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2022. In C. Fernández, S. Llinares, A. Gutiérrez, & N. Planas (Eds.). Proceedings of the 45th Conference of the 
International Group for the Psychology of Mathematics Education (Vol. 2, pp. 3-10). PME. 

PROBING PROSPECTIVE SECONDARY MATHEMATICS 
TEACHERS’ UNDERSTANDING OF VISUAL 

REPRESENTATIONS OF FUNCTION TRANSFORMATIONS: A 
MULIPLE SCRIPTING TASK APPROACH 

James A. M. Álvarez, Theresa Jorgensen, Janessa Beach  

The University of Texas at Arlington 

In this paper, we use multiple scripting tasks as a research tool to investigate 
prospective secondary mathematics teachers’ (PSMTs’) mathematical knowledge of 
function transformations and their inclination to connect multiple representations of 
functions. Mathematically similar scripting tasks focused on visual representations of 
function transformations were given at three intervals during a 15-week semester in an 
undergraduate mathematics course on functions for PSMTs in the United States. 
Participant responses to these scripting tasks were analysed, and four prevalent 
themes were identified that reveal initial tendencies to disregard visual observations 
posed by students in the scripting tasks and limited use of their mathematical 
knowledge to connect multiple representations of functions.  

INTRODUCTION 

Prospective secondary mathematics teachers (PSMTs) will be expected to teach 
mathematics for which the concept of function is a fundamental component. However, 
Ponte and Chapman (2008) identify “lack of a good understanding of functions” as a 
consistent issue with the knowledge of PSMTs highlighted in the research literature (p. 
227). For example, Even (1993) found that a limited conception of function influenced 
PSMTs pedagogical reasoning. Also, Hitt (1998) links a group of practicing secondary 
mathematics teachers’ conceptual knowledge to difficulties in passing from one 
representation of function to another. With the prevalence of graphing technology, 
visual representations of functions can be easily generated and used in the classroom. 
However, this may expose ways in which PSMTs’ limited understandings of the 
connections between representations may deter future teachers’ capacity to address 
student understandings and leverage their own understandings. 

In this study, we used three mathematically similar scripting tasks to explore any 
changes in the PSMTs’ understanding that may have been influenced by inquiry-based 
lessons focused on functions and function patterns. Our research questions are: (1) To 
what aspect of the mathematics in the scripting task do PSMTs choose to attend? In 
particular, how do they connect different representations or attempt to make 
mathematical connections to resolve the student’s question? (2) How do PSMTs 
choices to resolve the student’s question incorporate or validate the student’s 
mathematical thinking? 
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BACKGROUND AND THEORETICAL PERSPECTIVE 

Script writing in the context of a mathematics course for preservice teachers can be a 
useful research tool to investigate mathematical knowledge and understanding for 
teachers (Zazkis & Zazkis, 2014). A scripting task typically begins with a hypothetical 
conversation between a teacher and a student, or between multiple students, which is 
then continued by the PSMT in a written dialogue.  Script writing tasks provide PSMTs 
an opportunity to prepare a well-considered reply to a student, rather than an 
on-the-fly, in-the-moment response. Scripting tasks allow researchers a written 
window into the mathematical thinking of the PSMT, together with a view of how the 
PSMT chooses to address a cognitive conflict as expressed by a student, and their 
pedagogical sensitivity in assisting students (Kontorovich & Zazkis, 2016).  

In a student-centred mathematics classroom, researchers have supported models of 
effective mathematics instruction in which a teacher fosters students’ ability to 
consider various mathematical solutions (Hiebert et al. 1997). To do this, a teacher 
must use their own mathematics knowledge flexibly to draw out the important 
representations, ideas, and conceptions embedded in students’ mathematical thinking. 
Teachers who lack this flexible knowledge of mathematics and student thinking may 
be more inclined toward ritualized “show-and-tell” (Silver et al., 2005).  Ball’s (1990) 
study exhibits this inclination when she probed ten elementary and nine secondary 
prospective teachers’ understanding of division and found that the prospective teachers 
at both levels tended to search for the particular rules rather than focusing on 
underlying meanings. “They seemed to assume that stating a rule was tantamount to 
settling a mathematical question” (p. 141). In 2008, Ball et al. further categorized 
mathematical knowledge unique to the work of teaching or mathematical knowledge 
for teaching (MKT). The domains of MKT proposed by Ball et al. (2008) map to two 
categories – subject matter knowledge and pedagogical content knowledge.  In the 
context of this study, subject matter knowledge is at the core of the sequence of 
scripting tasks completed by the PSMTs. 

Developing a deep understanding of function transformations at the secondary level 
can require the learner to reconcile multiple representations of function, including 
graphical, tabular, and symbolic representations (c.f. Eisenberg & Dreyfus, 1994).  
Oehrtman et al. (2008) “recommend that school curricula and instruction provide more 
opportunities for students to experience diverse function types emphasizing multiple 
representations of the same functions” (p. 153). Dynamic visualization software can be 
a robust tool for students to make these connections as they explore the effect of 
different transformations (Villarreal, 2000). However, visual information can 
sometimes negatively influence misconceptions held by the learner (Aspinwall et al., 
1997). For example, Álvarez et al. (2020) described a task for practicing teachers in 
which the teachers struggled to explain an apparent discrepancy between the dynamic 
visual representation of a vertical dilation of the linear function 𝑓ሺ𝑥ሻ ൌ 𝑥  and a 
rotation of the graph of 𝑦 ൌ 𝑥 about the origin. In addition, Moore and Thompson 
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(2015) use the study of shape thinking “to offer a new perspective on multiple 
representations by enabling researchers to be clearer about what a graph represents to a 
student, and thus what students understand multiple representations to be 
representations of” (p. 788). 

METHODS 

This study took place at a large, public university in the southwestern United States 
with an enrolment of over 42,000 students. The university is recognized as one of the 
most diverse national universities in the United States. Participants in this study 
consisted of 27 PSMTs enrolled in 2018 fall semester, second-year mathematics 
content course for PSMTs with a second-semester calculus prerequisite. Twelve 
participants self-identified as male and 15 self-identified as female. 

The mathematics course implemented a unit developed by the Enhancing Explorations 
in Functions for Preservice Secondary Mathematics Teachers Project, Explorations on 
Functions and Equations (EFE). The EFE materials consist of 11 research-based 
lessons with an objective of deepening and broadening PSMTs function-related 
mathematical content knowledge from school algebra to calculus by exploring relevant 
topics in an inquiry-based learning environment. In the 15-week fall 2018 semester, the 
EFE materials spanned the first 10 weeks of the course approximately. 

This study centres around three scripting tasks related to two lessons within the EFE 
materials: “Functions Arising from Patterns” and “Indistinguishable Function 
Transformations and Function Patterns.” Zazkis and Zazkis (2014) advocate that 
scripting tasks “serve as a window for researchers to investigate participant’s 
understanding of mathematics” (p. 68). The scripting tasks in this study are intended to 
reveal PSMTs’ MKT. In particular, MKT related to connections between function 
transformations and their visual representations. During the eighth week of 
implementation of the EFE, students completed Scripting Task 1 (ST1). This served as 
a baseline for evaluating participants’ MKT, and it was completed outside of class 
before the lesson on “Functions Arising from Patterns.” ST1 (see ¡Error! No se 
encuentra el origen de la referencia.) provides a fictional interaction between a 
teacher and a student, Grace, in which Grace questions the teacher about the horizontal 
compression she perceives in the transformation 𝑔ሺ𝑥ሻ ൌ 𝑎 ∙ 𝑓ሺ𝑥ሻ   as  𝑎  varies 
dynamically where 𝑓ሺ𝑥ሻ ൌ 𝑥ଷ and 𝑎  1.  

Over the next three 80-minute class meetings, students engaged in the lesson 
“Functions Arising from Patterns” and then “Indistinguishable Function 
Transformations and Function Patterns.” For the former, PSMTs investigated patterns 
in the domain of given data sets and resulting patterns in the corresponding range data 
sets. Specifically, students explored the domain-range patterns within data sets arising 
from linear, quadratic, power, exponential, and logarithmic functions. They identified 
patterns such as an addition-product pattern for logarithmic functions by noticing that 
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adding 𝑐  to subsequent domain values results in a pattern of multiplying the 
corresponding range values by a constant k (that depends on c).  

In the second part of the “Functions Arising from Patterns” lesson, students work with 
general forms of the functions to verify algebraically that the identified domain-range 
patterns apply to certain transformations on functions of the same type. For example, 
they verify the product-addition pattern for logarithmic functions.  

 
Figure 1: ST1 

The “Indistinguishable Function Transformations and Function Patterns” lesson 
examines function patterns that may seemingly produce a dynamic process that defies 
the algebraic rules previously learned about transformations of functions. PSMTs 
encounter four scenarios in which a particular transformation represented algebraically 
simultaneously appears also to correspond to a different type of transformation. They 
are invited to use appropriate technology in their exploration. The following is an 
excerpt of one of the scenarios: 

For a given function 𝑓, we define a new function 𝑔ሺ𝑥ሻ ൌ 𝑓ሺ𝑥  𝑐ሻ where 𝑐  0. The 
graph of the new function 𝑔 is a horizontal translation (shift) of the graph of 𝑓, but it also 
appears to be a vertical translation (shift) of the graph of 𝑓. In order to observe this, which 
function pattern must 𝑓 have? Explain your reasoning. Identify the function type for which 
this observation would apply. 

Directly after completing these explorations on function patterns and transformations, 
students were given Scripting Task 2 (ST2) to be completed outside of class. This task 
is then intended to elicit participants’ MKT after they have had the opportunity to delve 
into these ideas within the EFE lessons. Like ST1, ST2 presents a fictional 
conversation between a student, Isaac, and his teacher. In this conversation though, 
Isaac asks why he sees a vertical stretch in the transformation 𝑔ሺ𝑥ሻ ൌ 𝑓ሺ𝑥  𝑐ሻ, where 
𝑓ሺ𝑥ሻ ൌ 3௫. Students were asked to carry out this dialogue between the teacher and 
Isaac. Finally, Scripting Task 3 (ST3) was presented to students as a part of their 
end-of-course final exam. This task asks students complete another discussion between 
a teacher and the student, Isaac, where Isaac asks about the vertical stretch he perceives 
in the transformation 𝑔ሺ𝑥ሻ ൌ 𝑓ሺ𝑐𝑥ሻ, where 𝑓ሺ𝑥ሻ ൌ 𝑥ଷ and 𝑐  0. Between ST2 and 
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ST3, students completed explorations outside the EFE lessons that centred on ideas of 
statistical regression, the polar coordinate system, and complex numbers. Thus, ST3 is 
intended to reveal the MKT that persisted over time. 

Following the completion of all three scripting tasks, participant responses were 
de-identified and linked to a participant number. We then coded responses to identify 
the ways in which PSMTs leveraged their understandings of function transformations 
and representations to attend to student questions posed in the scripting tasks. 
Separately, we each generated initial codes for all the scripting task data. All initial 
codes were then reviewed and triangulated by the research team, organized into 
common reactions, defined, and named. We then examined the prevalence of these 
reactions. 

RESULTS 

Each scripting task posed ended with a scripting-task-student (STS) question arising 
from the situation such as “S: So does adding inside a function give you both a 
horizontal shift and a vertical stretch? Or what?” from ST2. Four dominant reactions 
were identified when examining participant responses to STS questions across all three 
scripting tasks. These reactions were applying form-dependent reasoning, directing 
visual observations, comparing representations, and focusing on algebraic 
equivalence. 

PSMTs’ use of form-dependent reasoning involved directly appealing to a rule to 
redirect the STS claim. For example, on ST3, one PSMT explains, “In this case, it 
appears as if it is a vertical stretch, but it is not. When the ‘c’ is larger or smaller, it will 
appear to look more like a horizontal stretch. Just remember the rules because looks 
can be deceiving.” On ST2, another PSMT also says, “No, it may be perceived that 
way, but when we have a constant added inside the function than you will always get a 
vertical or horizontal shift.” On ST1, 45% of the PSMTs appealed to the rule or form 
only whereas 25% and 30% did so on ST2 and ST3, respectively. 

The reaction of directing visual observations was identified when PSMTs’ 
explanations directed students to attend only to the changes related to the form of the 
expression such as the following participant answer on ST1. 

T: Well, what exactly is a vertical stretch? 

S: It’s when the y-values in the graph are bigger than the y-values of the parent function’s 
graph? 

T: So, it has nothing to do with the x-values? 

S: No, the x-values stay the same. 

T: Then, if your x-values are the same, but your y-values are bigger, what does the graph 
look like? 

S: Tall and skinny. 

T: Exactly. It looks tall and skinny because the y-values changed, but there is not actually 
a horizontal compression. 
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S: Oh, that makes sense. It’s the scale of my x-axis that makes it look like a horizontal 
compression. 

On Scripting Tasks 1 and 2, 31% of the PSMTs directed STSs in this way whereas on 
ST3 only 4% did this. 

PSMTs used comparing representations most on ST1 (32%), but then this dropped to 
6% on ST2 and increased again to 27% on ST3. For example, on ST2 a PSMT draws a 
student’s attention to a tabular representation to illustrate the transformation but does 
not validate why the student is observing the apparent contradiction to the learned rule.  

Focusing on the algebraic representation as a way to explain the apparent contradiction 
in the STS claim or question only appeared in less than 5% of the responses on ST1, 
19% of the responses in ST2, and 38% of the responses on ST3. These responses 
involved the PSMT showing how the algebraic representation may help illuminate 
why there is an apparent contradiction to the learned rules. 

In addition, we noted that PSMTs were much more likely to validate the STS claims on 
the final scripting task when compared to the previous tasks. That is, 46% of the 
participants validated the STS claim on the ST3 versus 19% on ST2 and 14% on ST1. 
Validating a STS claim did not preclude a participant from then evoking form 
dependent reasoning, directing visual observations, comparing representations, or 
appealing to algebraic equivalence in attempts to complete the scripting task. Thus, in 
most instances, participants were not attending to why the student was seeing what they 
were seeing, but only addressing how they should be seeing it. Their responses would 
continue with “this is why it is not…” 

DISCUSSION 

To address our research questions, we employed repeated use of related scripting tasks 
as a research tool. The codes identified suggest that our PSMT participants held views 
similar to Ball’s (1990) prospective elementary and secondary mathematics teachers 
that “stating a rule was tantamount to settling a mathematical question” (p. 141).  

Although the lessons attend to multiple representations of function, PSMTs displayed 
uneven abilities to connect different representations and use this knowledge to attend 
to student thinking. Although reliance on “rule following” decreased from 45% to 25% 
from ST1 to ST2, the persistence of “rule following” indicates further revisions to the 
lessons or refinements to the facilitation of the tasks is warranted.  

The tendency for PSMTs to have the teacher in the script direct the scripting task 
student’s attention to the transformation that they “should see,” decreased dramatically 
to only 4% on ST3. This may have been due to group discussions and review before the 
final exam in which PSMTs viewed animations directing their attention to seeing these 
simultaneous transformations does occur and that simply redirecting attention to the 
“correct” transformation does not help a student understand why they see what they 
see. This relates Moore and Thompson’s (2015) idea that we may not clearly 
understand what the dynamic situations represent to the PSMT and how PSMTs’ 
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understanding enables them to make connections among different representations. 
PSMTs may question their understanding of function transformations when confronted 
with conflicting visual information causing visual imagery that interferes with their 
understanding as seen in Aspinwall, et al. (1997). Development of the MKT to 
untangle this conflicting visual information was not present in our participants.  

Our findings related to PSMTs validating student thinking, but then explaining “why 
it’s not…” give some insight into how PSMTs may have an underdeveloped 
understanding of representations. The use of multiple scripting tasks to track PSMTs 
understanding in this way reveals that while the PSMTs overwhelmingly validated 
student thinking on ST3 more work is needed to help them attend to answering the 
student’s “why” question and not only superficially acknowledge their thinking to 
move to a standard explanation. We continue to investigate how scripting tasks, used in 
this manner, can inform curriculum development as well as provide formative 
assessment on appropriate mathematical concepts. 
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360 video records a complete, spherical view of a scenario and allows the viewer to 
manipulate what is viewable in each frame. We incorporated 360 video into a teaching 
mathematics course and used prompts that directed prospective teachers’ attention to 
students’ mathematical thinking. Results indicated that prospective teacher noticing 
was more specific when they responded to prompts about students’ thinking as 
compared to more general prompts. With focused prompts, prospective teachers had 
increased attention to students’ mathematical thinking and were more likely to make 
interpretations about students’ mathematical thinking. The findings show promise for 
the combination of 360 video and student-focused prompts to support prospective 
teacher noticing.  
INTRODUCTION  
During the last twenty years, the research on teacher noticing has spanned contexts and 
continents as mathematics education researchers and teacher educators have focused 
efforts on how teachers attend to and interpret students’ thinking (Dindyal et al., 2021). 
Drawing from Mason (2011) and van Es and Sherin (2002), noticing refers to the 
process of sensitizing oneself to act intentionally in situations, without habit, with the 
purpose of making sense of how students reason. Teachers who sufficiently notice are 
more likely to implement teaching practices considerate of students’ thinking, a 
process Jacobs and Spangler (2017) consider a core teaching practice. Dindyal and 
colleagues (2021) recently outlined the current state of teacher noticing, with a focus 
on how noticing is conceptualized, studied, and with emphasis on the contexts within 
which studies of teacher noticing are situated. They conclude that using records of 
teaching to support the development of noticing is common practice in many teacher 
education contexts (e.g., Jacobs et al., 2010; Schack et al., 2013; van Es et al., 2017). 
Despite the focus on noticing, and identification of ways noticing is supported, 
learning to notice is challenging for prospective teachers (e.g., Ivars et al., 2018; 
Llinares & Valls, 2010; Roth McDuffie et al., 2014). And consequently, researchers 
and teacher educators have focused on means to support prospective teacher noticing 
(Schack et al., 2013). 
Given the challenges to support prospective teachers to notice, many teacher educators 
have implemented instructional practices in teacher education courses to support the 
development of noticing (Amador et al., 2021). Video is one common tool used in 
teacher education courses to show a representation of practice and support noticing 
(Gaudin and Chaliès 2015; Santagata et al., 2021). In a recent review of international 
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studies, Santagata et al. (2021) found that many researchers call for an increased use of 
technologies to support noticing. Consequently, knowing that ‘learning to notice’ is 
often challenging (van Es, 2011), we designed modules in teacher education courses 
that would capitalize on recent video technology and aim to scaffold prospective 
teacher noticing.  
In our teacher education courses, we incorporated a recent technological advance in 
video, that of 360 Video, which records a complete, spherical view of a scenario, and 
allows the viewer to manipulate what is viewable in each frame by “dragging” the 
screen or moving their head when wearing an appropriate headset (Amador et al., 
2021; Roche & Gal-Petitfaux, 2017). Researchers have found that the prompts that are 
used to elicit noticing and promote learning to notice matter for prospective teacher 
development (Estapa & Amador 2021; Stockero et al. 2017; Weston & Amador, 2021). 
Therefore, we paired the 360 video clips of mathematics lessons with prompts 
containing an intentional focus on students’ thinking to support the development of 
noticing. Santagata et al. (2021) wrote, “the nature of the prompts matters and is 
consequential for teacher learning (p. 128).” Given that noticing is a core practice, yet 
difficult to learn, and knowing that video is a tool to support noticing and that the 
prompts given matter, we designed and implemented a multi-part learning process for 
prospective teachers as part of mathematics pedagogy. We were interested to know 
whether or not providing the 360 video support and purposeful prompts resulted in 
more advanced prospective teacher noticing (van Es, 2011). We answered the research 
question: What and how do prospective teachers notice when supported with 360 video 
and prompts that direct attention to students’ mathematical thinking?  
THEORETICAL FRAMING  
Noticing is central to the work of teaching (Mason, 2011) and encompasses attending 
to, interpreting, and making decisions about how to respond, based on students’ 
thinking (Jacobs et al., 2010). Attending means an ability to pay attention to how 
students’ think and reason about particulars of mathematics content. Interpreting refers 
to one’s ability to make sense of what has been attended to and then to draw 
conclusions about the meaning of the foci in ways that make sense of students’ 
thinking. Therefore, we consider noticing as a skillset, but as also a way to 
conceptualize higher order thinking of teachers that is important for effective 
mathematics teaching. Specific to mathematics, prospective teachers need to learn to 
notice students’ mathematical thinking and mathematics teacher educators need to 
purposefully select tasks in their pedagogy courses to support this learning (Roth 
McDuffie et al., 2014). Increased attention on teacher noticing has resulted in attempts 
to improve prospective noticing utilizing a variety of platforms within methods 
courses. Researchers have found that viewing videos can improve prospective teacher 
noticing (Jacobs et al., 2010). However, the content of video matters for learning to 
notice (Superfine & Bragelman, 2018). 
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RELATED LITERATURE 
Video is a useful tool to support teacher learning because it allows users to slow down 
the process of teaching, and closely examine aspects of teaching and learning that may 
be missed during live observation (Santagata et al., 2021). However, what is viewable 
in traditional video is often dictated by the person managing the camera, leaving other 
aspects of the classroom and student learning offscreen. Teacher educators are 
beginning to use “360 video,” wherein a prospective teacher viewing a 360 video may 
adjust the perspective to focus on a small group of students to the left, view the students 
to the right, etc. Prospective teachers who view 360 videos report a greater sense of 
immersion (Roche & Gal-Petitfaux, 2017), and attend to more specific aspects of 
mathematics pedagogy (Kosko et al., 2021). Kosko et al. (2021) recently found that 
prospective teachers who watched 360 video attended to more student actions than 
peers who watched traditional video. Weston and Amador (2021) demonstrated that 
the use of 360 video plus prompts can elicit and support professional noticing. 
However, research on 360 video viewing and noticing is only beginning to emerge, and 
researchers call for increased studies on how noticing may be supported with the use of 
360 video. Given that novice teachers attend to less specific aspects when viewing 
videos of teaching than more experienced educators (Stockero et al., 2017), and are in 
the process of learning to notice (van Es, 2011), the use of 360 video in teacher 
education holds significant promise.  
Video is a valuable tool in teacher education; however, how teacher educators use 
video also affects the learning opportunities for prospective teachers. Estapa and 
Amador (2021) conducted a qualitative meta-synthesis of the prompts that teacher 
educators use when eliciting noticing and found that the level of specificity of prompts 
can influence response to prompts. They noticed that when teacher educators use 
specific prompts along with video, noticing can be developed. Likewise, Sherin and 
Russ (2014) note that prompts moderate the learning opportunities that accompany 
videos. In a close example of prompts, Roth McDuffie et al. (2014) found that the 
prompts used alongside video supported an increased depth of noticing and 
prospective teachers were able to attend to students’ thinking and make interpretations 
based on their thinking, aspects indicative of more advanced noticing. Weston and 
Amador (2021) demonstrated that the combined use of 360 video and prompts revealed 
growth in or presence of advanced prospective teacher noticing. Therefore, we were 
interested in understanding the outcome of the intersection of 360 video and purposeful 
specific prompts—both of which researchers have identified as supporting noticing 
(Kosko et al., 2021; Roth McDuffie et al., 2014; Weston & Amador, 2021).  
Method 
Data were collected from students (n = 173) enrolled in one of two university 
undergraduate mathematics pedagogy courses (one course had multiple sections). Two 
of the authors taught one of the courses within an education program at their 
U.S.-based institution, where prospective teachers worked towards initial licensure to 
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teach. All data were collected during the 2019-2020 academic year (August 2019 
through May 2020). One course took place in both Fall 2019 and Spring 2020 (with 
multiple sections each semester) and focused on PreK through grade 3 (ages 3 to 9). 
The second course took place in Spring 2020 and had a K-6 (ages 5 to 12) focus.  
All prospective teachers were first-time users of 360 video and were provided with the 
same tutorial for how to watch 360 video, which was a one-and-a-half-minute 360 
video the three authors made. The data-collection task, which was about 
multiplication, took place before the prospective teachers read or learned about that 
topic. Participants were asked to watch a seven-minute 360 video of a grade 3 (ages 8-9 
years) class. In the video, students used Cuisenaire rods to explore the commutative 
property of multiplication.  
Although prospective teachers all watched the same video, by virtue of the 360 feature 
they were able to observe students at more than one location in the classroom by 
pivoting their field of view from the camera placement. This meant multiple 
third-grade students’ actions were observable throughout the recorded classroom 
episode, and likewise many student verbal comments were audible while students 
worked to complete the task. After watching the 360 video, prospective teachers were 
asked two questions about the device they used to watch the 360 video. They were next 
asked two questions about their noticing: Prompt 1: “What did you notice about 
teaching and learning?” and Prompt 2: “Describe an important student action or 
statement in the video. Why was that important?” In both cases, prospective teachers 
responded in writing, using a blank text box with no length limit. The remainder of the 
questions and prompts in the assignment were about their use of 360 video and are not 
the focus of this report. Responses were collected using either Google Forms or 
Qualtrics (depending on the course), with identical wording used in both platforms.  
Analysis & Results 
We conducted a convergent mixed-methods analysis in which qualitative analysis was 
conducted to examine prospective teachers’ written noticings and then themes were 
quantitized for statistical analysis (Creswell & Plano Clark, 2018). To begin, the first 
two authors used van Es (2011) framework for learning to notice student mathematical 
thinking to independently code a subset of data for both noticing prompts about what 
and how prospective teachers noticed. The two researchers then met to reconcile codes 
and further discuss code application, before independently coding the entire data set. 
The following are examples from the data based on the framework. (see van Es, 2011 
for framework) 
Code Example 

What was Noticed 
Level 1 
Baseline  

The classroom setup encouraged collaboration and the teacher was 
physically moving around the class to observe how the students were 
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working with the rods for the math problem. 
Level 2 
Mixed 

I noticed that the teacher was asking thoughtful questions and expanding 
upon the ideas of the children…I also noticed that many of the children 
who didn't originally understand the concept were able to get it after using 
the manipulatives and being able to see it visually. 

Level 3 
Focused 

… Children showed their mathematical thinking with manipulatives 
(colored rods)…One child used eight rods of seven (black rods). Another 
child used seven rods of eight (brown rods). The children were 
encouraged to put the rod on top of each other to see if they fit…They 
were asked how does it fit? Then they were asked why they fit? This 
encouraged the children to think about multiplication, and explain their 
thinking. 

Level 4 
Focused 

No example 

How PTs Noticed 
Level 1 
Baseline  

Teaching was very interactive, the teacher left many things up to the 
students. They were able to figure things out for themselves by testing 
their ideas with the rods and with each other. 

Level 2 
Mixed 

An important statement in the video was when the student made the 
connection between the rods and the numbers. He connected how 
changing the position of the rods made them the same size and the 
numbers 8 and 7, which the rods represented, can change position and 
they are still the same. 

Level 3 
Focused 

One thing that interested me that a student said was towards the end of the 
video when the teacher was talking about the different rods. One child 
said, "the numbers are the same, but one is on the other side so you just 
have to flip it to the other side." This was when he noticed that the 
numbers are the same in each problem… 

Level 4 
Focused 

I noticed that some students were taking the rods out of their rectangular 
groups and trying to create a different set up of groups. [The teacher] then 
had to facilitate and give them more specific directions. Then they were 
able to see that the rods of each group would exactly fit. This is important 
because it shows the different thinking processes going on. Some of the 
students were on the right track, others were taking a different approach 
and trying to rearrange them. When students struggle it is okay, but if it 
becomes an unproductive struggle it is important for a teacher to 
recognize this and step in… 

Table 1: Examples of coding  
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Table 1 shows excerpts from different prospective teachers for Prompts 1 and 2. Many 
prospective teachers had higher levels of noticing when answering Prompt 2 as 
compared to Prompt 1; their level of noticing for what they noticed were also 
sometimes connected with their level of noticing for how they noticed. The following 
is one example, coded at a Level 1 for both what and how they noticed:     

I took interest in the ending of the video when [the teacher] was letting students share 
their ideas and thoughts on the question. [The teacher] would ask them to further their 
thinking and this showed great benefits. I think it is vital to allow ample time for 
students to work with manipulatives like this.  

This was coded as Level 1 for what was noticed because, despite being asked about an 
important student action or statement, the prospective teacher focused on the teacher 
and the whole class of students, describing them as a general group. This response was 
also coded as Level 1 for how the prospective teacher noticed, because there was a 
general description without any specific instances.  
Following qualitative analysis, codings were quantitized as ordinal variables to 
determine whether the prospective teachers’ level of noticing differed between type of 
prompt (see Table 2). We used a Wilcoxon Signed Ranks test to examine the difference 
in level of what prospective teachers attended to when provided each prompt. The 
Wilcoxon Signed Ranks test is a nonparametric statistic used to calculate the 
magnitude of differences between two paired ordinal variables (Siegel & Castellan, 
1988). Results indicated a statistically significant difference (W = 9.100, p < .001) with 
prospective teachers demonstrating higher ranks, on average, on the second prompt 
than the first. Table 2 illustrates the difference in distribution. Notably, when 
prospective teachers were asked to describe what they noticed “about teaching and 
learning,” responses were overwhelmingly general. When the prompt instead asked for 
“an important student action or statement,” the level of specificity in their noticing 
increased dramatically.  

 Level 1 Level 2 Level 3 Level 4 

Prompt #1 91.3% 
n = 158 

7.5% 
n = 13 

0.0% 
n = 0 

1.2% 
n = 2 

Prompt #2 
 

52.3% 
n = 90 

32.6% 
n = 56 

2.9% 
n = 5 

12.2% 
n = 21 

Table 2: Distribution of what PTs’ level of responses by prompt. 
Following the comparison with the Wilcoxon Signed Ranks test, we sought to 
understand how the degree of specificity for what prospective teachers attended to 
corresponded to how they interpreted what they noticed. We focused our analysis only 
on the second prompt, as the first prompt was heavily skewed to a Level 1 noticing 
(91.3%). The Gamma statistic was ideal for this comparison since it “is appropriate for 
measuring the relation between two ordinally scaled variables” (Siegel & Castellan, 
1988, p. 291). Results indicated a statistically significant relationship between what 
and how prospective teachers attended to mathematics pedagogy in the 360 video (γ = 
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.499, p < .001). Thus, the ordinal relationship between the prospective teachers’ 
descriptions of what and how they attended were 49.9% more likely to agree than to 
disagree, meaning there was a positive association between what and how they noticed.  
Discussion 
Findings indicate that when prospective teachers used 360 video and then responded to 
prompts to elicit their noticing, levels of noticing were higher for both what and how 
they noticed when the prompt was specific to students’ thinking. Data indicate that 
from watching the 360 video, prospective teachers were able to focus on students’ 
mathematical thinking. Although we do not make claims that the 360 video (as 
compared to standard video) is the reason for the higher levels of noticing, we note that 
using a combination of 360 video and prompts focused on students’ mathematical 
thinking resulted in advanced levels of noticing from prospective teachers, which is 
uncommon for novice educators.  
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RELEARNING: A UNIFIED CONCEPTUALIZATION ACROSS 
COGNITIVE PSYCHOLOGY AND MATHEMATICS EDUCATION 

Kristen Amman, Juan Pablo Mejia-Ramos 
Rutgers University 

 
We propose a unifying conceptualization of “relearning”, a construct that has a long 
history in the field of cognitive psychology and has recently been reconceptualized in 
the mathematics education with respect to teacher training. We argue that existing 
accounts of relearning are versions of the same phenomenon subjected to different 
motivations for relearning and intended relearning outcomes. Utilizing the existing 
theoretical rigor behind existing conceptualizations of relearning, we demonstrate the 
utility of the unified conceptualization in using findings from one section to suggest 
new avenues for others, and in addressing issues posed by a lack of theoretical framing 
in the studies of remedial mathematics education and repeated mathematics courses.  
In this report we argue for the utility of a conceptualization of “relearning” in 
mathematics education, or the experience of learning about mathematical content one 
has tried to learn about before. Global pushes for widespread access to higher 
education combined with the hierarchical structure of mathematics has resulted in an 
increased number of relearning experiences for college mathematics students. In the 
United States, this can be seen in increasing enrollment in remedial mathematics 
courses (Chen, 2016) in particular. While such remedial courses are less common 
outside of the United States, they have begun to gain popularity more globally 
(Rienties et al., 2008; Brants & Struyven, 2009). Measures concerning their 
effectiveness remain limited due to the lack of research describing student experiences 
with teaching and learning in such courses (Grubb, 2001; Cox & Dougherty, 2019). 
Despite calls for research that investigates the relationship between students and 
mathematical content in remedial courses (Sitomer et al., 2012; Mesa, Wladis & 
Watkins, 2014), there exists no theoretical perspective useful for structuring 
investigations into the phenomenon of relearning  in this context, or in college contexts 
more broadly. We argue that such a perspective may be built by combining and 
expanding on two similar lines of inquiry: the study of memory in cognitive 
psychology, and relearning in content courses for future mathematics teachers. 
EXISTING CONCEPTUALIZATIONS OF RELEARNING 
In cognitive psychology, the term relearning is attributed to psychologist Hermann 
Ebbinghaus’ studies of memory and retention. In 1885, Ebbinghaus documented the 
number of verbal rehearsals necessary for him to memorize strings of 
randomly-ordered nonsensical syllables as the lengths of the strings varied. He then 
recorded the number of rehearsals necessary to recite the strings of syllables again 
from memory after varying intervals of time. Ebbinghaus labeled his experience of 
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trying to memorize the same strings of syllables through verbal rehearsal a second time 
as “relearning”. Of particular significance was his ‘savings in relearning’ result 
(Nelson, 1985; Murre & Dros, 2015), or the observed inverse logarithmic relationship 
between the amount of time elapsed from the first learning trial to the relearning trial 
and the number of rehearsals required in the relearning trial for the individual to 
reproduce the material perfectly from memory. Ebbinghaus hypothesized that this 
change in time was proportional to the amount of the syllable string stored in one’s 
memory. Thus, by studying the amount of time “saved” in each relearning trial, one 
could estimate the rate at which content held in memory was forgotten.  
Such an estimation is undoubtedly valuable in educational contexts, and has led to the 
adoption of the technique of successive relearning (spaced relearning that anticipates 
Ebbinghaus’ retention curve; comparable to other types of techniques to promote 
retention such as self-explanation, spaced practice, or mnemonics) in psychological 
studies of college students (Dunlosky & Rawson, 2015). However, as noted by more 
contemporary critiques (Bahrick, 1979), interventions in authentic educational 
contexts centered around Ebbinghaus’ conceptualization of relearning remain limited 
in applicability. Namely, because the intended learning outcome under this 
conceptualization is a successful reproduction of content from memory in as little time 
as possible, application to contexts involving more complex systems of knowledge 
such as the structure of a language (Hansen, Umeda, & McKinney, 2002), or 
mathematics (Rawson, Dunlosky & Janes, 2020) is more limited.  
To this discussion, we add that while relearning motivated only by retention may have 
limited applicability in mathematics, relearning motivated by insufficient 
understanding of mathematical content previously learned is very common. In fact, 
this traditional tie to memory us on memorization may explain why an entirely separate 
theory of relearning has recently been developed by Zazkis (2011) in the field of 
content courses for preservice mathematics teachers. While relearning as a term was 
used to describe the learning experience of preservice mathematics teachers 
colloquially prior to Zazkis (2011) (e.g. Nicol, 2006), her work marked the first 
acknowledgement of relearning as a phenomenon of theoretical significance in 
undergraduate mathematics education. Zazkis argued that “contemporary” 
understandings of how people learn mathematics such as constructivism or situated 
cognition were insufficient in this context, "since prior cognitive structures have been 
constructed in the learner's mind some time ago, the reconstruction and reorganization 
processes involved [in relearning] are more challenging for the learner as well as for 
the instructor" (p. 13). Zazkis’ notion of relearning may be distinguished from 
relearning as it is conceptualized in studies of memory in cognitive psychology by two 
features: the intended learning outcome, and the motivation behind relearning.  
Under Zazkis’ conceptualization, the intended outcome of relearning in teacher 
education is “restructuring knowledge,” or revisiting previously-held knowledge in 
order to reorganize it in a particular way seen as better-suited for the purposes of 
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teaching. This reconstruction is motivated by an insufficient understanding of 
mathematical content from K-12 experiences, either due to “prior misleading learning” 
that resulted in misconceptions on the part of the student, or a K-12 experience in 
which the content was presented with limited depth (Zazkis & Rouleau, 2018). In this 
way, relearning in cognitive psychology and teacher education have very different 
proficiency criteria within their motivations. While relearning in cognitive psychology 
requires that the content be “learned” (memorized) successfully when first introduced 
in order for relearning to occur in the second encounter, relearning under Zazkis’ 
conceptualization in teacher education requires a previously-insufficient content 
understanding to take place. Furthermore, while agree that Zazkis’ definition of 
relearning is more useful for researchers of preservice teacher mathematics education 
because it expands learning beyond the notion of retention, we see potential for a more 
expanded conceptualization. Namely, while Zazkis’ conceptualization is useful for 
describing the intended outcome of content courses for future teachers, it has limited 
utility in describing the phenomenon as it actually occurs for preservice teachers. 
Student experiences with relearning have been noted to be fraught with resistance from 
preservice teachers (e.g. Nicol, 2006; Barlow et al., 2018) given that they have seen the 
material before and may be more comfortable with their previous understandings. 
Thus, outcomes other than restructuring are not only possible in such courses, but a 
common point of concern for teacher educators. We contend that a theory meant to 
describe student experiences learning about content seen before in this context would 
benefit from the inclusion of such outcomes.  
Despite their surface differences, we argue that the inherent phenomenon being 
described as ‘relearning’ across the aforementioned fields is inherently the same. Their 
ostensible dissimilarity comes from the fact that they both describe different types of 
relearning subject to restrictions that are relevant to the foci of their respective fields. 
However, by viewing them as separate instantiations of the same general phenomenon, 
we contend both fields would increase the likelihood of theoretical advancements for 
mathematics educators. Divorcing the term relearning from the norms of a particular 
context allows for the focus to shift from answering the question: ‘what outcome 
should students get as a result of this experience?’ to ‘what outcomes are occurring and 
how do the circumstances of this particular context determine which outcomes are 
possible?’ Furthermore, considering these areas of research to be contributing to the 
same overarching field of study means that researchers have access to a wider range of 
perspectives with which to consider issues of interest.  
PROPOSAL OF UNIFIED CONCEPTUALIZATION 
At the most basic level, we contend that relearning requires three things: some 
(mathematical) content, a “time 1” (T1) representing a past occurrence in which one 
has tried to learn about that content, and a “time 2” (T2) representing the most recent 
time one has tried to learn about that same content again. Although the name 
relearning appears to suggest some degree of mastery of content at T1, we make no 
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such assumption in our treatment of this construct. That is, T1 learning need not cross 
any threshold or meet any criteria for relearning to be said to occur at T2. This is not to 
say that different levels of proficiency do not matter, but instead that a particular level 
of proficiency at T1 is not required for the phenomenon to take place. Furthermore, 
while the content at T1 and T2 need not be identical, it does need to cross a particular 
threshold of similarity such that the content learning goals at T2 are essentially the 
same as those at T1. For some studies of memory in cognitive psychology this criterion 
is more clearly filled as the materials to be memorized are completely identical at T1 
and T2. In the field of mathematics teacher education, the issue of determining content 
similarity is more complex because mathematics content courses for future teachers 
often have additional learning goals related to pedagogy that would not be considered 
in the K-12 context. However, the focus of the mathematical content remains the same.  
If these components are considered sufficient to defined a relearning experience, then 
several other common college mathematics experiences would fall under this category 
such as retaken college mathematics courses and remedial math courses. In the United 
States, remedial math courses are either semester-long courses or corequisite sections 
of courses in college whose content mirrors that of algebra courses offered in the 
middle and high school settings. This similarity to content learned at a time T1 is often 
noted as a point of concern for semester-long prerequisite remedial math courses 
(Stigler, Givvin, and Thompson, 2010) which are sometimes referred to as “high 
school all over again,” (Ngo, 2020). By placing additional restrictions on the basic 
components in terms of motivation and intended learning outcome, we can recognize 
and compare sub-types of relearning as they are currently conceptualized (Table 1). 

Context Motivation for Relearning Intended Learning 
Outcome 

Cognitive 
Psychology 

Reduce likelihood of 
forgetting 

previously-memorized 
content. 

Content is successfully 
reproduced from memory 

in as little time as 
possible.  

Mathematics 
Teacher Education 

(Zazkis, 2011) 

Mathematical knowledge 
previously demonstrated to 
be insufficient for teaching 

Restructuring: address 
misconceptions from T1 
and widen “domain of 

applicability” of content. 
Traditional 
Remedial 

Mathematics 
Education 

Mathematical knowledge 
previously demonstrated to 

be insufficient for 
subsequent course in 

mathematics. 

Acquire ideal 
understanding from K-12 
experiences; impact on 

understanding brought to 
T2 undefined. 

Corequisite 
Remedial 

Mathematical knowledge 
previously demonstrated to 

Acquire understanding of 
only K-12 content related 
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Mathematics 
Education 

be insufficient for current 
math/statistics course. 

to credit-bearing course; 
impact on understanding 
brought to T2 undefined. 

Figure 1: Constraints Among Relearning Contexts 
By motivation we mean the main rationale that justifies the beginning of the relearning 
experience for the individual. Importantly, this question is asked of the relearning 
context rather than of the individual. For instance, an individual required to participate 
in a psych study of memory for course credit and an individual required to take a math 
content course for future teachers might both list ‘academic requirement’ as their 
motivation for beginning the relearning experience. The motivation behind the 
inclusion of relearning in the two scenarios, however, is very different. Historically, 
contexts involving relearning have used both proficiency-based motivations and 
memory-based motivations.  
By intended learning outcome we mean the intended impact on the understanding of 
material gained at T1 by the end of a relearning experience. This is not a grade or an 
indication of passing/failing. For a scenario in which one is learning for the first time, 
we ask what content was learned. This may, more or less, be determined by examining 
a student’s answers to a well-designed exam. The same is not true for a relearning 
scenario. In asking about intended learning outcome, we mean to answer the question: 
what was the intended additional value of learning about the material this time around? 
The answer to this question requires one to reference the understanding of content that 
was developed at T1 as well as to define the impact of the relearning experience on that 
understanding. Unlike Zazkis’ theorizing of relearning within teacher education, 
relearning has yet to be theoretically investigated within remedial mathematics 
courses. While there is a general sense that students should reach a level of competency 
with material that was desired at T1, there is no consensus as to what the impact should 
be on the understanding of content that the students begins with at T2. However, as we 
will discuss in the implications, there is existing literature on student understanding in 
these courses that may serve as starting points for such a theorization.  
Comparison to Alternative Conceptualizations  
Due the hierarchical structure of mathematics, one could argue that you would be 
hard-pressed to find any college mathematics course that didn’t include learning about 
at least some content that a student had seen before. Thus, one might argue that 
instances of relearning are really simply special cases of students building on prior 
knowledge. Recall that in order for a scenario to be labelled as relearning, the content 
learning goals at T2 are essentially the same as the content learning goals at T1. This 
would exclude cases, for instance, in which calculus instructors reference common 
algebraic errors when teaching students how to find critical values of functions whose 
derivatives involve fractions. The content learning goals are focused on the novel 
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Calculus concepts of derivatives and local maxima and minima, not the algebra that 
might be involved in solving a problem related to these concepts.  
While it would be possible to view relearning scenarios through the theoretical lens of 
prior knowledge, we contend that this would be less advantageous for understanding 
student experiences. Consider the comparison between the above examples from 
calculus with the educational scenarios described in Cox (2015). In her analysis of 
instructional activities across six remedial mathematics courses, Cox describes 
different strategies for teaching students about fraction representations. For instance, 
one strategy involved positioning the idea of fraction division within a larger domain 
of part-whole relationships between numbers by asking students to produce problems 
whose solutions would be represented by various fractions rather than prioritizing 
simplification of an expression like 3/.25. In evaluating the effectiveness of the 
strategies, one could conceptualize the phenomenon taking place in this classroom as 
students building on prior knowledge to produce a new type of understanding of what 
previously may have been only a mathematical “rule”. However, considering this to be 
a task of helping students relearn algebra allows one to shift the focus from the content 
covered to the relationship a student would build with their already-established 
understanding of that content in the current context. The primary area of focus would 
not be that another representation of 3/.25 was learned, but rather how it was learned by 
students relative to their previous learning experiences. We would argue that the 
relearning lens is more useful in this context because it attends to the defining features 
of the classrooms Cox observed (i.e. the situation of learning about the same content 
again), whereas the use of prior knowledge would work equally-well for analyzing an 
instructional strategy for learning about algebra for the first time.   
Relearning may also be distinguished from McGowen and Tall’s notion of a 
met-before (McGowen & Tall, 2010). A met-before is defined as “a mental structure 
that we have now as a result of experiences we have met-before,” (p. 171). McGowen 
and Tall use met-befores to construct mental models of students’ understanding of 
content by considering how students employ mental structures formed by previous 
experiences with mathematical content to learn new things. The notion of a met-before 
is not incompatible with the notion of relearning, but the two terms represent different 
types of entities. Met-befores are mental structures containing previously seen content, 
whereas re-learning is an experience that takes place when a student is learning about 
the same content at a different timepoint. However, met-befores may be a useful 
concept when examining how a relearning context restricts the kinds of learning 
outcomes that are possible for students given that they are capable of being both 
supportive and unsupportive according to the context in which they are encountered.    
IMPLICATIONS FOR RELEARNING FIELDS 
We have proposed a unified conceptualization of relearning in mathematics education 
along with the constructs of motivation and intended learning outcomes that have 
traditionally been used to define relearning within various sub-disciplines. In doing so, 
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we hope to broaden opportunities within each sub-discipline in two ways. First, in the 
realm of cognitive psychology and teacher education, we encourage researchers to 
move beyond the learning outcomes that are intended or desirable within their 
particular context in order to explore the realm of possible learning outcomes that 
students may encounter. For instance, while the restructuring outcome addressed by 
Zazkis earlier is the intended learning outcome of a content course for future teachers, 
it will not always be achieved depending on student engagement with the material. In 
under-theorized sub-disciplines such as remedial mathematics, looking to the learning 
outcomes that are possible in other sub-disciplines may serve as a starting point by 
which to begin to examine student experiences. It may be the case that Zazkis’ notion 
of reconstruction would fit the intended learning outcome for some types of remedial 
courses, whereas student-generated descriptors of remedial mathematics courses as 
“refreshers” (Cox & Dougherty, 2019) of their memory, may point to connections to 
cognitive psychology’s treatment of relearning instead. It may also be the case that 
multiple learning outcomes could exist simultaneously for one individual such that he 
or she may be reconstructing their understanding of some mathematical topics while 
achieving different outcomes for others. Determining the range of outcomes that exist 
in a relearning experience and comparing it to the desired or range of desirable 
outcomes would be one of the first ways in which one could begin to determine which 
contextual elements are or are not supporting students in meeting course expectations. 
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This paper shares results from a national ‘familiarisation trial’ of a mental 
mathematics intervention focused on assessing and encouraging strategic calculation 
methods with Grade 3 students in South Africa. Successful smaller pilots refined the 
intervention into 6 foci and this paper draws on assessment results from the four 
provinces that trialled one focus: adding and subtracting using jump strategies. 
Findings from pre- and post- test results of 1379 students show statistically significant 
gains in both the fluencies underlying calculating strategically and in items assessing 
strategic competency. The results indicate that scaling up this model into national 
implementation is feasible, and that the intervention package can support 
improvements in mental mathematics learning outcomes.  
INTRODUCTION AND CONTEXT 
There is a body of evidence on the importance of the interaction between procedural 
fluency and strategic competence (Mulligan and Mitchelmore (2009), with some 
researchers demonstrating that attainment in reasoning about number relations in 
primary school is a better predictor than arithmetical (procedural) fluency of later 
mathematical attainment (Nunes, Bryant, Sylva, & Barros 2009). Despite such 
arguments, in some educational systems, including South Africa where we work, 
teaching continues to prioritise developing students’ fluency in mathematical 
procedures (with a main emphasis, in primary schools, on algorithms for multi-digit 
calculations). One argument for the continued importance of teaching procedures is 
that fluency in these leads to structural understanding (a core aspect of strategic 
competence) since algorithms are rooted in the base-ten system. 
Even if it were the case that a procedural-fluency-first approach does lead to 
understanding structure (a claim that we, the authors, think is debatable), the situation 
in South Africa is compounded by the emphasis on working procedurally not balanced 
by an equal emphasis on developing algorithmic fluency. A wealth of research has 
shown that when working on multi-digit calculations South African students 
(particularly those in historically disadvantaged schools) reliance on unit counting 
approaches continues well beyond when counting is appropriate (Schollar, 2008). The 
students thus do not engage with the structural aspects of the number system. This lack 
of structural understanding is regarded a critical reason for the continued low standards 
of attainment in South Africa for many students (Spaull, & Kotze, 2015).  
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For over ten years two South African Numeracy Research and Development Chair 
projects have been exploring ways to change this situation. In the first five years of 
each initiative, the main emphasis was on ‘what works’; developing didactic 
approaches and professional development programmes that address teaching for 
structural understanding whilst fitting with curriculum and inspection constraints and 
adapting to the dominant, largely teacher centred, pedagogies. The challenge for the 
second five years of these initiatives was to explore how approaches developed that 
had been shown to work on a small scale could be scaled up nationally. One such 
project developed as a collaboration between the two Chairs – the Mental Starters 
Assessment Project (MSAP). In this paper we report on how this project is being scaled 
up nationally through collaboration with South Africa’s Department of Basic 
Education (DBE) and the results of a national ‘familiarisation trial’ that built on early 
pilot testing and provides a bridge into national adoption. 
THEORETICAL BACKGROUND 
A focus of the Numeracy Chair initiatives has been on mental calculation skills, chosen 
not only because this is a required emphasis in the SA curriculum but also because we 
deemed it a way to wean students off relying on unit counting. The curriculum notes 
the role of mental processes to “enhance logical and critical thinking, accuracy and 
problem solving” (DBE 2011, 8–9), with examples of such mental processes including 
strategies like bridging through ten (36 + 9 = 36 + 4 + 5) or compensation (36 – 9 = 36 
– 10 + 1). To be effective and efficient, such strategies for adding and subtracting 
mentally require a structural understanding of part-part-whole relations (for example, 
that 9 can comprise parts of 4 and 5, not simply a collection of 9 single units). 
As Askew (2009) notes, a strategy like bridging through ten, while drawing on 
part-part-whole understanding, is only strategic when supported by fluency in number 
bonds: to efficiently calculate the answer to 36 + 9, rapid recall that 4 is the missing 
part in 40 = 36 + [ ] and coordinating that with knowing, again rapidly, that 4 and 5 
comprise 9, underpin carrying out the strategy. Thus, as well as attending to strategic 
calculating, our work with teachers needed to focus on students’ rapid recall of number 
bonds for single digit and multiples of ten addition and subtraction. In addition to rapid 
recall and strategic calculating we were interested in strategic reasoning - reasoning 
about structural relations between numbers that does not rely on finding specific 
answers to calculations. Strategic competence is thus a blend of fluency, strategic 
calculating and strategic reasoning. We chose to work with Grade 3 students as is a 
year when the move from counting to strategies is needed to ground going forward. 
To design a teaching intervention supporting moves into strategic competence we drew 
on the stream of research demonstrating the importance of using representations that 
mirror the desired underlying mathematical structure, such as part-whole bar models 
and empty number lines (see, for example, Van den Heuvel-Panhuizen, 2008). For the 
instructional part of the lesson starter, the final model comprised teacher led working 
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on fluency in underpinning number bonds and then working strategically through two 
calculations and then student individual working on a set of three examples.  
The intervention overall covered six different strategic ‘foci’: bridging through ten, 
jump strategy, doubling and halving, re-ordering, compensation and understanding the 
relationship between addition and subtraction. These six titles were taken from the 
Curriculum and Assessment Policy Statement (CAPS) (DBE 2011), the main 
curriculum document from which teachers plan. We thus expected teachers would 
recognise these strategies as part of what they were expected to be teaching. 
Pragmatically, six foci allowed teachers to work on two foci in each of the three terms 
in the teaching year. 
Here we focus on the jump strategy, that is, for a calculation like 36 + 28 only 
partitioning the 28 into 20 + 8 and adding 20 to 36 and then 8 to 56 (using bridging 
through 10), initially with the support of an empty number line. This strategy was not 
widely used in our schools where the dominant approach was to partition both 36 and 
28 and add the tens, add the ones and then add the two answers. Not only is the jump 
strategy a little more efficient, it also transfers more easily to subtraction.  
MODEL OF INTERVENTION AT SCALE 
An intervention that could effectively be scaled required teachers to perceive the 
materials as both easy to manage and fitting with curriculum requirements. Such fit 
with existing circumstances and constraints would be central to any intervention’s 
success, given the evidence of lack of take-up of many previous initiatives as a result of 
expectations being too far from the ‘ground’ of South African schools. Here we outline 
the final intervention model, with brief reasons for the design decisions; for a fuller 
account of the origins of the model see Graven & Venkat (2021).  
CAPS sets out an expectation that each lesson should begin with 10 minutes of oral and 
mental work, so the materials were designed to fit within those ‘lesson starters’. There 
is a national mathematics workbook that the vast majority of teachers work through 
with their classes in the part of the lesson following the 10-minute starter: we knew our 
work in schools that the intervention would fail if we expected teachers either to 
replace workbook time with other tasks, or to add in extra materials.  
Each of the six units was designed to be a three-week cycle comprising a 
pre-intervention assessment, guidance and materials for eight lesson ‘starters’ and a 
post-intervention assessment. While in theory, the two assessments and eight starters 
could be completed in two weeks, the provision of three weeks meant teachers could 
extend or revisit any of the starter ideas if they thought their students needed more 
work on these.  
Pre- and post-unit assessments were designed to be easily administered to classes in a 
time-limited form. Given the evidence that the standard measure of progress in 
mathematics in many South African classrooms is recording a correct answer to a 
calculation, irrespective of the means of arriving at that answer (inefficient or copied), 
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we used the low-stakes time-limited format to develop the teachers’ awareness of the 
importance of fluency of  basic mathematical facts, and use of time efficient strategies.  
The final assessments developed comprised two pages. A first page had 20 rapid recall 
fluency items, to be completed in two minutes: simple, core number bonds that we 
expected should be well within the capabilities of being quickly answered by most 
Grade 3 learners. For the jump-strategy items, typical items included: 
 57 – 10 = [  ]   79 – 40 [  ] 
The second page (to be completed in three minutes) had 10 questions that were a 
combination of strategic calculating and strategic reasoning items, each of which could 
be reasonably easily and quickly answered if students had some awareness of 
mathematical structure. For example, strategic calculating items drawing on jump 
strategies included: 
 57 + 26 = [  ]    83 – 24 = [  ] 
We expected the strategic reasoning items to be a ‘stretch’ for both teachers and 
students as questions not leading to a closed numerical answer are rare in our context, 
but included these to raise participants’ awareness of the importance of structural 
thinking. Typical jump strategy items included: 
 61 – 32 = 61 – [  ] – 2    74 – [  ] = 74 – 20 – 5. 
Booklets provided to each gave guidance on running for each of eight ten-minute 
lesson starters, and also included all support materials. The materials were translated 
and made available in all 11 of South Africa’s official languages. As well as print 
materials, each starter outline had a link, via a QR code, to a short, two to three-minute 
video demonstrating how to model the strategy, using the empty number line in the 
case of jump strategies. As noted, each starter had the common format of brief practice 
of rapid recall items, for example adding a small multiple of ten to a two-digit number 
(23 + 30; 23 + 50..), then the teacher using the focal strategy to model, with 
representations, solving two calculations, such as 47 + 21 43 + 24 in case of jump 
strategies, with students then. individually working on at three similar examples. 
In summary, the run of each cycle, over three weeks comprised 

• The pre-assessment   
• Ten-minute lesson starter teaching aimed at developing fluencies and 

strategies across the 2–3 weeks following the pre-assessment   
• Re-assessment providing feedback on learning. 

 
RESEARCH METHODS 
The basic model of the intervention was refined over three phases. The first, design 
phase comprised a small scale pilot involving three classes across two provinces. In 
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this phase, members of the research and development team worked closely with the 
teachers to support the enactment of the intervention and to refine the model.  
The second phase was a collaborative scaling-up with the national Department of Basic 
Education (DBE) in a trial that worked across three provinces – nationally, a high 
socio-economic status (SES) province, a mid-level SES province and a low SES 
province. In this second trial the teachers’ support was ‘once-removed’ from that 
provided in the first trial: rather than support from the research and development team, 
local subject advisors were trained in the use of the materials and they then supported 
the teachers. Thus, the research question driving this first level of scaling-up was to 
understand the extent to which the intervention, now mediated by district subject 
advisers (supported in turn by the two research teams), could produce pre- to post-test 
gains on two units. The data from the pre- and post-assessments of in this trial showed 
that such a model could produce good learning gains (see Graven & Venkat, 2021). 
These with the outcomes pointed to a proof of possibility – that the materials could be 
used by teachers in the system at large to produce learning gains.  
The third phase of development, a national familiarisation trial, provided the data 
reported on here. In this phase, the intervention involved all the early grades’ subject 
advisers in all nine South African provinces, each advisor working with one or two 
Grade 3 teachers in a school in their own district. As in the second phase, the advisers 
supported teachers with the rollout of the intervention, including pre- and post-test 
administration and collating test responses. Now we turn to look at the results from the 
four of the provinces providing data on jump strategies.  
FINDINGS 
Figure 1 is a box and whisker plot for the percentage scores on all items pre- and 
post-test across all four provinces doing jump strategies (matched learners, n= 1379). 
As Figure 1 shows, the median post-test score was 43%, which was only in the top 
quartile for the pre-test. The first quartile cut off on the post-test was 20%, which was 
the same as the median score of 20% on the pre-test. In the pre-test, a quarter of 
learners scored less than 10% - that cut off point improved to 20% in the post-test. So, 
on the post-test over half of the learners performed at a level that fewer than a quarter 
of the learners attained on the pre-test. Also, three-quarters of the learners on the 
post-test performed at a level that only a half of learners performed at on the pre-test. 
Post-test, the mean score was 44% compared with 28% in the pre-test. 
Table 1 sets out the two-tailed t-test results of changes in student scores from the 
pre-test to the post-test. The provinces are ordered in terms of SES from the one with 
the highest SES (P1) to that with the lowest (P4). In each case the calculated t-score 
(t-cal) is statistically significantly above the t-critical (t-crit) score. As can be seen, 
across all four provinces the gains made were statistically significant.  
Table 2 disaggregates the pre- to post-test gains across parts one (fluency) and part 2 
(strategic calculating/reasoning) of the assessment. There is no clear pattern of whether 
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gains were more due to improvement on either part: in two provinces (P1 and P3) gains 
were lower on part 2 of the test, with this pattern reversed in the other two provinces 

 
Figure 1. Box and whisker comparing pre- and post-test scores (%) n=1379 

Table 1 sets out the two-tailed t-test results of changes in student scores from the 
pre-test to the post-test. The provinces are ordered in terms of SES from the one with 
the highest SES (P1) to that with the lowest (P4). In each case the calculated t-score 
(t-cal) is statistically significantly above the t-critical (t-crit) score. As can be seen, 
across all four provinces the gains made were statistically significant.  
Table 2 disaggregates the pre- to post-test gains across parts one (fluency) and part 2 
(strategic calculating/reasoning) of the assessment. There is no clear pattern of whether 
gains were more due to improvement on either part: in two provinces (P1 and P3) gains 
were lower on part 2 of the test, with this pattern reversed in the other two provinces.  
Table 3 presents the effect sizes for each province, and ‘levelled’ on the commonly 
used interpretation of effect sizes as small (d = 0.2), medium (d = 0.5), and large (d = 
0.8). With an effect size above 0.4 deemed worthy of consideration, the effect sizes in 
each of the provinces easily meet that criterion. 

Province N Mean gain SD t-cal t-crit df p 

P1 443 15.12 20.52 15.51 1.97 442 <0.001. 

P2 46 25.80 21.52 8.13 2.01 45 <0.001 

P3 366 12.65 18.84 13.09 1.97 365 <0.001 

P4 524 19.45 20.63 21.58 1.96 523 <0.001 

Table 1. t-test Pre- and Post-Test Gains (%) Jump Strategies 
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Province N  Mean gain SD t-cal t-crit df p 

P1 443 Part 1 16.95 20.53 17.38 1.97 442 <0.001 

  Part 2 11.47 26.31 9.17 1.97 442 <0.001 

P2 46 Part 1 22.61 25.60 5.99 2.01 45 <0.001 

  Part 2 32.17 26.83 8.13 2.01 45 <0.001 

P3 366 Part 1 16.02 22.23 13.78 1.97 365 <0.001 

  Part 2 5.90 19.28 5.85 1.97 365 <0.001 

P4 524 Part 1 19.40 22.30 19.91 1.96 523 <0.001 

  Part 2 19.54 27.81 16.09 1.96 523 <0.001 

Table 2. t-test Part 1 & 2 Pre- and Post-Test Gains (%) Jump Strategies  
 

Province N Pre-test 

Mean % 

Post-test 

Mean % 

Cohen’s 
D 

Level 

P1 443 18 33 1.2 Large 

P2 46 34 59 1.07 Large 

P3 366 26 39 0.47 Medium 

P4 524 37 57 0.78 Medium 

Table 3. Effect sizes for each province  
DISCUSSION 
The statistical significance of the pre- and post-test gains made on the assessments, 
together with the effect sizes, indicates that the jump strategy intervention raised 
attainment above what might be expected to have come about simply from the usual 
teaching that may have taken place over that time. We note that mean gain of 12 
percentage points from the pre- to post- amounts to students answering about 4 more 
questions (out of 30) correctly. But it is also worth noting that the total time teaching 
underpinning this gain was only around 80 minutes (on the assumption that the 
teachers carried out eight 10-minute mental starters). Differences in patterns of gains 
across the four provinces are worthy of further investigations. For example, we might 
have expected that, given its high SES, gains in P1 would have been substantially 
higher than in the other provinces. The reasons why two of the provinces show strong 
gains in the Part 2 strategic competence items are also worth of further inquiry.  
In short, across these four provinces, notwithstanding the differences in gains across 
provinces, there is evidence that the intervention was successful in supporting 
improved learner performance on adding and subtracting two-digit numbers. Given the 
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many Covid challenges and disruptions that teachers and learner faced we have been 
especially pleased to note these improvements. 
CONCLUSION 
It is beyond the scope of this paper to report on the data from other strategies and other 
provinces though similar gains were noted. National rollout by the DBE, with the 
support of the Chair teams, is planned for 2022. While continued disruptions to 
schooling continue and there is a focus on ‘catch-up’ in relation to weak curriculum 
coverage over the past two years we have been pleased to hear general buy-in from 
teachers and provincial co-ordinators and advisors in relation to both the value of the 
intervention and the quality and ease of use of the support materials. We expect that 
some of the success of the intervention, despite many challenges relating to curriculum 
coverage and ‘catch-up’ concerns is that the intervention has not ‘interfered’ with the 
main body of the teaching time of lessons and has focused on supporting more strategic 
use of the ten-minute warm up session at the start of lessons to promote number sense 
and structural reasoning around number.  

Acknowledgments:  Our thanks to DBE and the NRF for their support of this work. Thanks to our entire team who grappled together in 
developing the MSAP and to the provincial coordinators, teachers and learners for their participation. 
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ASPECTS OF MATHEMATICAL KNOWLEDGE FOR TEACHING: 
A QUALITATIVE STUDY 

Theodora Avgeri & Xenia Vamvakoussi 
University of Ioannina 

 
We present a qualitative study aiming at investigating secondary school teachers’ 
Mathematical Knowledge for Teaching regarding the dense ordering of rational 
numbers. Fifteen secondary math teachers were asked to evaluate the responses of 
hypothetical students, explain students’ thinking, and give feedback. The accuracy of 
the evaluation, the quality of the explanation, and the use of counterexamples were 
examined. The results showed shortcomings in various categories of Mathematical 
Knowledge for Teaching, such as Common Content Knowledge and Specialized 
Content Knowledge, Knowledge of Content and Students and Knowledge of Content 
and Teaching. 
THEORETICAL FRAMEWORK 
One of the major concerns in educational research is the knowledge required for 
teaching. Ball and her colleagues (Ball, Thames & Phelps, 2008) outlined certain 
components of Mathematical Knowledge for Teaching that have been a reference point 
for mathematics education researchers. In this paper, we adopted Ball and colleague’s 
theoretical framework and we studied aspects of the Mathematical Knowledge for 
Teaching in secondary school math teachers.  
One of the aspects of Mathematical Knowledge for Teaching that we focused on is 
Common Content Knowledge, which is knowledge about the mathematical content 
that is useful for teaching, albeit not exclusively. The second aspect of Mathematical 
Knowledge for Teaching we are interested in is Knowledge of Content and Students, in 
terms of teachers’ ability to explain students’ thinking, especially when they give 
incorrect answers. We focused on the use of counterexamples, which relates to 
Specialized Content Knowledge (i.e., knowledge which is useful exclusively for 
teaching) and Knowledge of Content and Teaching. Indeed, the appropriate selection 
and use of counterexamples in teaching is a very important, non-trivial process 
(Zaslavsky, 2010). The fundamental purpose of a counterexample is to refute a claim. 
In teaching, however, appropriate selection and use of counterexamples is required to 
make visible to students the reasons why a claim is false and to create conditions for 
generalization, beyond the particular claim; these are found to be challenging for 
teachers (Pele & Zaslavksy, 1997; Zaslavsky, 2010). 
The study presented in this paper is part of a larger one investigating secondary math 
teachers’ Mathematical Knowledge for Teaching about rational and real numbers. 
Here we focus on Mathematical Knowledge for Teaching about the dense ordering of 
rational numbers. It is amply documented that this property is difficult for students at 
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all levels of education, even for tertiary students studying mathematics. Students often 
argue that between two rational numbers there is a finite, possibly zero number of 
numbers, as it happens in the set of national numbers. Moreover, even students who 
describe the number of intermediate numbers as “infinite” often refer to a very large 
number (e.g., “a billion”, “as many as the grains of sand in the desert”) that it is finite 
(Vamvakoussi & Vosniadou, 2012).  
Our research questions were: a) Do teachers evaluate correctly students’ answers about 
the number of numbers in an interval? (Common Content Knowledge) b) Are teachers 
able to explain the students’ way of thinking? (Knowledge of Content and Students) 
and c) What are the characteristics of the feedback they give to the wrong answers? 
Specifically, for (c), we examined teachers’ selection and use of counterexamples 
(Specialized Content Knowledge, Knowledge of Content and Teaching). 
METHOD 
Participants 
The participants were 15 secondary math teachers (10 women, 5 men) with 1 to 7 years 
of teaching experience. In Greece, secondary math teachers necessarily have a degree 
in mathematics. The majority of our participants were either in the process of obtaining 
or had already obtained a master’s degree. One of them had a master’s degree in 
Mathematics Education.  
Research tool 
To explore teachers’ Mathematical Knowledge for Teaching about the dense ordering 
of rational numbers we used tasks in the form of (hypothetical) classroom scenarios, 
deemed suitable for such purposes (Biza, Nardi & Zachariades, 2007). Due to space 
limitations, in this paper we will examine only one of them in detail.  
According to this classroom scenario, a hypothetical teacher asks a class of 9th graders 
how many numbers there are between 1.1 and 1.3; three different responses (A, B, C) 
by the students are presented:  A) “One, 1.2”; B) “19: 1.11, 1.12, 1.13, 1.14, 1.15, .., 
1.19, 1.20, 1.21, .., 1.29”; and C) “They are infinite… lots of them… over a billion. 
Only a computer could find them all.” The three hypothetical responses A, B and C 
correspond to different levels of understanding of the number of intermediate numbers 
in an interval (Vamvakoussi & Vosniadou, 2012). In A, the student treats the given 
numbers as natural numbers. In B, the hypothetical student performs the first step of a 
potentially repeatable process by adding a decimal digit to the given numbers (1.10 and 
1.30) but then treats them similarly to student A. Finally, answer C corresponds to the 
interpretation of the expression “infinity numbers” as “a very large, but finite, number 
of numbers”. 
The participants were asked the following questions: a) Is any of these answers, 
correct? If so, which one? If not, which is the correct answer?, b) Can you explain each 
student’s thinking?, and  c) How would you deal with this situation, if you were the 
teacher of this class? How would you give feedback to these students?  
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Procedure 
Teachers participated individually in semi-structured interviews, which were 
conducted via Skype. All the interviews were recorded and transcribed.  
RESULTS 
Evaluating and explaining students’ answers 
We first examined whether the teachers evaluated correctly the three responses (A, B, 
C). Nine of the fifteen teachers correctly evaluated all three answers. While all of them 
correctly judged that answers A and B were incorrect, six teachers (T2, T3, T6, T7, 
T11, T13) considered answer C to be correct. For example: 

T7: I agree that a computer could find them all. If it were programmed by a 
mathematician, the computer would run the algorithm and find them all.  

Explanations of the student’s thinking were examined in cases where the assessment 
was correct and were categorized into 3 categories. The first category (“No 
Explanation”) included responses in which participants either explicitly said that they 
were unable to explain; or avoided giving an explanation. The second category 
(“Trivial explanation”) included all explanations that repeated the student’s answer, or 
attributed the error to general factors such as the student's background in mathematics 
(“strong”/ “weak” student), or carelessness. The following extracts present examples 
of the first (T2) and second (T1) category of explanations: 

T2: Now, how did he come up with it? I don’t know how he thought of it. 
T1: It can be due to a number of factors. This student might be weak, or careless.  

Finally, the category “Relevant Explanation” included the explanations that provided a 
substantial rationale for the hypothetical students’ thinking. For A and B, teachers who 
gave relevant explanations appeared to recognize that the students’ reasoning was 
based on natural number knowledge (see T15 in the excerpt below). For C, teachers 
who provided relevant explanations appeared to acknowledge that the hypothetical 
student, while using the term “infinity”, was actually referring to a very large, albeit 
finite, number of intermediate numbers (see T15 in the following excerpt). 

T5: Well, the first one thought that after 1.1… in the decimal part, after 1 there’s 2 and 
then 3. So, between 1.1 and 1.3 there is 1.2.  

T15: The third one says there are infinitely many, but the fact that he says there are over a 
billion, he puts a barrier, he is, like, counting them. I don’t think he 
understands what infinity is. 

Table 1 shows the frequency of each category of explanation by hypothetical answer. 
Less than half of the explanations were found in the “Relevant Explanation” category, 
with the majority of them for A. We should note that only three teachers gave relevant 
explanations for all three hypothetical answers (T4, T8, T15). In addition, 5 
participants didn’t provide relevant explanations for any of the responses that they had 
assessed correctly, including two who had assessed all three correctly (T1, T14). 
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Explanation 
Category 

Hypothetical Answers Total 
A B C 

Relevant 
Explanation 

9 4 5 18 

Trivial 
Explanation 

5 7 2 14 

No Explanation 1 4 2 7 
Total 15 15 9 39 

Table 1: Frequency of each category of explanation by hypothetical answer. 
It is also interesting to note that 5 of the teachers who gave a substantial explanation for 
A didn’t recognize that B was a similar case (Table 1). One such example is T10: 

T10: The second answer is a bit strange, it’s weird. Uh… (pause). I don’t know. I don’t 
know where this answer comes from, I really can’t imagine. 

Feedback: The use of counterexamples 
We analyzed the teachers’ feedback to the hypothetical students only for the responses 
they had (correctly) assessed to be incorrect. We note that in many cases the teachers 
addressed more than one response simultaneously. In the relevant texts, we searched 
for references to counterexamples, initially individually. We found that there were 
direct and indirect such references, so the texts were reviewed, the findings were 
compared and the (few) differences were resolved by discussion.  
In total, 14 references to counterexamples were identified. Counterexamples were 
mentioned explicitly (as specific numbers) or descriptively (e.g., “decimals with many 
decimal digits”); they were also implied via referring to the responses of other 
hypothetical students or to a modified form of the problem in which more intermediate 
numbers were considered to be visible to students (e.g., after adding one or more zeros 
to the decimal part of the given numbers). Texts containing references to 
counterexamples were first examined as to whether counterexamples are used merely 
to refute a particular claim or whether their use afforded possibilities for 
generalization. Two initial categories were created.  
The first category (“Claim Refutation”, N=4) included cases in which the teacher 
referred to one or more intermediate numbers, with the intention of refuting the claim 
that “there are no other intermediate numbers”. For example: 

T15: I would ask them, is—let’s say—1.135 between these numbers? I think that all the 
students would say “yes, this is in between”. Then I would ask, is 1.1355 
between? It is. That’s how they would understand that they were wrong.  

The second category (“Potential Generalization”, N=7) included the cases that referred 
to a method of generating counterexamples that potentially leads to the infinity of the 
intermediate numbers in an interval. However, differences were found in the adequacy 
of the description of the method, and two subcategories were formed. In all cases of the 
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first category (“Potential Generalization – Inadequate description, N= 4), teachers 
were limited to mentioning the possibility of more/fewer decimal digits in a number, 
similar to T3 in the extract below:  

T3: I would explain to them that after the decimal point, we can put infinitely many digits, 
that’s a number too. The number 1.113758239 is smaller than 1.2. 

