attention to detail on 

the part of the teacher.  In this dimension, the differences between the students' preferences 

from the two countries are more evident. Factor 1 had averages of 17% and 19%, whereas 
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PS4: Allow students to solve similar problems

PS3: Take a challenging problem as an example
PS2: Only go over important steps

PS1: Solve a problem immediately after presenting it

Fa
ct

or
 2
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or
 1

Phils Taiwan
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factor 2 had averages of 23% and 49% endorsement from the Philippines and Taiwan. 

Among the top choices, both countries endorsed the indicators PS15: identify crucial points 

and keywords of a problem when solving it and PS7:ask us to look back at the problem 

after he/she solves it to see how it is done with the Filipino students ranking it at 4th and 5th, 

while Taiwan students rated it 1st and 2nd based on POP. However, consideration must be 

given to this dimension as the gap between the POP values is great, with the highest of 64% 

and 64% for the two items from Taiwanese students as opposed to 28% and 26% from the 

Filipino students.  Filipino and Taiwanese students differ significantly on teachers PS14: 

writing problems and solutions on the board to let the students know what he/she is talking 

about and on teachers PS13: elaborating on his/her train of thought in detail, where the 

former ranked it at 1st and 3rd. In contrast, the latter ranked it 14th and 15th.   On the flip side, 

Taiwan students endorse it when teachers PS9: allow them to use their own methods to 

solve problems at 56% ranked 6th, compared to their Filipino counterparts with 19% ranked 

12th.  The findings indicate that both countries' students place a premium on seeing the 

detail of the technique rather than the teacher just going over the essential steps in a 

problem.  Results also show that Taiwanese students are more accustomed to using their 

methods and solutions to solve problems. In contrast, Filipino students tend to follow how 

the teachers solve the problems and mimic them.  Taiwanese students are also generally 

given a chance to think about how a problem could be solved before the teacher explains 

how to solve it, contrary to what Filipino students experience. 

CONCLUSION  

The study results show that Taiwanese and Filipino students share some common teaching 

methods that they prefer to learn mathematics.  Some indicators are regarded highly by 

Taiwanese students but generally not endorsed by their Filipino counterparts.  Results could 

show that there are still underlying differences in how mathematics is taught in schools.  

One sensible explanation of the Filipino students' endorsement of teacher-led heuristic 

inquiry opportunities to a higher degree than teacher supported student active learning 

activities as well as their endorsement of formal and symbolic representation and concrete 

and real-life representation to a similar degree is that students prefer those teaching 

methods they are accustomed to in class.  This may result from their teachers' not exhibiting 

those teaching behaviors or not doing it well. This may mean that teachers from the 

Philippines might not be using varied teaching mathematics approaches in the classroom.  

This could be caused by limited resources, lack of training, too much content to cover, and 

many other factors that could be studied further based on the results found in this research.  

Results have also shown that Taiwanese students are generally accorded more freedom in 

their ways of tackling problems. However, they generally still want more of the teacher, 

leading them towards self-discovery in their learning.  Filipino students are more exposed 

to the teacher-centered approach, whereas Taiwanese students show a semblance of a 

student-centered approach to mathematics learning. 
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This contribution focuses on start exploring possible relations between students’ academic 

performance in mathematics and their creativity in a semi-structured problem-posing task, 

and between students’ academic performance and the quality of their posed problems in 

terms of solvability and syntactic complexity. Findings suggest that students with a good 

academic performance seem to generate more creative mathematical problems, while in 

terms of solvability and syntactic complexity no difference is evident between students with 

a higher or lower academic performance. The data analysis scheme developed should 

represent a prototype for analysing various aspects of problem-posing, such as creativity 

and syntactic complexity, in different mathematical domains. 

INTRODUCTION 

Problem-posing is a process through which the importance of creativity and critical 

thinking are emphasized (NCTM, 2000), representing an essential skill for the future. 

Indeed, in this perspective students can actively construct meaning in both the natural and 

simulated worlds in classrooms, making connections between mathematics and their real 

lives (Kopparla et al., 2019), supporting in this way the development of more democratic 

and critically thinking members of society (Singer, Ellerton & Cai, 2015).  

Although mathematical problem-posing has great importance in mathematics education 

practice and research, it has received little attention by students, teachers and researchers 

(Silver, 1994, 2013; Van Harpen & Sriraman, 2013). Lee (2020) remarked how in literature 

still persists little research on problem-posing, finding that in the last thirty years only the 

0.4% of papers in the most important journals in Mathematics Education focused on 

mathematical problem-posing. Further research is needed for the future (Singer, Ellerton & 

Cai, 2015) particularly on: (i) developing problem-posing skills for pre-service and in-

service teachers’ education; (ii) analysing possible connections between problem-posing 

and creativity; (iii) supporting students’ learning trough problem-posing.    

The aim of this contribution consists in exploring possible relations between students’ 

academic performance in mathematics and their problem-posing performance. Specifically, 

the results of an exploratory study conducted in a 12th-grade class (age 17) are presented, 

together with an analytic scheme used to analyse students’ creativity in problem-posing 

and the quality of the posed problems in terms of solvability and syntactic complexity.  
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THEORETICAL FRAMEWORK 

In this contribution problem-posing is considered as the process by which students 

construct personal interpretations of concrete situations and formulate them as meaningful 

mathematical problems (Stoyanova & Ellerton, 1996). In the specific, the focus will be on 

a semi-structured situation, where students are provided with an open situation and are 

invited to explore its structure and to complete it using their personal previous mathematical 

experience. 

The theoretical arguments supporting the importance of problem-posing in school 

mathematics are supported by a growing body of empirical research.  Several studies 

focused on the relations between problem-posing and problem-solving (Silver, 1994; Van 

Harpen & Presmeg, 2013) and/or between problem-posing and creativity (Leung, 1997; 

Bonotto, 2013; Xie & Masingila, 2017), developing several analytic schemes to assess 

students’ or teachers’ problem-posing performances.  

A first analytic scheme to examine problem-posing of middle school students was 

developed by Silver and Cai (1996). Students’ problem-posing responses were firstly 

categorized as mathematical questions, non-mathematical questions or statements. Then, 

mathematical questions were divided in solvable and non-solvable. Specifically, problems 

were considered to be non-solvable if they lacked sufficient information or if they posed a 

goal that was incompatible with the given information. The last step involved examining 

the complexity of the posed problems. Complexity was considered under two perspectives: 

syntactic complexity and semantic complexity. Syntactic complexity consisted in the 

presence of assignment, relational or conditional propositions. Semantic complexity 

involved the number of the semantic relations used, taken from the five categories: change, 

group, compare, restate, vary.  

Creativity started receiving attention in the fifties, when Guilford (1959) proposed three 

categories characterizing creativity in his model for divergent thinking: fluency, flexibility 

and originality. Fluency in thinking referred to the quantity of output; flexibility in thinking 

referred to a change of some kind (meaning, interpretation, use of something, strategy); 

originality in thinking meant the production of unusual, remote or clever responses. 

Researchers created and applied different schemes to evaluate students’ creativity in 

problem-posing. For example, Bonotto (2013) used Guilford’s categories to examine the 

relationships between problem-posing and creativity with students engaged in problem-

posing activities implemented involving the use of real-life artefacts. More recently, Xie 

and Masingila (2017) proposed a scoring rubric to assess prospective teachers’ problem-

posing performances. In particular, in relation to a given problem, they analysed teachers’ 

posed problems in terms of creativity assigning 3 points if the posed problem was 

completely different respect to the given one, 2 points if it was somewhat different, 1 point 

if it was comparable.  
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RESEARCH QUESTIONS 

Students who are good at solving routine mathematical problems or taking routine 

mathematical tests might not be good at posing good quality mathematical problems, as 

indicated in Van Harpen and Sriraman (2013). Moreover, Bonotto (2013) suggested the 

necessity of studies with the aim of investigating a possible relation between students’ 

academic performance in mathematics and their performance in creativity. The aim of this 

study is to start exploring possible relations between students’ academic performance in 

mathematics and their creativity in semi-structured problem-posing situations, and between 

students’ academic performance and the quality of their posed problems in terms of 

solvability and syntactic complexity. As a consequence, the research questions of this study 

are the following: 

1. Is there a relationship between students’ academic performance in mathematics and 

students’ creativity in problem-posing? 

2. Is there a relationship between students’ academic performance in mathematics and 

the quality of their posed problems in terms of solvability and syntactic complexity? 

Another goal of this study was to develop and use an analytic scheme to examine students’ 

creativity in problem-posing. In order to find first answers to the research questions, the 

results of an exploratory study are reported.  

METHOD 

Participants and procedure 

The exploratory study was conducted in a twelfth-grade class (age 17) composed by 

twenty-one students. The classroom had never participated to a problem-posing activity 

before the study. At the moment of the intervention, the official mathematics teacher, used 

to teach in a traditional way, was working on probability. With students’ academic 

performance in mathematics, in this study the choice was to consider the mathematics level 

of each student in result of a mathematics test performed before the problem-posing 

activity. The test consisted of three problems involving various mathematical topics already 

covered in previous mathematics lessons by the teacher.  For each problem the maximum 

score was 2, so the total maximum score was 6. In order to examine the relationship 

between students’ performance in the test and their problem-posing performance, two 

extreme groups were formed on the basis of the results from the test, in analogy with Silver 

and Cai (1996): the high-test group, composed by students whose score was from 4 to 6 

(48%, 10 students over 21); the low-test group, composed by students whose score was 

from 0 to 3 (52%, 11 students over 21). The two groups had substantially different levels 

of success in the test, indeed the high-test group had a significantly higher mean test score 

than the low-test group (MeanHigh=5.0, MeanLow=2.5, z= -3.84, p<.001). 

After the initial test, each student completed a semi-structured problem-posing task in a 

single class period of approximately 40 minutes. The task was administered by the regular 

mathematics teacher during a mathematics class. The context chosen for the activity was 
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the Italian game of tombola, that students were used to play with their teacher every year 

before Christmas holydays. As a consequence, the context was meaningful for students, in 

addition of being rich in mathematical stimulus to generate probabilistic problems. To 

complete the task, students were provided with a sheet of paper with the rules of tombola, 

and the request to pose at least three problems starting from that game dealing with 

probability.  

Data coding 

A summary of the data coding developed in this study is provided in Figure 1. The scheme 

is an adaptation of Silver and Cai (1996) scheme. The novel contribution concerns the 

characterization of creativity, that is explained in this section.  

 

Figure 1: Data coding scheme 
 

The first step of the coding consisted in classifying each student’s responses as 

mathematical problems, non-mathematical problems or statements. The next step involved 

categorizing the mathematical problems as solvable or non-solvable. The following step 

consisted in associating to each student a level of creativity. To do this, an analytic scheme 

was developed starting from the one proposed by Xie and Masingila (2017). Let 𝑃𝑖
𝑛 be the 

i-th solvable problem posed by the n-th student, so for three problems  𝑖 = 1, 2, 3;  𝑛 > 0. 

For every 𝑛, consider the first posed problem 𝑃1
𝑛 and compare it with the second posed 

problem 𝑃2
𝑛: if  𝑃2

𝑛 and 𝑃1
𝑛 are comparable, then (𝑃2

𝑛 , 𝑃1
𝑛) = 0; if  𝑃2

𝑛 and 𝑃1
𝑛 are somewhat 

different, then (𝑃2
𝑛 , 𝑃1

𝑛) = +1; if  𝑃2
𝑛 and 𝑃1

𝑛 are completely different, then (𝑃2
𝑛 , 𝑃1

𝑛) = +2. 

Then consider the third posed problem and compare it with both the second and the first 

one: if  𝑃3
𝑛 and 𝑃2

𝑛 are comparable, then (𝑃3
𝑛 , 𝑃2

𝑛) = 0; if  𝑃3
𝑛 and 𝑃2

𝑛 are somewhat 

different, then (𝑃3
𝑛 , 𝑃2

𝑛) = +1; if  𝑃3
𝑛 and 𝑃2

𝑛 are completely different, then (𝑃3
𝑛 , 𝑃2

𝑛) = +2; 

if  𝑃3
𝑛 and 𝑃1

𝑛 are comparable, then (𝑃3
𝑛 , 𝑃1

𝑛) = −2; if  𝑃3
𝑛 and 𝑃1

𝑛 are somewhat different, 

then (𝑃3
𝑛 , 𝑃1

𝑛) = −1; if  𝑃3
𝑛 and 𝑃1

𝑛 are completely different, then (𝑃3
𝑛 , 𝑃1

𝑛) = 0. In the end, 

calculate the sum 𝑐 ≔ (𝑃2
𝑛 , 𝑃1

𝑛) + (𝑃3
𝑛 , 𝑃2

𝑛) + (𝑃3
𝑛 , 𝑃1

𝑛) ∈ {−2, −1, 0, 1, 2, 3, 4}. If 𝑐 ≤ 0, 



Passarella 

PME 44 – 2021   3 - 377 

the student has a low level of creativity, if 𝑐 ∈ {1,2}, the student has a medium level of 

creativity, if 𝑐 > 2, the student has a high level of creativity. The scheme can easily be 

extended to activities in which students pose a number of problems d greater than three, 

with 𝑐: = ∑𝑑
𝑗=2 (∑𝑗−1

𝑘=1 (𝑃𝑗
𝑛 , 𝑃𝑘

𝑛)  ) , where (𝑃𝑗
𝑛 , 𝑃𝑘

𝑛) ∈ {0, +1, +2} 𝑖𝑓 𝑗 − 𝑘 = 1,

(𝑃𝑗
𝑛 , 𝑃𝑘

𝑛) ∈ {0, +1, +2} 𝑖𝑓 𝑗 − 𝑘 > 1.  

The final step of the data coding involved examining the syntactic complexity of the posed 

problems. In the specific, every problem of each students was classified as an assignment 

problem, a relational problem or a conditional problem. In agreement with Mayer (1992), 

the presence of relational or conditional problems was considered as an indication of 

complexity. For this reason, to each student was associated a level of complexity as follows: 

low level if s/he posed only assignment problems; medium level if s/he posed an assignment 

plus a relational problem, or an assignment plus a conditional problem, or only a relational 

problem, or only a conditional problem; high level if s/he posed an assignment plus 

relational plus conditional problems, or a relational plus a conditional problem.  

Concerning inter-rater reliability of the scoring, the coding was performed separately by 

two different researchers. Rates of agreements on the classifications of levels of creativity 

and complexity were highly acceptable: concerning creativity, agreement of 85% with 

Cohen’s k of 0.83 (almost perfect agreement); concerning complexity, agreement of 85% 

with Cohen’s k of 0.74 (substantial agreement). 

MAIN RESULTS 

Students provided a total of 65 responses. About the 95% of the responses were classified 

as mathematical problems, about 3% were statements and 2% were non-mathematical 

problems. More than 87% of the mathematical problems posed by students were judged to 

be mathematically solvable.  

Concerning creativity, a level of creativity was calculated for every student, applying the 

developed coding scheme to students’ solvable problems (Figure 2). Then, distributions of 

students respect their level of creativity were calculated. The 42% of students had a high 

level, the 29% a medium level and the 29% a low level of creativity.  

The syntactic complexity of the posed problems was determined by examining the presence 

of assignment, relational or conditional problems among all the solvable problems posed 

by students. The 50% of the solvable problems were assignments problems, the 13% 

relational problems and the 37% conditional problems. Some examples are shown in Table 

1. Concerning levels of complexity, the 10% of students had a high level, the 67% a 

medium level and the 23% a low level, showing that the majority of students (74%) reached 

a medium-high quality level in terms of complexity of the posed problems.  
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Figure 2: Example of calculation of a student’s level of creativity 
 

Assignment problem In the game of bingo, what is the probability that a number is drawn 

which is power of 2 and multiple of 3? 

Relational problem Luca and Marco are playing tombola. Marco bought 2 folders 

while Luca 4. Each folder had 15 different numbers that did not 

appear in the other folders. What is the probability that Marco 

makes tombola before Luca? 

Conditional problem Suppose the croupier tricks the game before its start, by removing 

all the two-digit numbers starting with the digit 4. Which is now 

the probability of doing ambo in a given folder where one of the 

removed numbers was present? 

Table 1: Examples of assignment, relational and conditional problems 

In order to answer to the research questions, similarities and differences among the high-

test group and the low-test group of students were examined, in terms of solvability, levels 

of creativity and complexity. Results are reported in Table 2.  
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25 
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Table 2: Results from the data analysis 
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DISCUSSION AND CONCLUSIONS 

In the present study students were asked to pose at least three problems dealing with 

probability from a given context. The students involved in the study, despite the novelty of 

the task, were able to generate a large number of mathematical problems, precisely the 95% 

of their responses.  

The findings of this exploratory study provide first insights into some aspects of the 

relationships between students’ academic performance and creativity in problem-posing, 

and between students’ academic performance and the quality of their posed problems, in 

terms of solvability and syntactic complexity. To pursue this goal, students were divided in 

two groups respect to the results of an initial test: high-test group and low-test group. The 

majority of mathematical problems posed by the two groups was represented by solvable 

problems (93% and 83% respectively, table 2). As a consequence, a good mathematical 

level in terms of test performance should have no direct consequences in terms of 

solvability of the posed problems. However, some differences can be observed concerning 

creativity. The 70% of students in the high-test group showed a high level of creativity, and 

only the 10% a low level of creativity. In the low-test group, instead, almost a half of 

students (45%) had a low level of creativity, and only the 18% reached a high level of 

creativity. These findings suggest that students’ who are good in solving mathematical tests 

reaching a high academic performance, seem to have a more creative disposition during 

problem-posing activities. Besides creativity, students’ academic performance was 

compared also with the complexity of the posed problems. In this case, differently from the 

analysis of creativity, students’ in the high-test and low-test group showed a comparable 

behaviour. Indeed, students’ distributions respect to their level of complexity in the two 

groups was almost equal: for high-test group the 22% of students had a low level, the 67% 

a medium level and the 11% a high level of complexity; for the low-test group the 25% of 

students had a low level, the 66% a medium level and the 9% a high level of complexity. 

Therefore, answering to the research questions, results from this exploratory study suggest 

that students with a good academic performance seem to generate more creative 

mathematical problems, while in terms of the quality (solvability and syntactic complexity) 

of the posed problems no difference is evident between students with a higher or lower 

academic performance. However, due to the small-scale sample, at this stage results cannot 

be generalized. 

Besides the previous results, the study also offers an approach to problem-posing through 

an analytic scheme that may be used by practitioners or researchers. Teachers should use 

the scheme to evaluate the effectiveness of their problem-posing-oriented instruction, or to 

measure students’ progress in the problem-posing process. Researchers, instead, might see 

at this scheme as a prototype for analysing various aspects of problem-posing, such as 

creativity and syntactic complexity, in different mathematical domains. However, there are 

limitations to the scheme used, and improvements are necessary. Indeed, other measures 

should be assessed, concerning for example the originality (Guilford, 1959) and semantic 

complexity (Silver & Cai, 1996) of the posed problems. Another limit, already remarked, 



Passarella 

3 - 380  PME 44 – 2021 

consisted in the small sample size. For the future other problem-posing activities are 

requested, in order to support (or not) the findings of this exploratory study and increase 

the power of statistical analysis, combining to the descriptive also an inferential analysis. 
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While many researchers have highlighted the importance of algebraic reasoning for middle-

years students some have suggested that students should develop computational procedures 

using the algebraic idea of equivalence to integrate their learning of whole numbers and 

fractions. This paper focuses on four tasks from a paper and pencil assessment instrument used 

in a larger study which investigated the links between fractional competence and algebraic 

reasoning. The tasks were developed to encourage students to move beyond using the equals 

sign as meaning ‘give an answer’ to a relational understanding of the equals sign which 

focused on the equivalence of the expressions on both sides of the equals sign.  

