
 

 

 

 

 

 

 

 

 
 



 

Proceedings of the 44th Conference of the International Group  

for the Psychology of Mathematics Education  

 

Volume 4 

Research Reports (S-Z) 

 

 

 

 

 

Editors: 

Maitree Inprasitha 

Narumon Changsri 

Nisakorn Boonsena 

 

 

 

Khon Kaen, Thailand 

19-22 July 2021 

 

 

 



  

Proceedings of the 44th Conference of the  

International Group for the Psychology of 

Mathematics Education 

Volume 4 

Research Reports (S-Z)       

Editors: Maitree Inprasitha, Narumon Changsri,  

      Nisakorn Boonsena 

 

 

 

Cite as: 

Inprasitha, M., Changsri, N., & Boonsena, N. (Eds). (2021). Proceedings of the 44th 

Conference of the International Group for the Psychology of Mathematics Education (Vol.4). 

Khon Kaen, Thailand: PME. 

 

Website: https//pme44.kku.ac.th 

 

Proceedings are also available on the IGPME website: http://www.igpme.org 

 

Copyright © 2021 left to authors 

All rights reserved 

 

ISBN 978-616-93830-3-1 (e-book) 

 

 

Published by Thailand Society of Mathematics Education, Khon Kaen, Thailand 

123/2009 Moo. 16 Mittraphap Rd., Nai-Muang, Muang District Khon Kaen 40002 

Logo designed by Thailand Society of Mathematics Education  



PME 44 - 2021 
 

PREFACE 

We are pleased to welcome you to PME 44. PME is one of the most important international 

conferences in mathematics education and draws educators, researchers, and mathematicians 

from all over the world. The PME 44 Virtual Conference is hosted by Khon Kaen University 

and technically assisted by Technion Israel Institute of Technology. The COVID-19 

pandemic made massive changes in countries’ economic, political, transport, communication, 

and education environment including the 44th PME Conference which was postponed from 

2020. The PME International Committee / Board of Trustees decided against an on-site 

conference in 2021, in accordance with the Thailand team of PME 44 will therefore go 

completely online, hosted by the Technion - Israel Institute of Technology, Israel, and takes 

place by July 19-22, 2021. A national presentation of PME-related activities in Thailand is 

part of the conference program. 

This is the first time such a conference is being held in Thailand together with CLMV 

(Cambodia, Laos, Myanmar, Vietnam) countries, where mathematics education is 

underrepresented in the community. Hence, this conference will provide chances to facilitate 

the activities and network associated with mathematics education in the region. Besides, we 

all know this pandemic has made significant impacts on every aspect of life and provides 

challenges for society, but the research production should not be stopped, and these studies 

needed an avenue for public presentation. In this line of reasoning, we have hosted the 

IGPME annual meetings for the consecutive year, July 21 to 22, 2020, and 19 to 22 July 

2021, respectively by halting “on-site” activities and shift to a new paradigm that is fully 

online. Therefore, we would like to thank you for your support and opportunity were given to 

us twice. 

“Mathematics Education in the 4th Industrial Revolution: Thinking Skills for the Future” has 

been chosen as the theme of the conference, which is very timely for this era. The theme 

offers opportunities to reflect on the importance of thinking skills using AI and Big Data as 

promoted by APEC to accelerate our movement for regional reform in education under the 4th 

industrial revolution. Computational Thinking and Statistical Thinking skills are the two 

essential competencies for Digital Society. For example, Computational Thinking is related 

to using AI and coding while Statistical Thinking is related to using Big Data. Therefore, 

Computational Thinking is mostly associated with computer science, and Statistical Thinking 

is mostly associated with statistics and probability on academic subjects. However, the way 

of thinking is not limited to be used in specific academic subjects such as informatics at the 

senior secondary school level but used in daily life.   

For the PME 44 Thailand 2021, we have 661 participants from 55 different countries. We are 

particularly proud of broadening the base of participation in mathematics education research 

across the globe. The papers in the four proceedings are organized according to the type of 

presentation. Volume 1 contains the presentation of our Plenary Lectures, Plenary Panel, 

Working Group, the Seminar, National Presentation, the Oral Communication presentations, 

the Poster Presentations, the Colloquium. Volume 2 contains the Research Reports (A-G). 

Volume 3 contains Research Reports (H-R), and Volume 4 contains Research Reports (S-Z). 

The organization of PME 44 is a collaborative effort involving staff of Center for Research in 

Mathematics Education (CRME), Centre of Excellence in Mathematics (CEM), Thailand 
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Society of Mathematics Education (TSMEd), Institute for Research and Development in 

Teaching Profession (IRDTP) for ASEAN Khon Kaen University, The Educational 

Foundation for Development of Thinking Skills (EDTS) and The Institute for the Promotion 

of Teaching Science and Technology (IPST). Moreover, all the members of the Local 

Organizing Committee are also supported by the International Program Committee. I 

acknowledge the support of all involved in making the conference possible. I thank each and 

every one of them for their efforts. Finally, I thank PME 44 participants for their 

contributions to this conference. 

Thank you  

Best regards  

  

Associate Professor Dr. Maitree Inprasitha  

PME 44 the Year 2021 

Conference Chair   
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USING SIGN LANGUAGE VIDEOS TO HELP DEAF STUDENTS 

UNDERSTAND AND SOLVE WORD PROBLEMS IN MATHEMATICS: 

RESULTS OF A SCHOOL INTERVENTION 
Karolin Schaefer1, Laura Gohmann1, Helena Westerhoff1, & Maike Schindler1 

1University of Cologne, Germany 

 

For students who are deaf or hard-of-hearing (DHH), word problems in mathematics 

are a particular challenge due to several reasons. One reason is that DHH students 

often have difficulties reading and understanding written information. In this paper, we 

present a school intervention with one class of DHH students (N=10) using sign 

language (SL). The aim of the intervention was to facilitate students’ understanding of 

and work with word problems. We investigated if and how the use of SL videos can help 

for this purpose. In a mixed-methods design, analyzing data from the intervention 

qualitatively and from written solutions of the students in tests quantitatively, we found 

that SL videos in many instances appeared to help the DHH students in their 

understanding of the problem situation and accordingly to solve the word problems. 

INTRODUCTION 

Several studies indicate that students who are deaf or hard-of-hearing (DHH) tend to 

have severe mathematical difficulties (e.g., Blatto-Vallee et al., 2007; Marschark et al., 

2013; Pagliaro, 2015; Qi & Mitchel, 2012; Traxler, 2000). Even before they start school, 

a majority of DHH students show difficulties in their mathematical development 

(Kritzer, 2009). DHH students often appear to have relative strengths, for example, in 

geometry. This may be related to their preference for visually presented information: 

“Geometry concepts and skills are developed sooner and/ or more quickly than those of 

other areas, perhaps influenced by their visual access to information” (Pagliaro, 2015, 

p. 183). Yet, in other mathematical areas (e.g., number sense) DHH students tend to 

have more difficulties (Spencer & Marschark, 2010). In particular, DHH students 

appear to struggle with word problems, which relates to the fact that they often lack 

conceptual understanding, for example, of operations (Zevenbergen et al., 2001), and 

that DHH students often have limited language and reading skills (Lederberg et al., 

2012). As a consequence, word problems often appear to be particularly difficult for 

DHH students (Hyde et al., 2003): Extracting information from text and interpreting 

and applying their calculations linguistically constitutes a challenge (Swanwick et al., 

2005). That is why DHH students find it rather difficult to understand and work with 

word problems (Spencer & Marschark, 2010).  

In this paper, we present a school intervention with one class of DHH students, more 

precisely DHH students using sign language (SL), at grade 6/7. The aim of the 

intervention was to facilitate students’ understanding of and work with word problems. 

To help students understand the word problems, we used sign language videos as a 

representation of the word problems: All students were able to watch these on individual 
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tablet computers during their work on the word problems. We posed the research 

question, Does the use of sign language videos facilitate students’ work on word 

problems and how? 

STUDENTS WHO ARE DEAF OR HARD-OF-HEARING (DHH) 

DHH students and sign language 

People with a hearing loss can be referred to as deaf or hard-of-hearing (DHH), 

depending on their degree of hearing loss respectively hearing threshold. A distinction 

is made between mild, moderate, severe, or profound hearing loss (Davis & Hoffman, 

2019). In many cases, both ears are affected. Hearing loss might lead to difficulties in 

hearing sounds and communicating with others. Moreover, congenital hearing loss has 

an impact on learning and social development (Spencer & Marschark, 2010).  

SLs, such as German SL (DGS), differ from written and spoken language in their 

modality. While the modality of spoken language is auditory-vocal, SLs are based on a 

visual-gestural modality (Leonard et al., 2013). Further, there are many differences 

between spoken and SLs in linguistic aspects, such as lexicon, syntax, phonology, 

morphology, and pragmatics. For instance, spoken language signals follow each other 

linearly, whereas in SL different visual levels such as manual signs and visual 

expressions (e.g., for size or height) can be processed simultaneously (Wille, 2019). SL 

therefore is not a visualization of spoken language, but an independent language.  

Difficulties of DHH students with word problems 

The reasons for DHH students’ difficulties in mathematics are complex. Nunes and 

Moreno (2002) argue that hearing loss is not a direct cause for problems in learning 

mathematics, but rather a risk. Despite delays in DHH students’ language development, 

difficult access to spoken language or delayed access to SL have an influence on the 

development of informal mathematical knowledge and activities such as counting, 

naming shapes, or comparing quantities). Deaf children of deaf parents are at an 

advantage here (Freel et al., 2011; Svartholm, 2008), since their parents can provide SL 

early on. Interactions with parents play an important role not only in the development 

of language, but also in the acquisition of mathematical skills: Kritzer (2009) found for 

DHH children that “children who demonstrated higher levels of mathematics ability 

were found to spend a larger percentage of their day interacting with the adults around 

them and to experience more frequent and purposeful exposure to mathematically based 

concepts … at home” (p. 474). Besides, DHH students often show low reading abilities: 

On average, the reading skills of 18- and 19-year old DHH students are at about the 

same level as 8 to 9-year-old students without hearing loss (Kral & O’Donoghue, 2010). 

Reading comprehension is particularly important in word problems (Kail & Hall, 1999). 

Thus, adequate comprehension of word problems, understanding the problem, 

distinguishing relevant from irrelevant information as well as formulating answers 

might be particularly challenging (Swanwick et al., 2005).   
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THIS STUDY 

The participating students 

This exploratory study was conducted at a special school for children with sensory 

needs (hearing loss). It addressed ten DHH students (9 girls, 1 boy) of a class with a 

bimodal bilingual approach (SL and written language). Six out of the ten students 

additionally had general learning difficulties and had special educational needs in 

learning. The students were in mixed class of grade 6/7 and were 13 to 15 years old. 

The hearing loss was profound in seven cases, severe in two cases, and moderate in one 

case. Five students were bilaterally fitted with cochlear implants, although one student 

no longer wore them. Three were bilaterally fitted with hearing aids; here too, one 

student only wore them occasionally. Two students were bimodally fitted with a 

cochlear implant and a hearing aid. Seven students had a migration background. The 

languages spoken at home in these seven families were Kurdish, Turkish, Polish, and 

Arabic. German was not the first language in these seven cases, neither was SL. In a 

standardized reading comprehension test (ELFE1–6: Lenhard & Schneider, 2006), all 

students scored below average, which indicates difficulties in reading comprehension. 

In their schooling, the students regularly communicated using SL: SL was the language 

of instruction and also the language the students used to communicate with each other. 

The students first came into contact with SL in pre-school or school, so they were not 

“native signers.” This is in line with the situation overall, since about 90% of all DHH 

children have normal-hearing parents and, thus, native signers are a minority among 

DHH children (Mitchell & Karchmer, 2004). 

The intervention 

This intervention’s aim was to support students in their understanding of and work with 

word problems. To do so, the students practiced extracting relevant information from 

the text in word problems, for example, by underlining and noting relevant information 

before starting to think about an operation. Additionally, during the intervention, the 

students were provided with SL videos of the word problems: Videos where word 

problems were translated to SL (see Fig. 1). During the intervention, the students always 

first were to read the word problems in text and to try to understand the situation. Their 

understanding of the word problem was also discussed in a plenary phase. Only after 

this, the SL video was shown to the students. During their individual work on the tasks, 

the students had the text as well as the video (on individual tablet computers) available. 

The SL videos were created by two researchers (co-authors of this paper), under 

supervision of a SL lecturer, being a native signer himself. The researchers also 

conducted the intervention in the students’ school. One example is illustrated in Figure 

1. The according word problem was “Five friends are going on vacation together. 

Together, they are paying 212.50 € for the train. The hotel costs 535.00 € for all. How 

much does everyone need to pay individually?” 
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Figure 1: Screenshots from SL video (in order of appearance in the SL video) 

The intervention had four sessions, each consisting of four school hours. The first 

session focused on filtering out relevant information from the word problems. In the 

second session, DHH students were to distinguish between relevant and irrelevant 

information in the word problems. The third session focused on formulating questions 

about the word problems and to understand the problem situation. Finally, during the 

fourth session, all content was repeated and consolidated.  

Data and data analysis 

For the evaluation of the school intervention, we used different data sources. For 

evaluating the process of the intervention, two researchers who were present during the 

intervention took field notes. Also, students’ written work on word problems during the 

intervention was collected. These data were analyzed using qualitative content analysis 

(Mayring, 2014): In short, a summarizing procedure was used to find categories (themes 

during the intervention) with respect to the research question. 

Additionally, a pre-test and post-test were conducted before and after the intervention, 

with four word problems each, addressing basic arithmetic operations. In the post-test, 

the students received the word problems in text without sign language first and were to 

solve them individually. In a second step, the post-test was repeated, now with the help 

of SL videos. No feedback on the correctness of the solutions was given in all tests. For 

analyzing students’ work on the test, the solutions on paper were coded with respect to 

three aspects: (a) the identification of relevant information in the problem, (b) the 

modelling regarding the arithmetic operation applied, and (c) the interpretation of the 

results in the context. All three aspects were rated (three-step): For example, for (b) it 

was rated best if the correct operation was applied and all necessary steps were 

conducted (regardless of slips in calculation or similar), it was rated medium when a 

part was correct but relevant steps were missing, and it was rated lowest when the wrong 

operation was used or the relevant numbers were not used. These ratings (2, 1, 0) for 

the three aspects (a, b, c) were used to investigate differences between pre- and post-

test (both text) and between the text- and SL-video-condition in the post-test, using the 

Wilcoxon-Test, a nonparametric statistical test suited for small sample sizes.  

RESULTS 

We posed the research question, Does the use of sign language videos facilitate 

students’ work on word problems and how? In the following, we will first give insights 



Schaefer, Gohmann, Westerhoff, & Schindler 
 

PME 44 – 2021  4 - 5 

into the results of the qualitative analysis of the intervention, then into the results of the 

pre- and post-test analyses and will finally enrich the findings through illustrations of 

the case of one girl, Mia (pseudonym). The qualitative analysis revealed the following 

results regarding the intervention: 

General work on word problems. The students worked on the word problems intensely. 

They appeared to be motivated to identify relevant pieces of information and to find an 

answer that fits to the problem. They also discussed the word problems and the given 

situations vividly in collaborative work (with partners).   

Students’ work on the word problems (as text). When the word problems were given as 

text, the students often asked for the meaning of words (e.g., “What does cable mean?”) 

and for what they were supposed to do. Two out of ten students appeared to understand 

the word problems also without SL videos: They used SL videos seldom and stated that 

they did not prefer SL videos over text (see below).  

Students’ work on the word problems (as SL videos). The students watched the SL 

videos regularly and often multiple times. They often asked for the video when it was 

not given directly. The students posed little questions regarding the meaning of words—

they appeared to understand the words well in SL. The students tended to adopt the 

signs provided in the videos also for their own talk. After the video of the word problems 

was shown, they often signed “I see!”, “It’s easier now”, or “Ah!”, or they simply 

nodded. Generally, the students appeared to have less struggle to understand the 

problem situations in the SL videos than in text. When being asked about their 

perception of SL videos, eight students evaluated them positively. Two out of ten 

students said that they understood word problems equally well in text form or that they 

would prefer the task being read out loud.  

When analyzing and comparing students’ written work in the pre- and post-test in the 

text condition, we found that five out of eight students participating in both tests scored 

lower in the post-test than in the pre-test. Differences were not significant. This 

indicates that the intervention did not facilitate students’ work with word problems 

given as text in general. When comparing students’ work in the two post-tests—the text 

condition vs. SL video condition—we found significant differences (p=.011, r=.597, 

strong effect), with seven out of eight students scoring higher in the SL video condition 

than in the text condition. This indicates that the SL videos facilitated students’ work 

with word problems. These results are in line with the qualitative results that the 

students appeared to benefit from the use of SL videos mainly. 

We would like to use a case of one girl as an example to give further insights into the 

intervention and students’ work with the SL videos. Mia was 14 years old. She had a 

profound hearing loss and was fitted bilaterally with hearing aids. In school, she 

communicated mainly in SL, at home in spoken language. She grew up trilingually (SL, 

German, Turkish). At the beginning of the intervention, Mia described that she was 

insecure with word problems, particularly about what needs to be calculated in word 

problems. She also often had difficulties understanding words such as “take/get” or 
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“spend” in written text. Mia herself stated that she did not like either mathematics or 

reading. In the pre-test, when working on the “five-friends-problem” (see above), she 

multiplied (Fig. 2). She added (in text): “First I multiplied, then I calculated.” and added 

as an answer “Every friend needs to pay 1,136,875,000 Euro alone.” 

 
 

Figure 2: Examples of written solutions by Mia for “five-friends-problem” 

During the intervention sessions, Mia stated that she understood the word problems 

better through the SL videos than through text. We observed that when working with 

word problems presented in SL videos, she was more motivated in class and watched 

the SL videos several times in a row before deciding on how to calculate. According to 

her, without the SL video, some of the written words in the word problems were 

unknown to her. In the first post-test situation when the word problem was presented as 

text (not SL video), Mia subtracted to solve the “five-friends-problem” (Fig. 2) and 

wrote: “Five friend needs to pay 322.50€.” (sic!) In the second part of the post-test with 

the SL video, although her calculation had a mistake, she used the correct arithmetic 

operation (Fig. 2) and answered: “Every friend needs to pay 149€ and 2.50€.” Her case 

and in particular her work on this task illustrate that the SL in cases like hers helped the 

students to understand word problems and work with them accordingly. 

DISCUSSION 

The results indicate that the SL videos facilitated DHH students’ understanding of and 

work with word problems in our intervention in many instances. The videos appeared 

to be an important support for those who had difficulties accessing written language. 

Furthermore, the students in this study described the work with the videos as motivating 

and appeared to be happy to understand the word problems through the SL videos 

(“Ah!!, “I see!”).  

The results of students’ written work in the tests indicated that the students were more 

successful in working with word problems (identifying relevant information, applying 

an appropriate mathematical operation, and interpreting the results in the context) 

through the use of SL videos. However, the intervention with the videos did not 

generally help students to succeed with word problems: In the post-test, the students’ 

results in the text condition (without SL videos) were not better than before the 

intervention. This hints at the need to support the students in their conceptual 

understanding of (in this case) arithmetic operations. Future interventions should 

include such support as well.  

Our study is subject to several limitations. One obvious limitation is the small number 

of students, some of whom also had additional learning difficulties. The results of the 
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statistical analysis can therefore serve as an indication of results of this particular 

intervention with these particular students only. The results of the study are not 

representative of the entire group of DHH students using SL.   

For future practical work with DHH students, it is important to bear in mind that not all 

DHH students are fluent in SL, as some prefer oral communication. For DHH students 

with little SL skills, SL videos are unlikely to offer an advantage over other visual 

representations (e.g., a sketch) of the mathematical problem. Yet, the SL videos have 

the advantage that students can watch the same video several times and certain scenes 

in detail. This is comparable to a situation where NH students can read a written task 

multiple times (Wille, 2019). Here, SL videos have an advantage over or additional 

value to SL interpreters as persons.  

In summary, SL videos in our intervention were found to support DHH students’ 

understanding and work with word problems. We think that they offer a good 

opportunity to reduce barriers to understanding written instructions in word problems 

and hope that future interventions with DHH students can build on the results of our 

study. 
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Identifying student strategies is an important endeavor in mathematics education 

research. Eye tracking (ET) has proven to be valuable for this purpose: E.g., analysis 

of ET videos allows for identification of student strategies, particularly in quantity 

recognition activities. Yet, “manual”, qualitative analysis of student strategies from ET 

videos is laborious—which calls for more efficient methods of analysis. Our 

methodological paper investigates opportunities and challenges of using unsupervised 

machine learning (USL) in combination with ET data: Based on empirical ET data of 

N = 164 students and heat maps of their gaze distributions on the task, we used a 

clustering algorithm to identify student strategies from ET data and investigate whether 

the clusters are consistent regarding student strategies. 

INTRODUCTION 

For researchers and practitioners (e.g., teachers) in mathematics education, it is 

important to not only evaluate student achievements, their results and products, but also 

to analyze students’ thought processes and individual strategies leading to such 

products. In recent years, eye tracking (ET)—the recording of eye movements—has 

gained increasing importance in mathematics education research (Lilienthal & 

Schindler, 2019). Among others, it has proven to be valuable to analyze student 

strategies in different mathematical areas (e.g., Bruckmeier et al., 2019; Obersteiner & 

Tumpek, 2016), including quantity recognition in whole number representations 

(Lindmeier & Heinze, 2016; Schindler & Lilienthal, 2018). For example, Schindler et 

al. (2019a) analyzed student strategies in determining quantities in the 100-dot field and 

100-abacus based on ET data: They used gaze-overlaid videos (videos of the scene with 

the eye gaze visualized as dot wandering around) to infer student strategies. However, 

such qualitative analysis of ET data is laborious: Analyzing ET data, which are rich by 

nature, is time-consuming and demanding (Klein & Ettinger, 2019). This calls for more 

efficient methods of analysis when bigger numbers of students are studied, and student 

strategies are to be inferred (Klein & Ettinger, 2019). 

Our methodological paper explores the possibility to identify student strategies in whole 

number representations using ET data combined with unsupervised machine learning 

(USL). Based on data from N = 164 fifth grade students, we use a clustering algorithm 

(a specific instance of USL), to investigate the possibility to identify student quantity 

recognition strategies from so-called gaze heat maps (see Fig. 2). Broadly, we 

investigate what opportunities and challenges USL offers for identifying quantity 
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recognition strategies. In particular, we ask the question: Does the USL provide 

consistent clusters with respect to student strategies?  

Our paper illustrates with examples how a clustering algorithm, applied to heat maps, 

can be used to identify student strategies (“proof of concept”). We investigate the 

consistency of the clusters provided by the USL through qualitative interpretation using 

qualitative previous findings and elaborate on opportunities and challenges of USL. 

EYE TRACKING IN MATHEMATICS EDUCATION RESEARCH  

Eye tracking allows for a recording of spatio-temporal sequences of gaze points that 

indicate visual attention. The connection between gaze and visual attention exists due 

to an economic feature of the human eye, which concentrates a substantial fraction of 

the receptors on the retina in the small area of the fovea. Thus, in order to pay attention 

in detail, humans need to move their eyes constantly so that the area of interest is in line 

with the fovea, a process that can be tracked with ET devices unobtrusively by visually 

observing the pupils. ET is of interest for mathematics education research since the 

recorded sequences of gaze points do allow inferences about mental processes, though 

interpretation of gaze movements is not straightforward and bijective (Schindler & 

Lilienthal, 2019). ET is of growing interest since ET devices became increasingly 

affordable, advanced, and accurate (Lilienthal & Schindler, 2019); due to theoretical 

advances in interpretation (Schindler & Lilienthal, 2019); and since the required 

computational resources for partially automated analysis are available at low cost, 

which makes ET applications using (partially) automated analysis available for research 

and, in the future, also for mathematics education practitioners (e.g., teachers). 

MACHINE LEARNING  

The term Machine Learning (ML) refers to a set of methods for automated analysis of 

data, specifically “methods that can automatically detect patterns in data, and then use 

the uncovered patterns to predict future data, or to perform other kinds of decision 

making under uncertainty” (Murphy, 2012, p. 1). There are two major types of ML: 

Supervised learning (SL) algorithms learn a mapping between training samples and 

respective output. This means that each sample in the training set must be labelled. The 

learned mapping can then be used to make categorical or nominal predictions (Murphy, 

2012). SL is thus also called predictive learning. SL is used, for example, in Schindler 

et al.’s (2019b) study, where the training samples are (as in this paper) ET sequences 

represented in the form of heat maps, with labels that specify each heat map to belong 

to a student with or without mathematical difficulties. After training, the SL algorithm 

can be used to classify previously unseen heat maps and predict whether the 

corresponding student has mathematical difficulties or not. 

The second major type of ML is unsupervised learning (USL) where only training 

samples but no labels are given. The computer is then tasked to “find ‘interesting 

patterns’ in the data” (Murphy, 2012, p. 2). This is also called knowledge discovery. As 

Murphy (2012) notes, USL is a much less well-defined problem than SL. In this paper, 

we use clustering, a form of USL in which the set of samples (here: gaze heat maps) is 
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divided (“clustered”) into a number of groups. A clustering algorithm tries to find a 

meaningful division of the input data, but how a good division may look like and the 

“correct” number of clusters is not known a priori. To the best of our knowledge, USL 

has not been used on ET data in mathematics education research so far. 

QUANTITY RECOGNITION IN WHOLE NUMBER REPRESENTATIONS 

Whole number representations such as the 100 dot field or the 100 abacus (also called 

“100-frame”), which visualize substructures of 100 (50, 10s, 5s), are often used for 

students to learn the number range up to 100 (Gaidoschik, 2015). Previous research has 

shown that students, when perceiving quantities in such representations, make use of 

structures such as 10s (rows) and 5s (Obersteiner et al., 2014). While the analysis of 

student strategies in such representations is challenging (Obersteiner et al., 2014), recent 

studies have indicated that ET is a useful tool to identify strategies, e.g., from ET videos 

(Schindler & Lilienthal, 2018) or scan-paths, which indicate where the students looked 

at (Lindmeier & Heinze, 2016). Whereas such studies using ET to identify strategies 

are promising, the qualitative analysis of gaze patterns is demanding and time-

consuming—especially for empirical studies with larger numbers of participants. 

Therefore, we investigate the opportunities that USL may offer to help identify student 

strategies based on their spatial gaze distributions on the task. 

THIS STUDY 

Participants. We use data from a study with 164 fifth-grade students (92 boys, 72 girls) 

in a German comprehensive school. The mean age was 10;9 (SD = 0;7). The study took 

place in the first weeks of fifth grade. Using a standardized arithmetic paper-pencil test, 

we identified 59 children as typically developing in mathematics, 69 children to 

encounter mathematical difficulties, and 36 to be “at risk” to have mathematical 

difficulties (see Schindler et al., 2019a;b for a detailed description of the test). 

Tasks, procedure, and eye tracker. We used a digital version of the 100-dot field. We 

used the same numbers as in Schindler et al. (2019a), where student strategies were 

inferred from ET videos qualitatively (7, 15, 20, 31, 43, 54, 68, 76, 89, 92, and 100; in 

randomized order). The students were tested individually. We used Tobii x3-120, a 

remote eye tracker at a sampling rate of 120 Hz, which was mounted at the bottom edge 

of the 24’’ full HD computer monitor. It was calibrated through a nine-point calibration. 

Before the students worked on the tasks, they saw a picture of the dot field and were to 

describe it. The students got two practice tasks (with numbers not used in further tasks). 

They were instructed to always name the number of dots as fast and correctly as 

possible. Before each task, the students were asked to fixate a star in the middle of the 

screen. The students did not receive a response on the correctness of their answers. We 

made audio recordings of verbal answers.  

Heat maps. ET provides rich information and a large amount of data, reflecting that 

gaze patterns can differ in multiple ways. To find groups of strategies (“clusters”), we 

chose a representation of the recorded gazes to facilitate the subsequent analysis. This 

representation needed to reduce the amount of data the clustering algorithm has to 
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handle while preserving the relevant features of the gaze patterns. Based on previous 

research that indicated a variety of student gaze distributions on the task sheets in 

quantity recognition tasks (Schindler et al., 2019a), we decided to use heat maps that 

show the spatial distribution of gazes over the presented digital task sheets integrated 

over the whole duration of a task. We used the Tobii Pro Lab Software to produce 

individual student heat maps. For clustering, we included only heat maps of correctly 

or inversely solved (common mistake in German, e.g., for 89: “ninety-eight”) tasks to 

assure that the students actually perceived the given information rather than guessed. In 

case of 89 on the dot field (focus of the Results Section), 90 heat maps were included. 

Clustering. To automatically determine groups of similar heat maps, a definition for the 

(dis-)similarity between two heat maps is required. We use the Euclidean distance 

between the images: The sum of the squared pixel differences between two heat maps 

measures dissimilarity (Goshtasby, 2012). Calculating the Euclidean distance is a 

standard approach to determine similarity between images in digital image processing.  

A second important choice concerns the clustering algorithm that assigns groups based 

on the similarity of heat maps. We use self-organizing maps (SOMs) (Kohonen, 2001), 

which are suited for explorative data analysis (Kaski, 1997). SOMs do not automatically 

determine the number of groups present in the data (which is a very hard problem) but 

require the number as input parameter. Since previous empirical work hinted at a set of 

five different kinds of strategies for quantity recognition in whole number 

representations (Schindler et al., 2019a), we use a structure with nine clusters, arranged 

in a 3x3 grid. Using nine clusters allows for the possibility that the algorithm would 

identify more strategies than previously found—or to differentiate them further. SOMs 

have the rather unusual feature that they assume an a priori topology over the 

relationship between the different groups. While this does not necessarily guarantee for 

optimal clustering results, the topology, usually a 2D grid (Fig. 1), provides an 

additional tool to interpret the clustering results: neighborhood indicates similarity. This 

study utilizes the SOM algorithm implemented in the Matlab Deep Learning Toolbox 

with a hexagonally connected 3x3 grid and default parameters. In the clustering process, 

each of the student heat maps is assigned to one of the nine clusters. These assignments 

are iteratively optimized until all similar heat maps are assigned to the same cluster, 

while highly dissimilar heat maps are assigned to different clusters on opposite ends of 

the 3x3 grid. As a result, each heat map is assigned to a group that contains its most 

similar peers. The implicit assumption here is that due to the similarity of the heatmaps 

in each group these groups represent particular quantity recognition strategies. For each 

cluster, we calculate a cluster prototype as the average of all heat maps assigned to that 

cluster (Fig. 1). These average heat maps help to draw conclusions about the quantity 

recognition strategy that every cluster may represent. 

Analyzing the clusters. To answer the question if USL provides consistent clusters with 

respect to student strategies, for every task we regard each cluster of the SOM and 

qualitatively assign a tentative strategy based on the average heat map. We then analyze 

all single heat maps in each cluster: In particular, we qualitatively assign a strategy to 

each heat map, based on the set of strategies found through qualitative analyses by 

Schindler et al. (2019a): (1) counting all, where the students counted all dots shown, (2) 
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counting fives, where the students counted groups of fives, (3) counting rows, where 

students counted all rows displayed, (4) using 50 as unit, e.g., when determining 76, 

they perceived 50 in one glance and counted only the further rows, and (5) 

subtraction/last row, where the students, e.g., in 89 looked at the missing 90st dot, or 

only on the last row of displayed dots. Note that in Schindler et al.’s (2019a) study, the 

design was alike to ours: This applies to the (identical) tasks, the procedure, ET, etc. 

The participants were at the same age and also at the beginning of fifth grade. The main 

difference is that Schindler et al. investigated only 20 students (whereof 10 were found 

to have MD). Because of the larger number of 164 students in our study, we assume 

that our data set may include all strategies found by Schindler et al. (2019a). 

RESULTS 

In the following, we will pursue the question: Does the USL provide consistent clusters 

with respect to student strategies? We do so by using one task as an example: 89 on the 

dot field. We use this particular task, since it affords a variety of strategies (Schindler 

et al., 2019a) and, thus, is an interesting case for the clustering. 

For the task 89, the USL found four substantial clusters (Fig. 1), whereas five clusters 

remained effectively empty with only one member heat map that can be considered an 

outlier. Regarding the average heat maps of the clusters (Fig. 1, right), we tentatively 

assigned strategies to these four clusters: (7) Counting Rows on the Right, (9) Counting 

Rows in the Middle, (1) Last Row/Subtraction, and (3) Counting Rows on the Left.  

 

Figure 1: SOM for task 89 dot field (left) and all substantial clusters (with n>1)  

visualized through their average heat map prototype (right). 

Cluster 7: “Counting Rows on the Right” (n=21). Of the 21 heat maps in this cluster, 

we identified 19 heat maps to indicate the strategy counting rows, which is consistent 

with the impression from the average heat map: The gazes are in every row, and the 

pattern indicates a counting process (Fig. 2). The heat maps indicate that these 19 

students counted at the right edge of the rows. The remaining two heat maps in this 

cluster correspond to the strategy using 50: Here, there are no/few gazes on the upper 

half of the dot field, and the gaze patterns indicate that the students counted rows 6 to 9 

at the right edge of the respective rows (Fig. 2). The similarity in appearance with a 

concentration at the right edge of the rows in the lower half of the dot field is likely the 
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explanation why the USL put the two using 50-heat maps together with the 19 heat 

maps that indicate counting (all) rows. The clustering result is reasonable since in any 

instance there was presumably (at least some) counting of rows on the right side. 

 

Figure 2: Examples of individual heat maps 

Cluster 9: “Counting Rows in the Middle” (n=12). Of the 12 heat maps in this cluster, 

we found 7 heat maps to reflect the strategy counting rows, consistent with the 

assignment to the cluster prototype. The counting pattern is situated in the middle of the 

dot field, indicating that the students counted rows in the middle (Fig. 2). For the other 

5 heat maps in this cluster, we are unable to identify a clear strategy. They were marked 

as “unclear” (Fig. 2): The gazes are spread over the task sheet, possibly reflecting a 

multitude of strategies. An indication that this cluster may contain a variety of different 

strategies is the rather noisy appearance of the cluster prototype.  

Cluster 3: “Counting Rows on the Left” (n=13). 8 heat maps in this cluster indicate 

the strategy counting rows, with the gazes at the left edge of the rows (see Fig. 2). The 

other 5 heat maps indicate use of 50, since there are hardly any gazes on the upper 50 

dots, but gazes that indicate that the students counted the rows from the 6th row onwards 

at the left edge. Similar to Cluster 7, this explains why these two kinds of heat maps 

were both included in the same cluster: The patterns were similar in a way that the gaze 

density at the left edge is high. 

Cluster 1: “Last Row/Subtraction” (n=34). For this cluster, we found three different 

kinds of strategies: 7 of the heat maps indicated that the students counted rows (see Fig. 

2). In 11 cases, we identified using 50: The students’ gazes indicated that the students 

counted rows 6 to 9 (Fig. 2). Finally, 15 heat maps indicated that the students focused 

only on the last row displayed (Fig. 2) or that they focused only on the missing 90st 

point, indicating a subtraction strategy. We assume that this relates to the distance 

metric used, which regards the intensity of the gaze distribution: Since the areas of the 

dot field that are different between these strategies have a relatively low intensity (light 

green), but all heat maps in this cluster have a common feature, the “blob” in the right 

corner of the last row, which is intense (warm colors), this “blob” may be decisive here. 
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Answering the research question if the USL provides consistent clusters with respect to 

student strategies, we can say that the clusters found were—in the used example of 89 

on the dot field—consistent in a certain way, but different from our previous qualitative 

analyses. For example, for the USL, heat maps reflecting counting rows on the right 

and using 50 are similar and belong to one cluster if students when using 50 count the 

rows 6 to 9 on the right side. On the other hand, counting rows on the right and counting 

rows on the left belong to two different clusters. The clustering algorithm operates on 

visual similarity of heatmaps and inherently cannot cluster strategies together that 

manifest themselves very differently in the gaze distribution. A second important 

observation is that in cases where a student strategy involves different processes (e.g., 

grasping 50 in a glance and counting rows 6 to 9), clustering cannot evaluate what 

process is decisive for the strategy—as it was done in our previous study (Schindler et 

al., 2019a). Yet, given that the clusters found in our approach seldom involved more 

than two strategies, we find that they are—to a certain extent—consistent with respect 

to student strategies. So, if a student heat map belongs to one cluster, one can say that 

the student most likely had one or another strategy. 

DISCUSSION 

In this paper, we explore the possibility to identify student strategies in whole number 

representations using ET combined with USL. Based on ET data from N = 164 fifth 

grade students, we use the SOM algorithm for clustering and ask whether this automated 

analysis provides consistent clusters with respect to student strategies. Our question 

relates to a fundamental issue of USL: Compared to SL, where it is possible to quantify 

the performance of the trained algorithm for classification, there is no obvious error 

metric for USL (Murphy, 2012). As error metric from the application domain of 

mathematics education, we tested whether clustering identifies consistent groups 

regarding the strategies they represent. We found that this is true only to some extent. 

This is understandable: Our clustering of heat maps compares solely the visual 

appearance of the quantity recognition process as a whole and thus inherently cannot 

decompose strategies or give higher weight to certain features (e.g., the absence of gazes 

on the upper half). One would rather expect to find more clusters than possible 

strategies, since different combinations of strategies could result in additional, likely 

more consistent clusters. We did not observe such an “over-clustering” tendency and it 

will be subject of future work to evaluate whether other clustering algorithms and the 

use of other distance metrics result in a higher number and more consistent clusters.  

We would like to stress that this paper gives an example of an empirical study in which 

Artificial Intelligence (AI) is used to support human researchers. Here, essentially, the 

AI component provides an independent view on a data set and makes suggestions about 

meaningful partitioning of the data. Human researchers interpret and verify these 

suggestions based on pre-studies with smaller numbers of participants and a principle 

understanding of the applied ML algorithms. Indeed, the clusters identified in this paper 

have predominantly a clear interpretation, which may be meaningful in some contexts 

and clearly provided an independent view from a different angle. 



Schindler, Schaffernicht, & Lilienthal 

4 - 16  PME 44 - 2021 

References 

Bruckmeier, G., Binder, K., Krauss, S., & Kufner, H.-M. (2019). An eye-tracking study 

of statistical reasoning with tree diagrams and 2 x 2 tables. Frontiers in Psychology, 

10, 632. 

Gaidoschik, M. (2015). Einige Fragen zur Didaktik der Erarbeitung des 

„Hunderterraums“. Journal für Mathematik-Didaktik, 36(1), 163–190. 

Goshtasby A.A. (2012). Image registration. London: Springer. 

Kaski, S. (1997). Data exploration using self-organizing maps. Doctoral Thesis. 

Helsinki University of Technology: Helsinki. 

Klein, C., & Ettinger, U. (2019). Eye movement research: An introduction to its 

scientific foundations and applications. Cham, Switzerland: Springer. 

Kohonen, T. (2001). Self-Organizing Maps (3rd. ed.). Berlin: Springer. 

Lindmeier, A., & Heinze, A. (2016). Strategies for recognizing quantities in structured 

whole number representations – A comparative eye-tracking study. Paper presented 

at 13th International Congress on Mathematical Education (ICME-13), 2016. 

Lilienthal, A.J., & Schindler, M. (2019). Eye tracking research in mathematics 

education: A PME literature review. In Proceedings of the 43rd Conference of the 

IGPME (Vol. 4, p. 62). Pretoria, South Africa: PME. 

Murphy, K.P. (2012). Machine learning: A probabilistic perspective. Cambridge, MA: 

MIT. 

Obersteiner, A., Reiss, K., Ufer, S., Luwel, K., & Verschaffel, L. (2014). Do first 

graders make efficient use of external number representations? The case of the 

twenty-frame. Cognition and Instruction, 32(4), 353–373. 

Obersteiner, A., & Tumpek, C. (2016). Measuring fraction comparison strategies with 

eye-tracking. ZDM, 48, 255–266. 

Schindler, M., Bader, E., Lilienthal, A.J., Schindler, F., & Schabmann, A. (2019a). 

Quantity recognition in structured whole number representations of students with 

mathematical difficulties: An eye-tracking study. Learning Disabilities: A 

Contemporary Journal, 17, 5–28. 

Schindler, M., & Lilienthal, A.J. (2019). Domain-specific interpretation of eye tracking 

data: Towards a refined use of the eye-mind hypothesis for the field of geometry. 

Educational Studies in Mathematics, 101, 123–139. 

Schindler, M., & Lilienthal, A.J. (2018). Eye-tracking for studying mathematical 

difficulties 

—also in inclusive settings. In Proceedings of the 42nd Conference of the IGPME 

(Vol. 4, pp. 115–122). Umeå, Sweden: PME. 

Schindler, M., Schaffernicht, E., & Lilienthal, A. (2019b). Differences in quantity 

recognition of students with and without mathematical difficulties: Analysis through 

ET and AI. In Proceedings of the 43rd Conference of the IGPME (Vol. 3, pp. 281–

288). Pretoria, South Africa: PME. 



4 - 17 

2021. In Inprasitha, M, Changsri, N., & Boonsena, N.  (Eds.). Proceedings of the 44th Conference of 

the International Group for the Psychology of Mathematics Education, Vol. 4, pp. 17-24. Khon Kaen, 

Thailand: PME. 

THROUGH THE EYES OF PROSPECTIVE TEACHERS: 

JUDGING TASK DIFFICULTIES IN THE DOMAIN OF 

FRACTIONS. 
Saskia Schreiter, Markus Vogel, Markus Rehm, Tobias Dörfler 

University of Education Heidelberg 
 

Judging the difficulty of mathematical tasks is an everyday activity of teachers. 

However, empirical research about teachers’ judgment process is still scarce. It is 

assumed that teachers use their knowledge in order to identify difficulty-generating task 

characteristics and to evaluate them in terms of their difficulty for students. This 

ongoing study uses eye-tracking technology and stimulated recall interviews to examine 

the assumed judgment processes with N = 25 pre-service teachers in the domain of 

fractions. In an experimental design, it is further investigated whether teachers’ specific 

knowledge on difficulty-generating task characteristics influences identification an 

evaluation processes during the judgment.  

INTRODUCTION AND THEORETICAL BACKGROUND 

The difficulty of mathematics tasks is influenced not only by mathematical task 

characteristics (e.g., in the domain of fractions: like vs. unlike fractions; Padberg & 

Wartha, 2017), but also by instructional characteristics (according to cognitive load 

theory: e.g., split-attention vs. integrated task design; Sweller et al., 2011). When 

judging task difficulty, teachers should be able to identify difficulty-generating task 

characteristics and to evaluate them adequately in terms of their difficulty for students. 

Research results show, however, that teachers often make inadequate judgments about 

task difficulties (e.g., Anders et al., 2010; Karing & Artelt, 2013) and fail to adequately 

consider the task’s instructional design (Hellmann & Nückles, 2013; Schreiter et al., 

2021). It is assumed that in the genesis of diagnostic judgments, teachers use the 

information available in a diagnostic situation (e.g., difficulty-generating task 

characteristics) and process them on the basis of their knowledge to get to their result 

(cf. Loibl et al., 2020). Numerous studies show that teachers' knowledge of difficulty-

generating task characteristics plays a significant role for the accuracy of teachers’ 

diagnostic judgments regarding task difficulty (cf. Ostermann et al., 2017; McElvany et 

al., 2009). However, most of these studies focus on the result of the diagnostic 

judgment, and it remains unclear how teachers get to their result and what role 

knowledge plays in the judgment process (cf. Loibl et al., 2020). Diagnostic judgment 

processes, such as identifying and evaluating task characteristics, constitute internal 

cognitive processes that cannot directly be observed. An effective way to examine such 

cognitive processes is to collect eye-tracking data followed by eye-tracking stimulated 

recall interviews (ET SRI) (Schindler & Lilienthal, 2019). ET SRI is a research method 

to investigate cognitive processes by asking probands to retrospectively describe their 

own thoughts using a video sequence of their eye movements (Lyle, 2003). Numerous 
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eye-tracking studies focusing on teachers’ professional vision (for an overview, cf. 

Grub et al., 2020) revealed significant differences in gaze behavior between experts and 

novices: shorter fixation durations, for example, were found for experts in several 

studies and were interpreted as an indicator that experts are faster in encoding 

information. However, in most of these studies, experts were distinguished from 

novices only by the number of years of job experience, and other knowledge 

components of teachers were not considered (cf. Grub et al., 2020). It therefore remains 

unclear how and whether teachers' knowledge influences their gaze behavior during 

diagnostic activities. 

THIS STUDY  

This ongoing study aims to investigate prospective teachers’ diagnostic judgment of 

task difficulties from a process-view: which task characteristics (mathematical vs. 

instructional) do pre-service teachers identify and evaluate when judging the difficulty 

of fraction tasks? In addition, there is a particular research interest in exploring the 

potential influence of specific knowledge about difficulty-generating task 

characteristics on identification and evaluation processes. Please note that this 

contribution constitutes a pre-report of an ongoing study and only covers a sample of 

the data and results of a larger data set.  

Based on the above-mentioned findings of Hellmann and Nückles (2013) as well as 

Schreiter et al. (2021), we expect that a) mathematical task characteristics are identified 

and correctly evaluated more frequently compared to instructional characteristics (H1a) 

and b) instructional task characteristics are to a large extent not identified and correctly 

evaluated (H1b). Furthermore, building on the results of existing research on the 

influence of specific knowledge on judgment accuracy (e.g., Ostermann et al., 2017), 

we assume that specific knowledge enables pre-service teachers to identify and 

correctly evaluate more difficulty-generating task characteristics (mathematical and 

instructional) (H2). As eye-tracking studies focusing on teachers’ professional vision 

revealed significant differences in gaze behavior between experts and novices (here: 

teachers with and without job experience; cf. Grub et al., 2020), we further aim to 

exploratively investigate whether specific knowledge influences the gaze behavior of 

pre-service teachers who have no job experience during their diagnostic judgment of 

task difficulties.  

METHODS 

Participants. The results reported here are based on data from N = 25 pre-service 

teachers of mathematics. Participants were assigned to two conditions: an experimental 

group (n = 11), that received a 90-minute intervention on specific difficulty-generating 

mathematical and instructional task characteristics and a control group (n = 14) that did 

not receive any treatment.  

Material. Four fraction tasks were created. Between these tasks, difficulty-generating 

mathematical and instructional task characteristics were systematically varied. The 

mathematical difficulty of fraction tasks was varied by modifying the denominators 
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(like vs. unlike), by mixing natural numbers and fractions, and by using mixed fractions 

(cf. Padberg & Wartha, 2017). The sample task (figure 1) requires students to add a 

natural number and fractions in mixed notations, which causes difficulties. The 

instructional difficulty was varied based on the split-attention effect and the redundancy 

effect (Sweller et al., 2011). Accordingly, the tasks’ relevant information is presented 

either close or distant from each other. Furthermore, the tasks were created in such a 

way that a) one and the same information is presented by different information sources 

(redundancy 1) or b) additional information irrelevant for the solution is included 

(redundancy 2) or c) no redundant information is included. The instructional design of 

the sample task (figure 1) causes difficulties, as different information sources (the 

problem definition, the graphic, and the length information) are presented distant from 

each other and redundant information (the route from Philippshagen to Göhren) is 

included.  

 

 

 

 

 

Figure 1: Sample for a fraction task with specific difficulty-generating task characteristics 

Procedure. The diagnostic task consists of assessing four fraction tasks regarding the 

question "What makes the task easy/difficult for students?" The tasks are presented 

individually and in randomized order on a 24’’ computer monitor. Eye-tracking data 

was collected using a monitor-based eye-tracker (Tobii Pro Fusion) that captures 

binocular eye movements at a sampling rate of 120 Hz. For adjusting the eye-tracker, a 

9-point calibration was performed before each task. The time interval between the 

diagnostic task on the eye-tracker and the subsequent ET SRI was kept as short as 

possible to avoid loss of memory (approx. 1-3 min.). During the interview, subjects 

described what they did and thought during the diagnostic task, based on their shown 

eye movements. For the recording of the ET SRI, the software OBS was used, which 

records screen contents including sound, so that the videos of the eye movements with 

the corresponding comments of the subjects were available for the later analysis.  

Data analysis. The Tobii Pro Lab software was used to analyze the eye-tracking data. 

In each task, specific Areas of Interest (AOIs) were defined around the varied 

mathematical and instructional task characteristics. The number of fixations and 
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fixation duration were determined using the Tobii I-VT Fixation Filter. To determine 

the number of transitions between two AOIs, the videos of eye movements were 

visually inspected. A mixed-methods approach was used to analyze the ET SRI data: 

The ET SRI were first transcribed and coded deductively using qualitative content 

analysis according to Mayring (2015). The following category system was used and 

binary coded (in parentheses): difficulty-generating task characteristics can be 

identified (1), or not identified (0) when diagnosing a task. It turned out that some task 

characteristics are only identified when reflecting on one's own eye movements during 

the SRI. This resulted in another category retrospectively identified, which was 

evaluated as a subcategory of not identified. Identified task characteristics can be 

correctly evaluated in terms of difficulty for students (1) or incorrectly / not further 

evaluated (0). Task characteristics that are only evaluated during the SRI are assigned 

to the category retrospectively evaluated that counted as a subcategory of not further 

evaluated. Transcripts were coded by two raters with high interrater reliability (Cohen's 

Kappa = .88). The assigned codes were then integrated into a quantitative data set to 

examine differences across experimental conditions using variance analysis. 

RESULTS 

Identification and evaluation of difficulty-generating task characteristics 

To test our hypothesis, an ANOVA was calculated with the within subject factor task 

characteristics (mathematical and instructional) and the between subject factor 

condition (experimental and control group). Figure 2 gives an overview of the average 

percentage of difficulty-generating task characteristics that were identified and 

correctly evaluated in terms of difficulty for students. The results show that there is a 

significant difference with high effect size between the identification and evaluation of 

mathematical vs. instructional task characteristics (F(1,23) = 15.01, p < .001, η2 = .40). 

This effect is, however, dependent on the experimental condition. Bonferroni-corrected 

post-hoc tests show that differences between mathematical and instructional task 

characteristics can only be detected for participants of the control group (cf. figure 2). 

Here, significantly more mathematical task characteristics are identified and correctly 

evaluated compared to instructional characteristics (H1a). Instructional task 

characteristics are to a large extent not identified and adequately evaluated (H1b). 

Without specific knowledge, less than half of the instructional task characteristics are 

identified and correctly evaluated on average (M = .42, SD = .12).  

A significant difference with high effect size could be determined between experimental 

conditions (F(1,23) = 31.29, p < .001, η2 = .58). Bonferroni-adjusted post-hoc analysis 

reveal that participants of the experimental group identify and correctly evaluate a 

significantly higher number of both mathematical and instructional task characteristics 

(cf. figure 2). Specific knowledge about difficulty-generating task characteristics has 

thus enabled pre-service teachers to identify and adequately evaluate more difficulty-

generating task characteristics when judging task difficulties for students (H2).  
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Figure 2: Means and Standard Error for identified and correctly evaluated difficulty-

generating task characteristics (mathematical and instructional). **p ≤ .01, ***p ≤ .001. 

Analysis of gaze behavior 

Table 1 provides an overview of the average number of fixations, transitions, and 

fixation durations (in s) to or between predefined mathematical and instructional AOIs. 

Furthermore, the table displays the total recording duration (in s), that is the time that 

was needed on average for the judgment per task. 

Overall, the experimental group was found to have a lower number of fixations and 

lower fixation durations to predefined mathematical AOIs as well as shorter total 

recording durations compared to the control group. These group differences are 

statistically significant with high effect sizes (cf. table 1). Against the background that 

participants of the experimental group identified and correctly evaluated significantly 

more difficulty-generating task characteristics, these eye-tracking measures may 

indicate a more efficient approach to diagnosing with specific knowledge. For the 

instructional AOIs, however, no significant differences in gaze behavior between the 

control and experimental group could be determined.  

AOI ET measure 
CG 

M (SD) 

EG 

M (SD) 
t p Cohens d 

Mathem. 
Fixation count 

Fixation duration 

28.71 (12.71) 

8.31 (4.34) 

19.14 (7.84) 

4.89 (2.22) 

2.19 

2.55 

.039 

.019 

0.91 

1.00 

Instruct. 

Fixation count 

Fixation duration 

Transition count 

34.35 (6.95) 

6.92 (1.37) 

9.04 (3.90) 

34.21 (11.03) 

7.68 (2.93) 

8.68 (4.24) 

0.04 

0.79 

0.22 

.972 

.442 

.830 

0.02 

0.33 

0.09 

Overall 
Total record 

duration 

118.62 

(12.74) 

102.07 

(12.03) 
3.30 .003 1.34 

Table 1: Eye-Tracking measures for mathematical and instructional AOIs, each separately for 

the control group (CG) and experimental group (EG). 



Schreiter, Vogel, Rehm & Dörfler 
 

4 - 22  PME 44 - 2021 

DISCUSSION 

The main purpose of this ongoing study is to investigate which task characteristics 

(mathematical vs. instructional) pre-service teachers identify and evaluate when judging 

the difficulty of fraction tasks. Furthermore, a particular research interest is to explore 

the potential influence of specific knowledge about difficulty-generating task 

characteristics on identification and evaluation processes during the judgment.  

In line with expectations, the results showed that mathematical task characteristics are 

more frequently identified and correctly evaluated compared to instructional task 

characteristics. Instructional task characteristics were to a large extent not identified and 

adequately evaluated in terms of their difficulty for students. These findings support 

existing research on diagnostic teacher judgments (e.g., Hellmann & Nückles, 2013; 

Schreiter et al., 2021), which showed that instructional task characteristics are 

insufficiently considered by teachers. However, if teachers do not consider the difficulty 

that is caused by the tasks’ instructional design, they risk creating cognitive overload in 

the students' learning process, which prevents successful learning (cf. Sweller et al., 

2011). Therefore, the results reported here point to a need to promote the identification 

and evaluation of difficulty-generating instructional task characteristics in teacher 

education.  

Furthermore, the results showed that specific knowledge enables pre-service teachers 

to identify and correctly evaluate more difficulty-generating task characteristics. This 

effect could be found for both mathematical as well as instructional task characteristics. 

These results are in line with existing research that highlights the importance of specific 

knowledge for the accuracy of teachers’ diagnostic judgments (e.g., Ostermann et al., 

2017; Karing & Artelt, 2013). In our study, the collection of direct process indicators 

(eye movements, ET SRI) allowed to gain insights into the positive influence of specific 

knowledge on identification and evaluation processes that underlie teachers’ judgment. 

The analysis of eye movement measures further suggested that specific knowledge 

enables a more efficient approach to diagnosing: pre-service teachers with specific 

knowledge about difficulty-generating task characteristics look at mathematical task 

characteristics in particular and the entire task in general less frequently and for a shorter 

period of time. At the same time, they identify and correctly evaluate more difficulty-

generating task characteristics. For instructional task characteristics, however, no 

significant group differences were found in terms of gaze behavior. It might be possible 

that there are no observable differences between persons who focus on task 

characteristics and process them fast and those who only pay little attention to the same 

characteristics. One possible explanation for our study finding could be that pre-service 

teachers without specific knowledge may have paid little attention to instructional task 

characteristics overall. These results complement existing research findings in the 

context of professional vision, which found indicators of faster information encoding 

processes among experts (here: teachers with job experience compared to teachers 

without job experience) (cf. Grub et. al 2020). 
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Regarding the results reported here, it should be noted that due to the small sample and 

due to the narrow focus on two areas of difficulty-generating task characteristics, solely 

in the domain of fractions, the results are only indicative. This report covers only a 

sample of the data and the results of an ongoing study with a larger data set. Additional 

data will be presented at the conference. 

Overall, based on these findings, impulses for teacher training can be derived: An 

intervention on specific difficulty-generating task characteristics enables pre-service 

teachers to identify and adequately evaluate more difficulty-generating task 

characteristics and allows a more efficient approach to diagnosing. The question arises 

of what role other characteristics of the teacher, such as job experience, motivation, or 

other knowledge components, play in diagnosing task difficulties. These components 

are seen as further potentially relevant aspects for diagnostic judgments (cf. Loibl et al., 

2020; Südkamp et al., 2012) and should also be investigated in future studies. 
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Many professional development environments (e.g., courses, teacher communities) 

center on discussions about pedagogical and mathematical practices. These discussions 

usually go beyond “rights and wrongs” towards the formation of reflective arguments 

through interactions and dialogues. Thus, the productiveness of these discussions 

largely depends on facilitation skills, which only recently have become the object of 

thorough scrutiny. This study focuses on one aspect of facilitation of discussions: do the 

facilitators envision their role as a neutral “guide on the side” or rather as a 

participating colleague, or somewhere in between? The consideration of this question 

raises important theoretical and practical implications for the professional 

development of facilitators. 

BACKGROUND, RATIONALE, AND RESEARCH QUESTIONS 

Due to their crucial role in the dissemination of educational endeavors, there is a 

growing interest in facilitators of  professional development (PD) courses for practicing 

mathematics teachers. Thus far, research has focused on facilitators’ preparation (e.g., 

Maass & Doorman, 2013), the knowledge they require (e.g., Even, 2005;), and their 

practices (e.g., Coles, 2019; Karsenty et al., submitted; Prediger & Pöhler, 2019; van 

Es, Tunney, Goldsmith, & Seago, 2014). This study is intended to shed further light on 

a specific issue of facilitation, stemming from the common situation when PD 

facilitators are former or present proficient mathematics teachers. Though the 

knowledge and practices associated with teaching and facilitation may resemble and 

partially overlap, the knowledge required from facilitators “go beyond and look 

different than the knowledge that a typical mathematics classroom teacher holds” 

(Borko, Koellner & Jacobs, 2014, p. 165). For example, facilitators should skillfully 

lead in-depth discussions on issues of mathematics teaching, where actual problems of 

practice are surfaced and discussed, and create a safe place for teachers to reflect on 

practices, re-inspect them, and perhaps consider changing them (Horn, 2010). Leading 

such discussions is a challenge of facilitation in general, and even more so for novices 

who are not sure how to steer the conversations (Borko et al., 2014) and how directive 

they should be (Lewis, 2106). This challenge is also rooted in novice facilitators' 

multiple professional identities as facilitators, teachers, and colleagues (Knapp, 2017; 

Schwarts, 2020). The phenomenon of "expert become novice" (Murray & Male, 2005, 

p. 135), where experienced teachers are new to the norms and practices of facilitation, 

can lead them to feel “de-skilled” (ibid, p. 129). One of the issues that evolve in this 
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situation, which has not yet been empirically explored, is how novice facilitators 

position themselves in PD discussions, when it comes to expressing or concealing their 

own opinions on issues of mathematics teaching. Most often, in the mathematics 

classroom, teachers are perceived as those who have the authority to determine which 

statements in the discussion are correct and which are not. This perception stems from 

both the inherent power relationship between teacher and students and the unique nature 

of the discipline of mathematics, in which every statement is perceived to be classifiable 

as right or wrong (Chazan, Callis & Lehman, 2009). In PD settings, however, it is less 

applicable to assign "correctness" to arguments in a discussion. Rather, PD discussions 

revolve around values, preferences, and orientations about teaching and learning 

mathematics, and different approaches do not necessarily converge into consensual 

stances. In other words, PD discussions are a means to deepen teachers’ reflective views 

on their practice, and are not necessarily aimed at reaching closure, conclusions, or 

agreements. PD facilitators must therefore choose how to participate in such discussions 

and decide if and how their mandate as leaders allows them to expose their own opinions 

when working with PD participants. These decisions are at the core of establishing their 

new professional identity as beginning facilitators. Thus, the questions addressed in this 

report are the following: 

How do novice facilitators, who are also mathematics teachers themselves, participate 

in PD discussions in terms of sharing their own opinions? How, if at all, do their 

participation practices change during the first year of facilitation? 

CONTEXT 

The above questions are explored in the context of a PD project called VIDEO-LM 

(Viewing, Investigating, and Discussing Environments of Learning Mathematics), 

developed at the Weizmann Institute of Science in Israel. The program aims to enhance 

secondary mathematics teachers’ reflective skills, along with their mathematical 

knowledge for teaching (MKT; Ball, Thames & Phelps, 2008), via collective guided 

analysis and discussions of videotaped lessons of unfamiliar teachers. A six-lens 

framework (SLF) is used to focus participants’ observations and analysis of the video 

(Karsenty & Arcavi, 2017). SLF includes mathematical and meta-mathematical ideas 

in the lesson; the filmed teacher’s goals; the tasks used; the interactions in the lesson; 

the filmed teacher’s dilemmas and decision-making; the filmed teacher’s beliefs. An 

SLF-guided discussion shuns judgmental comments, and if they arise, for example 

when participants criticize a teacher's action, the facilitator redirects the conversation 

using questions such as "assuming the teacher acted in the best interests of her students, 

what could have been her goal for this action?”. It follows that a prominent role of 

VIDEO-LM facilitators, besides choosing a video and appropriate lenses for each PD 

session, is to lead reflective discussions that shift evaluative comments into “issues to 

think about” (ibid, p. 438). In such discussions, teachers may reach insights about 

mathematics teaching that can catalyze reflective processes (Schwarts & Karsenty, 

2018). During the project’s upscaling, new facilitators were recruited, most of whom 

were experienced teachers who previously participated in a VIDEO-LM PD. The novice 
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facilitators were prepared in a one-year course and were supported by a personal mentor 

and by facilitators’ group meetings during their first year of facilitation. 

METHOD 

This study is part of a broader research project, consisting of a multiple case-study 

investigating 7 novice facilitators during their first year of practice. Inspired by the 

notion of problem-driven research (Arcavi, 2000), the current report focuses on 

research questions that emerged during the data analysis. 

Participants and settings.  

We focus here on 5 novice facilitators (4 women and 1 man), all of whom led VIDEO-

LM courses in the school where they teach. These yearly courses consisted of 21-30 

hours, spread over 6-10 biweekly/monthly sessions. 

Data collection.  

To attain a broad picture of the facilitators’ practices, the following data were gathered: 

(1) pre- and post-facilitation questionnaires (beginning and end of year); (2) journals 

written by facilitators before and after each PD session; (3) videos of two PD sessions 

per facilitator, one early in the year and another towards the end of the PD; (4) videos 

of stimulated-recall interviews (SRIs) held with every facilitator a few days after each 

of the filmed PD sessions. In these SRIs the facilitator and the first author jointly 

watched the PD videos, and the facilitator was asked to stop the video whenever s/he 

noticed a decision or an instant to reflect on. 

Framing the data analysis in the broad study: Searching for issues of facilitation.  

To understand the nature of facilitation and the challenges it poses, we focus on macro-

level descriptions of facilitation which we term issues of facilitation, in accordance with 

VIDEO-LM’s focus on issues of mathematics teaching. We define an issue of 

facilitation as a question, problem, phenomenon, or dilemma, which occurs during 

facilitation. Facilitators facing these issues must make decisions and take actions 

accordingly. Through an iterative interpretation of the entire corpus of data, 6 issues of 

facilitation were defined, refined, and validated in a 3-year process of analysis, 

observations, and discussions of our research group and a German group from 

Dortmund University who conducted parallel research using similar methods. This 

paper focuses on one of these issues – how facilitators participate in the discussions 

they lead, in terms of sharing their opinions.  

Coding of the relevant data and identifying practices.  

The basis for the following analysis is the data coded as “sharing opinion”. Employing 

thematic analysis (Brown & Clarke, 2006), five different practices were identified. The 

analysis includes two interconnected layers: the first is how facilitators act in sessions, 

and the second is what they say or write about their actions, i.e., how they interpret and 

reflect on their actions.  
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Searching for facilitators' changes in practices.  

To understand changes in facilitation, facilitators’ practices at the beginning and end of 

the year were compared. Although facilitators may perform different practices during 

one session, each of the two documented sessions of each facilitator was assigned to 

one of the five practices (see below) according to the most common practice identified 

in the session. Cases in which facilitators changed their behavior, or alternatively 

behaved in the same way but stated different reasons for this choice, were examined to 

pinpoint catalysts of change.  

FINDINGS 

We identified five practices associated with the issue of sharing an opinion: Neutrality, 

Emergence, Explicitness, Interweaving, Protectiveness. Below, we provide a short 

account of each practice and illustrate it with representative excerpts. Our basic premise 

is that every decision made by the facilitator carries a particular agenda, and indeed, 

opinions can be expressed indirectly, for example in choosing a question for discussion 

or a video to watch. However, we focus on the explicit expressions of the facilitators’ 

opinions while managing discussions.  

The practices. Figure 1 illustrates the identified practices (marked below as P1, P2, etc.). 

The letters A-E denote the five facilitators and the numbers “1” and “2” refer to the 

beginning and end of the first facilitation year, respectively. The position of circles under 

a certain practice indicates the prevailing practice in that session.  

 

We now present the practices using examples from the data. Most of the excerpts are 

taken from interviews (labeled "SRI" with the transcript line), due to space limitations. 

P1: Neutrality. This practice is characterized by the facilitator’s complete avoidance 

of expressing personal opinions during discussions. Alternatively, the facilitation 

consists of asking questions that do not imply the facilitator’s position, as Facilitator A 

described: 

My whole facilitation is made up of questions, I only ask questions, [...] even when 

they answer something, I reply with a question […] I'm not stating uh... my opinion 

or... What I think (SRI-A1-64, 68).  
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Facilitator A interprets his role of a VIDEO-LM facilitator as someone who should not 

take sides, someone whose job is to choose the PD activities and the questions to be 

asked. Nevertheless, he questions this perspective, framing it as a conflictual decision: 

I oppose to what Teacher H said, [but] I did not want a confrontation [...] If it was 

coming from the group, then fine, but if not, then no, I do not intend to express my 

personal opinion here [...] I am not sure what my role as a facilitator is, am I 

participating? The very fact that I come and bring up questions that interest me and 

raise issues that interest me. This is my conflict within the group, between a 

facilitator and a participant (SRI-A2-113). 

The practice of staying neutral may have reasons other than avoiding confrontation or 

side-taking. For example, facilitators may use it as a strategy to elicit teachers' opinions 

freely, rather than in response to the facilitator's opinion. This was evident in the case 

of Facilitator E, who serves as head of the mathematics department in her school. Before 

she started the PD, she expressed her aim to encourage colleagues not to be intimidated 

by her position of authority: 

I want the teachers to participate, to speak, and that they will not be afraid to ask 

questions or reveal lack of knowledge (Pre-questionnaire). 

P2: Emergence. Sometimes facilitators hold a position they want to promote without 

stating it explicitly, but rather by having it emerge collectively through the discussion. 

This practice is in line with the constructivist spirit that learners (in this case teachers) 

should be encouraged to articulate their own issues rather than receive them from an 

external authority. In the emergence stance (unlike in the neutrality discussed above), 

facilitators use subtle but directive moves to prompt an opinion or alternatively to 

counter another.  The emergence practice was found, for example, in the case of 

Facilitator D toward the end of the year. It can be detected in her reflection below, on a 

facilitation move she enacted in response to a participant's criticism of the teacher in the 

observed video:  

I do not agree with what he said. And yet I asked, okay, so what's the gain? [in the 

filmed teacher's action]. And I'm glad I learned that subtle move. Like, okay, so he 

did that. So why did he do that? (SRI-D2-152). 

This short excerpt reveals Facilitator D's opinion ("I do not agree with what he said") 

and how she addressed this disagreement. Rather than arguing or saying that she holds 

a different view, she used a learnt SLF discursive tool (“that subtle move”) to turn the 

disagreement into an issue for everybody to discuss (“So why did he do that?”). 

P3: Explicitness. As the name of this category implies, this practice is characterized by 

explicit expressions of opinions by facilitators. For example, Facilitator C explains:  

When I ask questions, I first want to hear them. Then, if I have something that can 

add to the discussion, I think, like, if I was now sitting with the teachers around the 

table, I would also tell this story, I wouldn't have avoided it […] I feel that I shouldn’t 

refrain from expressing myself because I'm 'only a facilitator' and I'm 'only listening' 

(SRI-C1-33). 
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The multiple identities of facilitator C led her to participate in discussions both as a 

facilitator and as a colleague, thus she intentionally shared her views during the PD. In 

the case of Facilitator B, a similar decision was taken, but only towards the end of the 

year: as a teacher of advanced mathematics classes, at the beginning of the year she was 

reluctant to share her views about how to teach struggling students. Her decision-

making changed owing to the encouragement of her mentor: 

I felt that with the struggling students, my teachers are the authority [...] they already 

have their knowledge and their expertise and I am not there, [so I] don’t bring up my 

agenda. [And] Then, I had a conversation with Y. [the mentor], and she kind of “let” 

me, she thought I was "allowed" to say [what I think] and that I should bring that side 

into the school. Not to be only a moderator, but to share my input (SRI-B2-2, 4). 

P4: Interweaving. This practice is manifested as the facilitator, in a casual yet 

deliberate way, interweaves normative statements while managing discussions. Rather 

than being explicit, the facilitator does not express a specific opinion directly; the 

opinion posed is blended into the discussion. One example can be seen in the following 

excerpt from a PD session led by Facilitator E at the beginning of the year, when the 

group watched a Calculus videotaped lesson: 

We all teach Calculus [...] and I think we all, I can say for myself for sure [...] we 

also got to teach [...] in a technical way [...] This lesson was clearly designed for an 

advanced class. Can we take something from it to other classes? (PD Session-E1-

329). 

The excerpt demonstrates how the facilitator interweaves her approach, namely, 

teaching should not be done in a technical way. Moreover, her question (“can we take 

something from it to other classes?”) pre-assumes that teachers need to take something 

from the videotaped lesson. This practice may stem from Facilitator E’s role as head of 

the mathematics department, and in general, from facilitators’ desire to nurture clear 

values regarding acceptable ways of teaching. Alternatively, it may be rooted in a 

facilitators' belief that their own opinion is a convention shared by the rest of the group.  

P5: Protectiveness. Observing videos of unfamiliar teachers is an activity that can elicit 

judgmental comments from viewers. To overcome this, the VIDEO-LM design of PD 

sessions utilized SLF in order to focus discussions on issues, as described earlier. 

However, participants still sometimes criticize the filmed teachers, which may lead 

facilitators to feel obliged to "protect" them. In such situations, the facilitator's opinion 

is communicated via this defensive reaction. Facilitator D reported: 

I had the need to protect the filmed teacher; that, too, is one of my problems. Instead 

of looking at it, not in this narrow way, [...] but more broadly [by asking] 'what do 

you think?', 'let's say the lesson is teacher-centered, what's the problem with a 

teacher-centered lesson?' 'did she achieve her goals, did she not achieve goals?' 'what 

goals?' 'how do you achieve your goals?' And develop [in the discussion] what is 

possible [to do]. But, I always feel the need to protect, to say – “you didn’t watch the 

entire lesson”. (SRI-D1-238) 
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The facilitator mentioned different questions she could have asked to redirect the 

criticism into a discussion of issues. Yet, she admits that her “need to protect” was 

stronger. For her, this practice changed by the end of the year (see P2 above, also the 

change D1D2 in Fig. 1), following a facilitators’ meeting where she received a direct 

feedback on this matter from her colleagues. 

DISCUSSION 

The analysis of novice facilitators’ decisions regarding how they position themselves 

during PD discussions, reveals some of the challenges they confront as part of the 

epistemological shift embedded in their transition of roles – from teaching mathematics 

to facilitating discussions about mathematics teaching. Two findings of this study stand 

out: First, that facilitators' participation practices during discussions are notably diverse, 

and second, that the same practice can result from different and even conflicting 

reasons. The comparative analysis between beginning and end of year shows that most 

of the novice facilitators changed their participation practices in discussions (Fig. 1). 

These changes may result from different situational contexts, yet the findings indicate 

that at least some of them were intentional. Factors found as catalysts for change were 

associated with the support that facilitators received and the opportunities provided to 

reflect and refine their interpretation of the facilitator’s role. We argue that a change in 

practices may be manifested in an informed and flexible decision-making process, taken 

after considering additional options for action, rather than in moving from one 

participating strategy to a "better" one. Further longitudinal investigations on facilitators 

can shed more light on evolutions in their practices and their underlying reasons.  

Although the current study was based on a unique PD, it offers insights to other teacher 

education programs that focus on discussions among teachers. The contribution of this 

study is in unpacking another layer of the complexity that discussion management poses 

for new facilitators, in addition to those already recognized (Borko et al., 2014; Lewis, 

2016), and in surfacing an issue that novice facilitators are concerned with, especially 

when establishing their new professional identity. Awareness to the space of 

possibilities spanning a facilitation issue may assist novice facilitators to choose a 

cognizant rather than spontaneous course of action. This awareness is crucial also for 

facilitators in training and for those who prepare facilitators and support them. 
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The paper explores 9 to 11-year-old multilingual students’ discursive constructions 

of geometric shapes and their properties as they engage in classroom interactions 

in a New Zealand classroom. Undertaking the ethnomethodological approach, 

classroom interactions are construed as practical actions that facilitate the process 

of meaning-making of geometric shapes. Transcribed data of one excerpt from six 

audio-video recorded geometry lessons are presented in this paper. The analysis 

revealed that the intonational features of language use play a crucial role in making 

sense of geometric shapes as participants engage in classroom interactions. 

INTRODUCTION 

In present times, mathematics classes are becoming superdiverse in nature (Barwell 

et al., 2019). Research examining multilingualism and the role of language in 

mathematics education has often focussed on mathematical terminology (Adler, 

2002; Moschkovich, 2007), as well as grammatical patterns of mathematical 

registers (Kotsopoulos, Cordy, & Langemeyer, 2015; Schleppegrell, 2007) for 

developing mathematical understanding. However, Ward (2019) argued that 

language is more than vocabulary and syntax. He explained that patterns of stress 

and intonation in language provide impact to the words, their meanings, and their 

social significance. The complexity of these prosodic patterns may increase with the 

presence of a variety of languages in a mathematics classroom. It is the ordered 

nature of indexicality of the language use that enables us to interpret what is said 

beyond the meanings of individual words (Barwell, 2003). Therefore, to 

acknowledge the existence of various languages in contemporary mathematics 

classes, this paper undertakes an ethnomethodological approach to explore how 

multilingual students discursively construct their understanding of shapes as they 

engage in classroom interactions. 

THEORETICAL FRAMEWORK   

As an ethnomethodological approach focuses on how reasoning and activities are 

organised as rational, identifiable events and occurrences within a culture (Heap, 

1984). It aims to provide a detailed description of how members make sense of any 

event as it unfolds in its everyday manner. The circumstantial unfolding identifies 

the common norms underlying any practical action (such as request, command) that 

is “reflexively constitutive of the activities and unfolding circumstances to which 

they are applied” (Heritage, 1984, p. 109). The reflexive accountability of the action 

marks the practical reasoning that allows the construction of a world where the 
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actors’ actions are taken as accountable, intelligible, and sustainable in the course of 

development. This reflexive accountability of everyday actions also accounts for the 

deviations that occur from those normative actions.  

In addition to accountability, Garfinkel and Sacks (1986) argue that reflexivity of 

participants’ language use can be investigated using indexical properties of natural 

language. Indexical properties draw our attention to not only what is said but also to 

how it is being said. The characteristic of how something is said calls for an 

alternative understanding of language as practical action. Garfinkel (1996) argues 

that the understanding of an utterance is contingent upon the context in which it is 

being said. The context involves the background information about who said the 

utterance, where and when, in addition to what has been accomplished by making 

that utterance in light of other alternative utterances that could be made (Heritage, 

1984). Moreover, a clear and detailed ethnomethodological account of activities 

provides the concrete evidence through which the cultural practices are displayed in 

the conversations as the participants engage in interactions. Therefore, the 

ethnomethodological approach is concerned with how people achieve interpersonal 

understanding through language. As a result, speaking/interactions in 

ethnomethodological studies are taken as a practical action capable of 

transformation. For this paper, the ethnomethodological approach provides moment-

by-moment elicitation of classroom practices to explore the processes that contribute 

to meaning construction of shapes and their properties. 

METHODOLOGY   

This paper is part of a larger study that explores 9 to 11-year-olds multilingual 

students’ discursive constructions of shapes and their properties in a New Zealand 

primary classroom. Six geometry lessons on shapes and their properties in one Year 

5/6 classroom were observed, and field notes were taken. Informed and voluntary 

consent to participate in the study was sought from the participants following the 

ethical approval gained from the University of Waikato Division of Education Ethics 

committee. Participants included 15 students and their teacher. The school catered 

to the multilingual student population. Nine out of 15 students were multilingual. 

Data pertaining to students’ languages were collected using a small questionnaire 

that was filled in by the parents.  

The observed six lessons were also audio-and video recorded using two directional 

cameras, one eye gear, and five audio-recorders. One camera was kept in the front 

of the classroom, one at the back. The researcher also wore an eye-gear with an 

inbuilt camera to record a moment of interaction that caught the researcher’s 

attention. The five audio-video recorders were kept on the tabletops to record 

students’ interactions as they worked on group tasks. Each lesson lasted for 45 to 50 

minutes each.  

In addition to audio-visual data, three semi-structured teacher interviews were 

conducted. The interviews were audio-recorded. The purpose of the interviews was 
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to seek clarifications about the lessons or activities that were used in the classroom. 

Each interview lasted 10-12 minutes. The interview was audio-recorded, transcribed 

and given back to the teacher for member checking. Focus group interviews with 

four groups of students (four students in each group) were also conducted after the 

unit on shapes had been taught. Each focus group interview lasted for 18 to 20 

minutes. Students’ work samples were also gathered.  

This paper presents the interaction of one of the groups observed during the first 

lesson observed at a New Zealand school. The data presented in this paper is 

representative of the audio-visual data. During this group interaction, the group was 

engaged in identifying the shapes that they already knew in a task sheet with a picture 

from everyday life (see Figure 1). The task sheet was provided by the teacher. The 

group interaction was transcribed using a simplified version of Jefferson (2004) 

transcription conventions (see Appendix A for transcript key). The use of a few 

selected Conversation Analytic (CA) techniques enabled the researcher to analyse 

participants’ use of prosody (intonation patterns including use of pitch, pauses, and 

volume), and its role in contributing to the process of meaning construction.   

FINDINGS AND DISCUSSION  

During this lesson, the teacher grouped students in groups of three to four students 

and provided each group with a task sheet to work collaboratively. The excerpt 

presented in this section displays a part of group discussion (due to limited space) of 

three 9 to 11-year-old multilingual students- Ozan, Tahi, and Garry. Data from 

questionnaire informed about the languages and ages of the student participants. 

Ozan is a male, 9-year-old, bilingual Somali student with beginner’s proficiency in 

English. Tahi is a male, 11-year-old, Tongan student, with English as his second 

language; and Garry is a male, 11-year-old, Philippine student with advanced 

proficiency in English and Filipino/Tagalog as his second language. During this 

group interaction, Ozan identified a shape in picture A (see the circled shape in 

Figure 1), but could not remember the name of the shape.  

 
Figure 1. Work sample of a group with students Ozan, Tahi, and Matiu  

The excerpt is selected as it displayed the use of prosody of multilingual speakers 

with different heritage languages.  