In the second subcategory [“Potential Generalization – Adequate Description”, N=3], 
we included cases in which teachers explicitly described a generalizable, repeatable 
process of generating intermediate numbers, either in a purely numerical context (T1, 
T10), or in the context of the number line (T12). For example: 

T10: At first, I would pay attention to the first two answers (A and B). I would say to the 
students: the first step is simply to say 1.2. But then, as the other student 
said, we can take a second step and add two decimal digits, 1.12, 1.13, 1.29. 
I would say to them, if we got one decimal digit the first time and two 
decimal digits the second time, why don’t we continue to three decimal 
digits? I would then say that what I’m telling you now, we can do for 4 
decimal digits as well. So, it’s a process that we can keep doing for any 
number of decimal digits. Since we can do this for any number of digits, we 
begin to understand that there are infinitely many numbers in between. 

T12: I will tell them to pick any two numbers on the number line. I’m going to take the 
point in the middle of the line segment. So, here is a number in between. 
Then, I will pick one of the two (endpoints) and I will do the same. We can 
zoom in again and again and find infinitely many numbers. 

We note that T1 and T12 also expressed a clear intention to address the infinity of 
intermediate numbers in any interval.  
Finally, in the “Other” category (N= 3), three cases of feedback using counterexamples 
were included, which were judged, for different reasons, as inappropriate (see excerpts 
below). More specifically, T13 relied on an invalid argument, claiming that since all 
real numbers are infinitely many, there are infinitely many numbers in any interval. 
T7’s feedback had two parts. In the first, she stated that there are infinitely many 
numbers in the interval, referring to infinity as an “unending process”. In the second, 
she described vaguely the intermediate numbers as “numbers with “lots of decimal 
digits”. No obvious connection between the two parts was made; and it is unclear how 
the intermediate numbers are generated, and whether “lots of” is also used to refer to 
“infinitely many”. Finally, T14 based all the counterexamples as well as their 
generation method, on the sequence of natural numbers, referring to the first four terms 
of the corresponding sequence of decimal numbers with one decimal digit. It is not 
clear which number follows 0.9 in his sequence. Assuming that it is 1, then the 
subsequent terms are not between 0 and 1. Assuming that it is 0.10, then this sequence 
is presented with the misleading ordering of natural numbers, consistent with the 
well-known misconception that “longer decimals are larger”  

T13: Because these numbers can be placed on the real line, and because there are 
infinitely many real numbers, it is obvious that between two numbers there 
isn’t just one, two etc., there are lots of numbers, which are not easy to find. 
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Usually, in our everyday life and when we teach, we use “easier” numbers 
such as 1.13, 1.14 etc. 

T7: I would tell them that there are infinitely many numbers between 1.1 and 1.3 and we 
can’t say precisely how much “infinitely many” is, infinity means you keep 
going. Anyway, there will be numbers with lots of decimal digits that 
approach 1.3. 

T14: The answer is the same for all, so I would tell them that the numbers, as we know 
them, are infinitely many. (…). When I go from 0 to 1, there are also 
infinitely many numbers. You see, when I count 0, 1, 2, 3, 4, 5, I can 
continue to infinity. If I want to go from 0 to go to 1, there is the number 
0.1. So, I can go on, 0.2, 0.3 up to infinity, just like before. Just like I 
reached infinity the first time, I also reach infinity by 0.1, 0.2, 0.3, 0.4, there 
are infinitely many numbers up to 1. 

Finally, we would like to highlight another aspect of teachers’ feedback which we had 
not anticipated and emerged through their descriptions. As can be noticed from the 
preceding excerpts, the students are hardly taken into account. We reviewed the texts 
for indications of intention to include students in the process in a meaningful way (i.e., 
intention to ask students to explain their answers, to compare answers, to explore 
non-trivial questions, etc.). Only two teachers (T1, T6) expressed the intention to 
engage the students in the process. For example: 

T1: I would start with the second student and the rationale of the third so that we can 
come to the conclusion that no matter what interval we end up taking, we 
will always find an intermediate number (….) I generally prefer in such 
cases to ask the children to explain their peers’ mistakes. In this way we 
eventually end up with the correct answer. 

DISCUSSION  
In this paper we examined aspects of Mathematical Knowledge for Teaching (Ball et 
al., 2008) of secondary school teachers. We focused on participants’ responses to 
hypothetical students’ answers to a question about the number of intermediate numbers 
in a given interval. The first finding, which relates to Common Content Knowledge 
(Ball et al., 2008), was that only 9 out of 15 teachers evaluated correctly all three 
hypothetical responses. This is remarkable given the mathematical background οf the 
particular participants. The remaining 6 teachers agreed with the claim that “a 
computer can find all the intermediate numbers in a given interval”. This reflects a 
conception of “infinitely many” as “a very large, albeit finite number”, similar to the 
conception documented for primary and secondary school students (Vamvakoussi & 
Vosniadou, 2012). Regarding Common Content Knowledge, we should also note the 
invalid argument presented by one participant in the attempt to give feedback to the 
hypothetical students (“there are infinitely many real numbers, therefore there are 
infinitely many intermediates in the given interval”).  
Explaining the hypothetical students’ thinking (Knowledge of Content and Students; 
Ball et al., 2008) also proved challenging. A meaningful explanation, acknowledging 



Avgeri, Vamvakoussi 
 

 

PME 45 – 2022 2 - 41 
 

implicitly or explicitly that decimal numbers were treated by the first two hypothetical 
students like natural numbers, was provided by the majority of participants in the 
simpler case (i.e., “only 1.2 between 1.1 and 1.3”), but by fewer in a similar one (i.e., 
“only 1.11, 1.12, …1.29 between 1.1 and 1.3”). Only five teachers recognized the 
misinterpretation of the expression “infinitely many” by the third student. In the 
majority of cases, no explanation or a trivial explanation was given, attributing the 
error to factors such as carelessness, or the general mathematical background of the 
student, which is not conducive to meaningful instructional support for students. We 
note that accurate evaluations did not necessarily imply relevant explanations, which 
highlights the fact that Common Content Knowledge is distinct from Knowledge of 
Content and Students.  
Finally, in terms of feedback, we focused on the use of counterexamples, which relates 
to Specialized Content Knowledge as well as to Knowledge of Content and Teaching 
(Ball et al., 2008). The particular classroom scenario afforded the use of 
counterexamples and the participants indeed used them; they also had methods of 
producing counterexamples at their disposal. Only three teachers, however, placed the 
counterexamples in an explanatory context that could support students to understand 
the underlying method and reach the conclusion that there are infinitely many numbers 
in any interval. This is consistent with findings showing that the appropriate use of 
counterexamples is challenging for teachers (Zaslavsky, 2010).  
Finally, with only two exceptions, the teachers did not explicitly express the intention 
to engage the students in any productive activity during the feedback process. They 
typically described a situation where the teacher presents and explains the correct 
answer; and the students’ participation is minimal, if not trivial. 
The findings on feedback, although they give some (alarming) indications regarding 
the teachers’ ways of dealing with similar situations in the classroom, should be treated 
with caution. Indeed, it is possible that in real classroom settings the teachers would 
have engaged in a more meaningful interaction with students or presented more 
elaborate explanations.  
To sum up, the results of this study indicated shortcomings in the aspects of 
Mathematical Knowledge for Teaching that were investigated. The findings can’t be 
generalized, due to the small sample size, but can be used as a starting point for deeper 
exploration of these issues in the future.   
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1University of Haifa, 2National and Kapodistrian University of Athens 

 
This paper proposes a teacher education strategy based on a combination of critical 
events and scripting dialogues. This strategy was used in two teacher education 
contexts in Israel and Greece with thirty-four prospective teachers (PTs). The PTs 
identified critical events in the context of their field experiences and transformed them 
into scripting dialogues with the aim to handle students’ difficulties. The analysis 
focuses on the adopted pedagogical actions in the critical events and the scripting 
dialogues. The PTs used general and mathematics-specific actions to address 
students’ difficulties promoting their conceptual understanding.  
INTRODUCTION 
In recent decades, there has been a growing interest in the use of critical events in 
teacher education (Stockero et al., 2020). In particular, critical events serve as a tool for 
teacher educators to develop PTs’ noticing of students’ mathematical thinking, 
considered as an important aspect of a teacher’s expertise. Noticing entails attending to 
students’ thinking, interpreting it and responding to promote further mathematical 
understanding (Jacobs et al., 2010). Research identifies a need for studies that focus on 
the responding dimension of noticing, that is, the potential teaching action (Santagata 
et al., 2021). Scripting dialogues is suggested as a new way of representing teaching 
practice in an imaginary way (Zazkis et al., 2009). In this paper, we propose a teacher 
education strategy that uses both critical events and scripting dialogues. PTs are 
engaged in transforming critical events from real classroom to scripting dialogues so 
that they become aware of different aspects of mathematics teaching and learning. 
Similar to other studies (Sun & van Es, 2015), in our study PTs selected critical events 
related to students’ difficulties and attempted to address them in their scripting 
dialogues through specific teaching actions. We aim to explore the responding 
dimension of PTs’ noticing of critical events related to students’ difficulties while 
engaging in the transformation process.  
THEORETICAL BACKGROUND 
We take a socio-cultural perspective based on the role of tools and resources in 
mathematics teacher education facilitating teacher noticing, in particular, the nature of 
script writing and critical events as tools mediating PTs’ noticing. Critical events are 
moments in which students' mathematical thinking becomes apparent and thus can 
provide teachers opportunities to delve more deeply into the mathematics discussed in 
the lesson (Stockero et al., 2020). Research indicates that PTs struggle to respond or 
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provide teaching alternatives in ways that are built on students’ thinking to promote 
learning (Sun & van Es, 2015) and that there is a need for studies getting a deeper 
insight on PTs’ suggestions of alternative teaching actions and on the process of 
formulating them (Santagata et al., 2021). Research has suggested several structures 
for facilitating PTs’ noticing. Often, PTs receive researcher-selected artefacts of 
practice, such as classroom video clips or narrative cases accompanied with prompts 
that focus attention on the details of student thinking and learning (Jacobs et al., 2010). 
In other cases, the PTs are asked to take part in producing the scenarios. For example, 
Zazkis et al. (2009) proposed the ‘lesson play’, where participants are presented with a 
beginning of a scripting dialogue between a teacher and students and are asked to 
continue the dialogue to resolve an issue they perceive as problematic. This provides 
insights into PTs’ ways of understanding the mathematics in the situation and their 
images of the potential pedagogical considerations related with its learning. Still, other 
researchers invite PTs to analyze critical events selected by them in their field-work so 
as to promote reflection on their classroom experiences (Goodel, 2006). 
Research indicates that in responding to students’ difficulties, PTs tend to instruct the 
students what to do or correct occurring errors. These actions potentially remove the 
opportunity for students to make sense of errors and run counter to research 
recommendations for using errors as learning opportunities to foster understanding 
(Borasi, 1996). To classify the nature of PTs’ responses to students’ errors, Son (2013) 
suggested the term of Forms of address, distinguishing between two types: show-tell 
(teaching actions such as telling the definitions, explaining a procedure) and give-ask 
(e.g., pursuing mathematical explorations, inviting students to evaluate students’ 
arguments). She further proposed three types of use of student error: (i) Active use, 
when using the student’s error as a major tool for instruction, e.g., providing the 
students opportunities to explore why an error does not work. (ii) Intermediate use, 
when an error is addressed briefly as a stepping-stone to correct the student. (iii) Rare 
use, when not addressing the error at all or only remarking that a solution is wrong. In 
our study, we draw on Son’s distinction among types of teachers’ use of errors in their 
instruction and analyze the pedagogical actions in responding to students’ errors 
identified in the critical events and the corresponding scripting dialogues written by the 
PTs. We use PTs’ suggested rationales of developing the scripting dialogues as well 
reflections on the challenges they faced in the process and the learning outcomes, to 
better understand the PTs’ engagement in the process. We aim to address the 
questions: (1) What are the shifts in teaching actions that the PTs followed or 
suggested to handle students’ difficulties from the initial critical event and the 
scripting one? (2) What is the PTs’ rationale of developing the scripting dialogue? 
What are the challenges they faced in this process and what are the learning 
outcomes? In this paper, our analysis addresses mainly RQ1. Through two case studies 
we provide some initial evidence in response to RQ2. 
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METHODOLOGY 
The research took place in the context of two mathematics education undergraduate 
courses during the same semester in two universities: one in Israel and the other in 
Greece. The aim of the courses was to engage PTs in critical consideration of aspects 
of mathematics teaching as they emerge from the complexity of teaching practice in 
schools. Decisions concerning the design of the study and the data analysis were taken 
collaboratively through regular online meetings between the researchers. In the Greek 
context, 9 PTs participated in the study while in the Israeli context, 25 PTs. Enrolling 
the courses, the PTs had already attended a number of courses on mathematics 
education. In both contexts, the PTs experienced both University lessons and 
classroom observations. The structure of the intervention involved: identifying a 
critical event during classroom observations and illustrating it through a dialogue; 
providing the rationale of the selection (Why is it critical?); interpreting students’ and 
teacher’s actions and providing evidence; suggesting alternative teaching actions and 
developing a scripting dialogue between them (as teachers) and the students; providing 
rationale of the scripting dialogue; reflecting on the process (decisions, challenges, 
learning outcomes). PTs were asked to: address the above tasks in a written report; 
present briefly their work in the meetings; and discuss their scripting dialogues and the 
process of developing them in work-out sessions (3-4 PTs). The data consisted of: PTs’ 
written reports; video recordings of the meetings including the work-out sessions; and 
designed resources (e.g., lesson plans, worksheets).  

In this paper we analyze the data from the written reports in relation to one cycle of 
classroom observations. Initially, we used grounded-theory methods to analyze: the 
nature of critical events and their interpretation by PTs in relation to the teacher’s 
actions and the students’ thinking; the PTs’ pedagogical actions in the scripting 
dialogues; the process of developing the scripting dialogue (rationale, decisions, 
challenges, learning outcomes). Then, we decided to focus on critical events related to 
students’ difficulties as this was a dominant theme. Next, by combining grounded 
analysis and theoretical ideas related to teachers’ response to students’ difficulties we 
refined our coding of teacher pedagogical actions both in the critical event and the 
corresponding scripting dialogue to address the first research question. Finally, we 
analyzed specific cases of PTs to highlight the occurrence of the pedagogical actions as 
well as dimensions of the transformation process from the critical event to the scripting 
dialogue

RESULTS  
Most PTs (26 out of 34) selected critical events related to students’ difficulties and 
attempted to address them in their scripting dialogues through specific teaching 
actions. Our analysis reveals a multiplicity of teaching actions indicating an active use 
of students’ difficulties in the whole classroom as well as at the level of the individual 
students who faced the difficulty. In Table 1, we present the emerging categories of 
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pedagogical actions identified in the critical events and the corresponding scripting 
dialogues. We distinguished two main categories of actions: general and 
mathematics-specific. The total number of pedagogical actions in the scripting 
dialogues in both categories is increased in relation to the ones identified in the critical 
events. Part of the general actions concerned the teacher’s interaction with individual 
students who had the difficulty (i.e. prompting students to explain and justify their 
solutions, and enabling the student to find her/his own error) while the rest of actions 
addressed the whole class. The latter indicates that the student’s difficulty becomes a 
central point of discussion with the whole class (active use of students’ difficulty) 
while the former shows a response to the individual student (rare or intermediate use of 
students’ difficulty).  
Prompting students either to evaluate other students’ statements (“What do you think 
about Hala’s idea?”) or to explain and justify their solutions (“Justify your response”) 
were dominant general actions both in the critical event (12 and 11 respectively) and 
the scripting dialogue (15 and 13 respectively). The general actions that appear to be 
more frequent in the scripting dialogues in relation to the critical events were: making a 
student’s solution visible (“Come on the board to write your solution”); encouraging 
students to help their peers to overcome their errors (“try to explain Edi what his 
mistake is.”); verifying understanding (“Is there something misunderstood before we 
continue?”); and enabling the student to find her/his own error (see case 2 below).   

Pedagogical actions In critical 
events 

In scripting 
dialogues 

General actions 

Prompting students to evaluate other students’ statement 12 15 

Making a student’s solution visible 3 7 

Prompting students to explain and justify their solutions 11 13 

Prompting diverse solutions 3 5 

Encouraging students to help their peers to overcome 
their errors 

2 4 

Verifying understanding 5 8 

Providing time/homework to think about the error 3 4 

Giving hints  6 6 

Enabling the student to find her/his own error 6 10 

Evaluating a student’s answer 9 10 

Total number of generic actions  70 82 

Mathematics-specific actions 

Using representations and examples  4 8 
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Guided questioning to engage in a mathematical process 13 22 

Modifying the task 1 5 

Pointing to big mathematical ideas  5 6 

Providing the correct solution 5 1 

Providing explanation/exposition 7 9 

Total number of math specific actions 35 41 

Concerning the mathematics-specific actions, the dominant action was guided 
questioning to engage students in a specific mathematical process (see case 1 and case 
2 below) both in the critical event and the scripting dialogue (13 and 22 respectively). 
The mathematics-specific actions that appear to be more frequent in the scripting 
dialogues in relation to the critical events were: using representations and examples 
(e.g., a drawing illustrating how many intersections can be between a circle and 
straight line) and task modification (see case 1 below). Also, in the scripting dialogues 
the PTs seem to avoid providing the correct solution. In most cases, transformation in 
the pedagogical actions is indicated through shifts from intermediate use of student’s 
difficulty in the original event (i.e. student error is addressed briefly as a stepping-stone 
to correct it) to intermediate or active use of student’s difficulty in the scripting 
dialogues (i.e. using student’s difficulty as a major tool of their instruction, provide 
students’ opportunities to discuss and test why a method doesn’t work). PTs often 
brought to the scripting dialogues alternative teaching actions to those identified in the 
original events in most of the above categories.  
THE PROCESS OF TRANSFORMATION – TWO CASES 

We illustrate below how PTs modified the initial event to the scripting one through two 
cases of PTs (Elisavet and Nina) who made an active use of students’ errors in their 
scripting dialogues introducing a large range of pedagogical actions as we have 
mentioned above. Elisavet and Nina offered 9 and 5 different actions respectively 
(Elisavet: 5 general, 4 mathematics-specific, Nina: 1 general, 4 mathematics-specific). 
Through the cases we also illustrate these pedagogical actions.   
The case of Elisavet. Elisavet’s initial event was taken from her observation of a lesson 
in Grade 11. The students had already worked on tasks to identify the center of circles 
of radius R situated either at O(0,0) or in another point of the plane K (x0, y0) using the 
circle equation in two forms. Elisavet considers this event as critical because of the 
students’ difficulty to use the taught content in identifying the center of a circle in 
textbook tasks. In the initial dialogue, one student (S3) cannot provide a response. The 
teacher asks another student (S1) and through some guidance (i.e. he writes the 
formula as x2+y2=52) he recognizes the radius of the circle but not its center. S1 seems 
to be confused with the different forms of the circle equation. Then the teacher 
comments that “this is the simplest form of circle, we have referred to it many times” 
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and he asks another student (S2). S2 replies correctly. In the scripting dialogue, 
Elisavet adopts general pedagogical actions (e.g., making a student’s solution visible, 
enabling the student to find her/his own error) and mathematics-specific ones such as 
reminding the relevant theory (exposition) and asking guiding questions (guided 
questioning to engage in a specific mathematical process). Below, we provide an 
extract from her dialogue with S2 and S3. 

 T:  We know that the general form of the equation is (x-x0)2+(y-y0)2 = r2.   
How can we find the center and the radius of the circle? 

S3:  The center, let K, have coordinates (x0, y0) and the radius will be r. 
T:  Fine. Now, in the special case where the origin of the axes is the center, what  
will be the point (x0, y0)? 
S2: I will have x0 = 0 and y0 = 0. 
T:  Right. So, what is the equation of the circle in this case?  
S2: x2 + y2 = r2. 
T:  Fine. And what will be the center and the radius of the circle in this case? 
S2:  The center is the origin (0,0) and the radius is r. 

The scripting dialogue differs substantially from the dialogue of the original event. 
Elisavet attributes to the teacher a more active role in using students’ difficulties. The 
construction of the scripting dialogue was not an easy task for Elisavet. In her first 
attempt, she tended to talk more and then she made the dialogue more interactive. The 
crucial decisions she made concerned how the teacher could build on students' 
responses and direct them to develop their own way of thinking: “I think that the 
teacher should enable students to understand from the beginning the purpose of the 
task and from there to help them build step by step the final solution”. Another 
difficulty that she experienced was to find appropriate explanations to students: “I had 
a hard time finding a way to explain to the student why it is wrong that the center 
passes through the origin”. As regards her learning from this experience Elisavet 
seemed to have developed some awareness of the importance of exploring and 
developing students' understanding as well as the challenge that a teacher faces to take 
on-the-moment decisions. 
The case of Nina. Nina’s initial event was taken from her observation of a lesson in 
Grade 12 focusing on division of two complex numbers. The teacher solved a few 
examples on the board, and then asked a volunteer to solve the expression 1+𝑖

1−𝑖
. Amir 

approached and wrote1+𝑖
1−𝑖

= (1+𝑖)(1−𝑖)
(1−𝑖)(1−𝑖)

. The teacher asked him: “Did we learn to do it 
this way?” Another student responded: “We learned to multiply by the conjugate of the 
denominator”. Amir responded: “It doesn’t matter whether we multiply by the 
conjugate of the nominator or by the conjugate of the denominator”. The teacher 
responded: “We multiply by the conjugate of the denominator”. Nina considered this 
event as critical because of Amir’s response, which reflects an incomplete 
mathematical thinking. She suggested that Amir cannot “see” his mistake because he 
does not understand the purpose of multiplying the fraction by the conjugant of the 
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denominator. In the scripting dialogue, Nina suggested alternative teacher actions 
(e.g., guided questioning to engage in a specific mathematical process, making a 
student’s solution visible, pointing to big mathematical ideas).  

T: Come to the board. Try to multiply the fraction first by the conjugate of the 
nominator and then by the conjugate of the denominator… 
[Amir approaches the board and follows the teacher’s instructions.] 
Amir: Wow, I was wrong. Multiplying by the conjugate of the nominator does not lead 
to anything meaningful… multiplying by the conjugate of the denominator resulted in 
a complex number in the standard form because the multiplication gave me a real 
number in the denominator. 
T: In conclusion, pay attention that we multiply by the conjugate of the denominator as 
an effective step for solving the task. It is not a random action. We choose this 
particular technique so as to receive a real number in the denominator and not to be left 
with a complex number in the denominator. Any questions before we continue? 

The scripting dialogue written by Nina differs from the dialogue of the original event. 
Nina attributed to the teacher a more active role in using Amir’s statement as a tool for 
her instruction. In contrast to the teacher in the original event, who addressed Amir’s 
suggestion briefly as a stepping-stone to correct him, Nina provided a space for Amir 
to understand why his initial method is ineffective. Moreover, by inviting Amir to the 
board and by emphasizing the main ideas in her summary, Nina made the student’s 
solution visible. Nina reported that it was crucial for her to enable Amir to understand 
the rationale for using a different method. She was uncertain about what would be a 
good way to do it and whether inviting Amir to the board would embarrass him. 
Eventually she decided that it would allow the other students to take part in the activity 
and support a norm that making mistakes is a constructive part of learning. Nina 
reported that the experience contributed to her developing some awareness of the 
multiple roles that a teacher fulfils simultaneously, in particular, building on student 
thinking and enabling students' participation in the learning process. 
DISCUSSION 
The pedagogical actions that PTs adopted to address students’ difficulties in the 
scripting dialogues indicate an active use of these difficulties. Specifically, PTs 
attempted to engage all students in the class in discussing the difficulties through 
general and mathematics-specific actions. The general actions address mainly social 
norms and issues of participation while the mathematics-specific ones concern the 
development of students’ conceptual understanding. The cyclic transformation process 
of critical events to scripting dialogues seems to have supported PTs in developing 
alternative teaching actions that effectively addressed students’ difficulties. This 
finding is rather promising as the existing literature in the field speaks of the 
dominance of procedural ways by which PTs address students’ difficulties tending to 
‘correct’ the error (e.g., Son, 2013). Scrutinizing into the transformation process in the 
cases of Elisavet and Nina, we see that (a) student’s difficulty becomes a central point 
of discussion with the whole class and (b) students’ difficulty is handled in conceptual 
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and social terms. Both of them attempt to address social and mathematical aspects of 
classroom communication through common and different pedagogical actions, 
something that is challenging for the teachers (Skott, 2019). The analysis of the two 
cases suggests that the process of writing a scripting dialogue facilitated further PTs’ 
sensitivity to students’ difficulty: not only they focused on the difficulties, but also 
attempted to understand their sources and develop awareness of critical issues of 
mathematics teaching and learning. Further analysis of data including also the 
discussions among PTs in the two courses is expected to allow us getting a deeper 
understanding of the transformation process from the critical event to the scripting 
dialogue and its potential for the development of PTs’ noticing of students’ difficulties.  
References 
Borasi, R. (1996). Reconceiving mathematics instruction: A focus on errors. Nonvood, NJ: 

Ablex. 
Goodell, J. E. (2006). Using critical incident reflections: A self-study as a mathematics 

teacher educator. Journal of Mathematics Teacher Education, 9(3), 221-248.  
Jacobs, V. R., Lamb, L. L., & Philipp, R. A. (2010). Professional noticing of children's 

mathematical thinking. Journal for research in mathematics education, 41(2), 169-202. 
Santagata, R., König, J., Scheiner, T., Nguyen, H., Adlef, A.-K., Yang, X., & Kaiser, G. 

(2021). Mathematics teacher learning to notice: A systematic review of studies of 
video-based programs. ZDM Mathematics Education, 53, 119–134. 

Skott, J. (2019). Changing experiences of being, becoming, and belonging : Teachers’ 
professional identity revisited. ZDM, 51, 469–480. 

Son, J. W. (2013). How preservice teachers interpret and respond to student errors: ratio and 
proportion in similar rectangles. Educational studies in mathematics, 84(1), 49-70. 

Stockero, S. L., Van Zoest, L. R., Freeburn, B., Peterson, B. E., & Leatham, K. R. (2020). 
Teachers’ responses to instances of student mathematical thinking with varied potential to 
support student learning. Mathematics Education Research Journal, 1-23.  

Sun, J., & Van Es, E. A. (2015). An exploratory study of the influence that analyzing teaching 
has on preservice teachers’ classroom practice. Journal of Teacher Education, 66(3), 
201-214.  

Zazkis, R., Liljedahl, P., & Sinclair, N. (2009). Lesson Plays: Planning teaching vs. teaching 
planning. For the Learning of Mathematics, 29(1), 40–47. 

 

 



 

 2 - 51  
2022. In C. Fernández, S. Llinares, A. Gutiérrez, & N. Planas (Eds.), Proceedings of the 45th Conference of the 
International Group for the Psychology of Mathematics Education (Vol. 2, pp. 51-58). PME. 

MAKING SENSE(S) OF MULTIPLICATION 
Sandy Bakos, Nathalie Sinclair, Canan Güneş, Sean Chorney 

Simon Fraser University 
 
This paper examines drawings created by third-grade students during a mathematics 
lesson using the multi-touch iPad application TouchTimes, which provides a way of 
engaging directly with multiplication through the user’s fingertips. Using a theoretical 
perspective that recognises the materiality of mathematical concepts, we study the 
students’ conceptualisations of multiplication (which are imbricated with their fingers 
and the application) by analysing the multiple sensory meanings expressed in their 
drawings. We show how these sensory meanings relate to characteristics of 
multiplication discussed in the literature—through actions we call multi-plying and 
unitising. We also discuss additional features of the drawings, such as the inclusion of 
fingers and hands, the order of multiplier and multiplicand and limited use of colour.       
INTRODUCTION 
How would you describe multiplication? We asked friends, family and colleagues this 
question and received answers such as: faster than addition, groups of, patterned, 
double numbers, eight bags of six apples, fast combinations of numbers, something 
that rabbits do very quickly and a reference to Lunney Borden et al.’s (2021) ‘sets of, 
rows of, jumps of’ ideas. While there is some diversity to these responses, we found a 
strong emphasis on the arithmetic interpretation of multiplication as repeated addition, 
with very few multiplicative images evoked (aside from the rabbits).  
Indeed, a common approach to introducing multiplication focuses on additive 
reasoning. However, Askew (2018) suggests that presenting multiplicative reasoning 
in primary schools by focusing on functional relations would create a better foundation 
for higher mathematics. Through the use of a multi-touch application called 
TouchTimes (Jackiw & Sinclair, 2019), we wanted to introduce students to 
multiplication through both functional and relational experiences. TouchTimes 
(hereafter TT) allows children to create tactile, pictorial and symbolic representations 
of multiplicative situations that adjust simultaneously in response to their fingertips on 
the screen. This paper explores the meanings students express in diagrams they were 
asked to make about a multiplicative problem.  
MEANINGS OF MULTIPLICATION 
Multiplication is a concept that consists of several dimensions. Vergnaud’s (1988) 
conceptual field brings many of these dimensions together. A conceptual field consists 
of, “a set of situations that make the concept meaningful, (…) a set of invariants 
(objects, properties and relationships) that can be recognized and used by subjects to 
analyze and master these situations, and a set of symbolic representations” (p. 141).  



Bakos, Sinclair, Gunes, Chorney 
 

 

2 - 52 PME 45 – 2022 
  

In terms of the situations that make multiplication meaningful, Greer (1992) identified 
ten: equal groups, equal measures, rate, measure conversion, multiplicative 
comparison, part/whole, multiplicative change, cartesian product, rectangular area and 
product of measures. The objects of multiplication consist of intensive quantities 
(Kaput, 1985) and two types of unit counts (Clark & Kamii, 1996). Davydov (1992) 
distinguished these unit counts, with one being smaller and the other larger. While the 
former are included among themselves in one level, they are also included in the larger 
unit counts in another level, thereby creating a one-to-many and many-to-one 
correspondence between the two distinct unit counts (Clark & Kamii, 1996). This 
correspondence allows for intensive quantities, which emerge from the ratio between 
two quantities measured by these two distinct unit counts (Davydov, 1992; Kaput, 
1985; Vergnaud, 1988). Multiplication also involves two actions. One can be found in 
Davydov’s (1992) description of multiplication as measuring a quantity indirectly by 
transferring the unit count from the smaller to the larger one, creating a unit of units. 
The other can be found in Confrey's (1994) description of multiplication as splitting, or 
“creating simultaneously multiple versions of an original” (p. 293).  
In an equal group situation such as “3 children each having 4 oranges. How many 
oranges do they have all together?” (Greer, 1992, p. 280), oranges and children 
correspond to the smaller and the larger unit counts, respectively. Each child 
corresponds to 4 oranges. Instead of measuring the total amount of oranges additively 
by counting oranges one by one, the amount can be calculated multiplicatively by 
counting the children and transferring the amount to the oranges based on the 4:1 ratio 
between the number of children and the oranges. 
MAKING SENSE(S) THROUGH DIAGRAMMING (THEORY) 
We assume that mathematical concepts are not abstracted by humans from encounters 
with the material world, but are inseparable from tools, techniques and bodies (de 
Freitas & Sinclair, 2017; Rotman, 2008). Concepts become intelligible, “not by a 
reductionist abstraction or by a ‘subtraction of determinations’ (Aristotle’s approach 
to abstraction), but by the actions (moving, excising, cutting through diagrams and 
gestures) that awaken potential multiplicities that are always implicit in any material” 
(de Freitas & Sinclair, 2017, p. 78). Therefore, in studying learners’ conceptualising of 
multiplication, we are particularly interested in the actions they experience (in this 
case, with TT) and the drawings and gestures they make in response to these 
experiences. We see drawings not solely as representations of existing 
conceptualisations, but as material sites for conceptual creation. 
Much of the research on children’s understanding of multiplication focuses on their 
ability to solve particular types of multiplication tasks. With Cheeseman et al. (2020), 
we are interested in exploring the visual meanings of multiplication that students can 
develop, since these can provide significant conceptual support (Davis et al., 2015), 
particularly when these visual meanings have dynamic elements (McGarvey et al., 
2015). Diagramming can be an effective way for learners to express, create and 
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represent mathematical concepts, particularly spatial and temporal aspects that might 
be more difficult to verbalise (de Freitas & Sinclair, 2017). Given the novel 
gestural/visual experiences that TT affords, we ask: what conceptions of multiplication 
do students’ diagrams produce, and how do these relate to aspects of multiplication 
discussed in the literature? 
METHODS 
After providing a short description of TouchTimes, we will then describe the research 
context and our approach to analysing the children’s drawings. 
How TouchTimes works  
Though TT has two microworlds, the focus of this paper is the Grasplify world. A 
vertical line divides the Grasplify screen in half, but it is otherwise blank (Figure 1a) 
until a user places their fingers on the screen. Grasplify is symmetric, so on whichever 
side of the screen that is touched first, coloured discs (which are called ‘pips’) will 
appear (and remain) below the user’s fingers (Figure 1b) for as long as screen contact is 
maintained. Created by finger taps on the other half of the screen, ‘pods’ are encased 
groups of pips (seen on the right side of Figure 1c) that replicate the shape and colour 
of the original pip formation being maintained on the opposite side of the screen (seen 
on the left side of Figure 1c). All pods are then encircled by a ‘lasso’ to form the 
product (seen on the right side in Figure 1c). The composition of the pips within the 
pods (number, colour and shape) change instantly to reflect the pip-creating half of the 
screen, as does the numerical expression at the top of the screen (Figure 1d).  

 

  

 

 Figure 1: (a) Initial screen (b) Pips (c) Pod creation (d) Two composite units 
The design of Grasplify reflects an embodied co-ordination of units approach to 
multiplication based in measurement (Davydov, 1992), which requires a unit of 
measure (the multiplicand, or ‘pips’ in Grasplify) to be established first, followed by 
the unit quantity (the multiplier, or ‘pods’). The first unitising (i.e., making composite 
units) occurs in the making of the pips (in Figure 1b, there are 4 pips), and the second 
unitising occurs in the making of pods (three of which appear in Figure 1c) and a third 
in the encircling of all the pods, which is  the product (in Figure 1c, there are 3 pods 
encircled). The pods (multiplier) are a quantity generated from the original pips 
(multiplicand) and serve as a measurement unit for the product. Thought of this way, 
multiplication involves “a count of a [larger] unit for which a relationship to another, 
smaller unit, is already established” (p. 12).  
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Study context 
This study took place in a French-immersion third-grade classroom (8–9-year-olds) in 
Metro Vancouver, Canada in October–November 2019. This class was composed of a 
multicultural group of 18 students, most of whom speak English as their primary 
language, as does the teacher. The teacher had more than 20 years teaching experience 
and had volunteered to be part of this multi-phase research project to collaboratively 
develop tasks for use with TT and to implement TT as a resource for learning 
multiplication. The research team (who are the authors of this paper) was invited by the 
teacher to observe the use of Grasplify in her classroom. Three 60-minute lessons were 
observed and video-recorded. The drawings analysed in this paper were part of the day 
two activities, which included: approximately 15 minutes of free exploration time 
using Grasplify; a task requiring that students double the product of 1 × 3 = 3 in 
different ways using Grasplify; an exploration of how to make a 5 with their pod-finger 
and then to count by fives to 25. The teacher brought the whole class together after 
each task and had individual students share their answers using an iPad projected on a 
screen for all could see. In the final activity, which took approximately 10 minutes to 
complete, students were given the following problem: How would you use 
TouchTimes to solve this problem? A bunch of buttons fell on the floor. Nick gathered 
them in heaps of 8 buttons. He made 5 heaps. How many buttons are there? Students 
had access to their iPads and were given a sheet of paper on which to make their 
drawings. While students worked, the teacher, as well as the research team, interacted 
with students to answer questions and assist them, as necessary. 
Analysing the drawings 
Drawing on both the literature and the design of TT, we identified the two actions of 
multiplication described above, namely: unitising and multi-plying. The unit is central 
to Davydov’s (1992) model of multiplication, and in TT, the production of a pod is a 
unit of the pips on the screen and the product is the set of pods. Visually, the unit of 
units is the ‘lasso’ around all of the pods. Multi-plying is central to Confrey’s (1994) 
idea of multiplication as splitting, which emphasises the copying of a unit. In TT, this 
copying is shown visually through the spatial arrangement and the number and colour 
of the pips within each pod, which are reflective of the original pip-formation created 
by the user. We opted for multi-plying (instead of splitting) because splitting refers to 
the partitioning of the original into identical quantities, while multi-plying refers to the 
creating of multiple replicas of the original. The emphasis is less on the product (unit of 
unit of units) than on the pods (unit of units). In analysing the diagrams, we looked for 
evidence of each aspect, while remaining open to other meanings that could emerge in 
the diagramming process.  
WHAT THE DRAWINGS SHOW (RESULTS) 
The students produced a wide variety of drawings, some of them very faithful to 
elements of the TT screen, and some seemingly unrelated. Multi-plying was the most 
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prominent meaning expressed, found in 15 of the 18 drawings, and unitising in 5 of the 
18 drawings. We provide examples of each type of drawing and then consider some 
additional features of the drawings that were noteworthy in terms of the senses of 
multiplication being expressed.  
Multi-plying 
In each of the three drawings shown in Figure 2, the spatial arrangement of the pips 
within each of the five pods is drawn in a consistent way, which expresses the sense of 
multiplication as multi-plying. In both Figures 2a and 2b, the pip-creation itself is 
shown on the left screen (LS). The copying of the original pip-unit on the right screen 
(RS) is demonstrated by each student’s attention to the number and configuration of 
pips within each pod. Though Figure 2c does not include the original pip creation, the 
consistency of the pods is apparent. Note the differences in terms of the use of 
symbols: while the product appears in all three drawings, only Figure 2b includes the 
equation.  

    
Figure 2: (a) Hand(s)-on multi-plying of 5 (b) Domino-like multi-plying of 8 (c) 

Pods-only multi-plying of 8   
Unitising 
Clark and Kamii’s (1996) two types of unit counts and Davydov’s (1992) unit of units 
are visible in the Figure 3 drawings. Without emphasising the multi-plying of the 
Figures 2 drawings, these Figure 3 drawings all express unitising, primarily through an 
encircling. Both Figures 3a and 3b drawings have included the ‘lasso’ that visually 
creates the product of 8 × 5 (or conversely 5 × 8). In addition to showing pips and pods, 
each drawing includes the mathematical notation that corresponds with the double 
unitising visible in the drawings. Note that all of the drawings in Figure 3 include 
equations, with only that of Figure 3a being in the order implied by the button problem. 
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Figure 3: (a) Unitising 8 × 5 (b) Unitising 5 × 8 = 40 (c) Hands-on unitising 

Other features 
We use the three following examples to discuss other features of the drawings that are 
relevant to the students’ sense of multiplication.  
Figure 4a shows unitising as well as some sense of multi-plying, with the pods all 
looking similarly trapezoidal. However, in expressing 5 × 8 = 40, this drawing does not 
model the button question. This was true in many drawings (Figure 2a, 3b, 3c). While 
circulating in the classroom, it was evident that some students understood 5 × 8 and 8 × 
5 to be the same; and, indeed, Figure 4b shows this well. The prevalence to using 5 pips 
may be related to the ease with which one can make 5 pips in TouchTimes, which 
requires only one hand. It may also be related to the ‘groups of’ thinking common in 
repeated addition, wherein ‘5 groups of 8’ places the 5 first (and to the left), as opposed 
to ‘8, five times’. 
In Figure 4c, though the spatial orientation of the pips within the pods is not reflective 
of the pip-creation on the left screen, each coloured pip on the left has been replicated 
in the appropriate colour within each of the pods on the right side of the screen. We see 
this use of colour as demonstrating the ‘spreading’ effect of each pip-unit across the 
larger pod-units, which highlights the one-to-many multiplicative relation. 

  
Figure 4: (a) Trapezoidal pods (b) 5 × 8 = 40 and 8 × 5 = 40; pips/pods and arrays   (c) 

The multi-plying of colour 
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We were surprised to find only one drawing making use of colour, particularly since 
colour is so important to the TT design as a way of showing the one-to-many relation 
of multiplication. Perhaps the colour was not deemed important to the students, which 
would suggest the need for an explicit pedagogical intervention. It may also be that 
students come to think that colour does not matter in mathematics learning, since it is 
not frequently used as a significant mathematical sign. 
In Figures 2a, 3a and 3c, we see the presence of hands and fingers. These may be 
re-enactments of touching, but we see them as fundamental components of how 
students conceptualise their participation in multiplication. In the phrasing of the 
question: How would you use TouchTimes to solve this problem? their drawings 
express a sense of agency—the mathematical action is not just mental, but physical. In 
Figure 3c, for example, the diagram conveys the actions taken by the student, but in a 
way that highlights their embodied performance. The diagram shows what the student 
is paying attention to. On the right side of the diagram, the student draws their hands 
palm up, showing 8 fingers. This reflects the contemplative and reflective nature of 
what the student recognised to be significant in their drawing, the unit of 8. The action 
conveyed in this instance is not one that involved TT directly but is a negotiation of 
their own awareness before they turn their fingers to touch the screen. On the left side 
of the diagram, the student is touching once, then twice, and sequentially up to 5 times. 
Multiplication is shown as a temporal multi-plying of the unit. In Figure 2a, the hand is 
an essential contribution to multiplication as well. When a pip creating hand is lifted, 
there is no multiplicative operation since the pips will be gone. Finally, in Figure 3a, 
ten fingers are drawn with only eight pips, a clear break in a 1-1 correspondence. The 
student might have lost count, or may simply be expressing the sense of ‘lots’, or the 
potential of using all ten fingers on the screen.  
CONCLUSION 
The drawings analysed in this paper highlight the sense of multiplication that these 
third-grade students experienced through their interactions with TT and in the course 
of their drawing process. Several aspects of multiplication, such as multi-plying, 
unitising, and in one instance, spreading, are visible within these drawings. This 
suggests that TT can provoke different ways of thinking about multiplication, rather 
than simply focus on a single meaning (or a single model). The unitising and 
multi-plying multiplicative relations that can be seen in these drawings are very 
different from common ways of introducing primary students to multiplication that are 
additive in nature. The inclusion of fingers and hands was significant for some students 
to express how TT was used to understand the button problem, which shows how the 
actions they used on the screen affect ways of thinking in their diagrams. These 
drawings included not only the actions and objects of multiplication, but also the 
associated symbols, with most (14 of the 18) drawings showing a symbolic 
multiplicative expression.     
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Recognizing patterns is an important skill in early mathematics learning. Yet only few 
studies have investigated how first-grade students recognize patterns. These studies 
mainly analyzed students’ expressions and drawings in individual interviews. The 
study presented in this paper used eye tracking in order to explore the processes of 22 
first-grade students while they were trying to recognize repeating patterns. In our 
study, we used numerical and color pattern tasks with three different repeating 
patterns (i.e., repeating unit is AB, ABC, or AABB). For each repeating pattern task, 
students were asked to say the following object of the given pattern. For these patterns, 
we identified four different processes in recognizing repeating patterns. In addition, 
we report differences in the observed processes between the patterns used in the tasks. 
INTRODUCTION 
Mathematics can be described as the science of patterns (Steen, 1988). In early 
mathematical learning, patterns play a decisive role in the development of algebraic 
thinking (Carraher & Schliemann, 2007; Clemens & Samara, 2007). Being aware of 
patterns provides primary students with a mindset that is useful in the later study of 
algebra (Schoenfeld, 2007). In addition, pattern recognition is a central content of 
mathematics education in primary school (NCTM, 2000), which makes it a significant 
topic for mathematics education.  
Yet, pattern recognition poses challenges to many students. For example, Clarke et al. 
(2006) found that for repeating patterns (e.g., ABABAB) first graders are successful in 
recognizing and extending them in only 31% of the tasks. This calls for support of 
young children in their ability to recognize patterns. For being able to foster children’s 
pattern-recognition ability, it is crucial to investigate and understand their 
pattern-recognition processes (Lüken, 2018; Papic et al., 2011). Empirical studies 
mostly explore pattern-recognition processes based on children’s expressions and 
drawings. The present pilot study in the context of the Erasmus+ project DIDUNAS 
investigates students’ pattern-recognition processes using eye tracking, the recording 
of eye movements. Eye tracking has shown to be useful for investigating processes of 
children on early primary level before (Schindler et al., 2020; Sprenger & Benz, 2020). 
Our study uses eye movement video analysis to explore pattern-recognition processes. 
In this pilot study, the aim is to investigate (1) what processes first-graders use in 
recognizing patterns and (2) whether there are differences in students’ use of 
pattern-recognition processes between different kinds of patterns.  
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THEORETICAL BACKGROUND 
Pattern recognition in early mathematics learning 
One goal of early mathematical learning is the development of algebraic thinking 
(NCTM, 2000). Algebraic thinking in early grades includes noticing structures 
(Kieran, 2004). Fostering students in their ability to notice structures and recognize 
patterns can therefore contribute to their development of algebraic thinking. (Carraher 
& Schliemann, 2007). In the first grades of primary school, repeating patterns can be 
used to foster students’ ability to recognize patterns (Clemens & Samara, 2007). 
Repeating patterns refer to patterns that have one unit (e.g., AB) that repeats multiple 
times (ABABAB). Patterns differ from each other if the repeating unit is of different 
length or the elements of a repeating unit are arranged differently. For example, pattern 
ABABAB is different from pattern ABCABCABC, or pattern AABCAABC is 
different from ABACABAC. 
For pattern recognition, it is of particular importance to recognize the recurring unit of 
a pattern (Papic et al., 2011). The repeating unit can be represented, for example, 
symbolically (e.g., AB), numerically (e.g., 2 5), or by colors (e.g., ● ●). The present 
study uses numerical and color patterns. Common pattern tasks for preschoolers and 
first graders consist of identifying and extending given repeating patterns 
(Rittle-Johnson et al., 2015). For example, students are given a color pattern (e.g., ● ● 
● ● ● ● ●) and asked to say what color the next dot should be. In this paper, student 
approaches to extend repeating patterns, which are anticipated to entail identification 
of the repeating unit, are referred to as pattern-recognition processes.  
Research on pattern recognition at the beginning of primary school 
Some studies investigate the abilities of preschoolers or first graders in the context of 
repeating or growing patterns. Clarke et al. (2006) found that 76% of the students at the 
beginning of first grade can copy a repeating pattern, but only 31% can extend it. 
Rittle-Johnson et al. (2015) found similar results in a study with 64 four-year-old 
preschoolers. Further studies have used children’s expressions and drawings in 
individual interviews to investigate processes of preschoolers and first graders in 
recognizing patterns (Lüken, 2018, Papic et al., 2011). For example, Lüken (2018) 
found that three- to five-year-old children use a process of comparison to compare the 
beginning of the repeating pattern with the part that has to be extended. Lüken also 
found that the repeating unit was identified and used by the students. Papic et al. (2011) 
identified similar pattern-recognition processes. 
In this study, we were interested in pattern-recognition processes of first-grade 
students. In contrast to previous studies on this topic, we use eye tracking videos (not 
student utterances or drawings) to explore student pattern-recognition processes, since 
eye tracking has proven itself valuable to identify student processes in mathematics 
(e.g., Schindler et al., 2019, 2020). We ask the following research questions. 
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1. What processes do first-grade students use in recognizing repeating 
patterns? 

2. Are there differences in students’ use of pattern-recognition processes 
between different kinds of repeating patterns? 

METHODS 
Participants, procedure, and tasks 
The study was conducted with 22 first-grade students (age: M = 6.80 years; SD = 0.24 
years) from a primary school in Cyprus. Fourteen (~63.6%) of the students had Greek 
as their mother tongue, the others Arabic (n=7, ~31.8%) and Bulgarian (n=1, ~4.5%).  
In addition to the eye-tracking study (see below), we conducted the standardized 
mathematics test ZAREKI-K for assessing students’ mathematical performance level 
at the transition from kindergarten to primary school (von Aster et al., 2009). We used 
the adapted version by Walter (2020). The test indicates that twelve of the 22 students 
(~54.5%) are not at risk for developing math difficulties, but ten are at risk. Thus, the 
sample has a good spectrum in terms of performance levels. 
In the main part of the study, the students worked individually on eight pattern tasks on 
a computer screen (see Figure 1). Each task consisted of at least three repetitions of a 
unit followed by a white blob. The students were asked to name the number or color of 
the object that was hidden behind the white blob (e.g., 1, yellow). Before the first 
numerical and the first color pattern task, the students worked on a sample task, to 
ensure that the students understood the task correctly. The following three repeating 
units were used in the pattern tasks: (1) AB (four tasks), (2) ABC (two tasks), and (3) 
AABB (two tasks). The students answered by saying aloud the number or color they 
thought was behind the white blob. The students did not receive feedback and incorrect 
answers were not corrected. Four tasks had numerical repeating units in form of digits 
(e.g., 4 1), four in the form of colored dots (e.g., ● ●). 

 
Figure 1: Numerical and color repeating pattern tasks used in the study. 

Eye tracking 
Students’ eye movements were recorded with the screen-based eye tracker Tobii Pro 
X3-120 (infrared, binocular), with a sampling rate of 120 Hz. The tasks were presented 
on a 24” monitor. The students’ heads were about 60–65 cm away from the monitor. 
The eye-tracking data showed an average accuracy of 1.37°, which corresponded to an 
error of about 1.44–1.55 cm on the screen at a head distance of 60–65 cm. The centers 
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of the digits and dots in our tasks were on average 4.16 cm apart from one another on 
the display on the monitor (3.2–5.5 cm), which means that the eye-tracking accuracy 
was sufficient to reliably determine what element the students looked at.  
Analysis of eye-tracking data 
Raw gaze-overlaid videos provided by Tobii Pro Lab software were used to analyze 
students’ pattern recognition processes. In addition, notes were taken during the data 
collection describing student actions (e.g., when students pointed to the monitor). 
Although pattern-recognition processes have already been elaborated in research, an 
inductive approach was chosen for this study. We performed a qualitative content 
analysis through a data-driven inductive category development (Mayring, 2000), 
similar to Schindler et al. (2019, 2020), in four stages: Stage one: A randomly selected 
half of the gaze-overlaid videos were viewed and for each video, the gazes were 
described. Stage two: Similar descriptions of the gaze-overlaid videos were subsumed 
into one category, while categories in this study refer to pattern-recognition processes. 
A first general description of the respective pattern-recognition process was 
formulated. Stage three: The second half of the gaze-overlaid videos were viewed and 
coded using the pattern-recognition processes elaborated in stage two. During this 
coding, existing descriptions of pattern-recognition processes were revised and 
specified, and new processes were added when existing processes did not seem 
suitable for describing the gaze-overlaid videos. Stage four: Finally, with the complete 
category system, the first half of the gaze-overlaid videos were re-coded to check the 
fit of the revised process descriptions and to assess the emergence. 
All gaze-overlaid videos were coded by the first author. 22.7% of the videos were 
analyzed independently by the last author. The interrater agreement was calculated 
using Cohen’s Kappa (Cohen, 1960). With κ = 0.87, the inter-rater agreement is almost 
perfect (Landis & Koch, 1977). 
Statistical analysis 
To determine differences between the pattern-recognition processes and the different 
patterns, a two-tailed Fisher–Freeman–Halton exact test for r×c contingency tables 
was performed (Freeman & Halton, 1951) using SPSS 28. This test is an extension of 
chi-square test and is especially suited for small sample sizes for which the chi-square 
approximation does not hold (Fagerland et al. 2017). For this analysis, we have 
grouped the different patterns according to their structure (see Figure 1). For example, 
the pattern tasks with repeating unit 4 1 and ● ● in Figure 1 fall into group AB. 
RESULTS 
Pattern-recognizing processes 
In the following, we describe the pattern-recognition processes found through the 
analysis of gaze-overlaid videos of the first-grade students. We use gaze plots to 
visualize the processes for this paper, even though the analysis was based on the 
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videos. Figure 2 shows idealized gazeplots of these processes as illustrations. These 
idealized gazeplots are not actual gazeplots of children, but idealized illustrations for 
the identified processes. 
(1) Identifying one repeating unit of the pattern 
The gazes go to one repeating unit (sometimes multiple times)—mostly the repeating 
unit before the white blob. The gazes partially also touch one dot/number before the 
repeating unit. 
(2) Identifying one repeating unit and validating/applying it 
(a) Identifying and validation: The gazes go to the repeating unit before the blob 
(sometimes multiple times) and then go to another repeating unit in the pattern 
(sometimes multiple times). Afterwards, the pattern is extended by continuing the 
repeating unit before the blob. 
(b) Identifying and application: The gazes go over a repeating unit in the beginning or 
the middle of the pattern (sometimes multiple times). Afterwards, the pattern is 
extended by continuing the repeating unit before the blob. 
(3) Looking at each element 
The gazes go to each dot/number of the pattern individually usually from left to right 
(sometimes multiple times). Up to three dots/numbers are skipped from the beginning. 
(4) Unsystematic jumping over the pattern 
The gazes jump fast over the pattern. Often the blob is not looked at. There is no 
systematic process recognizable. 

 
Figure 2: Idealized gazeplots of the pattern-recognition processes with numbers 

indicating the order in which the students looked at each dot. 
Differences in pattern-recognition processes between different patterns 
To determine differences between the identified pattern-recognition processes (see 
Figure 2) and the different kinds of patterns (see Figure 1), Fisher–Freeman–Halton 
exact test for r×c contingency tables was performed (see Table 1). The test revealed 
that the pattern-recognition processes used by the students differed significantly 
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between the three kinds of patterns (p = 0.031). Cramér’s V = .20 indicates a moderate 
relationship between the kind of pattern and pattern-recognition processes. 

  Pattern-recognition process  

  (1) (2) (3) (4) Total 

R
ep

ea
tin

g 
un

it 

AB 35 24 23 0 82 

ABC 12 22 5 1 40 

AABB 15 16 47 2 40 

  63 61 35 3 162 

Table 1: Observed number of pattern-recognition processes for the different patterns. 
Figure 3 shows the distribution of the pattern-recognition processes over the three 
kinds of pattern tasks based on the absolute values in Table 1. Figure 3 illustrates that 
for patterns of kind AB, students used process (1) identifying one repeating unit, the 
most with 42.68%. Process (2) identifying one repeating unit and validating it, and (3) 
looking at each element, were equally distributed in the pattern tasks with the repeating 
unit AB. Process (4) unsystematic jumping over the pattern, in contrast, did not occur. 
In the pattern tasks with repeating unit ABC, process (2) was identified most often with 
55%. The other processes occurred less often. Processes (3) and (4) together were 
identified only half as often as process (1). For patterns of kind AABB, processes (1) 
and (2) were identified with almost equal frequency, 37.5% and 40%, respectively. 
Processes (3) and (4) were identified slightly more often than in patterns of kind ABC. 
Category (4) appeared exclusively together with wrong answers. 

 
Figure 3: Distribution of pattern-recognition processes over the kinds of patterns.  

DISCUSSION 
This pilot study aimed to investigate what processes first-grade students use in 
recognizing repeating patterns and whether there are differences in students’ use of 
pattern-recognition processes between different kinds of repeating patterns. The study 
was conducted with 22 first-grade students and eight repeating pattern tasks in which 
students were to name the number or color of the next object of a given pattern. The 
results of our study show that the first-grade students used four different 
pattern-recognition processes in numerical and color repeating pattern tasks: (1) 
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Identifying one repeating unit of the pattern, (2) identifying one repeating unit and 
validating/applying it, (3) looking at each element, and (4) unsystematic jumping over 
the pattern. Our results connect to some of the pattern-recognition processes identified 
in previous studies (Lüken, 2018; Papic et al., 2011) and extend them. Furthermore, we 
found that these processes were used differently between different kinds of patterns 
(see Figure 3). 
These results should be interpreted considering the following limitations: With 22 
students, a relatively small sample was available. It cannot be discounted that with a 
larger sample, additional pattern-recognition processes could be identified. Also, in 
future studies, more than eight pattern tasks should and will be conducted. In 
particular, other patterns than those used in this pilot study (i.e., AB, ABC, AABB) 
need to be investigated (e.g., AAB, AABC, ABAC). 
The results of this study hinted at the value of using eye tracking to explore students’ 
pattern-recognition processes. With regard to the overall purpose of supporting 
children in pattern recognition processes, the study has shown that eye tracking can 
inform about student strategies and that these insights can help to support students 
adaptively and individually in developing further their pattern-recognition processes. 
In line with this, one aim of the DIDUNAS project is to develop teacher materials that 
serve to support students, for example, in pattern recognition. The results of this pilot 
study provide initial insights for the development of such teacher materials. 
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The ability to judge accurately the difficulty of mathematical tasks is considered as a 
central facet of the diagnostic competence of mathematics teachers. An underlying 
reason is that the accurate judgement of task difficulty is the basis for achieving an 
optimal level of instruction for the learning group. Although a lot of studies have 
already investigated the judgement accuracy and the influence of additional factors, 
like teacher knowledge, there is a lack of a detailed look at the task features as possible 
influencing factors. Therefore, in the present study, we first investigated the judgement 
accuracy of word problems with fractions. Afterwards, by means of theoretical varied 
task features and an empirical study with 153 6th graders as well as 64 prospective 
teachers, we explored differences in the tasks regarding the judgement accuracy. 
THEORETICAL BACKGROUND  
Accurate diagnostic judgments are considered to be crucial for adaptive teaching (e.g., 
Hardy, Decristan, & Klieme, 2019). In mathematics teaching, the task diagnoses play a 
key role for shaping teaching and influencing learning processes (e.g., Sullivan, 
Clarke, & Clarke, 2013). In this context, to estimate the task difficulty is one method of 
adapting the teaching to a learning group (e.g., Hammer, 2016) and for achieving an 
optimal level of challenge for the learning group (e.g., Urhane, & Wijnia, 2020). 
Anders et al. (2010) were able to show in a study that students are more cognitively 
stimulated during instructional activities when a teacher can make an adequate 
judgement of task difficulty. Thus, accurate judgements of task difficulty have also 
been identified as one of the core tasks of mathematics teachers. 
In a large part of the empirical studies on teachers' diagnostic competence conducted so 
far, the quality of diagnostic judgments is regarded as judgment accuracy. There is 
knowledge from over 40 years of research on the accuracy of teacher judgement (e.g., 
Urhane, & Wijnia, 2020). Judgment accuracy describes the degree to which teachers' 
judgments on task solution agree with empirically collected solution rates (Hoge, & 
Coladarci, 2016; Südkamp, Kaiser, & Möller, 2012). It is important to distinguish 
more precisely between person-related, task-related and person-specific teacher 
judgement accuracy (e.g., McElvany et al., 2009). In this contribution, we focus on the 
task-related judgement accuracy. Empirical studies on the judgement of task difficulty 
could show that the task difficulties are mostly underestimated and are judged with a 
too low of variance (e.g., Urhane, & Wijnia, 2020). Although the rank component is 
judged well on average, it shows considerable variance. Furthermore, teacher 
overestimate the level of their classes up to 45.5 % (e.g., Hosenfeld, Helmke, & 
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Schrader, 2002). Only a few studies considered the three components of judgment 
accuracy in their analysis of teachers' diagnostic competence. However, these few 
studies reported low positive associations between the three components of accuracy 
(e.g., Schrader & Praetorius, 2018). Teacher judgment accuracy in a given content area 
differs across and within studies and show high inter-individual variances in the 
teacher judgment accuracy (e.g., Südkamp, Kaiser, & Möller, 2012; Urhane, & Wijnia, 
2020). Research has identified several moderators that can determine the degree of 
judgment accuracy (e.g., Südkamp, Kaiser, & Möller, 2012). The accuracy can be 
influenced by teacher characteristics, judgment characteristics, student characteristics, 
class-level characteristics as well as test and task characteristics. Test and task 
characteristics refer to features of the tests or the tasks that have been used to measure 
student achievement. For example, Südkamp et al. (2012) examined the role of subject 
matter and the domain specificity of the achievement test as moderators of the 
judgement accuracy. But, none of these moderators affected teacher accuracy of 
judging and similary, Machts et al. (2016) found no evidence that test standardization 
moderated the judgement accuracy. 
Despite the long period of research, we can look back on, and despite the numerous 
factors that have been investigated as influencing factors on the judgment accuracy, 
there has been little research on the association between teachers' judgment accuracy, 
the empirical solution frequency and the features of a task. 
OBJECTIVE 
According to the need for research pointed out in the previous section, we investigate 
first, whether the judgement accuracy and the interindividual variances regarding the 
judgment accuracy of student solutions reported in meta-analyses and task difficulty 
could also be shown in the judgement accuracy of mathematical word problems with 
fractions. Afterwards, as the focus of the study, we explicitly look more closely at the 
difficulty-generating task features with regard to the judgement accuracy and to the 
empirical solution frequency with the aim to analyze task features as influencing 
factors.  
SAMPLE AND METHODS 
The tasks that we focus on in this contribution is part of a larger study in which the 
influence of stress on the cognitive processes underlying diagnostic judgements on 
tasks (Becker et al., 2020) and the resulting judgement accuracy was examined. The 
difficulty of the tasks, eight mathematical word problems with fractions, were 
theoretically determined and empirically verified. For this reason, we designed fraction 
word problems with varied task features based on tasks frequently found in 
mathematics textbooks. The difficulty of word problems and fraction tasks has already 
been investigated in a number of studies. The task features chosen in the previous study 
were deduced from a review of those studies. In the present study, we considered two 
mathematical as well as two linguistic task features. First, we differed the relationship 
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between the denominators (like or unlike fractions) (Padberg, & Wartha, 2017). It has 
been shown that like fractions have a lower requirement for the solution of a task in 
comparison to arithmetic tasks with unlike fractions and that tasks containing like 
fractions are easier to solve by students because of the analogy to the familiar natural 
numbers (e.g., Padberg, & Warta, 2017). Second, we distinguished between the 
number of calculation steps that have to be executed until the task is solved (one or two 
steps) (e.g., Jordan et al., 2006). It has been shown that tasks including one calculation 
step based on one mental model of operation and are therefore easier to solve by 
students than tasks that require two steps, because they include a further mental model 
of operation (Jordan et al., 2006). Furthermore, in word problems, the mathematical 
operation is part of the semantic structure of the text, which can also influence the 
difficulty of tasks (e.g., Verschaffel et al., 2020). For example, passive constructions 
can cause a change of the subject and the object of a sentence and can therefore be a 
further difficulty for students (e.g., Wessel, Büchter, & Prediger, 2018). Therefore, we 
varied as the third difficultly, the sentence structure of the tasks by using a passive 
construction in the task or not. Fourth, we distinguish between the use of words that 
can be considered as unfamiliar to 6th graders and the abandonment of those words, 
because it has been repeatedly shown that the use of those words can influence the 
solution of tasks and therefore the difficulty (e.g., Gürsoy et al., 2013). The number of 
the four difficulty-generating task features determines the theoretical difficulty in the 
present study. 
The theoretically defined difficulty of the tasks has been proven in an empirical study 
with N = 153 6th graders at various secondary schools in Germany. For this purpose, 
the students edited the word problems during their lessons in a randomized order to 
prevent sequence effects. Correctly solved tasks were subsequently coded with 1, 
incorrectly solved or unsolved tasks with 0. The students had sufficient time to solve 
the tasks. 
Based on the solution frequency of each task, an empirical difficulty was determined 
by assigning a corresponding difficulty to the task on a ten-point scale (e.g.: 
100 % - 90.1 % solution frequency corresponds to difficulty level 1, 90 - 80.1 % 
solution frequency corresponds to difficulty level 2, etc.; see task difficulty – students 
in table 1, 2 and 3). Furthermore, based on the empirical solution frequency, a ranking 
of the tasks was created. 
Afterwards, in the main study, N = 64 prospective teachers of the educational 
university of Heidelberg judged the difficulty of the mathematical word problems in 
fractions for 6th graders on a ten-point scale. In a previous questionnaire, the semesters 
of the participants and whether any courses regarding the difficulty of fraction tasks 
had already been attended, but could be excluded as influencing factors in subsequent 
calculations. The mean of the participants' judgements is referred to as task difficulty – 
prospective teacher in the tables below (see task difficulty – p. teachers; table 1, 2 and 



Becker, Dörfler 
 

 

2 - 70 PME 45 – 2022 
  

3). In the divisions of the means, the values were rounded down when the non-whole 
number is less than .5, higher than that the values were rounded up. 
RESULTS  
In all three components of judgment accuracy, the teachers' judgements deviated from 
the empirically determined difficulties of the tasks. On average, the task difficulty and 
the variance of task difficulty was underestimated. The rank component showed low 
positive correlations between prospective teachers' judgments and the empirically 
solution frequency. Furthermore, the results indicated high inter-individual variances 
in the teachers' judgments. No correlations were found between the individual 
components of judgment accuracy (between -0.001 and -0.180; averaged correlation is 
0.000). 
In view of the aim to identify task features that could influence the judgement accuracy 
of tasks, in the following, the varied task features of the eight word problems, the 
judgements of the prospective teachers and the empirical solution frequency of the 6th 
graders are examined in more detail with regard to each word problem.  
The prospective teachers estimated the tasks mostly accurately, that are solved 
correctly by the students to a large extent (close to 50 % or more) (see table 1). This 
includes task 1, that is correctly solved by 89 % of the 6th graders, task 5, that is 
correctly solved by 42 % of the 6th graders, and task 7, that is correctly solved by 48 % 
of the 6th graders. Taking a closer look at the tasks, that are mostly judged accurately 
by the prospective teachers and are correctly solved by the 6th graders at a rate of 
almost 50 %, it is noticeable that task 1, 5 and 7 include only mathematical 
difficulty-generating task features. The lower the theoretical difficulty of the task, the 
more often the task is solved correctly. The theoretical task difficulty of task 1 is two, 
of task 5 it is five and of task 7 it is four. 
 
 
 
 

 task difficulty task features 
task p. teachers students fraction steps lexicology syntax 

1 2 2 (89 %) 1 1 0 0 
5 5 6 (42 %) 3 2 0 0 
7 5 6 (48 %) 2 2 0 0 

Table 1: Task difficulty of task 1, 5 and 7, judged by prospective teachers and derived 
from the solution frequency of the empirical survey, and task features 
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Task 2 and task 6 don’t fit into the previously recognized structure, although both 
include exclusively mathematical difficulty-generating task features and would 
therefore have to be assigned to table 1. The theoretical task difficulty of task 2 is four 
and of task 6 it is also four. 

 task difficulty task features 
task p. teachers students fraction steps lexicology syntax 

2 5 4 (25 %) 2 2 0 0 
6 6 4 (35 %) 2 2 0 0 

Table 2: Task difficulty of task 2 and 6, judged by prospective teachers and derived 
from the solution frequency of the empirical survey, and task features 

But the teachers’ judgements are not accurate and the empirical solution frequency is 
in the lower third. If we take a closer look at task 6, it is noticeable that this is not a 
classic fraction calculation task. The solution is already given in the word problem. 
The word problem was therefore less about mathematical calculation and more about 
understanding the text of the task. Analyzing the verbal protocols of the participants, it 
is noticeable that some participants noticed this and therefore classified it as easy and 
other participants classified it as difficult for 6th graders. Some participants did not 
recognize the given solution in the task and analyzed the mathematical calculation with 
regard to the difficulty for the 6th graders. No verbal protocols are available for the 
solutions of the 6th graders. But the solutions of the 6th graders showed that some 
pupils recognized and noted the solution in the text of the task, other pupils tried to 
solve the word problem by calculating. 
Finally, we will take a closer look at those tasks that are mostly judged accurately by 
the prospective teachers with regard to the theoretical task difficulty, but that are not 
accompanied by the empirical solution frequency and thus the empirical difficulty of 
the tasks (see table 3). Task 3, 4 and 8 include mathematical difficulty-generating task 
features as well as semantic and linguistic difficulty-generating task-features. The 
theoretical task difficulty of task 3 is five, of task 4 it is also five and of task 8 it is six. 

 task difficulty task features 
task p. teachers students fraction steps lexicology syntax 

3 5 8 (30 %) 2 1 1 1 
4 5 9 (18 %) 2 2 1 0 
8 6 9 (12 %) 2 2 1 1 

Table 3: Task difficulty of task 3, 4 and 8, judged by prospective teachers and derived 
from the solution frequency of the empirical survey, and task features 
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DISCUSSION AND CONCLUSION 
The present study investigated the judgement accuracy of task difficulty by 
prospective teachers. The results of the present study for the domain of word problems 
with fractions are consistent with the research findings reported in the literature 
presented.  
Because these results were consistent with our assumptions, we investigated the task 
features with regard to the teachers’ judgement accuracy and the empirical solution 
frequency. It is noticeable that in particular such tasks are accurately judged, that 
include only mathematical difficulty-generating task features and that are solved 
correctly by a large part of the students (task 1, 5 and 7). The theoretical difficulty, the 
teachers' judgement and the empirical solution frequency largely coincide for these 
three tasks. This is consistent with previous research showing that teachers can 
accurately judge those tasks in particular, that are easier to solve for students in 
particular (e.g., Urhane, & Wijnia, 2020). Tasks that contain linguistic 
difficulty-generating task features in addition, may be accurately judged by the 
prospective teachers with regard to the theoretical task difficulty (task 3, 4 and 8). 
However, the theoretical difficulty and the judgement do not concur with the empirical 
solution frequency. Students seem to find the linguistic difficulties more challenging 
than judged by the teachers. Two tasks were included in the test, where the empirical 
solution frequency largely correspond with the theoretical difficulty (task 2 and 6). 
However, it seems that it was difficult for teachers to judge these tasks accurately. The 
reason could be, for example in task 6, that the solution was already obtained and the 
task was, insofar as one recognized this as a student, very easy. This was sometimes 
not recognized by the teachers or was listed as a point of discussion. 
Before discussing possible implication for international research on teachers’ 
judgement accuracy, we would like to recall the limitations of this research, which 
suggest interpreting the evidence with care. First, it must be pointed out that 
prospective teacher may not yet be familiar with judging task difficulty for students. 
However, in order to exclude further influencing factors, such as experience, we first 
conducted the study with prospective teacher. An important further research approach 
would therefore be to replicate the results also through studies with in-service teachers. 
Furthermore, the results of this research report are based on only eight tasks, precisely 
word problems with fractions. It would be crucial to transfer the results to other content 
areas and task frameworks. Moreover, further research should complement these 
findings by means of different methodological approaches, especially quantitative 
data. 
However, the findings of the present study provide a first, explorative insight into the 
influence of task features as influencing factors on teachers’ judgment accuracy. Since 
the interindividual variances of teachers' judgments have still not been satisfactorily 
elucidated, despite over 40 years of research, the study offers a starting point for 
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further investigation of the influence of task features on the teachers’ judgement 
accuracy. 
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An adaptive learning environment entitled “Fractions My Way” was developed and 
introduced to 206 fourth- and fifth-grade students who used it to study fractions over 
one academic year. Follow-up questionnaires and interviews (with students and 
teachers) revealed that the method enhanced their sense of ability, their responsibility 
toward their own learning, and their enjoyment in learning (leading to higher 
motivation). They claimed they learnt and understood the material better. Post-course 
assessment indicated an overall improvement in knowledge. Two drawbacks were 
mentioned: the stress associated with knowing the teacher was constantly monitoring 
performance and the sense of competition between peers.   
INTRODUCTION 
Attitudes to learning and how they affect student performance 
Students' attitudes toward a subject can profoundly influence their achievements in that 
subjects (Awofala et al., 2014). This is especially true with mathematics given the 
widespread perception that mathematics is a difficult subject, the psychological fear 
often associated with it, and a profusion of poor teaching methods (Sezgin Memnum & 
Akkaya, 2012). 
Socio-emotional learning refers to how learners regulate  their emotions  regarding 
thinking and self-management to achieve success in school (and in life) (Paolini, 
2020). Recent research has shown that good socio-emotional skills lead students to 
better performance and can predict success in academia or careers (Gehlbach & 
Hough, 2018) and lead to consistent achievement in studies (Kanopka et al., 2020). As 
a result, many educational systems are looking for ways to improve students' 
socio-emotional learning.  
The traditional teaching method does not always increase student motivation and 
achievement, especially when one teacher must stand in front of a heterogeneous class, 
relays the same material to all, tends to use the same teaching approach, and sets the 
pace of progress the same for all. Given the limits of human ability and time, it is 
difficult for that one teacher to take into account the personal needs of every student.  
Multimedia can bring concepts to life through sight and sound. Students can receive 
instant feedback during their experience. A study examining the impact of multimedia 
showed that students exposed to multimedia during the learning process were more 
likely to be independent in their learning (Chipangura & Aldridge, 2019) and its use in 
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mathematics can improve student engagement and motivation (Chapman & Wang, 
2015).  
Learning in the technological age: personalized teaching 
There is currently an increase in the use of a digital tools and approaches based on 
artificial intelligence (AI) that can support the learner's experience based on personal 
needs, learning preferences, and abilities. Learning systems are becoming more 
developed and gaining momentum due to their ability to  adapt to the individual needs 
and goals of students (Kabudi et al., 2021; Sampayo-Vargas et al., 2013). They are 
based on a model of the learning process from the students' point of view and analysis 
of data from previous users allows it to adapt itself and provide well-suited, 
high-quality learning material to the learner (Kurilovas et al., 2015). They simulate the 
knowledge and experience of a teacher to instantly judge situations and provide each 
student with personally tailored support or guidance (Xiao & Yi, 2020). 
AI-enabled learning systems offer many advantages: an improved learning experience, 
flexibility time-wise and in managing the learning experience, and tailored progress 
(Hwang et al., 2020). They provide personalized automated support (Jadhav & Patil, 
2021) and they offer content and questions, assign tasks, and provide clues, making 
learning smoother and more enjoyable. This will naturally lead to an improvement in 
the students' attitudes towards learning mathematics (Ma et al., 2014). 
The adaptive learning environment: Fractions My Way 
One such system is the Adaptive Learning Environment (ALE). This system creates a 
personal learning track adapted for the user, the aim being to monitor and maintain a 
state of maximum development. It can provide tasks based on each student's abilities 
and interests (Walkington, 2013). Research on such in the subject of mathematics 
indicates that it can greatly improve student performance (Cordova & Lepper, 1996).  
The system is based on an computerized algorithmic “engine” model that uses 
statistical functions to adapt itself for each student and offer them a personal learning 
track appropriate to their knowledge, pace of learning, and abilities. In the case 
reported herein, an ALE entitled “Fractions My Way” (FMY) was developed in 
collaboration with Microsoft for the purpose of teaching fractions to fourth- and 
fifth-graders based on the requirements of the Ministry of Education.  
Each student works on their own at a computer terminal, learning and practicing the 
subject matter through videos, exercises, enrichment tasks, quizzes, online assistance, 
and a digital “lab” for personal exploration. The engine determines the sequence of 
tasks needed to keep the pace of learning challenging and even what tasks can be 
“skipped.”  
While the students are at the terminals, the teacher has access to a “dashboard” by 
which he or she can see a "performance breakdown" overview of the status of the class 
or each individual: the number of students working in each unit, their levels of success 
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in real time, overall class progress, what tasks seem to be difficult for some, quiz 
scores, etc. 
Studies show that the adaptive learning system can significantly improve learning 
efficiency and student performance (Chen et al. 2020; Xie et al., 2019), and that they 
are effective in adapting to the knowledge and learning needs of individual students, 
thereby developing higher-order thinking skills in ways that even the most skilled 
teachers cannot (Wang et al., 2020; Voskoglou & Salem, 2020). 
Study’s purpose  
The report presented herein is part of a broad, ongoing study to track the development 
and implementation of an ALE for teaching primary school mathematics. It 
specifically explores the attitudes of fourth- and fifth-graders learning fractions via the 
FMY ALE.  
METHOD 
Research question: How do fourth- and fifth-graders perceive the contribution that 
working in an ALE makes for them with respect to their ability in and enjoyment for 
learning fractions and mathematics?  
Study population: 51 fourth- and 106 fifth-graders studying in the FMY ALE. 
Students spent approximately 1.5 hours a week (60 hours total over the year) in the 
ALE. The study also included the class mathematics teachers of each class (20) and a 
supervising teacher (ST).  
Research and data analysis  
Stage one: Observations. The supervising teacher (ST) carried out a total of 48 
observations in classrooms in which the ALE was integrated and recorded the conduct 
of the lesson and their impressions in a journal:  teacher’s decisions based on 
observation of the dashboard, sitting alongside students working independently, 
responding to questions raised during the lesson, etc. In parallel, the teachers also 
observed and recorded their views of the lesson (in their journals).  
Stage two: Questionnaires. The observations from the teachers’ and ST’s journals 
were used to produce an online “attitudes” questionnaire to be answered by all the 
participants. It included 17 closed questions (satisfaction in working in the ALE, 
differences between learning in the ALE and the traditional classroom, responsibility 
for learning, quality of learning, sense of ability, etc.) and two open questions (”What 
do you like?” “What would you change/add?”). The questionnaire was embedded in 
the task sequence in the ALE.  
Stage three: In-depth interviews. These were conducted with two groups of three 
students each. The interviewees were chosen based on their progress such that each 
group comprised one “very,” one “moderately,” and one “poorly” successful  student. 
Some of the questions repeated those in the questionnaire to enhance understanding of 
the answers. The answers were recorded and transcribed for analysis.  
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Analysis: Systematic content analysis was used for the answers to the open questions 
(from questionnaires and interviews). Answers were divided into "units of meaning" 
and  sorted into “themes.” The number of students who indicated each theme in their 
answers was noted. In addition, the ST’s and teachers’ journals were scanned for 
statements supporting each theme.  
FINDINGS 
Three major themes emerged: a sense of ability, pleasure in learning, and responsibility 
for learning. Table 1 shows the number of students who mentioned these themes in 
answer to the open questions/interviews or who indicated their agreement in the closed 
questions to a great or very great extent. Table 2 presents some representative 
statements that emerged from the ST’s journals, teachers’ reports, and student 
interviews for each theme. 
Table 1. Percentage of students who agreed to a “great” or “very great” extent to closed 

question statements (n=157). 