INTRODUCTION 

Many researchers have highlighted the importance of algebraic thinking for middle-years 

students. Kieran (2004) described algebraic thinking as: analysing relationships between 

quantities, noticing structure, studying change, generalizing, problem solving, modelling, 

justifying, proving, and predicting. Empson, Levi and Carpenter (2010) suggest that students 

should develop and use computational procedures using relational thinking to integrate their 

learning of whole numbers and fractions. Other researchers have noted that three distinct 

aspects of algebraic thinking include students’ understanding of equivalence, transformation 

using equivalence, and the use of generalisable methods (Jacobs, Franke, Carpenter, Levi, and 

Battey, 2007; Stephens and Ribeiro, 2012). Knuth et al. (2008) suggest that: “helping students 

acquire a view of the equal sign as a symbol that represents an equivalence relation between 

two quantities many, in turn, help prepare them for success in algebra (and beyond)” (p.518). 

Jones, Inglis, Gilmore and Evans (2013) highlighted three different conceptions of the equals 

sign: operational, sameness-relational, and substitutive-relational. The operational conception 

of the equals sign is described as the expectation that the equals sign indicates that the student 

needs to ‘give an answer’ (Jones et al., 2013, p. 36). The sameness-relational conception of the 

equals sign involves seeing the equals sign as meaning ‘is the same as’ (Jones et al., 2013, p. 

34). This encourages students to see the sameness of the expressions on both sides of the equals 

sign thus seeing the equivalence when comparing each expression. The substitutive-relational 

conception involves students thinking that the equals sign also means ‘can be substituted for’ 

(Jones et al., 2013, p. 35) and enables students to use arithmetic rules, such as commutativity, 

to change the arithmetic expressions on either side of the equals sign but retain the equality. 

Jones et al (2013) suggested that students’ understanding of both the sameness-relational and 

substitutive-relational conceptions of the equals sign are important for algebraic thinking. 
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Researchers such as Knuth et al. (2008) believe that students’ dependence on the operational 

conception of the equals sign hinders both arithmetic and algebraic calculations.  

THE CURRENT STUDY 

The key question of our current research is to investigate the links between fractional 

competence and algebraic thinking as middle-years students solved mathematical tasks using 

whole numbers, fractions, decimals and pronumerals. More than 600 Australian students from 

Years 5 – 9 (10 – 16 years) completed two paper and pencil assessments: The Fraction 

Screening Test (Pearn, Pierce, & Stephens, 2017; Pearn & Stephens, 2018) and the Algebraic 

Thinking Questionnaire (Pearn & Stephens, 2016) and 45 students were interviewed (Pearn, 

Stephens, Zhang & Pierce 2019) using a semi-structured interview. This paper focuses on four 

tasks from The Algebraic Thinking Questionnaire (ATQ). 

DEVELOPING THE ALGEBRAIC THINKING QUESTIONNAIRE 

The ATQ (Pearn & Stephens, 2016) built on research that identified specific features of the 

transition from arithmetic or calculation-based thinking to thinking about number sentences as 

mathematical expressions with algebraic features that include: 

● Keeping a number sentence in its uncalculated form and viewing the number 

sentence as a group of numbers in relation to each other according to the operations 

involved (Britt & Irwin, 2011; Jacobs, Franke, Carpenter, Levi, & Battey, 2007). 

● Utilising the idea of equivalence to solve missing number sentences (Kaput, 

Carraher, & Blanton, 2008). 

● Exploring variation, compensation and equivalence, and identifying numbers that 

stay the same and numbers that vary in equivalent expressions (Britt & Irwin, 2011). 

● Identifying rules that underlie relationships in equivalent expressions and expressing 

these relationships in the form of a generalisation (Stephens & Ribeiro, 2012). 

The purpose of the ATQ tasks was to ensure that students needed to move beyond an 

operational conception of the equals sign in order to successfully solve tasks. It was hoped that 

the tasks would encourage them to use either of the two relational conceptions of the equals 

sign: sameness-relational or the substitutive-relational which Jones and colleagues (2013) 

indicated were important for algebraic reasoning. 

The ATQ has two distinct parts that include whole numbers, fractions, decimals and 

pronumerals. Part M focuses on multiplication and Part D focuses on division. Each part is 

divided into two sections: Question 1 and Question 2. Question 1 has one box for an unknown 

response while Question 2 includes two boxes for two unknown responses.  

Figure 1 shows the first of four tasks of Question 1 for multiplication (Task M1a) and division 

(Task D1a). Later Question 1 tasks include decimals and fractions. 

For each of the following number sentences, write a number in the box to make a true 

statement. Explain your working briefly. 

  

Figure 1: Examples of whole number tasks from Question 1, Parts M and D  
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Figure 2 shows the first of five tasks for Question 2 for multiplication (Task M2a) and division 

(Task D2a). Question 2 tasks were designed to focus students’ attention on the relational 

features of equivalence while a follow up question requires them to describe that relationship: 

“When you make a correct sentence, what is the relationship between the numbers in Box A 

and Box B?” Later tasks in Question 2 expected students to apply the same thinking to similar 

questions for pronumerals and fractions. 

In each of the sentences below, can you put numbers in Box A and Box B to make each 

sentence correct? 

  

Figure 2: Examples of initial tasks from Question 2, Parts M and D (ATQ) 
 

To be successful with Question 1 and Question 2 tasks students would need to use the 

sameness-relational or substitutive-relational understanding of the equals sign. 

RESULTS AND DISCUSSION 

Question 1 (ATQ): Equations with One Unknown 

Multiplication Task (M1a): Students used a variety of strategies to successfully complete Task 

M1a (left-hand side of Figure 1). Student A (left-hand column of Figure 3) used arithmetical 

calculations that demonstrate the sameness-relational understanding of the equals sign and 

ensured that the expressions on both sides of the equal sign were equivalent. This student 

calculated the left-hand side of the expression as 900 and then determined that the missing 

number in the expression on the right-hand side was 100. Student B (right-hand column of 

Figure 3) used relational thinking that demonstrate the substitutive-relational understanding of 

the equals sign. This student recognised that 36 divided by four is nine and that, in order to 

maintain the equality of the two expressions, multiplied 25 by four to get 100. 

  

Figure 3: Students’ responses to Task M1a  
 

Students who successfully solved Task M1a (left-hand side of Figure 1) used either a sameness- 

or substitutive-relational approach. Column T (Table 1) shows the results for Task M1a while 

Column E shows the results for the explanation for Task M1a. Fifty-six percent of all students 

gave a correct response for Task M1a. There was an increase in the successful responses from 

45% at Year 5 to 63% at Year 6. Fewer Year 8 students were successful than those at Year 6, 

with 55% at Year 8, while 87% Year 9 students correctly answered Task M1a (Column T).  
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While 56% of all students gave a correct response for Task M1a only 45% explained their 

solution (Column E). Forty-one percent of all students used arithmetical calculations while 4% 

used relational thinking. Of the Year 5 students who gave a correct response 94% used 

arithmetical calculations and 6% used relational thinking similar to that shown in Figure 3. 

Ninety-six percent of successful Year 6 students used arithmetical calculations and 4% used 

relational thinking while 82% of Year 8 students used arithmetical calculations and 18% used 

relational thinking to successfully respond to Task M1a. Six of the 13 successful Year 9 

students used arithmetical calculations and seven (54%) used relational thinking. 

Responses 
Year 5 

(n = 195) 

Year 6 

(n = 175) 

Year 8 

(n = 122) 

Year 9* 

(n = 15) 

 T E T E T E T E 

Not attempted 18 41 11 33 7 23 0 0 

Incorrect 37 25 26 17 38 32 13 13 

Correct 45 35 63 50 55 45 87 87 

Table 1: Percentage of responses and explanations by year level for Task M1a (ATQ) 
 

Many students gave a correct response to Task M1a but did not show their solution method, so 

it was not possible to determine whether they used arithmetical calculation or relational 

thinking. 

Division Task D1a: Some students used their knowledge of equivalent fractions to respond to 

Task D1a (right-hand side of Figure 1). Student C (left-hand column of Figure 4) used 

equivalent fractions and then simplified the answer to check his response. Student D used 

relational thinking and indicates the relationship between the numbers on either side of the 

equals sign using arrows.  

 
 

Figure 4: Two students’ correct responses for Task D1a 
 

As shown in Row 3 (Table 2) there was an increase in the percentage of successful responses 

from 20% at Year 5, 35% at Year 6, 69% at Year 8, while 100% Year 9 students correctly 

answered Task D1a (Column T).  
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Responses  Year 5 

(n = 195) 

Year 6 

(n = 175) 

Year 8 

(n = 122) 

Year 9* 

(n = 15) 

 T E T E T E T E 

Not attempted 41 84 29 73 16 48 0 20 

Incorrect 39 7 36 7 16 7 0 0 

Correct 20 9 35 20 69 45 100 80 

Table 2: Percentage of responses and explanations by year level for Task D1a (ATQ) 

Table 2 shows the percentage of students who explained or presented the method they used to 

solve Task D1a (Column E). Many students did not show their solution method, so it was not 

possible to determine whether they used an arithmetical calculation or relational thinking. 

Nearly 40% of all students successfully explained their responses for Task D1a. Three percent 

of all students successfully used an arithmetical calculation including 4% of primary students 

(Years 5 and 6) and 2% of Year 8 students. Five percent of successful Year 5 students, 16% 

Year 6, 43% Year 8 and 80% of Year 9 students used relational thinking to explain their 

solution for Task D1a. 

While the primary students were less successful solving the division task (Task D1a) than the 

multiplication task (Task M1a) the secondary students were more successful with the division 

task (Task D1a) than the multiplication task (M1a). 

Question 2 (ATQ): Equations with Two Unknowns 

Some students started by substituting numbers in the two empty boxes and checked if both 

sides were equal as for the sameness-relational conception of the equals sign. However, in the 

following question students needed to reason that, whatever numbers were substituted for Box 

A and Box B, the relationship between the numbers was the same. While this may not be quite 

the same as substitutive-conception of the equals sign, used by Jones et al. (2013), there is a 

clear sense that students need to realise that whatever numbers are used the relationship 

between the numbers in Box A and Box B must remain the same. 

Multiplication Task M2a: Figure 5 shows two students’ correct responses for Task M2a (left-

hand side of Figure 2). It is difficult to determine how Student F solved Task M2a (left-hand 

side of Figure 5) as there was no working shown, but Student G (right-hand side of Figure 5) 

has used arrows to demonstrate the relational thinking.  

  

Figure 5: Two correct responses for Task M2a (ATQ) 
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Table 3 shows the results in percentages for the students by year level. Column M shows the 

results for Task M2a while Column D shows the results for Task D2a. Overall, 64% of students 

gave two correct pairs and another 16% gave one correct pair for Task M2a. As shown in Row 

4 (Table 3) 54% Year 5, 67% Year 6, 73% Year 8 and 93% Year 9 students gave two correct 

pairs for Task M2a. Another 19% Year 5, 10% Year 6, 13% Year 8 and 7% Year 9 students 

correctly gave one pair of numbers. 

Altogether 39% of all students explained the relationship between the two numbers in Task 

M2a. Thirty-two percent of Year 5, 36% Year 6, 55% Year 8 and 93% Year 9 students were 

able to explain the relationship between the pairs of numbers using a similar response to that 

of Student G: "Box A is two times as much as Box B".  

Responses 
Year 5 

(n = 195) 

Year 6 

(n = 175) 

Year 8 

(n = 122) 

Year 9* 

(n = 15) 

 M D M D M D M D 

Not attempted 19 46 9 33 6 43 0 0 

Incorrect 8 31 9 31 8 19 0 0 

One correct response 19 11 16 11 13 7 7 0 

Two correct responses 54 13 67 25 73 32 93 100 

Table 3: Percentage of responses by year level for Task M2a and Task D2a (ATQ)  

Division Task D2a: Overall 26% of students gave two correct responses for Task D2a similar 

to Student H's response (left-hand side of Figure 6), an additional 10% gave one correct 

response, while 27% gave no written response. However, some students used an incorrect 

inverse relationship as shown in the right-hand column of Figure 6. 

As shown in Row 4 (Table 3) 13% Year 5, 25% Year 6, 32% Year 8 and all Year 9 students 

correctly wrote two appropriate pairs of numbers for Task D2a. An additional 11% of Year 5 

and Year 6, and 7% of Year 8 students correctly gave one pair of numbers. However only 9% 

Year 5, 19% Year 6, 25% Year 8 and 93% Year 9 students stated the correct relationship 

symbolically or verbally using multiplication e.g. Box B is five times Box A or division e.g. 

Box A is one-fifth of Box B or Box A equals Box B divided by five. 

  

Figure 6: Two responses for Task D2a (ATQ) 

The primary and Year 8 students were more successful with the multiplication task with two 

unknowns (Task M2a) than the division task (Task D2a). All Year 9 students gave a correct 

response for the division task (Task D2a) while one student gave an incorrect response for the 

multiplication task (Task M2a). 
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CONCLUSION 

Many students found the ATQ tasks difficult with a large number of no attempts. While some 

students relied heavily on arithmetical or computational methods some began to use 

equivalence-based relational thinking as evidenced by the use of arrows in their responses. 

Question 1 and Question 2 tasks using division appeared to be considerably more difficult for 

primary students as the percentage of “no attempts” and incorrect responses increased. The 

percentage of correct responses for Task D2a are much lower for Year 5, Year 6 and Year 8 

than the results for Task M2a. Year 8 and 9 students correctly solved more Question 1 division 

tasks than multiplication tasks. 

The four whole number tasks described in this paper permitted students to use a sameness-

relational or substitutive-relational understanding of the equals sign which focused on the 

equivalence of the expressions on both sides of the equals sign. The operational understanding 

of the equals sign was not appropriate for these tasks. While only four tasks were described in 

this paper the results are similar for subsequent tasks involving fractions and pronumerals 

(Pearn & Stephens, 2016).  

In answering our key research question, many students in the middle years are not confident 

using equivalence based algebraic thinking for either multiplication or division tasks. In order 

to develop algebraic reasoning, teachers will need to determine the types of strategies their 

students are using to solve mathematical tasks, and then develop tasks that will encourage their 

students to demonstrate their understanding of the equals sign and equivalence which will 

enable them to use generalisable methods. 
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Facilitators play a crucial role when scaling up continuous professional development 

(CPD). They have to design and conduct programs to initiate the process of teachers` 

professionalization. This requires competencies about adult learning and the specific 

knowledge and needs of mathematics’ teachers, which are much broader than teachers’ 

competencies. The aim of the study was to specify facilitators’ competencies in a framework 

mainly for the design and use in the context of qualification. Following a Delphi method in 

the context of the German Center for Mathematics Teacher Education (DZLM) network, 

experts (researchers, facilitators, stakeholders) were interviewed in several development 

cycles. This resulted in a competency framework for facilitators who train mathematics 

teachers in teaching and learning. 

INTRODUCTION 

There is a great diversity of terms used in literature to describe the profession of the group 

of people who are initiating and leading processes to professionalize teachers, e.g. 

facilitators, teacher trainers, multipliers, coaches or teacher educators. We prefer the term 

facilitator to emphasize the cooperation aspect of learning, it being rather a give-and-take 

than a one-sided teacher-pupil relationship. When it comes to the breadth of terminology 

or the lack of clarity in the qualification or task description of the facilitators (Thomas, 

2004), it is clear that their competencies are also not directly identified.  

Kunina-Habenicht and colleagues (2012) highlighted the necessity of a competency 

framework instead of just formulating a curriculum on the level of teachers’ 

professionalization. They regard the concretization of competencies as an important step to 

develop adequate quality standards in the field. This is relevant on the facilitators’ level, as 

well, especially when regarding that many facilitators were trained primarily as teachers, 

and often act "self-made" in their new profession as facilitators (Zaslavsky, 2008, p. 93). 

Usually, there are no uniform career paths or qualification programs for these persons. 

Coming up with a clear competency framework emphasizes the importance of a specific 

qualification for facilitators.  

There is a research gap about what facilitators need to know and how to act to be able to 

adequately support teachers (Sztajn, 2011). It is, therefore, the goal of this study to develop 

a competency framework for facilitators in mathematics education and thus to use it in the 
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context of qualification within the DZLM. In order to follow the aim of reaching to 

competencies of facilitators in mathematics education, the perspective of general adult 

education and of mathematics-focused facilitations were taken into account. 

THEORETICAL BACKGROUND 

Teacher competencies in Mathematics Education 

At the level of teachers, research on professionalisation has already resulted in 

differentiated frameworks, which in particular also include mathematic-specific aspects 

(Ball et al., 2008; Baumert & Kunter, 2013). Baumert and Kunter (2013) are often cited in 

this context and provide a summary of the existing literature, which relates to teacher 

competencies in mathematics education. The aim of this overview was to organize the 

different approaches to the CPD of teachers, which brings together, integrates and 

empirically tests knowledge from different research areas. It is relevant to include the 

facilitators’ perception on teachers’ competencies, their beliefs on mathematics, teaching 

of mathematics (Grigutsch et al., 1998) and their self-awareness (Hattie, 2009; Thurm, 

2019). For professional knowledge, Shulman’s (1987) proposal has largely prevailed – 

content knowledge (CK), pedagogical content knowledge (PCK) and pedagogical 

knowledge (PK). At the level of teacher competencies, the professional knowledge was 

supplemented by organizational knowledge (e.g. school organization, school quality, 

according to Fried, 2002) and the advisory knowledge on which professionals in 

communication with laypersons are dependent (Bromme & Rambow, 2001). These two 

knowledge areas are rather largely content-independent. 

Facilitators in General Adult Education 

One can also find numerous competency frameworks in general adult education, which 

usually refer to company structures and therefore define “competencies” as authority, rights 

and duties, also as the ability to cope with complex requirements in certain situations (see 

Weinert, 2001). An overarching framework covering the competencies of teachers and 

facilitators in general adult education has been developed within the framework "Basics for 

the Development of a Cross-Provider Recognition Procedure for the Competences of 

Teachers in Adult and Continuing Education" (germ. abbrev. GRETA; Lencer & Strauch, 

2016). The GRETA framework has been developed on the basis of a literature review and 

by conducting a Delphi method (ibid.). The Delphi method is a multi-level qualitative 

survey procedure aiming to combine the knowledge of several experts in order to arrive at 

a forecast for the future. It takes the competency framework of Baumert and Kunter (2013) 

into account and includes all areas of adult education. In addition to the close cooperation 

between science and practice, this framework offers orientation for the first time on 

competency requirements for adult and continuing education. Next to professional values 

and beliefs and professional self-monitoring, professional knowledge is specifically 

divided into didactic and methodological areas that take adult learning into account. 
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Facilitators in Mathematics Education 

Usually, the typical requirements that facilitators have to accomplish, are described in a 

non-specialized way. In the literature, there are already a number of approaches to 

systematize the competencies for facilitators. Smith (2005, p. 182-183) mentions a number 

of relevant aspects for qualified facilitators in any subject: They should be self-confident, 

reflective on their actions and they should have comprehensive, in-depth knowledge based 

on theory and practice. Facilitators could benefit from being involved in curriculum 

development and in research, and at least they should be good teachers with experiences 

teaching different age groups. In addition to a comprehensive understanding of the 

educational system, a high degree of professional maturity would be useful. Zaslavsky 

(2008, p. 95), who focussed on facilitators in mathematics, adds further aspects such as 

adaptivity and conscious selection of methods and media.  

For the CK-elements that facilitators should have at their disposal, different emphasis is 

placed in various studies, even though they all accentuate that the knowledge required from 

facilitators must go beyond the knowledge of teachers, since they must impart new 

knowledge in a similar way as teachers do to their students (Borko et al. 2014, p. 165). This 

becomes vivid by looking at the "three-tetrahedron model (3TM) of professionalization 

research" for the content-related PD research, where the individual levels are described and 

related to one another (see in more detail Prediger, Leuders & Roesken-Winter, 2019). A 

first bundling of the mathematical specific competencies for facilitators is developed by 

Borko and colleagues (2014). With their competency framework, they refer to the work of 

Ball and colleagues (2008) but they make explicit that there is a specific math related 

knowledge needed to cover PCK with teachers as learners and they call it "Mathematical 

Knowledge for Professional Development (MKPD)". 