205 Garry   what sha:pes can you see right now  

206  Tahi   circ::les (1.5) squa:res  
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207 ((Garry takes the picture sheet and turn it over to put glue to paste it on 

large  

208   white sheet as Tahi was still looking at it)) 

209 Ozan  I see a lot of circles over there (3.0)  

210   ((Ozan looks at the sheet while Garry and Tahi make faces 

towards the  

211   camera)) 

212 Ozan   okay(.) what is this shape called ((pointing to shape))  

213 Garry   ↑so ↑whats tha:t whats [that Tahi?  

214 Tahi                                 [squa::re  

215 Garry   thats a ↓rectangle  

216 Tahi   #square#  

217 Garry   then Ill say squa::re  

218 Tahi   ↑Squ°are::°(.8) °thats° a square  

219   ((Garry writes square as Tahi speaks)) 

220 Ozan   oh ↑I ↑SEE [One 

221   ((Ozan looks at Garry who was given with the responsibility to 

write))  

222 Tahi   [he::re ((Tahi points to different shape and laughs)) 

223 Ozan   THIS ONE ((points again to the shape )) 

224 Garry   wha:ts that  

225 Ozan   I dont know what[it is called  

226 Tahi   [°circle thats a circle°  

227 Garry   cir(.)cle  

228 Ozan   not °this° (2.0) ((put his hand to his head to show that  

229   it is not the shape that he was talking about)) 

230   I am talking about whole thing, like like (2.0) 

231   ((drag his finger at the shape to show his imagination of sides)) 

232    (in jacks) (.5 )what was it (2.0) [it= 

233 Tahi   =ohh (.) °I know there is this thingy like  

234    this° ((points to another shape))  

235   [theres like ((makes the shape with his finger on the sheet to  

236   show the shape he implies )) 

237 Garry   [there is: no thingy (you images) 

Garry selected himself as the first speaker (line 205) and constructed his turn to put 

a question directed towards the other two group members. He could have identified 

a few shapes. However, he posed the question “what shapes can you see right now” 

(line 205). During the classroom observation (Fieldnotes, Lesson 1), it was noted 

that the teacher had explicitly stated that Garry would help Tahi and Ozan to write 

the names of the shape. During the first semi-structured interview conducted after 

the first lesson was observed, the teacher was asked why she asked Garry to help 
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Tahi and Ozan in writing the names of the shapes. The teacher informed that Garry 

was better English speaker than Ozan and Tahi as well as one of the high achievers 

in mathematics. Though Garry had not selected the next speaker, Tahi selected 

himself (line 206) and stated “circles” and “squares”. He stretched the words circles 

and square along with a long pause of 1.5 seconds (line 206). It seems that Tahi used 

stretching as a way to hold the speaking floor, while Garry was writing these shape 

names on the task sheet. Tahi did not select the next speaker in his utterance; 

however, Ozan self-selected and stated that he saw circles in the picture (line 209). 

Through his utterance, Ozan stated that there are many circles in the task sheet. Ozan 

paused for three seconds after finishing his utterance. It is probable that he was 

waiting for Garry and Tahi to respond to his utterance. Schegloff (1982) has shown 

that speakers may fall silent in lack of supportive feedback in the form of the 

backchannel. Garry and Tahi did not respond to Ozan’s last utterance; he again self-

selected and pointed to the shape that he had identified (line 212). Ozan stressed 

‘what’ and ‘shape’ as he used a slightly higher volume than the rest of the sentence 

to mark the focus of his utterance. In the Somali language, the focus of the utterance 

is often marked by the use of stress on the focus constituent in a particular utterance 

(Biber, 1984). It is possible that Ozan stressed the words to structure his utterance 

as a question without using rising intonation, which is often used to mark the 

statement as a question in the English language. Ignoring Ozan’s utterance, Garry 

self-selected and again posed another question (line 213). This time, he selected Tahi 

as the next speaker. Tahi claimed that the shape that Garry referred to is square (line 

214), a slight increase in volume at the syllable of “qua::” may be interpreted as a 

signal to the specificity of the shape, by stressing a particular syllable in a square. In 

Tongan intonation patterns, when a noun is made definite, the main stress falls on 

the second-last vowel (Anderson & Otsuka, 2006; Condax, 1989). That is, Tongan 

speakers directly feed the grammatical structures into the prosody they use instead 

of using definitive articles such as “the” as in the case of English (Ahn, 2011). Garry 

claimed that the shape was a rectangle with his low pitch (line 215), where he used 

the article “a” with a rectangle. Ward (2019) informs us that in English, speakers 

often use low pitch or creaky voice to show their authority over knowledge. Thus, it 

can be stated that Garry perhaps used his low pitch to show his dominance over 

knowledge. However, Garry’s claim was rejected by Tahi in the next utterance (line 

216). It is noteworthy that this time, Tahi used his creaky voice to claim his knowing.  

Acknowledging Tahi’s authority over his knowledge, Garry (line 217) accepted 

Tahi’s claim and wrote the shape as a square. Tahi, in his following utterance, 

continued his claim (line 218). While the activity required students to discuss the 

shapes, it seems that Tahi and Garry were not considering Ozan’s point of view to 

decide if the shape was a square or a rectangle. This act of neglecting Ozan’s idea 

could be because Ozan is new to the class and has limited proficiency in English. 

Moreover, Ozan did not seem to bother about this; instead, he again attempted to 

draw his fellow students’ attention to the shape (see the circled shape in Figure 1, 

green coloured object) that he identified (line 220). Tahi again self-selected and 
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overlapped his talk with Ozan (line 222). Tahi pointed to a different shape that he 

had identified and noted on the sheet. Noticing that he was losing Garry’s attention 

to his shape, Ozan used a loud voice and again pointed to his shape (line 223). 

Couper-Kuhlen (2004) argues that participants use loudness as a prosodic marker to 

mark the current turn as a new course of action. Thus, in this case, Ozan probably 

used a loud voice to begin a conversation about a new shape, instead of continuing 

the ongoing conversation about the different shape. However, when Garry (line 224) 

asked him about the name of the shape, Ozan claimed that he did not know the name 

of the shape. Hearing that Ozan did not know the name of the shape, Tahi again self-

selected and claimed that the shape was a circle (line 226). Garry provides his 

agreement with the Tahi’s statement that the shape is a circle (line 227). Ozan (line 

230) again attempted to direct their attention to the shape as he dragged his finger 

on the shape to show them. Interestingly, in line 233, it seems that Tahi realised that 

there is such a shape. However, when Garry dismissed the possibility of such a shape 

(line 237), both Ozan and Tahi went along with Garry.  

The analysis of this excerpt may suggest, one, that multilingual students may use a 

variety of prosodic features from their linguistic repertoire of different languages, 

and second, bilingual or multilingual students may perceive these prosodic cues 

differently in comparison to the English-speaking students. Therefore, the study 

suggests that the practice of language by multilingual speakers involves the use of 

prosodic features from their repertoire of multiple languages along with the words 

used; instead of just engaging in the practice of code-switching. The research 

focused on language as a resource perspective often ignores the role of the prosodic 

repertoire that contributes to the meanings conveyed through the utterances. Such a 

perspective may view English medium primary classroom such as one presented in 

this study as a monolingual classroom setting. Instead, the findings of this study 

support that the overt or covert presence of multiple languages in any classroom 

makes it a multilingual context (Barwell et al., 2016). The study adds to the 

knowledge base exploring multilingualism in mathematics education. It also 

suggests a need for further research exploring the use of prosodic features as part of 

language in classrooms where the utterances are apparently monolingual. Therefore, 

the present study calls for moving away from the monolingual bias evident in the 

teaching and learning of geometry concepts and mathematics in general (Charamba, 

2020).  

CONCLUSION  

The paper aimed to explore 9 to 11-year-olds multilingual students’ discursive 

constructions of geometric shapes in a primary school in New Zealand. An excerpt 

from audio-visual data from a larger study is analysed using selected conversation 

analytic techniques. The analysis drew attention to the role of subtle yet significant 

prosodic features that multilingual students may use to construct meaning during 

classroom interactions. The analysis revealed that multilingual speakers may use 

prosodic features from their repertoire of multiple languages. The study has the 
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potential to contribute to the knowledge base in geometry education research. 

Moreover, the study suggests that the awareness of prosodic features may aid in 

developing a diverse knowledge base for teachers and researchers in developing 

effective teaching and learning practices.   
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Appendix A: Transcript key  

Convention  Use  Convention  Use  

[text] Overlapping speech : Stretch  

(.) Indicates the silence of 

one-tenth of a second 

(text) Unclear speech  

(0.n) n represents the n tenth of 

a second 

>  < Faster speech 

? Rising pitch = Latching  

↑ High Pitch  .  Falling tone  

° Whispering (( text )) context  

Underline Emphasis  # Creaky voice 
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EXPLORING SECONDARY SCHOOL PRE-SERVICE 

TEACHERS’ EXPERIENCES AND PERCEPTIONS OF 

TEACHING AND LEARNING PROBABILITY: AN 

INTERNATIONAL COLLABORATION 
Sashi Sharma, Hem Dayal 

University of Waikato, The University of the South Pacific   
 

There is a considerable and rich literature on students’ intuitions and misconceptions 

in probability. However, less attention has been paid to the development of students’ 

probabilistic thinking in the classroom. Based on literature, the first author developed 

a lesson sequence for teaching probability (see First Author, 2015). We decided to trial 

the lesson sequence with our junior secondary pre-service teachers. Our study was 

conducted in two phases. Phase one focused on exploring pre-service secondary 

teachers’ experiences and perceptions on teaching and learning probability. Semi-

structured  interview data indicates that while some teacher experiences were similar, 

there were also some differences. 

BACKGROUND 

Probability is the measurement of uncertainty that is omnipresent in our everyday life 

situations. Moreover, probability straddles a number of disciplines (physics, economics 

and sciences) because of its wide range of applicability. In recognition of the importance 

of probability in both school and out of school settings, there has been a movement in 

many countries to include probability at every level in the mathematics curricula 

(Batanero, Chernoff, Engel, Lee, & Sánchez, 2016). In western countries such as New 

Zealand (Ministry of Education, 2007) these developments are reflected in official 

documents and in materials produced for teachers. Probability is one of the three sub-

strands in the curriculum document and seen as critical in the learning of mathematics. 

The use of meaningful contexts and drawing on students’ experiences and 

understandings is recommended for enhancing the students’ understanding of 

probability (Ministry of Education, 2007). Similarly, in the Pacific education context, 

some countries, such as Fiji, have included probability and statistics as an important 

aspect of mathematics curriculum from the early years of the school curriculum. (Fiji 

Ministry of Education, Heritage & Arts, 2017). 

Given a strong presence of probability content in our school curriculum and importance 

of reflective practice (Batanero et al., 2016; Koparan, 2019), this study sought to explore 

pre-service secondary mathematics teachers experiences of learning probability and 

their views on how best to teach probability. The following research questions are 

answered in this paper: 

What are pre-service mathematics teachers’ experiences and perceptions of learning and 

teaching probability?  
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Do pre-service mathematics teachers support the use of games in learning and teaching 

probability? 

RELATED LITERATURE 

There are different viewpoints on how best to teach probability so that students leaving 

school may be able to interpret probabilities in a wide range of situations (Batanero, 

Chernoff, Engel, Lee, & Sánchez, 2016). If students are to develop meaningful 

understanding of probability, it is important to use effective ways to train teachers 

(Batanero, 2013; Koparan, 2019). Research and development in teacher education 

related to probability education is still scarce and needs to be fostered.  

Different authors (Batanero et al., 2016; Sharma, 2015) claim that many of the current 

programmes do not yet train teachers adequately for their task to teach statistics and 

probability. Even when many prospective secondary teachers have a major in 

mathematics, they usually study only theoretical (mathematical) statistics in their 

training. Few mathematicians receive specific training in applied statistics, designing 

sample collections or experiments, or analysing data from real applications. These 

teachers also need some training in the pedagogical knowledge related to statistics 

education, where general principles that are valid for other areas of mathematics cannot 

always be applied. Additionally textbooks and curriculum documents prepared for 

secondary teachers might not offer enough support. Sometimes they present too narrow 

a view of concepts (for example, only the classical approach to probability is shown) 

and definitions of concepts may be incorrect or incomplete (Batanero et al., 2016). 

Lovett and Lee (2017) argue that teachers who have a weak content knowledge of 

statistical concepts may not feel confident to teach statistics as compared to other areas 

of mathematics and, therefore focus on procedural aspects of statistics. Furthermore, as 

their teachers missed to provide them with content and pedagogical content knowledge, 

they tend to teach their students in the same manner as they were instructed in their own 

school life.  

It must be noted that non-cognitive aspects, such as beliefs and experiences towards 

statistics are essential to be considered in teacher education as they can affect the 

learning and teaching of statistics. Negative attitudes towards statistics may be related 

to low cognitive competence, and low motivation is caused by continuing instructional 

learning in statistics (Estrada, Batanero, & Lancaster, 2011). By contrast, when teachers 

have good learning experiences, they develop positive attitudes and appreciate the value 

of statistics. Therefore, beyond acquiring pedagogical content knowledge about 

probability and statistics, developing positive experiences towards statistics becomes a 

main goal in the education of future statistics teachers. Asking teachers to reflect on 

their learning can be a valuable strategy to educate teachers. 

RESEARCH DESIGN  

To conceptualise our study, we drew on design-based research theory (Cobb & 

McClain, 2004). Design research is a cyclic process with action and critical reflection 

taking place in turn. Our research utilised a comparative case study design to understand 
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pre-service teachers’ pedagogical perspectives and beliefs and experiences regarding 

the learning and teaching probability from two different educational contexts: New 

Zealand and Fiji. The larger study itself involved cycles of three phases: a preparation 

and design phase, a teaching experiment phase, and a retrospective analysis phase. Both 

mathematics educators were involved in the whole research process (posing questions, 

collecting data, drawing conclusions, writing reports and dissemination of findings). In 

this paper, semi-structured interview data from phase one are used to answer the two 

research questions.  

RESEARCH CONTEXT AND PARTICIPANTS 

The first phase of the research involved 24 pre-service teacher participants who were 

part of the Graduate Diploma in Teaching at the University of Waikato in New Zealand 

(UW) (n=10) and the Bachelor of Science and Graduate Certificate in Education (BSc 

GCEd) programme from University of the South Pacific (USP) (n=14) in Fiji. All the 

24 pre-service teacher participants had mathematics as one of their teaching subject 

majors.  

In terms of probability and statistics content knowledge, all the pre-service teachers 

from USP had studied high school probability and attained a pass in Year 13 

examinations in their own country. A pass in year 13 mathematics is an official 

requirement to enrol in a mathematics major program. In addition, all the 14 participants 

had passed a 100-level undergraduate course in probability and statistics, ST130: Basic 

Statistics. The course outcomes emphasize collecting and analysing data, including 

introducing basic probability concepts. The course also covers design and analysis of 

experiments including elements of sampling. Similarly, seven of UW pre-service 

teacher participants had studied high school statistics and probability and five of these 

seven participants had taken undergraduate courses in probability and statistics.  

Out of the 14 USP pre-service teacher participants, 10 were from Fiji and four from 

Kiribati. Of the UW pre-service teacher participants, six were New Zealanders and four 

international pre-service teacher participants.  

After getting ethics approval from both the universities, all the pre-service teacher 

participants were notified about the research study through individual emails with a 

cover letter attached that clearly outlined the specifics of our study and the potential 

benefits that pre-service teachers could derive from this engagement. All the pre-service 

teacher participants had agreed to be part of this study and signed a written consent. 

Once their written consent was obtained, the participants took part in a one-to-one 

interview that lasted for approximately 20 to 30 minutes. The interviews were 

conducted by individual researchers at their respective universities. Prior to the 

interviews, a series of communication was held among both the researchers through the 

use of ICT such as Skype. These virtual meetings helped in revising the semi-structured 

interview schedule prior to the first phase of the study.  

The purpose of the semi-structured interviews was to gather the participants’ 

experiences and perceptions about probability teaching and learning as experienced 

during high school and university study. It was reasonable to assume that pre-service 
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teachers would be able to recollect their most recent experiences about probability 

teaching and learning.  

Data was analysed using a thematic approach (Braun, & Clarke, 2006). Four themes 

emerged from data analysis:  experiences of high school probability; experiences of 

probability at university; teachers’ perspective of most effective methods of teaching 

and learning probability; and pre-service teachers’ views on the use of games in 

teaching probability. These themes are discussed in the next section. Pseudonyms are 

used to protect the participant identity. Participants are assigned letter names from A – 

X.  

FINDINGS AND DISCUSSION 

The section is presented according to key themes arising out of the analysis of teacher 

semi-structured interviews. The discussion is supported by the use of the participants’ 

voice through direct quotes. Findings are linked to key literature.  

Pre-service teachers’ experiences of high school probability  

Out of fourteen teachers interviewed, eight teachers reported that their high school 

teachers used traditional methods of teaching such as using text books and black boards 

to provide notes and examples. Students learnt by copying notes and examples and 

doing text book kind of activities as stated by Participant S “Like in high school we 

used the text books, notes and most probably our teacher used to discuss the examples 

from the notes”.  

Hence, for these pre-service teacher participants, high school learning probability and 

statistics was through the use of text books and blackboards only. A notable finding was 

that four interviewees stated that they learnt probability in high school using notes, 

books and blackboard. As said by one interviewee, “Teacher gave notes and we wrote 

in our books and then she gave activities” (Participant L). 

Six pre-service teacher participants stated that their high school teachers used some 

form of games such as rolling a die, tossing a coin and picking a coloured candy. For 

example, one of the teachers said, “The way I leant probability in school was through 

the coins and the dice that our teacher used” (Participant B). Some teachers reported 

using other methods of games as stated by the interviewee, “Umm yes, he gave example 

like for dice and marbles or umm sometimes like small boxes like you colour them and 

then throw. You see how much red, yellow like that you get” (Participant F).  

According to one teacher being, her high school probability and statistics teaching and 

learning was not good as the teachers did not had proper communication with the class. 

She said that “Our teacher was just a graduate from USP and the way he communicated 

and transferred the notes and ideas was really hard to understand” (Participant A). The 

participant claimed that the new graduate teachers enter the classroom with some 

experience from their practicum. However, the participant found that these new 

graduates find difficulty in lesson delivery and classroom management. In summary, 
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there were mixed experiences reported, with relatively fewer pre-service teachers 

reporting high frequency use of games in probability teaching.  

Of the 10 WU participants, two did not do any statistics at the high school level in their 

respective home countries as stated by Participant R: “In my country, they don't really 

introduce statistic a lot. That's like it's not even compulsory unit. So, I didn't learn much 

about statistic but after I came here, so you had to study a lot about it.” 

Like USP cohort, four participants talked about learning from textbooks, definitions and 

doing calculations as stated by Participant P: “And the first thing I did learn was like 

the teacher telling us about events occurring and like probability trees”  

Three of the participants remembered doing hands-on activities or using real data at 

school as reflected by Participant Q:  

My first experience is actually coming from a game that is very popular in Canada.  

So, it involves rolling dice. So, you had to roll the dice every time you want to go 

further. I always tried to find out how do I roll DICE to get larger number. But after 

I learned statistics, I noticed that it's random, so you can't really control that. 

Overall, Fiji data suggests more of textbook and blackboard experiences, with a few 

mentioning some games. More of the NZ participants used hands-on activities and 

games to learn probability in high school.  

Pre-service teachers experience of university probability 

The most commonly reported change at university teaching was that the move away 

from text books and blackboard to PowerPoint presentations. A majority of the pre-

service teachers said that their lecturer and tutors taught from the PowerPoint notes 

only, while at times using videos as well. From the total of fourteen interviewees, twelve 

teachers said that their lecturer used ICT tool to teach such as PowerPoint presentations 

and videos related to probability. Students learnt through PowerPoint notes presented 

in class and on Moodle. For example, one of the teachers said “All the lecturers in USP 

use PowerPoint notes and they just present. There was no learning that happened in an 

experimental way” (Participant H).  There were no games introduced by lecturers while 

teaching however videos on probability was shown in the lecture. As said by one teacher 

“Umm yeah teaching in USP is based on PowerPoint notes only. No materials were 

used but videos were there. Videos like showing the dice and its outcomes and all” 

(Participant G). Lecturers in USP mostly rely on PowerPoint notes and no extra teaching 

aids such as marbles, coins, dice and cards are used. “They don’t use materials like in 

college. They rely on PowerPoint notes they have” (Participant D). Therefore, for most 

of the pre-service teacher participants, university probability learning was through the 

use of PowerPoint presentations only, with videos used sparingly.    

From the total of fourteen interviewee, only two pre-service teachers said that their 

lecturer used ICT tools to teach such as PowerPoint presentations and materials such as 

coins and dice.  For example, one teacher said “She would bring some objects. Some 

coins then tell how we can get the probability and then tosses the coin” (Participant M). 
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These two teachers think that USP is more interesting when it comes to learning and 

teaching. “I think the university has more good ways” (Participant F).  

Unlike the Fiji cohort, only four NZ participants mentioned taking statistics at the 

university level. These participants stated covering topics in more depth as reflected by 

participant P “The university, you know, kind of same stuff but then more detail  More 

conditional stuff and expected values of the dice.”  

Pre-service teachers’ perspective of most effective methods of teaching and 

learning probability 

All the fourteen USP teachers argued in favour of the use of demonstrations and 

materials such as coins and dice while teaching. They claimed that using objects makes 

learning more effective and interesting. It enables the students understand the concept 

in a better way. As said by one participant “I think it’s better to use objects or materials 

to show students” (Participant M). All pre-service teacher participants agreed that 

teachers should use materials such as coins and dice while teaching. None of the 

participants stated against the use of manipulatives such as coins, dice or any other 

teaching resource whilst teaching probability. 

The WU participants suggested using hands-on activities, real life context, using 

cultural contexts and technology to engage and motivate students.  

Do pre-service teachers support the use of games in teaching? 

Similar to the findings reported above, thirteen out of the fourteen participants 

supported the idea of using games while teaching. They stated that using games is be 

really effective in learning and teaching. As said by one teacher “Yes, I think so because 

it will be really effective” (Participant L). Most of the interviewees who had undergone 

school-based practicum reported that they used games in their teaching. For example, 

one teacher said “Umm I just did my microteaching one on that topic. Ok when I was 

talking in terms of a die, I took a die and then I demonstrated it to the class and asked 

questions from that. I also took lollies. Three mentos and two red candy and I gave to 

the students if they tell the right answer” (Participant G). Teachers also mentioned some 

of the benefits of teaching through games. “Through games, students can learn a variety 

of important skills. There are countless skills that students can develop through game 

playing such as critical thinking skills, creativity and teamwork” (Participant J). 

According to one teacher, showing students videos on probability is also effective.  As 

said by a teacher “Umm yes. There are a lot of YouTube videos as well that tells how 

to make probability interesting and how students will like engage into it and be more 

interested into learning probability.” (Participant J). In summary, a majority of the pre-

service teachers agreed with the idea of using games while teaching, and a few could 

even provide examples of how they have used games or videos in their practicum 

training.   

On the contrary, from the fourteen teachers, one did not agree with the idea of using 

games in classrooms. According to the teacher, using games will shorten the lesson 
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coverage time. As said by the teacher “No I don’t agree with it because if we use game 

than it will take time and we have to complete the coverage” (Participant A).   

All WU participants supported the use of games for various reasons. For example, 

participant P stated: “Opportunity to use experiments instead of textbooks, by using 

real-life context they can also help students learn more actively.” I think it is engaging, 

as the game element brings in the chance to see probability in real life, as well as 

providing a change from bookwork 

Like the USP interviewees, six of the WU teachers also reported that they had used 

games while on teaching practicum. They reported that they used games in their 

teaching. However, two participants added that using games in NZ classrooms could be 

challenging as stated by Participant V: “It may be hard to keep the students on task and 

not get distracted by the game.” Participant X stated “I suspect that many students may 

not establish a link between the game and the theoretical knowledge covered in the 

lesson because of a challenging and disruptive classroom environment and resulting 

lack of engagement.” 

These participants realised that hands-on activities like games have the potential to 

engage students and contribute positively to their learning. However, if a classroom 

culture has not yet been effectively established, games can negatively impact on student 

engagement as suggested by participant X. This opinion is in line with the conclusions 

of Garfield and Ben-Zvi (2009) who called for the development of productive social 

norms for communicating mathematically.    

In terms of probability teaching experience, Fiji cohort had little experience in the form 

of attending a 14-week school practicum, but majority support the use of games and 

other interesting ways of teaching probability and they agree to include games in their 

teaching post graduation. One way to explain this would be to say that from a socio-

cultural perspective (Garfield, & Ben-Zvi, 2009), discussions among these group of 

young teachers may have helped them realise that traditional textbook approach to 

teaching is not a good way to learn probability. Their relatively negative experiences in 

learning probability in their high school and university teaching seems to suggest that 

these teachers are willing to teach differently (Koparan, 2019). NZ teachers seem to 

have experienced greater exposure to games and online resources such as kahoot. This 

is not a surprising finding given that NZ curriculum is designed to support such learning 

whereas Fiji one is exam-oriented. Overall, the findings resonate with the conclusions 

of Batanero and Díaz (2010) who stated that secondary school curricula in many 

countries is limited to few lessons and mainly taught in a procedural way. While several 

studies internationally (Batanero, 2013) have indicated that despite the emphasis in 

statistics and probability, teachers have limited awareness of promoting probabilistic 

reasoning, the pre-service teachers in the present study talked about using a range of 

specific resources consistent with research-based effective learning practice. Whether 

this was by virtue of prior learning in teacher education, or by experience in the 

collaborative setting in this study cannot be determined here, but this could be an area 

for future investigation.  
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MELTING CULTURAL ARTIFACTS BACK TO PERSONAL 

ACTIONS: EMBODIED DESIGN FOR A SINE GRAPH  
Anna Shvarts1 and Rosa Alberto1  
1Utrecht University, Netherlands  

 

The reification of the externally performed actions into internal schemes and 

representations is often considered as a key process of concepts mastering. In this 

paper, we present a radical embodied account of the process-object dialectics of 

mathematical concepts. Our empirical tryout of the elaborated embodied action-based 

design for trigonometry demonstrates how personal actions provide an opportunity to 

recognize new qualities of the cultural artifacts in the context of the enactment. From 

the radical embodied approach, the process of reification is related to reconsidering 

and creating cultural artifacts. The students do not interiorize external actions; instead, 

they learn to anticipate action possibilities as afforded by the artifacts.  

INTRODUCTION 

For several decades, mathematics education research on conceptual understanding has 

been stressing process-object dialectics—namely the idea that concepts emerge in an 

operational form and are later reified in a stable artifact—behind mathematical concepts 

(Sfard, 1991). The introduction of the object-process dialectics for mathematical 

concepts was initially meant to build on both Piaget’s view on the development of 

cognitive structures, and on Vygotsky’s perspective on the role of cultural signs 

(Sierpinska, 1994). Later, the incompatibility of these two approaches led to two 

theoretical tracks that appropriated the idea of object-process dialectics in different 

ways. The constructivist perspective would talk about automatization and condensation 

of processes and further encapsulation and reification of them in cognitive schemes of 

objects (Dubinsky, 2002; Sfard, 1991). The socio-cultural perspective, on the other 

hand, would stress a seemingly other process-object transition, namely crystallization 

(Radford, 2003) or reification (Wenger, 1998) of social practice in material products, 

such as symbols, definitions, and visual models in the development of mathematics as 

a cultural practice. In this paper, we propose that the radical embodied cognitive science 

allows reconsideration of cognitive processes in such a way that the two seemingly 

independent processes—the reification of actions in mental constructions and in 

material artifacts—become two sides of the same coin. 

In this paper, we contribute to reconsidering the process-object transition in the 

conceptual development from the radical embodied perspective to cognition. In design 

research, we developed a sequence of tasks that lead to a conceptual understanding of 

sine function through the reification of embodied action in a material artifact of the sine 

graph. Our research questions concern (1) how we can understand the process-object 

dialectics from a radical embodied perspective and (2) how can embodied design help 
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in the inclusion of mathematical artifacts into conceptual understanding of 

trigonometry. 

THEORETICAL FRAMEWORK 

Embodied approach to learning is a quickly developing approach in mathematics 

education and in cognitive science during the last two decades. A variety of researchers 

in both disciplines has been showing “how human thinking involves various parts of 

the body rather than just the Cartesian ‘mind’” (de Freitas & Sinclair, 2013, p. 454). 

Here we propose an account of learning from radical embodied cognitive science 

perspective that joins enactive and ecological approaches. The detailed analysis of the 

advantages of this perspective in comparison with other embodied frameworks goes 

beyond the scope of this paper, as here we focus on what it can offer to theoretical 

reconsideration of process-object dialectics.   

From a radical embodied perspective, cognition is not encapsulated in somebody’s 

mind, instead it is deeply rooted in the material culture and therefore thinking is 

indispensable from enacting with things (Malafouris, 2018). Instead of operating with 

representations and internally reified objects, a person acts in the rich landscape of 

affordances that material culture provides, enabling a nested system of actions. The 

subject anticipates each action in the form of action readiness and persistently receives 

the feedback from the world (Kiverstein & Rietveld, 2018). A better grip—a better 

ability to act—is iteratively established in perception-action loops as a person comes to 

couple with the environment in fulfilling system of skilful and enactive intentionality. 

In actual doing these anticipations are involved in sustaining successful coordinated 

behavior in an ever-changing world. In the case of imagining (or thinking) the doing in 

the world is only pretended, while action readiness remains to coordinate multiple 

affordances without encountering feedback from external reality (Kiverstein & 

Rietveld, 2018).  

Following this perspective, we propose that the process of conceptual learning lies in 

learning to recognize new affordances for the actions that resulting from the developing 

readiness to act with the material artifacts. This view on learning is very distinct from 

internalization of the external actions with artifacts. Instead, the artifacts themselves 

change how they look for the learner. While learning, reification appears to be a 

stabilization of actions by perceiving new affordances of the already provided cultural 

artifacts. While developing culture, reification appears to be a stabilization of actions 

by creation of new artifacts.  

In the empirical part of the research we have used embodied action-based design genre 

as an analytical lens to elucidate theoretical proposal. At the same time, our theoretical 

ideas informed the design of the learning sequence.  
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EMPIRICAL RESEARCH 

Design Research and Embodied Action-based Design 

As our research aims to advance the theory of radical embodiment and create an 

effective learning environment following this theory, we conducted a design research 

that consisting of multiple cycles of theoretical considerations, design, and empirical 

tryouts of various sizes (Bakker, 2018). As a background design approach, we use 

embodied action-based design that was introduced for interactive teaching and learning 

of proportionality (Abrahamson, Trninic, Gutiérrez, Huth, & Lee, 2011). The main idea 

of this design genre lies in exposing mathematical concepts in the form of spatially 

articulated motor problems. The students receive continuous green-to-red feedback in 

response to their actions within the technological environment. As students aim for 

green feedback, they learn to perform the motor actions and further reflect on their 

performance in collaboration with an interviewer. 

Our project aims to expand the embodied action-based design to the topic of 

trigonometry teaching and learning. In this paper, we provide a laboratory analysis of 

the next version within design research cycles of embodied design for trigonometry, 

which builds on the design reported at CERME conference (Alberto et al., in press). We 

conducted a micro-ethnographical analysis (Streeck & Mehus, 2005) on the 

videography and eye-tracking data from a clinical interview with a student working on 

the designed activities. 

Embodied Design for Trigonometry 

Unlike in the case of proportionality, where the embodied design was called to 

supplement the lack of visual imagination (Abrahamson et al., 2011), in teaching 

trigonometry, educators widely use a variety of mathematical artifacts such as a unit 

circle and graphs of trigonometric functions. In this paper, we focus on an embodied 

design for connecting the sine graph and the unit circle models of the sine function. The 

main mathematical artifact that students learn in this embodied design is a sine graph. 

However, the sine graph is not given to students in a ready-made form, but instead, it 

ought to emerge as the result of their actions. The design consists of three main phases 

each targeting a specific correspondence between the two models: (i) the students 

coordinate the x-value of the graph's points with the arc's length on the unit circle; (ii) 

the students coordinate the y-value of the graph's points with the sine value of the point 

on the unit circle; (iii) the students coordinate two previously established coordination 

as they disclose sine graph trajectory as joining x-value equal to arc's length and y-value 

equal to sine value. In each phase, immediate color feedback supports student's actions, 

thereby enabling new sensory-motor coordination. After reaching motor fluency, 

students are asked to describe to an interviewer their embodied experience. Here we 

focus on the selected episodes from phase 2 of the sequence. In phase 1, a student 

coordinated the x-value and the arc's length. In phase 2, this relation was now 

outsourced to the system that automatically generated the x-value of the point on the 

Cartesian plane in correspondence to the unit circle's point position. The students are 
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tasked simultaneously to manipulate the point on the unit circle and to adjust the vertical 

position of the point on the Cartesian plane aiming to green feedback. Green feedback 

indicated that the y-value of the point on the Cartesian plane corresponded to the vertical 

positions of the point on the unit circle. The students, however, are required to discover 

the target relation effecting green feedback from their own activity.  

Data Analysis and Discussion 

We report here on the findings from one of the empirical tryouts of the multiple design 

cycles. A student (Dmitry, second year of multidisciplinary bachelor program of the 

Utrecht University Colleague) studied trigonometry at school approximately three years 

ago. This student’s previous experience allows us to trace the advantages of embodied 

design for any student and reflect on the interlacing of embodied experiences with 

student’s inevitably prior knowledge. 

Episode 1. In trying to keep the feedback frame green, Dmitry is mostly looking at the 

frame with some brief glances to one or another hand. His hands are first moving up 

and then down in symmetry, which at first approximately matches the relation between 

unit circle and the sine graph, so the frame is green an essential amount of time. He 

continues to move his right hand further along the imagery sine graph as it corresponds 

to his prior knowledge. Already after 55 seconds from the start of the task Dmitry finds 

himself confused as he arrives to the minimum point of 3π/2: 

S: I am just confused… because… it does not change color here at all [indeed, 
the green feedback has some threshold of sensitivity to micro movements]. 
Because…because it should go further [down]. If I am moving this one [he 
iteratively moves the point on unit circle forward and backward Figure 1a]… 

I: Should it go further? 

S: There should be the minimum point, and it should be here [he iteratively 
draws a pit down from the point, below the level of unit circle, Figure 1b, 1c]  

        
Figure 1. The student expects the sine graph to go below the magnitude –1. Here and 

further white line is overlaid to show the dynamics of the gesture 

Dmitry might expect the existence of the minimum point on the graph, as it corresponds 

to both his previous experience with a reified sine graph and the movement of his left 

hand on the unit circle. His explanations confirm that his actions are determined by the 

anticipation of “wave, wavy function.” However, an exact vertical position of the point 

on the enacted sine curve is not monitored or described. The sine graph does not seem 

to be connected to the unit circle as Dmitry expresses that he finds position of right hand 

“through guessing.” He easily suggests the graph going below –1 magnitude of sine 



Shvarts & Alberto 

PME 44 – 2021  4 - 53 

value, as the amplitude of the sine graph does not exist for him as an object or property 

for consideration. 

Episode 2. As the student could not grasp the target relation between two points, a 

dashed segment connecting the two manipulated points was added to facilitate 

coordination and reflection. In about 10 seconds of enactment with the auxiliary 

segment, Dmitry for the first time makes two back-forward horizontal saccades between 

the point on the unit circle and the point on Cartesian plane. The next round of 

reflections brings forth the connection between the two sine function models.  

I: So, you say this line… 

S: It has to be straight. If it is straight it is green. So…If… 

I: [in low voice] it has to be straight [revoicing the student].  

S: [moves the points to the initial position and finds green position near zero 
angle] This has to be horizontal [horizontal gesture]. And if it is horizontal, it 
is green [a gesture around the circle]. That because…yea, because the point 
is aligned here, it has the same value. Yea…and this makes sense because… 
[the student moves the point along the circle looking predicting the position 
of another point, and then he manipulates the point on the Cartesian plane, 
as if enacting entire performance once again].  

S: If I would be about to draw the function, only using this…It will…, It will [he 
enacts the motor action once again with two hands up and down]. As, as, as 
this has, has to be, has to be horizontal. And…if you actually draw a line, you 
would see…how [the student performs a sine-graph gesture with two hands, 
Figure 2]…this nice movement [the student again manipulates the point on 
the circle back and forward a few times].   

        
Figure 2. The student gestures the sine graph as it emerges from his enactment 

The target position of the segment was expressed at first as “straight”, then as 

“horizontal” and then supported by a horizontal gesture. The motor action is now based 

not on the anticipated wavy function, but on maintaining the segment from the unit 

circle to the sine graph horizontal. The reified form of the sine graph as a ‘wavy 

function’ is now replaced by the description of a personal action “If I would be about 

to draw the function” and then by the description of this experience from second person 

perspective: “if you actually draw a line, you would see…” These references to personal 

experiences are supported by enactment and by the iconic gesture that tightly aligned 

with the possible enactment. The student now recognizes the sine graph as emerging 

from the movement on the unit circle. The discourse moves from first person 

perspective to the second person perspective, and the enactment is now changed to 

iconic gestures. These transformations are first steps in a new re-reification of the sine 
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graph, which continues in Episode 3. The readiness for action, which at first maintained 

coordinated behavior with immediate color feedback, now serves as anticipation of the 

form of the sine graph.  

Episode 3. After this reflection, the interviewer returns to Dmitry’s idea that the sine 

graph needs to have maximum laying above the one-unit magnitude.  

I: Could it go a bit higher? [the interviewer tries to raise the point on the 
Cartesian plane above on the top position, just as the student gestured in 
Episode 1]. 

S: It cannot go higher than this point [the student sets the point on the circle on 
the top position and gestures from it to the point on the plane, Figure 3a]. It 
that’s what I am…So…so this horizontal line [the student two times gestures 
along this line with two index fingers together, Figure 3b], this is the 
maximum. So, it’s all, it stays in the amplitude [the student shows the 
amplitude as if gesturing a corridor from the maximum and minimum values 
on the unit circle, Figure 3c]. That is given. With the circle [gesture along the 
y-axis of the circle]. 

      
Figure 3. The student explains how unit circle determine the amplitude of sine graph 

The personal language (“It that’s what I am”) abruptly emerges as the student searches 

for an explanation of his immediate perception that the graph cannot go higher than the 

unit circle. Later, the student refers to the graph as separate from the enactment thing 

that “stays in the amplitude” and identifies the maximum point with the horizontal 

segment. The experience of maintaining the horizontal connection between the point on 

the unit circle and the point on sine graph opens a new affordance of the unit circle, 

namely determining of the sine graph’s amplitude, maximum, and minimum points. The 

amplitude of the sine graph, which was missed at the beginning (Episode 1), is referred 

to as a separate reified object in the speech and tightly grounded in the visual material 

by corridor-like gestures (Figure 3c). 

Episode 4. Further analysis shows that, contrary to our expectations, the student does 

not infer the correspondence between the sine values in two models from the horizontal 

connection of two points by an auxiliary segment: 

I: Where is sine? It is a sine graph…Where is sine? 

S: […] If it is a sine x function, then sine x…Well, sine x equals…So the thing 
that equals is to be found here [the student repeatedly moves the point along 
the circle, but does not clarify how to find sine value]. And the sine function 
should be here again [he moves the point on the Cartesian plane to reach 
horizontal alignment]. 

The correspondence between the unit circle and the sine graph is now grounded in a 

horizontal alignment of two points: horizontality, which is visually easily assessed and 
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maintained, helps to keep the green feedback. However, this special quality of the 

segment was never questioned further, hindering conceptualizations important for 

grasping the sine function. The vertical correspondence of sine values in two models 

was instead reified in the salient horizontal property of the auxiliary line, but never 

reflected by the student and thus alienated and forgotten (Wenger, 1998). 

CONCLUSIONS 

To conclude, we come back to our second research question and show how embodied 

design helps to include the artifacts in conceptual understanding of trigonometry, and 

also address the limitations that the current design version related to the ready-made 

auxiliary segment. Further, we return to the theoretical research question explain how 

empirical analysis corroborates our theoretical proposal of learning from the radical 

embodied perspective and how it influences the idea of process-object dialectics.  

The example of the sine graph and unit circle, as the cultural artifacts, exemplify that 

embodied design provides an opportunity to re-enact these artifacts, which re-emerge 

for the student because of particular actions. This re-emerging sine graph now stands 

for the student as affording new action, namely the horizontal alignment with the unit 

circle. Simultaneously, the student comes to recognize a new affordance of the unit 

circle, as it is now capable of determining the sine graph’s amplitude. Later, the 

affordances of the artifacts ground verbal description of their properties: the student 

describes the amplitude of the sine graph as given by the unit circle. 

Adding a cultural artifact as ready-made (such as an auxiliary segment) substantially 

shifts students’ sensory-motor coordination and conceptualization (as described by 

Abrahamson et al., 2011). However, there is always a risk of the artifact’s alienation 

from its mathematical function: The horizontal segment connects two equal values; and, 

on the one hand, it pragmatically releases the performance, but on the other hand hides 

the core relations by outsourcing them. The embodied design allows us to “melt” the 

cultural artifacts and to provide students with an opportunity of reifying embodied 

actions in mathematical properties of re-emerging artifacts. 

The empirical data corroborate our theoretical proposal that learning is progressing 

from direct enactment to the recognition of action affordances of the artifacts. As these 

affordances are expressed within multimodal discourse, they might be recognized as 

properties of the artifacts and as new objects. The amplitude of the sine graph is noticed 

because of moving the point along the unit circle, and a unit circle comes to be 

recognized as determining the sine graph’s amplitude. The reified objects are not parts 

of the mental constructions, but systems of affordances, which are deeply and inherently 

grounded in the materiality of the artifacts. The process of reification, as a transition 

from enactment to stable objects, leads to a reconsideration of previous objects (such as 

a unit circle and a sine graph) and to the creation of new multimodal entities (such as 

the amplitude), which become new objects. The process-object dialectics from a radical 

embodied perspective is seen now as dialectics between direct enactment and further 

recognition of the artifact’s affordance in the form of objective property. 
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Geometry is an important mathematical subdomain, in which the identification of 

geometric shapes, such as triangles, plays a central role in primary education. 

However, the identification of triangles is not trivial for children. Previous studies 

indicate that there are some triangles which cause grater challenges to children than 

others. These studies obtained their insights from interviews. Another promising tool 

for gaining insights into how learners perceive and process information, is eye 

tracking (ET). This paper presents a study that uses ET to investigate how N=174 

fifth graders identify triangles. We investigated student strategies for the 

identification of triangles and found significant differences in strategy use between 

different types of triangles, indicating different levels of difficulty for the students. 

INTRODUCTION 

Geometry is a mathematical subdomain in which geometric shapes, such as 

triangles, play a central role, not only but also in primary education (e.g., MSW 

NRW, 2008). The identification of triangles is not trivial for children, as evidenced 

by the error rates for preschool children (36%; Clements et al., 1999). However even 

for older children, at grade 6, it is not trivial to identify the triangles (error rate of 

19%; Clements & Battista, 1992a, cited in Clements & Sarama, 2000). Previous 

studies on the identification of triangles, using interviews, indicate that some 

triangles seem to cause greater challenges to children than others. For example, 

children identify prototypical triangles successfully (Aslan & Aktaş Arnas, 2007; 

Tsamir et al., 2008), but often mistakenly reject atypical triangles (Clements et al., 

1999; Satlow & Newcombe, 1998; Tsamir et al., 2008). This indicates that non-

critical attributes (such as the aspect ratio of a triangle) cause children to make 

mistakes in the identification of triangles. This study builds on these findings and 

investigates strategies for identifying triangles. For this purpose, ET is used whose 

potential to provide insights into learner’s strategies was shown in several studies in 

mathematics education in different subdomains.  

In this study, we investigate how students at grade 5 identify triangles. We analyze 

students’ strategies from ET video data. We ask the following research question: Are 

there differences in the students’ use of strategies between different types of 

triangles?  

IDENTIFICATION OF GEOMETRIC SHAPES—TRIANGLES 

Geometric shapes—triangles. One of the goals of teaching geometry at primary level 

is for students to be able to name geometric shapes and use technical terms such as 
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“side” and “vertex” to describe them (MSW NRW, 2008). This is necessary for the 

understanding of mathematical concepts (for shapes). To highlight the role played 

by the individual’s conceptual structure, the terms “concept image” and “concept 

definition” (Tall & Vinner, 1981) need to be distinguished. The formal “concept 

definition” is described as the words used to specify a mathematical term or concept 

that is accepted by the mathematical community. Beyond knowing a definition, the 

“concept image” plays an important role in understanding a concept: It is understood 

as “the total cognitive structure that is associated with the concept, which includes 

all the mental pictures and associated properties and processes” (Tall & Vinner, 

1981, p. 152). Over the years, the concept image develops and changes through 

experience. This process includes characteristics or properties of a concept—e.g., 

critical attributes of geometric shapes, by gaining an overview of the totality of all 

objects that are subsumed under a concept and by being able to point out 

relationships of the concept to other concepts (Weigand et al., 2018). For geometric 

shapes, there are critical attributes of being “closed” and having a “certain number” 

of “straight sides” (Satlow & Newcombe, 1998). In addition, there are non-critical 

attributes that can be changed without affecting the status as a valid representative. 

All representatives of the category “triangles” are mathematically equivalent, i.e., 

they fulfill the concept definition and contain all critical attributes (Hershkowitz, 

1989). Differences between these representatives exist visually, in appearance. In 

this regard, some examples of geometric shapes are recognized more often than 

others, especially when they are typical and form the prototypical representatives of 

the category (for prototype theory see Rosch, 1973). The prototypical triangles are 

the equilateral and isosceles triangles (Tsamir et al., 2008). Prototypical triangles, in 

addition to the critical attributes that every triangle must satisfy, contain other 

specific, non-critical attributes that are dominant and attract the attention of the 

observer (Hershkowitz, 1989). In the case of equilateral and isosceles triangles, these 

are symmetry, aspect ratio, and orientation. All other triangles that deviate from 

these in the non-critical attributes—for example, through “skewness”, i.e., the 

asymmetry or obliquity of a shape, the “aspect ratio” of the shape and the 

“orientation” of the shape—are understood as non-prototypical (Aslan & Aktaş 

Arnas, 2007; Clements et al., 1999). 

Identification of triangles. Studies on the identification of triangles show that 

preschool children are predominantly visually oriented to the shape and quickly 

identify prototypical triangles as representatives (Aslan & Aktaş Arnas, 2007; 

Tsamir et al., 2008). They often mistakenly reject atypical triangles and mistakenly 

accept non-triangles as triangles, for example, if these look similar to a prototypical 

triangle but have rounded sides (Clements et al., 1999; Satlow & Newcombe, 1998; 

Tsamir et al., 2008). Rejecting atypical triangles as triangles indicates that 

mathematically irrelevant, non-critical attributes influence children’s choices. In 

interview studies, it was for example found that children do not identify triangles 

correctly as triangles because they consider them to be too “long” (aspect ratio) or 

because they do not “point … at the top” (orientation) (Clements & Sarama, 2000, 
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p. 483). Other (prototypical) geometric shapes (e.g. squares) are confidently 

identified as non-triangles by children at preschool age (Aslan & Aktaş Arnas, 2007; 

Tsamir et al., 2008). As a trend, with children getting older the number of visual 

responses decreases and the number of attribute-based responses increases, and this 

is associated with more correct identifications of triangles (Aslan & Aktaş Arnas, 

2007). Children at the end of the primary school years or at the beginning of 

secondary school reject non-triangles more often than atypical triangles, which 

indicates that they are increasingly oriented to critical attributes (Satlow & 

Newcombe, 1998). Error rates for the identification of triangles vary from 36% for 

preschoolers (Clements et al., 1999) to 19% for sixth graders (Clements & Battista, 

1992a, cited in Clements & Sarama, 2000). 

EYE TRACKING 

ET is the technique to record a person’s eye movements (Holmqvist et al., 2011). In 

the human eye, sharp vision is possible through the anatomy of the fovea. ET builds 

on this and captures foveal data, whereas extrafoveal vision—peripheral vision—is 

not captured by ET (Klein & Ettinger, 2019). ET has gained increasing significance 

in mathematics education research in recent years (Lilienthal & Schindler, 2019; 

Strohmaier et al., 2020). The potential of ET to offer insights into how students solve 

mathematical tasks was shown in several studies in mathematics education in 

different subdomains. Studies in the field of geometry (e.g. Schindler & Lilienthal, 

2019) have also indicated that for this mathematical subdomain, the use of ET may 

provide insights into learners’ strategies. Especially in mathematical tasks that 

require the perception and processing of information and through domain-specific 

interpretations, ET allows for inferences about mental processes (Schindler & 

Lilienthal, 2019).  

One ET study on the identification of quadrilaterals of undergraduate and graduate 

students was conducted by Shvarts et al. (2019): These scholars used identification 

tasks in which four geometrical shapes were presented in each stimulus. The students 

were asked to search for a shape that corresponded to the concept that was named 

before each trial. Tasks using circle, square, triangle, and cross as stimuli showed 

extrafoveal solution of this task in most cases (77.5%). For tasks with four different 

rectangles, shapes in prototypical orientation “were mostly identified by extrafoveal 

vision, while in case of rotated exposure some foveal analysis was often required, 

especially in the cases of similarity between the target shape and distractors” (p. 

128). Shvarts et al. conclude that the “prototypical phenomenon is not limited to 

distinguishing a weighted list of attributes, but can be seen even in the involvement 

of extrafoveal perception in different identification tasks” (p. 128). 

THIS STUDY 

Students. 174 students (87 girls, 87 boys) of a German inclusive comprehensive 

school participated in this study. The mean age was 10;8 (SD = 0;6) with ages 



Simon, Rott, & Schindler 

4 - 60  PME 44 - 2021 

ranging between 9;9 and 12;7. The study took place at the beginning of fifth grade, 

shortly after the students had just finished primary school. 

Eye-tracker. Students’ eye movements were recorded with the remote eye-tracker 

Tobii Pro X3-120 (120 Hz, average accuracy in our study: 0.8°, binocular, infrared). 

This is a very unobtrusive, stand-alone eye-tracker that can be attached to computer 

monitors. Stimuli were presented on a 24” Full HD computer screen. The distance 

of the students to the screen was about 50 cm. 

Tasks and procedure. In individual sessions in a quiet room within their school, the 

students worked on 34 tasks: They were shown examples and non-examples of 

triangles (for a selection, see Fig. 1). They were asked if the shape presented was a 

triangle and were instructed verbally to answer “yes” or “no” as quickly and 

correctly as possible. In between the tasks, the students were instructed to fixate a 

star at the left side of the screen before the next task appeared. The students received 

no response whether their answers were correct. Verbal answers were recorded 

through an audio-recorder. The items were presented in a random order (the same 

for every student). The selection of these items was based on the primary school 

curriculum (MSW NRW, 2008). That is why at the beginning of grade 5, we could 

be sure that all students had dealt with triangles and their identification in prior 

schooling. 

The development of the items was based on Satlow and Newcombe (1998), 

Clements et al. (1999), Aslan and Aktaş Arnas (2007), and Tsamir et al. (2008). The 

classification of the items was based on Tsamir et al. (2008). The prototypical 

triangles are the equilateral and isosceles triangles (orientation and aspect ratio). The 

non-prototypical triangles are atypical representatives that deviate from the 

prototypical triangles in non-critical attributes (orientation, skewness, & aspect 

ratio). The non-prototypical non-triangles have a triangle-like shape where critical 

attributes of a triangle are violated. 

 
Figure 1: Selection of the items (# = number of items in the test) 
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The non-critical attribute “size” was not taken into account in the selection of the 

items, because the size of a shape has little influence on the identification of triangles 

even of preschool children (Aslan & Aktaş Arnas, 2007). Because preschool 

children already identify other prototypical geometric shapes (such as a square) 

reliably (Tsamir et al., 2008), these prototypical non-triangles were not included in 

this study either. 

Our study covered 5’916 tasks (174 students × 34 tasks). Forty-one tasks (0.7%) 

were excluded due to student-related or technology-related data loss, where the eye-

tracker did not validly record the children’s eye movements, so that 5’875 tasks were 

analyzed. 

Data analysis. For analyzing student strategies, we used gaze-overlaid videos 

provided by Tobii Pro Lab software: videos with eye gazes represented as a semi-

transparent dot. The categorization of the gaze movements was carried out 

deductively, i.e. on the basis of the category system that had been developed 

inductively in a preliminary study by Schindler and colleagues. Categories are 

shown in Figure 2. For visualizing the strategies in this paper, we use gaze plots, 

although we used gaze-overlaid videos for analysis of strategies. For this study, 20% 

of the data (i.e., 1’175) were coded by one rater at two different points in time to 

investigate intra-rater reliability. We calculated the intra-rater reliability using 

Cohen’s kappa. The agreement was 0.92, which can be considered almost perfect 

(Landis & Koch, 1977).  

 

Figure 2: Categories of student strategies—examples of the eye movements 
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For the statistical analysis, the program SPSS 26 was used. To analyze differences 

in the students’ use of strategies between the different types of triangles, we used a 

chi-square test. To compare strategy use between different types of triangles, we 

used the ratio of the number of observed strategies and the number of tasks belonging 

to the respective type. 

RESULTS 

In the following, we answer the research question: Are there differences in the 

students’ use of strategies between different types of triangles? 

A chi-square test with the accumulated strategies revealed significant differences in 

the distribution of strategies (see Fig. 3) between the three different types of 

triangles, χ² (4) = 52.23, p < .001. 

 
Figure 3: Distribution of strategies  

 
Cell tests for the differences between the types of triangles revealed the following 

results: For prototypical triangles, the students used strategy 1 (“at a glance”) 

significantly more often as compared to non-prototypical triangles (χ² (1) = 22.90, p 

< .001) and to non-triangles (χ² (1) = 5.51, p = .019). For non-prototypical triangles, 

the students used strategy 3 (“entire shape”) significantly more often as compared to 

prototypical triangles (χ² (1) = 38.34, p < .001) and to non-triangles (χ² (1) = 24.63, 

p < .001). For non-triangles, the students used strategy 1 significantly more often as 

compared to non-prototypical triangles (χ² (1) = 5.96, p < .015). 

Looking at the differences of specific types of non-prototypical triangles in more 

detail (and purely descriptively), the type of triangle where strategy 3 was used most 

often (52.87%) and strategy 1 at least (15.52%) is the isosceles triangle with extreme 

acute resp. obtuse angles (see Fig. 1). For the rotated triangles with prototypical 

aspect ratio the students also used strategy 1 very little (18.46%). The type of 

triangle where the students used strategy 3 second most often (33.53%) is the scalene 

triangle with an acute resp. obtuse angle. 
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DISCUSSION 

Our analyses indicate that strategy use differed between different types of triangles: 

The prototypical triangles were identified at a glance more often than the other types 

of triangles, whereas when working on the non-prototypical triangles, the students 

looked at the entire shape more often as compared to the other types of triangles. 

This relates to the findings of Shvarts et al. (2019) on the identification of 

quadrilaterals: that shapes in prototypical orientation were mostly identified by 

extrafoveal vision, at the periphery, and that the rotation of shapes made 

identification tasks more difficult—with decreasing involvement of extrafoveal 

processes. Our study indicates that there are shapes, the prototypical triangles, which 

are easier to recognize at the periphery, while the non-prototypical triangles required 

stronger foveal processing.  

Although identification of triangles is a mathematical topic of the primary level, the 

number of tasks that required extensive student gazes and the relatively high total 

number of errors (18.35%)—in line with Clements and Battista (1992a, cited in 

Clements & Sarama, 2000)—indicate that this is not necessarily an easy task for fifth 

graders. Our results indicate that non-critical attributes (skewness, aspect ratio, and 

size) have an influence on the students’ use of strategies, which is in line with 

previous research findings on the reasoning of children for their decisions in 

identification tasks (e.g., Clements et al., 1999). This is interesting since the students 

in our study were already at the beginning of grade 5 and had dealt with triangles 

extensively following the German curriculum.  

Our study also has implications for educational practice: Since our results suggest 

that students at the beginning of grade 5 still appear to be guided by non-critical 

attributes when considering whether a shape is a triangle or not, we think that 

teaching at grades 1–4 should focus even more on developing students’ conceptions 

of triangles—and geometric shapes in general, on talking about attributes, and 

discussing them. 

Future research should investigate, for example, whether our findings also apply to 

other geometric shapes. We hope that our study can be a springboard for further 

research in the area of identification of geometric shapes and can stimulate the 

discussion about this important topic in mathematics education. 
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For researchers and educators in mathematics education, it is of interest to gain 

insights into how students solve mathematical tasks. This holds also for students with 

mathematical difficulties (MD), whose strategies may be diverse. Eye tracking (ET) is 

a promising tool for analyzing student strategies, but its opportunities and limitations 

have only been explored for selected mathematical subdomains. This paper presents a 

comparative analysis of the opportunities that ET and thinking aloud (TA) may hold for 

analyzing student strategies in number line estimation tasks. The findings indicate that 

ET may offer more detailed insights than TA, especially for students with MD. However, 

a relatively high number of contradictions between the information obtained by ET and 

TA also indicates limitations of ET—and the need for further research. 

INTRODUCTION 

For mathematics education research, it is critical to not only look at student results, at 

product and outcomes, but also at the processes that lead there, and at their individual 

strategies when working on mathematical problems. Previous research has indicated 

that ET offers potential advantages for the analysis of strategies (e.g., quantity 

recognition, see Schindler & Lilienthal, 2018). The “inside view” provided by ET offers 

an alternative to the insights into thought processes gained by verbal survey methods—

such as TA. Especially for children with MD, but also with difficulties in language 

acquisition, who may find it difficult to describe their strategies, ET seems to offer a 

greater informative content than TA (Schindler & Lilienthal, 2018). By informative 

content, we mean the strategy-related information provided through the analysis of the 

respective method. Yet, for other mathematical subdomains, such as number line tasks, 

it is not yet clear what potential ET may offer for gaining insights into student strategies. 

The number line is one of the essential representations in mathematics teaching and 

learning at primary level (e.g., Ernest, 1985) and students’ number line estimation 

performance is of predictive nature for the general mathematical development (Booth 

& Siegler, 2008). Thus, it appears to be crucial to inquire into student strategies 

positioning numbers on the number line—and to evaluate what ET can offer to analyze 

the latter. 

In this study, we compare the informative content of ET and TA for analyzing student 

strategies in number line estimation tasks and ask the research question (1) To what 

extent does the informative content of ET and TA in the analysis of number line 

estimation strategies differ? Due to the potential benefit of ET to gain insights into the 
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strategy use especially of students with MD, we further ask (2) Are there differences in 

this respect between children with and without MD? 

EYE TRACKING 

ET is understood as technique to record a person’s eye movements (see Holmqvist et 

al., 2011). Video-based ET has gained increasing significance in mathematics education 

research in recent years (Lilienthal & Schindler, 2019). Its potential was shown in 

several studies in mathematics education in different subdomains (e.g., geometry and 

arithmetic). Especially in controlled settings, such as visually presented cognitive tasks, 

and through domain-specific interpretations, powerful conclusions about mental 

processes are possible (Schindler & Lilienthal, 2019). ET research mostly draws on the 

so-called eye-mind hypothesis (EMH) (Just & Carpenter, 1976), which assumes that 

the eyes’ fixations and the processing of information in the brain are closely related 

(Holmqvist et al., 2011). However, this hypothesis was developed in reading research 

and should not simply be transferred to the mathematical field without further reflection. 

Interpretation of eye movements is not trivial because ET data can be ambiguous 

(Schindler & Lilienthal, 2019) and the EMH does not always hold (Holmqvist et al., 

2011). Another issue relates to peripheral vision: In the human eye, sharp vision is 

possible through the anatomy of the fovea (a small pit on the retina): The eyes need to 

move so that the objects of attention are perceived by foveal vision. ET makes use of 

this anatomical feature and measures these movements. However, also peripheral 

vision—which takes place in extrafoveal areas—can be involved in the processing of 

information, which is not captured by ET (Klein & Ettinger, 2019). 

THINKING ALOUD 

TA (see Ericsson & Simon, 1980) constitutes a well-established method in mathematics 

education research to explore individual thought processes from the students’ 

perspective. According to Konrad (2010), the following forms of TA can be 

distinguished: (1) introspection, i.e. concurrent verbalization, (2) immediate 

retrospection, which follows directly after the work on the task, and (3) delayed 

retrospection, which takes place after all tasks have been solved or even days later. In 

contrast to introspective TA, where students verbalize their thoughts while performing 

a task and where the additional cognitive effort can be considerable (Ericsson & Simon, 

1980), retrospective TA has the advantage of not interfering with the thought processes 

during the work on the task. However, difficulties can also occur with retrospective 

TA—for example in meta-cognition or in the verbalization of thought processes—and 

potentially limit the validity (Schindler & Lilienthal, 2018). 

NUMBER LINE AND MATHEMATICAL DIFFICULTIES 

The number line is one of the essential representations in mathematics teaching and 

learning at primary level (e.g., Ernest, 1985). On the number line, numbers are 

represented by their position in relation to other numbers. The ability to place numbers 

on the number line in accordance with their relative size is necessary to estimate the 

correct position of numbers (Sullivan et al., 2011). Research on number line estimation 
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shows differences between children with and without MD. For example, the estimations 

of children with MD are often less accurate than those of children without MD (Landerl 

et al., 2017). By using the expression students with MD, we mean students who 

encounter difficulties both on a conceptual and procedural level: This includes, for 

example, basic arithmetic such as counting (e.g., counting by groups), (de-) grouping, 

the base-10 system, understanding place values, and basic arithmetic operations (see 

Moser Opitz et al., 2017).  

When evaluating students’ work on the number line, product-related results, such as the 

accuracy of the estimation, can be easily determined. However, so far there is only little 

known about the underlying processes and students’ strategies in number line 

estimation tasks. First studies have used ET to investigate student strategies on the 

number line (e.g., Van Viersen et al., 2013; Van’t Noordende et al., 2015) and hint at 

the potential that ET holds. Yet, there is no systematical analysis yet of the informative 

content that ET may provide as compared to TA. The above studies have illustrated that 

ET may be valuable to analyze number line estimation strategies especially of students 

with MD. However, previous research on number line estimation has not yet 

systematically compared the potential of ET and TA for students with MD.  

METHOD 

Students. 22 fifth-grade students (mean age: 11.5 years old; 11 girls) in a German 

comprehensive school participated in this explorative study. The study took place in the 

last weeks of fifth grade. Eleven children were found to have MD by the means of a 

standardized arithmetic paper-pencil speed test and qualitative diagnostics before the 

study took place. Five of the 11 students with MD also had special educational needs 

(in learning, social and emotional development, and physical development).  

Eye tracker. The students’ eye movements were recorded with the ET glasses Tobii Pro 

Glasses 2 (50 Hz). They have low weight (45 grams) and are relatively unobtrusive. 

Additionally, they recorded gestures, e.g., pointing, and verbal utterances, and 

synchronized these data with the eye movements. Stimuli were presented on a 24’’ Full 

HD computer screen. The distance of the students from the screen was about 0.5 m.  

The students were tested in individual sessions in a quiet room within their school. 

Tasks. The students worked on tasks, in which they were asked to estimate the position 

of a number on a number line with no markers except the endpoints zero and 100. This 

representation was chosen because on number lines with equidistant markers, students 

tend to use counting strategies, whereas on an empty number line their strategies are 

less pre-determined (Kaufmann & Wessolowski, 2006). Prior to the tasks, the number 

line was presented and introduced to the students. The students were asked to estimate 

the positions of the numbers on the number line in every task as fast and correctly as 

possible. The selected numbers were 40, 75, 90, 25, 10 and 50 (in that order). Stimuli 

in every task were presented as follows (Fig. 1): (1) The number appeared in the upper 

left corner. The students were asked to read the number aloud to ensure they had 

perceived it correctly. (2) The number line was presented, while the number remained 
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visible. The students estimated the position of the number by pointing to it with the tip 

of a pencil. (3) A fixation star appeared, before (4) the students were asked to verbalize 

their thought processes retrospectively. This study covered 132 tasks (22 students x 6 

tasks). Nine tasks were excluded due to data loss so that 123 tasks were analyzed. 

 
Figure 1: Series of stimuli during one task (40) 

Data analysis. We analyzed gaze-overlaid videos (videos of the ET glasses, where the 

student gazes were augmented through a dot wandering around) through inductive 

category development based on Mayring’s (2014) qualitative content analysis: The eye 

movements were first described. Afterwards they were interpreted/paraphrased. In a 

subsequent category development process, strategies with according descriptions were 

assigned. The categorization of all data was followed by a category revision step, which 

involved a partial recategorization. For analyzing TA, we transcribed the students’ 

utterances and gestures (e.g., pointing). Afterwards, the same steps as in the ET data 

analysis were followed with the transcripts: interpretation/paraphrasing and assignment 

of categories. Category assignment was conducted by two raters independently and 

resulted in an interrater reliability of 0.94, which can be considered very high. Finally, 

the informative content was compared as follows: For every task for every student, we 

regarded if the strategies assigned through ET and TA were the same. In case they were, 

we noted the “match”. We then analyzed the paraphrases (both in the ET and in the TA 

analysis) for the detailed information they provided on the student strategy—and then 

decided whether ET or TA provided more detailed information on the student strategy, 

or if their informative content on the strategy was equal. On the other hand, if the 

categories assigned based on ET and TA did not match, we marked the respective task 

as contradictory case (see Results Section for examples). 

RESULTS 

In the following, we answer the research questions (1) To what extent does the 

informative content of ET and TA in the analysis of number line estimation strategies 

differ? and (2) Are there differences in this respect between children with and without 

MD? together (see Fig. 6 for an overview). For visualizing gaze patterns in this paper 

we use gaze plots, although we used gaze-overlaid videos for analysis of gaze patterns. 

In our study, ET and TA were equally informative in 51.22% of the cases (MD: 36.67%; 

TD: 65.08%): The students’ verbal descriptions corresponded with their eye 

movements. Figure 2 shows an example where the student’s eye movements and 

utterance are similar regarding the information contained. The gazes indicate that the 

student looked into the middle of the number line, looked again at the number 75, looked 
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again at the middle, then looked two “steps” to the right, and then a small step back to 

75. The utterance also reflects the two steps. (Note: All verbal data presented in this 

paper (in the Figures) is translated from German.) 

 
Figure 2: Example of ET and TA being equally informative  

In 19.51% of the cases (MD: 30.00%; TD: 9.52%) ET was more informative than TA: 

The information provided by the two methods was consistent with each other and the 

ET contained more detailed or more extensive information. Figure 3 shows an example. 

The student’s utterance provides two different strategies. Because of her difficulties in 

describing her strategy, it could be assumed that she used the first mentioned reference 

point (100) to estimate the number. However, this cannot be determined clearly. Her 

eye movements showed an orientation of 100 backwards. Thus, ET offers a closer 

insight into the strategy that the student had initially. 

  
Figure 3: Example of ET being more informative than TA 

In 7.32% of the cases (MD: 10.00%; TD: 4.76%), TA was more informative: The 

information provided by the two methods was consistent and TA contained more 

detailed or more extensive information. An example can be seen in Figure 4. The 

student’s gazes show movements around 10, which cannot be assigned a clear strategy, 

whereas the student’s utterance suggests an orientation from the beginning of the 

number line step-by-step forward. Thus, TA offers a closer insight into the strategy. 

 
Figure 4: Example of TA being more informative than ET 

However, the information obtained from TA and ET was contradictory in 21.95% of 

the cases (MD: 23.33%; TD: 20.64%). Figure 5 shows an example where the student’s 

eye movements indicate a forward counting from the beginning of the number line to 
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50, whereas TA suggests that the student immediately estimated the position of the 

number on the number line. 

 
Figure 5: Example of ET and TA being contradictory 

 
Figure 6: Comparison of the informative content of ET vs. TA  

for students with MD and TD students; relative frequencies  

For the statistical analysis, the program SPSS 26 was used. To investigate the 

differences between the informative content of the two methods with regard to the two 

groups (research question 2), the Freeman-Halton test was used. This is the extension 

of Fisher’s exact test, which is “a way of computing the exact probability of the chi-

square statistics” (Field, 2013, p. 724) and suitable for small sample sizes. As extension 

of Fisher’s exact test, it involves contingency tables larger than 2x2—e.g., for two 

samples regarding a k-stepped (here: triple-stepped) characteristic. Since the 

informative content of each method was under investigation (ET vs. TA), the 

contradictory cases, where ET and TA did not match and no overall strategy could be 

determined, were not included. The null hypothesis for this test was that the informative 

content provided by the respective method is the same for the students with MD and the 

TD. The analysis revealed that the null hypothesis was rejected (p < .01). Accordingly, 

the informative content of the methods was different for the two groups. 

To investigate group differences for every condition (ET and TA equally informative, 

ET more informative, TA more informative) in detail, we calculated effect sizes using 

Cramérs V (Tab. 1). Differences with Cramérs V > .30 (medium effect) revealed that 

ET and TA tended to be equally informative more often for TD students (than for MD 

students) (.36) and that ET tended to be more informative more often for students with 

MD (than for TD students) (.31).  
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 ET and TA          

equally informative 

ET more 

informative 

TA more 

informative 

MD 47.83 39.13 13.04 

TD 82.00 12.00 6.00 

Cramérs V .36 .31 .12 

Table 1: Percentage of cases of informative contents of ET and TA  

and Cramérs V for the comparison of MD and TD 

Summarizing, regarding the first research question, it can be said that the informative 

content was equal for ET and TA in about half of the cases. In about a fifth of the cases, 

ET was more informative. TA was in very few cases more informative. Regarding the 

second research question, ET appeared to be more informative for students with MD. 

ET and TA tend to be equally informative more often for TD students. 

DISCUSSION 

Our findings indicate that ET may offer more detailed insights than TA, especially for 

students with MD. This result points to a potential added value of ET as research 

method. However, the rather high number of contradictions between the information 

we gathered through using ET und TA raises questions. On the ET side, peripheral 

vision probably plays a role. Since ET captures foveal data, perception by means of 

peripheral vision (e.g., orientation at known beginning- and endpoints) may not be 

represented in the ET (Klein & Ettinger, 2019). With the number line used in this study 

(no changes during task processing), the students were able to use peripheral vision for 

orientation on the number line—so, not all mental processes were reflected in the ET, 

which only captures foveal vision. Furthermore, the question arises as of when and how 

the EMH applies in number line estimation activities. Studies that have shown that the 

analysis of eye movements provides reliable information about student strategies 

predominantly use mathematical tasks, which require to a high degree a perception of 

information displayed in the task (e.g., numbers of dots that need to be perceived). Yet, 

number line estimation tasks also require the retrieval of mental representations of 

numbers and numerical relationships for the students to find the right position of 

numbers on the number line (Sullivan et al., 2011). Further research should explore the 

contradictions between ET and TA in more detail and pursue the question how eye 

movements and mental processes are linked in number line estimation tasks. Using 

stimulated recall interviews may shed light on how the displayed stimuli and the 

recalled information play together (see Schindler & Lilienthal, 2019). Prospectively, it 

would be valuable to investigate how ET data can be interpreted in this kind of tasks, 

even without TA. 
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When implementing argumentation and proof in classrooms, selecting specific proofs 

for a claim is an important teacher activity. Although mathematics-related beliefs are 

discussed as shaping the selection process, there is so far only limited quantitative data 

for these claims. The present research thus examined how teacher students’ 

endorsement of six mathematics-related beliefs influenced their selection of 

experimental, operative, and formal-deductive proofs. Data from N = 183 participants 

suggest that their endorsement of mathematics-related beliefs only partially impacts the 

selection of different types of proof. Moreover, after controlling for proof construction 

skills, only effects related to mathematics as a process of inquiry were significant. 

Effects of beliefs thus appear to be less profound then indicated by prior qualitative 

studies. 

INTRODUCTION 

Argumentation and proof are fundamental for mathematics as a science and thus part of 

secondary school classrooms worldwide (e.g., KMK, 2003; NCTM, 2000). However, 

curricula only set the framing conditions for argumentation and proof in classrooms. 

The actual implementation of proving in class is influenced by various aspects, relating 

to i) characteristics of the task and proof, ii) characteristics of the class, iii) 

characteristics of the teaching and learning situation, and, of course, to iv) 

characteristics of the teacher. Still, there is currently little knowledge about factors 

determining teachers’ selection of proofs for class. Firstly, evidence is mostly from 

qualitative or descriptive studies (e.g., Brunner & Reusser, 2019; Furinghetti & 

Morselli, 2011) and results are often hard to interpret and compare as contexts and 

classrooms within these studies vary naturally. To address this research gap and better 

understand factors that play a role in the selection of proofs, the BABS I project used 

an experimental design based on questionnaires, which systematically controlled and 

varied these factors, and examined teacher students’ selection of proofs for class. 

One of the teacher characteristics discussed as important for lesson planning and 

teaching, both generally and in the context of proof, are mathematics-related beliefs 

(Furinghetti & Morselli, 2011; Philipp, 2007). This paper thus focuses on prospective 

teachers’ mathematics-related beliefs and evaluates their impact on the selection of 

different types of proof for classroom instruction, also behind the background of other, 

possibly confounding variables such as their mathematical proof construction skills. 
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THEORETICAL BACKGROUND 

Mathematical Proof in Secondary Education 

Although there are no generally accepted definitions for argumentation and proof (Reid 

& Knipping, 2010), mathematical proofs are commonly interpreted as mathematical 

argumentations that additionally satisfy certain socio-mathematical norms (Yackel & 

Cobb, 1996). These may, for example, relate to the permitted types of inferences within 

proofs, the completeness of the argumentative chain within a proof, or other aspects of 

proofs (see further Sommerhoff & Ufer, 2019). However, there is no generally accepted 

list of criteria for the acceptability of proofs in mathematical practice and those for 

formal mathematical proofs or derivations are rarely satisfied in everyday mathematics 

and in school mathematics. To address this issue, alternative definitions for proof in 

school contexts have been formulated (e.g., Stylianides, 2007) and multiple ‘didactical 

types of proof’ have been introduced. These types of proof (see e.g., Healy & Hoyles, 

2000; Wittmann & Müller, 1988) often distinguish experimental proofs consisting of 

multiple examples, operative proofs that use a concrete operation, manipulation, or 

visual representation to show the validity of a claim, and formal-deductive proofs, 

which are embedded in a strictly deductive theory to allow more general conclusions. 

Although especially experimental and operative proofs may not be able to guarantee 

absolute validity that a certain claim holds, they are still seen as useful in mathematics 

classrooms (e.g., Hanna & Jahnke, 1996), in particular as i) easier to understand 

precursors of formal-deductive proofs and as ii) ways to focus on other functions of 

proof than verification (de Villiers, 1990). A common distinction, which is made in this 

context, are proofs that prove and proofs that explain. When preparing their 

mathematics classes, teachers should thus ideally consider these different types of 

proof, weigh up their advantages and disadvantages, and select one or multiple proofs 

for class. This process can be shaped by multiple factors, for example by mathematics-

related beliefs, appears plausible. 

Selection of Proofs for Classroom Instruction 

Currently, it is mostly unclear, what teachers’ selection of proofs for class is based upon. 

As teachers’ selection of proofs be decision-making processes, related frameworks (e.g., 

Blömeke, Gustafsson, & Shavelson, 2015; Schoenfeld, 2010) have been used to outline 

and structure different factors that may influence teachers’ selection of proofs. Prior 

research has related the selection of proofs to teachers’ prior content and pedagogical 

content knowledge, to their proof skills, and to their (leading) beliefs (e.g., Brunner & 

Reusser, 2019; Furinghetti & Morselli, 2011). 

Beliefs 

Goldin (2002, p.59) regards beliefs as “multiply-encoded, cognitive/affective 

configurations, to which the holder attributes some kind of truth value”. They are neither 

purely cognitive nor completely affective and can be compared to lenses that shape how 

we see the world (Philipp, 2007). Beliefs, belief systems as organized clusters of beliefs, 

as well as so-called leading beliefs are assumed to guide an individual’s actions also 

teachers’ actions in classroom. They are thus considered in many current theoretical 

conceptions, such as the framework by Blömeke et al. (2015) or the concept of 

competence (Weinert, 2001). In the context of proof, Furinghetti and Morselli (2011) 
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investigated how teachers treat proof in their classrooms and how this is shaped by their 

beliefs. Based on interviews with 10 highly experienced teachers, they identified “main 

poles around which the instructional practice of proof revolves” (p. 597) and identified 

teachers’ leading beliefs as “definitely” shaping teaching practices related to proof. 

Based on theoretical conceptions by Ernest (1989) and by Grigutsch, Raatz, and Toerner 

(1998), beliefs can be distinguished into several aspects, relating for example to 

conceptions of the nature of mathematics or the process of learning mathematics. A 

large-scale study, which picked up these different facets of mathematics-related beliefs 

was the Teacher Education and Development Study in Mathematics (TEDS-M) (see 

further Tatto et al., 2012). Based on the theoretical conceptions by Ernest (1989) and 

Grigutsch et al. (1998) as well as existing instruments to measure beliefs, TEDS-M 

included scales on beliefs about the nature of mathematics, about learning of 

mathematics, as well as about mathematics achievement (Tatto, Rodríguez, Reckase, 

Rowley, & Lu, 2013). Beliefs about the nature of mathematics included scales on 

mathematics as rules and procedures (i.e., mathematics is a set of procedures and strict 

rules, which have to be learned and applied) and mathematics as a process of inquiry 

(i.e., mathematics is a tool for inquiry and discovery). Beliefs about the learning of 

mathematics included subscales on teacher direction (i.e., learning of mathematics 

should be teacher centered and students follow instructions) and active learning (i.e., 

students must do mathematics on their own to learn effectively). Finally, beliefs about 

mathematics achievement included a scale on fixed ability (i.e., school mathematics is 

accessible only to those students with according ability and mostly inaccessible to 

others). Results of TEDS-M showed that future teachers in their last year of training 

from most countries (in particular from Germany) mostly endorsed mathematics as a 

process of inquiry and learning of mathematics through active learning, did less agree 

with mathematics as a set of rules and procedures, and did not endorse learning of 

mathematics by following teacher direction and mathematics as a fixed ability. 

Moreover, Tatto et al. (2012) report a general tendency for positive correlations between 

mathematics as a process of inquiry and learning of mathematics as active learning with 

future teachers’ content and pedagogical content knowledge as well as negative 

correlations between mathematics as a set of rules and procedures, learning as teacher 

direction, and mathematics as a fixed ability and future teachers’ content and 

pedagogical content knowledge. 

Research Questions 

Prior research ascribes an important role to teachers’ beliefs when planning their 

classes. Firstly, qualitative studies also report that they shape teaching practices related 

to proof, thus they can be expected to shape the selection of different types of proof for 

classroom instruction. Teachers endorsing mathematics as a process of inquiry and 

learning through active learning might choose experimental or operative proofs more 

frequently. However, prior studies did not systematically control participants’ further 

characteristics, for example their proof construction skills, which might be confounding 

variables as data from TEDS-M suggests. 

The present research thus addresses the following research questions: (RQ1) How do 

teacher students’ beliefs about the nature of mathematics, about learning of 

mathematics, and about mathematics achievement relate to their proof construction 
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skills and their higher education entry qualification? (RQ2) How are teacher students’ 

beliefs related to their selection of different types of proof for classroom instruction, 

especially when controlling for their mathematical proof skills?  

METHOD 

Data to answer the research questions was gathered at a large German university. A 

total of 183 students (78 m, 104 f, 1 NA) from a teacher training program for secondary 

school participated in the research. Each participant had attended lectures in 

mathematics, mathematics education, education, and psychology. Participants received 

a questionnaire with six sections. The first section contained two claims from 

elementary number theory suitable for 8th grade teaching. Participants were asked to 

prove both claims. Each of their proofs was scored on a scale from 0 to 4. Results were 

aggregated to a proof construction score (scale 0-1). In Section 2 and Section 3, students 

received multiple didactical proofs for these claims based on different types of proof 

(Healy & Hoyles, 2000; Wittmann & Müller, 1988), systematically varying factor i) 

proof characteristics that may influence the selection probability of a proof for class. 