 Statement % 

Se
ns

e 
of

 
ab

ili
ty

 The FMW ALE allowed me to learn and understand more about fractions 
than textbook learning. I worked better. 73 

I understand fractions better this way. 69 
I do better learning with FMW than with a textbook.  69 

Re
sp

on
-s

i
bi

lit
y 

It is important to work in FMW according to the guidelines received 
from the teacher 78 

It is very important for me to try to answer the exercises on my own 
when working with the computer. 78 

I needed help when solving the exercises on the computer.* 12 

En
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t 
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ng

 

 

The animation in FMW is engaging and fun. 80 
The possibility of skipping questions on the computer makes learning 
more enjoyable. 62 

I enjoyed learning about fractions with FMW than with the textbook. 83 
Computer learning is simpler, easier, and more convenient. 80 

* During the in-depth interviews with the students, they noted that the help given to them in the FMY ALE 
was varied, significant, important, and helpful. 
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Table 2: Statements given by the participants for each theme. 

Theme Statements 

 S
en

se
 o

f a
bi

lit
y 

 

ST’s Journal 
• I feel it is important to note that as we progress in the material, the students need 

less and less mediation and intervention. 
• Students who had difficulty sitting in class were able to sit in front of the adaptive 

for a long time and progress. 
Teacher’s reports 
• I was able to instill in the students the ability to follow instructions.  The path of 

minimal mediation proves itself. 
• The system provides a solution for all students, both advanced and those with 

difficulty. Every student works at their own pace and it's great. 
Student interviews 
• It's fun. It teaches more about fractions than the teacher. 
• On the computer it is also more convenient because if you are in class and you do 

not listen then you have no other way, in the “Fractions My Way” you have a 
video and if you have to, you can go back and watch it again. 

Re
sp

on
si

bi
lit

y 

ST’s Journal 
• Many students use "test," not to try but for understanding. 
• I feel like it affects learning, most children are not embarrassed to ask for help and 

that may be why I feel progress in this class. 
Teacher’s reports 
• This system has given them some kind of peace and they manage to manage on 

their own in the system. 
• Using a computer makes learning independent. They move at their own pace. 

Student interviews 
• If there is a video at that point I go and watch it again and then there is also some 

hints at the side that help. 
• In class (traditional learning) there is the teacher. If I can't or don't understand 

something, I can ask her, but on this computer it's me and the computer and that's 
it. The teacher is not always available and I try even if I do not know and not do 
"reveal the answer" (a possibility that exists after two attempts). 

En
jo

ym
en

t i
n 

le
ar

ni
ng

 

ST’s Journal 
• I was very happy to see that the children love the system very much, and they are 

in a different and independent experience. 
• Students who have difficulty sitting still in class were able to sit with the adaptive 

environment for a long time and progress. 
Teacher’s reports 
• The visual stimuli facilitated learning and contributed to the students and applied 

to all the children in the class, no matter what their level. 
• When I had to postpone a lesson, one of the students expressed disappointment 

that the "most loved and fun" class had been postponed. 
Student interviews 
• I love having videos and it’s  fun when the ghost jumps out [the feedback] that 

says, “well done you've succeeded in the mission.” 
• It's really good [to learn with the adaptive environment], because if the teacher lets 

you work on the page you can't go to the next page until you finish it and here it 
also takes you in stages.  
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Drawbacks. Two main drawbacks emerged. The first was that some students felt 
stressed knowing that the teacher was tracking  their actions. The second was the sense 
of competition that emerged between students that were demonstrated during breaks or 
after school regarding how “quickly” they were progressing through the ALE. 
However, this could also have a positive impact: "Competing with a friend about who 
gets to a milestone first, helped motivate me to work harder.”   
Although some students still felt the need for teacher support, the teachers claimed that 
this decreased as students became accustomed to studying in the system and became 
increasingly independent. 
Overall, students reported that FMW ALE improved their understanding of fractions, 
made learning more enjoyable, gave them an increased sense of worth, improved their 
capabilities, and increased their sense of personal responsibility for their own learning. 
They continuously expressed that the method was “fun,” which led to anticipation for 
the FMW classes. The pass rates of students on the tests and their grades increased.  
DISCUSSION AND CONCLUSIONS  
Increased interest and motivation are the cornerstones of effective personalized 
teaching (Potvin & Hasni, 2014). The ALE instituted here contributed greatly to 
increasing motivation by stimulating students who have difficulty learning 
traditionally. This corroborates studies that found the use of multimedia for learning 
mathematics purposes improves student engagement, interest, and motivation 
(Chapman & Wang, 2015).  
The “skipping” effected by the ALE proved to be another advantage. This was based 
on each student's personal learning data, enabling each to learn according to their 
specific abilities. Students experienced the “skips” as positive feedback regarding their 
abilities, which encouraged learning. In fact, they make an effort to get them. 
Regarding the  concern students felt regarding the consistent monitoring of their 
actions by the teachers, it might be prudent to explain to them that the information 
transmitted to the teacher assists the process. Regarding competition, it would be 
important to address the issue of social responsibility and explain how competition 
may  adversely affect students who are not so proficient in the subject (Kanopka et al., 
2020).  
In conclusion most students perceived learning in the ALE as instructive, efficient, 
understandable, enjoyable, and motivating. It promoted personal responsibility while 
adapting to their needs and seems to be a positive addition to the curriculum.  
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A Rational Mathematical Template (RMT) is the couple consisting of a mathematical 
entity (definition, proof, etc.) and a rational (according to Habermas) process aimed at 
producing an instance of that entity. In this report we develop research on RMTs by a 
teaching experiment on the RMT of proof in two 10th grade classes. The design of the 
teaching experiment and the analysis of one student’s productions were occasions to 
focus on the relationships between the rational process and its product and on the role 
of awareness as condition for the mediating role of RMTs in the classroom.  
INTRODUCTION 
In the last three decades, attention has been addressed in different disciplines to 
routines, particularly in the sciences of administration, organization and labor (see 
Feldman & Pentland, 2003). In Mathematics Education, Lavie, Steiner and Sfard 
(2019) move from “the thesis that repetition is the gist of learning” to consider routine 
“as the basic unit of analysis in the study of learning” (p. 153) and to the definition of 
task and procedure, and of routine as a “task-procedure pair”: “a routine performed in a 
given task situation by a given person is the task, as seen by the performer, together 
with the procedure she executed to perform the task” (p. 161). They further elaborate 
the notion of discursive routines by distinguishing between ‘process-oriented 
discursive routines’ (called rituals), and ‘product-oriented discursive routines’ (called 
‘explorations’). They claim that discursive routines (guided by the question “How do I 
proceed?”) are expected to undergo gradual de-ritualization until they become 
explorations (guided by the question “What is it that I want to get?”).  
In spite of the common interest for the invariant aspects of the activity in similar task 
situations, the discourse developed in Boero & Turiano (2020), Boero (2022) and in 
this paper on the RMT construct develops according to motifs that differentiate it from 
Lavie, Steiner and Sfard’ construct. The original motif of the elaboration of our 
construct was to characterize, in an educational perspective, the components of the 
“intersubjectively shared lifeworld” in the ideal characterization of communicative 
rationality proposed by Habermas: 

Communicative rationality is expressed in the unifying force of speech oriented towards 
understanding, which secures for the participating speakers an intersubjectively shared 
lifeworld, thereby securing at the same time the horizon within which everyone can refer to 
one and the same objective world. (Habermas, 1998, p. 315)  
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By interpreting Habermas’ text in an educational perspective, our research problem 
was: what may allow students to share problems and solutions when moving, at the 
individual and collective level, from what they have already experienced to new 
challenges on a given subject, at the same time nurturing and developing their 
“intersubjectively shared lifeworld”? RMT, defined as a couple (mathematical entity; 
rational process aimed at producing one instance of the entity), was conceived as a 
possible solution for this problem.  
Since the beginning, the RMTs were intended as dynamic-evolving objects of teaching 
and learning (with an ideal reference to the mathematical culture witnessed by the 
teacher) in order to meet two needs inherent in this expected individual and collective 
evolution: the need for common references in each phase of the classroom work, 
suitable to inform the individual and collective activities of production and reflection 
on the product; and the need for mediators between the students, the students and the 
teacher, and the students and the culture (see Boero & Turiano, 2020), in the 
perspective of progressive evolution of the mastery of the entities and of the related 
processes towards the learning goals of the teacher. 
The initial elaboration on the RMTs needed and still needs further developments in 
order to become an effective tool for designing and analysing teaching in the 
perspective of rationality. A first contribution was offered by the analysis of the 
progressive construction (mediated by the teacher) of the RMT of definition (Boero & 
Turiano, 2020): the RMT tool worked as analytical tool to analyse the progressive 
evolution of the mastery of definitions by 8th-grade students through classroom 
discussions “orchestrated” by the teacher. In Boero (2022) the reported study concerns 
the RMT of counter-example. Focus is on the evolution of the three components of the 
rational process in two classroom discussions and their contribution to the 
development of students’ rationality. Attention is paid to the conditions that allowed 
such construction: general and specific knowledge, and the already existing, positive 
relationships between students and with the teacher. 
The case study reported in this paper had the ambitious aim to answer the following 
research questions: Is it possible to exploit the RMT of proof as a tool to design and 
analyse the progressive development in the classroom of the mastery of proof (as a 
mathematical entity) and of proving (as a rational process)? What about the aspects of 
the RMT of proof, which may allow it to play the role of mediator between the 
students, the students and the teacher, and the students and the culture on proof? And 
what about the aspects of the RMT of proof, which may allow it to play a cultural role 
in order to develop students’ (and teacher’s) well-being in the classroom?. 
THEORETICAL FRAMEWORK 
Habermas’ construct of rationality 
Habermas’ construct of  rationality (Habermas, 1998) concerns discursive practices 
that satisfy epistemic, teleological and communicative requirements: conscious 
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checking of the truth of statements and the validity of reasonings according to shared 
criteria in a given cultural context (epistemic rationality); evaluation of strategies 
developed to attain the aim of the activity, in the perspective of possibly  adopting them 
in similar, future circumstances (teleological rationality); choice of suitable 
communication tools to reach the others in a given social context (communicative 
rationality), the three components being strictly interconnected.  
One salient aspect of Habermas’ elaboration on rationality is the fact that the three 
components of rationality are described as ideal characteristics of discursive practices, 
while human behaviours are considered rational even in the case that they are only 
purposefully oriented towards that ideal horizon (see Boero & Planas, 2014). This 
remark looks important in order to adapt Habermas’ elaboration on rationality in 
mathematics education for both analyzing and comparing rationalities inherent in the 
different domains of mathematics, and designing and analyzing students’ and teachers’ 
activities. In particular, since 2006 some researchers in our group and outside it tried to 
adapt Habermas’ construct in mathematics teacher education (one of the studies is 
reported in Guala & Boero, 2017) and to plan teaching aimed at developing and 
analyzing students’ rational behaviors (see Boero & Planas, 2014 for a general account 
and a presentation of five studies).  
The Rational Mathematical Template of proof 
RMT of proof is characterized by specific epistemic, teleological and communicative 
aspects: the process is aimed at producing a text with the specific logical and 
communicative requirements of proof, according to the different methods of proof 
(direct, by contradiction, by contraposition, by induction…). The process of proving 
may be considered “rational” when its different phases (exploration, construction of 
the reasoning, writing the proof text – not necessarily in this linear order) are 
consciously developed and evaluated according to the aim of the activity, attention 
being paid to epistemic and communicative requirements inherent in the product.    
THE TEACHING EXPERIMENT 
We will consider a teaching experiment on Euclidean proof, which involved two 10th 
grade classes of scientific and technological oriented high school, with 19 and 25 
students each. The activities were performed in the period November, 17, 2017 - May, 
11, 2018, with two hours each week, for most of the school weeks in the period, for a 
total of 36 hours, in parallel with other activities on algebra, analytic geometry and 
probability. The activities were preceded (in grade IX, with the same teacher, and at the 
beginning of grade X) by some preliminary activities in plane geometry on the nature 
of definitions, and on some statements of theorems already met by students in 
comprehensive school, with a few easy proofs utilizing them. We will focus on a 
situation of conjecturing and proving (and related activities) and on the productions of 
a student that we will name Mario, which took place at the beginning of March, 2018. 
We have chosen Mario’s productions due to the fact that Mario was one of the students 
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who moved from a low level of performances at the beginning of the sequence (and in 
Mathematics in general), to an over the average level at the end.  
The general design of the sequence of activities on the approach to Euclidean proof in 
Geometry took into account the fact that geometric constructions (with related 
theoretical justifications) and theorems alternate in Euclid’s Elements. This choice 
allowed a smooth approach to generality and precision of the discourse on geometric 
figures (through comparisons of construction texts produced by students for 
“construction tasks”) and to proving (through theoretical justifications of 
constructions). Students’ acquired familiarity with geometric constructions allowed 
them to produce suitable geometric drawings for conjecturing and for proving tasks. 
The classroom activities (a couple of tasks for each two hours) included, from the 
beginning, tasks of individual geometric construction, with related verbal description. 
They concerned the bisector of a given angle (with related theoretical justification), a 
circle tangent to two assigned straight lines, a circle of given radius tangent to two 
intersecting straight lines, the circles inscribed in, and circumscribed to, a given 
triangle. Each of them was followed by oral (through a classroom discussion) or 
written individual revision of constructions produced by some schoolfellows and 
selected by the teacher. Revisions included checking the generality of the construction 
and the identification of lacking details and erroneous verbal expressions. Tasks of 
theoretical, written individual justifications of the construction (based on known 
statements) were proposed for each construction. They were followed by individual 
comparison and/or individual revision and/or classroom discussion of theoretical 
justifications produced by some schoolmates. Concerning theorems, conjecturing and 
proving activities related to geometric figures, and then proving activities of statements 
proposed by the teacher, started at the beginning of March, 2018 (Mario’s proof text 
reported below concerns the first activity of this kind). Like for the other activities, 
systematic individual and/or classroom revisions, comparisons, discussions of proof 
texts followed each individual proving activity, attention being paid to the key 
elements of the produced statements and proofs (particularly as concerns the 
expression of the hypothesis and the thesis, and the necessity of a complete and not 
redundant proof text). Other activities were proposed, starting from January, 2018: 
individual cloze activities (followed by a classroom discussion) to complete a 
theoretical justification of a construction, which was provided by the teacher, by 
choosing the kind of justification of some steps (by construction; by hypothesis; by 
definition of…; by theorem…); identification of the proof strategy in the proof text of a 
schoolmate, with search for possible lacks and mistakes and of theorems and 
definitions needed to get the proof according to that strategy. The alternation of 
individual productions (or revisions) and classroom comparisons and discussions was 
aimed at implementing the RMT of proof as a mediator between the students, the 
students and the teacher, and the students and the culture (see Boero & Turiano, 2020, 
p. 145).   
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Mario’s texts and their analysis 

 

(PART 1) By observing the figure, I 
noticed that angle 𝛽 might be the 
double of angle 𝛼. As first thing, I 
reproduced the angle 𝛼 in such a way 
that it was aligned with 𝛽, by finding 
two equilateral triangles ABO and 
ABC. These two triangles have their 
base in common (AB). From the 
drawing, we may already notice how 
the angles adjacent to the base of the 
triangle ABC are wider than those of 
the triangle ABO, from which we may 
deduce that the angle 𝛼’ (that is equal 
to 𝛼) is less wide that the angle 𝛽 by 
difference of internal angles of a 
triangle. 

Fig 1: Original figure (I); Mario’s figure (II) 
and text (III) 

 
(PART 2) Now, by coming back to the initial triangles of the figure, we notice how AOD is 
an isosceles triangle and then Â’=D �=𝛼. We suppose that 𝛼=½𝛽 thus the angle Ô of the 
triangle AOD must be equal to the sum of the angles Â and B� of the triangle AOB, hence 
Ô=Â+B�.  
(PART 3) 

Ô=Â+B�  𝛽 =180°-Ô  𝛽 =180°-Â-B�  
 

From the teleological point of view, Mario looks aware of the different phases of his 
conjecturing and proving process (the spatial organization of the text and their labels 
PARTE 1, PARTE 2, PARTE 3 shows three distinguished steps; within the third step 
Mario puts the core of the proof into evidence, like in the above quote). Moreover, also 
his revision of his proof text confirms a high level of awareness: 

In this revision I realized that this worksheet well represents my way of reasoning. A 
gradual reasoning in which, first, I observe the figure and I notice some possible 
conjectures, then I try to develop the first thoughts, like that of aligning the triangles ABO 
and ABC. Thanks to this idea I succeeded in finding the basis of my reasoning  (…).  

In the following analysis of Mario’s text some weaknesses on the epistemic and 
communicative ground will be put into evidence by the use of italic.  

        𝛼 =180°- B�- Â- Â’   
 Â’+ 𝛼 = 180°-B�- Â       
      2𝛼 = 𝛽   
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Mario moves from an initial, possible conjecture (“the angle 𝛽 might be the double of 
the angle 𝛼”; the initial writing was “the angle 𝛽 is the double of the angle 𝛼”) to an 
exploration of the situation. We may notice a communication mistake (“equilateral 
triangles” instead of “isosceles triangles”) and the lack of justification of isosceles 
triangles. Then Mario exploits the familiarity with geometric constructions to get a 
suitable figure, and finally he gets the justification of a weaker statement (𝛼< 𝛽) 
through visual evidence, a theoretical justification (“by difference of internal angles of 
a triangle”) implicitly based on the theorem that the sum of the internal angles is the 
same for any triangle, and an unjustified claim (𝛼’= 𝛼).  
In the second part of his reasoning, by exploring the original figure of the worksheet, 
Mario notices that the angle 𝛼 is equal to the angle Â’ (by a theoretical, explicit reason 
related to the fact that the triangle AOD is isosceles; however, the theoretical 
justification of it is lacking – only visual evidence is put on the fore. At that point he 
foresees how to get the proof: he comes back to the initial possible conjecture, that now 
is expressed as a hypothesis to derive what follows, but probably plays the role of a 
hypothesis to be verified, which results in an abduction. This is the starting point of a 
piece of text of difficult interpretation (at the end of part 2 and at the beginning of part 
3), in particular it is not clear the meaning of the two arrows. Mario seems to feel the 
need to work on the angle  Ô of the triangle AOD, which must be equal to the sum of 
the angles Â and B�   in order to find some relationships that are needed to get the proof. 
It is clear that Mario works on already considered properties of the triangles (the sum 
of the internal angles, and the congruence of the angles of isosceles triangles) but 
explicit justifications are lacking. This phase seems to play a heuristic role to get the  
underlined formula: 𝛽 = 180°-Â-B� . At that point Mario starts a sequence of algebraic 
expressions that bring to the conclusion. From the surrounding line it is clear that 
Mario considers what is inside as the proof. The lack of verbal comments and of some 
intermediate algebraic expressions (e.g. the recall of 𝛽 = 180°-Â-B� and of Â’= 𝛼) do 
not prevent the reader from interpreting Mario’s reasoning, also thanks to the spatial 
disposition of the lines.     
Mario’s text represents an intermediate step in his approach to the RMT of proof; in the 
classroom, it looks as a (relatively) high level performance, as concerns the mastery of 
the whole process (from exploration to proof construction), in comparison with most of 
his mates’ productions. However, Mario’s text also reveals some weaknesses (which 
were rather common in the classroom, at that stage of the construction of the RMT of 
proof), as we have put into evidence in the above analysis. For all these reasons, 
Mario’s text has been proposed to the class as an object of an individual revision task: 
“Why this proof has been considered in a positive way by the teacher, in spite of lacks 
and mistakes in part 2 and part 3? How to correct and improve it?”, in the perspective 
of a discussion to share and discuss what students had discovered, and thus to focus on 
crucial aspects of the proving process and the proof text. The activity helped Mario to 
identify an important mistake. In his revision he writes: 
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Thanks to comparisons with my schoolmates I realized that at the end of Part 2 and at the 
beginning of Part 3 my reasoning starts with 𝛽 = 2𝛼, which is not a hypothesis but the 
thesis to be proven, while the hypothesis is that the triangle in inscribed in a circle with one 
side as a diameter (…). 

In another individual activity on the same conjecturing and proving task, students were 
required to correct, complete and re-write the proofs after identifying and maintaining 
the authors’ reasoning, and to put hypotheses, thesis, and theorems and definitions into 
evidence. This excerpt from Mario’s text under this task well represents the high level 
of awareness already developed by a consistent number of students (about one half of 
them), and (as the previous excerpt) the climate created through the need of analysing 
and improving the schoolmates’ texts according to the shared rationality criteria:  

In the first solution I realized that there was an unusual reasoning, different from those we 
had considered in the discussion, but it is correct. However, some points should be 
improved: the fact that 𝛼 = ∂ does not result from the definition of an isosceles triangle, but 
from a theorem. There is an important lacking point: the proof that BE is parallel to DO. It 
is needed to use the theorems on alternate angles.  

CONCLUSIONS AND DISCUSSION 
Through the description of the sequence of activities and the analysis of Mario’s 
productions we have tried to put into evidence how the use of the RMT of proof may 
serve the planning and the analysis of classroom activities aimed at student’s approach 
to proving and proof in grade X. As an analytical tool related to Habermas’ rationality, 
the RMT of proof was used to identify weak points of Mario’s proof text. They needed 
(and allowed) interventions (through revision tasks and related discussions) to develop 
awareness, in particular, of crucial epistemic and communicative aspects of proof. 
We may observe how in the planning of the teaching experiment awareness (of the 
requirements of the product of the process and of the organization of the process) 
played a crucial role through several specific tasks; this looks necessary to ensure the 
rationality of the process and the epistemic and communicative quality of its product. 
The analysis of Mario’s productions shows how the role of awareness in the planning 
of the teaching experiment results directly in the mastery of his personal process and in 
the revision of the epistemic aspects of his schoolmate’s proof text, and indirectly in 
the climate of the work in the classroom, through the acknowledgment of the 
contributions of his schoolmates to overcome an important weakness in his text, and 
the mature, constructive approach to his schoolmate’s production. Mario’s productions 
are representative examples of what happened in the two classrooms during the 
teaching experiment. In particular, the systematic work on students’ awareness of the 
requirements of rationality through the revision, cloze and identification tasks seems to 
have a supportive, double function on the cultural ground: for the development of a 
collaborative style of work in the classroom (thus contributing to the well-being of all 
the involved people), and to ensure the role of mediation that the RMT of proof plays in 
the long term development of students’ proving. This double function looks to be not 
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limited to the case of the RMT of proof and should be elaborated in general, thanks to 
other teaching experiments on complex, demanding RMTs (like that of analytical 
model of physical phenomena, or that of probabilistic model of stochastic phenomena). 
From the theoretical point of view, the content of the previous Section puts into 
evidence the distance between the RMT construct and the construct by Lavie, Steiner 
& Sfard, 2019 beyond what concerns the motifs of the constructs (see Introduction). In 
particular, in the classroom long term construction of the RMT of proof that we have 
described it is not possible to distinguish a ritual phase from an exploration phase. 
Indeed, for intrinsic reasons due to the necessity of developing awareness (a crucial 
requirement of Habermas’ rationality), since the very beginning students are engaged 
in both productive and reflective activities on accessible tasks, which gradually evolve 
trough a conscious mastery of more and more complex situations.  
However, the definition of RMT still needs an in-depth work, if we want to move from 
an extensive definition (i. e. a definition concerning a set of assigned “entities”, with 
specifications for the components of the rational process aimed at the production of 
“instances” of those individual “entities”), to an intensive definition (i.e. a definition 
based on a characteristic, common property of the “mathematical entities”, with 
specification of the general aspects of the rational process that result from the entity).  
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Research literature argues for the benefits of inquiry-based approaches to provide 
opportunities for in-depth understanding of mathematics. This paper studies the design 
of mathematical problems for the purpose of introducing the concept of numerical 
integration in an inquiry-based setting. We present a series of six developmental stages 
(represent, refocus, area, accumulate, approximate, and refine) indicating a natural 
trajectory for students to follow when inquiring on the concept of numerical 
integration before any formal introduction to the topic. Further, we present a sequence 
of three problems illustrating how the developmental stages can be applied in problem 
design. 
INTRODUCTION 
The work presented in this paper concerns the design of problems in an inquiry-based 
setting in calculus, and is part of a larger research project focusing on how inquiry 
approaches in calculus in a Norwegian continuing professional development (CPD) 
program can support teachers’, students’ and teacher educators’ development of 
mathematical competencies and inquiring habits of mind. In addition to the mastering 
of procedural skills, it is important to provide calculus students opportunities to 
develop deep understanding of context and connections between concepts (Hall, 2010; 
Sofronas et al., 2011). Mathematics education literature strongly speaks in favour of 
inquiry-based approaches for in-depth mathematical learning and critical application 
of knowledge, and such approaches have been promoted in educational policy and 
mathematics curriculum documents across the world (Artigue & Blomhøj, 2013; 
Dorier & Maass, 2014). Inquiry nurtures the critical, creative, and reflective mind, and 
encourages students to engage in mathematics in ways that mathematicians do 
(Artigue & Blomhøj, 2013; Dorier & Maass, 2014) by using mathematical key ideas to 
wonder, explore, discuss, justify, interpret, and collaborate with others on 
mathematical problems. Hence, knowledge on how problems given to students are 
designed, is crucial for facilitating inquiry-based learning (Artigue & Blomhøj, 2013; 
Cai, 2010), and is the focus of this paper.  
One important element to consider in problem design is how central mathematical 
properties must be understood and used to solve the problem (Lithner, 2017), and the 
mathematical topic of this paper is numerical integration. Students’ understanding of 
integration should be given special attention, as the topic is central in calculus and has 
a broad area of use in the real world (Jones, 2013; Sofronas et al., 2011). Calculus 
students are expected to make sense of integrals as limits of Riemann sums, develop 
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and implement numerical algorithms to calculate integrals, interpret the meaning of 
integrals in different situations, and use integration to solve problems. By informally 
approaching the concept of numerical integration through inquiry, students are 
provided opportunities to develop an in-depth understanding of the topic. This paper 
asks the following question: How can problems be designed for the purpose of 
introducing the concept of numerical integration in an inquiry-based setting? 
INQUIRY-BASED PROBLEMS IN MATHEMATICS 
Inquiry-based problems encourage exploration, discussion, the posing of questions, 
and evaluation. Inquiry is built on the idea of exploring something unknown or 
challenging, but requires that this can be approached through building on existing 
knowledge (Artigue & Blomhøj, 2013). Inquiry-based problems must therefore have  
a delicate balance between creating challenges for the students and enabling them  
to make sense of the challenges by accumulating their knowledge. A skewness towards 
the known can contribute to degrade the problem to uncritical rote learning and 
repetition of known procedures and algorithms. Lithner (2017) suggests not providing 
pre-decided strategies or procedures in the problem text. The argument is that if  
a solution method is given, or already known by the students, they often uncritically 
apply it. Similar arguments given by Schoenfeld (1985) and Cai (2010) suggest that 
reducing the number of specific algorithms and techniques increases the potential for 
exploration. On the other side, too many unknown elements may hinder new learning 
and meaning making as the students do not have the prerequisite knowledge  
to approach the problem. The importance of providing students the opportunity  
to solve the problems and justify their solutions through building on what they  
know, is emphasized in the literature (Artigue & Blomhøj, 2013; Lithner, 2017; 
Schoenfeld, 1985). 
Mathematical inquiry is therefore closely linked to problem solving, emphasising 
multiple solutions (Cai, 2010). Such problems invite students to develop an ownership 
to their solution methods (Cai, 2010; Schoenfeld, 2012). They should facilitate 
reflection beyond concrete situations (Goldin, 2010; Schoenfeld, 2012), for example 
on what happens if we change some problem criteria or introduce higher number 
situations. Such reflection can be approached through designing “the most elementary, 
generic example” (Goldin, 2010, p. 248) or through sequences of problems with 
increasing complexity (Schoenfeld, 2012). From an inquiry perspective, these 
approaches enable the students to accumulate their knowledge (Artigue & Blomhøj, 
2013). 
INTRODUCING THE CONCEPT OF NUMERICAL INTEGRATION 
Introducing integration in a way that helps students develop in-depth understanding of 
the concept, is challenging (Orton, 1983). Research suggests emphasizing a variety of 
representations and interpretations and the connections between them (Hall, 2010; 
Orton, 1983; Sofronas et al., 2011) to facilitate deeper understanding of the topic. 
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Using different representations might also help students trace their own solution 
processes and ideas when working with mathematical problems (Goldin, 2010). 
Orton (1983) suggests introducing integration through active use of visual 
representations. For a real valued function of a single variable, the visual 
representation of an integral is the area between the function and the x-axis in a given 
interval. Thus, moving focus away from the function itself, and to the area under the 
graph as well as the interpretation of this area, can be considered a key “discovery” 
when approaching numerical integration through inquiring on visual representations. 
Calculating this area is a rather simple process if the function is linear, and can be 
considered what Goldin (2010) calls the most elementary example. If the function is a 
curve or a piecewise function, one might have to split the area into smaller subareas 
and sum up these areas – introducing accumulation to the process and providing the 
increasing complexity that Schoenfeld (2012) suggests. Approaching integration as an 
area under a curve or as accumulation of “bits” (Jones, 2013; Sofronas et al., 2011) 
requires an understanding of covariation between x and f(x), the ability to imagine or 
visualize the “bits”, and an understanding of why an area can give information on 
another quantity (Thompson & Silverman, 2008). Such understanding, and moreover 
understanding the connection between area and accumulation, can build deep 
understanding of the concept of numerical integration and for critical application of 
this understanding. 
To encourage reflection beyond one concrete situation (cf. Goldin, 2010; Schoenfeld, 
2012), problems for introducing the concept of numerical integration should stimulate 
wondering on how to approach situations where the areas cannot be calculated exactly 
(for example if there are no “simple” geometrical shapes that can be used or if there are 
too many different shapes). This introduces the idea of approximation. Combining this 
with inquiry on higher number situations (Goldin, 2010), increasing the number of 
accumulations, can stimulate reflection on how the interval breadth affect the accuracy 
and efficiency of the approximation, refining the approach. 
DESIGNING PROBLEMS FOR INTRODUCING THE CONCEPT OF 
NUMERICAL INTEGRATION IN AN INQUIRY-BASED SETTING 
When the aim is to introduce a new concept, the problem does not have to be very 
difficult (Lithner, 2017). One idea is to create a sequence of problems with increasing 
complexity (Schoenfeld, 2012) to balance what is known with what is unknown. This 
approach helps the students develop ways to approach general “find the area under the 
graph”-problems, reflect on when these approaches become inefficient, and propose 
ways to tackle this new obstacle. The goal of the problem should be to facilitate 
students’ construction of some aspects of the concept (Lithner, 2017) and reflection 
beyond one concrete example (Goldin, 2010; Schoenfeld, 2012). This calls for 
problems that separate from strict prescriptions and encourage informal discoveries 
through inquiry. 
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Based on the presented theories, and empirical observations from introducing 
numerical integration in a CPD calculus course, we suggest that the following 
developmental stages should be emphasized, in this order, when designing problems 
for an inquiry-based introduction to the concept of numerical integration: 

Stage Description 
Represent Actively using and combining representations of the 

problem. This includes extracting information from the 
problem, translating from text to graphical, geometrical, 

or algebraic representations and moving between 
representations. 

Refocus Move focus from the function to the geometrical shape 
between the function and the x-axis in a given interval. 

Area Discovering that the area of the geometrical shape can be 
calculated to solve the problem. Inquiring on why it is 

interesting to calculate the area. 
Accumulate Finding ways to calculate the area through dividing it into 

subareas and accumulating the areas of these “bits”.  
Approximate Reflecting on how to tackle the problem if the area 

cannot be calculated exactly. Inquiring on effective ways 
to approximate the area. 

Refine Reflecting on how to improve the approximation. 

Table 1: Developmental stages for an inquiry-based introduction to the concept of 
numerical integration. 

These developmental stages follow a natural progression, balancing the known and 
unknown, from expected knowledge (drawing a graph, understand what a function is) 
to the mathematical objective (develop an understanding of the concept of numerical 
integration through accumulation of areas of repeated geometrical shapes with small 
interval breadth, and inquire on why this can provide useful information on a quantity 
other than area). 
EXAMPLE: A SERIES OF THREE PROBLEMS 
The following sequence of three problems for introducing the concept of numerical 
integration is designed based on the developmental stages and inquiry-based criteria 
presented above. Naalsund, Bråtalien, & Skogholt (2022) present a short transcript and 
analysis based on one student group’s collaboration when working with problem 2.   
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Figure 1: The sequence of problems. 

Problem 1 (A car trip) 
A family is on a car trip driving with a constant velocity of 50 km/h. 

• Choose some time between 0 and 5 hours. Calculate the distance travelled by 
the family at this time. 

• Plot the velocity as a function of time for t between 0 and 5 hours. Discuss if 
you could have used this graph to find the distance you calculated above. 

Problem 2 (Filling a bottle with water) 
Anne wants to fill an empty bottle with exactly 3 dl of water. The figure below 
shows how much water is entering or leaving the bottle at time t. Discuss if Anne is 
successful. 

 

Problem 3 (Pedal to the metal) 
Kåre is driving a car and steps hard on the gas pedal at the time t=0. The 
acceleration of the car is shown as a function of time in the graph below. Estimate 
the velocity Kåre is driving at after 4 seconds. Write done the assumptions you make 
if any. Discuss how your estimate can be improved. 
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Understanding the concept of integration consists of a network of smaller units (Hall, 
2010; Jones, 2013) such as, but not limited to, ideas of area, limits, functions, algebraic 
operations, geometry, accumulation, and covariation. Problem 1 asks the students to 
calculate a distance using both algebraic and graphical representations. Asking the 
students to consider if the distance could be calculated from a velocity-time graph 
encourages them to combine graphical, algebraic (distance = time ∙ velocity), and 
geometrical (area = length ∙ breadth) representations to refocus from the graph itself 
and discover that the area under a graph can have a physical interpretation and hence  
be used to solve problems involving other quantities than area. This process includes 
the three first developmental stages of represent, refocus, and area. As the area of 
interest is a rectangle, the problem can be considered an example of the most 
elementary example (Goldin 2010). 
Problem 2 also encourages the students to refocus and consider the area and its 
physical interpretation. The graph is piecewise linear, which naturally probes the 
students to split the area into some combination of triangles, rectangles, and trapezoids. 
This adds the developmental stage accumulate to the students’ inquiry. The 
combination of positive and negative areas, as well as the graph having segments with 
increasing and decreasing (but positive) rates of change encourage reflection on the 
physical interpretation of both the graph and the area.  
Problem 3 introduces the developmental stages approximate and refine. The function 
was chosen so that the area could not be computed exactly, and hence stimulating 
reflection on approximations to the area. In contrast with problem 2, problem 3 omits 
any mention of an initial condition to prompt a discussion of the interpretation of the 
definite integrals as the net change in the quantity considered. A variety of approaches 
are possible (Cai, 2010), and in our experience the students will consider 
approximations similar to the trapezoidal rule, the midpoint rule, as well as lower  
and upper sums with rectangles, even if none of these formal approaches to numerical 
integration are mentioned or have been formally introduced. The problem therefore 
invites the students to develop an ownership to their solution methods (Cai, 2010; 
Schoenfeld, 2012) and a sound foundation for learning about formal approaches. By 
also asking the students to discuss how their solution can be improved, the problem 
includes reflection beyond the concrete example (Goldin, 2010; Schoenfeld, 2012), 
i.e., on higher number cases (Goldin, 2010), encouraging the students to reflect on their 
solution and introducing the developmental stage refine. The students might discover 
that it is in principle simple to refine the approximation (by subdividing the x-axis into 
smaller intervals), but that the computation of the areas becomes an issue. This can be 
used as motivation for introducing formal integration procedures and even 
programming. 
The three problems presented in this paper include few prescriptions, increasing the 
potential for exploration (Cai, 2010; Schoenfeld, 1985), but they also provide 
necessary support for the students to follow the trajectory of the developmental stages 
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presented. Opening the problem by not providing a prescription makes the solution 
method itself a part of the unknown, engaging the student to wonder, explore and 
reflect in the process of constructing both strategies and solutions. Such inquiry will 
include several ideas being what Artigue & Blomhøj (2013) refer to as unknowns to 
the students. Students might struggle understanding integration as accumulation 
(Orton, 1983; Thompson & Silverman, 2008), as deep understanding of this requires 
the ability to visualize the “bits” that should be accumulated and a complex 
understanding of the area as representing something other than an area (Thompson & 
Silverman, 2008). To help students approach these unknowns, the problems use units 
on the axes and rates of change that are considered to be known for the students. 
In this paper, we have presented and argued for the benefits of a progression through 
six developmental stages when designing problems for introducing the concept of 
numerical integration in an inquiry-based setting. We argue that an informal approach 
such as inquiry, holding back formal notation, symbols, prescriptions, and methods, 
allows the students to discover these stages themselves and reflect on obstacles they 
meet in their inquiry. The three problems we have presented follow the developmental 
stages, and these problems together with questioning, exploration, discussion, and 
evaluation that inquiry entails, can provide opportunities for connecting 
representations and interpretations (Hall, 2010; Orton, 1983; Sofronas et al., 2011), 
and reflection on the central questions of how and why an accumulation of areas can be 
used to represent another quantity than an area (Thompson & Silverman, 2010). This 
can prepare the students for formal methods of numerical integration, such as Riemann 
sums, where the idea of area and accumulation is combined. 
References 
Artigue, M., & Blomhøj, M. (2013). Conceptualizing inquiry-based education in 

mathematics. ZDM - The International Journal on Mathematics Education, 45(6), 
797-810. 

Cai, J. (2010). Commentary on Problem Solving Heuristics, Affect, and Discrete 
Mathematics: A Representational Discussion. In B. Sriraman & L. English (Eds.), 
Theories of Mathematics Education: Seeking New Frontiers (pp. 251-258). Springer 
Berlin Heidelberg. 

Dorier, J.-L., & Maass, K. (2014). Inquiry-Based Mathematics Education. In S. Lerman (Ed.), 
Encyclopedia of Mathematics Education (pp. 300-304). Springer Netherlands. 

Goldin, G. A. (2010). Problem Solving Heuristics, Affect, and Discrete Mathematics: A 
Representational Discussion. In B. Sriraman & L. English (Eds.), Theories of Mathematics 
Education: Seeking New Frontiers (pp. 241-250). Springer Berlin Heidelberg. 

Hall, W. (2010). Student misconceptions of the language of calculus: Definite and indefinite 
integrals. In Proceedings of The 13th special interest group of the Mathematical 
Association of America on research in undergraduate mathematics education Raleigh, 
NC. 



Bråtalien, Skogholt, Naalsund 
 

 

2 - 98 PME 45 – 2022 
  

Jones, S. R. (2013). Understanding the integral: Students’ symbolic forms. The Journal of 
Mathematical Behavior, 32(2), 122-141.  

Lithner, J. (2017). Principles for designing mathematical tasks that enhance imitative and 
creative reasoning. ZDM, 49(6), 937-949.  

Naalsund, M., Bråtalien, M., & Skogholt, J. (2022). On the value of interthinking for 
mathematical learning. In G. A. Nortvedt, et al. (Eds.). Bringing Nordic mathematics 
education into the future. Proceedings of Norma 20 The ninth Nordic Conference on 
Mathematics Education, 2021. 

Orton, A. (1983). Students' understanding of integration. Educational studies in mathematics, 
14(1), 1-18.  

Schoenfeld, A. H. (1985). Mathematical Problem Solving. Academic Press. 
Schoenfeld, A. H. (2012). Problematizing the didactic triangle. ZDM, 44(5), 587-599.  
Sofronas, K. S., DeFranco, T. C., Vinsonhaler, C., Gorgievski, N., Schroeder, L., & Hamelin, 

C. (2011). What does it mean for a student to understand the first-year calculus? 
Perspectives of 24 experts. The Journal of Mathematical Behavior, 30(2), 131-148.  

Thompson, P. W., & Silverman, J. (2008). The concept of accumulation in calculus. In M. P. 
Carlson & C. Rasmussen (Eds.) Making the connection: Research and teaching in 
undergraduate mathematics (pp. 43-52). Mathematical Association of America. 

 
 

 



 

 2 - 99  
2022. In C. Fernández, S. Llinares, A. Gutiérrez, & N. Planas (Eds.), Proceedings of the 45th Conference of the 
International Group for the Psychology of Mathematics Education (Vol. 2, pp. 99-106). PME. 

TURNING MOMENTS: THE CROSSROADS OF THE 
PROSPECTIVE SECONDARY TEACHERS’ ATTITUDE 

TOWARDS MATH 
Gemma Carotenuto1, Cristina Coppola1, Pietro Di Martino2, Tiziana Pacelli3  

1Università degli Studi di Salerno, 2Università degli Studi di Pisa, 3Università degli 
Studi di Napoli Federico II 

 
Relationship with mathematics strongly affects teachers’ practices. Specialist 
mathematics teachers’ positive relationship is often taken for granted, although recent 
studies suggest that this may not be the case. In this paper we present a narrative 
research aimed at investigating which events do prospective secondary teachers 
recognise as crucial in the development of their relationship with mathematics. The 
analysis reveals that experiences of success/failure in mathematics, teacher’s opinion, 
teacher’s charisma, and experiences of helping someone with maths are frequent 
factors influencing these events, impacting on prospective teachers' emotions, 
perceived competences, and view of mathematics.  
INTRODUCTION AND THEORETICAL FRAMEWORK  
According to Nias (1996, p. 293) “affectivity is of fundamental importance in teaching 
and to teachers”. Several studies discussed how teachers’ relationship with 
mathematics (in terms of beliefs, identity, emotions, and attitudes towards 
mathematics) can strongly affect their decisions and their teaching style (De Simone, 
2014). How Zembylas (2005) underlines:  

Teacher knowledge is located in ‘the lived lives of teachers, in the values, beliefs, and deep 
convictions enacted in practice […].’ These values, beliefs and emotions come into play as 
teachers make decisions, act and reflect on the different purposes, methods and meanings 
of teaching (p. 467).  

Therefore, it appears to be particularly significant to analyse prospective teachers’ 
relationship with mathematics and its development during the school experience. This 
knowledge is crucial to understanding if and how teacher education programs should 
be designed to positively affect this relationship. However, research on teacher 
affectivity in mathematics education has been mainly focused on prospective and 
in-service primary teachers (Martinez Sierra et al., 2021). These studies have shown 
that many of them have developed a very bad relationship with mathematics during 
their school experience (Hannula et al., 2007). For this reason, it appears significant to 
fill this gap by considering an affective perspective also in the professional 
development of prospective secondary school mathematics teachers (PT). Unlike 
future primary teachers, many secondary teachers have a degree in Mathematics: they 
are therefore specialist mathematics teachers and their passion for mathematics is, in a 
certain sense, taken for granted. On the other hand, as shown by recent studies, several 
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brilliant students live “crisis moments” during their university experience in a 
mathematics degree, also developing strong negative feelings towards mathematics 
(Di Martino & Gregorio, 2019). 
Referring to the Three-dimensional Model for Attitude (TMA, see Fig. 1) introduced 
by Di Martino and Zan (2010) and within a larger study, we conducted a narrative 
study among PTs to identify crucial events in the development of their relationship 
with mathematics.  

 
Figure 1: The Three-dimensional Model of Attitude (Di Martino & Zan, 2010). 

We were inspired by Bruner’s conceptualisation of the idea of turning points (1991) in 
autobiographical accounts. According to Bruner, the marking of a turning point is a 
narrator’s device to signal a rupture inside a habitual and expectable routine. Turning 
points consist in an inner transformation of the narrator, a change in intentional states, 
linked to a particular external event or experience: 

By “turning points” I mean those episodes in which, as if to underline the power of the 
agent’s intentional states, the narrator attributes a crucial change or stance in the 
protagonist’s story to a belief, a conviction, a thought (Bruner, 1991, p. 73).  

Turning point narratives are characterised by mental verbs indicating internal 
transformations of which the narrator expresses awareness. We will call turning 
moment an episode, a school period, or a particular experience which PT considers to 
be determinant in her personal relationship with mathematics and its teaching, since it 
involved a particular internal change. 
Our study was guided by the following research question: which events do PTs 
recognise as crucial in the development of their relationship with mathematics?  
METHODOLOGY  
The sample and the data collection 
The sample of our study consists of 62 students attending the course of Mathematics 
Education for the master’s degree in Mathematics in an Italian university.  
In line with well-established methods of narrative data collection (Kaasila, 2007), 
students were asked to answer the following open prompt in the first session of the 
course: Tell us about an episode from your scholastic past career (at any school level, 
from primary to university) that you consider particularly significant for the 
development of your relationship with mathematics. Based on what you remember, 
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include in your story the details of the situation you experienced, the emotions you felt 
and finally explain why you consider the episode significant. 
PTs could use as much time as they wanted within the two-hour session and their 
productions were collected in an anonymous way. According to Connelly and 
Clandinin (1990): 

Humans are storytelling organisms who, individually and socially, lead storied lives. The 
study of narrative, therefore, is the study of the ways humans experience the world [...] 
teachers and learners are storytellers and characters in their own and other’s stories (p. 2).  

In this frame, how (form) and why (reason) the narrator describes her experiences 
matter more than a present objectivity of the narrated facts. 
Approach to the data  
To analyse the collected narratives, we referred to two main independent dimensions, 
holistic vs categorical and content vs form:  

The first dimension refers to the unit of analysis, whether an utterance or section abstracted 
from a complete text or the narrative as a whole. [...] The second dimension, that is, the 
distinction between the content and form of a story, refers to the traditional dichotomy 
made in literary reading of texts. (Lieblich et al., 1998, p. 12).  

A purely categorical or holistic approach is not practically possible, whereas the 
combination of the different dimensions allows for a deeper and differentiated 
understanding of the narratives. In particular, we developed a holistic approach to the 
data to identify narratives containing events considered crucial by the narrator for her 
relationship with mathematics and its teaching. Regarding the content/form dimension, 
the content was the main focus of our analysis to recognize turning moments in the 
crucial events that participants reported; however, the recurrence of some expressions 
was considered. After this analysis, we identified recurrent themes characterising the 
turning moments through a categorical approach, discussing which dimensions of the 
TMA were involved. This process of analysis was conducted and finally discussed 
using an investigator triangulation method.  
RESULTS  
Five PTs did not respond to the given prompt. Four PTs described a stable relationship 
with mathematics during the school experience. These narratives do not include any 
event recognized as crucial for the development of the relationship with math, 
although, in one case, fluctuating emotions are reported (PT11: “over the years it has 
been a relationship of odi et amo”). Thus, the final corpus was composed of 53 
narratives of events. Within them, we recognized two types of events:  

• Single episodes identified as crucial for the relationship with mathematics. 
• Periods perceived as crucial for the relationship with mathematics. Periods 

can be short-lived, such as the preparation for the high school diploma, of 
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medium duration, such as the encounter with a particular teacher, or of longer 
duration, such as the experience during a whole school level.  

The corpus contains a total of 68 narrated events: 39 episodes and 29 periods (some 
PTs reported more than one event).  For both types of events, we determined the school 
levels in which they occurred (Table 1). It is conceivable that, given the prompt, all the 
53 selected narratives include episodes or periods that are crucial for the narrator. 
However, in this paper, we discuss more in depth those narratives in which the narrator 
explicitly identifies an episode or a period as a turning moment for her relationship 
with mathematics. 39 turning moments were selected according to the above criteria. 

Account type Primary Middle High University 
Episodes 8 3 22 6 
Periods 1 4 19 5 

Turning moments 5 4 19 11 

Table 1: School levels of the accounts, according to the different typologies. 
From the point of view of form, to turning moments  group belong narratives of events 
in which mental verbs appear (Bruner, 1991), indicating the narrator’s access to new 
consciousness, such as, for example, the emergence of an intention for the future 
(PT53: “So once I overcame the initial difficulties due to the new approach to the 
discipline, I understood that mathematics would be present in my future”), the 
achievement of a certain view of mathematics (PT45: “This made me understand 
something important: you can always find a solution”), or a new awareness in the 
perceived competences, in mathematics or in its teaching (PT8: “this made me think 
that maybe I have the gift of a good teacher). In addition, narratives in which there are 
expressions that indicate a beginning, in the context of the relationship with 
mathematics, also fall into this category: as an example, the adoption of a different 
method of study (PT49: “Since then I have changed, I started to apply myself more to 
mathematics”) or a new emotional disposition (PT18: “it was from that moment that I 
started to have fun”).  
Analysing the content of the turning moments’ narratives, four main themes emerge as 
factors influencing the turning moments: experiences of success/failure in 
mathematics, teacher’s opinion about PT’s mathematical competence, teacher’s 
charisma, and experiences of helping someone with maths. The related categories of 
narratives are not disjointed from each other: PTs often refer to more than one factor. 
We present each of them in detail, also identifying which dimensions of the TMA 
model are involved.  
Experiences of success/failure in mathematics influence about half of the turning 
moments narrated. In most cases the success experience is linked to a school test or a 
mathematical competition, resulting in a positive change in the student’s perceived 
competences. As we could expect, from these accounts positive emotions emerge, 
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sometimes very strong (PT56: “that feeling was unforgettable and indescribable”), 
although often preceded by strongly described moods of anxiety (PT41: “panic while 
waiting [for an evaluation]”; PT56: “heart in the throat while waiting”). Instead, in 
some cases, the success experiences lead to contrasting emotional states (PT18: “this 
is where my troubled love-hate relationship with mathematics began”). 
Among the accounts of failures only one is from primary school, all the others regard 
the transition from one school level to another, in particular the transition to high 
school or university. They are almost always characterised by an abrupt negative 
change in the perceived competence, caused by a bad result in a school test or in a 
university exam. Nevertheless, although often involving strong negative emotions, 
such as sadness, anger, sorrow, none results in surrender, but all have a story of 
redemption as consequence (PT19: “I felt somehow encouraged to study mathematics 
in order to succeed, not to feel inferior to others”). In these stories, PTs claim to have 
changed their method of study, to have worked hard in a different way, to have felt 
spurred on. 
Teacher’s role emerges as decisive in almost half of the turning moment narratives and 
the main factors influencing them are teacher’s opinion about PT’s competence in 
mathematics and/or teacher’s charisma. 
Teacher’s opinion about PT’s competence in mathematics is a very recurrent theme in 
the narrated turning moments. In many cases, PTs refer to teachers’ trust, which 
determines the turning moment in different ways. Great trust is narrated as being 
associated with positive emotions, such as pride, or with the desire not to disappoint 
the teacher’s expectations (PT26: “Even on the graduation day, my teacher shook my 
hand and said ‘Be sure to enrol in maths’. Some trusted me, I won’t let them down”). 
On the other hand, cases in which the PT feels that she has disappointed the teacher’s 
trust are associated with very negative emotions, such as great bitterness, or with a 
desire to recover that trust. Also, the turning moments are narrated as being caused by 
the teacher’s attribution of innate capacities to the PT as student, determining 
student’s perceived high competence, or on the contrary by the teacher’s perception of 
their lack, always leading to the PT’s will to prove the opposite, through commitment 
and determination. Sometimes, PTs consider the admiration of the teacher for an 
outstanding performance as decisive for a turning moment. This situation is described 
as involving positive emotions, such as a sense of reassurance, great gratification or 
even a long-term change in the emotional disposition (PT23: “From that moment on, 
my teacher too changed her opinion of me and I maybe began to love mathematics a 
little more”).  
Teachers are undoubtedly a main actor in PT’s narratives. This very particular sample 
of students – they are enrolled in a math degree – usually judged their school teachers 
as “good”, “excellent”, “fascinating”, “passionate”, “enthusiastic”, “open to dialogue 
with students”. The teachers are narrated as able to arouse students’ interest and 
passion for mathematics, or a feeling of reassurance, or to spur a less algorithmic view 



Carotenuto, Coppola, di Marino, Pacelli 
 

 

2 - 104 PME 45 – 2022 
  

of mathematics. In some cases, a significant teacher’s charisma is recognized: the 
feelings induced by the teacher and her acts are described as very intense. This 
fascination is very often recognized as the main factor for a turning moment (PT29: 
“his lessons were a joy; they gave me that something new: you know when you fall in 
love for the first time?!”).  
The opposite scenario –a negative experience with a math teacher as the main reason 
for the distaste for mathematics as described in previous studies involving prospective 
primary teachers (Coppola et al., 2015)– is surely less frequent in PTs’ narratives 
analysed in this work. However, in some narratives it emerges. In these cases, PTs 
reported a loss of enthusiasm or a worsening of perceived competence (then 
overcome). An interesting case is that of a PT who, having become aware of her 
teacher’s lack of inclusiveness, talks about her motivation to seek redemption in her 
future teaching activity (PT24: “I realised that this teacher had brought forward four or 
five ‘elect’ [...] leaving all the others behind. I realised then that I was going to study 
mathematics, I was going to teach, and I was going to worry about all my students”). 
Some PTs report an episode or a period in which they experienced helping someone 
with maths as a turning moment that led them to choose teaching mathematics as their 
future profession. In such accounts, PTs report good perceived teaching skills and 
positive emotions such as gratification and joy (PT32: “My desire to teach what little I 
knew, to notice that after I explained, they were able to finish the exercises, aroused 
great joy in me and slowly my dream grew”). 
Focusing again on the form of the turning moments narratives, it is worth observing 
how in many cases the narratives are ‘teacher-centred’ and that the student appears to 
have a more passive role. In many cases, teachers’ exact words are quoted (PT40: “At 
that point, the professor made a weird face and said, ‘I doubt you’ll be able to do it!’”; 
PT55: “She looked at me smugly, commented ‘my future colleague’”) and teachers’ 
emotions as disappointment or satisfaction are reported. Moreover, many words are 
spent on describing the teacher as passionate, enthusiastic, “austere at the right point” 
(PT13) and taken as a model. Sometimes the passive form of verbs is used, almost as if 
some student’s internal changes have been heavily influenced by the teacher’s action. 
Still on the form, in several cases PTs use strong expressions such as “the straightway” 
or “my way” when reporting the intention to put more effort into mathematics or to 
choose a degree course in mathematics. 
DISCUSSION AND CONCLUSIONS 
In this paper we presented a narrative study aimed at investigating which events 
prospective secondary teachers recognise as crucial in the development of their 
relationship with mathematics, as a part of a wider study about this topic. The analysis 
shows that more than half of these events are turning moments (Bruner, 1991), most of 
them occurring during high school. 
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We recognized four categories in the narrated turning moments: success/failure 
experiences, teacher’s opinion about PT’s mathematical competence, teacher’s 
charisma, and PTs’ helping experiences of someone with maths. In undertaking this 
study, we expected some different results from previous studies on crucial events with 
prospective primary teachers (Coppola et al., 2015) as our new sample consisted of 
people who had already earned a bachelor’s degree in Mathematics and would be 
future specialist mathematics teachers. Contrary to what we might expect, conflicting g 
emotions often emerge in PT’s accounts. In some cases, “troubled” or “odi et amo” 
relationships are narrated and very strong negative emotions, such as anxiety and 
panic, are often reported alongside positive emotions. As for the future primary 
teachers, very frequent in the factors influencing the turning moments are the 
experiences of failure associated, also for PTs, with very strong negative emotions and 
a sudden lowering in perceived competence. For future primary teachers they very 
often resulted in life choices aimed at avoiding mathematics. In contrast, for our new 
sample, these experiences, although causing feelings of crisis, mistrust, and 
uncertainty, were taken as a challenge, either to themselves or to the teacher, which 
was then won. Many stories of redemption therefore emerge. The theme of redemption 
had emerged with future primary teachers too, but only in the form of a desire for the 
future and to be realised not so much in the study of mathematics but in teaching it. It 
had been called a “desire for math-redemption” (Di Martino et al., 2013).  
Success/failure experiences leading to turning moments are in most cases linked to 
moments of official assessment (in particular to grading) and only rarely to different 
moments of mathematical activity. This could be indicative of how much importance is 
given to assessment in the educational system of our sample of PTs -and how this is 
often restricted to the attribution of a numerical grade to the student’s performance. 
The teacher appears to play a primary role in determining the turning moments. As 
recalled above, the teacher’s opinion about PT’s competence in mathematics and the 
teachers’ charisma are recurrent factors in the turning moments accounts and many 
narratives are ‘teacher-centred’ in the form. Moreover, classmates appear only in a few 
cases in the accounts (and never as peers, but only as learners or almost antagonists of 
the protagonist). This seems to us indicative of ‘traditional school’ experiences, in 
which the control of class activity is almost entirely in the hands of the teacher.  
To conclude, we believe that the collected narratives describe a picture of the PT’s 
attitude towards mathematics that is more complex than it might sound. While 
prospective primary teachers’ attitudes towards mathematics are widely negative and 
strongly marked by negative experiences with school mathematics (Di Martino et al., 
2013), our data showed that PT’s experiences are not simply the other side of the coin. 
The variety of the collected narratives and the different phenomena that emerged from 
our data suggest the need for further studies to describe possible recurrent paths in 
prospective secondary teachers’ attitudes with mathematics. It seems evident that these 
paths could be strongly affected by socio-cultural issues: therefore, the development of 
comparative studies between different countries is strongly encouraged.   
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This description is not an end in itself: as teacher educators, we strongly believe that 
knowing and understanding prospective teachers’ past is crucial for developing 
effective training programs. 
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This paper aims to analyse how primary and secondary school students use the 
concepts of ratio and rate when solving a ratio comparison problem. 954 primary and 
secondary school students (11-16 years old) solved a ratio comparison problem that 
involves four questions designed following the Reflection on the Activity-Effect 
Relationship mechanism. Students’ answers were inductively analysed generating 
categories in relation to students’ use of these concepts and the difficulties they 
revealed. Results have shown that a large number of students seems not to have the 
concept of ratio available during and at the end of secondary education, presenting 
difficulties not only with the identification of the multiplicative relationship between 
the extensive quantities but also with the norming techniques and with the referent. 
THEORETICAL AND EMPIRICAL BACKGROUND 
Quantity has been defined as an attribute of an object, which is expressed by an ordered 
pair, formed by a number and a magnitude unit, for example, two meters. Two types 
can be distinguished: extensive and intensive quantities. Extensive quantities, such as 
mass or length, can be measured directly while intensive quantities, such as density or 
speed, cannot (Schwartz, 1988).  
Ratio or internalized ratio is defined as the result of comparing two quantities 
multiplicatively in a particular situation (Thompson, 1994). For example, in the 
problem “a car travels 70km in 1h, if it is driven for 5h, how many kilometres has 
travelled?”, the internalized ratio is each iteration “70km in 1h”, “140km in 2 hours”, 
..., so the internalized ratio is the particular ratio for each iteration. When a ratio is 
conceived beyond a particular situation, a constant ratio is obtained for any situation, 
called interiorized ratio or rate (Thompson, 1994). In the example, the rate 70km/1h is 
understood as a new quantity (intensive quantity) that measures the attribute speed, 
valid for any situation in which the relationship between quantities remains constant. 
Understanding the concept of rate implies understanding that extensive quantities can 
vary and still maintain the same relationship. That is, the quantity of kilometres and the 
quantity of hours (extensive quantities) can vary and the speed (intensive quantity) can 
stay the same (Simon & Placa, 2012). 
Both ratios and rates can be established in ratio comparison problems which are 
situations where two ratios are given and should be compared. In these problems, 
students have to identify the multiplicative relationship between quantities that can be 
equal or unequal, and use norming techniques to favour the comparison between ratios 



Castillo, Fernández, Canavarro 
 

 

2 - 108 PME 45 – 2022 
  

(Castillo & Fernández, 2021). Norming describes the process of reconceptualising a 
system in relation to some fixed unit or standard (Lamon, 1994).  
Previous studies have focused on ratio comparison problems showing students’ 
success levels, strategies, misconceptions and the effect of some variables of the 
problem on students’ strategies (Alatorre & Figueras, 2005; Nunes et al., 2003; Yeong 
et al., 2018). Nunes et al. (2003) showed that primary school students have difficulties 
solving ratio comparison problems that involve intensive quantities since students have 
to face two challenges: thinking in terms of proportional relations and understanding 
the connection between the intensive quantity and the two extensive quantities. 
Castillo and Fernández (2021) showed that these difficulties persisted also during the 
secondary education (12-16 years old students). Johnson (2015) conducted a study 
focused on investigating secondary school students’ quantification of ratio and rate as 
relationships between quantities. She proposed the “change in covarying quantities 
framework” that shows the operations of comparison (extensive quantities) and 
coordination (intensive quantities) containing three levels of reasoning each one. This 
author claimed that the question how students shift from the operation of comparison 
to the operation of coordination needs further investigation. 
As previous studies have shown, primary and secondary school students have 
difficulties with the concept of rate (intensive quantities). We are developing a 
cross-sectional study embedded in this line of research. It is focused on examining how 
primary (6th grade – 11 years old) and secondary school students (from 7th to 10th grade 
– 12-16 years old) construct the rate concept. For this purpose, we use a 
characterization of the Reflection on the Activity-Effect Relationship mechanism 
elaborated from the Reflective Abstraction of Piaget (Simon et al., 2004; Tzur & 
Simon, 2004). 
From this perspective, two stages have been identified in the development of a 
concept: participatory and anticipatory. The participatory stage starts when a 
perturbation happens. In this stage, a new concept is abstracted, but it is provisional 
since it has been built from a single situation. This stage is divided into three phases: 
projection, reflection type-I and reflection type-II. In the projection phase, students 
compare what happens when they apply an available concept from a known situation in 
the proposed one, called generative situation. This comparison leads students to 
reorganize what they know about both situations (reflection type-I phase) and the new 
concept (more advanced than the available one) is built, but it is considered only for the 
generative situation. The reflection type-II phase occurs in the transition between the 
participatory and anticipatory stages. In this phase, a new situation, different from the 
generative one but of the same type, is proposed. When students observe that the 
generative and the new situations are of the same type, the developed concept is 
rearranged again to add this new situation, making the concept even more complex. 
Finally, when students can apply the developed concept in situations different from the 
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generative one, they have reached the anticipatory stage, what it means that the concept 
is no longer provisional. 
Three types of tasks related to this process were identified (Tzur, 1999). Initial tasks 
that involve concepts that students have. Reflective tasks (related to the participatory 
stage) that seek to cause perturbations to start the construction of the new concept. 
Anticipatory tasks (related to the anticipatory stage) that students can solve using the 
new concept that they have developed in the reflective tasks. 
This paper is part of the cross-sectional study mentioned before and aims to answer the 
research question: how do primary and secondary school students use ratio and rate 
concepts when they solve a ratio comparison problem? 
METHOD 
Participants and instrument 
Participants were 954 primary and secondary school students from 6th grade (n=161), 
7th grade (n=188), 8th grade (n=240), 9th grade (n=229) and 10th grade (n=136). There 
was approximately the same number of boys and girls in each grade, and students were 
from diverse socio-economic backgrounds.  
Participants solved the following problem: Melania’s coach tells her that for each 20 
meters, she should take 5 seconds to be able to qualify. a) If Melania has covered 250 
meters in 60 seconds, has she qualified? b) Melania is competing against Cristina who 
has covered 300 meters in 70 seconds. What is the speed of each one? Who is faster? c) 
If Melania runs twice as many meters in twice as many seconds, would her speed 
change or be the same? Why? If her speed changes, what would this speed be? d) 
Propose three cases in which the speed would be the same as Cristina’s speed (300 
meters in 70 seconds). Justify your answer. 
This problem was designed taking into account the Reflection on the Activity-Effect 
Relationship mechanism and the three type of tasks. Question a) is an initial task since 
the use of the ratio concept is involved and it is considered as an available concept to 
the students. Question b) is considered a reflective task (reflection type-I) because it 
implies to identify the ratio as the intensive quantity “speed” (rate). Question c) is 
considered a reflective task (reflection type-II) because it proposes a different situation 
from the generative one (question b) but of the same type. In this situation, students can 
realize that, although the extensive quantities change, the rate (speed) is the same than 
in question b). At this point, the rate concept should have been built for this particular 
problem and it should be available. Finally, question d) is considered an anticipatory 
task because it implies the use of the rate concept in situations different from those in 
which it was conceived. 
Analysis 
Three researchers analysed individually a subset of students’ answers for the four 
questions, generating categories. Agreements and disagreements were discussed until 
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an agreement was reached with the final categories. Later, the rest of students’ answers 
were analysed using these categories. If an answer was not fit with the categories 
generated, it was discussed and a new category was generated. 
Four categories emerged in question a): (i) students who did not identify the extensive 
quantities or they did not identify a multiplicative relationship between them (category 
A1); (ii) students who identified the extensive quantities and the multiplicative 
relationship between them, but they had difficulties with the norming techniques to 
obtain the ratios to be compared (category A2); (iii) students who obtained the ratios 
correctly using a norming technique but they had difficulties with the referent 
comparing the ratios (category A3); and (iv) students who obtained and compared the 
ratios correctly, identifying the inequality of ratios (category A4). The same categories 
were identified in question b) (categories as B1, B2, B3 and B4, respectively). In 
question b), a new category was identified: students who compared the ratios correctly, 
using the speed (ratio m/s) (category B5). In Figure 1, in the category B4, the student 
compared the ratios 250/60 and 300/70 identifying equivalent fractions. In the category 
B5, the student compared the same ratios with the quotient, obtaining the speed and 
specifying the units. 

 
Figure 1: Examples of the categories B4 and B5 

In question c), three categories emerged: (i) students who did not identify the variation 
of the extensive quantities neither the ratio’s constancy (category C1); (ii) students 
who identified the variation but not the constancy (category C2); and (iii) students who 
identified the variation and the constancy (category C3). In C3, two subcategories were 
distinguished: students who answered without using numerical relationships (C3A) 
and students who made operations (C3B). The difference between them is exemplified 
in Figure 2. In C3A, the student explained that the speed is the same because Melania 
runs twice as many meters in twice as seconds while in C3B, the student justified the 
answer multiplying both quantities by 2 and dividing them to check if the speed was 
equal. 
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Figure 2: Examples of the subcategories C3A and C3B 

In question d), three categories were identified: (i) students who did not identify the 
ratio’s constancy in other situations (category D1); (ii) students who identified the 
ratio’s constancy in other situations multiplying the extensive quantities by the same 
number (category D2); and students who identified the ratio’s constancy in other 
situations using the speed (ratio m/s) (category D3). Figure 3 shows examples of 
categories D2 and D3. In the category D2, the student multiplied both meters and 
seconds of Cristina by 2, 3 and 4, obtaining three situations where her speed is the 
same. In the category D3, the student multiplied the speed calculated in question b) by 
three random amounts of seconds, obtaining the respective meters. 

 
Figure 3: Examples of the categories D2 and D3 

RESULTS 
Tables 1, 2, 3 and 4 show the percentages of answers in each category by grade in 
questions a), b), c) and d), respectively.  

Category 6th 7th 8th 9th 10th Total 
Blank answers 16.77 6.38 11.67 9.17 7.35 10.27 

A1 44.10 51.06 39.58 33.62 43.38 41.72 
A2 4.96 8.51 8.75 7.86 6.62 7.55 
A3 7.45 8.51 13.75 19.65 15.44 13.31 
A4 26.72 25.54 26.25 29.70 27.21 27.15 

Table 1: Percentage of answers in each category by grade in question a) 
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Category 6th 7th 8th 9th 10th Total 
Blank answers 21.74 12.23 20.42 17.47 19.11 18.13 

B1 52.18 62.23 46.25 41.05 44.85 48.95 
B2 4.97 3.72 6.67 4.80 8.82 5.66 
B3 8.07 11.17 6.67 10.48 6.62 8.70 
B4 11.80 6.91 7.91 10.48 5.89 8.70 
B5 1.24 3.74 12.08 15.72 14.71 9.86 

Table 2: Percentage of answers in each category by grade in question b)  
In questions a) and b), more than 40% of the students did not identify the extensive 
quantities or the multiplicative relationship between them (category A1 and B1). Other 
difficulties were related with the norming techniques or with the referent in the 
comparison between ratios. Furthermore, less than 30% of the students compared the 
ratios correctly (categories A4 and B4, B5). Percentages in each category remains 
similar along the grades. So, a large number of students seems not to have the concept 
of ratio available along and at the end of secondary education.  
Comparing the percentages of correct answers in questions a) (category A4) and b) 
(categories B4 and B5), students revealed more difficulties in question b) that asks for 
the intensive quantity (speed) (we added this question as a perturbation). From the 
group of students who were able to compare the ratios in question b), some of them 
compared the ratios correctly (B4) but not using the speed (ratio m/s). These students 
did not observe differences between the known situation (question a) and the 
generative one (question b), answering equally in both; and others identified the ratio 
m/s as an intensive quantity (B5). These last students seemed to reorganize what they 
know about both situations (reflection type-I phase) and the new concept (more 
advanced than the available one – identifying the speed as a new quantity) is built, but 
it is considered only for this generative situation. 