Going beyond the classroom-level, expanded knowledge refers not only to the new 

knowledge of mathematical content and the relevant didactic aspects aimed at continuing 

education, but also to the didactic knowledge of adult education. This includes, for 

example, knowledge about mentoring, about existing teacher practices (Even, 2008) or 

current views on teacher education (Borko et al., 2014). Cochran-Smith and Lytle (1999) 

also stress the knowing about conceptions of teacher learning as a relevant aspect for 

facilitators. The following practices must be taken into consideration when designing a PD 

module: practical knowledge generated in the teacher's professional action ("knowledge-

in-practice"), theoretical knowledge delivered to the teacher from outside ("knowledge-for-

practice") and theoretical knowledge generated by the teacher's own reflection on 

professional actions ("knowledge-of-practice").  

Even though facilitators should have a more extensive knowledge than teachers, it should 

be emphasized that there are also knowledge elements that are relevant for teachers, but not 

for facilitators (Beswick & Chapman, 2015). These include, for example, detailed 

background knowledge about individual students. For facilitators, only general knowledge 
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of educational standards and curricula is important, as well as relevant empirical findings 

(ibid.). 

RESEARCH QUESTIONS 

Taking into account the research gap concerning a comprehensive competency framework 

for facilitators in mathematics education, the following research questions arise:  

(1) Which competencies are relevant for facilitators with a focus on mathematics 

teacher professionalization?  

(2) How can these competencies be structured and categorized to give a good 

orientation for the design and research of qualification programs? 

METHODOLOGY  

Based on the findings of the literature we conducted a research process following the 

Delphi method (Linestone & Turoff, 2011). We involved 33 researchers, 28 key 

stakeholders and teachers with experience in CPD and realized three cycles of further 

development. All researchers involved are experts in the field of CPD in mathematics 

education for primary and secondary level and were asked to use this expertise to point out 

key competencies of facilitators. The teachers’ and the stakeholders’ perception was 

important to gasp the systemic processes and necessities by reflecting their practical 

experiences in the field.  

Different instruments were used to collect the ideas and experiences – a questionnaire and 

individual written statements and discussions in small groups (recorded). Due to the fact 

that the discussions were not anonymous, but were still supported by anonymous surveys, 

one could rather speak of a quasi-Delphi method. Nevertheless, several cycles have been 

carried out in the frame of networking conferences, which were documented and evaluated. 

The aim of a Delphi method is not necessarily to reach consensus, but rather, in a first step 

in particular, to identify the breadth of the field so that all relevant aspects can be covered.  

The three examination surveys were carried out as follows: 

Survey 1: 

The first development step was carried out by a team of DZLM researchers, which 

consisted of 4 persons - the authors of this paper. The literature was reviewed, and 

discussions were held within this team with the aim to come up with a first framework 

combining the essential competencies from adult education and from the perspective of 

mathematics education. The GRETA competency framework (Lencer & Strauch, 2016) 

was considered as a good structure to categorize the broad range of diverse competencies 

of facilitators: Professional Values and Beliefs, Professional Self-Monitoring, Competency 

on the Professional Development Level, Competency on the Classroom Level. In addition, 

the substructuring in aspects and facets was also picked up from the GRETA framework 

and adapted to mathematics education. This first framework was presented to 20 DZLM 

researchers  and reflections in group work were initiated. This phase was characterized by 
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the discussion of the topic and the central questions "What is missing? What can be 

omitted?".  

Survey 2: 

The results from the first survey of the Delphi method and the further adaptation were again 

presented to the DZLM network with 26 experts. This discussion was followed by an online 

questionnaire, which was made accessible to 33 DZLM experts. With a response rate of 

34%, this can be assumed to be very satisfactory.   

After the results had been incorporated, it was established that there were no more 

significant differences of opinions, so that a new round in the DZLM network was no longer 

necessary. 

Survey 3: 

The results of survey 2 were presented to 11 further researchers and 28 stakeholders. The 

stakeholders come from 12 different federal states and are in their region responsible for 

the qualification of facilitators in mathematics education. This whole sample included 

representatives from various universities, (pedagogical) state institutes, ministries of 

education, schools and special authorities for teacher training. 

This third survey was conducted in two steps. In a first round, everyone wrote down a 

personal statement to the framework in general. These statements were discussed in small 

groups resulting in written group statement. All these written statements were analysed and 

included in the further development of the framework.  

In a second round we focussed on the usability of the framework. For this the stakeholders 

reflected the framework by applying it to a specific PD-topic from their experiences. They 

were asked to think of whether the single competencies have been addressed and how and 

if they could structure all the competencies according to their importance.   

 
Figure 1: Competency framework for facilitators in mathematics education 
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Based on these findings and exchange processes in the DZLM, a final competency 

framework for facilitators in mathematics education has now emerged (Figure 1). 

RESULTS 

All the steps of the Delphi method were characterized by strong discussions resulting in 

important points for the further development of the framework. To give an exemplarily 

insight into the whole process and the emerged framework we highlight the most important 

aspects, which easily converged or led to strong debates.  

The key issue through all surveys was the question to figure out differences and similarities 

between the teachers’ competencies on classroom level and the facilitators’ competencies 

on PD-level. What can be lifted from classroom- to PD-level and what is new on PD-level? 

These were the questions, which emerged at different steps in the process and led to the 

specification in the two areas about competencies on the classroom and on the PD-level. It 

was an intensive debate, whether these two areas are separated as equal areas or if 

knowledge on classroom level is an integral part of knowledge on PD-level. The final 

agreement was that content knowledge on PD-level (CK-PD) covers all aspects of teachers’ 

knowledge. Lifting the well-established specification CK, PK and PCK from classroom- to 

PD-level, you must specify PK-PD and PCK-PD for facilitators (Wilhelm et al. 2019). Both 

take into account the specific orientation on teachers as learners, either from a general view 

on adult education (PK-PD) or as PCK-PD in a subject-related way (Prediger, 2019). PCK-

PD covers all “the abilities to engage teachers in purposeful activities and conversations 

about those mathematical concepts, relationships and to help teachers gain a better 

understanding of how students are likely to approach related tasks” (Jacobs et al., 2017, p. 

3). It also includes learning hurdles when teaching mathematics (Rösken-Winter et al., 

2015). 

The clear structure of the framework in key competency areas was appreciated from the 

beginning. The four areas (Competencies on PD Level, Competencies on Classroom Level, 

Professional Values and Beliefs, Professional Self-Monitoring) were changed to five by 

supplementing “Professional Social Competencies”. The reason was to point out that 

“Communication and Cooperation” has to be considered on all levels and is relevant 

between all players (teachers, facilitators, stakeholders).  

The segments “Professional Values and Beliefs” and “Professional Self-Monitoring” have 

been restructured. Above all, the dual role and one's own understanding of their role as a 

facilitator also had an increase influence. Therefore, the facet “Role Identity” was included 

alongside professional beliefs and ethics. The concept of motivational orientation has been 

replaced by self-efficacy beliefs, as this is the more relevant aspect in the field of PD 

(Bandura, 1999; Thurm & Barzel, 2020). For stakeholders it was important to include 

“Professional Experiences” explicitly to foster appreciation for teaching practice.   

What became apparent, however, was that the developed framework did not directly cover 

the systemic dimension such as school development processes, which are rather in the 

background, behind the aspects. Nevertheless, on the basis of the evaluation of the 
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documents, the participants found the idea, that embedding the systemic dimension has to 

be always taken into consideration, sufficient. 

CONCLUSIONS 

The development process of this competency framework showed the importance of 

involving the different players who are responsible for scaling up CPD-process in 

mathematics education. The Delphi method was highly relevant to reach a consensus in 

structure, the detailed competencies and in terminologies. This offers a sound basis when 

designing cooperatively processes in scaling up in CPD.  
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We report a case study intervention pilot-testing a program of activities aiming at 

enhancing pre-primary children’s multiplicative reasoning competences. The program 

treated discrete and continuous quantities in a unified manner; provided learning 

experiences pertaining to three fundamental multiplicative operations, namely iteration of 

a quantity, equi-partitioning, and counting with composite units / measuring with fractional 

units; and introduced terms for multiples and submultiples. Four pre-primary children 

participated in an intense 4-day intervention. The program of activities was well within 

their range of abilities and enhanced their competences in terms of their ability to discern 

and express verbally multiplicative relations; and to tackle multiplicative situations and 

explain their strategies.  

THEORETICAL FRAMEWORK 

Research-based evidence indicates that young children perceive, at a rudimentary level, 

multiplicative/proportional relations (Mix, Huttenlocher, & Levine, 2002), and are able to 

tackle simple multiplicative situations between discrete as well as continuous quantities 

(e.g., Hunting & Davis, 1991; Kornillaki & Nunes, 2005). For example, 4-5 year-olds 

identify pictures of imaginary creatures that are magnified proportionally among others that 

are not (Sophian, 2000). Provided that a sufficient number of area models of a part-whole 

relation are presented, 6-year-olds can select a model that represents the same relation albeit 

via different shapes with respect to kind or size (Goswami, 1989). Children who have not 

been taught multiplication or division (6-7 years of age) can recognize simple 

multiplicative transformations of discrete and continuous quantities and predict the effect 

of the transformation on a different quantity (McCrink & Spelke, 2016). Five to seven-

year-olds deduce the principle “more recipients, smaller share” that underlies fair-sharing 

situations (Kornillaki & Nunes, 2005), for discrete as well as continuous quantities. As 

could be expected, these early competences manifest themselves in a limited range of 

contexts and conditions. In addition, there are inter-individual differences with respect to 

these competences. It is nevertheless important to note that early multiplicative reasoning 

is enhanced when children are exposed to relevant informal or formal learning experiences 

(Hunting & Davis, 1991; Van den Heuvel-Panhuizen, & Elia, 2020). 

Early education has not capitalized yet on such evidence. For example, an analysis of the 

latest Greek early mathematics curriculum (K-2) showed that learning objectives pertaining 

to additive reasoning precede and are far more than the ones for multiplicative reasoning, 
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for discrete as well as continuous quantities (Vamvakoussi & Kaldrimidou, 2018). In the 

Kindergarten curriculum, in particular, all learning objectives for multiplicative reasoning 

are limited to discrete quantities; no linguistic or other tools for expressing multiplicative 

relations are mentioned, not even the word “half”. Nevertheless, children are intended to 

familiarize themselves with multiplicative situations pertaining to multiplication, partition, 

and quotition that call for three fundamental multiplicative operations, namely iteration of 

a quantity, equi-partitioning, and counting with composite units. These operations are 

applicable also for continuous quantities, if “counting with composite units” is replaced by 

“measuring with fractional units”. This fact is not exploited in instruction.  

These limitations in the Greek kindergarten early math curriculum indicate that early 

multiplicative reasoning competences are not adequately supported in early instruction, 

especially in the context of continuous quantity. The lack of terms for multiplicative 

relations is also important, given that linguistic tools are indispensable for prompting 

children to attend to the relations embedded in multiplicative situations and recognize the 

same relation in different contexts (Hunting & Davis, 1991). Indeed, vocabulary pertaining 

to multiplicative relations in the first grade has been found to uniquely predict proportional 

reasoning abilities in the second grade (Vanluydt, Supply, Verschaffel, & Van Dooren, 

2021). 

It could be argued, however, that introducing terms for multiples and submultiples in the 

first years of instruction as well as extending the multiplicative situations that children are 

intended to explore to continuous quantities as well, might be beyond the range of abilities 

of young children.  

We designed an program of activities addressing discrete and continuous quantities in a 

unified manner (see Steffe, 1991, for a relevant recommendation); providing learning 

experiences pertaining to all three aforementioned operations; and introducing terms for 

multiples and submultiples. To the best of our knowledge, there is no similar intervention 

reported in the literature targeting young children. We report results from a case study 

intervention investigating whether this program a) was within the range of abilities of pre-

primary children, b) would enhance children’s multiplicative reasoning competences, in 

terms of their ability to discern and express verbally multiplicative relations; and to tackle 

multiplicative situations and explain their strategies. 

METHOD 

The present study is a quasi-experimental case study. (Pre- test/ Intervention/ Post-test 

without a control group).  

Participants 

The participants were 4 children (mean age 5 years 7 months, one girl) who had just 

graduated from kindergarten and were familiar with fair-sharing situations involving 

discrete quantities (two recipients, no remainder). 

Experimental tasks  
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Pre- and Post-test were conducted via individual interviews. Three tasks were used (A, B, 

C, 4 trials each) targeting the relations 1:2 and 2:1 for discrete and continuous quantities 

(represented by concrete materials). Task A was an analogical task where the intended 

relation (X/Y) was exemplified, with the information that “X matches Y”. The children 

were asked to find the quantity Z matching a new quantity W. Task B was framed as a fair-

sharing problem. The children were given the initial quantity and asked to find the share 

(1:2); and vice versa (2:1). In task C children were explicitly asked to find “half” and 

“double” of given quantities, and to explain what the terms “half” and “double” mean. 

Overall, there were 3 trials for 1:2 for discrete quantities, 3 trials for 1:2 for continuous 

quantities; and similarly for 2:1.  

An additional task (D), similar to C, albeit for 1:3/ 3:1 was added in the post-test. The 

children were given 5 alternatives for each trial and were asked to explain their answers.    

Procedure 

The children participated in the intervention as a group, during four consequent days (one 

session per day, about 45΄ each). The pre- and post-test took place one day before and two 

days after the intervention, respectively. Children and their parents consented to participate 

in the study. Τhe intervention was carried out by the first author of this paper, a qualified 

kindergarten teacher.  

The intervention  

We designed two types of activities. Both types addressed discrete and continuous 

quantities represented by concrete materials; were embedded in story-based scenarios; and 

required iteration of a quantity, equi-partitioning, and measuring with different units 

(composite units for discrete quantity, fractional units for continuous quantity). The first 

type of activity was based on simple and proportional sharing. The children worked with 

24 such multiplicative situations during the first two days. According to the scenario, the 

children were asked to help imaginary creatures (represented by rectangular bars of 

cardboard with equal width, but different length) to share candies (discrete) or chocolate 

bars (continuous) proportionally to their length. The relations between the lengths were 1:1 

(fair-sharing), 1:2, and 1:3 (proportional sharing). Depending on what was asked (number 

of recipients, quota, or the shared quantity), different operations were required.  

The second type of activities addressed multiplicative change situations. We employed 

“fractions machines” (Hunting & Davis, 1991), producing multiples of given quantities 

from one side (2, 3, 4), and the corresponding submultiples (1/2, 1/3, 1/4) from the other. 

The children worked with 23 such problems during the last two days.  

During the intervention, the researcher modeled the operations and introduced the new 

terms. The terms for multiples (double, triple, quadruple) were introduced in the context of 

iteration of a quantity. The children were familiar with the term “half” in fair-sharing 

situations (equi-partitioning), so the same context was used for the introduction of other 

terms for submultiples (one third, one fourth). Because equi-partitioning continuous 
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quantities, in particular in three parts, was challenging for the children, fractional pieces of 

the quantities were available for them to choose from and examine how many times they 

fit in the given quantities. Thus, the children had to estimate the magnitude of the part first, 

and then to verify their estimate by measuring the quantity with its part.  

RESULTS  

Children’s response to the intervention  

The intervention tasks were challenging for the children. Indeed, most of the tasks were 

unfamiliar to them, in particular the tasks pertaining to multiplicative change, which was 

a novel multiplicative situation for them. The children collectively came up with effective 

strategies for some of the unfamiliar situations (e.g., dealing for fair-sharing to more than 

two recipients, folding for equi-partitioning a continuous quantity in two parts). More 

importantly, they appeared capable of adopting and using the intended strategies and 

vocabulary introduced by the researcher; and to transfer them to the novel situation of 

multiplicative change. To illustrate this point, we present two episodes that occurred οn 

the fourth day of the intervention. In the first episode, the researcher presents for the first 

time the children with the 1:3/3:1 “fraction machine” for discrete quantities. The capital 

letters in the brackets refer to Figure 1, illustrating the use of materials by the researcher 

and the children. 

Researcher:  This machine works with candies. If I put this candy in here, it will 

produce three candies out of its big side [illustrates with the materials, A] 

Child 1:  Triple. And if you put two candies in, it will make them six [mentally].  

Researcher:  How do you know this? 

Child 1: Because it will repeat three two times [illustrates with the materials, B] 

Child 4: No, it will repeat two three times. Because there are two candies [illustrates 

with the materials, C]   

 

Figure 1: Introducing the 1:3/3:1 “fraction machine” (discrete quantity, multiple) 
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Child 1 discerned and verbalized the intended relation already with the first example 

(Figure 1, B), and offered an additional example. His answer, although numerically 

correct, did not model accurately the given situation. Child 1 presumably relied on one-

to-many correspondence (one candy -> three candies, one + one candies -> three + three 

candies), a strategy that was not presented in the intervention. Child 4 recognized and 

corrected the “misstep” using the intended strategy (Figure 1, C). 

In the second episode, the researcher had already introduced the 1:3/3:1 “fraction 

machine” for continuous quantities and the children had worked with tasks regarding the 

increase of the length of stick candies by a factor of 3. The researcher then asked about 

the inverse process:  

Researcher:  Now let’s see what happens if I put this stick candy into the big side of the 

machine. What do you think will come out from the small side?   

Child 3:  It will share it [sic].  

Child 1: Yes, three times [sic] 

Child 2: Where are the little pieces? [tries with two smaller stick candies (1/2, 1/3) 

checking whether they fit three times into the given one]. 

As this excerpt indicates, the children were able to anticipate what the machine would do, 

and also to use the intended strategy in order to find the outcome. However, none of them 

used the term “one third”. More generally, regarding submultiples, the children used 

spontaneously only the word “half” during the intervention. On the contrary, they adopted 

and used the terms for multiples (e.g., Child 1 in the first episode), and also attempted to 

generalize them. For example, Child 3 invented a word similar to “sixtuple” to refer to “the 

one that makes everything six times bigger”.  

Quantity, 

Relation 

Pre-test Post-test 

Ch1 Ch2 Ch3 Ch4 Total Ch1 Ch2 Ch3 Ch4 Total 

D, 1:2 (n=3) 1 3 1 1 6 2 2 2 3 9 

D, 2:1 (n=3) 0 0 1 0 1 2 2 2 3 9 

C, 1:2 (n=3) 0 1 2 1 4 1 2 1 3 7 

C, 2:1 (n=3) 2 0 1 1 4 3 3 3 3 12 

Total 3 4 5 3 15 8 9 8 12 37 

D, 1:3 (n=2) - - - - - 1 0 1 0 2 

C, 3:1 (n=2) - - - - - 0 1 0 1 2 
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Table 1: Total of correct responses per type of quantity, per relation, and per child in the 

pre- and post-test. 

Performance  

Children’s correct and incorrect responses in the pre- and post-test were scored by 1 and 0, 

respectively. Table 1 presents the frequencies of correct responses in the trials 

corresponding to each relation (1:2, 2:1) across the tasks A, B, C, for discrete (D) and 

continuous (C) quantities. For the common part of the pre- and the post-test, this results in 

three responses per relation and per type of quantity; and similarly to two responses in the 

additional task (Dask D) of the post-test.  

Table 1 shows that there was a considerable increase in correct responses after the 

intervention, at group as well as at individual level. For the common part of the pre- and 

post-test, the percentage of correct answers in the total of trials involving discrete quantities 

has increased from 29,2% to 75%; and the percentage of correct responses in the trials 

involving continuous quantities has increased from 33,3% to 79,2%. In Task D, each child 

responded correctly to one out of four trials. 

Explanations 

Children explanations during pre and post- test can be roughly categorized in two different 

types. The first type (Non-valid explanations) includes null explanations (e.g., “I don’t 

know” or “I saw it”); pseudo-explanations that were relevant to the general context but not 

to its quantitative aspects (e.g., “Because he wants to eat chocolate after dinner”); and 

inadequate quantitative explanations, typically based on absolute quantity, rather than on 

quantitative relations (e.g., “because it’s small”, “because there are three”).    