Students were then asked to select one or multiple proofs for their teaching in an 8th 

grade classroom. For this, participants were given a detailed description of the class and 

classroom setting, thus setting, and controlling factors ii) characteristics of class and 

iv) characteristics of teaching and learning situation. Section 4 then assessed students’ 

appraisals for the presented proofs (Sommerhoff, Brunner, & Ufer, 2019), followed by 

Section 5, which assessed students’ mathematics-related beliefs (Likert-type items; 

scale 1-6) about the nature of mathematics (12 items; subscales: rules and procedures, 

process of inquiry), about learning of mathematics (14 items; subscales: teacher 

direction, active learning) as well as about mathematics achievement as a fixed ability 

in general (8 items) and in the context in proof (2 items). All belief scales were taken 

from TEDS-M (Tatto et al., 2013), only the scale for beliefs about mathematics 

achievement in the context of mathematical proof was self-constructed (“Students are 

not able to construct proofs themselves.”, “Students are not able to understand and 

validate proofs themselves”). Reliabilities were acceptable (Mean = .63). Finally, 

Section 6 gathered demographic data, including students’ higher education entry 

qualification. 

Before addressing the research questions, descriptive statistics for students’ beliefs and 

their proof construction skills and higher education entry qualification were calculated. 

To answer RQ1, correlations between participants’ endorsement of the six 

mathematics-related beliefs, their proof construction skills, and their higher education 

entry qualification were calculated to estimate their relationship. To address RQ2, 

generalized linear mixed models with a logit link function were calculated using the 

selection of a proof as dichotomous dependent variable and participants’ endorsement 

of the belief scales and the type of proof as independent variables (direct and interaction 

effects). Moreover, participants’ proof construction skills were introduced as an 

additional independent variable. Finally, dependencies between answers of the same 

person were considered by including a random intercept. To analyze interaction effects, 

that is to evaluate i) if students’ selection of a specific type of proof was influenced by 

their endorsement of the beliefs and ii) if the magnitude of this influence significantly 

varied between the types of proof, we calculated planned contrasts for each belief. 
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RESULTS 

University Students’ Beliefs 

Descriptive results for students’ beliefs underline that participants endorsed the nature 

of mathematics as a process of inquiry (MNoM_pi = 4.63, SDNoM_pi = 0.62), whereas they 

agreed less to mathematics as rules and procedures (MNoM_rp = 3.76, SDNoM_rp = 0.59). 

Still, they appeared to rather accept both aspects of the nature of mathematics. Further, 

participants strongly endorsed learning of mathematics as active learning 

(MLoM_al = 5.10, SDLoM_al = 0.46), whereas they clearly did not see learning of 

mathematics as teacher directed (MLoM_td = 2.48, SDLoM_td = 0.48). Moreover, 

participants did neither endorse mathematics achievement as fixed ability in general 

(MMA_fa = 2.63, SDMA_fa = 0.67) nor in the context of proof (MMA_fap = 2.61, 

SDMA_fap = 0.94). Finally, differences between both scales for mathematics achievement 

as a fixed ability were non-significant (t(164) = 0.08, p = 0.935), suggesting that beliefs 

about achievement in the context of proof do not differ from beliefs about achievement 

in mathematics in general. Overall, descriptive results are in line with those from TEDS-

M. 

Finally, descriptive analyses of students’ proof construction revealed average values 

M = 0.53 (SD = 0.37; scale 0-1) and their average higher education entry qualification 

was M = 2.08 (SD = 0.54; scale 1-6, 1 = best). 

Relation to Proof Construction and Higher Education Entry Qualification 

Correlational analysis (Table 1) showed weak but significant negative correlations 

between students’ proof construction skills and their endorsement of mathematics as 

rules and procedures, learning of mathematics as teacher direction, and mathematics 

achievement as a fixed ability in the context of proof.  

  
Nature of  

Mathematics 
 

Learning of  

Mathematics 
 

Mathematics 

Achievement 

  NoM_rp NoM_pi  LoM_td LoM_al  MA_fa MA_fap 

Proof 

construction 

r 

p 

-0.16* 

.039* 

0.08* 

.289* 
 

-0.19* 

.014* 

0.16* 

.035* 
 

-0.02* 

.842* 

-0.20* 

.015* 

HE entry 

qualification 

r 

p 

0.04* 

.628* 

0.04* 

.622* 
 

0.03* 

.682* 

-0.14* 

.062* 
 

0.01* 

.930* 

0.05* 

.534* 

Table 1: Correlations between participants’ beliefs and their proof construction skills and 

higher education entry qualification (significant results highlighted) 
 

In contrast, beliefs about learning of mathematics as active learning correlated weak 

and significantly, but positively with students’ proof construction skills, whereas the 

correlation with mathematics as a process of inquiry and mathematics as a fixed ability 

in general did not reach significance. None of the belief scales correlated significantly 

with students’ higher education entry qualification. 

Influence of Beliefs on the Selection of Different Types of Proof 

The generalized linear mixed models, calculated to evaluate if students’ endorsement 
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of the beliefs influenced their selection of proofs, showed a significant direct effect only 

for learning of mathematics as active learning (B = 0.38, p = .033). That is, a higher 

endorsement of this belief led to the selection of more proofs for class. Including 

interaction effects for different types of proof and evaluating them using planned 

contrasts revealed that this direct effect was mainly based on a significant impact of 

students’ endorsement of learning of mathematics as active learning on the selection of 

experimental proofs (Bexp = 0.38, p = .033), whereas the effects on both other types of 

proof were positive, but insignificant (Bfd = 0.29, p = .099; Bop = 0.01, p = .970). 

Further, detailed analysis of the interactions between type of proof and beliefs revealed 

a significant impact of the endorsement of the nature of mathematics as a process of 

inquiry on the selection of formal-deductive proofs (Bfd = 0.28, p = .033), whereas the 

effects on both other types of proof were insignificant (Bexp = 0.11, p = .388; Bop = -

0.16, p = .220). Furthermore, comparing the influences of the beliefs for each type of 

proof showed that selecting a formal-deductive proof (Bfd_op = .44, p = .042) was 

related to the nature of mathematics as a process of inquiry in a significantly stronger 

way than for operative proofs. 

Finally, including proof construction skills in the models weakened the effects observed 

for learning of mathematics as active learning (B = 0.33, p = .069; Bexp = 0.33, 

p = .069), however the observed indirect effects of the nature of mathematics as a 

process of inquiry remained significant (Bfd = 0.29, p = .034; Bfd_op = .44, p = .045).  

Across the various models, participants’ proof construction skills generally showed 

higher effects on the selection of different types of proof than the various beliefs. 

DISCUSSION 

Parallel to prior qualitative research (e.g., Furinghetti & Morselli, 2011) our data mirror 

the importance of mathematical beliefs, as the selection of different types of proof 

appears to depend on the degree of students’ endorsement of the beliefs analyzed in this 

research. In particular, data supports a significant influence of mathematics as active 

learning (direct & interaction effects, before controlling for proof construction skills) 

and for the nature of mathematics as a process of inquiry (interaction effects, even when 

controlling for proof construction skills) on teacher students’ selection of proofs for 

classroom instruction. However, the according effects do not appear as pronounced as 

expected by qualitative research and only isolated effects reach significance. 

As these results appear to question prior research regarding the magnitude of the impact 

of beliefs, their interpretation must be done carefully. A key difference between prior 

research and this research is the sample. Whereas prior research on the impact of beliefs 

on teaching proof in classroom has mostly focused on in-service teachers with multiple 

years of experience, this research focused on mathematics teacher students. Given, that 

the beliefs of pre-service teachers and teacher educators in TEDS-M did not differ 

greatly (Tatto et al., 2012, p.160) and our descriptive results are generally in line with 

those of TEDS-M, it appears at least surprising that the impact of beliefs should change 

so profoundly between university and school. Moreover, a systematic review of 

empirical research on teachers’ decision making by Stahnke, Schueler, and Roesken-

Winter (2016) mirrors our data, reporting weak correlations between beliefs and 

decision making as well as regression coefficients for beliefs of r = .3. Moreover, the 
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minor influence of beliefs in our data and in the review by Stahnke et al. (2016) is also 

consistent with weak to insignificant correlations between beliefs and participants’ 

content and pedagogical content knowledge in TEDS-M (Tatto et al., 2012, chapter 5) 

as well as to their proof construction skills in our research. It thus appears feasible that 

there is an influence of beliefs on the selection of proofs, but that the influence is rather 

weak and likely falls behind the influence of other, cognitive variables. This also fits to 

conceptions by Blömeke et al. (2015) or Weinert (2001), which see affective-

motivational aspects and beliefs as one variable among many others that drive 

(teachers’) behavior. 

Overall, the BABS I project aimed at examining the impact of multiple factors on the 

selection of proofs for secondary school classrooms. The analysis above suggest that 

beliefs do play a role in this process, but that the impact of the considered beliefs is 

rather small. Thus, to better understand the selection of proofs for class, other aspects 

such as cognitive characteristics of the teacher or characteristics of the class should be 

examined more closely. Moreover, to get even more conclusive data, future studies 

should evaluate the impact of beliefs on teachers’ behavior while systematically 

controlling for as many variables suggested by Blömeke et al. (2015) or Weinert (2001) 

as possible, in order to determine the impact of beliefs even more accurately. 
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SCHOOL AND UNIVERSITY MATHEMATICS 
Daniel Sommerhoff1 and Aiso Heinze1 

1Leibniz Institute for Science and Mathematics Education, Kiel, Germany 

 
Teachers’ enthusiasm for teaching mathematics has shown positive effects on affective 

student characteristics and achievement, yet effects of enthusiasm for mathematics were 

at most mixed. However, research has so far focused mostly on enthusiasm for 

mathematics in general, likely obscuring effects of more nuanced facets of mathematics-

related enthusiasm. Based on person-object theories, teachers’ enthusiasm can be 

expected to vary between mathematical contexts (school vs. university), subjects (e.g., 

calculus, algebra, probability, geometry) and may change over time. To generate 

evidence for these differences and confirm the person-object theory for enthusiasm, 

N = 232 pre-service teachers were surveyed. Results revealed significant differences 

between contexts and subjects as well as significant changes during university studies. 

INTRODUCTION 

Within the last decades, various teacher characteristics have been identified as 

predictive for effective classrooms and student learning. This is mirrored in a multitude 

of research frameworks and results, both from domain-general research (e.g., from 

educational psychology; Hattie, 2008) and from mathematics education research (e.g., 

Baumert & Kunter, 2013). Besides the long-lasting focus on cognitive teacher 

characteristics (e.g., teachers’ pedagogical-content knowledge), research is today 

increasingly considering affective-motivational characteristics such as teachers’ 

motivation, emotions, or enthusiasm (e.g., Frenzel, 2014; Hannula et al., 2016; Kunter 

et al., 2008, 2013; OECD, 2020). Although teacher enthusiasm has been repeatedly 

discussed to have several aspects such as emotional expressivity during teaching, 

teacher enthusiasm is often interpreted as a personal characteristic that can be seen as a 

“trait like, habitual, reoccurring emotion” (Kunter et al., 2008, p. 470) that relates to a 

certain object, for example to the domain of mathematics. Research has repeatedly 

shown that enthusiasm is an important element of effective, high quality teaching. In 

particular, there is evidence for positive direct effects of enthusiasm on affective-

motivational student characteristics (e.g., Frenzel et al., 2009; Frenzel et al., 2019; 

OECD, 2020; Patrick et al., 2000) as well as partially mediated, positive effects on 

student achievement (e.g., Baier et al., 2019; Kunter et al., 2013; OECD, 2020). 

However, these effects mostly refer to teachers’ enthusiasm for teaching mathematics, 

while their enthusiasm for the subject mathematics has shown at most mixed effects. 

In prior research, teacher enthusiasm has so far mostly been conceptualized as a 

construct relating either to teaching mathematics or mathematics in general (e.g., Keller 

et al., 2014), without considering a more nuanced structure of mathematics. However, 

based on person-object theories, which are widely presumed for many affective-

motivational variables such as interest (Krapp, 2002), it appears reasonable that 

examining only these two facets (teaching mathematics vs. mathematics) can be an 
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oversimplification. A more nuanced analysis of enthusiasm in future research thus 

appears necessary to validly assess the effects of teachers’ enthusiasm and not bias 

effects based on too general notions of enthusiasm. In this context, it is of particular 

interest, if teachers’ enthusiasm differs between mathematical subjects (e.g., calculus, 

algebra, probability, geometry) as relatively distinct sub-areas within mathematics and 

between contexts (school vs. university), possibly mirroring the often-reported 

differences between school and university mathematics (e.g., Clark & Lovric, 2009; 

Tall, 2008). Finally, from a teacher education perspective, it would be interesting to 

investigate the stability and development of teachers’ enthusiasm, for example during 

pre-service teachers’ university studies. 

To address these questions, pre-service mathematics teachers in their 1st to 9th semester 

of a university teacher education program were surveyed regarding their enthusiasm for 

four mathematical subjects in the contexts of secondary school and university. 

THEORETICAL BACKGROUND 

Enthusiasm for mathematics 

In the context of teaching, enthusiasm is often connected to a certain, positively valued 

style of teaching, which may display a high passion or interest for a subject, be 

expressed via certain verbal or nonverbal behaviors, and is generally seen as a desirable 

characteristic of teachers (Keller et al., 2014; Kunter et al., 2011). The conceptualization 

as a ‘characteristic of teachers’, however, stresses the fact that enthusiasm goes beyond 

a specific instructional behavior or expressivity, but should be considered as a latent 

personal trait, much like trait emotions or interest. In their work, Keller et al. (2014) 

combine these – so far mostly disconnected – perspectives on teacher enthusiasm and 

provide evidence for the conceptualization of enthusiasms as a latent trait underlying 

teachers’ positive affect and emotional expressivity. 

Dispositional teacher enthusiasm, in the sense of Keller et al. (2014), has been focused 

by several researchers and research projects in the context of mathematics education. In 

this regard, Kunter et al. (2008, 2011) conceptually and empirically distinguish two 

facets, enthusiasm for the subject mathematics and the enthusiasm for teaching 

mathematics (the latter which in subsequent research is either interpreted as ‘enthusiasm 

for teaching in general’ or as ‘teaching a specific subject’). Although teachers’ 

enthusiasm for teaching mathematics proved to be among the best predictors for student 

achievement and mathematics enjoyment (Kunter et al., 2013), teachers’ enthusiasm for 

the subject mathematics was found “independent of characteristics of the classes 

taught“ (Kunter et al., 2011), that is showing low predictivity. 

However, it remains unclear if the conceptual differentiation between enthusiasm for 

i) mathematics and ii) teaching mathematics, which is somewhat equivalent to the 

differentiation of i) content knowledge (CK) and ii) pedagogical content knowledge 

(PCK), is sufficient to capture the effects of teachers’ enthusiasm in learning contexts. 

Like the measurement of CK and PCK, which usually focusses on CK and PCK about 

a specific topic and not regarding mathematics in general, it may be purposeful to 

distinguish different facets of enthusiasm for mathematics, for example based on 

different contexts like school and university mathematics (see also; Ufer et al., 2017) or 

based on mathematical subjects like calculus or geometry. This more specific focus may 
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help to accurately analyze the impact of teacher enthusiasm as these do not obscure 

effects by overly broad constructs like “enthusiasm for mathematics”. 

Person-object Theories 

The relevance of assessing teacher enthusiasm and its effects on teaching and learning 

with a more specific focus, for example on different contexts or mathematical subjects, 

can be based on the person-object theory of interest (POI) and similar conceptions (see 

Krapp, 2002). These suggest that (dispositional) teacher enthusiasm should be 

conceptualized as a relation between the teacher and the object the enthusiasm refers to. 

First, this leads to the conclusion that enthusiasm is intrinsically content-specific and 

that research on enthusiasm thus has to consider an adequate focus and specificity of 

enthusiasm. Second, the conception allows for a (positive or negative) development of 

enthusiasm (for a specific object) over time, based on the changing relationship. For 

example, the introduction of formal mathematics, rigor, and proof (e.g., Tall, 2008) and 

the lectures and seminars on various mathematical subjects during pre-service teacher 

training may be drivers of such a development. They might lead to changes in pre-

service teachers’ enthusiasm and, in particular, also to an increasing separation between 

enthusiasm for school mathematics and university mathematics. 

RESEARCH QUESTIONS 

Prior research has highlighted positive effects of teachers’ enthusiasm for teaching 

mathematics for student learning, while results for enthusiasm for mathematics have 

been mixed. However, it is unclear, if a more specific conceptualization of enthusiasm 

for mathematics would lead to more conclusive results and if teachers’ enthusiasm 

actually differs between mathematical subjects and, for example, between school and 

university mathematics, as implied by person-object theories. Moreover, it is unclear, 

how stable more nuanced facets of enthusiasm are and how they develop over time. 

The present study sheds first light on these topics in the context of pre-service 

mathematics education by answering the following research questions: 

RQ1 How does pre-service teachers’ enthusiasm differ between mathematical 

subjects, contexts, and during the course of university studies? 

RQ2 What is the relation between pre-service teachers’ enthusiasm for the 

mathematical subjects calculus, algebra, probability, and geometry in the 

contexts school and university? 

Based on the prior findings and person-object theories, we assumed that participants’ 

enthusiasm would differ between the examined mathematical subjects and both 

contexts. In particular, we assumed that participants as future secondary school teachers 

would be quite enthusiastic about the subjects in the context of school, however less 

enthusiastic about the subjects in the context of university. Moreover, we assumed that 

their enthusiasm would at least partially differ between the examined semesters and 

may show a positive or negative development, without a more specific hypothesis 

regarding the direction or magnitude of these developments. 
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METHOD 

Sample 

To address these research questions, 232 pre-service mathematics teacher students for 

upper secondary level schools from a German University were surveyed using a short 

online questionnaire in winter 2020. Students were recruited during regular lectures and 

mostly answered the questionnaire during the lecture; however, the provided link could 

also be used to participate after the lecture. Participation was voluntary. Information 

about students’ distribution to different semesters in their degree program is presented 

in Table 1, demographic data regarding age or sex were not gathered based on data 

protection regulations and the absence of related research questions. 

Instruments 

To measure students’ enthusiasm for different mathematical subjects in the context of 

secondary school and university, parallel sets of items for the school and university 

context were developed. Based on national as well as (inter)national standards for 

school and university mathematics education, the subjects calculus, algebra, 

probability, and geometry were selected to survey participants’ enthusiasm. Each 

subject was covered extensively in school and corresponds to typical university lectures. 

However, participants in the first semester had only participated in university lectures 

on calculus and (linear) algebra (see also discussion). 

For each subject, students were asked to rate their enthusiasm on a 11-point likert scale 

item, ranging from 0 (“absolutely not enthusiastic”) to 10 (“absolutely enthusiastic”). 

Items for each context were clearly introduced as focusing on a secondary school or 

university context and each item’s formulation additionally included the context (e.g., 

“Please rate your enthusiasm for the following subjects within school mathematics.”). 

Statistical Analyses 

First, descriptive data was calculated for participants’ enthusiasm distinguishing 

between contexts, mathematical subjects, and semester. Additionally, repeated-

measures t-tests were calculated to illustrate that participants’ enthusiasm differed 

significantly between different combinations of contexts, mathematical subjects, and 

semesters. Following up on these differences, a repeated-measures ANOVA was 

calculated using mathematical subject and context as within person factors and semester 

as a between person factor to determine the significance and effect of each factor as 

well of their interactions (RQ1). To determine the relationship between students’ 

enthusiasm for a subject in the secondary school context and the university context 

(RQ2), pairwise correlations were calculated for each subject. 

RESULTS 

Descriptive overview of Pre-Service Teachers’ Enthusiasm 

The gathered data show that participants’ enthusiasm for the subjects calculus, algebra, 

probability, and geometry is generally quite high (overall mean M = 7.00, SD = 1.51). 

However, descriptive data (see Table 1) show that pre-service teachers’ enthusiasm 

differs heavily between the contexts school and university, different mathematical 

subjects, and between different semesters. 
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Semester N  Context Calculus 

M (SD) 

Algebra 

M (SD) 

Probability 

M (SD) 

Geometry 

M (SD) 

1 56 
 School 8.79 (1.71) 8.05 (2.10) 7.00 (3.08) 9.50 (1.69) 

 University 3.45 (3.48) 6.59 (2.88) 2.93 (3.56) 3.23 (3.87) 

3 82 
 School 8.77 (1.98) 7.74 (2.20) 6.60 (2.95) 9.34 (2.07) 
 University 6.44 (2.73) 6.88 (2.41) 4.13 (3.30) 6.22 (3.30) 

5 17 
 School 8.94 (2.36) 7.53 (2.65) 6.29 (2.59) 9.59 (1.54) 

 University 7.29 (2.20) 6.47 (2.90) 4.41 (3.30) 7.59 (2.35) 

7 44 
 School 9.32 (1.57) 7.98 (1.80) 6.45 (2.67) 9.55 (1.37) 

 University 7.50 (2.14) 6.32 (2.42) 5.50 (2.65) 7.80 (2.17) 

9 33 
 School 9.12 (2.01) 9.15 (1.39) 5.85 (3.33) 9.15 (2.17) 

 University 7.39 (2.67) 6.18 (3.03) 4.88 (2.68) 7.70 (2.60) 

Table 1: Overview about pre-service teachers’ enthusiasms. 

For example, first semesters’ enthusiasm for calculus in school contexts was rather high 

(M = 8.79), whereas their enthusiasm for calculus at university was rather low 

(M = 3.45), corresponding to a significant difference (t(55) = 10.8, p < .001, 

dCohen = 1.45). Data also suggest that first semesters differentiate between subjects, as, 

for example, participants’ enthusiasm for algebra (M = 8.05) was significantly (t(55) = -

4.49, p < .001, dCohen = -0.6) lower than for geometry (M = 9.50). Finally, although the 

study’s design was only quasi-longitudinal, data suggests a development in pre-service 

teachers’ enthusiasm, as, for example, their enthusiasm for probability in the school 

context decreased monotonously (M1. semester = 7.00, M9. semester = 5.85). Results for other 

semesters and mathematical subjects are similar. 

The impact of context, subject, and semester on pre-service teachers’ enthusiasm 

To more specifically analyze the impact of the factors context, mathematical subject, 

and semester, a repeated-measures ANOVA was calculated, using context and 

mathematical subject as within person factors and semester as between person factor. 

Results (see Table 2) reveal highly significant effects of all within and between factors 

and even highly significant two- and three-factor interactions. Focusing on the effect 

sizes, the factor context shows the largest impact on participants’ enthusiasm (𝜂𝑝
2 =

0.474), followed by mathematical subject (𝜂𝑝
2 = 0.233), and semester (𝜂𝑝

2 = 0.109). 

Within Person Factors  df Mean Square F p  𝜼𝒑
𝟐 

 Context  1 1848.92 204.6 <.001 0.474 

 Context * Semester  4 127.81 14.14 <.001 0.200 

 Subject  3 472.14 68.79 <.001 0.233 

 Subject * Semester  12 24.16 3.52 <.001 0.058 
 Context * Subject  3 29.23 10.25 <.001 0.043 

 Context * Subject * Semester  12 26.24 9.20 <.001 0.140 

Between Person Factors       

 Semester  4 114.4 6.96 <.001 0.109 

Table 2: Repeated-Measures ANOVA with main and interaction effects. 

Post-Hoc analyses regarding context, mathematical subject, and their interaction 

showed a multitude of significant differences (even when applying a Tukey-correction). 

Although semester showed a smaller effect than the factors context and mathematical 

subject in the repeated-measures ANOVA, its significant effect suggests a development 
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of enthusiasm in the course of university studies. More specific analyses of participants’ 

enthusiasms for the different subjects in the contexts school and university resulted in 

significantly different developments (see Figure 1). 

 
Figure 1: Quasi-Longitudinal development of participants enthusiasm for each of the 

four subjects in the contexts school and university from semester 1 to 9. 

The relation of teachers’ enthusiasm for mathematical subjects between contexts 

Participants’ enthusiasm in the school context (M = 8.23, SD = 1.24) was significantly 

(t(231) = 16.0, p < .001) higher than in the university context (M = 5.76, SD = 2.40), 

leading to an effect of dCohen = -1.05. That participants distinguished between both 

contexts is also mirrored by correlations between their enthusiasm for the subjects in 

the school and university context, each which was highly significant but at most 

moderate (rCalculus = .407, rAlgebra = .277, rProbability = .413, rGeometry = .217). 

DISCUSSION AND OUTLOOK 

Based on so far mixed results on the effects of teachers’ enthusiasm for mathematics 

(Kunter et al., 2011) and person-object theories of interest (Krapp, 2002), the present 

study focused on differences in pre-service teachers’ enthusiasm based on i) a school or 

university context (Tall, 2008; Ufer et al., 2017), ii) different mathematical subjects 

(calculus, algebra, probability, geometry), and iii) their semester in their university 

teacher education program. As expected, results confirm highly significant differences 

between the contexts, the subjects, and even their various interactions. This can be seen 

as evidence that enthusiasm confirms to a person-object theory. This is also supported 

by the relatively low pairwise correlations between pre-service teachers’ enthusiasm in 

school and university context as well as by the significant differences that could be 

observed for pre-service teachers’ enthusiasm for the examined subjects from 1st to 9th 

semester. The latter differences are less pronounced for subjects in the school context 

than in the university context, which appears reasonable based on person-object 

theories. The pre-service teachers surveyed in the lower semesters had i) much more 

experience with school mathematics than with university mathematics, leading to an 

already consolidated relation, and ii) were predominantly exposed to university 

mathematics during their university studies, thus allowing their enthusiasm in the 

university context more potential to change and develop. 

Beyond confirming the person-object theory, descriptive data also gives a first 

impression of the extent of pre-service teachers’ enthusiasm towards different 

mathematical subjects in school and university. Although their enthusiasm towards the 

subjects in the context of school is generally quite high, it appears interesting that there 
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is only little development in this regard. Apparently, the contents of their university 

studies do not relate sufficiently to these subjects in the context of school to increase 

pre-service teachers’ enthusiasm for these. Thus, their later enthusiasm for these 

subjects as novice teachers is mainly based on their school experiences. In contrast, pre-

service teachers’ enthusiasm for the subjects in the university context changes 

significantly over time, likely mirroring i) that students in their first semester only had 

a faint person-object relation to these subjects in the university context (due to the lack 

of experience) and ii) the exposure to these subjects during the course of their studies. 

However, results may mirror the typically high drop-out for mathematics programs in 

the first year and thus be an artefact of a selection process with those students with less 

enthusiasm dropping out. Although, the quasi-longitudinal nature of this study does not 

allow for a conclusion on this matter, the finding may be interesting in the context of 

predicting drop-out and supporting students with a high drop-out probability. 

Concluding, results clearly show that ‘enthusiasm for mathematics’ may be a too broad 

construct that has likely obscured effects of mathematics-related enthusiasm facets on 

classrooms and students. However, results of this study do not imply the existence of 

any effects, these will have to be confirmed by future research. In particular, it should 

not be expected that mathematics-related enthusiasm facets show the same indirect 

effects via learning support and classroom management (Kunter et al., 2013). They may, 

however, impact students’ emotions and enthusiasm and thus be ‘contagious’. 
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Several international studies recognize the central role of the understanding in 

problem solving in the mathematics teaching-learning process. Interdisciplinary 

studies have shown how the type of text affects student's reading and, consequently, 

its performance. It emerged that “selective- reading”, through which specific 

attention is paid to certain textual elements, often involves a lack of understanding 

of the problematic situation. The aim of our research is to understand how some 

structural and textual aspects influence the understanding of a mathematical text. 

This research, conducted using the eye-tracker tool, shows the results of the first 

phase of a larger study. 

RATIONALE 

Researches on mathematics education highlight the central role of the mathematics 

texts’ understanding in the undergraduate students’ learning of mathematics (Barton 

et al., 2004). A discussion of the different approaches to the study of the impact of 

the formulation of a task on the performance of the students can be found in Bolondi, 

Branchetti & Giberti (2018). It is recognized how attitudes related to the didactic 

contract in the sense of Brousseau (1988), such as the "selective readings" (Zan, 

2012), in which the student focuses attention only on certain textual elements, often 

lead to a lack of understanding of the problematic situation. The aim of our 

investigation is to understand how some textual aspects and the graphic and textual 

arrangement influence the understanding of a mathematical text and, therefore, the 

students' performance. Attitudes such as the identification of isolated sentences or 

key words highlight widespread inability to use skills acquired in transversal areas; 

language training and text interpretation, rather than tools that help in the 

representation or communication of information, are transformed into indications of 

procedures to be performed (Ferrari, 2001; Radford, 2000). Some of the problem-

solving processes activated in problem solving, especially in reference to the 

comprehension of the mathematical text and the identification of the resolution 

strategy, highlight these behaviors and therefore require constant attention and 

monitoring. And it is precisely in this direction that our research is moving, in which 

the processes of understanding mathematical texts are analyzed with the support of 

the eye-tracker tool. 
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In this paper we show the results of the first phase of a larger experimental study. 

This phase involving 8 university students from the Faculty of Education of the 

University of Bozen-Bolzano. In recent years, eye-tracker technologies have become 

an increasingly effective tool for analysing students' learning process. The results 

obtained provide information on eye movement and, therefore, on the choice and 

catalyzation of the attention of students of different school levels during the 

mathematical activities and are therefore significant from an interpretative point of 

view of the activated resolution processes. 

THEORETICAL PERSPECTIVE 

The eye-tracker in the panorama of Mathematics Education 

By its nature, the use of technology in the learning and teaching processes of 

mathematics requires an interdisciplinary approach. In Mathematics education, 

several studies have been conducted with the eye-tracker, studies that have also 

involved knowledge from other fields of study, such as computer science, neurology, 

biology, sociology and cognitive psychology. Cognition is closely related to body 

actions and the position of the body in space and time (Lakoff & Núñez, 2000). Eye 

movements are part of sensory experience and, following the Radford approach 

(2010), Their relationship with mathematical representation can shed light on how 

humans access mathematical knowledge. Several studies in the field of eye tracking 

have shown that there is a correlation between what one "looks" at and what one 

"thinks" (Rayner, 1998; Yarbus, 1967). These results also agree with other research 

which support the existence of a correlation between ocular fixations and cognitive 

information processing (Latour, 1962). Consequently, there has been a growing 

interest in eye tracking in educational research (Scheiter & van Gog, 2009). As far 

as the path of mathematical learning is concerned, these eye-tracking experiences 

seem to be in line with Duval's idea, which, starting from the famous statement "there 

is no noesis without semiosis" (Duval, 2006), highlights how the understanding of a 

concept is born from the relationship between the signifier represented by a sign, a 

representation and the meaning or the mathematical object. Ferrara and Nemirovsky 

(2005) argue that all perceptual-motor activities, related to changes in attention, 

consciousness and emotional states, contribute to the understanding of a 

mathematical concept. In the research in mathematics education, many studies (e. g. 

Ferrara & Nemirovsky, 2005, Andrà et al. 2009, 2015; Holmqvist et al., 2011) 

highlight interesting data on students' approach to the reading of mathematical text, 

on the transformations between different representations (formulas, graphs, words) 

to understand the meaning of a text. It was also pointed out that there are quantitative 

and qualitative differences between beginners and experts in the approach to reading 
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of a mathematical text and precisely for these reasons in our experimentation were 

involved participants of different school grades with different mathematical skills. 

Duval frame 

The contribution of the Duval ideas to the experimentation conducted is 

fundamental, in particular for the fundamental role attributed to representation and 

visualization in understanding mathematics.  

Representation refers to a large range of meaning activities: steady and holistic 

beliefs about something, various ways to evoke and to denote objects, how 

information is coded. In contrast, visualization seems to emphasize images and 

empirical intuition of physical objects and actions. (p.3, Duval, 1999). These two 

processes play a fundamental role in the process of learning mathematics and, even 

more, as regards the cognitive architecture concerning the apprehension of 

geometric concepts. Thus, in geometry it is necessary to combine the use of at least 

two representation systems, one for verbal expression of properties or for numerical 

expression of magnitude and the other for visualization. What is called a 

“geometrical figure” always associates both discursive and visual representations, 

even if only one of them can be explicitly highlighted according to the mathematical 

activity that is required. Then, students are expected to go to and from between the 

kind of representation that is explicitly put forward and the other that is left in the 

background of this discursive/visual association that forms any geometrical figure.” 

(p. 108, Duval, 2006). 

The discursive/visual association is complex by a cognitively point of view: 

oftentimes a contrast between this association and the common association between 

words and shapes and because its use goes against the perceptual obviousness 

(Duval, 1998). Each activity in geometry involves the use of at least three registers: 

the natural language register, the symbolic language register and the figurative 

register. Figures therefore play an important role, because they represent a concept 

or situation extensively.  They are often much more rapidly receivable than verbal 

representations and various "gestaltic" mechanisms cause figure to convey 

information both analytically and synthetically. But not every design can function 

effectively as a "geometric figure". There are usually four levels of understanding of 

a geometric figure: perceptual, sequential, discursive and operational (Duval, 1995; 

1999). A drawing acts as a geometric figure when it activates the level of perceptual 

understanding and at least one of the others. The perceptual level involves the ability 

to recognize figures (for example, distinguish shapes) and to identify components in 

a figure (recognize sides or other elements). The epistemological function of the 

perceptual level is identification. Therefore, as regards the understanding of the 

geometric figures, the activation of the perceptual level is fundamental. As we will 

see in the analysis of the experiment carried out, the observation of eye movements 

with eye tracking provides useful information to investigate the activation, or not, of 

the perceptual level of the geometric figures within the resolution of geometric 

problems. 
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THE STUDY 

The results of international research have shown that the number of fixations is a 

reliable and sensitive measure that can provide valuable information on the attention 

flow of participants during mathematical activities (e.g., during the resolution of 

equations, Susac et al., 2014). In particular, the data from Susac et al. (2014) show 

positive correlations between the number and "positions" of the student of the 

"fixations" and the efficiency of the participants in finding the solution of the 

mathematical activities, suggesting that the participants who behaved well adopted 

winning strategies in terms of "knowing where to look for information useful for the 

resolution".  

It is from these and other evidence from national and international literature that we 

have designed our study.  Experimentation was conducted with the eye-tracker tool 

on geometric task that involved 8 university students at the Free University of 

Bozen-Bolzano.  

The aim of the research is to understand if and how much students are aware of the 

strategies they put in place when faced with a mathematical question in the geometric 

field with an image present in the text. The eye-tracker tool has allowed us to 

investigate what are the students' eye movements in the resolution of mathematical 

tasks and to study the link between them and the students' performance. To do this 

we analyzed both the movements of the eyes during the resolution of the 

mathematical tasks (to understand the order of the fixations we used gaze plot 

videos), both if and to what extent the structure of the tasks affects the place where 

the students focus their attention (to understand if some elements of the text captured 

the attention more than others we dwelt on the fixations). 

The questions all have the same basic characteristics: they are geometric, they have 

an image in the text and they have been taken from international standardized survey 

OECD-PISA. 

The chosen tasks have been built on the quantitative results of this survey and are 

focused not only on the investigation of how much and how the structure of the task 

affects the resolution procedures, but also on how much it actually affects the 

students’ performance. 

The design and implementation of this experimentation are the result of reflections 

and evidence highlighted by a first pilot study conducted in collaboration with the 

University of Bozen-Bolzano and presented at the 14th International Conference on 

Technology in Mathematics Teaching (Bolondi & Spagnolo, 2019). 

The items administered in this phase were constructed from the quantitative results 

that emerged from the international standardized administration of mathematics of 

the OECD PISA 2015 (OECD-PISA, 2016). 

Let us observe Figure 1: 
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Figure 1. Question 1, OECD-PISA 2015. 

Below we highlight the characteristics of the question that allowed us to implement 

Phase 1 of our study conducted with the eye-tracker tool. The difficulty level of the 

item is 6 on the overall literacy scale in mathematics. The student, in fact, is required 

to model a complex situation, developing a strategy in an unfamiliar context. He 

must show a good mastery of geometry and apply it in a real context. The concepts 

and mathematical knowledge fundamental to the resolution of the question are flat 

figures and their properties, while the fundamental mathematical skill is the 

following: to answer correctly it is necessary to be able to deduce, from the data 

provided, the lengths of the unknown segments. The question is of the type "complex 

multiple choice", because for each question you must select an answer between two 

possible (yes/no). The main difficulties are encountered in determining the overall 

length of the "vertical sides" of the individual figures. It is particularly difficult to 

determine the perimeter of Figure B, because the information on the lengths of the 

sides is not directly inferred from the stimulus. It is therefore necessary a good 

reasoning ability and a good mastery of basic Euclidean geometry to understand that 

the oblique sides of the parallelogram of Figure B are longer than the vertical 

components of the sides of the other figures (whose perimeter is exactly 32 m). Only 

12.3% of Italian students were able to provide four correct answers, while 30% were 

able to identify three. Among the questions of geometric scope with an image in the 

text, this question was chosen because of the difficulties highlighted internationally. 

Afterwards the question was prepared for administration with the eye-tracker. In 

order to obtain information about the resolution processes implemented by the 

students, also in relation to the structure and textual characteristics of the task, the 

question in Figure 1 was presented in four different stimuli. This also increased the 

readability of the task and the calibration of the eye-tracker. The application is 

unchanged, but the drawings of the projects were shown to the students individually 

and no longer all together. 

In addition, the student was asked to briefly motivate his answer. This variation was 

made in order to be able to observe the students' eye movements while they explain 
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their solving strategy and retrace the process of solving the problem. It was specified 

to the students that they could look at the situation for as long as necessary before 

responding and that, in responding to a situation, they could also refer to reflections 

inherent to the previous situations displayed. In this way, it was possible to detect, 

through the recording of eye movements, the focus and permanence on certain 

structural and textual elements and therefore, to investigate the resolution strategies. 

Eight students from the 2nd year of Primary Education at the University of Bozen-

Bolzano were involved. In particular, the choice fell on students of educational 

science as they are not only students but also teachers in training and for this reason, 

they also pay attention to any educational consequences. These students were 

identified on a voluntary basis and each of them was involved in the task for two 

hours. In addition to the resolution of the question, the task included an unstructured 

and in-depth interview during which the student was confronted with the results of 

the eye-tracker tool. In this way it was possible to compare what the student thought 

he had looked at and what he had actually looked at. 

THE RESULTS 

The data was collected by the Tobi pro-lab software. Before proceeding with the 

analysis, we specify that to allow an analysis with the eye-tracker, the task must refer 

to only one stimulus at a time and be visible without scrolling the page. 

The following figure (Figure 3) shows the first results of the analysis referring to 

stimulus 1. 

 

Figure 3: First results of the analysis related to stimulus 1. 

In the figure we can see the part of the text where the student lingered for less time 

coloured in green, the part where the student lingered for a little longer coloured in 

yellow, and the part where the student lingered for a little longer coloured in red. 

The student, both in the text and in the image, focuses the attention on the numbers 

(red part) and the little attention given to the text can be an indication of "selective 

reading" (Zan, 2012). We can interpret this evidence with some of the categories of 

the didactic contract in the sense of Brousseau (1988).  

We find a similar behaviour also in other situations. The focus on the movements of 

the eye when a student is reading a mathematical text provided us with insights on 

the solution processes and provide us outcomes framed within the structural and 
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functional approach to semiotic (Duval, 2006). These results highlight a 

meaningless: students confuse the graphic elements and number representations 

(signifiers) with the mathematical object (signified) and they are not able to establish 

the correct semiotic reference to the mathematical object. The incorrect relation 

between graphs, numbers and sense confirms the Duval’s (1995) cognitive paradox 

that impels students to identify semiotic representations with the mathematical 

object. 

REMARKS. 

The results of this first experimental phase provide rich insights into the structural 

and textual elements of mathematical tasks that capture students' attention and how 

much these choices affect their mathematical performance. We investigated which 

textual and structural characteristics influence -at least in part- the solving 

procedures and therefore, the students' performance. The eye-tracker tool was used 

to confirm the students' eye movements while solving mathematical tasks.  

The students themselves recognised how their attention is often catalysed by 

elements that are useless for the solving procedure; the data collected, and the 

analyses carried out in these first phases made it possible to outline the design and 

implementation of a new step of the broader research in which this experimental 

study is inserted. 
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AESTHETICS IN EARLY GEOMETRY 

Hadar Spiegel1 and David Ginat1 

Tel-Aviv University, Israel 

 

Aesthetic mathematical solutions involve clarity, simplicity, conciseness, an element 

of surprise, and more. Although the elaboration of aesthetics may develop 

mathematical thinking, the amount of studies of aesthetics in ordinary teaching is 

limited. Perhaps this is due to a conception that aesthetics is only for experts and 

the gifted. This paper presents a different view. The paper displays 7th graders’ 

solutions of geometrical area calculations and students’ comments on their 

solutions. The solutions involve auxiliary constructions and structure 

decompositions. Both cumbersome and aesthetic solutions are displayed. Some of 

the cumbersome solutions were erroneous. Aesthetic solutions were simple, very 

concise, and somewhat surprising. Students who offered different solutions 

expressed appreciation of the appealing characteristics of aesthetics. 

INTRODUCTION 

Mathematics is a science of patterns (Schoenfeld, 1992). The discovery of 

illuminating patterns yields an emotional excitement of the beauty of mathematics. 

Poincaré said: “The mathematician does not study pure mathematics because it is 

useful; he studies it because he delights in it, and he delights in it because it is 

beautiful” (in Huntley, 1970, p. I). Beauty is correlated with aesthetics, which 

according to Webster (1973) is “a branch of philosophy dealing with the nature of 

the beautiful”. What is mathematical aesthetics? Can non-mathematicians be 

delighted as well? Can it be advocated? Before addressing these questions, we begin 

with a short illustration. 

Given the following parallelogram and the values of the areas a, b, c, and d, can you 

tell the area of e? (There are no special assumptions on angles or lines.)   

 

The problem involves basic geometry. We posed it to mathematics teachers, who 

found it challenging and engaging. (The reader is welcome to try it before turning 

the page.) Some teachers noticed that the area of half of the parallelogram may be 

specified in two ‘vertical’ ways (each with two triangles) and in two ‘horizontal’ 

ways. They named the unnamed areas and developed two equations – one with 
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equality between the two ‘vertical halves’ and one with equality between the two 

‘horizontal halves’. At this point, some felt at loss, but a few reached an illuminating 

pattern. 

If you equate the two ‘vertical’ triangles that include the areas c and d and the two 

‘horizontal’ triangles that include a, b, and e, the two sides of the equation ‘intersect’ 

at the grey areas below, which may therefore be discarded. You get: c+d = a+b+e. 

 

The key is the recognition of the illuminating intersection. Some may argue that this 

is straightforward. In our experience, this recognition is not immediate, and 

sometimes not reached. Many of the teachers expressed surprise from the 

illuminating observation. Its clarity and brevity were appealing. 

Clarity, brevity and surprise are regarded as (some) aesthetic values. Poincaré (1956) 

indicated that a sudden illumination may surface during problem solving, from the 

unconscious to the conscious, and underlie the aesthetics of a solution process. Such 

a phenomenon may profoundly affect one’s emotional sensibility. 

Hofstadter (1979) believed that as engaging as it is, aesthetics of a mathematical 

argument cannot be defined in an inclusive or exclusive way. Papert (1980) argues 

that aesthetics plays the most central role in mathematical thinking; yet he did not 

offer a clear definition of aesthetics and did not draw a clear line between aesthetic 

and logical. Birkhoff (1956), on the other hand, offered to measure aesthetics with a 

formula, which relates order and complexity (in opposite ratios). 

Halmos (1981) recognized clarity and structural brevity as primary values of the 

elegance of thought. Dienes (1964) underlined the power of a single, illuminating 

argument, or step; and Hardy (1940, in Johnson & Steinberger, 2019) offered the 

aesthetic values of: seriousness, generality, depth, unexpectedness, inevitability, and 

economy (related to brevity). 

Dreyfus and Eisenberg (1986) related to these values, and added a few more. They 

suggested the chain of: clarity → simplicity → brevity → conciseness → structure 

→ power → cleverness → surprise. They underlined the relevance of as little 

prerequisite knowledge as possible, a notion that is tied to clarity and simplicity. 

Poincaré and Hardy discussed aesthetics for mathematicians, who are acquainted 

with mathematical beauty and its elicited emotional sensibilities. Polya, Gardner and 

others exemplified to laymen mathematical beauty and its appealing solutions. 
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Should aesthetics be shown and advocated to mathematics novices? Papert argued 

four decades ago that this should indeed be the case. He expressed his frustration 

from its absence. Dreyfus and Eisenberg strongly argued for its relevance, and 

indicated that its appreciation is “… yet to be achieved in the mathematics 

classroom”. They offered several suggestions for its embedment, including 

comparisons between cumbersome and elegant solutions, which they demonstrated 

in their work. 

Bishop (1991) claimed that mathematics education should include the teaching of 

values of the discipline, including aesthetics. Sinclair (2009) underlined 

mathematical enculturation, and argued that “… aesthetic values should be 

explained and shared in the classroom level”. She added that although aesthetics is 

most commonly viewed while applied to finished products, it can also arise during 

exploration and inquiry. This approach was also advocated by Dreyfus and 

Eisenberg. 

Sinclair (2001) conducted some initial work in this direction, with middle school 

students, who used a colour calculator in exploring patterns of fractions and 

decimals. She observed that students turned to aesthetic values in activities of 

choosing problems, generating conjectures, and evaluating their solutions. The 

students related to values such as fruitfulness, visual appeal, and surprise (Sinclair, 

2009). De Freitas and Sinclair (2014) indicated in a later work that aesthetics is often 

associated with mathematicians and gifted students, despite efforts to ‘democratize’ 

its access and experience. 

Johnson and Steinberger (2019) examined laypeople’s ratings of landscape 

paintings, music pieces, and mathematical arguments. They observed that “even 

laypeople share an intuitive sense of mathematical aesthetics” and that “this sense 

sharpens with mathematics training”. The rating tasks they posed involved 

impressions and judgements, but not problem solving. 

In this paper we examine students’ aesthetics illuminations in common middle 

school problem solving. We relate to accepted aesthetic values offered by earlier 

studies. In the next two sections we display our study’s methodology and findings. 

We then discuss the findings and advocate the relevant role of aesthetics teaching in 

an ordinary mathematics class. 

Our objective is two-fold: 1. to show that students may reach aesthetic solutions even 

at the very basic level of geometry; and 2. to show that students may appreciate 

aesthetic solutions and become aware of their appealing characteristics. Such 

appreciation may encourage teachers to underline aesthetic values in their teaching. 

METHODOLOGY 

The study presented here involves an examination of students’ area calculations of 

elementary geometrical structures. Our primary intention was to examine facets of 

utilization of the heuristic of decomposition. The problems posed to the students 
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were very basic, and we did not originally expect unique, stimulating solutions. 

However, in an earlier pilot study we were surprised to see some stimulating, 

unanticipated solutions. Following this phenomenon, we decided to widen the 

perspective of our examination of decompositions solutions, and add a component 

that focuses on aesthetics. The results presented below reveal findings of this 

component. 

Sample 

The study’s sample included 68 7th grade students, from four junior-high schools. 

The 7th graders were all acquainted with the fundamental geometrical structures of 

triangle, rectangle and square, and the terms circumference, area, diagonal, and 

angle. During their studies they have seen diverse structure decompositions and 

auxiliary constructions.  

Tools 

The study's questionnaire included 11 problems of geometrical area calculation. The 

problems involved geometrical structures constructed from compositions of the 

generic structures of triangle, rectangle and square. The table below displays three 

of the 11 questionnaire tasks, for which we display aesthetic solutions. 

  
The compositions in the questionnaire problems involved: concatenation of generic 

structures (i.e., ‘glued’ structures), inclusion (such as the trapezoid inside a triangle 

in Figure 2), and interleaving (such as the intersected squares in Figure 3). 

Process 

The students were given 90 minutes to solve the whole questionnaire. Following 

their written answers, about 20% of the students were interviewed about their 

solutions. We focus here on solutions to the three problems above, for which we 

received aesthetic solutions. We examined solutions using aesthetic values offered 

in previous studies, particularly those indicated by Dreyfus and Eisenberg (1986). 

This includes:  clarity, simplicity, conciseness, brevity, and surprise. In addition, 

Dreyfus and Eisenberg indicated the relevance of observing differences between less 

(or non-) aesthetic solutions and aesthetic ones. We relate to this as well. 

FINDINGS 

The different solutions to the three problems are displayed with short statistics and 

student sayings. We begin with the problem in Figure 2 above. 
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The students were not acquainted with the trapezoid area formula. About half of 

them (52%) calculated the difference between the two triangles in the given figure 

displayed on the left below. A fifth of them erred in their calculations, mostly with 

subtraction operations. Interviewed students indicated that this solution was 

immediate for them. About a quarter (26%) of the students decomposed the 

trapezoid into a rectangle and a triangle. Other students offered direct trapezoid area 

calculations. More than half of them were erroneous. One student was very creative 

and offered the solution on the right below. Notice that this very simple and elegant 

solution does not use all the given data. It involves no triangle calculations and no 

subtractions; only a single rectangle calculation. 

     
We regard this solution as aesthetic. It adheres to aesthetic values described earlier. 

It is clear, simple, concise, and somewhat surprising. Its auxiliary ‘doubling’ 

construction is powerful, and encapsulates a glimpse of brevity. It involves 

symmetry, a notion tied to aesthetics (Sinclair, 2004). And it is less error-prone. 

This solution was shown to several students who offered the common solution. They 

found it appealing. One said: “This is beautiful … nicer than mine … it involves a 

kind of complete structure”. Another indicated: “This is surprising. I have not seen 

such a solution before … we did not learn in this way; we learned to decompose into 

parts”. A third noted: “This is interesting. I thought there is only one solution. I see 

that there are other ways … next time I will also seek ways to which I am not used 

…”. 

The solutions of the problem in Figure 1 were similar in nature to those of Figure 2. 

This time the common solution involved an implicit inner construction and 

decomposition into a rectangle and a triangle. The given structure is on the left 

below, the common solution is in the middle, and the aesthetic solution is on the 

right. 

     
The problem in Figure 3 involved several aesthetic solutions. It was challenging to 

the students. About one third (30%) of the students did not solve the problem. About 

a sixth (15%) attempted inclusion and exclusion calculations. Only two of them 

provided the correct answer. One third (34%) of the students turned to cumbersome 

decompositions into many sub-structures. Below is the original structure of the 
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posed problem (on the left), and two (out of several) decompositions into many 

fragments. 

    
Only one quarter of the students who offered these decompositions provided correct 

calculations, as careful subtractions/additions are needed. Students said that the 

problem was difficult. In follow-up interviews they said: "... it seemed hard by 

looking at the figure ..."; "... the fact that the total area is divided into many parts is 

confusing ... "; "... too many parts and calculations; I calculated twice, to be sure ...". 

It seemed that a primary reason for these feeling was the difficulty to identify 

suitable ‘non-atomic’ sub-structures, which include inner lines that should be 

ignored. 

About one fifth (18%) of the students capitalized on ‘non-atomic’ sub-structures and 

offered the two solutions on the left below, which decompose the original structure 

into only 3 concatenated parts. Their calculations were correct. 

        
These solutions express clarity, simplicity, conciseness and brevity. They involve an 

element of abstraction, as ‘noisy’, unnecessary lines are ‘masked’. We regard these 

solutions aesthetic. The middle one involves only lines of the original structure, and 

requires only two subtractions. The left one involves an additional inner 

construction. 

Interviewed students, who offered other solutions and saw these, expressed surprise. 

One said: “Wow, I do not believe that I made it so complicated … I did not see that”. 

Another indicated: “I realize that I could decompose the area into much fewer parts”. 

A student who offered one of these aesthetic solutions mentioned a sudden change 

of point of view (as subconsciously occurs with aesthetics (Poincaré (1956)): "... at 

first I was focusing on subtracting intersected areas … suddenly I saw this solution 

…”. Another followed a different course: “I tried to separate parts with my eyes … 

and gradually got there”. It seems that he was aware of his problem solving process, 

and sought a simple and elegant solution. 

Three students (5%) provided the creative, outer auxiliary construction on the right 

above. This solution embeds a clever, elegant utilization of the notion of 

complement. Complement encapsulates an element of surprise. One student who 
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offered it indicated that she was seeking a simple, illuminating solution. Her 

awareness of simplicity and illumination express a tendency to aesthetics. 

DISCUSSION 

We believe that mathematical aesthetics should be a relevant notion for students. 

Aesthetics does not require extra knowledge and resources. Its beauty may stem 

from its simplicity. It may be embedded in school learning materials; and when it 

comes to geometry, it is relevant with calculations (in addition to proofs). 

Our findings reveal three observations: 1. aesthetics is relevant in problem solving 

of common middle school problems; 2. young students are capable of reaching 

aesthetic solutions; and 3. both students who reach, and students who do not reach 

elegant solutions appreciate aesthetic values and can become aware of them. 

One theme of aesthetic solutions indicated by Dreyfus and Eisenberg (1986) is that 

of little (or no) pre-requisite knowledge. This was apparent in our initial illustration, 

as well as in the aesthetic solutions in the finding. Such a theme facilitates the 

exposure of aesthetics to everyone. Clarity, simplicity, conciseness and brevity are 

compelling when comparing aesthetic solutions to cumbersome ones, as was 

apparent here.  

Many of the cumbersome solutions evolved from the first ideas that came to mind. 

Those who went for the first idea indicated in interviews that they could have done 

better had they been more aware, explored alternatives, and progressed more 

carefully. 

The students who offered aesthetic solutions demonstrated three essential geometry 

problem solving elements – competence in turning to concise and relevant ‘non-

atomic’ sub-structures; outer auxiliary constructions; and capitalization on the 

notions of complement and symmetry. 

Students who offered cumbersome solutions often overlooked relevant ‘non-atomic’ 

sub-structures, and mentioned “too many lines”, that led to a “blurred” picture. Many 

turned to inner constructions, and did not attempt outer ones. Yet upon seeing the 

aesthetic solutions, they appreciated their appealing characteristics. They indicated 

that in the future they will seek an additional, illuminating perspective. Awareness 

of alternative solutions is advocated in problem solving, and elaborates creativity 

(e.g., Levav-Waynberg & Leikin, 2012). The findings here show that awareness and 

competence may not be expected only from gifted students, but also from students 

of ordinary classes. 

The findings correlate with finding of Johnson and Steinberger (2019) of recognition 

of aesthetic values by non-experts. Johnson and Steinberger suggested to elaborate 

aesthetic awareness with geometry proofs. We displayed it here with geometry 

calculations. Teachers should be encouraged to underline aesthetic values through 

appealing, and possibly surprising solutions such as those presented here. 
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BEGINNING UNIVERSITY MATHEMATICS STUDENTS’ 

PROOF UNDERSTANDING 

Femke Sporn1, Daniel Sommerhoff1, & Aiso Heinze1 
1Leibniz Institute for Science and Mathematics Education, Kiel, Germany 

 

Research has highlighted that students of all age have difficulties with mathematical 

proof, many of which can be traced back to a limited understanding of proof. Despite 

various research focusing on aspects of proof understanding, a generally accepted 

framework for proof understanding, systematizing its various aspects, is missing so 

far. We thus outline a framework for a persons’ proof understanding along several 

important perspectives, foci, and aspects, for example distinguishing concept-

oriented and action-oriented foci. To substantiate the latter distinction and the value 

of the framework, a first explorative empirical study was conducted with N = 72 

beginning mathematics university students’, indicating that concept-oriented and 

action-oriented methodological knowledge can be distinguished. 

INTRODUCTION 

The concept of proof and handling proofs adequately (e.g., constructing, 

comprehending, validating) play a central role in mathematics as a scientific 

discipline and in mathematics education in school and university (Hanna & Jahnke, 

1996). However, as schools – for good reason – do not focus on mathematics as a 

deductive, axiomatic system, it is challenging to allow learners to get an authentic 

image of scientific mathematics and to get an adequate understanding of the concept 

and use of mathematical proof. Adding to this is the fact that the concept of proof is 

not consistently defined in mathematical practice and partially differs between 

mathematical communities. This is, for example, mirrored in different acceptance 

criteria for validating mathematical proofs (Sommerhoff & Ufer, 2019). Overall, 

empirical research focusing on school and the transition to university has confirmed 

that students have problems with mathematical proofs (Healy & Hoyles, 2000; 

Kempen & Biehler, 2019; Sommerhoff & Ufer, 2019). Many of the reported results 

suggest, that students’ do not possess an adequate understanding of proof. 

Research from mathematics education and philosophy of mathematical practice (see 

further Hamami & Morris, 2020) has focused on proofs and handling proofs from a 

variety of perspectives. These include research on the level of mathematics as a 

discipline, for example regarding norms and values for proof (Dawkins & Weber, 

2017) or functions of proof (De Villiers, 1990). In contrast there is also research on 

the level of individual persons and their individual understanding of proof. Here, one 

approach is to examine how persons handle (e.g., construct, validate) exemplary 

mathematical proofs and to infer, for example, students’ proof schemes (Harel & 

Sowder, 1998) or their methodological knowledge (Heinze & Reiss, 2003) from 
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these actions. In contrast, other approaches focus on proofs on a conceptual level – 

without using specific examples – for example to examine the acceptance of proofs 

in mathematical journals (Andersen, 2018). 

However, the concept of a persons’ understanding of proof has so far not been 

extensively addressed by research and only selective evidence on some aspects of 

proof understanding exist. In particular, there is currently no generally accepted 

framework of proof understanding outlining the various aspects of proof under-

standing, which would, for example, allow to systematize future research. 

The present paper thus outlines a framework for systematizing different aspects 

related to proof understanding. For this Research Report, it subsequently empirically 

focuses on one aspect of the framework, namely methodological knowledge. In this 

regard, methodological knowledge focusing on proofs on a conceptual level as well 

as methodological knowledge focusing on actions with exemplary proofs, are 

empirically compared in the context of beginning mathematics university students. 

THEORETICAL BACKGROUND 

A framework for a persons’ proof understanding 

Undoubtedly, the concept of mathematical proof and its understanding are essential 

for mathematics and for mathematics education (Hamami & Morris, 2020; Reid & 

Knipping, 2010). Based on prior research, a disciplinary perspective on proofs and 

handling proofs can be taken (e.g., Dawkins & Weber, 2017; in the context of school 

e.g., Stylianides, 2007). This perspective includes philoscientific aspects that relate 

to an ideal view of mathematics and proof, for example outlining which methods are 

allowed or which rules and principles must be fulfilled for an ideal proof. At the 

same time, it includes socioscientific aspects that relate to mathematical practices 

within (various) mathematical communities, for example outlining the factors for 

the acceptance of proofs in practice or the use and functions of different types of 

proof. 

This disciplinary perspective on proofs and handling proofs is essential as basis and 

orientation for an individual-psychological perspective on proofs and handling 

proofs that addresses individual persons’ proof understanding. This perspective 

includes i) concept-oriented aspects, referring to the individual understanding of 

mathematical proof outside of mathematical action contexts, which can for example 

be examined by using questionnaires or evaluating statements regarding the concept 

of proof (e.g., Andersen, 2018), and ii) action-oriented aspects, referring to an 

individuals’ proof understanding while handling concrete proofs, which can be 

examined by focusing on activities like proof validation or construction (e.g., Healy 

& Hoyles, 2000; Heinze & Reiss, 2003). However, in prior research both aspects of 

the individual-psychological perspective on understanding of proof are not clearly 

distinguished and mostly used equivalently. 

Obviously, the individual-psychological perspective is related to the disciplinary 
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perspective, as the disciplinary perspective should (at least to a large degree) 

correspond to what is taught about mathematics and mathematical proof in school 

and university and thus be the basis for what a person develops as an individual-

psychological understanding of proof. 

Methodological knowledge as a facet of a persons’ proof understanding  

The term methodological knowledge was first introduced by Heinze & Reiss (2003) 

and refers to “understanding and knowledge of correct mathematical proof 

procedures” (Heinze & Reiss, 2003, p. 2). Based on their theoretical and empirical 

analysis, methodological knowledge comprises three central sub-aspects proof 

scheme, proof structure, and chain of conclusions. Proof scheme refers to knowledge 

about the nature arguments used in a mathematical proof, for example, that only 

deductive arguments are valid. Proof structure refers to the overall arrangement of 

arguments within a proof and its in-principle suitability to prove the given claim. For 

example, a circular arrangement of arguments would not be valid. Finally, chain of 

conclusions neither focuses on individual arguments nor on the proof as a whole, but 

on the sequencing of individual arguments within a proof, in particular regarding 

possible gaps, unwarranted conclusions, or erroneous warrants.  

Methodological knowledge clearly relates to an individual-psychological 

perspective on proof understanding, as it relates to a person’s knowledge. Here, it 

could relate i) to a concept-oriented focus, that is on the mere availability of 

methodological knowledge (e.g., measured by the item “Please evaluate the 

following statement: Mathematical proofs that use the statement to be proved as a 

premise are particularly elegant.”), or ii) to an action-oriented focus, that is on the 

availability and use of methodological knowledge for specific tasks (see Figure 1). 

Ben has to prove the following proposition: 

The sum of three consecutive natural numbers is divisible by 3.  

Ben’s purported proof:  

I know this from school. Our textbook contained a proof that this is valid for every 

natural number. There, it was shown that: 3 + 4 + 5 = 3 + 3 + 1 + 3 + 2 = 3 ⋅
3 + 3 

This proves the proposition. 

Please rate the following statements: 

a) The steps in the above argumentation build logically on each other.  

b) The argumentation only uses valid arguments.  

c) The argumentation presupposes what has to be shown. 

Figure 1: Task for action-oriented methodological knowledge 

focusing on the sub-aspect proof scheme (translated). 

But although methodological knowledge can refer to (and be measured) both regarding 

a concept-oriented and action-oriented focus, prior research has mostly examined 

action-oriented methodological knowledge (Healy & Hoyles, 2000; Heinze & Reiss, 

2003; Sommerhoff & Ufer, 2019). In the presentation of the findings, the emphasis was 

often put on the concept-oriented aspect, but the measurement itself corresponded to 
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the action-oriented aspect. Thus, either the measurement of concept-oriented 

methodological knowledge should be considered as indirect (via action-oriented 

methodological knowledge), or concept-oriented and action-oriented methodological 

knowledge were implicitly considered as closely related. Still, this relation is 

questionable, as, for example, it appears reasonable that the sub-aspects of action-

oriented methodological knowledge are linked but in-principle independent of each 

other (Heinze & Reiss, 2003), as persons’ may be good at identifying circular reasoning 

but not in finding gaps in proofs. However, for concept-oriented methodological 

knowledge, this independence may be less evident. 

Overall, evidence for a close relation of concept-oriented and action-oriented 

methodological knowledge as well as on possible differences regarding the relation of 

the three sub-aspects within either concept-oriented or action-oriented methodological 

knowledge is still missing. 

RESEARCH QUESTIONS 

Based on the outlined framework for a persons’ proof understanding, the present paper 

investigates beginning university students’ proof understanding from an individual-

psychological perspective. For this, it analyzes similarities and differences of concept-

oriented and action-oriented methodological knowledge, thus creating evidence for the 

relevance of distinguishing both aspects in the framework for proof understanding. For 

this, the following research questions were focused: 

(RQ1) How do the sub-aspects proof scheme, proof structure, and chain of 

conclusions relate to each other either within concept-oriented or within action-

oriented methodological knowledge? 

(RQ2) How do concept-oriented methodological knowledge and action-oriented 

methodological knowledge relate to each other with regard to the sub-aspects 

proof scheme, proof structure, and chain of conclusions? 

METHOD 

Sample 

To answer these questions, N = 72 (46 m, 26 f) future students from a German 

university, enrolled in a degree program with a focus on mathematics (i.e., mathematics, 

computer science) were surveyed in an online study. The sample consisted of beginning 

students only who had not heard any content of their studies at the time of the survey.  

Instruments 

The questionnaire used in the study consisted of multiple sections focusing on 

understanding of proof as well as on more general information about the participants, 

for example demographic data. For the above research questions, only three sections 

are of relevance: demographic data, concept-oriented methodological knowledge, and 

action-oriented methodological knowledge.  

Concept-oriented methodological knowledge was assessed using 16 statements 

focusing the three sub-aspects proof scheme (10 items), proof structure (2 items), and 
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chain of conclusions (4 items). The students were asked to evaluate the statements on a 

6-point Likert scale with answers ranging from “Not true at all” to “Totally true”. One 

item used to measure the sub-aspect chain of conclusions of concept-oriented 

methodological knowledge was “In a mathematical proof, each step can be concluded 

from the previous”. The concept-oriented items were analyzed based on an ideal 

concept of mathematics/proof.  

To assess action-oriented methodological knowledge, a task format based on the tasks 

used by Healy & Hoyles (2000) was used, in particular focusing on the activity of proof 

validation. The students were presented six purported proofs, all of which contained 

errors, and were then asked to judge each purported proof regarding each of the three 

sub-aspects of methodological knowledge (see Figure 1). For each sub-aspect of 

methodological knowledge, a 6-point Likert item was used ranging from “strongly 

disagree” (1) to “strongly agree” (6). 

The purported proofs focused on secondary school mathematics and both proofs and 

contained errors are representative for proofs and errors the participants should have 

experienced at school. According to norms in school, the contained errors should clearly 

be identifiable as errors in proof. Thus, item difficulty was assumed to be reasonable. 

Of the six presented purported proofs, four contained an error regarding the proof 

scheme. One proof uses a circular argument and thus contained an error regarding the 

proof structure. In the last proof, one step cannot be concluded from the previous steps, 

thus leading to an error regarding the chain of conclusions.  

Statistical analyses 

For concept-oriented methodological knowledge, statements corresponding to each of 

the three sub-aspects of methodological knowledge were combined using mean scores. 

For action-oriented methodological knowledge, a score for each sub-aspect of 

methodological knowledge was created by combining the corresponding statements of 

the six purported proofs to mean scores. The answers were (re-)coded in such a way 

that high values correspond to a correct validation of the purported proofs with regard 

to the sub-aspect (possible values for each statement ranged from 1 to 6).  

Subsequently, Pearson correlations were calculated between the calculated mean scores 

in order to draw conclusions about the relations between sub-aspects of methodological 

knowledge both within (RQ1) and between (RQ2) concept-oriented and action-oriented 

methodological knowledge. 

RESULTS 

Descriptive Statistics 

Table 1 shows the descriptive statistics for the three sub-aspects of concept-oriented 

and action-oriented methodological knowledge. Regarding the sub-aspects of concept-

oriented methodological knowledge, participants scored highest for chain of 

conclusions, followed by proof scheme, and proof structure. Still, the standard deviation 

for proof scheme was far higher than for the other sub-aspects. Regarding action-

oriented knowledge, participants scored highest for proof scheme, followed by proof 
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structure and chain of conclusions. 

Table 1: Descriptive statistics for the three sub-aspects of concept-oriented and action-

oriented methodological knowledge. 

Relation of the three sub-aspects within Either Concept-oriented or Action-

oriented Methodological Knowledge (RQ1) 

The correlations for each of the three sub-aspects of either concept-oriented or action-

oriented methodological knowledge are displayed in Table 2. Results highlight that 

correlations were significant for concept-oriented and action-oriented methodological 

knowledge. For concept-oriented methodological knowledge, all correlations were 

positive and moderate. Results for action-oriented methodological knowledge were less 

uniform, as the correlations between the two sub-aspects chain of conclusions and proof 

structure as well as between the two sub-aspects chain of conclusions and proof scheme 

were negative and moderate. In contrast, proof structure and proof scheme showed a 

weak positive correlation. 

Table 2: Correlations between the three sub-aspects of concept-oriented and action-

oriented methodological knowledge. 

Relation between Concept-oriented and Action-oriented Methodological 

Knowledge (RQ2) 

Focusing on the relation between action-oriented and concept-oriented methodological 

knowledge, pairwise correlations for each sub-aspect revealed heterogeneous results. 

The sub-aspect chain of conclusions showed a significant negative, weak correlation 

(r = -.24, p = .047), while the sub-aspect proof scheme showed a significant positive, 

barely moderate correlation (r = .31, p = .010). Finally, the correlation between 

concept-oriented and action-oriented proof structure was not significant (r = .15, 

p = .212). 

DISCUSSION AND OUTLOOK 

In this report, we have outlined a framework that allows to systematize aspects of proof 

understanding that correspond either to an individual-psychological or the more general 

disciplinary perspective on proofs and handling proofs. Focusing on the first, we also 

 Concept-oriented  Action-oriented 

 M SD  M SD 

Proof scheme 4.37 0.72  4.04 0.70 

Proof structure 4.23 0.13  3.68 0.80 

Chain of conclusions 5.01 0.09  3.30 0.76 

Note: Possible values ranged from 1 to 6. 

 Concept-oriented  Action-oriented 

 Chain of 

conclusions 

rPearson (p) 

Proof 

structure  

rPearson (p) 

 Chain of 

conclusions  

rPearson (p) 

Proof 

structure  

rPearson (p) 

Proof structure .47 (< .001)   -.47 (< .001)  

Proof scheme .57 (< .001) .55 (< .001)  -.61 (< .001) .25 (< .031) 
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introduced the distinction between action-oriented and concept-oriented aspects of 

proof understanding, which have not been systematically addressed and distinguished 

in research so far (Healy & Hoyles, 2000; Heinze & Reiss, 2003). The latter distinction 

was then examined more closely for of methodological knowledge of beginning 

university students, in particular regarding the three sub-aspects proof scheme, proof 

structure, and chain of conclusions. For this, correlations of the three sub-aspects within 

concept-oriented and within action-oriented methodological knowledge, as well as 

pairwise correlations of these sub-aspects between concept-oriented and action-oriented 

methodological knowledge were calculated. 

Focusing first on concept-oriented methodological knowledge, the observed 

correlations between the three sub-aspects were positive and moderate. Although there 

is little prior evidence on the relation of these three sub-aspects under a concept-oriented 

focus, the results appear plausible. They give a first indication that concept-oriented 

methodological knowledge is rather homogeneous regarding the three sub-aspects. In 

contrast, the correlations between the three sub-aspects of action-oriented 

methodological knowledge are intriguingly heterogeneous. One may have expected a 

positive relation between the sub-aspects similar to concept-oriented methodological 

knowledge or perhaps also no significant correlation, highlighting that the sub-aspects 

are not closely related (Heinze & Reiss, 2003). However, correlations with chain of 

conclusions are negative, moderate and highly significant. Although the presented study 

does not provide sufficient data to thoroughly explain these negative correlations, one 

explanation could be based on participants split attention to three different criteria while 

validating proofs. It may thus be, that these participants – as novices – were only able 

to focus either on the chain of conclusions or another criteria, but not together at the 

same time. In this regard, it would be highly interesting to see, how the relation between 

the three sub-aspects of action-oriented methodological knowledge develops over time 

and increasing expertise, possibly allowing the parallel validation of proofs regarding 

all three sub-aspects. Overall, data suggests different relations between the three sub-

aspects of concept-oriented and action-oriented knowledge, adding evidence to the 

distinction introduced in the framework for proof understanding. This is further 

substantiated by the small, rather inconsistent, and partially insignificant correlations 

between the sub-aspects of concept-oriented and action-oriented methodological 

knowledge. 

As with every research, the presented study has some limitations, for example regarding 

the number or participants, the sole examination of beginning university students, the 

focus on proof validation for examining action-oriented methodological knowledge, or 

the low reliability of the 2-item scale for concept-oriented proof structure, which will 

have to be addressed in future research. Still, data give a first indication that the outlined 

framework for a persons’ proof understanding is beneficial and that the distinction in 

concept-oriented and action-oriented foci of understanding of proof is valuable. 

Although it is conceivable that students may have concept-oriented methodological 

knowledge while not having action-oriented methodological knowledge, prior research 
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did not systematically distinguish both aspects, probably leading to partially conflicting 

results. However, also in this regard it would be interesting to see if the relation between 

concept-oriented and action-oriented aspects of proof understanding improves over 

time, mirroring the encapsulation of both aspects with increasing expertise. 

Although promising, the presented research can only be regarded as a first step in the 

substantiation of the outlined framework for proof understanding and a systematic 

research agenda regarding the latter. For this, it will be important to include other 

aspects than methodological knowledge, for example about different types of proof, 

different activities with regard to the action-oriented focus and examine different 

populations with different expertise. Finally, questions about the benefits of i) the 

framework beyond its use as an analytical tool for research and ii) the broad conception 

of understanding of proof it conveys, will have to be answered. 
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Pattern generalization is a key element of early algebra. However, it is also an area 

that causes significant problems for students as well as teachers, as it has proved 

challenging for elementary school students to understand the meaning of 

generalization. To address these problems, an intervention was done to introduce 

the graph and functions in relation to pattern generalizations in Grades 1 and 6. 

Working on graphs was new for these teachers because, in Sweden, graphs are 

normally not introduced in school until Grade 7. The results show that the 

introduction of graphs became a tool to understand and talking about a pattern 

generalization. As a result, their teaching on linear functions and patterns changed, 

and the implications of the results on mathematics education in elementary school 

are discussed in this paper.  

INTRODUCTION  

Algebra learning includes the ability to express and generalize relationships among 

quantitates. One way of introducing young students to generalizing and functional 

relationships is through pattern generalizations (e.g., Blanton et al., 2019; Radford, 

2010; Wilkie, 2019). The main problem with generalizing in early grades is that the 

meaning and activity of generalizing in mathematics has proved challenging to 

understand (Stylianides & Silver 2009). Therefore, generalizing in early grades 

warrants further investigation. This paper presents results from a Swedish 

educational design research study on linear functions and the generalization of 

patterns in elementary school. The intervention was conducted in close collaboration 

between three teachers and one researcher (the author). This paper focuses on the 

three teachers’ learning during the nine months of the intervention. More explicitly, 

the focus is on how these teachers come to implement graphs in their teaching of 

generalization of patterns and how they reflected upon their changed teaching when 

using graphs. In the intervention, the teachers initially expressed that they lacked the 

words to describe and teach the generalization of patterns, and they found it hard to 

discern when the generalization had been realized (Sterner 2019). This is in line with 

Blanton’s et al. (2019) and Wilkie’s (2019) statement that teachers lack awareness 

about functional thinking, and the authors point to the graph’s contributing to 

functional thinking and pattern generalization.  

In this paper, I will present how the introduction of graphs made the teachers aware 

of the generalization of patterns, and how, as a result of this awareness, their teaching 
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of functions and patterns changed. More explicitly, the following research question 

will be in focus: How does the introduction of the graph representation make it 

possible for elementary teachers to discern and teach the generalization of patterns? 

LITERATURE REVIEW AND CONCEPTUAL FRAMEWORK 

One main concept of algebra involves generalization. Early algebra can be seen as a 

way to address traditional transition problems from elementary to secondary school.  

One key aspect of this is working with functions rather than equations, which means 

addressing the relationship between quantitates and letters as variables rather than 

unknowns. This invites the possibilities to work with patterns of various sorts, 

including figural patterns and pattern generalizations.  

Dörfler (1991) makes a distinction between theoretical and empirical generalization, 

where the empirical generalization can be seen as a generalization from one situation 

to another, while theoretical generalization is including some form of abstraction. 

Elements from Dörfler’s interpretation of generalization can be found in Radford’s 

concept algebraic generality, which is the main theoretical perspective in this paper. 

Radford (2010) explains algebraic generality in different layers: factual-, contextual-

, and symbolic generality. Factual generality could be described as generality 

articulated on, for example, numbers, words, and gestures related to the task, for 

example, when a student talks about a pattern and says, “increases by 3”. The layers 

of contextual and symbolic generality are interpreted as; generality expressed in 

some linguistically way, for example, through symbols or language. In this study, 

the difference between the layers of contextual and symbolic generality is interpreted 

in the following way. In the symbolic generality, the generalization is expressed in 

variable notation. In contrast, the contextual generality creates opportunities to use 

language and actions to create meaning of the variable notations, to create what 

Radford calls knowledge objectification (Radford, 2003; 2010). Working with the 

algebraic generality in different layers, Radford (2010) points to the process of 

noticing something general and making sense of the general. Radford calls this 

process of sense-making ‘knowledge objectification’. However, from a teacher’s 

perspective, questions arise about how generalization can benefit students’ learning 

in early grades and what generalization is in elementary school. Carraher, Martinez, 

and Schliemann (2008) and Wilkie (2019) emphasize the importance of both the 

representation and the reasoning behind the conventional notation when teaching 

generalization in early grades.  

Research, as well as the summary of PME contributions of topics of functions and 

calculus, indicate the importance of algebraic thinking and using a functional 

approach in early grades (e.g., Blanton et al., 2015; Hitt & González-Martín, 2016). 

Working with pattern generalizations is one tool to stimulate algebraic thinking and 

the idea of generalizations in early grades (Blanton et al., 2015; Wilkie, 2019). The 

graph representation, along with figural pattern generalizations, could be a pathway 

to functional thinking and algebraic generalization. Researchers point to the 

importance of reasoning about the relationship between two (or more) varying 
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quantities when teaching functional thinking (e.g., Radford, 2010; Wilkie, 2019). 

However, research indicates that students have difficulties identifying covariational 

relationships, which involves describing how two quantities vary in relation to each 

other (Wilkie 2019). Similar ideas emerge in (Blanton et al., 2019), where the 

authors point out teachers’ lack of awareness about the functional thinking and how 

to use the graph representation to visualize covariational relationship and 

proportionality. Blanton et al. (2019) and Wilkie (2019) stress the importance of 

further research on how to support elementary teachers in functional thinking in 

early algebra. Research shows how difficulties in proportional reasoning emerge in 

the early grades, indicating that students do not use the zero point on the x-axis when 

working with graph representations (Wilkie, 2019). With the above literature review 

as background, two general goals for teaching were formulated for a long-term 

intervention study (see Sterner 2019). In this paper, there is a particular focus on the 

second theme: 

1: The students should be given opportunities to identify a pattern, structure the 

pattern, and generalize the pattern. 

2:   The students should be given opportunities to work with algebraic reasoning, 

including functional thinking and proportional relationship, and determining 

relations between two or more varying quantities. 

METHOD 

The intervention in this study is designed as an educational design research, and a 

continuation of a project, including mathematics teachers from grades 1-6 (Sterner 

2015). The author and three mathematics teachers collaborated (one from Grade 1 

and two from Grade 6) in three recurring design cycles. The selection of the teachers’ 

teaching groups was done naturally since it was in grades 1 and 6 the teachers’ work 

when the intervention took place. The two goals for teaching, the themes, are seen 

as Design Principles (DPs) (McKenney & Reeves, 2012) and are used as a 

theoretical guide for the intervention. Hereafter, these themes are referred to as DP1 

and DP2. The background and the content of the DPs are described in more detail in 

Sterner (2019). 