Category 6th 7th 8th 9th 10th Total 
Blank answers 28.57 23.40 19.58 17.47 28.68 22.63 

C1 27.33 22.87 20.83 18.34 12.50 20.55 
C2 12.42 15.43 9.58 7.86 11.03 11.01 

C3A 13.66 12.23 24.58 24.45 25.00 20.34 
C3B 18.02 26.07 25.43 31.88 22.79 25.47 

Table 3: Percentage of answers in each category by grade in question c) 
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Category 6th 7th 8th 9th 10th Total 
Blank answers 56.52 57.98 54.58 53.28 50.74 54.71 

D1 22.36 21.28 14.58 14.41 13.97 17.10 
D2 21.12 20.21 30.84 31.00 33.82 27.56 
D3 0.00 0.53 0.00 1.31 1.47 0.63 

Table 4: Percentage of answers in each category by grade in question d)  
In question c), 45.81% of the students identified the variation of the extensive 
quantities and the ratio’s (speed) constancy (C3). Therefore, it seems that these 
students had the rate concept available for this particular problem. Some of them used 
the concept of rate without using numerical relationships (C3A) and others checked 
speeds numerically (C3B). However, only 28.19% of the students were able to identify 
the ratio’s constancy in other situations in question d) (D2 and D3; anticipatory task).  
DISCUSSION AND CONCLUSIONS 
Our study focuses on how primary and secondary school students use the concepts of 
ratio and rate when solving a ratio comparison problem. Our results have shown that a 
large number of students seems not to have the concept of ratio available during and at 
the end of secondary education. These results coincide with those obtained by Nunes et 
al. (2003) with primary school students and by Castillo and Fernández (2021) with 
secondary school students. However, for the construction of the interiorized ratio (rate 
concept), it is fundamental the ratio concept since rate is defined as “reflectively 
abstracted constant ratio” (Thompson, 1994, p.192). 
Yeong et al. (2018) explained that the base of students’ misconceptions of ratios is that 
they do not understand ratio as a relationship between quantities. Our results are in line 
with this explanation since more than 40% of the students did not identify the extensive 
quantities or the multiplicative relationship between them (categories A1 and B1). 
However, other difficulties appeared linked to the norming techniques and the 
identification of the referent in the comparison. So, it seems that not only the 
identification of the multiplicative relationship between the extensive quantities is a 
key issue (Nunes et al., 2003; Thompson, 1994; Yeong et al., 2018) but also other 
elements such as the norming techniques and the referent in a comparison.  
The students who identified the speed (ratio m/s) (category B5) seem to understand this 
ratio as a new quantity. However, to understand the speed as intensive quantity (rate) it 
is necessary to identify that the extensive quantities can vary but still maintain the same 
relationship. A little more of the 40% of students were able to identify it in question c) 
but few students were able to use the concept of rate in other situations. Therefore, the 
construction of the rate concept is complex. 
Our next step is to identify students’ profiles since it could allow us to identify how 
students move from one stage to another of the Reflection on the Activity-Effect 
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Relationship mechanism. This identification can also give us information about key 
elements in the construction of the rate concept. 
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CYCLES OF EVIDENCE COLLECTION IN THE DEVELOPMENT 
OF A MEASURE OF TEACHER KNOWLEDGE 
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This study highlights some of the tensions that arise during measure development 
while attending to both Rasch measurement principles and mathematics education’s 
focus on high quality operationalization of complex theoretical constructs. We situate 
our measure development work within the context of a larger design-based 
mathematics teacher preparation intervention project focused on improving teacher 
candidate attentiveness, and illustrate how these tensions have shaped our instrument 
and item development work over the last four years.  
INTRODUCTION 
Persistent global concerns regarding the quality and efficacy of mathematics 
instruction have long influenced mathematics education research agendas (e.g., 
Council for the Accreditation of Educator Preparation, 2022; Grossman, Hammerness, 
& McDonald, 2009) and have led to ongoing efforts to (a) articulate the range of 
constructs related to effective mathematics teaching (Ball, Thames & Phelps, 2008), 
(b) develop scaled instruments which reliably measure the skills and knowledge 
associated with each construct (e.g., Mathematical Knowledge for Teaching Measures 
from the Learning Mathematics for Teaching Project, 2005), and (c) design 
interventions with the potential to improve teachers’ and prospective teachers’ position 
on those scales (Hill, Rowan, & Ball, 2005). This study reports on some of the 
challenges found at the intersection of measure development, intervention design, and 
mathematics teacher education program implementation. The focus of this paper is on 
the development of a measure of teacher attentiveness, the Disciplinary Attentiveness 
to Student Ideas-Quantitative Reasoning Instrument (DASI-QRI), and items which 
feature evidence of student quantitative reasoning at the secondary level. Operating 
under the constraints of mathematics teacher preparation programs and the realities of 
intervention implementation while also adhering to the charge that “a series of 
interrelated investigations is required to understand the construct(s) that a measure 
assesses” (Clark & Watson, 2019, p.1413) has surfaced new complexities associated 
with measure development for mathematics teacher education. Through a focus on the 
iterative development of one item in our instrument, we illustrate how multiple cycles 
of evidence collection and analyses can be used to inform revisions, delineate how 
these multiple cycles may be necessary to surface a range of different issues, and 
highlight some of the tensions that must be navigated while designing scalable 
measures with the potential to yield meaningful data for mathematics education 
researchers, teacher educators, and professional development providers.  



Cavey, Totorica, Mo, Carney 
 

 

2 - 116 PME 45 – 2022 
  

BACKGROUND 
The DASI-QRI was developed to measure attentiveness to students’ quantitative 
reasoning. Attentiveness integrates components of mathematical knowledge for 
teaching (Ball, Thames, & Phelps, 2008; Shulman, 1987), professional noticing 
(Jacobs et al., 2010), progressive formalization (Freudenthal, 1973; Gravemeijer & van 
Galen, 2003; Treffers, 1987), and formative assessment (Black & Wiliam, 2009). It is 
defined as the ability to analyze and respond to a particular student’s mathematical 
ideas from a progressive formalization perspective (Carney, Cavey, & Hughes, 2017). 
Previous work with construct map development for attentiveness (Carney, Totorica, 
Cavey & Lowenthal, 2019) informs item development for the DASI-QRI.  
The instructional intervention associated with the development of the DASI-QRI is 
designed to increase attentiveness to students’ quantitative reasoning and consists of a 
series of modules with both asynchronous and synchronous components. Each module 
centers upon a challenging, nontraditional task and features a sequenced collection of 
curated video and written artifacts of secondary students working on the task. The 
focus and development of module content has been described elsewhere (e.g., Cavey, 
Libberton, Totorica, Carney, & Lowenthal, 2020). 
The Standards for Educational and Psychological Testing’s (AERA, APA, NCME, 
2014) argument-based approach to validity encourages conceptualizing development 
and validation as an ongoing, iterative process. However, certain constraints can lead 
to more iterations than might typically be expected. For the DASI-QRI, three 
interrelated, yet distinct factors led to numerous iterations. These factors were: 

1. Test development within an instructional intervention development project, 
2. Measuring and defining the components of the attentiveness construct, and 
3. Use of the Rasch measurement model, which demands consideration of many 

different test and item indicators, yet also yields a high-quality product. 
CYCLES OF EVIDENCE COLLECTION AND ANALYSIS 
Annual administrations, each consisting of multiple cycles of evidence collection, has 
informed the development and revision of DASI-QRI items. The type of evidence 
collected depended on the status of development for both the instrument and individual 
items. For example, administration of the DASI-QRI in Year 1 did not include Rasch 
analysis because the number of participants was limited. Additionally, each 
selected-response (SR) item was initially developed through analysis of responses to 
the constructed-response (CR) version and identification of exemplar responses for use 
in the SR version (Carney, Cavey, & Hughes, 2017). Response process analysis of 
cognitive interview data examined the degree of match between participant responses 
to the CR and SR versions of the item and informed SR item revision (Mo, Carney, 
Cavey, & Totorica, 2021). Once item development/revisions were completed, the 
DASI-QRI was administered as a pre/post measure in courses using the associated 
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intervention. Rasch analysis techniques were used to examine both individual item 
functioning and overall item and person statistics for the instrument as a whole. Results 
of these analyses then prompted additional evidence collection and revision. See Table 
1 for a brief overview of the ways in which cycles of evidence collection have 
impacted the development of the DASI-QRI and one item, in particular, the Truck 
Intent Item, provided in Figure 1. 

 

n 
Items 

DASI-QRI Changes Truck Intent Item Changes CR SR 
Year 1 Pre  35 15 0 N/A Development of SR version 
Year 2 Pre 89 0 12 added 2 SR items Revised SR version 
Year 3 Pre 127 0 14 added 6 CR items none 
Year 4 Pre 129 6 14 none none 
Year 4 Post 116 6 14 TBD TBD 

Table 1. Cycles of Evidence Collection and Impact 
The Truck Intent Item is the first of three questions related to the Algebra I task 
pictured in Figure 1 (Note: Algebra I refers to the standard first course in algebra for 
ages 13-14 in the U.S.). Subsequent items include images of secondary student work 
on the task and prompt candidates to indicate their level of agreement with SR options 
related to the student’s approach and potential teacher responses.  

 
Figure 1. Truck Intent Item 
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The intended response for the ranked item, listed from high {H} to least {L} 
agreement, is: {H} The graphical relationship between two variables and how speed 
and time can be used to calculate distance, {M} Using the relationship between 
distance, rate, and time (distance = rate × time), and {L} Finding or estimating the area 
under a function which involves trying to find distance based on rate of change. Given 
that the stated context is Algebra I, finding the area under a function is not a generally 
appropriate mathematical focus. Option {H} situates {M} in the context of graphical 
reasoning, and is thus the more complete and appropriate description of the 
mathematical focus. The Truck Intent Item is scored based on correctly ranking the 
{H} (1 point) and the {L} (1 point) (see Table 2). 

Ordering of SR Options Score 
{HML} 2 
{HLM} or {MHL} 1 
{LHM} or {MLH} or {LMH} 0 

Table 2. Scoring Scheme for the Truck Intent Item 
We focus our results on the Year 4 administration of the DASI-QRI and the Truck 
Intent Item to illustrate how repeated cycles of evidence collection and analysis are 
necessary to uncover potential issues. Participants in Year 4 were enrolled in a 
mathematics course across 13 U.S. universities in which the course instructor 
implemented the project’s intervention. Year 4 analyses of the 20-item instrument, to 
date, have included Rasch analysis on the pre measure for 129 participants, on the post 
measure for 116 participants, and on the pre-post paired data for the 62 candidates who 
appeared to meaningfully engage with the intervention. Qualitative analyses of 
individual item response trends for the 62 participants and previously collected 
cognitive interview data for 13 participants were also completed. 
With respect to the Rasch analyses, two persons with extreme scores of 0 were dropped 
from the post measure responses of 116 participants across 20 items. There were no 
extreme scores on the pre. No extreme scoring categories were dropped from the 
analyses for either the pre or the post. There were four groups of items based upon the 
format (SR versus CR) and the number of ranking options for the SR (2, 3, and 4 
options). The items within the same grouping share the same partial credit response 
structure. The JMLE estimation process converged when the maximum logit change 
was .0041 (.0033 pre). 
RESULTS 
Rasch Analysis    
Overall, the item “test” reliability is .96(.97 pre), which is very high, with a separation 
index of 5.15(5.81 pre). The sample size allows the item difficulties to be estimated 
precisely and confirms the item difficulty hierarchy (e.g., high, medium, low item 
difficulties) of the instrument. The person “test” reliability is .72(.44 pre); the person 
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separation index is 1.62(.89 pre). Thus, the instrument may not be sensitive enough to 
distinguish between high and low performers or more performance levels in the 
sample. The raw variance explained by the Rasch measure was 24.09%(24.7% pre). 
The point-measure correlations (PTMEASUR) were all positive, suggesting that all the 
items were pointing in the same direction. Except for the Truck Intent Item on the post, 
the mean-squares (MNSQ) were not excessive, so the misfit was acceptable; the 
standardized statistics (ZSTD) for both INFIT and OUTFIT were not extreme; thus, we 
failed to reject the null hypothesis that these data fit the Rasch model. However, the 
Truck Intent Item had an OUTFIT MNSQ of 1.69 and a ZSTD of 4.64 due to some 
unexpected responses on the post. This indicated additional analysis may be needed.  
For the Truck Intent Item, item category frequency analysis indicates that the average 
measures advanced with the score categories for the pre but do not advance with the 
categories on the post; 22 people with a score of 2 had an average measure of -.12, less 
than the average measure of -.02 of 35 people with a score of 1 (see Table 3).   

  Pre Post 
  Frequency Mean ability Frequency Mean ability 

Item 
Score 

0 42 (33%) -.26 59 (51%) -.35 

1 44 (34%) -.15 35 (30%) -.02 

2 43 (33%) .07 22 (19%) -.12* 

Table 3. Item Score Frequencies and Mean Ability 
The Item Characteristic Curves (ICC) in Figure 2 (pre on the left and post on the right) 
show the empirical ICC (blue line) of Truck Intent with an unexpected behavior 
(outside the 95% confidence bands [grey line] around the expected Item Characteristic 
Curves [red line]). For the pre, there is an unexpected drop in the highest end of the 
latent variable (i.e., measure), and on the post, there is an unexpected rise at -2.8 and 
-1.2 and an unexpected drop at 0.5 in the latent variable relative to item difficulty scale. 

 
Figure 2. Item Characteristic Curves (ICC) of Truck Intent Item for Pre and Post 
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Truck Intent Response Analysis 
Examination of the raw response data for the subset of 62 participants revealed that 21 
(~34%) scored lower on the Truck Intent Item on the post compared to the pre. The 
highlighted portion of Table 4 shows how participant rankings changed, which 
includes 12 of the 16 participants (75%) who originally scored a 2 and 10 of the 23 
(~43%) participants who originally scored a 1. While there were also participants who 
scored higher on Truck Intent Item on the post, it was the large percentage of 
participants with decreased scores that prompted further examination of the data. 

  Post-Test Ordering  
  {HML} {HLM} {MHL} {LHM} {MLH} {LMH} Total 

Pre-Test 
Ordering 

{HML} 4 1 6 1 1 3 16 
{HLM} 2 1 2 0 0 3 8 
{MHL} 3 1 5 1 2 3 15 
{LHM} 1 0 1 0 1 4 7 
{MLH} 2 3 0 1 4 2 12 
{LMH} 0 0 1 1 1 1 4 

 
Total 12 6 15 4 9 16 62 

Table 4. Pre- and Post-Test Rank Ordering of SR Options for the Truck Intent Item 
Re-examination of the cognitive interview data, collected in an effort to better 
understand response process, revealed that of the 10 participants interviewed who 
mentioned the Algebra 1 context of the Truck Intent Item, all 10 ranked {H} with the 
highest level of agreement, and 8 responded with the intended ranking {HML}. 
Interestingly, it did not seem to matter whether or not a participant noticed the potential 
connection to calculus or the graphical reasoning aspect, though data are limited as 
there were only 4 different ranking options represented in the sample and only one 
participant selected {LMH}. In addition, only one participant explicitly compared 
options {H} and {M}, indicating that further data collection is needed to better 
understand response processes associated with the Truck Intent Item. 
TENSIONS IN MEASURE DEVELOPMENT 
Measure development for complex constructs such as attentiveness remains a 
persistent challenge for the mathematics education community, one that often garners 
superficial nods to statistics associated with reliability and validity (e.g., Cronbach’s 
alpha) or else is sidestepped altogether in lieu of qualitative assessment. This could be 
due, in part, to the tensions which arise when attempting to address issues revealed by 
Rasch analysis while also operating within the context of mathematics education. For 
example, from the measurement perspective, the DASI-QRI’s low person “test” 
reliability and separation index indicate the need for additional items. Yet from the 
mathematics education perspective, additional items, especially when considering the 
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cognitive complexity required to elicit evidence of attentiveness, place an undue 
burden on test-takers in terms of both time and fatigue. Quality instrument 
development from the measurement development perspective also often depends upon 
ready availability of large participant pools. In contrast, recruitment of participants 
within the mathematics education community - especially within the context of a larger 
instructional intervention project - can be a significant challenge. Furthermore, quality 
instruments and their items are expected to perform roughly the same across all 
administrations with an implicit assumption that test-takers complete the assessment 
with fidelity. However, instrument use in the mathematics education community is 
often embedded in a mathematics course or professional development as part of an 
intervention; thus, test-taker motivation and investment in completing the assessment 
with fidelity can vary depending on the timing of administration and test-taker 
perceptions of the assessment. Could this be why the Truck Intent Item performed well 
in some administrations and raised issues of concern in another? Did performance 
decrease simply because participants missed or ignored the course context when they 
completed the post? Are variances in Rasch analysis results due to instrument or item 
failings that can be addressed via revision, or are they due to something else?  
FINAL THOUGHTS 
We have aimed to highlight the complexity of measure development when 
meaningfully attending to both Rasch measurement principles and mathematics 
education’s focus on high-quality operationalization of complex theoretical constructs, 
particularly within the context of developing a measure associated with an 
instructional intervention. The issues which surface when considering each perspective 
precipitate different kinds of development work, the outcomes of which can impact the 
other. This often warrants additional cycles of evidence collection, analysis, and 
revision, and elicits tensions from the mathematics education side, as we must also 
consider persistently small sample sizes, the length of the assessment, the time 
demands on instructors and teacher candidates, and alignment between item design and 
the cognitive complexity of attentiveness we wish to measure. 
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PRE-SERVICE TEACHER`S SPECIALISED KNOWLEDGE ON 
AREA OF FLAT FIGURES 

Sofía Caviedes, Genaro de Gamboa, Edelmira Badillo 
Universitat Autònoma de Barcelona  

 
This study aims to characterise elements of specialised knowledge of a group of 
preservice teachers (PST) when solving area tasks. Emphasis is placed on the 
subdomain of Knowledge of Topics. The written justifications and procedures used in 
the resolution of one area task are analysed using mixed methods, including 
qualitative and quantitative analysis. The results indicate that PST who manage to 
respond to the demand of the task mobilise different registers of representation as well 
as procedures, justifications, properties, and geometric principles. Results suggest 
that the use of different representations in the resolution process has an instrumental 
value that allows other indicators of the subdomain of Knowledge of Topics to be 
mobilised.  
INTRODUCTION  
Teachers' knowledge of both content and its didactics has been studied from different 
approaches (e.g., Ball, Thames & Phelps, 2008; Carrillo et al., 2018). Particularly, we 
are interested in the content knowledge teachers possess, as it allows them to better 
understand and justify why they solve mathematical tasks in a certain way. 
Additionally, possessing content knowledge also allows teachers to know different 
ways of solving problems and teaching the content to their students (Shulman, 1986). 
We emphasize the importance of possessing knowledge of area measurement because 
this content can set the ground to understand other mathematical content in primary 
education, such as multiplication of natural numbers or fractions (Freudenthal, 1983). 
Despite the different applications that area measurement may have, numerous 
investigations conclude that PSTs do not have key content and pedagogical knowledge 
(Chamberlin and Candelaria, 2018; Simon and Blume, 1994), which has a negative 
impact on student learning. This study departs from the model of Mathematics Teacher 
Specialised Knowledge (MTSK) developed by Carrillo et al. (2018) and considers the 
relevance of the domain of content knowledge on area measurement with the objective 
to answer the following question: what is the specialised knowledge mobilised by 
PSTs when facing tasks involving the calculation of area? Thus, our study aims to 
characterise the Knowledge of Topics (KoT) mobilised by PSTs when solving tasks 
that require the use of diverse procedures. 
THEORETICAL FRAMEWORK   
Surfaces' measurement requires understanding and reorganizing the object that is 
going to be measured, as well as understanding different properties, concepts and 
procedures involved in measurement processes (Sarama & Clements, 2009). 
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Therefore, it is not surprising that area measurement poses difficulties for PSTs. There 
are numerous studies that highlight such difficulties (Caviedes, de Gamboa & Badillo, 
2021b; Chamberlin & Candelaria, 2018; Simon & Blume, 1994), which are mainly 
related to poor resolution strategies and limited acquisition of geometric properties. 
Such difficulties limit the ability of PSTs to propose examples and guide students' 
wrong answers (Runnalls and Hong, 2019). The tendency that PSTs have towards the 
use of formulas could be related to difficulties in using and coordinating the different 
registers of representation (e.g., geometric and symbolic) involved in the resolution of 
a given task, or else, to the lack of acquisition of geometric properties and principles 
involved in area measurement processes (Caviedes, de Gamboa, & Badillo,2021b; 
Hong & Runnalls, 2020; Runnalls & Hong, 2019). Knowledge of such conceptual 
elements could help PSTs to expand their range of resolution strategies while allowing 
them to justify what they do and why they do it (Caviedes, de Gamboa & Badillo, 
2021b).  
In order to understand and develop the different conceptual elements involved in 
solving area tasks it is necessary to consider the knowledge that PSTs have on such 
elements. In this sense, we adopt the analytical model of Mathematics Teacher 
Specialised Knowledge - MTSK (Carrillo et al., 2018), which determines the desirable 
components that PSTs should know for their future practice (Policastro, Ribeiro, & 
Fiorentini, 2019; Caviedes, de Gamboa, & Badillo, 2021b). Within the MTSK model, 
the KoT subdomain describes and makes it possible to distinguish the specific 
conceptual knowledge that is mobilised in the resolution of area tasks (see Table 3), 
and their relationships by means of interconceptual connections. Thus, KoT describes 
what and in what way mathematics teachers (or PSTs) know the content they teach.  
METHOD 
This study is situated in an interpretative paradigm and is part of a broader research that 
seeks to characterise the PSTs' specialised knowledge of area measurement. Content 
analysis (Krippendorff, 2004) is used to make a first interpretation of the PSTs' 
resolutions using the KoT indicators as analytical categories. In addition, a statistical 
implicative analysis (Gras & Kuntz, 2008) is conducted to explore relationships 
between different KoT indicators that PST mobilise in their resolutions. Data 
collection was carried out in the first term of the 2020-2021 school year. The 
participants were 147 PSTs enrolled in the third year of the Primary Education Degree 
at the Universitat Autònoma de Barcelona. The PSTs had had previous instruction on 
different procedures of area measurement as part of their study programme. A 
semi-structured open-ended questionnaire (Bailey, 2007) was designed to be 
completed individually. The PSTs were asked to justify each procedure in writing. To 
solve the tasks, PSTs could use manipulative materials (cut-outs as an annex to the 
questionnaire), as well as measuring instruments (except tasks 1, 2 and 3). The 
questionnaire was structured as follows: three tasks responding to contexts of equal 
partition, and comparison and reproduction of shapes (Tasks 1, 2 and 3); two 
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measurement tasks (Tasks 4 and 5); one task of classification of statements and one 
task of the definition of the concept of area (Tasks 6 and 7); finally, one task of analysis 
of students' responses (Task 8). The PSTs had one week to answer the questionnaire 
and send it in pdf format. For sake of brevity, we present the analysis of two resolutions 
of Task 4 (Table 1). 

Table 1. Task proposed to the PST group 

Formulation Graphic representation of the Task  

Task 4: Look at the triangles constructed on 
the geoboard. What is the area of each 
triangle? Which one has the largest area? 
Justify your answers using two or three 
different procedures. 

 
(Compiled by authors) 

 
Qualitative and quantitative analysis of PSTs` resolutions 
Since we have not found any studies detailing the KoT indicators for area measurement 
processes, these have been constructed based on the results of a previous study 
postulating an epistemic configuration of the concept of area (Caviedes, de Gamboa & 
Badillo, 2021a). From this epistemic configuration, we define the KoT indicators to 
focus on the analysis of the PSTs responses to the task. Each indicator was adapted to 
the subcategories that the MTSK model proposes for KoT (phenomenology, 
representations, procedures, properties and principles, justifications, and 
intra-conceptual connections) and allowed a deductive coding of the PST responses, 
with the support of MAXQDA plus software. Table 2 shows the KoT indicators. 

Table 2. Categories of specialised knowledge 

KoT's categories   Indicators 
Representations 
(R)  

(R1) Written: use of adjectives such as "minor", "major", "double", 
"half", etc., related to surfaces.  
(R2) Manipulative:  use of physical objects or dynamic geometry 
software.  
(R3) Geometric:  use of convenient decompositions or partitions of 
known figures to calculate the area of unknown figures. 
(R4) Symbolic: use of the R+ set to compare two or more surfaces, 
for counting units or adding up areas and-or for the indirect 
calculation of the area.  

Procedures (P) (P1) Compare two or more surfaces directly by total and-or partial 
overlapping. 
(P2) Compare two or more surfaces indirectly by cutting and 
pasting. 
(P3) Decompose in a convenient way, graphically or mentally, two 



Caviedes, de Gamboa, Badillo 
 

 

2 - 126 PME 45 – 2022 
  

or more surfaces.  
(P4) Carry out movements of rotation, translation, and 
superimposition of figures. 
(P5) Decompose surfaces into congruent units and/or sub-units to 
facilitate the process of measuring areas. 
(P6) Measure areas as an additive process by counting units or 
sub-units that cover the surface. 
(P7) Measure linear dimensions and use formulas. 

Properties (Pp) 
and principles 
(Pr) 

(Pp1) Use of conservation. 
(Pp2) Use of accumulation and additivity.  
(Pp3) Use of transitivity. 
(Pr1) Use of the fact that the unit of measurement can be divided 
into parts to facilitate the process of measuring. 
(Pr2) Use of the fact that every triangle is equidecomposable from a 
parallelogram. 
(Pr3) Use of the fact that the calculation of area is a matter of 
decomposing the figure into a finite number of parts so these parts 
can be put back together to form a simpler figure.  

Justifications (J) (J1) The overlapping method to compare two or more surfaces is 
useful for establishing equivalence or to include relationships. 
(J2) The mental act of cutting the two-dimensional space into parts 
of equal area serve as a basis to compare areas.  
(J3) The change in the shape of a surface does not change the area of 
the surface, as the figures can be decomposed and reorganised while 
keeping the same "parts". 
(J4) The area of the triangle is half of a square or a rectangle with the 
same base and height that contains it. Therefore, the formula of the 
triangle is base per height divided by two. 

 
Figure 1 below shows examples of two PSTs (PST 7 and PST 133) that mobilise 
specialised knowledge. PST 7 uses written (R1), geometric (R3) and symbolic (R4) 
representations in the resolution process. As we can see, PST 7 mobilises (J2) and (J3) 
because she decomposes and reorganises triangles A and B into rectangles to later 
apply the area formula (P7). In addition, PS7 mobilises (J4) as she searches for the 
square containing triangle C to calculate its area by means of using formulas (P7). 
Geometric representations (R3) allow PS7 to decompose triangular surfaces by using 
auxiliary trace. Likewise, they allow PST 7 to use (P4) and (P5) in the case of triangle 
A, and (P3) and (P4) in the case of triangles B and C. The surface decomposition and 
reorganization procedures, allow PST 7 to implicitly mobilise (Pp1), (Pp2) and (Pp3) 
in addition to (Pr1), (Pr2) and (Pr3). This is because PS7 is able to accept that the area 
of a triangle does not change as its shape changes and that it is possible to simplify a 
resolution process by decomposing a figure and then rearranging its parts into a new 
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figure.  The resolution of PST 133 shows written (R1), geometric (R3) and symbolic 
(R4) representations. Figure 1 shows that (R3) allows PST 133 to use the auxiliary line 
tracing and to decompose the area around the triangles (P3) in order to find the legs 
corresponding to triangles B and C. This procedure allows PST 133 to obtain the length 
of the sides of triangles B and C by applying the Pythagorean theorem (P10) and (R4). 
Since the red triangle was located straight on the geoboard, PST 133 calculates its area 
by means of (P7). The comparison between triangles allows PST 133 to mobilise 
(Pp3). 

 
Figure 1. PSTs `resolution for Task 4 

With the aim to identify relationships between KoT indicators, we performed a 
statistical implicative analysis. This analysis makes it possible to identify and organise 
quasi-implication relationships (implicative relationships between variables with a 
given probability) by means of a graph with arrows that relates the variables with the 
strongest implications at different levels and intensities. The quasi-implication 
between the variables A ➔ B indicates that, if PST respond affirmatively to A, they are 
likely to respond to B (although a relatively small number of responses may contradict 
it). That is, A ➔ B is equivalent to the set B not A being almost null (with the 
understanding that the set of observations A is almost contained in B). In this study, in 
the implicative graph, we use the arrow ➔ to indicate a quasi-implication according to 
the meaning described above. The variables considered for the implicative analysis are 
those arising from the qualitative analysis (presented in Table 3). In order to carry out 
the analysis, a value of 1 was assigned to each variable mobilised in the PSTs’ 
responses and a value of 0 to each variable that was not mobilised in the PSTs’ 
responses. The package C.H.I.C version 0.27 in the R console version 3.5.2 was used. 
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RESULTS AND DISCUSSION 
Table 3 shows that PTS have a tendency to use symbolic representations (R4) and 
numerical procedures (P7). PST also struggle to solve Task 4 using different types of 
procedures. Geometric representations (R4) involving auxiliary line tracing, which 
allow the use of surface decomposition and reorganization procedures (P3), (P4), (P5), 
are used by a small number of PSTs. The same happens with the justifications, 
geometric properties and principles that support the above-mentioned procedures.   

Table 3. Categories of specialised knowledge mobilised in Task 4 
 

Code Frecuency Code Frecuency Code Frecuency 
R1 106 P5 38 J2 6 
R4 141 P3 37 P1 5 
P7 105 NP 34 J1 4 
Pp2 121 Pr1 31 Pp1 6 
R3 63 J3 11 Pr3 3 
J4 44 P4 10 Pp3 6 
P6 39 Pr2 7 R2 3 

 
The implicative graphs in Figure 2 below (with 98% significance indicated by the red 
arrows and 95%, indicated by the green arrows) show different relationships between 
KoT subdomain indicators for those resolutions that make use of different procedures. 
Graph A (Figure 2) shows that PSTs using procedures related to isometric 
transformations (P4) make use of geometric representations (R3) by auxiliary line 
tracing and of procedures that require reorganizing and decomposing surfaces (P3). In 
turn, PSTs that make use of geometric decompositions (P3) use symbolic 
representations (R4), indicating a use of different procedures. The symbolic and 
written representations present a reciprocal relationship (R4➔R1/R1➔R4) due to the 
fact that a symbolic register is also a written register. Graph B (Figure 2) shows that 
PSTs simultaneously mobilise the properties of conservation (Pp1) and accumulation 
and additivity (Pp3). Both properties involve the use of geometric representations 
(R3), as PSTs decompose triangles by auxiliary line tracing, and subsequently 
rearrange them into a different figure (rectangle). We also observe that the use of (R3) 
also implies the use of (R1) and (Pp2), that is, the PSTs justify in written form the 
decompositions performed and the comparison of the triangles, in order to explain 
which has the largest area. The use of the transitivity property (Pp2) is also associated 
with the use of (R4), which indicates that PSTs make comparisons between triangles 
based on the numerical value of their areas. On the other hand (R1) implies the use of 
(R4) since both are written registers. Graph C (Figure 2) shows that the use of (J4) 
implies the use of (R4) and (R1), that is, PSTs justify by writing the relationship that 
exists between the area of triangles and squares or rectangles. The use of (J2) implies 
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the use of (R3), as PSTs use decompositions to compare and relate the areas of 
triangles. Graph D (Figure 2) shows that the use of (Pr2) implies the use of (R3), i.e., 
PSTs use line tracing to decompose figures and identify that a triangle can be 
transformed into a rectangle. The use of (Pr1) implies the use of (R4) and (R1), which 
indicates that PSTs justify the decomposition of triangles into congruent units and 
subunits by means of written and symbolic registers. Again, we observe a reciprocal 
relationship between symbolic and written representations (R4➔R1/R1➔R4). 

 
Figure 2. Implicative graph showing relationships between KoT indicators for Task 4. 

The results of the qualitative analysis suggest that PSTs tend to associate area with the 
use of calculations and formulas, through the use of a symbolic register (Caviedes, de 
Gamboa & Badillo, 2021b; Chamberlin & Candelaria, 2018, Simon & Blume, 1994). 
Such a tendency explains why PSTs fail to mobilise conceptual elements linked to the 
measurement of areas, such as properties (Hong & Runnalls, 2020). Broadly speaking, 
the implicative graphs in Figure 2 show that representations are presented as a key 
conceptual element within the KoT indicators since they allow PSTs to use diverse 
resolution procedures. This suggests that representations have an instrumental and 
organizational value within the KoT subdomain indicators, that is, certain 
representations allow the use of certain procedures (or justifications, geometric 
properties, and principles) that would not be possible with the use of other 
representations. For example, the use of geometric representations allows PSTs to use 
surface decomposition and reorganization procedures, which would not be possible 
through the use of symbolic representations. The same geometric register allows the 
mobilization of properties of conservation and accumulation and additivity, which are 
not mobilised through the symbolic register. We consider that this instrumental value 
of representations could have implications for the didactic design of tasks that allow 
the development of specialised knowledge in PSTs. 
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IDEAS OF EARLY DIVISION PRIOR TO FORMAL INSTRUCTION 
Jill Cheeseman, Ann Downton and Anne Roche 

Monash University 

 

Often young children develop ideas of mathematics before they formally meet them at 

school. Such is the case with early counting concepts.  However, little is known about 

children’s early ideas of division. The study reported here investigated the ideas of 114 

children (5-6-years old) before they had received any formal instruction about division 

in their first year at school. A pencil and paper test comprising worded problems with 

diagrams was read aloud by the teacher. We analysed children’s drawings on the 

diagrams. Results indicate that 74% of children could conceive of at least one division 

situation prior to any instruction. Some children (20%) could interpret quotitive and 

partitive division problems. Children drawing on diagrams can provide evidence of 

their conceptual interpretation of division problems. 

INTRODUCTION 

Our research interest in children’s earliest multiplicative thinking (Cheeseman et al., 

2020a), naturally led us to consider how aspects of division interconnect with early 

multiplication. In particular we were investigating the formation of equal groups from 

a collection of objects and the enumeration of the group structures. We played dancing 

games where children made groups of a specified number when the music stopped 

(Cheeseman et al., 2020b). Whether the thinking in the game was the basis of 

multiplication or early quotitive division – or both – intrigued us. It is often assumed 

that young children have no concepts of division before they are formally introduced to 

division at school. Our earlier research showed that many children achieve early 

multiplicative reasoning before it is formally taught (Cheeseman et al., 2020b). The 

research question we sought to answer here was: What concepts of division do young 

children develop prior to school instruction?  

RESEARCH BACKGROUND 

Early division 

Previous studies have demonstrated that young children (4-5-year-olds) can model 

division problems using concrete materials before having any formal instruction (e.g., 

Carpenter et al., 1993), and that children’s early understanding of division is 

underpinned by their experiences of sharing and allocating portions (Correa et al., 

1998; Squire & Bryant, 2002). However, Correa et al. argue that an understanding of 

sharing is not the same as having an understanding of division, as division requires as 

understanding of the inverse relation between the divisor and the quotient. For 

example, if 12 sweets are shared between three friends they each receive four sweets, 

but if 12 sweets are shared between four friends they only receive three sweets each. In 
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other words, the more people the fewer sweets each person would receive. This view 

was confirmed by Squire and Bryant (2002) and Ching and Wu (2021).  

Squire and Bryant (2002) explored whether young children (5-8-year-olds) could 

distinguish between and recognise the role of the divisor and quotient in division 

problems and whether children found it easier to identify the quotient in a partitive 

rather than in a quotitive context. Each child was presented with a pictorial 

representation of the situation and required to provide a verbal response. The same 

problem (12 4) was used for both experimental contexts. Whilst there was no 

difference mathematically between the two conditions, as the divisor and quotient were 

the same in both, the difference between the two conditions was the mental model of 

division children brought to the problem. The results suggested that children had two 

different schemas of action each of which was dependent on the nature of the problem 

context– sharing in partitive division, and forming quotas in quotitive division. The 

authors argued that providing children with different problem contexts and 

representations was important to help children to: recognise the dividend, divisor and 

quotient in a problem; think flexibly in given contexts; and develop a conceptual 

understanding of the multiplicative relationships. The work of these researchers relates 

to the present study where we examined children’s understanding of different contexts 

using representations of division. 

Recently published work of Ching and Wu (2021) reported that 5-6-year-olds could 

recognise and reason about multiplicative relationships in partitive and quotitive 

problems, and that explicit instruction is not a prerequisite for understanding division. 

Their results also showed that children performed better on partitive situations than 

quotitive, which resonates with earlier findings (e.g., Correa et al., 1998; Squire & 

Bryant, 2002). Ching and Wu’s findings were particularly relevant to our study. 

Matalliotaki (2012) used some similar methodological approaches to the research we 

report here. She examined 5-6-year-old kindergarten children’s capacity to solve 

quotitive division problem prior to formal instruction. Each child was presented with 

six problems relating to the context of gloves, socks and football - three presented 

orally and the same problems were presented pictorially. Matalliotaki found that more 

children provided a correct response for the pictorial form than the oral (40% 

compared to 11%). The author found that the pictorial representation enabled the 

children to keep track of their thinking and collect pairs of objects by focusing on 

interpreting and coordinating the information in the problem.  

Findings of these studies suggest that young children are capable of interpreting and 

solving partitive and quotitive division problems. Further, that creating mental models 

or schemas of action for these situations may assist children to recognise the relation 

between dividend, divisor and quotient – an important underpinning of division.  
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Assessing young children’s mathematical thinking  

Pencil-and-paper tests are not commonly used to evaluate young children’s 

mathematical thinking. Such tests involve abstract ideas interpreted through words, 

diagrams and symbols. It is difficult for children to interpret the questions and to 

understand how they are required to respond. Written tests are considered 

inappropriate assessment tools for 5-6-year-old children due to the reading and writing 

difficulties they present. These difficulties are not confined to young children (White, 

2005). For many years mathematics educators have been advocating for more 

authentic methods of assessing mathematical learning (Ball & Bass, 2000; Clarke & 

Clarke, 2004). We agree with the sentiments of these authors. However, based on 

earlier research (Cheeseman & McDonough, 2013) we know that carefully constructed 

and meaningful pencil-and-paper tests can be used successfully to elicit young 

children’s thinking.  

Of course, as an assessment of knowledge and skills the pencil-and-paper test reported 

here is limited in its scope as a tool to reveal division concepts. Nevertheless, 

children’s responses as shown by their drawings on the test, have provided some 

interesting data which give insights into children’s thinking. 

METHOD 

The drawn responses to a pencil-and-paper test protocol (Streit-Lehmann, 2019) were 

analysed to produce the results reported here. Detailed descriptions of the instrument, 

the sample, and the data analysis follow. 

The assessment instrument consisted of two separate forms, each was a page three 

worded problems. One form had three quotitive division situations where children had 

to portion objects into equal groups; the other page had three partitive division 

situations where children had to share all objects equally. Each worded problem on the 

quotitive division test used matched numbers on the partitive division test (12 ÷3, 7 ÷2, 

22 ÷4) but the problem contexts were different to elicit different thinking. Inclusion of 

remainders and numbers beyond the children’s usual curriculum range (e.g., 22) 

indicated that the problems became progressively more difficult, yet the language of 

the test was kept as simple as possible and constructed in short sentences. The protocol 

required the teacher to read the problems aloud to the children. Diagrams are an 

element of pencil-and-paper tests known to be difficult for students to interpret (Smith 

et al., 2011; van den Akker et.al., 2006). As a result, every attempt was made to use 

simple diagrams recognizable to the children.  

An opportunistic sample of students, who were in their first year of school in Australia 

and had not formally been introduced to division, was obtained by personal links to the 

second author. From the larger sample of student responses, a randomized sample of 

114 students was selected based on: two completed tests for each child, and 

representation from Government, Catholic and Independent sectors, and multiple 

classes, representing data across 20 classes from 10 schools. 
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Categories of responses were proposed for coding and each researcher independently 

coded a small sample of students’ responses. Through discussion, agreement was 

reached about the interpretation of the children’s drawings and the thinking that each 

type of response indicated. Where there were several acceptable solutions we defined 

what we considered as “correct”. A revised coding system was then applied to the data 

and results were entered into a spreadsheet. Findings reported here focus on the facility 

children exhibited with the problems on the test. 

FINDINGS AND DISCUSSION 

The major finding of the study concerned young children’s ability to interpret division 

contexts.  Only about one quarter (26%) of children were unable to provide a correct 

response to any of the six division worded problems. The corollary is that, 74% (almost 

three quarters) of children in our sample could provide a correct response and draw 

their thinking to at least one division worded problem. These children showed some 

awareness of division, prior to instruction.  

Next, we present the percentages of correct solutions for each problem.  

  

Problem context (calculation) 

Correct 
solution 
only 

Correct 
solution and 
representation 

Q
u

o
titiv

e 

Q1 Apples in bags of three (12 ÷3) 67% 43% 

Q2 Socks in pairs (7 ÷2) 51% 25% 

Q3 22 children with 4 at a table (22 ÷4) 41% 32% 

P
artitiv

e  

P1 Candies share between 3 jars (12 ÷3) 64% 41% 

P2 Donuts share between two (7 ÷2) 53% 38% 

P3 4 children sharing 22 cards (22 ÷4) 33% 9% 

Table 1: Percentages of correct solutions for each worded problem  

Table 1 displays the correct written solutions only and the correct solutions matched to 

a correct drawn representation of the solution for each diagram. Writing a correct 

numerical solution only, either as a numeral or text, was easier for the children than 

drawing their thinking to match their solution. For each question roughly one third of 

children who could answer numerically could not draw their correct solution (see 

Table 1). The exceptions to this finding were Q2 the socks in pairs (7 ÷2) where half of 

the children were unable to draw pairs of socks, and P3 where four children shared 22 

cards (22 ÷4) for which two thirds of children could not share the cards equally. These 

questions (Q2 and P3) required careful examination to find possible explanations for 

these results. We noted that drawing the socks in pairs (7 ÷2) was surprisingly difficult 

for 68% of children.  
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We hypothesise that the diagram given in the worded 
problem (Fig. 1) unintentionally made the drawing of 
solutions more difficult. Perhaps children were trying 
to match a “left sock” with a “right sock”, or perhaps 
the illustration of an additional pair of socks was 
misleading. All we know is that drawing three pairs 
of socks with one left over was difficult. 

                         

 

 

 

Fig. 1 Socks in a drawer 

In Table 2 the numbers and percentages of children who recorded correct solutions 

matched to correct illustrations to both the quotitive and partitive versions of each 

division calculation are shown.  

Calculation Quotitive division Partitive division n=students 
(%) 

12 ÷3 Q1 Apples in bags of three  P1 Candies shared into 3 jars 23 (20%) 

7 ÷2 Q2 Socks in pairs  P2 Donuts share between two 17 (15%) 

22 ÷4 Q3 22 children, 4 at a table  P3 4 children share 22 cards 2 (2%) 

Table 2: Students correct in both quotitive and partitive worded problem 

Twenty-three of 114 children (20%) were able to demonstrate their correct solution to 

Q1 and P1 (see Fig. 2 for an example).  

 

Fig. 2 Child 17’s response to quotitive and partitive problems for 12 ÷3 

This child used a grouping strategy for each problem and recorded a correct response. 

Of note is that she recorded ‘bag’, which shows a connection to the problem. For P1 

other children drew lines from each candy to a jar, reflecting one-to-one sharing.  

Seventeen children (15%) were able to correctly solve and draw a solution to Q2 and 

P2 (see Fig. 3 for an example). Child 33 used a grouping strategy for the partitive 

problem rather than an action of sharing or drawing a line from each donut as might be 

expected, and also recorded 3 on each plate. Of the 23 children who responded 

correctly for P2, 13 acknowledged the half, by dividing the remaining donut in two 

with a drawn line. 
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Fig. 3 Child 33’s response to quotitive and partitive problems for 7 ÷2 

Two children (2%) successfully solved and drew a solution to Q3 and P3 (see Fig 4 for 

an example).  

 

 

Fig. 4 Child 87’s response to quotitive and partitive problems for 22 ÷4 

Unlike the previous examples in which the children used grouping, child 87 used lines 

to distinguish the groups in Q3 and lines to show the distribution of the cards to each 

child in P3. The other child who successfully solved both problems used circles to 

show grouping in each instance. The fact that only two children successfully solved 

both problems highlights the complexity of these contexts.  

Three major findings result from this study. 

 Almost three quarters (74%) of children showed some awareness of division 

prior to instruction. They could provide a correct response and draw their 

thinking to a least one worded division problem. 

 Twenty percent of young children could interpret both quotitive and partitive 

division problems. These results extend Matalliotaki’s (2012) findings by 

focusing on both conceptual forms of division.  

 Children’s drawing on diagrams can provide evidence of their conceptual 

interpretations of division problems. 

 

CONCLUSION 

The limitations of the reported empirical study include: its assessment method – i.e., 

the use of a pencil and paper test to investigate the thinking of young children, the 

randomised sample of responses was taken from data gathered in a relatively small 

geographical region, and the results are indicative rather than broadly generalisable. 

We posed the research question: What concepts of division do young children develop 

prior to school instruction? Our findings indicate that some young children (26% of 

those we analysed) displayed no knowledge of division via a pencil-and- paper test. 
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This is unsurprising as the children had not formally met division and the test method 

was unfamiliar to many of them. Of interest, was the fact that 74% of children in this 

study were able to conceive of either a quotitive or partitive division context for at least 

one worded problem. We have found no other research evidence that has reported 

similar findings with 5-6-year-old children. Our results indicated that the context 

determined the way children solved each worded problem. This finding echoes the 

work of Squire and Bryant (2002) and Ching and Wu (2021). Our study raises 

questions about the suitability of particular worded problems researchers select and the 

diagrams we use with children. For example, the static objects depicted on paper are 

difficult for many children to use to represent their dynamic thinking about partitive 

division. We contend that it may be simpler to draw a loop around a quota of objects to 

divide them into a new unit, than to organise lines to represent sharing objects one by 

one to a person or target. Therefore, the action of drawing could impact on the results 

of a study and this finding requires further study. 

The results presented here make us keen to continue to investigate young children’s 

conceptual development of division. The main implication from our findings is to 

question the assumption that young children have no early multiplicative concepts - 

including rudimentary ideas of division. We are conscious that there is a lot that we are 

yet to discover about early mathematics concept development in young children. We 

encourage fellow researcher to investigate such thinking. Our argument is not about 

arithmetical calculations of division problems but the interpretation of contexts that 

require either partitive or quotitive thinking, as almost three-quarters of the children 

whose tests we examined could display some conceptual awareness of division, prior 

to any formal instruction.  
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EXPLORING THE AFFORDANCES OF A WORKED EXAMPLE 
OFFLOADED FROM A TEXTBOOK  

Sze Looi Chin, Ban Heng Choy and Yew Hoong Leong 

National Institute of Education, Nanyang Technological University 
 
In designing a set of instructional materials to use in his classroom, a teacher heavily 
offloaded items (e.g., worked examples, practice questions, exercises) from 
school-based materials and textbooks. At a cursory level, one may easily dismiss this 
as a thoughtless lifting of curricular materials. But upon careful analysis – as is 
detailed in this paper – a different picture emerges. In this paper, we describe and 
analyse how this teacher adapted one of many worked examples, beyond its typical 
use, during instruction to develop students’ conceptual understanding of 
proportionality. We argue that he noticed and harnessed multiple affordances in a 
single item that most teachers may overlook, without the need to modify the example, 
and propose a notion of “affordance space” as a lens to view teachers’ design of 
instructional materials. 
INTRODUCTION 
Emerging research on Singapore mathematics teachers as designers of instructional 
tasks and materials has illustrated the innovative ways that teachers can adapt and 
improvise tasks, representations, and sequencing to achieve various instructional goals 
(e.g., Cheng et al., 2021; Leong et al., 2019). However, there are teachers who choose 
to heavily rely on tasks and procedures from curricular materials for instruction, 
otherwise known as offloading (Brown, 2009). While using an item directly from a 
textbook may appear to be inherently less complex and involve less “design thinking”, 
Brown (2009) noted that offloading should not be mistaken for being inferior to 
adapting or improvising, nor does it necessarily imply teachers who offload are 
negligent or less competent. In a study conducted by Amador (2016), four teachers 
with 1 to 17 years of teaching experience engaged in offloading, as well as adapting 
and improvising; two of whom initially offloaded and shifted to adapting during a 
lesson. Furthermore, as Choy and Dindyal (2021) demonstrated, despite offloading 
“typical” tasks from past-examination papers, a teacher, Alice, was able to implement 
them in unexpected and productive ways to develop students’ conceptual 
understanding. They proposed this was due to the teacher’s ability to “effectively 
notice and harness the affordances of these materials in mathematically productive 
ways” (p. 196). We build on Gibson’s (1986) idea and refer to the set of possibilities 
for how a task may be used as the affordances of a task. In addition, we follow Choy 
and Dindyal (2021) in seeing that the affordances of a task are always there, 
“independent of teachers’ ability to perceive them” and “do not vary as teachers’ 
instructional goals or needs change” (p. 198).  
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In comparison to the abundance of research on the affordances of “challenging” and 
“rich” tasks, there is an underrepresentation of research on the affordances of “typical” 
and “routine” items. Hence, the aim of our study is to examine the affordances of a 
worked example that was offloaded from a textbook by a secondary mathematics 
teacher, Peter (pseudonym), but somehow implemented in a non-typical and 
non-routine way. We hypothesize that Peter engaged in a nuanced form of offloading 
based on noticing and harnessing multiple task affordances—which may not always be 
immediately obvious—simultaneously. We propose the notion of an affordance space 
to describe the cognitive space in which teachers work with tasks whose dimension is 
dependent on the number of affordances they perceive. The more affordances a teacher 
perceives in a task, the great number of ways they can use the task beyond its “typical” 
procedural use. Further details of the affordance space will be discussed later. Our 
research questions are: What affordances does a teacher perceive in a typical worked 
example that influenced their decision to offload? And how do these affordances 
influence their implementation of the worked example? 
METHODS 
The data reported is drawn from a larger study on secondary mathematics teachers’ 
design of instructional materials (IMs). Four teachers from two local secondary 
schools in Singapore engaged in 3 to 6 design cycles involving individual design of IM 
drafts, one-on-one semi-structured interviews after each draft, and subsequent 
professional learning community (PLC) discussions with their colleagues. The topics 
of their IMs were Ratio and Rate, with an underlying emphasis on proportionality. 
Then, the teachers implemented their IMs and one-on-one semi-structured interviews 
were conducted after every lesson. The teacher discussed in this paper is Peter 
(pseudonym). At the time of the study, Peter had over 10 years of mathematics 
teaching experience, predominantly at upper secondary (Year 11-12), and it was his 
first-year teaching Year 9 mathematics. He implemented his IMs over four lessons, 
each lasting 40-70 mins. All interviews, PLC discussions, and lessons were recorded 
and transcribed. Peter’s IM drafts and the curriculum materials he used—a set of 
school-based worksheets and a textbook—were collected. 
To analyse the data, we adopted two grain sizes of analysis. Firstly, at the item-level we 
examined the individual items (e.g., worked examples, practice questions, 
investigation tasks) within Peter’s worksheets to determine: (i) instances of offloading, 
adapting, or improvising; and (ii) potential task affordances that influenced Peter’s 
offloading, adapting, or improvising. Then, at the set-level we examined Peter’s tasks 
as a collective, to determine overarching instructional goals. This dual item-level and 
set-level analysis was conducted initially on Peter’s worksheets and his design 
interviews, then the implementation and post-lesson interviews were used to 
triangulate the affordances and goals.  
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FINDINGS 
In this section, we begin by summarising Peter’s selection of items for his IMs before 
we present a vignette of how Peter had used one of the worked examples to develop 
students’ understanding of proportionality. We then highlight two of the affordances 
inferred from Peter’s use of the example. Table 1 summarises the offloads, adaptations, 
and new items we determined in our first round of item-level analysis. Out of a total 35 
items, 27 items were offloaded, suggesting that Peter heavily relied on the 
school-based worksheet and textbook. Due to length constraints, we will focus our 
discussion on one item that was offloaded from the textbook in his Ratio worksheet to 
explore the affordances Peter noticed and harnessed to adapt the task during 
instruction. 

 School-based worksheet Textbook Peter’s 
new items 

Total 
items  Offloaded Adapted Offloaded Adapted 

Ratio 14 2 6 1 1 24 
Rates 6 2 1 2 0 11 
Total 20 4 7 3 1 35 

Table 1: Summary of items in Peter’s instructional materials 
The worked example Peter offloaded resembled those typical problems (Choy & 
Dindyal, 2021) found in any textbook or examination paper about ratios (Figure 1). It 
shows how to find a ratio between two quantities that have different units, followed by 
two short questions for students to ponder. In general, worked examples are used to 
demonstrate a solution method for students to imitate. Hence, most teachers would 
typically read these with students, possibly bringing key steps to students’ attention, 
before applying the same method to a similar problem. This is how one would expect 
Peter to use the worked example, especially given that he directly offloaded it from the 
textbook into his worksheet and followed it with a similar question (“Andrew and 
Sueda took 90 seconds and 21

3
 minutes respectively to answer an IQ question. Find the 

ratio of Andrew’s time to Sueda’s time.”).  
Yet, this was not how Peter implemented the item, nor was it his intention to use the 
worked example as a demonstration for the subsequent question. Instead, Peter used 
the task to engage the class in a discussion about a fundamental concept of 
proportionality over a 10-minute episode. He briefly went over the working in four 
short sentences, and then quickly moved to focus on question (a): 

Peter: You’re supposed to find the ratio of Bobby’s time to Aravin’s time. Do take 
note if you are comparing using the same units. In this case, Aravin’s time 
converted into minutes, that should give you three over two minutes. Then 
we actually can compare the ratio. Now, question! What if instead of 
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converting Aravin’s time from seconds to minutes, what if we compare in 
seconds? 

Students: Times 60! 
Peter: Before we even calculate, do you think the ratio would be the same? 
Students: No... (some students begin to write) 
Peter: Wait, ah! Don’t calculate first. Wait, wait, wait! What happens if we 

compare them in seconds? Who says it will be different? Raise your hand. 

The students looked around the classroom. Those who had initially raised their hands 
lowered them slowly, and those who still believed it would be different sheepishly kept 
their hands up as low as possible. Peter asked them again: 

Peter: Who thinks the ratio will be different? It’s okay. I remember seeing three or 
four hands, then becomes two hands now? I was pretty sure I heard more 
than one voice. Who says it will be the same? Raise your hand! 

Some students began writing on their worksheets while others continued to look 
around the classroom. Out of a class of 38 students, eight students raised their hands. It 
was evident that there was uncertainty amongst the class and clearly the worked 
example was not useful in resolving this. Peter had fostered curiosity amongst the 
students, creating the need for the class to investigate this before moving on to the next 
task. Peter orchestrated a whole-class discussion in which he asked the students to 
suggest the actual working of the solutions to the same question in a different unit. As 
he followed their instructions, he drew arrows on the side of each step (Figure 2) and 
said, “Whatever you do to one side, you do to the other side”. When the students 
shouted out the solution without stating their reasoning, Peter asked them, “How do 
you know?” Eventually the class arrived at the solution 14 : 9 and numerous students 
yelled, “They are the same!” One student exclaimed, “They are equivalent!”. 
Affordance 1:  Developing conceptual understanding about proportionality 
As an experienced teacher, Peter was likely aware that worked examples are 
commonly used for demonstrating the steps to solving a problem. However, it was not 
used to ensure students understood the necessity of converting quantities to the same 
units, nor was it about how to simplify ratios. Instead, Peter’s requests for students to 
think about whether the ratios would be the same or different “before we even 
calculate” illustrated that his intention was more focused on developing students’ 
conceptual understanding about ratio. In an interview about one of his worksheet 
drafts, he mentioned that it was “a thought I’d like to plant in their heads”. He paid 
little attention to the solving procedure and utilised the worked example as a 
foundation for exploring with students the preservation of proportionality (i.e., the 
ratio will be the same, regardless of the units). In the post-lesson interview, Peter 
revealed that he deliberately spent more time on the worked example because he didn’t 
“want them to think proportionality questions always [involved] systematically 
comparing the process. I also want them to think in context as well.” Furthermore, this 
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use of worked examples to develop students’ conceptual understanding about 
proportionality was not exclusive to this item. It was observed in another worked 
example on comparing the rate of fuel consumption of a car using two different units 
(Figure 3). Evidently, Peter saw the affordance of using worked examples to go beyond 
demonstration of procedures. 

  

Figure 1: Worked example offloaded from the 
textbook onto Peter’s worksheet 

Figure 2: Peter’s written 
working on the whiteboard 
(rewritten for readability) 

Affordance 2: Representations that make proportionality more visible 
If Peter had written the students’ working on the board in a similar manner to the 
worked example, he would have still been able to show that the ratios were the same. 
Yet, he chose to adapt from the worked example and adopt the use of a new 
representation, the arrows (Figure 2). With the worked example projected onto one 
side of the whiteboard and Peter’s writing on the other, a comparison of the two would 
show that the underlying proportionality in simplifying ratios is more visible when 
using the arrows. On top of serving as a reminder to students that simplifying ratios 
requires treatment to both quantities, it illustrates why proportionality is preserved 
because of the equal treatment to both quantities. Hence, an affordance of offloading 
this worked example directly from the textbook was also to be able to demonstrate in 
contrast to another representation of proportionality that would aid students in making 
sense of the solving procedure. 
There was no clear evidence in the worked example about how Peter came to using 
arrows. However, when we analysed the implementation of other worked examples, 
which did not have arrows present on the worksheet, we found Peter had also used this 
arrow method as an alternative representation (Figure 4). Furthermore, he asked 
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students “I know in the example there isn’t an arrow, but can you please write in the 
arrow in the example just for you to see, so you can follow” on another worked 
example. Our analysis of the 35 items on the worksheets at the set-level identified only 
three instances of some form of arrows; one was an improvisation, and two others were 
adaptations. However, when we zoomed out to examine the 35 items implemented 
during the lesson, we noticed he had adapted them all by consistently using arrows as a 
representation of proportionality. This consistent and well-rehearsed use of arrows 
suggests that although he offloaded most of his worksheet items from the school-based 
worksheet and textbook, he intended to adapt the implementation all along.  

 

 

Figure 3: Another offloaded worked example Figure 4: Another instance of 
Peter's use of arrows 

In this 10-minute episode, Peter’s implementation of the worked example was 
noteworthy for two reasons. Firstly, he demonstrated how typical worked examples 
need not be used for imitating solving procedures but could instead be a catalyst for 
whole class discussions on fundamental components of a concept. Secondly, although 
he essentially ignored the procedural elements of the worked example, he was still able 
to target procedures related to proportionality through his use of arrows to make the 
reasoning process more visible to students. This dual achievement of both conceptual 
and procedural developments is an example of how multiple affordances can be 
noticed and harnessed within a typical item.  
DISCUSSION AND CONCLUDING REMARKS 
The research questions of our study were: (i) What affordances does a teacher perceive 
in a typical worked example that influence their decision to offload? And (ii) how do 
these affordances influence their implementation of the worked example? Instead of 
using the worked example in the usual manner to demonstrate a solving procedure, 
Peter perceived a key affordance as being able to facilitate an investigation about the 
preservation of proportionality when forming ratios involving a unit conversion. 
Furthermore, he utilised and demonstrated to students how adopting a different 
representation—the arrows—when simplifying ratios could be useful in making the 
underlying proportionality in ratio problems more pronounced and easier to follow. 
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Building on the work of Choy and Dindyal (2021), we propose the notion of an 
affordance space. On the basis that the potential of a task is dependent on the teacher’s 
ability to notice and harness its affordances, teachers who see a task’s sole affordance 
to facilitate procedural development can be said to be working in a one-dimensional 
affordance space and therefore less likely to use the task in adaptive or productive 
ways. However, teachers who notice multiple affordances of a task work in an 
affordance space of higher dimension and can take the task in various directions 
beyond procedural development. As Alice in Choy and Dindyal’s (2021) study and 
Peter in this paper demonstrate, research on the affordances of typical task can make 
clearer the work of teachers, while also demonstrating the complexity of teachers’ 
work in the interesting ways they may use such tasks. Unfortunately, amongst this sea 
of innovative teachers adopting challenging tasks and adapting and improvising others, 
teachers like Peter and Alice are easily missed or disregarded. 
Lastly, Brown’s (2009) definition of offloading does not seem to fully capture the 
phenomena we observed with Peter. If we adopt the notion that offloading is 
fundamentally judged on the instructional outcomes, then Peter cannot be said to be 
offloading at all. But what does that mean for his design of instructional materials 
which clearly demonstrate the offload of the task from one resource to his worksheet? 
Furthermore, Amador (2016) noted that Brown’s (2009) description of teachers’ 
interactions with curriculum resources implied a static interaction. However, in her 
study, as well as ours, she documented two teachers who shifted from offloading in 
lesson design to adapting during instruction. While their shift was triggered by 
unexpected incidents that meant students would be unable to achieve the instructional 
goals, interestingly, in the case of Peter, his shift was not triggered during the lesson. 
His adapting was evidently planned due to the casual and well-rehearsed way he 
skipped through the solution method to focus on the preservation of proportionality, as 
well as his consistent use of arrows throughout his implementation. 
This brings to question the need to redefine offloading, or at least elaborate and extend 
on it to encapsulate such instances. In our analysis of Peter’s implementation, we 
wondered if there was possibly no such thing as completely offloading because every 
teacher brings with them their own unique knowledge and contexts. On a 
broad-grained scale we might see teachers simply carrying out the task as described in 
the textbook—or as Brown (2009) gave the example of teachers reading from the 
curriculum materials—but when we zoom in to the teaching episode, we can likely 
capture teachers asking additional questions or even very nuanced moments where the 
teacher provides some alternative scaffolding that was not prescribed in the textbook.   
As our findings pertain to a single teacher, and are hence not generalizable, future 
research should aim to study the various affordances that teachers notice and attempt to 
simultaneously harness in typical tasks to develop the concept of affordance space. In 
particular, instances where there appears to be a disconnect (or shift) between how 
teachers interact with tasks during lesson design and implementation would be 
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worthwhile pursuing. To do so, a similar item-level and set-level analysis approach 
used in this study would help to identify and examine shifts in teachers’ interactions at 
different grain-sizes.  
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NEGOTIATING MATHEMATICAL GOALS IN COACHING 

CONVERSATIONS 
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Content-focused coaching aims to focus the coach-teacher conversations on the quality 

of mathematical goals and associated activities while co-planning a lesson. The 

coach’s role is to support the teacher to articulate a mathematical goal that represents 

an important mathematical idea, to plan activities in support of that goal, and to 

anticipate how students will respond to the mathematical activities. We use a 

framework that emphasizes the dialogic and mediated nature of the coach-teacher 

conversations. We found that coaching conversations focused primarily on 

instrumental aspects of lesson planning and only less so on deeper articulations of 

content, and we found differences across coaches’ practices. The findings provide 

nuance to empirical findings of coach-teacher conversations. 

SUPPORTING TEACHERS TO ENGAGE IN AMBITIOUS INSTRUCTION 

There are ongoing efforts in many countries to engage students in disciplinary 

practices, which entails greater support for teachers (cf. Andrews, 2013; Li & Ni, 

2012). For teachers who are implementing challenging instructional practices, one type 

of professional support that is growing internationally is coaching (c.f, Kickbusch & 

Kelly, 2021). Coaching provides teachers feedback (Boston & Candela, 2018) and 

focuses them on core aspects of instruction (Coburn et al., 2012). Coaching typically 

involves someone with content and pedagogical expertise who works in a one-to-one 

setting with a teacher. Many coaching models have a three-part coaching cycle, in 

which the coach and teacher co-plan a lesson, the teacher and /or the coach teaches the 

lesson, and the coach and teacher then reflect on the lesson together (Campbell & 

Malkus, 2011; Gibbons & Cobb, 2016; Russel et al., 2020).   

There needs to be a greater understanding of how coaching supports teachers’ capacity 

to enact ambitious instructional practices (Gibbons & Cobb, 2016); mathematics 

educators need a more nuanced understanding of how coaches engage teachers in 

substantive mathematical and pedagogical discussions. A deeper understanding of the 

nature and impact of coaching conversations will inform how to engage teachers in the 

challenges necessary to transform their teaching.  

THEORETICAL FRAMEWORK  

Our framework emphasizes the dialogic nature of learning (Bakhtin, 1986; Vygotsky, 

1986). Vygotsky emphasized the asymmetric nature of the dialogue between two 

parties in which one is well-versed in the principles of a discipline and the other is 

conversant in everyday formulations of the content. Vygotsky emphasized that for the 

learner there is a dynamic interplay between the disciplinary concepts introduced by 
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the more expert member and the learner’s informal and empirically-based 

formulations. Moreover, dialogue involves a process of interanimation (Bakhtin, 1986; 

Gee, 1999) in which multiple voices become intertwined in the thoughts and speech of 

the interlocutors. That is, dialogue involves learning by both members of the dyad and 

a shared way of conversing about the content in question. Importantly, the learner 

begins to incorporate characteristics of disciplinary discourses. 

Considerations about the role of communities of practice in mathematics specifically 

has gained attention as a way to consider the situated aspects of learning, including 

coaching (Voskoglou, 2019). Within the context of coaching, the coach-teacher pair 

bridge multiple communities of practice as they negotiate principles of mathematics 

instruction, building from disciplinary and practical knowledge to develop a common 

language around and vision of instruction. Their work is mediated (e.g., Wertsch, 1995) 

by a range of contextual factors, such as individual characteristics, professional 

experiences, and curriculum materials. 

Our framework focuses on four factors that mediate the coach-teacher interactions in 

a coaching cycle: coach characteristics, teacher characteristics, the coach-teacher 

relationship, and the content of the coaching cycle. A key coach characteristic is their 

coaching stance (Gillespie et al., 2019), of which we identify two basic stances: the 

reflective and the directive stances. The reflective stance involves inquiry into the 

teacher’s thinking; the directive stance involves direct assistance to the teacher in the 

forms of evaluation, explanation, and suggestions. Teacher characteristics include their 

prior practices, beliefs, and knowledge. The coach-teacher relationship involves 

communication style and trust that evolves over multiple coaching cycles. The content 

of the coaching cycle pertains to the mathematical goals and tasks identified by the 

teacher and coach as the focal points of the lesson. See Figure 1 for a visual of our 

framework.  

 

Figure 1: Diagram of Coaching Cycle 
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CONTENT-FOCUSED COACHING   

Content-focused coaching has emerged in the USA as an effective model to help 

teachers develop productive instructional practices specific to their content area (West 

& Staub, 2003), and has been shown to have positive effects on teachers’ instructional 

practices and student achievement in the area of literacy (Matsumura, Garnier, & 

Spybrook, 2012) and mathematics (Campbell & Malkus, 2011; McLaughlin, 2012; 

Neuberger, 2012). Stein et al. (2021) recently studied content-focused coaching 

specific to mathematics with 32 coaches and found that one-on-one content-focused 

coaching around the planning of a lesson led to positive outcomes. Results also 

indicated that the content-focused coaching model supported a shift from a focus on 

what teachers will do in a lesson to how students might think in a lesson, a trend we 

contend could support a focus on lesson goals.  

RESEARCH METHODS 

This study emerged from a larger study in which we designed and researched an online 

three-part professional development model for mathematics teachers in rural contexts 

(Choppin et al., 2020). We designed the three components as a set of coordinated 

experiences that took place across two academic years. Part of the model included 

video-based coaching in which the coach and teacher met via Zoom to plan the lessons, 

the teacher video-recorded the lesson using Swivl technology, the coach and teacher 

annotated the video in a Swivl library, and then met afterward to discuss the lesson via 

Zoom. In this paper, we focus only on the planning meeting conducted in advance of 

the lesson.  

We focused on four cycles of coaching for five coach-teacher pairs involving four 

coaches and six teachers. We analyzed a total of 20 planning transcripts. Our analysis 

focused on the discussion around the mathematical goals, using the rubric in Table 1. 

We parsed the transcripts of the planning conversations into stanzas, which ran 

anywhere from four to 20 turns of coach-teacher conversation. Using a process that 

involved pairwise coding and a consensus discussion, we coded the stanzas as having 

or not having a mention or discussion around mathematical goals. Then all stanzas 

were coded line by line using the rubric in Table 1.   

Rating Description 

1 Discussion focuses on mathematical goals without the connections 

mentioned in the level 3 rating, such as when the coach presses the teacher 

to clarify or revise the mathematical goal.  

2 Discussion focuses on one or more of the following, without explicit 

connections made to the mathematical goal: the task, potential student 

strategies, or students’ prior mathematical experiences.   
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3 Discussion entails one or more of the following connections central to 

core principles of content-focused coaching: the disciplinary connections 

between the goal and task; the ways in which the task supports student 

engagement with the goal; forms of student thinking that represent 

understanding of the goal; or how the goal represents part of a connected 

set of mathematical experiences or ideas. 

Table 1: Rubric to analyze discussion around mathematical goals 

Our research questions were: 

1. To what extent did the coaching conversations highlight important connections 

related to the mathematical goals in the planned lessons? 

2. What were the differences between the contributions of the coaches and teachers 

in the coaching conversations? 

3. What were the important differences across the coaches’ practices? 

RESULTS 

We discuss the results in order of the three research questions. In terms of the first 

question, nearly three-quarters of all turns were coded as focused exclusively on the 

goals (27%), task (32%), or potential student strategies (15%). By contrast, only 17% 

of all turns were coded at Level 3. These findings highlight the instrumental nature of 

the coaching conversations in negotiating the lesson plan elements versus engaging in 

deeper discussions around how those lesson elements represent connections to broader 

sets of mathematical experiences or topics. Below, we present samples from the data 

that represent these findings. In Episode 1, the coach (Reiss) pressed the teacher to 

clarify the goal.  

Reiss:     Students will evaluate a situation and determine—to determine and 

apply whether to use multiplication or division. Students will be able 

to interpret a remainder? Or—because we want them to be able to 

interpret what that remainder actually means in the situation—in a 

context. 

Sandoval:     Interpret situation in context, if or when, if remainders are part of the 

answer. Hmm, that’s still not clear. No. Students will interpret what to 

do with remainders? [Laughter] Or how to—I know that over here it 

says that they have to interpret it. Including problems which 

remainders must be interpreted. Maybe it’s just that simple.  

In Episode 2, the coach (Bishop) and teacher worked out details of the task.  

Bishop:     What would be your next steps? How would you move them towards 

the symbolic expression, or would you want to wait to do that? What’s 

your thinking around that? 
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Wise:     I would draw a triangle and label the sides, a, b and c. Then have them 

draw the squares off of it, and see how—could they represent the area 

of the square. Hopefully they would say, squared and then how would 

they represent the other square on the leg. There’d be a picture of the 

right triangle with a squared, b squared and c squared in the square. 

Bishop:     Oh, I think it’s great, yeah. 

In Episode 3, the coach and teacher engaged in a substantive discussion (rated a 3) in 

which the coach and teacher connected the goal to bigger mathematical ideas.  

Reiss:     Because they might. Even though—I mean, I divided in number one 

to find the answer, I can see a kid actually working the opposite way 

and multiplying up to try to get to that answer of twenty-four. In that 

sense, if we think kids—if we really want them to understand 

multiplication and division and how to apply it to a situation, that 

would be different than taking a situation and deciding, “Do I have to 

use multiplication, or do I have to use division?” They might work in 

the opposite way. 

Sandoval:     I see what you’re saying, because now that you’re saying that, I’m, 

“Oh, yeah, we just spent a week talking about factors, so—”  They 

might work in an opposite way saying— because today we did review, 

that they’re—when I asked, “How are factors important to the 

multiplication process?” Then they were, “Oh!” Well, this is why.” 

Yeah, so, [laughter] oh, boy. 

In terms of the second question, coaches contributed more frequently (58% of total 

turns) than the teachers and had 2.6 times as many turns rated at Level 3 than the 

teachers. By contrast, the teachers had nearly as many turns rated at Level 2 (170 

compared to 183) as the coaches, which constituted 64% of the teachers’ turns and only 

50% of the coaches’ turns. This indicates the coaches focused more consistently on the 

disciplinary connections than the teachers and less on the instrumental aspects of lesson 

planning, even though just over half of the coach turns were rated at Level 2. Roughly 

half of the Level 3 codes for the coaches were the goal and task are connected from a 

disciplinary perspective. Episode 4 is an example of the coach providing most of the 

explanations and connections.  

Lowrey:     Yeah. In this one—because I know that when they’re breaking up the 

brownies, it’s like each brownie has its own area. 

Fernandez:   Right. 

Lowrey:     And if we step back, just back a step, I would think that they’re really 

actually practicing fractions within a set. It’s just using like, each 

brownie would have its own area and model, but it’s really a set of 

brownies. So, it’s a set of seven brownies that we’re going to share 

among four people. 
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Fernandez:   Right. 

Lowrey:     So, the idea of division, and what results out of this division is a 

fraction. Like, what each person’s actually going to get, to be able to 

have that? 

Fernandez:   Right. 

In terms of the third question, there were differences across coaches in the distribution 

of turns in the rubric categories. Alvarez’s turns were evenly distributed across the 

three categories, while Bishop’s turns were primarily concentrated at Level 2 (58%). 

The other two coaches were similar to Bishop but had more balanced distributions, as 

seen in Table 2.   

Rating Alvarez Bishop Lowrey Reiss 

1 32 31 18 28 

2 35 58 46 45 

3 33 12 36 27 

Table 2: Percentages of coach turns in each category 

These differences primarily point to distinctions in the characteristics of the coach; we 

hope to better understand the impact of teacher characteristics when we analyze the 

coaching cycles from the next two years of data in which the same coaches worked 

with different teachers.  