The second type of explanations (Valid explanations) includes the cases where children 

expressed verbally and/or non-verbally (e.g., with gestures) a valid strategy that they used 

to make or verify their choice. We also included in this category explanations indicating 

that the children employed the principles underlying the situation at hand. In the following 

excerpts we present three examples of valid explanations, two in the context of continuous 

quantity, and one in the context of discrete quantity.  

In the first example, Child 3 explained how he found half of a “chocolate bar”: 

Child 3: We cut in the middle and we got one half [passes his hand over the “chocolate 

bar]. And the other piece that remains is also half. It is the same as this one 

[points to the correct alternative]. Here, look! [picks up the correct part and 

shows it fits two times into the “chocolate bar].   

In the second example, Child 2 was presented with a “chocolate bar” and was asked to find 

the one that was double (in length) than the given. 

Child 2:  Which chocolate bar should I choose for this small one? I know! That one! 

[points to the correct alternative] 

Researcher:  Why do you think it’s this one?    
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Child 2:  Because if you try to fill the big chocolate bar, you have to have two like 

the small one [mentally].  

In the third example, Child 4 was told that the researcher gave some candies to “Helen and 

her little sister” and that the two girls shared the candies fairly. Then he was presented with 

the two candies that Helen took.   

Researcher: Look, Helen took two.  

Child 4:  And her little sister another two [mentally].  

Researcher: And how many candies did I have in the beginning? 

Child 4: Four. And then they became two for each girl. 

In this excerpt, Child 4 showed a quite principled understanding of the situation at hand: 

First, he appeared to employ the principle that in fair-sharing situations, the shares must be 

equal. He then used the two equal shares to compose the initial quantity, while also referring 

to the inverse process. 

Table 2 presents the frequency of valid and non-valid explanations in the total of the trials 

in the common part of the pre- and the post-test (12 trials per test) and in the additional task 

of the post-test (4 trials), per child. There was a considerable increase in the number of 

valid explanations after the intervention, at group as well as at individual level. Overall, in 

the common part of the pre- and the post-test the percentage of valid explanations increased 

from 6,3% to 62,5%. In the additional task (task D) of the post-test, two of the children 

gave no valid explanations.  

Tasks Explanation type Pre-test Post-test 

Ch1 Ch2 Ch3 Ch4 Total Ch1 Ch2 Ch3 Ch4 Total 

A, B, & C Non-valid 12 11 12 10 45 4 5 7 2 18 

Valid 0 1 0 2 3 8 7 5 10 30 

Total 12 12 12 12 48 12 12 12 12 48 

D Non valid - - - - - 3 4 2 4 13 

Valid - - - - - 1 0 2 0 3 

Total      4 4 4 4 16 

Table 2: Total numbers of valid and non-valid explanations in the pre- and post-test, per 

child. 

CONCLUSION –DISCUSSION 

We designed a program of activities introducing three fundamental multiplicative 

operations in a variety of situations, and terms for expressing multiplicative relations, 

across discrete and continuous quantity. We pilot-tested this program with a case study 

intervention, with four pre-primary children. The intervention was short and, arguably, very 

intense in terms of the amount of work required from the children. 
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Nevertheless, the results were promising. The program of activities was well within the 

children’s range of abilities. By the 4th day, the children implemented the intended 

strategies; invented their own strategies; discerned and verbalized multiplicative relations 

and anticipated the outcome of multiplicative transformations. These competences were 

fairly stabilized for 1:2/2:1, as indicated by children’s performance in the post-test in terms 

of correct answers and valid explanations. Children’s ability to tackle relations beyond 1:2/ 

2:1 was evident during the intervention, but did not reflect in their performance in the post-

test. This is not an unexpected result, since 1:2/ 2:1 are more accessible to young children 

(Hunting & Davis, 1991) and the participants already had some relevant experience. The 

short duration of the intervention should also be taken into consideration.  

A long-term, systematic intervention, with a larger and more diverse sample, is required to 

investigate whether a program of activities with the specific features can substantially 

enhance young children’ multiplicative reasoning. In particular, it is worth investigating 

whether children who have acquired vocabulary relevant to multiplicative relations in early 

instruction (possibly, at kindergarten) and can use it in a variety of multiplicative situations 

are more competent in multiplicative reasoning in the long run (Vanluydt et al., 2021).     
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Students’ individual interest in mathematics decreases in the first semester at university 

which leads to demotivation and even dropout. One way to prevent this could be to foster 

students’ situational interest. Thus, the present study aimed to take a closer look to 

individual and situational factors that influence the emerge of situational interest in 

university mathematics courses. 150 first-semester students filled in a questionnaire 

concerning individual traits and stated three times in a lecture their situational interest as 

well as their experience of competence and autonomy. Linear mixed models indicate that 

individual interest in university mathematics as well as experience of autonomy and 

competence strongly relate to situational interest. These findings could contribute to a 

better support of students’ interest development. 

INTRODUCTION 

Transition to Advanced Mathematics Courses 

A high dropout rate of study programs in mathematics indicates serious students’ problems, 

especially in the first year of study (di Martino & Gregorio, 2018; OECD, 2010). 

Researchers postulate two changes of the learning environment at the transition from school 

to university: a shift in the character of the learning domain, mathematics, and a change of 

the learning opportunities from guided to self-regulated learning (cf. Rach and Heinze, 

2017).  

Advanced mathematics includes mathematics as an academic discipline based on concept 

definitions and deductive proofs (Gueudet, 2008). This character of mathematics strongly 

shapes teaching at university, e. g., by a strong focus on the Definition–Theorem–Proof 

structure (Engelbrecht, 2010). In contrast to that, teaching mathematics in school primarily 

focused on the goal of general education: Mathematical concepts and procedures are useful 

tools for describing the world and solving real world problems (e. g., Gueudet, 2008). 

Specifically, in Germany, the transition from school to university therefore coincides with 

a shift of the learning domain from an applied-oriented form of mathematics to advanced 

mathematics. 

In addition, the formal organization of learning opportunities and the individual learning 

strategies necessary for an effective use of the learning opportunities differ between school 

and university. In Germany, the Linear Algebra course for students in a mathematics or a 
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teacher education program consists of three different learning opportunities a week: two 

90-minutes lectures, a set of approx. four challenging exercises as obligatory homework 

(self-study phase alone or in small study groups) and a 90-minutes tutorial per week (see 

Rach & Heinze, 2017). In lectures, a lecturer presents fundamental definitions, theorems, 

and proofs which students apply when solving the exercises. In tutorials, students discuss 

the exercise solutions with a tutor. 

Role of Situational Interest in Learning Processes 

Students’ problems in the first year of study are mainly based on insufficient performance 

and the lack of motivation. One important motivational variable is interest, often 

conceptualized as a person-situation-relationship (Hidi & Renninger, 2006; Krapp, 2002). 

It is assumed that high interest leads to a frequent use of deep learning strategies (Willems, 

2011) and to more engagement in learning situations (Dietrich, Viljaranta, Moeller, & 

Kracke, 2017) because an interested learner seeks to find out more about the learning 

content. However, there is only little empirical evidence for this chain of effects. One 

reason for this difference between theoretical argumentation and empirical results is that 

many studies analyse the relation between individual interest and the use of learning 

strategies and not between interest in a specific learning situation and the use of the learning 

strategies in this situation. In contrast to individual interest as a trait, situational interest is 

defined as “a temporary state aroused by specific features of a situation, task, or object (e. 

g., vividness of a text passage)” (Schiefele, 2009, pp. 197-198) and may influence learners’ 

behaviour in concrete learning situations. Situational interest consists of two components, 

a feeling- and a value-related one: “The feeling-related valences refer to positive 

experiential states while being engaged in an interest-based activity” (Krapp, 2002, pp. 

389) and “The value-related valences refer to the assumption that an interest has the quality 

of personal significance” (Krapp, 2002, pp. 388). In line with these works, I define 

situational interest as follows: Situational interest is a motivational state which is 

characterized by a feeling- and a value-related component. Situational interest results of 

an interaction of learners’ and situational features. 

Other psychological models that describe feeling- and value-related valences are 

expectancy-value-models (Eccles & Wigfield, 2002). Especially, value concerning an 

object is closely connected to situational interest because e. g. value is decomposed in 

intrinsic value (similar to the feeling-related component of interest) and utility value 

(similar to the value-related component of interest). Gaspard and colleagues (2015) divide 

the utility component further on in utility for career, school, daily life etc. Since these two 

concepts are very similar to each other, results from both research directions will be 

considered. In the following, I will summarize in which way situational interest resp. value 

supports learning processes which individual and situational characteristics may influence 

the emerge of situational interest resp. value. 

Previous studies show that situational interest resp. value is related to engagement in 

learning situations (e. g. Dietrich et al., 2017; Linnenbrink-Garcia et al., 2013) and a long-
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maintained situational interest can grow into individual interest (Hidi & Renninger, 2006). 

Individual interest is an important trait that has an impact on the choice of study program 

or career (Ufer, Rach, & Kosiol, 2017). 

Several studies indicate that individual interest influences situational interest (Ferdinand, 

2014, 10th grade, social sciences; Linnenbrink-Garcia, Patall, & Messersmith, 2013, science 

summer program for adolescents; Willems, 2011, 8th grade, mathematics). Until now, there 

are divergent result concerning the role of prior knowledge on situational interest: Whereas 

Schukajlow and Rakoczy (2016) didn’t identify any relation in a study with 9th graders in 

mathematics, Rotgans and Schmidt (2011) reported a small correlation between prior 

knowledge and situational interest in a university economic lecture.  

Divergent results of these studies can be explained because the reported studies vary in the 

learning context, e. g. in the learning content and the learners’ age. Thus, characteristics of 

the learning context should be taken into account. As summarized above, learning 

situations in the first year of university are characterized by specific features, especially by 

distinguishing academic mathematics from school mathematics. However, in many 

questionnaires items like “I enjoy doing mathematics” are applied when measuring 

individual interest in mathematics. For students, it is not clear which character of 

mathematics they should refer to when estimating such items – mathematics at school or 

advanced mathematic at university. So, I recommend for studies in tertiary mathematics 

programs to use instruments that differentiate between mathematics at school and at 

university (Ufer et al., 2017).  

Not only individual characteristics but also person-situation-interactions can influence the 

emerge of situational interest. A prominent approach to describe learners’ experiences of a 

learning situation is the self-determination theory, especially the concept of basic needs 

(Deci & Ryan, 2002). The mode of action may be that only if the basis needs are fulfilled, 

then learners perceive situational characteristics of the learning context that foster learners’ 

interest. Empirical studies partly support this assumption: Situational interest is partly 

connected to the experience of competence (Ferdinand, 2014; Willems, 2011; see also 

Linnenbrink-Garcia et al., 2013) and to the experience of autonomy, especially to the fit of 

personal wishes (Ferdinand, 2014; Willems, 2011). Based on these studies, the experience 

of relatedness seems to be less important for the occurrence of situational interest.  

To increase the experience of autonomy, competence and thus situational interest, 

situational characteristics of the context could be helpful. Hulleman and Harackiewicz 

(2009) found that students in a science class with low expectations profit from activities 

which encourage them to connect course materials to their lives. These learners with low 

expectations reported a higher interest in science than students who didn’t think about the 

relevance of the course content. Gaspard and colleagues (2015) use a similar approach for 

a relevance intervention in mathematics classrooms.  

In sum, it is essential to foster situational interest and situational interest is probably closely 

connected to individual interest. However, at the beginning of tertiary courses in 
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mathematics, the character of mathematics change and it is an open question which 

motivational traits concerning which character of mathematics influence situational interest 

in this situation. I expect that a more differentiated measure of individual, motivational 

variables could explain the emerge of situational interest better. In addition, the role of prior 

achievement and experiences of competence for the emerge of situational interest is not 

fully clarified.  

RESEARCH QUESTIONS 

To gain a closer insight into students’ situational interest, I focus on the following 

questions: 

● How does students’ situational interest relate to their individual charac-teristics, 

especially their study program, prior achievement and facets of individual 

interest? 

● How does students’ situational interest relate to their experience of autonomy and 

competence? 

METHODS 

Participants were 150 students (94 male, 56 female) in a first-semester-course. The 

majority of these students (72%) were enrolled in a teacher education program for 

secondary schools; the others in a mathematics (13%) or in a computer science or physics 

program (15%). Almost all students of the lecture participated in this study. 

 
 

Figure 1: Design of the study 

The study took place in a first-semester lecture “Linear algebra” in the second week of 

semester. This course was an advanced mathematics course and typical topics like vector 

spaces, bases, linear equation systems etc. were included. Students voluntarily reported at 

the beginning (after 15 minutes of lecture), in the middle (after 45 minutes of lecture) and 

at the end (75 minutes of lecture) their situational interest (Figure 1). The applied 

questionnaire is based on the instruments of Gaspard et al. (2015) and Dietrich et al. (2017) 

and contains the feeling- as well as the value-related component of situational interest (see 

Table 1). When stating their situational interest, students also rated how autonomous and 



Rach 

PME 44 – 2021   3 - 409 

self-competent they felt in the last 15 minutes of the lecture (adapted from Willems, 2011, 

see Table 1). As I only wanted to interrupt the lecture smoothly, I used single-items to 

measure the experience of competence and autonomy. Students rated all items on a four-

point-likert scale from agree (4) to disagree (1). The descriptive analyses don’t give hints 

for floor or ceiling effects, the reliability for the scale “situational interest” is still acceptable 

(Table 1). 

Scale Sample Item M / SD α 

Situational interest, 

feeling- and value-

related component 

(4 items) 

I like these contents.  

The content is important for my 

study. 

2.89 / 0.57 

2.82 / 0.61 

2.89 / 0.64 

.64 

.66 

.69 

Experience of 

competence 

(1 item) 

I have the feeling that I can 

understand difficult content. 

2.65 / 0.82 

2.40 / 0.86 

2.45 / 0.88 

- 

Experience of 

autonomy  

(1 item) 

I have the feeling that the lecture is 

as I wish. 

2.59 / 0.81 

2.52 / 0.89 

2.50 / 0.91 

- 

Table 1: Scales with sample items, means (M), standard deviations (SD), and cronbachs’ 

α for all three times. 

Before the lecture started, students filled out a questionnaire concerning their individual 

interest in school and their interest in university mathematics (each scale à five items, 

α = .74 and α = .81, item example for interest in school mathematics: “I am interested in 

the kind of mathematics that I learned at school”, see Ufer et al., 2017). The correlations 

between these two interest facets are small to middle: r = 18, p < .05. To use it as an 

indicator for prior achievement, the students reported their overall final school grade 

(reversed scale, from 1.0 sufficient to 4.0 very good). 

RESULTS 

This design is a multi-level design because situational interest is measured three times in a 

lecture. So, to investigate which factors situational interest predict and to control the 

standard errors, I use a linear mixed model (see Bates, Mächler, Bolker, & Walker, 2015). 

By this model, one can explore the relation between fixed factors like study program or 

facets of individual interest as well as random factors, such as times.  

In the first step, I analyse if the person or the time is more relevant to explain differences 

in situational interest. It turns out that situational interest differs more between persons than 

between time. In the second step, I examined which individual and situational factors 

predict the emerge of situational interest. Whereas the final school grade doesn’t explain 

any variance in situational interest, the study program does: Students enrolled in a teacher 

education program reported less situational interest than students from the mathematics 

study program (Table 2, Model 1). By integrating facets of individual interest into the 

analysis, the prediction power of the study program decreases because individual interest 
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in university mathematics relates strongly to situational interest, in contrast to interest in 

school mathematics (Table 2, Model 2). In the last model, interactions of students and the 

learning context are focused: Experiences of competence as well as of autonomy relate to 

situational interest. As individual interest and experiences are measured on the same likert-

scale, one can compare the strength of the relations: Individual interest and experience of 

autonomy are similar connected to situational interest, while experience of competence 

shows a smaller relation to situational interest than the other two factors (Table 2, Model 3). 

With the last model, 41% of the variance of situational interest can be explained. 

Variable Model 1 Model 2 Model 3 

Study Program -.61*** -.37*** -.30**   

Final school grade .03      .02      .00      

Individual Interest School  -.09       -.05       

Individual Interest University    .41*** .21** 

Experience of Competence     .12*** 

Experience of Autonomy     .19*** 

R² .18 .31 .41    

Table 2: Results (unstandardized regression coefficients) of a mixed-linear regression 

model to predict situational interest; *** p < .001, ** p < .01. 

DISCUSSION 

The starting point of this contribution are the enormous dropout rates in mathematics study 

programs which are partly based on students’ demotivation of studying (academic) 

mathematics. The present study aims to take a closer look on factors which influence 

students’ situational interest in university learning situations. In line with previous research 

(Linnenbrink-Garcia et al., 2013), individual characteristics, especially individual interest 

in university mathematics, strongly influence situational interest. The results also provide 

additional support for the relation between experience of autonomy resp. of competence 

and situational interest (see Ferdinand, 2014; Willems, 2011). In addition, the results of this 

study show that situational interest differs between learners of different study programs. 

Students in a teacher education program report less situational interest comparing to 

students of the mathematics program in this study. Following the results of Dietrich et al. 

(2017), these students will be less engaged in learning academic mathematics. Ufer and 

colleagues (2017) support this observation when they reported that students in a teacher 

education program are much more interested in school mathematics than in academic, 

university mathematics. For these students who want to become teachers in the future, it is 

probably important to understand the relevance of university mathematics for their future 

career as a school teacher to improve their learning engagement. 

The interpretation of this study is limited because the reliability of the situational interest 

scale is only acceptable. This is probably due to the broadness of the construct. In addition, 

I investigated situational interest at three times in only one lecture. Future research could 

replicate these results in other study programs and deeply examine the influence of 
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situational interest on the engagement and success in university learning situations by a 

longitudinal study.  

The results of this study still can contribute to our understanding of the emerge of 

situational interest and can help to construct activities that foster the development of 

situational interest. According to the study of Hulleman and Harackiewicz (2009), 

university courses could offer activities which encourage students to make connections 

between the learning content and their future career. One possible activity builds on the so 

called “Schnittstellenaufgaben” which link school and advanced university mathematics 

(Bauer & Kuennen, 2017) and could be helpful to motivate students in teacher education 

programs. Besides supporting students in their learning process, these intervention studies 

could deeply explain the relation between situational interest and the experience of 

autonomy and competence in concrete learning situations. 

The project SIMs (“Situational Interest in a Mathematics study program”) is supported by 

the German Research Foundation.  
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In South Africa, although school language policy expects that the majority of early 

grade teachers should teach mathematics in an African language, initial teacher 

education programmes are offered in English. To investigate bilingual sense making of 

mathematics, students in their first year of a teacher training programme wrote the 

same mathematics test in two languages:  English and isiXhosa, as part of the national 

assessment. Data from 88 student teachers revealed that their performance was better 

in the English version of the test. The majority of the students (69%) preferred the 

English version of the test. The study recommends that universities need to pay far 

greater attention to the teaching of mathematics in isiXhosa for the early grades. 

INTRODUCTION 

Globally mathematics classrooms are becoming increasingly diverse in terms of their 

linguistic resources (Barwell, Wessel & Parra, 2019). There are a diminishing number 

of classrooms where all the children in the class speak the world language which is used 

as the medium of instruction for mathematics. It can no longer be guarenteed that the 

mathematics teacher shares a home language with all the members of her class. This is 

a result of globalisation and increased migration and movement of displaced people; 

and the growth of small groups advocating for the rights of indigineous people and those 

in the linguistic minority in a country to access learning of mathematics in their mother 

tongue (Barwell, Barton, & Setati, 2007). According to Moschkovich (2002: 189) 

if mathematics reforms are to include language-minority students, research needs 

to address the relation between language and mathematics learning from a 

perspective that combines current perspectives of mathematics learning with 

current perspectives of language, bilingualism, and classroom discourse. 