The Swedish Context  

There are goals for algebra in the Swedish curriculum materials (National Agency 

of Education, 2017) for Grades 3–6, but functions and functional thinking are not 

introduced until Grade 7. However, most teachers, including the participants in the 

current project, have little experience with functional thinking because of the lack of 

emphasis on functions in the elementary school. Three mathematics teachers (Clara, 

Irma, and Jonna) from different schools in Sweden have all of them more than twenty 

years of experience from teaching in Grades 1–6. Two of the teachers are semi-

specialized mathematics teachers and teach in three subjects, mathematics, science, 

art, or music in Grades 1–6. The third teacher is a general subjects teacher in Grades 

1–3.  
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Empirical Materials in This Paper 

The intervention took place over a period of nine months, in the meetings, the 

teachers and the researcher planned and evaluated the teaching. Excerpts from 

lessons in Grade 6 are also used to illustrate the challenges that occurred in the 

teachers’ discussions. The teachers’ individual reflections about these lessons are 

also included in the analysis. The empirical data analyzed in this paper included 15 

hours of video recordings from the meetings mentioned above where the teachers 

and the researcher planned and evaluated the teaching, 21 hours of lessons, and 5.5 

hours of teachers’ individual reflections with the researcher directly after teaching. 

Knowledge Objectification and Algebraic Generality as an Analytical Frame 

In this study, Radford’s knowledge objectification with focus on algebra generality 

(2003; 2010) is used as a conceptual frame in relation to the empirical data. The 

algebraic generality (factual-, contextual-, and symbolic generality) is used to explore 

and exemplify how the graph representation makes it possible for elementary teachers 

to discern and teach the generalization of patterns. The frame is also used to exemplify 

how the teachers move within and between the different layers of algebraic generality 

when using the graph in pattern generalizations. The algebra generality is used as a 

theoretical frame for the analyses, while the DPs, are seen as a theoretical frame for the 

intervention and goals for teaching. Through the analysis, the teachers’ reflections upon 

their changed teaching when using graphs were analyzed, i.e., their knowledge 

objectification. 

RESULTS  

In the results, transcripts and figures are used to visualize the teachers’ process of 

knowledge objectification of pattern generalizations, and the selection of transcripts 

will show crucial moments in this process.  

The Graph Opened Up for Different Representations  

The introduction of the graph revealed that the general formula needs to be visualized 

in different representations. In the initial process of the intervention, the teachers 

strongly opposed using the graph as a representation for pattern generalizations. As 

mentioned, working with graphs as a representation of pattern generalizations was a 

new challenge for these teachers (Sterner 2019). However, the complexity of 

understanding, expressing, and making justifications of a general formula becomes 

visible in the teaching when the teachers challenge their students to explain what the 

variable notation symbolizes in an equation for example 𝑦 = 3𝑥 + 5. This equation 

represents a pattern generalization that the teachers called the canoes (see Fig. 1).  

 

c. 1 
 
 
 

 
 

c. 2 
 

 
 
 

 

c. 3 
  

Figure 1: Image of a pattern called ‘the canoes.’ 
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This task was a crucial task in the intervention to explore the slope – the change in 

input and the corresponding change in output. In discussions with each other, the 

teachers became aware that the general formula itself, do not explains neither the 

teachers’ nor the students’ understanding of generalizations. The teachers realized 

that they had neither the language nor tools to talk about the structure of a general 

formula. Therefore, I introduced the graph representation as a tool to make a 

justification for pattern generalizations, in line with Wilkie (2019). 

The Graph Visualized the Structure in the General Formula 

By introducing the graph, the importance of visualizing the structure in a general 

formula emerge. The teachers used various examples in their teaching, illustrating 

linear functions and pattern generalizations. One task exemplifying pattern 

generalization was ‘the canoes’ (Fig. 1). Another task illustrating direct 

proportionality was a pattern concerning a number of dogs and their corresponding 

number of tails, ears, and legs. The graph made it possible to visualize the slope (m), 

and the y-intercept (c), ( 𝑦 = 𝑚𝑥 + 𝑐). The teachers talk about the ‘start-value’ when 

c has the value of zero. The teacher asked the students to work with the figural 

patterns in various representations, for example, using matches and tables, using the 

coordinates from the table to make a graph representation, and finding a general 

formula (see Fig. 2).  

 
Figure 2: A student’s solution of the pattern of ‘the canoes.’ 

The following transcript illustrates a conversation in the whole class discussion 

when the teacher (Irma) asked two of the students to describe what they had realized 

when using the graph and the equation to represent the pattern generalization. This 

conversation illustrates how Irma, in the meeting with her students, comes to realize 

the potential of using the graph. The transcript indicates that the students (Anna and 

Kim) used the graph to understand the rate of change and used the graph to 

understand what happens when the independent value is 0. 

Irma: Kim and Anna, can you tell us what you found when you compared 

the pattern of matches with the table, the graph, and the general 

formula? 

Kim Yes…we tried to draw a straight line through the origin, but it didn’t 

work…It didn’t end up as a straight line…That made us understand 

the meaning of the number of 5 in the general formula (𝑦 = 3𝑥 + 5). 
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Irma:  Alright, go on. 

Anna: We just realized the meaning of figure 0 in the table. We hadn’t 

thought about it earlier, but now, when we look at the graph, and 

we didn’t manage to get a straight line through the origin…we 

realized…and saw the 1 step in the right (x-axis) and 3 steps up (y-

axis). 

Irma:  Yes, the graph visualized the start-value in the coordinates (0,5) 

(Fig. 2) and indicates how we can explain the general formula 

using the values in the table and the graph for the pattern 

generalization. [When Irma speaks, she makes it as clear as 

possible by using various representations]. We have the start-value 

(0,5) by subtracting the rate of change, 3, from the first entry, 8, in 

the coordinate (1, 8).  

In the whole-class discussion, they talked about what several students have 

comprehended during the lesson. The teacher then returned to the discussions from 

the previous day, which is about linear functions and direct proportionality 

representing dogs and their corresponding tails, ears, and legs. The conversation 

goes on in the whole-class discussion, and they talk about the relationship between 

quantitates (x and y). The students talk about what happened when they have “one 

more seat” in the canoes, and other students talk about what happened when they 

increase one figure, and a third student looked at the graph and said: “every time we 

go 1 step on the x-axis, we go 3 steps on the y-axis.” The graph helped the teachers 

to talk about the independent and the dependent value. The graph becomes a 

representation to go from a specific situation to the general. In the reflection after 

teaching and in the refining phase, the teachers talked about how they now have 

realized the importance of understanding the relationship between quantities. The 

graph was an excellent way to visualize this relation.  

Jonna: I’ve always had difficulties explaining the relationship between x 

and y, and I didn’t know what words I could use to explaining the 

relationship correctly and simply for the students.    

Clara:  The graph became a tool that I often came back to, making it 

possible to visualize the values in the table and visualize and talk 

about the general formula’s content…The graph helped me to talk 

about what I did not have words for – the relationship between x 

and y. 

The quotation below shows how the teachers use the graph representation as an input 

to talk about a generalization, through other already known representations. 

Clara:  Can you believe, I’ve never connected the graph with the table or 

the pattern of matches before…I never realized the importance of 

the relationship between x and y. I don’t think I’ve fully understood 

what proportional relationship is – sometimes, I feel like the text 

of the (Swedish) curriculum materials is a bit abstract. I would love 

for all teachers to be part of something like this.  
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The teachers described how the graph had been an asset for both their own and the 

students’ understanding of pattern generalization. In the discussion, the teachers 

stated that they had not previously understood the value of paying attention to what 

they called ‘new small details’, for example, what they called the starting-value or 

the relationship between quantitates in a generalized formula or a pattern 

generalization. The results indicate that the graph representation helped the teacher 

to talk about the functional relationship as well as the proportional relationship of 

pattern generalizations.  

CONCLUSION AND IMPLICATIONS 

The results show that the graph representation became a way of understanding and 

talking about the structure of a general formula in a pattern generalization. However, 

the graph representation is not enough. The teachers’ discussions show that they had 

to elaborate at multiple representations, to justify and understand what the teachers 

called ‘new small details’. The small details include, for example, the relationship 

between quantitates and the slope.  

The teachers’ discussions changed from interpreting a pattern generalization equal 

with a general formula – that, and nothing else. The teachers’ initial interpreting of 

generalization would be described by Radford (2010) as symbolic generalization. At 

the end of the intervention process, the teachers interpret and justify the pattern 

generalization in multiple representations. The graph provided an entrance to justify 

the pattern generalization. The graph was also used as a tool to understand the 

structure of a generalization. This is what Radford (2003; 2010) called using 

different layers of generality to understand the algebraic generality. The contextual 

generalization (Radford, 2010) became visible when the teachers used the graph with 

already known representations to find the words and the language to talk about the 

relationships between variables and the slope. That falls in line with what Blanton et 

al. (2019) and Carraher et al. (2008) indicate from their study, including students 

and their use of different representations to support the understanding of variable 

notations. The graph thus becomes a tool to express the symbolic generality in 

natural language and creates opportunities to make knowledge objectification for 

pattern generalization. Working with the graph helped the teachers to understand 

and talk about proportional relationships and functional thinking, which in line with 

(Blanton et al., 2015; Blanton et al., 2019; Wilkie, 2019). The graph made it possible 

to visualize how the generalizations apply not only to a specific situation but also to 

all cases. This demonstrates to the teachers the importance of both empirical and 

theoretical generalization, which Dörfler (1990) addresses. 

In addition to the results answering the research questions of this study, it is worth 

considering the methodology used. DPs are used as a theoretical frame for the 

interventions’ content and as goals for the teaching. In design research, the DPs are 

normally changed, and new conceptual ideas are developed during the process 

(McKenny & Reeves, 2012). However, in this study, the content of the DPs does not 
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change. Instead, the teachers’ understanding of the DPs changes, thanks to using the 

graphs and working with different layers of algebraic generality. 
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The study of teachers’ mathematical beliefs has received much attention in recent years. 

Yet, the beliefs that teachers hold with respect to specific process areas are limited, 

though these have been recognized to be central in mathematics classrooms. In this 

paper, we report on a comparative study on beliefs about teaching problem solving with 

inservice primary teachers from Finland and Germany. While the results are consistent 

with the literature in some respects, such as promoting reflection and using good 

problems regardless of the country, limited teacher input and teaching problem-solving 

strategies have been viewed differently by the teachers from both countries. Similarities 

and differences between the two country teachers’ beliefs are discussed with regard to 

their theoretical and practical implications.  

INTRODUCTION 

Teachers’ beliefs and knowledge about mathematics, learners and learning, teaching, 

subjects or curriculum, interpretation of content, and about self are considered to play 

a significant role in their teaching practices (e.g., Pajares, 1992). Pajares (1992) 

explained that “the beliefs teachers hold influence their perceptions and judgments, 

which, in turn, affect their behavior in the classroom” (p. 307). Research on teachers’ 

beliefs is tremendous ranging from assessing prospective and practicing elementary and 

secondary teachers’ beliefs about mathematics and teaching mathematics to changing 

beliefs and assessing that change (e.g., Philipp, 2007). Nonetheless, there is little 

research that focuses on teachers’ beliefs about process areas in mathematics.   

During the last few decades, mathematics education researchers have called for studies 

that focus on the teacher in problem-solving instruction (Donaldson, 2011). This is not 

surprising taken that problem solving has been recognized as the central content in 

school mathematics (e.g., Reiss & Törner, 2007), and has, therefore, been implemented 

in international curricula worldwide, such as Finland and Germany. Despite this 

endorsement, the integration of problem solving into mathematics classes is only 

present to a limited extent, if at all (e.g., Pehkonen, 2017; Reiss & Törner, 2007). Here, 

both teachers’ beliefs about problem solving, and about teaching problem solving are 

central. Especially the latter, may influence how problem solving is approached in 

mathematics lessons, the mathematical opportunities teachers provide their students, 

and their expectations for students’ problem-solving abilities. For instance, Cross 
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(2009) found that beliefs about the nature of mathematics, and beliefs about teaching 

based on these beliefs are a rather reliable predictor of the instruction in classrooms 

(Cross, 2009). Thus, understanding teachers’ beliefs about teaching problem solving 

can shed light how the problem-solving standard is implemented in school mathematics. 

With these assumptions in mind, in this report we focus on Finnish and German 

elementary teachers’ beliefs about teaching problem solving as well as on similarities 

and differences between the two countries with respect to these.  

THEORETICAL PERSPECTIVE 

Beliefs refer to “psychologically held understandings, premises or propositions about 

the world that are thought to be true (Philipp, 2007, p. 259). Unlike knowledge, they are 

held with varying degrees of conviction and are not consensual (Philipp, 2007). They 

can be thought of as dispositions toward an action, such as teaching practices. For 

instance, Cross (2009) reported that teachers’ beliefs affect their decisions in teaching 

problem-solving lessons. Researchers (e.g., Donaldson, 2011; Heinrich, Bruder, & 

Bauer, 2015; Kilpatrick, 1985) reported on different categories among the many 

perspectives on how to teach problem solving, noting that teaching problem solving 

must combine features of several categories. The categories include, but are not limited 

to: (1) give lot of problems (i.e., initiate many problem-solving activities), (2) give 

“good” problems (e.g., mathematically rich problems), (3) teach specific or general 

heuristic strategies, (4) model problem solving, (5) limit teacher input (e.g., by having 

students work individually or in small groups), (6) reflection (e.g.,  by asking 

metacognitive questions), and (7) allow and highlight multiple solutions. 

Even though these aspects have been recognized, and advocated already for decades, 

research shows that teachers hold views that are just partly in accordance with these 

aspects. For instance, Pehkonen (2017) and Siswono et al. (2019) reported that most 

primary teachers believed that problem solving is learnt by solving problems. Here, 

the importance of both teaching materials and tasks used was stressed (Pehkonen, 

2017). Additionally, Näveri et al. (2011) reported that, according to teachers, tasks 

should reflect everyday situations as well as include word problems. Besides that, 

teaching problem solving in mathematics refers to the use and study of different 

strategies, which are needed in solving problems (Pehkonen, 2017; Siswono et al., 

2019). Here, the teachers emphasized that students need to be able to select and 

combine proper strategies on the basis of their logical thinking. The studies on 

teachers’ beliefs about their role when teaching problem solving are not conclusive. 

In Pehkonen’s study (2017) with the Finnish primary teachers, the teachers viewed 

the teacher as a leader when teaching problem solving. Concretely, the teacher should 

select problems to be dealt with, illustrate and explain own thinking during the 

solution process to students as well as give them information on different problem-

solving strategies. However, in Siswono’s et al. (2019) study with Indonesian primary 

teachers, the teachers viewed the teacher as a facilitator in exploring students’ 

knowledge and skills. Thus, the teacher should give only necessary help to students 

during problem solving, allowing them to struggle with the problem, and construct 
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some strategies on their own. Lastly, Näveri et al. (2011) reported that the majority of 

the Finnish primary teacher considered problem solving as teamwork. 

RESEARCH PROCESS 

For this study, a quantitative research design was chosen. The participants were 345 

inservice primary teachers (n1 = 159 from Finland, n2 = 187 from Germany) who 

participated voluntarily in the study. The schools were selected through existing 

contacts with the researchers’ universities and through random enquiries. The 

questionnaires were returned anonymously to the respective university. The main 

source of data was a questionnaire on teachers’ beliefs about problem solving, that was 

based on an adaptation of the instrument from the work of Pehkonen (1993), and Kuzle 

(2017). Additionally, new items were developed on the basis of literature on problem 

solving, teaching problem solving and factors influencing the implementation of 

problem solving in school mathematics (e.g., Donaldson, 2011; Heinrich et al., 2015; 

Kilpatrick 1985). The questionnaire consisted of four sections: beliefs (1) about the 

importance of teaching problem solving, (2) problem solving teaching practices, (3) 

demands on teaching problem solving, and (4) general conditions for implementation 

of problem solving in school mathematics. In total 53 closed items were developed that 

were rated on 5-point Likert scale (1 = strongly disagree, 5 = strongly agree) (α = .86). 

In this paper, we focus on section (2) from the questionnaire. This category was 

measured with 16 items (α = .71).  

For the data analysis the percentage of agreement was calculated. For this purpose, the 

original response scale (1–5) was reduced by combining the two response values at the 

extreme ends of the scale to obtain a scale of: disagree (1 or 2) – neutral (3) – agree (4 

or 5). The consensus level as a percentage was defined as suggested by Kuzle (2017) 

(see Table 1).  

 

Consensus level Percentagea 

complete consensus at least 95% 

consensus 85%–94% 

near consensus 75%–84% 

lack of consensus 60%–74% 

no consensus less than 60% 

Table 1: Consensus level as suggested by Kuzle (2017)  
Note. aThe percentages show how many of the test subjects agree with the same 

extreme end of the scale. 

The percentage of consensus was chosen to describe the consensus level of the test 

subjects’ beliefs about the statements, and with it, similarities and differences between 

the both countries regarding the teachers’ beliefs how problem solving should be taught. 

Additionally, the non-parametric Mann-Whitney test was used to determine whether the 

differences between countries were significant. The results and effects are only given if 

they were significant. 
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FINDINGS  

In this section, we present the results concerning the goal of the study, namely Finnish 

and German elementary teachers’ beliefs about teaching problem solving as well as on 

similarities and differences between the two country teachers’ beliefs. The section is 

structured on the basis of different problem solving-teaching practices which were 

outlined in the section on theoretical perspective. The results from the questionnaire are 

presented in Table 2. 

The first problem-solving teaching practice, namely “give lots of problems” was 

measured with two items. Both Finnish and German teachers were critical to students’ 

learning problem solving by solving problems only (item 2). While there was no 

consensus among Finnish teachers (56% of consensus), there was a lack of consensus 

among German teachers (71% of consensus). The agreement of Finnish teachers 

(Mdn = 3.0) differs significantly from the agreement of German teachers (Mdn = 3.0), 

U = 11513.00, z = - 2.55, p = .011, r = .14. A significant difference was likewise 

measured on item 20. While “having enough problems on hand” was important to 

Finnish teachers (87% of consensus), this was the case with German teachers only to a 

limited extent (75% of consensus) (U = 10924.00, z = - 3.33, p = .001, r = .18).  

Three items dealt with the second teaching practice, namely “give ‘good’ problems”. 

With regard to item 7, teachers from both countries rated the inclusion of real-life 

problems as particularly important (96% of consensus). There was a lack of consensus 

on focusing on relevant mathematics problems (item 1, Finland: 60%, Germany: 70%), 

and problem posing (item 6) with Finland agreeing more strongly on the latter (72%) 

than Germany (51%). Both differences were significant (item 1: U = 11180.00, 

z = - 2.42, p = .016, r = .13; item 6: U = 10119.50, z = - 4.64, p < .001, r = .25). 

Three items felt under the scope of the third category, namely “teach specific or general 

heuristic strategies”. With regard to the teaching of heurisms (item 13), there was 

consensus in Finland and Germany that student representations should be included into 

teaching of problem solving (Finland: 87%, Germany: 89%). The view that teachers 

“should provide the students with clear and precise strategies” (item 15) was not shared 

by teachers in either country (Finland: 59%, Germany: 57%). Regarding the teaching 

of heuristic strategies (item 5), Finland agreed with 93% (high consensus), whereas 

German teachers agreed only with 72% (near consensus). The agreement of the Finnish 

teachers (Mdn = 3.0) was significantly higher than the agreement of the German 

teachers (Mdn = 3.0), U = 8079.50, z = - 5.71, p < .001, r = .31.  

The fourth category, namely “model problem solving” was evaluated with one item 

only (item 18). There was no consensus on “students should also practice problem 

solutions demonstrated by an expert” (item 18). Only 37% of Finnish, and 50% of 

German teachers considered this problem-solving practice to be important. Three items 

dealt with the fifth teaching practice, namely “limit teacher input”, which can be done 

by implementing cooperation as well as independent working phases.  
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 Finlanda  Germanyb  
Agreement (%) 

     I agree      I agree  

 N/A 1 2 3 4 5  N/A 1 2 3 4 5  F G 

1. Problem solving should be taught by focusing on problems that occur in the teaching of mathematics. 

 12 2 17 32 87 9  8 3 15 30 101 29  60 70 

2. Problem solving can be learned only by solving problems. 

 5 5 39 21 52 37  8 1 22 23 87 45  56 71 

3. The teaching of problem solving should allow students’ creative processes. 

 0 0 0 3 54 102  1 0 3 4 97 81  98 96 

5. The teaching of problem solving should include problem solving strategies. 

 2 0 1 8 43 105  31 0 2 20 80 53  93 72 

6. Students should make up problems themselves, and then solve them. 

 4 0 14 26 85 30  6 5 40 41 77 17  72 51 

7. During problem solving, familiar problems from the students’ environment should be used. 

 2 0 0 5 75 77  2 0 1 5 98 80  96 96 

9. It is sufficient that the students find one solution only.c 

 9 11 43 28 60 8  6 14 73 35 51 7  34c 47c 

11. The students should have the possibility to work independently on the problem. 

 4 1 12 31 69 42  1 0 0 3 83 99  70 98 

12. The students should have the possibility to exchange on their problem solving processes with their peers. 

 1 0 0 5 39 114  0 0 0 4 63 119  96 98 

13. The teaching of problem solving should include representations of the students (e.g., drawings, tables, calculations).  

 5 0 3 13 41 97  4 0 2 14 88 78  87 89 

15. The teacher should provide the students with clear and precise strategies for working on problems. 

 9 3 22 32 67 26  4 6 33 38 68 37  59 57 

16. The teacher should motivate the students to solve problems independently. 

 4 1 7 15 77 0  1 0 0 2 81 102  83 98 

17. After problem solving, the students should have time to reflect on their problem solving process. 

 0 0 2 14 51 87  6 0 3 9 87 81  87 90 

18. Students should also practice problem solutions demonstrated by an expert. 

 23 2 18 58 48 10  6 4 40 44 69 23  37 50 

19. Reflecting different solutions can be an obstacle to students’ learning.c 

 15 69 35 26 13 1  1 31 72 45 33 4  65c 55c 

20. Enough problems should be on hand. 

 3 7 0 11 0 138  12 10 0 24 0 140  87 75 

Table 2: Frequency of responses and level of consensus on the questionnaire  

Note. The last column shows the percentage of responses that agreed (response 4 or 

5). N/A= not available; 1 = I strongly disagree; 2 = I somewhat disagree; 3 = I neither 

agree nor disagree; 4 = I somewhat agree; 5 = I strongly agree; F = Finland; G = 

Germany.  

Assignment of the items: give lots of problems: 2, 20; give “good” problems: 1, 6, 7; 

teach specific or general heuristic strategies: 5, 13, 15; model problem solving: 18; 

limit teacher input: 11, 12, 16; reflection: 17; allow and highlight multiple solutions: 

3, 9, 19.  
an = 159. bn = 187. 
cInverted item, meaning that disagreement was calculated by summarizing response 

values 1 and 2. 

Item 12 measured the relevance of the teachers’ commitment during exchange phases. 

In Finland as well as in Germany there was a complete consensus (Finland: 96%, 

Germany: 98%). With regard to the role of independent problem solving, the findings 

were ambivalent. Differences in the degree of agreement were found with regard to 

giving students the possibility to work on the problem independently (item 11), and that 

teacher should motivate the students to solve the problem independently (item 16). 

Whilst in Germany there was a high consensus on both items (98% of consensus), the 

consensus in Finland was only 70% (item 11) and 83% (item 16), which corresponds to 

a lack of consensus or no consensus, respectively. In both cases, the agreement of 

German teachers (Mdn = 3.0) was significantly higher than the agreement of Finnish 
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teachers (Mdn = 3.0), U = 8808.00, z = - 6.69, p < .001, r = .36 (item 11); 

U = 10657.50, z = - 4.56, p < .001, r = .25 (item 16).  

In the sixth category, namely “reflection” there was a high consensus in both Finland 

(87% of consensus) and Germany (90% of consensus) that “students should have time 

to reflect on their problem solving process” (item 17).  

In the seventh category, namely “allow and highlight multiple solutions”, there was 

a consensus on item 3 that problem-solving teaching “should allow students’ creative 

processes” (Finland: 98%, Germany: 96%). In contrast, only 55% of Finnish and 65% 

of German teachers rejected that reflecting different solutions can be an obstacle to 

students’ learning (item 19). The teachers were critical to having students find one 

solution only (item 9). There was no consensus on this item (Finland: 34%, Germany: 

47%). The difference was significant (U = 9150.50, z = - 6.31, p < .001, r = .33). 

DISCUSSION AND CONCLUSIONS 

The results of the study showed both similarities and differences with respect to Finnish 

and German teachers’ beliefs about teaching problem solving. In the category “give lots 

of problems” no clear agreement was reached. This is in line with Kilpatrick (1985) 

who argued that, even though solving many problems is important, it is not a predictor 

of becoming a better problem solver. The results in the category “‘good’ problems” 

showed both similarities and differences between the two countries. Similar to Näveri 

et al. (2011), both Finnish and German teachers agreed that the tasks should come from 

the students’ environment. However, focusing on relevant mathematics problems was 

not considered to be as relevant. The often underestimated role of problem posing 

(Siswono et al., 2019) also underpins the responses of teachers from both countries. 

The results in the category “teach specific or general heuristic strategies” showed only 

partly similarities between both countries. Whilst the inclusion of student 

representations was agreed upon teachers from both countries, conveying problem- 

solving strategies by the teacher was not shared by either country. That problem-solving 

teaching should include heuristic strategies was considered important by Finnish 

teachers significantly more often than by German teachers. This can be explained by 

unfamiliar wording. The term “problem-solving strategies” was used in Finland and 

“heuristic strategies” in Germany. The technical vocabulary “heuristic” may not have 

been familiar to some teachers, which is suggested by 31 “N/A” responses on item 5.  

No consensus was reached by teachers of either countries in the category “model 

problem solving”. Most teachers tended to focus on the middle of the Likert scale. This 

could be caused by the ambiguous meaning of the word “experts”. In future 

questionnaires it would be useful to clarify this and, for example, to list good problem-

solving students as experts, as well as to include more items pertaining to this category.  

The results with respect to the category “limit teacher input” reflected both similarities 

and differences between the two countries, which also confirmed non-conclusiveness 

in the literature. On the one side, Finnish teachers viewed themselves as leaders in a 

problem-solving classroom. Here, student’s individual work was significant given more 
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relevance in Germany than in Finland, which confirms the results of Pehkonen (2017). 

On the other hand, German teachers viewed themselves as facilitators, confirming the 

results of Siswono et al. (2019) with Indonesian teachers. This might be explained by 

different cultural or educational system particularities, which could be further 

investigated in future studies. Nevertheless, there was agreement in both countries 

regarding the implementation of cooperative work phases, which confirms the results 

of Näveri et al. (2011) on Finnish teachers’ beliefs about teaching problem solving.  

A high consensus was reached by teachers from both countries in the category 

“reflection”, confirming the results from the literature (e.g., Donaldson, 2011; Heinrich 

et al., 2015; Kilpatrick, 1985). Since this category was evaluated on the basis of one 

item only, it should be taken with reservation. In our future work, including more items 

with respect this category is of imperative. 

The results in the last category do not clearly support the fact that multiple solutions 

should be allowed and highlighted. Concretely, there was complete consensus in both 

countries that mathematical problem solving is a creative process, which is consistent 

with the literature (e.g., Donaldson, 2011). The answers were broadly scattered when it 

comes to the fact that finding one solution is sufficient and reflecting on several possible 

solutions hinders student learning. This may be an indication that it is sufficient for 

primary school teachers if the children find a solution. However, it cannot be excluded 

that these items have been misunderstood due to the inverse formulation. 

It should not be forgotten that the participating teachers only represent the two countries 

to a limited extent. Also, due to a voluntary participation it may assumed that the 

teachers were more motivated. Despite these drawbacks, the results of the study not 

only gave first insights on the Finnish and German inservice primary teachers’ beliefs 

about teaching problem solving, but also shed light how problem solving is 

implemented in school mathematics.  
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In this study we examined the use of two moves--wait time and self-removal--in the 

facilitation practices of three facilitators who led a mathematics professional 

development program focused on discourse. Our findings show that facilitators 

promoting higher quality discourse used these moves more often, which suggests that 

wait time and self-removal can support high-quality discourse among teachers. 

INTRODUCTION 

The role facilitators play in mathematics professional development (MPD) is key for 

the quality of participants’ experiences. After attending to teachers and teaching during 

decades that can be conceptualized as the era of teachers (Sfard, 2004), researchers have 

begun to turn their focus to facilitators and their practice in promoting mathematics 

teachers’ learning. Studies of MPD facilitators and facilitation often build on and 

extrapolate from what is now known about teachers and teaching, looking to understand 

and build capacity for the work of MPD leaders (Sztajn, Borko, & Smith, 2017). 

An important component of research on facilitators and their professional practices is 

the understanding that PD settings need to collectively engage teachers as active 

participants (Desimone, 2009; Darling-Hammond, Hyler, & Gardner, 2017 ) who are, 

at the same time, in charge of their own learning. Although facilitating PD is different 

from teaching in K-12 classrooms (Borko, Koellner, & Jacobs, 2014), teachers still need 

to experience learning environments in which they engage in practices such as 

constructing viable arguments and critiquing the arguments of others.  

To understand the work of MPD facilitators, in this study we examined facilitator moves 

in one MPD setting. The MPD focused on the promotion of high-quality discourse in 

elementary classrooms and, to “walk the walk”, facilitators promotion of high-quality 

discourse in the MPD was critical. Two practices often considered productive for 

engaging teachers in such high-quality discourse are the main focus of the study: wait 

time and self-removal. 

ATTENDING TO FACILITATION PRACTICE 

Research focusing on facilitation practice is identifying productive moves facilitators 

use in MPD settings. In video based MPD programs, for example, practices such as 

promoting group collaboration, fostering an inquiry stance, and maintaining a focus on 

the video and the mathematics have been deemed important, although it is the 
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coordination among them that seems to matter most for promoting productive 

discussions (van Es, Tunney, Goldsmith, & Seago, 2014). Other moves recognized as 

important for facilitators include creating a climate of respect and establishing 

collaborative working relationships among participating teachers (Borko, et al., 2014b; 

Linder, 2011), as well as setting and maintaining explicit social and sociomathematical 

norms (Elliott, et al., 2009). All these moves speak to the importance of creating a 

community within the MPD, which positions teachers and facilitators as contributors to 

the collective discourse. Additional moves such as providing constructive feedback 

while avoiding judgmental feedback (e.g., Gardiner, 2012; LoCascio, Smeaton, & 

Waters, 2016), addressing emotional distress (Gardiner, 2012; Linder, 2011; Odell & 

Ferraro, 1992) or positioning oneself as a colleague (Odell & Ferraro, 1992) also seem 

to contribute to the productive practice of facilitators in professional development 

settings.  

Several of these moves address the need to build trust in MPD settings (Sztajn, 

Hackenberg, White & Allexshat-Snider, 2007) creating a climate in which participating 

teachers discuss ideas, also connecting them to their classroom practices. Facilitators 

need to make sure teachers are responsible for their MPD discourse, engaging them in 

professional exchanges with colleagues. To this regard, facilitating discourse in 

professional development settings, similarly to the classroom, requires the facilitator to 

encourage teachers to exchange ideas among themselves, asking each other probing and 

pressing questions. This change in discourse responsibility implicates a move from a 

“hub and spoke” talk diagram (where all conversations go through the facilitator as the 

center) to a “star pattern” diagram (Nathan & Knuth, 2003), where teachers are talking 

to each other.  

Two moves are important for this change in discourse pattern that allows teachers to 

talk to each other: facilitator wait time and self-removal. A key component of the move 

from the hub-and-spoke to the star-pattern discourse is the facilitator’s intentional 

withdrawal from consistently being at the center of the conversation. Wait time and 

self-removal are two productive moves that can quickly support a change in discourse 

pattern. Wait time refers to the brief pauses or silences between speakers during 

discourse turns (Ingram & Elliott, 2016). Providing brief uninterrupted periods of time 

of at least 3-5 seconds for teachers to process information and to consider individual 

responses has been shown to contribute to improved learning during instruction (Stahl, 

1994) and increased response opportunities (Lamella & Tincani, 2012).  

Ephratt (2011) distinguished other types of silences that serve as non-verbal 

communication, including longer interactive silences that signal control, interpersonal 

attention, or terminate the speech burden through verbal silence, interactive distance, or 

non-verbal body language. We refer to the type of silence seen through the removal of 

oneself from the center of conversation or non-verbally communicating one’s removal 

from the conversation (e.g., breaking eye contact by gazing away or physically 

repositioning oneself further from others at that time) as self-removal. Discussing 
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silence as part of discourse highlights the relationship between verbal and non-verbal 

moves as part of communication. 

Given the centrality of these two moves in facilitating productive and participatory 

conversations, our study examined their use by facilitators in an MPD that was, itself, 

focused on discourse. We addressed the following research questions: how often and in 

which ways did facilitators use wait time and self-removal to foster productive 

discussions in a MPD focused on promoting high-quality mathematics discourse? 

METHOD 

This study includes a retrospective analysis (Cobb, 2000) of data collected within a 

larger design research experiment (Cobb, Confrey, diSessa, Lehrer, & Schauble, 2003) 

that included several cycles of design, implementation, analysis, and revisions of the 

MPD with the goal of developing theories and designs that can be useful in other 

learning environments. The analysis presented herein focused on the use of the two 

moves of interest in one of the early implementations of the program. 

Context 

Project All Included in Mathematics (AIM) is a highly-specified 40-hour, year-long PD 

program centered around subtraction. The PD has three main goals within the areas of 

discourse, content knowledge, and instruction. It attempts to 1) support teachers in 

promoting high-quality mathematics discourse for all students, 2) develop teachers’ 

mathematics knowledge for teaching needed to implement high-quality discourse, and 

3) provide teachers opportunities to practice and use discourse techniques that promote 

such discourse. 

Results from analyses of several implementations of Project AIM have consistently 

demonstrated teacher growth over the course of the PD program. For example, pre-post 

analyses revealed increased teacher-reported planning for classroom discourse in 

mathematics lessons after participation in the PD, and a follow-up quasi-experimental 

study showed that the difference in growth on this variable between treatment and 

comparison teachers had a significant effect size of +0.72. The quasi-experimental 

study also showed a significant effect size of +0.71 for changes in the quality of 

treatment teachers’ practice in relation to comparison teachers, using the Teaching for 

Robust Understanding in Mathematics (TRUMath) rubric system (Schoenfeld, 2013) 

as a measure of instructional quality. 

The PD program is organized into 13 sessions. The first six sessions take place during 

a summer institute that lasts approximately 20 hours. The remaining sessions take place 

during the school year in the form of after-school monthly discussions. For this paper, 

we analyzed videos from the summer institute. 

Participants 

Eight facilitators worked with 78 teachers during this implementation of Project AIM. 

Facilitators were all from the same school district as participating teachers and were 

selected based on their previous mathematics facilitation experiences in the district.  The 
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year prior to their implementation of the program, facilitators observed an 

implementation led by the MPD developers and were, therefore, very familiar with the 

program’s goals and design. Three facilitators were selected for this particular study 

given the types of discourse they facilitated in their groups according to the four types 

of discourse represented in Project AIM Discourse Matrix (Sztajn, Heck, Malzhan, & 

Dick, 2020): correcting, eliciting, probing, and responsive. The first type is based on 

the initiate-respond-evaluate discourse pattern (Cazden, 1988) and focuses mostly on 

finding correct answers to facilitator-posed questions. Eliciting discourse is about 

engaging teachers in the conversation, in an inviting and non-threatening fashion, with 

the goal of opening up participation. Probing discourse adds the use of probing and 

pressing questions to deepen the conversation, and responsive discourse shifts discourse 

responsibility to participants and further pushes to build connections among ideas. 

Analysis of discourse in Project AIM has suggested that facilitators who engage 

participants in successful responsive discourse often start with inviting them into the 

conversation (eliciting), modeling and helping teachers ask and answer probing and 

pressing questions (probing), and then releasing discourse responsibility to participants 

(responsive). 

Among the eight AIM facilitators in this implementation of Project AIM, 3 led only 

eliciting, probing, and responsive discourse with their groups, that is, they did not make 

use of the more traditional correcting discourse: Brenna, Crystal, and Ann. Their 

facilitation practices were selected for this analysis. In her work with teachers, Brenna 

often elicited teachers’ participation in the conversation (68% eliciting discourse), 

encouraged the use of probing and pressing questions (14% probing discourse) and 

allowed teachers to take responsibility for conversations that built connections among 

important ideas (18% responsive discourse). Among all facilitators, Brenna not only 

spent no time in correcting discourse but she also led her group in spending the highest 

amount of time in responsive discourse during the summer institute. Crystal, similar to 

Brenna, mostly facilitated eliciting discourse in her group (79%). Her use of probing 

(5%) and responsive (16%) discourse, however, differed from Brenna. Finally, the third 

facilitator who did not use correcting discourse was Ann. Different from Brenna and 

Crystal, Ann’s group spent most of its time in eliciting discourse (95%) with the 

remaining of the time spent in probing discourse (5%). Ann did not facilitate any 

instance of responsive discourse during Project AIM summer institute. 

Data collection and analysis 

To focus on participants’ interaction, data for this study comes from the facilitation of 

whole group discussions (WGD). All MPD meetings were video recorded during the 

Summer Institute and we identified all instances in which the groups engaged in WGD, 

defined as any spoken communication that started with a prompt or a question from the 

facilitator and engaged teachers, that is, the prompt was not followed by a mini-lesson 

monologue from the facilitator. When facilitator and MPD participants interacted 

around a single thread of conversation, with different people contributing at different 

times (i.e., at least one person outside the facilitator spoke), then we coded that 
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conversation as one instance of a WGD. Because the PD was highly-specified, several 

of the prompts starting WGD were part of the PD materials provided by the designers. 

Unplanned prompts that were not in the materials and were added by facilitators were 

also considered the start of a WGD if they initiated a discussion in which at least one 

teacher participated. 

For the analysis presented herein, we used a WGD as the unit. Two of the authors 

identified and segmented all WGDs from the entirety of the video data corpus. Given 

our definition of a WGD, the start of a WGD was identified as the moment when the 

facilitator initiated a conversation by providing a prompt to participants. The end of the 

WGD segment came when the conversation thread changed, often due to a new prompt 

from the facilitator or a call for some other activity. The first two authors segmented the 

videos independently, setting 80% as the required minimum intercoder agreement. 

Once all instances of WGD were identified and segmented, they were coded for the use 

of wait time and self-removal, defined as follows:  

• Wait time: Pause lasting at least 3 seconds once a conversation is initiated, 

independent of whether the conversation is initiated or followed by facilitator 

(F) or participants (P): F-P, F-F, P-F, P-P all count as instances of wait time 

given the facilitator choice to not step in. 

• Self-removal: Instances when the facilitator explicitly removes herself from 

the center of the conversation, which can be signalled verbally with a 

statement about the intent not to participate, or physically with the 

repositioning of self in the room, often away from the center or from standing 

up when all participants are seated. A signalling of self-removal that is not 

followed by facilitators’ choice to remain out of the conversation does not 

receive the code. 

All WGD segments were coded for type of discourse using the Mathematics Discourse 

Matrix. Again, the two coders worked independently until they achieved 80% 

intercoder agreement, at which point the third author was engaged to resolve any 

differences. Once all segments were coded for moves and discourse types, we calculated 

the average use of the move over time using 10 minutes of WGD as the unit given that 

most discussions lasted about that long. 

RESULTS AND FINDINGS 

Results from the counts of WGD, wait time and self-removal, as well as their average 

use during different types of discourse are presented in Tables 1 and 2.  

Facilitator WGD  Wait time Self-removal 

Brenna 28 131 20 

Crystal 19 51 23 

Ann 21 18 1 

Table 1: Total number of WGD, wait time and self-removal  
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Facilitator Eliciting Discourse Probing or Responsive Discourse 

Wait time Self-removal Wait time Self-removal 

Brenna 7 0 6 2 

Crystal 3 1 3 3 

Ann 2 0 1 1 

Table 2: Average use of moves per 10-minute WGD for different discourse types 

Brenna, who promoted the highest amount of responsive discourse, used wait time more 

and more often than others. The increase in self-removal during probing or responsive 

discourse, compared to eliciting discourse, was observed for both Brenna and Crystal, 

indicating they were explicit in signalling to participants the intent to be silent and not 

a part of the conversation to foster discussions among them. Ann, whose discourse 

facilitation focuses mostly on getting teachers talking and engaged (95% eliciting), 

barely used the two moves of interest. This pattern shows that although Ann wanted to 

get participants engaged and sharing, she remained at the center of the group discourse 

throughout the summer institute.  

Further analysis of the videos to provide additional information regarding the use of the 

moves showed that facilitators used wait time in qualitatively different ways. For 

example, Brenna and Crystal used wait time consistently, during almost every WGD. 

Brenna started using wait time in the first WGD in which her group engaged and 

continued to do so throughout the Summer Institute, at high rates. Crystal, after reading 

the WGD prompt, typically waited for responses and sometimes initiated participating 

teacher think time to give them more time to prepare for sharing before she elicited their 

responses. When necessary, Crystal used quite long wait time periods to push teachers 

to talk, sometimes waiting as long as 50 seconds for a response to come from teachers. 

In contrast, Ann inconsistently employed wait time. For example, she once utilized wait 

time four times in a single whole-group discussion, but then across six other WGDs she 

used wait time once only. After reading a prompt, Ann often repeated the prompt 

multiple times until a participating teacher responded, eliminating “awkward” silences 

that can be part of wait time. 

DISCUSSION AND CONCLUSION 

Our findings suggest that similarly to the classroom, wait time can be an important move 

for MPD facilitators interested in promoting high-quality discourse in which teachers 

participate and take responsibility. Self-removal can also contribute to this type of 

discourse. We conjecture that facilitators interested in changing discourse in their MPD 

from a “hub and spoke” to a “star pattern” can begin to do so by learning to use these 

two moves.  Their simplicity and ease to learn make them quick facilitation tools that, 

if properly used, can enhance the quality of discourse. The use of these moves, however, 

does not warrant high-quality discourse: it is important to attend to what teachers are 

discussing beyond the format of the conversation, making sure the discourse moves 

from eliciting, to probing, to responsive.  
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Guskey (2020) suggested changes in MPD script to first support changes in teachers’ 

practices, which latter support changes in teachers’ knowledge and belief. We suggest 

that changing the script in the preparation of MPD facilitators can also be a viable 

approach to learning to lead.  Facilitators who learn to quickly change discourse patterns 

by using the two simple moves examined in this study can begin to see the power of 

teacher talk in star-patterned conversations. By creating opportunities to listen to 

participating teachers, facilitators can begin to understand them better. Thus, allowing 

teachers to talk to each other through wait time and self-removal can be a productive 

start for facilitation of high-quality discourse in MPD. 
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Appropriate tasks are regarded as an important factor for realizing the potentials of 

teaching with technology but little is known about criteria that teachers apply for task 

design and task selection. The present study investigated pre-service teachers’ decision 

making when choosing from different versions of a dynamic geometry task that differed 

with respect to the level of scaffolding. N=29 pre-service teachers in Germany were 

asked to choose from three versions of a dynamic geometry tasks which had different 

levels of co-ordination of mathematical depth and technological action. Analysing the 

written justifications of the pre-service teachers for their task choice, we observed that 

teachers varied considerably in how they justified their task choice. In addition, we 

identified three categories that underly teachers’ selection of tool-based tasks and 

which provide a lens for possible tensions that arise during selection and design of tool-

based tasks. 

INTRODUCTION 

Research in the last decade has shown, that teaching with technology like function 

plotters, geometry packages and computer algebra systems (so called “Mathematics 

Analysis Software”) can support the learning of mathematics in many different ways 

(e.g. Drijvers et al., 2016; Pierce & Stacey, 2010). For example, technology can support 

the development of mathematical concepts by allowing students to explore, discover, 

and develop mathematical concepts on their own. However, simply adding technology 

to the classroom is not enough. An important aspect of technology integration is the 

design and selection of appropriate tasks which realize the potentials of technology. 

Even though there is no overarching or unified theory for tool-based task design, many 

different heuristics and frameworks have been proposed that can inform the design of 

tool-based tasks (Leung & Bolite-Frant, 2015; Clark-Wilson & Timotheus, 2013; 

Leung, 2011; Trocki & Hollebrands, 2018). While these frameworks give some 

normative guidelines, researchers have noted a great variability of teachers’ task design 

and task selection and little is known about the criteria underlying teachers decision 

making with respect to task design and selection (Smith et al., 2017a). In this study we 

draw on the “Dynamic Geometry Task Analysis Framework” by Trocki & Hollebrands 

(2018) and investigate the reasons underlying pre-service teachers’ choices among 

different types of dynamic geometry tasks, that varied with respect to the level of 

scaffolding through prompts that co-ordinate mathematical depth and technological 

action.  
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THEORETICAL BACKGROUND 

Technology in the Mathematics Classroom 

The use of digital technology in the mathematics classroom can comprise a plethora of 

different technologies. These range from general technology that can be used across 

different subjects (e.g. word processing software like MS-Word) to subject-specific 

technology like digital learning environments, function plotters, dynamic geometry 

systems (DGS) and computer algebra systems (CAS) that are specifically used in 

mathematics education (Pierce & Stacey, 2010). Research shows, that these 

technologies can support student learning in many different ways (Drijvers et al., 2016; 

Pierce & Stacey, 2010). For example, dynamic geometry systems allow for an easy 

construction of geometric objects and can facilitate constructivist teaching approaches 

by giving pupils the opportunity to explore mathematical links on their own. In 

particular, a DGS allows to dynamically interact with geometric objects. Students can 

drag vertices or line segments of geometrical objects and can observe how properties of 

the object change or remain invariant. In addition, a DGS can also support students in 

testing and explaining mathematical conjectures (Laborde, 2001; Mariotti, 2012; 

Azarello et al., 2002).  

Tool-based Tasks for Teaching with Technology  

However, the aforementioned potentials will not unfold on their own and the challenge 

is “to design tasks that can make use of the technology so as to improve mathematical 

learning” (Hitt & Kieran, 2009, p. 122). In this context the notion of a tool-based task 

has emerged: 

“A tool-based task is seen as a teacher/researcher design aiming to be a thing to do 

or act on in order for students to activate an interactive tool-based environment where 

teacher, students, and resources mutually enrich each other in producing 

mathematical experiences. In this connection, this type of task design rests heavily 

on a complex relationship between tool mediation, teaching and learning, and 

mathematical knowledge.” (Leung & Bolite-Frant 2015, p. 192)  

Researchers have described several frameworks and principles that can guide the design 

of tool-based tasks (Leung & Bolite Frank, 2015; Leung & Baccaglini-Frank, 2017; 

Leung, 2011; McLain, 2016). For example, Leung & Bollite-Frant (2015) highlight that 

epistemological and mathematical considerations, tool-representational considerations, 

pedagogical considerations and discursive consideration are of major importance. 

Trocki and Hollebrands (2018) proposed the “Dynamic Geometry Task Analysis 

Framework” that specifically addresses dynamic geometry tools. The authors focus on 

how prompts (defined as written question or direction related that requires a verbal or 

written response) may enhance student’s mathematical activity and student 

argumentation in order to achieve particular learning goals. They suggest that tasks 

which contain a collection of prompts that co-ordinate technological actions with 

mathematical depth can increase student learning. Prompts that allow for mathematical 

depth are prompts that require student to explain mathematical concepts or that require 

students to make generalizations. Prompts for technological actions are prompts that 
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demand the construction, measuring, dragging or manipulation within geometrical 

objects. Scaffolding student learning by co-ordination of these prompts may assist in 

guiding students through the tool-based task in order to develop mathematical 

knowledge. 

However, these guidelines and design principles are normative principles derived by 

researchers in order to analyse and construct suitable tasks. Little is known about 

teacher’s decision-making when designing and selecting tool-based tasks (Smith et al., 

2017a; 2017b) which holds particularly true with respect to selection or design of 

different versions of the same task. Which criteria do teachers apply for the design and 

selection of tool-based tasks for a given learning goal? What are the underlying reasons 

for variations in teachers design and selection of tool-based tasks for a given learning 

goal? 

RESEARCH QUESTION AND METHODOLOGY  

The present study investigated what criteria pre-service teachers apply when choosing 

among tool-based tasks that had different levels of co-ordination of mathematical depth 

and technological action. For this, pre-service teachers were given three different tasks 

versions taken from the study of Trocki and Hollebrands (2018) which all address the 

same two learning goals but varied with respect to the co-ordination of mathematical 

depth and technological action. The two learning goals were: 1) justify that opposite 

angles of parallelograms are congruent, 2) justify that the diagonals of parallelograms 

bisect each other. The three task versions are depicted in Figure 1. Task version A has 

a low co-ordination of mathematical depth and technological action, task version B has 

a medium co-ordination of mathematical depth and technological action and task 

version C has a high co-ordination of mathematical depth and technological action (see 

Trocki and Hollebrands (2018) for more details). Data was gathered in 2019 from n=29 

lower secondary school pre-service teachers. Each pre-service teacher was asked to 

justify which of the three task versions they think is most suited to accomplish the two 

learning goals (Figure 1). The pre-service teachers were in their final year before 

entering in-service teacher training and had worked with dynamic geometry programs 

throughout several courses.  

Data was analysed with respect to arguments that referred to prompts of mathematical 

depth or technological action. In addition, the emergence of categories was pursued that 

described how pre-service teachers argued with respect to the implications of these 

prompts. The categories were derived out of the data and were not decided upon prior 

to data analysis. However special attention was given to known design elements of tasks 

that researchers have identified. This comprise for example context, language, structure, 

distribution (openness) and levels of interaction between teacher and students (Barbosa 

& de Oliveira, 2013). 
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Task for pre-service teachers: 

In the following you find three task versions that all refer to the same DGS-Sketch. 

Each task version is meant to pursue the following two learning goals: 1) justify that 

opposite angles of parallelograms are congruent, 2) justify that the diagonals of 

parallelograms bisect each other.  

Which task version (A, B, C) do you regard as most suited to achieve these learning 

goals? Give a ranking from most suited to less suited: __________________(e.g. 

C,B,A would mean C is most suited to achieve the learning goals) 

Please justify your ranking and provide arguments why you regard your top choice 

as most suited to achieve the learning goals. Why are the other task versions less 

suited? 

 

 

 

 

 

Parallelogram Task A 

1) Describe what a parallelogram looks like. 

2) Can you determine a relationship among the angle measures? Measure each 

angle. What do you notice about their angle measures? 

3) Try dragging the vertices. Do your assumptions hold true? 

4) Construct diagonals. Mark the point of intersection and label it E. Measure 

AE, BE, CE, and DE. What do you notice? 

5) What is the relationship between diagonals of a parallelogram? 

Parallelogram Task B 

1) Drag parallelogram ABCD’s vertices. Write a conjecture about the 

relationship between the measures of opposite angles of this parallelogram. 

2) Measure the four angles of parallelogram ABCD. Drag its vertices to make 

many different size parallelograms. Is your conjecture from #1 true? Explain. 

3) Construct diagonals. Mark the point of intersection and label it E. Write a 

conjecture about the relationships among the line segments AE, BE, CE and 

DE for parallelograms.  

4) Is your conjecture from #3 true? Explain? 

5) Drag vertices of the parallelogram. Make a statement describing the 

relationship between diagonals of parallelograms. 

Parallelogram Task C 

1) Drag parallelogram ABCD’s vertices. Write a conjecture about the relations 

between the measures of opposite angles of this parallelogram. 

2) Measure the four angles of parallelogram ABCD. Drag its vertices to make 

different size parallelograms. Is your conjecture from #1 true? Explain. 

3) Construct diagonals. Mark the point of intersection and label it E. Drag vertices 

parallelogram ABCD. Write a conjecture about the relationships among the 

line segments AE, BE, CE, and DE for parallelograms.  

4) Measure line segments AE, BE, CE, and DE. Drag the vertices of 

parallelograms ABCD to make any size parallelogram. Is your conjecture from 

#3 true? Explain. 

A 

B C 

D 
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5) Based on your work and conjectures in prompts #3 and #4, make a statement 

describing the relationship between diagonals of parallelograms.  

Figure 2: Task for pre-service teachers with the three parallelogram tasks taken from 

Trocki & Hollebrands (2018). 

RESULTS 

Out of the 29 pre-service teachers 11 teachers chose task version A (low co-ordination) 

as the most suited, 8 pre-service teachers chose parallelogram task version B (medium 

co-ordination) and 9 pre-service teachers chose parallelogram task C (high co-

ordination). Hence the distribution among the three task versions was almost balanced. 

This indicates that there was no consensus among the pre-service teachers which task 

version is best suited to achieve the two learning goals.  

From the analysis of the written statements of the pre-service teachers three central 

categories emerged:  

Discovery learning: This category describes that the co-ordination of mathematical and 

technological action will have an impact on student discovery learning.  

Affective states: This category describes that the co-ordination of mathematical and 

technological action will have an impact on affective states like student motivation or 

boredom.  

Clarity: This category describes that the co-ordination of mathematical and 

technological action will have an impact on clarity of the task.  

In the following we will give a summary of the analysis of the pre-service teacher 

arguments that choose task version A (low co-ordination) and task version C (high co-

ordination) and illustrate pre-service teachers arguments by examples of excerpts from 

pre-service teachers’ writings. 

Task A Preference Group 

Pre-service teachers which chose task version A (low co-ordination) highlighted that a 

high co-ordination of mathematical depth and technological action would be 

detrimental for discovery learning, affective states and clarity.  

Discovery learning: Pre-service teachers perceived a high co-ordination offered by the 

prompts as too strong. They argued that a high co-ordination of mathematical depth and 

technological action will reduce the openness of the task and will not give students 

enough opportunity to make discoveries on their own. “Task version A is best suited 

since students have much opportunities to discovery the properties of the parallelogram 

on their own without following a detailed prescribed instruction. Task version C is much 

to closed.”  

Affective states: Pre-service teachers argued that a high level of co-ordination of 

mathematical depth and technological action will decrease motivation and increase 

boredom. “Task version A looks much more interesting and motivating. There is so 

much text in task version C. This will be demotivating and students will lose interest.” 
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Clarity: Pre-service teachers argued that a high co-ordination of mathematical depth and 

technological action decreases clarity of the task: “All these prompts in task version C 

will confuse the students. Task version A is clear and precise does only contain the 

necessary information.” 

Task C Preference Group 

Pre-service teachers that chose task version C (high co-ordination) highlighted that the 

prompts would be beneficial for discovery learning, affective states and clarity.  

Discovery learning: Pre-service teachers perceived the high co-ordination of 

mathematical depth and technological action is as a prerequisite that discovery learning 

can take place. “The prompt to move the vertices of the parallelogram will support 

discovery learning since students can explore the relationship of the angles and can 

observe more than only one example of a parallelogram.” 

Affective states: Pre-service teachers argued that the high co-ordination of 

mathematical depth and technological action allows students to maintain or develop 

positive affective states. “Students will be motivated by the explicit prompts to alter the 

parallelogram. By moving the vertices, they can see that something is happening and 

this will be much more interesting and less boring.”  

Clarity: Pre-service teachers argued that the high co-ordination of mathematical depth 

and technological action increases clarity of the task since it is clear for students what 

to do: “The request to drag the vertices and to explain the findings makes clear what 

students are expected to do. Ambiguity is reduced which is important for a task.” 

SUMMARY & DISCUSSION 

The study aimed to scrutinize how pre-service teachers choose among tasks which have 

different levels of scaffolding through prompts that co-ordinate technological action 

and mathematical depth. The results show that pre-service teachers differed 

considerably in their task choices. One third of the pre-service teachers chose the task 

version with high level of co-ordination of technological action and mathematical depth 

and argued that this task version will support discovery learning, affective states and 

task clarity. In contrast one third of the pre-service teachers chose the task version with 

low level of co-ordination of technological action and mathematical depth and argued 

that this task version would enhance discovery learning, affective states and task clarity. 

Hence the present study provides some explanation for the large variability in teachers 

design and selection of tool-based tasks. Discovery learning, affective states and clarity 

were important goals for all teachers in this study. However, teachers differed largely 

in how they thought that co-ordination of mathematical depth and technological action 

might support these goals. Hence variability in teachers task design and task selection 

is not necessarily grounded in limited knowledge, different criteria or different goals 

but can be traced back to different perceptions on how task characteristics support these 

goals. In particular the analysis uncovers potential tensions that may be present when 

teachers design and select tool-based tasks (Figure 2).  
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Figure 2: Tensions in the design of tool-based tasks 

Therefore, simply providing teachers with research-based frameworks that guide tool-

based task design may not be enough. Rather the tensions identified in this study can 

guide professional development efforts by providing a lens for developing teachers’ 

ability to design and select appropriate tool-based tasks. This is particularly important 

since professional development programs are often lacking the desired outcomes 

(Thurm & Barzel, 2020). However, the research described in this paper is still ongoing. 

More thorough analysis of teachers’ tool-based task choices is needed for example by 

means of cognitive interviews and for different tasks and mathematical topics.  
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ARE SOME LANGUAGES MORE MATHEMATICALLY 

PREFERRED FOR COUNTING PURPOSES? 

Hartono Tjoe1 
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Language complexity and mathematics performance have been linked together in 

earlier studies researching effective pedagogical practices for teaching early 

number sense to young children. Though the choice of language is usually dependent 

on that of a child’s parents or caregivers, little is known about whether there might 

be any advantage when it comes to learning numbers and numerals for those who 

are given a choice of language. This study examines the presence of mathematical 

preferences of adults in their evaluation of invented languages. The results reveal 

that languages with a simpler, predictable numeral system structure are considered 

mathematically preferable to the extent that each number word can be easily 

associated with a distinct symbol and place value in the corresponding numeral 

system. 

INTRODUCTION 

Persistent challenges among students from certain countries to rise above their 

longitudinally below-average standings in international mathematics assessments 

such as the Trends in International Mathematics and Science Study (TIMSS) have 

been well documented (Mullis et al., 2016). This has led researchers to explore 

explanatory factors ranging from national curricula to affective qualities (Kaiser, 

Luna, & Huntley, 1999; Leung, 2014; Schmidt et al., 2001; Stigler & Hiebert, 2004). 

In recent years, researchers have examined language differences to explain 

variations in mathematics performance, albeit inconclusively (Miller et al., 2005; 

Tjoe, 2017). Some advocate incorporating base-ten blocks into introductory 

counting lessons for kindergarteners in order to account for the base-ten structure 

transparency of East Asian languages which has been credited for the consistently 

high performing mathematics achievement of those countries (Miller et al., 1995). 

Nevertheless, it was not clear from these studies whether learning any language 

might be beneficial in acquiring elementary understanding of a numeral system, 

especially if students have a choice (Civil & Planas, 2004). Instead of measuring the 

effectiveness of language choice on mathematics competence in young students, the 

present research aimed to evaluate such an effect on adults. We approached our goal 

by analyzing subjects’ problem-solving ability in re-constructing a numeral system 

associated with a list of invented number words simulating four language patterns. 

Researcher asked subjects about the extent to which one language might be 

considered more mathematically preferable than others. 
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THEORETICAL FRAMEWORK 

Students in East Asian countries have long been perceived to hold a natural linguistic 

advantage over those in western countries as far as their performance in international 

mathematics assessments (Geary et al., 1993; Stevenson et al., 1990). Chinese-

speaking countries (e.g., Hong Kong–CHN and Chinese Taipei–CHN) specifically 

have for five consecutive quadrennial periods between 1995 and 2015 been steadily 

among the world’s top five in TIMSS Grades 4 and 8 mathematics (Mullis et al., 

2016). 

Compared with other languages, Chinese was to a certain extent viewed as better 

communicating a one-to-one correspondence between Hindu-Arabic numeral 

symbols and their corresponding number words, as well as a consistent and 

transparent base-ten structure and positional place value (Miller & Paredes, 1996). 

For instance, to master enumeration skills from 1 to 99, Chinese-speaking students 

needed to learn only ten distinct number words for numerals 1 to 10, because any 

number words for numerals 11 to 99 could be constructed by combining the first ten 

distinct number words with a natural base-ten structure and place value in mind (e.g., 

“yī,” “shí-yī,” “shí-jiǔ,” “èr-shí-yī,” and “jiǔ-shí-yī” might be viewed as “1,” “10 + 

1,” “10 + 9,” “2 × 10 + 1,” and “9 × 10 + 1” for 1, 11, 19, 21, and 91, respectively) 

(Fuson, Richards, & Briars, 1982). Although Korean-speaking students needed to 

learn nine additional number words for multiples of ten in addition to ten distinct 

number words for numerals 1 to 10, a distinct rule was apparent in the separation of 

place values and their positions (e.g., “hanna,” “yoll-hanna,” “yoll-ahop,” “sumul-

hanna,” and “ahun hanna” might be viewed as “1,” “10 + 1,” “10 + 9,” “20 + 1,” and 

“90 + 1” for 1, 11, 19, 21, and 91, respectively) (Miller & Paredes, 1996). English-

speaking students needed to learn more than ten distinct number words for numerals 

1 to 99, with a potential misconstruction of number words given an occasionally 

reversed place value structure (e.g., “one,” “eleven,” “nineteen,” “twenty-one,” and 

“ninety-one” might be viewed as “1,” “11,” “9 + 10,” “2 × 10 + 1,” and “9 × 10 + 

1” for 1, 11, 19, 21, and 91, respectively) (Ho & Fuson, 1998). French-speaking 

students also needed to learn more than ten distinct number words for numerals 1 to 

99, as well as the idea of some number words being a compound multiplicity where 

numbers could be viewed as a multiple of a multiple of ten (e.g., “un,” “onze,” “dix-

neuf,” “vingt-et-un,” and “quatre-vingt-onze” might be viewed as “1,” “11,” “10 + 

9,” “20 + 1,” and “4 × 20 + 11” for 1, 11, 19, 21, and 91, respectively) (Miller & 

Paredes, 1996). 

Regard for the efficacy of Chinese prompted some researchers to adapt its 

transparent base-ten structure to languages with less transparent base-ten structures 

in the hope of facilitating stronger association between number words and number 

concepts (Wynn, 1992). Beginners’ perspectives on language choice in learning 

mathematics concepts as early as counting skills remain unclear. 
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The research of choice in mathematics problem solving itself pointed to a variety of 

motivations (Nesher et al., 2003; Presmeg, 1986; Silver et al., 1995; Star & Rittle-

Johnson, 2008). Expert mathematicians, for their part, reflected on aesthetic values 

when choosing a preferred solution method among many (Dreyfus & Eisenberg, 

1986; Silver & Metzger, 1989; Tjoe, 2015). It was because of the breadth and depth 

of their mathematical comprehensions that these experts became more disposed 

toward—and thus appreciative of—the assessment of mathematical beauty (Sinclair, 

2001). 

Earlier studies have suggested that—implicitly, in the absence of language choice—

the regurgitation, if not formulation, of number words influences beginning 

counters’ ability to transfer their early study of numeral symbols into later 

mathematics achievement (Miller et al., 2005). To put it differently, the preferred 

language allows beginning counters to recognize the complete harmony—as Sinclair 

(2004) highlighted in her analysis of mathematical beauty—of the underlying 

correlation between linguistic and mathematical structures. To this extent, using a 

different methodology, the present study might be valuable in helping elementary 

classroom teachers further weigh the pedagogical benefits of integrating a concrete 

base-ten structure in their early number and operation instructions, as suggested by 

past studies (Miller et al., 1995). 

METHODOLOGY 

A total of 120 undergraduate science and engineering students from a large 

university in the Northeastern region of the United States volunteered for the study, 

in which a proportionate stratified random sampling technique was used. Most of 

them were international students. Of the 120 subjects, an equal number of 30 spoke 

Chinese, Korean, English, and French as their first languages, respectively. Each of 

the 30 subjects spoke English, but no other languages besides their first language. 

Prior to participating in the research, subjects were asked about their familiarity with 

non-decimal numeration systems. All subjects reported that they had taken 

mathematics courses that surveyed non-decimal numeration systems. 

Four languages—namely, Chinese, Korean, English, and French—were selected to 

reflect four major different levels of transparency of base-ten structure into which 

most languages around the world are classified (Tjoe, 2017). From these four 

languages, the authors derived four invented languages (ILs) simulating the actual 

four languages but reflecting a base-five numeral system instead of the standard 

base-ten numeral system. 

IL1, IL2, IL3, and IL4 were based on Chinese, Korean, English, and French, 

respectively (see Table 1). For numerals 1 to 44 in base five, all 24 invented number 

words (except their variations) were kept to single syllables to avoid preferences for 

the least number of syllables involved in the number words. 
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(Hindu- Arabic) 

numeral 

symbols in base 

five 

IL1 

(Chinese-based) 

IL2 

(Korean-based) 

IL3 

(English-based) 

IL4 

(French-based) 

1 wie oak eor sap 

2 aur baes lang tou 

3 piir ryuu ngge miin 

4 soat zar uos goo 

10 yoap vis non ber 

11 yoap-wie vis-oak jaen bappin 

12 yoap-aur vis-baes samj touin 

13 yoap-piir vis-ryuu nggi-nunn ber-miin 

14 yoap-soat vis-zar uor-nunn ber-goo 

20 aur-yoap boir leng-nann meng 

21 aur-yoap-wie boir-oak leng-nann-eor meng-sap 

22 aur-yoap-aur boir-baes leng-nann-lang meng-tou 

23 aur-yoap-piir boir-ryuu leng-nann-ngge meng-miin 

24 aur-yoap-soat boir-zar leng-nann-uos meng-goo 

30 piir-yoap hia nggi-nann meng 

31 piir-yoap-wie hia-oak nggi-nann-eor meng-bappin 

32 piir-yoap-aur hia-baes nggi-nann-lang meng-touin 

33 piir-yoap-piir hia-ryuu nggi-nann-ngge meng-ber-miin 

34 piir-yoap-soat hia-zar nggi-nann-uos meng-ber-goo 

40 soat-yoap pott uor-nann tou-meng 

41 soat-yoap-wie pott-oak uor-nann-eor tou-meng-sap 

42 soat-yoap-aur pott-baes uor-nann-lang tou-meng-tou 

43 soat-yoap-piir pott-ryuu uor-nann-ngge tou-meng-miin 

44 soat-yoap-soat pott-zar uor-nann-uos tou-meng-goo 

Table 1: Base-five numerals and number words in four ILs that simulated Chinese, Korean, 

English, and French languages  

All subjects met with the researcher in one classroom at the same time. They were 

not informed that most subjects did not speak English as their first language. They 

were provided with a printed set of four ILs comprised of only ten consecutive 
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number words for the numerals 1 to 20 in base five, but without any information on 

the corresponding (Hindu-Arabic) numeral symbols. Subjects were informed that 

the number words did not correspond to the base-ten numeral system, but were not 

informed of the number base to which all number words corresponded, or of whether 

the number base was the same across the four ILs. 

In addition to the printed set of the four ILs for numerals 1 to 20 in base five, blank 

paper, a pencil, and at least 325 counters were provided to each subject. Without 

time limit, subjects were asked to: (a) determine the next 14 number words for the 

subsequent numerals in each of the four ILs; (b) determine the number base to which 

all number words corresponded, and (c) visualize using the counters provided the 

corresponding grouping and/or mathematical equivalence of each number word. At 

the time of the study, subjects who asked whether they needed to figure out 

corresponding (Hindu-Arabic) numeral symbols for each number word were 

welcomed to do so. 

After completing the three tasks earlier, subjects were immediately provided with a 

complete list of number words and informed that the 24 number words for the four 

ILs corresponded to a base-five numeral system. Subjects were asked to: (a) 

determine with explanations one of the four ILs which they might consider learning 

if they were to use it for counting objects in the corresponding base system; (b) 

determine with explanations the rank order of the four ILs beginning from the most 

to the least preferred languages; (c) determine to which of the four ILs might their 

own first language be similar, and (d) again visualize using the counters provided 

the corresponding grouping and/or mathematical equivalence of each number word. 

ANALYSIS AND RESULTS 

All subjects completed the first three tasks in less than one hour. Their written 

responses revealed that they were able to complete the next 14 number words for the 

subsequent numerals in IL1 with higher accuracy than for the other ILs. (Many 

subjects left blank or answered incorrectly the next 14 number words for IL2, IL3, 

and IL4.) 

Of the 120 subjects, 103 were able to provide precise predictions of the next 14 or 

more number words for the subsequent numerals in IL1. They were also able to 

figure out, in a relatively short amount of time, that number words in IL1 

corresponded to a base-five numeral system. Of these 103 subjects, all were able to 

successfully identify mathematical equivalences for the 24 number words in IL1 

either by drawing, by using counters, or by writing. Apparently, it was these 103 

subjects who took the time to figure out the correct corresponding (Hindu-Arabic) 

numeral symbols for each number word. (During the study, one subject asked out 

aloud whether he or she was required to figure out the corresponding (Hindu-Arabic) 

numeral symbols for each number word. After the researchers answered, “You may 

or may not choose to do so,” the researchers announced this response to all 120 

subjects to avoid partiality. It was obvious that most subjects took this announcement 

as a pointer.) 
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In contrast, none of the 120 subjects were able to determine the next 14 number 

words in IL2, IL3, or IL4. (A few were able to determine only the next 4 number 

words in IL2 and/or IL3 with multiple errors for the following 10 number words.) 

Consequently, IL2, IL3, and IL4 were the most challenging for all subjects to 

determine to which number base their number words corresponded as well as the 

visualization of these number words. 

Upon the completion of the first three tasks, the subjects seemed curious about the 

complete list of number words provided and about the base-five numeral system to 

which these four ILs corresponded. (Some subjects studied them for nearly 15 

minutes before continuing to proceed with the last four tasks.) Most subjects were 

surprised to learn that number words in IL3 and IL4 (but not IL1 and IL2) 

corresponded to a base-five numeral system. 

All the 120 subjects reported that they preferred learning IL1, assuming they were 

to count objects in a base-five numeral system. Their justifications included: “the 

pattern [of number words] is predictable just like the matching symbols;” “it seems 

short, simple, and clean unlike other languages;” “pretty neat because the words 

coordinate well with the symbols;” “I don’t have to second guess myself whether 

my answers (to the next 14 number words) are correct or not;” and “I wish our 

(number words) were easy like this.” 

While all 120 subjects considered IL1 the most preferable, 105 considered IL2 the 

second most preferable. Subjects wrote: “[IL2] has a similar taste as [IL1] … you 

just need to be careful not to get ahead of yourself after every 5 (number words) 

spelled out;” “everything seems bundled up in [IL2];” and “seeing a new (number 

word) is a good sign that we are going back into a new cycle.” 

Of the 120 subjects, 96 and 101 considered IL3 and IL4 the third and fourth most 

preferable, respectively. Subjects reported: “[IL3] is not the best but more 

predictable than [IL4];” “[IL4] is like putting [IL2] and [IL3] together;” “you need 

to think a lot for (number words in IL4) because it’s not a straightforward translation 

(between number words and numeral symbols)”, and (number words in IL4) were 

repeated in the pattern and even after knowing it is base five, I still need to make 

sense why they got repeated before and after certain (number words).” 

DISCUSSION AND CONCLUSION 

Previous studies indicated that no definite agreement exists among researchers using 

international assessments in mathematics such as TIMSS regarding the effect of 

languages with transparent base-ten structures (such as Chinese) on the mathematics 

performance of students from countries speaking such languages. When one had a 

choice to learn a language associated with a new, non-decimal numeral system, the 

present research partially demonstrated the existence of a preference for a language 

with a transparent numeral system. Despite their predictive factor in mathematics 

achievements four or eight years subsequent, languages more mathematically 

preferred for counting purposes might be best suited for kindergarteners to learn the 
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conceptualization of number sense, as well as to appreciate the construction of our 

decimal numeral system. 

While the present research did not attempt to predict which language might produce 

more favorable mathematics achievement by its learners, it suggests, to a certain 

degree, alternative empirical evidence that early number sense—especially in 

counting and cardinality—might be comprehended more effectively if the numeral 

system is chosen to discernibly coincide with numeral symbols. That is, because our 

numeral symbols are based on the decimal system, the task of transposing between 

these numeral symbols and the language of the word names, if not the language 

itself, should also be based as closely as possible on the decimal system. Regarding 

recognizing a certain language as more mathematically beautiful than others, 

aesthetic considerations in mathematics classroom learning might be attainable as 

early as kindergarten (Tjoe, 2016). Further studies are needed to investigate links 

between language preference and student success in arithmetic operations. 
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Collaborative problem solving (CPS) has received much attention recently. 

However, little is known about how people work in CPS and how to support students 

working productively in the setting. CPS requires both social and cognitive aspects. 

This paper focused on the social aspect to examine how students act on their agency 

in CPS. Using data from a laboratory classroom with a social setting, we analysed 

the positions that students take when solving an open-ended mathematics problem 

and their illocutionary force. The results show that students reveal dynamic 

positions with a combination of different forces. Also, some interactions are more 

productive in CPS than others.  

INTRODUCTION 

Collaboration problem solving (CPS), a critical 21st-century skill, has received 

much attention recently (Graesser et al., 2018). However, less is known about how 

people work in CPS, especially how to support students to work well in the setting. 

CPS requires both social and cognitive aspects (ibid.).  Concerning the social aspect, 

how students act on their agency when working with each other needs attention. That 

is, further research is needed to clarify what position they take and the illocutionary 

force they have when communicating with each other to solve the problem. Research 

has indicated that one type of unsuccessful group includes too many leaders (Miller 

et al., 2013). However, we need to concern about different positions for productive 

CPS. A productive group needs to utilise dynamic expertise in the group in forming 

a solution that leads to agreement and makes every member feels inclusive. Drawing 

on a networking theories approach, we, for an illustrative purpose, examine how the 

agency is acted on during CPS. We address the research question: How do students 

act on their agency when engaging in mathematics collaborative problem-solving? 

We advance the literature by developing an analytical lens at a micro-level of talk 

turns about the agency. In addition, we seek to highlight the association between 

multiple social aspects, linking between positionings and dialogic talk. 

LITERATURE REVIEW 

To deepen our understanding of a social learning process, we draw on three different 

components: interaction and learning, agency, and positioning.  

Interaction and Learning 

Interaction is a cornerstone component of learning, yet not all are equally productive 

for learning (Sfard & Kieran, 2001). Sfard and Kieran argue that intention is inherent 

in the act of communication. We cannot fully understand any act of communication 
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without thinking about the intention of the participants in that situation. “Intention 

is the property of utterance that allows it to be followed by some kinds of responses, 

but not by others.” Hence, “… communication is effective if it fulfils its 

communicative purpose, that is, the different utterances of the interlocutors evoke 

responses that are in tune with the speakers’ meta-discourse expectations.” (Sfard & 

Kieran, p. 49) Therefore, a productive interaction should lead to long term impact 

on students’ future participation in mathematical discourse. 

Drawing on the dialogic learning theory of communicative speech acts, Díez-

Palomar and Cabré (2015) analysed illocutionary force of utterances used by 

participants to to highlight students’ intention when communication. The intention 

of someone participating in an episode of interaction might be (a) reaching a 

consensus towards a particular concept, (b) imposing his/her point of view on that 

matter, (c) adopting a neutral position, or (d) manifesting expressiveness. Dialogic 

talk refers to the use of language to reach consensus. Consensus arises when the 

participants agree on the explanations, arguments, claims they use to justify their 

position. When participants use dialogic talk, it is more likely for learning to happen, 

because participants engage in educationally productive interactions (Díez-Palomar 

& Cabré, 2015). During a dialogic talk, all of them can verify the truthfulness of 

those explanations, arguments or claims by themselves, using validity claims. 

Communication becomes effective, only when this process happens. Hence, 

educational productivity is subjected to the use of validity claims rather than power 

claims.  

Agency  

Current research in education recommends promoting agency among students to 

support their learning. There are different definitions for the agency (Chateris & 

Smardon, 2018). Cognitivism theories claim that agency is intrinsic to individuals. 

Authors embracing socio-cultural theories regard that agency emerges in spaces 

where individuals interact with each other. It is a dynamic process that resides in 

social situations. Other authors define agency as a “quality of learner engagement 

with temporal-relational contexts-for-action.” (ibid., p. 56) This is what Chateris and 

Smardon call “new material Theory Assemblage theory” in which agency is defined 

flexiblely, involving both human and non-human (objects), because sometimes even 

objects can “make things happen.”   

Positioning 

Positioning might help us understand how cognition evolves throughout the process 

of interaction. Assuming that learning is a social process, based on the interaction of 

participants, then a relevant question is to consider if the position that they play 

within the group matters (or not) in terms of how they learn or construct meanings 

associated to the mathematical objects being discussed.  

In a conversation, not all the participants play the same “role” all the time. 

Participants are acting as leaders, being the ones initiating the dialogues; others 

prefer to act as followers, agreeing, rejecting or resisting the leader(s)’ propositions. 

Positioning has been defined as a dynamic concept (instead of “role”), because the 

same person might take several positions during the same episode of interaction, 
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even contradictory ones (e.g., powerful or powerless, dominant or submissive, 

authorised or unauthorised). van Langenhove and Harré (1999) defined positioning 

as “the discursive construction of personal stories that make a person’s actions 

intelligible and relatively determinate as social acts and within which the members 

of the conversation have specific locations.” (p. 16) Drawing on Austin (1962), we 

can use the illocutionary force of a speech act in order to understand the position that 

s/he is taking within the group. Illocutionary force is mediated by the speaker’s 

position within the group. The meaning of their utterances is also mediated by the 

position they occupy within the group. Therefore, positioning matters in order to 

interpret the meaning of participants’ acts in a conversation. We draw on positioning 

and illocutionary force to analyse how students act on their agency during CPS in 

this study. 

METHODOLOGY 

Setting and Data 

Part of the Social Unit of Learning project (Chan & Clarke, 2017) examined 

individual, dyadic, small group and whole-class learning and problem-solving in 

mathematics, the data for the study came from a Year 7 class accompanied by their 

teacher in a laboratory classroom. The classroom resembled a natural setting but was 

equipped with advanced video technology that permitted recording of the dialogue 

and social interactions between students in small groups. The project collected 

student-written products, video and audio recording of each student and the teacher.   

The data for the present study came from a group of four students Pandit, Anna, 

Arman, and John solving an open-ended mathematics problem.  The problem was 

presented on a card to each group. 

Fred’s apartment has five rooms. The total area is 60 square metres. 

1. Draw a plan of Fred’s apartment. 

2. Label each room and show the dimensions (length and width) of all rooms. 

This task can be solved in several ways. It is typical of mathematics problems that 

allow students multiple entry points and facilitate their interaction and display of 

collaborative behaviours (Chan & Clarke, 2017). 

The group was provided with writing materials that they used freely while solving 

the problem.  They were allocated 20 minutes. Their regular teacher supervised the 

group and provided no direct instructions or feedback for task completion.  

Data Analysis 

Transcripts were the primary data source and videos were referred to occasionally 

when needed for clarification. First, we chose frameworks that reflect the social 

aspects of collaboration that focus on interrelation agency. When referring to an 

agency, we regarded the nature of talk (dialogic or not) and positions unfold the 

relationships. In turn, it explains how knowledge was co-constructed, taken and 

developed. The dialogic talk framework (Garcia-Carrión & Díez-Palomar, 2015) 

was used to examine the quality of interaction. We particularly coded for the 

illocutionary force (neutral, coercion, expressiveness, or consensus). When coding 

for the position, we adopted Barner’s (2004) 13 positions students have when 

engaging in CPS (Figure 1), which were grouped into on-task and off-task positions. 
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When coding, we found some positions were not evident in the data and added a 

new position of follower, who engages in the task by responding to or revoicing 

others without adding extra information and ideas to the discussion. Figure 1 

summarises the coding framework developed.  