DISCUSSION 

Our results highlight the instrumental nature of much of the discussion between 

teachers and coaches (see Episode 2) despite an explicit focus in the coaching model 

on engaging students in substantive discussions around content. The high number of 

turns focused on goals (27%) suggests an emphasis on the part of the coaches to 

identify a goal that is clear and connected to a big mathematical idea, as illustrated in 

Episode 1.  The results also illustrate the coach’s role as the expert responsible for 

directing the discussion, as seen in Episode 4. The coaches had 58% of the overall turns 

and 72% of all of the turns rated at Level 3. The variation in the patterns of coach 

moves reveals, unsurprisingly, differences in the coach characteristics that contributed 

to the dynamics of the discussions. The study provides necessary nuance into coach-

teacher discussions that will hopefully serve as a reference for future coaching studies 

in the US and elsewhere.  
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FAIRNESS IN POLITICAL DISTRICTING: EXPLORING 
MATHEMATICAL REASONING 

Sean Chorney 
Simon Fraser University 

 
For this paper, I explored the informal reasoning of undergraduate social science 
students in a mathematics class. They were looking into the mathematics of political 
districting, in particular gerrymandering. Using Sellars’ notion of the space of reasons 
and analytic categories from the socioscientific issues literature, I examined the 
reasons students gave for the positions they took. I observed the way mathematics 
played a role in their reasoning and, how, when they addressed a social issue, their 
reasoning was more holistic. The analytic categories illuminated my data on how 
mathematics was integrated into the students’ informal reasoning. 
INTRODUCTION 
Reasoning is an essential component of mathematics education, but in a recent article, 
Kollosche (2021) notes that there is a dearth of research on what reasoning takes place 
outside the formal kinds, such as deductive. He also states that there is no theoretical 
framing for reasoning in the mathematics education literature. In this study, I examine 
students’ reasoning in a mathematics activity that engages with a social issue. I am 
interested in reasoning other than the objective, detached, formal kind. Pursuing this 
interest, I explored the question of fairness in political districting, a topic seen to be 
integrally related to mathematics (Staples & Evans, in press). I want to know how 
student use mathematics in their reasoning and how the mathematics interweaves with 
their personal values and the social context of the activity.  
Research by Byers (2007) shows that connection to an authentic situation improves 
students’ ability to reason. They are not just algorithmically completing a task, but 
grappling with ambiguity, values, and complexity. Addressing social concerns in 
mathematics education improves students’ ability to conjecture and connect 
mathematical knowledge to social issues. This helps them becoming socially 
responsible citizens (Labaree, 1997). Applying mathematics to social issues moves 
education away from teaching of ‘facts’ about socio-mathematical issues, such as 
climate change or gerrymandering, to involving the reasoning about such issues.   
In this paper, I use the theoretical framework of Wilfred Sellars’ (1963) “space of 
reasons,” which posits that knowledge is not accumulated through experience or 
rational thought but through justifying with reasons. That is, in the giving of reasons 
when grappling with an ill-structured situation a person becomes aware of their 
decisions and justifications (Chang & Chiu, 2008). In addition, I also draw on the 
informal reasoning categories of Sadler et al. (2007), as analytic tools. Sadler et al. are 
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based in the socioscientific (SSI) field, which I posit aligns with Sellars’ space of 
reasons. In this study I ask students to engage in a political districting activity. I ask 
what kinds of reasons are given and how mathematics fits in with those reasons. 
THEORETICAL FRAMEWORK 
Space of Reasons 
The space of reasons (Sellars, 1963) is a philosophical notion that is a move away from 
mental representation toward increased awareness of the reasons one chooses to justify 
a claim. Giving reasons is a shift from problem-solving, in which the focus is based in 
trying to figure things out, to the contemplation of a situation in which contextual 
factors and emotional stance participate in the decision making of something that may 
not be able to be figured out. In this way, the space of reasons embraces broad 
reasoning, one not solely based in rational, objective thought. The purpose for using 
the space of reasons as a theoretical foundation is that it provides an opportunity to see 
students become aware of their own values and stance through the reasons they 
express. Mackrell & Pratt (2017) bring Sellar’s space of reasons into mathematics 
education and suggest that: “human minds develop through an initiation into the space of 
reasons in that our thoughts and actions are increasingly guided by what there is reason to 
think about or do” (p. 427). I contend the sort of activity that I gave to the students in this 
study contributes to students reasoning because the context of a districting activity 
gives them an increased sense of what they can do. 
Informal Reasoning 
Sadler et al. (2007) who combine science with social issues, known in science 
education as SSI, gives currency to the space of reasons. Through their empirical work, 
they have come up with four kinds of reasoning in the context of working with a social 
issue: [1] complexity, [2] skepticism, [3] perspective taking, [4] inquiry. Briefly, [1] 
complexity is an unwillingness to commit to a simple solution because of an awareness 
of the multiple factors inherent in a situation. [2] Skepticism is an awareness of 
potential bias in a situation. [3] Perspective taking is looking at a situation from 
different positions and recognizing that in the social world different people have 
different priorities. [4] Inquiry is an exploration of a situation which may require 
further investigation.  
The affinity between the space of reasons and the reasoning categories can be seen in 
the following passage:  

a key to interpreting a phenomenon as belonging within the space of reasons is whether the 
person holding the belief or desire or engaging in the action is aware that the belief, desire 
or action could be different and can ask the question whether their belief desire or action 
should be as it is (Mackrel & Pratt, 2017, p. 426).  

The question of whether the students have an awareness of fairness in districting and 
whether their decisions “could be different” is the question that motivates this study. In 
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particular, I ask what kinds of informal mathematical reasons are students giving in 
response to issues of fairness in a districting activity? 
METHODS 
In 2021, I taught an undergraduate mathematics education course at a university in 
western Canada. The course was intended for social science students who required a 
mathematics course to complete their degree. There were twelve 3-hour classes. There 
were 34 students registered and attending the class. The course was focused on 
quantitative reasoning and on topics such as the pigeonhole principle and proof by 
contradiction. The mathematics curriculum of the province in which the course was 
taught articulates two areas for mathematics teaching: content and competencies. 
Mathematical competencies are the ability to use mathematics rather than know the 
mathematics itself (“content”). According to the curriculum, students develop 
competencies through “reasoning.” The curriculum recommends engaging in 
“inquiry”, shifting “perspectives”, and “reflecting” on activities (BCMoE, 2015). 
These correspond to three of Sadler et al.’s (2007) four categories.  
Districting context 
One of the topics I introduced this year was the redistricting of voting constituencies. 
One of the reasons I chose this topic (in addition to its connection to reasoning) was 
that there was a federal election in Canada occurring three weeks into our course. The 
winner of the election had fewer overall votes than the loser, not an uncommon result 
in a first-past-the-post electoral system. In the class we had the day after the election, I 
asked the students whether they thought the result of the election were fair. Almost all 
of them thought it was not.  
Data  
This topic of districting was taught from a mathematical perspective rather than a 
political one. The mathematics included comparing the general population and the 
district population and analysing how the proportions between these two depends on 
district boundaries, compactness metrics (such as the relationship between perimeter 
and area), and voter counts and its relationship with wasted votes. One mathematics 
formula introduced was the efficiency gap; it is a measure that compares the difference 
between each party’s total votes minus wasted votes, divided by overall total votes. It 
was also essential to connect these mathematical ideas with the social issues of voting, 
taking into consideration concerns such as geographical obstacles, district contiguity, 
packing, and cracking.  
To give a sense of the kinds of activities I presented to my students, I projected a grid 
like the one seen in Figure 1a and asked them to consider districting in different ways. 
Figures 1b and 1c show the extreme results of this activity.  
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Figure 1: a) grid without any districts; b) districts favouring “P”; “P”s win 7-2;         c) 

districts favouring “C”; “C”s win 8-1 
Throughout the course, we investigated the redistricting prompts I gave through class 
activities, group discussions, and reflections. All data presented below comes from two 
take-home reflection assignments. The assignments were based on the notion of 
fairness, with the purpose of eliciting decisions and justifications. Due to the lack of 
definitive answers, mathematics, in this activity, can be considered a practice of giving 
reasons.  
The data was rich and there was a large set of responses, but due to restrictions of 
space, I present responses from four students, two from one prompt and two from 
another. The examples presented below, however, are representative of the overall set 
of responses. All quotes below are verbatim. I present data and analysis together.  
FINDINGS 
In the following analysis, I report on two prompts. 
Prompt 1 
What is fair when districting a population?  
Looking at the grids below, what is similar; what is different? Which set of divisions 
do you prefer and why?  

  
Figure 2: Two grids with the same “X” distribution but with different district 

boundaries 
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Inquiry 
Xian wrote: 

The grid on the left is much more compact than the grid on the right; so it seems 
‘technically’ better. However, both grids have the same (correct) outcome, showing that 
either type of division can be used ‘fairly’. Having said that, I do think the type of divisions 
on the right can be used more effectively for gerrymandering ~ I tried to redistrict and 
gerrymander the left side while maintaining the compact districts and was unable to do so; 
but then tried the right and could not do so either ~ so really, is one better than the other? 
No in that regard. 

Brown and Walter (1983) articulate a “what if” method as mathematical 
problem-posing. In Xian’s response, we see an example of asking a “what if” question 
when she implicitly asks “what if” I try to manipulate the boundaries? Xian wondered 
whether the two grids had different potentials in terms of gerrymandering. Her 
justification introduced an inquiry of manipulating boundaries to see which grid was 
closer to the possibility of gerrymandering than the other. But since she found that 
neither could be easily gerrymandered, she reasoned that neither is better based on that 
metric. I had not taught anything related to whether grids are closer to or farther from 
possible gerrymandering. She reasoned with that idea on her own. There is also 
mathematical legitimacy here in the consideration of “close or not close” to 
gerrymandering in the mathematics field of “outlier analysis.”  
Skepticism 
Barth wrote the following: 

Both sets of division share the same result of the X’s and O’s tying. The result of both sides 
are the same thus I PERSONALLY do not have a preference… But it is to be 
acknowledged that the diagram on the right can be seen as problematic as most districts are 
seemingly “packed”, which can be an indicator of gerrymandering. Both districts also have 
the same amount of wasted votes (9) and have an efficiency gap of 0. 

Barth's decision is strongly based in calculations; he calculates the winner, the number 
of wasted votes, and the efficiency gap. He positions these three calculations as central, 
and by emphasizing “PERSONALLY” he indicates that he feels uncomfortable with 
making a decision without more information. It is interesting to note that the 
calculations do not take precedence over his reasoning, in that he notices that there 
appears to be at least some potential for packing. But he cannot confirm or deny that 
there was. He notes it only as a possibility. In terms of skepticism, he is aware that 
there is not enough information and is therefore reluctant to express a preference.  
Prompt 2 
To simulate a random districting, draw a 5 by 5 district plan in an empty grid. Then flip 
a coin to propagate Xs and Os in the table as you move systematically through the grid. 
Is the result of this experiment appear fair for “X”s? If you can change your original 
district boundaries, what would you change to make it more fair?  
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Complexity 
Helena wrote: 

The Xs occupy 13/25 cells and the Os occupy 12/25 cells. The Xs occupy 52% of the cells 
but 60% of the districts. I believe if we are basing this off majority/minority it is fair that 
the Xs won as they occupy the majority of the cells with over 50%. I believe this is fair as 
it represents an adequate picture of the reality within the cells….Let's say I created just 
simple linear districts going by columns, the Xs would still win with the same margin of 
3/5. If we drew the districts by rows the Os would win, due to the packing of the Xs in the 
first row. I don't think I would make the change as it represents gerrymandering to allow 
the minority (O) to win by forcing packing of Xs in row number #1.  

Helena’s outcome seems fair to her and she is content, but she also evaluates various 
configurations to see whether her original results are as fair as they could be. She 
checks what would happen if she uses columns as districts and then rows. In the case of 
columns, there is no change in outcome; but with rows, the outcome was that the Os 
would win overall since her cells in the top row were all Xs. She concluded that she 
would not choose boundaries based on rows because the count for the districts would 
not match the count for the population. Her comment on the “reality within the cells” 
addresses proportional comparison. She has a mathematical sense of fairness in that the 
proportion of the popular vote should align closely with the population of district 
outcomes. Proportion in pure mathematics is at its root a statement of equality: a/b=c/d, 
where c/d can be any magnitude bigger (or smaller) than a/b. Helena’s dissatisfaction 
was based on her acceptance of this proportional statement of equivalence.  
Perspective Taking 
In response to prompt 2, David wrote: 

Even though this experiment did randomly end up giving quite fair results, as there were 
not many wasted votes at all (4 wasted for X, and 6 wasted for O) even if the results have 
been more skewed, I don't think you can change them to be more “fair”. The districts were 
created completely randomly, and the grid was filled in that way too, which is essentially 
the fairest this can be. If you were to change it to try to reduce the amount of wasted votes 
for one side, it would just become unfair to the other side. 

David is willing to accept any grid created randomly. He associates fairness with 
objectivity. David is relying on mathematics as objective, because it has no intent, it 
cannot be nefarious. He is using mathematics as a way to establish his stance. If there is 
human intervention in drawing and/or manipulating of boundaries, that is when 
problems can occur. He justifies this by recognizing that as soon as you reduce wasted 
votes for one party, you increase it for the other party. He noticed through a change of 
perspective that nothing would been gained if he were to interject. He would not solve 
anything, thus confirming his original stance.  
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DISCUSSION 
This study is about how mathematics is used in student reasoning about social 
questions. I focused on the mathematical content and competencies that emerge in 
reasoning about fairness in a political districting activity. I wanted to see how students 
use mathematics when making decisions. 
Returning to the notion of the space of reasons, it appears that students use both the 
social aspects of districting and mathematical justifications. Each student presented a 
unique approach to the reasoning in which they engaged. Xian engaged in a 
mathematical inquiry that paralleled Brown and Walters’ “what if” method to explore 
two arbitrary grids in terms of their mathematical proximity to bias (gerrymandering). 
This inquiry not only aligns with Sadler et al.’s categories, but is also based on her 
personal sense of fairness. Barth feels uncomfortable expressing his own opinion and 
uses three calculations to ground his decision. But he remains skeptical about whether 
those calculations are satisfactory as there are still social variables that may be 
unaccounted for.  
Helena grounds her stance in proportional equivalence and states her reasons as 
seeking the closest proportional equivalence between the population and the districts. 
She thinks that would be the fairest. She redraws district boundaries to determine 
whether there are better configurations. She, in fact, finds one that is worse. David 
relies on mathematical randomness as being fair and supports this by noting that in 
terms of wasted votes, he cannot improve the situation. Taking the perspective of one 
party and improving their situation will only negatively affect the other party. 
In each case, the kind of mathematics is different. Xian, Helena, and David base their 
reasoning on mathematical competencies, and Barth bases his on mathematical 
content. It is also evident that the mathematical reasoning cannot be separated from the 
context or the student’s values. This is confirmed by the various decisions made and 
how each student framed their stance, some confidently in mathematics, others without 
confidence in wanting to know more. The mathematics emerged from consideration of 
a social situation. For example, the proportionality between a population and its 
districts only exists because of the first-past-the-post system.  
This study looks to assess how students use mathematics in the reasoning that informs 
their decisions. It is to understand that students can rearrange, count, calculate, 
identify, and verify to confirm a posed problem. That is, they develop reasons based on 
consequences of actions.  
We could use more evidence-based classroom studies to advance our understanding of 
(1) how mathematics teachers can better prepare themselves to use social issues in 
teaching mathematics and (2) how students can broaden their views of mathematics 
and see how reasons develop in action.  
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This study cannot be generalised as only one class was studied, but the study is 
suggestive that engaging in a social issue in mathematics class may develop a more 
robust form of reasoning, one that interweaves the mathematics and the social.  
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Much of a teacher’s practice and professional learning remains unseen despite recent 
calls to incorporate practice-based and inquiry-based approaches to improve 
mathematics instruction. Although the idea of pedagogical reasoning and action can 
provide a way to unpack these unseen aspects of practice, it remains to be seen how a 
teacher’s actions and thinking can be made visible. In this paper, we present a case of 
how a teacher’s pedagogical reasoning is made visible through pedagogical 
documentation, which suggests the possibility of using documentation to unpack these 
unseen aspects of a teacher’s practices.  
INTRODUCTION 
Preparing teachers to learn from teaching is a powerful way of thinking about 
professional learning. Hiebert et al. (2007) proposed that teachers should learn to 
specify the learning goals, collect evidence of learning from classroom observations, 
think about the effectiveness of their instructional approaches, and improve their 
instruction based on the evidence collected. In other words, teachers should have 
opportunities to examine their understanding of content, curriculum materials, learning 
and instruction (Sherin, 2002). Despite recent developments in adopting 
practice-based and inquiry-based approaches to improve mathematics instruction, 
much of the complexity surrounding teacher learning and the different elements of a 
teacher’s practice remains unseen. Shulman’s (1987) proposed model of pedagogical 
reasoning and action can be seen as “a starting point for unpacking the unseen aspects 
of practice” (Loughran et al., 2016, p. 388). Yet, whether a teacher has gained new 
comprehension (Shulman, 1987) from reflection, and how this new learning has taken 
place still resides in a black box. This paper presents how a teacher’s pedagogical 
reasoning can be made visible using pedagogical documentation. 
THEORETICAL CONSIDERATIONS 
Teaching “begins with an act of reason” and “continues with a process of reasoning” to 
culminate in a series of pedagogical decisions (Shulman, 1987, p. 13). In other words, 
teachers need to learn how to apply their knowledge for teaching to provide 
justifications for their instructional decisions. Doing this involves taking one’s 
understanding about content and “making it ready for effective instruction” (Shulman, 
1987, p. 14), through a cycle of activities involving comprehension, transformation, 
instruction, evaluation, and reflection, leading to new comprehension. According to 
Shulman (1987), comprehension refers to how teachers can understand what they teach 
and relate these ideas to other ideas within and beyond the subject in different ways. A 



Choy, Dindyal, Yeo 
 

 

2 - 164 PME 45 – 2022 
  

teacher then transforms his or her knowledge into “forms that are pedagogically 
powerful and yet adaptive to the variations in ability and background presented by the 
students” (Shulman, 1987, p. 15). Transforming this knowledge involves preparation, 
representation, instructional selections, adaptations of these representations and 
tailoring the representations to specific students’ profiles. Although comprehension 
and transformation can occur at any time during teaching, Shulman (1987, p. 18) sees 
these two processes as “prospective”, occurring before instruction, an “enactive” 
performance in the classrooms. Shulman (1987) then highlights evaluation as the 
process of assessing students’ understanding to provide feedback about the teacher’s 
instruction. However, it is when a teacher reflects on the instructional experiences that 
learning from teaching can occur. This new learning in the form of better 
understanding about teaching and learning will then be part of a teacher’s new 
comprehension, which becomes the starting point for planning future lessons.  
While Shulman’s model may provide a lens to examine a teacher’s instruction, much 
of a teacher’s pedagogical reasoning remains invisible. How can we document a 
teacher’s thinking about instruction to make it more visible? For this, we turn to the 
idea of pedagogical documentation (Dahlberg & Asen, 1994; Lee-Hammond & 
Bjervås, 2021), which is widely practised in early childhood education settings. The 
practice of pedagogical documentation involves teachers in collecting written notes, 
audio and video recordings, photographs, or students’ learning artifacts for describing 
what and how students learn, which then serve as a basis for reflection and making 
instructional decisions (Lee-Hammond & Bjervås, 2021). In this way, the 
documentation is both a product and a process, and has been demonstrated to support 
teachers in professional learning. However, pedagogical documentation is scarce in 
mathematics education contexts, and we wonder if this practice could be incorporated 
as part of a mathematics teacher’s everyday activities to enhance professional learning. 
In this paper, we present a case of how a teacher’s pedagogical reasoning is made 
visible through pedagogical documentation, unpacking the unseen aspects of teaching 
and learning. The key question framing this paper is: What aspects of a teacher’s 
pedagogical reasoning and action are captured in her pedagogical documentation? 
METHODS 
The data presented in this paper were collected as part of a larger project, aimed at 
developing a proof of concept for a sustainable professional learning model for 
mathematics teachers. Drawing on current theoretical perspectives of teacher noticing 
(Dindyal et al., 2021; Fernandez & Choy, 2019), we conceptualized professional 
learning sessions where teachers have opportunities to work and co-learn with us in a 
community of inquiry (Jaworski, 2006). At the time of this present study, face-to-face 
sessions with teachers were not feasible due to prevailing Covid-19 restrictions. 
Hence, we conducted two online professional learning (PL) sessions for six elementary 
school teachers: In the first session, we elicit teachers’ ideas about ratio and challenges 
associated with teaching ratio; in the second session, we shared ideas about 
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proportional reasoning and discussed the teaching of ratio for Grade 5 students (age 
11). After the PL sessions, we followed up with two of the teachers, who volunteered 
their lessons for the entire unit on ratio for us to observe. In this paper, we uncover the 
pedagogical reasoning of one of these experienced teachers, Kathy (pseudonym), as 
she planned, taught, and reflected on a series of four lessons on ratio.  
Data were generated from the voice and video recordings of the lessons, Kathy’s 
lesson plans and instructional materials, and an interview with Kathy at the end of the 
study. In addition, we leveraged on the idea of pedagogical documentation to capture 
teachers’ thinking about content and their pedagogical reasoning as they reflected on 
the planning and teaching of the lessons. More specifically, we used Padlet 
(https://padlet.com/), a digital notice board, as a platform for Kathy to curate her 
pedagogical documentation. We did not impose any number for the 
reflections—instead, we asked her to post her reflections, photos, videos, or documents 
related to any incident that she had found interesting on Padlet—and we left all 
instructional decisions to Kathy. Our role was to observe what she had learned from 
our sessions, her considerations for the selection of tasks and the instructional 
decisions made during her lessons. Findings were developed through identifying and 
analyzing critical incidents (Goodell, 2006), which are “everyday” events 
“encountered by a teacher in his or her practice that makes the teacher question the 
decisions that were made and provides an entry to improving teaching” (p. 224), during 
her planning and teaching. We analyzed these critical incidents by a “thematic 
approach” (Bryman, 2016, p. 578) to highlight aspects of concepts related to ratio, 
students’ confusion about ratio, and instructional decisions before we tried to relate 
these incidents to Shulman’s (1987) model of pedagogical reasoning and action. 
FINDINGS 
For this paper, we present one of these critical incidents, which centred about Kathy’s 
reflections on her selection, modification, and implementation of a colour mixture task 
(see Figure 3). We begin by highlighting aspects of Kathy’s comprehension of the ratio 
concept and making explicit her thinking about the colour mixture task before and after 
the task was implemented from her pedagogical documentation.  
Kathy’s comprehension of the ratio concept 
In the first PL session, we asked teachers to share their understanding about ratio and 
anticipate the possible confusion that their students might have. Referring to Figure 1, 
we observed that Kathy was aware of some important ideas about ratio. She 
understood ratio “as a way of comparing 2 or more quantities”, without specifying 
whether the quantities are of the same kind (Lamon, 2012). Kathy also highlighted that 
working with ratio “involves proportional reasoning” (Tourniaire & Pulos, 1985) and 
ratios are connected “to other topics like fraction and decimal”. Moreover, she was 
cognizant of students’ tendency to “use the additive idea” instead of multiplicative 
thinking when working with ratios (Clark & Kamii, 1996). Students’ inability to apply 
multiplicative thinking strategies to solve missing-value problems was also 
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highlighted by Kathy with a specific example of “8 : 12 = ? : 15”. Lastly, Kathy also 
surfaced the issue that students might not understand ratio as an ordered comparison.   

 
Figure 1: Snapshots of Kathy’s responses on padlet. 

In the second PL session, we shared other nuanced notions of ratio, emphasizing ideas 
such as absolute comparisons, relative comparisons, part-part comparisons and 
part-whole comparisons, as well as making a distinction between ratio, proportion, 
rate, and proportional reasoning (Yeo, 2019). We then invited Kathy to post her 
thoughts and reflections whenever something interesting came to her mind during the 
planning and implementation of her lessons. 

 
Figure 2: Snapshots of Kathy’s pedagogical documentation. 

Figure 2 shows a snapshot of her pedagogical documentation at the end of the unit. As 
seen from her reflections, Kathy became more aware that “ratio has many key 
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understandings and concepts”. She was able to highlight how equivalent ratios are 
premised on “multiplicative relationship” and the difference between “absolute” and 
“relative” comparisons. Interestingly, Kathy agonized over the ideas and the sequence 
in which they should be introduced. She was also thinking about the profile of her 
students and considered the possibility of introducing the various inter-related ideas 
about ratio instead of presenting them in the sequence as presented in the textbooks. In 
particular, she entertained the idea that equivalent ratios could be presented to her 
students earlier even through the concept was introduced much later in the textbook. 
Her enriched comprehension of the concepts also contributed to the changes in her 
choice of the initial ratio task.   
Kathy’s versions of the colour mixture task 
In her original lesson plan, she wanted to introduce the concept of ratio through an 
activity involving students making a dough using different number of cups of flour and 
water. After the two sessions we had conducted, Kathy began to think about the use of 
a colour mixture task (Figure 3), where students had opportunities to think about how 
the different amounts of blue and red dye contributed to the colours of four different 
solutions. The mixture problem, and its variations, has been used in other studies to 
develop students’ proportional reasoning (Lamon, 2012; Tourniaire & Pulos, 1985). In 
Kathy’s version, she used measurement units instead of non-standard units like cups. 

 
Figure 3: Excerpt from Kathy’s colour mixture task. 

However, as we can see from Kathy’s reflection (“Ideas on how to introduce ratio 
before teaching”), she tried the activity but did not get the expected outcomes (“B and 
D should be of the same shade”). On one hand, the use of same units may help students 
to see ratio as comparison of quantities of the same kind and the fact that ratio has no 
unit (Yeo, 2019). On the other hand, the use of “quantities expressed in the same unit 
may be more confusing” (Tourniaire & Pulos, 1985, p. 184) as in the case of Kathy. 
Another possible point of confusion is that the volumes of blue and red dyes are 
different, and each mixture had a different volume, which may lead to a discussion on 
rate rather than ratio. This may be difficult for students who are formally learning ratio 
for the first time. It is possible that Kathy might have taken that into consideration by 
keeping constant one of the volumes in the second version of the task as shown in 
Figure 4. 
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Figure 4: Kathy’s second version of the colour mixture task. 

Referring to Figure 4, we see that Kathy had changed the context of the task from 
comparing colour of a mixture to that of comparing taste (albeit through the colour 
shades) of the mixture. Kathy had intended her students to mix the syrup with water in 
class as evidenced in the lesson plan. Although Kathy had “addressed” one issue by 
keeping the volume of water at 100 ml for all three mixtures, it created another issue of 
students being able to solve the problem without mixing the syrup and water. 
Furthermore, the numbers made the solution obvious, which then reduced the demands 
of the task. While one may argue that Kathy could have caught the problem before the 
task implementation, it is noteworthy that she noticed the issue after the lesson. To be 
clear, the lesson went on well and the students were engaged with the task. But as 
Kathy had noted in her reflection on Lesson 1 (see Figure 2), she realised that the task 
was “redundant”, and she could have done “a teacher demo” and spent the time 
“discussing the meaning of ratio” in greater depth. Here, we see Kathy’s reflection of 
her instruction and assessment during the lesson leading to her new comprehension of 
how ratio could be approached differently. This new comprehension reinforced the 
importance of thinking about the first examples as highlighted in her “Reflection 1” 
(see Figure 2), which could potentially lead to her thinking about a “better activity”. 
DISCUSSION 
In this paper, we gave an account of what Kathy understood about ratio and how she 
reflected on her selection, modification, and implementation of a mixture task by 
making her pedagogical reasoning visible using pedagogical documentation. For 
example, Kathy’s reflections about the content provide a window into her 
understanding of ratio, highlighting the aspects of her mathematical knowledge for 
teaching ratio. More importantly, we could “see” how Kathy transformed her 
understanding into the design of the task and how she eventually reflected on her 
instruction to modify her thinking about the lesson design for future lessons. Thus, 
Kathy had gone beyond documenting her practice—before, during, and after 
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lessons—and used her documentation as a basis for reflection to make instructional 
decisions (Lee-Hammond & Bjervås, 2021).   
The power of pedagogical documentation to make visible a teacher’s pedagogical 
reasoning has important implications. For researchers, the idea of pedagogical 
documentation can be repurposed to focus on teacher learning and be extended to 
include teacher artifacts before and after lessons. The use of such documentation helps 
to pinpoint the areas for intervention and support as mathematics educators work with 
teachers to improve their instruction. For teachers, documenting their practices provide 
opportunities for them to scrutinise and negotiate among three aspects of their teacher 
knowledge: understanding of mathematics, curriculum materials, and knowledge of 
how students learn (Sherin, 2002), a pre-requisite for teachers to learn from their own 
teaching. Moreover, a teacher’s pedagogical reasoning and action can also be made 
visible to other teachers as part of their professional learning activities. Discussions 
around teachers’ pedagogical documentation can then form the basis of pedagogical 
shifts in one’s daily teaching activities not just for a teacher, but for the whole 
community.  
But it is challenging and time-consuming for teachers to document their practices in 
ways that enhance their pedagogical reasoning and action. As Kathy had said during 
the final interview:  

I don't really like [documentation] because it takes some time. But it's good, and, you 
know, you got asked to write all this stuff. It really forces us to think, you know, what are 
the things that is in our mind? And then we can refer to that [documentation] later, even 
after a long period of time.  

While the benefits of pedagogical documentation may justify the efforts needed to 
document one’s practices, such tensions about effort and benefit should not be ignored 
if we want to move towards the idea of learning from one’s teaching. What else can 
teachers do to document their practices? How can teachers be supported to document 
their practices? These are the important questions for future research. 
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TOWARDS A SOCIO-ECOLOGICAL PERSPECTIVE OF 
MATHEMATICS EDUCATION  

Alf Coles, Kate le Roux, Armando Solares 
University of Bristol, University of Cape Town, CINVESTAV 

 
In this theoretical research report we propose a socio-ecological perspective, as 
relevant for research in mathematics education that takes account of our complex, 
precarious present and imagined future, while recognising its historical roots. We 
discuss briefly work that considers the social, political and ecological, and build from 
this scholarship. A ‘socio-ecological’ perspective considers the social and ecological 
as entangled, and mathematics (education) as both shaping and shaped by these 
entanglements. This is a mathematics (education) that gains meaning from questions 
that emerge in socio-ecological relations. We ground our theoretical argument using a 
project located in a community living in a polluted region of Mexico, where a river is 
central to the questions motivating community activism and our research. 
RATIONALE 
Contemporary world events offer stark evidence of the inseparability of social, 
ecological, health, spatial and political issues such as: climate change effects related to 
water, heat, biodiversity loss; health pandemics; poverty; inequality; unemployment;  
migration; totalitarianism and loss of voice. This is a rapidly changing world 
characterised by complexity, uncertainty, vulnerability, movement, and informality,  
with the pace of change outstripping our knowledge of this world. These events 
challenge the mathematics education community to consider, in Latour’s (2004) 
words, “Are we not like those mechanical toys that endlessly make the same gesture 
when everything else has changed around them?” (p.225). We conceptualise 
mathematics education as making “gestures” in the form of recontextualised 
knowledge, curriculum organisations, textbooks, professional development 
opportunities, and anything that becomes visible in the context of teaching and 
learning. We are prompted by Latour to ask: What might be the “gesture” of a 
recontextualised mathematics? We ask this in a context in which a supposedly neutral 
and universal mathematics, valued for its descriptive, categorical and predictive 
possibilities, has, in action, in science and technology, come to format the world as 
‘calculable’ (Mbembe, 2021; Skovsmose, 2011). What might be some alternative 
“gestures” of a mathematics education that is commonly and unquestioningly 
considered a necessary individual and social ‘good’?    
In what follows, we propose a socio-ecological perspective as one response to the 
aforementioned challenges faced by mathematics education, taking the social in 
‘socio’ as inherently political. We do not see the socio-ecological as replacing other 
perspectives, but rather as complementing and building on them to offer insights that 
recognise the entanglement of the social and ecological, and the role of mathematics 
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(education) therein. To ground our theoretical argument in this report, we use a project 
situated in Tlaxcala State, Mexico, in which the first and third authors participated and 
alongside which our thinking about the socio-ecological has developed. We describe 
this context first, acknowledging that any such description cannot capture its 
complexity and history. We then discuss briefly existing mathematics education 
scholarship relevant for our consideration of the social, political and ecological. 
Finally, we describe our proposed perspective and some possible future directions.  
THE ATOYAC RIVER PROJECT 
The Atoyac River in Mexico is the third most polluted in the country. From a visit to 
the region by the first and third authors, it is clear the river no longer supports animal 
life. Coloured dyes from a textile factory and heavy metals from a car parts factory 
(both of them internationally owned) are regular discharges into the river. The toxic 
smell is noticeable over 1km away, in a primary school playground, and the significant 
negative health effects on the local population, such as child leukemia, are 
documented. From having a central role in the life of the community and its rituals, the 
river is now rarely visited. A network was instigated decades ago, by community 
members living near the river, and including non-governmental organisations, school 
teachers and academic scientists from a range of disciplines, in order to respond to the 
pollution issue. The first and third authors of this report were invited (having won a 
grant from the UK’s Global Challenges Research Fund, EP/T003545/1) to bring an 
education perspective to the network. The initial research question they were 
challenged with was, how the Mexican primary curriculum, including the mathematics 
therein, might become “relevant” in such contexts of complexity, vulnerability, and 
marginalisation. Over the course of an academic year, the primary school children 
involved in the project engaged in many activities relating to the pollution of the river. 
Mathematics was not always present; one task where it was involved comparing data, 
looking at the biodiversity of the region today and comparing this to the biodiversity 
remembered by the children’s parents, grandparents and other elders in the 
community. 
This curriculum project (henceforth the Atoyac River project) is productive for 
thinking about the socio-ecological, for it is the river that had been studied for decades, 
that is central to the context. It is the dramatic changes in the river that provoked 
changes in lifestyles in the region (e.g., a disappearance of fishing and recreation in the 
river). It is the river which is at the centre of the community’s social activism 
(“Coordinadora por un Atoyac Con Vida” [Coordinator for a Living Atoyac] and 
“Centro Fray Julián Garcés Derechos Humanos y Desarrollo Local”, [Fray Julián 
Garcés Human Rights and Local Development centre]). And it is around the river that 
the network (and the questions it asks) was conceived. We return to this project 
through the next section in a hypothetical way, to illustrate how it could be approached 
from different perspectives, and again in a concluding section, where we describe the 
project’s influence on how we have come to think about the socio-ecological and the 
questions it provokes. 
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TRENDS IN RESEARCH IN MATHEMATICS EDUCATION RELATING TO 
SOCIAL, POLITICAL AND ECOLOGICAL CONCERNS 
The past two decades have seen a growth in a socio-political perspective of 
mathematics education (following Gutiérrez, 2013; Valero, 2004). Using notions of 
knowledge, power, and subjectivity, this perspective conceptualises mathematics and 
mathematics education as historical, social, and political practices. Broadly, it is 
concerned with understanding how mathematics (education) might (re)produce wider 
practices and structures of inequality, and with acting towards a more socially just and 
ethical world. In this section we discuss particular named areas of the work within this 
perspective, as relevant for our focus on the socio-ecological, noting the constraints on 
space, and that the definitions of research areas and their relations are contested.  
Critical mathematics education (CME), is united by particular concerns, commonly 
raised from within the dominant Euro-modern knowledge and education structures 
(Vithal & Skovsmose, 1997). Firstly, how mathematics (re)produces, or ‘writes’, the 
world through action in, for example, science, technology, economics. And also how 
mathematics education (re)produces particular subjectivities and knowledges. 
Secondly, CME is concerned with mathematics (education) for understanding, or 
‘reading’ the world, aspiring to the possibilities of (re)writing for a more democratic, 
socially just world (see, for example, the edited volumes: Alrø, Ravn, & Valero, 2010; 
Andersson & Barwell, 2021). CME’s view of the role of mathematics (education) in 
society informs perspectives variously named as mathematics for social 
justice/peace/democracy. In the Atoyac River project, taking a CME approach would 
suggest using school mathematics (education) to understand the social injustices of the 
pollution to the river, in terms of health outcomes, and to provoke action for change.   
More recently, CME scholarship has demonstrated the potential of mathematics 
(education) to write and read the contemporary ecological condition of the world, or 
‘climate change’ (e.g. Hauge & Barwell, 2017; the edited volume by Coles et al., 
2013), in what might be called a mathematics for environmental sustainability. If 
following such an approach, the Atoyac River project would focus on a mathematical 
understanding the ecological health and future of the river itself, again accompanied by 
action against the ecological injustices.  
Socio-critical modelling, described as an “emancipatory perspective” (Kaiser & 
Sririman, 2006, p.304) of mathematical modelling for a critical understanding of the 
world, has strong links to CME. Educationally, socio-critical modelling centers 
“students’ ability to be critical modelers and [to] recognize their power”, rather than 
their mathematical understanding and skills (Abassian et al., 2020, p.61). For the 
Atoyac River project, such an approach would foreground the social action that could 
follow a critical investigation of the river and its pollution and the modelling of trends. 
Other areas of socio-political mathematics education have thought from the ‘outside’ 
of the dominant canon and structures (Vithal & Skovsmose, 1997), and have 
commonly been shaped by the marginalised positions in which they emerge. For 
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example, ethnomathematics challenges dominant narratives of the history of 
mathematics, and identifies what are considered culturally and socially embedded 
ways of thinking and acting mathematically that are decentred by dominant 
mathematics (education) (e.g. Powell & Frankenstein, 1997; Rosa et al., 2017). In its 
naming, ethnomathematics specifically focuses on the practices of social groups, with 
the ecological a context in which human activities are developed, for example, land 
measurement practices. An ethnomathematics perspective in the Atoyac River project 
would involve attention to the past and present mathematical knowledge and practices 
used by the community, located in the context of the river.  
Scholarship on indigenous ways of knowing commonly foregrounds the ways of 
knowing, acting, being and using language of variously named indigenous 
communities that have been traditional marginalised in dominant mathematics 
(education) (e.g. the edited volume by Nicol et al., 2020). As with ethnomathematics, 
the very nature of relations in these contexts signals the presence of the ecological. In 
the Atoyac River project this would mean attending to ways of the community, which 
could include the very manner in which human-river relations have been enacted. 
Learnings from ethnomathematics and indigenous ways of knowing are used to inform 
what is called culturally responsive mathematics education. With their focus on groups 
marginalised by coloniality, neoliberal globalisation, and so on, all three are presented 
as ways to ‘decolonise’ mathematics education. However, decolonial and antiracist 
perspectives of mathematics education specifically draw from traditions of 
post/decolonial and/or critical race theory to: (a) understand and surface the 
co-constitution of racial (and related) difference in the entanglement of mathematics 
(education) in historical processes; and (b) promote an active process of becoming of 
mathematics knowledges and knowers (e.g. Martin, 2019; Swanson & Chronaki, 
2017). In the Atoyac River project, the focus would be the role of mathematics 
(education) in historical and contemporary processes that (re)produce hierarchical 
difference and by which the region has come to be vulnerable and marginalised. 
TOWARDS A SOCIO-ECOLOGICAL PERSPECTIVE 
The brief discussion in the previous section suggests that, within a socio-political 
perspective of mathematics education, there is scholarship that takes account of the 
environment, or of ecological issues. But, at the same time, it appears that the 
ecological may be taken as context in which peoples and mathematics (education) act, 
rather than being strongly theorised in itself, or in relation to other actors. A move 
towards greater acknowledgment of the ecological is, however, discernible in the 
recent work of some scholars who supplement the aforementioned approaches using 
theoretical traditions, again, ‘outside’ of mathematics education such as (eco)feminist, 
ecocritical, ecojustice, and posthumanist ideas (e.g. Coles, 2017; Gutiérrez, 2017; 
Khan, 2020; Wolfmeyer, Lupinacci, & Chesky, 2018).  
It is in these recent moves in the field that we locate our argument for a 
socio-ecological perspective of mathematics education. Specifically, we conceptualise 
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the past, present and future world as entanglements and interdependencies between the 
social and ecological, and consider the role (or not) of multiple forms of mathematical 
knowing and being therein. Such a perspective recognises multiple actors in the 
constitution of the world, and hence the presence of the (un)quantifiable within 
socio-ecological contexts and challenges. Such as perspective may, at times, ‘decentre’ 
particular forms of mathematical knowing. Conscious that decentring mathematics 
might be read as counter-intuitive, in the context of a mathematics education 
conference, we stress that we are proposing a shift towards thinking about mathematics 
(education) as gaining meaning through relations between actors, which include the 
human and non-human (e.g. the environment and mathematics itself). We view the 
perspective as a move to starting with questions, that is, the perspective is relevant 
when the questions we are asking, or concerns we carry, are themselves 
socio-ecological, for instance taking a river and its relations as the starting point of 
questions and of our research. 
Also relevant to a socio-ecological perspective is the emergence of new materialisms 
(e.g. de Freitas & Sinclair, 2014; Appelby & Pennycook, 2017) which see technology, 
language and the natural world as actors within and besides the human. Such new 
materialisms lead, for us, into the kind of entangled view of the world that emerges 
through the socio-ecological. The socio-ecological allows us to inhabit the intersection 
of social constructs such as gender, class, language, and race and bodies, things, 
ecologies, space, in semiotic and material assemblages. How might our thinking 
respect, or engage with, the complexity of what we are thinking about (Bateson, 
1972)? 
The socio-ecological perspective, emerging from questions in the Atoyac River project 
that we have started to lay out in this section, has epistemological and ontological 
implications. We start to explicate these next, before discussing further questions 
prompted by our thinking about the socio-ecological. 
Epistemology and ontology of a socio-ecological perspective 
From several theoretical positions, a relational ontology is being proposed (e.g. de 
Freitas & Sinclair, 2014) and such relationality is important also within a 
socio-ecological perspective. The entanglement of the social and ecological means, for 
instance, the entanglement of subject and object. Rather than thinking about an 
encounter as a meeting of two pre-existing entities, a relational ontology implies the 
view that it is through encounter that subject and object inhabit an identity (for the 
duration of that encounter). Rather than asking, e.g., “who acts?” (a question which 
presupposes an already existing subject) a more relational question would be, “how is 
it that such a subject is able to act in this way” (Benjamin, 2015, p.87). This second 
question invites attention to the always-already existing webs of relations that allow 
action in the first place. And, from a socio-ecological perspective, this web of relations 
include culture, politics, ecology, history. Subjectivity is an after-effect of the 
socio-ecological relations that allow its emergence, not a pre-condition of those 
relations.  
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In terms of epistemology, a certain humility is required. Others’ ways of knowing may 
be radically different to our own and yet equally valid. Furthermore, there are 
implications for the kinds of knowing that are significant. From a socio-ecological 
perspective, what is important is to develop wisdom about the complexity of 
inter-relationships in which we are enmeshed, and less valued will be instrumental 
knowledge of apparently linear cause and effect relations. Taking a wider systemic 
view, all relations end up in loops that cycle and become iterative (Bateson, 1972). 
Thus, some “gestures” (Latour, 2004, p.225) of mathematics education research from a 
socio-ecological perspective might include: listening to marginalised actors and the 
questions they provoke; attending to the ecological precarity of communities and 
adaptations being made to issues such as pollution or climate change; seeking double 
or multiple descriptions; paying attention to the different scales at which actions take 
place; questioning the spatial imagination that constrains thinking about a relationship; 
questioning the role of mathematics in conceptulisations of the ecological. 
Towards new questions 
Having articulated some of the philosophical ideas we have been led to, we now reflect 
on the kinds of questions a socio-ecological perspective might prompt us to ask, if we 
take seriously a relational ontology and an epistemology that is sensitive to ecologies. 
We offer a diverse set, starting with the Atoyac River and becoming more general. 
How is the river remembered? How do pollution levels vary over time and what is the 
impact? What is the route back to a healthy river? How are ecological precarities 
experienced differently and what inequalities does this expose? What is the 
relationship between climate change and inequality? How might reparations for loss 
and damage through climate change be calculated fairly? What is the role of 
disciplinary knowledge and thinking, in relation to inter-disciplinary competencies? 
What mathematical fields (e.g., systems theory, non-linear dynamics) are relevant to 
socio-ecological questions? What kinds of curriculum organisation allow a centring of 
non-human, ecological concerns? What mathematics is done by ecologies?  
We offer these questions, conscious they are disparate, as provocations and in the hope 
that the theoretical work of this report will prompt others to become attuned to possible 
socio-ecological questions relevant to their own contexts. 
THE ATOYAC RIVER AND A SOCIO-ECOLOGICAL PERSPECTIVE 
We end this report with a final set of reflections on the Atoyac River project. Our 
thinking about the socio-ecological has developed alongside this research; at the time 
of starting the project, it was aligned with a socio-critical perspective on mathematical 
modelling (in part, drawing on the modelling expertise of the third author). What this 
meant was that social action was a central concern. A disturbing feature of the Atoyac 
context (that we believe is repeated in many other places) is a normalisation of illegal 
pollution. The river has been polluted for so long that primary school children (and 
some of their teachers) have never known it otherwise and hence it can appear as 
though an alternative future is not possible. There can seem to be an inevitability to 
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how the river is now, because it seems it has always been this way. There was a hope 
among many participants in the research that the work would spark action and a belief 
in the possibilities for different futures. What we have come to recognise is the 
centrality of the river, as described in section 2, not in any sense at the expense of social 
or political concerns, but rather as a focus for these concerns.  
We are conscious of the possible objection that what we are describing is not properly 
mathematics education. However, and crucially, we want to argue that a 
socio-ecological perspective is relevant to mathematics education and that 
mathematics education needs to accommodate a perspective (not exclusively, but as a 
possibility) which re-imagines mathematics in a position which is not central to the 
problems it addresses, but is defined by its relationality, and might gain its relevance 
from questions that emerge in the socio-ecological. Indeed, in the Atoyac River 
project, the community subscribes to a complex and entangled understanding of social, 
economic, historical, cultural, biological and human and non-human health and rights 
issues. As researchers in this project, we have been provoked to reimagine our thinking 
about the gestures of mathematics education and mathematics in this socio-ecological 
context.  
We are conscious we have only made a start at setting out a socio-ecological 
perspective of mathematics education; work we hope to continue and encourage others 
at PME to join. What we have offered in this report is, in part, our own process of 
finding ways to engage, to listen, in contexts that can sometimes feel overwhelming. 
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IDENTIFYING PREVERBAL CHILDREN’S MATHEMATICAL 
CONCEPTIONS THROUGH BISHOP'S REFRAMED 

MATHEMATICAL ACTIVITIES 
Audrey Cooke and Jenny Jay 
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Preverbal children demonstrate and develop mathematical conceptions as they engage 
with and investigate their environment. This engagement may involve navigating the 
environment or self-initiated play, neither of which includes an adult or educator 
interacting with the child. This paper applies Bishop’s (1988, 1991) mathematical 
activities, as reframed by Cooke and Jay (2021), to identify the mathematical 
conceptions preverbal children are engaging in during self-initiated play within their 
environment. Limitations of this approach are considered.  
INTRODUCTION 
Libertus et al. (2020) state psychological research has indicated very young children 
engage with mathematical thinking. Preverbal children are found to demonstrate 
understandings related to numbers and quantity (Libertus et al., 2020); sequencing of 
actions (Verschoor et al., 2015); time (de Hevia et al., 2020); expectation and 
anticipation (Ruffman et al., 2005), which relate to prediction (Stapel et al., 2016) and 
probability (Daum et al., 2016); and recognition of features on objects (Needham et al., 
2005). However, the child’s engagement with the activities in the research is 
adult-driven. 
A greater focus on the mathematics preverbal children may conceptualise when 
engaged in their everyday lives is evident in mathematics education literature. This 
focus involves child-initiated engagement with the world, more reflecting what 
Björklund (2018) considers ‘mathematising’ – that is, in terms of children making 
sense of the world they inhabit. This paper applies Bishop’s (1988, 1991) 
mathematical activities as reframed by Cooke and Jay (2021) to identify preverbal 
children’s mathematical conceptions.  
REVIEW OF LITERATURE 
Identification of very young preverbal children’s mathematical conceptions. 
Psychological research into the mathematical cognitions of preverbal children has 
identified a range of mathematical understandings and thinking that these children 
engage with. As these children are preverbal, non-language based methodology is 
used. These incorporate adult-controlled activities, usually in laboratory settings. In 
their research investigating the capacity of children aged between four and five months 
to distinguish between collections with different numbers of items, Wynn et al. (2002) 
used a habituation methodology, where the children were shown collections to the 
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point that they are habituated to that display of a specific number. Using this 
methodology, the children were found to differentiate between collections of items, 
which Wynn et al. interpreted as the children being "capable of genuine numerical 
representation” (p. B61). Ruffman et al. (2005) used a different approach, an 
anticipatory looking task, where the focus is on whether the child demonstrates their 
anticipation of what will happen by looking towards a specific location. Their research 
with children aged between two and a half and five months investigated whether, after 
a training phase to recognise an audio cue, the children could anticipate where to look 
for a hidden object. They found a significant difference for the children looking to the 
correct location when there was a two second delay but not for an eight second delay.  
Although invaluable in identifying the mathematical conceptions of preverbal 
children, the methodology is not transferrable to early learning centres or everyday 
settings. Likewise, the use of adult-initiated and adult-controlled experiences runs 
counter to an early childhood education emphasis on young children’s opportunities 
for child-initiated engagement (Department of Education, Employment and 
Workplace Relations [DEEWR], 2009). As a result, other ways of identifying the 
mathematical conceptions of preverbal children need to be used. 
Very young children’s engagement with their world through mathematising. 
Björklund (2018) proposes that preverbal children engage in mathematics to make 
sense of the situations they encounter while exploring their environment and during 
play. Garvis and Nislev (2017) found that many activities undertaken in everyday 
family life show mathematics is a social activity, making mathematics relevant to the 
child’s life and creating a positive impact on children’s mathematical learning. 
Björklund and Pramling (2017) propose that careful observation of very young 
children’s exploration of their everyday environments reveals how they engage with 
mathematics. Franzén’s (2015) analysis of the mathematics involved when a very 
young child interacted with a climb-in toy car demonstrates how child-initiated solitary 
activities provided opportunities for observers to notice mathematical engagement and 
thinking. Franzen suggests that the starting point is the child; what they know; their 
interests and ability to express their thinking with their own language and actions, will 
allow children to explore their world mathematically. That is, everyday interactions, 
whether planned or child-initiated, provide many opportunities for young children to 
develop and demonstrate their mathematical conceptions. 
THEORETICAL FRAMEWORK  
Barad (2007) states that language has been granted much more influence and authority 
than perhaps it should have been. She develops this further by arguing that language 
has unfairly been positioned to be powerful and trustworthy over all other elements of 
the environment. These ideas underpin this paper. In terms of very young children, 
focusing on their language over their actions when interpreting their understandings is 
denying the existence of preverbal children’s understandings of their world. 
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Specifically, this paper investigates how actions undertaken through preverbal 
children’s engagement with their world can be used as a valuable way to identify their 
mathematical conceptions.  
REFRAMING BISHOP’S (1988, 1991) MATHEMATICAL ACTIVITIES  
Bishop’s (1988, 1991) mathematical activities form a useful structure for observing 
and categorising mathematical conceptions but as they are based on language, they 
were problematical for use with preverbal children. Cooke and Jay (2021) found it 
necessary to reframe Bishop’s mathematical activities to use them to identify possible 
mathematical conceptions in the actions of preverbal children. The section below 
expands on the reframed activities provided by Cooke and Jay.  
Counting Reframed. 
While engaging with objects, preverbal children will be unaware of numeric order but 
will observe and manipulate a variety of sets of objects. This involves identifying how 
many of the objects can be viewed, touched, held or moved. A child picking up one 
item in one hand or selecting one item from a collection indicates recognition of 
discrete quantities (also involving locating). It includes reorganising a collection into 
categories or patterns, selecting specific items from a collection, or differences in 
quantities of collections. For example, a child will focus on one item in a collection of 
many or match one item to one item (such as grasping one toy in one hand), slide beads 
along an abacus wire either one at a time or in groups, identifying whether items have 
been added to or removed from a collection that has been of or is currently of interest, 
or when one collection has a different amount to another collection. 
Locating Reframed. 
Locating activities for the preverbal child focus on the placement of their body in space 
and the way in which they move their body to interact with the space around them. This 
includes successful and unsuccessful attempts to move in various directions. 
Therefore, the child’s positioning of their body in a purposeful way in the environment 
would involve the ‘Locating’ activity. A child who shows they cannot reach from their 
current position through moving to a new position incorporates ‘locating’ activity 
(including measuring). Similarly, a child’s frequent moving of items or objects to 
examine them, make them usable, communicate an idea (handing a ball to an adult to 
initiate a game), or following verbal directions incorporates ‘locating’. 
Measuring Reframed. 
 Measuring activities involve exploration of the environment and its objects, 
addressing textures and surfaces; size and shape; familiar and unfamiliar objects, to 
consider ‘how much’ of an attribute a feature might have. Measuring activities will be 
repeated several times and re-visited on recurring occasions to check the same 
attributes still apply. During this exploratory activity, children are ‘cataloguing’ their 
world to make sense of it and this gives them a point of reference when encountering 



Cooke, Jay 
 

 

2 - 182 PME 45 – 2022 
  

new objects (also involves designing). Preverbal children shake objects, roll or turn 
them while carefully examining them from all sides, and heft an object to feel its 
weight. After constant and regular examination and exploration of objects, children 
may specifically choose an item with more of a desired feature or attribute. This 
activity can be observed when a child tries, then chooses to use both hands to move or 
lift an object due to the size or weight, or selecting an object that has more of a desired 
feature (such as a fluffier blanket). 
Designing Reframed. 
Preverbal children may not yet be able to create or design patterns within their world 
but they are able to recognise pattern, shape and design of familiar objects and then 
translate that knowledge to new similar objects. A preverbal child who has discovered 
that a plastic toy with brightly coloured shapes will light up and play songs when the 
shapes are touched will be seen hitting similar brightly coloured shapes on another toy 
to achieve the same result, thus being able to recognise specific design features. 
Children involved in this activity recognise attributes of an object or items in a 
collection that perform desired functions, such as a toy with wheels on that is rolled 
(‘driven’) over the floor (also incorporating the activity of playing), and are able to 
plan for and manipulate objects in the environment to perform a function. Choosing 
matching shapes on a posting box (or shape sorter) correctly, even if they are unable to 
accurately place the object through the hole, is an example of designing. 
Playing Reframed. 
Bishop’s reference to “imagined and hypothetical behaviour” (Bishop, 1991, p. 23) is 
witnessed in preverbal children’s emerging playing activity. Children use objects 
symbolically, showing imagination and understanding of their world. A child who 
picks up a wooden car and rolls it is demonstrating imagination and knowledge of 
other toys. Preverbal children are often seen operating alone as they investigate their 
environment. While investigating their environment preverbal children are creating or 
checking their ‘hypothesising’ of the world. Engaging in the ‘Playing’ activity is often 
seen as an application of previous encounters with ‘rules’ of objects (which also 
incorporates the activity of design) and place, such as, water is always wet or sand 
always changes shape when squeezed between fingers. 
Explaining Reframed. 
Preverbal children constantly seek ways to explain their environment and the objects 
within it. They pose and test theories as they engage with people, places and things. As 
they become increasingly more confident with a tested theory (also incorporating the 
activity of playing) they are able to organise items to demonstrate similarities or 
purpose. Purposefully reaching for an object, closing their fingers around the object to 
grasp it and bringing it to themselves shows that the theory they had about their body’s 
movement, the accessibility of the object, and movement through space are confirmed 
(also involving locating). With increasing confidence and agility, they move to new 
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objects and perform more complicated actions within their environment. When young 
children move an object out of another’s reach or position their body to block another’s 
access, they show they have made sense of, or ‘explained’, their world. 
METHOD 
Observations are a recognised way of collecting data and there are various types of 
observations available to researchers (Bryman 2012). Lynch and Stanley (2018) 
describe young children’s behaviours as “self-directed, internally motivated, 
process-oriented interactions” (p. 61). In terms of the EYLF (DEEWA, 2009), the 
focus was on child-initiated activities. A 360-degree video camera was securely 
attached to the ceiling of the room at a point close to the centre and was recording when 
the children entered the room with the educators and turned off by the researchers at 
the end of the session after 30 minutes. Researchers did not interact with the children, 
engaging in what Bryman (2012) terms a simple unstructured observation. The full 
videos were viewed and then instances that were initiated by the child were analysed. 
In two videos, eight children with two educators were filmed and in another, four 
children with one educator. Consent to be videoed was obtained from the parents, 
educators, and the centre manager. Although educators planned activities that would 
involve the children engaging in mathematical thinking, the focus of this paper is on 
preverbal children engaged in child-initiated activities. 
Selection and analysis of the video segments. 
The video segments in this paper were chosen to fit specific criteria – involving only 
one child younger than 2 years of age who did not speak during the segment; 
child-initiated activities with no interaction with an educator; and they were 
encapsulated and short. Each segment was viewed multiple times individually by the 
two researchers and notes taken. After the notes were completed, each video was 
viewed several more times by the researchers together while reviewing the notes to 
check their veracity, accuracy, and interpretation. All notes were analysed to identify 
the components of Bishop’s (1988, 1991) reframed mathematical activities then the 
video was viewed again as a final check.  
APPLYING BISHOP’S REFRAMED MATHEMATICAL ACTIVITIES 
This paper presents two video segments to demonstrate how the children’s actions 
were interpreted in terms of Bishop’s (1988, 1991) reframed mathematical activities 
(which are in [square brackets] after the action). Brief descriptions of each video 
segment are provided, followed by the analysis (Figure 1).  
Segment 1: Jumping on a pillow. 
Eight children and two educators were in the room. The child had moved towards 
pillows decorated and shaped like pieces of a tree. She picked up the pillow shaped like 
a cross-section and threw it. She then walked to and stepped on the pillow, stayed there 
for a short period of time, and then stepped forward off the pillow. 
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Segment 2: Moving a toy truck. 
Four children and one educator were in the room. The child goes to the shelf containing 
a toy truck with a string that can be used to pull the truck along. He tries to use the 
string to move the truck off the shelf, but finally uses his hand to pick it up. He puts it 
on the floor and then pulls it along, almost tripping over a toy as he does so. 

 
Figure 1: The analysis of the two video segments. 

DISCUSSION AND CONCLUSION 
Barad (2007, p. 353) states “believing something is true doesn’t make it true”, which 
emphasises the importance of using evidence based and rigorous processes. This paper 
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uses Cooke and Jay’s (2021) reframed version of Bishop’s (1988, 1991) mathematical 
activities to identify preverbal children’s potential mathematical conceptions. All of 
Bishop’s reframed mathematical activities were evident in the behaviour of the 
preverbal children and, multiple mathematical activities occurred concurrently. 
Bishop’s (1991, p. 108) concession that there is overlap between the concepts within 
some of the mathematical activities was evident in the analysis. The nature of 
child-initiated play enables the child to explore their environment and, through this, 
develop an understanding of mathematical concepts and relationships (Björklund & 
Pramling 2017). Child-initiated play provides opportunities for preverbal children to 
work through and demonstrate in their behaviours and actions all of Bishop’s 
mathematical activities. The presence of all of Bishop’s reframed mathematical 
activities indicates how powerful this structure is for identifying mathematics in 
child-initiated play. Further research would need to be conducted to determine whether 
the bounded nature of child-initiated play consistently demonstrates Bishop’s reframed 
mathematical activities. 
There are limitations in this approach. It was the interpretations of the researchers of 
the preverbal children’s that was used that was linked to Bishop’s (1988, 1991) 
mathematical activities. Franzén (2015) stated, the researcher has power in the way 
they interpret what they see – the goal is for the interpretation to be close to the 
perspective of the observed child as possible. This, she explains, needs to be carefully 
done, particularly when the child does not use language, as what the researcher 
observes and interprets will always be ambiguous and incomplete. 
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In this paper we analyse upper secondary school students’ design of digital resources 

by interpreting digital resource design as a problem solving activity strongly 

influenced by the process of instrumental genesis. Our research questions concern the 

monitoring processes activated by students-designers. Through our analysis, we 

identified different levels of monitoring during digital resource design, highlighting 

how monitoring processes are influenced by the students’ systems of conceptual and 

procedural knowledge and by the artifact’s constraints. 

INTRODUCTION AND BACKGROUND 

The study presented in this paper sets in the mainstream of research focused on the role 

played by digital tools in the task-design process (Leung & Baccaglini-Frank, 2017). 

In different areas of disciplinary education, an increasing interest has emerged in 

investigating how the design process affects the designers’ learning itself, focusing on 

the role that students could play as designers or co-designers of different kinds of 

digital resources (Kimber & Wyott-Smith, 2006; Tracy & Jordan, 2012). Few studies 

have focused on this aspect in the context of mathematics education (see, for instance, 

Diamantidis, Kynigos & Papadopoulos, 2019; Alessio et al., 2021). With the aim of 

contributing to this research issue, in this paper we analyse the process of digital 

resource design (in the following, DR-design) carried out by a group of secondary 

school students. In order to develop this analysis, we interpret the design process as a 

problem solving activity, as Shaffer (2007) does in his investigation of the nature of 

problem solving in architectural design, where design is conceived as a process aimed 

at resolving an open-ended problem through a series of intermediate solutions. 

Most of the frameworks developed to investigate students’ problem solving processes 

have identified specific phases that characterize them (see, for instance, Schoenfeld, 

1985; Garofalo & Lester, 1985; Carlson & Bloom, 2005). Identifying these phases 

enables researchers to parse protocols of students’ interactions focused on problem 

solving into episodes that can be classified according to specific categories 

(Schoenfeld, 1985). By investigating experts’ problem solving processes, Carlson and 

Bloom (2005) characterise the problem solving process in terms of nested cycles of 

repeated actions. In particular, they noticed that experts move through four main phases 

when completing a problem: (a) orienting, when a mental image of the problem 

situation is constructed and the solver attempts to make sense of the question; (b) 

planning, when conjectures are initially devised and the playing-out of possible 

approaches is imagined; (c) executing, when the strategies devised during the planning 
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phase are concretely carried out; (d) checking, when the focus is on assessing the 

correctness of the implemented approaches. When the first phase is completed, the 

planning-executing-checking cycle is repeated throughout the remainder of the 

solution process.  

A key feature, within all the frameworks developed to explain the solvers’ ways of 

dealing with problems, is represented by the importance of engaging in metacognitive 

behaviours to regulate own processes and make decisions. Schoenfeld (1985), in 

particular, focuses on control, defining it as a category of behaviour that deals with the 

ways in which individuals use the information at disposal and with the major decisions 

that they make when they are solving a problem. 

Since good problem-solvers are not those that always make the right decisions, but 

those that can recover from erroneous decisions, Schoenfeld stresses that a major 

component of effective control consists of the periodic monitoring and assessment of 

solutions as they evolve. In tune with Schoenfeld’s studies, Carlson and Bloom (2005) 

notice that experts monitor their thought processes and products regularly during all 

the problem solving phases, with the aim of both making decisions about their solution 

approaches and reflecting on the effectiveness of their decisions and actions. Here we 

refer to their definition of monitoring as “reflection on and regulation of one’s thought 

processes and products at any point in the solution process” (pp. 54-55). 

Carlson and Bloom (2005) highlight that, in the case of expert problem-solvers, the 

effectiveness of their monitoring is assured by their strong conceptual and procedural 

knowledge, since they could draw on this knowledge to verify the reasonableness of 

their results and the correctness of the actions they carry out. On the other hand, 

unstable systems of conceptual and procedural knowledge generate problems in 

activating monitoring processes (Schoenfeld, 1985). Lesh (1982) observes that, when 

the conceptual system is poorly coordinated, students risk to ignore salient features of 

a problem or to distort the interpretation of the problem situation. In case the procedural 

system is unstable, students’ work is often characterized by rigidity in procedure 

execution and inability to anticipate the consequence of actions during the execution.  

In the case in which the problem solving process under investigation is the design of 

digital resources for mathematics, both the identification of specific strategies to be 

implemented and the activation of effective monitoring processes are influenced not 

only by standard mathematical knowledge, but also by the knowledge about the digital 

artifact that is used and by the computational transposition of mathematical knowledge 

that the use of the artifact involves (Artigue, 2002). During the design process the 

digital artifact is gradually transformed into an instrument, by means of a process of 

instrumental genesis. This process works in two directions: on one side 

(instrumentalisation), the artifact is progressively loaded with potentialities and 

transformed for specific uses (Artigue, 2002); on the other side (instrumentation), 

constraints and potentialities of an artifact shape the subject’s activity (Trouche, 2005), 

leading to the development of schemes of instrumented actions (Artigue, 2002). 
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Trouche (2005) distinguishes between three kinds of constraints: internal constraints 

(physical and electronic), command constraints (linked to the different commands and 

to the artifact’s syntax), organization constraints (linked to the screen organization). 

RESEARCH CONTEXT  

The study presented in this paper involved 20 upper secondary school students (grades 

12-13) who participated in a university STEM literacy program for students in 

secondary-tertiary transition (Alessio et al., 2021), which took place in the Polytechnic 

University of Marche in the period between October and December 2020. The part of 

the program devoted to Mathematics was aimed at giving students the opportunity to 

deepen their knowledge of specific mathematical topics through the use of GeoGebra 

as a tool for DR-design. It was articulated into 5 sessions (20 hours in total). During 

the first session, focused on the presentation of the GeoGebra software, the participants 

were involved in a guided design process in order to explore the features of the software 

and to gain confidence with its commands. The two following sessions were devoted 

to introducing a mathematical topic that participants had not faced at school: the theory 

of complex numbers. During the last two sessions, the participants worked in small 

groups (7 groups in total) and were asked to design two (or more) GeoGebra applets to 

support students’ learning of complex numbers. Due to the pandemic emergency, most 

of the activities (including the working group activities) were developed at distance, 

by means of the Zoom platform. Three university tutors were always available to 

support the students during the DR-design process. 

 

RESEARCH QUESTIONS AND RESEARCH METHODOLOGY  

As mentioned above, the focus of the research documented in this paper is on students 

as designers of digital resources. The hypothesis on which our study is based is that, 

particularly in the case of students as designers, the problem solving process that 

characterizes DR-design is strongly influenced by the parallel process of instrumental 

genesis that characterizes students’ construction of personal schemes in the use of a 

digital artifact and their appropriation of pre-existing schemes. The instrumentation 

process, in particular in its first phase, when several techniques and strategies appear 

to burst, could strongly affect the process of DR-design, due to the role played by the 

artifact’s constraints in shaping the designer’s activity.  

Considering the key role played by metacognitive behaviours in regulating problem 

solving processes, in this paper we focus on the monitoring processes in DR-design 

and on the influence of the artifact’s constraints and of students-designers’ systems of 

procedural and conceptual knowledge on this monitoring. Specifically, we address the 

following research questions: What kind of monitoring processes are implemented by 

beginner students-designers when they face the task of DR-design? How are these 

monitoring processes affected by the artifact’s constraints and by the students-

designers’ systems of procedural and conceptual knowledge? 
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In order to investigate these aspects, we video-recorded the working group activities 

with the aim of highlighting students’ spontaneous in-the-moment discussions on their 

design process. The analysis of the collected video-recordings was performed 

according to the following steps: (1) transcription of the students’ discussions and 

description of the actions performed by students on the shared screen during the DR-

design process; (2) first qualitative analysis of the video-recordings’ transcripts aimed 

at parsing the transcripts into episodes; (3) identification of the episodes during which 

students activate monitoring processes and analysis of these episodes to highlight their 

peculiarities and to investigate the effectiveness (or ineffectiveness) of these processes 

in supporting the DR-design. 

During step 2, we classified the identified episodes according to Carlson and Bloom’s 

(2005) four phases. To develop this classification, we interpreted these phases in 

relation to the DR-design process in the following way: (a) orienting corresponds to 

the initial phase in which the goals of the DR-design process are identified and the 

general structure to be given to the digital resource is agreed, by identifying its main 

components; (b) planning corresponds to the choice of the techniques to be 

implemented to create specific components of the digital resource; (c) executing 

corresponds to the implementation of a selected technique; (d) verifying corresponds 

to the activation of monitoring processes to highlight the effectiveness (or 

ineffectiveness) of the implemented technique in relation to the set goals. The 

planning-executing-verifying cycle is repeated each time the monitoring process 

highlights the ineffectiveness of an implemented technique.  

DATA ANALYSIS 

The results that we present refer to the analysis of the work carried out by the groups 

of students-designers in their first DR-design process, aimed at creating a GeoGebra 

applet to support students in the investigation of the different representations 

(algebraic, trigonometric, graphical) of complex numbers. Since all the students-

designers were beginner designers, not having had previous experiences in DR-design, 

the DR-design process developed by the different groups was characterized by similar 

dynamics. Moreover, all of the participants had had few experiences in using the 

GeoGebra software. Due to space limitations, here we focus on the work carried out 

by one group of students-designers constituted by two girls (S, C) and one boy (V). 

The main protagonists of the design work are V, who shares his screen and works on 

the GeoGebra applet, and S, who poses herself as a guide for V. C rarely intervenes. 

The orienting phase is almost missing in the work of the group. The students-designers 

immediately start to work on their GeoGebra file without previously discussing the 

general structure to be given to their applet. The result is that, from the very beginning, 

they proceed step by step: (a) setting single goals to pursue in the design process 

(constructing specific components of their applet); (b) identifying strategies to pursue 

these goals (techniques to adopt to construct each applet’s component); (c) 

implementing these strategies; and (d) assessing their effectiveness. When students-
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designers think that they have reached each goal, they set a new goal and proceed 

through the same steps. In this way, the construction of the applet’s components is 

developed without having clear the general structure of the applet and the relations 

between its different components.  

In the following, we present our analysis of three short excerpts from the transcripts of 

the video-recording of the group’s activity. These excerpts were selected with the aim 

of introducing paradigmatic examples of typical monitoring processes carried out by 

students-designers to assess the effectiveness of the techniques adopted to pursue 

specific goals. All the excerpts are focused on the first goal that students-designers set 

in their DR-design process, that is to introduce the algebraic definition of complex 

numbers and their representation on the Cartesian plane. Each excerpt corresponds to 

one micro-cycle of planning-executing-verifying and is presented by introducing the 

techniques adopted and implemented to pursue the goal and the characteristics of the 

monitoring process activated by students-designers.  

Excerpt 1 

The first technique that the group adopts to pursue the set goal is to create two sliders 

a and b and to write 𝑧 = 𝑎 + 𝑖𝑏 in the input bar. GeoGebra recognizes 𝑧 = 𝑎 + 𝑖𝑏 as a 

surface and the students-designers immediately realize that the representation that 

appears on the screen is not what they expected. The activation of an incorrect 

technique testifies students’ weaknesses at the procedural level, in managing command 

constraints. The unexpected feedback from GeoGebra boosts a monitoring process on 

the first technique being implemented, leading students-designers to recognize the 

incorrectness of the chosen formula. This feedback is unexpected since it is not the 

result of an intentional process aimed at an aware activation of control strategies. The 

monitoring process is rapid and it simply consists in highlighting the need of adopting 

a different technique, without reflecting, at the conceptual level, on the reasons why 

writing 𝑧 = 𝑎 + 𝑖𝑏 has produced an unexpected representation. 

Excerpt 2 

Although the monitoring process in excerpt 1 is not associated with deep reflections 

on the conceptual aspects related to the feedback received from the applet, it makes 

students-designers progress in their instrumentation process by exploring new 

formulas to be used. At the beginning of this exploration, V proposes to define a new 

point whose coordinates are a and b. S agrees and suggests to V to define this point by 

writing 𝐴 = (𝑎; 𝑖𝑏) in the input bar. This represents the second technique implemented 

by the group to pursue their first goal. When V writes 𝐴 = (𝑎; 𝑖𝑏) in the input bar, one 

tutor intervenes with a question for the group: 

Tutor: Why did you write ib as a coordinate of the point? 

S: Because… No! …It should be just b, since the y-axis is the imaginary axis. 
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The monitoring process on the second technique, activated by S, is boosted by the 

implicit feedback given by the tutor through his question. Therefore, also this 

monitoring process is not intentionally activated. Differently from what happens in 

excerpt 1, S not only proposes a correction of the second technique (to write b instead 

of 𝑖𝑏), but she also explains the reasons behind the correction, showing awareness of 

the meanings associated with the ways in which the second technique is modified. In 

explaining these reasons, S effectively refers to her system of conceptual knowledge, 

recognizing the connections between the formula to be written in the input bar and the 

underlying mathematical knowledge. 

Excerpt 3 

Guided by S, V implements a third technique, which is simply the correction of the 

second technique adopted by the group and writes 𝐴 = (𝑎; 𝑏) in the input bar. Then V 

starts moving the two sliders a and b and a silent verifying phase begins. Although, in 

students-designers’ intentions, a and b should represent, respectively, the abscissa and 

the ordinate of the point, when V leaves the slider a fixed and varies the slider b, the 

point moves along a circumference centred in the origin, instead of moving on a line 

parallel to the y-axis. This problem is due to the fact that, since the coordinates of the 

point are separated by a semicolon instead of a comma, GeoGebra recognizes a and b 

as polar coordinates of the point A (not as cartesian coordinates, as students expected). 

The monitoring process on the correction of the second technique is intentionally 

activated: students-designers do not limit themselves to interpret the feedback received 

by GeoGebra or by a tutor, but intentionally interact with their applet to verify the 

effectiveness of the implemented technique. However, this process is ineffective since 

the students-designers do not correctly interpret the feedback given by GeoGebra when 

they interact with their applet, without noticing the problem related to the formula that 

they write in the input bar. The ineffectiveness of the monitoring process is due to their 

weaknesses both at the procedural level (they are not able to manage the command 

constraints) and at the conceptual level (they are not able to correctly interpret, in 

mathematical terms, the variation of the point when a and b vary). 