A systematic review of research in multilingual classrooms in South Africa (Setati, 

Chitera, & Essien, 2009) found an insignificant number of publications focusing on 

multilingual classrooms; and described the research on the role of language in early 

grade mathematics (Grades R–4) as insignificant (compared to research on language in 

mathematics at higher levels). This gap has been partly addressed by a more recent 

review which focuses explicitly on the early grades and has South Africa, Kenya and 
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Malawi with their multilingual mathematics classrooms (Essien, 2018). In this review 

Essien identifies three themes pertaining to this corpus of research: (1) research on the 

impact of language policy framework on curricula in relation to teaching and learning 

of mathematics; (2) research in teacher education and professional development; and 

(3) research on pedagogic/language practices. Essien (2018) notes that, in relation to 

theme 2, there is a paucity of research in general, and clear gaps in terms of how teachers 

are trained to teach early grade mathematics in multilingual contexts; and that there are 

rarely quantitative or mixed methods studies.  

This paper seeks to contribute to filling this gap by offering a mixed methods research 

design focusing on language and mathematics competencies of student teachers in an 

initial teaching programme. As home language speakers of a African language it is 

assumed that teachers will be able to translate their understanding of mathematics, 

taught in English at university level, into their African language when teaching in an 

early grade classroom. We investigated the assumption be comparing student 

teachers‘ attainment in mathematics tests (written in English and isiXhosa); as well as 

their perceptions of this experience of the tests and needs in relation to teaching 

mathematics in an African language. 

THEORETICAL FRAMING 

South Africa with 11 official languages, all being used to teach mathematics in the early 

grades, provides a rich lab for reflections on multilingualism and mathematics. Its 

language context is complex, and reflects both its colonial and Apartheid past. There 

are two languages of the colonisers (English and Afrikaans) and those may be 

considered world languages. The other nine languages comprise of sign language, and 

eight indigenous African languages (some of which stem from the same linguistic 

branches). 

The use of African languages for the teaching of mathematics has been an area of debate 

for a long time in South Africa (see Setati & Adler, 2000). While mother tongue 

instruction in mathematics is considered to be the most valuable for learning; such 

learning is allusive when the language in question is not yet fully developed as an 

academic language; and when this language competes with the hegemony of a world 

language. Essien (2018: 52) describes the language in education policy in South Africa 

as being: “Based on non-discriminatory language use, ...which calls for the promotion 

of multilingualism in the education sector through the use of languages”.  The policy 

therefore advocates that learners choose their [Language of Learning and Teaching 

(LOLT) and that school governing bodies need to stipulate how the school will promote 

multilingualism in the school. Most (public) schools use the mother tongue as the LOLT 

in the foundation phase (Grade R–3) (Essien 2018: 52).  
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Setati (2008) describes the ‘freedom to choose’ the language of learning of teaching in 

schools as advocated in policy, as a chimera, given the economic, social, political and 

ideological factors underpinning the world language (English). So while the majority 

of children in the early grades learn mathematics in their home language, by Grade 4 

they are expected to learn mathematics in English. They continue to learn an African 

language (at home language level) and English (as a first additional language).    

In order to find solutions to the mathematics under-achievement in all levels of 

schooling, particular importance was given to primary school mathematics teaching and 

learning and the national Primary Teacher Education (PrimTEd) was established. This 

had a dual focus: on mathematics and on language (where the primary concern was 

African languages). 

METHODOLOGY 

The setting for this study was the rural province of Eastern Cape, were the dominant 

African language is isiXhosa. The study was conducted in a rural university where the 

majority of student teachers were isiXhosa home language speakers, and had passed 

their National Senior Certificate with isiXhosa as a subject at home language level. 

They are also relatively fluent in English (having been taught in English from Grade 4 

onwards and passed their National Senior Certificate being examined in English).  

The research question addressed in the paper is: How did student teachers perform in, 

and respond to, the same mathematics test administered first in isiXhosa and then in 

English (or vice versa). Quantitative data was gathered from the performance trend by 

the primary teacher education student teachers in PrimTEd mathematics test (Alex, 

Roberts, Hlungulu 2020).  

The PrimTEd mathematics test items were translated from English into isiXhosa by an 

accredited isiXhosa language translator from the rural university. The translation was 

reviewed by the isiXhosa speaking primary mathematics lecturer. The test comprised 

of 50 questions worth a total of 50 marks. Each item was allocated 1 mark and there 

was no partial marking as a result of the single answer and multiple choice format of 

items. The test was written using pen and paper, in one of the lecturer session of the 

university, under normal test conditions. The scripts were marked by the second author, 

using a memorandum.  

The first year students (n = 96) voluntarily took part in the study (after giving informed 

consent). They were randomly assigned into two equal groups. Half of the class wrote 

the English version and half of the class wrote the isiXhosa version. After a week, the 

test was administered the other way around. After checking the number of student 

teachers who wrote both tests, the final data set comprised of 88 students in two groups: 

‘isiXhosa first’ group (n = 44) who wrote Test 1 in mother tongue and Test 2 in English; 

and the ‘English first’ group (n = 44) who wrote Test 1 in English and Test 2 in mother 
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tongue). It was assumed that student teachers would apply roughly the same effort to 

both tests (see Alex, Roberts, Hlungulu 2020). The results were considered in relation 

to the four categories: 

  Group 

  ‘English first’ group ‘isiXhosa first’ group 

Language of the test 
English Test 1 Test 2 

isiXhosa Test 2 Test 1 

Table1: Four categories of groups of participants 

Firstly, the test was analysed using descriptive statistics for overall attainment across 

all the items. Each student had two data points: Test 1 and Test 2. The mean result and 

standard deviation were calculated for each category. Paired t-tests were conducted to 

establish whether the observed differences in the means from Test 1 to Test 2 were 

significant or not. Secondly, for each student their change in result (delta) from Test 1 

to Test 2 was calculated. They were each coded as having ‘improved’, ‘stayed the same’ 

or ‘declined’ from Test 1 to Test 2.   

A short structured questionnaire was designed. This was administered after the second 

test, in English (which is language of instruction of the university). The following 

questions were posed: (1) What do you feel about the tests? (2) Which version of the 

test you felt easier to answer? English/ IsiXhosa? Why do you say so? (3) Based on 

your performance in the test, what would you like us to do for you? (4) Any other 

comments you want to share with us? The responses from the students, in their groups, 

were categorized into themes.   

FINDINGS  

In the first attempt (Test 1), the isiXhosa version of the test (𝑥 = 29%, SD = 7%) was 

found to be more difficult than the English version of the test (𝑥 = 34%, SD = 12%).  A 

paired t-test assuming equal variance found this difference to be significant, t (43) = 

1.99, p < 0.05.  Calculating Cohen’s D gave an effect size of 0.47 (medium). At the 

second attempt (Test 2) the isiXhosa version of the test (𝑥 = 34%, SD = 9%) was found 

to be more difficult than the English version of the test (𝑥 = 35%, SD = 13%).  A paired 

t-test assuming equal variance found this difference was not significant. So while in the 

first attempt the English results were better than the isiXhosa results, (by a significant 

difference, of medium effect size), this difference was no longer evident at the second 

attempt. 

 

From T1 to T2 isiXhosa first (%) English first (%) 

Improved  32 73% 27 61% 
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Stayed the same 3 7% 0 0% 

Declined 9 20% 17 39% 

Total 44 100% 44 100% 

Table 2: Percentage of student teachers where results improved, stayed the same or 

declined from Test 1 and Test 2 for each group 

A greater proportion of ‘isiXhosa first’ students improved (73%), than the proportion 

of ‘English first’ students who improved (61%). We see a complementary trend for the 

proportions of student teachers whose results declined from Test 1 to Test 2: There was 

a lower proportion (20%) of ‘isiXhosa first’ students, than the proportion (39%) of 

‘English first’ students whose results declined. There was lower attainment on the 

mother tongue version of the test than the English version of the test.    

Drawing on the qualitative data, we found that 61 (69%) of the student teachers said 

that the English version of the test was easier to answer; 23 (26%) of them found the 

isiXhosa version easier, and 4 (5%) student teachers responded that both versions were 

easy.  Most of the open ended responses on why found the English version easier to 

answer were “I understand it in English better”, “isiXhosa words are difficult”, “English 

explains better than isiXhosa”, and “I was taught in English”.  

In relation to the question: Based on your performance in the test, what would you like 

us to do for you? The main theme that emerged out of the student teachers’ responses 

from both groups was that there are content issues and language issues need to be 

addressed for them to do better in the mathematics. Some of the content issue were 

general in nature: “Help me learn more Maths”; “We need to do revision” and “I need 

extra lessons”, while others were more specific such as the mention of ‘fractions’ as an 

area of difficulty. It was positive to see that the student teachers realised that they need 

help with the topics and directly request help with isiXhosa vocabulary and discourse. 

The typical responses on language issues were “I need help with isiXhosa terms” and 

“Teach in English not in isiXhosa”. There was a strong plea from the students to change 

the language of future mathematics tests to English. On a more general note, the 

students requested for the use of calculators in doing the mathematics tests in future.  

The open ended question on ‘any other comments’, resulted in similar responses in 

terms of language and content. The language issues were stronger this time as student 

teachers in both groups recommended that “Maths should be taught in English” and a 

small minority group of students suggested that “Maths should be taught in home 

language and English”. “Make sure learners understand the language” and “Teaching 

Maths in isiXhosa won’t work” also echoed in the responses. The major concern from 

the student teachers was that Mathematics is more difficult when it is in isiXhosa as 

they were not exposed to it in their own schooling years and in their teacher training. 

The majority of the student teachers suggested that to support their teaching of 

Mathematics in isiXhosa required the provision of relevant resources.    
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DISCUSSION 

The assumption that as home language speakers of an African language, teachers will 

be able to translate their understanding of mathematics, taught in English at university 

level, into their African language was found to be false. Despite the student teachers 

being home language speakers of isiXhosa, and expected to teach mathematics in 

isiXhosa, their attainment in the isiXhosa version of the PrimTEd mathematics test was 

significantly worse than their attainment in the English version of the same test. In 

addition, the students expressed a preference for the English test. They were less able 

to make sense of the mathematics, when it was expressed in isiXhosa, and felt that they 

lacked the isiXhosa vocabulary and discourse to communicate mathematics in isiXhosa.   

The findings affirm the conclusion by Ramollo, (2014) who identified from two Initial 

Teacher Education programs that both lecturers and student teachers were concerned 

about the lack of vocabulary and syntax to communicate some mathematical concepts 

in African languages and the poor preparation which student teachers receive in the 

teaching of mathematics in an African language.  

CONCLUSION 

This paper sheds light on the complexity of the South African language and 

mathematics education situation. In a rural province, teachers are expected to teach 

early grade mathematics in isiXhosa and bring isiXhosa as their home language 

resource. Yet they perform better in the mathematics tests administered in English than 

in isiXhosa. In addition, when reflecting on the experience, the majority of the student 

teachers indicated their preference for the English version. This is a serious problem 

considering the policy expectation that they should teach mathematics in isiXhosa to 

early grade isiXhosa speaking children in their communities. The impact of the 

language policy – on their own mathematics development – where they last 

communicated in formal written mathematics using isiXhosa when they were ten years 

old; has not adequately prepared them for their role as a mathematics teacher in a 

multilingual classroom. As a result, it is clear that universities need to pay far greater 

attention to the teaching of mathematics in isiXhosa when preparing teachers for the 

early grades.  
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WHAT MIGHT BE CRITICAL IN A CRITICAL EVENT? 

Sigal-Hava Rotem1 and Michal Ayalon1 

University of Haifa, Israel 

 

The goal of this study is to examine how different definitions for a critical event may reflect 

what is found to be critical by pre-service mathematics teachers. We describe and analyze 

two critical events that were identified by two pre-service mathematics teachers from two 

different classroom observations. In each event, the pre-service teacher identified an 

instance where the teacher could build his or her instruction based on the student’s 

mathematical understanding. Data analysis is used to identify the similarities and 

differences between the two events. Implications are discussed. 

RATIONALE 

What is “critical” in a critical event that occurs during a mathematical lesson? It seems that 

the answer is in the eye of the beholder. Different researchers define, characterize and use 

critical events differently (e.g., Goodell, 2006; Rowland, Thwaites, & Jared, 2015; 

Stockero, Leatham, Ochieng, Van Zoest, & Peterson 2019). Here we refer to critical events 

as moments that hold the opportunity for the teacher to build on the student’s thinking, to 

make connections within mathematics and extend students’ mathematical horizons beyond 

the immediate task (Stockero et al., 2019). 

The common thread between the different definitions and characterizations is that they all 

use critical events as a tool to foster teachers’ learning and professional development in 

teachers’ education programs (e.g., Jacobs, Lamb & Philipp, 2010; Karsenty, Arcavi & 

Nurick, 2015; Stockero et al., 2019; Van Es, Cashen, Barnhart & Auger, 2017). Here, we 

suggest using critical events that were chosen by pre-service teachers (hereinafter PTs) 

from their lesson observations as a “research tool that provides a ‘window’ into a learner’s 

mind” (Zazkis & Leikin, 2007; p.15). In contrast to the shared use of critical events in 

teachers’ education, where the critical events are brought to the PTs for interpretive 

discussions by the researchers (e.g., Karsenty et al., 2015; Stockero et al., 2019; Van Es et 

al., 2017), here the PTs choose critical events for interpretation from their lesson 

observations.  

Similar to Zazkis and Leikin’s (2007) use of examples that were generated by teachers, we 

believe that the critical events PTs choose “mirror their conceptions of […] their 

pedagogical repertoire, their difficulties and possible inadequacies in their perceptions” 

(p.15). Therefore, characterizing PTs’ critical events will enable researchers’ learning. In 

this study, we will examine how the different existing definitions reflect what is found to 

be critical by PTs in order to suggest an initial characterization.  
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LITERATURE REVIEW 

The research of critical events is usually done within the context of research on 

mathematics teachers’ professional development programs, and mathematics PTs’ 

preparation programs, in which teachers’ educators bring critical events for interpretive 

discussion to enhance teachers’ learning. For example, Karsenty et al. (2015) examined the 

way interpretive discussions regarding observed videotaped events enhanced the 

development of mathematical knowledge for teaching within the context of a teachers’ 

professional development program. Van Es et al. (2017) examined the development of PTs’ 

noticing of ambitious mathematics pedagogy while using videotaped critical events as the 

focus of the university course.  

However, critical events are addressed differently by different researchers. The different 

names: MOST (Sotckero et al., 2019), contingency moments (Rowland et al., 2015), and 

critical incidents (Goodell, 2006) somewhat reflect the different characteristics of the 

different definitions. Each definition brings to the forefront some different features of 

critical events. For example, Stockero et al. (2019), who framed critical events as MOST, 

characterized them at the intersection of student mathematical thinking, significant 

mathematics, and pedagogical opportunity. Student mathematical thinking means that the 

student’s statement concerns mathematics. Significant mathematics is defined as 

mathematics that is appropriate for the students’ mathematical development level and 

central for the students’ learning goals. Pedagogical opportunity is framed by the opening 

to build on that student’s thinking and the timing for taking advantage of that opening. In 

this definition, Stockero et al. (2019) emphasized the mathematics of the event and the 

opportunity to deepen the student’s mathematical understanding. Rowland et al. (2015) 

characterized critical events according to the triggers that led the teacher to deviate from 

the lesson plan: (1) Responding to student’s idea – whether a response to a teacher’s 

question or a spontaneous statement; (2) A teacher’s insight that provoked her/him to 

modify their instruction ‘in the moment’; (3) The teacher’s response to the availability of 

tools and resources (for example, a digital resource that was central to the lesson plan is 

unexpectedly unavailable). Rowland et al. (2015) characterization emphasizes the gap 

between the planning of the teacher and the actual occurrences of the lesson. Goodell’s 

(2006) use of critical events highlights the learning potential for PTs who use mathematical 

and non-mathematical critical events while learning to teach. 

With the overarching goal of suggesting critical events that were chosen by PTs as a tool 

for researchers’ learning, the goal of this study is to examine how different existing 

definitions for critical events may be reflected in what is found to be critical by PTs. As an 

initial step, in this study, we will compare and contrast two critical events that were chosen 

by PTs from lesson observation in order to identify what might be characterized as critical 

in the critical events. The specific research question is: What are the similarities and 

differences between the two critical events?  
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THE STUDY 

Data Collection 

The data source for the research project was 48 critical event reports submitted by 13 

participants in the context of a pre-service high-track secondary school mathematics 

teachers’ university course, ACLIM-5 (a Hebrew acronym for “clinical training for unique 

5-unit (high track) mathematics teaching”). ACLIM-5 is a part of the PTs’ field-based 

preparation in which critical events identified by the PTs during classroom observations 

served as a focus for interpretation.  

In the study, PTs were directed to choose critical events and to submit written reports in 

which they described and interpreted events according to a structured framework based on 

Jacobs et al., (2010). The reports included prompts for describing the critical event, the 

mathematical context, what the student said and/or did, and what the teacher said and/or 

did and their thoughts about the students’ and teacher’s actions. PTs were instructed that a 

critical event is an instance where a student says something that involves mathematics and 

which holds the potential for further mathematical learning.  

In this study, we chose to analyze two critical events, Felice’s and Nora’s. Felice and Nora 

had their field-based preparation in different schools. Choosing two critical events that were 

identified in different classrooms and were taught by different teachers allows us to 

compare and contrast the events to examine how the different existing definitions are 

reflected in the critical events. Additionally, both Felice’s and Nora’s critical events were 

exemplary in the sense that their events represented an instance where a student’s 

mathematics holds the potential for further mathematical learning. 

Data Analysis 

To examine what might be characterized as critical in the critical events, we used the 

following characteristics: The mathematics of the event, student’s learning opportunity 

(both taken from Stockero et al., 2019), the teacher’s response to student’s idea that could 

lead the teacher to deviate from the lesson plan (taken from Rowland et al., 2015) and, the 

learning potential critical events hold for the PTs (taken from Goodell, 2006).  

FINDINGS 

Felice’s Story of a Critical Event 

The place: 10th-grade high track gifted mathematics classroom. 

Lesson topic: Complex numbers. Up to this class, the students learned to 

add/subtract/multiply complex numbers in the Cartesian form. The lesson goal, as I 

[Felice] see it, was to expose students to the concept of the absolute value of Complex 

numbers as preparation for transitioning from the Cartesian form to the Polar form. The 

situation lasted no more than 5 minutes. 

[…] One situation caught my attention, […] when she [the student] did not understand 

how (6)2 = 36 = (−6)2 but √36 maybe only 6. In response to her question, the teacher 
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said: “Look at the equation 𝑥2  =  36 and the function 𝑦 =  √𝑥  for 𝑥 =  36. The 

equation has two solutions ±6, and this can be checked by substitution. While the 

function 𝑦 =  √𝑥 corresponds to 𝑥 =  36 a single value (𝑦 value), since this is the 

definition of a function, each 𝑥 corresponds to a single value of 𝑦. Also, the ‘numbers’ 

world’ (domain) of the function is only the non-negative number set; that is why there 

is a difference; an equation does not act as a function.” 

This event occurred in the 10th-grade high track mathematics classroom while learning the 

absolute value of Complex numbers. A student’s question regarding (6)2 = 36 = (−6)2 

vs. √36 = 6 seems unconnected to the lesson’s topic, complex numbers. Felice tried to 

settle this gap between the mathematical content of the lesson and the mathematical content 

of the student’s question in several ways. First, she addressed this gap in her interpretation 

of the event: “Throughout mathematics, students meet quite a few times with square roots, 

powers and absolute values (for example, the distance between a line and a point). In my 

experience, I see quite a few students experiencing this situation at the very end of their 

track in the 12th-grade.” In this excerpt, besides acknowledging this gap, Felice also 

legitimized it. According to the Israeli context, the question 𝑜𝑓 (6)2 = 36 = (−6)2 vs. 