Position: 

·   On task:   Manager    Helper    Critic     In Need of Help    *Follower     Expert 

 Outside Expert     Facilitator 

·    Off task:   Humourist    Entertainer     Audience     Networker    Outsider 

Illocutionary force: Expressive    Neutral     Consensus     Coercion 

Figure 1: Coding framework  

Agency was defined as a result of the position that the speaker plays within the 

group, also considered the illocutionary force of the speech acts in which s/he 

participates.  

PRELIMINARY RESULTS 

We will use exemplars to illustrate the coordination between the positions the 

students take and their related illocutionary force. We then describe some 

interactions of positions as students work together on the task. 

Coordination between the Position a Student Takes and Illocutionary Force 

Eight positions were coded. Except for the outsider position, the off-tasks positions 

were not found. Also, we have not coded for any instance that a student shows the 

position of an expert or outside expert. This might show the collective expertise in 

this group.  

In the following excerpt, Pandit (Lines 75, 77) showed the position of a manager, 

who asked for the dimensions of the house with a consensus force. Arman (Line 80) 

took the position of an outsider, who did not actively engage in solving the task and 

gave no sign of seeking to participate in the solution. His interlocutory force was 

neutral. Anna took the position as a helper (Line 78), who carried out routine tasks 

when asked to do so by another group member or acted in a subordinate position, 

under Pandit’s direction with the neutral force. Pandit then played the position as a 

follower (Line 79), with the neutral force, who revoiced Anna and kept the 

conversation going without adding more information and ideas to the solution.  

75 Pandit: Wait. It’s going to be like - wait … Manager Con 

76 Anna: No, guys.     

77 Pandit: … how big do you want the house to be?  Manager Con 

78 Anna: It's 60 metres square. Helper N 

79 Pandit: Sixty square metres. Follower N 

80 Arman: It’s… Measure your hand.  Outsider N 



Tran & Palomar 

PME 44 – 2021  4 - 157 

83 Pandit: How big do you want? Like the length and 

width? 

Manager Con 

84 Anna: Okay. I'll decide. Manager Coe 

85 Pandit: Guys, listen. Facilitator N 

88 Pandit: My God, what are you doing? Critic Con / E 

89 Anna: What?... Follower E 

90 Pandit: Why are you changing it Critic Con  

91 Anna: It's a square. Manager Coe / N 

92 John: Pick a new one.     

93 Arman: Why, why, why? Follower   

94 Pandit: Don't do square. Why make it a square house? Critic Con  

When proposing a rectangle as a shape for the apartment, Pandit initiated work and 

ideas and sought consensus about the dimensions of the rectangle (Line 83). She 

asked her peers with the position of a manager who sought for consensus to continue 

the solution. In this instance, her peer Anna also took a manager position, but with 

a coercion force (Line 84). It seems that when Pandit felt to be accountable for the 

group work, Anna was more for herself. Pandit then (Line 88) took a critic position, 

who sought explanations, looked for alternative methods, or disputed other people’s 

assertions. This happened when Anna tried to change the scale without discussion 

and gave an explanation for her action. Pandit’s force was consensus and expressive 

in the first instance (Line 88) and then to coercion and consensus later (Line 94).  

We also found that sometimes, a student played the position of facilitator, who acted 

to keep the group functioning smoothly, gave social support, ensured that nobody is 

ignored, tried to avoid or resolve conflict. Line 85 provided an example of the 

position when Pandit tried to bring all the members together. Her force was neutral. 

The last position we found was in need of help, who either claimed not to understand, 

and explicitly or implicitly asked for help, or accepted an offer of help from another 

and attended to the explanation. John, a non-native English speaker, sought help for 

ways to write a division symbol, as he attempted to find out the area of each of the 

rooms in the apartment.  

127 John: It’s huge. Where is… Division is like this or like this. 

Which one is division? Which one is division? 

In need 

of help 

N 

Interaction among Positions by Students 

Students engaging interaction episodes may navigate between different positions. 

They alternate leading the action or following others in the group when sharing 

thoughts in order to solve the task. We have identified four main types of interaction 
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in which participants play different positions: manager-helper, manage-manager, 

and manager-critic, and manager – follower.  

Lines 77-78 showed the interaction of a manager and a helper. When Pandit gave 

direction, Anna followed the direction and pointed out the information given in the 

task that was related to the direction Pandit asked for.  

A few turns after that, in Lines 83 and 84, we found a certain degree of rivalry among 

Pandit and Anna. We characterised the interaction among positions as manager-

manager. Pandit and Anna took positions of a manager next to each other. Both of 

them tried to lead the interaction to find an answer to the task. However, they came 

with different illocutionary forces: consensus for Pandit and coercion for Anna. 

Whereas Pandit is asking the members of the group about the size of Fred’s 

apartment, Anna just claimed that she “will decide” (how big Fred’s apartment 

would be). This could yield conflict and create a barrier for a collective solution. 

Next (Line 85), Pandit adopted a position as a facilitator, when she asked the 

members of the group to listen (to Anna’s words). That re-situated the attention back 

to the task, bringing people together in seeking for a possible answer. 

As the discussion was evolving, we identified other types of interaction among 

positions by students. In some cases, a student gave a direction, who acted as a 

manager. Another student has then criticised the direction, to seek an explanation or 

dispute this direction. In different occasions, this led to another direction of further 

explanation. Lines 114-116 exemplified this type of interaction (manager-critic). 

Pandit played the critic position to question why Anna changed the scale and choose 

the shape of the apartment. Anna then reacted and clarified that she just doubles it. 

114 Anna: Let's make two centimetre - guys, let's make the two 

centimetre square one metre square in this, okay? 

Manager Coe 

115 Pandit: Don’t – don’t. It's so confusing. Critic Coe 

116 Anna: Why not? How is it confusing? You just double it. Manager Con 

Later on, during that interactive episode, we found other situations in which a 

student did not act according to the direction of the manager but responded to the 

manager without adding more information to the conversation. The following 

except showed this example. This illustrated the manager – follower interaction.  

134 Anna: Okay. Can I just leave this? Manager Con 

135 Pandit: Yes. Follower Con 

DISCUSSION 

The preliminary results showed that the students took dynamic positions when 

solving the problem collaboratively. However, not all dynamic is as good. When a 

student always takes the position of a helper, in need of help, or follower, a teacher 

can question this dynamic interaction and has an action to support this student. Also, 

when a student consistently takes one of the off-task positions, the grouping might 
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need consideration as the student does not contribute nor benefit from solving the 

problem with the group. A facilitator position is unique in bringing collective efforts, 

even though it is not necessary to solve the task at hand. We argue that this position 

might be challenging for young students.  

We have not found all the positions suggested in the coding framework. This might 

be due to the task itself did not offer such opportunities for the position to be acted 

(e.g., expert, who needs to confirm the mathematical correctness). Whereas, we 

supplemented with a new position of follower, who might not actively add to the 

cognitive aspect of CPS, yet to the social aspect that keeps the conversation going.  

The coordination of position and force is helpful to clarify the interactions and 

explain the mechanism for the effectiveness of collaboration. A manager position 

with an illocutionary force of consensus or neutral may have a different impact on 

CPS compared with that with coercion. Except for the manager who is also an expert 

in the group, a coercion force might create tension in the group, which in turn 

impacts the group cohesion. Future studies can examine the impact of this in a 

combination of types of tasks. Likewise, a critic with a force of consensus or neutral 

might be productive in helping others to revise their ideas. In contrast, the coercion 

force might create hardship and prohibit collaboration. Interestingly, we have not 

seen a manager with an expressive force. Are these two mutually exclusive, which 

can be further explored? 

Some interactions are more effective than others in collaboration (Sfard & Kieran, 

2001). At one instance, if one student takes a position of a manager and others play 

a position as a helper to proceed with the direction or a follower to give feedback to 

the manager without significant contribution, the group can move on to a direction. 

In another case, after the manager initiates an idea, another act as a critic to seek 

explanation or point out flaws, this is effective for the group as a whole in both 

solving the task and group cohesion. In contrast, when too many managers work at 

the same time without listening to others, collaboration is not beneficial as it shows 

to be more individual instead of collective thoughts. This confirms previous studies 

about the negativity when there are many leaders in a group (cf. Miller et al., 2013). 

Another case is when one acts like a manager or critic and others take more of off-

task positions, this can prohibit the collaboration.  Lastly, when we have more than 

two people in a group, a facilitator might be crucial to keep the conversation going. 

Also, it might be helpful to see the relationship between positions of manager, critic 

and expert and outside expert.  

The results were illustrative. We propose conditions for productive CPS and more 

research is needed for statistical significance. However, the detailed analysis 

conducted suggests interesting aspects characterising interaction, that researchers 

would like to consider in further research. This paper contributes to extending 

previous studies (Díez-Palomar & Cabré, 2015; Sfard & Kieran, 2001), in clarifying 

how students act on their agency when working in mathematics CPS.  
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We report on findings from a study designed to explore the social mathematical 

practices that emerged in two Year 5 classrooms (5-11 years of age) that supported 

the development of students’ understanding of multi-digit multiplication. During the 

teaching experiment phase, data were collected via student work samples, classroom 

video and field notes and analysed from a social constructivist perspective and using 

an interpretive framework to identify and characterise four key mathematical 

practices that emerged over the course of the instructional sequence. Theoretical 

and practical implications of the findings are presented. 

INTRODUCTION 

Multiplicative thinking has been shown to be an area of weakness for many students 

(Siemon, 2013). While there is substantial research on the development of 

multiplicative thinking, research in the field of multi-digit multiplication remains 

scarce (Hickendorff, Torbeyns & Verschaffel, 2019). Fluency with multi-digit 

multiplication is an important skill for students which develops from their ability to 

think and work multiplicatively.  

There are two aspects informing the investigation reported in this paper. The first is 

prior research specific to primary-aged students’ conceptual understanding of and 

strategies for multi-digit multiplication, and the second relates to how young students 

learn mathematics within the social context of the classroom. We briefly introduce 

each of these aspects before reporting findings from a larger study that sought to 

document a domain-specific instructional theory for multi-digit multiplication.  

LITERATURE 

Mathematical understanding is the result of creating connections between 

mathematical ideas with the depth of students’ mathematical understanding 

proportionate to the quantity, strength and organisation of these connections (Hiebert 

& Carpenter, 1992). Larsson (2016) describes understanding in multiplication as the 

result of connections between three elements: the arithmetic properties of 

commutativity, distributivity and associativity; models of multiplication including 

the array and area; and strategies for solving multiplicative calculation. While there 

is not a developmental hierarchy evident in arithmetic properties or models, Larsson 

(2016) reports an observable progression in students’ solution strategies for multi-

digit multiplication, developing from addition-based strategies such as repeated 
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doubling, through to strategies that draw on multiplication thinking such as 

decomposition.  

Students’ difficulty with multiplicative reasoning means that many rely on additive 

strategies for extended periods of time. (Ambrose, Baek, & Carpenter, 2003; 

Barmby, Harries, Higgins, & Suggate, 2009; Izsak, 2004). Evidence suggests there 

is scope to extend these strategies to more efficient ways of computing using 

multiplicative reasoning. For example, students’ intuitive use of repeated doubling 

to solve multi-digit multiplication problems has been used to pave the way for more 

complex strategies (Ambrose et al., 2003; Baek, 2005). On the flip side, there is a 

danger that an overgeneralisation of addition strategies can impede students’ 

conceptualisation of the binary nature of multiplication (Larsson, 2016). 

The use of effective multiplicative strategies demonstrates a shift in students’ 

understanding of multiplication (Larsson, 2016) and efficiency in performing 

calculations (Hickendorf et al., 2019). These strategies for multi-digit multiplication 

draw on the associative and distributive properties. Analysis of students’ invented 

strategies indicate that some students possess an intuitive understanding of these 

properties (Ambrose et al., 2003; Barmby et al., 2009). Prior research surrounding 

the array (Baek, 2005; Larsson, 2016) and discourse explicitly focused on these 

multiplicative properties (Barmby et al., 2009), indicate that they are both important 

tools in building students’ understanding and fluency in the operation. 

Further research is required on the development of understanding and fluency in 

multi-digit multiplication (Hickendorf et al., 2019; Larsson, 2016) and, at the time 

of writing this paper, we were unable to locate work on the social development of 

understanding in the domain. This paper addresses this gap by exploring the research 

question: What social mathematical practices emerge in the classroom through the 

implementation of an instructional sequence focused on developing students’ 

understandings in multi-digit multiplication?  

THEORETICAL PERSPECTIVE 

Learning is both an individual and collective pursuit. From a social constructivist 

perspective, or emergent perspective (Cobb & Yackel, 1995), a cooperative 

relationship exists between the constructions of the individual and the social culture 

of learning in the classroom. Individuals construct new knowledge and 

understandings through mathematical activity while participating in the social role 

of learning in the classroom. In turn, students’ interactions and contributions 

influence the evolving learning culture and normative ways of reasoning and 

participating in the classroom. Analysing and documenting learning from an 

individual and collective perspective allows for rich description of how learning 

develops within that domain (Stephan & Rasmussen, 2002).  

In this paper, we report on four socially constructed practices that emerged during 

an instructional sequence on multi-digit multiplication implemented in two 

classrooms. Evidence supporting the emergence of these practices is presented 
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through the mathematical constructions and reasoning from individual students from 

each class.  

METHODS 

Design Research methods were employed (as described by Cobb & Gravemeijer, 

2008) that allowed the researcher to observe students’ thinking and reasoning of 

multi-digit multiplication first-hand. Three research phases were enacted: a 

preparatory phase, teaching experiments and a retrospective analysis.  

In the preparatory phase, a detailed analysis of multi-digit multiplication literature 

was conducted as the basis for anticipatory thought experiments. The thought 

experiments clarified the learning goals, documented the starting points for 

instruction and from this, a predicted learning pathway or instructional sequence was 

developed. 

The teaching experiment phase was conducted in two different Year 5 (9–11-year-

olds) classes from Sydney, Australia; 23 students in Class 1 and 22 in Class 2, 

creating a sample size of 55 students. The same instructional sequence was taught in 

both classes. The sequence was implemented over a two-week period and comprised 

four teaching episodes. Each episode spanned two or three one-hour lessons and was 

characterised by a focus on a distinct mathematical concept. This research phase was 

a cyclic process of data analysis, designing and then testing and refining the 

instructional sequence in the classroom setting. The researcher adopted the role of 

teacher in each experiment with the regular class teacher present to help facilitate 

student activity. Data collected included student work samples, classroom video 

recordings and field notes.  

Interpretations and assumptions made in the analysis of data were justified using an 

interpretative framework based on the previously described emergent perspective 

(Cobb et al., 1995). Events of the classroom and participatory regularities that were 

observed were interpreted according to the framework and, from this, conjectures 

made about the route of learning. Analysis of the social learning were documented 

as mathematical practices (Cobb et al., 1995) and the cognitive learning was 

informed by individual students’ reasoning and their participation in, and 

contribution to, the emergence of the mathematical practices.  

In the retrospective analysis phase a final analysis of data was conducted and 

generalisations made beyond the specific experiments conducted, forming a 

grounded theory on the process of students’ learning.  

RESULTS 

Four socially constructed mathematical practices emerged over the course of the 

instructional sequence, one practice from each teaching episode (Table 1). 

Each practice was linked to conceptual events rather than specific actions. Events 

were considered conceptual when a shift in the collective reasoning of the class was 

observed. Conceptual events were considered significant when they occurred in both 
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iterations of the experiment. The following section briefly describes each 

mathematical practice (MP1-4) and then presents a detailed description of the 

conceptual events associated with the third mathematical practice (MP3).  

Teaching Episode Mathematical Practices 

1 The array as a tool for sense-making: Partitioning the array 

2 The array as a tool for sense-making: Manipulating the array 

3 Ways of working mathematically: Thinking multiplicatively 

4 Ways of working mathematically: Using friendly numbers 

Table 1 – The four mathematical practices 

The array as a tool for sense-making – MP1 and MP2 

The instructional sequence followed the narrative of a cupcake bakery. In the first 

two teaching episodes students were asked to calculate the total number of cupcakes 

in two situations: the number of cakes baked on a given day and the number of cakes 

sold in boxes of 12. In each situation the cakes were presented to students as an array 

image. Students could select to use the array to support their calculations if helpful. 

MP1 and MP2 (Table 1) centred around the way in which students used the array to 

make sense of computations and to reason mathematically. The first practice centred 

students partitioning of the array and recognition that the place value properties of a 

number could be used to distribute complete rows and columns in the array. The 

second mathematical practice linked to the associative property of multiplication. 

This practice saw the array shift from a static to dynamic tool as students utilised 

common factors to divide and then rearrange the array to aid computation.  

Ways of working mathematically – MP3 and MP4 

MP3 and MP4 (Table 1) centred on what it means to work multiplicatively. Although 

students were effectively using strategies based on the associative and distributive 

properties, misconceptions were evident. The third mathematical practice centred on 

a structural understanding of associativity and distributivity and is described in the 

following section. Based on a more complete understanding of associativity and 

distributivity, students looked for ‘friendly numbers’ and based their strategy 

selection on the numbers involved in the calculation. This formed the fourth and 

final practice in the sequence.  

MP3 - Ways of working mathematically: Thinking multiplicatively 

The third teaching episode continued the narrative of a cupcake baker: Charlie the 

baker receives an order of boxes that hold 12 cupcakes. The boxes are a different 

design from the previous boxes he used. These boxes have the cakes in a ‘skewed 

array’. He wonders why this might be? 

Students were shown the trays from inside the different cupcake boxes and discussed 

why one array was skewed and the other was not (Figure 1). Similar suggestions 

were offered as to why one array may be skewed, one suggestion being that the 
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skewed array took up less space than the regular array. Therefore, its box would not 

use as much material and consequently be cheaper to make. 

 
Figure 1 – Two trays from cupcake boxes 

The students were asked to predict if it was true that a tray with dimensions 28cm x 

24cm was larger than a tray with dimensions 25cm x 25cm. The students’ responses 

in both classes were interesting and unexpected: 

Mia: 28 x 24 is like 26 x 26…if you take 2 off the 28 that makes 26, and then 

you just put that 2 with the 24, then it is 26 too. So, it is 26 and 26 

and you just times them together and it’s obvious…26 and 26 will 

make more than 25 and 25. 

Ashley: Well, both of them are just 20 multiplied by 20. Then… well, with that 

one [indicating the 25cm x 25cm array] you do 5 times 5 and then 

with that one (indicating the other array) you do 4 times 8 and I 

think…um…wait, it’s, yeah, it’s 32 and the other one is 25, and 32 

is bigger than 25. 

These misconceptions became the focus of investigation and the resulting activity 

and discussions were recorded as significant conceptual events in the emergence and 

acceptance of the third mathematical practice.  

Conceptual Event 1—Recognising and adding all partial products 

The first investigation focused on the validity of the comment that 28 x 24 was bigger 

than 25 x 25 because 8 x 4 has a greater total than 5 x 5. To begin, the students were 

asked to solve two questions: Which is bigger—28 x 16 or 26 x 19? Which is 

bigger—26 x 18 or 29 x 16? 

Students instinctively reverted to an array as a means of solving the calculations. 

They partitioned the array into place value parts and found that, when the array for 

a 2- x 2-digit multiplication was distributed based on place value parts, four partial 

products were formed. In their initial calculations the students had only 

acknowledged two of these parts. This learning was the focus of a whole-class 

conference. 

Ellena and Taylor presented their findings from the investigation to the class and 

stated that the problem with Ellena’s initial reasoning was that she didn’t use the 

array. 
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Taylor: I think that if Ellena used the array, she would have got it right. 

Ellena: Yeah, I agree. I think I would have got it right. I just needed the array to 

see all the parts. 

Teacher: What do you mean by that Ellena—that you needed the array to see all 

the parts? 

Ellena: Well, I forgot these two (pointing to the work sample) and so I didn’t 

add them. Well actually, I didn’t really know they were there. 

The students were invited to use Ellena and Taylor’s modified strategy and the 

students observed that the number of parts in the distributed array corresponded to 

the number of digits in the problem. Students then realised that each part of both 

numbers was multiplied together.  

The recognition of all partial products formed in a multi-digit multiplication was 

significant in the negotiation of the third mathematical practice. Students recognised 

that the two-dimensional structure of multiplication created multiple sections when 

the array was distributed. As a result of this recognition, the students appreciated the 

importance of multiplying and adding together all the partial products formed.  

Conceptual Event 2—Additive versus multiplicative compensation 

The second investigation focused on whether 28 x 24 had the same value as 26 x 26. 

The students had reasoned that two could be taken from the 28 and added onto the 

24 to create 26 x 26. Students began their investigation by using a calculator to check 

if the two multiplications had the same value. Students realised the two equations 

were not equal and students selected to use an array to make sense of what was 

happening.  

Two key strategies were observed. The first focused on comparing the common 

areas of the arrays. Students constructed two arrays, the first measuring 28 x 24 and 

the second 26 x 26. They proceeded to overlay the two arrays and measured the size 

of the overhanging sections. The students reasoned that 28 x 24 was not the same as 

26 x 26 as the size of the overhangs were not equal (Figure 2). Using the same 

strategy, they showed that the area of the 28 x 24 array was bigger than the area of 

the 25 x 25 array. 

In a second strategy, students constructed an array measuring 28 x 24, then 

physically cut two columns off the 28 and added these to make two new rows below 

the existing 24 rows (Figure 2). These students observed that a gap of four squares 

had been revealed, and so concluded that the product of 28 x 24 must be 4 less than 

the product of 26 x 26.  

 
Figure 2 – Two strategies comparing 24 x 28 and 26 x 26 
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In the ensuing class discussion, both strategies were shared. Of particular 

significance to the emergence of the third mathematical practice was the 

conversation relating to the second strategy. Amelie shared how she had used the 

array to show why 28 x 24 did not equal 26 x 26. 

Amelie: I made an array that was 28 across and 24 down and then I cut off two 

rows from the 28 and I stuck it onto the bottom of the 24. But what 

I noticed was that the rows are different. These ones are 24 long 

and the rows this way are 28 long and so they don’t match 

up…these ones are shorter and so it won’t work. 

Teacher: So, you can’t just take two off the 28 and put it on the 24 then? 

Amelie: No, it won’t work because the rows are different. You can see it here 

on my array. 

Once again, the students were given the time to explore the strategy for themselves 

and were asked to consider why you can use such a strategy in addition and not for 

multiplication. In her reasoning, Samar referred back to an incident in the previous 

episode when students manipulated the array to explore the associative property. 

Samar: Last time we halved and doubled. When you halved, the two parts were 

the same and so you could move the parts of the array. But when 

you take just two off, the parts are not the same and so they won’t 

match. So, I think that you can divide but not subtract. 

Teacher: What do you mean that you can ‘divide’? 

Samar: You can divide by 2 and then double or divide by 3 or divide by 4…and 

you can keep going. But you can’t just subtract 2 or 3 or something. 

You need the parts [of the array] to be the same. 

The students were given some time to explore Samar’s reasoning and came to the 

consensus that there was a difference between multiplicative compensation and what 

was termed additive compensation. 

DISCUSSION AND CONCLUSION 

This paper presented four socially constructed mathematical practices that emerged 

through the course of an instructional sequence as students developed increasingly 

sophisticated understandings in multi-digit multiplication. These practices are of 

theoretical and practical significance.  

Theoretically, the four practices present a viable, generalisable theory for collective 

learning in multi-digit multiplication. While no instructional sequence would 

produce the same results in multiple classrooms, the four mathematical practices 

provide a generalised instructional theory to guide instruction and further research 

in multi-digit multiplication (Cobb et al., 2008). Our findings confirm the 

significance of the array and mathematical discourse in developing students’ 

understanding of the multiplicative structure and associated properties (Barmby et 

al., ref; Larsson, 2016). Students used the array as a tool to support calculations and 

make sense of the multiplicative structure. The array was also significant in the 
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mathematical discourse of the classroom. Students used the structure to represent 

and communicate their thinking and reasoning to the class community in discussion 

focused on making sense of multiplicative properties.  

Practically, the mathematical practices presented in this paper provide a 

substantiated theory that can be used and adapted by educators in the design of 

instructional sequences. The practices can be used to inform instructional decisions 

including the selection of tasks, the focus of classroom discourse and the 

representations and tools used to support learning (Stephan et al., 2002). 
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The article aims at articulating the potential impact of Radford’s theory of 

objectification on technical research on mathematics teaching. First, instead of 

Radford’s metaphor of mathematical activities as an orchestra, we proposed an 

alternative metaphor—mathematical activities as an ad lib music session. With that 

in mind, we focused on laughter as affective expression in class and conducted 

phonetic analysis of the laughter in a Japanese high-school mathematics classroom. 

The analysis revealed that a fun atmosphere that included laughter transformed 

students’ treatment of a mathematical model in the lesson and that the proposed 

metaphor is more suitable than the original. We, thus, conclude that affective factors 

might determine the quality of mathematics learning in an ad lib manner. 

INTRODUCTION 

The theory of objectification (TO), proposed by Radford (2016b, 2018), is a promising 

theory for holistically capturing the endeavor of mathematics education. We have 

gradually become aware that teaching and learning mathematics is a complex process 

that can be neither simply psychological nor simply epistemological (Radford, 2016a, 

2018). In the TO, Radford elaborates the concept of joint labor as “an historically 

produced aesthetic form of life where matter, body, movement, action, rhythm, passion, 

and sensation come to the fore” (Radford, 2016b, p. 200). From this point of view, 

teaching-and-learning is regarded “not as two separate activities, but as a single and 

same activity” (Radford, 2016b, pp. 200–201). Through joint labor, teachers and 

students engage collaboratively in producing the common work that Radford calls “the 

sensuous appearance of knowledge” (Radford, 2016a, p. 5). All the participants in joint 

labor “not only create and re-create knowledge but they also co-produce themselves as 

subjects” (Radford, 2016b, p. 201). This dual process comprises objectification of 

knowledge and subjectification of the self (Radford, 2015, 2016b). This theory is, thus, 

characterized as: 
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an attempt to understand learning not as the result of the individual student’s 

deeds (as in individualist accounts of learning) but as a cultural-historical situated 

process, and to offer accounts of the entailed processes of knowing and becoming 

(Radford, 2015, p. 553). 

Empirical episodes collected over several years support the validity of the TO (e.g., 

Radford, 2015, 2016b). We now know that we should view classroom activity 

holistically as joint labor, not separating the intellectual and emotional aspects of 

individual thinking, the teacher and students’ engagement, or objectification and 

subjectification. However, we should be aware that the TO does not explicitly show 

the extent to which the psychological and epistemological perspectives are narrow. 

Meaning, we may take a simplified psychological or epistemological view of 

classroom activities for a particular educational purpose. We do not challenge the 

generalizability of the empirical episodes in the TO. Rather, our argument relates to 

the technical–political divide that problematizes the gap between technical research 

aiming at improving local implementation of teaching and socio-political research 

aiming at global social justice (Ernest, 2016). If the TO wants to say that technical 

research on intentionally designed classroom activities for an educational purpose—

from a psychological or an epistemological perspective—tends to oversimplify 

classroom activities, then it must show that a theoretical perspective of the theory 

can contribute at least to the achievement of the original purposes of technical 

research. This paper aims at articulating such a potential by presenting episodes of 

laughter in a Japanese high-school mathematics classroom. 

THEORETICAL PERSPECTIVE 

In this section, to describe the basis of the TO accurately, we elaborate some 

theoretical concepts. First, according to the TO, knowledge is not an object but a 

process (Radford, 2013). Knowledge is a cultural codification of a potential way of 

practice. Knowing, thus, corresponds to the actualization of knowledge (Radford, 

2013). Through this actualization process, learners gradually become aware of a 

difference in a chaotic situation in between something that they are the objects of 

and something they are the subjects of. The former is called objectification of 

knowledge and the latter is called subjectification of the self (Radford, 2013). In any 

situation, a learner experiences objectification and subjectification. Even if practice 

is repeated, actualization is not completely stable; this instability engenders new 

learning. 

Next, we carefully reconceptualize the concept of common work as a product of joint 

labor in a mathematics classroom. This is our main theoretical proposal. In this 

regard, Radford (2016a) proposes the orchestra as a noteworthy metaphor for 

common work: 

Common work is the bearer of dialectic tensions because of the emotional and 

conceptual contradictions of which it is made. Through it, knowledge appears 

sensuously in the classroom (through action, perception, symbols, artifacts, 

gestures, language), much in the same way and, with similar aesthetic force, that 
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music appears aurally in a concert hall through the common work of the members 

of the orchestra. (p. 5, italics in the original) 

However, based on our understanding of the TO, we propose that an ad lib music 

session is a more suitable metaphor for common work in a mathematics classroom. 

The orchestra metaphor provides three images: (1) The members of the orchestra 

share a goal pregiven by a score; (2) they consciously follow their conductor to 

achieve it; and (3) their motivation for achieving the goal comes from the existence 

of the concert audience to an extent. The corresponding images of a mathematics 

lesson are: (1) The participants do not share a pregiven goal; (2) students do not 

necessarily purposefully follow their teacher; and (3) there is no external observer 

in many cases. 

A mathematics lesson is, rather, like an ad lib session. In an ad lib session, once the 

first player introduces an initial phrase, the other participants freely play the 

subsequent phrases. Their main purpose may be to enjoy playing itself. Although the 

audience may evaluate the quality of the music, observers are not always present, 

and players are not necessarily conscious of any such observers. The same holds true 

in a mathematical activity. Once a teacher provides an initial mathematical task or 

topic, all participants freely discuss it. Their main purpose may be to learn 

mathematics together. Although an observer may evaluate the lessons’ quality, such 

observers are not always present and the participants are not necessarily conscious 

of such observers when they are present. A mathematics lesson must be a different 

kind of common work than an orchestra, if students do not behave in a prescribed 

manner. Note that by term “ad lib,” we do not mean ill-planned. Rather, we 

emphasize the possibility that unanticipated improvisational collaboration produces 

valuable mathematics learning. 

The TO has an interest in the dynamic nature of a mathematics lesson from an 

observer point of view. It focuses on products in the public rather than private 

domains. Observers and participants may feel differently about what roles the 

participants play in a lesson. For example, although students may be embarrassed to 

err in solving a mathematical problem, their mistakes may lead to deeper 

understanding of the problem for themselves and their peers. Additionally, when 

considering learning mathematics in a public domain, both cognitive and affective 

elements must be taken into account. As Roth & Walshaw (2019) argue that we 

should not regard effect as the sole driving force toward cognitive development. 

Rather, as with an ad lib music session, a mathematics lesson brings observable 

cognitive and affective changes in participants engaged in common work in a public 

domain. 

In this paper, we particularly focus on laughter as a kind of affective expressions in 

a mathematics lesson. Although laughter is known to play a crucial role for 

interwoven cognitive and affective development (Roth et al., 2011; Roth & 

Walshaw, 2019), to our best knowledge there is no research on how laughter emerges 

in a mathematics classroom or on the role it plays when it does emerge. 
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RESEARCH QUESTION 

Based on the abovementioned understanding of the TO, we ask: What role does 

laughter potentially play for mutually dependent cognitive and affective 

development in a mathematics classroom? As Cobb (2007) argues, an insight is a 

key criterion for choosing theoretical perspectives. The answer to this question offers 

good reasons for technical researchers to refer to the TO. In addition, this inquiry is 

worthwhile because it provides a concrete way to fill the gap between technical and 

socio-political research. 

METHOD 

In order to locate the potential roles of laughter, we conducted a phonetic analysis 

of a classroom discussion. 

Participants and data collection 

We video recorded a tenth-grade mathematics lesson at a public high school in the 

Kanto region in Japan. The teacher was the third author of this paper. Thirteen 

students (3 males and 10 females) in an IB math class participated in the lesson. One 

video camera was located in the rear of the classroom. The official language of the 

class is English, and the mathematics textbook is written in English; all teachers and 

students use English primarily and their native Japanese supplementarily. 

The topic of the lesson was quadratic functions. The teacher introduced the 

following opening problem written in the textbook: A motorcyclist Marvin attempts 

to jump his motorcycle a long distance from the take-off ramp; supposing his height 

is given as 𝐻 = −0.009𝑥2 + 𝑥 + 6 meters, will he safely reach the landing ramp? 

Figure 1 shows a photograph of the problem presentation by the teacher in the lesson. 

 
Figure 1: Presentation of the problem in the lesson 

Analysis 

We processed the video clip of the classroom discussion as follows. First, we 

transcribed it and attempted to understand what participants talked about. This 

analysis reveals a cognitive aspect of the discussion. Second, we cropped all but the 

scenes with participants’ laughter. We extracted an audio clip from each scene and 

graphed the transitions of pitch and intensity using Praat speech analysis software 

(Boersma & Weenink, 2020). The pitch of the laughter indicates whether it was from 

a female or a male, and the intensity indicates loudness. This analysis reveals an 

affective aspect of the discussion. In this paper, we report on three scenes of laughter 

from the lesson. 
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RESULTS 

The original transcript includes English and Japanese. For readability, the Japanese 

was translated to English and the translations are underlined. Students’ names are 

pseudonyms. 

The three scenes of laughter were extracted from a classroom discussion about the 

opening problem. In the first scene, the teacher drew a picture of a bike and a ramp 

on the whiteboard and explained the height of the landing ramp, prompting students 

to imagine the moment of landing. 

27 S:  He might get crashed if his height is less than 6 meters.  
28 T:  If I magnified this, it would look like this. (Teacher drew the stand 

in the picture). Thus, he would be here, a little higher than the one 
I drew.  

29 S:  The momentum.  
30 T:  Well, it is 6 meters, so here is 6, and 1.1. Like that.  
31 S:  Well.  
32 T:  I mean, the bike would come like that.  
33 SS:  (Laughter) [about six seconds from (1) to (4) in Figure 2] 
34 T:  Then, how would it be?  
35 Ken:      Isn’t the bike you drew too small?  
36 T: Well, it’s 6 meters high. 6 meters. This should be fine. 

Laughter occurs in #33 because the size of the teacher’s bike looked too small from 

Ken’s perspective in #35. However, from the teacher’s perspective, the size was 

valid. When he noticed that the laughing students did not grasp the validity of the 

scale of the bike, he explained (#36). The laughter seemed to occur because of the 

cognitive gap between the size of the bike they anticipated and the size of the one 

the teacher drew. 

Figure 2 shows the pitch and intensity of the classroom laughter in #33. A brief 

episode of laughter began at (1) in Figure 2. The following episode increased in 

intensity from (2) to (3). From (3) to (4), the intensity decreased. The laughter lasted 

until the teacher finished drawing the motorcycle. Although the intensity between 

(2) and (3) vacillates, we can see that it increases overall, representing the swell of 

the laughter. The better the students grasped the entire picture drawn by the teacher, 

the louder their laughter become. In addition, because it was the female students who 

were primarily laughing, the pitch of the laughter is higher than the male teacher’s 

speech in #32 before (1) and in #34 after (4). 

 
Figure 2: Pitch and intensity of the classroom laughter in the transcript #33  

After the long wave of laughter occurred in #33, Ken answered the teacher’s 

question in #34. 
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37 Nao:  By the momentum of the bike.  
38 T:  By the momentum of the bike.  
39 Ken: Because he flew.  
40 SS:  (Laughter) [about four seconds from (1) to (4) in Figure 3[a]] 

Ken thought that the safety of the motorcyclist depended on how vigorously the bike 

jumped. The nuance of his response in #39 in Japanese manifested a comical image of 

a bike passing over the landing ramp, probably causing the students’ laughter in #40. 

Figure 3[a] shows the pitch and intensity of the classroom laughter in #40. Listening 

to the response from the student, the teacher’s lower pitched laughter continued from 

(1) to (2), and the higher pitched laughter of the female students began from (2). One 

female student continued laughing from (3) to (4). The intensity of the classroom 

laughter decreased from (2) to (3). The duration of this laugher was instantaneous. 

              
Figure 3: The pitches and the intensities of the classroom laughter 

in the transcripts #40 [a] and #46 [b]  

Following the abovementioned second scene of laughter, the final scene of laughter 

occurred when the teacher and the students discussed the height of the jump. 
41 T:  Dangerous? Safe? What do you think?  
42 Nao:  It seems safe.   
43 T:  It seems same. Why?  
44 Nao:  Well, I reckon he might get crashed into the ramp if his speed was 

less than 6 meters.  
45 T:  Well, right, if it was less than 6 meters, it is out of the question.  
46 SS:  (Laughter) [about two seconds from (1) to (4) in Figure 3[b]] 
47 Nao:  Well, if it was more than 6 meters and about 1 meter (higher than 

6 meters), it should be okay.  

In #44, Nao argued that the motorcyclist would be safe because the formula 𝐻 given 

in the problem indicated that he would not crash into the ramp. The teacher agreed 

with her in #45, and many students laughed in #46. 

Figure 3[b] shows the pitch and the intensity of the classroom laughter in #46. The 

laughter rapidly swelled from (1) to (2). Since many students kept laughing in turns, 

the laughter neither vacillated nor rapidly decreased from (2) to (3). It gradually 

decreased from (2) to (4). The comical image of the bike crash seemed to link with 

a particular value of the given quadratic function. 
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DISCUSSION AND CONCLUSION 

Figures 2 and 3 corroborate the interwoven relationships between cognition and 

affect. First, Figure 2 shows that the students took a while to get in a laughing mood. 

A cognitive factor, misunderstanding the scale, is related to an affective impact on 

the classroom. Second, the flying bike image provided by Ken in the second scene 

critically influenced how the students understood Nao’s claim in the final scene. As 

argued in the previous section, Figures 3[a] and [b] indicate that more students were 

laughing in the final scene than in the second one. Since the image of the bike was 

referred to twice, more students might have clearly imagined it crashing by the final 

scene. In addition, Ken’s claim characterized Nao’s claim as a necessary condition 

for the motorcyclist’s safety. Ken suggested that the motorcyclist might have been 

in danger even if he had jumped sufficiently high. If Ken had not made any claim 

and the students only discussed how high the motorcyclist jumped, Nao’s claim 

might have been treated as a sufficient condition for the safety; students might have 

implicitly assumed that the motorcyclist had a reliable ability to land on the ramp. 

This means that the bike image prompted the students to make sense of the 

mathematical model differently. Our classroom episode, therefore, suggests an 

affective factor, that is, Ken’s funny claim may have contributed to the production 

of an essentially different mathematical conclusion in the classroom. 

Based on the TO, we regarded Ken and Nao’s claims as common work in the lesson. 

Each claim appeared as an intermediate product of mutual engagement in the joint 

labor. The appearance of these claims could not have been conjectured before the 

lesson from a solely psychological or solely epistemological perspective. Thus, 

according to our definition, the classroom activity consisted of ad lib collaboration 

between the teacher and the students. 

While knowledge of quadratic functions in the sense of the TO provided one possible 

way of modeling the height of the bike when jumping, the process of knowing was 

not limited to that possibility. Rather, it included dual aspects, objectification and 

subjectification. As an object, the model was characterized as a necessary condition 

for safety in practice. As a subject, each student found it socially accepted to discuss 

mathematical problems with humor. Although we did not capture the changes in the 

private domains of the students’ minds, we did reveal how mutually dependent 

cognitive and affective elements were in a lesson as a public domain. 

In conclusion, the ad lib music metaphor can be more suitable for the mathematics 

classroom activity than the orchestra one. Laughter in the first scene was an indicator 

of the students’ cognitive understanding, and fun atmosphere with laughter in the 

second scene influenced the treatment of the mathematical model in the final scene. 

Therefore, as a potential answer to our research question, we argue that affective 

factors might determine the quality of mathematics learning in an ad lib manner. As 

our theoretical contribution to the TO, we also argue that (i) both cognitive and 

affective development should be regarded as an interwoven achievement of a 

mathematics lesson and, thus, that (ii) mathematics teachers need to plan their 
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lessons more holistically for better ad lib collaboration. In this regard, using the 

metaphor of ad lib music as a theoretical framework, future research can seek out 

what impacts ad lib collaborations have on cognitive and affective development in 

mathematics classrooms.  

In this study, our consideration is limited to laughter and does not focus on the 

influence of foreign and native languages on cognitive and affective development. 

A variety of affective and cognitive elements should be investigated in future 

research. 
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Proportional reasoning is a pivotal concept in elementary mathematics. More 

insight into early predictors of later proportional reasoning might be useful to guide 

early interventions. Research indicates that language is of major importance for 

mathematical thinking and learning. The present study investigated the longitudinal 

association between vocabulary that is specific to proportional situations and 

children’s ability to reason about proportional situations. Results showed that each 

of the five concepts measured was indeed significantly correlated with proportional 

reasoning ability, and this relation persisted after controlling for children’s SES. 

THEORETICAL AND EMPIRICAL BACKGROUND 

The role of language in mathematics learning and teaching has been the object of 

research for many years (e.g. Pimm, 1991; Lefevre et al., 2010, Staples & Truxaw, 

2012; Zhang et al., 2017). After all, children learn mathematics in a language-based  

instructional setting. In this respect, Durkin (1991, p. 3) stated  that: “Mathematics 

education begins and proceeds in language, it advances and stumbles because of 

language, and its outcomes are often assessed in language.”  

For these reasons, it is not surprising that many empirical studies show that language 

abilities predict math skills (e.g., Abedi & Lord, 2001; Kleemans et al., 2011; 

LeFevre et al., 2010; McClelland et al., 2007; Purpura & Reid, 2016; Seethaler et 

al., 2011; van der Walt, 2009; Zhang et al., 2017). For example, LeFevre and 

colleagues (2010) found that a linguistic pathway, together with a quantitative and 

spatial attention pathway, contributed independently to early numeracy skills during 

preschool and kindergarten and was related differentially to performance on a 

variety of mathematical outcomes two years later.  

In most research that focuses on the link between language and mathematics, 

mathematical performance is considered either as a general ability, or the focus is 

on the curricular subdomain of whole number and arithmetic. An important question, 

however, is what role language plays in more advanced domains, such as 

proportionality.  

Proportional reasoning is an important ability for the further development of 

mathematical understanding, yet it is not achieved easily. Traditionally, proportional 

reasoning ability is assumed to be acquired towards the end of primary school, i.e. 

in the formal operational stage (Inhelder & Piaget, 1958) (see for instance the 

abundance of studies showing that primary school children make additive errors in 
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proportional situations). Still, recent research suggests that the development of 

proportional reasoning starts much earlier. Resnick and Singer (1993), for instance, 

showed that 5- to 7-year olds give proportionally larger amounts of food to larger 

fish. Vanluydt et al. (2019) also found that often 5- and 6-year olds can already make 

sense of one-to-many correspondences, and that some can already handle many-to-

many correspondences. Still, at this young age there are large interindividual 

differences. Some children already demonstrate rather advanced forms of reasoning, 

while others do not show any evidence of making sense of proportional relations at 

all. 

At this young age, children also show large differences in their language abilities. 

The individual differences in proportional reasoning that Vanluydt et al. (2019) 

found in young children may therefore be explained at least partly by their language 

abilities. Language has been related to proportional reasoning before; Cirino et al. 

(2016) found an association between general vocabulary and proportional reasoning 

in sixth graders. We could not find studies on this association at a younger age. 

Moreover, Cirino et al. (2016) used a general vocabulary test. Recently, calls have 

been made to use more specific mathematical language tests (Purpura & Reid, 2016; 

Purpura et al., 2017) that address the terminology involved in the mathematical 

domain at stake instead of general vocabulary tests.  

Doing so for proportional reasoning would imply a test that heavily relies on the 

language of comparison (Lamon, 2006). According to Staples and Truxaw (2012), 

this includes (1) expressing a relative comparison between two quantities, (2) 

expressing a comparison between two quantities which are themselves relative 

comparisons of two quantities, (3) using language that distinguishes a comparison 

of a proportion from a comparison of absolute values.   

RATIONALE AND RESEARCH QUESTIONS 

Although several authors (Lamon, 2006; MacGregor, 2002; Staples & Truxaw, 

2012) have reflected on the language that children need to reason about proportional 

situations, we are not aware of empirical evidence linking people’s knowledge of 

language (and specifically math language) related to proportionality and their 

proportional reasoning ability. The present study aims to address this gap, 

particularly in young children. We examined how proportionality-related vocabulary 

in the first grade of elementary school predicts proportional reasoning ability in the 

second year of elementary school.  

Since several studies show that the home situation of children (and particularly their 

socio-economic status, SES) has a significant influence on their vocabulary (e.g., 

Abedi & Lord, 2001; Purpura, 2019), we also investigated whether the predictive 

relation between proportionality-related language and proportional reasoning ability 

was still present when SES was included as a control variable. 
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METHOD  

Participants and Design 

The study is part of a larger longitudinal research project that focuses on the 

development of a number of early key mathematical competencies. A cohort of 410 

children is followed from the age of 4 until 9. The sample comes from 17 schools 

(31 classrooms) and is representative for the range of socio-economic backgrounds 

in Flanders, Belgium. For this study, complete data could be collected from 343 

children, of which 172 boys. Informed consents from parents were obtained for all 

participants, and the study was approved by the ethical committee of KU Leuven.  

Proportionality related vocabulary data were collected in the first year of primary 

school, while proportional reasoning ability was assessed in the second year. All 

tasks were individually administered in a quiet room in the children’s schools.   

Instruments 

For measuring proportionality-related vocabulary, we constructed a task that aimed 

at measuring the receptive vocabulary knowledge that is important for proportional 

reasoning. Five concepts were addressed: (1) “fair” (because the proportional 

context of the ability task involved a fair assignment of food to a number of children 

– see below), (2) “double”, (3) “half”, and (4) “three times more” (which verbalize 

a multiplicative relation) and (5) “three more” (to assess the difference between 

expressions on an additive relation –three more– and a multiplicative relation –three 

times more). All items were kept as simple as possible from a calculation point of 

view, so that the focus would be on children’s understanding of the vocabulary 

involved. For each item, a statement involving one of the five concepts was read 

aloud by the interviewer, while a picture was shown. Children had to assess whether 

the statement was true or false when looking at the picture. Each concept was 

measured by two items: one with a true statement and one with a false statement, 

leading to a total of ten items. Figure 1 gives examples of the two items for the 

concepts “half” and “three times more”. Given the true/false nature of the task and 

the fact that we expected children to recognize when a given concept was applicable 

and when it was not applicable, we applied the following scoring rule: Only if 

children correctly responded to both items of a concept, they received a score of one 

for that concept, otherwise (i.e., only one item of a concept correct or none of the 

items of a concept correct) they received a score of zero for the concept.  

To measure proportional reasoning ability, children completed a task consisting of 

eight items involving two discrete quantities and eight items involving a discrete and 

a continuous quantity. All items were missing-value problems, involving the 

assignment of food (discrete: a number of grapes, continuous: a chocolate bar of a 

certain length) to a number of children (represented by puppets). Children had to 

construct a set B equivalent to a set A by putting the elements in set B in the same 

ratio as the elements in set A. Figure 2 shows an example item for both item types. 

See Vanluydt et al. (2019) for a more detailed description of the proportional 

reasoning tasks, and for information on the reliability and validity of this instrument. 

Given the young age of the children, the items were offered orally, supported by 
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concrete materials that children could manipulate, and the need for complex 

calculations was avoided. 

     
Figure 1. Example items for vocabulary task  

(A: incorrect statement about “half”, B: correct statement about “three times more”) 

 “All puppets are equally hungry.  

If I give four grapes to these puppets, how 

many grapes do you have to give to these 

puppets for it to be fair?” 

 “All puppets are equally hungry.  

If I give this chocolate bar to these 

puppets, which chocolate bar do you 

have to give to these puppets for it to be 

fair?” 

Figure 2. Example items for proportional reasoning ability task (left: involving two discrete 

quantities, right: involving a discrete and a continuous quantity) 

(Adapted from Vanluydt et al., 2019)  

Socio-economic status (SES) data was collected by means of a parent questionnaire. 

In line with other research (e.g., Aaro et al., 2009), it was based on the education 

level of the mother, which is considered a good indicator for the construct at stake: 

(1) no education, elementary education or lower secondary education; (2) higher 

secondary education; (3)  professional bachelor; (4) academic bachelor, master or 

PhD.  

RESULTS 

Table 1 gives an overview of the scores on the vocabulary task. The notion “Fair” in 

the sharing situation seemed to be well understood by most children. The notion 

“Double” and the (additive) notion “Three more” were understood by a substantial 

number of children (but less than half), and “Half” and “Three times more” seemed 

still quite difficult for more than 4/5 of the children. Still, for each of the notions, 
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there were children who showed an understanding of the notions. Overall, about one 

third of the children got a score of 3 or more out of 5, while the other two thirds got 

scores of 2 out of 5 or less.  

Fair Double Half Three times more Three more 

81.9% 42.0% 18.7% 14.0% 37.3% 

Table 1. Percentage of 1-scores answers on each concept of the vocabulary task  

On average, children solved 8.65 (SD=3.53, range = 1-16) out of 16 items correctly 

on the proportional reasoning ability task. As shown in Figure 3, which provides the 

distribution of the scores on this task, some children already obtained really high 

scores – solving all or nearly all items correctly – whereas others managed to do well 

on only a few.   

 
Figure 3. Distribution of scores on proportional reasoning ability task 

Given these large interindividual differences on both instruments, it was meaningful 

to relate the vocabulary scores to the proportional reasoning scores. Table 2 provides 

a correlation matrix, involving scores on each of the notions tested in the vocabulary 

task and the score on the proportional reasoning ability task. 

This correlation matrix indicates that the five concepts in the vocabulary task are 

interrelated to some extent. More importantly, each of the concepts correlates 

significantly with performance on the proportional reasoning ability task, with the 

strongest correlations being observed for the notions “Double” and “Three more”. 

The question then remains whether these correlations with the scores on the 

proportional reasoning ability task would persist when controlled for children’s SES. 

Table 3 gives an overview of the partial correlations for each concept, controlling 

for SES.  

 1 2 3 4 5 6 

1.Proportional reasoning -- .183** .365** .235** .110* .336** 

2. Fair  -- .139* .108* .037 .080 

3. Double   -- .320** .168** .272** 

4. Half    -- .066 .141** 

5. Three times more     -- -.068 

6. Three more      -- 

* Note * p < 0.05, ** p < 0.01.     

Table 2. Correlation matrix for the vocabulary task and the proportional reasoning ability task  
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Fair Double Half Three times more Three more 

.117** .314** .190** .087 .280** 

* Note * p < 0.05, ** p < 0.01.  
Table 3. Partial correlations between the score on the proportional reasoning ability 

task and the scores on each concept of the vocabulary task, taking into account SES 

Although all partial correlations are lower than the correlations reported in Table 2, 

indicating that children’s SES indeed plays a role in explaining the link between 

proportionality-related vocabulary and proportional reasoning ability, all notions – 

except for “Three times more” – still significantly correlate with proportional 

reasoning ability. 

CONCLUSIONS AND DISCUSSION 

Proportional reasoning is a pivotal concept in elementary mathematics, crucial for 

more advanced mathematical skills, but hard to apprehend for children (Resnick & 

Singer, 1993). More insight into early predictors of later proportional reasoning 

might be useful to guide early interventions.  

Theoretical and empirical research indicates that language - general as well as 

specifically related to the mathematical concept at stake - is of major importance for 

mathematical thinking and learning (e.g., Abedi & Lord, 2001; Kleemans et al., 

2011; LeFevre et al., 2010; McClelland et al., 2007; Purpura & Reid, 2016; Seethaler 

et al., 2011; van der Walt, 2009; Zhang et al., 2017). The present study, was the first 

to explicitly investigate the association between vocabulary that is specific to 

proportional situations, on the one hand, and children’s ability to reason about 

proportional situations, on the other hand. The study was conducted in a large 

sample, and investigated this relationship longitudinally, by measuring the 

understanding of the vocabulary in the first grade of elementary school and the 

proportional reasoning ability in the second year.  

We observed that each of the five concepts that was involved in the vocabulary task 

was indeed significantly correlated with proportional reasoning ability. We 

additionally tested whether this correlation would persist after controlling for 

children’s SES, which was indeed the case for 4 out of 5 concepts. In line with 

previous research (e.g., Abedi & Lord, 2001; Purpura, 2019), we found confirmation 

of the fact that SES is involved in the relation between children’s proportionality-

related vocabulary and reasoning ability, but even when controlling for this variable 

a significant correlation persisted. 

In contrast to previous research, our study did not involve a general language or 

vocabulary test, but focused on the specific vocabulary that is involved in the 

mathematical task at hand. This was done in line with recent calls in the literature 

(Purpura & Reid, 2016; Purpura et al., 2017). While general language ability is of 

course important in children’s mathematical development, our study may provide 

more concrete departure points for intervention. It points at the central notions that 

children need to understand if one wants to involve them in reasoning about 

proportional situations at a young age. Of course, care must be taken in drawing 
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conclusions about the causal relation between proportionality-related vocabulary 

and reasoning ability, given that our study was only correlational in nature. Further 

research may look at the impact of interventions paying particular attention to the 

relevant vocabulary.  
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The tasks are fundamental elements in the process of teaching and learning of 

Mathematics and consequently, the design and selection of these. The present work 

focuses on characterizing a set of tasks proposed by teachers in training and focused 

on the derivative of a function at one point, as part of a broader investigation in 

which we address the meaning that teachers attribute to this topic. We employ the 

method of content analysis provided with a system of categories that allow us to 

analyze revealed elements of the meaning of the derivative as well as the cognitive 

demand encouraged for each of the tasks. We noticed a clear predominance of tasks 

with low cognitive demand in which the most involved content is the calculation of 

maxima and minima of a function. 

INTRODUCTION 

The relationship between the type of homework tasks that students do and the 

mathematics they learn has been a topic of research for many years (Breen & O'Shea, 

2010). Several studies claim that what students learn is highly determined by the 

tasks assigned by teachers (Sullivan, Clarke, & Clarke, 2013). Concretely, tasks 

transmit messages about what mathematics is and what it involves to know them, 

that is, its meaning. Moreover, it is considered that it is through the tasks that 

students are really given learning opportunities (Anthony & Walshaw, 2009). Some 

authors even think that posing tasks that invite the student to think for himself is the 

main stimulus for learning, above any other action in the classroom, (Sullivan, 

Clarke and Clarke, 2013). Hence, the design and selection of tasks are essential for 

effective teaching (Watson et al., 2014). 

Due to its relevance, in recent years, there has been an increasing interest in 

addressing investigations about school tasks (e.g. Lithner, 2017; Bobis, et al., 2019). 

Other aspects also show its relevance: for example, in 2003, at the annual meeting 

of the international group for the Psychology of Mathematics Education (PME), the 

design and use of tasks were identified as the main topics of the research reports. As 

well, in 2008, the International Congress of Mathematical Education (ICME) 

organized a Topic Study Group (TSG), named Research and development in task 

design and analysis, and even some journals, such as the Journal of Mathematics 

Teacher Education (JMTE), have devoted a special issue to this topic. 

Therefore, we believe that teachers should be able to pose tasks that promote 

appropriate learning of their students (Lee, Lee, & Park, 2016). Both the design and 
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the selection of tasks are influenced by the teacher's goals, as well as by his 

knowledge and beliefs about mathematics (Sullivan, Clarke, & Clarke, 2013). 

Therefore, as part of a broader investigation in which we address the meaning of the 

derivative expressed by math teachers, we focus the present work on characterizing 

the derivative tasks proposed by teachers in training. In this way, not only we 

approach the future teachers' perception of the derivative, but also, we can also 

analyze the relevance of these tasks. 

BACKGROUND 

We understand ‘task’ in terms of Watson et al. (2014) “to mean a wider range of 

‘things to do’ than this, and include repetitive exercises, constructing objects, 

exemplifying definitions, solving single-stage and multi-stage problems, deciding 

between two possibilities, or carrying out an experiment or investigation” (p. 9-10). 

Indeed, a task is anything that a teacher uses to ask students to do something. 

Different models and approaches have been used for the analysis of mathematics 

tasks. One widely used has to do with the level of cognitive demand of the task, 

proposed by Stein, Grover, and Henningsen (1996), and used in many investigations 

(e.g., Cai, Moyer, Nie, & Wang, 2009; Tekkumru-Kisa, Stein, & Schunn, 2015). In 

our work we also consider the four levels of cognitive demand raised there. 

However, since our goal is also related to the meaning of the derivative for math 

teachers, we extend the analysis of the tasks with a set of categories proposed by 

Moreno and Ramírez (2016) which have been already used in Vargas, Fernández-

Plaza, and Ruiz-Hidalgo (2018). These categories can be organized in two groups: 

• Mathematical content and its meaning: considering the theoretical framework 

based on the meaning of a school mathematical concept developed by Rico 

(2013), we analyze some elements that make up the meaning of the derivative: 

the content, the representation systems, the transformation of representation 

systems that are requested, the context, the situation and the type of function 

involved. 

• Learning or cognitive aspects: regarding this aspect we analyze (a) the 

demand (Stein et al., 1996); and (b) the mathematical ability fostered by the 

task. 

METHOD 

We conduct qualitative research of descriptive nature, which was carried out with 

55 Mathematics teachers in training in Spain. At the time of data collection, they 

were studying for the University Master's Degree in Secondary Education at the 

University of Granada, intended for graduate students with different academic 

backgrounds (Mathematics, Engineering, Physics, among others) who wish to 

access to secondary teacher career. In this way, every considered future teacher has 

passed at least two Calculus courses in their training.  

A survey composed of three questions was used for the data collection. From the 

questions, we present here the one in which teachers in training were asked to 

propose a task that was resolved involving the derivative. Through a content 



Vargas, Fernández-Plaza, & Ruiz-Hidalgo 

PME 44 – 2021  4 - 187 

analysis, we proceeded to study each of the proposed questions according to each of 

the following categories. 

System of Categories 

In the group of Mathematics meanings, we considered the following categories: 

1. Content: the mathematical content addressed in each task. 

2. Representation systems: we pay attention to the different representation 

systems that appear in the statement of the task. These can be: verbal, graphic, 

numerical, symbolic and / or tabular. 

3. Types of transformations: under the line of representation systems and 

following Duval (2006), we analyze whether the proposed task encompasses in 

its resolution transformations within the same system (treatments) or requires 

translations from one system to another (conversion).  

4. Situation: we identify the PISA situation (OECD, 2016) in which the proposed 

tasks are presented: personal, occupational, societal, or scientific. 

5. Context: based on our theoretical framework, we take into account the different 

mathematical contexts or functions to which the derivative attends in each one 

of the tasks. 

From the group of cognitive aspects, we consider:  

1. Cognitive demand: To analyze this aspect we use the taxonomy of Stein et al. 

(1996), in which four types of tasks are considered, according to cognitive demand. 

The characterization of these can be seen in Table 1. 

Cognitive 

demand 

Description 

Memorization Regarding those tasks that ask the student to remember facts, rules 

or definitions. The answers imply an exact and memorized 

reproduction. No type of procedure is used. 

Procedures 

without 

connections 

The purpose of this kind of task is to apply some algorithm to solve 

a problem. It is more about applying than understanding. These tasks 

are characterized by not requiring explanations as well as there is no 

ambiguity about what to do and how to do it. 

Procedures 

with 

connections 

Although these tasks have a procedure to be solved, their intention 

goes beyond the process itself, trying to develop deeper levels of 

understanding about mathematical concepts and ideas. Its main 

feature is that they are not tasks that can be solved only by knowing 

the algorithm, but they require some extra effort. 

Doing 

Mathematics 

These are the tasks with the highest cognitive demand, since they 

require non-algorithmic thinking and the solution path is not 

predetermined. They require a true understanding of the concepts, 

processes, properties and the establishment of relationships among 

mathematics concepts. 

Table 1: Taxonomy of Stein et al. (1996) 
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2. Mathematical capability: We adopt the seven Fundamental Mathematical 

Capabilities from PISA framework (OECD, 2016): communication; mathematising; 

representation; reasoning and argument; devising strategies for solving problems; 

using symbolic, formal and technical language and operations; and using 

mathematical tools. 

RESULTS 

One out of the 55 participants did not write any task, other six teachers in training 

drew surfaces in which derivatives should be used, but they did not actually pose a 

task. Although they were only asked to write a task that was solved through the 

derivative, some of them posed two or three, so a total of 52 tasks were analyzed. 

At first glance, we detected that nine out of the 52 tasks have no solution as they 

were written, since either the necessary data were not presented, or the data were not 

consistent. Despite this, these nine tasks took part of the analysis, considering the 

intention with which they were posed. 

To exemplify, we show the analysis we carry out for the task proposed in Figure 1. 

  
Figure 1: Example of task posed 

The first step of the analysis was to identify optimization as the content that is 

addressed in the task (Figure 1). This task is contextualized in an occupational 

situation, in a context of applications of the derivative. Regarding the representation 

system, both verbal and symbolic are used, where the management required is a 

symbolic treatment of the given function. 

Regarding the demand of the task, the resolution of a plain problem is requested, in 

which there is already defined the function that models the situation and could even 

be solved without using the notion of derivative (notice the vertex of a quadratic 

function). Therefore, it could be solved using procedures without connections. In 

fact, students usually learn to solve automatically these types of tasks, without really 

needing the context to find the correct answer. Finally, the capacity that it fosters is 

classified as the use of operations and symbolic language. 

In the following, we show the results obtained after the analysis of the 52 tasks, for 

each of the categories considered.  

Regarding the mathematical content addressed in the tasks, problem solving 

predominated (26), mainly optimization, and particle speed and acceleration; 

followed by tasks in which it is determined the extremes values of a function and 

analyze its monotony (16).Other tasks also addressed: derivation rules (2), 
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differential equations (1), calculation of limits (2), tangent and normal lines (3); and 

others (2). We have included the category 'others' for those tasks that did not really 

address any content of the derivative, as is the case of a participant who stated: 

“Indicate the intervals of increasing and decreasing for the function shown [...]”. The 

solution does not require the notion of derivative. In this regard, seven out of the 52 

tasks that address relative extremes and monotony do by using quadratic functions, 

for instance 2( )f x x= , so that knowing the sketch of such a graph could determine 

the extrema without involving the notion of derivative. 

A plain function was involved in most tasks (in 33 tasks), mainly polynomials of 

grade 2 or 3. Four of the tasks slightly suggest more complex functions, and no 

specific function is proposed in the remaining 15 tasks, but in some cases the solver 

is who may determine the function modelling the situation to answer the task. 

The representation system used in the statement and the types of transformations 

that are requested of these can be seen in Table 2. The only representation systems 

that emerged were verbal and symbolic, or both. The management of representation 

systems mainly deals with a symbolic treatment. In the case of conversion, it refers 

in all cases to the translation from the verbal to the symbolic system. 

Representation system Types of transformations Frequency 

Symbolic Treatments 20 

Verbal Conversion 16 

Verbal y symbolic Treatments 16 

Table 2: Representation systems used in tasks and types of transformations 

Scientific situations predominate, specifically intra-mathematical situations. A half 

of the tasks analyzed were contextualized in a strictly mathematical situation (26), 

the second half were categorized in occupational situations (12), mainly issues of 

business benefits), physics (9, speed and acceleration of bodies), and personal (5). 

The context within which the tasks were proposed was mainly applied (29), followed 

by geometric (16) and a few within an algebraic-numerical context (7). 

An interesting aspect of the tasks is the cognitive demand of each of them. Table 3 

shows what is requested in the tasks and the related demand. 

Cognitive demand  Frequency 

Procedures without 

connections 

Direct Calculation 6 

Indirect Calculation 19 

Problem solving 15 

Procedures with 

connections 

Identifying 1 

Problem solving 11 

Table 3: Cognitive demand of the proposed tasks  
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We notice that the tasks mainly require procedures without connections to be solved. 

The only task of identification is not really about derivation. In the same way, the 

most of the 11 problems considered to have a higher level of demand (procedures 

with connections) correspond to tasks that had no solution. However, according to 

the intention of the proposal and the amount of data that would be required for its 

solution, the demand is different from others problems such as that shown in Figure 

1 that can be solved more mechanically. In addition, in these 11 problems the 

situation plays an important role, since the task must be interpreted in order to find 

a modelling function. 

In a similar way to the cognitive demand of each task, it is possible to analyze the 

mathematical capacity that each one of them promotes. The most encouraged 

capacity has to do with calculations and symbolic language (in 50 tasks), regardless 

of whether tasks are found in different contexts and situations. Since there are so 

many tasks in the form of contextualized problems, we can also say that the design 

of strategies to solve problems is promoted and in some of them, mathematising (11). 

DISCUSSION 

The goal of this work was to characterize tasks posed by teachers in training, for the 

topic of derivative. The analysis showed that the tasks proposed mainly addressed 

the content of finding maxima and minima, as well as problem solving. Although 

many future teachers submitted task in an applied context, the most of them were 

placed in mathematical situations. We also identified that the tasks were formulated 

using mainly verbal and symbolic representation systems, and what is requested is 

essentially a procedure without connections that only requires symbolic 

transformations (treatments).  

This is a noteworthy result since it has been found that tasks should lead to more 

rigorous ways of thinking. In fact, it has been determined that students learn best 

when they attend lesson in which they maintain a high level of cognitive demand 

(Kessler, Stein, & Shunn, 2015), i.e., the tasks proposed must demand a procedure 

with connections or doing Mathematics. However, we realize that teachers in 

training essentially propose tasks that promote the handling of quick procedures. 

Thus, according to Sangwin (2003), it is clear that routine tasks that solve without 

the use of superior skills predominate. We believe that, regardless of the context, for 

a task to be worthwhile, it must be interesting and provide a level of challenge that 

invites reflection and hard work (Cai, Moyer, Nie and Wang, 2009). Even though 

students prefer simple tasks, they consider that they learn more with demanding 

tasks (Sullivan, Clarke and Clarke, 2013).  

The Stein et al. 's (1996) claim about the tendency of the teacher to reduce the level 

of potential demand of the task is related to the result of this paper. Although an 

effort is made to contextualize the task, they are finally very simple problems that 

are solved by applying a routine procedure. Charalambous (2008) argues that a 

factor in this is the teacher knowledge. Also, we think the posing of tasks is also 
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related to the content is understood, i.e. to the meaning given to the notion of 

derivative. 

A synthesis of the tasks analyzed shows that the derivative is perceived as an 

algebraic tool to determine the extremes of a function. Certainly, this is a fairly 

limited view of what this concept encompasses. We believe that the results obtained 

can be used as input in the training of teachers in order to enrich the meaning of the 

concept of derivative, and that in this way teachers can in the future select and design 

varied tasks that enrich the meaning of this concept in their students. 
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INDIRECT LEARNING PROCESSES AS KEY VARIABLE IN 

EARLY MATHEMATICS LEARNING 

Anna-Marietha Vogler1 
1Goethe University Frankfurt am Main, Germany 

 

For children, the first mathematical learning does not only take place when they 

enter school. It is rather the preschool or the family context in which children have 

their first encounter with mathematics. The following contribution focuses on such 

early mathematics learning processes in German preschools (Kindergärten) and 

highlights especially the role so-called indirect learning, whereby mathematical 

content is not explicitly negotiated but implicitly involved within adult-child-

interactions and a kind of ‘learning over time’ takes place. It is pointed out that these 

indirect leaning processes are essential for fundamental mathematical learning. 

Therefore, two paradigmatic examples of situations with preschool teachers form 

the erStMaL-study (early Steps in Mathematics Learning) are interpretatively 

analyzed.  

INTRODUCTION 

There is no doubt that the development of mathematical thinking already takes place 

in early childhood and has many sensitive phases during this time (Sarama & 

Clements, 2009). However, it remains much discussed how, especially at this early 

age, the best possible support for first mathematical learning can be found. In 

Germany, in the centre of this discussion is above all the first institutional learning 

in kindergarten and the support of this learning by preschool teachers. Besides the 

early learning of mathematics at home with parents and siblings, the preschool is the 

first place where children encounter mathematics. Although Germany has 

established different ‘curricula’ for “Kindergärten” (meaning: preschool) and 

“Kindertagesstätten” (meaning: day care centres) for children 0 to 10 years old in 

each of its states since early 2000s, concerning mathematics, there is more or less 

concrete advice for preschool teachers regarding how to ‘teach’ different 

mathematical contents. Only co-constructive learning is picked out as a central 

theme for all contents in all these curricula. As in classroom learning, the question 

arises how direct and explicit support by preschool teachers should be, especially in 

mathematics. On the basis of a (co-)constructivist perspective on early mathematical 

learning in interaction, the following article takes a closer look at this question and 

highlights the role of so-called indirect learning processes (Bauersfeld, 1995, p. 281) 

as a possible 'key variable' of early mathematic learning and as a pivot element in 

the discussion presented above. 
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THEORETICAL BACKGROUND 

Early Mathematics Learning in Adult-child-interactions within Preschool 

Several studies could prove, that preschool improves children’s school readiness 

especially in Mathematics (Melhuish, Quinn, Sylva, Sammons, Siraj-Blatchford, & 

Taggart, 2010). While learning at home with parents and siblings is surely a 

formative learning context, learning in kindergarten is also an important factor for 

children’s learning biographies: it is the first time of institutional learning for young 

children and it, therefore, builds a crucial basis for future schooling (Claesens & 

Engel, 2013). From a (co-)constructivist perspective on early learning mathematics, 

the interactions between children and ‘more competent others’ (Chaiklin, 2003, p. 

41; Vygotsky, 1978), such as preschool teachers, are an important parameter. In such 

interactions (initial) learning processes take place when the children - with the 

support of the preschool teachers - participate increasingly autonomously in 

negotiating processes of the mathematical discourse. According to Bauersfeld 

(1988), for such an increase in autonomy it is necessary that existing “Domains of 

Subjective Experiences” (in the following called: DSE) of the child, which represent 

a context-bound knowledge that is activated to cope with situations, are changed or 

newly formed through processes of negotiation of meaning with other interactants 

or through interacting with materials. Increasing autonomy in the participation in 

mathematical discourse is thus conditioned by a (formally) mathematically oriented 

DSE-formation. Concerning the learning of mathematics, the children should, 

therefore, participate in interactions that can be characterized as ‘mathematically 

rich’ to develop mathematical meaning that is full of relations and outlives the 

situational context. 

Indirect Leaning Processes  

Especially in interactions in the kindergarten context, however, mathematics cannot 

necessarily be experienced and negotiated directly and immediately. On the one 

hand, this is due to the fact that mathematics “is, as knowledge of abstract relations, 

not directly accessible” (Steinbring, 2015, p. 281), on the other hand, it is due to the 

fact that the main focus of the interactants is initially on the effort to maintain the 

interaction (Krummheuer, 1997) and less on an explicit negotiation of elementary 

mathematical concepts (Vogler, 2020). Early mathematical negotiations can, 

therefore, be primarily concerned with more (informal) everyday topics, which are 

overlapping a mathematical content that can be interpreted - but does not have to be 

interpreted in order to participate in the interaction (Vogler, 2020). For mathematics, 

this conclusion seems to be obvious because, in some cases in mathematics, the 

concrete and every day meaning already contain the general and abstract 

mathematical meaning. The result is a “double-layer structure” (Vogler, 2020) where 

learners can participate on both levels of the interaction – the concrete situational 

and the abstract mathematical meaning. Bauersfeld (1995, p. 281) and Krummheuer 

(1997, p. 9) characterize these learning processes as “indirect learning”. Hence, the 

concrete meaning superimposes the abstract. However, successful mathematical 
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learning can be regarded as increasing participation on the (latent) abstract level of 

meaning – only, of course, when there is mathematical content contained on this 

level. According to Krummheuer (1997, p. 9) and Bruner (1990, p. 34), this is not 

explicitly negotiated but latently involved mathematical content, that underlies the 

informal interactive process, is called “plot”. While more competent members of a 

discourse know about the plot of a situation, the newcomers become familiar with 

it, while the participants within interactions that latently involve in this plot. So, they 

learn it actively over time. Whether a plot of a situation and its latent meaning is 

accessible for the learner depends on her or his existing or interactively acquired 

DSEs. Like Bauersfeld (1995) and Krummheuer (1997) consider this indirect 

learning as a 'key variable' for “fundamental learning” (Miller, 1986, p. 20–21; e.g. 

Steinbring, 2006, p. 194) in Mathematics. At this point, it remains questionable 

whether indirect learning processes afford all children’s development of (formal) 

mathematical DSE out of their possibly informal contextualization of the situation. 

This will be discussed in the following empirically substantiated based on analysed 

situations with preschool teachers in German kindergartens. 

METHODOLOGY AND METHOD 

Empirical Data – Mathematical Situations with Preschool Teachers 

The analyzed situations come from the empirical data of the erStMaL-study (early 

Steps in Mathematics Learning), whereby early mathematics learning is 

longitudinally researched. Therefore, 12 German kindergartens consisted of 37 

preschool teachers and 144 children were observed over an interval of three years. 

Besides, situations that are developed and realized by the research team, also self-

designed mathematical situations of preschool teachers from the five mathematical 

domains ‘Numbers and Quantitative Thinking’, ‘Geometry and Spatial Thinking’, 

‘Patterns and Algebraic Thinking’, ‘Measurement’ and ‘Data Analysis’ (e.g. Sarama 

& Clements, 2009) were observed. Two of the 37 mcompiled situations from the 

mathematical domain of Measurement, which are paradigmatic examples, are 

presented in the analysis. 

Methodology – Reconstruction of Indirect Learning Processes 

To analyze the indirect learning processes and the latent plot of the interactions, a 

two-step analysis is necessarily implemented. To carve out the explicit processes of 

negotiation of meaning and the included opportunities of the children to participate 

in this process, (1) the Analysis of Interaction in Mathematics Education is used (e.g. 

Krummheuer, 2002). For the not explicitly negotiated but latently involved 

meanings, an extension of this analysis is needed because interactional analyses 

mainly take situational processes into account which generate “taken as shared 

meanings” (Krummheuer, 2002; Vogler, 2020). Therefore, (2) the method is 

enlarged by elements from the objective hermeneutical approach as developed by 

Oevermann et al. (1979). This approach focuses on the “latent rules of the 

interactional system” that are characteristics of the indirect learning processes on 

which this paper is focused. Hence, the enlargement also provides the opportunity 
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to even reconstruct meanings that originate from individual “Domains of Subjective 

Experiences” (Bauersfeld, 1988). By this means, it is possible to reconstruct the 

‘hidden’ meaning of the interaction that originates from one of the participants of 

the interaction as well as the plot of a situation. For this purpose, “markers” within 

the interaction are taken into view. These markers are words, phrases, specific 

(diagrammatic) actions or gestures that are ‘produced’ by one participant to 

communicate and used by another to interpret the meaning of communication (e.g. 

Heller, 2015). In this way, the meanings can also be reconstructed by the researcher. 

COMPARATIVE EMPIRICAL ANALYSES 

With the help of the briefly described method of analysis, it is possible to confirm 

the theoretically developed assumption that early learning situations in kindergarten 

are characterised by interactions in which the learning processes can be described as 

indirect. In these situations, sense structures rich in elementary mathematics emerge 

initially on a level of meaning that can be described empirical hermeneutically as 

latent. What is negotiated are rather everyday meanings which overlap latent 

mathematically rich attributions of meaning. It is remarkable in the comparison of 

different situations with different preschool teachers that in some situations the 

previously latent mathematical meanings are manifested by the children in the 

course of time, while in other situations these manifestations are realized by the 

teachers. 

Situation 1 – “Which are belonging together?” 

One of the situations in which the children manifests latent mathematical meanings 

is described in Vogler (2020). In this situation, four children from a kindergarten in 

Germany (Hannah (3.3 years), Michael (3.7 years), Bettina (4.7 years) and Martha 

(5.3 years)) and their preschool teacher Nicola interact with materials on a carpet. 

The materials which are used include two green paper circles with different 

diameters (0.5m and 1.0m) and a burlap sack which is filled with ten different yet 

pairwise similar objects - in each case in two different sizes. The pairwise similar 

objects are lying on the two paper circles (e.g. Figure 1).  

 
Figure 1: Arrangement of the objects on the paper circles 

At the beginning of the scene, the preschool teacher Nicola asks the children to find 

two things that belong together. She asks: “Which are belonging together?”. After a 

girl, Bettina, pointed at two building blocks, Nicola continues with her instructions. 

456 Nicola: Take a look [Bettina put two things together], here we make a line. 
457:   […pointing with her finger in a line right beside the paper circles 
   parallel to the edge of the carpet] 
459:   Start right here.  
460:   [pointing at one point near the edge of the carpet].  
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She instructs Bettina to locate the objects on the edge of the carpet where they are 

separated from the paper circles. After a short interplay, Bettina places the two pins 

on the place marked by Nicola and Nicola confirms the successful ending of the task 

and evaluates Bettina’s action in the following line #470: 

470 Nicola: Exactly! This way. 
471:  […adjusts the pins on the carpet the way that they are lying 

parallel to the edge of the carpet and the heads of the pins are 
abreast]. 

472:   Who wants to search for two things that belong together now?  

In line #471, the teacher corrects the arrangement by putting the nails side by side 

until the nails are parallel to each other with the carpet’s edge. She asks the kids who 

would like to find the next objects that belong together in #472. In the next scenes, 

the kids position all pairs of objects on the carpet in a line with the first two nails. 

The next scene follows this ‘routine’: 

583 Nicola: What else can we do with it? Does anybody have an idea? 
584 Martha: Compare. 
585 Nicola: Compare! How would you do that, Martha?  

In that scene, Nicola asks the children about the use of the two ‘lines’ of objects 

lying on the carpet. Martha specifies the use as ‘comparing’ #584. After this scene, 

an interaction can be observed wherein Nicola asks for the way to compare and the 

girl astonishingly replies that one can see it because it is ‘beautiful’. The last 

utterances of the children in line #584, as well as the following interaction, can be 

seen as a manifestation of the latent mathematical plot of the situation: Two objects 

of similar shape and different size are building a pair and should be placed to 

visualize the exact geometrical difference in size in order to enable a direct 

mathematical comparison. Especially the ‘marker’ in line #598, provides evidence 

that there is this plot underlying the following interactional routine of putting all 

pairs of objects in a line on the carpet. On the surface, the situation 1 deal with is 

putting nails on a carpet, but, on the latent level of the interaction, the preschool 

teacher Nicola introduces an early concept of ‘size’ by directly comparing objects 

of equal shapes and different sizes (Vogler, 2020).  

Situation 2 – “Are these all the same building blocks?” 

While in situation 1 the children realize the manifestation of the plot, in the following 

situation (2), the preschool teacher (Doris) explicates the plot  herself. This situation 

also takes place in a Germen kindergarten with four children: Nina (4;3 years), 

Belina (4;8 years), Nuem (4;7 years), and Mario (4;2 years). The four children and 

Doris are sitting on a table at the beginning of the scene. Doris presents a wooden 

box with rectangular prisms to the children. The ‘blocks’ are all similar concerning 

the material and the color but only pairwise similar in size. The preschool teacher 

puts the box on the table (e.g. Figure 2).  
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 Figure 2: Illustration of the arrangement in Situation 2  

001 Doris: “What is in it?  
002 Nina: Building blocks     
003 Doris: Building blocks. Have a look!  
004:  [The wooden box with the wooden cuboids light tilting towards  

Mario and Nuem, then slightly tilting towards Nina].  

In the following she requested an answer for the question “Are these all the same 

building blocks?” and the children reply simultaneously. 
006 Nina: Yes  
007 Belina: Yes     
008 Doris: Yes? Have a look, Mario!  
010 Doris: Are these all the same?  