DISCUSSION 

In this paper we presented the results of the analysis of data collected during a study 

focused on the role of students as designers of digital resources. We analysed the DR-

design process as a particular problem solving activity, by identifying micro cycles of 

planning-executing-verifying during the whole process. In particular, we focused on 

the monitoring processes activated by students-designers. The data analysis enabled us 

to identify different levels of monitoring, according to two main interrelated elements: 

the intentionality of the monitoring process and the students-designers’ awareness in 

reflecting on their design at both the procedural and conceptual levels.  

In excerpt 1, the monitoring process is not intentionally activated: students limit 

themselves to react to the feedback provided by the GeoGebra applet, recognizing that 

the representation that appears on their screen is completely different from the expected 
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one. The decision that is taken (identify a different formula to be written in the input 

bar) is not motivated by explicitly referring to the related systems of procedural (the 

syntax of GeoGebra’s commands) and conceptual knowledge (the mathematical 

meaning of the representation that appears on the screen). 

In excerpt 2, it is the tutor that gives implicit feedback to the students-designers, so, 

again, the monitoring process is not intentionally activated. However, differently from 

what happens in excerpt 1, one of the students-designers (S) effectively draws on her 

systems of conceptual and procedural knowledge to reflect on the reasons behind the 

ineffectiveness of the second technique that was implemented. 

Differently from the previous excerpts, in excerpt 3 the monitoring process is 

intentionally activated. However, this intentional monitoring process is not associated 

with an effective interpretation of what the students-designers observe on their screen. 

Their weaknesses at both the procedural and conceptual level prevent them from being 

aware of the connections between the ways in which they move the sliders a and b and 

the variation of the constructed representation. 

The analysis of the three excerpts highlights the role played by the artifact’s constraints 

(in particular command constraints) and by the students-designers’ systems of 

procedural and conceptual knowledge in preventing them from activating effective 

monitoring processes. Since the command constraints are at the basis of the feedback 

provided by the applet, they could potentially boost students-designers’ activation of 

monitoring processes that make them realize the need of adopting different techniques 

(like in excerpt 1). However, the students-designers’ lack of awareness at both the 

procedural and conceptual level prevent them from activating intentional monitoring 

processes (like in excerpts 1 and 2) or from correctly interpreting the feedback provided 

by the applet in order to identify the reasons behind the ineffectiveness of an 

implemented technique (like in excerpt 3).  

The fact that all the students involved in the study were beginner designers and had 

had a little experience in the use of the GeoGebra software clearly affected their DR-

design. It implied, for example, that the orienting phase was almost missing in the DR-

design of all the groups of students-designers, preventing them from having a clear 

overview of the structure to be given to their applet. Moreover, it prevented students-

designers from carrying out effective monitoring processes by: (a) intentionally act on 

the digital resource, guided by anticipating thoughts about the expected effects of these 

actions; (b) correctly interpret the feedback provided by the digital resource to infer 

about the effectiveness of the implemented techniques; (c) reflecting in an aware way 

on the reasons underlying the effectiveness (or not) of the implemented techniques. 

Carrying out these kinds of processes requires a deep awareness of the mathematical 

knowledge related to the representations constructed through the applet and a stable 

system of procedural knowledge.  
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As a further step of our research, we plan to involve students-designers on a long-term 

program with the aim of investigating how the characteristics of their monitoring 

processes evolve when students progress in their experience of DR-design. Moreover, 

we plan to study what are the main factors that influence a positive evolution of 

students-designers’ monitoring toward intentional and aware processes. 
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We study the efficiency of a pre-service teachers’ education method that is based on a 
theory-informed analysis of teaching-learning processes, design of tasks for pupils and 
subsequent creation of fictional classroom discussions focused on the same tasks. A 
key element of the method is the request, to pre-service teachers, of writing down, after 
each session of the course in which the method is implemented, accounts of the session, 
under the guide of suggestive questions. In the contribution we analyse such accounts 
in order to study the evolution of pre-service teachers’ attitude towards mathematics 
and mathematics teaching and the development of their identity as future teachers.  
INTRODUCTION AND THEORETICAL BACKGROUND 
In this contribution we focus on a method for primary school pre-service mathematics 
teacher (in the following, PMT) education, designed with a special focus on affect. 
This choice is in tune with what Hodgen and Askew (2011) advocate, stressing that 
teachers’ affect plays a crucial role in their professional development, thus it should be 
considered already in teacher education programs. We rely on the work by Di Martino 
et al. (2013), who study the link between the past experiences of PMTs as students and 
their future perspectives of becoming mathematics teachers and describe the 
phenomenon of the “desire for math redemption”, i.e. “the desire to face the 
“challenge” of teaching mathematics, starting from a personal reconstruction of the 
relationship with the discipline” (p. 226). Such a redemption can be achieved by means 
of specific interventions, such as the education program for PMTs designed by 
Morselli and Sabena (2015), which is based on problem solving activities and on 
narrative reconstruction of PMTs’ “affective pathways” during problem solving. They 
point out that PMT education should act in two ways: “in continuity with respect to the 
need for redemption […], but also in discontinuity with the widespread procedural 
view of mathematics” (p. 1232). In this contribution, we present a method for PMT 
education and we propose the use of two theoretical lenses to discuss the efficiency of 
this method in fostering such continuity and discontinuity. The first theoretical lens is 
the construct of identity, that in the last years has gained increasing interest among 
researchers in teacher education, as evidenced by the recent overviews and systematic 
reviews of research in the field (Lutovac & Kaasila, 2018; Graven & 
Heyd-Metzuyanim, 2019). We refer to the definition of identity by Sfard and Prusak 
(2005, p.1): “Identity is a set of reifying, significant, endorsable stories about a 
person”. According to the narrator, the referee and the recipient, it is possible to 
distinguish between AAA stories (told by oneself, about oneself, to oneself), AAC 
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stories (told by oneself, about oneself, to another recipient), BAC stories (told by a 
narrator, about another person, to a third recipient). The second theoretical lens is the 
construct of attitude, defined by Di Martino and Zan (2014) by means of a model made 
up of three interrelated dimensions: emotions toward mathematics, vision of 
mathematics, perceived competence in mathematics. The model, initially theorized for 
students’ attitude, was adapted to study PMTs’ attitude towards mathematics and its 
teaching (Di Martino et al., 2013).  
OUR METHOD FOR PMT EDUCATION  
We rely on the method introduced by Cusi and Malara (2016), that encompasses the 
use of theoretical tools for both the design of classroom activities and the a-posteriori 
analysis of teaching-learning processes. We adapted this method to the case of PMTs 
by designing a PMT education course characterized by the following kind of activities 
(see also Cusi & Morselli, 2018): 1) sharing and study of theoretical tools (concerning 
teaching-learning processes and the roles played by the teacher during classroom 
discussions); 2) analysis of tasks for students and of videos from classroom activities, 
by referring to the theoretical tools; 3) design of tasks for pupils and creation of 
fictional classroom discussions focused on the same tasks, by referring to the 
theoretical tools); 4) sharing and comparison between the different tasks and fictional 
classroom discussions created by PMTs; 5) individual reflections, after each session of 
the course, to be shared with the teacher educator (one of the authors) in the form of a 
written reports. Individual reflections were guided by some questions suggested by the 
teacher educator at the end of each session. Suggested questions varied according to 
the content of the sessions. However, recurrent questions were: “What are the aspects 
that struck you more? What have you learnt? What have you discovered?”. 
RESEARCH AIM AND QUESTION 
In a previous work (Cusi & Morselli, 2018) we focused on activity 3, showing that the 
specific activity of creating fictional classroom discussions promoted a change of 
perspective, from university students to future teachers, and led PMTs to appreciate 
theoretical lenses as a support for creating discussions, but also as relevant guidelines 
for their future practice as teachers. In this paper we focus on the following research 
question: Is the method adopted during the course efficient in fostering a continuity 
with respect to the PMTs’ need for redemption and a discontinuity with respect to the 
procedural vision of mathematics? To address this question, we focus on the data 
collected through activity 5, that is on the individual reflections that are performed 
after each session of the course, and analyse them in terms of attitude towards 
mathematics teaching and learning and development of teacher identity.  
RESEARCH METHOD 
The course on which this study is focused involved a group of 80 primary school PMTs 
attending their first university year (5 years totally; practicum starts in their second 
year), and lasted 32 hours. Totally, we collected 10 accounts for participant. In our 
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analysis, we looked at such written accounts produced during the course as a collection 
of stories told by PMTs about themselves and directed to the teacher educator as the 
final recipient (AAC stories). We initially selected parts of the written accounts where 
the PMTs speak about themselves, that is parts that could represent reifying stories, 
referring to Sfard & Prusak (2005)’s definition. In a second moment, among the 
reifying stories, we identified sub-stories that are recurrent, i.e. the PMT treats them 
more than one time in her written accounts. This characteristic makes the selected 
stories also significant for the narrator. Moreover, we focused on sub-stories that are 
proposed spontaneously by the narrator, without a direct request by the teacher 
educator, that is on endorsable stories. Once selected the sub-stories, we analysed them 
in terms of attitude towards mathematics and its teaching and learning. Investigating 
the development of the sub-stories throughout the whole course, we came to 
reconstruct a story about each PMT, which is a CAD story, since it is our way of 
narrating about the PMT to a third recipient (the reader of this paper). We outline that 
the themes of sub-stories may vary from PMT to PMT. Our narration brings to the fore 
the prevailing themes for one PMT, thus contributing to characterize her identity as a 
future teacher. In this contribution we confine to two stories of development so as to 
start our reflection on the efficiency of the method. Our work will be later integrated 
with the analysis of problematic stories, so as to understand in which cases PMTs’ 
participation in the course does not promote their professional development.  
DATA ANALYSIS 
We present and discuss the sub-stories of two PMTs, Zelia and Ella, narrating them by 
means of relevant excerpts and analysing them through our theoretical lenses. 
The first prevailing theme in Zelia’s sub-stories is “mathematics and its teaching”. In 
the following excerpt from her 3rd written account, she highlights the fact that the 
classroom activities proposed during the third lesson are designed to support pupils in 
making their reasoning process explicit. Reflecting on the fact that too often, in 
mathematics teaching, the product and the application of rules are considered more 
important than the process, Zelia explains that she is reconsidering her vision of 
mathematics. She asks herself if her love for mathematics is a simple infatuation, 
associated to an incomplete imagine of this discipline: 

I do not hate math. On the contrary, this subject has become enjoyable year after year. But 
I think that this course is instilling in me the doubt that I’ve never really loved it…I ask 
myself if the mathematics that I thought to love is the real mathematics, or if I simply loved 
the being able to perform exercises, using rules (Zelia, 3rd written account). 

Zelia’s awareness that positive emotions toward mathematics could be connected to 
procedural visions of the subject is also proposed in her 4th written account. Discussing 
on a teaching episode analysed during the fourth session, Zelia reflects on the role 
played by the teacher, which was very different from the approach that her upper 
secondary school teacher used to adopt. Zelia declares that she used to prefer 
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traditional lessons, where the teacher explained contents at the blackboard, to lessons 
focused on problem solving, and calls again her vision into question: 

I am trying to discover if my vision of mathematics, under a veil of positivity, is only 
“mathematics as rules to be applied” (Zelia, 4th written account). 

In the same written account, Zelia narrates an exchange between herself and another 
PMT, concerning her colleague’s doubt if mathematics really opens the mind or not:  

I answered her that mathematics could help in reasoning and in fostering understanding. I 
am quoting this experience because I am asking myself if I am myself expressing a 
prejudice, that is if I am not reflecting enough about it. Maybe I convinced myself that 
mathematics opens the mind, while I am continuing using mathematics in a ‘mechanical’ 
way (Zelia, 4th written account). 

After session 6, Zelia reflects on her way of approaching problems (looking for 
symbolic expressions to represent relations between variables) and recognizes her 
difficulty in appreciating alternative solutions; once again, she connects this difficulty 
to her poor vision of mathematics: 

The fact that I am not able to find out other strategies makes me reflect on my way of 
approaching mathematics and on my fear that my answer is always “not enough 
mathematical”… I am not used at verbalizing my resolutions. I think it could be due to two 
possible reasons: my approach has become an automatism (it is a problem if it prevents me 
from elaborating other strategies), or my vision of mathematics focuses only on the 
product and does not care of the process…It makes me reflect on the fact that some 
approaches are so well-established that I need to continuously reflect on them (Zelia, 6th 
written account). 

Referring to the three-dimensional model of attitude, we may say that the course 
promoted Zelia’s reflection on her attitude towards mathematics: from the beginning 
she reports positive emotional dispositions towards the discipline, but throughout the 
course she starts questioning her vision of mathematics. When she faces difficulty in 
performing process-oriented activities, she does not stick in a low perceived 
competence, rather she feels more motivated to work on a more elaborated vision of the 
discipline. We may note that Zelia not only reflects on her past as a student, wishing to 
improve her vision of mathematics; Zelia is also aware of the fact that the vision of 
mathematics could influence the teacher in planning her teaching approach. This leads 
to the second theme, “roles of the mathematics teacher”. The first excerpt refers to 
session 2, where the discussion with the teacher educator and her mates made Zelia 
reflect on her role-model teacher and compare her with other kinds of teachers, referred 
to as “lazy teachers”, who contributed to her mates’ experiences of failure in 
mathematics: 

He is among the models of teacher [...] I take when I imagine me as a future teacher, and 
that at deeper level maybe gave me the desire to teach and to be for my pupils what he was 
for me. Conversely, in my colleagues’ accounts I recognized the lazy teacher, ready to 
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label students, that can contribute the student’s failure, aspect that is not so far from my 
experience as a primary student. (Zelia, 2nd written account). 

In her 5th written account, Zelia reports that the activity of analysis of teaching episodes 
enabled her to become aware of the importance of teacher’s flexibility in managing 
classroom discussions, and of the necessity of an accurate design of each lesson. 

I was struck by the way the teacher was ready to create the metaphor [to make the student’s 
reasoning clearer]. This makes me wonder in which way the teacher had prepared the 
lesson. I wonder whether the teacher took some time to make hypotheses in the students’ 
difficulties, or the metaphor was already known and she was able to recall and use it at the 
good moment. (Zelia, 5th written account) 

Reflecting on session 8, devoted to the presentation of a theoretical construct aimed at 
characterizing the roles played by the teacher during classroom discussions, Zelda 
realizes that some of these roles are fundamental in supporting pupils in overcoming a 
“static” vision of mathematics. 

We can highlight the importance of whole classroom discussions, since it is from the 
crash/encounter of different thoughts, approaches, strategies, that we can grasp the 
richness of thinking and overcome the traditional static vision of mathematics, according 
to which, for each problem, there is only one solution and one way to find it (Zelia, 8th 
written account). 

In reference to the second theme (“roles of the mathematics teacher”), Zelia realizes 
that the teacher has a role in influencing students’ attitude towards mathematics (2nd 
written account, reference to her mates’ experiences of failure). Afterwards, Zelia 
recognizes the importance of specific roles concerning planning and managing class 
activities, thus enriching the three components of her attitude towards mathematics 
teaching in terms of vision (she values specific roles such as planning, managing 
discussions), emotional disposition (she is positively struck by the teaching episode!) 
and perceived competence (she realizes that class discussion can help her in proposing 
students meaningful and “non static” lesson, as she wished). 
The second PMT we refer to is Ella. Her first theme concerns “mathematics and its 
learning”. In the account after session 2 (where Ella and her mates were proposed a 
task of conjecture and proof), Ella recognizes that she never experienced such rich 
mathematical activities when she was a student, and this lack made her develop a poor 
vision of mathematics, based on procedures rather than on argumentation and 
reasoning. Moreover, she reports a negative disposition towards mathematics (algebra 
in particular), coupled with a constant fear of making mistakes.   

My approach to mathematics, in my experience as a student, led me to underestimate the 
goals of learning, to internalize isolated concepts; even worse, to provide mechanical 
solutions, often without conscious argumentations. […] Fear of making mistakes. […] The 
feeling of having a dangerous relationship with the discipline, always on the edge between 
the desire to move beyond and the sensation of falling down, step into the wrong 
calculation and into my limits. (Ella, 2nd written account) 
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Throughout the course, Ella reflects on the proposed examples of teaching activities 
and recognizes that such activities are improving her vision of mathematics: 

I never thought about the great potentialities of the discipline in such a perspective. 
Working for the construction of our mathematical thinking, starting from primary school. 
Learning to “speak mathematically”. Experience mathematics as a language. (Ella, 6th 
written account). 

In the final account, Ella recognizes some improvement in her attitude towards 
mathematics, with reference to the vision of the discipline. She speaks again about 
mistakes, but finally she is keen to accept mistakes as an unavoidable part of the 
process of doing mathematics.  

I bring with me my past as an afraid and insecure student. […] I learnt to hate mathematics, 
even before looking it in the face. I became able to hide behind an exercise, to circumvent 
questions, to repeat minimal operations, avoiding the overall vision and the search for 
meaning. For this reason, the biggest difficulty during this course was to become the 
protagonist. […] To ask questions I had never dared to share. […] to make mistakes, above 
all. To learn to make mistakes. To desire and to allow myself to make mistakes. Because in 
my former non-experience as shy and unsecure student, the mistake was not allowed. (Ella, 
Final written account). 

Referring to the three-dimensional model of attitude, we may say that thanks to the 
course Ella moved from an attitude towards mathematics characterized by negative 
emotional disposition (fear, danger) and poor vision of the discipline (mechanical 
procedures, emphasis on the final product without mistakes) to a more positive one, 
characterized by a new emotional disposition (to dare to ask questions and make 
mistakes) and a new, richer vision of the discipline (mathematics as language) 
characterized by argumentation and search for meaning. 
The second theme refers to the “roles of the mathematics teacher”. After session 2, Ella 
reflects on the proposed activity (solving a task of conjecture and proof) and on the 
crucial role of the teacher educator in the collective discussion on the task. In 
particular, Ella points out a new way of conceiving mistakes as resources for the 
teacher: 

 […]. I highly appreciated the way the teacher [educator] was able to guide the reasoning 
of the group without interfering, not judging, using mistakes as resources for the reasoning 
that was in construction. (Ella, 2nd written account) 

After session 3, Ella reflects on the fact that the teacher needs to be flexible and adapt 
her lesson plan to the students’ interventions. Ella expresses the interest for learning 
how to manage class discussions in a fruitful way. 

It seems to me that, in this sense, the teacher's art is very close to that of the master 
craftsman. And I would like to experiment and I would like to experience firsthand […] 
possible techniques of design and presentation to the class. (Ella, 3rd written account) 
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The 6th written account, where Ella reflects on a session focused on the analysis of 
classroom activities, contains an interesting reflection on the role of the teacher who 
asks questions to the pupils, but also to her/himself.  

What strikes me […] is the interactive learning and the cooperative climate that the teacher 
stimulates through the acquisition of specific roles. Children learn to confront themselves 
in group, to argue their own reasonings and strategies, to change their minds [..]. The 
teacher learns: [to be an] equilibrist in search of questions to ask students and to ask 
herself, bearer of an idea of transparent teaching, which replaces the question, research and 
thought as nourishment for the individual and the community to the imposition of univocal 
solutions. (Ella, 6th written account). 

In reference to the second theme (“roles of the mathematics teacher”), we may find in 
Ella’s accounts instances of a positive attitude towards mathematics teaching. During 
the course, the vision of mathematics teaching becomes richer and richer, with 
reference to the crucial roles of the teacher in managing class discussions, guiding 
students’ reasoning without imposing a strategy, using mistakes as resources. Ella also 
expresses a positive disposition towards her future role and declares herself ready to 
learn and experiment how to plan and implement meaningful classroom activities. This 
good will and optimism concerning her future as a teacher may be interpreted in terms 
of good perceived competence.  
PRELIMINARY CONCLUSIONS 
This contribution was aimed at discussing the efficiency of a method for PMT 
education, with a special focus on affect. We adopted a double theoretical lens (identity 
and attitude) to analyse written reports of two PMTs (Zelia and Ella) throughout all the 
course. The two reported stories, and their swinging between the past and the future, 
show the development of their identities as future teachers. The stories of Zelia and 
Ella reveal differences in the two PMTs’ relation with the past: Zelia focuses on 
teaching, reflecting on a positive example of teacher she experienced, while Ella 
reports her own difficulties in learning mathematics. Concerning future, both PMTs 
show an increasing awareness and appreciation of the roles they’ll have to play as 
teachers. Interestingly, the reflection on the roles of the teachers that is promoted 
during the course is efficient in bridging the two PMTs from the past to the future: 
Zelia recognizes that by playing such roles she will be able to act as the teacher she had 
when she was a student; Ella thinks that by playing such roles as a teacher she will be 
able to help her students learn in a better way in comparison to her experience as a 
student.  
Data analysis shows the evolution of the PMTs’ attitude towards mathematics, 
encompassing a more elaborated vision of mathematics, thus acting in discontinuity 
with the past. We also found evidences of improvement in attitude towards 
mathematics teaching, both in terms of vision of mathematics teaching and in terms of 
positive disposition and perceived competence. Such an improvement is linked to a 
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projection towards the future work as teachers and takes place in continuity with the 
need for “mathematical redemption”.  
Although the method for PMT education is put in action in the whole sequence of 
activities of the course, the analysis of the PMTs’ stories enabled us to identify some 
activities that seem particularly effective: the analysis of tasks and of videos of 
classroom activities, the sharing of theoretical tools, the reflections in small groups on 
the design of specific tasks, and the active participation to laboratory workshops. The 
written accounts also proved to be effective, because they allowed the creation of a free 
space to reflect on the course (the present) and connect it with their experiences as 
teacher (their past) and their forthcoming role as teachers (their future). 
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STUDENTS’ REFLECTIONS ON THE DESIGN OF DIGITAL 
RESOURCES TO SCAFFOLD METACOGNITIVE ACTIVITIES 

Annalisa Cusi1, Agnese I. Telloni2 and Katia Visconti1 

1Sapienza University of Rome, 2University of Macerata 
 
In this paper we investigate the efficiency of the design of a digital resource aimed at 
scaffolding students’ metacognitive processes during problem solving activities. We 
develop this investigation by focusing on students’ a-posteriori reflections on their 
interaction with the digital resource. Through the analysis of students’ reflections, we 
highlight the digital meta-scaffolding elements that are relevant for students and their 
level of awareness about the provided metacognitive support. 
INTRODUCTION AND BACKGROUND 
The research documented in this paper is set within a wider study that concerns the 
design and implementation of digital resources to foster individualization processes at 
university level (Cusi & Telloni, 2020A-B). In particular, we focus on students’ 
reflections on digital meta-scaffolding elements (in the following, DMSEs), that is on 
the elements of scaffolding provided, within digital environments, with the aim of 
fostering students’ metacognitive processes. 
Research in mathematics education has widely stressed the key-role played by 
metacognition in problem solving (Schoenfeld, 1992; Holton & Clarke, 2006). Here 
we adopt Holton and Clarke’s (2006) definition of metacognition as “any thinking act 
that operates on a cognitive thought in order to assist in the process of learning or the 
solution of a problem” (p.133). This definition shifts the focus on the idea of “acts” to 
distinguish them from all the factors that could influence metacognition but are not 
metacognitive in themselves (such as beliefs, intuition and knowledge). In tune with 
this idea, we refer to Meijer et al.’s (2006) categorization of metacognitive activities, 
defined as “the strategic application of metacognitive knowledge to achieve cognitive 
goals” (p.209). We focus on five categories of metacognitive activities identified by 
the authors: (1) orientating, which involves activities such as activating prior 
knowledge, establishing task demands, identifying important information, re-reading 
questions carefully, establish givens, observing; (2) planning, which involves activities 
such as looking for particular information in text, sub-goaling, using external source to 
get explanation, backward reasoning, formulating action plan; (3) monitoring, which 
involves activities such as error detection and correction, noticing inconsistency, 
checking plausibility, claiming progress in understanding, giving meaning to symbols 
or formulae; (4) evaluation, which involves activities such as explaining strategies, 
finding similarities, interpreting, quitting, self-critiquing, verifying; (5) elaboration, 
which involves activities such as inferring, checking representations, commenting on 
the difficulty of problems, commenting on personal habits. 
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When the focus is on fostering students’ metacognitive activities within digital 
learning environments, the design of DMSEs provided to students deserves special 
attention. The close interrelation between metacognition and scaffolding has been 
highlighted by Holton and Clarke (2006), who assert that acts of scaffolding and acts of 
metacognition could be potentially identified. Moreover, students’ effective use of the 
scaffolding provided to them and their subsequent development of awareness about the 
role of scaffolding require that they activate themselves at the metacognitive level 
(Holton & Clarke, 2006). This is in tune with Pea’s (2004) reflection on the crucial role 
played by meta-scaffolding, conceived as the scaffolding for the scaffolding. This is 
particularly relevant in the context of digital environments, where a good balance 
between procedural and metacognitive scaffolding is needed (Sharma & Hannafin, 
2007). Our previous studies (Cusi & Telloni, 2020A-B) confirmed these reflections, 
highlighting university students’ widespread lack of awareness about the aims of the 
DMSEs provided to them within specific digital learning environments. In particular, 
we highlighted how this issue is interrelated with students’ lack of awareness about 
their weaknesses and learning needs and with their lack of metacognitive control in 
monitoring their problem-solving processes. 
THE RESEARCH CONTEXT AND THE DESIGN OF DMSES 
The context of this study is a Mathematics course for students enrolled in the 
“Chemistry and pharmaceutical technologies” degree course at Sapienza University of 
Rome (Italy). The course, scheduled for the first term of the first year, is aimed at 
providing students with basic Mathematics notions useful to be applied in the study of 
pharmaceutical chemistry. The course program covers basic knowledge related to 
different topics: algebra, analytical geometry, goniometry, probability, statistics, 
calculus. Within the part of the program devoted to calculus, the topic of differential 
equations is faced, with a focus on linear equations with constant coefficients and on 
their use in modelling simple problems. For many students enrolled in the Mathematics 
course it is the first approach to this content, since it is usually not faced in most upper 
secondary schools in Italy. The experience of the teacher of the course (one of the 
authors) during previous academic years has shown widespread students’ difficulties 
with this topic. In particular, the written examinations have highlighted students’ 
blocks in carrying out two fundamental processes: (a) the aware construction of the 
differential equations that models these kinds of problems (often students construct 
these equations in an automatic way and are not aware of the meanings of the different 
terms that appear within them); (b) the effective interpretation of the graph of the 
function that represents the problem’s solution, by connecting specific properties of the 
graph to the corresponding characteristics of the represented phenomenon. 
To support students in overcoming these blocks, we designed a digital resource (a 
GeoGebra applet) to be used to face a problem that could be modelled through a linear 
differential equation with constant coefficients. The text of the problem is: “An 
industry produces mobile phones at a rate of 20% per month. Every month, 150 mobile 
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phones are sold. Suppose that at time t = 0 there are 700 mobile phones ready to be 
sold. Is the production’s rate sufficient to meet market needs?”. The digital resource 
has been designed to include specific DMSEs aimed at fostering metacognitive 
activities during students’ resolution of the problem. Table 1 summarizes the main 
DMSEs provided to students and the metacognitive activities fostered by each DMSE. 
The design of the digital resource does not include DMSEs aimed at fostering students’ 
reflections on their difficulties in solving the problem or on their personal habits in 
doing problem solving. For this reason, the elaboration category is missing in Table 1. 

Digital meta-scaffolding elements Fostered metacognitive activities 
1) During the whole activity, 
students are guided to follow the 
different steps that structure the 
resolution process. At the beginning, 
two sub-goals are set: to construct 
the differential equation that models 
the problem and to sketch the graph 
of its solution. 

Planning, since sub-goals are stated, 
and students are supported to 
formulate an action plan. 

2) If students fail in the initial 
construction of the differential 
equation, they are provided with the 
general form of the equation they 
have to construct (𝑦′ = 𝑝𝑦 + 𝑞) and 
guided, by means of specific 
questions, to read the problem’s text, 
identifying the information that 
could help them in determine the 
coefficients p and q. 

Orientating, since students are 
supported in the identification of 
important information and in 
establishing given values within the 
problem’s text. 
Planning, since students are guided to 
look at particular information in the 
problem’s text and in selecting pieces 
of information useful to achieve the 
goal of constructing the differential 
equation that models the problem.  

3) After students’ construction of the 
correct differential equation, they 
are asked to interpret the equation, 
making the meaning of each term of 
the equation (𝑦′,𝑝𝑦,𝑞) explicit.  

Monitoring, since students are 
supported in the interpretation of the 
differential equation in relation to the 
problem (highlighting, or not, their 
progress in the understanding of what 
they are doing) and in giving meaning 
to the mathematical objects they are 
working with. 

4) Theoretical hints are provided to 
students if they fail in specific steps 
of the task. Students can 

Orientating, since students are guided 
to focus on important information that 
could support their work on the task. 
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autonomously use these hints to be 
supported in their resolution of the 
differential equation or if they want 
to check the correctness of their 
work. 

Planning, since students are enabled to 
use external sources to get more 
explanations. 

5) After students’ resolution of the 
differential equation, they can 
choose to use GeoGebra to draw the 
graph of its solution. Afterwards, 
they are supported in the 
interpretation of the graph in 
relation to the problem. Specifically, 
students are asked to identify, within 
a list of properties of the graph, the 
property to which they should refer 
in order to answer to the problem’s 
question. 

Orientating, since students are 
supported in a careful re-reading of the 
questions and in the interpretation of 
the constructed graph. 
Evaluation, since the focus is on the 
interpretation of the result of the 
employing process, which could also 
give strength to the explanation of the 
strategy suggested at the beginning 
(constructing and solving an equation, 
then drawing the graph of its solution). 

6) During the whole activity, at each 
step students are provided with 
reminders about the main results of 
the previous steps. Students are also 
asked to make the strategies 
implemented during the employing 
process explicit, by selecting the 
correct strategy within a list of 
possible strategies.  

Planning, since students are guided in 
formulating their action plan. 
Monitoring, since students are 
supported in referring to the outcomes 
of the previous steps of the problem’s 
resolution and in keeping track of their 
work. 

7) During the whole activity, error 
messages are provided, together 
with partial corrections, that is 
operative hints aimed at supporting 
students in detecting their mistakes.  

Monitoring, since students are guided 
to detect mistakes and understand 
possible reasons related to partial 
failures in the resolution process. 
Evaluation, since students have the 
opportunity to check their work in 
progress and to develop a self-critique 
about the chosen approaches. 

Table 1: DMSEs and related metacognitive activities 
RESEARCH QUESTIONS AND RESEARCH METHODOLOGY 
The aim of this study is to investigate the efficiency our design, by focusing on 
students’ a-posteriori reflections on their interaction with the digital resource presented 
in the previous section. In particular, we address the following research questions: (1) 
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What DMSEs of the digital resource are relevant for students who interacted with it 
and why? (2) What aims related to the design of DMSEs are students aware of?  
To investigate these issues, we developed an exploratory study with a group of 11 
students that were attending the course in Autumn 2021. The students, enrolled on 
voluntary basis, worked in small groups (5 groups of 2 or 3 students) at distance, by 
means of the Zoom platform. During the groups’ work, which lasted from 20 to 30 
minutes (no time limit was a-priori set), one student for each group shared his/her 
screen and directly interacted with the digital resource. Each group’s work was 
video-recorded to keep track of both the students’ interaction with the digital resource 
and the dialogues between students. The choice of making students work in small 
groups was specifically aimed at fostering their explicitation of cognitive and 
metacognitive processes while working with the digital resource. Moreover, two 
researchers (two of the authors) were always present during the groups’ work. One of 
them took notes about the observed interactions, the other played the role of tutor, 
posing specific questions to the students to make them share their cognitive and 
metacognitive processes and to support their reflection on DMSEs.  
Here we focus on the reflections carried out by the students during a short interview 
developed by the tutor, immediately after students have completed their work with the 
digital resource. During the interview, students were asked to provide feedback about 
the effectiveness of the design of the digital resource in supporting their resolution of 
the problem and to identify the most supportive elements of this design. We analysed 
the transcripts of the interviews by highlighting: (a) the DMSEs on which students 
focused; (b) the ways in which students reflected on these DMSEs; (c) students’ 
metacognitive activities emerging during the interviews. The results of this analysis are 
presented in the following section. 
ANALYSIS 
The DMSE on which almost all the groups’ reflections are focused (4 groups referred 
to it) is the first one, that is the choice of structuring the task in different steps. F, a 
student from group 3, for example, states: “All the steps are in order, so nothing is lost, 
the procedure that needs to be done is clearer to me”. The general idea that students 
share is that they have assimilated this scaffolding, as testified in this reflection: 

“…[the resolution process] is much more schematized and ordered. The mental order is 
much easier to be achieved in this way, because it [the digital resource] asks exactly what 
the procedure is and creates a mental set” (A, group 2). 

Although students widely focus on the ordered structure of the digital resource and on 
the possibility of re-constructing all the passages developed within the resolution steps, 
DMSE 6 (giving reminders about the results of the previous steps and asking students 
to identify a correct employing strategy within a list of possible strategies) is more 
implicit in students’ reflections. However, some students propose interesting 
reflections about the effectiveness of DMSE 6 in making the employing strategies 
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explicit. They stress, in particular, that asking students to identify their strategies 
among different options enabled them to make the reasons connected to these 
strategies more explicit to themselves. This idea is evident in V’s (group 2) reflection:  

“To answer to the question that asks what we have to do to determine the particular 
solution [of the differential equation], we must have understood what 0 and 700 represent 
and why we have to replace x with 0 and y with 700.”  

The further DMSE on which most of the groups (3 groups) focus is the seventh, that is 
the error messages that are provided, together with partial corrections. S (group 5) 
proposes strategic use of DMSE 7 that she carried out when working on the digital 
resource: “When you try to put an answer and it is wrong, it [the digital resource] gives 
you some suggestions to get you to the right answer. This is useful”. The following 
reflections highlight, in particular, that students appreciate the immediate feedback 
provided through DMSE 7, interpreting it as an opportunity to reflect about mistakes: 

“The messages that come out are very useful, because they immediately tell you where you 
went wrong and they also refer to the theory so you can immediately see your error.” (F, 
group 2) 
“In fact, they give you a second chance, they make you think about the mistake you made. 
They also tell you if you can go ahead or if you need to review something." (A, group 2) 

F’s reflection enables us to shift our attention on a DMSE on which only two groups 
focused, that is the theoretical hints provided within the digital resource (DMSE 4). 
Besides F (group 4), only one other student, A (group 2), implicitly mentions this 
element, declaring her awareness about the importance of referring to theoretical tools 
when facing this kind of tasks: “You have to make reference to the theory you 
assimilated during the course, then you have to specifically use it to face this problem”. 
This assertion could also be interpreted in terms of an elaboration activity emerging 
during the interview, since A is providing to herself feedback about self-regulation. 
The other DMSEs are rarely mentioned in students’ reflections. The DMSE 2 
(supporting students’ reading of the problem’s text to identify the information that 
have to be used to model the problem), in particular, is never mentioned by students. 
This is certainly due to the fact that one group did not receive this scaffolding since 
they were able to immediately construct the correct equation and other two groups 
made minor mistakes in the construction of the equation, so this DMSE was not really 
necessary for them. As regards the other two groups, we think that they did not mention 
the DMSE 2 because the difficulty they faced was not related to the identification of 
the information useful to construct the equation, but to how to use this information.  
Although few students spontaneously propose reflections on DMSE 3 (support in the 
interpretation of the constructed equation in relation to the problem) and DMSE 5 
(support in the interpretation of the graph in relation to the problem), our analysis 
enabled us to show that reflecting on these two DMSEs during the interview fostered 
the evaluation and elaboration activities. The following reflection testifies, for 
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example, the awareness about the role of DMSE 5 in guiding students’ effective use of 
the graph within the resolution process:  

“This question is useful to understand how to extrapolate, from the graph, the information 
we need to solve the problem, therefore how to obtain the needed information from the 
modeling of the problem” (R, group 1).  

DMSE 3 is explicitly mentioned only by V (group 2), who declares that a lack in her 
approach is that she did not deepen the interpretation of the different components of the 
differential equation in relation to the problem. Therefore, even if students do not 
mention DMSE 3 as relevant for them, the reflection on the difficulty faced in 
interacting with this DMSE boosted their elaboration activity during the interview, 
making them become more aware of their difficulties and develop self-critique. The 
reflection on DMSE 5 also boosted the development of the evaluation and elaboration 
activities during the interview. This is testified by the following reflection, in which a 
student highlights the interrelation between facing difficulties when interacting with 
this DMSE and becoming more aware of unclear aspects of the strategy adopted to 
solve the problem:  

“When we got stuck on this question related to the graph, then understanding what was the 
right answer, among the three answers, helped us a lot. We were more confident about 
other things and we got stuck on this one, but then I understood why.” (S, group 5) 

Our analysis highlighted also other examples of how the students’ reflection on the 
effectiveness of the DMSEs make them develop evaluation and elaboration activities. 
It happened especially when students focused on those elements that disoriented them, 
as testified in the following reflection, developed by V (group 2) when speaking about 
the confusion they faced in the initial part of their work on the task:  

“In fact, we were wrong because when you write the Cauchy problem, you write like this, 
not as we did. In my opinion, the problem is not in the formulation of the task and in how it 
is set up. We were really wrong because we have read the request with little attention”. 

FINAL DISCUSSION 
The analysis presented in the previous section enabled us to show that not all the 
DMSEs included in our design are relevant for students. Students mostly mention the 
support provided by the structuring of the task in different steps (DMSE 1), the 
reminders about the results of the previous steps and the guide in making the 
employing strategies explicit (DMSE 6), the error messages associated to partial 
corrections (DMSE 7) and the theoretical hints (DMSE 4). This result shows that 
students are more aware of those DMSEs that simplify the task by suggesting what are 
the actions required to reach the solution or of those that keep them in pursuit of 
specific goals.  
The fact that students never or rarely mentioned the DMSEs directly aimed at 
supporting the phases of construction of a formal representation to solve the problem 
(DMSE 2) and of interpretation of the representations with which they interact (DMSE 
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3 and 5) suggests us the need of a re-design of the digital resource with the aim of 
enriching the meta-level of the provided scaffolding, enabling students to become 
aware of the role of specific DMSEs within the digital resource. The problems related 
to the students’ lack of this awareness have been also highlighted during the phase of 
students’ work with the digital resources, when, in tune with our previous studies (Cusi 
& Telloni, 2020B), the tutor played a crucial role in making students effectively exploit 
the provided scaffolding. The different excerpts that show students’ development of 
evaluation and elaboration activities when reflecting, during the interviews, on the 
usefulness of the provided DMSEs, testify the importance of fostering this kind of 
reflection as a further element of the meta-scaffolding itself.  
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ENTAGLEMENTS OF CIRCLES, PHI AND STRINGS 
Anette de Ron, Kicki Skog 

Department of Teaching and Learning, Stockholm University 
 
This study focuses on the entanglements of material discursive agents in a 
mathematical explorative activity, where learners systematically investigate the 
properties of the circle. A diffractive methodology is used to explore the emerging 
intra-activity in-between the teacher, the learners, different teaching materials, the 
mathematical concepts and formulas, as abstract and concrete aspects of mathematics 
education are set in motion. The results show that concrete material-discursive agents, 
such as strings, rulers and bodies are entangled with abstract mathematical concepts 
such as circumference, formulas and phi. 
INTRODUCTION 

The classroom is full of energy. There are about 25 learners in grade 7 and for the 
fly on the wall there is a constant babble among them. Strings, rulers and large white 
sheets of paper with printed circles are on the tables. The teacher, Gert, walks 
calmly around, approaching pairs who need support. He seems to know each of the 
learners very well. At times, one can see a ruler hanging in the string as a necklace 
or attached to a hat as a horn. At other occasions, the same learners ask Gert for 
support to come further in the task. The communication is friendly, focused on 
central concepts, such as perimeter, diameter and radius.  

Do mathematical concepts exist in things perceptible by senses or are they independent 
from them, and do mathematical concepts exist inside or outside the mind? These 
questions have long been a central concern within the philosophy of mathematics 
(Ernest, 2018) and are also reflected in the longstanding controversy over concrete 
versus abstract aspects in mathematics instruction. There is a widespread assumption, 
in most learning theories and approaches to pedagogy, that abstract and concrete 
aspects – abstraction and concretization – are important for the learning of the concepts 
of mathematics (Coles & Sinclair, 2019).  
Abstraction can be seen as ignoring the specific nature of concepts, focusing on 
general operations or relationships, closely linked to contextualization, whereas 
concretion is about making concepts considered abstract more concrete and thus, 
understandable for learners (Dreyfus, 2014). However, controversies regarding if 
mathematics should be taught from “concrete to abstract” or from “abstract to 
concrete” have been discussed for a long time. The “concrete to abstract” progression 
is evident in work building on Piaget and Bruner, such as Ding and Li (2014). They 
investigated how concrete and abstract representations of concepts may be structured 
to facilitate learning and identified features that may enable the transition from 
concrete examples to abstract knowledge, by gradually increasing the abstraction to the 
higher-level structure of abstract knowledge. Contrariwise, the “abstract-to-abstract” 
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development, promoted by Kaminski et al. (2009) in a much-discussed study, claimed 
that learners benefit more from learning mathematical concepts through abstract, 
symbolic representations than from concrete examples. This has, in turn, been 
criticized by De Bock et al. (2011) who conducted a partial replication of the study by 
Kaminski et al., resulting in questions about what learners actually learned from the 
abstract concept exemplifications. This implies that a “concrete to abstract” position 
might be more productive for learners.  
Despite the ongoing discussion of whether mathematics instruction should start with 
concrete or abstract examples, concrete materials or manipulatives, including physical, 
visual and pictographic objects, are widely used in mathematics classrooms. This is 
based on the assumption that the “concrete” will make mathematics meaningful to 
learners which is reinforcing the dichotomy between concrete and abstract. This 
dichotomy has played an important part in promoting the use of manipulatives in the 
teaching and learning of mathematics (Coles & Sinclair, 2019). However, questions 
are raised about the very substance of this dichotomy and the conceptualizing of the 
concrete/abstract distinction in the learning of mathematical concepts. Adam and 
Chigeza (2015) question this (and other) binaries with regard to teachers' pedagogical 
choices and propose a more relational and contextual approach to knowledge.  
A different approach taken is work building on new materialist stances (e.g. Barad, 
2007) where concrete and abstract aspects are not seen as dichotomized, but as 
entangled. In Barad’s view the materiality of concepts is highlighted and concepts are 
to be understood, not as abstract mental objects, but as a material arrangement. 
Furthermore, materiality is not seen as “dead” or passive in relation to the active 
discursive human being. Instead, materiality – matter and concepts, matter and 
thought, matter and meaning, matter and discourse – is understood as agential in the 
co-construction of meaning and learning (Barad, 2007). Hence, new materialist 
perspectives have the potential to address concerns about how concrete and abstract 
aspects of mathematics teaching relate to each other. In this study we take departure in 
Barad´s (2007) agential realism and the concept of entanglement, to explore how the 
material-discursive aspects of the abstract/concrete dichotomy is enacted in a teaching 
sequence. We ask the question of how this entanglement can be identified in 
mathematical explorative activities. In this case concerning the circle and its 
properties. 
AGENTIAL REALISM  
From an agential realism stance (Barad, 2007) the focus is set on material-discursive 
practices. That is, phenomena (or concepts) are constructed by both material and 
discursive practices in simultaneousness and mutuality. In a Baradian agential realist 
account, matter and meaning are always co-constituted and entangled as neither 
discursive nor material practices are prior to each other, reducible to each other or 
privileged over the other. From this viewpoint of materiality, neither concepts nor 
things, have determined boundaries, properties or meanings, but emerges through 
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entanglements of material-discursive intra-actions in an ongoing production process. 
Barad (2007) replaces the notion of interaction with intra-actions and thereby shifts 
focus from a human-to-human interaction to intra-actions in-between human as well as 
non-human materialities. Intra-actions as agential are to be understood as enactments, 
something that is to be done or acted upon (Barad, 2007) rather than as an inherent 
property of an individual or human to be exercised. Thus, all forms of materiality: 
bodies, matter, concepts etcetera, are performative agents engaged in entangled 
relations.  
Drawing on posthumanism and new materialism de Freitas and Sinclair (2014) is 
questioning the, in their meaning, not very fruitful division between the 
mathematically abstract and the physically concrete. This foregrounds questions about 
the entanglements of mathematical concepts, material-discursive aspects and how 
mathematical concepts partake in agential ways (Freitas and Sinclair, 2014). From 
Barad´s theory they understand concepts as material arrangements of things in 
intra-actions with each other and apply that on mathematical concepts. Thereof, 
mathematical objects and concepts take part in an entangled and ongoing process so 
that abstract thoughts and materiality are entwined. Mathematical concepts are thus 
considered as performative material agents entangled with other material agents in 
material-discursive intra-actions (de Freitas & Sinclair, 2014).   
METHODOLOGY 
This study is part of a larger project (TRACE) on novice mathematics teachers’ 
learning and what they bring from teacher education into the practice of teaching in 
school. The data used in this study derives from video-recorded lesson observations 
that were conducted over an extended period, from the last practicum period in teacher 
education to three years of experience as teacher. In this paper we focus on a lesson that 
the teacher, Gert, holds at the school where he works, two years after graduation.  

The lesson focuses on phi, and the task is to systematically investigate the properties of 
the circle. Gert’s plan is to let the learners work in pairs to determine the radius, 
diameter and circumference of circles of different sizes. All pairs have a ruler, a string, 
and a large sheet of paper. On the sheet there are circles of five different sizes and a 
table in the lower right corner. According to the measurements they have done and 
noted in the table, the learners are asked to divide the length circumference with the 
length of the diameter and (hopefully) find that the quotient is close to the same in all 
cases. 
Diffractive analysis 
With a material-discursive focus on intra-actions comes methodological issues 
concerning material aspects of knowledge production (Barad, 2007) opening up for the 
possibility to unfold complexities when studying the doing of a specific phenomenon. 
Furthermore, it makes possible to acknowledge and analyze both entanglements and 
differences emerging in events of encounters of material-discursive intra-actions. This 
is putting into work what Barad (2007) calls a diffractive methodology.  
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Diffractive methodology is inspired from the concept diffraction which describes a 
physical phenomenon and can serve as a counterpoint to reflection (Barad, 2007). 
Barad put forward a diffractive methodology by contrasting reflection and diffraction. 
Reflection can hence be read as mirroring and sameness, whereas diffraction can be 
read as patterns of difference with a purpose of exploring the entangled effects that 
differences make, and the very nature of entanglements. A diffractive methodology is 
looking for differences within phenomena, focusing on encounters and entanglements 
and what these differences might do (Barad, 2007). Hence, a diffractive methodology 
provides a way to attend to the entanglements of material-discursive agents, such as 
abstract concepts (e.g., phi) and concrete physical things (e.g., strings and rulers). 
The process of analysis is guided by openness to entanglements in each situation, 
which ,with sensibility and care enables data to take part in the process. As a researcher 
one has to have trust in the unexpected and be open to the things that will occur in the 
process (MacLure, 2013). Therefore, the process of analysis is not only about finding 
themes and patterns but also to make the contradictions, movements, messiness and 
shifts visible.  
Identifying demarcations, delimitations and boundaries in data is, according to Barad 
(2007), a process of making agential cuts. In the agential cuts empirical data, 
theoretical concepts, the researcher(s) and previous research intra-act as agents during 
the analysis. The cuts are guided by questions about what the data can tell us about a 
complex world in an attempt to unfold these complexities and call to our attention by 
glowing (MacLure, 2013). The glow can be places or actions in data where things are 
set in motion. This, in turn, makes the encounters impossible to ignore in the attempt to 
entangle the relations in-between the different actants involved.  
In putting a diffractive analysis in action our focus has been on the emerging 
intra-activity amongst the teacher, the learners, different teaching materials and the 
mathematical concepts and formulas. The diffractive methodology allowed us to 
investigate the entanglements and differences of abstract and concrete aspects enacted 
in the classroom, and how different materialities co-operate and interact. In the 
analysis we were engaged in attending and responding to the material-discursive 
intra-actions in the data, exploring how they seemed to matter. The data cuts were 
chosen as we identified that abstract and concrete aspects were set in motion, and 
patterns of entanglements and differences of material-discursive practices were 
enacted. Analyzing these cuts more closely made possible for abstract and concrete 
aspects to emerge in new ways. For example, the analysis allowed us to see beyond the 
teacher instructing the learners, and instead see a circle, a string and the concept of phi 
co-constructing knowledge. This is one example of how the concept of phi “became” 
in certain ways within these intra-actions.  
RESULTS 
When looking at the video-recorded lesson we were absolutely taken by how the 
physical things, the scissors, strings, rulers and papers, the bodies of the teacher and the 
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learners; the discourses occurring in the classroom, and the mathematical concepts and 
formulas were intertwined in. Among the first things that struck us watching the 
recording was that even though the plan of the lesson was to move from the concrete 
measuring of dimeters, radius and circumference of circles, to the abstract concept of 
phi, phi and formulas were thrown around by the learners very early on. There was a 
vivid atmosphere in the classroom, and even though we present the results in three 
different sections, the entanglements of the material-discursive intra-actions occurred 
almost simultaneously.  
The results focus on the entanglements and differences of material-discursive 
intra-actions that different materialities in the classroom were engaged in; 
entanglements of circumference, strings, rulers and bodies, entanglements of 
circumference, mathematical formulas and calculators and entanglements of 
diameters, radius and phi. The first entanglement focuses foremost on physical 
concrete things and bodies while the second and third focus on abstract mathematical 
concepts.  
Entanglements of circumference, strings, rulers, scissors and bodies  
Strings were used to measure the circumference of the circles; rulers to measure the 
diameters; and radius and fingers and other bodily parts were co-acting with them. 
Physical concrete things and bodies’ intra-actions were very much involved in the 
lesson. Within these intra-actions of measuring circles, different active 
material-discursive agents such as strings, rulers and papers made themselves known 
and co-constructed with learners’ and teachers’ bodies in an entangled way. One 
example is the teacher Gert, circle, table and string intra-acting in the beginning of the 
lesson.  

Gert:  Your task is to measure all circles on the paper. You shall measure the 
radius; you shall measure the diameter [He holds a string and a circle made 
by paper in his hands above his head]. You shall note each measure in the 
table [picks up a string from the table while a learner asks about the table]. 

Gert:  You can start with the smallest, and then we have them all in order - or the 
largest. Just do it in whatever order you want to. /…/ 

Gert:  And then, as we measure the circumference, you try to put the string 
around. The two of you help each other. Maybe you can put it little by little, 
because this is messy. 

The fact that it is difficult to measure the circumference of a circle was an important 
part of the lesson and an example of the string as a performative agent, entangled with 
other agents. The difficulty was highlighted by the teacher in the beginning of the 
lesson, saying that it is ‘messy’ and ‘you have to be careful and help each other to sort 
it out’.  The activity evidently called for learners' fingers to co-act with the string and 
the circles but the difficulties with the string, in putting it around the circle's 
circumference, was making itself known throughout the lesson. Learners had different 
solutions to this difficulty. Some thoroughly and methodically put the string around the 
circle and thereafter measured it with the ruler. Others came up with suggestions of 
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other ways to measure the circumference such as in the example below. Unfortunately, 
the suggestion that the learner came up with was inaudible, perhaps a measuring tape? 

L1:   One can measure with [inaudible] 
Gert:  Yes, but today we shall measure with the string.  

Intra-actions with the string lead to different outcomes for the learners. While some 
overcame the difficulty by thoroughness and methodical work, others ignored the 
string and tried to find out other ways to determine the circumference, for example by 
calculating it, starting from the measure of the diameter or radius. Gert approaches a 
pair of learners. One of them holds the string in her hands. 

L2:   3 times 3,14… 
Gert:  Is it too much for you to measure with the string? 
L3:   No, but it’s a bit hard… [grabs the string and shows how messy it is]. 
L2:   But, do we take the radius or diameter? 
Gert   [simultaneously]: Have you thought about the results you will get? 
L2:   Do we take the radius or diameter? 
Gert:  You can try once and see what is most reasonable. 
L3:   Okay… The calculator, please [starts calculating on the iPad]. 

The example above shows that in intra-action, the string and the learners co-create an 
emerging need for abstract mathematical concepts such as formulas for calculating 
circumferences and phi (3.14). Thus, formulas and phi became agential in these 
intra-actions, which is visualized below.  
Entanglements of circumference, mathematical formulas and calculators  
As indicated above, mathematical formulas to determine the circumference of circles 
were several times in intra-action with other agents, such as the learners and the string. 
The string (and the difficulty of measuring with it) in intra-action with the learners 
seemed to provoke a need for different ways of determining the circumference, namely 
formulas. Hence, formulas became active material-discursive agents making 
themselves known and co-constructing with other agents in an entangled way. The 
abstract mathematical formulas are here understood as material articulations 
intra-acting with other matter (circumference, strings, rulers and bodies). To use 
formulas was not the intention of the lesson. However, it was evident that the string 
shifted the focus for some learners towards formulas determining the circumference. 
But, since the learners were not sure of the formula (diameter multiplied with phi), 
questions of how to articulate it arose. They were uncertain whether they should 
multiply phi with the diameter or the radius: “But, do we take the radius or diameter?”. 
They even took the chance to ask the one who holds the camera: “Circumference, is 
that the radius times phi or is it the diameter times phi?” 
The learners repeatedly asked Gert for the formula, which he did not offer. The 
entanglements of material-discursive agents in intra-actions, often groundedin the 
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messiness of measuring with the string, evoke a call for formulas as the learners 
expressed the unneccessity to measure with the string if one knows the formula. The 
formulas in turn called for intra-actions with calculators as a tool when using the 
formula, as described below. 
Entanglements of diameters, radius and phi    
Mathematical concepts of diameters, radius and phi were in different ways actively 
taking part throughout the lesson. Within the intra-actions of measuring circles, 
different material-discursive agents, such as diameters, radius and phi made 
themselves known and co-constructed with the learners’ and teacher’s bodies in an 
entangled way. As the example of formulas, the abstract mathematical concepts 
diameter, radius and phi are seen as material articulations intra-acting with other 
matters – circumference, formulas, strings, rulers and bodies. Phi played an important 
role in the lesson, as the intention was that the learners would find that the quotient is a 
constant, phi. However, entangled intra-actions with strings and other 
material-discursive agents called for phi to make itself known from very early in the 
lesson.  In these examples, phi is making itself known in connection to formulas as in 
the following interaction: 

Gert:  This is how I think. If we measure all around here, there will be some string 
left over. Let’s say we have measured to this point, then I measure this 
distance with the ruler, like this [holds up a string and a cut-out circle]. How 
long was it? And then write it down. /…/ 

L4:   Can’t we just take the diameter times phi? 
Gert:  Yes, we could do that [but sticks to the original plan].  

Gert eventually takes notice of the important role phi has in the lesson and directs the 
learners’ focus to interesting things about phi, like how it was invented and the number 
of decimals in a rather long discussion in the end of the lesson.  
Discussion/Conclusion 
By following Barad (2007) about matter and meaning as inseparable embodied 
knowledge, and the materiality of mathematical concepts (de Freitas and Sinclair, 
2014) knowledge about abstract mathematical concepts come to the fore as inseparable 
and entangled with physical concrete matter. Knowledge about these mathematical 
concepts would not exist in this way without the entanglement and intra-actions with 
the material-discursive agents involved in the lesson. Our result is twisting the 
question of whether mathematics should be taught from “concrete to abstract” or from 
“abstract to concrete”, and instead focus “how to entangle concrete and abstract 
aspects”.  
A diffractive methodology enabled us to engage with the entanglements and 
differences in the data. The ´glow` of the co-constructing of knowledge amongst 
agents in the classroom was impossible to ignore and directed our cuts in the data. This 
made our attempt to unfold and entangle the relations between the agents possible. 
Thus, we ask ourselves: What emerges if we fix our gaze on material-discursive 
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intra-activities that are taking place and what intra-actions emerge amongst the 
different agents, regardless of whether these are human or non-human? 
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 The purpose of this paper is to analyse, following Sfard’s theoretical framework, the 
students’ discourse about irreducible polynomials in order to understand their 
difficulties. Through the students’ explanations, given during the interviews conducted 
after carrying out the questionnaire, it is possible to study which processes were 
triggered by them to solve the task. In particular, we focused on the concept of the 
irreducible polynomials and the link between the roots of the polynomial and its 
reducibility in university students. 
 
INTRODUCTION 
The focus of this research is to analyse university students' discourse about irreducible 
polynomials: the link with the roots of the polynomial, the field being worked on, the 
idea of algebraic or graphic representations of a polynomial. The data were analysed 
through the theoretical framework of Anna Sfard's commognitive approach (Sfard, 
2008). 
Nowadays there are not many studies at university level that use this approach apart 
from a few works concerning Calculus, Group Theory, and the shift to mathematical 
proof (Nardi et al., 2014). More generally, the literature about the learning of 
irreducible polynomials appears scarce (if any) and not study about this topic has been 
carried from the perspective of the commognitive approach. 
Adopting a commognitive perspective, the process of teaching/learning can be 
described as initiation to a discourse. In the case of irreducible polynomial (in the 
Italian case) such initiation starts in high school and then narratives about such 
polynomials are often used in scientific faculties (like Physics, Chemistry, Information 
Technologies, etc.) without discussing again the rules of the discourse. The discourse 
of lecturers (to which we refer as academic discourse) may be quite different than the 
discourse developed by students in high school. For instance, Güçler (2013) shows that 
when a lecturer shifts the discourse on limits (from limit as a number to limit as a 
process) without making such shifts explicit to the students, they do not even notice it. 
On the contrary, lecturers’ understanding of the difficulties met by students in taking 
part to the university mathematical discourse may help them in making explicit – at 
least – their use of words. This appears as a necessary, even if not sufficient, condition 
to realize an effective communication between students shifting from high school to 
university and their lecturers (Stadler, 2011; Nardi et al., 2014). 
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THEORETICAL FRAMEWORK 
Sfard’s theoretical framework is based on the notion that thinking is an interpersonal 
form of communication and she coins the new word ‘commognition’ to denote the 
combination of communication and cognition (Sfard, 2008). According to Sfard, 
mathematics is a discourse and, as such, it is characterized by four features. First, a 
discourse is determined by the word use, meaning the keywords characterizing a 
discourse. Word use refers both to the use of mathematical terms and of more 
colloquial words having a specific meaning within mathematics (such as ‘field’ or 
‘roots’).  
Discourses in general, and the mathematical discourse in particular, have specific 
visual mediators: these are visible objects intervening during the communication 
process (like gestures, inscriptions, drawings, and so on). In this feature we consider 
mediators of mathematical meaning (such as symbol and algebraic notation) and 
material objects useful during teaching of the mathematics. 
In this context, it is useful to refer to Zazkis and Liljedahl’s studies, who studied the 
representation of prime and irrational numbers, analysing how students perceive and 
understand these concepts (Zazkis & Liljedahl, 2004, Zazkis, 2005). They distinguish 
between transparent representations, which completely shows the meaning of the 
represented structures, and opaque representations, that highlights some aspects of the 
structures while hiding others. Recent studies of Zazkis and Lilhedal (2004) show that 
the difficulty of finding a transparent representation prime numbers or irrationals leads 
to difficulties in learning the concepts themselves. We can conjecture that the same 
could apply to polynomials. 
A discourse is not characterized only by the objects of the discourse, but also by the 
rules of production of narratives. In Sfard’s framework, narratives are texts, written or 
oral, such as descriptions of the objects and links between them. Narratives are 
submitted to endorsement or rejection, using the processes and rules accepted by the 
community (such as axioms, deduction rules, accepted definitions, etc.). Furthermore, 
the discourse is produced following established routines. These are repetitive schemes 
that characterize a discourse. Sfard distinguishes three types of routines:  

• Deeds: a routine is called in this way if there is a physical change in the 
objects. Deeds may be defined as a set of rules that produce or modify the 
objects; 

• Explorations: a routine is called this way if it helps produce endorsed 
narratives. You can divide it into constructive explorations, which lead to 
approvable narratives, justificatory explorations, which help to decide to 
approve a narrative, and recall narrative, which are processes applied to evoke 
an endorsed narrative; 
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• Rituals: when there is a sequence of discursive actions, which are intended 
more to create and maintain a relationship with people (for instance meeting 
expectations) rather than exploring within the discourse. 

Sfard highlights two types of learning: 
• Object-level learning: occurs when there is an expansion of the discourse, 

expanding vocabulary, building new routines, producing new endorsed 
narratives;  

• Meta-level-learning: causes changes in the discourse metarules (these rules 
define the models for producing and validating object-level narratives). This 
change means that some familiar tasks will be performed differently and some 
familiar words will change their use.   

Sfard does not believe that students start a meta change on their own (Sfard, 2008). It is 
possible, in fact, that this change originates from the direct meeting between student 
and new discourse. This meeting brings a commognitive conflict, that is a situation in 
which individuals apply different metarules. When students move from high school 
(when irreducible polynomials are usually introduced in the Italian school context) to 
university, their discourse about irreducible polynomial meet the discourse of scholar 
experts, which may be incommensurable, meaning that “they do not share criteria for 
deciding whether a given narrative should be endorsed” (Sfard, 2008, p. 257). Students 
and experts can use words differently without being aware of such differences. 
Characterizing university students’ discourse when they enter university appear 
important to then understand how to help them and their lecturers towards a “gradual 
mutual adjusting of their discursive ways” (Sfard, 2008, p.145). 
 
METHODOLOGY 
Inspired by the research of Zazkis and Liljedahl (2004), we created a questionnaire to 
characterize students’ discourse on the irreducibility of polynomials. This research was 
conducted at the level of university students in science faculties. They had different 
backgrounds due to different courses they followed and their previous studies. In 
particular, all of them studied the concept of irreducibility of polynomials at the high 
school level and not in the university, therefore their answers to the questionnaire were 
based on previous studies. 
In a similar fashion to what Park (2013) did for the concept of derivative, we 
investigate students’ discourse about irreducible polynomials in terms of object-level 
learning. 
The subjects of this study are 14 students from Chemistry, Physics, and Computer 
Science courses. The questionnaire consists of five open-ended questions preceded by 
a definition of irreducible polynomials and an example of reducible polynomial. The 
subjects responded individually to the questionnaire in 30 minutes, and they had to 
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take note of each personal consideration and to explain their answers. Afterwards, we 
conducted an unstructured interview individually to better understand their 
explanations. During the interview, we asked them to explicit the processes 
implemented. 
In this paper we focus on two questions from the questionnaire: 

• Is the polynomial x3 + 6x2 + 7 reducible or irreducible? 
• Is the polynomial (x2 + 1)(x2 + 2) reducible or irreducible? 

The example given before the questions is the following: 
The polynomial x2 – 1 = (x + 1) (x – 1) is reducible. 
 
ANALYSIS OF THE COLLECTED DATA AND DISCUSSION 
Use of the words 
A first feature characterizing the discourse is the use of the words. Analysing the 
students’ productions and their interviews, we noticed an ambiguity in the use of the 
words roots and solutions. For instance, a student of the degree course in Physics, 
answering to first question, tried to decompose the polynomial by collecting x2, but he 
did not know whether this decomposition was valid. Furthermore, he did not remember 
how to use Ruffini’s rule. He stated:  

“I always forget Ruffini’s rule, I have not memorized the process”.  

From this statement, we conducted the interview to find out what the student thought 
about the relationship between reducibility of polynomial and roots of polynomial. The 
student stated:  

“I do not remember if there is a relationship between the roots of the polynomial and its 
reducibility. If the polynomial is reduced, this leaves it easier to see the 
solutions, but if I do not see the solution, that does not mean the polynomial 
does not have them”. 

In this second statement, we can see the use of the terms roots and solutions as 
synonyms. This inappropriate use may be a consequence of the use of the words 
equation and polynomial as synonyms.  
It is possible to observe that an incorrect use of the word guided the actions of the 
students. Indeed, another student, answering to second question, stated: 

“It does not say: “is the reduced polynomial reducible?” but only “the polynomial”. That 
is why I did not think that the question was about the initial polynomial.” 

From this statement we can observe that the use of the term polynomial without the 
word ‘reduced’ confused the student. This underlines that student did not recognise the 
product written as a polynomial. This difficulty also crops up in others, in fact, there 
are some students who solved the product and then adopted known routines to 
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decompose the obtained polynomial. Many students interpreted the second question in 
this way: “is the polynomial further decomposable?”, this can be seen from their 
answers, in fact, they answered “not further decomposable” or “irreducible, because it 
is already reduced”. 
Visual mediators 
We can than explain this behaviour as a misunderstanding in the task (because of the 
word use), but we could also interpret it as a lack of transparency (for the students) of 
the provided visual mediator. This representation is not transparent to them, as they 
interpreted the product as something to be calculated and not as a polynomial. 
Referring to visual mediators, we also noticed that no one referred to graphical 
representation to address the questions. Some students stated that they had difficulty in 
understanding the presence of roots from given graph. 
One student of the degree course in Chemistry answered to the first question: 

 “I have no tools to say that”  

During the interview, we reflected with him on techniques for determining the 
reducibility of third-degree polynomials. We explored his knowledge about graphical 
representation of the polynomial.  

Interviewer: […] It may be useful to represent it graphically. Have you thought about this 
possibility? 

Student: No, we calculate at most the derivative… but to take it to the graph and 
understand whether the polynomial is reducible or not, I am not able to. 

Interviewer: Are you able to say if there are roots by having the graph? 
Student: No… I do not think. 

Therefore, some students do not have established routines for using the graphical 
representation of these mathematical concepts, or they do not consider the production 
of a graphical representation as an endorsed narrative. A consequence of this is that 
students are not even able to interpret provided graphs.  
Endorsed narrative 
We can see the role of endorsed narrative in the discourse also when students try to 
remember the link between the presence of roots and the reducibility of the polynomial 
(or the reducibility of the polynomial in the different fields) for example: 

“[…] If the polynomial is reduced, this leaves it easier to see the solutions, but if I do not 
see the solution, that does not mean the polynomial does not have them”.  

Another student of the degree course in Physics stated: 
“Irreducible in real field, it can be reducible in complex field”. 

We investigated the motivation that led him to this statement. He explained that he 
tried to use Ruffini’s rule, but he did not find any suitable constant to use this 
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technique, therefore he concluded that the polynomial was irreducible in real field. He 
thought it was possible to extend Ruffini's rule to searche roots in the complex field 
too.  
Routines 
The use of rote-learned theorems or deduction rules are the most common routines to 
perform the tasks. The students applied different procedures to solve the questions: 
Ruffini’s rule, decomposition with factoring trinomial, total or partial collecting and 
finding the solutions of the equation associated to the polynomial. As noted above, for 
the second question, students needed to solve the product and then applied the chosen 
routine. One student of the degree course in Chemistry answered, for example: 

“This is the result of the reducible polynomial x4 + 3x2+ 2, through decomposition with 
factoring trinomial”. 

Thanks to this argument, we can deduce that student was able to recognise the 
reducibility of this polynomial after calculating the product and decomposing it with 
factoring trinomial. Moreover, he said that he was not able to decompose more this 
polynomial with the knowledge at his disposal. 
This underlines the difficulty of the students in identifying the polynomial written as a 
product. Moreover, we can observe that some of them had problems with the equality 
operator. In fact, one student of the same course, after solving the product, stated: 

Student: Reducible because this is given by the decomposition of x4 + 3x2+ 2? 
Interviewer: What are your doubts about this solving process? 
Student: I do not know if this decomposition is right. If this decomposition is right, the 

polynomial is reducible. 

This highlights the difficulty of the students in interpreting the equal symbol as an 
equivalence, but they see it as a one-way procedural operator.  
Many of the students’ routines can be classified as “deeds” because they appear to be 
acting on the algebraic symbolism more than on the involved mathematical objects. 
Some students stated that they did not remember the Ruffini’s rule: 

“I always forget Ruffini’s rule, I have not memorized the process”. 

From this statement it can be observed that students sometimes apply repetitive 
procedures, in a ritualistic way, apparently without understanding the meaning behind 
them.  In fact, some of them tried to use Ruffini’s rule to find the roots of the 
polynomial in the real field and in some cases in the complex field. 

“Irreducible in real field, it can be reducible in complex field”. 

These activities underline how students interpret the Ruffini’s rule like a 
decomposition technique and not a procedure to find the roots of the polynomial. 
These routines can be classified as “rituals” because they applied the repetitive 
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sequences to solve the task without questioning when this procedure might be applied. 
Most likely, this procedure was introduced by their high school teachers (considered as 
the “ultimate substantiators” of their narratives, Sfard, 2008, p. 234) and applied in a 
ritualistic way during high school.  
 
CONCLUSIONS 
This study focused on university students’ discourse about the concept of polynomial 
reducibility according to Sfard’s theoretical framework.  
Some of students’ arguments are inconsistent with the academic discourse about 
reducible polynomials, this highlights the importance of their motivations to 
understand their discourse and then their difficulties in approaching the academic 
discourse about this concept. 
To the first question almost all participants stated that x3 + 6x2 + 7 is irreducible, but 
they used different motivations to justify their answer.  
This question was used to investigate the students’ ability to apply techniques different 
than Ruffini’s rule. Analysing the arguments, it can be seen that many students used 
Ruffini’s rule in a ritualistic way and some students were confused about the 
relationship between roots of the polynomial and the reducibility of the polynomial. 
We explained this difficulty as an ambiguity in their use of words as ‘polynomial’ and 
‘equation’. 
Taking into account the second task, most of the students answered that (x2 + 1)(x2 + 2) 
is reducible, but there were also few of them saying that the polynomial is not reducible 
or that it depends on the field. This question was designed to investigate the students’ 
ability to work with fourth-degree polynomials and their ability to recognise properties 
highlighted by (what we considered as) a transparent visual mediator. This is the why 
we gave them a decomposed polynomial. However, many students had problem with 
the meaning of the question, in fact, they interpreted the question in this way: “is the 
polynomial further decomposable?”. This may depend on the lack of transparency (for 
them) of the visual mediator, or on the different metarules applied to the discourse. 
Apparently, for some of them, factorization routines must be applied to a polynomial 
that is not already expressed as a product of polynomials. 
Thanks to interviews conducted, we were able to characterize the discourse they use to 
justify their solutions. The difference between their discourse and the academic 
discourse explain why they are not able to reason in unfamiliar context or have 
difficulties with questions posed in different way than what they saw in high school. As 
pointed out by Sfard (2001) “one has no chance to modify one’s discursive habits on 
her own. In order to change them, one has to be led outside her own discourse by 
others. Only then can the conflict necessary to create the learning-engendering 
experience of incomprehension eventually arise” (p. 47). The conducted analysis 
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suggests that, for narrowing the distance between students’ discourse and the academic 
one, several lines of intervention could be adopted by university lecturers. It would be 
important to expand their discourse both by discussing word use, visual mediators, 
routines, and endorsed narratives. Results from this study provide significant hints for 
designing teaching experiments with such goal. 
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FOSTERING A CONCEPT OF FUNCTION WITH COMBINED 

EXPERIMENTS IN DISTANCE AND IN-CLASS LEARNING 

Susanne Digel and Jürgen Roth 

University of Koblenz-Landau 

 

Hands-on experiments and simulations foster functional thinking (FT) in different 

ways. Both benefits can be combined effectively, when a focus is set on the difficult 

aspect of covariation through a qualitative approach. Self-directed learning in such 

settings produces significantly higher gains in FT that rather numeric consideration of 

experiments (Digel and Roth, 2021). Both settings were implemented as in-classroom 

(N=219) and distance learning environments (N=113) respectively, within the given 

constraints due to COVID-19. The results for distance learning Hammerstein et al. 

(2021) report in their meta-study are inconsistent, but with clear negative tendency. In 

the study reported here both learning modes show comparable results and the overall 

differences between covariational and numeric setting persist in both modes as well. 

DISTANCE LEARING DURING THE PANDEMIC SITUATION 

The restrictions due to COVID-19 set a focus on digital teaching strategies and 

revealed deficits in the school system concerning this topic. Despite intensive efforts of 

many schools, the average increase in learning during the first lockdown in Germany 

was comparable to that during the summer holidays, i.e. without school operations 

(Hammerstein et al., 2021). With regard to mathematics, the picture in Germany is not 

entirely consistent at the first glance. In their study on digital learning environments 

(bettermarks), Spitzer and Musslick (2021) found performance increases in the cohort 

with lessons under corona conditions comparable to the previous year's cohort. In an 

annual school performance study in Baden-Württemberg, there were significant 

learning deficits compared to previous years, especially in operational, mathematical 

skills, while performance in arithmetic (calculation-related) skills was at the level of 

previous years (Schult et al., 2021). The authors interpret these findings as indicators 

for an arithmetic focus in mathematics distance learning. Considering that the digital 

learning environments of bettermarks also strongly emphasise arithmetic, lower gains 

for operational and conceptual learning can be assumed in this case as well.  

Distance Learning of weak learners 

Related to pre-COVID performance, distance learning also increased the differences in 

learning achievement. In particular, low achievers showed lower gains compared to 

previous years (Schult et al., 2021), which could also be due to the significantly shorter 

learning time for this group. In addition, learners with low SES background had 

significantly poorer conditions for distance learning (Hofer et al., 2022). Our study 

does not replicate these negative findings. The learning environments for FT based on 
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experiments with hands-on and digital material showed comparable learning gains in 

both grammar and comprehensive schools during distance and in-class learning. 