√36 = 6 is usually dealt with in the previous year while learning about the square root 

function. However, Felice relied on her experience and did not consider this a unique 

phenomenon. Second, she framed the context and gave an interpretation for the goal of the 

lesson as a way to bridge the gap between the mathematics of the lesson and the 

mathematics that the student’s question entailed. She wrote: “The lesson goal (from my 

perspective) was to expose students to the concept of the absolute value of complex 

numbers as preparation for transitioning from the Cartesian form to the Polar form.” In the 

Israeli context, the absolute value of the complex number is a usual intermediate phase in 

the transition between the Cartesian form and the Polar form. A typical approach will be to 

start with  |𝑥 + 𝑦𝑖| = √𝑥2 + 𝑦2  and then to give some numeric examples such as 

|−1 + 6𝑖| = √(−1)2 + 62 = √1 + 36 = √37.  

In terms of the opportunity to deepen the student mathematical understanding, Felice wrote: 

“I think it was a great question that would benefit the whole class for several reasons: It 

first sharpened the understanding of what equation is and what function is and what it 

means to solve an equation and what it is a value of a function, it further sharpened the 

meaning of the equal sign.”  From her perspective, the question of (6)2 = 36 = (−6)2 vs. 

√36 = 6 held the opportunity to differentiate between the multiple mathematical concepts, 

and she saw this as an opportunity to benefit the whole class mathematical understanding.  

When addressing the teacher’s response to the student’s idea Felice wrote: “I think the 

teacher was not surprised by the question, in particular, this question was not a surprise in 

this specific class (Because they seem to understand things so deeply, how can it be that 

one student got confused by such a matter).” Felice’s explanation for the reasons why the 

teacher was not surprised by the student question is characterized by the class traits, as the 

students of this class are gifted, they have internal motivation for a profound understanding 
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of the mathematics. She wrote: “[…] Students in this class (gifted) do not take things for 

granted, it is very difficult to ‘sell’ them things as they are, they strive for deep 

understanding.” Consequently, from Felice’s point of view, the teacher did not deviate from 

his plan, and there was no gap between the planning of the teacher and the actual 

occurrences of the lesson. 

The learning potential that this event held for Felice was articulated by her, as the following 

interesting question: “I am debating whether the teacher should introduce students to this 

question and its solution in advance […] or give them the possibility that they will come to 

a ‘something here does not work out’ moment and then provide an answer?” Felice’s 

question can be framed in the broader context of the teacher’s role. Is the teacher’s role to 

attempt to address questions and mathematical contradictions in advance, or is his role to 

support students as they struggle to understand mathematics?   

Nora’s Story of a Critical Event 

The lesson was about trigonometric functions analysis. […] The teacher asked to analyze 

the function 𝑦 =  𝑠𝑖𝑛 (2𝑥 − 𝜋 / 3). The class found extremum points, calculated the 

axis intersection points, and drew the graph. After they were finished, the teacher asked 

them if they could guess the graph without doing the analysis. One of the students said 

that we got this function after contracting 𝑠𝑖𝑛(𝑥) by two and then moving it to the right 

by 𝜋 / 3. Later the same student asked what would the graph of 𝑠𝑖𝑛 (𝑥)  +  𝑐𝑜𝑠 (𝑥) look 

like, will it be one graph at the end or two graphs? The teacher explained to her that, in 

the end, we would get one graph and suggested using the function analysis. 

This event occurred in a trigonometric function analysis lesson at the beginning of the 

lesson as the teacher was checking homework. The class was requested to analyze the 

function 𝑦 =  𝑠𝑖𝑛 (2𝑥 − 𝜋 / 3). After the class used the procedure of function analysis, 

the teacher asked the follow-up open question: “if [they] can guess the graph without doing 

the analysis.” One student used function transformation as a way to draw the function 

without analyzing it. The student’s response followed by her question: “how would the 

graph of 𝑠𝑖𝑛 (𝑥)  +  𝑐𝑜𝑠 (𝑥) look like, will it be one graph at the end or two graphs?” This 

question can be seen as an elaboration on function transformation. As Nora wrote: “The 

student developed a method to understand the behavior of a function without doing function 

analysis, so in my opinion, she divided the functions into groups, and each group has a 

parent function. And this led her to ask about the function I mentioned. How, by the same 

logic, can you guess the graph or understand behavior without analyzing it?” Nora saw the 

student’s question as an attempt to generalize a mathematical idea of graphing without 

analyzing. If multiplying is expansion and contraction and adding and subtracting from the 

function argument leads to shifting the function, then what happened in terms of function 

transformation when adding functions? Nora saw the students’ question as an outcome of 

the teacher’s question: “I really admire his method, which does not settle for one solution 

and always wants to hear more ideas which lead students to think further.” It seems that 

from Nora’s perspective, the teacher’s question was the opening for the student’s question. 
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In that sense, she reconciled for herself the gap between the mathematics of the lesson and 

the mathematics of the student. It was the teacher’s open question which led the student’s 

“what if?” follow up question.   

In terms of learning opportunities for the students, Nora addressed the learning that this 

event held for the entire class and not just the student who asked the question. She wrote: 

“I would […] use desmos, for example (i.e., dynamic software) and show them how the 

two graphs look and try to conclude from the graphs and their features.”. Nora suggest for 

the whole class to explore possible connections, difference and similarities, between 𝑠𝑖𝑛(𝑥) 

and 𝑐𝑜𝑠(𝑥) and 𝑠𝑖𝑛(𝑥) + 𝑐𝑜𝑠(𝑥). This mathematical exploration is beyond the scope of 

the curriculum, and it can broaden the students’ horizons. 

Nora did not elaborate on the teacher’s response to the student’s idea. However, from the 

teacher’s answer to the student’s question, we can assume that he did not deviate from his 

plan as he did not elaborate on this instance. Furthermore, even the teacher’s open question, 

which, in a sense, triggered the student’s question, aligns with the context of the Israeli 

curriculum. This type of question, relying on function transformation after conducting 

function analysis, is apparent in all recent matriculation exams. Therefore, the teacher’s 

open ‘follow up’ question and the student response can be viewed as a usual instance in 

function analysis lesson. It seems that there was no gap between the teacher’s plan and the 

actual occurrences of the lesson.  

The learning potential that this event held for Nora was articulated by her: “During high 

school, I would solve all the function analysis questions using the standard procedure as 

we all did, but this event and the teaching courses I take have given me an option to look 

at things from a different perspective.” Here it seems that she referred to the opportunity to 

graph a function based on function transformation. However, she did not articulate if it was 

an opportunity for her to learn about the connection between function transformation and 

graphing a trigonometric function, or an opportunity for her to learn that this is a legitimate 

way to learn and to teach students to graph a function. From her suggestion to explore 

𝑠𝑖𝑛(𝑥) and 𝑐𝑜𝑠(𝑥) and 𝑠𝑖𝑛(𝑥) + 𝑐𝑜𝑠(𝑥), it seems that Nora learned more about teaching 

mathematics than the mathematical content itself.  

Compering Felice’s and Nora’s Events    

The analysis indicated two similarities between the events: (1) the gap between the planning 

of the teacher and the actual occurrences of the lesson and, (2) the learning opportunities 

the critical events held for the PTs. In both events, it seems that the teacher stuck to his 

plan. Even if the teacher did not plan to discuss the question of (6)2 = 36 = (−6),2 vs. 

√36 = 6, he addressed it with a simple explanation, and as Felice wrote, the teacher was 

not surprised. In that sense, it seems that there was no gap between the teacher’s plan and 

the actual occurrences of the lesson. In terms of the learning opportunities the events held 

for Felice and Nora, both articulated insights about teaching and learning mathematics. 

Felice has discussed the teacher’s role and Nora the possibility to use function 

transformation while teaching function analysis.  



Rotem & Ayalon 

3 - 426  PME 44 – 2021 

The analysis indicated two differences between the events: (1) the gap between the 

mathematics of the lesson and the mathematics of the student and (2) learning opportunities 

for the students. First, in terms of the gap between the mathematics of the lesson and the 

mathematics of the student, in Felice’s critical event, it seems that the student’s question 

was not connected to the lesson’s topic. In fact, the student’s mathematics is connected to 

a previous topic (square root function). In Nora’s critical event, the student’s question can 

be seen as an attempt to generalize a mathematical idea of using function transformation to 

graph a function without analyzing it. This attempt can be seen as a step forward from the 

lesson’s topic. Thus, both events had a gap between the mathematics of the lesson and the 

mathematics of the student but not the same gap. Second, in terms of learning opportunities 

for the students, Felice’s event held the opportunity to underscore the distinction between 

two key mathematical concepts studied formerly. Nora’s event held the opportunity to 

elaborate the mathematical meaning of the concept by going into new mathematical 

territory (Lampert, 2001). In that sense, Felice’s event had the opportunity to review old 

mathematics and Nora’s event had the opportunity to broaden the students’ horizons by 

learning new mathematics.    

DISCUSSION AND POSSIBLE IMPLICATIONS   

The differences between the two events can be viewed in terms of the gap between the 

mathematics of the student and the mathematics of the lesson and the learning opportunities 

for the students. These parameters in which the two events differ can be seen as connected. 

The magnitude of the gap between the mathematics of the student and the mathematics of 

the lesson influences the learning opportunities for the students. When there is a low 

magnitude between the mathematics of the student and the mathematics of the lesson - for 

example, when a student tries to make sense of a mathematical concept that was used in 

the lesson, as in Felice’s critical event - the teacher aligns the unclear concept with 

mathematical concepts the student is already familiar with (e.g., Stockero & Van Zoest, 

2013). When there is a high magnitude between the mathematics of the student and the 

mathematics of the lesson - for example, when a student tries to generalize the mathematical 

concept, as in Nora’s critical event - the learning opportunity for the students can be an 

exploration of that generalization by going into new mathematical territory (Lampert, 

2001), which enhances the mathematical knowledge of the student. 

Furthermore, the parameters in which the two events are similar - the gap between the 

planning of the teacher and the actual occurrences and the learning potential critical events 

held for them - are also connected. Although Felice and Nora did not perceive a gap 

between the planning of the teacher and the actual occurrences, it seems that they both 

learned from the teacher teaching while continuing with his plan. Felice raised the question 

whether the teacher should tackle in advance issues that the students might perceive as 

contradictory, or wait until the contradiction arises from the student, as happened in her 

critical event. Nora embraced the idea of function transformation as a legitimate teacher’s 

question that prompts student thinking.  
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Despite the limitation of generalizing from these particular examples, we propose this 

initial characterization as a step toward the emergence of a model for critical events that 

will not only allow us to analyze critical events but will also allow pinpointing what is 

critical in the critical event.  
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ARE YOU JOKING? USING REFLECTION ON HUMOR TO TRIGGER 

DELIBERATIVE MINDSETS 
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In this study with 401 pre-service teachers, inspired by a study by Van Dooren et al., we 

show that presenting a humoristic situation significantly increases critical thinking as 

compared to a context in which routine word problems are given. We interpret our findings 

in the context of the mindset theory by Gollwitzer: reflecting on incongruences in jokes 

triggering a deliberative mindset that enhances reflective thinking. 

INTRODUCTION 

At PME 41, Van Dooren et al. (2017, 2019) presented a study, in which 6th graders had to 

solve four so-called problematic word problems (P-items). Such word problems are tasks 

in which realistic considerations must be taken into account to solve them reasonably (cf. 

Greer, 1993), for example  

When Calvin goes to school, Hobbes sometimes takes a swim. His best time to swim 

25 m is 20 seconds. How long does it take Hobbes to swim 500 m? 

A non-realistic answer to this P-item would be “20 times 20 seconds = 400 seconds,” 

whereas a realistic answer would be “probably more than 400 seconds, because he can’t 

keep up the pace” (cf. Van Dooren et al., 2019). 

The intriguing result of this study is that students who were presented with jokes (and had 

to comment on them) in between tasks did significantly better in giving realistic answers 

than students who had to solve routine tasks (standard or S-items) instead. The jokes on the 

one hand and the routine tasks on the other hand were framed similarly: 

Humor Condition: Calvin says: ‘If I 

have one melon in one hand, and two in 

the other, what do I have, Hobbes?’ 

Hobbes answers: ‘Very large hands, and 

strong muscles! 

Word Problem Condition: Calvin and 

Inge are doing an excursion with the class. 

The bus drives on the highway at 80 km/h. 

After how much time will the bus have 

travelled 120 km? 

Van Dooren et al. (2019), drawing on Attardo (1997), explain this result with the fact that 

“[h]umor may also stimulate children to see the problem situation from a different 

perspective,” focussing on the incongruity theory of humor with their interpretation: 

The incongruity relief mechanism is specifically relevant for our study as it focuses on 

the perception of the same situation from two different, seemingly incongruent, 
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perspectives. Only one of these two interpretations of the situation is considered to be 

the more plausible one, and this one will occur in the listener/reader when the situation 

is presented. Humor originates when it becomes clear that the alternative, less plausible 

interpretation – the one the listener/reader did not think of initially – ultimately turns out 

to be true. The reaction to this unexpected experience of incongruity is one of laughter. 

(ibid., p. 99) 

In their article, Van Dooren et al. (2019) conclude that “the addition of humor could be 

tested on a variety of items, taking into account different item characteristics” (p. 103). In 

the study at hand, we will follow two goals: Firstly we test the “humor effect” in a different 

context: we use critical thinking items instead of P-items and ask pre-service teachers 

instead of 6th graders, thus testing for the replicability of the effect. Secondly, we introduce 

a theoretical explanation for the effect of humor, which draws on more general 

considerations on human reasoning. In our interpretation of the study by Van Dooren et al., 

the experience of incongruence produced by reading the jokes triggered a specific 

“deliberative” mindset in the students, making them aware of realistic considerations, 

whereas solving routine tasks triggered another “implemental” mindset, making them 

ignore such considerations. Thus, drawing on the mindset theory by Gollwitzer (2012), the 

rationale of our study is to further explore the humor condition as an implicit trigger for a 

deliberative mindset, compared to an implemental mindset triggered by the routine tasks 

(S-items). 

In the following, we elaborate on theoretical foundation of our approach and then present 

an empirical study to support our interpretation. 

THEORETICAL BACKGROUND 

The ability to solve problems is certainly influenced by someone’s intelligence as well as 

other characteristics (Guilford, 1967). However, psychologists like Kahneman (2011) have 

demonstrated convincingly, that humans do not always make rational choices. Decision 

processes are influenced by heuristics and biases (ibid.). Such factors – favorable as well 

as unfavorable – are usually seen as traits that characterize a person, which can be measured 

with special tests like IQ tests or test for critical thinking. In addition to such traits, decisions 

and the ability to solve tasks can also be influenced by states, which should be visible in 

randomized studies with specific manipulation conditions. (The differentiation between 

states and traits was introduced by Cattell and Scheier, 1961.) A theory which allows for 

interpreting the solution behavior described above from the perspective of states is the 

aforementioned theory of mindsets: 

Mindsets 

Gollwitzer defined mindsets as mental procedures and cognitive orientations that influence 

the ways in which people act intellectually (see Gollwitzer, 2012, for a summary). He 

distinguishes between a deliberative and an implemental mindset; the former facilitating a 

heightened receptiveness to all kinds of information (open-mindedness), and the latter 

facilitating a focus on processing information and realizing previously set goals (closed-
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mindedness). (Please note: Do not confuse Gollwitzer’s theory with Dweck’s (2006) theory 

of fixed and growth mindsets. The latter is regarding a trait rather than a state.) 

In several studies (see Gollwitzer, 2012, or Weinhuber et al., 2019), it could be shown that 

mindsets tend to remain active beyond the triggering situation (cf. ibid.). For example, 

Gollwitzer had one group of test persons deliberate on unresolved personal problems and 

another group plan chosen goals. This way, the first group was placed into a deliberative 

and the second in an implemental mindset, respectively. Afterwards, these groups acted 

differently in a second, seemingly unrelated task. Persons who were placed in a deliberative 

mindset showed more planning and reflecting on reasons that persons who were placed in 

an implemental mindset. 

In two studies with 62 pre- and 54 in-service teachers, Weinhuber et al. used comics to 

induce mindsets: a comic showing a “math-club” in which secondary students are shown 

to debate alternative approaches to differential calculus problems vs. a comic showing a 

“math-test-prep” course in which the teacher shows consecutive steps of solving a complex 

differential calculus task. In both studies, the participants were asked to subsequently draft 

explanations about an extremum problem. On the one hand, participants primed with a 

math-club comic (i.e. deliberative mindset) generated more principle-oriented and less 

procedure-oriented explanations. On the other hand, participants primed with a math-test-

prep comic (i.e. implemental mindset) generated more procedure-oriented and less 

principle-oriented explanations. 

Critical thinking 

To investigate the effect of humour on task solutions within mindset theory, we chose to 

use problems with specific characteristics: (i) they should reflect mathematics-specific 

solution processes but should not require higher level mathematics, and (ii) require a 

reflective component of reasoning and judgment when solving a task or evaluating the 

solution (cf. Rott et al., 2015). Our choice fell on problems from the heuristics and biases 

literature, and especially from the Cognitive Reflection Test (CRT) by Frederick (2005) as 

those are predictive of decision making and cognitive ability (ibid., p. 26) and have 

mathematical content (ibid., p. 37). Typical participants – pre-service teachers, in our case 

– should be able to solve such problems correctly as they have all knowledge and skills 

necessary. However, in multitude of studies, such problems have proven to have solution 

rates that are far from perfect (e.g., Frederick, 2005; Rott & Leuders, 2016). 

For the analyses of such problems and the construction of the CRT, researchers differentiate 

cognitive processes into two types or systems: subconscious or “Type 1” processes are 

characterized as fast, automatic, and emotional, whereas conscious or “Type 2” processes 

are described as slow, effortful, logical, and calculating (cf. Kahneman, 2011; Stanovich & 

Stanovich, 2010). 

A problem that requires type 2 thinking would be 123 × 456 as no solution comes to mind 

spontaneously. Without a calculator, an algorithm is needed to arrive at the solution 56.088. 

By contrast, the famous bat-and-ball problem (that is part of the CRT; Frederick, 2005) 
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does produce a spontaneous, automatically generated answer: “A bat and a ball cost $ 1.10 

in total. The bat costs $ 1 more than the ball. How much does the ball cost?” Almost 

everyone thinks of “10 cents” as a first response. Finding the correct answer – “5 cents” – 

requires a critical reflection of the “intuitive” answer. In this sense, critical thinking 

encompasses the conscious checking and regulation of intuitive answers (cf. Frederick, 

2005; Stanovich & Stanovich, 2010). 

Research questions 

Against this background, we assume that the solution rates of critical-thinking tasks can be 

increased by influencing the state of the participants: 

● Do explicit awareness prompts increase critical thinking?  

● Does triggering a deliberative mindset by humor situations (compared to an 

implemental mindset in routine-problem situations) increase critical thinking? 

METHODOLOGY 

Design and material 

Drawing on the model of thinking by Stanovich and Stanovich (2010), and using the CRT 

by Frederick (2005) as inspiration, Rott and Leuders (2016) have developed a pool of items 

for measuring mathematical critical thinking (CT). For the study at hand, ten CT items have 

been selected that have proven their worth in qualitative and quantitative studies; i.e. they 

measure critical thinking and not arithmetic skills. Sample items (without the bat-and-ball 

problem, see above, that is also part of the test) are presented in Table 1. The items are 

rated dichotomously with 1 point for a correct solution and 0 points for a wrong solution. 

 

Item Examples of Responses 

Water lilies grow in a lake and their surface area doubles every 

week. At the beginning of the growth phase only ¼ m² of the 

lake surface is covered, but already after 12 weeks, the whole 

lake is overgrown. After how many weeks was half of the lake 

covered? 

CR: 11 weeks 

MR: 6 weeks (linearity 

assumed) 

In a gamble, a regular six-sided die with four green faces and two 

red faces is rolled 20 times. You win € 25 if a certain sequence of 

results is shown. Which sequence would you bet on?  

• RGRRR      • GRGRRR      • GRRRRR  

CR: RGRRR 

MR: GRGRRR (i.e. most 

occurrences of “G”) 

A frog falls into a 20 m deep well. During the day, it climbs up 4 

m, at night it slides down 2 m again. After how many days does 

the frog climb out of the well? 