The contributions of Doris in line #008 and #010 is considered as an implicit 

rejection of Nina’s and Belina’s answer in lines #006 and #007. It can be interpreted 

that Doris focuses on the different sizes of the wooden cuboids, while the children 

may look at the informal categorization of the wooden cuboids as “building blocks” 

#002. After none of the children presents the adequate answer (“No”), Doris asks 

again, while holding a cube and a narrow cuboid in her hand: 

029 Doris: Look at that. What does that look like?  
030:  [Holding a wooden cube a little further up and moving it towards 

Nina].     
031 Belina: They do not look the same.  
032 Nina: Square and two corners. 

Although Nina's answer contains a distinguishing feature for the building blocks 

which can be classified as quite mathematically rich in its meaning, Doris also rejects 

this answer. Only much later the children answer a similarly asked question as in 

line #010 with “No” and Doris concludes: “They all look different! Various!” 

(#057). In doing so, the preschool teacher, Doris, is manifesting the latent plot of the 

situation.  

Comparison and Analytical Results  

In the comparison of the two situations, it can be carved out, that in the Situation 1, 

an increase in autonomy for most of the children can be observed because the 

interaction is based on a homogeneous, mathematically rich plot that is a kind of 

"ostinato" (Vogler, 2020) of the manifest negotiation. In addition, at the manifest 

level of interaction in this situation, a routine of action can be reconstructed in which 

the latent structures of meaning endure and are in turn present as latent 

argumentation routines - here, following Krummheuer (1997), one can speak of 

double formatting of the interaction. This structure seems to enable the children to 

first 'bite down' on the everyday manifest level of interaction, in order to then 

gradually participate in the latent sense structures on the basis of this (informal-level) 
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participation (Vogler, 2019). In this way, the children seem to succeed in making the 

transition from an everyday contextualization of the situation to a formal 

mathematical one. This can be identified based on their contextualization (e.g. line 

#584). In Situations 2 in which the preschool teacher, in turn, explicates the initially 

latent mathematical plot, this transition does not seem to succeed for the children. 

Obviously, the informal attribution of the cuboids as building blocks does not change 

among the children in the course of time. Sometimes this is also because of the 

contributions that do not correspond to the 'desired' plots of the teachers are rejected 

(see interaction from #029 to #032). In such situation, the patterns of interaction 

resemble a question-developing (classroom) conversation. 

CONCLUSION 

The analysis outlined here give a first impression of how central indirect learning 

processes seem to be in the field of early mathematical learning and how important 

and indispensable they are for fundamental learning in their interactional form as 

'double formatting'. For, even though it is quite possible that a learning process 

emerges from interaction patterns such as a question-and-answer conversation 

through explications, the routinization and the 'indirect' seems to be of particular 

importance for the 'first' and fundamental learning of mathematical contexts. This 

form of learning seems, from the perspective of the outlined results, to be almost 

inevitable to enable sustainable mathematical meaning on the part of the children. 

The analysis suggests that the increasing autonomy of children in mathematical 

content stems from the fact that the interaction between the existing informal DSEs 

and the formal mathematical experience of the situation itself is linked through a 

routine. It is not only the transition does succeed, but also a certain network of DSEs 

develops. In the comparison of the two situations, it can be assumed that an 

explication does not necessarily lead to such networking of the child's DSEs if they 

are realized by the preschool teachers and not by the children themselves. Indirect 

learning, therefore, seems to be a key variable for sustainable and networked 

learning of mathematical content. This also corresponds to the idea of mathematical 

learning as an enculturation process.  

Notes 

1. In the transcribed sequence all specialities of the spoken language (mistakes, grammar 

etc.) are mentioned in the translation of the transcribed sequence.  Pauses within the speech 

are coded by a dot for every second in round brackets. 

2. It can be assumed that Nina takes the spatial expansion of the cuboids into account and 

calls the cuboid with the smaller spatial expansion in one direction a “two corners”, while 

she calls the cube a square (literally translated from German into English: “four corners”). 

The new word is thus based on the German term for square. 
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This paper aims to propose a model of specialized fractions division knowledge 

(SFDK). The model is drawn from specialized content knowledge (SCK) subdomain 

(Ball et al., 2008) and a synthesis of prior related works which examine the natures 

of prospective primary teachers’ (PTs) specialized knowledge on fractions division. 

With respect to preceding relevant studies, the proposed model is more 

comprehensive since it fully considers translating across representations and 

different conceptualizations of fractions division. Moreover, it has double functions; 

to examine and develop PTs' SFDK in the teacher education program.      

INTRODUCTION 

Having a robust understanding of fractions division (FD) is a major challenge for 

PTs since, unlike other primary mathematics topics, its characteristics are 

problematic (Prediger, 2006; Ma, 2010). Researches in the last decades (e.g., Simon, 

1993; Li & Kulm, 2008; Olanoff, Lo, & Tobias, 2014) reveal that a multitude of PTs 

have not fulfilled that challenge. For example, when PTs were asked to create a word 

problem of the division with fractions, most of them either presented fraction 

multiplication problem or not able at all to come with the answers (Simon, 1993). 

Studies, with prior (e.g., Jansen & Hohensee, 2016) and after instruction design (e.g., 

Adu-Gyamfi et al., 2019) unravel quite similar results regarding the low 

achievement of PTs' specialized knowledge on the topic.    

To help prospective teachers develop such kind of knowledge through a well-

prepared design of instructions in the teacher education courses, the information on 

the nature of their knowledge on fractions division is required (Lo & Luo, 2012; 

Jansen & Hohensee, 2016). Similarly, that information is vital to examine the 

effectivity of an instructional design which aims to develop PTs’ SFDK. Thus, in 

order to thoroughly understand such knowledge, a model is definitely needed. This 

paper attempts to address that need by proposing a model of specialized fractions 

division knowledge.  

PRIOR STUDIES ON SFDK 

Olanoff, Lo, and Tobias (2014) extensively reviewed a number of studies which 

focus on mathematical knowledge for teaching fractions from pre-1998 to 2013. 

Several studies included in the review (e.g., Tirosh & Graeber, 1990; Rizvi, 2004; 

McAllister & Beaver, 2012; Lo and Luo, 2012) examined the participants’ SFDK 

through tasks which ask them to (1) write words problems from a given number 
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sentences or otherwise, and (2) use pictorial representations to solve word problems. 

However, the researchers were not concerned about the different conceptualizations 

of fractions division. For instance, Lo and Luo (2012) examined PTs’ specialized 

fractions division knowledge using a task that asks the subjects to write a word 

problem which represents 8 2/3 ÷ 1/4 = ? and use drawing to solve it. Three 

representations are involved in solving the problem.  

Two related studies are found after Olanoff’s et al. (2014) review. Jansen and 

Hohensee (2016) examined the nature of PTs' conceptions of a partitive division 

with fractions prior to the instruction. Referring to the notion of productive 

conceptions (Llyoid & Wilson, 1998), they set two criteria of conceptions, namely 

connected and flexible.  Translating between representations and being aware that 

partitive fractions division generate unit rate are the indicators of connected 

conception.  Flexible conception is defined as becoming aware that division can 

involve partitioning, iterating, or both. The results of the study reveal that none of 

the participants has fully connected conceptions and flexible connection. Within the 

same objectives to examine PTs’ content knowledge and different context, the 

subjects have participated in the related fractions division course, Adu-Gyamfi et al. 

(2019) presented three tasks to examine PTs’ knowledge regarding 

conceptualizations and connections the subjects made among diagrammatic, verbal, 

and algebraic representations.  The study did not only cover SCK but also knowledge 

of content and students (Ball, Thames, & Phelps, 2008) since two items of the tasks 

present example of students’ works to be analysed, whether or not it is a correct 

solution to the first task.   

On the whole, aforementioned studies (e.g., Simon, 1993; Li & Kulm, 2008; 

McAllister & Beaver, 2012; Lo & Luo, 2012) mostly examined how prospective 

(elementary or middle school) teachers move from one representation to another, for 

example from symbolic (number sentences) to words or story problem and different 

interpretations of fractions division was not its concern. Jansen and Hohensee (2016) 

focus specifically on one conceptualization of fraction division (partitive) but 

provide a significant tool to examine specialized content knowledge on partitive 

fraction division. Adu-Gyamfi et al., (2019) studied the PTs' knowledge which refers 

to the conceptualizations of fraction division, and connections between verbal, 

diagrammatic, and algebraic representations but the focus were split to another 

subdomain of MKT. With respect to the researchers, I argue that the PTs’ specialized 

fraction division knowledge needs to be further comprehensively examined with 

respect to translating across representations used in solving fractions division 

problems and different conceptualization of fractions division.  

THEORETICAL REVIEW 

To strengthen the idea of the model, it is imperative to provide a theoretical review 

about representation systems of fraction division, different conceptualizations of 

fractions division, and SCK as follows. 
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Conceptualization of Fractions Division 

The literature agrees that fractions division has diverse conceptualizations 

(Sinicrope, Mick, & Kolb, 2002; Gregg & Gregg, 2007; Lamon, 2012). Sinicrope et 

al. (2002) conceptualize fractions division into five; measurement, partitive, unit 

rate, the inverse of an operator multiplication, and the inverse of a Cartesian product. 

Some authors (e.g., Gregg & Gregg, 2007; Lamon, 2012) include and use unit rate 

as part of the partitive division with fractions. The model adopts the five categories 

but includes only three common conceptualizations; measurement, partitive, and 

unit rate since they are mostly taught in the classrooms and presented in the textbook 

(Wahyu & Mahfudy, 2018).  

Measurement, partitive, and unit rate interpretations of FD have unique features 

(Gregg & Gregg, 2007; van de Walle, Karp, & Bay-Williams, 2012; Petit et al., 

2016; Jansen & Hohensee, 2016; Shin & Lee, 2018) with respect to components 

(dividend and divisor), typical situation (e.g., fair-sharing), solution process 

(iterating or partitioning), and developed algorithm. I argue that the ability to 

differentiate each conceptualization is definitely necessary for PTs. For example, 

when 3/4 ÷ 1/2 is given, two distinct story problems (measurement or unit rate) could 

be made, or when given two story problems, they could identify which one is for 2 

÷ 3/4 (measurement) and 3/4 ÷ 2 (partitive). After all, this process also associates 

with translating across representations and thus result in a comprehensive SFDK. 

Representations of Fractions Division 

External representations are visible productions such as diagrams, graphs, 

manipulatives, formulas and equations, or mathematical expressions which stand for 

mathematical ideas or relationships (Goldin, 2014). There are three common 

external representations widely used and referred to fractions division; concrete 

(e.g., fraction bars), semi-concrete (e.g., number lines), and abstract such as 

numerical, verbal or symbolic/algebraic (Adu-Gyamfi et al., 2019). These 

representations have been deploying to develop students’ understanding (Gregg & 

Gregg, 2007; Wahyu, Amin, & Lukito, 2017) and examine (prospective) teachers’ 

FD knowledge (Lo & Luo, 2012). Solving FD problems involves the translation 

between verbal representation (word problems), pictorial representations (number 

lines, area model, or sets of objects model), symbolic representation (number 

sentences), and algebraic representation which are depicted by the proposed model. 

In Adu-Gyamfi et al. (2019), algorithm algebraic representation is the algebraic 

representation of procedures to operate fractions division. In this model, the 

algebraic representation is the procedures and rationales behind it as well.    

One of the key aspects of SCK related to fraction divisions is understanding different 

representations (Ball et al., 2008). For example, when the PTs is asked to solve a 

story problem on fractions operations (verbal representations), they are certainly 

demanded to differentiate which operation fits the story problem, what number 

sentence (symbolic representation) stands for the problem, what appropriate models 

(number lines or area model) to construct, what algorithm (algebraic representations) 



Wahyu 

4 - 204  PME 44 - 2021 

to use and how it relates developed models, and finally all of which lead to correct 

solution. These processes denote linking across representations.  

Specialized Content Knowledge 

SCK is one of the knowledge components under subject matter knowledge that the 

teachers should possess. It is defined as mathematical knowledge and skill that is 

peculiar in teaching (Ball et al., 2008). Referring to the description of SCK presented 

by Ball et al. (2008), the competencies related to fractions division are (1) 

differentiating the conceptualization of FD, for example, the difference between 

measurement and partitive interpretation, (2) linking across various representations 

in solving FD problems, for instance, write a correct number sentence from a FD 

story problem, and (3) holding decompressed mathematical knowledge such as 

explaining why invert and multiply or equalize the denominators to divide fractions. 

The proposed model is built up by these points. The last point is placed in algebraic 

representation in the model.  

THE PROPOSED MODEL 

Drawing from aforementioned components of SCK, prior studies (Jansen & 

Hohensee, 2016; Adu-Gyamfi et al., 2019), and theoretical reviews on 

conceptualizations and representations of fractions division, this paper proposes a 

model of SFDK (Figure 1) which can be utilized to examine PTs’ SFDK and prepare 

an instructional design in a mathematics course to develop such knowledge. I 

introduce the term connected and flexible SFDK adapted from Jansen and Hohensee 

(2016).  Connected SFDK is PTs’ ability to translate across various representations, 

not only from verbal to pictorial representations or one direction translation. Flexible 

SFDK is PTs’ capability of differentiating measurement, partitive, and unit rate 

interpretation of fractions division which affect their works on the representations.  

The model represents two main components of SFDK, i.e., linking across 

representations and differentiating conceptualizations of fractions division. There 

are two parts of Figure 1. Firstly, diagram inside the large rectangle which denote 

the first component. Secondly, the rectangle itself that indicates the second 

component that ‘guide’ the representations. 'Guide' means that each 

conceptualization uniquely determines the process of moving from one 

representation to others. I call it unique since measurement FD has distinct features, 

e.g., repeated subtraction situation, compared to a fair-sharing situation (partitive 

FD) which affect the approach students or (prospective) teachers used to solve the 

FD problems. Two-direction arrow denotes the link of various representations 

meanwhile the one-direction dashed line denotes the process of solving FD 

problems. The solution process is included since it entails the way PTs develop 

decompressed mathematical knowledge as part of SCK.  

One example is presented to explicate how the model works. Given this word 

problem of measurement FD: Ana is making a flower decoration from 2 1/5 metres 

ribbon. Each decoration requires 3/5 metre ribbon. How many decorations can Ana 

make? 
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Generally, to solve the problem, PTs could begin by either drawing pictorial 

representations, for example, number lines or determining number sentence. Let us 

focus on the first starting point. The problem-context (verbal representation) is 

translated into number lines (pictorial representation). With the number line, PTs 

can find the number of decorations (model-based solutions) by partitioning and 

iterating it. The 3 2/3 decorations are the results of counting how many 3/5s are in 2 

1/5 (verbal representation ↔ pictorial representation) [1]. However, the process does 

not stop here since teachers will introduce fraction division to the students.  

 
Figure 1: A model of specialized fraction division knowledge 

PTs determine number sentence (symbolic representation, 2 1/5÷3/5), or also called 

as mathematics problem model (verbal representation ↔ symbolic representation) 

[2] which depart from episodic situation comprehension and problem model (Staub 

& Reusser, 1995). The number sentence is meaningful if PTs could relate it to the 

number line. Indeed, the number line represents 2 1/5÷3/5 (pictorial representation 

↔ symbolic representation) [3]. The result of 2 1/5÷3/5 could be determined by 

using the common-denominator algorithm. In this model, the algebraic 

representation is not only the algorithm or procedure to calculate the quotient as part 

of common content knowledge (Ball et al., 2008) but also justification why the 

procedure could be used to divide. The quotient 3 2/3 and the algorithm are 

meaningful if PTs could link them to the model-based solutions.  2 1/5÷3/5 = 3 2/3 

is similar to determining how many 3/5 metres ribbons are in 2 1/5 metres ribbon.  

It is the reason why 2 1/5 divided by 3/5 results in 3 2/3. The procedure, 2 1/5 ÷ 3/5 

= 11/5 ÷ 3/5 = 11 ÷ 3 = 3 2/3, refers to a number of partitions made in the number 

line for dividend directly divided by the numerator of divisor or number of iterations 

based on the divisor. It is the argument why common-denominator algorithm could 

be used (pictorial representation ↔ symbolic representation ↔ algebraic 
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representation ↔ pictorial representation) [4]. At last, the process [1] to [4] is also 

linked back to verbal representation and otherwise (linking across representations) [5].  

These processes, in my perspective, reflect connected SFDK. When PTs are able to 

translate across representations, from [1] to [5], no doubt that they will teach FD 

conceptually. I also argue that linking across the representations depends on the FD 

conceptualizations. If the problem is partitive FD, the way PTs do [3] is different 

from measurement since both conceptualizations have distinct situation; repeated 

subtraction and fair-sharing. Likewise, the unit rate conceptualization is not the same 

as partitive and measurement when PTs do [4] since it uses the invert-multiply 

algorithm. For this reason, moving across representations is not enough, and that is 

why differentiating each conceptualization flexible SFDK is needed.  

Using the model, one could design fraction division tasks to reveal PTs’ connected 

and flexible SFDK. Table 1 shows the exemplary tasks which I am using to test the 

model empirically. The tasks below can also be utilized to develop PTs' SFDK.  

No. Task 

1* Match the following word problems with the given number sentences! You may 

use one number sentence for more than one word problem. 

(1) Dwi has 4 kg of flour to be put in a box. One box contains 2/3 kg of flour, how 

many boxes does she need? 

(2)  … (7) 

Number sentences 

(a) 
3

4
÷

1

2
; (b) 

2

3
÷ 4 (c) 

1

2
÷

3

4
 ; (d) 1

2

3
÷

1

4
 ; (e) 4÷

2

3
 ; (f) 

3

4
×

1

2
 ; (g) 

1

4
÷ 1

2

3
 

2 Use only drawings or models to solve the word problems in number 1! Also, 

determine the quotient of its number sentence through an algorithm! 

3 After solving word problems and determine the quotient in number 2, do you get a 

similar answer for each pair? If NO, which one is correct?  If YES, how your 

models and algorithm are related? Explain your answer! 

4 Write a different word problem for 4 ÷
2

3
 ;  

2

3
÷ 4 ;  

3

4
÷

1

2
 ;  and  1

2

3
÷

1

4
! 

5 What is the difference in words problems for 4 ÷
2

3
  and  

2

3
÷ 4? Hint: Use 

contextual problems in number 1. You can compare it to your contextual 

problems in number 4. 

*There are seven word problems in number 1 

Table 1: Fraction division task to examine and develop PTs’ connected and flexible SFDK  
   

CONCLUSION 

This paper explicates the proposed model, which can be used to examine PTs' SFDK 

and entry point for instructional design to develop such knowledge. It represents a 

connected and flexible SFDK for which PTs should hold in order to teach fractions 

division conceptually. Prior studies (e.g., Rizvi, 2004; McAllister & Beaver, 2012; 

Lo and Luo, 2012; Jansen & Hohensee, 2016) which examine PTs’ specialized 
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content knowledge on the topic were limited to one direction of translating between 

representations and had not fully considered the different conceptualizations of 

fraction divisions. Nevertheless, SCK (Ball et al., 2008) includes three major 

components, namely (1) differentiating the conceptualization of FD, (2) linking 

across various representations, and (3) holding decompressed mathematical 

knowledge. The proposed model extends the foregoing works and covers all the 

components.   
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MATHEMATICAL ACTIVITY IN COLLABORATIVE 

LINEAR-ALGEBRA PROBLEM-SOLVING 
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1Technion - Israel Institute of Technology, Israel 

 

Collaborative problem-solving’s popularity for encouraging meaningful learning 

is increasing, both in general, and particularly in mathematics. However, little is 

known about the processes of collaborative learning in university-level 

mathematics. Hence, we studied the activity of a pair of students working on a 

linear-algebra problem. We analysed the mathematical routines they followed 

and found there was a commognitive conflict that impeded the effectiveness of the 

collaborative learning activity. We point to further research directions regarding 

the effectiveness of collaborative learning in university-level mathematics. 

THEORETICAL BACKGROUND 

In a university setting, collaborative learning, although less researched then in 

primary and secondary education settings, has been shown to promote positive social 

and academic outcomes (Cabrera et al., 2002). The benefits of collaborative learning 

cited in the literature include encouraging discovery, fostering student engagement, 

promoting student agency, advancing communication and collaboration skills, and 

fostering appreciation for many solution paths to a correct answer (Barron, 2000).  

Yet, along with this long list of potential advantages, some researchers have pointed 

to the problems that can exist in student collaboration. These include distracting 

social interactions between members (Barron, 2000) and ineffectual communication 

(Nilsson & Ryve, 2010; Sfard & Kieran, 2001). Moreover, due to the dearth of 

studies closely examining mathematical content in collaborative settings, especially 

in university mathematics, our understanding of the processes that elicit more 

effective or less effective collaborative learning is very preliminary. In this study, 

we aim to deepen this understanding of the processes by which student learning 

advances (or not) through peer interaction. For this, we adopt the commognitive 

perspective (Sfard, 2008), that has proven beneficial for looking at social interaction 

and mathematical learning concomitantly (Heyd-Metzuyanim & Sfard, 2012; Sfard 

& Kieran, 2001).     

According to the commognitive theory, mathematical learning is the process 

whereby learners develop and refine their participation in the mathematical 

discourse. This includes describing mathematical objects and their properties, 

manipulating these objects, and preforming routines that result in narratives about 

said objects, such as finding solutions to equations. Lavie, Steiner and Sfard (2019) 

define mathematical routines as a task and procedure pair used by a student to 

achieve a certain goal. These authors differentiate between the task situation, which 
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is the way that a task-poser (such as the teacher) defines the task and the task, which 

is the way the task performer (learner) interprets the task.  

Mathematical routines can be divided into object-level routines and meta-level 

routines (Sfard, 2008). Object-level routines deal with mathematical objects and how 

to manipulate them, such as using scalars to multiply vectors in ways that would 

cancel them out. Meta-level routines pertain to rules, usually implicit, of how to 

establish object-level narratives. For example, how to prove, demonstrate or 

convince another of a certain narrative. Incompatibilities between object-level 

narratives or routines are usually easily noticed by participants. It is not difficult to 

observe that someone claiming 2+2=4 is making a different claim than someone 

claiming 2+2=5. However, differing meta-rules are much more difficult to observe. 

Thus, when participants abide by different meta-rules, often a commognitive conflict 

ensues (Sfard, 2008). This is a situation where the differing narratives produced by 

the participants follow incommensurable rules or assumptions that are not 

acknowledged. 

Commognitive conflicts can hinder learning in a collaborative-learning setting, since 

the participants do not share criteria for deciding if a narrative should be endorsed 

(Sfard, 2009). Little is known about the mechanisms of the collaborative-learning 

process, and what is known is mostly in elementary and secondary schools. Learning 

university-level mathematics includes many meta-level shifts, due to the numerous 

new mathematical objects introduced, the rules governing their manipulation, and 

the meta-rules of formal proof that are unfamiliar to graduates of secondary school 

(Thoma & Nardi, 2018). Using the conceptual toolset described above, we closely 

examined the problem-solving process of a pair in a linear-algebra class. We ask: 

How could the learning process be described in terms of object-level and meta-

level routines? Was its effectiveness impacted by whether the communication was 

around object-level or meta-level rules?   

METHOD 

This study is part of a larger project aimed at designing and examining effective 

learner-centered instructional practices for university linear algebra courses. The 

project took place in a highly selective, engineering university. Discussion-based 

workshops were offered to the students (all were majoring in mathematics, computer 

engineering or electrical engineering). Workshops—including small group activities 

leading to a classroom discussion—were offered in addition to the regular lectures 

and tutorials.  

This paper focuses on Hadar and Yaniv, a pair that participated in the fourth meeting 

of the workshop. Preliminary analysis of all the recordings showed that the recording 

of this pair included a discussion in which some non-canonical narratives (wrong 

solutions) advanced to canonical (correct) ones. Moreover, there was no one partner 

ostensibly dominating the conversation. This seemingly productive, joint interaction 
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indicated that the collaboration might have been effective for the two students, and 

so we studied this interaction in more detail to examine the processes involved.  

We began the analysis by delineating the mathematical routines used by the pair. We 

established what task each student was solving from the narratives they offered, and 

incomplete statements were filled in, using prior and subsequent statements. Once 

the pair’s implementations of the problem-solving routine were established, we 

compared them to ascertain if they were mathematically aligned, that is, if they were 

consistent to an expert, external observer.  

We also examined the declarations (implicit or explicit) of agreement and 

disagreement during the pair’s discussion. The pair’s statements were thus classified 

by two measures: mathematical alignment and declared agreement. This allowed 

determining instances of effective communication (where declarations fit the 

mathematical alignment) and instances of ineffective communication (for example, 

declared agreement together with misalignment of mathematical narratives). 

The workshop that provided the context for this episode dealt with the topic of linear 

dependence. The workshop began with a reminder of the basic definitions and 

theorems of linear dependence that were presented in lectures and tutorials. The 

basic definition was written on the board: 

V is a vector space over F. The set {v1,…,vn} ⸦ V is linearly dependent over F if 

there exist α1,…αn ϵ F, not all zero, such that Σαivi = 0. Otherwise, the set is 

linearly independent. 

The students were then presented with a task to solve in small groups. The task 

consisted of assertations that the students were asked to determine whether each one 

always holds, never holds, or sometimes holds. If it sometimes holds, they were 

asked to provide an example for which it holds and an example for which it does not 

hold.   

FINDINGS 

The pair’s discussion about Assertation 2 started with tending to the task, as 

written on the worksheet. This was the task situation: 

Determine if the set {u1, u2, u3, u4} is linearly dependent or linearly 

independent, given that {u1, u2, u3} is a linearly dependent set. (Canonical 

answer: This assertation always holds.)  

Even though both Hadar and Yaniv read the same words from the same 

worksheet, our examination revealed that their individually interpreted tasks—

that is the task they each assigned to themselves—was different for each of them. 

Yaniv’s and Hadar’s task and procedure 

The following excerpt exemplifies Yaniv’s initial task and procedure. 

27  Yaniv: Yes. It (the assertation) is definitely true. 
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28 Hadar:  A linearly dependent set, u belongs to V, all these together ({u1, 
u2, u3, u4}) are linearly dependent…Are you sure it’s (the 
assertation) true? 

29 Yaniv:  If it ({u1, u2, u3}) is already linearly dependent, and we add 
another vector, this subset ({u1, u2, u3}) is still linearly 
dependent. 

In this excerpt, Yaniv’s task was to prove that the set {u1, u2, u3, u4} is linearly 

dependent. He claimed that the assertation is true [27], that is the set {u1, u2, u3, 

u4} is linearly dependent and he gave a justification for his claim [29]. This 

justification hinted at the procedure he used to determine if a set is linearly 

dependent. This procedure used a theorem proved in the lecture-that a set 

including a linearly dependent subset is a linearly dependent set. 

Hadar initially did not agree that the assertation was true; thus, her initial task 

differed from Yaniv's. Instead of proving that the assertation was true, her task 

was to show it was wrong. She chose to do so by proving that there exists a vector 

u4 such that the set {u1, u2, u3, u4} is linearly independent when the set {u1, u2, u3} 

is linearly dependent. To do this, Hadar suggested the set {(1,0,0,0), (2,0,0,0), 

(3,0,0,0), (0,1,0,0)} as a counter example to the assertation. To justify her claim, 

Hadar used an idiosyncratic procedure, where she explored the status of each 

vector in the set, determining whether it was "linearly dependent" or not. She did 

so by using the "canceling out" procedure. This was revealed in her statement, 

“this (the vector (0,1,0,0)), you cannot cancel out if you don’t put a zero for it” 

[46]. This idiosyncratic procedure examined whether the scalar used to "cancel 

out" the vector (0,1,0,0) is 0, and if so, determined that the vector (0,1,0,0) is a 

“linearly independent” vector.  

Hadar’s use of linear independence as a property of a single vector was of course 

non-canonical. In the canonical mathematical discourse, linear dependence is a 

property of a set of vectors, not of a single vector. A vector can only be linearly 

dependent with another vector or with a set of vectors. This meta-rule (that linear 

dependence is a property of sets of vectors) —as well as Hadar's divergence from 

it—remained implicit throughout the interaction between the two students and 

was not exposed or acknowledged by either of them. Each student’s tasks were 

thus different both in the procedures, as well as in their meta-rules. 

Commognitive conflict 

During the pair’s discussion there were instances where they declared agreement, 

but their mathematical meta-rules were not aligned. This happened, for example, 

in the following excerpt, where Hadar gave an example of a set that she 

considered a counter example to the linearly dependent set {u1, u2, u3, u4}: 

36  Hadar: Let’s take 3 (vectors) that are dependent with u1. Let’s say here 
is 2, 3 and 4 (probably meaning {(2,0,0,0), (3,0,0,0), (4,0,0,0)}). 

37 Yaniv:  So? That’s exactly what I am saying. If we add, doesn’t matter 
what we add…these 3 vectors will still be dependent.  
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38 Hadar:  The 3 (vectors) are (linearly dependent). But the fourth isn’t. So, 
the entire set is linearly independent.  

39 Yaniv:  Why?  

In this excerpt Hadar used the procedure of finding a linearly independent vector, 

utilizing the implied meta-rule of linear dependence as a property of vectors ("The 

fourth isn't" [38]).  Yaniv, in contrast, used the procedure of finding a linearly 

dependent subset ("doesn't matter what we add" [37]). This misalignment 

between the pair’s mathematical narratives, coupled by Yaniv declaring 

agreement, (“that’s exactly what I am saying” [37]), indicates the existence of a 

commognitive conflict in their discussion.  

This commognitive conflict was also apparent in other parts of the interaction, 

for example in the excerpt below, where Hadar justified her counter example. 

46  Hadar: And this (the linear combination) won’t be equal to zero, because 
this (u4), you cannot neutralize if you don’t put a zero for it.  

47 Yaniv:  Yes. But it doesn’t matter if it will be zero, if all the rest uh, if 
there is one…   

48 Hadar:  Then show me how.  

49 Yaniv:  No, that’s what I am saying. If there is at least one…uh…if there 
is one scalar. 

In this excerpt Yaniv and Hadar discussed their disagreement and attempted to 

resolve their differences. However, their discussion was focused on the object 

level, dealing with the scalars involved in the procedure for neutralizing vectors. 

Hadar claimed that the scalar multiplying u4 has to be zero, “you cannot neutralize 

(u4) if you don’t put a zero for it” [46]. Yaniv agreed to this, but argued that the 

set can still be linearly independent in this case, “it doesn’t matter if it will be 

zero” [47]. The crux of their disagreement—the implied meta—rule that linear 

dependence is a property of sets and not of single vectors-did not emerge.   

Whenever Hadar and Yaniv authored contrasting object-level narratives, these 

were noticed and discussed. For example, when Hadar claimed, “that makes a 

linearly independent set” [60], Yaniv answered, “No, a dependent set” [61]. 

Hadar then changed her object-level narrative to agree with Yaniv’s and corrected 

herself with a smile: “linearly dependent (set)” [62]. The disagreement about 

object-level narratives also compelled the pair to examine their narratives and 

attempt to justify them, thus advancing their justifications. For instance, when 

Hadar disagreed with Yaniv’s claim that a set was linearly dependent, asking 

“How is it linearly dependent?” [42] he attempted to justify this by saying, “But 

it doesn’t matter if it (the scalar multiplying u4) will be zero, if all the rest (aren’t)” 

[47]. This justification challenged Hadar’s narrative by suggesting that one, but 

not all, scalars multiplying vectors in a linearly dependent set can be zero. Hadar 

built on this object-level clarification by including a zero as a possible scalar in 
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her suggestion, “we should cancel them (u1, u2, u3) in a way that’s not zero, and 

this (u4) in a way that it (the coefficient of u4) is zero” [50].  

To conclude, Hadar and Yaniv authored conflicting narratives both at the object 

level and at the meta level. However, while the conflicting narratives at the object 

level were noticed and advanced the pair’s discussion, the misaligned, 

unacknowledged, meta-rules hindered their communication. This had 

implications for Hadar’s learning, as we show in the next subsection.  

The persistence of Hadar’s misaligned meta-rule 

In the pair’s discussion of Assertation 2, Hadar ultimately agreed that the set 

{(1,0,0,0), (2,0,0,0), (3,0,0,0), (0,1,0,0)} is a linearly dependent set, seemingly 

aligning her narratives with Yaniv’s canonical narratives. However, in the pair’s 

discussion of the next assertation, she still attributed linear dependency to single 

vectors. Hadar wondered during this discussion, “If the set is linearly dependent 

… can each vector be expressed as a linear combination of the others?” [216]. 

Hadar's wondering seems especially surprising given that she had just, minutes 

before, co-authored, together with Yaniv, an example of a set where one vector 

(0,1,0,0) is not a linear combination of the others.  

Hadar's confusion seems to be based on two notions in linear algebra that are 

interrelated—linear dependence and linear combinations. If a set, S = {v1,…,vn}, 

is a linearly dependent set, then one of its elements can be represented as a linear 

combination of the rest. Hadar questioned if each vector in a linearly dependent 

set can be written as a linear combination of the others. She was examining 

properties of single vectors when the property given pertained to a set. After some 

discussion, during which the non-canonical meta-rule was still not exposed, 

Hadar summed up by stating, “Bottom line, in a linearly dependent set each vector 

can be expressed as a linear combination of the others.” [242]  

To conclude, the discussion between Hadar and Yaniv was ineffective in 

dispelling the non-canonical meta-level rule about linear dependence that was 

repeatedly authored by Hadar. Even though Yaniv protested and consistently 

followed the canonical meta-rules, he was unable to capture the differences in 

their meta-rules. The only differences that seemed to be apparent to Hadar and 

Yaniv were those at the object level. As a result, Hadar’s non-canonical meta-

rule did not change, even though she authored, at times, canonical narratives that 

conflicted with this meta-rule and even though Yaniv challenged some of her 

narratives.  

DISCUSSION 

This paper describes an episode of collaborative mathematical learning in a 

university setting. Former studies have shown that collaborative-learning is not 

always effective and there can be factors that inhibit learning (Heyd-Metzuyanim 

& Schwarz, 2017; Sfard & Kieran, 2001). However, much of the obstacles 

discussed in these studies could be attributed to social issues, or motivation of 
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students to work together and listen to each other. In contrast, the interaction 

studied here was in a university setting, where the students were mature, 

motivated, chose to work together and genuinely listened to each other. 

Ostensibly, the mathematical activity in such a context should have been 

effective. However, we saw in this case that even in such optimal cases, student 

learning can be obstructed by commognitive conflicts. 

The pair’s narratives advanced on the object level, yet the need for a meta-level 

change in Hadar’s discourse was not fulfilled. Meta-level changes in discourse 

demand access to the new discourse, as well as awareness of the necessity for 

change (Ben-Zvi & Sfard, 2007). The canonical discourse was available to Hadar 

through Yaniv’s narratives. However, since the commognitive conflict between 

their narratives was unacknowledged, Hadar had no need to change her meta-

rules. In contrast, the object-level conflicts were acknowledged and discussed, 

and thus Hadar needed to revise her narratives. 

The results of this study are limited due to the focus on only one interaction. 

Nevertheless, such micro-scale examinations point to the need for researching 

collaborative learning in more detail, in particular in a university setting. While 

collaborative learning in university should be encouraged, lecturers and tutors 

should be aware of the difference between object-level and meta-level 

mathematical rules. A seemingly productive, collaborative discussion, while 

supporting object-level learning might not be conducive for meta-level learning. 

Future studies exploring how to expose or minimize these commognitive 

conflicts could support productive learning on all levels.  
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This study investigated the factors contributing to preservice teachers’ (PTs’) 

endorsement of technology-integrated mathematics classes. The sample included 91 

PTs at two normal universities in Taiwan. Five factors were identified through 

exploratory factor analysis. From highest to lowest degree of endorsement among 

the PTs, the factors were innovating instruction, developing interpersonal 21st-

century skills, developing self-directed learning skills, developing positive attitudes, 

and detailing explanations. The results also revealed that the factors’ influence on 

the PTs’ endorsements differed according to the teaching context. 

INTRODUCTION 

In the present digital age, technology inevitably influences the organizational and 

material resources for mathematics and shapes people’s thinking in mathematics 

training. Researchers have argued that students should acquire mathematical 

competences relevant to problem-centered approaches through the efficient use of 

technology in accordance with the prevalence of STEM education and 21st-century 

skills (Jankvist, Misfeldt, & Aguilar, 2019). In addition, teachers should include 

technology appropriately when teaching mathematics to aid students’ understanding 

and develop students’ technologically instrumented action schemes in mathematical 

competences (Voogt & Pareja, 2010). 

In accordance with international trends, Taiwan launched a new mathematics 

curriculum in 2019. The curriculum emphasizes teachers’ use of technology in class 

and the development of students’ mathematical competences in using technology in 

mathematics learning and problem solving. However, promoting the use of 

technology in mathematics in the teacher community is difficult. The emphasis on 

academic achievement rooted in Confucian heritage culture has resulted in 

examination-oriented and fast-paced mathematics instruction (Leung, 2001). Many 

teachers believe that using technology wastes time and jeopardizes examination 

preparation. 

In accordance with the new curriculum, teacher preparation institutions in Taiwan 

have begun training preservice teachers (PTs) to adapt to new mathematics teaching 

environments. PTs are crucial for successful educational reform; thus, their 

willingness to use technology in mathematics classes is critical. Therefore, an 

investigation of PTs’ endorsement of the functions that technology can provide in 

mathematics classes is beneficial for teacher educators to understand how PTs can 
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be encouraged to adopt technology. The present paper addresses the following 

research questions: 

RQ1. What factors contribute to PTs’ endorsement of technology integration in 
mathematics classes? 

RQ2. To what degree do PTs endorse the factors identified in RQ1? Does their 
degree of endorsement differ among various technology-integrated 
teaching contexts? 

RESEARCH METHOD 

Conceptual framework 

The framework for exploring PTs’ endorsement of technology integration in 

mathematics class included three dimensions: the help of technology on the 

cultivation of students’ mathematical literacy, the help of technology on pedagogy, 

and impact of technology (Figure 1). The items in each dimension were selected on 

the basis of a literature review. 

Cultivation of student mathematical literacy 

Researchers have referred to mathematical literacy by using various terms, such as 

mathematical competence or proficiency. Mathematical literacy is considered an 

essential skill that every future citizen must develop. Niss and Højgaard (2011) 

proposed a list of mathematical competences characterized by mathematical 

thinking rather than specific mathematical topics, such as reasoning or representing 

mathematically. In addition to the thought-oriented competence, content-oriented 

mathematical competence related to specific mathematical topics, such as factual 

knowledge, is also included mathematical literacy. Kilpatrick and colleagues (2001) 

indicated the importance of the affective facet of mathematical competence, such as 

productive disposition. To address problems in the current digital and rapidly 

changing age, PISA 2021 mathematics framework includes 21st-century skills 

(OECD, 2018). Technology integration has been identified as helpful in the 

cultivation of students’ mathematical literacy (Zbiek et al., 2007). 

Pedagogy 

Traditional mathematics classrooms are led by teachers and based on lectures, during 

which teachers act as initiators or controllers to convey knowledge to students 

(Philipsen et al., 2019). Researchers have promoted the transformation of teachers’ 

roles from initiators or controllers to facilitators and that of classroom environments 

from teacher led to student centered (Bray & Tangney, 2017). Teachers are expected 

to provide students with opportunities to flexibly inquire and engage in mathematics 

activities (Mishra & Koehler, 2006). Technology has the potential to increase 

instructional quality and facilitate students’ autonomous investigation, exploration, 

cooperation, and communication (Hsu, 2008). 

Impact of technology  

Puentedura (2006) introduced the SAMR hierarchical model to illustrate the effect 

of technology adoption on teaching and learning. The SAMR model comprises four 
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levels. In the substitution level, technology acts as a direct substitute for a traditional 

method without functional change (e.g., saving time spent writing on a board). In 

the augmentation level, technology acts as a substitute for an existing tool that offers 

functional improvements (e.g., increasing accuracy through the use of GeoGebra). 

In the modification level, technology facilitates a significant change in task design 

(e.g., focusing on student exploration). The redefinition level describes a situation 

in which new tasks that were previously inconceivable can be performed using 

technology (e.g., connecting different representations naturally). 

 

 

 

 

 

 

 

 

 

Figure 1: Conceptual framework of this study 
 

Instrument 

PTs’ endorsement of technology integration in mathematics classes was investigated 

using a questionnaire. Five vignettes of technology-integrated mathematics classes 

were created on the basis of content in mathematics textbooks. The vignettes 

described using calculators to develop students’ concepts of logarithms (Teaching 

context 1), using Desmos/GeoGebra to develop students’ understanding of 

characteristics of graphs of logarithmic functions (Teaching context 2), using 

Desmos/GeoGebra to help students understand the algorithm log𝑎b =
log 𝑏

log 𝑎
 

(Teaching context 3), using Excel to develop students’ mathematical competence in 

modeling with exponential functions (Teaching context 4), and using 

Desmos/GeoGebra to help students learn to use polar equations and curves to design 

figures (Teaching context 5). The educational goals of using technology ranged from 

developing basic ideas to cultivating higher-order mathematical competence. For 

each vignette, three sets of dichotomous items corresponding to the conceptual 

framework were designed. The first set, corresponding to the dimension of 

mathematics literacy, contained nine items (ML1–ML9). The prompt was “some 

teachers believe that the integration of technology helps achieving the following 

educational goals of mathematics learning; which help is the reason for why you like 

this technology-integrated math class? Check all that apply.” For example, for the 

item “understanding mathematical knowledge,” if a PT likes the technology-
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integrated mathematics class because the use of technology facilitates the 

development of student understanding of mathematical knowledge, then he/she can 

check the item. The second and third sets of items, corresponding to the pedagogy 

and technology impact dimensions, consisted of 16 (P1–P16) and 5 (TI1–TI5) items, 

respectively. Their prompts were similar to that for the first set. This study explored 

PTs’ endorsement of technology integration by using teaching vignettes rather than 

general questions without context because we aimed to observe the PTs’ true 

perceptions of concrete teaching situations instead of abstract or ideal concepts. 

Participants 

We surveyed 91 secondary mathematics PTs from two of Taiwan’s three normal 

universities. At the two universities, the teacher preparation programs consisted of 

two classes of third-year students and two classes of fourth-year students. Four 

classes of PTs (one class for each year at each university) participated in this study. 

Data analysis 

For RQ1, exploratory factor analysis (EFA) with oblique rotation was performed 

using MPlus to determine the factor structures of PTs’ endorsement of technology 

integration in mathematics classes. The exploratory and data-driven approach of 

EFA was suitable for this study because hypothesized structures were absent. In the 

analysis, the PTs’ responses for the five vignettes were aggregated to present their 

endorsement of the item content. For example, the degree to which a PT endorsed 

“understanding mathematical knowledge” was the number of times they check this 

item among the five vignettes. EFA was performed on the aggregated data. The 

model fit was evaluated using the comparative fit index (CFI), the Tucker–Lewis 

Index (TLI), root mean square error of approximation (RMSEA), and the 

standardized root mean square residual (SRMR). CFI ≥ 0.90, TLI ≥ 0.90, RMSEA 

≤ 0.08, and SRMR ≤ 0.05 indicated good fit (Kline, 2011).  

For RQ2, the average percentage of checking (POC) for each item and latent factor 

were computed for each teaching vignette, and the POCs of the five vignettes were 

averaged to obtain the overall endorsement for each item and latent factor. 

RESEARCH FINDINGS 

Factor structure (RQ1) 

The EFA of the 30 items yielded six factors, one of which included only two items 

related to teacher questioning in the teacher-led approach. The two items were 

deleted because Cronbach’s α for the factor is not high enough (0.724). EFA was re-

performed on the remaining 28 items and five factors were yielded (Table 1). The 

factors explained 60% of the total variance, and the model fit was good (CFI = 0.917, 

TLI = 0.907, RMSEA = 0.066, SRMR = 0.043). All the factor loadings were 

adequate (≥0.3).  

The first factor, innovating instruction to develop students’ mathematical 

competence, represented technology integration to change traditional mathematics 

classes by arranging student-centered activities, such as conjecture, exploration, and 
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experiments, and providing students with meaningful learning opportunities through 

teachers’ operation of technological tools to help students visualize concepts and 

connect representations naturally. Students thus efficiently develop mathematical 

competence in these learning experiences. Unlike the first factor, the second factor, 

detailing explanations to deepen students’ understanding, represented technology 

integration to support traditional teacher-led instruction, including improving their 

elaboration of mathematical ideas, increasing accuracy of graphs or calculations, and 

providing instant feedback. The goal of student learning is focused on content-

oriented competences. The third factor, developing students’ positive attitudes and 

valuation of math, is mainly relevant for the affective facet. This factor represented 

technology integration to develop students’ positive attitudes toward learning 

mathematics and recognition of the value of mathematics. The remaining two factors 

concerned the development of students’ higher-order competences. The fourth 

factor, developing students’ self-directed learning skills, represented technology 

integration to allow students to inquire problems, examine and provide evidence for 

solutions, and transfer their experiences to other situations. The fifth factor, 

developing students’ interpersonal 21st-century skills, represented technology 

integration to develop students’ communication skills required for the 21st century 

through discussion, cooperation, and presentation (OECD, 2018). The fourth factor 

reflected the perspective of radical constructivism, whereas the fifth factor reflected 

the perspective of social constructivism.  

PTs’ endorsement of factors of technology integration in math classes (RQ2) 

The average POCs of the five factors in descending order were 0.85 for innovating 

instruction (F1), 0.83 for developing interpersonal 21st-century skills (F5), 0.81 for 

developing self-directed learning skills (F4), 0.81 for developing positive attitudes 

(F3), and 0.76 for detailing explanations (F2). These high averages indicated that all 

five factors are reasons for PTs to endorse a technology-integrated mathematics 

class. The most influential factor was F1, indicating that technology transforms 

traditional classes into innovative student-centered classes. Technology’s functions 

to develop students’ higher-order competences (F4 and F5) and positive attitudes 

(F3) were also appreciated. Technology use to support traditional teacher-led 

teaching (F2) was least selected as a reason for endorsing a technology-integrated 

class. Several items (those with POCs > 0.90) were especially endorsed by the PTs. 

They endorsed using technology to allow students to do hands-on activities (P9), 

observe (TI3), and explore and experiment (P11). They cared about students’ 

visualization of concepts (ML3) and focus on thinking rather than repeated routine 

work (TI3), and they emphasized developing students’ mathematical competence 

(ML6) and 21st-century skills (ML7). 

Figure 2 presents the PTs’ degree of endorsement of each factor in the various 

teaching contexts. For all teaching contexts, innovative instruction (F1) ranked first 

or second, indicating its strong influence. The most critical reason for the PTs to 

endorse teaching context 4 was that the use of technology can develop students’ 
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communication skills. In the vignette of teaching context 4, a teacher works with 

students to determine a mathematical model for the growth of the African sacred ibis 

population. They use Excel to generate graphs and compare the obtained exponential 

model with actual data; subsequently, they discuss the meaning of mathematical 

modeling. The students are then asked to work in groups to model the popularity of 

search queries of the word “mathematics” using Excel. The two tasks are difficult 

and unfamiliar to the students. For this vignette, the PTs endorsed the ability of 

technology to promote cooperation and the presentation and exchange of 

mathematical ideas among the students. Teaching context 3 represented a brand new 

idea in the textbook. In the vignette, the teacher asks students to use 

Desmos/GeoGebra to graph the functions 𝑓1(𝑥) = log𝑎𝑥 and 𝑓2(𝑥) =
log𝑥

𝑙og𝑎
 to prove 

that log𝑎𝑥 =
log𝑥

𝑙og𝑎
. Compared with the formal and symbolic approach usually used 

in Taiwan, proving a concept through manipulation, observation, conjecture, and 

justification with graphs provides students with an opportunity to access knowledge 

and increases their willingness to engage in the learning process. This might explain 

why the PTs considered this use of technology to be helpful in developing students’ 

positive attitudes. The case in teaching context 1 is similar. 

 

Figure 2: PTs’ degree of endorsement of the factors in various teaching contexts. TC = 

teaching context. Details for each teaching context are presented in the Instrument section. 
 

 

No. Item description Loading POC 

F1: Innovating instruction to develop students’ mathematical competence 0.85 

ML6 Mathematical competence 0.633 0.96 

TI3 Students focus on observation and thinking 0.593 0.93 

P9 Students use manipulatives 0.843 0.92 

ML3 Concretize or visualize mathematical concepts 0.507 0.91 
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P11 Students explore or experiment 0.802 0.91 

TI5 Arrange previously inconceivable activities 0.314 0.85 

TI1 Increase efficiency and time effectiveness 0.395 0.84 

P10 Students conjecture 0.425 0.84 

TI4 Representations connect naturally 0.507 0.83 

P4 Teacher demonstrates or operates 0.458 0.73 

ML4 Mathematical procedures or skills 0.507 0.69 

F2: Detailing explanations to deepen students’ understanding 0.76 

TI2 Increase mathematical accuracy 0.395 0.87 

P16 Provide student instant mathematical feedback 0.361 0.78 

ML1 Understand mathematical knowledge 0.501 0.74 

P2 Teacher elaborates on ideas to deepen student 

understanding 

0.642 0.72 

P1 Teacher explains mathematical principles 0.762 0.70 

F3: Developing students’ positive attitudes and valuation of mathematics 0.81 

ML8 Positive mathematics learning attitudes 0.484 0.89 

ML9 Recognition of the value of mathematics 1.033 0.88 

P15 Assess student learning outcomes 0.445 0.75 

ML2 Abstract or generalize mathematical concepts 0.314 0.72 

F4: Developing students’ self-directed learning skills 0.81 

P13 Students provide evidence 0.979 0.86 

P12 Students examine 0.577 0.85 

ML5 Students learning transfer 0.301 0.81 

P14 Students inquire 0.557 0.72 

F5: Developing students’ interpersonal 21st-century skills 0.83 

ML7 21st-century skills 0.300 0.94 

P6 Students discuss 0.698 0.85 

P8 Students work in small groups 0.526 0.80 

P7 Students explain or present 0.421 0.73 

Note. Although the factor loading of ML9 is larger than 1, it can be retained in the 

factor because its residual variance is positive. Loading = factor loading. POC = 

percentage of checking. 

Table 1: EFA loadings and percentages of checking for endorsements 

CONCLUSION 

Five factors contributed to PTs’ endorsement of technology integration in 

mathematics classes, namely innovating instruction, developing interpersonal 21st-

century skills, developing self-directed learning skills, developing positive attitudes, 

and detailing explanations. Innovating instruction and detailing explanations were 

the most and least influential factors, respectively. In various teaching contexts, the 

factors influenced the PTs’ endorsement to different degrees. For difficult and 
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complicated tasks, the PTs appreciated how technology can help promote student 

cooperation and discussion. They also endorsed technology as providing an 

alternative approach to proving mathematical concepts instead of symbolic and 

formal approaches that increases student engagement. 
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Through secondary analysis of PISA data, the answer patterns of students who have 

completed compulsory education in Japan have been partially established. 

However, the answer patterns of Japanese primary school students have not yet been 

clarified. Therefore, in this study, we conducted a secondary analysis of TIMSS 2015 

data on mathematics for fourth-grade primary school students to determine their 

answer patterns. We performed an international comparative analysis involving 13 

countries and areas targeted in previous studies. The results show that Japanese 

primary school students had a peculiar answer pattern among the 13 countries and 

areas, and in particular, the calculations were found to be easier than for the 

students of other countries; the underlying reasons for this must be clarified in future 

research. 

INTRODUCTION 

Large-scale international educational assessments such as PISA and TIMSS are 

influential for mathematics education in Japan (e.g., Nakayasu, 2016; Volante, 

2015). PISA and TIMSS show the mathematics achievement level of Japanese 

students with international comparative scales (e.g., Mullis et al, 2016; OECD, 

2016). In addition, they provide data resources useful for conducting secondary 

analysis to gain new insight into students’ mathematics achievements. 

For example, Suzukawa et al. (2008) analysed PISA 2003 data to reveal the Japanese 

students’ answer patterns through comparison with data on 13 countries and areas: 

Australia, Canada, Finland, France, Germany, Hong Kong, Ireland, Italy, Japan, 

Korea, the Netherlands, New Zealand, and the United States. Their results indicate 

that Japanese students had peculiar answer patterns and were especially good at 

solving questions in the ‘educational’ context of the PISA framework. Conversely, 

questions in the ‘social’ context were difficult for them. Following this research, 

Watanabe (2019, 2020) analysed the data from PISA 2012 and PISA 2015 and 

identified that Japan still had a peculiar answer pattern overall among the same 13 

countries and areas. Further, they identified a partial change: item difficulty in the 

mathematical content ‘uncertainty and data’ decreased between PISA 2003 and 

PISA 2015. It was mentioned that this partial change was due to a 2008 revision in 

the Japanese mathematics curriculum to include topics related to statistics and 

probability. In summary, the previous studies reported on the answer pattern of 
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Japanese students and implied a relationship between their achievement and the 

revised mathematics curriculum in Japan. 

However, the previous studies analysed the PISA data and examined the answer 

patterns of 15-year-old students near the end of compulsory education. They did not 

focus on the answer patterns of students in the middle of compulsory education. 

Japan participates in the fourth- and eighth-grade mathematics surveys of TIMSS. 

Hence, TIMSS data (https://timssandpirls.bc.edu/timss2015/international-database/) 

can be used to examine the answer patterns of the students in the middle of 

compulsory education, especially focusing on the primary school level.  

Thus, this study aimed to reveal the answer patterns of Japanese primary school 

students through a secondary analysis of TIMSS 2015 fourth-grade mathematics 

data. The methods used by Suzukawa et al. (2008) and Watanabe (2019, 2020) were 

adopted to conduct the data analysis. Comparisons with data for the same 13 

countries and areas were conducted by applying item response theory (IRT).  

METHODS 

The present analysis targeted 74,411 fourth-grade students from 13 countries and 

areas. In TIMSS 2015, 14 different booklets were prepared, and 169 items were 

given to measure the achievement in mathematics learned in school. One item (item 

code M061239) was not applicable and hence excluded from scaling at the national 

level in France (Martin et al, 2016); this item was excluded from this analysis to 

ensure the precision of comparison. Therefore, 168 items were targeted. 

Additionally, 9 out of 168 items had partial credit, and answers with partial credit 

were treated as incorrect to avoid complicating the data analysis. A binary dataset (1 

for a correct answer and 0 for an incorrect answer, non-response, or missing answer) 

was built for this study. Incidentally, items that were not included in the booklets 

given to the students were regarded as NA (not available) during the statistical 

analysis that was performed using the statistical data analysis software R version 

3.6.1. 

This analysis applied the Rasch model of IRT, which is expressed as follows: 
1

( )
1 exp( ( ))

i

i

p
Da b




=
+ − −

  

where   is the latent trait of ability, ip  denotes the probability whether an answer to 

item i  is correct, ib  denotes the difficulty parameter of item i , and 1.0D =  and 

1.702a =  are constants. The item difficulty parameters 
ib  ( i =1, 2, …,168) of 168 

items were estimated for each country by using Rasch model and compared by 

equating to the scale of Japan with the mean-sigma method. More specifically, let 

the item difficulties of item i  for Japan and country k  ( k =1, 2, …, 13) be iJPNb  and 

ikb , respectively, and let the mean values of item difficulties be 
168

1

1
168JPN iJPNi

b b
=

=   

and 
168

1

1
168k iki

b b
=

=  , respectively. Then, the item difficulties equated to Japanese 
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scale are defined as * ( )ik ik JPN kb b b b= + − . As *

k JPNb b=  can be obtained, the mean value 

of equated item difficulties is combined into 
JPNb . Let the mean value of item i  in 13 

countries be 
13* *

1

1
13i ikk

b b
=

=  . Assuming a country with the difficulty *

ib  for each 

item, it is possible to set up a country with an average pattern of item difficulty from 

the 13 countries (hereinafter referred to as ‘average country’). Given the difference 

in item difficulty between each of the 13 countries and the average country, 
* *

ik ik id b b= − , we obtain 0k id d= = . In this manner, ikd is obtained as a standardised 

item difficulty for each country and item and can be used as an indicator of 

peculiarity of an answer pattern in comparison to the 13 countries. This analysis 

focuses on ikd to detect the answer pattern of 13 countries. The analysis mainly used 

the packages ‘ltm’ and ‘plink’ in the statistical data analysis software R version 3.6.1 

(Rizopoulos, 2018; Weeks, 2017). 

RESULTS 

Overall features of answer pattern in 13 countries 

Let the standard deviation of ikd  be 
168 2

1

1
168k iki

s d
=

=  , where ks is an indicator of 

differences in the overall level of item difficulty for the 13 countries. A larger ks  

indicates a more divergent answer pattern for the corresponding country. Table 1 

lists the value of ks  obtained in the present study and that obtained by Watanabe 

(2020) for PISA 2015; Figure 1 shows its scatter plot.  

Table 1 and Figure 1 indicate that Asian countries, represented by Korea, Japan, and 

Hong Kong, have divergent answer patterns in PISA 2015. Japan has a high ks  value 

Country TIMSS 2015 PISA 2015 

KOR 0.511 0.397 

HKG 0.509 0.278 

DEU 0.480 0.167 

NLD 0.471 0.235 

JPN 0.408 0.368 

FIN 0.331 0.259 

ITA 0.311 0.278 

NZL 0.306 0.148 

USA 0.298 0.214 

FRA 0.285 0.175 

IRL 0.281 0.219 

AUS 0.276 0.161 

CAN 0.215 0.133 

 Figure 1: Scatter plot of ks  
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in TIMSS 2015, less than those for Korea, Hong Kong, Germany, and the 

Netherlands. Thus, although not as pronounced as in PISA 2015, Japan can be 

judged to have a peculiar answer pattern among the 13 countries in TIMSS 2015. 

Relationship between Item Difficulty and Item Content 

The items in TIMSS 2015 are characterised by two aspects: content domains and 

cognitive domains. The characteristics of the Japanese answer pattern were 

examined by focusing on these two aspects. The content domains contain three types 

of content: numbers (89 items), geometric shapes and measures (56 items), and data 

display (23 items). The cognitive domains include three content areas: knowing (64 

items), applying (71 items), and reasoning (33 items). The details of these definitions 

are provided in Mullis et al. (2013, pp.13–27). The distribution of ikd  for each of 

these two aspects was checked using a boxplot. 

    
Figure 2: Boxplots for the content domains (GM stands for geometric shapes and measures) 
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Figure 3: Boxplots for the cognitive domains 
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Figures 2 and 3 show the boxplots of the content domains and cognitive domains, 

respectively. The boxplots in (a) of Figures 2 and 3 depict the distribution for all 13 
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countries, while those in (b) depict the distribution for Japan. The median values for 

content and cognitive domains across the 13 countries were close to 0.0. This feature 

can be observed for Japan, and there is not much difference in the length of the boxes 

between all 13 countries and Japan. In other words, determining the characteristics 

of Japanese answer patterns in the TIMSS 2015 framework is challenging. 

Analysis focused on released items 

In total, 76 out of 168 items were released to the public. The content of the released 

items was checked, and the 76 items were independently categorised into four types 

in this analysis: calculations (8 items), graphs (6 items), written problems (24 items), 

and others (38 items). The items categorised as calculations are listed in Table 2. 

Thus, the calculations were categorised as addition, subtraction, and division of 

integers and decimals, as well as solving simple equations. 

Item code Summary of item content 

M041087 Addition: 0.36 0.77+   

M041096 Finding the number that goes into : 87 23− =  

M041280 Division: 1362 32  

M041291 Subtraction: 428 176−  

M051017 Subtraction: 52093 4136−  

M051205 Subtraction: 4809 532−  

M061050 Finding the number that goes into : 6 15 10+ = +  

M061272 Addition: 43+5 

Table 2: The items of the type of calculations (Source: NIER, 2017) 

    
Figure 4: Boxplots for four types of released items (WP stands for written problems) 
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Figure 4 shows that the distribution of calculations for Japan is clearly lower than 

that for all 13 countries. This implies that Japanese students solve these items easily. 

As a characteristic of Japanese answer patterns was found in calculations, we 

examined the distribution of item difficulty in each country focusing on the items of 

calculations.  



Watanabe & Watanabe 

4 - 230  PME 44 - 2021 

Figure 5 shows the distribution of item difficulty for calculations for each country 

on a number line. The figure indicates that the distribution of item difficulty for 

Japan is mostly to the left among the 13 countries. Therefore, the items categorised 

as calculations are easy for Japanese students, and this is one of the characteristics 

of the answer pattern of Japanese primary school students. 

 
Figure 5: Distribution of item difficulty for calculations (where | is the median value) 

DISCUSSION 

We conducted a secondary analysis of TIMSS 2015 fourth-grade mathematics data 

to identify the characteristics of the answer pattern of Japanese primary school 

students. The standardised item difficulties ikd  were calculated, based on which an 

international comparative analysis was conducted. 

In summary, the following two points can be identified as the main findings. First, 

the overall answer pattern at the fourth-grade primary school level in Japan was 

found to be peculiar among the 13 countries but not as pronounced as PISA 2015 

(Table 1 and Figure 1). Second, although the TIMSS 2015 framework did not 

capture the details of answer patterns of Japanese students, we developed our own 

category focusing on the released items and found that the items categorised as 

calculations, which are listed in Table 2, were particularly easy for Japanese students 

(Figures 4 and 5). In particular, the second finding is a characteristic of a specific 

answer pattern at the primary school level in Japan. Conversely, items corresponding 

to the other types in our category, such as written problems, can be said to be 

relatively more difficult for Japanese students.  

This study was successful to some extent in capturing the answer patterns of 

Japanese students at the primary school level, similar to the studies performed by 

Suzukawa at el. (2008) and Watanabe (2019, 2020), who investigated PISA data and 

showed the answer patterns of Japanese students completing compulsory education. 
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However, the reason why the calculations were found to be easy and written 

problems were found to be relatively difficult for Japanese primary school students 

needs to be investigated in the future. 

CONCLUSION 

Through this study, we were able to establish the specific answer patterns of 

Japanese students at the fourth-grade primary school level. For example, calculations 

were found to be easy for Japanese students. However, this is a result obtained using 

a rough category that we developed independently based on the contents of the 

released items of TIMSS 2015. We believe that efforts are needed to refine this 

category and capture the characteristics of Japanese answer patterns in more detail; 

for example, it needs to be determined why the Japanese primary school students 

found the calculations to be easy. 

In addition, TIMSS is conducted every 4 years, and TIMSS data are being 

accumulated. In other words, it is possible to capture changes over time. In 

particular, the spread of the infectious disease COVID-19 has had a significant 

impact on schooling, forcing schools to close. It is presumed that this will have an 

impact on students’ actual achievements. To obtain a picture of this impact, we can 

analyse and contrast the TIMSS data before and after COVID-19. This study is 

expected to help in drawing a contrast between students’ achievements before and 

after COVID-19. Future work will include a refinement of our category to enhance 

the contrast with TIMSS 2023, which is scheduled to be implemented in 2023. 
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WHAT ARE PARENTAL CONTROLS AND HOW CAN THEY 

AFFECT CHILDREN’S MATHEMATICS ACHIEVEMENT? 

Daya Weerasinghe1 

Federation University Australia, Australia 

 

This paper focuses on the implementation of parental controls as a result of parental 

involvement in children’s mathematics education. The data used were responses 

from secondary school students (N=128) and their parents (N=85) who live in 

Melbourne, Australia. The data collection process involved online questionnaires 

and semi structured face-to-face interviews. A conceptual framework was designed 

to guide the study. Parental perceptions together with parental controls and 

students’ mathematics outcomes are discussed with respect to culture, gender, and 

year level. 

INTRODUCTION 

Parental involvement in their children’s education has captivated the attention of the 

world for some time. The impetus for this research and my motivation to conduct it 

emerged from readings as well as my life experiences as a student in Sri Lanka – an 

Asian country, a mathematics teacher, and an immigrant parent in Australia. 

Different parents may involve themselves differently with their children for 

numerous reasons. Within the same family, the parenting styles of mother and father 

may not be the same. Several decades of research have demonstrated that parental 

controls in children’s education are associated with a variety of positive and negative 

academic and motivational outcomes. Yet, there is no universal pattern of parent 

controls that results in higher achievement, nor do all forms of involvement enhance 

learning outcomes (Jeynes, 2011). This paper aims to elucidate the impact of 

parental involvement in mathematics education resulting in either positive or 

negative outcomes, which may be perceived by children as support or pressure. 

It is argued as well that parental controls may matter more for some children than 

for others. There are Asian parents, for example, who are often reported to spend 

time each day in monitoring the academic activities of their children (Fu & Markus, 

2014). In her controversial memoir entitled Battle hymn of the tiger mother, Chua 

(2011) depicted a Chinese model of parenting. The term “Tiger mother” self-

proclaimed by Chua is sometimes used to describe an authoritarian parenting style 

in which parents give their children few choices and seldom ask children for opinions 

(Baumrind, 1967). It is not only Chinese mothers who act as “Tiger mothers”, for 

example, it seems that some non-Chinese parents from other Asian countries such 

as Korea, Vietnam, India, Bangladesh, and Sri Lanka have similar mindsets. The 

well-prepared offspring of these “Tiger mothers” seem to be outperforming non-

Asian counterparts at schools where both Asian and non-Asian ethnic background 

students study together (Fu & Markus, 2014). 
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CONCEPTUAL FRAMEWORK 

While reviewing research on parental involvement factors and parenting styles, it 

was found that the theories and concepts employed in previous studies are inter-

related and parental involvement factors are directly or indirectly related to the 

academic achievement of the parents’ children. Because of such complexities in the 

concepts in literature, the methodology of this research involved a conceptual 

framework and a sequential explanatory mixed methods design to analyse and 

interpret the data gathered.  

In previous research, family rules at home, perceived parental control, and material 

deprivation were found to be both positive and negative predictors in relation to 

parental controls (Baxter, Bylund, Imes, & Routsong, 2009). Material deprivation 

experienced by the child at home is lack of material benefits that are considered to 

be basic necessities. With regard to parents and children in the study of this digital 

era, for the appositeness to the study, material deprivation was modified and used as 

digital deprivation which is defined as inaccessibility to social media and equipment 

such as computer games, television, and mobile phones due to non-availability 

within premises or prohibition by parents.  

In the conceptual framework, parental attributes such as attitudes, beliefs, 

expectations, aspirations, values, and academic standards are collectively considered 

as parental perceptions, which seem to be varied among parents and their cultures. 

These attributes may influence family rules, perceived parental control, and digital 

deprivation combined as parental control, and children’s perceptions in mathematics 

achievement. Children’s perceptions due to parental control factors may also be 

divided into positives and negatives depending on how these factors influence 

children. The possible connections among parental perceptions and control factors 

together with children’s achievement are displayed in the conceptual framework in 

Figure 1, which shows how these factors may be related. 
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Figure 1: Conceptual framework of parental perceptions, parental controls, and 

mathematics achievement of children 

Even though the conceptual framework guides and shapes the study, initial 

quantitative results may be inadequate by themselves to describe positive and 

negative outcomes of students. Therefore, qualitative data are used to explain 
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quantitative results. As a result, the study involves a mixed methods approach. The 

following are the formulated research questions. 

What are the relations among parents’ perceptions, parental controls, and children’s 

mathematics achievement in relation to culture, gender, and year level? How do 

parental controls affect mathematics achievement of children? 

METHOD 

Questions in both parent and student surveys were based on mathematics education 

of children. With the permission of education authorities and principals, the consent 

forms and invitation letters were sent to schools and hard copies of the student 

questionnaire were distributed to secondary students in three different schools in 

Melbourne, Australia without being selective regarding their ethnic background, 

gender, or secondary year level. The schools have a multicultural population of 

students. There were different groups or clusters of participants in this study. They 

were both male or female secondary students from Year 7 to Year 12 and their male 

or female parents from the sets of Asian and European backgrounds who live in 

Australia. Students were asked to take a copy of the parental questionnaire home and 

hand it back to their teacher with at least one of the parents’ responses. The length 

of each questionnaire was kept to 20 minutes approximately and they were similar. 

In addition, it was possible to get permission from school principals to upload the 

questionnaires and make them available on school websites. This was convenient 

and enabled students and parents to respond to the questionnaires whenever it suited 

them.  

After the survey using both student and parent questionnaires, from the participants 

who completed the survey I interviewed a purposefully selected sample of four 

families (parent and child separately) from each group of European–Australian and 

Asian–Australian backgrounds. Hence, there were sixteen interviews in total. 

Interviews were the main means of collecting qualitative data though it was of 

interest to use responses to the descriptive questions in the questionnaires too. The 

interviewed participants were also participants in the surveyed sample. This ensured 

comparison between similar categories of data from both qualitative and quantitative 

types (Creswell, 2014). Interview questions for parents and children were also 

similar. 

To analyse quantitative data, descriptive and statistical analysis techniques such as 

correlation, cross-tabulation, independent samples t-test, and analysis of variance 

(ANOVA) were used. Further, Confirmatory Factor Analysis (CFA) and structural 

equation modelling (SEM) were involved using the IBM SPSS AMOS Graphics 

[Version 22.0.0] software package. With the qualitative data, interviews were 

transcribed and content analysis techniques were employed using the QSR NVivo 

for Windows [Version 10.0.138.0]. Finally, the results of both quantitative and 

qualitative analyses were integrated together and interpretations were given to 

answer research questions. In the analysis, calculations were based on mean values, 

thus minimising the possible effects on results due to group differences in size. As 
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observed in Year 7 to Year 12 classrooms and experienced with those students, it 

was evident that the learning needs and methods differed with age. Hence, it was 

appropriate to split them as junior secondary and senior secondary students to reduce 

the threats to validity and reliability. As a result, the participants selected for 

interviews were senior secondary students and their parents. 

RESULTS 

In quantitative data analysis of parents’ data using CFA, final fit indices (n = 85, χ2 

value = 78.66, df = 67, p-value = .16, RMSEA = .05, GFI = .90, RMR = .04, and CFI 

= .97) have satisfied the requirements of an appropriate CFA model. Composite 

factor scores found using the model were involved in comparisons in Table 1 show 

that there is a small positive correlation between parental perceptions and parental 

controls and a large positive correlation between parental perceptions and children’s 

perceptions in mathematics achievement. Hence, an increase in parental perceptions 

results in an increase in both parental control and children’s perceptions. There is no 

significant relation between parental controls and children’s perceptions at the 0.05 

level. Children’s data show large, positive correlations between parental perceptions 

and children’s perceptions, parental perceptions and parental controls, and parental 

controls and children’s perceptions. This implies that children felt that they were 

controlled by their parents more than parents thought they controlled their children. 

 M SD Parental  

perceptions 

Parental 

controls 

Children’s 

perceptions 

Parental 

perceptions 
 1.924 .497 -  

 

Parental control  2.332 .555 .236 -  

Children’s 

perceptions 
 2.028 .542 .740 .108 

- 

Table 1: Correlations among parental perceptions, parental controls, and children’s 

perceptions in mathematics achievement  

Independent samples t-tests were used to compare differences between the two 

ethnic groups in relation to parental perceptions, parental control, and children’s 

perceptions using parents’ data. According to the Likert scale used a lower mean 

value means stronger agreement with the questions asked. Lower mean value in 

parental control of Asian–Australian parents in Table 2, indicated more control on 

their children. From the p - values, parental controls showed a significant difference 

between European–Australian and Asian–Australian participants at the 0.05 level. 

There was no significant difference between parental perceptions or children’s 

perceptions in the two groups.  
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  European–Australian 

(n =30)   

 Asian–Australian 

(n =55)     
   

 M SD  M SD t(83) p η2 

Parental 

perceptions 

1.833 .522  1.973 .480 -1.240 .219 .018 

Parental 

control 

2.560 .537  2.207 .529 2.918 .005 .093 

Children’s 

perceptions 

1.886 .558  2.106 .522 -1.818 .073 .038 

Table 2: Comparison of ethnic group differences in parental control  

The p - values in Table 3 for children’s data indicate a significant difference in parental 

control between the two gender groups but related parental perceptions and children’s 

perceptions do not show a significant difference. Further, parents’ data do not show a 

significant difference in any of the three factors. This implies that parents felt that there 

were no differences in gender when controlling children but their children felt the 

opposite. 

 Male (n = 57)  Female (n = 67)    

 M SD  M SD t(122) p η2 

Parental 

perceptions 

2.061 .589  1.993 .572 .657 .513 .005 

Parental 

control 

2.406 .628  2.660 .732 -2.060 .042 .049 

Children’s 

perceptions 

2.246 .566  2.206 .617 .372 .711 .002 

Table 3: Comparison of gender differences in parental control 

Using parents’ data, the output from one-way ANOVA across years levels with parental 

perceptions, parental controls, and children’s perceptions show a statistically significant 

difference among Year 7 to Year 12 groups at the p < 0.05 level as shown in Table 4. 

Although there are some fluctuations in mean values, there was an overall upward trend 

or an increase in each of the three factors. Likewise, children’s data show an upward 

trend and significant differences in all three factors across year levels. Higher mean 

values indicate that parental control as well as parents’ and children’s perceptions of 

control decreased with the increase in year level. 

 Sum of 

Squares 

Mean  

Square 

F(5, 79) p η2 

Parental 

perceptions 

Between Groups 3.228 .646 2.910 .018 .156 

Within Groups 17.525 .222    

Parental control 
Between Groups 4.367 .873 3.205 .011 .169 

Within Groups 21.530 .273    

Children’s 

perceptions 

Between Groups 4.739 .948 3.759 .004 .192 

Within Groups 19.921 .252    

Table 4: One-way ANOVA for parental control among year levels  
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While some of the families interviewed had rules which were not particularly strict, 

others reported quite strict rules. The different levels of rules within and among families 

and the ways of implementing such rules imply that there are more general rules for 

Asian–Australian children than for their European–Australian counterparts. 

Furthermore, some families seemed to have unspoken rules, which were expected to be 

followed by children every day as a standard within the family. By comparing general 

rules and unspoken rules within families, it was concluded that Asian–Australian 

families have stricter general rules than European–Australian families. Warnings are 

another type of parental involvement used to control children. However, Some parent–

child dyads did not seem to have rules because they did not require them. 

Both parents’ and children’s data showed that the activities involved in perceptions of 

control included: assertive involvement, reluctance to grant permission, keeping 

tracking, limiting socialisation, and punishment. Some parents become too involved in 

their children’s mathematics education, which seems to put pressure on parents and 

children, creating negative effects on both. Parents’ actions could be different when 

they grant permission to their children. After granting permission, some parents 

assigned another task for themselves. That is to keep track on the whereabouts of their 

children. However, keeping track was unnecessary for some students in this study, who 

were self-disciplined and able to take responsibility for their own actions. Some students 

gave priority to studies and limited socialising. In addition, some parents punished their 

children when they neglected their studies. It seems that the type of punishment could 

be different and varied among families. None of the participants reported hitting with a 

cane or stick as a punishment. 

At present, digital technology has become inseparable from human beings, but 

sometimes parents find it a disruption to the learning of their children. While the use of 

digital equipment can enhance teaching and learning mathematics, the addiction to such 

items seems to be a matter of concern for parents. Data gathered in this study showed 

that parents confiscate items, cut-off entertainment, or limit entertainment in order to 

push their children towards academic activities. However, there were some indulgent 

or permissive parents who did not have concerns about the excessive use of technology. 

Hence, they did not restrict their children’s interests in digital devices. Some parents 

would limit entertainment to control their children but it seems that further action was 

regarded as necessary in some cases. Confiscating digital equipment is one such 

parental action as mentioned by participants.  

CONCLUSION 

Results indicated a strong and positive espousal of parental controls in both parents’ 

and children’s perceptions. Hence, it can be concluded that an increase of parental 

perceptions such as attitudes, beliefs, expectations, aspirations, values, and academic 

standards in mathematics education and controlling their children would cause an 

increase in children’s positive or negative perceptions in mathematics achievement. 

However, when parental aspirations exceeded their children’s expectations (Rutherford, 

2015) children seemed to have a high level of anxiety, emotional and behavioural 
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difficulties, and lower wellbeing due to perceived pressure, as seen in the interview 

data. Parental over-aspiration can be detrimental for children’s achievement as 

described by Murayama, Pekrun, Suzuki, Marsh, and Lichtenfeld (2016). Hence, a key 

implication resulting a positive outcome was the flexibility of parental perceptions, so 

that parents do not put pressure on children when the latter are seeking to achieve goals. 

Willingness to change or compromise in parenting was evident in some of the 

interviews in this study. The findings of this research provide insights on how parental 

controls can make a difference and why excessive involvement of parents is not always 

better for children. 

Both parents and children reported that the three parental control factors, family rules, 

perceived parental control, and digital deprivation, differed between the two cultural 

groups. One of the commonly offered explanations of the differences is based on people 

from different ethnic backgrounds having different perceptions regarding the parental 

role in children’s education (Wilder, 2014). The process of acculturation over the years, 

as explained by Sue and Okazaki (1990) can diminish these differences between ethnic 

groups. Further, it was found that there were no significant differences in the gender of 

parents when they were involved with children’s mathematics education. However, 

children thought that there were differences in gender when controlling children but 

parents did not see any difference. Parental perceptions on their involvement in 

mathematics education of their children and parental control were significantly different 

across secondary year levels. 

The current study, however, affirmed that when children were not doing what they were 

supposed to do with their studies, parents considered controlling children. As a 

consequence parents would limit their children’s entertainment by reducing TV time, 

limiting internet usage, or not allowing them to use other digital equipment for a certain 

period. If there were too many distractions via social media, parents tended to confiscate 

digital equipment to facilitate their children’s engagement in academic activities such 

as homework. However, some electronic equipment was needed for mathematics and it 

was impossible to confiscate such items. In this situation some parents implemented 

ground rules so that children were not able to use digital equipment or the internet after 

a given time at night. As corporal punishment or hitting with a cane was rare and did 

not seem to exist anymore the participants reported other types of punishment such as 

cutting off freedom, grounding, or forcing them to keep studying. Hence, it was clear 

that if children know their limits in everything they do and obey general rules, parents 

may not need to place any other restrictions on them or their activities. However, 

excessively high parental aspirations or unrealistically positive perceptions can lead to 

over-involvement, resulting in high levels of parental control and excessive pressure on 

children, which may increase the risk of negative outcomes (Murayama et al., 2016) 

such as being overwhelmed with worries, depression, and anxiety. As Blondal and 

Adalbjamardottir (2009) concluded, adolescents who experienced their parents as 

providers of warmth, trust, and respect while setting fair limits and demanding mature 

behaviour were more receptive to parental controls. The current study was also in line 
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with the self-determination theory (Deci & Ryan, 1987), which states that children’s 

innate needs for competence, autonomy, and relatedness are undermined when parents 

are intrusive and controlling. Nevertheless, an appropriate level of parental control is 

desirable. This study has been able to confirm that children are differentially responsive 

to how parents become involved and the benefits of such involvement depend on what 

children themselves bring to their interactions with parents. Importantly, higher parental 

perceptions can cause higher children’s perceptions regarding mathematics 

achievement and it is a two-way relationship. 
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What conceptions, besides the prevalent, part-of-whole conception, may underlie 

Chinese students’ solutions to fractional tasks? To address this question, we draw 

on a constructivist line of work in western countries that articulated conceptual 

progressions about fractions as measures (multiplicative relations). We analyze 

data from two lessons, co-taught by Chinese speaking and English speaking 

researcher- teachers, which were part of a classroom teaching experiment with 4th 

graders at a large, urban school in northeast China (N=44). Initially, their 

reasoning seemed rooted in a conception of fractions we distinguished from part-of-

whole, termed “Result of Dividing.” Later, they shifted to a conception that involves 

unit iteration. We discuss implications of these distinctions for theory building and 

for practice. 