DEVELOPING A CONCEPT OF FUNCTION 

The concept of functions is a major concept and at the same time a major hurdle in 

mathematics at school. Hence a considerable amount of research has been dedicated to 

the teaching and learning of functions. For the learning environments used in this study 

we try to bring together several branches of evidence to a coherent approach to the 

concept of functions. Breidenbach et al. (1992) used the 

Action-Process-Object-Scheme (APOS) theory for a developmental perspective on 

students’ conceptualization of functions. The action concept on the lowest level is 

limited to the assignment of single output values to an input. With the more generalized 

process concept students consider a functional relationship over a continuum, enabling 

the reflection on output variation corresponding to input variation. Finally, functions 

conceptualized as objects can be transformed and operated on. Students with an 

elaborate concept of functions are supposed to be able to use the action, process or 

object conception depending on the mathematical situation (Dubinsky & Wilson, 

2013). 

Aspects of functional thinking 

The developmental stages of APOS are in line with key elements of a function concept, 

that are described as aspects of functional thinking (FT) by Vollrath (1989) as follows: 

the correspondence of an element of the definition set to exactly one element of the set 

of values; the covariation of the dependent variable when the independent variable is 

varied and the final aspect, in which the function is considered as an object. Although 

with the APOS perspective one might deduce a teaching sequence with an initial focus 

on correspondence, then covariation and finally object, current research advocates for 

a major role of covariation. Thompson and Carlson (2017) argue that the 

correspondence aspect alone does not evoke an intellectual need for the new concept 

function and difficulties with functional relationships are mainly rooted in lacking 

ability and opportunity to reason covariationally. Johnson (2015) points out that 

correspondence induces a static view on a functional relationship, while a dynamic 

perspective is a prerequisite for covariation and a process concept. These arguments 

lead to the call for a qualitative approach to functional relationships in school. 

Experimenting fosters functional thinking 

Learning environments with experimentation activities have proven to be beneficial 

for functional thinking (Lichti & Roth, 2018). One possible explanation could be the 

proximity of functional thinking to scientific experiments as illustrated by Doorman et 

al. (2012): with a given variable as starting point, a dependent variable is generated in 

an experiment. Relating the output to the input clearly addresses the correspondence 

aspect and the action concept. Following manipulations of the input and concurrent 

observation of the output make the covariation of both variables tangible and enables a 
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process view. Another benefit of student experiment is the inherit constructivist 

learning approach that leads to higher learning gains in combination with digital 

technologies (Drijvers, 2019). Lichti and Roth (2018) implement the scientific 

experimentation process – preparation (generate hypotheses), experimentation (test the 

hypotheses) and analysis (conclusions) – in a comparative intervention study to foster 

functional thinking of sixth graders with either hands-on material or simulations and 

report learning gains for both approaches (ibid.), but a closer look reveals disparities 

that can be explained with the instrumental genesis. 

Hands-on experiments and simulations in the light of instrumental genesis 

The instrumental approach (Rabardel, 2002) and its distinction between artefact and 

instrument can be useful when interpreting these results: while the artefact is the object 

used as a tool, the instrument consists of the artefact and a corresponding utilization 

scheme that must be developed. This developmental process - the so-called 

instrumental genesis - depends on the subject, the artefact and the task in which the 

instrument is used. Hence, different artefacts lead to different schemes.  Artefacts that 

are more suitable for the intended mathematical practice of a task appear to be more 

productive for the instrumental genesis and facilitate the learning process (Drijvers, 

2019). When using simulations, schemes that develop are dynamic and concerned with 

variation as well as transition and hence support the covariation aspect (Lichti, 2019). 

Measurement procedures of the hands-on material induce static schemes for values and 

conditions, fostering the correspondence aspect (ibd.). While hands-on material 

stimulates basic modelling schemes, relating the situation to mathematical description, 

a simulation already contains a model of the situation. When used as 

multi-representational systems, the simulation illustrates connections between model 

and mathematical representations (e.g. graph and table) that evoke schemes for these 

representations and their transfer. The study presented here attempts to make use of 

both beneficial influences on the instrumental genesis through an appropriate 

combination of hands-on material and simulations in experimental activities to foster 

functional thinking. 

Fostering the conceptual development 

To foster FT we combine hands-on experiments and simulations with the premise of a 

productive instrumental genesis as follows: hands-on material at the beginning initiates 

modelling schemes. Subsequently, simulations facilitate the representational transfer 

(table – graph; situation/animation – graph), enable dynamic exploration of the 

relationship and systematic variation, thus fostering an understanding of covariation. 

Finally, measurements with hands-on material convey the correspondence aspect. The 

two different settings developed for this study are outlined as a scientific 

experimentation process with the three phases hypotheses, experimentation, analyses. 

The numeric setting follows the APOS steps sequentially and gives the measurement 

procedure a dominant role in the experimentation phase. This sets a focus on the 
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correspondence aspect. In the analyses phase the learners access the covariation aspect 

with simulations, that connect an accordingly designed animation with the dynamic 

representations of the relationship in a table and a graph.The second, covariational 

setting consequently fosters a dynamic view on the relationship and the related 

variables. It is implemented with two shorter scientific experimentation processes. 

After initial hypotheses with hands-on material, the experimentation phase with 

simulations immediately sets the focus on (co-)variation through. The analyses phase 

complements the animation with a dynamic representation of the relationship in a 

graph. Only after this phase, measurement data is generated with hands-on material 

and fed into the simulation to test the results on the relationships drawn so far. 

Both settings use a story of two friends preparing to build a treehouse and contain 

identical contexts, hands-on material and simulations. The tasks of each setting are 

similar, but adapted to the numerical and covariational focus respectively. Both 

settings can be accessed in digital classrooms (www.geogebra.org/classroom 

numerical Setting: HQX7 UZRQ and covariational Setting: D3XM DDSB). 

STUDY DESIGN 

A comparative intervention study (pre-post design) is implemented both in distance 

and in-classroom learning mode with seventh and eighth graders at grammar and 

comprehensive schools. It contrasts the covariational and numerical settings and 

includes an additional control group with the simulation only implementation of Lichti 

and Roth (see above). The intervention is designed for six lessons (split into three 

sessions). It is preceded and followed by a short test on functional thinking (FT-short, 

online version: www.geogebra.org/m/undht8rb, Rasch-scalable, 27 items, see Digel & 

Roth, 2020), to compare the learning outcomes in both settings. Students work in 

teams of two pairs. A pilot study (ibid.) verified the comparability of the covariational 

and numerical setting in terms of processing time and difficulty. In this paper we 

present results with a focus on school form and learning mode: 

RQ 1: Which setting is most beneficial for FT in the different school forms? 

Hypothesis Grammar > Comprehensive: Large studies on student assessment 

regularly show lower competence levels in comprehensive schools to grammar schools 

(OECD, 2019), a gap that is getting wider (Guill et al., 2017). Regarding the different 

settings, the focus on the difficult covariation aspect in the covariational setting could 

overburden lower competence levels and thus increase the competence gap. Dubinsky 

and Wilson (2013) in contrast foster low achievers on all APOS levels of the concept of 

function successfully. 

RQ 2: Does the learning mode (in-class/distance) have an impact on the learning 

gains in the compared settings? 

Hypothesis In-Class > Distance: All three settings focus on conceptual competences, 

while arithmetic competences are secondary. According to the discussion in the first 
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section in this paper, lower learning gains can be expected in distance learning, 

especially in comprehensive schools.   

METHOD 

Data analysis was conducted according to Item Response Theory. The dichotomous 

one-dimensional Rasch model and a virtual persons approach were used to estimate 

item difficulties for FT-short. The person ability was then estimated with fixed item 

difficulties. We applied mixed ANOVAs (between factors: setting, school form, 

learning mode; within factor: time) after controlling data for normal distribution and 

homogeneity of variance. Pairwise t-tests were used to investigate differences of the 

settings. A statistical power analysis (3 groups, 2 measurements, power .9, α =.05) for 

a medium effect (ηp
2
 = .06) in a mixed ANOVA gave a desired sample size of 204. 

RESULTS 

Here we present quantitative results of the main study (N = 332, 121 female, 187 male, 

age M = 13.0, SD = 4.8). The distribution of the sample over the settings and 

constraints is shown in table 1. The estimation of the Rasch-model, used to determine 

the person abilities for the total sample, showed good reliabilities in the pre- and 

post-test: EAP-Relpre = .86 and EAP-Relpost = .80 as well as WLE-Relpre = .85 and 

WLE-Relpost =.80.  

Table 1: Sample sizes and effect sizes Cohens d (pre/post) of subgroups 

 Covariational 
Setting 

Numerical 
Setting 

Control Group Total 

 N d N d N d N 

Total 114 .51*** 125 .25*** 93 .27*** 332 

Comprehensive/ 
Grammar 

39 
75 

.63*** 

.48*** 
52 
73 

.32*** 

.27*** 
66 
26 

.34***  

.28*** 
157 
175 

Distance 
In-Class 

36 
78 

.48*** 

.56*** 
39 
86 

.33**  

.28*** 
38 
55 

.36**  

.30** 
113 
219 

Comparisons of the settings under constraints 

Regarding the school form (see Figure 1 left) the mixed ANOVA showed a significant 

main effect for time (F(1, 326) = 197.34, p <.001, ηp
2
 =.38) and a significant effect of 

school form (F(1, 326) = 87.82, p <.001, ηp
2
 =.21).  Above, there are two significant 

interaction effects: between time and setting (F(2, 326) = 5.92, p <.005, ηp
2
 =.018) and 

between time and school form (F(2, 326) = 9.57, p <.005, ηp
2
 =.029). The grammar 

school students outperformed the comprehensive school students in the pretest 

significantly (t(174) = 8.09, p <.001, d = .61), but for both school forms students’ 

ability increased significantly with a small to medium effect (grammar: t(425) = 7.08, 

p <.001, d = .34; comprehensive: t(216) = 5.84, p <.001, d = .40). In both school forms 

students in the covariational settings showed the highest learning gains (see Table 1).  
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Figure 1: Increase in FT pre/post by setting, school form (left) / learning mode (right) 

The mixed ANOVA for learning mode (see Figure 1 right) resulted in one significant 

main effect for time (F(1, 326) = 170.88, p <.001, ηp
2
 =.34), one for learning mode 

(F(1, 326) = 10.85, p < .001, ηp
2
 = .03) and a significant interaction effect of time and 

setting (F(2, 326) = 3.63, p < .005, ηp
2
 = .02). In both learning modes the covariational 

setting shows the highest learning gains (see table 1). The students with in-class 

learning showed slightly higher results in the pretest (t(153) = 2.19, p < .05, d = .18). 

The overall learning gains in distance learning (t(150) = 3.48, p < .001, d = .28) are 

comparable to those in-class (t(149) = 4.57, p < .001, d = .38).  

DISCUSSION 

First of all, the results are not generalizable without reservation, since they depend on 

the concrete settings developed in the study. Another restriction is the disbalance of 

subgroups, caused by altering pandemic restrictions in participating schools. 

Nonetheless, results of the total sample show that both settings foster FT, while the 

covariational setting is significantly more beneficial for FT than the numerical setting, 

but the learning effects in the latter do not differ significantly from those in the control 

group (see Digel & Roth, 2021). Two characteristics of the covariational setting seem 

most influential: first, the early focus on the dynamics of the observed variables 

provides opportunities to reason variationally and to develop a dynamic view on 

functions. Second, replacing early measurement with investigation and observation of 

the relationship initiates practice in covariational reasoning. 

The significant advantages of the covariational settings also appear in both school 

forms (RQ1). Significant difference in pretest between grammar and comprehensive 

schools in FTshort (d = 0.61) are as expected, but these disparate competence levels are 

not reinforced by the intervention, in contrary, learning gains in the comprehensive 

school sample outperform those of the grammar school sample. FT seems to be 
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accessible in the three settings to learners on all competence levels and the 

covariational focus is also beneficial to lower levels of FT and not restricted to high 

achievers, which replicates Dubinsky and Wilson (2013).  

The results regarding RQ2 are limited through a possibly lower level of engagement 

and focus in the pre- and post-tests in distance learning. Nevertheless, we can conclude 

from the results that all three learning environments promote functional thinking in 

distance and in-class to a comparable extent. This is contrary to previous studies on the 

effectiveness of distance learning, especially in the case of conceptual skills, such as 

FT here. There are three different explanations for this: On the one hand, motivational 

influences may have favoured the learning process in distance, since hands-on 

experiments set in everyday contexts and group work with individual coaches stand 

out positively. Secondly, inquiry-based learning with open tasks contrasts distance 

learning which is rather dominated by arithmetic and initiates intensive interaction 

with the concept as well as higher cognitive activation. A continuous interaction with 

partners/teams enables co-construction processes and mathematical communication 

about ideas, hypotheses, approaches and thus intensifies interaction with the content. 

To sum up, the covariational approach to functions with experiments (1) attains higher 

learning gains across competence levels, (2) successfully transfers in-class activities to 

distance learning with comparable learning gains, (3) makes the covariational aspect 

accessible for high and low achievers and (4) benefits from the combination of 

hands-on material and simulations. In classroom practice (distance or in-class), an 

approach to functions designed accordingly has the potential to enhance learning gains.  

REFERENCES 

Breidenbach, D., Dubinsky, E., Hawks, J., & Nichols, D. (1992). Development of the process 

conception of function. Educational Studies in Mathematics, 23, 247–285. 

Digel, S., & Roth, J. (2020). A qualitative-experimental approach to functional thinking with 

a focus on covariation. In A. Donevska-Todorova, E. Faggiano, J. Trgalova, Z. Lavicza, R. 

Weinhandl, A. Clark-Wilson & H.-G. Weigand (Eds.), Proceedings of the 10th ERME 

Topic Conference on Mathematics Education in the Digital Age (MEDA) 2020 (pp. 

167-174). JKU. hal-02932218 

Digel, S., & Roth, J. (2021). Do qualitative experiments on functional relationships foster 

covariational thinking? In M. Inprasitha, N. Changsri, & N. Boonsena (Eds.), Proceedings 

of the 44th Conference of the International Group for the Psychology of Mathematics 

Education (Vol. 2, pp. 218–226). PME. 

Doorman, M., Drijvers, P., Gravemeijer, K., Boon, P., & Reed, H. (2012). Tool use and the 

development of the function concept: From repeated calculations to functional thinking. 

International Journal of Science and Mathematics Education, 10(6), 1243–1267. 

Drijvers, P. (2019). Embodied instrumentation: Combining different views on using digital 

technology in mathematics education. In U. T. Jankvist, M. van den Heuvel-Panhuizen, & 

M. Veldhuis (Eds.), Eleventh Congress of the European Society for Research in 

Mathematics Education (pp. 8–28). Utrecht University. 



Diegel, Roth 

 

 

2 - 234 PME 45 – 2022 

  

Dubinsky, E., & Wilson, R.T. (2013). High school students’ understanding of the function 

concept. The Journal of Mathematical Behavior, 32(1), 83–101.  

Guill, K., Lüdtke, O. & Köller, O. (2017). Academic tracking is related to gains in students’ 

intelligence over four years: Evidence from a propensity score matching study. Learning 

and Instruction, 47, 43–52. 

Hammerstein, S., König, C., Dreisörner, T. & Frey, A. (2021). Effects of COVID-19-Related 

School Closures on Student Achievement-A Systematic Review. Frontiers in Psychology, 

12:746289. 

Johnson, Heather L. (2015). Together yet separate: Students’ associating amounts of change 

in quantities involved in rate of change. Educational Studies in Mathematics, 89(1), 

89–110. 

Lichti, M. (2019). Funktionales Denken fördern: Experimentieren mit gegenständlichen 

Materialien oder Computer-Simulationen [Fostering functional thinking: Experimenting 

with real materials or computer-based simulations]. Springer Spektrum. 

Lichti, M., & Roth, J. (2018): How to Foster Functional Thinking in Learning Environments: 

Using Computer-Based Simulations or Real Materials. Journal for STEM Education 

Research 1(1-2), 148–172.  

OECD (2019). PISA 2018 Results (Volume I): What Students Know and Can Do, PISA, 

OECD Publishing.  

Rabardel, P. (2002). People and technology: A cognitive approach to contemporary 

instruments. Université Paris. hal-01020705  

Schult, J., Mahler, N., Fauth, B., & Lindner, M. A. (2021, March 11). Did Students Learn 

Less During the COVID-19 Pandemic? Reading and Mathematics Competencies Before 

and After the First Pandemic Wave. PsyAr-Xiv. https://doi.org/10.31234/osf.io/pqtgf 

Spitzer, M. W. H., & Musslick, S. (2021). Academic performance of K-12 students in an 

online-learning environment for mathematics increased during the shutdown of schools in 

wake of the COVID-19 pandemic. PLOS ONE, 16(8)  

Thompson, P. W., & Carlson, M. P. (2017). Variation, covariation, and functions: 

Foundational ways of thinking mathematically. In J. Cai (Ed.), Compendium for research 

in mathematics education (pp. 421–456). National Council of Teachers of Mathematics. 

Vollrath, H.-J. (1989). Funktionales Denken [Functional thinking]. Journal für 

Mathematikdidaktik, 10(1), 3–37. 

 



 

 2 - 235  
2022. In C. Fernández, S. Llinares, A. Gutiérrez, & N. Planas (Eds.), Proceedings of the 45th Conference of the 

International Group for the Psychology of Mathematics Education (Vol. 2, pp. 235-242). PME. 

NETWORKED MULTIPLE APPROACHES TO DEVELOPING 
FUNTIONAL THINKING IN ELEMENTARY MATHEMATICS 

TEXTBOOKS: A CASE STUDY IN CHINA 

Rui Ding
1
, Rongjin Huang

2
, Xixi Deng

1
 

1
Northeast Normal University; 

2
Middle Tennessee State University 

 

By focusing on functional thinking (FT), the core component of algebraic thinking, this 
study aimed to explore the features of developing FT in textbooks from grades 1 to 6 by 
examining a popular reform-oriented mathematics textbook series in China. A 

framework of FT developed by Pittalis and colleagues (2020) was used to examine the 

FT related tasks in the textbook series. Based on a fine-grained coding analysis, it was 
found that multiple modes of FT are intended to be developed since the very beginning 

of elementary school. Multi-modes of FT have been developed and evolved 
simultaneously and progressively as grades increase, serving as an enhancement for 
arithmetic learning. Different types of FT tasks provide various opportunities for 

students to explore these multi-modes of FT while learning and consolidating 
arithmetic across grades.   

INTRODUCTION 

Researchers identified that the traditional sequence of “arithmetic-then-algebra” is the 

hurdle for students in learning algebra (Stigler, et al., 1999), and equation-entry toward 

learning algebra may limit students’ learning of advanced mathematics (Thompson & 

Carlson, 2017). As one of four big ideas of algebraic thinking (Blanton & Kaput, 2011), 

functional thinking (FT) has been recommended as a better organizing concept for 

teaching and learning algebra than the concepts typically used (e.g., expressions and 

equations) (Stephen, et al., 2017). Although researchers have shown that elementary 

students are capable of engaging in generalizing and representing functional 

relationships (e.g., Blanton, 2008), the topic of FT has not been addressed purposefully 

and systemically in the early mathematics curriculum (Carraher, Schliemann & 

Schwartz, 2008), or neglected altogether (Stephen et al., 2017). Consequently, it 

remains largely unknown how FT can be systematically and effectively introduced and 

developed in elementary schools in tandem with numeration and arithmetic, as well as 

how to prepare students for formal algebraic learning. 

Studies on Chinese mathematics textbooks have drawn international attention because 

Chinese 15-year-old students have consistently outperformed their counterparts in the 

Western countries on PISA (OECD, 2020). In the traditional Chinese mathematics 

textbooks, the function concept is not introduced formally, but function ideas are 

explored implicitly (Cai, Ng & Moyer, 2011). Since the implementation of the new 

curriculum in China in 2011 (MoE, 2011), which has adopted numerous research 

findings and innovative ideas from Western literature (Xu, 2013), the officially 
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endorsed textbooks have been developed and refined over the years. Thus, a systematic 

examination of the most popular reform-oriented textbooks in the elementary school 

with a focus on FT could provide insight for international readers regarding curriculum 

and teaching materials related to developing early algebra thinking, and FT in 

particular.  

ANALYTICAL FRAMEWORK 

A three-dimensional framework was created for analyzing learning opportunities 

intended in the textbooks. It includes the modes of FT, types of function tasks, and 

grade levels (as shown in Fig.1). The function tasks are used as the smallest unit in the 

textbook analysis (Stylianides, 2009), and their types are categorized. Each FT task is 

determined whether it is intended to develop any mode of FT. Finally, we use the 

dimension of grade levels (lower grades (1-2), middle grades (3-4) and upper grades 

(5-6)) to analyze how the textbooks arrange different kinds of function tasks in 

sequence to develop different modes of FT.  

Figure 1: Analytical framework for the development of functional thinking 

Modes of functional thinking 

In this study, we adopted Pittalis et al.’s four modes of FT: recursive patterning (R-P), 

covariational thinking (C-T), correspondence relationships-particular (C-P), and 

correspondence relationships-general (C-G). Students exhibiting R-P focus only on 

one variable, finding variation within a sequence of values (Blanton & Kaput, 2011). 

Covariation relationship describes how two quantities co-vary simultaneously and 

students who hold this view keep that change as an explicit and dynamic part of a 

function’s description (Blanton & Kaput, 2011), e.g., “if one can describe how x1 

changes to x2, and how y1 changes to y2, he has described a functional relationship 

between x and y” (Confrey & Smith, 1991, p.57), which is C-T.  Students exhibiting 

C-P means that they could notice the correspondence relations between corresponding 

pairs of values, e.g., one can complete a table involving two related quantities, while 

C-G means that students could identify and express the general relations between 

quantities or variables in word or symbols (Pittalis et al., 2020).  

Function tasks  
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In this study if a task in the textbooks implicitly or explicitly reflects any mode of FT, it 

is called “a function task.” Through coding and comparing the tasks in the textbooks, 

we combined similar types of tasks and grouped them into four categories: pattern 

tasks, arithmetic operation set tasks, one-to-one corresponding tasks and 

pre-functional tasks, which were described as below:  

 Pattern tasks are problems which require one to seek patterns in numerical 

and geometric sequences; 

 Arithmetic operation set tasks (Abbr. operational tasks) include function 

machine tasks and well-ordered arithmetic calculation items; 

 One-to-one corresponding tasks (Abbr. one-to-one tasks) include comparing 

tasks in grade 1, and the corresponding tasks between numbers (or number 

pairs) and points on the number line and the Cartesian coordinate system. 

 Pre-functional tasks are mainly the real-life problems which include two 

varying quantities, for example, using letters to represent varying quantities, 

and tabular problems which include proportional or linear relationships. 

Different from Demosthenous and Stylianides (2018), we define the explicitness of a 

task regarding its relationship to modes of FT. If in answering one question in the task, 

students have to use one specific mode of FT, we consider this question to be 

“explicitly” developing this mode of FT; if students may or may not use one mode of 

FT, we call it “implicit.”  

The purpose of this study is to explore how FT evolves across grades in the selected 

reform-oriented mathematical textbook series in China (e.g., PEP textbooks). To 

achieve this goal this study seeks answers to the three research questions: how are 

function tasks arranged in the PEP textbooks to develop different modes of FT, how 

different modes of FT are embedded in the PEP textbooks and how do they evolve 

throughout the textbooks and if there are any particular routes for developing FT in the 

PEP textbooks. 

METHODOLOGY 

We selected Chinese PEP (People’s Education Press) mathematics textbooks (Lu & 

Yang, 2012) for two reasons. The first is the reputation of the publisher, with this 

publisher being the only publisher to produce textbooks in China before 2001. The 

second is there are six sets of officially endorsed elementary mathematics textbooks in 

Mainland China, but the textbooks published by PEP are used by 63% of students 

there. All of the grade 1-6 student textbooks (12 volumes) and corresponding teacher 

guidebooks were selected. 

In general, a content analysis was used to code and analyze the curriculum materials 

(Fan, 2013). There were two rounds of coding, first coding of function tasks, and 

second, coding of modes and explicit levels of FT.  Four research assistants and the 

first author developed the coding system.  

The first round of coding identified and categorized function tasks in the PEP 

textbooks. The third author read through the whole series of textbooks and identified 
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function tasks based on the definitions of each of the four modes of FT (R-P, C-T, C-P 

and C-G). A research assistant read the teachers’ guidebooks and marked all the points 

that declared that the design of the worked examples or practice problems intended to 

develop FT. Then a group meeting (including all the authors and the research assistants) 

was arranged to discuss the classification of the collection of function tasks into the 

four categories. Then all group members re-checked the functional tasks in the PEP 

textbooks, and the interrater reliability was checked using Cohen’s kappa (usually 

kappa should be 0.7; Leech, Barrett & Morgan, 2008). The average kappa of 0.90 

indicated good agreement between coders. Finally, we had a whole group discussion 

and all team members agreed with all the coding results. 

Each identified function task included one or more questions, with the possibility of 

each question developing different modes of FT. So, there are two steps in coding the 

modes of FT reflected by each function task.  Firstly, we counted the number of 

questions included in each task; and secondly, we determined the modes and explicit 

levels of FT developed by the question.  

RESULTS 

An overall distribution of tasks and relevant targeting modes of FT is shown in Fig.3.  

The figure reveals three salient features related to our research questions. (1) Multiple 

modes of FT are embedded in the math textbooks in all grades simultaneously;(2) Two 

routes could be identified for developing FT. These features are illustrated in the 

sections that follow. 

Figure 2: Distribution of function tasks that develop different modes of FT 

Multiple modes of FT are developed simultaneously 

Figure 2 illustrates that three modes of FT (R-P, C-T, and C-P) are developed 

simultaneously across three grade levels. In lower grades, two modes of FT (R-P and 

C-P) are developed explicitly through pattern tasks and operational tasks 

correspondingly.  C-T is developed implicitly through operational tasks, while 
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one-to-one tasks implicitly are used to develop C-P. In middle grades, C-T and C-P are 

emphasized simultaneously through the operational tasks. In upper grades, 

pre-functional tasks are used to develop C-T, C-P and C-G at the same time, and the 

pattern tasks, operational tasks and one-to-one tasks are still useful for developing C-P 

and C-T. 

Grades 
One-to-one 

tasks 

Operational 

tasks 
Pattern tasks 

Pre-functional 

tasks 
Total 

Lower 

grades 
30 20% 67 44% 55 36% 1 0% 153 

Middle 

grades 
9 16% 34 61% 6 11% 7 13% 56 

Upper 

grades 
26 24% 16 15% 22 20% 45 41% 109 

Total  65 20% 117 37% 83 26% 54 17% 318 

Table 1: Distribution of different types of function tasks across grades 

Generally, there are 318 function tasks and 656 sub-questions in 12 textbooks, with the 

number of operational tasks being the most prevalent (117, 37%), and the number of 

pre-function tasks being the least (54,17%). The total number of function tasks in 

lower grades is the most (153), the number in upper grades is second (109), while the 

numbers in middle grades is the least (56).  

Two routes are identified to develop functional thinking progressively 

From Figure 2 and the above analysis, one can see two explicit and continuous routes 

in which FT is developed across grades. One explicit route is mainly using the pattern 

tasks, from R-P to C-G through C-P explicitly and C-T implicitly (Figure 3). The other 

is primarily utilizing the operational tasks and pre-functional tasks, from C-P to C-G, 

through C-T (Figure 4).   

Route A is from R-P to C-G via C-P or C-T.  The geometric patterns appear as 

repeated patterns in lower grades, simple growing patterns (additive or multiplicative) 

in middle grades, and complicated growing patterns (linear, non-linear) in upper 

grades. For the number pattern tasks, PEP textbooks combined number sense learning 

with the growing pattern. In grade 1 number patterns grow by 1, 3, 5, etc., which helps 

students understand the number sequence. In grade 2 the patterns might grow by 100s, 

10s, or 1s, and in middle grades they might grow by 0.1s, 0.01s, 0.001s, etc., which is 

highly correlated with the knowledge of place value base 10.  

In upper grades the PEP textbooks usually present number and geometric patterns 

together, and the figures help students to generalize the rules. In this way it is easier for 

students to match the figure and number (C-P), observe the change of both the figures 

and values (C-P, even C-T), and finally find out the rule (C-G). For some complicated 

patterns, the textbooks encourage students to observe the geometric figures and find 
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the near-generalization term, which gives students opportunities to experience the 

non-linear relations which prepares them for the future leaning of functions.          

Figure 3: Route A develop FT from R-P to C-G 

Route B is mainly from C-P to C-G through C-T. In the lower grades the textbooks 

usually used operational tasks and comparing tasks, explicitly developing C-P. 

Through utilizing the organizing table tasks, the textbooks begin to develop C-T 

implicitly. In middle grades, there are also function machine tasks which include 

fractions and decimals (explicit C-P), and some pre-functional table tasks, which 

frequently present the quantities in real-life situations, such as distance and time, price 

and cost, etc. These pre-functional tasks not only require students to fill in tables based 

on calculating (C-P), but also help students to experience the co-varying of two 

quantities. In upper grades, the pre-functional tasks usually involve direct or reverse 

proportional relationships, and they require students to generate the rules or judge the 

relationships (C-G) and also explicitly describe the co-variational relationship between 

the quantities. Many tasks develop C-P in upper grades, but some are by-products of 

C-G and C-T (e.g., find the corresponding values according to the rules they generate,), 

and some are preparation for future study (such as, non-linear functions).  
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Figure 4: Route B develop FT from C-P to C-G & C-T 

CONCLUDING REMARKS 

This study provides several implications for developing FT in elementary 

mathematics. First development of FT should be embedded in learning arithmetic as an 

enhancement rather than an addition to the crowded existing content. Secondly, the 3D 

framework which integrates tasks, modes of FT and grade levels provides a useful 

analytical tool for examining textbooks regarding the development of functional 

thinking. Finally, we revealed two main pathways for the development of FT, which 

are aligned with the learning progression and pathways as described by other studies 

(Stephens, et al., 2017; Pitallis, et al., 2020). Thus, the ways of developing FT in 

elementary textbooks in China may provide insight for textbook development in other 

countries. 
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PROSPECTIVE TEACHERS’ COMPETENCE OF FOSTERING 

STUDENTS’ UNDERSTANDING IN SCRIPT WRITING TASK 

Jennifer Dröse & Lena Wessel 

Paderborn University 

 

In different research traditions teachers’ diagnostic competence has always been 

characterised as being interwoven with fostering students in order to enhance their 

understanding. While the first one has been investigated thoroughly there is only a 

limited empirical access to the second one so far, especially in a content-specific way 

meaning focussing on the specificity of mathematical content areas. As prospective 

teachers have been shown to struggle with formulating adequate diagnostic 

judgements and fostering students, we especially investigate their practices of 

fostering students’ understanding identified in script writing tasks analysed with the 

epistemic matrix. The results indicate that there are three typical impulse pathways in 

the matrix. 

THEORETICAL BACKGROUND 

Prospective teachers’ competence of fostering students’ understanding  

For teaching that is centred around students’ understanding, teachers’ diagnostic 

competence has been found to be important (Empson & Jacobs, 2008). This 

competence has already been defined and conceptualized in different frameworks, 

which often do not focus on the mathematical content specifically. Therefore, the 

authors of this paper follow a content-specific approach on conceptual and procedural 

knowledge elements of the current learning content (here: conditional probabilities) or 

the prior mathematical content as described and explained in Dröse, Griese & Wessel 

(accepted). Due to space limitations this explanation cannot be presented in detail here.  

While diagnostic competence is well conceptualized, there is not yet a definition of 

teachers’ competence of fostering students’ understanding applicable. Ball, Thames & 

Phelps (2010) describe ‘knowledge of content and students’ as well as ‘knowledge of 

content and teaching’ as important facets of teachers’ knowledge. ‘Knowledge of 

content and teaching’ particularly comprises that teachers need to make instructional 

decisions, meaning to know “when to pause for more clarification, (…) when to ask a 

new question or pose a new task” (p. 401). But, the competence of fostering students’ 

understanding can be seen as relating more aspects than knowledge facets alone:  

(1) Teacher student interaction is often based on a task that is linked to the learning 

trajectories intended by the teacher, and the learning goal(s) set for the 

individual student. These aspects fall within the teacher’s subject matter and 

pedagogical content knowledge (Ball et al. 2010). 

(2) When students solve the given task, their individual thinking and learning pro- 
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cesses need to be perceived and interpreted by the teacher in order to guide the 

teacher’s decision-making within the learning process. These aspects are 

described as cognitive diagnostic thinking processes by Loibl et al. (2020). 

(3) What is more in order to react adequately and enhance students’ understanding 

are communicational skills building up on the made decisions, taking the 

students’ thinking processes as well as the task or the learning goal into 

consideration and guiding the students’ learning process through the teacher.  

Current studies, e.g. Prediger & Buró (2021) identified teachers’ competence of 

‘Enhancing students understanding’ to be a central job for teachers’ expertise when 

working with students at-risk next to the jobs of ‘Specifying learning contents’ and 

‘Monitoring students’ learning process’. As prospective teachers have been shown to 

struggle with identifying content-specific aspects in their diagnostic judgements 

(Jansen & Spitzer, 2009) and therefore maybe also in fostering students’ 

understanding, the authors limit their research to prospective teachers. For them, an 

important practice to become proficient in is, amongst others, the practice of 

explaining. It is needed in discursive situations of fostering students in one-on-one or 

classroom discussions. For this paper, the authors rely on earlier research on explaining 

practices because of its identified potential when extending ideas to the competence of 

fostering students in discursive settings. 

The epistemic matrix for characterising explaining practices 

For capturing the different modes of the practice of explaining, Erath and Prediger 

(2014) developed further the epistemic matrix (cf. Fig. 1). The epistemic matrix 

distinguishes epistemic modes and logical levels of an explaining practice: Logical 

levels referring to the content of explaining (explanandum) are unfolded in conceptual 

and procedural levels and their epistemic modes are characterised as follows: 

 Labelling & naming: mode that expresses names and labels, e.g. in one word 

 Explicit formulation: more elaborated mode, including e.g. definitions of 

concepts or formulation of procedures 

 Exemplification: mode of expressing examples and counterexamples  

 Meaning & connection: mode of expressing connections between conceptual 

and procedural knowledge or to other concepts, pre-knowledge or graphical 

representation 

 Purpose: mode of describing the “inner mathematical or everyday functions” 

(Erath & Prediger, 2014, p. 18) of concepts and procedures 

 Evaluation: mode that “appears in the context of presenting solutions in class” 

(Erath & Prediger, 2014, p. 18) 

We can rely on the matrix with its epistemic modes as well as logical levels for 

systematizing epistemic fields of an explanation in a content-specific approach. Since 

our study focuses on the current mathematical content of conditional probabilities, we 

exemplify the epistemic fields for this content in the next Section. As the epistemic 



Dröse, Wessel 

 

 

PME 45 – 2022 2 - 245 

 

modes of “purpose” and “evaluation” are connected to rather general classroom 

discussions, we focus only on four modes for the content of conditional probabilities.   

 

Figure 1: Excerpt of an example of epistemic matrix (Erath & Prediger, 2014) 

The epistemic matrix for explaining conditional probabilities 

In order to follow the content-specific focus on conceptual and procedural knowledge 

elements, the epistemic matrix is now exemplarily filled out for the current 

mathematical content of conditional probabilities (Fig. 2). We differentiate current 

mathematical content from prior mathematical content because focussing on the 

content - and with it on students’ prior knowledge in contrast to the current content - as 

separate and constituent element of diagnostic judgments and fostering students’ 

understanding has only rarely been investigated (Dröse, Griese & Wessel, accepted). 

The following explanations regard Fig. 2 for the conceptual and the procedural level: 

On the conceptual level, concepts concerning stochastic (in)dependence are 

knowledge elements of the current mathematical content (cf. row --CC--) (Hoffrage et 

al., 2015), while they build upon conceptual knowledge elements from prior 

mathematical content (cf. row --CP--), e.g. the part-whole or part-of-part relationship 

as concepts of fractions and the multiplication of fractions (Post & Prediger, 2020; 

Prediger & Schink, 2009). The epistemic modes can be described as follows. Here 

examples are given: 

 Naming: “conditional probability”, --CC--,  |L|  

 Explicit formulation: “the definition of conditional probabilities”, -CC--, |F| 

 Exemplification: “distinguish joint and conditional probabilities”, --CC--, |E| 

 Meaning & connection: “visualize conditional probabilities”, --CC--, |M| 

On the procedural level different procedures can be focused either in the current 

mathematical content of conditional probabilities (cf. row --PC--) (see overview in 

Binder et al., 2020) or in prior mathematical contexts as routine calculations on 

fractions (cf. row --PP--) (Prediger & Schink, 2009). Again, different epistemic modes 

for these procedures can be distinguished (examples given): 

 Naming: “rule of Bayes”, row --PC--, column |L|  

 Explicit formulation: “formulate the formula of Bayes”, --PC--, |F| 

 Exemplification: “express conditions of applying the formula”, --PC--, |E| 

 Meaning & connection: “explaining the formula”, --PC--, |M| 
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Figure 2: Epistemic matrix exemplarily specified for conditional probabilities (adapted 

from Erath & Prediger, 2014) 

Research questions 

For pursuing the described research interest, we investigate this research questions: 

(RQ1) How can teachers’ competence of fostering students’ understanding be 

investigated with the epistemic matrix? 

(RQ2) Which pathways through the epistemic matrix can be identified in prospective 

teachers’ moves for fostering a student (hereafter abbreviated as PTMF)? 

METHODS 

Data collection 

The data was collected in a university mathematics education course with n=26 

prospective secondary school teachers in Germany. The sample can be characterized as 

follows: 81% of the prospective teachers’ study for upper secondary school and 19% 

study for vocational schools as well as 69% of the prospective teachers attend the 

course in their sixth semester and 31% attend the course in their eighth semester and all 

in the last year of their bachelor programme. The course covers among other topics 

content knowledge and pedagogical content knowledge on conditional probabilities.  

For assessing the prospective teachers’ competences, a vignette displayed in Fig. 3 is 

used as an already established instrument in mathematics education research (cf. 

overview in Buchbinder & Kuntze, 2018). The vignette, consisting of a written student 

solution and a following transcript, based on a real dialogue (in Post & Prediger, 2020), 

that give insights into the student’s understanding and obstacles concerning 

conditional probabilities and fractions as the underlying prior mathematical content. 

For assessing the prospective teachers’ competence of fostering students’ 

understanding a script wri-  

ting task inspired by lesson plays (Zazki, Liljedahl, & Sinclair, 2009) is integrated. 



Dröse, Wessel 

 

 

PME 45 – 2022 2 - 247 

 

 

Figure 3: Transcript vignette with task for prospective teachers                             

(completely printed in Dröse, Griese & Wessel, accepted) 

Data analysis 

The 26 written documents containing PTMF were coded in two steps.  

(1) Two raters coded the written documents containing PTMF for logical levels 

with the codes: --conceptual level of current mathematical content--, 

--conceptual level of prior mathematical content--, --procedural level of current 

mathematical content-- and --procedural level of prior mathematical content-- 

with an interrater reliability of Cohen’s  = 0.89. 

(2) In a second step, for each knowledge element the epistemic mode has been 

coded and double-checked by the second rater. 

(3) The codes have been displayed in the epistemic matrix and the pathways 

through the epistemic matrix have been categorized into different types. 

EMPIRICAL FINDINGS ON PROSPECTIVE TEACHERS’ COMPETENCE 

OF FOSTERING STUDENTS’ UNDERSTANDING 

The application of the data analysis method to the written documents enabled us to 

access which epistemic fields (epistemic mode + logical level) have been addressed in 

the dialogue containing PTMF by the prospective teachers in which order. With this 

identification of addressed epistemic fields, we suggest a tool for investigating a facet 

of teachers’ competence of fostering students’ understanding (RQ1). These analyses 

provide us with three main types of moves for fostering Ole in the given data set. For 

assessing RQ2, the three main types are now presented and illustrated by examples.  
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The first type is characterised by starting with an |exemplification| (|E|) on the                     

--procedural level of the prior mathematical content-- (--PP--) of shortening fractions. 

After that, the moves continue addressing the |meaning and connections| (|M|) also in 

the --prior mathematical content but on a conceptual level-- (--CP--) of fractions. This 

type was found among 5 out of 17 dialogues containing PTMF. The following extract 

shows only the teachers’ moves, as they would have been set by the prospective 

teachers. The example pathways through the epistemic matrix as displayed in Fig. 4. 

1  T: So then try out, if it is the same. 

3  T: Okay. And what is the meaning of 3/8? Perhaps it is helpful if you read the 
text again carefully and include the unit square. 

5  T: Right. And the 3/4? What is this part? And what has been searched for in 
the task? 

The second type found among 4 out of 17 dialogues containing PTMF has the same 

starting point but continues by addressing different epistemic modes in the 

--conceptual level of the current mathematical content--(--CC--). The example 

pathway that addresses the |exemplification| (|E|) of the current mathematical content is 

displayed in Fig. 4. 

1  T: Have a look at the two fractions again, if the two numbers can be the same. 

3  T: 3/8 is the probability, that out of all teenagers a random chosen person is 
male and exercise. Can you see the difference [to 450/600]? 

The third type found by 8 out of 17 prospective teachers also has the same starting 

point and continues on the --conceptual level of the prior mathematical content-- 

(--CP--) as well as afterwards on the --conceptual level of the current mathematical 

content-- (--CC--). The pathway through the epistemic matrix for the following teacher 

moves is again displayed in Fig. 4. 

1  T: We can calculate, if it is the same. With which number can 450/600 be 
shortened? 

3  T: Very good. And is this the same part as the one you have had before? 

5  T: Ok, lets have a look at the task again. Which part had to be calculated? 

7  T: Very good, so we have calculated a conditional probability. What has been 
the condition in this task? 

Fig. 4 displays all three types found for the continuation of the dialogue with teachers’ 

move in order to foster Ole. T1-T7 describe the turns of the teacher moves. 

Contrasting the three types, we see that all prospective teachers start with addressing 

the same epistemic field. After that, the types take different routes through the 

epistemic matrix. The first type addresses also the --conceptual level of the prior 

mathematical content-- while it does not reach the current mathematical content of the 

task. The second type reaches the current mathematical content, but might miss 

potential students’ obstacles in the --conceptual level of the prior mathematical 

content-- belonging to the --procedural level of the prior mathematical content--. The 
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third type addresses the --conceptual level of the prior mathematical content-- as well 

as the --conceptual level of the current mathematical content-- and therefore unites 

impulses of type one and two. 

 

Figure 4: Three types of pathways through the epistemic matrix identified for Ole  

DISCUSSION AND OUTLOOK 

Concerning the first research question, we see that applying the epistemic matrix for 

explaining (Erath & Prediger, 2014) to the written prospective teachers’ moves for 

fostering Ole provides different types of teacher moves and therefore might give 

deeper insights into what is more in teachers’ competence for fostering students 

under-standing than the already identified facets (Ball et al. 2008; Loibl et al., 2020).  

The second research question aims at investigating which pathways through the 

epistemic matrix prospective teachers take in their written moves. This led to the afore 

mentioned three types of teacher moves for fostering Ole. Those types cover different 

logical levels and epistemic modes that are of theoretical importance as they enrich the 

already existing research on prospective teachers’ obstacles (Jansen & Spitzer, 2009) 

with deeper knowledge on prospective teachers’ moves for a specific vignette. In 

addition, this is especially important for teacher educators as knowing prospective 

teachers’ moves makes it possible to adjust teaching-learning arrangements to the 

prospective teachers’ competencies. 

Meanwhile, our research is limited due to the small sample size of only 26 prospective 

teachers and the specific content and given transcript vignette. Future research has to 

extend on the one hand the sample size and provide further insights for other 

mathematical content areas and vignette formats (Buchbinder & Kuntze, 2018). 
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This paper presents a case study of a conceptual replication study. We replicated the 

famous and widely cited task presented in Falkner et al. (1999), 8+4=__+5. In 

contrast to the original study, we administered the task with the same age group 

(Grade 6) in a different system (Denmark) and via a large-scale online learning 

environment (OLE), with a larger sample and two decades later. Our replication 

indicates that the Danish students performed very significantly better than the students 

in the original study. We discuss why this is the case and argue that OLEs such as the 

one we used provide an important opportunity to replicate, and thus better understand, 

similar results. 

INTRODUCTION 

There is an increasing interest in replication studies in mathematics education at PME 

(e.g. Inglis et al., 2018) and beyond (e.g. Jankvist et al., 2021). This interest stems from 

the replication crisis in psychology research, which has highlighted a large proportion 

of false-positive results (e.g., Open Science Collaboration, 2015). In part, this may be 

due to the high degree of flexibility in quantitative and experimental researchers’ 

analytic and design choices (Simmons et al., 2011). The imperative for replication 

studies in mathematics education is, however, broader than this. Aguilar’s (2020) 

literature review highlights the majority of studies published even in respected 

mathematics education journals are small-scale and hence influenced by contextual 

factors that are poorly understood. Hence, replication can perform a crucial function in 

deepening and extending the validity of findings, because “[t]hrough variations to 

studies, we can delineate the bounds of the original study’s findings” (Melhuish & 

Thanheiser, 2018, p. 106). Jankvist et al. (2021) emphasises that replication studies are 

important in the mathematics education community because they enable a more deeply 

understanding of the phenomena and results. Replication studies can help clarify under 

which conditions a particular finding is true or not and replication whether the results 

are stable over time, across different educational systems or different populations (e.g. 

Cai et al., 2018). Aguilar (2020) concludes that knowing more about the conditions 

that make it possible for a research finding to take place, and the boundaries of where it 

remains true, advances our research field as it allows us to broaden our understanding 

of the contextual variables under which the research finding occurs. This in turn has 

direct implications for the implementation of research findings in practice. 
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In this paper, we present the data of a conceptual replication study (Aguilar, 2020) of 

the study presented in Falkner et al. (1999) and Carpenter et al. (2003), reporting 

findings from the use of their famous task         .  This result that is widely 

cited in the literature on equivalence (e.g. Knuth et al., 2006). From the study presented 

in Falkner et al. (1999) we learn that an entire range of 145 sixth grade students 

provided 12 and/or 17 as the number that should go in the empty space. Students argue 

that 12 is the answer, because the numbers on the left together makes 12, neglecting the 

meaning of the +5 on the right side and reflecting an operational, rather than a 

relational, understanding of the equal sign (Knuth et al., 2006). Others argue that what 

goes in the empty space is the value of all the numbers added resulting in 17. In the two 

original studies, we are presented with the following data; 

 

Table 1: Data from answer provided to           (Falkner et al., 1999, p. 223)  

We have recreated the above task with two additional variations          and 

        , and implemented them in a Danish OLE called matematikfessor.dk. 

The variations are made in order to investigate the bounds of Falkner et al.’s (1999) 

findings. The first variation uses the same format as the original task but the empty 

space has been moved to the left side of the equals sign. This is done in order to 

investigate how willing students are to put the number 3, completing the sum 

     , ignoring the number 5 at the end, similarly to the original task. We did 

however not expect the students to be willing to put in 16 (the total sum of the numbers 

present) but were curious whether the students would put 12 completing the sum on the 

right side (      ). The third variation also features the empty space on the left 

side of the equals sign. In this variation we wanted to investigate what numbers 

students were willing to put in when the number completing the sum disregarding the 

last number, should be a negative number. We expected this encourage students to 

view the equation as more of a whole, thereby including the +5 at the end, because 

negative numbers might be an unacceptable answer or option (Vlassis, 2002). 

The context: Matematikfessor.dk an online learning environment for 
mathematics 
In Denmark, as in many other systems, teachers and students increasingly use OLEs. 

Matematikfessor.dk, the environment discussed in this paper, has been running for over 

10 years. More than 500,000 students in primary and lower secondary schools have 

access to the environment and, on a typical day, 45,000 unique students use the variety 
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of tasks offered by the site, and collectively answer 1,500,000 tasks. OLEs like 

matematikfessor.dk therefore have access to a large amount of data and can quickly 

host replications of tasks such as the ones presented in the sections above in order to 

generate large amounts of responses. This leads us to the following research question; 

What similarities and differences do we see more than 20 years after the original study 

when implementing the task presented in Falkner et al. (1999) in an OLE? 

THEORETICAL BACKGROUND 

In this section, we collect research about students’ conception of the equals sign and 

comments on the difficulties that emerge from these conceptions. Rittle-Johnson et al.  

(2011) gives four levels of interpretations of or four meanings to apply to the equals 

sign in given situations (see table 2). 

 

Table 2. ‘Construct Map for Mathematical Equivalence Knowledge’ (Rittle-Johnson et 

al., 2011, p. 3). 

One of the central difficulties that students encounter in the transition from an 

arithmetic thought process to an algebraic one is that they continue to view the equals 

sign as a ‘do something” signal’ (Kieran, 1981), or they maintain an urge to ‘calculate’, 

out of habit (Alibali et al., 2007). In the context of the task chosen for this study, 

children do need to be able to consider the right side of an expression involving an 

equals sign as an expression in its own right. In the words of Rittle-Johnson et al. 

(2011) an operational view or meaning attached to the equals sign. The main purpose 

of the task (        ) is to determine what interpretation of the equals sign a 

student would apply. In the earlier years in school mathematics students might 

perceive the equals sign as indication for that calculations has to be made and that the 

operations on the left side results in a single number on the right side of the equals sign 

(Alibali et al., 2007; Kieran, 1981). 

METHODOLOGICAL CONSIDERATIONS 

In August 2020 we implemented the task from Falkner et al. (1999) in the OLE 

matematikfessor.dk as parts of three sets of formative tasks, with a total of 49 unique 

items about linear equations. The sets were only available for teachers to assign to their 

students, not for students to find on their own within the environment. A promotion 

campaign was established in order to notify the teachers subscribing to the services of 
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matematikfessor.dk of the formative sets existence and applications. The data (in the 

form of unique answers) was extracted from matematikfessor.dk’s database on the 4
th
 

of November 2021.  

DATA RESULTS 

The original task 8+4=__+5 

In total 2345 answers were given to the original task presented in Falkner et al. (1999) 

when we implemented out version in the OLE. In a review of these, we found that only 

92 of these answers were from students solving the task multiple times. In table 3 is an 

overview of the answers the students provided. (64 total answers were omitted. These 

answers were belonged to a range of 16 additional groups of answers that were less 

than 1% of the answer total)  

Answer Freq % 

7 1546 65.9 

17 363 15.5 

12 343 14.6 

3 29 1.2 

Table 3: Overview of the answers to the task 8+4=__+5 

Answer Freq % 

7 501 62.9 

17 143 17.9 

12 119 14.9 

3 8 1.0 

Table 4: Overview of the answers to the task 8+4=__+5 (age 12 and 13) We examined 

how 12 to 13 year olds (6
th
 graders) from Denmark answered the task in order to be 

able to compare with the same age group from the original study. In total 797 students 

from this age group answered the implementation of the original task. The results can 

be seen in table 4. 

The amount of 12 year olds that gave the answer 7 is 57.3% where the 13 year olds sum 

up to 64.0%. The average age of the children represented in the data for the original 

task is 13.97 years, slightly lower than the total average age of 14.08 years of the 

children represented in all three tasks. See age distribution in figure 1. 

The first variation 4+__=7+5 

For the second task (the first variation), we received a total of 1203 answers. In a 

review of these, we found that only 40 of these answers were from students solving the 

task multiple times. In table 5 is an overview of the answers the students provided. (45 
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total answers were omitted. These answers were belonged to a range of 14 additional 

groups of answers that were less than 1% of the answer total) 

Answer Freq % 

8 996 82.7 

3 99 8.2 

9 35 2.9 

12 27 2.2 

Table 5: Overview of the answers to the task          

The second variation 6+__=4+5 

For the third task (the second variation), we received a total of 824 answers. In a review 

of these, we found that only 43 of these answers were from students solving the task 

multiple times. In table 6 is an overview of the answers the students provided. (27 total 

answers were omitted. These answers were belonged to a range of 13 additional groups 

of answers that were less than 1% of the answer total) 

Answer Freq % 

3 751 94.9 

4 14 1.8 

-2 11 1.4 

9 11 1.4 

2 10 1.3 

Table 6: Overview of the answers to the task          

Additional results 

A total of 351 students have provided answers to all three items. Based on these data 

the facility of the original task is 69.5%. The facility of the first variation is 83.3% and 

the facility of the second variation is 93.3%. These students actually represent the 

overall data very well. Only 32 students have provided two answers to one or more of 

the items where one of the answers were wrong. We thought it might be interesting to 

know the exact number of students who either got it wrong first and then right and vice 

versa. Twenty of the students that provided answers to the task          

provided two answers, where the first answer was wrong and the second answer 

correct. Most of these cases were a situation where either 12 or 17 was the first answer 

and 7 the second. Five students did in fact provide a correct answer as the first and a 

wrong answer the second time around. 

DISCUSSION 

In this section, we discuss the similarities and differences in data results compared to 

the original studies. In addition, we discuss what possible influence the OLE have on 
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with the similarities and differences. If we compare the data from the original study 

presented in Falkner et al. (1999) we immediately notice the striking difference in 

facility among 6
th

 grade students. In the original study, every 6
th

 grade student gave the 

wrong answer to the task. A later publication (Carpenter et al., 2003) provides 

additional information about the performance of the task and interpretations made by 

the authors. The author’s comment that the data show that older students are more 

likely to get the task wrong than younger students are and the author hint at that maybe 

students get a progressively more operational interpretation of the equals sign based on 

the teaching at this point in time. Knuth et al. (2006) emphasises that poor performance 

on measures of understanding the equals sign should not be surprising given the lack of 

explicit focus in American middle school curricula, although we note that a recent 

study indicates that American students may have a better understanding of equivalence 

more generally than some European countries (Simsek et al., 2021). McNeil (2007) 

finds that performance on equivalence problems such as the ones discussed in this 

paper decreases with American students from age 7-9 before it increases again from 

age 9-11. Hence, performance on this item may be particularly influenced by 

pedagogic and curricular choices. Nonetheless, the data from our study show that 

students in 6
th

 grade (12-13 year olds) give a correct answer 63% of the time and 

matches the overall distribution very well. We acknowledge that the original study 

does not specifically intend to provide information on how 6
th
 grade students perform 

on a task such as         . Rather they intend to provide teachers with a 

reminder that students’ interpretation of the equals sign is of great importance and does 

not need to be corrected at an older age rather than classroom discussions about the 

meaning (definition) of the equals sign at lower grades are particular meaningful 

(Carpenter et al., 2003). 

We do get the same wrong answers in our study as in the original. This to some extent 

prove that the task is not performing in a significantly different way i.e. producing 

different answers than 20 years ago. We do however wonder why we see the huge 

difference in the distribution of the answers. 20 years ago in the original study, less 

than 10% of the participants at every class level gave the answer 7. Now we see a rate 

of approximately 65%. Granted our data stems from 12-17 years old. With most of the 

participant being 13-15 (83%). Falkner et al. (1999) mentions that the task was 

originally carried out by a teacher in a single classroom. When this teacher realized that 

every student in that classroom provided a wrong answer, she asked her colleagues to 

use the task with their students resulting in the data in table 1. This means that the 

observations all stem from the same school. In our study, the data stems from at least 

197 schools due to the task being implemented in an OLE. We are however not certain 

that none of the students in our study received help solving the task. This fact might 

skew the correct answer percentage towards a higher number. However, it seems 

unlikely that this should leave us with 60+% correct answers compared to none or 

almost none. Another obvious difference is nationality of the populations observed in 

the original study we have American students and in our study the observations stem 
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from Danish students. According to PISA 2018 

(https://factsmaps.com/pisa-2018-worldwide-ranking-average-score-of-mathematics-

science-reading/) the overall difference in the performance of students in the United 

States and Denmark is not statistically (or indeed practically) significant. Of course, 

the task was presented to the American grade 6 students more than 20 years ago and it 

may be that teachers are now more aware of student’s understandings of, and 

misconceptions about, the equals sign, because of the curricular changes made as a 

result of the introduction of mathematical competencies in Denmark in 2002. The data 

collected on the variations of the original task suggests that a similar operational view 

of the equals sign is being applied even though the empty space is moved to the left 

side of the equation. This was to be expected, as it is still possible to apply the same 

operational procedure as the original problem with the empty space on the right side. 

With the last task, we see an even better performance. The last variation is as expected 

not similar to the second variation because -2 is not as frequent as the number 3 was in 

the second variation. This to some extent proves that the choice of numbers matter 

when designing tasks such as the original task even though the empty space is on the 

left side of the equals sign. This choice of numbers indicate that students might be 

more likely to apply a relational interpretation of the equals sign to avoid negative 

numbers or simply because negative numbers are not accepted in a situation such as 

this. 

CONCLUSION 

Based on the differences in the data we believe that, although this task from Falkner et 

al. (1999), in our opinion is a very good task, the data presented by the authors is not 

representative of how difficult the task is for 6
th

 grade students. Our data show that the 

majority of the wrong answers was identical to the ones observed in the original study. 

This does in our opinion encapsulate one side of the importance of replications studies 

in mathematics education. On the other hand, our data show a huge deviation from the 

facility scores of the original study. This is also an important finding for the sake of 

replication studies in mathematics education. Even though the point of the task 

presented in Falkner et al. (1999) is not primarily to indicate how difficult it is and 

present quantitative scores, it is nonetheless important to observe that the scores 

presented in the original study is an extreme case compared to data collected from a 

large collection of schools in Denmark 20 years later. With all that said using OLEs to 

replicate studies such as the performance of the famous task from Falkner et al. (1999) 

can be great and efficient platforms for achieving additional and in some cases updated 

information and knowledge.  
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META-SCIENTIFIC REFLECTION OF UNDERGRADUATE 

STUDENTS: IS MATHEMATICS A NATURAL SCIENCE? 

Patrick Fesser and Stefanie Rach 

Otto-von-Guericke-University Magdeburg 

 

Reflecting on the nature of mathematics is an important activity for undergraduate 

students. To analyse students’ reflection, we address the questions how students 

categorize mathematics in the system of scientific disciplines and what arguments they 

use to support their decision, in particular. In an online-survey, we implemented two 

open-ended items to gather information about the meta-scientific reflection of 

296 undergraduate students enrolled in a mathematics-related study program. By 

analysing students’ answers, we identified nine subthemes that can be grouped in three 

themes: (1) the content, (2) the method, and (3) the purpose of mathematics. Most of 

the students concentrated on only one of the three themes. Based on these results, we 

discuss in which way prompts can support students’ meta-scientific reflection. 

INTRODUCTION 

Citizens of modern societies are regularly confronted with problems that are somehow 

related to scientific findings: whether in their personal daily lives, or in their social 

responsibility. Those problems may be solved or caused by scientific findings and 

disciplines, respectively. One recent prominent example is an adequate dealing with 

information about the COVID-19 pandemic. A sufficient understanding, a reasonable 

dealing with scientific findings and a reflection of scientific ideas subsumed under the 

term “meta-scientific reflection”, are key components of citizens’ participation in their 

personal, social and public life. This reflection is mentioned e.g. in German school 

curricula under the term “scientific propaedeutics” (“Wissenschaftspropädeutik”) 

which is an aim of upper secondary schools (KMK, 1972/2021). 

So far, only few studies have examined whether students are able to reflect on a 

meta-scientific level or not (Oschatz et al., 2018). One possible reason for this absence 

of studies involving meta-scientific reflection is the lack of validated instruments for 

measuring meta-scientific reflection (Dettmers et al., 2010), especially on mathematics 

as a scientific discipline. Therefore, we developed an instrument to gain information 

about students’ meta-scientific reflection on mathematics; in particular, to answer the 

questions how undergraduate students categorize mathematics in the wide system of 

scientific disciplines and what arguments they use to support their categorization. 

THEORETICAL BACKGROUND 

The reflection on scientific findings is important for the preparation of a university 

study program as well as being part of the modern scientific-orientated society. We call 

the concept meta-scientific reflection that covers reflection on an epistemological 

level:  
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Speaking about mathematics from an epistemological perspective, for example, about the 

characteristic distinctions between mathematics and other sciences, about the nature and the 

origin of mathematical knowledge, and so on (Neubrand, 2000, p. 256).  

 

This quote emphasises the importance of reflecting on the differences between 

scientific disciplines and getting an orientation in the system of scientific disciplines. 

This perspective on meta-scientific reflection focuses on the development of skills that 

are helpful for understanding and evaluating scientific findings based on the used 

methods, conditions, and limits. To be able to reflect on scientific disciplines 

meta-scientifically, one has to have enough meta-scientific knowledge and an 

appropriate methodological awareness. Therefore, meta-scientific reflection is most 

difficult to achieve and maybe even not achievable by every high school student 

(Klafki, 1984). 

The existing empirical research literature focuses strongly on meta-scientific reflection 

regarding natural sciences (e.g., Oschatz et al., 2018) or just scientific thinking and 

working in general (e.g., Dettmers et al., 2010). To the best of our knowledge, there are 

no validated instruments that measure meta-scientific reflection on mathematics. 

Literature addressing close-related concepts such as epistemological knowledge about 

mathematics can be found (e.g., Hoffmann & Even, 2021; Zazkis & Leikin, 2010). 

These projects investigated knowledge rather than reflection and mostly focus on 

teachers and not on high school graduates. Contrary to Rott and Leuders (2017), we are 

not interested in students’ beliefs concerning mathematics, e.g., if mathematical 

knowledge is certain or not, but more general what mathematics look like. Our study 

on meta-scientific reflection of undergraduate students addresses this research gap. 

Presenting the whole nature of mathematics, is not possible due to page restrictions. 

Thus, we use the following statement to illustrate the dual nature of mathematics: 

[…] mathematics can be best understood as a framework for studying concrete real-world 

phenomena in terms of underlying abstract mathematical models. (Hansen, 2008, p. 1).  

Hansen (2008) differentiates between an abstract and a concrete site of mathematics. 

Whereas abstract mathematics focuses on the analysis of formal structures and abstract 

ideas, concrete mathematics is related to the application of the abstract patterns and 

structures in real-life situations.  

To further characterize scientific disciplines like mathematics, it is sensible to look at 

the various disciplines from different perspectives, namely in regard to (1) its contents 

(objects, structures and theories), (2) its methods and processes and (3) its purpose and 

goals etc. (Niss, 2014). These three aspects can be used to distinguish scientific 

disciplines from others. 

The study in this contribution is a follow-up study of a study in which we investigated 

reasoning patterns that students used to argue whether mathematics is a natural science 

or not (Fesser & Rach, 2020). The findings indicated that more than half of the 

participating students think that mathematics is a natural science. Students’ reasons for 

their decision referred to nine subthemes that can be grouped into three themes inspired 
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by Niss (2014): (1) the content of mathematics, dealing with the question: What does 

mathematics contain? (2) the method of mathematical studies, which deals with the 

question: How are mathematical findings obtained? (3) the purpose of mathematics, 

dealing with the question: What are the goals of mathematics? (see Figure 1). 

 

Figure 1: Framework for students’ reflection on the nature of mathematics. 

In the previous study (Fesser & Rach, 2020), we identified which themes students 

mentioned when reflecting on the question if mathematics is a natural science. Now, 

we analyse which themes and subthemes students use to agree or disagree to this 

statement to gain a deeper insight into students’ meta-scientific reflection. 

RESEARCH QUESTIONS 

In the current study, we focus on undergraduate students who were enrolled in a 

Bachelor’s Degree Program in which students have to participate in mathematics 

courses. Our aim is to investigate whether undergraduate students are able to reflect on 

the nature of mathematics. The research questions for this study are as follows:  

 In which way do undergraduate students categorize mathematics as a 

scientific discipline? 

 What arguments do undergraduate students use to support their 

categorization? 

METHODS 

Sample 

The study was conducted at a middle-large university in Germany at the beginning of 

the winter term 2020/21. The target group of this study were first-year students who 

were enrolled in Bachelor’s Degree Programs that are somehow related to mathematics 

(e.g., STEM subjects, economics, …). For this study, we focused on first-year students 

because we want to learn more about meta-scientific reflection of undergraduate 

students. The sample was collected via convenience sampling and participating was 

voluntary and anonymous. Out of 313 students who participated in the study, 296 

participants (94.6%) answered the open-ended items. Those 296 participants (56.1% 

female, 82.4% younger than 22 years) were enrolled in the following study programs: 

Content 

What does 
mathematics contain? 

• Abstract structures 

• Human-made 
construct 

• Axiomatic-deductive 
system 

Method 

How are mathematical 
findings obtained? 

• Empirical 

• Non-empirical 

• Importance of proofs 

Purpose 

What are the goals of 
mathematics? 

• Describing natural 
phenomena 

• Solving problems in 
application-oriented 
sciences 

• Foundation for other 
(natural) sciences 
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49.7% in economics-related, 21.3% in teacher training, 14.2% in technical-related, 

7.4% in computer science, 4.1% in mathematics, and 3.3% in other study programs. 

Data collection and data analysis 

Due to the pandemic situation and other pragmatic reasons, we conducted the study via 

the online survey tool SoSci Survey. The main data source included answers to two 

open-ended items, which were implemented in a questionnaire. The two items to 

collect data about students’ meta-scientific reflection were given in German and can be 

translated as follows: 

The term natural sciences includes e.g. sciences like biology, chemistry, and 

physics. Take position on the following statement “Mathematics is a natural 

science.”. 

 What is in your opinion the strongest argument that (a) supports and  

(b) contradicts the given statement? 

 Compare both arguments and come to a decision whether mathematics is a 

natural science or not. Explain your answer. 

At the beginning of this questionnaire, participants were instructed to think of 

mathematics as a scientific discipline. The participating students were asked to answer 

the questions within 2-4 whole sentences. In this contribution, we focus our analysis on 

the second item. 

The qualitative data was gathered and then analysed, applying the summarizing 

qualitative content analysis (Mayring, 2015). In the first step (initial read-through), we 

read all the given answers and gained an overview about the whole data set. After that, 

we marked all sentences that dealt with a categorization of mathematics as a scientific 

discipline and possible arguments supporting ones positioning. Then we used the 

framework in Figure 1 and a peer-validated category system (Fesser & Rach, 2020) for 

the coding of the answers, enabling room for new categories if needed. Thus, the 

analysis was deductive and inductive, gathering also insight about adjacent themes. 

FINDINGS 

Students’ answers on the categorization of mathematics as a scientific discipline and 

the related arguments to support the positions were associated with the three themes 

and the nine subthemes. A further analysis indicated that no more themes and 

subthemes emerged from the data. Firstly, we describe students’ categorization of 

mathematics as a scientific discipline and secondly the used argumentation patterns. 

Thirdly, we give an insight about further findings and a new perspective mentioned by 

the participants. 

Categorization of mathematics as a scientific discipline 

The first research question deals with undergraduate students’ categorization of 

mathematics as a scientific discipline: 137 participants categorized mathematics as a 

natural science (46.3%), 140 disagreed with the statement “Mathematics is a natural 

science” (47.3%) and 19 has not clearly positioned themselves (6.4%). Therefore, we 
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have a rather equal distribution of students who agree and students who disagree with 

the statement that mathematics is a natural science (see Figure 2). 

 
Figure 2: Students’ categorization of mathematics as a scientific discipline. 

Out of the participants who disagreed with the statement that mathematics is a natural 

science, 34 students took a further approach to specify mathematics as a scientific 

discipline. The students labelled mathematics mostly as an “auxiliary science” 

(55.9%), followed by “special science” (23.5%), “human science” (11.8%) and 

“formal science” (5.9%). One student who disagreed with the statement that 

mathematics is a natural science, also stated that mathematics is not a scientific 

discipline at all: 

As mathematics is a tool for explaining natural phenomena, I would say that mathematics 

is not a scientific discipline, rather than just a tool for natural sciences so that they [natural 

sciences] can keep working and researching (A170_2).  

Argumentation patterns 

Besides the categorization of mathematics itself, we also analysed the arguments that 

students used to support their categorization. 222 students gave a reason for their 

positioning. Out of those 222 participants, 195 students (87.8%) gave a sensible 

answer that we could further analyse. Whereas each of the three themes was addressed 

in the answers, the number of mentions varied substantially between and within the 

themes. 

Content of mathematics 

48 (24.6%) out of the total 195 students are associated with this theme, dealing with the 

questions: What does mathematics contain? Most of the students within this theme 

referred to abstract structures as the specific research objects of mathematics (56.3%), 

for example: “The research objects of mathematics are not natural phenomena, but the 

structure of formal objects” (A29_2). Fewer students referred to mathematics as a 

mental construct that is made by humans (29.2%); respectively mentioning that 

mathematics is characterized by its logical axiomatic-deductive structure (14.6%). Out 

of the 48 students that mentioned this theme, only one student supported the statement 

that mathematics is a natural science. It seems like referring to this theme relates to 

disagreeing with the statement that mathematics is a natural science. 
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Method of mathematics 

The second theme could be emerged from 17 (8.7 %) students’ answers, dealing with 

the question: How are mathematical findings obtained? Similar to the first theme only 

one out of the 17 students argued that mathematics is a natural science. Most of the 

students within this theme associated with mathematics being a non-empirical science 

(76.5%). These students often referred to differences between mathematics and the 

natural sciences, e.g., as mathematics is not an experience-based science, it does not 

generate findings based on experiments and observations. Further “it is not common to 

collect empirical data” (A85_2) for doing mathematics. Three students focused on the 

importance of proofs as the main criteria of evidence in mathematical research: 

Mathematics is characterized by “proving specific logical statements and theorems” 

(A91_2). Students use this subtheme to make clear that mathematical findings has to 

be proven prior to be used by other sciences.  

Purpose of mathematics 

Most of the students associated with the third theme (64.6%). Within this theme, we 

could find the following distribution to the subthemes: 62.2% mathematics as a 

foundation for the natural sciences, 26.0% mathematics as a tool for describing natural 

phenomena, and 11.8% mathematics for solving problems in scientific or daily life 

situations. Concerning the first subtheme, students reported that mathematics is a key 

component of the scientific working in the natural sciences. Mathematical methods are 

needed to predict developments and to represent natural phenomena via various 

diagrams. The first subtheme “mathematics as a foundation” was used to support 

(50.6%) and to oppose the statement that mathematics is a natural science (49.4%). On 

the one hand, students argued that mathematics is a foundation and therefore a part of 

the system of natural sciences and on the other hand, students argued that as 

mathematics is a foundation for natural sciences, it cannot be a natural science itself. 

That means that this subtheme is evenly distributed among the positions. 

Further findings 

Three students’ answers could not be associated with any of the formulated themes. 

Those answers had in common that they are referring to their school experiences with 

mathematics, for example: 

I think mathematics is a natural science because that it is how I was taught in school.  For 

me, that is like a fact. (A221_2).  

Those argumentation patterns does not give any hint of a reflecting process, but are 

only based on prior experiences and knowledge (knowing that mathematics is a natural 

science) that was accumulated in school. Therefore, we does not expand our category 

system (see figure 1) with a new category or theme. 

Apart from the findings above, we could also generate some interesting results 

concerning students’ opinions and meta-scientific reflection on mathematics: Some 

students reported that it was their first time thinking about the place of mathematics in 
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the wide system of sciences. One student even reported that reflecting about this 

question changed her/his former view on mathematics as a scientific discipline: 

For me, mathematics belonged to the natural sciences because that is how it was always 

portrayed to me. However, based on the arguments I found, I would say that mathematics 

is not a natural science but a scientific discipline that revolves around logic (A221_2).  

We did not expect that students in higher secondary schools were taught that 

mathematics is a natural science. Likewise, we were surprised about students reporting 

that they had not reflected on the nature of mathematics before. 

DISCUSSION 

The conceptual framework based on Niss (2014) and the developed category system in 

a prior study (Fesser & Rach, 2020), was useful to examine how undergraduate 

students categorize mathematics as a scientific discipline and what arguments they use 

to support their decision. The analysis of students’ answers showed that students 

mentioned all nine subthemes. For arguing that mathematics is a natural science, 

students referred to the purpose of mathematics: arguing against, they used the content 

and the method of mathematics. Thus, the purpose of mathematics as an abstract 

discipline seems not to be clear to students and therefore should be more explicated in 

mathematical classes to gain a more holistic understanding of mathematics. Besides 

referring to the representation of mathematics as a natural science in school, no 

additional themes were associated by the students. 

As this study was implemented in a written survey, we were limited when analysing 

the given word material. Therefore, we were not able to ask students to explain deeply 

arguments they put forward, e.g., that mathematics was taught in high school. Future 

projects may collect data on meta-scientific reflection in interviews to get an insight 

about the quality of argumentations as to which Rott et al. (2014) provided results. 

Our findings suggest that most of the students are able to categorize mathematics as a 

scientific discipline giving reasons. Even though most students gave reasons, the 

referred themes differ between students and many students ignore the abstract site of 

mathematics (Hansen, 2008). To support student in reflection, it seems not to be 

sufficient using reflection prompts only in surveys, but it has to be implemented in 

regular lessons (see Liebendörfer & Schukaljow, 2020). To gain a deeper insight into 

meta-scientific reflection, more research is needed to consider (1) whether the 

categorization is related to students’ characteristics, (2) understand the differences 

between students’ reasoning and (3) investigate whether mathematics is portrayed as a 

natural science in school or not. 
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MATHEMATICAL SITUATIONS TO WORD-PROBLEM SOLVING 

BEYOND ESTABLISHED PREDICTORS 
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To solve mathematical word problems, students need to build appropriate models of 

the described situations, which they can describe with mathematical operations. 