CR: 9 days 

MR: 10 days (= 20:2) 
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For a 56 cm high mural, you need 6 ml of 

paint. How many ml of paint is needed for a 

168 cm high mural? 

CR: 54 ml 

MR: 18 ml (= 6 ml × 3) 

Table 1: CT items with correct responses (CR) and typical misresponses (MR) 

To investigate the possible influence of mindsets and their triggers, we developed the three-

group design that is presented in Table 2. (Please note that we do not think that it is possible 

to differentiate between an explicit and an implicit trigger for an implemental mindset; 

therefore, it is not a four-group design.) 

Trigger / Mindset Implemental Deliberative 

Explicit (1)  

Mathematical routine procedures 

(comparable to S-Items by Van 

Dooren et al.) 

(2) 

Awareness prompts 

Implicit 
(3)  

Humor (cf. Van Dooren et al.) 

Table 2: Three-group design of the study 

For each of the three groups, a different test booklet has been created: The ten CT items 

were spread over three pages in the test booklet. On top of each of these three pages, an 

environment trigger (1), (2), or (3) was presented to the participants (see Table 3). 

Env. Trigger 

(1) 

(i) What is the size of angle α? 

(ii) Solve the following equation: x² – 4 = 0 

 

(iii) What is the area of the shown trapezium?  

(2) 

(i) ATTENTION, check your results! 

(ii) THINK CRITICALLY! 

(iii) REMINDER: THINK TWICE! 

(3) 

(i) Teacher: “75% of all students in this class have no idea of percentages.” 

Students: “Teacher, we’re not that many!” 

(ii) The teacher gives a simple task: “If five birds sit on the roof and you shoot one, 

how many are left?” 

Student: “None, teacher, the others have flown away!” 

(iii) Why does a mathematician who is afraid of terrorist attacks smuggle a bomb 

on board an airplane? 
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Because the probability of two bombs being smuggled into an aircraft 

independently of each other is almost zero. 

Table 3: Environment (env.) triggers that differentiate the three test booklets 

Participants 

In May 2019, the test was administered in three different lectures at the University of 

Cologne, addressing mathematics pre-service teachers for primary and special education 

schools (cf. Noeding, 2019). Those lectures were “B1: Fundamentals of Mathematics” for 

the first Bachelor semester, “B2: Fundamentals of Mathematics Education” for the second 

Bachelor semester, and “B5: Didactics of Arithmetic” for the fifth Bachelor semester. 

Participating in this study was voluntary and not participating did not have any 

consequences for the students.  

In total, 401 university students (338 or 84.3 % female, 61 or 15.2 % male, and 2 or 0.5 % 

not specified; B1: 198 or 49.4 %, B2: 179 or 44.6 %, and B5: 24 or 6.0 %) with a mean age 

of 21.8 years (standard deviation 4.0 years) submitted a completed booklet (filled in on 

paper), which took them less than 20 minutes. By distributing the booklets in no specific 

order, the students were randomly assigned to the three environments. 

Additionally, all participants reported their Abitur (university entrance degree) grade 

(median 2.0 on a scale from 1, the best, to 6, the worst) as well as their final mathematics 

degree from school (median 2.0 on the same scale). 

RESULTS 

On average, the students solved 3 problems (median = 3; mean = 3.20) with a minimum of 

0 and a maximum of 8 points. The sizes, mean values and standard deviations sorted by the 

lecture in which data was gathered are given in Table 4. Compared to our previous 

experiences with CT tests (e.g., Rott et al., 2015; Rott & Leuders, 2016), these results are 

on the lower end of the spectrum, but not untypical, especially since almost 95 % of the 

participants are in their first or second semester and students with a low number of 

semesters normally do worse than students with a high number of semesters. 

B1 B2 B5 total 

N = 198 N = 179 N = 24 N = 401 

M = 2.94 M = 3.44 M = 3.63 M = 3.20 

SD = 1.84 SD = 1.87 SD = 1.58 SD = 1.85 

Table 4: Mean values (M), standard deviations (SD) sorted by semester 

The data regarding the mindset environments (Table 5) show that group (2) – explicit, 

deliberative mindset, awareness – performed better than group (3) – implicit, deliberative 

mindset, humor – which in turn performed better than group (1) – implemental mindset, S-

items. A one-way ANOVA confirms significant differences between those groups with 
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post-hoc tests revealing significant differences between groups (1) – (2) and (1) – (3), but 

not (2) – (3). 

As expected, the groups in which a deliberative mindset was triggered, outperformed the 

group in which an implemental mindset was triggered. A state highlighting open-

mindedness (i.e. the deliberative mindset) is favourable for working on CT problems 

compared to a state inducing closed-mindedness (i.e. the implemental mindset). 

Interestingly, both the explicit (awareness) as well as the implicit (humor) environments 

seem to trigger the deliberative mindset, which strengthens our initial interpretation of Van 

Dooren’s humor environment in the light of the mindset theory. 

(1) routine (2) awareness (3) humor   (1) (2) (3) 

N = 148 N = 135 N = 118  (1)  p = 0.002 p = 0.024 

M = 2.86 M = 3.51 M = 3.29  (2)   p = 0.172 

SD = 1.79 SD = 1.98 SD = 1.72  (3)    

One-way ANOVA: F = 4.64, p = 0.0102  Post-hoc t-tests (one-sided) 

Table 5: Mean values (M), standard deviations (SD) per environment 

DISCUSSION 

The data confirm the result by Van Dooren et al. that a humoristic environment is favorable 

for solving problems demanding reflection as compared to a word problem environment. 

Presenting jokes in the test booklet has an effect in the same direction as direct awareness 

prompts. Using the notion of mindsets by Gollwitzer (2012), reading the jokes might have 

placed the students in this specific environment in a deliberative mindset, whereas students 

in the environment with routine tasks were placed in an implemental mindset. 

However, there are limitations to this study: Even though the differences between the three 

groups are significant, the effect is rather small – especially, compared to the study by Van 

Dooren et al. (2017), in which pupils in the humor condition “gave almost twice as many 

realistic reactions compared to the word problem condition” (p. 4-303). This might be due 

to the different problems (CT items instead of P-items), the different participants 

(university students instead of pupils), or differences in the conditions: Unlike Van Dooren 

et al., where pupils were asked to compare the jokes, our tests persons were only presented 

with the jokes and with a lower number of jokes. This way, the humor environment 

provided only a very “soft trigger” for a deliberative mindset. In other studies using 

mindsets (e.g., Gollwitzer, 2012; Weinhuber et al., 2019), the triggers are more intense. 

Therefore, in future studies, we plan to make our participants reflect upon jokes for a 

presumably even stronger effect. 

Implications of this study are introducing the theory of mindsets to the PME community 

and as a consequence the awareness for considering states in performance testing compared 

to only considering traits (like knowledge and beliefs). 
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“I DON’T WANT TO BE THAT TEACHER”:  ANTI-GOALS IN 

TEACHER CHANGE 

Annette Rouleau1 

1Simon Fraser University, Canada 

 

This paper uses the theory of goal-directed learning to examine anti-goals that arise as 

teachers implement change in their mathematics practice. Findings suggest that anti-goals 

develop as teachers begin to recognize who they do not want to be as a mathematics 

teacher. Accompanying anti-goals are emotions that can be useful in measuring progress 

towards anti-goals (fear and anxiety), and away from anti-goals (relief and security). 

Furthermore, acknowledging anti-goals allows mathematics teachers to focus on the 

cognitive source of their difficulties rather than be overwhelmed by the emotional 

symptoms.  

INTRODUCTION 

In Intelligence, Learning, and Action, Skemp (1979) describes a thought experiment in 

which we are to imagine two events. Firstly, we strike a billiard ball causing it to move 

across the table into a pocket. Secondly, we are in a room with a child who, upon our 

command, moves across the room to sit in a chair. Superficially, these are two similar 

events: we have ‘caused’ the child to cross the room and we have ‘caused’ the billiard ball 

to roll into the pocket. This is basic stimulus and response in which an object remains in a 

state of rest, or uniform motion in a straight line, unless acted upon by an external force. 

Now imagine inserting an obstacle into the pathways of both the ball and the child, what a 

strange billiard ball it would be if it could detour around the obstacle and continue its path. 

However, a child will do this with no change in stimulus — perhaps by going around the 

obstacle, hopping over it, or even moving it. Skemp suggests that, unlike those of a billiard 

ball, the child’s actions are goal-directed, and necessary to reach her goal state (sit in the 

chair). 

Recognizing that many human activities are goal-directed is essential if we want to 

understand their actions. In other words, we need to attend to their goals with the same 

importance as we do their outwardly observable actions. Skemp offers the example of 

someone crawling around on their hands and knees on the office floor. There is no point in 

asking them what they are doing — we can see that for ourselves. A better question might 

be “Why are you doing that?”, which might elicit a reasonable answer such as “I’m looking 

for the cap of my pen”. 

Let us try another thought experiment. Imagine observing a secondary mathematics teacher 

in her classroom. The teacher is standing by an overhead projector demonstrating how to 

solve a problem while the students sit quietly at their desks and take notes. Another adult 
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sits with a notepad at the back of the room. Students who talk are met with a polite reminder 

to raise their hand if they wish to speak. What might the actions of the teacher suggest? An 

immediate response might be the teacher is teaching, albeit in a somewhat traditional 

manner. Now imagine talking with the teacher after the lesson as she describes her 

frustration with having to conform with school norms regarding effective teaching of 

mathematics to successfully pass a probationary evaluation. To observe that the teacher 

was teaching traditionally is accurate, but incomplete. To make sense of her actions also 

requires consideration of her goal — she was teaching traditionally to achieve her goal of 

maintaining employment. 

The aim of this study is to make sense of teachers’ actions through consideration of their 

goals. As the pursuit of a goal is an emotive experience (Skemp, 1979), I begin the next 

section by describing some of the literature regarding emotions in teaching. To connect 

emotions with goals, I then outline Skemp’s theory of goal-directed learning. 

EMOTIONS, ACTIONS, AND GOALS 

Liljedahl (2015) describes emotion as the “unstable cousin” of beliefs yet there is much to 

be learned from their study; it is the erratic cousin at the family dinner who is most likely 

to blurt out uncomfortable truths. Fortunately, while pursuit of these uncomfortable truths 

was once the least researched aspect of teaching practice over the past two decades. There 

has been an increased focus on what emotion reveals to us about teaching and its 

implications for teacher change (Zembylas, 2005). As Kletcherman, Ballet, and Piot (2009) 

suggest, “A careful analysis of emotions constitutes a powerful vehicle to understand 

teachers’ experience of changes in their work lives” (p. 216). The unstable cousin is being 

heard. 

Prior to this, teacher cognition had been the primary focus of research on teachers (e.g., 

Richardson, 1996) and its underlying assumption was that teacher actions and behavior 

were strongly influenced by cognition. More recently has come the recognition that 

emotion and cognition are inseparable and that emotions may provide insight into the 

relationship between a teacher and the socio-cultural forces that surround her (Van Veen & 

Sleegers, 2009). According to Hannula (2006), emotions (along with attitudes and values) 

encode important information about needs and may even be considered representations of 

them. While cognition is related to information, Hannula understands emotions as affecting 

motivation and therefore as directing behavior by affecting both a person’s goals and 

choices. Emotions constitute a feedback system for goal-directed behavior, and thus shape 

a person’s choices. Hence, emotions, cognitions, and actions turn out to be strongly 

intertwined and inseparable; it is necessary to consider these factors and their relationship 

to understand teachers’ actions. 

Skemp’s (1979) theory of goal-directed learning considers these connections between 

emotions and actions. His framework was built on fundamental ideas in psychology and 

links emotions to goals which a learner may wish to achieve, and to anti-goals which a 

learner wishes to avoid. Goals can be short-term, such as the desire to learn a procedure for 
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solving a routine problem or long-term, as in the desire to be successful in mathematics. A 

short-term anti-goal may be to avoid failing a test, while a long-term anti-goal may be to 

avoid future mathematics studies altogether. Skemp emphasizes that goals and anti-goals 

are not simply opposite states, rather, a goal is something that increases the likelihood of 

success, while an anti-goal is something to be avoided along the way. 

For Skemp, emotions come into play as they provide information about progress towards 

either goal state in two distinct ways (see Figure 1). First are the emotions experienced as 

one moves towards, or away from, a goal or anti-goal (pleasure, unpleasure; fear, relief). 

For example, moving towards a goal brings pleasure, while moving towards an anti-goal 

result in unpleasure. Although the four emotions bear similarities, there are subtle 

differences. Consider relief and pleasure; the relief one feels upon not failing a test is a 

different feeling from the pleasure one experiences upon learning the correct procedure for 

a problem. The second aspect of emotions concerns one’s sense of being able to achieve a 

goal or, conversely, avoid an anti-goal (confidence, frustration; security, anxiety). For 

example, believing one can achieve a goal is accompanied by confidence while believing 

that one is unable to move away from an anti-goal state induces anxiety. 

 
Figure 1. Emotions associated with goal states (adapted from Skemp, 1979) 

Although initially designed to examine goals related to the learning of mathematics, in this 

study, researcher uses the Skemp’s theory to examine goals related to the teaching of 

mathematics, particularly those of teachers who are trying to change elements of their 

practice. In doing so, researcher follows Jenkins (2003) who suggests that change is not 

just to make different, but, like learning, it is also to continually improve in skill or 

knowledge. Specifically, researcher uses Skemp’s notion of goals and anti-goals to better 

understand the actions of teachers involved in changing their mathematics practice. 

METHODOLOGY 

McLeod (1992) suggests that detailed, qualitative studies of a small number of subjects 

allow for an awareness of the relationship between emotions, cognitions, and actions that 

large-scale studies of affective factors overlook. Accordingly, in this study, researcher 

adopt an exploratory and qualitative approach that focuses on documenting that 

relationship. Data for analysis was taken from a larger study involving 15 teachers whose 

teaching experience ranged from 1 to 16 years. The data was created during semi-structured 

interviews that ranged from 40 to 60 minutes. The interviews were audio-recorded and then 
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fully transcribed. The structure of the interview aimed at letting emotions emerge 

organically through a narrative rather than by direct questioning. For example, the teachers 

were asked to describe the changes they had implemented in their mathematics practice 

without explicitly asking them to describe the emotions they felt. This allows for richer 

descriptive data of personal experiences that leading questions may inhibit. With DeBellis 

and Goldin (2006), researcher aware that emotional meanings are often unconscious and 

difficult to verbalize but, with Evans, Morgan, and Tsatsaroni (2006), researcher believes 

that textual analysis of teachers’ narratives allows the identification of emotional 

expressions that function in teachers’ positioning. As such, the transcripts were scrutinized 

for utterances with emotional components such as “I was worried…” and then re-examined 

for their potential connections to goals. Due to space limitations, researcher reported only 

on those findings related to anti-goals. 

THE DEVELOPMENT OF AN ANTI-GOAL 

For the teachers in this study, the decision to implement change in their mathematics 

classrooms stemmed from dissatisfaction with their current practice. Most had learned 

mathematics as learners in traditional mathematics classrooms and had simply gone on to 

replicate that for their own students. As Kelly recalled, “There was nothing during my 

journey to becoming a mathematics teacher that made me think of another way to teach 

math.” Their collective desire to move away from the notion of teaching as telling and 

learning as listening (and remembering) so permeated their interviews that I originally 

coded these excerpts as ‘That Teacher’. However, it was this tension between who they 

were and who they wanted to be that led to change in their mathematics practice, as who 

they wanted to be as a teacher became their goal, while who they had been, or wanted to 

avoid becoming, became an anti-goal. 

Many of the teachers described similar situations where tension with their teaching practice 

drove them to seek out professional development. For example, the development of Amy’s 

anti-goal began with the feeling that “I was boring, like they just weren’t getting from me 

what they needed.” It coalesced into an anti-goal as she realized her practice was harming, 

rather than helping, her students: 

“My practices resulted in increased anxiety and frustration amongst my students; 

damaged their mathematical confidence; removed their desire to think deeper and 

search for understanding; as well as robbed my students of conceptual experiences. 

Valuing speed and accuracy comes at a great cost for students and gives them little 

mathematical benefit.” 

To alleviate the anxiety that caused her, Amy sought out professional development “for 

some new ideas”. Instead she experienced a student-centred teaching style that “completely 

transformed my pedagogy.” No longer content with her product-oriented mathematics 

classroom where students worked individually to develop fluency with procedural skills, 

she turned to a process-oriented model that valued conceptual understanding and 
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collaboration. In searching for relief from her anti-goal, Amy found security in the new 

practices she implemented. 

For other teachers, it was attending professional development that caused the development 

of an anti-goal. Kelly described the same sort of experiential learning from professional 

development as Amy but added, “I never questioned it [her practice] until my eyes were 

opened — when I saw another way. Since then, I have felt my teaching pedagogy do a 

complete 180° shift.” Although she had willingly attended the professional development 

session, it was not due to tension with her own practice; it was more a matter of convenience 

and opportunity: “It was our district Professional Development and it was a mathematics 

topic. I was there because I was a mathematics teacher.” Describing herself as a typical, 

traditional mathematics teacher, the experience provoked a desire to implement changes in 

her teaching as she noted: 

“It was confounding to learn that something I was doing in my class was taking 

away from students’ learning. It really makes you think about and reflect on what 

you are doing as a teacher.”  

Like Amy, the traditional teacher she once was became her anti-goal as she emphasized, “I 

knew I never wanted to be that teacher.” 

For both Amy and Kelly, their use of figurative language like “transformed” and “eyes 

opened” suggests the core of who they were as a teacher had been unexpectedly altered 

and the result was the development of an anti-goal. They may have set out to change some 

things about their practice but ended up changing themselves. For other teachers, this 

alteration appeared to be a more purposeful decision. Sam spoke of being at a “crossroads” 

where anxiety with his teaching style caused him to ponder two choices: seek out 

professional development or quit teaching. In the end he chose the former as he explained, 

“I'm going to try out for one more year and I'm going to become better.” No mention of 

transformational experiences, this was a deliberate response to relieve the pressure of an 

anti-goal: he was not happy with who he was as a teacher and he set out to change that. 

This sense of deliberation appears again in David, a new teacher assigned to teach 

mathematics. Having never planned to be a mathematics teacher, he first turned to 

colleagues for advice on what to do:  

“I asked them, how do you teach mathematics? How can I make this fun? And they 

are...like, I hate to say it, but they are older teachers, and they have very traditional 

views on mathematics, and the kind of do it like how I was taught in mathematics. 

They just work on the problem on the board, show them how it is done, and get them 

to practice, practice, practice until they get it. And I knew that is not how I want to 

do it. That is not who I want to be.” 

Although David had not yet developed a mathematics pedagogy, he knew who he did not 

want to be as a teacher. This anxiety led him to sign up for a series of professional 

development sessions that focused on progressive teaching practices in mathematics. Over 
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time he implemented the strategies he learned in his classroom. Again, there is less a sense 

of an unexpected transformation and more of a determined decision to avoid an anti-goal. 

Like the others, Corey had implemented new practices in her classroom that required 

changes not only in the physical movements of her students but for herself as well. She 

mentioned, “Physically the vertical learning can be challenging for me. I struggle to stand 

for the whole day, so I have to make sure I am doing a mix of things throughout the day.” 

During the interview, she let this thought be and then came back to it unexpectedly about 

10 minutes later as she further explained, “I just don’t want to be that teacher.” When 

asked to clarify, she added: 

“Because I struggle to stand. I do not ever want to be that teacher that sits at the 

desk all day, because that's not effective at all. I think if it is this bad, I am 43, what 

am I going to do five years from now? Six years from now? How is it going to look? 

That is something that keeps me up at night. How am I going to best serve these kids 

when I cannot move around the room? So, yeah, it is a concern. That is one of the 

reasons I might not always be a classroom teacher; it might not be an option for me 

physically, to do a really good job of it.” 