INTRODUCTION 

Teaching and learning fractions continue to be a great challenge (Beckmann, 2019). 

Much research has been conducted to study, and promote, students’ fractional 

conceptions (Charalambous & Pitta-Pantazi, 2005; Steffe & Olive, 2010). One 

prevalent conception, fractions as part(s)-of-whole, has been pointed to as an 

impediment for deeper understanding and use of fractions (Tzur, 2019). Our work 

with Chinese students (and teachers) led us to make a subtle, novel distinction of a 

conception that we could not find in our scrutiny of the literature. In line with the 

international interest in Chinese students’ top-rate outcomes (Tonga et al., 2019), we 

address the question: What conceptions, besides the prevalent, part-of-whole 

conception, may underlie Chinese students’ solutions to fractional tasks? 

To illustrate the newly distinguished conception and issues related with it, we 

present (Figure 1) the three-phase problem used in a 4th grade class during one of the 

lessons analyzed in this study. Firstly (Figure 1a), the researcher-teacher presented 

students with a sequence of actions on the projected computer screen. He drew an 

unpartitioned (given) whole, then repeated one piece 7 times to show a 7-part whole 

equal in length to the given whole, colored the first part in blue, pulled out a copy of 

that blue part, and asked: What fraction is that single blue piece of the given whole? 

All students answered 1/7, reasoning it is equal to the blue part within the 7-part 

whole, which is also 1/7 of the given whole. Secondly (Figure 1b), he removed the 

7-part whole and asked the same question. This time, students could not figure out 

what fraction the blue part is of the whole. Thirdly (Figure 1c), he gave students a 
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prompt by copying the blue part (1/7) above the given whole and repeating it only 6 

times to produce another unit that is one part (1/7) short of the given whole. Students 

could still not solve the problem about the blue part below the given whole in spite 

of the fact it was the piece copied and repeated 6 times. What, we pondered (and 

invite the reader to ponder with us), could be the conception underlying their 

reasoning about the “same” unit fraction (1/7) in those three different appearances? 

And what affordances/limitations it bestows that differ from the part-of-whole or 

measure (multiplicative relations) conceptions? We address these issues in the 

Results section. 

  
Figure 1: Screens with different appearances of 1/7 of an unpartitioned whole 

CONSTRUCTIVIST CONCEPTUAL FRAMEWORK 

This study draws on Steffe’s (2010) mental action lens, which articulates partitioning 

and iterating as inversed operations underlying children’s reasoning about whole 

numbers and fractions. Partitioning refers to a mental action students use to conceive 

of a whole composed of equal parts while exhausting the whole. It results in equal-

size unit fractions (e.g., conceiving the unpartitioned whole in Figure 1a as made of 

7 equal parts, 1/7 of that whole). Iterating refers to an action by which a part can be 

iterated to produce the original whole or parts of that whole (e.g., the iterated whole 

in Figure 1a). Coordinating both operations into a single way of reasoning, termed 

splitting (Olive & Steffe, 2010) is a foundation for constructing multiplicative 

operations on fractions. 

Concerning multiplicative operations, researchers stressed that the prevalent part-of-

whole conception is deficient, as it hinders students’ understanding of fractions and 

related operations (Simon et al., 2018; Tzur, 1999). Instead, they argued for fostering 

a conception of fractions as multiplicative relations, or measurement. With such a 

conception, all a person would need to do for solving any of the tasks in Figure 1 

would be to determine the 1-to-7 relation between the blue part and the unpartitioned 

whole (e.g., reasoning why it would be iterated 7 times to fit within the whole, and 

thus the whole is 7 times as much as the part). Given a unit fraction (e.g., 1/7), the 

learner could also produce not only the 7/7 whole but also non-unit fractions (e.g., 

6/7, 8/7, 14/7).  

Adults might take for granted that a partitioned and an iterated whole are a one and 

the same entity. For students, however, coordinating those two operations is 

challenging (Steffe, 2010). In our example (Figure 1), if a child has not seen how the 

7-part iterated whole was produced she may only ‘see’ it as a whole equally 

partitioned into 7 parts. 

METHODS 

As part of a larger, cross-culture project1, we conducted a 6-lesson classroom 

teaching experiment (Cobb, 2000), two weeks apart, in a grade-4 classroom (N=44) 
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at a mid-size, urban school in northeast China. The larger project used theories and 

conceptual progressions developed in western countries to study Chinese elementary 

students’ mathematical reasoning. The second author, not speaking Chinese, was the 

lead teacher-researcher. The first and third authors (Chinese and English) were co-

investigators while also serving as real-time translators.  

Most fractional tasks were presented/solved using the JavaBars software 

(Biddlecomb, 1994). This software was developed along with teaching experiments 

(in the US) that articulated children’s fractional conceptions, using physical actions 

postulated to promote the desired mental actions (e.g., iteration, partitioning). As 

shown in Figure 1, in JavaBars one could produce bars of various lengths and colors, 

duplicate (using Copy) and iterate (using Repeat) any such bar as many times as 

desired, as well as partition any such bar into a desired number of equal pieces (using 

Parts and Break).  

For this paper, we collected and analyzed data from two lessons during the second 

week of the classroom teaching experiment. During the first week, the researcher-

teacher led work on tasks, both with paper strips and with JavaBars, that promoted 

students’ use of iteration to conceptualize unit and non-unit fractions as 

multiplicative relations (including proper and improper fractions). Two weeks later, 

we began a lesson with the goal for students to begin partitioning unit fractions. 

Their inability to solve the 3-phase task (Figures 1a-1b-1c) during the first lesson of 

the second week led the team to refocus on iteration, this time building on students’ 

available conception, namely, fractions as a result of dividing actions. We thus 

selected that lesson, and the following one, because they help comparing and 

contrasting that conception with the more advanced conception in which iteration is 

used along with partitioning. 

We analyzed data in three iterations. First, during the teaching experiment, we 

conducted ongoing analyses before and after each lesson. In each ongoing session 

we generated conjectures about students’ understanding (e.g., “result of dividing?”) 

and planned the following lesson. Second, the first author observed video records of 

the two lessons, jotted down logs of main events, and shared those logs with the 

team.  Third, the team identified key indicators of Chinese students’ fractional 

understanding, scrutinized and transcribed relevant video segments, and inferred 

student conceptions. 

RESULTS 

We analyze data that help distinguish two conceptions of fractions underlying 

solutions to fractional tasks by Chinese 4th graders. We believe the first —fraction 

as a result of dividing—is a novel, subtle distinction from part-of-whole. We realized 

the need to distinguish it during the first lesson, in which students could not solve 

the last two of the 3-phase problem (Figures 1b-1c). The second conception—

fraction as a multiplicative relation—has been a primary goal of our project, and 

particularly in the second lesson presented here, because our work with Chinese 

teachers and students indicated it was novel for them. Our analysis does not focus on 
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the change process or the teaching that promoted it but rather on its manifestation in 

the Chinese students. 

Conception of Fractions as Results of Dividing. 

We begin by analyzing the students’ work on the 3-phase problem (Figures 1a-1b-

1c). Two key aspects here are that (a) in all three figures the whole is not partitioned 

and (b) the blue piece in question is not a part of that whole. Thus, a person whose 

conception of fractions is limited to part-of-whole is not likely to successfully solve 

any of these tasks (see also Tzur, 2019). Our participants could solve the first task 

(Fig. 1a) but not the second or third (Figs. 1b-1c). We infer their solution to 1a is 

rooted in the following line of mental actions (reasoning): (a) the 7-part whole was 

produced through iterating the first piece and is equal to the unpartitioned (given) 

whole; (b) the given whole could be imagined (anticipated) as being partitioned 

similarly; (c) the first (blue) part on the iterated whole would then be equal to any of 

the parts resulting from the imaginary (mental) action of dividing the unpartitioned 

whole into 7 equal parts and is thus 1/7 of either the given or the iterated wholes; 

and (d) the pulled-out (blue) part in question is equal to the blue (hence any) part in 

the iterated whole and, by way of transitivity, is also 1/7 of the given whole. This 

line of mental actions constitutes a conception of fractions as results of equally 

partitioning a given whole. Unlike in part-of-whole, where the focus is on an idle 

state with all parts in a partitioned whole showing (and likely highlighting one of 

them), in fractions as results of dividing the focus is on the dynamic, mental actions 

yielding that state. While both conceptions involve a part and a whole, the latter 

supports mental processing leading from an unpartitioned whole to a part that may 

be embedded in or disembedded from the whole.  

Our participants’ inability to solve the other tasks indicated a critical limitation of 

this conception. For them to initiate the sequence of mental actions leading to 

determining the fractional size of a disembedded part – a partitioned whole equal in 

size to the given whole seems necessary. In our first task (Figure 1a), that partitioned 

whole was created by iterating one piece. However, our second task (Figure 1b) 

included no such partitioned whole (it was removed). The third task (Figure 1c) 

provided an image of an iterated whole that was not equal to the given whole, 

apparently requiring a prior mental action of (step) of imagining one more iteration 

of the same part. Combined, those three tasks highlight the nature of fractions as 

results of dividing actions: a part does not have to be in the whole, but a completed 

mental sequence of partitioning actions is needed to make sense of parts (embedded 

or disembedded) as fractions. Excerpt 1 below, from students’ solutions to a problem 

we presented at the beginning of the second lesson, further illustrates this limitation 

(S stands for student, R for researcher-teacher; students’ responses were translated 

to English). 
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Excerpt 1 
R: (Draws a bar on the computer screen, partitions is into 5 equal parts, colors each 

part, copies the partitioned whole and clears the marks, pulls out one 

(pink) piece from the partitioned whole (Figure 2a), breaks the 

partitioned whole and relocates each of the (1/5) colored parts on the 

screen (Figure 2b), erases those 5 parts (Figure 2c), and asks): What 

fraction of the [purple] unpartitioned whole is the pink part? 

      
Figure 2: Computer screenshot leading to the first task in the second lesson 

S1: The original whole was partitioned into 5 parts. The [purple] bar was not 

partitioned. However, R copied it from the original [whole]. So [this 

bar] could be partitioned into 5 parts equally. So, [the pink part] is 

one-fifth of the whole. 

R: Anyone who has a different explanation than S1? 

S2: Teacher R made an exact same copy of the purple piece. [It] could be partitioned 

into five parts. Four of them were erased, and the pink piece was left. 

So the pink piece is one-fifth of the purple bar. 

R: [Asks the class, after paraphrasing the explanations] Do you all agree with this? 

Thumbs up if you agree. [All students showed “thumbs up.”] 

Data in Excerpt 1 provided further evidence to our articulation of the conception of 

fractions as a result of dividing actions. The students all agreed that the result of 

quite a complex sequence of actions would be 1/5, because the part in question could 

have been imagined to be produced through partitioning the given whole into 5 equal 

parts. Having witnessed the steps of this conception as listed above allowed them to 

reason about the disembedded (pink) part as a fraction (1/5) of the unpartitioned 

whole. Again, we emphasize that such a conception affords what a part-of-whole 

conception would likely not – the pink piece is not part of (in) the given, 

unpartitioned whole.  

Possible Conception: Fractions as Multiplicative Relations. 

Having brought forth students’ conception of fractions as a result of dividing actions, 

the researcher-teacher turned to promoting their use of iteration to determine a 

relation between two units, one being the unpartitioned whole. We remind the reader 

that, in previous lessons, students have played a game involving iteration for 

estimating (then confirming) how many times a smaller unit would fit within the 

given whole. He thus told them to work in pairs, presented a new screen (Figure 3), 

emphasized the (purple) whole was never partitioned and will not be partitioned, the 

pink piece is not part of it, and asked them: Is the pink piece a fraction of the whole, 

and if so – what fraction? The video shows the vast majority of students began, from 

their position in the room, using their fingers to estimate the number of times the 

pink piece could be iterated to fit within the given whole (the answer is 9, so 1/9). 
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Students then shared various answers (1/7, 1/8, 1/9, 1/10, or 1/11), and the 

researcher-teacher asked for a few explanations.  

 

 

Figure 3: Screenshot of task leading to students’ use of iteration 

Excerpt 2 
R: How did you find one-eighth? Did you do this (moves his fingers)? What did 

you do?  

S3: (Shows the action of moving fingers.)  

R: Could you show to all of us on the screen?  

S3: (Goes to the screen and uses her thumb and forefinger to measure the length of 

the pink piece, then, keeping that measure, moves both fingers along 

the purple bar while counting the number of repeats (ending with 8).  

R: Ok. One thing I heard … was a way of thinking. That’s what really matters in 

math. It may not be exactly eight, or nine, or ten. [It is] your FangFa 

(Chinese for method). How many times does it fit in the whole? I 

don’t need parts; I don’t need to divide a whole. I just need to find 

how many times it fits in the whole. That’s what I heard you [S3] 

saying. It fits 8 times, so 1/8. 

R: (to S4) You said it is 1/11, right? How did you get 1/11? What did you do?  

S4: (Uses his thumb and forefinger to show a small length) I just counted it one-by-

one like this (moving fingers along the purple bar), until I got to the 

end.   

R: (To the class) Do you think what S3 and S4 said is the FangFa? They got different 

answers ... Thumbs up if you think they did it in the same way. 

Thumbs up if you did it in the same way. [All students give thumbs 

up to both questions.] 

Excerpt 2 provides a glimpse into students’ use of a conception of fractions that 

includes unit iteration. Based on the purposeful way they engaged in various actions 

of iteration, we conjecture some students have possibly been using a conception of 

a fraction as a measure. Being constrained to operate on an unpartitioned whole, they 

independently initiated iteration as a way to determine a possible (anticipated) 

partition by operating on the given part so they could relate it to the whole. We are 

careful not to attribute to all (or most students) a conception of a fraction as a 

multiplicative relation, because they might have slightly extended their conception 

of fractions as a result of dividing actions by iteration to attain the first step in the 

dividing actions conception. However, some of the students might have set as a goal 

to determine a relationship between the unpartitioned whole and the part, in the sense 

of the whole being n times as much as the part. In either of those cases, the crucial 

inference we make is that these Chinese students began coordinating partitioning 

with iteration as a means to determine fractional relationships between two given 

units. Such coordination would serve as a basis for conceptualizing fractions (1/n, 
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m/n) as multiplicative relations, and allow students to solve tasks like those shown 

in Figures 1b-1c.  

DISCUSSION 

We articulated a fraction conception that has not yet been documented in research 

literature. Indeed, teaching practices often pertain to such a conception. This study 

provides further details of the mental actions that constitute it, and highlights some 

of its affordances and limitations. We point out two key implications of this 

distinction. First, for theory building, this study broadens findings of western 

students’ fractional understanding (Charalambous & Pitta-Pantazi, 2005; Simon et 

al., 2018; Tzur, 2019). Specifically, in the context of fractions, we corroborated 

Steffe’s (2010) argument of levels of fragmenting an unpartitioned whole – a less 

advanced one based only on partitioning and a more advanced one based also on 

iteration. In addition, we corroborated the need for students to construct both 

iterating and partitioning to deal with problem situations in which nothing is being 

partitioned. Constructing a conception that includes iteration opens the way to 

establishing more advanced understanding of fractions as multiplicative relations 

(Norton and Wilkins, 2012).  

For practice, this exploratory study demonstrates the importance of viably modeling 

students’ mental actions as a basis for promoting their learning of fractions. Here, 

we showed that a conception of fractions as a result of dividing, common in China, 

could serve as a good starting point for shifting to reasoning that involves unit 

iteration, and ultimately to fractions as multiplicative relations. The tasks we used 

may serve both as tools for teachers to assess their students’ reasoning and thus to 

also promote their advancement to iteration-based conceptions. Future studies could 

examine how the conception of fractions as results of dividing actions may evolve 

and be expounded on. 

Acknowledgment 

This study was supported by the Humanity and Social Science Foundation of 

Ministry of Education of China (Grant No. 19YJA880007). The opinions expressed 

do not necessarily reflect the views of the Foundation. 

References 

Beckmann, S. (2019). Commentary on Fractions. In A. Norton & M. W. Alibali 

(Eds.), Constructing Number: Merging Perspectives from Psychology and 

Mathematics Education (pp. 237-248). Cham, Switzerland: Springer International 

Publishing. 

Biddlecomb, B. D. (1994). Theory-based development of computer microworlds. 

Journal of Research in Childhood Education, 8(2), 87–98. 

Charalambous, C. Y., & Pitta-Pantazi, D. (2005). Revisiting a theoretical model on 

fractions: Implications for teaching and research. In Chick, H.L. & Vincent, J. L. 

(Eds), Proceedings of the 29th Conference of the International Group for the 

Psychology of Mathematics Education, Vol.2, pp. 233–240. Melbourne: PME.  



Wei, Tzur & Ding 

4 - 248  PME 44 - 2021 

Cobb, P. (2000). Conducting teaching experiments in collaboration with teachers. In 

R. Lesh & A. E. Kelly (Ed.), Handbook of research design in mathematics and 

science education (pp. 307–333).  

Norton, A., & Wilkins, J. L. M. (2012). The splitting group. Journal for Research in 

Mathematics Education, 43(5), 557-583.  

Olive, J., & Steffe, L. P. (2010). The Partitive, the Iterative, and the Unit 

Composition Schemes. In L. P. Steffe & J. Olive (Eds.), Children's fractional 

knowledge (pp. 171-223). New York: Springer. 

Simon, M. A., Placa, N., Avitzur, A., & Kara, M. (2018). Promoting a concept of 

fraction-as-measure: A study of the Learning Through Activity research program. 

The Journal of Mathematical Behavior, 52, 122–133. 

Steffe, L. P. (2010). Articulation of the reorganization hypothesis. In L. P. Steffe & 

J. Olive (Eds.), Children’s fractional knowledge (pp. 49–74). New York: 

Springer. 

Steffe, L. P. & Olive, J. (2010). Children’s fractional knowledge. New York: 

Springer. 

Tonga, F. E., Eryiğit, S., Yalçın, F. A., & Erden, F. T. (2019). Professional 

development of teachers in PISA achiever countries: Finland, Estonia, Japan, 

Singapore and China. Professional Development in Education, Online First, 1-17. 

Tzur, R. (1999). An integrated study of children’s construction of improper fractions 

and the teacher’s role in promoting that learning. Journal for Research in 

Mathematics Education, 30(4), 390. 

Tzur, R. (2019). Developing fractions as multiplicative relations: A model of 

cognitive reorganization. In A. Norton & M. W. Alibali (Eds.), Constructing 

number: Merging perspectives from psychology and mathematics education (pp. 

163-191). Cham, Switzerland: Springer International Publishing.



4 - 249 

2021. In Inprasitha, M, Changsri, N., & Boonsena, N.  (Eds.). Proceedings of the 44th Conference of 

the International Group for the Psychology of Mathematics Education, Vol. 4, pp. 249-256. Khon Kaen, 

Thailand: PME. 

OPPORTUNITIES FOR EXPLORATIVE PARTICIPATION IN 

DIFFERENT ACHIEVEMENT GROUPS 

Merav Weingarden1 and Einat Heyd-Metzuyanim1 
1Technion – Israel Institute of Technology, Israel 

 

Evidence that grouping students based on their mathematical achievements is 

detrimental for low achieving students has been accumulating. However, little is 

known about the opportunities given to students to same different realizations of 

mathematical objects and to author narratives in different achievement level 

groups. The purpose of this study is to examine the differences between the 

opportunities given to students to talk about mathematical objects in different 

tracks. 34 videotaped mathematics lessons, implementing one identical task (the 

hexagons task), were analyzed using the Realization Tree Assessment tool (RTA). 

Results show that the opportunities for explorative participation in low-

achievement groups were significantly lower than the opportunities in high-

achievement groups.  

INTRODUCTION 

Tracking, streaming and learning mathematics in achievement groups (AGs) have 

been some of the most controversial issues in the field of educational research for 

over 70 years (Gamoran, 2010). Many studies show that there is no significant 

positive effect on student achievement while learning in AGs (Linchevski & 

Kutscher, 1998; Slavin, 1990). This may be due to the differences in the 

curriculum, mathematical content, opportunities to learn and teaching practices 

between different AGs (Oakes, 1990). Mathematics lessons in low-AGs are 

characterized by teachers asking closed and simple questions, focus on drill and 

practice, much time allocated to classroom management, lack of curriculum 

coverage and diminution of the opportunities to learn (Boaler et al., 2000; 

Zevenbergen, 2005). However, although these studies refer to mathematics 

lessons in different AGs, they did so in a general way. They did not focus on the 

mathematics itself that students are exposed to but rather on more general 

pedagogical actions such as teacher questioning and classroom management 

practices. Therefore, it is unclear whether the differences in opportunities to learn 

(OTLs) are a result of general differences in pedagogical practices and different 

tasks, or whether, given a potentially rich task, students in different AGs still 

would receive different OTLs. Therefore, the purpose of this study is to examine 

the differences in the access given to students from different AGs to engage with 

mathematical objects, given an identical task. 
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THEORETICAL BACKGROUND 

Our conceptualization of opportunities for meaningful participation in mathematical 

learning rests on the commognitive theory. According to this theory (Lavie et al., 

2019; Sfard, 2008) students' explorative participation in mathematics lessons is 

characterized by routines of participation, where narratives about mathematical 

objects are produced agentively by students. This, in contrast to ritual participation, 

in which students mainly reproduce procedures exemplified by an authority (usually 

the teacher) and their participation in the discourse is for the sake of pleasing others. 

A major part of participating exploratively in the mathematical discourse is based 

on talking about mathematical signifiers as objects – as entities that exist in the world 

regardless of actions, humans and time. In the ritual phase of learning, mathematical 

objects are often mentioned in the novice learner's utterances as detached signifiers. 

"Two", "function", "triangle" etc. are all keywords that learners can use without 

relating them to a mathematical object, but rather as signifiers of only one particular 

realization. For example, "function" can be signified by y=3x+5 but not by the graph 

of this function. When students become explorative in the discourse on functions, 

they refer to this object through its multiple different realizations: the algebraic 

realizations (e.g. y=5+3x), the verbal realizations ("I had 5 dollars to begin with, and 

each day I earned 3 dollars"), the table-of-values realization, the graphic realization, 

as well as various visual realizations. What makes these different realizations be 

treated as "the same" object is the fact that every endorsed narrative about one 

realization can be translated, according to well defined rules, into an endorsed 

narrative about another realization (Sfard, 2008, p. 154). This process, in which the 

learner comes to talk about the different realizations of the mathematical object as 

"the same" is defined by Sfard as "saming". 

Advancement in mathematical learning rests on successfully moving from ritual to 

explorative phases in a hierarchical fashion. When this process fails to occur, 

students encounter difficulties and low achievements (Ben-Yehuda et al., 2005; 

Heyd-Metzuyanim, 2013). When tracking is practiced in schools, they may quite 

quickly find themselves in low-achievement tracks, where they may receive less 

opportunities to learn. 

EXPLORATIVE VS. RITUAL OPPORTUNITIEIS TO LEARN 

The term Opportunities-To-Learn (OTLs) includes the teaching practices that afford 

or constrain student engagement in the process of learning mathematics (Heyd-

Metzuyanim, Tabach, & Nachlieli, 2016). Nachlieli & Tabach (2019) theorized the 

OTLs as types of routines which the students are expected to engage with. They refer 

to two types of routines: ritual-enabling OTLs which enable students to participate 

ritually and exploration-requiring OTLs which afford students' explorative 

participation (ibid, p. 257). In ritual-enabling OTLs, the teachers' questions focus on 

'how' to solve the problem and the students are expected to apply a rigid procedure 

that had been previously demonstrated. In contrast, in exploration-requiring OTLs 
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the students are expected to choose alternative procedures while stating the new 

narrative produced based on mathematical reasoning (ibid, p. 258).  

Previous studies examining differences between AGs point to the possibility that 

students in low AGs receive restricted opportunities to learn meaningful and 

interesting mathematics. For example, Boaler and colleagues (2000) found that low-

AGs are characterized by low-level work that students find too easy and by much 

time allocated to coping worked examples off the board rather than solving 

problems. Similarly, Oakes (1990) found that teaching in low-AGs was 

characterized by "drill and practice" approaches, whereas the high-AGs included 

more challenging and open-ended mathematical tasks. Yet the precise differences in 

the mathematical OTLs that students get exposed to in different AGs are have not 

yet been sufficiently illuminated.   

In the present study, we focus on the differences in mathematical OTLs given to 

students in high vs. low AGs as evidenced from the Realization Tree Assessment 

(RTA) tool (Weingarden, Heyd-Metzuyanim, & Nachlieli, 2019). The RTA has been 

previously shown to be a useful tool for describing different implementations of 

identical mathematical tasks (Weingarden & Heyd-Metzuyanim, 2019). For 

example, it showed that lessons can differ widely in the number of realizations of a 

mathematical object that students get exposed to, the links made between these 

realizations and who authors these realizations and links – the teacher or the students. 

However, so far we have not systematically investigated the differences in 

implementing identical tasks between different AGs. In this study we ask: what are 

the differences in opportunities to same and link different realizations that students 

receive in low vs. high AGs?   

METHOD 

The study was performed as part of the TEAMS (Teaching Exploratively for All 

Mathematics Students) project. The aim of this professional development program 

was to expose teachers to various teaching practices that encourage students' 

explorative participation (Heyd-Metzuyanim, Nachlieli, Weingarden, & Baor, 

2018). As part of the professional development program, teachers were asked to 

implement in their classrooms tasks that can afford explorative participation. These 

lessons were videotaped by a stationary video camera. Since our goal in the current 

study was to compare between the implementation of tasks in different AGs (rather 

than simply the usage of different tasks), we chose to compare only lessons based 

on one identical task- the hexagons task. This task asks students to describe the 

perimeter of any train in the hexagons pattern (see Figure 1).  

Throughout the TEAMS project, 34 teachers implemented the hexagons task. These 

teachers taught 7th – 9th grades, in different AGs. Since grouping in middle schools 

in Israel is very diverse (ranging from no grouping to 5 or even more AGs per grade), 

the AG category was determined according to the median of all the tracks in that 

grade. AGs above the median were categorized as 'high-AG' and the others as 'low-
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AG'. This produced the following division: low-AGs (N = 13), high-AGs (N = 17) 

and heterogeneous classes- without grouping (N = 4). 

The 34 lessons were analysed using the Realization Tree Assessment (RTA) tool 

(Weingarden et al., 2019) which is presented in Figure 2. The potential mathematical 

object that can be richly discussed through the hexagons task appears at the top of 

the tree – "The perimeter of the nth hexagon train". All its various realizations appear 

below it. For each lesson, the different realizations mentioned in the lesson were 

shaded according to who articulated them (the students or the teacher) and the links 

between the different realizations were marked according to who made them (the 

students or the teacher). Therefore, the RTA examines the extent to which 

opportunities for explorative participation are given to students by graphically 

illustrating the different realizations of the mathematical objects mentioned during 

the lesson, the extent to which links between realizations were made and the extent 

of student authority.  

In addition to the received snapshot image of a lesson, the RTA images were 

quantified (see Figure 3). This was done by two types of calculations, Saming 

Realizations (SR) and Students' Authority (SA). The SR measure was calculated by 

the ratio of the number of realizations and links that appeared in each lesson to the 

maximum number of links and realizations that appeared in any lesson in the sample. 

The rationale behind this calculation is that a reasonable assessment of the maximum 

potential of a task in terms of realizations can be obtain by picking the maximum 

number of realizations discusses in a wide enough sample of lessons (here- 34). The 

SA measure was calculated by the ratio of the number of realizations and links 

authored by students in each lesson to the total number of links and realizations 

mentioned in the lesson. The rationale here is to quantify the ratio of student 

authority in relation to the total number of mathematical narratives mentioned in the 

lesson (by the teacher and the students). Analysis of Variances (One-way ANOVA) 

was conducted to examine whether there were differences between these two 

measures in the different AGs. 

FINDINGS 

Our analysis, based on the RTA, revealed that in high-AGs more opportunities were 

given to students for explorative participation – namely authoring narratives about 

different realizations and making links between them, than in low-AGs. Before we 

move to show this quantitatively, let us first illustrate how the difference between 

lessons in low and high-AG may look like. 

Figure 1 – The hexagons task 

Write a description that could be used to compute the perimeter of any train in the pattern. 
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Figure 2 – Comparison between RTA images of lessons in different AGs  

Figure 2 depicts the RTA images of two lessons. The teachers in both lessons opened 

their lesson by launching the hexagon task, explaining the problem briefly and then 

sending the students to work in groups of 2-4 students. After the group work, they 

gathered the classroom for discussion, inviting students to present on the overhead 

board. The RTA images describe the whole-classroom discussion of the two lessons. 

The first lesson (Figure 2.a) was videotaped in a high-AG of 8th grade. During the 

discussion of this lesson, the students with the aid of the teacher, presented their 

solutions, justified them and linked between different solutions. Through this 

discussion, multiple algebraic expressions that illustrated the perimeter of the nth 

hexagon train were produced and justified by linking between the expressions and 

the visual hexagons' pattern. In addition, some of the algebraic expressions were 

linked while students produced narratives about the equivalency between the 

algebraic expressions (for example, that 4x+2 is "the same" as 4x+5-4+1).  

In contrast, in the second lesson (Figure 2.b) that took place in a low-AG of 9th grade, 

the various descriptions that can describe the perimeter of the hexagons train were 

not mentioned and discussed. The students produced the table-of-values regarding 

the perimeter of the hexagons train and produced the algebraic expression: n*4+2. 

The teacher then made the connection between the algebraic expressions n*4+2 and 

4n+2, linking them to the different representation of a linear function. In general, 

only 7 realizations (out of the potential 27 and compared to the 20 of the high-AG 

lesson) were mentioned, few links were made and most of them were established by 

the teacher. Therefore, students in the low-AG were getting less access to different 

realizations and to opportunities for saming these realizations.  

Figure 3 exemplifies the quantification of the RTA by showing the calculation of the 

SR and SA scores of the low-AG lesson. 
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The calculated saming realizations (SR) score of the high-AG lesson was 0.543 

(compared to 0.172 of the low-AG) and the calculated students' authority (SA) score 

for the high-AG lesson was 0.775 (compared to 0.25 of the low-AG). These numbers 

thus capture (although reductively) the difference between the two lessons in terms 

of student authority and opportunities for saming realizations.  

The above described quantification was performed on all 34 lessons, and comparison 

of the SR and SA scores over all 34 lessons was examined by a one-way ANOVA 

test. Results show a significant difference in the opportunities for explorative 

participation between AGs of different levels, both in the opportunities for saming 

realizations (SR) (F (2,31) = 3.456, p <0.05) and the level of student authority (SA) 

(F (2,31) = 16.055, p <0.001). The results are presented in Table 1. As can be seen 

in Table 1, in general, students in low-AGs were getting less access to different 

realizations and links between them than students in high-AGs. These differences 

were found to be significant according to Tukey HSD post hoc tests. 

Achievement group N MeanSR SDSR MeanSA SDSA 

Low-AG 13 0.292 0.189 0.419 0.227 

Heterogeneous 4 0.308 0.161 0.785 0.091 

High-AG 17 0.469 0.200 0.753 0.125 

Table 1 – The SR and SA acores in the different AGs  

The situation with the students in the heterogeneous classrooms is somewhat more 

complex. First, the small number of these lessons (N = 4) limits the statistical power 

of the analysis. However, despite this limitation, a significant difference involving 

the heterogeneous classes was found. According to Tukey HSD post hoc tests, the 

level of students' authority (SA) in the heterogeneous classes was significantly 

different than the level of SA in low-AGs and was found to be similar to the level of 

students' authority in high-AGs.  

DISCUSSION AND CONCLUSIONS 

Our goal for this paper was to examine the differences between the opportunities for 

explorative participation given to students in different AGs, given an identical task. 

Our findings show that in high-AGs, compared to low-AGs, more realizations were 
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Figure 3 – The calculation of the SR and SA scores 
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authored, more links were made and most of them were established by students. In 

addition, the level of student authority in the heterogeneous classes, was found to be 

significantly higher than the low AGs. These finding are preliminary due to the 

limited number of classrooms, especially heterogeneous ones. Moreover, we cannot 

derive any causal relationship between grouping students based on their 

achievements and the OTLs seen in the RTA. It may be, for example, that the fact 

that several strong students sit in a heterogeneous class is responsible for the high 

SA seen in these classrooms. However, given previous works that showed the 

benefits of learning in heterogeneous classrooms (e.g. Slavin, 1990), our findings 

may strenghten the understanding of how low-achieving students may benefit from 

sitting in heterogeneous classrooms, and the price of sitting in low-achievments 

tracks.  

From the difference in the opportunities for saming realizations between low and 

high AGs we can conclude that for students sitting in a low-AG class, the chances 

they will hear or construct multiple realizations of the mathematical object and same 

them are probably lower than if they would sit in a high-AG class, even given an 

identical task. This conclusion strengthens previous studies that found discrepancies 

between low and high AGs with regards to the mathematical content and the 

opportunities to learn (e.g. Boaler et al., 2000). Future studies will be necessary in 

order to (a) understand whether our findings can be generalized, and (b) better 

understand how the exposure to mathematical objects plays out differently in low 

vs. high AGs and heterogeneous classrooms. Given the growing achievement gaps 

in Israeli mathematics tests (Linchevski & Kutscher, 1998; Razer et al., 2018), and 

the concern worldwide that marginalized populations may get limited access to 

mathematical content through grouping practices (Boaler et al., 2000), it is 

imperative that we better understand the processes of marginalization. This study 

takes one step forward in this process. 
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CATEGORISING PERCEIVED ADVANTAGES OF 

INSTRUCTIONAL MATHEMATICS VIDEOS 

Sina Wetzel1 and Matthias Ludwig1 

Goethe University Frankfurt, Germany 

 

Due to the Corona Pandemic, the importance of digital learning tools got re-

emphasised. However, already before, online instructional videos targeting school 

content had been very popular among students. While teachers in many countries might 

see the Corona Pandemic as an incentive to engage more with this particular medium, 

many students already watch these videos regularly out of school. This paper confirms 

and extends a clustering of the advantages of instructional mathematics videos from 

upper secondary school students’ viewpoint based on data collected in an online survey 

in 2019 with more than 1000 participants. 17 different categories could be identified 

and differences based on the students’ mathematics grades exist. 

INTRODUCTION 

In the 21st century, teaching and learning with digital tools is becoming more and more 

common. One teaching method which has gained widespread attention over the last 

years is the Flipped Classroom model (Bergmann & Sams, 2012) in which students 

usually watch videos out of school covering new topics to free up time in school for 

intensive practice. Apart from such a controlled use of videos for educational purposes 

initiated by a teacher, many students also watch freely available online instructional 

videos out of school on their own account (Wolf, 2018; Ratnayake et al., 2019). 

Opposed to when watching a video assigned to them by their teacher, students decide 

on their own which video on which topic to watch, when, where and how. This opens 

up room for many questions: if students watch such videos, and we will focus in this 

work on videos explaining mathematical content, how does this influence their learning 

in and understanding of mathematics? A first step to answer these questions is to analyse 

students’ motivation to watch instructional mathematics videos outside of school. For 

this purpose, we examine the advantages students attribute to this medium.  

THEORETICAL FRAMEWORK 

Instructional mathematics videos  

An instructional video (sometimes also referred to as explanation video or educational 

video) is a short video explaining a concept or how something is done (Wolf, 2018). 

Research on instructional videos is still a rather new but growing field (Ratnayake et 

al., 2019). Many students use instructional videos, especially on YouTube, e.g. to 

complete their homework (Wolf, 2018). Freely online available, they can be watched 

on demand at any desired moment granted one has internet access and a computer or 

mobile device. Instructional videos can also enrich mathematics lessons. With 

numerous videos available for many different topics, they can be used e.g. as part of a 
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flipped mathematics classroom (Bergmann & Sams, 2012). Due to the need for distance 

learning during the Corona Pandemic, instructional videos are also used as an easy mean 

to teach a certain topic from afar (Bersch et al., 2020). However, instructional 

mathematics videos are often discussed controversially. Acuña-Soto et al. (2018) state 

that many advantages of the medium only apply when they are not regarded as a 

standalone but rather a complementary resource. Bersch et al. (2020) argue that students 

are forced to take on a passive role when watching such videos. They further claim that 

these videos are often superficial and erroneous. Kulgemeyer and Peters (2016) warn 

about what they call the “illusion of understanding” when learners have watched an 

instructional video and think they have understood a topic when in fact, they have not 

or only partially.  

Students’ perspective 

Apart from the didactical perspective, it is also important to understand how and why 

students use instructional mathematics videos. There are some studies analysing how 

university students use and engage with instructional videos (e.g. Guo et al., 2014; 

Schiltz; 2015) but there is only few data available for school students. Kulgemeyer and 

Peters (2016) voice the need for research on the criteria based on which students select 

instructional videos on YouTube and suggest that they include factors such as an 

“impressive” use of media rather than didactical criteria. Acuña-Soto et al. (2018) 

emphasise the role of the availability of such videos as they offer students “fast and 

inexpensive access to educational contents at their own convenience”. Bersch et al. 

(2020) assert that instructional mathematics videos are mainly used by students for 

repetition purposes or as some sort of free tutoring. Most available research is theory-

based, though, with very little empirical data available. One source for empirical data 

is a representative interview-study conducted in Germany with 818 young people 

between 12 and 19 years (Rat für Kulturelle Bildung, 2019), of which n = 520 were 

both, students and YouTube users. These 520 students were asked in which regards 

YouTube was better than school. The authors clustered the students’ free speech 

answers in 13 categories such as: other explanations, the possibility to repeat a topic, 

fun content, that they can be watched anywhere and anytime and that they can be 

watched at one’s own pace. The first author of this paper also conducted an exploratory 

online study in 2019 for her thesis. The goal of the study was to get a better 

understanding of when, how and why students use instructional mathematics videos 

outside of school. A total of 2025 school students of all ages filled in an extensive 

questionnaire that was distributed online, mainly over the YouTube channel DorFuchs. 

Selected results of this study were published in Wetzel and Ludwig (2020) such as two 

main reasons for watching instructional videos outside of school being the explanations 

in the videos and the possibility to control the own learning pace. Not all data was 

evaluated due to the large data set with many different item types. In this paper, we 

want to thoroughly analyse the answers to one open text question in this questionnaire 

regarding the advantages of instructional mathematics videos with the goal to arrive at 

a detailed list as a basis for future research.  
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RESEARCH QUESTIONS 

Understanding students’ motivation to use instructional mathematics videos also 

implicitly helps to learn more about how students learn or at least how they prefer to 

learn. For this purpose, we want to analyse the advantages students attribute to 

instructional mathematics videos. Students have individual preferences and needs based 

on which they choose the videos they watch outside of school. There has been some 

research in the last years trying to come up with quality criteria for “good” instructional 

mathematics videos, mostly from a didactical point of view (see e.g. Ratnayake et al., 

2019; Bersch et al., 2020). These criteria might guide teachers when creating or 

choosing videos, however, they do not necessarily affect students’ readiness to watch 

them outside of school, as for example Kulgemeyer and Peters (2016) suggest. To better 

understand students’ motivation, we want to arrive at a detailed set of categories of 

advantages students see in instructional mathematics videos. Our starting point are the 

13 advantages listed in Rat für kulturelle Bildung (2019). Using the data and sample 

from the study we presented in Wetzel and Ludwig (2020), we arrive at our first 

research question:  

• RQ1: Can the categories of advantages of instructional videos identified in Rat 

für kulturelle Bildung (2019) be confirmed for the present sample of students in 

upper-secondary school for instructional mathematics videos in particular? 

We decided to focus on upper-secondary students only to work with a more 

homogeneous sample. What is missing from the data in Rat für kulturelle Bildung 

(2019) is numerical data or a ranking of the advantages. A ranking of the advantages 

can give an indicator which are the most important factors for students. 

• RQ2: Which are the most important advantages of instructional mathematics 

videos from the perspective of upper-secondary students in this sample?  

What is remarkable about the sample from Wetzel and Ludwig (2020) is the high 

number of participants with very good mathematics grades. This positive-selection of 

participants aggravates arriving at general conclusions but, on the other hand, opens up 

room for new questions which leads to our third research question:   

• RQ3: Do upper secondary students with the grade “very good” in mathematics 

see other advantages than other upper-secondary students? 

METHODOLOGY 

The data we use for our analysis results from an openly-available online explorative 

study from 2019 (see Wetzel & Ludwig, 2020). The used questionnaire contained 

quantitative and qualitative items. To answer our research questions, we focus on the 

open-text question “Which advantages do instructional mathematics videos have 

compared to mathematics lessons in school?” and the variables mathematics grade (on 

a scale from 1-6), grade level (on a scale from 1-13), sex (f, m, d) and whether the 

participants watch instructional mathematics videos outside of school (yes / no). 

Filtering the sample for grade level, we got a set of n = 1017 students in upper-secondary 

school (German grade level 10-13) who completed the whole questionnaire, answered 

“yes” to the question whether they watch instructional mathematics videos outside of 



Wetzel & Ludwig 

4 - 260  PME 44 - 2021 

school and gave a non-empty answer to our target question. All analyses were 

performed on this sample (f: 25.7%, m: 73.6%, d: 0.7%). The mathematics grade 

distribution (where 1 corresponds to “very good” / A; 6 corresponds to “failed” / F) is 

as follows: 1 – 445 students (43.8%), 2 – 324 students (31.9%), 3 – 167 students 

(16.4%), 4 – 57 students (5.6%), 5 – 21 students (2.1%) and 6 – 3 students (0.3%).  

To come up with a list of advantages, we used a deductive-inductive approach. We 

started with the 13 advantages listed in Rat für kulturelle Bildung (2019). After a first 

sighting of our data, we added seven further categories. Based on these 20 categories, 

we created an extensive rating guide. One rater then assigned all 1017 answer to these 

20 categories. A second rater assigned 30% of the answers so we could determine the 

inter-rater reliability (Cohen’s kappa) for each category. For each student answer, at 

least one category was assigned but the assignment of more than one category was 

possible and common. We decided to reject categories to which less than 2% of the 

answers were assigned. We did not set a too high threshold as the sample is not 

representative to not exclude valid categories. Based on the values for Cohen’s kappa 

in each category, we determined whether we needed to merge categories. We then 

ranked the remaining categories in accordance with the number of answers assigned to 

them by the first rater. To answer RQ3, we formed two groups as disjoint subsets of the 

original sample based on the participants’ mathematics grade. Group VG consists of 

445 students with the German grade 1 (“very good” / A) and group NVG consists of 

572 students with other grades (grades between 2 / “good” / B and 6 / “Failed” / F). For 

both groups, we compared the five most important categories and whether categories 

were exclusive to one group, again with an acceptance threshold of 2% of the respective 

group size.  

RESULTS AND DISCUSSION 

The final 17 categories can be found in Table 1. Two categories were rejected due to 

the 2%-threshold. The analysis of Cohen’s kappa yielded “substantial agreement” (𝜅 >
0.61) for all but one category and “almost perfect” agreement (𝜅 > 0.81) for two 

categories (Landis & Koch, 1977). The category “Structure” with less than substantial 

agreement was too similar to the category “Short and concise”. We thus merged both 

as a union set into the new category “Short and structured” (𝜅 = 0.909). We can thus 

confirm 11 out of the original 13 categories for instructional mathematics videos in Rat 

für kulturelle Bildung (2019). The category “Videos are modern” was rejected due to 

the 2%-threshold and we merged the categories “Short” and “Structured” into a new 

category. Of the seven additional categories suggested by us, six categories remain (A8, 

A11, A12, A14, A15, A16) with one being rejected. We can thus confirm nearly all 

initial categories for instructional mathematics videos, however, we extend the 

clustering to a total of 17 categories for RQ1.  
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Category Frequency Example quote 

A1 Own pace** 400 (39.3%) “Pausing and rewinding allow for individual 

learning.” 

A2 Short and 

structured** 

261 (25.7%) “They focus on the most important points.” 

A3 Repeating a 

topic or video* 

256 (25.2%) “You can repeat things that you have not 

understood.” 

A4 Other 

explanations* 

178 (17.5%) “Offer another perspective apart from the 

teacher’s.” 

A5 Choose topics 

oneself* 

118 (11.6%) “You can choose yourself what to learn.” 

A6 Anywhere or 

anytime* 

108 (10.6%) “You can watch them whenever you want.” 

A7 Interesting or 

advanced content* 

99 (9.7%) “Topics which are not covered in school. I 

can live out my passion.”  

A8 Instructive* 83 (8.2%) “They are more comprehensible.” 

A9 Visualisations* 79 (7.8%) “A visual representation is often helpful.” 

A10 Many videos to 

choose from* 

56 (5.5%) “If you do not understand the explanation of 

one YouTuber, you can choose another.” 

A11 Relaxed 

Atmosphere* 

54 (5.3%) “You are not bullied if you do not understand 

it at once.” 

A12 Concentration* 52 (5.1%) “No disturbing classmates” 

A13 Fun*  33 (3.2%) “They make math more fun.” 

A14 More 

memorable* 

31 (3.0%) “You can remember a formula better than 

when it’s just written down on paper” 

A15 Emotion 

towards explainer* 

26 (2.6%) “The content creators radiate positive energy. 

They motivate more than my teacher.” 

A16 Other 

examples* 

23 (2.3%) “They use examples to which I can relate.” 

A17 Detailed* 22 (2.2%) “More depth.” 

Table 1: Overview of 17 categories of advantages of instructional mathematics videos 

as perceived by upper-secondary students (n = 1017), ordered by frequency. *Cohen’s 

kappa greater than 0.61; **Cohen’s kappa greater than 0.81. 

To answer RQ2 for our sample, we use the ranking of the categories in Table 1. The 

first category “A1 Own pace” is more than ten percentage points ahead of the next one. 

Hence, learning at one’s own pace can be considered a very important advantage. This 

is also emphasised by the variety of answers that were attributed to this category: “if 

you ask something in class, you delay the whole lesson”, “you can pause if something 

is unclear” or “no waiting for others who are too slow”. This underlines the importance 

of individuality and the possibility to actively control the own learning pace. Other 

advantages in the list can also be linked to the activity of the learner, e.g. “A3 Repeating 

a topic or video”, “A5 Choose topics yourself” and “A6 Anywhere or anytime”. Other 

important advantages in the list can be linked to the content of the videos and how the 
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content is depicted such as “A2 Short and structured”, “A4 Other explanations”, “A7 

Interesting or advanced content”, “A8 Instructive” and “A9 Visualisations”. It is 

noticeable, however, that all categories appear rather “general” and not specifically 

linked to mathematics. Based on our data, it cannot be determined whether there are 

advantages exclusive to instructional mathematics videos.  

To answer RQ3, a table similar to Table 1 was computed for the groups VG and NVG. 

For both groups, 16 categories scored above the threshold. For VG, “A16 Better 

examples” only scored 1.6% and for NVG, “A 17 Detailed” only scored 1.9%. Table 2 

lists the five most mentioned advantages for both groups. Four categories can be found 

in the top five of both groups. However, “A7 Interesting / advanced content” is the 

fourth most mentioned advantage in group VG with 18% but has only rank 12 in group 

NVG with 3.3%. “A6 Anywhere or anytime” is in the top five of NVG but not VG, but 

got assigned nearly the same percentage of answers (NVG: 10.6%, VG: 10.3%). 

Category “A3 Repeating a topic” is noticeably more important for group NVG (29.2%) 

than for group VG (20.0%). It can be stated that some differences between the two 

groups exist which need to be examined in more depth in future research.  

Group VG Group NVG 

A1 Own pace (37.3%) A1 Own pace (40.9%) 

A2 Short and structured (25.4%) A3 Repeating a topic or video (29.2%) 

A3 Repeating a topic or video (20%) A2 Short and structured (25.9%) 

A7 Interesting / advanced content (18%) A4 Other explanations (18.5%) 

A4 Other explanations (16.2%) A6 Anywhere or anytime (10.6%) 

Table 2: Five most mentioned advantages for VG (n = 445) and NVG (n = 572). 

In sum, the 17 categories in Table 1 give an interesting insight why student use 

instructional mathematics videos. Even though we cannot conclude if some of the 

categories are exclusive to mathematical content, the present data can help gain a better 

understanding of students’ motivation and learning preferences which can ultimately 

help improve learning settings in school. Students value the possibility to individually 

control when (e.g. A1, A6, A11), how (e.g. A1, A4, A9) and what (e.g. A3, A5, A7) 

they learn. They further view instructional mathematics videos as an additional resource 

for learning (e.g. A2, A4) catering to different learning types (e.g. A9). Very good 

students also choose videos with advanced content which interest them (A7). 

Instructional mathematics videos can have different types of content and didactic 

purposes. Videos aiming “to explain why” or to “demonstrate a procedure” (Lim & 

Wilson, 2018) can fulfil the didactical function of “repetition” (Bersch et al., 2020). 

This particular purpose seems to be very important for the students, as it corresponds to 

the advantages “A2 Short and structured” and “A3 Repeating a topic or video”. Other 

didactical purposes are not as important for students when using instructional videos on 

their own such as the “introduction” of e.g. an object to model (ibid.) which makes more 

sense as part of a whole lesson unit in school. When evaluating instructional videos and 

assessing their quality, it is thus necessary to differentiate whether students watch them 
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on their own or as part of a school assignment and, if the latter, what didactical function 

this assignment fulfils. As opposed to Bersch et al. (2020) who criticise the allegedly 

passivity of students when watching instructional mathematics videos, the students in 

our sample seem to especially value their own active role and the ways they can control 

their learning. However, this does not necessarily mean that students’ learning with 

instructional mathematics videos is successful. Meaningful scenarios for mathematics 

lessons integrating instructional videos are equally necessary as supporting students 

who use instructional mathematics videos on their own. Students need to be informed 

about different types and purposes of videos, to what they need to pay attention to if 

they want to recognise a “good” video and how to optimise their learning with this 

medium. When teachers and students are prepared to purposefully use instructional 

mathematics videos, this medium can enrich and support the learning of many students 

all over the world.  

Limitations  

The most relevant limitation regarding the significance of the presented results is that 

the sample is not representative. It is even a particular positive selection as a 

consequence of the self-selection of the participants. Hence, the answers to the research 

questions must be regarded in the context of this particular sample. Nevertheless, the 

results can be regarded a hypothesises and it has to be reviewed whether they hold true 

for other samples as well. Another limiting factor is that the sample only consists of 

German students. It is unclear, in how far the results hold true for other countries. 

Interestingly, some students from the present sample indicated to also watch 

internationally relevant mathematics channels on YouTube such as 3Num1Brown, 

Numberphile or KhanAcademy. The results nevertheless need validation from studies 

in other countries. The age of the data should also be kept in mind, as the study was 

conducted in 2019 before Corona. The pandemic has most likely not fundamentally 

changed the advantages students attribute to the medium, so the results should still be 

valid. On a positive note, the data was collected when there was not yet an unusual high 

amount of attention on this medium due to the need for distance learning. The found 

categories might therefore be more reliable.  

CONCLUSION AND OUTLOOK 

The exhaustive list of categories demonstrates that there are numerous advantages in 

the usage of instructional mathematics videos from students’ point of view. It is thus 

essential to not neglect this medium in school: it needs to be discussed how to maximise 

the benefits from using it but also to underline its limitations and potential risks. The 

Corona Pandemic has given a boost to this medium, which makes it even more 

important to engage into more related research. Our results emphasise that reasons to 

watch instructional mathematics videos can vary greatly. Some students use the videos 

for repetition, homework or to prepare for a test while others search for videos which 

fulfil their desire to know more about mathematics. More studies in other countries are 

needed to confirm our categories. The categories suggest that there are many 

opportunities to use instructional mathematics videos for individual support and 
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differentiation for both weaker and more skilled students which must be investigated in 

future research. 
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Learning percentages is known to be challenging. To support learners, visualisations 

and (virtual) manipulatives have been proposed, e.g. to build up mental models or 

initiate the use of visualisation strategies. In the study presented in this contribution, a 

tablet-based percentage strip and a double number line were used in an intervention 

study to investigate effects on strategy choice and learning outcomes on the topic of 

percentage changes. Results indicate that the use of the double number line and the 

virtual percentage strip alone is not effective to increase in performance. Rather, it 

seems to be relevant whether the learners adopt the structure of the double number line 

as their own visualisation strategy or not. Based on these results, we discuss 

possibilities to encourage learners to adopt graphical representations. 

INTRODUCTION 

Percentages are a mathematical topic with a long tradition and high relevance. At the 

same time, many learners have difficulties in solving tasks from this subject area (Parker 

& Leinhardt, 1995). One way to address these problems is to incorporate visualisations 

or virtual manipulatives into classroom teaching. For percentages, the pie chart or the 

percentage bar are suggested. The so-called double number line, which represents the 

relationships between the quantities given in a situation on a number line, has been 

discussed but rarely researched systematically. A dynamic variant of the double number 

line, which can act as a manipulative for learning percentages, is the percentage strip 

(van den Heuvel-Panhuizen, 2003). This contribution focuses on the question if and 

how the application of visualisations based on the double number line can indeed 

contribute to students’ learning on percentage change. 

THEORETICAL AND EMPIRICAL BACKGROUND 

Percentages as proportional variable 

From a mathematical point of view, two different approaches to percentages can be 

distinguished. On the one hand, percentages can be conceived as specific fractions with 

denominator 100, that are particularly easy to compare, or percentages can be 

considered as values which are proportional to a given variable (Parker & Leinhardt, 

1995). Based on the second conceptualisation, many textbooks use the rule of three as 

primary solution strategy to solve percentage tasks. According to this strategy, unknown 

values are calculated from a set of provided values by proportional inference. With the 

help of the rule of three, a wide range of tasks for percentages can be solved, ranging 

from basic calculations (two of the three relevant values are given and the third is to be 

calculated), to tasks involving percentage changes (e.g. “A number is increased by 15 
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%. You get 230. What is the number?”) (Kleine, Jordan, & Harvey, 2005). Beyond 

identifying the relevant values and their relations in the tasks, applying the rule of three 

requires to find appropriate common divisors as for intermediate steps. Accordingly, 

this ability is an essential prerequisite when using this strategy. For example, to 

calculate 15% of 600, proportional inference over intermediate percentages 1% or 5% 

makes sense, while inference to 7% is probably of little help (van Galen & van Eerde, 

2013). 

Visualisations and manipulatives for percentages 

In the context of teaching percentages, the percentage bar is often suggested as a useful 

visualisation (Hoven & Garelick, 2007). Van Galen and van Eerde (2013) see possible 

advantages in the use of the percentage bar in the representation of the relationship 

between provided and unknown values, a natural approach to the introduction of 

calculation strategies, and the possibility that goal-directed intermediate steps in a 

calculation can be visualised by simply drawing in these steps into the bar (Fig. 1 left). 

That the percentage bar can actually support the learning process could be shown by 

Walkington and colleagues (2013). The learners in their study showed better results 

when the task text was supplemented with the visualisation of a percentage bar than 

when the task text was presented without a percentage bar. 

An alternative visualisation that can support the learning process is the double number 

line (Küchemann, Hodgen, & Brown, 2011). It represents two proportionally linked 

variables on two connected number lines and can be used, for example, to represent 

proportional mappings (e.g., kilometers and miles). In the context of percentages, the 

two relevant variables are the percentages and the values of an associated variable (van 

den Heuvel-Panhuizen, 2003). In contrast to the percentage bar, which is strongly linked 

to the conceptualisation of percentages as fractions, the double number line emphasises 

the concept of percentages as proportional quantities. The representation of percentages 

and associated values on an “empty number line” also connects to the learners’ prior 

experience with basic arithmetic operations, such as  the visualisation of a multiplication 

on the number line with operator arrows (Klein, Beishuizen, & Treffers, 1998). By 

representating of intermediate steps, solution strategies based on the rule of three can 

be visualised directly in the double number line representation (Fig. 1 right). A physical 

implementation of the ordinal structure of the double number line in a manipulative may 

be achieved with the percentage strip, an elastic rubber band contain a “percentages” 

scale that can be adjusted dynamically to a scale of associated values (van den Heuvel-

Panhuizen, 2003). 

The effects of using the double number line has been investigated in case studies and 

teaching experiments (Küchemann et al., 2011; van den Heuvel-Panhuizen, 2003), 

showing mixed results. On the one hand, the authors argue that learners are able to use 

the double number line meaningfully even without prior conceptual knowledge, and 

that the ordinal structure of the double number line may support estimation and 

validation of task results. On the other hand, comparing the double number line with 

the percentage bar, van Galen and van Eerde “prefer the bar because it gives a clear and 
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concrete picture of the relations between the total and its parts” (van Galen & van Eerde, 

2013). However, it is not explained in detail how the double number line is not 

appropriate or why the double number line does not represent a concrete picture of the 

relations between the total and its parts. Beyond these reports, systematic evidence on 

the effect of the use of the double number line and related manipulatives is scarce. In 

particular for the field of percentage changes, the double number line may have 

advantages, because also percentages above 100% can be represented more easily than 

in the bar representation (where the full bar usually represents 100%). 

How visualisations and manipulatives may support learning 

Different mechanisms could explain positive effects of visualisations and manipulatives 

such as the double number line or the percentage strip on students’ learning. Firstly, 

some authors propose that working with external representations and manipulatives 

allows students to build up “mental models”, i.e. a well-connected mental structure that 

connects different representations of a concept, which can be used directly and mentally 

when approaching new problems (Goldin & Kaput, 1996). The structure of the 

manipulative may influence the structure of the mental model (Schnotz & Bannert, 

2003). To support the generation of such well-connected mental structures, some 

authors have proposed to combine different representations of a concept into one 

integrated visualisation (Ainsworth, 2006), such as linking of the double number line 

and the rule of three in an integrated visualisation (Fig. 1 right). It is an open question, 

however, if and how an ordinal mental model of percentages can be built up using a 

double number line representation. 

 

Figure 1: Left: A percentage bar with intermediate steps at 10 % and 30 %, 

Right: integrated visualisation of the double number line and rule of three strategy. 
 

Secondly, instead of building up directly accessible mental models, students may adopt 

representations used in the classroom to generate external visualisations (in the sense 

of drawings) while working on new problems. This mechanism would best be described 

as adopting a visualisation strategy, which includes selecting the double number line as 

a suitable basis for self-generated drawings (cf. Heinze, Star, & Verschaffel, 2009). 

While prior research has found that spontaneous use of drawings can be beneficial, this 

did not automatically extend to instructed drawing (Cox, 1999). It seems that students 

need sufficient experience with visualisations to generate sufficiently accurate drawings 

(Rellensmann, Schukajlow, & Leopold, 2017).  

THE CURRENT STUDY AND RESEARCH QUESTIONS 

In a preliminary study with German 6th graders ranging over a sequence of 10 lessons, 

no evidence was found that using the percent strip would support the generation of 

mental models as proposed by the first mechanism described above (Willms & Ufer, 
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2018). Thus, the question arises whether the corresponding effects might be 

strengthened by encouraging students to use the double number line as a visualisation 

strategy (2nd mechanism), and whether building up such mental models for percentages 

might require an integration of the percentage strip with a representation of the rule of 

three strategy (1st mechanism with integrated visualisation). In an experimental 

intervention study on percentage change, we investigated the two assumed mechanisms 

that could lead to effects of the percentage strip and the double number line: 

1) We compared whether instruction using these two visualisations would have 

different effects than instruction without these visualisations on student learning. 

Beyond this, we differentiated between an integrated visualisation, including the 

rule of three strategy in the percentage strip, and separate, non-integrated use of 

the visualisations and the rule of three strategy. Based on theoretical assumptions 

(Ainsworth, 2006; Schnotz & Bannert, 2003), we expect a positive effect of 

using the percentage strip (H1), which should be more pronounced, for the 

integrated visualisation (H2). 

2) Additionally, we aim to study whether adopting of the double number line as a 

visualisation strategy could yield a positive effect on the learning outcomes. We 

investigated whether learners, who adopted the double number line as a 

visualisation strategy, showed a greater learning gain in percentages than 

learners who did not adopt such a strategy. Following Rellensmann and 

colleagues (2017), we expect higher performance when learners decided to adopt 

the double number line to solve tasks in percentages (H3). 

METHODS 

To make a contribution to these questions, we conducted an experimental intervention 

study with 334 grade sixth students at 14 secondary schools (Gymnasium) in a large 

city in southern Germany. The students took part in the experimental study in a pre-

post-test design with 3 experimental groups (no visualisations, separate visualisations, 

integrated visualisation). Participation was voluntary and based on explicit parents’ 

consent. The study took part in the usual classroom setting, but instruction was done by 

the first author and a trained assistant. Students within each classroom were allocated 

randomly to one of the three groups, covering two different groups in separate groups 

within each classroom. The study followed a sequence of 45 min. pre-test, 15 min. 

break, 90 min. intervention, 15 min. break, and 45 min. post-test. 

For the pre-test, two prior knowledge scales on percentages (3 technical items, α = .62, 

M = 0.69, SD = 0.33; 3 textual items, α = .65, M = 0.69, SD = 0.33) were developed . 

Two additional scales (knowledge of divisors, 5 items, α = .74, M = 0.82, SD = 0.13, 

coding: relative number of correct divisors; numerical estimation via number line tasks 

(Siegler & Opfer, 2003), 10 items, α = .57, M = 0.06, SD = 0.04) were used. For the 

post-test, 9 items were developed on the topic "percentage increase and decrease" 

including 6 technical items (α = .74, M = 0.71, SD = 0.24) and 3 textual items (α = .78, 

M = 0.55, SD = 0.31). For each solution we coded whether a double number line 

visualisation was visible in the student solution. Furthermore, an adapted version of the 
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number line tasks for percentages was developed to survey the numerical estimation in 

percentages (6 items, α = .53, M = 0.14, SD = 0.09). For all number line tasks, the 

difference between the estimation and the real value divided by the real value was used 

as a score. Lower values correspond to more exact estimations. All other tasks were 

coded dichotomously (correct/false). 

Similar to its physical counterpart, the tablet-based version of the percentage strip 

consists of two scales which can be linked proportionally. Each can be scaled by 

dragging with the finger. Auxiliary lines may support structuring (Figure 2). 

 

Figure 2: The virtual percentage strip with one inserted auxiliary line 
 

In the control group (CG), applying the rule of three for solving percentage change tasks 

was discussed along an elaborate teaching script involving group discussions and 

individual work. When working on the tasks, the learners were guided to follow a 

structured approach: First, unknown values and relevant information from the task was 

identified and structured. Then, students searched a suitable intermediate step calculated 

the target value. The experimental groups (EG1, EG2) followed the same teaching 

script. In EG 1, the virtual percentage strip was introduced as a manipulative and the 

double number line as a related visualisation. In EG2, integrated versions of the 

percentage strip and the double number line, including the rule of three strategy were 

used. In both experimental groups, adopting a visualisation strategy based on the double 

number line was explicitly encouraged. 

ANALYSES AND RESULTS 

There were no significant differences between the three groups for all four covariates 

(p > .460). We used linear mixed models with the scales from the pre-test as covariates 

and the group membership as well as the adoption of a double number line visualisation 

strategy (0=not used, 1=used at least once) as fixed factors. Classroom differences were 

controlled by a random factor. The three scales from the post-test were used as 

dependent variables in separate analyses.  

1st mechanism: The results showed no significant relationship between group 

membership and the technical (MCG = 0.72, MEG1 = 0.69, MEG2 = 0.72; 

F(2,262.27) = 0.99, p = .371) and textual skills (MCG = 0.57, MEG1 = 0.53, MEG2 = 0.55; 

F(2,314.07) = 1.15, p = .318) in the post-test, nor was there a significant relationship 
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between group membership and the numerical estimation in percentages (MCG = 0.15, 

MEG1 = 0.14, MEG2 = 0.14; F(2,326) = 0.60, p = .547). Contrary to H1 and H2, no 

significant effect of group membership on the performance in the three post-test 

measures were found. This indicates that neither the use of the virtual percentage strip 

and the double number line nor the integrated visualisation with the rule of three 

strategy had a systematic effect on students’ learning. 

2nd mechanism: In total, 28 % of the learners were classified as DNL users, i.e. they 

adopted a double number line based visualisation at least once in the post-test. There 

were substantially more DNL users in the experimental groups than in the control group 

(0.01 % in CG, 37 % in EG1, 43 % in EG2), but the difference in the number between 

the two experimental groups was not significant (χ² = 0.575, df = 1, p = .448). 

 
Figure 3: solution rates (technical and textual skills) resp. average relative error 

(estimation) for the DNL users and the rest of the learners in the experimental groups. 

DNL users showed significantly better technical skills in the post-test, controlling for 

pre-test measures (MDNL users = 0.73, Mno DNL = 0.70; B = 0.07, p = .008, d = 0.13). We 

found a tendency in favour of DNL users for textual skills (MDNL users = 0.55, Mno DNL 

= 0.54; B = 0.07, p = .086, d = 0.02). For numerical estimation in percentages the 

difference was not significant (MDNL users = 0.13, Mno DNL = 0.15; B = -0.01, p = .240). 

For further analysis, the total sample was restricted to the experimental groups. For each 

of the four pre-test scales, an ANOVA was calculated with the pre-test scale as the 

dependent variable and DNL use as the independent fixed factor. The results were not 

significant for all calculations (technical skills: F(1,225) = 0.58, p = .449; textual skills: 

F(1,225) = 0.69, p = .408; knowledge of divisors: F(1,225) = 0.22, p = .639; numerical 

estimation: F(1,225) = 0.11, p = .737). Overall, it is not possible to explain better 

performance of DNL users in the post test by better pre-test scores. 

DISCUSSION AND OUTLOOK 

We presented a study using a virtual percentage strip as a manipulative and a double 

number line as a visualisation for learning precentages. Similar to a prior study (Willms 

& Ufer, 2018), the analyses did not provide evidence that the visualization supported 

learners to generate or extend usable mental models of percentages (Schnotz & Bannert, 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

technical skills textual skills numerical estimation
in percentagesso

lu
ti

o
n

 r
at

es
 /
 a

v
er

ag
e 

re
la

ti
v
e 

er
ro

r

DNL users No DNL users



Willms & Ufer 

PME 44 – 2021  4 - 271 

2003) or that an integrated presentation of representations (Ainsworth, 2006) would 

support this effect. However, the adoption of a visualisation strategy based on the virtual 

percentage strip was accompanied by better technical skills in percentages, and this 

effect could not be traced back to better prior knowledge. This extends results by 

Rellensmann et al. (2017), indicating that systematic training of a DNL based 

visualisation strategy can lead to sufficiently high-quality visualisation strategies to 

support students performance. From a theoretical point of view, this work substantiates 

the view that not the sole integration of a virtual manipulative per se is not necessarily 

conducive to learning. We conclude that the virtual percentage strip, which has been 

rarely used so far, can provide effective support under certain conditions even within a 

short time span of 90 minutes. However, it seems crucial that students are repeatedly 

encouraged to use the double number line as a visualisation strategy. Further research 

is needed, which should focus on the question under which individual conditions and 

instructional frameworks learners can be urged to adopt a visualisation structure that is 

conducive to learning, and also supports estimation skills. It also remains an open 

question if an interactive virtual manipulative such as the percentage strip is beneficial, 

or if the double number line as a static visualisation might be sufficiently effective. 
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COMPARING THE PREDICTIVE POWER OF FIRST 

GRADERS’ GENERAL COGNITIVE SKILLS AND PRIOR 

KNOWLEDGE ON LATER ACHIEVEMENT 

Kirsten Winkel1, Kristina Müller1, & Eva Berger1 
1University of Mainz, Germany 

 

Knowing more about the early predictors of math achievement is a fundamental 

prerequisite for targeted learning interventions. We compare the extent to which 

some of the most discussed sets of predictors – (1) working memory capacity and 

attention (2) personality and (3) prior math knowledge – predict math achievement 

in grade 2 beyond fluid intelligence. We have collected a rich dataset of about 500 

children, including information on various subcomponents of these sets of 

predictors, thus our regression framework is able to shed light on these 

subcomponents. Including all sets of predictors within the same regression reveals 

two verbal working memory tests, the personality trait “openness” and all prior 

knowledge subtests as significant predictors for math achievement. 

INTRODUCTION 

Early skills are strong determinants of later school achievement, and later deficit-

compensatory programs are much less promising than early interventions (Heckman 

2007). Therefore, knowing the main predictors for school success is of great value 

for developing targeted early childhood interventions. Moreover, since 

disadvantaged children benefit most from early interventions (Heckman 2007), 

knowledge of these main predictors can help to identify students at risk and to 

decrease the educational achievement gap at early stages. Indisputably, fluid 

intelligence is a strong predictor for later school success. However, for educational 

research and practice, those predictors that are malleable by teaching are of particular 

relevance. Among the most discussed predictors for math achievement, students’ 

working memory (WM) capacity, their personality and their prior knowledge are 

frequently reported (e.g. Watts et al. 2014). However, most of the present studies 

have a quite small selection of predictors and the results are hardly comparable 

across studies, because of different data and methodologies used. Thus, we need to 

include several of the most discussed predictor sets within the framework of one 

study to be able to compare the explanatory power of the different predictors. 

Even though the relationship between working memory capacity and math 

achievement is well established (e.g. Raghubar et al. 2010, Menon 2010), it is not 

clear which WM components are generally most predictive of math achievement 

(Friso-van den Bos et al., 2013). Hence, it is useful to provide more evidence on 

different WM tasks. Furthermore, there is a strong link between working memory 

and attention: it has been shown that attention control and working memory capacity 
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are separate, yet correlated, factors and there is only little knowledge about the 

overlap between them (Raghubar et al. 2010, Winkel et al. 2018). 

In another strand of literature, different personality traits have been found to be 

associated with math achievement at different ages (Laidra et al. 2007), but previous 

research mainly focused on older children and adolescents. It is not clear, to what 

extend these results can be transferred to primary school children (see e.g. Poropat, 

2009). Among the few existing studies with primary school children, the personality 

trait “openness” seems to be the strongest predictor (e.g. Allik et al. 2007, 

Neuenschwander et al. 2013). Neuenschwander and her colleagues demand: “Thus, 

more empirical findings are needed within younger age groups in order to integrate 

these findings into a developmental framework.” (2013, p. 118).  

Finally, prior mathematics knowledge is assumed to predict later math achievement 

(e.g., Hemmings et al. 2011). Even though this relation e.g. between school-entry 

math skills and later math achievement (Duncan et al. 2007) might seem obvious, it 

remains to be shown how strong it is compared to the other discussed predictors. 

First, many studies control for prior achievement when predicting school 

achievement, but they do not discuss the predictive power of prior knowledge 

compared to other psychometric measures. Second, in some cases, prior knowledge 

is assessed by tests and in others, it is assessed by teacher questionnaires or grades. 

Since these perspectives might complement each other, it might be revealing to 

include both, precise test measures as well as a more holistic teacher rating.  

To be able to compare the predictive power of all predictor sets mentioned above –

i. e. WM & attention, personality, and prior math knowledge – in this paper we first 

regress math achievement on each of these predictor sets and finally we include them 

all in one regression model. Based on early data from first grade (as predictors) as 

well as data collected one year later, we investigate the following research question: 

To which extent do first graders’ working memory capacity, their attention control, 

their personality and their prior knowledge predict later math achievement (beyond 

fluid intelligence and further control measures)? 

THEORETICAL BACKGROUND 

Since we will combine predictor sets from quite different fields of research, we will 

give a brief insight to all three predictor sets before we describe our research design.  

  

Working Memory and Attention 

According to Baddeley & Hitch (1974), WM is a cognitive system that provides 

temporary storage and manipulation of information. For example, mental arithmetic 

problems require students to store several numbers and interim results in mind while 

manipulating and combining them with prior knowledge. WM capacity is a 

theoretical construct that is not easy to measure. The storage component 

characterizes an amount of information that is temporarily in a very accessible state. 

This memory has proven to be further separable into a verbal and a visuo-spatial 

component (confirming Baddeley and Hitch’s (1974) model of the “phonological 



Winkel, Müller & Berger 

PME 44 – 2021  4 - 275 

loop” and the “visuo-spatial sketchpad”). Tests should account for this complexity, 

so that both simple as well as more complex tasks are needed to include both the 

storage and the processing component.  

Beside the typical aspect of attention as focusing on relevant information, a second 

aspect of attention is inhibition control – the mental ability to ignore distracting 

information or to inhibit unwanted responses. Especially this second component of 

inhibition is found to be correlated to math achievement as well as to verbal and 

visuo-spatial WM. Thus, both subcomponents should be considered. 

Personality 

Another strand of literature assumes students’ personality to be predictive of math 

achievement. The five-factor model, also known as the "Big Five", is a psychological 

concept that is used to model personality. It assumes that differences in people’s 

personalities can be traced back to five personality traits: openness to experience, 

conscientiousness, extraversion, agreeableness and neuroticism. Personality is 

assumed to be related to academic performance in two ways: first, personality is 

closely linked to motivational constructs that are in turn related to school 

achievement. Second, personality and academic performance are thought to be 

associated due to common links between intelligence and the personality trait 

openness (Poropat, 2009). 

Prior mathematics knowledge 

When assessing prior knowledge, it is of great importance to have detailed 

knowledge about the curriculum, the mathematical concepts, specific difficulties and 

the expected skill levels at the specific times of measurement. At the beginning of 

the second half of grade 1 the students deal with whole numbers up to 20 and begin 

to add and subtract them more and more in mind. 15 months later in grade 2, the 

students add or subtract in the number range up to 100. Yet, they are generally more 

confident if one of the numbers is single-digit. Beside this computational 

perspective, the literature reveals evidence for the predictive power of further 

conceptual numeracy skills specifically for the first school years: the development 

of number sense (e.g. Jordan et al. 2010). Thus, a test with visual number 

representations has to be included beside tests about formal computations.  

RESEARCH DESIGN 

Participants and data collection 

In our study, we focus on a sample of more than 500 typically developing primary 

school children from an own field experimental study in Mainz (Germany).  While 

our main study (Berger et al. 2020) was a randomized controlled trial, the present 

paper does not analyse the intervention, but controls for it instead. We focus on test 

data from the first evaluation wave and from a 1-year follow-up as well as on 

questionnaire data. The attrition rate within this year was very low (7%) and the 

teacher response rate was 100%. For the selected variables, we obtain a sample of 

493 children without any missing data. Mean age at test in first grade was 7.0 years, 

mean age at test in second grade was 8.3 years; 51% were female. The first graders 
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completed highly standardized digital school achievement tests (see below), using 

touchscreens, and standardized auditory instructions via headphones. Furthermore, 

teachers completed a digital questionnaire on students’ skills and some background 

characteristics. All data was collected by a professional data collection service 

provider on our behalf. 

Main variables 

Here we just give a brief overview on the main variables. More detailed descriptions 

and test-specific references are documented in our main study (Berger et al. 2020). 

Grade 2 mathematics performance (outcome variable): Mathematics performance 

was assessed by a number sense task, tasks about addition and subtraction (with 

auditory and written problems) and a geometry task.  

Grade 1 working memory and attention control: We used three subtests in the area 

of verbal and visuo-spatial working memory. We used a digit span task for a verbal 

simple span, an object span task for the verbal complex span and a location span task 

for the visuo-spatial complex span. In the area of attention control we employ a 

“GoNoGo test” and the “bp-test” to measure inhibition and concentration. 

Grade 1 prior mathematics knowledge: The subtests were parallel to our outcome 

variable but with different items and adapted difficulties. To complement these 

specific test measures with a more holistic view we asked teachers for an overall 

rating of their students’ mathematical skills. 

Personality: Teacher-rated personality questionnaire, covering the “Big Five” 

personality traits: openness to experience, conscientiousness, extraversion, 

agreeableness and neuroticism. 

Control variables: Age, gender, IQ (subset of Raven’s Progressive Matrices, 

included due to high correlations to WM, attention and achievement), and dummies 

due to the nested structure of the data (class-fixed effects). 

Methods 

We use linear regression models (with school-fixed effects, estimated by OLS) and 

regress grade 2 math achievement on each of the three outlined predictor sets. We 

begin the analysis with a baseline model including IQ, age, gender, and class fixed 

effects to control for unobserved differences between the classes and schools. By 

adding each predictor set of our grade 1 measures individually (i.e. set by set), and 

finally combining all predictor sets within the framework of one single regression 

model, we are able to compare effect sizes and changes in the coefficient of 

determination R² relative to the baseline model to assess the relative explanatory 

power of each predictor. Importantly, to facilitate the comparison of effect sizes, the 

scores for all measures have been z-standardized to mean of 0 and standard deviation 

of 1. Beyond the results reported in this regression table, we also checked descriptive 

statistics, correlations, and more detailed or stepwise regressions with the same 

variables on the same sample. 
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RESULTS 

Our baseline model (column 0 of Table 1) – including fluid intelligence, age, gender 

and the other listed control variables – explains already 34.1% of the variance math 

achievement one year later. In contrast, the same model without fluid intelligence 

explains 12.5% of the variance. 

Model (1) Working memory and attention 

By adding a set of three different working memory measures, R² increases from 

34.1% to 47.3%. All three working memory tests contribute significantly (p < 0.01) 

to this increase of 13.2 percentage points of overall variance. Without the WM 

measures included in the regression, one of our attention measures has a small, but 

significant effect size (not shown in the regression table), but in combination, the 

WM measures dominate the effect of attentional control (column 2 of Table 1).  

Model (2) Personality 

By including the five personality traits to the baseline model, the explanatory power 

of the model increases by 18 percentage points of overall variance (compared to the 

baseline model). The driving force is the personality trait “openness to experiences”, 

whose contribution is highly significant (p < 0.01): when openness increases by one 

standard deviation, second grade math achievement increases by about 0.46 standard 

deviations. The personality trait “conscientiousness” contributes a bit, but the other 

three personality traits do not seem to play a major role in our model. 

Model (3) Prior mathematics performance 

By including our grade 1 measures for prior mathematics knowledge and the more 

holistic teacher-rated math skills, we can explain an additional 20.6 percentage 

points relative to our baseline model. Each of the three subtests as well as the overall 

teacher rating contribute significantly to the increase in R² (column 3 of Table 1). 

 

 (0) (1) (2) (3) (4) 

IQ (Control measure) 0.487*** 0.309*** 0.278*** 0.204** 0.161** 

 

WM: Digit Span  0.176***   0.080* 

WM: Object Span  0.118*   0.079* 

WM: Location Span  0.187***   0.072 

Att.: Attention Errors  -0.099   -0.064 

Att.: Inhibition Errors  0.036   0.063 

Attention: bp-Test Errors  -0.077   0.020 

      

Personality: Openness    0.462***  0.244*** 

Pers.: Conscientiousness    0.075  0.038 

Personality: Extraversion   -0.094  -0.073 

Pers.: Agreeableness   -0.052  -0.009 

Personality: Neuroticism   -0.059  0.038 

      

Math: Number Sense    0.104* 0.085 

Math: Add & Subtract    0.197*** 0.082* 

Math: Geometry    0.138** 0.094* 

Math: Teacher Rating    0.284*** 0.124* 

      

(further control measures including age, gender and class fixed effects are not listed here) 

Constant 3.413 2.609 1.684 1.615 1.517 

Observations    493    493    493    493    493 

R² 0.341 0.473 0.521 0.547 0.594 

Adjusted R² 0.294 0.428 0.481 0.510 0.550 

 



Winkel, Müller & Berger 

4 - 278  PME 44 - 2021 

 
Table 1: Results from linear regression of grade 2 math achievement on grade 1 measures for 

(1) WM & attention, (2) personality, (3) prior knowledge, and (4) all three predictor sets 

(M=0, SD=1, robust standard errors) 

Overall model (4) 

The rightmost column shows which predictors remain dominant if all predictors are 

included in the regression: the three documented predictor sets are able to explain an 

additional 25.3 percentage points of the overall variance beyond IQ and all other control 

measures. Interestingly none of the three predictor sets dominates another one 

substantially: Beyond IQ (1) the two verbal WM tasks, (2) the personality trait openness 

and (3) all prior math tests remain significant in our overall model. 