There are two things to note here. Like Kelly and David, Corey’s use of the adjective/noun 

combination ‘that teacher’ suggests she has developed a schema of what a teacher is and is 

not. This sets up an anti-goal as she knows what kind of teacher she does not want to be, 

and despite the tension that results from worries over her physical limitations, she does not 

veer from that. Second, it is interesting that while Corey does later mention solutions such 

as a “motorized scooter” or “mixing things up”, moving away from the new practices that 

are taxing her physically is not mentioned. Like Sam, it seems she would rather leave the 

profession than move towards her anti-goal state.  

RECONNECTING WITH AN ANTI-GOAL 

Traditional mathematics practices comprise universally accepted norms such as teacher-

led examples, individual seat work, and silent practice that are especially difficult to 

displace. Such a strictly controlled environment offers the illusory appeal that serious 

learning is taking place. This notion is embedded in the mathematical backgrounds of the 

teachers in my study for whom the pull of traditional practices lingered. This created 

anxiety and fear for those attempting to suppress these desires and for those who 

succumbed. Lily recalled that in her early teaching career she believed that “The quieter 

the class the more I thought learning was happening.” She had come to recognize that this 

is not the case, yet acknowledged: 

“I do on occasion go back to this method because of a bad day or I am not prepared. 

When I do go back to this traditional method, I am aware that it was not a good 

teaching day for me or the students.” 

This created anxiety as she realized that her decision, while satisfying her immediate needs, 

had unintended consequences for both her and her students. Interestingly, this notion of 
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being unprepared appeared to be the impetus for several others who also return to 

traditional practices to satisfy their own needs. As Kelly recounted: 

“So today I sort of reverted. I have not been feeling great and I needed something 

quick and easy to put together for a lesson. I started the class with a review/notes 

of all the topics we have been doing. We did some examples together on the board 

then I gave them a worksheet. This class has rarely come into the room to see desks 

and chairs set out that are available to sit in. But today I caved. I was hoping for 

some quiet time while they worked.” 

This backfired for Kelly as she later admitted, “For the most part I spent the rest of class 

going from one student to another with hands up helping them with problems.” Like Lily, 

her anxiety lay in knowing that her decision to ‘revert’ had had unintended consequences 

for both herself and her students. It appears that the challenge of implementing change can 

occasionally nudge teachers towards which was once familiar and therefore seen as easier. 

Hoping for a respite, they instead experience the emotion that accompanies a move towards 

an anti-goal. 

This return to the familiar also occurred for several teachers not because it was easier but 

rather, they missed the reassurance of traditional teaching. This created anxiety for them as 

they struggled to suppress this need. Linda mentioned wanting to be sure she was covering 

the content since she implemented the changes in her classroom: 

“I still occasionally like to start by demonstrating something new and then having 

students do similar problems or problems connected to what was demonstrated. 

This comforts the ‘conventional’ teacher in me, but I do feel like it is cheating or 

missing the point.”  

This need for reassurance is also apparent in Diane who mentioned occasionally returning 

to her previous teaching practices: 

“I really want to make sure that everybody's learning. When they are quiet, and they 

are all looking at me I know I have their attention. I am not sure if everybody is 

paying 100% attention when they are working in the problem-solving groups.” 

When speaking later of year-end assessments she added, “I know I do not need to do it 

[teach traditionally]. I know I should not. They all did so well that it solidified for me that 

the way I was doing it was already working.” This suggests that anti-goals serve another 

purpose. Teachers, like Diane, might purposefully move towards an anti-goal to experience 

the relief it brings when they move away. They are reconnecting with their anti-goal in 

order to affirm the changes they are making in their mathematics practice. 

CONCLUSION 

Anti-goals develop during teacher change as teachers come to recognize and articulate who, 

and how, they do not want to be in the mathematics classroom. For some, this process 

occurs during change, for others this recognition propels them to seek out ways to change. 

In either instance, researcher suggests anti-goals are useful in three ways. Firstly, having 
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teachers reflect on the emotions they feel may be useful in reasoning why they felt this way 

and how they might use this knowledge to their advantage. Doing so allows teachers to 

focus on the cognitive source of their difficulties rather than being overwhelmed by the 

emotional symptoms. For example, a teacher who can connect the anxiety she experiences 

to the action she is undertaking, can take steps to alter the action. Secondly, I suggest that 

recognizing what one does not want to be brings into sharp relief what one does want. 

Having that clarity might enable teachers to seek out the actions and changes that will help 

them reach that goal. For example, a teacher who realizes she does not want to be that 

teacher who only uses unit tests for assessment may look for learning opportunities that 

broaden her assessment practice. Finally, anti-goals also prove useful in keeping change 

alive. Teachers who find themselves pulling back from the changes they have implemented, 

find in the emotional reconnection with their anti-goal encouragement or reinforcement 

needed to continue with the change. As Zembylas (2005) suggests, “Teaching practice is 

necessarily affective and involves an incredible amount of emotional labor” (p. 14). 

Harnessing that emotion during teacher change may prove valuable for teacher educators. 
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Teacher participants were asked to choose three from a set of eight solutions to a task to 

feature in a whole-class discussion. Participants were asked to indicate whom they would 

invite to present each solution, from among higher-achieving girls and boys and lower-

achieving girls and boys. Participants often indicated that they would first have students 

present the direct model or an error, that they would invite a lower-achieving girl to present 

a direct model, and that they would invite a higher-achieving student to present an error. 

Most indicated that they would invite a higher-achieving boy to present the solution with 

an unexpected geometric representation, usually at the end of the sequence. Participants’ 

explanations reveal how gendered beliefs about mathematics shape this aspect of 

classroom instruction.  

INTRODUCTION  

A lesson format featuring whole-class discussions begins with the posing of an open-ended 

problem, allotment of time for problem-solving, and culminating in a teacher-facilitated 

discussion during which specific students present their solutions. Stein et al.’s (2008) 5 

Practices (anticipating, monitoring, selecting, sequencing and connecting) are seen to 

support the quality and content of the whole-class discussion in this lesson model. Part of 

that model, the selecting and sequencing of solutions, indicates the inviting of students to 

present mathematical ideas. In doing so, teachers publicly position students as authors of 

noteworthy ideas. Here, we focus on teacher decision-making regarding whom to select to 

present a mathematical idea. 

In particular, we focus on social considerations of gender and mathematics achievement. 

We selected gender as a social construct because it carries meaning in mathematics learning 

contexts (Walkerdine, 1998). Solely focusing on gender, however, would essentialize and 

over-extend the meaning of this single dimension of identity. Mathematics as a school 

domain tends to be highly stratified by perceptions of ability level, thus we explore 

teachers’ decision-making with respect to the intersection of gender with mathematics 

achievement. That is, in the context of multiple solutions to a mathematical task, if a given 

solution is available to be presented by higher-achieving and lower-achieving girls and 

boys, whom do teachers invite to present which solution and why? 
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CONCEPTUAL FRAMEWORK  

Our understanding of gender and mathematics ability are as socially constructed, rather 

than fixed characteristics. We acknowledge a problematic reproduction here of outdated 

binary notions of gender but opt for a political analysis in a context in which the 

predominant social understanding of gender in schools remains as binary and fixed. 

Perceptions of students’ mathematics abilities are socially constructed as well and represent 

a significant dimension of a student’s status in and outside of the classroom. Teachers’ 

perceptions of students’ mathematical abilities interact with conceptions of ability as innate 

and as context independent (Snell & Lefstein, 2018). 

Decisions about whom to invite to the classroom’s public floor are not only about resolving 

a problem’s solution. Encouraging students to share ideas, as well as prompting the class 

to evaluate the mathematical ideas of others, are considered to be pedagogical moves that 

distribute mathematical agency and mathematical authority (Gresalfi & Cobb, 2006). 

Inviting a student to present their ideas could signal the teacher’s assignment of 

competence, in a form of public validation (Cohen & Lotan, 1997). Affordances, however, 

of inviting a student to present their ideas to the whole class might depend on the 

classroom’s norms (Cobb et al., 2008). In some classrooms, for example, being invited but 

among the first to present could signify the teacher’s positioning of an idea as the least 

sophisticated. In this paper, we explore the question: whom do teachers select to present 

which mathematical solutions and why?  

RELATED RESEARCH 

Gender-based differences in mathematics achievement have narrowed over time, unlike 

girls’ and women’s lower self-concept in mathematics, which persists and around the world 

(Sax et al., 2015). This is an outcome of social systems that position mathematics as 

masculine and reinforce boys as better suited for it, rather than evidence of deficiencies 

innate among girls (Walkerdine, 1998). How students see themselves relative to 

mathematics is shaped, in part, by their teachers’ gender-related beliefs and their impact on 

classroom interactions (Gunderson et al., 2012). Even when teachers perceive girls as 
equally capable in mathematics, they might attribute that success in different, gendered 

ways. That is, teachers might attribute the success of high-achieving girls to their eagerness 

to learn and compliant classroom behavior, but attribute the success of boys to their 

spontaneity and independent thinking (Robinson-Cimpian et al., 2014). This example is 

part of a broader, extensive set of interrelated and unequal binary oppositions -- like 

objective/subjective, analytic/emotional, certain/fleeting, innately able/ hard-working, -- 

wherein one in every pair is more valued and associated with masculinity. Gender, though, 

does not carry meaning or operate in an isolated way, and our focus is on its intersection 

with mathematics achievement. Prior studies show that achievement, not gender, 
determines classroom participation (Myhill, 2002). By accounting for achievement with 

gender, Myhill revealed how, as students increase in age, high-achieving boys become less 

involved in classroom participation, whereas high-achieving girls remain compliant and 

willing to participate. This pattern is interpreted by Myhill as not serving girls well, in how 

boys’ success then becomes positioned as a product of their intellect, in contrast with girls’ 

success as produced by their attentiveness and effort.  
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Sequencing & selecting solutions   

Prior research presents a range of pedagogical principles that might guide teachers’ 

selecting and sequencing of solutions (Ayalon & Rubel, under review). This research 

indicates that teachers tend to value accessibility over mathematical storyline 

considerations. Livy et al. (2017) found that most explained that they would sequence the 

solutions in a progressive order, beginning with what they considered the weakest solution 

and then progress to what they viewed as the strongest. Meikle (2014)’s results similarly 

show that participants tend to sequence solutions either by starting with an erroneous 

solution and building to a correct solution; starting with an incomplete solution and building 

to a complete one; or starting with a direct-model strategy and building to an abstract one. 

Participants in both studies justified their choice of these progressions in terms of an 

assumption that such progressions best support students that might be struggling. These 

studies focus on which mathematical ideas teachers value for inclusion in a whole-class 

discussion but do not extend to teachers’ considerations about which students are invited 

to present what kinds of ideas on the public floor. Our research question is: With respect to 

lower and higher-achieving girls and boys, who do teachers select to present which kind 

of solution and why?   

METHODS 

Forty-two Israeli teachers participated, in the context of a university-based course. All but 

four participants identify as women. We posed this version of the Handshake Problem (in 

Hebrew):  

There were 9 players at the first basketball practice of the season. The coach told the 

players to introduce themselves by shaking hands with one another. Assuming that 

every player shook hands exactly one time with every other player, how many 

handshakes occurred? 

In written form, we provided participants with the problem and eight solutions (Figure 1) 

and prompted them to interpret the mathematical thinking underlying each. We draw 

attention here (because of their dominance in our results) to how solution H is a direct-

model; solution C uses a geometric representation; and solutions D and G are errors. We 

asked participants to consider a hypothetical top-track 7th grade class of 32 students, and 

to consider that each solution was produced by four students: a higher-achieving girl or boy 

and a lower-achieving girl or boy. We asked participants to indicate the three solutions to 

be presented to the class, in what sequence, which student they would choose to present 

from among the four categories, and to explain their choices.  

Analysis 

We tabulated the selections, according to position (Table 1) and the assignment of each 

solution by gender and mathematics achievement (Table 2). We compiled the written 

justifications for each solution, separated them according to the gender-achievement 

attributes and then analyzed those justifications using qualitative thematic analysis (Braun 
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& Clarke 2006). This process yielded three main categories of justifications, which we 

describe in the results section.

 
Figure 1. Provided Solutions  

RESULTS 

As shown in Table 1, participants frequently chose one or more from among three solutions: 

C, the geometric representation; H, the direct model, or D/G, errors. Those who selected 

H, assigned it to the first or second position, explaining that H is the most accessible, 

comprehensive, and confirms the correct answer. Those who selected an error (D or G), 

also usually in one of the first two positions, explained this as a way to fix the error or to 

normalize error-making. Those who chose C assigned it nearly always as the last in the 

sequence, explaining that it is “non-routine” and “creative.”  

Participants commonly cited accessibility considerations in justifying the sequencing of an 

error or the direct model, citing needs of “struggling” or “weaker” students. Fewer 

continued to attend to accessibility with regards to the third position, even though they often 

culminated their sequence with what they perceived to be more complex. Instead, in 

justifying their third choice, most often the geometric representation, participants 

commonly cited an inclination toward a variety of representations and approaches. Our 

analysis of their justifications about which solutions and in what sequence is presented 

elsewhere (Ayalon & Rubel, under review).  

Although participants selected boys or girls roughly evenly, there are patterns in terms of 

how they assigned each solution, as shown in Table 2, according to three main trends: 1) 

Solution C to a higher-achieving boy; 2) Solution H to a lower-achieving girl; 3) an error 

to higher-achieving students. We note that Solution A was assigned only to lower-achieving 

students but was seldom chosen. 
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Solution 1st choice 2nd choice 3rd choice Total  

A 2 9 0 11(26%) 

B 0 2 4 6(14%) 

C 0 4 30 34(81%) 

D or G 21 8 0 29(69%) 

E 1 3 1 5(12%) 

F 2 6 1 9(21%) 

H 16 10 6 32(76%) 

Table 1: Selection of Solutions in Sequence 

 

 B-Low G-Low B-High G-High Total n(%) 

Solution A 4.5* 6.5 0 0 11(26%) 

Solution B 1 0 2 3 6(14%) 

Solution C 5 2 18.5 8.5 34(81%) 

Solution D or G 6.5 3.5 10.5 8.5 29(69%) 

Solution E 3 1 3 1 5(12%) 

Solution F 2.5 0.5 0 3 9(21%) 

Solution H 5.25 20.25 2.25 4.25 32(76%) 

 27.75 33.75 36.25 28.25  

*Responses such as lower-achieving boy or girl were halved in this table. 

Table 2: Assignment of selected solutions by gender and math status 

Participants explained their assignment of a solution to a student because of (1) 

characteristics of individuals in that group, pertaining to perceived mathematical reasoning 

or communication skills; (2) to encourage participation, of the designated student or others 

in the class; or (3) to attend to issues of self-confidence, status, or other existing gender-

achievement stereotypes. Here we present our analysis of justifications of Solutions C, H, 

and D/G, because these were the most commonly selected and because their assignment 

was not distributed equally across the indicated social categories. 

Participants assigned errors more often to higher-achieving students, for three reasons 

connected to the above themes: (1) Because of an expectation that higher-achieving 

students will be able to identify and explain the errors; (2) To normalize error-making in 

mathematics, primarily to encourage participation. For example, P24 explained, “I want 

everyone to learn that everyone makes mistakes. This will support and motivate all of the 

students”; and (3) because participants perceive these students, particularly boys, as 

invulnerable as a result of self-confidence perceived to be high enough to easily withstand 

criticism. Several participants, in contrast, noted that girls might be vulnerable in this 
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situation. For example, P37 explained “It would embarrass a girl to show this or to start a 

discussion.”  

Participants most often assigned Solution H to a lower-achieving girl. In many cases, 

participants explained that they felt the direct model was more likely to have originated 

with a girl, according to gendered beliefs about mathematical reasoning. For example, P27 

explained, “Girls usually choose the long and safe way, different from boys who look for 

short-cuts and clever ways." Many indicated a trust in a girl’s ability to present H in a clear 

and organized way for the class. For example, P29 explained “Girls are more organized 

than boys and can present better than boys.” Many others explained that inviting a lower-

achieving girl would represent an opportunity to broaden participation among others in the 

class and strengthen her self-confidence. Assignment of Solution H to lower-achieving 

boys was far less common, and in those instances, justified by how solution H is clear and 

not hard to explain.  

Participants most often assigned Solution C to the category of higher-achieving boy. Most 

commonly, they justified this around expected characteristics of individuals in that group, 

with respect to mathematical reasoning or communication skills. Participants attributed 

characteristics to these boys such as above-average, creative, and special. For example, P26 

explained that “on the basis of experience, boys like busy-work less than girls, and mostly 

try to find other ways to solve a problem. In addition, boys have better spatial abilities than 

girls, so this solution is better suited to a boy than a girl, in my opinion.” In contrast, when 

participants assigned solution C to a higher-achieving girl (this occurred much less often), 

they tended to explain this as an opportunity to remedy those girls’ lack of self-confidence. 

For example, P8 explained that a high-achieving girl would “explain well. Girls don't have 

self-confidence, and are shy, so I chose a girl because boys have self-confidence, to go to 

the board and to talk in front of the class.” 

DISCUSSION  

An important limitation of our study is that it is oriented around a single mathematics task. 

In addition, we have flattened broad social diversity into only two social constructs (gender 

and achievement) and separated those continua into artificial, binary distinctions. Neither 

of these variables actually operate in binary terms and clearly intersect with other variables, 

such as race, language status, physical appearance, social popularity, and more, depending 

on the context. Despite these limitations, our results contribute to a growing knowledge-

base about classroom interactions with respect to an essential component of structured 

problem-solving lessons, the selecting and sequencing students’ ideas for the subsequent 

whole-class discussion (Livy et al., 2017; Meikle, 2014; Stein et al., 2008). Our results 

suggest that social considerations play a significant role in teachers’ decision-making about 

whom to invite to present which kind of solution. 

Participants often selected lower-achieving girls to present the direct-model solution (H), 

and explained this in several ways. In many cases, they invited a lower-achieving girl 

because of their perceived lesser mathematical ability, even though this was stated to be a 
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top-track class. Inviting them to present mathematical work represents, according to many 

participants’ justifications, an opportunity to boost what they perceive to be their lower 

self-confidence. It is important to remember that in most cases, they designated solution H 

as the first or second to be presented, and only in rare instances as the third. If there is a 

classroom norm around supporting accessibility by always beginning with the easiest 

example or least sophisticated solution, as prior studies indicate, then inviting the lower-

achieving girl to present first or early on presents a signal to the class (and to the girl herself) 

about the low value of her solution. Thus participants’ indications about inviting a lower-

achieving girl to present her mathematical ideas to increase what they perceive to be girls’ 

low self-confidence might, instead, undermine that intention and reinforce a position of low 

self-confidence. 

With respect to solution C, on the other hand, participants tended to invite higher-achieving 

boys to present the more unusual solution, with a geometric representation (C). They 

explained this primarily in terms of these students’ mathematical and communication skills. 

Here, too, the sequencing is significant, as in most cases, participants designated Solution 

C as the last to be presented. Again, if there is a classroom norm around the sequencing of 

examples or ideas, as the prior research indicates, then who is invited to present later in the 

sequence could signal to the class the value of this solution, as most sophisticated.  

The fact that there were no gender differences around the assignment of errors is telling. 

That participants more often assigned errors to higher-achieving students to present is 

evidence of their recognition that this could be risky for lower-achieving students in terms 

of that student’s self-confidence or willingness to further participate. This indicates that 

participants were paying attention to the potential impact on a student of being invited to 

present a particular kind of solution. It is striking, therefore, that our results did not include 

more instances of their seizing opportunities to assign competence, either to lower-

achieving students or girls, by having them present more sophisticated solutions.  

Prior studies outline a range of pedagogical principles that guide teachers in selecting and 

sequencing of solutions for a whole-class discussion. These studies focus on the 

mathematical and pedagogical considerations, without addressing how teachers consider 

which students to invite to present which kinds of solutions on the classroom’s public floor. 

Our findings suggest that gender and achievement play a significant role. Further research 

could explore this question relative to other mathematical tasks. Additional research could 

study how such practices around sequencing of solutions or examples are enacted to 

determine how students interpret these norms.   
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