DISCUSSION 

Our regressions reveal that beyond IQ, prior math knowledge, openness to experience, 

as well as verbal working memory are all strong predictors of math performance, also 

when simultaneously included in the regression.  

Despite the large proportion of shared variance with IQ, in the WM model each of our 

three working memory tests itself has a significant effect size. The two verbal memory 

tests even remain significant in the last overall model. Since it is not clear from the 

literature, which WM components are generally most predictive of math achievement 

(Friso-van den Bos et al., 2013), this result further emphasizes the importance of verbal 

WM for typical math skills in this age group. Our attention measures do not seem to 

play a major role beyond WM and IQ. 

Also in line with the existing literature, we find the personality trait openness to be a 

strong predictor in this age group. Openness even remains significant in our overall 

model. This result adds to findings by Neuenschwander et al.  (2013), underlining the 

relevance of this personality trait in this age group. 

Finally, all subtests for prior knowledge are significant predictors for mathematics 

achievement one year later. This result confirms for example findings from Jordan et 

al. (2010) and Watts et al. (2014).  

Our contribution to the literature – above the already mentioned aspects – is that we 

compare the magnitude between different predictor sets within the same dataset. This 

result complements existing findings and helps to complete the complex mosaic of 

predictors of math achievement. Since these predictors can only be interpreted in a 

correlational way and since the results always depend on the concrete tests, more studies 

with diverse predictor sets, similar highly standardized test measures and even longer 

time spans are needed before clear practical conclusions for school practice can be 

drawn. Moreover, in the context of future work, we want to study the role of moderators 

and mediators for the association between the detected early predictors and later math 

achievement. Nevertheless, even without this further work, the results presented and 
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Pers.: Agreeableness   -0.052  -0.009 
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Math: Add & Subtract    0.197*** 0.082* 

Math: Geometry    0.138** 0.094* 

Math: Teacher Rating    0.284*** 0.124* 

      

(further control measures including age, gender and class fixed effects are not listed here) 

Constant 3.413 2.609 1.684 1.615 1.517 

Observations    493    493    493    493    493 

R² 0.341 0.473 0.521 0.547 0.594 

Adjusted R² 0.294 0.428 0.481 0.510 0.550 
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discussed here clearly emphasize the relevance of early interventions (see Heckman 

2007) for improving malleable predictors, such as early math skills and WM capacity. 
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THE SPATIAL CONTIGUITY PRINCIPLE IN 

MATHEMATICS TEXTBOOKS 

Bethany Woollacott1, Lara Alcock1, & Matthew Inglis1 
1Loughborough University, United Kingdom 

 

The spatial contiguity principle recommends that related pictures and text should be 

displayed together on a page. This study explored whether diagram and text 

placement influences textbook-users’ perceptions of mathematics explanation 

quality. We asked students and teachers to compare real-world textbook 

explanations using a comparative judgement technique. This method enabled us to 

understand whether we could meaningfully measure explanation quality on a single 

scale. We found that participants tended to perceive explanations as being higher 

quality if diagrams were placed closer to related text, rather than apart. These 

findings support the spatial contiguity principle and also suggest that this principle 

translates into real-world mathematical applications. 

RATIONALE FOR RESEARCH 

In this report, we investigate the spatial contiguity principle: the idea that related 

text and pictures should be displayed together on a page (Mayer, 2020). Mayer 

(2020) developed this principle as a subset of the split-attention effect; this effect 

suggests that we should avoid designing educational materials which cause learners 

to split their attention between more than one location (Ayres & Sweller, 2005). This 

is an issue because, using the theoretical rationale of Cognitive Load Theory, 

splitting attention across locations increases extraneous cognitive load (Ayres & 

Sweller, 2005). This type of cognitive load is detrimental to learning because it is 

load imposed by ineffective instructional design rather than load directly related to 

learning the material (Sweller et al., 1998). If related information is separated then 

learners have to use cognitive resources to keep concepts in mind as they search the 

material to make connections (Ayres & Sweller, 2005). If related information is 

presented closer together then connections between the information are implied and 

learners can dedicate more cognitive resources to understanding the material.   

More recently, Schroeder and Cenkci (2020) gave a slightly different explanation 

for the mechanisms behind the split-attention effect. Instead of suggesting that split 

designs impose increased extraneous cognitive load, they proposed that integrated 

designs help to allocate germane resources. Germane cognitive load is the load 

imposed by the learning process (Sweller et al., 1998) and, Schroeder and Cenkci 

suggested that, integrated designs facilitate the integration aspect of cognitive 

processing. Either way, there is a wealth of evidence for the split-attention effect and 

the spatial contiguity principle in educational materials (Mayer, 2020). 
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In mathematics education, early research on split-attention effects evolved from 

research using worked examples (Tarmizzi and Sweller, 1988).  However, there is 

limited research using other types of mathematical materials, such as explanations. 

Indeed, the majority of research on the split-attention principle uses (i) materials 

focused on the teaching and learning of science and also (ii) materials created or 

adapted for the purpose of experimentally testing a theory, including adapted 

materials from existing textbooks or resources (e.g., Chandler & Sweller, 1991; 

Johnson & Mayer, 2012; Makransky et al., 2019; Mayer, 1989; Moreno & Mayer, 

1999; Tindall-Ford et al., 1997). Much less work uses genuine real-world 

pedagogical materials. We addressed this gap by using unmodified textbook 

explanations to investigate the spatial contiguity principle in mathematics. 

THEORETICAL FRAMEWORK 

The spatial contiguity principle was originally developed by Mayer (2005) from his 

Cognitive Theory of Multimedia Learning. This theory assumes a cognitive model 

of multimedia learning where multimedia refers to the presentation of material using 

both static or moving pictures and written or spoken text. Researchers have 

developed various principles for multimedia learning from this model, including the 

spatial contiguity principle.  

The most relevant aspect of the model here is its adoption of dual-coding theory, 

which identifies two channels that we process information through in memory 

(Mayer, 2005). Mayer proposed that we process words through an auditory channel 

and pictures through a visual channel. Each channel has its own processing capacity, 

so our visual channel could reach capacity even though our auditory channel is not 

being used, or vice versa. This means that we can build stronger learning outcomes 

using verbal and pictorial learning models rather than only one or the other. The 

spatial contiguity principle builds on this by recognising that placement of text and 

pictures affects their effectiveness: if text and pictures are displayed together then 

we are more likely to recognise their relationship which enables us to build a more 

complete understanding using both resources (Mayer, 2020). On the other hand, if 

information is physically separated then we might struggle to connect the two 

representations and therefore build a less complete learning outcome, or we could 

use cognitive resources to search for connections between the two representations 

so that less resources are available to build the resultant learning outcome.  

METHODOLOGY 

Our study investigated the spatial contiguity principle in mathematical explanations. 

We assessed perceived explanation quality using comparative judgement. This 

method is built on the understanding that humans make better evaluations if they 

compare two objects rather than if they use specific criteria to evaluate an isolated 

object (Thurstone, 1927). Comparative judgement has been developed for 

educational purposes as an innovative assessment tool (e.g., 

https://www.nomoremarking.com) and it has also been used for various research 

projects. In particular, education researchers have adopted this tool and have 
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investigated teachers’ assessments of students’ work in a variety of subjects, 

including creative writing (Heldsinger & Humphry, 2013) and Chemistry laboratory 

reports (McMahon & Jones, 2013). More specifically, mathematics education 

researchers have used comparative judgement to assess students’ understanding of 

p-values, derivatives and algebra (Bisson et al., 2016), students’ ability to solve 

maths problems (Jones & Inglis, 2015), and even ambiguous constructs such as 

which student is ‘the better mathematician’ (Jones et al., 2016). The common thread 

between all of these studies is the assumption that teachers and students have an 

intuitive understanding of these constructs; one which they are not expected to be 

able to articulate or explain (Pollitt, 2012). In line with their reasoning, explanation 

quality clearly fits alongside these constructs.  

STUDY DESIGN 

In this study, we used 16 explanations taken from a mathematics textbook (Jefferson 

et al., 2017) designed for A Level students (A Levels are post-compulsory 

mathematics qualifications taken by 16-18 year-olds in England, Wales and 

Northern Ireland). We used a single textbook so that design and style would be 

consistent across the explanations; using multiple books would make it harder to 

isolate which characteristics affected participants’ rankings. The selected 

mathematical explanations were all at a similar level and none directly relied upon 

material presented elsewhere in the textbook. We omitted topic headings to minimise 

the inclination for participants to rank explanations by topic preference or difficulty.  

Nine of the explanations included a diagram; three explanations contained diagrams 

in the text and the remaining six had diagrams placed away from the text, in the 

margins. Figures 1 and 2 show two example explanations. 

  
Figure 1: An explanation with a diagram in the margin (Jefferson et al., 2017, p. 16) 
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Figure 2: An explanation with a diagram in the main body of the text  

(Jefferson et al., 2017, p. 106) 

We recruited groups of A Level mathematics teachers (N = 77), A Level 

mathematics students (N = 62), and undergraduate mathematics students (N = 214) 

to participate. Each participant completed 15 paired comparisons: for each 

comparison, they read two expository texts and then selected which one they thought 

was a ‘better’ explanation.  

The resulting data were fitted to the Bradley-Terry model (Bradley & Terry, 1952), 

separately for each group, to produce parameters estimating the perceived quality of 

each explanation. We calculated reliability coefficients to determine whether or not 

explanation quality could be meaningfully measured on a single scale. The first 

reliability measure indicated whether members of each group agreed on explanation 

quality within groups. This measure is considered analogous to Cronbach’s alpha in 

comparative judgement research and is known as the Scale Separation Reliability 

coefficient. The second measure used correlation coefficients to measure whether 

the same judgements would have been made by a different group of judges from the 

same population; it is known as the inter-rater reliability (Bisson et al., 2016).  

RESULTS 

We found reliability was reasonably high for all of the participant groups, as shown 

in Table 1. The Scale Separation Reliability is high for all three groups which 

suggests that participants broadly agreed with each other within groups. The 

correlations for the inter-rater reliability are mostly high too, although the correlation 

for A Level teachers is slightly lower than the other two groups. This could 

potentially reflect the diverse levels of experience between teachers. However, 

overall these measures suggest that participants broadly agreed with each other about 

the quality of the explanations. 

 



Woollacott, Alcock & Inglis 

4 - 284  PME 44 - 2021 

Group Scale separation Reliability Inter-rater reliability 

A Level teachers .75 .55 

Undergraduates .92 .82 

A Level students .88 .77 

Table 1: Reliability measures for each group 

We compared the mean parameter for the explanations that were in line with the 

spatial contiguity principle with the mean parameter for those not so designed. These 

data are shown in Figure 3. A 3×2 (group×diagram-placement) Analysis of Variance 

(ANOVA) found a significant main effect of diagram placement, F(1,7) = 6.48, p = 

.038, ƞp
2 = .481. Explanations achieved higher scores if they included diagrams in 

the text rather than in the margin.  In reference to the spatial contiguity principle, we 

suggest that explanations with diagrams in the margin achieved lower scores because 

learners needed to use additional cognitive load to integrate the diagrams and text if 

they were not spatially close together. 

 
Figure 3: The mean perceived expository quality of the explanations, split by group and 

diagram location  
DISCUSSION 

Our research shows that explanation quality can be measured in a meaningful way using 

comparative judgement, and supports the idea that the spatial contiguity principle is 

relevant in mathematics textbook design, at least from the perspective of learner 

experience. It leaves open the question of whether learner experience of explanation 

quality is systematically related to learning outcomes, but raises this as a question for 

further study. 

The materials we used also raise questions about how design might affect learner 

behaviour, and therefore suggest another mechanism by which diagram placement 

might affect perception of explanation quality. In the explanations we used, diagrams 

placed in the text clearly lead on from that text whereas diagrams in the margin do not 

clearly fit into the textual explanation. This might affect the extent to which learners 
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examine diagrams: a diagram not in the main body of text might appear inessential and 

less worthy of attention. This would be consistent with work by Jarodzka et al. (2015) 

whose eye-tracking study found that learners spent significantly less time looking at 

pictures presented in a split format rather than integrated into the main body of a 

resource. Given the robust result that diagrams benefit learning (e.g., Bui & McDaniel, 

2015; Lindner et al., 2017) it could be that learners rank explanations with integrated 

diagrams more highly because they look less at diagrams in split formats and so benefit 

less from their explanatory power. 

CONCLUSIONS 

Altogether, these findings give insight into the impact of the spatial contiguity principle 

on learners’ perceptions of explanation quality. Our findings show that diagrams 

integrated into text are associated with better perceived explanation quality, so this 

principle does appear relevant for real-world textbook design. 
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In this paper, the research question “Is it possible to classify the decisions taken by 

translators in their effort to equivalently translate a mathematical textbook?” is 

examined by using the Model for Translation Equivalence. The Model is based on 

the four requirements of a translation by Nida (1964), the levels of didactic 

codetermination by Chevallard (2002), and the extension and integration principle 

for task sequence. The examination shows that the parameters on the Model allow 

the codification of the translator’s decision to attempt the equivalent translation of 

Japanese elementary school mathematics textbooks. 

INTRODUCTION 

Starting on April 2020, new mathematics curriculum standards will be implemented 

in elementary schools in Japan. As part on the implementation process, textbook 

companies prepared textbooks that were certified by the Ministry of Education 

(MEXT) and selected by every school district in 2019. The certified textbooks are 

distributed by the government for free according to the selection made by each 

district. On private schools that teach in English, the English edition of those 

certified textbooks is used. Three textbook companies, Gakko Tosho, Keirinkan and 

Tokyo Shoseki, have published translations of their products until today. Gakko 

Tosho has translated every revision since 2005 because its editions were chosen by 

various countries such as Chile, Indonesia, Marshall Islands, Mexico, Papua New 

Guinea, and Thailand through bilateral research collaboration.  

Gakko Tosho’s consistent translation activities have resulted in the accumulation of 

rich experiences with its international editorial board. This experiences generated 

the research questions of this report: Is it possible to classify the decisions taken by 

translators in their effort to equivalently translate a mathematical textbook? For this 

effort, what should be considered?  

In this research report, the Model for Translation Equivalence is proposed to 

examine the above questions. This model was designed using the four basic 

requirements for a translation (Nida, 1964), the levels of didactic codetermination 

(Chevallard, 2002), and the extension and integration principle for task sequence. 

The objective of this model is to provide parameters to codify a translator’s decision 

to attempt the equivalent translation of Japanese elementary school mathematics 

textbooks.  
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THEORETICAL BACKGROUND 

Four requirements for a translation. 

The translation practice requires consistency from the translator. This is based on 

the premise that a translation is a “creative process, not just a mechanical one, and 

as an expressive activity, requires choosing words and creating a voice” (Halfon, 

Dillman, Hahn, & Patt, 2019, p.455). Consequently, this creates difficulties for the 

translation of mathematical textbooks because “although it may not be deliberate, 

translation reduces communication by giving more emphasis to language than to 

mathematics” (Planas, 2014, p.63).  

The proposal made by Nida (1964) gives insight into the importance of leaving 

behind the idea that words have a fixed meaning and advance towards a functional 

definition of meaning. In this approach, “a word acquires meaning through its 

context and produces varying responses according to the culture” (Munday, 2001, 

p.38). Therefore, Nida’s (1964) classification of equivalences in translations as 

formal equivalence and dynamic equivalence became a significant contribution. 

Summarized by Munday (2001), the first one is referred to accuracy and correctness 

based on the structure of the source text, while the second one is based on the 

principle of equivalent effect. Through this principle, the “relationship between the 

receptor and message should be the same as the one that existed between the original 

receptors and message” (Nida, 1964, p.159). As a result, it is possible to make 

adjustments in grammar and cultural references as a tool to achieve the “closest 

natural equivalent to the source language message” (Nida, 1964, p.166). 

Under Nida’s (1964) classification of equivalences, the four basic requirements for 

a translation are: “(1) making sense, (2) conveying the spirit and manner of the 

original, (3) having a natural and easy form of expression, and (4) producing a 

similar response” (p.164). In this framework, the numbers (1) to (4) do not have a 

hierarchical meaning. 

Levels of didactic codetermination. 

The levels of didactic codetermination (LDC) is a framework that describes the 

broad context in which didactical and mathematical organizations occur. This theory 

proposed by Chevallard (2002) shows the mutual interaction of ordered institutional 

levels that successively condition one another. Described by Artigue & Winslow 

(2010), the LDC identifies as higher levels the discipline, pedagogy, school, society 

and civilization by which teaching is conditioned. These teaching conditions are 

generally not changed by an individual teacher, but “may be further modified by 

others, such as school principals, curriculum developers, or politicians” (Artigue & 

Winslow, 2010, p.5). The lower or sub disciplinary levels are the domain, sector, 

theme, and subject. These levels are linked to the components of the praxeologies 

(Task, Technique, Technology, and Theory) they determine.  

All the different levels that affect the process of studying and teaching are exterior 

to the teaching practice. Therefore, the construction of knowledge in teaching 
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situations “may vary between students and also may be different from what was 

intended by the teacher, school, society, and so on” (Artigue & Winslow, 2010, p.6).  

Even though the LDC describes the context by which teaching situations are 

conditioned, the authors adapted this theory to the analysis of textbooks because it 

provided a broad range of interpretations for translations. 

Extension and integration principle for task sequence. 

Japanese mathematics educators and teachers have developed theories for 

curriculum and teaching as a result of hundreds of years of lesson study. Explained 

by Isoda (2012), one of these theories is the problem solving approach, which is a 

shared theory of teaching for developing children who learn mathematics by and for 

themselves. 

The Japanese elementary school textbook are designed for the problem solving 

approach and employ the extension and integration principle as a curriculum 

principle to develop mathematical thinking. As described by Isoda & Olfos (in 

printing), this principle is embedded into the textbook as a task sequence based on 

what the children have learned before. This allows the interpretation of mathematical 

Japanese textbooks based on existed tasks at previous pages and grades. 

MODEL FOR TRANSLATION EQUIVALENCE 

The Model for Translation Equivalence is a proposal that brings together Translation 

Studies and Mathematics Education. This model describes and codifies the decisions 

taken by translators in their attempt to elaborate the closest natural equivalent (Nida, 

1964) of a Japanese mathematics textbook.  

The description is done through the following three parameters: (A) What is the 

location of the task related to tasks in previous pages or grades? (B) By which level 

of didactic codetermination (Chevallard, 2002) is the text conditioned? (C) Given B, 

which of the four basic requirements for a translation (Nida, 1964) is considered for 

deciding the equivalent translation of the text? Note that, under parameter B, 

multiple levels can be chosen. Several combinations between B and C are possible. 

The codification is done by assigning a code to parameters B and C. Shown in Table 

1, the model’s coding matrix is a 4 by 9 matrix. The columns of the matrix contain 

the levels of didactic codetermination (Chevallard, 2002) namely Civilization (Ci), 

Society (So), School (Sc), Pedagogy (Pe), Discipline (Di), Domain (Do), Sector 

(Se), Theme (Th), and Subject (Su). The rows of the matrix contain the four basic 

requirements of a translation (Nida, 1964) namely making sense (1), conveying the 

spirit and manner of the original (2), having a natural and easy form of expression 

(3), and producing a similar response (4).  

Parameter A is not codified because it is fixed in the case: The principle of extension 

and integration for task sequence provides the context for the interpretation of 

Japanese elementary school textbooks. 

 



Solis & Isoda 

4 - 290  PME 44 - 2021 

 (Ci) (So) (Sc) (Pe) (Di) (Do) (Se) (Th) (Su) 

(1) Ci1 So1 Sc1 Pe1 Di1 Do1 Se1 Th1 Su1 

(2) Ci2 So2 Sc2 Pe2 Di2 Do2 Se2 Th2 Su2 

(3) Ci3 So3 Sc3 Pe3 Di3 Do3 Se3 Th3 Su3 

(4) Ci4 So4 Sc4 Pe4 Di4 Do4 Se4 Th4 Su4 

Table 1: Coding matrix for parameters B and C 

METHOD TO ILLUSTRATE THE MODEL  

Based on the above mention of the way to describe and code, we examined the 

changes of translation from Study with Your Friends: Mathematics for Elementary 

School, 10 vol. (2015) to Study with Your Friends: Mathematics for Elementary 

School, 12 vol. (2020) published by Gakko Tosho in Japanese and English. In total, 

more than 61 examples were considered in which the translation changed from the 

2015 edition to the 2020 edition. After the consideration of various possibilities to 

change the translation, the description and codification was given. There were 

various possibilities for coding but the codes were sieved by understandable codes 

for others. 

In the following subtitles of figures, the description Jap15 means Japanese edition 

(2015) and Eng20 means English edition (2020). 

EXAMINATION OF CASES 

To illustrate the way of description and coding using the Model for Translation 

Equivalence three cases were chosen. The first case shows a Japanese word which 

has various translations in English, the second case shows the simplified Japanese 

ideograms, and the third case shows the grammatical difference between Japanese 

and English. 

Angles with a size larger than 180 degrees 

The extracts shown on Figure 1 illustrate a Task in which the angle  210° must be 

drawn. The Technique for the Task is interpreted through the word “くふうして” 

(kufuushite). As shown in the corresponding translation, the translator on the 2015 

edition interpreted “くふうして” as “in various ways”.  

Different from the interpretation shown above, on Figure 2, the word “くふうして” 

was translated in the 2020 edition as “using learned ideas”. The Model for 

Translation Equivalence describes and codifies the decision taken by this translator 

as follows: 

  
Figure 1: Extracts from Jap15 and Eng15.  
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A) Location of the Task: This Task is located after the introduction of the size of an 

angle in 4th grade. As part of this introduction, students learn how to measure angles 

that are less than 180° by using the protractor. The measurement of angles larger 

than 180° is achieved by identifying how many degrees more than 180° (addition) 

or how many degrees less than  360°(subtracting). The next task sequence is to 

extend from the drawing of angles that are less than 180° towards more than 

180°.The Technique for the Task in Figure 2 is based on the addition and subtraction 

of angles and the measurement of angles larger than 180°. 

B) Levels of didactic codetermination: “くふうして” is a word that has been part 

of the Japanese language for hundreds of years and makes reference to the ability to 

find/create/consider a new or improved idea. This word cannot be translated into 

English in a single way, since the word has a cultural attachment (Civilization). 

Originally, this word was only used by non-scholars since the word “かんがえて” 

(kangaete) was reserved for intellectuals who had the responsibility to 

think/meditate/generate a solution or method as a profession. Therefore, this is a 

word that is usually used with children to reconsider what has been learned before 

with previous tasks (Subject). 

  
Figure 2: Extracts from Jap20 and Eng20  

C) Basic requirements for a translation: Even though the task written in both 

Japanese editions is the same, the latest English version was modified to get closer 

to the original intention (2). With the words “learned ideas”, the student is expected 

to associate his/her response (4) to the measurement of angles larger than 180° and 

the addition and subtraction of angles.  

Codification: Cultural/original intention (Ci2) and previous task/response (Su4). 

Division algorithm by vertical form. 

The extracts shown on Figure 3 illustrate the description of a Technique for a Task 

that is explained by numbers. The text is a step by step process to characterize the 

division algorithm by vertical form. On step number two, the expression “九五４５

” (ku[9]go[5] 45) is used to represent the number that is closest (without going over) 

to 48 in the multiplication table of nine. As shown in the corresponding translation, 

the translator on the 2015 edition interpreted “九五４５” as “9 multiplied by 5 

equals 45”.  

Different from the interpretation shown above, on Figure 4, the expression “九五４５” 

was translated in the 2020 edition as “9 and 5 is 45”. The Model for Translation 

Equivalence describes and codifies the decision taken by this translator as follows: 
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Figure 3: Extracts from Jap15 and Eng15  

A) Location of the task: This 4th grade Task is located after Japanese students learned 

the meaning of division in 3rd grade. Initially, students learned how to divide objects 

given three terms: total amount, how many equal parts, and amount for every part. These 

terms are learned by using the associated terms in multiplication. Then, students are 

able to use multiplication tables for division problems. Still on 3rd grade, the remainder 

is introduced. In 4th grade, the division of 2-digit numbers by 1-digit numbers is 

manipulated through blocks. This Task is located previous to Figure 3 and uses the 

Technique of separation by “sets of 10” and “sets of 1”. This is how Figure 3 becomes 

the summary of this previous Technique.  

B) Levels of didactic codetermination: The expression “九五４５” is exclusive in 

Japanese and Chinese mathematics classrooms, since ideograms make possible the 

memorization of multiplication tables without using the symbol “×” (Pedagogy). The 

word “かける” (multiply) is the way of reading the operation “×”. This compressed 

reading is learned in 2nd grade, therefore this 4th grade textbook uses the same manner 

in which multiplication tables were learned in the past. This representation is a useful 

tool for efficiency and memorization, therefore is integrated in the solution of tasks 

(Subject). 

C) Basic requirements for a translation: Even though the description of the technique 

written in both Japanese editions is the same, the latest English edition was modified to 

keep the summarized notation (3) that is benefited from the use of ideograms. Without 

translating it with “multiplied by”, the expression still makes sense (1). 

Codification: Exclusive use/summarized expression (Pe3) and useful tool/sense (Su1). 

  
Figure 4: Extracts from Jap20 and Eng20  
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Changes on the translation depending on users: The case of multiplication. 

This example illustrates the difficulty of translation based on the grammatical 

difference between Japanese and English. The description cannot follow the 

previous format because the task sequence is beyond several grades and became too 

long to adapt the same format.  

Figure 5 is an example of 2 × 5 = 10 in Japanese grammar. This means 5 times 2 

(2 + 2 + 2 + 2 + 2): 5 is the multiplier. However in English grammar, the same 

expression means 5 + 5: 2 is the multiplier (Isoda & Olfos, in printing). This 

grammatical difference has an influence (A) to division, some tables and 

proportional number lines in upper grade textbooks, such as 4th grade. For example, 

on real situations 𝑎𝑥 = 𝑦, a Japanese textbook from 3rd to 6th grade usually draws a 

table with 𝑥 in the bottom row and 𝑦 in the upper row until proportion is defined.  

There are two ways for challenging the translation equivalence. The first way is 

keeping the Japanese grammar for English School users in Japan (Ci4). The English 

users in foreign countries feel the grammatical contradiction but understand that the 

English edition is written with the original spirit of Japanese grammar (Ci2). The 

second way is changing it under English grammar. This adaptation includes 

changing situations and diagrams. When a translator makes the effort to adapt the 

Japanese textbook into other country’s curriculum, it loses the original spirit, but the 

adaptation makes sense under the new curriculum (Pe1). 

 
Figure 5: 2 × 5 = 10 in 2nd grade (Eng15) 

CONCLUSION 

This report illustrated the Model for Translation Equivalence. The examination 

showed that the parameters A, B, and C allow the codification of the translator’s 

attempt an equivalent translation of Japanese elementary school mathematics 

textbooks. 

Although the case studied is a translation from Japanese to English, the model could 

be applied in other languages. The pre-requisite is to incorporate the curricular 

principles that set the design of the source textbook. This offers the opportunity to 

unpack the hidden efforts on the source text based on pre-requested principles, such 

as the original spirit. This interpretation for unpacking reaffirms that languages 

include “linguistic features of benefit for the acquisition of mathematical concepts 

that can be used for mathematical teaching and learning” (Phakeng, 2016, p.14). 

Also, the authors are conscious about the criticism around Nida’s (1964) work, 

especially to those that suggest that an equivalent translation can be a purpose, but 

is not easy to achieve. That is the justification for choosing the words effort and 

attempt. 
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This study employed latent profile analysis to explore the reasons why preservice 

mathematics teachers endorse the integration of technology in mathematics classes. 

The sample included 91 secondary mathematics preservice teachers, from two 

normal universities in Taiwan. Four profiles were characterized as active 

integrated-oriented, practical integrated-oriented, operation emphasized-oriented, 

and traditional instruction-oriented. The percentages of active integrated-oriented 

and operation emphasized-oriented profiles were both around 32%, while that of 

traditional instruction-oriented profile was only 12%. Most preservice teachers 

appreciated using technology to innovate math classes, however, they are more 

easily attracted by the apparent functions of integration than the implicit functions 

inside students’ mind. 

INTRODUCTION 

In the era of rapid development in technology, people are inevitably affected by 

digitalization, automation and globalization. Society, organizations and individuals 

in society are increasingly dependent on technology. In this case, mathematics 

education should prepare students for applying mathematics with the integration of 

technology in all sorts of future work and everyday-life situations (Gravemeijer et 

al., 2017). Teachers are expected to use technology to improve teaching quality 

(Alacaci & McDonald, 2014) and cultivate students’ competence of using 

technology to learn mathematics and solve problems (Zbiek et al., 2007).  

Aligning with the international stream, the new curriculum in Taiwan, which was 

launched in 2019, clearly requested the integration of technology in middle and high 

school mathematics classes (Ministry of Education, 2018). The mathematics teacher 

preparation programs should provide corresponding training for preservice teachers. 

Understanding preservice teachers’ endorsement of the various functions provided 

by the integration of technology will help teacher educators know how to encourage 

them to use it, thus this research aims to identify the different types of preservice 

teachers’ preference for technology integration. The following research questions 

were addressed: 
1. What are the profiles that portray secondary mathematics preservice 

teachers’ endorsement of technology integration in mathematics classes? 
2. What are the commonalities and differences among the profiles identified in 

the first research question? 
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RESEARCH METHOD 

Conceptual framework 

The conceptual framework for integrating technology into mathematics class in this 

study included three dimensions which were the cultivation of student’ competence, 

pedagogy, and technology impact. 

Cultivation of students’ mathematical competence 

Mathematical competences can be distinguished into two types (Hsieh et al, 2012; 

Niss, 2003). On type is content-oriented mathematics competence and the other is 

thought-oriented mathematics competence. The former is related to the factual 

knowledge and skills of specific mathematical contents, whereas the latter is about 

the ways of mathematical thinking, such as reasoning mathematically or 

representing mathematically (OECD, 2010). In addition to cultivating students’ 

mathematical competences aforementioned, PISA 2021 further included 21st 

century skills, such as, research and inquiry, critical thinking, and communication, 

into their mathematics framework (OECD, 2018). The use of technology has been 

evidenced to help the cultivation of students’ mathematical competences (Alacaci & 

McDonald, 2014). 

Pedagogy 

Literatures has discussed teaching behaviors and teachers' role in the mathematics 

classes. In traditional mathematics classes, the role of teachers is an explainer or 

lecturer, while the researchers and teacher educators have promoted a transformation 

of teachers’ role to a questioner or facilitator (Ismail et al., 2015; Suffolk, 2007). In 

traditional classrooms, teachers are responsible to lecture and convey knowledge, 

and students listen to the lecture and receive what teachers provide in the teacher-

led activities. In a student-centered class where teachers are to a questioner or 

facilitator, students are provided with activities including observation, exploration, 

or experimentation. With the help of technology, the teacher can arrange these 

activities in a previously inconceivable manner. 

Technology impact 

When technology is integrating into mathematics class, the technology impact is 

then inevitable. Several studies have claimed that the integration of technology can 

help to increase collaboration, motivation, and bring about more of an emphasis on 

practical applications of mathematics, through modelling, visualization, 

manipulation, and supporting the link between students’ actions and symbolic 

representations (Drijvers et al., 2010; Geiger et al., 2010). The improvement of 

motivation also contributes to the improvement of productive disposition, which is 

one of the five interrelated strands that together, constitute mathematical proficiency 

(Kilpatrick, 2001). This proficiency can be seen in the positive mathematics learning 

attitudes and recognition of mathematics value in this study. Puentedura (2014) 

proposed a SAMR model to describe four levels of instructional quality regarding 

the impact of the integration of technology. Corresponding to our study, students 

may observe the graphics in the substitution level, by using technology to increase 
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mathematical accuracy in the augmentation level. They can also manipulate objects 

in modification level, and in the redefinition level, they can design experiments to 

solve the real world problems with technology. 

 

 

 

Figure 1: The framework of this study  

Instrument 

This study was to explore the reasons why preservice mathematics teachers endorse 

the integration of technology in mathematics classes. A questionnaire with five 

teaching vignettes was employed to assist preservice teachers with less teaching 

experiences to think. The vignettes were adapted from contents in textbooks aligning 

with the new curriculum, including the teaching contexts such as using technology 

to develop students’ understanding of characteristics of graphs of logarithmic 

functions, or to develop students’ mathematical competence in modeling with 

exponential functions. After the preservice teachers finished reading of each 

vignette, they were asked to fill out the same three sets of dichotomous items to 

indicate which help the technology provided would be the reason they endorse the 

technology-integrated class. The three sets of items were designed according to the 

three dimensions of the framework through literature review. Cultivation of student 

math competences, pedagogy, and technology impact consisted of 9, 16, and 5 items 

respectively.  

Participants 

The sample included 91 secondary mathematics preservice teachers from two 

normal universities in Taiwan (45 and 46 in each). They are juniors or seniors in the 

universities.  

Data Analysis 

This study conducted latent profile analysis (LPA) on the preservice teachers’ 

responses with M-plus. LPA is a person-centred approach that assumes the existence 

of an underlying unobserved categorical variable that divides a population into 

mutually exclusive and exhaustive classes. For each item, the preservice teachers’ 

response for each teaching vignette were summed (check=1, not check=0). Thus, the 

value for each item ranged from 0 to 5. Through performing LPA on the aggregated 

data, this study identified groups of preservice teachers with similar endorsement 
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patterns across three dimensions—how technology helps the development of student 

competences, how it helps pedagogy, and technology impact.  

Log likelihood (LL) and adjusted Bayesian information criterion (BIC) statistics 

were employed to provide information on goodness-of-fit of models with lower 

values indicating better model fit. Entropy was used to measure the accuracy of 

classification, with the value above 0.8 for high level. Differences in BIC and LL 

statistics, Vuong-Lo-Mendall-Rubin (VLMR) test, and Bootstrapped Likelihood 

Ratio (BLR) test compare each model with the model with one less class to identify 

whether there is a significant improvement in model fit. 

RESEARCH FINDINGS 

Profiles that portray preservice teachers’ endorsement of technology integration in 

mathematics classes 

Models with more classes indicated better model fit according to the LL and BIC 

criteria. The entropy values for all five models are approaching 1 indicating clear 

delineation of classes. However, differences in BIC and LL gradually diminished as 

the number of classes increased, indicating that improvements in model parsimony 

decreased. The VLMR and BLR tests suggested that the 5-class model did not fit the 

data better than the 4-class model (p = .760 & p = .150), but the BLR tests indicated 

that the 4-class model offered a significantly more adequate fit than the 3-class 

model (p = .000). The 4-class model was selected due to the consideration of the 

aforementioned fit statistics. 

No. of 

classes 

Log 

likelihood 
Diff(LL) 

Adjusted 

BIC 

Difference 

in BIC 
Entropy 

VLMR 

p value 

BLR 

p value  

1 -4611.095  9298.045     

2 -4251.465 359.630 8618.067 -679.978 0.972 0.001 0.000 

3 -4144.541 106.924 8443.500 -174.567 0.985 0.279 0.000 

4 -4095.212 49.329 8384.124 -59.376 0.967 0.776 0.000 

5 -4068.305 26.907 8369.592 -14.532 0.970 0.760 0.150 

Table 1: Fit statistics for latent class analysis 

The items were categorized into five groups for depicting the preservice teachers’ 

profiles. The five groups were generated through exploratory factor analysis (EFA) 

which were innovating instruction to develop students' mathematical competence, 

developing students’ positive attitudes and valuations toward mathematics, detailing 

explanation to deepen students' understanding, developing students self-directed 

learning skills, and developing students' interpersonal 21st century skills (Wang, 

manuscript in preparation). As shown in Figure 2, Class 1 (32% of the preservice 

teachers), comparing to other classes, endorsed all factors to the highest degree. 

Preservice teachers in this class were the advocators in integrating technology into 

the mathematical classes. They appreciated the functions the technology provided 

for innovating the class, developing students’ positive attitudes and competences, 
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and increasing the quality of teacher-directed teaching behaviours. The profile this 

class portrayed was thus characterized as “active integrated-oriented.” The 

preservice teachers in Class 2 (24%) were characterized as “practical integrated-

oriented.” They relatively endorsed the factors “Innovating instruction to develop 

students' mathematical competence,” “Detailing explanation to deepen students' 

understanding,” and “Developing students' interpersonal 21st century skills” to a 

higher degree. These teachers appreciated the functions of technology to help the 

development of student competences through student-centered activities such as 

inquiry, experimentation, manipulation, examination, and providing evidences, and 

to help the development of student knowledge through supporting teachers’ 

instruction. They also endorsed how technology helps develop student 21st century 

interpersonal skills through discussion or presenting. 

  
Figure 2: Four profiles of preservice teachers’ preference for technology integration 

Comparing with Class 2, the preservice teachers in Class 3 (32%) endorsed the 

functions of technology to provide students opportunities to inquire problems and 

engage in manipulative activities to develop students’ competences, but did not 

appreciated using technology to support teachers’ instruction to develop students’ 

knowledge. That is, they endorsed the integration of technology to support their role 

as facilitators but not as explainer. In addition, they did not endorse using technology 

to develop students’ positive attitudes and valuations toward mathematics at all. This 

study thus characterized the profile as “operation emphasized-oriented.” In contrast 

to the first three classes, the last class was an extreme case. They did not endorse 

any “actual” functions provided by use of technology in mathematics class. They 



Wu, Wang & Shy 

4 - 300  PME 44 - 2021 

only indicated endorsement on some conceptual descriptions, such as using 

technology to help the development of students’ mathematical competences or the 

cultivation of students’ 21st century skills. We thus characterized the profile as 

“traditional instruction-oriented” (12%).  

The commonalities and differences among the four profiles of preservice teachers’ 

endorsement of technology integration in mathematics classes 

All four classes of preservice teachers endorsed the use of technology to develop 

students’ thought-oriented competences and 21st century skills, however, only Class 

1 endorsed using technology to develop students’ positive attitudes and valuations 

toward mathematics. It is possible that the teachers in other three classes did not 

consider the use of technology can help developing positive attitudes or valuations, 

or that they thought technology can help but it is not the reason why they endorse a 

technology-integrated mathematics class.  

Regarding the factor of innovating instruction to develop students’ mathematical 

competences, all classes of preservice teachers, with exception of Class 4, endorsed 

the benefits of integrating technology into mathematics class to arrange activities 

previously inconceivable, help students to focus on observation and thinking, 

explore or experiment, and concretize or visualize mathematical concepts. However, 

the preservice teachers endorsed using technology to help connecting 

representations naturally and to promote students’ conjecture to a relatively lower 

degree. For the factor of developing students' interpersonal 21st century skills, the 

three classes endorsed student discussion, and for the factor of detailing explanation 

to deepen students' understanding, they endorsed increase of accuracy. The 

phenomena indicated that the preservice teachers endorsed the visual and operational 

effects brought by the integration of technology to a higher degree than the 

technology’s impact on student cognitive development and thinking. That is, they 

are more easily attracted by the apparent and visible functions provided by the 

integration of technology than the implicit functions inside students’ mind. 

CONCLUSION 

By using EFA, four profiles of Taiwanese secondary mathematics preservice 

teachers’ endorsement of technology integration in mathematics classes were 

identified as active integrated-oriented profile (32%), practical integrated-oriented 

profile (24%), operation emphasized-oriented profile (32%), and traditional 

instruction-oriented profile (12%).  

In the current teaching environment in Taiwan, in-service teachers still have many 

doubts and resistances about integrating technology into mathematics courses. 

However, in terms of preservice teachers, the proportion of "active integrated-

oriented" (Class 1, 32%), “practical integrated-oriented” (Class 2, 24%), and 

“operation emphasized-oriented” (Class 3, 32%) are much higher than the 

proportion of "traditional instruction-oriented " (Class 4, 12%). This shows that 

under the influence of international trends and the promotion of the new mathematics 
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curriculum, preservice teachers have gradually developed the tendency to integrate 

technology into the classroom. 

Class 2 with “active integrated-oriented” profile (32%) and Class 3 with “operation 

emphasized-oriented” profile (32%) are the two largest classes. This indicated two 

typical perspectives of preservice teachers regarding integrating technology into 

mathematics classes. The first perspective is that, the aid of technology can be 

greatly helpful no matter it is for the manipulative activities of students or for the 

instruction of teachers, both. In addition, the value of technology integration even 

includes the enhancement of students' learning attitude. The second perspective is 

that the most valuable function of technology is providing opportunities for students 

to interact and have hands-on activities, which can make up for the shortcomings of 

traditional teaching. However, in terms of teacher explanation to help knowledge 

understanding, the use of technology is not required. 
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This research coordinated the Pirie-Kieren theory and instrumental genesis to 

examine learner’s growth of mathematical understanding in a dynamic geometry 

environment. Data analysis suggested that coordinating the two theoretical 

approaches provided a productive means to capture learner’s growth of geometry 

understanding in a dynamic geometry environment. By networking the two 

theoretical approaches, this paper presents a model for studying learner's growth of 

mathematical understanding in a dynamic learning environment while accounting 

for interaction with digital tools. 

INTRODUCTION 

One of the most widely accepted ideas in mathematics education is that learners 

should understand mathematics. Over the past a few decades, mathematics education 

researchers have categorized understanding into different types (e.g., instrumental 

vs. relational, conceptual vs. procedure, concrete vs. symbolic, intuitive vs. formal) 

and developed theories to capture the process of coming to understand (see Meel 

(2003) for a brief history of searching for the meaning of “understanding” in 

mathematics education). Meanwhile, with the emergence of interactive mathematics 

software in the early 1990s, a large body of research in mathematics education has 

considered ways that dynamic geometry environments (DGEs) might influence the 

learning of geometry among learners of all ages. Current research on DGEs has 

documented ways learners interact with DGEs and the impact of these interactions 

on their understanding (e.g., Barabash, 2019; Baccaglini-Frank & Mariotti, 2010; 

González & Herbst, 2009; Olivero & Robutti, 2007). This body of literature provides 

compelling evidence that features of DGEs contribute to learners’ understanding of 

geometry. Indeed, researchers have argued eloquently that DGEs provide a 

productive means for allowing students to model both mathematical and real-life 

situations, to connect multiple representations of mathematical ideas, to formulate 

conjectures about geometric relationships, to generalize geometric properties, and to 

justify and explain geometry theorems. Although these technology-mediated 

activities and processes have been extensively studied, much of the literature 

concerning DGEs focuses on specific activities and processes that are not linked to 

form characterization of the overall growth of a learner’s mathematical 

understanding in DGEs. This research aimed to capture the evolution of individual 
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learner’s growth of mathematical understanding in a dynamic geometry environment 

through coordinating multiple theoretical approaches.  

CONCEPTUAL FRAMEWORK: NETWORKING THE PIRIE-KIEREN 

THEORY AND INSTRUMENTAL GENESIS 

This research coordinated the Pirie-Kieren theory for the growth of mathematical 

understanding and instrumental genesis to examine learner’s growth of geometric 

understanding in a dynamic geometry environment. This allowed the research to 

trace learner’s growth of geometric understanding while identifying how 

interactions with technology contribute to such growth. 

The Pirie–Kieren Theory 

Adopting Glasersfeld’s conceptualization of understanding as a continuing process 

of organizing one’s knowledge structures, the Pirie–Kieren theory (1994) perceives 

learner understanding as a dynamic, leveled but nonlinear, recursive process and 

describes eight potential levels of actions for mathematical understanding (Figure 

1). According to this model, the process of coming to understand starts with 

Primitive Knowing, which includes all the knowledge brought to the learning 

situation by a learner. At the second level, called Image Making, the learner engages 

in specific physical actions that aim at helping him/her to gain an image of the 

concept under exploration. Images of the concept developed at this level cannot be 

separated from the specific actions that produce them. By the level of Image Having, 

images associated with activities are replaced by mental pictures. The learner at this 

level can imagine a concept unconstrained by the physical processes that produced 

the image and to carry out specific mathematical actions with a general mental plan. 

At the level of Property Noticing, the learner can reflect on his mental image and 

recognize attributes and features of it. When Formalizing, the learner abstracts a 

method or common quality from classes of mental images and develops class-like 

mental objects built from the noticed properties. Description of these class-like 

mental objects results in the production of mathematical definitions or algorithms. 

The level of Observing entails the ability to observe, structure, and organize personal 

thought processes and recognize the ramifications of the thought processes. 

Structuring occurs when the learner is aware of how a collection of theorems is 

connected and seeks justification of statements through logical or meta-

mathematical argument. At the outermost level is Inventing. A person at this level 

can break free of structured knowledge and create new questions that go beyond the 

initial domain of inquiry.  

The Pirie-Kieren theory has been used by many researchers to study the growth of 

mathematical understanding at different grade levels within various mathematical 

contexts (e.g., Gülkilika, Ugurlu, & Yürük, 2015; Gokalp & Bulut, 2018). Although 

recognizing the importance of social interactions and tools in learner’s growth of 

mathematical understanding, the theory did not further elaborate on the impact of 

learner’s interaction with tools on the growth of mathematical understanding.  
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Instrumental Genesis 

Drawing on Vygotsky’s central concept of object-oriented, tool-mediated activity 

and Piaget’s notion of schema, the theory of instrument (Rabardel & Beguin, 2005) 

considers situations in which an instrument mediates actions between a subject and 

an object. An instrument is a mixed entity, consisting of both an artifact and the 

associated utilization schemes that a user develops to use the artifact for 

accomplishing specific tasks. An artifact becomes an instrument when its user is 

aware of how the artifact can extend one’s capacities for accomplishing a task and 

has developed means of using a tool for specific purposes. Instrumental genesis 

describes the process of appropriation and elaboration of an instrument throughout 

the interaction between a subject and an artifact. Two sub-processes jointly 

contribute to instrumental genesis. The instrumentalization process concerns the 

emergence and evolution of the artifact side of the instrument. It is a process in which 

a learner enriches the artifact’s properties in his interactions with it. Instrumentation 

is relative to the emergence and evolution of the user’s utilization schemes and 

instrumented actions. A utilization scheme has three main functions: A pragmatic 

function as it allows the agent to do something, a heuristic function as it enables the 

agent to anticipate and plan actions, and an epistemic function as it allows the agent 

to understand something. During instrumentation, techniques for tool usage and 

insights into concepts interweave and co-evolve in a close relationship. This makes 

the instrumental approach particularly well adapted for investigating the relationship 

between tool usage and learning in technology-enriched environments.  

GSP contains various tools such as dragging, measuring, locus of points, and various 

primitive construction commands that enable learners to take actions on 

mathematical entities and explore the properties of these entities. Through 

instrumental genesis, a user develops utilization schemes for these tools. Dragging 

is an essential feature of dynamic geometry software and a conceptual tool for 

exploring properties and relationships of geometric objects. Baccaglini-Frank and 

Mariotti (2010) developed a model to explain the cognitive processes behind 

different types of dragging and differentiated four different types of dragging. 

Wandering dragging is dragging that aims to look for regularities. Maintaining 

dragging is dragging elements of a dynamic diagram so that it maintains certain 

properties. Dragging with trace activated is dragging a point or its parent point with 

its trace activated. Dragging test is dragging elements to test whether certain 

properties will hold under certain conditions. Measuring is another important feature 

of GSP. Olivero and Robutti (2007) identified different measuring modalities in a 

dynamic geometry environment. Wandering measuring is measuring some elements 

of the configuration to identify quantitative relations, invariants, congruencies, etc. 

Guided measuring is measuring to obtain a configuration from a generic diagram 

that contains free or semi-free elements. Perceptual measuring is measuring to check 

the validity of a perceptual observation. Validation measuring is measuring to check 

a conjecture within a dynamic geometry environment to accept it or refute it. Proof 

measuring is measuring to get a better explanation or understanding of a proof that 
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students have already constructed. These dragging and measuring modalities be 

utilization scheme users develop while using dragging and measuring tools. When 

studying construction in dynamic geometry environments, researchers introduced 

the notion of “soft” and “robust” constructions (Laborde, 2005). A robust 

construction is a construction that passes the dragging test. It is obtained by using 

geometrical objects and relationships characterizing the construction. In contrast, a 

soft construction is a partial construction in which variation is part of the 

construction itself, and a mathematical property becomes evident only at the point 

in which another property is satisfied. Both soft and robust constructions are shaped 

by utilization schemes developing from invariant use of one or multiple tools within 

a specific dynamic geometry environment. 

METHODOLOGY 

Data for this paper came from a research project that aimed to examine the 

relationship between Geometer’s Sketchpad (GSP) usage and the development of 

mathematical understanding around various geometry topics (e.g., centers of 

triangle, quadrilaterals, and geometric transformations) through a series of task-

based interviews. Task-based interview was chosen because it allowed the 

researcher to gain knowledge about learner’s existing and developing mathematical 

knowledge and problem-solving behaviors. A carefully constructed task is essential 

to a task-based interview. In this research, researcher selected tasks for which GSP 

could potentially facilitate exploration and analysis of mathematical relationships, 

provide alternative approaches for problem-solving, or generate new problems that 

otherwise could not be posed.  

The participants were three undergraduate preservice teachers enrolled in a 

secondary mathematics education program. The participants were selected based on 

voluntary participation. All the participants reported that they had not completed any 

geometry course after high school. None of the participants had been introduced to 

Geometer’s Sketchpad (GSP) prior to the study. Therefore, a 60-minute tutorial 

session was held for each participant prior to the interviews. The goal was to get 

participants familiar with what tools are available in GSP, focusing on tools under 

the “construct” menu, “transform” menu, and “measure” menu. However, the 

participants were not taught ways of using these tools. 

Each participant spent eight sessions exploring geometry problems around various 

geometric topics. Each session lasted approximately two hours. Participants’ 

interactions with GSP were screen-recorded. Interactions between the interviewer 

and the participant were recorded. The GSP files produced during each interview 

were collected. Data analysis consisted of several stages. Video of each participant 

in each interview session was first segmented into episodes according to the 

transition of mathematical tasks. Each episode was then transcribed, focusing on 

both what was said and what was done with GSP tools. In the second stage, the 

participant’s growth of geometric understanding in each episode was analyzed using 

the Pirie-Kieren theory. It involved associating each understanding activity, as 

manifested both in words and actions, with a specific level of understanding 
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described in the Pirie-Kieren theory. The analysis at this stage resulted in a diagram 

that provided a global picture of a participant's growth of understanding in the Pirie-

Kieren model. The third stage of analysis involved zooming into each level of 

understanding to examine participant’s interaction with GSP. Specific 

dragging/measuring modalities (see the instrumental genesis section) and invariant 

use of one or multiple construction tools were identified. The analysis at this stage 

enabled me to examine the relationship between the development of utilization 

schemes and the emergence of new geometric knowledge at each level of 

understanding in the Pirie-Kieren model. The fourth stage involved synthesizing the 

analysis in the second and third stages. 

RESULTS 

Analysis of the participants’ GSP-mediated understanding activities suggests that 

integrating the Pirie-Kieren theory and instrumental genesis provides a productive 

means to capture learner’s growth of mathematical understanding within the 

dynamic geometry environment. Due to space limitation, this paper shares analysis 

of only one participant’s growth of understanding of inscribing a square of each 

given square to demonstrate the descriptive power of the integrated framework. 

 
Figure 1: Chen’s growth of understanding of inscribing a given square 

In one interview, Chen was given a square and asked to inscribe a square such that 

all its four vertices lie on a side of the given square. Through investigation, Chen 

developed a formal construction for the inscribed square. Figure 1 represents Chen’s 

process of gaining this understanding. As a start, Chen relied on his Primitive 

Knowing to solve the problem. He used the "midpoint" tool to find the midpoints of 

four sides of the parent square, connected the four midpoints, and stated that the 

inscribed quadrilateral was a square (Figure 2a). His justification was the following: 

Its four sides were congruent since the four triangles at the corners were congruent 

and all its angles were 90° since the four triangles were 45°-45°-90° triangles. By 

asking Chen whether that was the only inscribed square, the interviewer moved Chen 
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to Image Making since he became uncertain. He drew a line segment 𝐹𝐸̅̅ ̅̅  from 𝐴𝐵̅̅ ̅̅  

to 𝐴𝐷̅̅ ̅̅ , rotated 𝐹𝐸̅̅ ̅̅  90° about 𝐹, then dragged 𝐸 (90° rotation + maintaining dragging 

scheme) to move 𝐸’ to 𝐵𝐶̅̅ ̅̅  (Figure 2a). Chen created different configurations by 

changing the location of F and dragging 𝐸 (maintaining dragging) to move 𝐸’ to 𝐵𝐶̅̅ ̅̅ . 

As a result, he observed that for every fixed point on 𝐴𝐵̅̅ ̅̅  there was only one location 

for 𝐸 that would yield the desired configuration. This indicates that Chen advanced 

to Image Having and started to form a refined mental image about the inscribed 

square.  

Guided by this mental image, Chen started to explore how to create the inscribed 

square. He deleted 𝐸 and its dependent elements, left on the screen the parent square, 

the inscribed midpoint square, and point F. Using the “circle by center + point” tool, 

he constructed a circle with 𝐹 on 𝐴𝐵̅̅ ̅̅  as the center and 𝐺 on 𝐴𝐷̅̅ ̅̅  as a point on the 

circle, and labeled 𝐻 as the point of intersection of the circle and 𝐵𝐶̅̅ ̅̅ . However, when 

dragging F (dragging test), he realized the circle did not always intersect with 𝐵𝐶̅̅ ̅̅  

and the two radii were not constructed to be perpendicular. He then rotated 𝐹𝐺̅̅ ̅̅  90° 

around F and then dragged 𝐹 (maintaining dragging) such that 𝐺’ and 𝐻 coincided. 

After that, Chen reflected 𝐹𝐺̅̅ ̅̅  and 𝐹𝐺’̅̅ ̅̅̅  over line 𝐺𝐺’ to complete the square (Figure 

2b). He stated that he could use the above procedure to find an inscribed square for 

every point on 𝐴𝐵̅̅ ̅̅ . Meanwhile, Chen was aware that his procedure did not pass the 

dragging test since he relied on visual image to find where 𝐺′ and 𝐻 coincided. When 

he dragged 𝐹 (dragging test), the construction indeed collapsed. Here, Chen 

attempted to develop a construction for the inscribed square but did not succeed. He 

relied on soft construction and maintaining dragging to obtain the inscribed square.  

                                

E'

D C

A B

F

E

 
Figure 2: Screenshots of Chen’s work 

The interviewer then asked Chen what he noticed about the diagram, particularly the 

triangles at the corners. This moved Chen to Property Noticing. Chen stated that the 

two triangles (∆𝐴𝐹𝐺 and ∆𝐵𝐺’𝐹) were congruent and justified his observation by 

triangle congruency theorem (i.e., 𝐹𝐺̅̅ ̅̅ = 𝐹𝐺′̅̅ ̅̅ ̅, ∠𝐴 = ∠𝐵 = 90°, ∠𝐴𝐹𝐺 = ∠𝐵𝐺′𝐹, 

perceptual measuring was used to confirm ∠𝐴𝐹𝐺 = ∠𝐵𝐺′𝐹). He then started to 

think about how to construct the inscribed square, which led him to move toward 

Formalizing. After about one minute of silence, Chen shared that he was thinking 

about constructing congruent triangles at each corner through transformations. He 

achieved this goal by transforming a given point on one side of the square to the 

other three sides through a sequence of compositions of a 90° rotation followed by 

a reflection. After deleting his previous work (left only the parent square and point 
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𝐹), Chen brought back all the midpoints and drew one line passing through the 

midpoints of 𝐴𝐵̅̅ ̅̅  and 𝐶𝐷̅̅ ̅̅  and another line passing through midpoints of 𝐴𝐷̅̅ ̅̅  and 𝐵𝐶̅̅ ̅̅ . 

He rotated 𝐹 90° around 𝐵 and then reflected 𝐹’ over the line connecting the 

midpoints of 𝐴𝐷̅̅ ̅̅  and 𝐵𝐶̅̅ ̅̅  to get 𝐹”, rotated 𝐹” 90° about 𝐶 to get 𝐹”’ and then reflected 

𝐹”’ across the line connecting midpoints of 𝐴𝐵̅̅ ̅̅  and 𝐷𝐶̅̅ ̅̅ , rotated 𝐹”” 90° around 𝐷 to 

get 𝐹’”” and reflected 𝐹’”” across the line connecting midpoints of 𝐴𝐷̅̅ ̅̅  and 𝐵𝐶̅̅ ̅̅  to get 

𝐹””” (90° rotation + reflection scheme, Figure 2c). After finishing the construction, 

Chen claimed that the figure 𝐹𝐹”𝐹””𝐹””” is a square and measured 

∠𝐹”””𝐹𝐹” (validation measuring) to confirm his claim. As a result, Chen developed 

a formal construction for inscribing a given square. Here, the invariant use of a 90° 

rotation followed by a reflection indicated the formation of a utilization scheme that 

allowed Chen to develop a formal construction for inscribing a dynamic square of a 

given square. 

DISCUSSION 

During the past decade mathematics education researchers have devoted efforts to 

understand how theories can be connected successfully while recognizing their 

underlying conceptual and methodological assumptions, a process called 

“networking theories”. Exploring ways of connecting theories may help researchers 

to better grasp the complexity of learning and teaching processes. Radford (2008) 

argued that networking theories can happen at the level of principles, at the level of 

methodologies, at the level of questions, or as combinations of these. Prediger, 

Bikner-Ahsbahs, and Arzarello (2008) described different strategies for networking 

multiple theoretical approaches, including making one's own theory understandable, 

understanding others, comparing, contrasting, combining, coordinating, integrating 

locally, synthesizing, and unifying globally. The conceptual framework in this 

research is built by well-fitting elements from the Pirie-Kieren theory and 

instrumental genesis to capture learner’s growth of geometric understanding in a 

dynamic geometry environment. It provides an example of networking by 

coordinating principles of two theoretical approaches. More specifically, while the 

Pirie-Kieren theory served as a conceptual tool for tracing learner’s growth of 

mathematical understanding, instrumental genesis acts as an analytical tool at the 

microlevel for describing instrument-mediated actions at each level of understanding 

in the Pirie-Kieren theory.  

The coordination enriched the Pirie-Kieren theory. Although the original theory 

recognizes the importance of tools in learner’s growth of mathematical understanding, 

learner's interaction with tools and its impact on the growth of mathematical 

understanding was not further elaborated. The coordination makes the Pirie-Kieren a 

more viable tool to capture learner’s growth of mathematical understanding in a 

dynamic geometry environment while accounting for in detail the impact of technology 

on such growth. Moreover, the coordination suggested that the study of utilization 

scheme in a dynamic geometry environment should go beyond the study of various 

dragging/measuring modalities, an area that has been studied for two decades and 

accumulated a significant amount of research. The study of geometric understanding 

requires researchers to attend to the synergy of features of dynamic geometry software 
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because a learner might use multiple digital tools in the process of creating and 

transforming geometric objects and discovering new geometric properties. This was 

indeed the case in the episode shared in this paper. The utilization schemes (i.e. 90° 

rotation+ maintaining dragging and 90° rotation + reflection) for inscribing a given 

square require the integration of multiple DGE features. Further research is needed to 

examine the various utilization schemes learners might develop when using multiple 

tools available in a dynamic geometry environment to solve mathematical problems and 

their impact on the growth of mathematical understanding. 

References 

Baccaglini-Frank, A., & Mariotti, M. A. (2010). Generating conjectures in dynamic 

geometry: The maintaining dragging model. International Journal of Computers for 

Mathematical Learning, 15(3), 225-253. 

Barabash, M. (2019). Dragging as a geometric construction tool: Continuity considerations 

inspired by students’ attempts. Digital Experiences in Mathematics Education, 1-21. 

Gokalp, N. D., & Bulut, S. (2018). A new form of understanding maps: Multiple 

representations with Pirie and Kieren model of understanding. International Journal of 

Innovation in Science and Mathematics Education, 26(6), 1-21. 

González, G., & Herbst, P. G. (2009). Students’ conceptions of congruency through the use 

of dynamic geometry software. International Journal of Computers for Mathematical 

Learning, 14(2), 153-182. 

Gülkilika, H., Ugurlu, H. H., & Yürük, N. (2015). Examining students' mathematical 

understanding of geometric transformations using the Pirie-Kieren model. Educational 

Sciences: Theory and Practice, 15(6), 1531-1548. 

Laborde, C. (2005). Robust and soft constructions: Two sides of the use of dynamics 

geometry environments. In Proceedings of the Tenth Asian Technology Conference in 

Mathematics (pp. 22–35). Cheong-Ju, South Korea: Korea National University of 

Education. 

Meel, D. E. (2003). Models and theories of mathematical understanding: Comparing Pirie 

and Kieren’s model of the growth of mathematical understanding and APOS theory. 

CBMS Issues in Mathematics Education, 12(2), 132-181. 

Olivero, F., & Robutti, O. (2007). Measuring in dynamic geometry environments as a tool 

for conjecturing and proving. International Journal of Computers for Mathematical 

Learning, 12(2), 135-156. 

Pirie, S., & Kieren, T. (1994). Growth in mathematical understanding: How can we 

characterize it and how can we represent it? Educational Studies in Mathematics, 26(2-

3), 165-190. 

Prediger, S., Bikner-Ahsbahs, A., & Arzarello, F. (2008). Networking strategies and 

methods for connecting theoretical approaches: First steps towards a conceptual 

framework. ZDM, 40(2), 165-178. 

Rabardel, P., & Beguin, P. (2005). Instrument mediated activity: From subject development 

to anthropocentric design. Theoretical Issues in Ergonomics Science, 6(5), 429-461. 

Radford, L. (2008). Connecting theories in mathematics education: Challenges and 

possibilities. ZDM, 40(2), 317-327.



4 - 311 

2021. In Inprasitha, M, Changsri, N., & Boonsena, N.  (Eds.). Proceedings of the 44th Conference of 

the International Group for the Psychology of Mathematics Education, Vol. 4, pp. 311-318. Khon Kaen, 

Thailand: PME. 

EXAMINING MATHEMATICS TEACHERS’ PROFESSIONAL 

KNOWLEDGE BASE DURING THE PANDEMIC CRISIS: 

THE PERSPECTIVE OF SWOC ANALYSIS 

Qiaoping Zhang1 
1Department of Mathematics and Information Technology 

The Education University of Hong Kong, Hong Kong SAR 

 

The study focused on Hong Kong mathematics teachers’ personal experiences and 

challenges in online teaching during the COVID-19 pandemic crisis. A SWOC 

analysis is adopted. Results showed that they tried to offer e-learning as an 

alternative mode of teaching to maintain the education service within the pandemic. 

Hong Kong teachers tended to focus on external factors rather than internal factors 

in the initial period of online teaching. They agreed that there was a paradigm shift 

in the role of teaching during the crisis. They were commonly building a sufficient 

level in using technology, but this was not equivalent to be competent in achieving 

instructional goals. Mathematics teachers’ professional knowledge is influenced by 

their personal online teaching experiences. Their attitudes and beliefs are crucial 

factors in the role and effectiveness of using online teaching. 

INTRODUCTION 

Due to the outbreak of COVID-19, the Education Bureau (EDB) in Hong Kong 

announced that all students were asked to stay home after the Lunar New Year Break 

ended in late January 2020. During the period of class suspension, the EDB 

requested schools to provide student useful learning materials through internets or 

other effective means. The suggestions that given by the EDB was not a compulsory 

action, according to the first notice for all schools from EDB, the purpose of school 

use of e-learning is “students can make good use of their time at home to continue 

their studies” (The Government of the Hong Kong SAR, 2020). Therefore, schools 

in Hong Kong were initially slow to embrace online learning at that time. 

Unfortunately, the outbreak of COVID-19 in Hong Kong was continued, the school 

suspension has been extended until April after the Easter holidays. The education 

chief stated that the class suspension was not an extension of the school holidays. 

Schools are making use of different modes of learning, including e-learning to 

achieve the goal of “suspending classes without suspending learning” (Hong Kong's 

Information Services Department, 2020). Schools in Hong Kong started to prepare 

e-learning materials or online teaching after the outbreak of the second wave. 

However, this alternative model of teaching brings difficulties for both teachers and 

students. Most students cannot finish distance learning independently, and their 

parents expected more interactive support feedback from school during the online 

learning, at the same time, the related professional training for teachers is needed to 
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strength (Lau & Lee, 2020). All the teachers changed their usual way of teaching 

and put into action in a short time with new teaching approaches and methods; at the 

same time, they were also expected to teach as best as possible. This was 

undoubtedly a very challenging situation for teachers, that brought to the fore their 

perceptions about teaching. In this situation, the study of analyzing teachers’ voice 

or feedback is imperative for improving students’ online learning performance and 

teachers’ professional development. This article focuses on studying teachers’ 

voices of their online learning experiences via utilizing a combination of SWOC 

analysis (Dhawan, 2020) in teachers’ professional knowledge base (Shulman, 1987), 

and provide support and recommendations for studies about online learning 

teachers’ professional training in the further. 

RESEARCH METHOD   

Conceptual framework 

The SWOC model (Dhawan, 2020) is adopted to be the analytical tool used for 

analysing the data which amassed from different sources in this study. The research 

method is descriptive research. The SWOC analysis was conducted to understand 

various strengths, weaknesses, opportunities, and challenges associated with 

mathematics teachers’ perceptions of their online teaching experiences during the 

COVID-19 pandemic in Hong Kong.  

Research questions 

Our intention with this study was to understand further the situation teachers 

precepted during this pandemic crisis. Moreover, the findings of the qualitative study 

can provide some suggestions and recommendations for the success of the online 

mode of learning and teaching. This article focuses on the qualitative part of this 

study. In order to understand the situation of teachers’ online teaching mathematics 

experiences, this study endeavoured to answer the research questions are two-fold: 

RQ1: What is the situation of e-learning and teaching experience of mathematics 

teachers in Hong Kong? 

RQ2: What are the strengths, weaknesses, opportunities and challenges (SWOC) 

perceived by the mathematics teachers regarding online teaching in Hong Kong? 

Participants and instruments 

The 13 participants of this qualitative study were selected from the large population 

of a quantitative study (n=109) regarding by their background and position in 

schools. The 13 teachers were from primary and secondary schools participated in 

this study. Among them, 4 were novice teachers (<5 teaching years) and 4 were 

competent teachers (between 5 to 10 teaching years), the other 5 were expert teachers 

( 15 years). These teachers teach different levels in schools, including all grades in 

primary school and all levels in secondary school.  Excluding be a mathematics 

teacher, their primary duties in schools include mathematics panel head, curriculum 

leader, grade coordinator, STEM coordinator, and academic committee head. All 

participants were invited by this project coordinator. The participation was voluntary 

to attend an in-depth online interview to narrate their teaching experiences about e-
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learning, online teaching, perceived challenges, etc. All interviews were held by an 

experienced qualitative researcher in the study. Semi-structure questions and guided 

questions were constructed and the whole interview process was recorded.  

Data analysis 

The data from the interviews to respond to teachers’ experiences in this pandemic 

period were transcribed and coded with the software Nvivo for analyses. First of 

all, the grounded coding strategies were used to derive meanings of data 

collected. Secondly, thematic coding strategy was used to generate a set of main 

concepts or categories of ideas that were mentioned by the teachers. Through this 

process, data were organized and sorted into four major themes SWOC: Strength, 

Weakness, Opportunities and Challenges. During the development of coding 

categories, it involved an interactive review with related literature that required 

considering previous research about teachers’ professional knowledge (Shulman, 

1987). After categorization of every SWOC themes, the basic common themes 

and categories of interviews data included knowledge of using technology, online 

teaching methods, classroom management difficulties, special learning need 

concern, curriculum adjustment, assessment, etc. We explored that these themes 

were related to how the teacher solve the problems in online teaching by their 

knowledge. In line with Shulman’s ideas on teachers’ professional knowledge 

base, we split each SWOC theme into three categories included content 

knowledge (CK), pedagogical knowledge (PK) and pedagogical content 

knowledge (PCK) and combined into a full matrix. Through this process, data 

were organized into twelve categories: SCK, SPK, SPCK; WCK, WPK, WPCK; 

OCK, OPK, OPCK; CCK, CPK, CPCK. All data were analyzed. For example, 

one of teacher A argued in her interview that “From the beginning of online 

teaching, teachers among us started to discuss online teaching couldn’t replace 

face-to-face lesson. We all worried about how to teach mathematic distantly. Our 

teaching includes a lot of hands-on activities, but we could not teach as past now. 

Teaching time are shortened too……”. A content analysis was conducted in a 

similar way and identify categories of “Challenges” and “PCK”. 

The qualitative data were analysed by two researchers. The first researcher 

conducted the initial analysis, and the second researcher checked the analysis. 

The interview data were coded independently by the researchers and categorized. 

Then, the coding analysis was compared, conflicts between the two researchers 

were discussed, and a consensus with regard to coding the few discrepancies was 

resolved collaboratively by discussing the nature of the online teaching. Results 

were summarized in Table 2 and some details are discussed in the next section.  

RESULT  

In the period of COVID-19, teachers’ interviews display positive comments towards 

embracing online teaching and likely to adopt e-learning during the coronavirus 

outbreak. As all of the schools were closed in the age of COVID-19, it is necessary 

for mathematics teachers to explore online teaching. The interview data show that a 
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typology of teaching knowledge that reflects how online teaching experience related 

to their teacher knowledge. First, results of the analysis of the content of interviews 

data are presented according to four themes: (a)strength, (b) weakness, 

(c)opportunities, (d) challenges. Second, the teaching knowledge related to each 

theme is presented in three categories. Finally, the relationships between SWOC and 

teachers’ knowledge are exemplified in the results.  

The smallest theme, weakness, consisted of 7 quotations only but the largest theme 

is challenges which consisted of 66 quotations (see Table 1). According to the 

SWOC analysis, strengths and weaknesses are internal factors, while opportunities 

and challenges are external factors. The data presented that teachers’ perception of 

online teaching was highly impacted by external factors. The data presented a view 

of how teachers interpreted their perception of online teaching experiences in this 

period of time. The difficulties and problems that they faced in online teaching what 

caused by the external factors, for example, technology, resources, teaching 

schedules, assessment arrangement, etc. In another turn, teachers commonly have a 

strong belief that their competence in teaching is common strengths in adapting and 

applying online teaching. In this study showed that teachers’ belief that they have 

strong internal factors to deal with online teaching situation, for example, personal 

strength, rich teaching experiences, strong subject knowledge and curriculum 

understanding, etc. However, teachers’ interviews focused on challenges were 

mainly from external factors, for example, school and government policy, school 

administration, parents support, etc. This result showed a contrast between internal 

and external impact factors of online teaching. 

Table 1 No of quotations in SWOC categories  

Themes CK PK PCK Total 

S (internal) 0 13 7 20 

W (internal) 0 7 0 7 

O (external) 0 8 2 10 

C (external) 2 40 24 66 

Note. S = Strength; W = weakness; O = opportunities; C = challenges; CK = content 

knowledge; PK = pedagogical knowledge; PCK = pedagogical content knowledge. 

After further analysing the data, we derived a comprehensive picture of the teachers’ 

experiences in online teaching and sorted each SWOC themes into Shulman’s 

professional knowledge-base categories. Several interesting findings were noted. 

First, the “Strength and content knowledge”, “Weakness and CK”, “Weakness and 

PCK” and “Opportunities and CK” categories have none of the quotations. That 

means teachers’ interviews did not contain any narration related to these categories. 

In the “Strength” categories, 13 quotes were linked to “Strength and pedagogical 

knowledge categories”, such as good competency in IT to shift teaching run online 
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shortly. There were 7 quotes related to “Strength and pedagogical content 

knowledge” categories, for example, teachers have flexible mathematical teaching 

methods to deal with online classroom situation. In “Weakness and pedagogical 

knowledge”, 7 quotes linked to this category, for example, lack of online teaching 

experiences in the past, bad time management and provided not enough support for 

individual differences.  

The categories of “Opportunities and PK” and “Opportunities and PCK categories” 

contained 8 and 2 quotes respectively(see Table 2). Teachers commonly agreed that 

this period of online teaching experiences explored and developed new teaching 

strategies or reflected the role of school and teacher in the new normal. The 

“Challenges” were the largest categories consisted of 2 quotes in content knowledge 

both related to curriculum adjustments, 40 quotes in “PK” and 24 quotes in “PCK”. 

Teachers mentioned reasons for the challenges were focused on general online 

teaching difficulties, for example, technical problems, online homework and 

assessment arrangement, online classroom management problems, shorten teaching 

times and student low learning motivation etc. which are analysed and organized 

into six different categories. In the PCK category, teachers concerned how to adapt 

online teaching and apply ICT in mathematic teaching. Several teachers commented 

and compared online and traditional mathematic teaching differences such as which 

concepts and topics were suitable taught through online or not. Teachers also 

provided examples to illustrate how to deal with those challenges in an online 

situation. Interestingly, teachers mentioned that the nature of mathematic teaching 

causes those challenges.  

Table 2 Categories of Opportunities 

Categories No. Examples  

Opportunities + 

Content Knowledge 

(OCK) 

0 — 

 Opportunities + 

Pedagogical 

Knowledge  

(OPK) 

8 In fact, this is the result I want. Because I was also 

thinking about it (ability grouping). A student came 

back yesterday and told me that it wasn’t the kind 

of cross-subject grouping that had been done many 

years ago. Is that whether the students are of the 

same age, do they need to go to that grade?.... 

Opportunities 

+Pedagogical 

Content Knowledge 

(OPCK) 

2 I also think that this period of online teaching will 

not be just one time, it will not be over and nothing 

will return to the past. When we open a road, the 

whole world will know that this is a good way, and 

it will be easy... 
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The teacher is the most important person in curriculum implementation. Analysis of 

the interviews attested that the strength of most teachers interviewed in the study are 

knowledgeable of the current school mathematics curriculum, the practice of 

mathematical teaching. Moreover, they are responsible for introducing the 

curriculum in the classroom individually. Thus, teachers expressed their concern in 

several curriculum issues related to online teaching during the coronavirus outbreak. 

An example of Teacher N: 

Interviewer: Whether you are familiar with the environment and requirements 

of secondary school? 

Teacher N:    It's all related, because of the current teaching topic “percentage”, 

students still have to continue to learn in Form One. And the topic 

“area” must continue to study like surface area in Secondary One. 

In Form 2, the area and volume of the cylinder must be studied. If 

it is not consolidated now, what will happen in the future? You 

should continue to study the topic “Circle” in Form 5. If the 

foundation is not good, it will be very troublesome in the future. 

Because I am very familiar with the teaching content of secondary 

school, and I am now hesitating whether to consider teaching topics 

have to teach first. 

DISCUSSION  

The purpose of this study was to utilize the voices of mathematics teachers in Hong 

Kong to understand their perspective of facing online teaching. Moreover, this study 

presented a picture of how teachers deal with difficulties and challenges in term of 

teacher pedagogical knowledge. Three interesting phenomena were observed in the 

study.  

First, Hong Kong teachers tend to focus on external factors rather than internal 

factors in the initial period of online teaching. They have omitted personal weakness 

or strength in facing situation changes. In fact, teachers felt that they had the 

competencies and confident about their ability to teach mathematic online, although 

most of the teachers stated that this was the first time to teach online. Few of them 

likely to explore new tools or possibilities to improve their teachings. Besides of 

this, teachers also showed strong confidence about their ability in teaching, but 

seldom mentioned their worries or personal weakness in online teaching. Only a few 

teachers were likely to improve their teaching methods, including teaching contents 

or planning. Most of them expressed the classroom management problems as 

external challenges that they could not control. These are the reactions of Hong Kong 

teachers when face changes or challenges. Teachers are aware of the external factors 

rather than internal personal factors in the initial phase of change.  

Studies on teacher change usually refer to a situation of professional development 

and not to a situation of emergency. The pandemic turns all teaching run online, 

which forced teachers to have to change in a short period of time. This convinced to 

Peirce’s belief theory that “fixation of belief”. He stated that beliefs are our stability 
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and highly resistant to change. The formation of belief is the base state of cognition 

through which we make sense of the world (Cunningham, 1998). All past learning 

and teaching in traditional classroom experiences form teachers’ belief (Richardson, 

1996). Their beliefs are highly stable and resistant to change. This gives educators 

and teacher trainers an insight that understanding personal belief can help teachers 

to move on. Investigating which beliefs can be changed or modified are important 

to establish a new form of teaching. Liljedahl (2010) argued that change may happen 

in a rapid and profound way when an existing belief starts to be questioned or even 

rejected by the teacher; such a change is profound when the teacher finds a new 

belief to replace the former one. If online teaching becomes an irreversible change, 

teaching as a personal specific and implicit practice. Assisting teachers to 

consolidate their personal strength and weakness is an essential process to prepare 

teachers for the future.  

Second, teachers commonly agree that during the pandemic there is a paradigm shift 

in the role of teaching. There are variations in technology usage in the study, those 

reflected the differences in teachers’ beliefs about the utility of technology in 

teaching. The teachers’ words, as expressed in the interviews, raised the questions 

of adjustment of teaching contents in mathematics topics and concepts due to 

temporary closure of school and transition to online teaching: Which topics or 

concepts should be included? Hong Kong teachers have highly relied on the 

centralized curriculum for example textbook or government-provided curriculum. In 

general, Hong Kong teachers were not actively involved in curriculum design or 

planning although they are knowledgeable (CK) with good teaching practices (PK). 

They have to consider the adjustment of their teaching schedule and content affected 

by online teaching. 

Third, teachers are commonly building a sufficient level in using technology, but 

this is not equivalenced to competence in achieving instructional goals by using 

technology.  The problem of effectiveness in online teaching raises within 

interviews. The competences to achieve effective online teaching shall be the future 

teacher professional development approach. 

CONCLUSION 

Teachers’ narration provided a whole picture to illustrate the challenges that they 

were faced. Moreover, their experiences provided rich insights to handle this 

transition from traditional teaching mode to online teaching in the future. Pandemic 

kicks off the new era of teaching. This study has provided further evidence that 

mathematics teachers can also learn via online mode. The study has explored the 

tension of mathematic class online. Results of the study reveal that online teaching 

mathematics have differences in clustering. The reason for these differences could 

be due to teachers’ beliefs and attitudes towards the use of technology in learning 

mathematics. If a teacher lacks the skill and knowledge on how to use technology in 

teaching mathematics, which may be characterized by a negative attitude thereby 
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recording low motivation in online teaching. Understanding their existing belief is a 

method to assist teacher adapted and shifted their belief to a new status. 

Results also revealed that teachers’ online teaching mathematics were very high. 

One reason for these high scores is that teachers exhibited hood tic-skills to engage 

in online mathematics teaching and had the necessary technological tools to facilitate 

their online interactions. Teachers’ professional knowledge base could be regarded 

as one of the core competence of effective teaching and it is important to understand 

the knowledge base under online teaching. Educators have good computer 

technological knowledge, subject knowledge, pedagogical knowledge and 

pedagogical content knowledge, but the effectiveness of their online teaching can be 

low. This part is waiting for further discussion and studies in the future.  
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