Various studies have confirmed the importance of general cognitive skills, basic 

arithmetic skills, and language skills for word-problem solving. Beyond these, we 

investigate flexibility in dealing with mathematical situations, a new construct that 

describes the skill to re-interpret everyday situations from various perspectives. In a 

study with N = 113 second graders, an instrument to measure this flexibility construct 

has been developed and investigated. We find that the construct explains 

word-problem solving skills beyond the established predictors. Being able to flexibly 

re-interpret everyday situations may be beneficial for word-problem solving. 

Students’ skills to solve word problems diverge strongly. It has been well investigated 

particularly for additive one-step word problems, which predictors explain these 

differences. Additive one-step word problems are mathematical problems embedded in 

a verbally described everyday situation that can be solved with a single arithmetic 

operation (addition or subtraction) and do not contain irrelevant information 

(Verschaffel & De Corte, 1997). Recently, a new skill construct, flexibility in dealing 

with mathematical situations, has been proposed to support learning regarding additive 

(one-step) word problems (e.g., Gabler & Ufer, 2021). However, the role of this skill 

among other well-established predictors is unclear yet. This paper aims to fill this gap. 

CURRENT STATE OF RESEARCH 

Solving additive one-step word problems 

Common theories on word-problem solving (e.g., Kintsch & Greeno, 1985) assume 

that learners construct two models when solving word problems: a situation model and 

a mathematical model. When learners encounter the text base (the verbal description of 

the mathematical situation), they construct a situation model based on this information. 

The situation model is the learner’s internal, mental presentation of the given situation 

(Czocher, 2018). Learners then connect their situation model to mathematical concepts 

and transform it into a mathematical model. In the context of additive one-step word 

problems, students rely on conceptual knowledge on addition and subtraction, which 

needs to be available and activated to find an adequate mathematical model. For 

example, some word problems may refer to subtraction as the idea of “taking 

something away”, while others may relate to a difference between two sets, making a 

connection to subtraction less salient. In literature, these different situations connected 
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to addition and subtraction have often been classified into four different types 

(“semantic structures”; Riley, Greeno, & Heller, 1983): change, combination, 

comparison, or equalization of sets. Once the mathematical model is successfully 

constructed, learners can proceed with solving the word problem. 

Individual predictors for solving additive one-step word problems 

During this solution process, a number of individual predictors influence the students’ 

performance when solving word problems (Daroczy et al., 2015). 

For example, domain-general skills are discussed to predict students’ word-problem 

solving skills. Solving word problems successfully depends on general cognitive skills 

(e.g., Jõgi & Kikas, 2016; Renkl & Stern, 1994), which may help with handling new, 

unfamiliar challenges (Warner et al., 2003). It is assumed that other domain-specific 

skills mediate the effects of general cognitive skills at least to some extent (Zheng, 

Swanson, & Marcoulides, 2011). 

In addition, students’ language skills play a role in word-problem solving (Daroczy et 

al., 2015). In particular, reading comprehension skills are considered crucial to decode 

the text base and derive an accurate situation model from this text (Vilenius-Tuohimaa, 

Aunola, & Nurmi, 2008). Indeed, studies have repeatedly identified reading 

comprehension skills as significant predictors of word-problem solving skills (e.g., 

Beal, Adams, & Cohen, 2010; Muth, 1984; Vilenius-Tuohimaa et al., 2008). 

Besides such domain-general skills, students also need certain subject-specific, basic 

arithmetic skills for word-problem solving (Daroczy et al., 2015). In the context of 

additive one-step word problems, not only technical skills to solve additive equations 

are considered necessary, but also knowledge on number concepts (e.g., part-whole 

relationships, addition and subtraction as complementary operations; Renkl & Stern, 

1994). This was confirmed by several studies, which report higher word-problem 

solving skills for students with higher basic arithmetic skills (e.g., Bjork & 

Bowyer-Crane, 2013 for grade 2; Muth, 1984 for grade 6). 

Beyond these well-established predictors, it may play a role for students during 

word-problem solving, if they can deal flexibly with the given mathematical situation. 

This idea has first been suggested in the eighties and nineties (e.g., by Greeno, 1980; 

Stern, 1993) and conceptualized as a new skill construct within this project. Some 

learners struggle with constructing and mathematizing their situation model. In this 

case, it may help them to be able to add alternative perspectives to their situation model 

and further, to find mathematical operations that describe their situation model. In this 

sense, flexibility in dealing with mathematical situations (FDMS) can be defined as the 

skill to enrich their individual situation models of additive one-step word problems 

with further information, which is not verbalized in the text base. For example, learners 

could reinterpret compare problems as equalize problems: Additionally to the given 

description (e.g., “Susi has 2 marbles less than Max.”), learners could imagine an 

equalization of Max’s set: “If Max gets 2 more marbles, he has as many marbles as 
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Susi has.” (similarly suggested by Greeno, 1980). Another idea is to change the 

perspective on the situation: Instead of Susi’s perspective on the relation (“Susi has 2 

marbles less than Max.”), learners could also add the perspective of Max: “Max has 2 

marbles less than Susi.” (as suggested by Stern, 1993). Learners could integrate these 

different descriptions of the situation into a network of linked perspectives 

(Scheibling-Sève, Pasquinelli, & Sander, 2020). One basic assumption of this idea is 

that this skill complements the learners’ conceptual knowledge in word-problem 

solving. Learners with a high FDMS could then draw on the perspective that seems 

most helpful for them to find an adequate mathematical operation. 

The suggested construct may be connected with other predictors. Handling new, 

unfamiliar challenges such as having to re-interpret a word problem (Warner et al., 

2003) seems to be connected with general cognitive skills. Imagining different 

descriptions of mathematical situations is likely to be influenced by language skills and 

conceptual arithmetic knowledge. It is an open question, if FDMS can be 

operationalized and measured, and if this construct contributes to word-problem 

solving skills beyond the other mentioned predictors. 

AIMS AND RESEARCH QUESTIONS 

Although the idea behind FDMS has been suggested quite early, it has only recently 

been proposed as a skill construct. We investigated the following research questions: 

RQ1: Is it possible to measure FDMS with sufficient reliability? 

RQ2: How do general cognitive skills, basic arithmetic skills, and language skills 

explain inter-individual differences regarding FDMS? 

RQ3: How does FDMS explain inter-individual differences in word-problem solving 

skills beyond general cognitive skills, basic arithmetic skills, and language skills? 

Based on prior research, we expected general cognitive skills, basic arithmetic skills, 

and language skills to predict word-problem solving skills. Due to the reported 

theoretical foundations, we assumed FDMS to have a direct effect on word-problem 

solving skills beyond the other predictors. 

METHOD 

To answer the research questions, paper-and-pencil based tests were used in a 

cross-sectional study with second graders from ten classrooms in Germany (N = 113, 

56 female, 57 male). The average age of the participating students was 7.7 years. There 

were 47% of students with German as their only family language, 19% with only 

non-German family language(s), and 34% of students with mixed family languages (at 

least German and another language). The study spans over two measurement times, 

between 6 and 21 days apart. On the first day, we measured the students’ language 

skills, their general cognitive skills, and their basic arithmetic skills. On the second 

day, we collected data on the students’ word-problem solving skills and their FDMS. 
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Instruments 

Language skills were measured using the ELFE II reading comprehension test 

(Lenhard & Schneider, 2018). This test provides the opportunity to assess language 

skills based on reading fluency and accuracy with a larger sample. On average, the 

students achieved M = 45.03 raw points out of 111 total points with a standard 

deviation of SD = 15.5, which is in line with the average performance of the norm 

sample of the test. The reliability was excellent (α = .97). 

General cognitive skills were measured by using the subscales “Similarities”, 

“Classifications”, and “Matrices” of the Culture Fair Intelligence Test “CFT 1-R” 

(Weiß & Osterland, 2013), which measure characteristics of general cognitive skills in 

a culturally fair, language-free setting. The reliability of the three subscales was 

acceptable (subscale “Similarities”: α = .66; “Classifications”: α = .73; “Matrices”: α = 

.80). The three subscales were combined into one joint indicator. On average, the 

students scored M = 30.41 points out of 45 total points, with a standard deviation of 

SD = 5.98.  

Basic arithmetic skills were measured with a test, which was developed for third 

graders within the LaMa project (Bochnik, 2017) and adapted for second graders in 

this study. Some of the tasks relate to technical skills in adding and subtracting 

numbers ranging until 100. Further tasks required conceptual knowledge, for example 

on the relationship between addition and subtraction (e.g., by asking for all four 

calculations that can be conducted with the numbers 7, 8, and 15). The reliability is 

satisfying (α = .82). On average, the students scored M = 7.49 points out of 16 total 

points with a standard deviation of SD = 3.80. 

Word-problem solving skills were measured with a newly developed test (“word 

problem test”). This test was implemented in a multi-matrix-design: learners solved ten 

different word problems from a pool of 20 word problems based on the work of Stern 

(1993). The tasks systematically varied typical features (e.g., semantic structure), so 

that the whole range of possible types of additive one-step word problems was 

covered. The arithmetic and linguistic complexity of all 20 items was at a similar level. 

The data were scaled with a one-dimensional Rasch model. The WLE reliability of the 

instrument was .68. The average item difficulty was -1.04, indicating a relatively low 

difficulty of the test instrument. 

Flexibility in dealing with mathematical situations (FDMS) was also measured 

with a test, which was newly developed within this project (“flexibility test”). The 20 

items measuring FDMS were embedded into a story about twins, who tell the learners 

about a birthday party they visited. The learners were asked to decide, if the statements 

of the twins are equivalent or not (see Figure 1). The items emphasize different 

perspectives on mathematical situations in line with the ideas of Greeno (1980) and 

Stern (1993). For example, learners contrasted different perspectives on relations (as in 

Figure 1) or on actions (e.g., “Ben gave Alma 4 cards.” vs. “Alma got 4 cards from 

Ben.”). There were also items, in which two different semantic structures were 
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contrasted (e.g., comparison: “There are 3 children more than adults at the party.” vs. 

equalization: “If 3 children leave, there are as many children as adults at the party.”). 

This facilitates the assessment of situational understanding and the skill to deal flexibly 

with such mathematical situations without the need to conduct mathematical 

operations. 

 

Figure 1: Sample item for measuring FDMS 

Statistical analyses 

To answer the research questions, we estimated linear mixed models, taking into 

account that students were nested in classrooms. We calculated two models with the 

word-problem solving test score as a dependent variable, one with all independent 

variables (general cognitive skills, language skills, basic arithmetic skills, and FDMS) 

and one without FDMS for comparison. We also calculated a model with FDMS as a 

dependent variable to disentangle, which variables predict FDMS. 

RESULTS 

RQ1: One question was, if FDMS could be measured with sufficient reliability. The 

reliability of the flexibility test was satisfying (α = .80). The participants scored 

M = 14.04 points on average out of 20 total points, with a standard deviation of 

SD = 4.12, showing that the test instrument was relatively easy. 

RQ2: All three predictors significantly predicted FDMS (general cognitive skills: 

F(106.36, 1) = 4.24, p = .042, ηp
2
 = .04; language skills: F(108.97, 1) = 7.53, p = .007, 

ηp
2
 = .06; arithmetic basic skills: F(107.74, 1) = 27.56, p < .001, ηp

2
 = .20). About 

5.6% of the variance that was not explained by the predictors was attributable to class 

membership. 

RQ3: As expected, language skills, basic arithmetic skills, and FDMS were significant 

predictors of word-problem solving skills (see Table 1). However, general cognitive 

skills were not significantly predictive beyond the other predictors. When including 

FDMS into the model, marginal R-square values increased substantially (without 

FDMS: marginal R
2
 = .38; with FDMS: marginal R

2
 = .45), and indeed, FDMS 

contributed significantly to variance explanation (see Table 1) with a medium to large 

effect size. This indicates that FDMS may explain differences in word-problem solving 

skills beyond the other variables. About 3.1% of the variance that was not explained by 

the predictors was attributable to class membership. Effect sizes for language skills 
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and, in particular, for basic arithmetic skills reduced substantially when including 

FDMS, indicating that FDMS might mediate their effects on word-problem solving 

skills. 

 Model 1 Model 2 

 F-value p-value ηp2 F-value p-value ηp2 

General cognitive 
skills 

0.63 .430 .00 0.00 .990 .00 

Language skills 11.19 .001** .10 6.21 .014* .05 

Basic arithmetic skills 21.83 <.001*** .19 7.99 .006** .08 

FDMS    14.67 <.001*** .12 

Marginal R2  .38   .45  

Table 1: ANOVAs based on linear mixed models with and without FDMS 

(*: p < .05; **: p < .01; ***: p < .001) 

DISCUSSION 

The main goal of this contribution was to investigate, if FDMS can be measured 

reliably, how it relates to established predictors of word-problem solving skills, and 

whether it contributes to variance explanation in word-problem solving skills beyond 

these established predictors (Daroczy et al., 2015). 

Although the instrument turned out to be quite easy for second graders, it captured 

inter-individual differences in FDMS reliably. Currently, the instrument only assesses 

receptive FDMS by comparing given descriptions of situations. It would be important 

to include productive FDMS as well, for example, by asking students to construct 

alternative (written) descriptions of a mathematical situation (Gabler & Ufer, 2021). 

This would come closer to what we assume is required during word-problem solving. 

Inter-individual differences in FDMS were related to all three established predictors. 

Beyond general cognitive skills, language skills contributed to variance explanation, 

which reflects the close connection of FDMS to language skills (e.g., Prediger & 

Zindel, 2017). The largest contribution came, however, from basic arithmetic skills. 

This is particularly remarkable, since the flexibility test does not address any 

arithmetic calculations, and instead focuses on situational understanding. This relation 

might go back to the part of the arithmetic test that covered conceptual understanding 

of addition and subtraction. Thus, developing FDMS could be connected closely to 

developing conceptual understanding of arithmetic operations in classroom practice, 

for example, by not only using situations from everyday contexts or manipulatives to 

reflect on mathematical structures, but also to compare and contrast different 

perspectives and verbal descriptions of these situations. 
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Regarding inter-individual differences in word-problem solving skills, general 

cognitive skills did not contribute under control of language skills and basic arithmetic 

skills. This contradicts some prior findings (e.g., Jõgi & Kikas, 2016). Possibly, the 

effect of general cognitive skills is fully mediated by the other variables. Replicating 

results from prior research (e.g., Bjork & Bowyer-Crane, 2013; Vilenius-Tuohimaa et 

al., 2008), language skills as well as basic arithmetic skills predicted word-problem 

solving skills. As expected, FDMS contributed to variance explanation beyond the 

other predictors. These results indicate that being able to re-interpret situations flexibly 

may support students’ word-problem solving processes (e.g., Kintsch & Greeno, 1985) 

by allowing them to consider alternative perspectives on the described situation, which 

might be easier to mathematize. This means that the new construct has explanatory 

power for inter-individual differences beyond existing constructs. Supporting students 

to develop FDMS might be a way to support their word-problem solving skills. 

Although the results on the new construct are promising, further research will have to 

clarify, if and how it can be fostered, and if this has effects on students’ word-problem 

solving skills. Moreover, future research will need to consider how the construct can be 

conceptualized beyond additive situations, for example in the light of multiplicative 

situations, possibly including proportional relations. 
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EXEMPLIFYING AS DISCURSIVE ACTIVITY 

Lizeka Gcasamba 

University of Witwatersrand 

 

A mathematics teaching framework (MTF) tool is brought under a communicational 

discursive lens to capture the discursive activities that emerge when mathematics 

preservice teachers talk about examples, a key element of the MTF, in a lesson study 

(LS). Through the analysis of the LS participants’ discussions as they planned the 

lesson to be taught— their reflective discourse— I show how three discursive activities 

emerge: mathematizing (talk about mathematics objects), MTFying (talk about MTF 

objects) and teaching (talk about teaching practices). I further evidence how these 

three discursive activities are intertwined. Key to these findings is the important role 

played by the knowledgeable other in the emergence of these discursive activities. 

INTRODUCTION 

Examples have always played a central role in mathematics learning and teaching 

(Bills et al., 2006). Adler and Venkat (2014) noted that the examples used in a lesson 

provide an analytical window into what is made available to learn through the design 

of teaching activities; hence, the value in studying their use in teaching. Essien (2021) 

has also argued for the significance of examples in preservice teacher learning 

programs, and for mathematics teacher education research to pay attention to how 

preservice teachers can be enculturated into the practice of exemplifying as they learn 

to teach. In this paper I draw from a wider study on teacher learning through 

participation in a lesson study (LS) where a designed mathematics teaching framework 

was a resource guiding their collaborative activity. I present the lens developed for 

conceptualizing and analyzing mathematics lesson study as discursive activity, and 

demonstrate how the teachers and the knowledgeable other (KO) talk about examples. 

This particular LS setting highlights the strength of the discursive approach in 

illuminating how the MTF was used discursively where the KO and the teachers are 

shown to contribute to the exemplifying discursive activity that is constituted in the LS 

reflective discourse. 

EXAMPLES FROM MTF PERSPECTIVE 

Adler and Ronda (2015) developed an analytic framework for describing and working 

on teaching, naming it MDI – Mathematics Discourse in Instruction. Emerging as this 

did in a research and teacher development project, the MDI was redescribed in a 

teacher-friendly form, named a Mathematics Teaching Framework (the MTF). 

MDI/MTF is underpinned by a view of teaching as always about something—a 

specific object of learning (OoL), and it is the teacher’s role to bring about its learning 

by students. The MTF foregrounds three teaching practices—exemplification; 

explanatory communication and learner participation—that combine to enable 
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mathematical learning (e.g. Adler, 2021). From the MTF perspective, examples are 

seen as a key resource for teachers to introduce and develop concepts. Following 

aspects of Variation Theory (Marton & Pang, 2006), in any lesson, examples, together 

with accompanying representations, and the tasks in which they are embedded can be 

selected, structured  (and then mediated) to enable critical aspects of the OoL to come 

into focus and thereby provide learners with opportunities to learn specific 

mathematical concepts and capabilities. In a similar vein, Leinhardt (2001, p. 347) has 

argued “for learning to occur, several examples are needed, not just one; the examples 

need to encapsulate a range of critical features and examples need to be unpacked, with 

the features that make them an example clearly identified”. The notion of critical 

aspects that I have used aligns with Leinhardt (2001) — and I focus in on mathematical 

routines (defined below) - together with the performer of those routines as the means to 

identify exemplifying in discursive form. 

THEORETICAL FRAMEWORK 

Although the MTF provides the field with what are the valued mathematics teaching 

practices to support mathematics teachers’ work, little attention is paid to discursive 

acts of teaching (Mosvold, 2016). In the wider study from which this paper is drawn, 

the MTF was embedded in an overarching discursive framework as developed in 

Sfard’s (2008) communicational theory. Sfard argued that communication is at the 

heart of her approach, based on the view that communication and thinking are aspects 

of a single entity termed discourse.  

Discourses are types of communication common to particular communities. They are 

identifiable through four interrelated characteristic features: keywords, visual 

mediators, distinctive routines, and generally endorsed narratives. Most commognitive 

research to date has focused on mathematical discourses; however in this study I was 

interested in the discourse of teaching mathematics. From this perspective, teaching is 

defined as a communicative activity whose purpose is to bring students’ discourse 

closer to a canonical discourse (Tabach & Nachlieli, 2016). The mathematics teaching 

discourse makes use of keywords, mediators, routines and narratives of mathematics, 

but also of teaching mathematics, much in the same way as MTF consists of 

mathematical and teaching practices. Thus, the MTF may be redefined as a 

discourse—MTF discourse. This particular discourse is characterised by names used to 

describe MTF objects such as examples, tasks, explanations, learner participation and 

OoL. The routine— repetitive patterns characteristic of this MTF discourse—included 

exemplifying, generating tasks, learner explaining, teacher explaining and teacher 

critical aspects of OoL (CA of OoL). This particular discourse used similar visual 

mediators as those found in mathematical discourse such as graphs and equations. 

Furthermore, this discourse is characterised by different narratives such as MTF 

narratives (talk about MTF objects and MTF routines), mathematical narratives (talk 

about mathematical objects and routines) and pedagogical narratives (talk about 

pedagogical routines).  
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Within communicational theory, the process of learning involves participating in 

discursive activities. The main discursive activity found in mathematics discourse is 

called mathematising—talking about mathematical objects (Sfard; 2008; 

Heyd-Metzuyanim, 2017). Drawing from this idea, talking about MTF objects can be 

viewed as a discursive activity which I have called “MTFying”. Building on Mosvold 

(2016), participating in MTFying discursive activity refers to engaging in discursive 

acts of exemplifying, constructing learner tasks, explaining and inviting leaner 

participation with a goal of foregrounding what leaners need to know. To demonstrate 

this point, the empirical part of this paper analyses the discursive activities that emerge 

when the teachers use the MTF tool. I zoom in on the discursive act of exemplifying. I 

thus set out to answer the question: How, do teachers talk about examples? 

METHOD 

The study reported here involved preservice mathematics teachers participating in a LS 

that was designed for the study (Gcasamba, 2022). Data was collected through 

reflective discussions of four preservice teachers and the KO as they participated in LS 

sessions (lesson planning, enactments of the lesson and lesson reflection discussions). 

The object of learning teachers selected for the study related to the effects of 

 -intercept and the gradient of the linear function. A methodological approach based 

on Sfard’s (2008) routine-use was used to analyze LS observation videos of the LS 

group—the four teachers and the KO. I report on collaborative engagements that took 

place during the first lesson planning session (LP), and exemplify with an extract from 

the LP transcript. The LP discourse is ideally a combination of teachers’ and KO’s 

discourse. However, the data from the LP observation showed a dominance of the KO 

in the LP discourse. This is not surprising since the KO was playing a role of 

introducing teachers to the MTF tool and its use during LP session, bringing 

knowledge of how the MTF tool may be used.  As a way of concluding, I will comment 

on how the KO could be seen to be positioning herself as the leading interlocutor, and 

the implications of such a role in affording teachers opportunities to participate in the 

new discourse. The analysis began with a process of identifying instances which 

denoted participants’ routine-use where I paid attention to what objects were explicitly 

named (e.g. mathematical objects—linear function and MTF objects—examples, tasks 

etc.); procedures (e.g. mathematical , MTF and teaching routines) and the intended 

performer of the procedures (e.g., teachers or learners). For example, in line 111, in the 

extract below, KO was talking about two categories of objects (as bolded) such as the 

MTF objects (example and tasks) and the mathematical objects of a linear function 

(gradient and intercept) and attended to mathematical routines (calculating). The focus 

on both the procedure and the performer enabled me to identify the MTF routines. For 

example in line 111, the phrase: (“we also want them to calculate”), the KO reflected 

about what the learners (as highlighted by the keyword “them” referring to the 

learners) were expected to do in relation to the mathematical routine of calculating the 

gradient. The intended focus in this utterance was on reflecting about the mathematical 

activity learners were expected to perform; hence this was identified as the MTF 



Gcasamba 

 

 

2 - 278 PME 45 – 2022 

  

routine of constructing learner tasks. The exemplifying routines were identified when a 

particular mathematical routine was attached to the teacher as the performer and with 

intentions to illustrate a specific aspect of a mathematical object. For example in line 

212, the KO, reflected on what teachers may do (performer) in relation to the 

mathematical routine of interpreting through a tabular representation in order to 

illustrate the effects of gradient ( ) and  -intercept ( ). 

In the following extract I mark the objects in focus (bolded), the routine procedures (in 

italics), and mathematical representations (underlined). I highlight the performer (or 

intended performer) of mathematical procedures in grey. (M = teacher; T = teacher; 

KO = knowledgeable other). 

109 KO: We know that some of the problems have something to do with calculations, 

so it means some of the examples must focus on calculation. 

110 KO: So our example space is guided by errors, content analysis and also our 

previous knowledge. 

111 KO: So what we are saying is that we need examples where they are calculating, 

and we also want them to calculate maybe gradient or intercept, these  

could be tasks. 

112 KO: Other examples could be dealing with translation, i.e. moving from graph to 

table to equation. 

113 KO: In our planning we need examples for classification. 

208 KO: So let us start with our implementation. In our implementation we need  

examples y equals two x (    ) I am thinking of kind of explanations 

209 T: Let us change the signs (writing      ) 

210 KO: The explanations are going to be coming directly from the examples. 

211 KO: We can start off the explanations by saying, “Now look at the value of a 

gradient is 2”, so we would like to illustrate with more examples, with more 

explanations. 

212 KO: For illustrations we can use tables. Will the table show any effect on   and 

 ? 

213 M: Not really, but the drawing a graph will show because table and the 

equation is more or less the same 

214 KO: The table is going to help us to be able to draw a graph. It is part of our  

explanation. 

215 KO: In a table we will be able to see when we are changing the sign of your 
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gradient. 

216 KO: It is not that we will be wasting time with our table; we can still use it to draw 

the graph. So let’s draw it. 

217 ALL: Yes 

The analysis of this extract showed that the examples were talked about in two 

different ways. They were named explicitly; and they were linked to both the 

mathematical routines and the performer of those routines. I now discuss each of these.  

Discursive act of explicit naming 

As indicated in bold type, examples were explicitly named, and talk related to 

examples was linked to both mathematical and pedagogical routines. For example, in 

lines 109, 111 and 112, the explicit naming of the examples was accompanied by the 

mathematical actions related to “calculations”, “translations” and “classifications”. 

The explicit naming of examples was also used to bring to attention the pedagogical 

strategy to be used to construct the MTF narratives. For example, in line 110 the KO 

utterance suggested that the construction of examples was guided by the process of 

identifying CA (Lo, 2012). Further analysis of this extract showed that the explicit 

naming of examples was from the KO utterances, which suggests the KO’s intention to 

foreground the MTF tool and its objects.  

Discursive act of exemplifying 

Further analysis of the extract above shows that the examples of linear functions were 

offered in different representations. For example, in the series of interactions from 

lines 208-217, the KO first highlighted an example of      in a symbolic form. This 

was followed by T’s proposal in line 209 where he suggested changing the sign of the 

coefficient of   which resulted in yet another example now of the linear function   
   . Further representational forms of the examples were proposed. For example, in 

line 212, the KO suggested an example in the form of a tabular representation, 

followed by M in line 213 who further suggested an example in the form of a graphical 

representation. This whole set of representations implied a set of different examples of 

linear functions aimed at helping the teachers with illustrations intended at providing 

substantiations about the effect of the gradient in the linear function. The different 

representations further implied different mathematical routines. For example, the 

graphical and tabular representation implied either constructing or interpreting routine, 

and the symbolic implied either calculating or interpreting routine, depending on the 

goal of the mathematical activity.  

What needs to be noted is that the exemplifying talk across all participants’ utterances 

evidenced that the examples were aimed for teachers’ use. Each of these utterances 

highlighted the mathematical procedure together with the performer (the teacher, in 

this instance) for illustrative purposes. The combination of these two elements 

signified an exemplifying routine. Furthermore, this type of interwoven talk about 
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mathematical procedure and performer as the teacher for illustrative purposes could be 

important for the identification of exemplifying routines. This finding has important 

methodological implications for developing an alternative lens for analysing MTF 

objects in discursive form without relying only on explicit naming of MTF objects. In 

other words, it provides an operational definition of MTF objects as discursive objects. 

This analysis further showed that the exemplifying routines were connected to other 

MTF routines such as teacher explaining routines. It seems the teachers used 

exemplifying routines as teachers’ resources to illustrate a specific idea about 

mathematical objects, as evidenced in lines 210-212, where the KO discussed how a 

chosen example      could be used in the form of a tabular representation for 

illustrative purposes to enhance explanatory talk about the effects of the gradient and 

the  -intercept. This was further well evidenced in line 214. This finding agrees with 

Zaslavsky (2010) who claimed that examples carry a potential exploratory power, and 

that they carry important elements of explanations through illustrative representations 

and demonstrations of discursive activities. It is interesting to note that although the 

MTF components were separated analytically, they were intertwined in the discursive 

talk. The implication from this current study is that it highlights the blurred nature of 

boundaries between discursive acts of teaching related to MTF. 

The analysis has also revealed that examples were associated with CA of OoL routines. 

For example, in line 109 where the KO remarked about the problems related to 

calculating that learner might experience. This suggested that the calculating routine 

was a critical aspect. Given the consideration of CA, KO further suggested a 

consideration of examples that were related to calculating (in line 111). The 

established association between CA of OoL and examples runs parallel with 

Leinhardt's (2001) report which showed that examples encapsulate a range of critical 

aspects. She further noted that such an association is a positive contributing factor to 

learning. It is worth noting that, after identifying the critical aspects, these were 

integrated into a set of examples. This finding seems to provide evidence of the 

connection between CA of OoL and examples. 

The analysis of exemplifying routines implies that the goal of participating in this 

discursive activity was to construct new narratives related to examples. This was well 

evidenced in the analysis which showed the interwoven relationship between 

mathematical routines and the performer (teacher) for purposes of creating illustrations 

which resulted in a set of exemplifying routines. 

In terms of roles played by all participants, the analysis showed that both teachers and 

the KO were engaging in the discursive activity of exemplifying as a collective, as seen 

in the interaction illustrated in the extract above. The repeated reference to keywords 

“we” and “our” confirmed this collective engagement. In this extract, teachers and the 

KO were seen to be contributing to the mathematizing actions aimed for illustrative 

purposes—discursive activity of construction of MTF narratives related to examples. 

Nevertheless, the strong authoritative voice of the KO cannot be ignored. Looking 
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closely at these utterances, particularly from the KO, although the KO seemed to be 

creating an environment of collective engagement through reference to keywords “we” 

and “our”, her consistent reference to keywords such as “we would like”, “we can 

start” suggested acts of instructing what needed to be done in terms of routines. This 

suggests that the KO was positioning herself as the bearer for what teachers needed to 

do or focus on. 

DISCUSSION 

The analysis illustrated in the previous section highlighted the leading role played by 

the KO in providing point of focus and how things should be done. This was 

demonstrated by the use of various sources of MTF narratives. Firstly, the examples 

were signified by exemplifying routines which were characterised by various 

mathematical routines. Secondly, the analysis has further revealed that pedagogical 

routines such as identifying CA facilitated the construction of MTF narratives which 

resulted in the identification of exemplifying routines. To sum up, the established 

connection between examples, with different routines such as mathematical and 

pedagogical routines suggest that one cannot talk about the objects of the MTF without 

reference to doing mathematics (mathematical actions/routines) and/or teaching 

actions/pedagogical routines. I argue that doing so the KO would have afforded the 

preservice teachers an opportunity to view exemplifying as both the mathematising 

and teaching discursive activities. Furthermore, the analysis has revealed that, not only 

teachers were afforded opportunities to talk about examples, but also to link them to 

other MTF objects such as explanations and CA of OoL. This is an important aspect of 

teacher learning through exemplifying (Adler, 2021; Leinhardt, 2001).  

A conclusion that can be drawn is that the communicational theory through focusing 

on analysis of discursive activities, provides a conceptual framework to capture 

various routines from different discourses (mathematical, MTF and pedagogical) that 

manifest themselves as the KO scaffolds the use of examples in the LS context. In this 

paper, I illustrated how the examples were talked about in terms of objects that were 

named, various routines that were used and further highlighted the participants’ roles 

(the KO in particular). These findings have implications about the nature of the MTF 

discourse with respect to ritual/explorative participation which was not the focus of 

this paper, hence, the limitation of this report. However, this aspect was taken into 

consideration in the wider study. In this paper I too have tried to model discursive 

practice, enriching the communicational framework with a new discursive activity 

such as MTFying. 
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Students’ attitudes are assumed to play a big role for successful learning processes 

and to differ substantially between students. To gain a better insight in which way 

attitudes at the start of a mathematics study program and their development influence 

study dropout, we asked 219 students to state their interest in university mathematics 

and their mathematical self-concept at the start of their studies and six weeks later. 

Applying a cluster analysis, we identified four development profiles which differ in 

both attitudes at the start of their studies and in the development of both attitudes. The 

dropout rate among students with different profiles ranged from 7 % to 44 %, 

highlighting that the development of attitudes in the first semester is of major 

importance for a successful start.  

INTRODUCTION 

High study dropout rates in mathematics study programs are a serious problem for 

individuals and for society. Noticeable is that many students drop out in the first year 

of study, in particular (Chen, 2013). Research assumes that beneath cognitive 

variables, such as prior knowledge (Rach & Heinze, 2017), motivational variables, 

such as attitudes, can explain why some students successfully complete their program 

whereas other students drop out (CHEPS, 2015; Di Martino & Gregorio, 2019).  

In this contribution, we focus on the attitudes “interest” and “self-concept”, which we 

define as follows: Interest in mathematics is a person-object-relationship (cf. Krapp, 

2007) which includes a feeling-related component (“I enjoy mathematics”) and a 

value-related component (“I value mathematics”); mathematical self-concept is the 

personal view of its own abilities in the domain mathematics (“I am fit in 

mathematics”) (cf. Bong & Skaalvik, 2003). Research has shown that both attitudes at 

the beginning of a mathematics study program were related to study satisfaction 

(Bernholt et al., 2018; Kosiol et al., 2019) and to the attendance in final exams (Geisler 

& Rolka, 2018) which are (negative) indicators of study dropout. In addition, previous 

studies have documented that students’ attitudes can develop during the study entry 

phase (e.g., Bressoud et al., 2013) and there are empirical studies which have assumed 

that the development of attitudes in the first semester influenced dropout (Di Martino 

& Gregorio, 2019) respectively have reported a relation between attitudes at the time 

point of dropout and actual dropout (Schiefele et al., 2007). Thus, beneath the level of 

attitudes at the start of one’s studies also the development of attitudes in the first study 
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year seems to play a big role for a successful transition in a mathematics study 

program.  

This phenomenon could be explained by the ideas of Haak (2017). According to Haak, 

students are monitoring the fit between their own characteristics, such as attitudes or 

prior knowledge, and the characteristics of the learning environment of their study 

program. In case of a misfit, students can either adapt their own characteristics, for 

example by adjusting their attitudes, or they can leave the learning environment by 

dropping out or changing their study program. The latter is more likely, if they fail to 

adjust their own characteristics. 

An initial fit between students’ attitudes and the chosen mathematics study program is 

not self-evident, due to fundamental differences between mathematics at school and at 

university. Therefore, during the study entry phase students get to know a new kind of 

mathematics: whereas in school, new mathematical concepts are usually learned via 

experiences with real world objects or (counter)examples, in university formal concept 

definitions and rigorous proofs are used. Likewise, tasks at school often aim at 

applying mathematics to real world contexts and can be mostly solved via schematic 

calculations. In contrast, typical tasks at university involve deductive proving 

(Gueudet, 2008; Halverscheid & Pustelnik, 2013; Thomas & Klymschuk, 2012). With 

regard to these differences, researchers have argued that distinguishing interest in 

mathematics in school and in university mathematics helps to understand the role of 

interest for learning processes in the study entry phase (Liebendörfer & Hochmuth, 

2013; Ufer et al., 2017). Indeed, in contrast to interest in school mathematics, interest 

in university mathematics strongly predicts study satisfaction (Kosiol et al., 2019). As 

academic self-concept is hierarchically organized (Bong & Skaalvik, 2003), it seems 

not necessary to split up mathematical self-concept in different facets.  

To sum up, interest in university mathematics and mathematical self-concept at the 

beginning and its development during the study entry phase are probably important 

predictors for study dropout. However, it is questionable if a high level of these 

attitudes and a positive development are both important for being successful in a study 

program and if the development of interest and self-concept has to be positive. Instead, 

the positive development of one of the two variables could probably compensate the 

negative development of the other variable. Answering such questions calls for a 

person-oriented analysis, which is a well-known approach from analyses regarding 

learning strategies (Vanthournout et al., 2013). 

RESEARCH QUESTIONS 

The focus of this study is to describe students’ attitudes at the beginning of the first 

semester, its development during the first six weeks, and the relation of students’ 

attitudes to dropout. Precisely, we want to answer the following (exploratory) 

questions: 
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 In which way is it possible to identify different profiles of mathematical 

attitudes in the study entry phase? 

 To what extend do students with different attitude profiles differ in their 

decision to drop out? 

METHODS 

The sample consists of 219 students in a pure mathematics bachelor program (n = 56) 

and a teacher education program (n = 163) at a large public German university. All 

students attended the same mathematics courses in the study entry phase and 

voluntarily participated on an informed consent in this study. Study dropout was 

measured at the beginning of the second year. 54 students, who were not enrolled in the 

program anymore, were called dropout students, the remaining 165 students were 

non-dropout students. 

To measure interest in university mathematics and mathematical self-concept, the 

students rated statements on a five-point likert-scale from totally disagree (1) to totally 

agree (5) during the second week of the term (T1) and six weeks later (T2). The used 

items were taken from Kauper et al. (2009) and Ufer et al. (2017):  

 Interest in university mathematics: scale of 5 items, “The kind of mathematics 

that is done at university is fun for me.” (sample item), Cronbachs’ α (T1) = .89, 

Cronbachs’ α (T2) = .92. 

 Mathematical self-concept: scale of 4 items, “I am very good in my study 

subject mathematics” (sample item), Cronbachs’ α (T1) = .82, Cronbachs’ 

α (T2) = .84. 

The correlations between interest and self-concept and its development were weak to 

middle. Thus, it is adequate to apply a cluster-analysis to identify clusters which show 

similar attitudes or development patterns of attitudes. We included the following 

variables in the analysis: interest (T1), self-concept (T1), the development of interest 

(interest (T2) – interest (T1)), and the development of self-concept 

(self-concept (T2) – self-concept (T1)). All variables have been z-standardized. 

Applying the single-linkage procedure, we identified one outliner and deleted it from 

the data. The Ward-dendrogram indicated that a four cluster-solution is most 

appropriate to describe the data. A MANOVA revealed that the four clusters (profiles) 

differed significantly concerning their interest in university mathematics and their 

mathematical self-concept at the start of the program and concerning the development 

patterns of both attitudes (F(12, 639) = 46.71, p < .001, 
2 
= .47). 

RESULTS 

Students’ Profiles 

We could identify four profiles which split the sample in rather similar big groups (see 

Figure 1).  
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 Profile 1 (n = 64, “average start but negative development”): Students belonging 

to this profile began their study program with an average interest and average 

self-concept which both decreased significantly in the first semester. In the 

middle of the semester, students with this profile reported the lowest interest and 

self-concept. 

 Profile 2 (n = 53, “bad start but positive development”): Students with this 

profile began their study program with the lowest interest and self-concept but 

their attitudes developed positively during the first weeks.  

 Profile 3 (n = 46, “average start and low development”): Students with this 

profile started with the second highest interest and self-concept and developed 

only little. Whereas their interest slightly decreased, their self-concept 

increased. 

 Profile 4 (n = 55, “best start and low development”): Students belonging to this 

profile started with the highest interest and self-concept. Although their 

self-concept slightly decreased during the first weeks, it remained on the highest 

level of all profiles. Their interest even slightly increased. 

 

Figure 1: Interest and self-concept of the identified profiles. Statements rated on a 

five-point-likert scale from totally disagree (1) to totally agree (5) during the second 

week of the term (T1) and six weeks later (T2).  

Female and male students were distributed nearly equally with regard to the identified 

profiles (
2
(3) = 3.46, p > .10). However, it is noteworthy that students from the pure 

mathematics bachelor and the teacher education program were not distributed equally 

with regard to the profiles (
2
(3) = 9.93, p < .05). Students of the teacher education 

programs were overrepresented in profiles 1 and 2, whereas students of the pure 

mathematics program were overrepresented in profiles 3 and 4. 
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Relation between students’ profiles and study dropout 

Significant differences in the dropout rate can be observed between the identified 

profiles (Table 1). Whereas profile 1 (“average start but negative development”) has 

the highest dropout rate with 44%, profile 4 (“best start and low development”) has the 

lowest rate with 7%. We expected such differences between profiles, which differed in 

their attitudes at the beginning of study. Noticeable is the big difference in the dropout 

rates between profile 1 and profile 2. These two profiles developed inversely in the 

first semester concerning their attitudes. Although profile 2 started their study with the 

lowest attitudes, it seems that the fit between students of this profile and the 

environment is better than the fit between students of profile 1 and the environment 

because students of profile 2 developed more interest in university mathematics and 

more mathematical self-concept. Profile 3 is an in-between profile because it shows 

average attitudes and developed only marginally in the first weeks of study. 

 Profile 1 

(n = 64) 

Profile 2 

(n = 53) 

Profile 3 

(n = 46) 

Profile 4 

(n = 55) 

 

Dropout rate in %
 

44% 17% 28% 7% χ²(3) = 8.65, 

p < .05 
N dropout students

 
28 9 13 4 

Table 1: Dropout rates of profiles. 

DISCUSSION 

At the transition to university mathematics programs, research has indicated that 

mathematical interest and self-concept predict study success respectively dropout (Di 

Martino & Gregorio, 2019). However, the interplay between these attitudes as well as 

its development and students’ decision to dropout has not yet been clear. By applying a 

person-oriented analysis approach, we identified four profiles, which differ in both 

attitudes at the beginning of study and its development in the first semester. Whereas 

profile 4 (“best start and low development”) showed the lowest dropout rates, profile 1 

(“average start but negative development”) showed the highest rates. It seems that both 

aspects – the level of attitudes at the beginning and the development during the first 

semester – played a big role for students’ decision (not) to drop out. Noticeable is that 

neither interest nor self-concept stand out to predict students’ dropout and there are no 

clear indications that the positive development of one attitude variable can strongly 

compensate the negative development of the other variable.  

As this study is an exploratory one, we had no clear hypotheses that we could test with 

our study. Our results should be confirmed in follow-up studies. In addition, the study 

took place at one university and only students, who had participated in the lecture of 

the second week as well as in the lecture in the middle of semester, are included in the 

analysis. Thus, the results are restricted to students who did not drop out in the first 

semester weeks and who regularly attended the lectures. 
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Besides these limitations, the results of our study support the assumption of Haak 

(2017) that students monitor the fit between their attitudes and the environment and 

then decide to adapt their attitudes, for example to develop interest in university 

mathematics (see profile 2), or to leave the environment, by dropping out, as nearly 

half of the students with profile 1 did. Thus, a cluster-analysis enables a more 

differential perspective on the study entry phase: We identified a group of students 

(profile 2) with growing interest in university mathematics and mathematical 

self-concept in the first week of study (see Kosiol et al., 2019). Even if students with 

this profile started their studies with the lowest interest and self-concept, the dropout 

rate in this profile is rather low. Growing interest and self-concept can be understood as 

a first adaption to the learning environment in the sense of Haak (2017). Students with 

profile 1 (“average start but negative development”) started with average interest and 

self-concept but underwent an unfavourable development. Likewise, the dropout rate 

was highest amongst students with this profile, since the pattern of development can be 

interpreted in the sense that students of this profile did not adapt their attitudes to the 

learning environment.  

In practice, it seems to be not sensible to sort out students according to their attitudes at 

the beginning of the first semester. Instead, students need a chance to get used to the 

university mathematics. As many students get to know mathematics as a formal and 

deductive discipline for the first time at university (Halverscheid & Pustelnik, 2013), it 

can take some time to develop joy and value and a positive image of its own abilities 

concerning this form of mathematics. Lecturers can support this development by 

highlighting the advantages of this form of mathematics and by building bridges to 

school mathematics (Weber et al., 2020) which could be helpful for students in teacher 

education programs, in particular. 
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The difficulties encountered during the COVID19 emergency have led to reflection on 

teaching methods and the introduction of new digital tools. In this paper we highlight 

how the use of a digital platform can support mathematical discussion, playing a 

fundamental role in the construction of meaning of new mathematical objects during 

laboratory activities. We qualitatively analyse the results of a teaching experiment 

involving a discussion based on comparison of different solutions to the same problem, 

which is recognised as a powerful pedagogical activity but also a challenge for both 

teachers and learners. 

INTRODUCTION 

The recent emergency due to the COVID-19 virus forced students and teachers in Italy, 

as in many other countries, into the world of distance learning (DL). The spring of 

2020 was a very critical moment for the Italian educational system: the sudden 

transition to DL led to a rapid digitalisation of teaching and learning processes. To 

support teachers in this transition, the EdTech centre Future Education Modena 

developed the M@t.abel 2020 project, which was followed by an online community of 

more than 1,000 teachers. The aim of the project was to re-think mathematics 

laboratory activities from the perspective of digital technologies, allowing their 

implementation also in DL situations. In these activities, students must deal with 

problem situations that enable them to achieve the construction of meaning of 

mathematical objects, and the mathematical discussion between the teacher and the 

students is a fundamental element of this approach. In this paper, we present a research 

study aimed at exploring how mathematical classroom discussion of different solutions 

to the same problem can be supported using online platforms, and we report data 

relative to an experiment based on M@t.abel 2020 materials. 

THEORETICAL FRAMEWORK 

Mathematical discussion is recognized as fundamental in mathematics teaching at all 

school levels (Crockcroft, 1982). It can be defined as a “purposeful talk on a 

mathematical subject in which there are genuine pupil contributions and interactions” 

(Pirie & Schwarzenberger, 1988, p.461). Thus, it has a specific purpose related to 

mathematics contents and processes: students participate actively in the discussion, 

proposing reasoning to achieve the solution, and this leads to other students’ reactions 

(via new verbal intervention but also with different interaction modes, e.g., gestures, 

changes of attitudes). One specific type of mathematical discussion is that based on the 

comparison of alternative solutions to the same problem, and, as highlighted by 
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Richland and colleagues (2017), it is an effective pedagogical practice. The mental 

exercise of comparing different representations and solutions and identifying 

relationships between them, is particularly important for developing relational thinking 

in mathematics and thus for reaching a deep mathematical understanding of concepts, 

which is necessarily a relational understanding (Skemp, 1976). Richland and 

colleagues (2017) identify the reasons why a discussion based on comparison of 

different solution can be challenging for students and teachers, proposing possible 

strategies to overcome these difficulties. They base their analysis on two main 

concepts: Working Memory (WM), defined as “the cognitive resource that enables 

humans to hold information in mind and to manipulate that information without losing 

it”, and Executive Functions (EF) resources, which are an important requirement for 

relational reasoning and control “what information should go into WM […], inhibit 

attention to irrelevant information and update their WM with new information” 

(Richland et al, 2017, p.43). An excessive effort requested in terms of WM and EF 

leads students to identify fewer relationships between the solutions compared, to more 

distracting errors and to greater difficulties in comparing different representations. 

Furthermore, teachers must consider firstly the large variability in their students’ EF, 

and then their different needs in terms of time and support during the discussion. They 

identify possible strategies to overcome these obstacles: Sequencing instruction and 

selecting analogy, Providing explicit cues to compare, Making compared 

representations visible simultaneously, Using spatial organisation to highlight key 

relations, Using linking gestures to move between spatial representation. 

The implementation of digital technologies, which is a necessity during the COVID 

emergency, can provide a useful instrument to support teachers in this contest but is 

itself a challenge for many teachers (Drijvers et al., 2013). The idea of instrumental 

orchestration introduced by Trouche (2004) is “the teacher’s intentional and 

systematic organization and use of the various artefacts available in a - in this case 

computerized - learning environment in a given mathematical task situation, in order to 

guide students’ instrumental genesis” (Drijvers et al., 2013, p.1350). The instrumental 

orchestration consists of three elements: a didactic configuration (configuration of the 

teaching settings and artifacts involved), an exploitation mode (the way the task is 

introduced to and approached by the students, also considering the use of artifacts and 

timing organisation) and the didactical performance (decisions taken during the 

teaching). Different types of orchestration could be identified; in this paper, we 

elaborate the Sherpa-at-work orchestration to show how a student uses technology to 

socialise his/her work while the teacher acts as a mediator between the Sherpa-student 

and the class. 

RESEARCH QUESTION 

In this research study, we connect two different well-known challenges in teaching 

mathematics: the first is the integration of digital tools into mathematics education, 

which is a “non-trivial issue” because it affects all aspects of education (Drijvers et al., 
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2013), while the second is the promotion of significant mathematical discussion based 

on comparison of different solutions to the same problem in order to reach a deeper 

conceptual understanding of mathematics (Richland et al., 2017). Our hypothesis is 

that the use of an online platform can support the mediator role of the teacher in the 

orchestration of mathematical discussion. Our research questions are:  

 How can the use of a digital platform support mathematical discussion?  

 Which of the specific difficulties related to comparison of multiple solution 

during a discussion could be overcome thanks to use of a digital platform? 

METHODOLOGY AND EXPERIMENT PLAN 

The task-related stimulus for the discussion 

The problem situation proposed to the students comes from the original M@t.abel 

activity “The Picture”: in observing the picture of a boy (Luca), students are asked to 

estimate his height considering the possible references supplied by the picture and 

other data driven by external sources (e.g., personal experience). We decided to focus 

our research on this task because previous experimentation highlighted that it allows 

students to find multiple and different solutions and the discussion based on 

comparison of students’ hypotheses can be rich and fertile. This task was used for 

fostering a two-step discussion: the discussion starts on a digital platform (Padlet), 

before being resumed and developed in the classroom. 

Data collection 

The research involved 10 grade 7 classes from different schools with different 

backgrounds and from 7 regions in Italy. The problem was proposed by each teacher, 

using a Padlet prepared to present the task and record students’ solutions. The task was 

reported in the Padlet in a written form (“This is a picture of Luca at age 5. How tall 

was he?”) which accompanied the picture but also through a video of Luca who is now 

35 and directly asks to help him reconstruct how tall he was. Students had to reflect on 

the problem as homework, individually, and then post their hypothesis on the Padlet 

using the modality of their choice (written posts, pictures, audios, small videos, or 

links). The Padlet was set up so as to enable the teacher to moderate the posts and 

collect all students’ answers before making them visible. Once all the students had 

posted their solution, the teacher made all the posts visible before setting the second 

task (again as homework), which consisted in reading all their classmates’ solutions 

and commenting on them (in written form or in the form of ‘likes’). The posts in the 

Padlet were set as anonymous but students had to sign them with a nickname that was 

shared with the teacher and classmates only during the final discussion. Then, in the 

following lesson, the teacher displayed the Padlet on the interactive whiteboard along 

with all students’ solutions and their comments on other solutions, and the classroom 

mathematical discussion was based on the previously-collected information in the 

Padlet. Due to the different pandemic situation of each region, in 6 classes the 
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classroom mathematical discussion took place during a lesson in person, while in the 

other 4 the discussion was held online. 

For each class, the following data were collected and analysed: Padlet completed by 

the class; video or audio recording of the classroom discussion; transcript of the 

mathematical discussion (open data available: Giberti, 2022). All data were analysed 

via qualitative methods, schematising interactions in a diagram and labelling teachers’ 

and students’ interventions in terms of obstacles related to the development of the 

mathematical discussion and strategies to overcome these obstacles (Richland et al., 

2017). When an obstacle/strategy appeared strictly related to the use of Padlet, this was 

marked. If we consider the three elements of the instrumental orchestration, in our 

research the didactical configuration and the exploitation mode were defined in 

advance and shared with teachers, who had the possibility only of adjusting them to 

their classes in term of timeline organisation and online/distance mode of the final 

discussion. We then compared the findings that emerged from the didactical 

performance of the teachers and how this performance is supported by the fact that the 

mathematical discussion had already been launched on the online platform. 

RESULTS AND DISCUSSION 

The request to compare alternative solutions could be a huge effort for students in 

terms of WM because if solutions are explained by other students verbally, the 

listeners must pay explicit attention to grasp that information, think about it and 

retrieve it for future considerations (Richland et al., 2017). In our experiment, all the 

solutions were collected in the Padlet, and during the discussion all the teachers 

displayed the Padlet using the whiteboard (if the lessons were in person) or sharing 

their screens (if they were in DL mode). Then, when a student (the Sherpa-student, 

Drijvers et al., 2013) explained verbally his/her own solution, this solution was 

displayed for all the other students, thus helping them to grasp and retain key 

information. The earlier collection of students’ strategies on the Padlet also limits 

situations in which a student may modify his/her solution while explaining it to the 

class, thereby limiting situations that require huge effort in terms of cognitive task 

related to WM. For instance, in one class the discussion dealt with the concept of 

height and whether the height of a person is the same if he’s standing upright or 

leaning; this led one student to intervene and modify his own strategy. In this case, the 

presence of the Padlet helped both the student and the teacher to refer explicitly to the 

post: 

Student: I was thinking about what I had written in the post, and I have now considered 

that my hypothesis was wrong regarding the guardrail because I did not 

consider the inclination instead 

Teacher: ok, well, we can always add it 

Student: yes, the distance between the point and the guardrail if it is straight is not quite 

right 
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Teacher: thanks to the posts of your classmates, you can add an element to your post! 

When students are faced with a strong request in terms of WM and EF load, they 

struggle more in integrating the relationship between different representation, and the 

support of the Padlet helps them clarify some elements discussed. A paradigmatic 

example is the intervention of this student who, at the end of the discussion compares 

three strategies: 

Student:   in my opinion, A.'s reasoning is right; E.'s is right too, but only if she had had 

the measurements and the photos had been taken at that moment… in my 

opinion it would have been correct reasoning and also maybe a bit different, 

a bit like T. did, when he positioned the kid a number of times. He did it 

with the guardrail while she would have done it with the kid. 

Moreover, following the work of Richland and colleagues, we also identified other 

reasons for using Padlet to help students during a mathematical discussion.  

Sequencing instructions, selecting analogies, providing explicit cues to compare 

In the development of comparative thinking, teachers must consider the huge 

variability in students’ EF and the different support requirements necessary to identify 

key relationships. The collection of students’ solutions in the Padlet and the homework 

task of reading and commenting classmates’ strategies helped in this process because 

the introduction of these previous steps mediated by the teacher gave all the students 

the time necessary to read, reflect and start comparing the solutions. For instance, at the 

beginning of the discussion, one of the teachers proposed: “So, since you have already 

seen them, already read them, let's try to see if the posts you have written have 

anything in common, ok?”. Then all the students identified the use of the guardrail as a 

reference point to find the height of the children as a strategy adopted by many 

students. In a previous work, based on a subset of the same data, we observed that this 

activity was particularly inclusive and all the students, including the one with special 

needs, actively participated in the Padlet, which led to a more inclusive mathematical 

discussion (Giberti et al., under review). 

The earlier collection of solutions in the Padlet also gave the teacher more time to make 

decisions about the instructional sequence, reflect on all students’ solutions and 

representations and then identify those to compare during the mathematical discussion. 

The following diagram (Fig. 1) summarises the intertwining of interactions in a Padlet 

discussion.  

This would be helpful for teachers also in relation to another strategy suggested by 

Richland and colleagues (2017): teachers might organise in advance the problem 

solutions into hierarchies of smaller sub-goals in order to highlight the structure of the 

solutions and similarities between them. Indeed, the task of noticing the relevance of a 

comparison and making relevant inferences is often difficult for students; also, in many 

cases, careful planning by the teacher is not sufficient, but the possibility of identifying 

sub-goals helps teachers to provide explicit clues to compare, helping learners to 
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recognise the relevant structure of the problem (e.g., some teachers grouped solutions 

based on external data taken from the students’ experience and online research 

activity).  

 

 

Figure 1: Synthesis of interactions between students in the development of the 

discussion on Padlet (the students’ nicknames are reported). 

Making compared representations visible simultaneously 

During the final discussion, all the teachers shared the Padlet in order to have all the 

discussion solutions visible simultaneously: this helped in reducing cognitive load and 

promoted relational reasoning as detailed by Richland and colleagues (2017). 

 

Figure 2: An example of how Padlet appears 

The screen-sharing of all the responses led students to identify both general 

considerations (“in my opinion one of the most common mistakes [...] was not to 

average out the guardrail, which has different heights”) and comparison between two 

(“then, in my opinion, the reasoning is right, I did it too in that way, albeit I was 2 cm 

shorter, but I still did that strategy”). It is interesting to note that, thanks to the 

simultaneous visualisation of different solutions (Fig. 2), a teacher could show that the 

same problem may have different solutions, yet all correct (commenting on the use of 

different proportions and ratios). 
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Using spatial organisation to highlight key relations 

Again to reduce the demand for attention demands and facilitate relational thinking, 

Richland and colleagues suggest that teachers use spatial organisation to compare the 

different solutions and representations. In this way, students are assisted in making the 

correct correspondences during the mathematical discussion. Padlet revealed itself to 

be a perfect instrument to do so: posts can be moved and put side-by-side, furthermore 

teachers can also zoom in on a specific part of the Padlet and focus students’ attention 

on specific comparisons. 

Using linking gestures to move between spatial representations 

Finally, Richland and colleagues (2017) also promoted the use of gestures to explain 

the importance of a comparison to students. For instance, in one class, gestures 

accompanied the comparison between desk height (in the classroom) and guardrail 

height (in the Padlet), with one student observing “at 5 years old he cannot be twice the 

height of the bench!”. The role of gestures was analysed regarding one of the classes in 

which the discussion took place in presence; the results are explained in detail in a 

previous work (Giberti et al., under review). 

CONCLUSIONS AND FURTHER PERSPECTIVES 

We observe that mathematical discussion based on comparison of alternative solutions 

could be supported by the introduction of a digital tool that collects students’ 

hypotheses and comments (Padlet). This helps overcome the fact that a traditional 

classroom discussion is necessarily linear and unidimensional, whilst a digitally 

supported class allows multidimensional development with “simultaneous voices and 

counterpoints” that can be orchestrated by the teachers. The Padlet helps in 

overcoming difficulties due to excessive effort related to WM and EF (which often 

arises during this kind of discussion). Furthermore, most of the strategies suggested by 

Richland and colleagues (2017) can be promoted through the use of Padlet. It 

guarantees all students the necessary time to think and make an initial comparison of 

other solutions, while also giving the teacher time to select points/comments to 

compare and prepare the didactical performance. Padlet is useful during the classroom 

group discussion because it presents all solutions simultaneously; it could also help 

teachers to organise (also spatially) solutions in groups and help students in reaching a 

relational understanding. Another interesting aspect which emerged (thanks to the fact 

that the discussion is based on the answers and comments collected anonymously), is 

that sometimes the discussion focuses spontaneously on specific posts and 

subsequently the author of the post is called on to explain her/his solution; the role of 

Sherpa-student in this case is assigned by the classmates.  

Finally, the use of online platforms such as Padlet could be an important tool for 

collaboration in the mathematical discussion between different classes, also in 

different geographical regions. We are now considering the possibility of a multilevel 

hybrid learning discussion in which the solutions proposed by a class could be 
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discussed by another class and vice versa. Our hypothesis is that this kind of 

collaboration beyond the borders of the class could help overcome obstacles caused by 

the didactic contract and influences of the milieu (Brousseau, 1988). 
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There is a dilemma between knowledge enquiry and transmission in general 

instructional theories, which are usually supported by constructivist, objectivist or a 

combination of constructivist and objectivist learning theories. Considering the 

epistemological, ontological, and semiotic assumptions about mathematical 

knowledge of the Onto-semiotic Approach, in this paper we describe a theoretical 

model of mathematical instruction that articulates the constructivist and objectivist 

approaches to learning in order to optimise the didactic suitability of the teaching and 

learning processes. 

INTRODUCTION 

The problem-situations designed to contextualise and provide meaning to curricular 

contents, the ways of interaction in the classroom and the resources used are, among 

other, factors that determine students' learning opportunities. The complexity of 

instructional design explains the existence of different instructional theories supported 

by differing psychological and pedagogical assumptions (Reigeluth et al., 2016). The 

family of instructional theories known as "Inquiry-Based Education" (IBE), 

"Inquiry-Based Learning" (IBL), "Problem-Based Learning" (PBL), advocate for 

inquiry-based learning, with little guidance from the teacher (Artigue & Blomhøj, 

2013).  

Contrary positions, such as those of Mayer (2004) and Kirschner et al., 2006) point to a 

wide range of research that concludes the greater effectiveness of instructional models 

in which the teacher and the transmission of knowledge are given a greater role. The 

problem about teaching models focused on the student or on the teacher can be related 

to the inquiry and transmissive instructional models, as well as to the debate between 

constructivism and objectivism (Jonassen, 1991), respectively. Consequently, a 

dilemma arises as to which paradigm is more effective in promoting the learning of 

mathematics: objectivism or constructivism? The objectivist model is based on the 

assumption that there is a real world and that the purpose of education is to map the 

entities of that world in the learner's mind. The constructivist paradigm relies on the 

premise that reality is constructed during interaction with the environment and 

classmates and that knowledge is both individual and collective.  

Radicals of each camp argue that is impossible to mix the two paradigms. [...] 

However, dominant paradigms, in both the physical and social sciences, [...] rarely 
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replace each other by falsification. Instead they tend to co-exist and are used whenever 

they are appropriate” (Vrasidas, 2000, p.12). 

In this paper we first analyse the tension between student-centred didactic models, 

which are based on constructivist theories of learning, and teacher-centred models, 

which are supported by objectivist theories; in other words, we pose the dilemma 

between student enquiry and teacher transmission of knowledge. We then discuss a 

mixed didactic model, based on the epistemological, ontological, and semiotic 

assumptions from the Onto-Semiotic Approach (OSA) to mathematical knowledge 

(Godino & Batanero, 1994; Godino et al., 2007), through which the moments of 

transmission and enquiry are articulated to optimise the didactic suitability of the 

mathematics teaching and learning processes.  

LEARNING AND INSTRUCTIONAL THEORIES 

Theories of learning are often distributed along the objectivism - constructivism 

continuum (Jonassen, 1991), two extremes that are hardly ever proposed in isolation as 

the psychological underpinning of educational methods. Whether constructivist or 

otherwise, learning theories, in themselves, do not entail a theory of teaching; their 

implications for guiding educational processes are not prescriptive, but merely 

indicative.  Ernest (2010) sees them as philosophies or generic orientations on how 

people manage to understand and appropriate knowledge, but without the 

characteristic of theories, which is the requirement of experimental contrast for their 

possible falsifiability.  The implications for mathematics teaching of the four different 

versions of constructivism described by Ernest (2010) may legitimately be addressed 

by teachers who base their pedagogical practice on any of the learning theories “As a 

grand theory, or perhaps a paradigmatic theory, constructivism is too general to reach 

to the classroom directly” (Confrey & Kazak, 2006, p. 320). 

The debate between direct teaching, linked to objectivist positions about mathematical 

and scientific knowledge, which supports the teacher's central role in guiding learning, 

and the minimally guided teaching, usually related to the constructivist model of 

teaching, is not clearly settled in the research literature. For Zhang (2016) the tissue 

between these two instructional positions is not whether one or the other is in favour of 

providing more or less guidance or support to students, but between explicitly 

discussing solutions with learners or letting learners discover them. "For the advocates 

of direct instruction, explicitly presenting solutions and demonstrating the process to 

achieve solutions are essential guidance" (Zhang, 2016, p. 908). In constructivist 

positions, although a certain amount of transmission of information from the teacher to 

the learner is accepted, it is still essential to hide some of the content.  

For supporters of direct instruction who assume the cognitive load theory with an 

emphasis on worked examples, it is essential to provide the solutions. Authors such as 

Mayer (2004) and Kirschner, et al. (2006) claim that empirical research over the last 

half century provides overwhelming and clear evidence that minimal guidance during 
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instruction is significantly less effective and efficient than guidance specifically 

designed to support the cognitive processing necessary for learning. In a similar vein, 

Radford states: “Indeed, it does not seem reasonable to expect that the child (working 

alone or in collaborative groups) would be capable of reconstructing by him/herself the 

complex theories featured in the curriculum” (Radford, 2012, p.103). 

ONTOSEMIOTIC APPROACH TO MATHEMATICAL KNOWLEDGE 

The problem of what mathematics should be taught and how to teach it is being 

addressed from various theoretical perspectives. The OSA framework problematises 

the very nature of mathematical knowledge, as does the Theory of Didactic Situations 

(Brousseau, 1997) and the Anthropological Theory of the Didactics (Chevallard, 

1992). In the OSA, a double dimension of mathematics is considered, as an activity of 

people involved in the resolution of some kind of problems, and as a system of 

historically and culturally shared objects. The OSA ontological postulates are in line 

with those formulated in Wittgenstein's philosophy of mathematics:  

Concepts/definitions and propositions are regarded as “grammatical” rules of a certain 

kind. From this point of view, mathematical statements are rules (of a grammatical 

kind) governing the use of certain types of signs, since that is precisely how they are 

used, as rules. They do not describe properties of mathematical objects with any kind 

of existence that is independent of the people who wish to know about them or the 

language through which they are known, even if this may appear to be the case (Font et 

al., 2013, p. 110). 

The central notion of semiotic function, as a relationship between mathematical objects 

and systems of practices, together with the proposed typology of mathematical objects 

and processes allowing to articulate the operational-pragmatist and referential 

positions of meaning and to reveal the onto-semiotic complexity of mathematical 

knowledge (Font et al., 2013; Godino et al., 2021).  

The theory of mathematical knowledge embodied in the OSA on anthropological 

(Wittgenstein, 1953), pragmatist (Peirce, 1931-58) and semiotic (Hjelmslev, 

1969/1943) foundations entails crucial implications for educational-instructional 

processes, by providing articulation elements between the theories of learning and 

mathematical instruction. The theory of didactic suitability (Godino et al., 2016), as a 

module of OSA, recognises the complexity of educational processes by taking into 

account not only the cognitive - affective (learning) and the instructional (interactions 

and resources) facets, but also the epistemic (content) and ecological (context) 

dimensions, as well as the interactions between these facets.  

Didactical suitability is defined as the degree to which an instructional process (or part 

of it) meets specific characteristics that qualify it as optimal or adequate to achieve the 

alignment between the personal meanings achieved by learners (learning) and the 

intended institutional meanings (teaching), while considering the available 

circumstances and resources (environment). This involves the coherent and systemic 
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articulation of six criteria related to the facets involved in an instructional process 

(Godino et al., 2007, p. 133): 

 Epistemic suitability, expressing the degree of representativeness of the 

institutional meanings implemented, with regard to a reference meaning.  

 Ecological suitability, referring to the degree to which the instruction is in line 

with the school and society educational project and the environmental 

conditions in which it is developed. 

 Cognitive suitability, describing the degree to which the meanings implemented 

correspond to the learners' zone of potential development, as well as the 

closeness of the personal meanings achieved to the intended meanings. 

 Affective suitability, indicating the learners' degree of involvement (interest, 

motivation, etc.) in the instructional process.  

 Interactional suitability, indicating the degree to which the types of didactic 

configurations implemented, and their articulation help to identify and settle the 

potential semiotic conflicts that arise during the teaching process.  

 Mediational suitability is the degree of availability and adequacy of the material 

and temporal resources necessary for the development of the teaching-learning 

process. 

Achieving educational-instructional processes with high didactic suitability involves a 

complex human activity that requires coherent articulation of teaching and learning 

activities with curriculum development and teacher education activities, all of which 

are carried out within an institutional and ecological background that supports and 

conditions them. 

SUITABLE MATHEMATICAL INSTRUCTION 

Within the OSA framework, a didactic model has been developed seeking to locally 

optimise mathematics teaching and learning processes by considering the triple 

dialectic between the teacher`s and students' work and the mathematical content 

(Godino et al., 2019; Godino & Burgos, 2020). In line with the principles of 

cultural/discursive psychology (Lerman, 2001), it is assumed that autonomy and 

creativity in problem solving by students is a progressively achievable goal, rather than 

a precondition for learning. 

The OSA's epistemological and onto-semiotic assumptions provide a rationale for 

designing and implementing a mixed instructional model, including inquiry-based 

cooperative, dialogic and transmission-based phases (Figure 1). Students have to learn 

numerous rules (concepts, propositions, procedures) as well as the conditions under 

which they can be applied. The learner proceeds from known rules and produces new 

ones, which have to be shared and be compatible with those already established in the 
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mathematical culture. Such rules (knowledge) have to be stored in the subject's 

long-term memory and put to work at the appropriate time in the short-term memory. 

In the moments or phases of the student's first encounter with a specific meaning of  a 

mathematical object, a dialogic-collaborative configuration can optimise learning. In 

this type of interaction, the teacher and the students work together to solve problems 

that bring the intended knowledge into play in a critical way. The first encounter with 

new knowledge should be supported by explicit explanations and input from the 

teacher. These transmissive (somewhat magisterial) didactic configurations can be 

meaningful if they refer to the problem situation they are studying collaboratively. The 

teaching-learning process could thus achieve higher epistemic and ecological 

suitability (Godino et al., 2007). Under an inquiry-based teaching model, with minimal 

teacher guidance, students are exposed to the risk of not finding the solutions in the 

first encounter phase, with the consequent rejection and frustration. “Even if the 

students find the solutions on their own, they do not know the most effective 

procedures as they have to wander around in the problem searching process, not to 

mention the cognitive loads they are imposed” (Zhang, 2016, p. 909). 

 

Figure 1. Transmission-inquiry dialectics according to the instructional process phases 

(Godino & Burgos, 2020, p. 16) 

When the application rules and circumstances that characterise the object of learning 

are understood, it is possible to move towards higher levels of cognitive and affective 

suitability by offering more in-depth study of the content (exercise and application 

situations), through didactic configurations that progressively and in a controlled 

manner grant more autonomy to the learner. 
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CONCLUSSIONS 

Instruction is usually understood as the combined activity of teaching and learning, i.e. 

Instruction = Teaching + Learning. In this paper, we add to this equation the content to 

be taught/learned, as we consider that how a content should be taught depends 

substantially on the nature of what is intended to be taught/learned. Moreover, it 

depends on the context and circumstances of the teaching process and the subjects 

involved, so that the optimisation of such activity has local components (actions of 

teacher and students in the classroom) and global components (didactic transposition 

processes of the specific content). A theory of learning does not suffice to understand 

and make decisions about instructional practices, rather a theory of content/knowledge 

is also required. Learning theories do not prescribe what instruction should look like, 

but that role should be played by content theories and theories of intended skills, or 

rather derive from the three-way dialectic between content, learning and teaching. 

Hudson et al. (2006) also justify the implementation of mixed instructional models that 

adapt and mix explicit instruction (teacher-centred) with problem-based instruction 

(learner-centred) because of the need to make curricular adaptations to the diversity of 

students' abilities. As we can see, several authors propose blended instructional models 

that combine enquiry and knowledge transmission. In this paper we also defend the 

greater suitability of these mixed models, but we add some details on how the content 

type influences the greater or lesser presence of enquiry or transmission in the mixed 

model. The reasons given are basically linked to the onto-semiotic complexity of the 

intended mathematical activity, which complement the cognitive reasons highlighted 

by other authors (Kirschner et al., 2006).  

The challenge of education is to optimise the teaching and learning process by 

balancing the learning of all students at their own pace and, at the same time, proposing 

educationally valuable content. This is a challenging task for the teacher and other 

educational agents who have to select and develop the right instructional resources for 

each circumstance. In our opinion, posing the dilemma between student-centred and 

teacher-centred education, between constructivist and objectivist learning theories, is 

naïve since the optimisation of the educational process requires the coherent and 

appropriate articulation of the principles of these educational theories and models. 

Achieving mathematics education with high didactical suitability requires the coherent 

and balanced articulation of various facets and components (Godino et al., 2016), not 

only at the local level, i.e., within the classroom where the interaction between 

students, teacher and content takes place, but also at the global level. Two essential 

components of the ecological facet that crucially condition and support educational 

processes are the curriculum, where decisions are made about the content and 

educational resources that are made available to teachers, and the teacher education 

system, which is responsible for the preparation and ongoing support of teachers. 
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In light of known challenges in the transition from school to university in mathematics, 

we investigate differences in the (mathematical) prerequisites of mathematics majors 

and preservice mathematics teachers. Results show that although there are no 

significant differences in high school grade point average, mathematical prerequisites 

of mathematics majors are significantly better than those of preservice mathematics 

teachers. Differences are higher in conceptual than in procedural knowledge with 

medium effect sizes between mathematics majors and preservice higher secondary 

teachers and (very) large effect sizes between mathematics majors and preservice 

lower secondary or primary school teachers. These results are discussed regarding 

transition challenges and the fit of prerequisites and chosen study program. 

MATHEMATICS PRESERVICE TEACHERS AND MAJORS COMPARED 

In Germany teacher training at university is organized in separate degree programmes, 

but not always in separate lectures. While preservice higher secondary teachers attend 

advanced mathematics courses together with mathematics majors, primary and lower 

secondary teachers usually attend specific mathematics courses with more basic 

mathematical content (Gildehaus et al., 2021). The credits to be taken in mathematics 

are accordingly less in lower-secondary and primary programs.  

In joint courses with mathematics majors, preservice teachers perform slightly lower 

on exams (Göller et al., 2022) and report less satisfaction with their studies than 

mathematics majors (Kosiol et al., 2019). Mathematics (preservice) teachers in 

general, tend to question the relevance of advanced mathematical content for their 

teaching profession (Gildehaus & Liebendörfer, 2021; Zazkis & Leikin, 2010). 

However, it is unclear whether these differences arise from acculturation at the 

university or are rooted in different prerequisites already at the beginning of the 

studies: For example, differences in dissatisfaction can be partly explained by different 

interest profiles at study entrance (Kosiol et al., 2019). Preservice teachers are in mean 

more interested in school mathematics (especially in using calculation techniques) and 

less interested in university mathematics (e.g., proof and formal representations) than 

mathematics majors (Ufer et al., 2017). 

In addition to such affective variables, cognitive variables are relevant factors for 

academic success and related study satisfaction. The high school grade point average 

(HSGPA) has empirically proven to be one of the best indicators for predicting study 
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success across different study programs (e.g., Richardson et al., 2012; Schneider & 

Preckel, 2017; Westrick et al., 2021). Mathematical knowledge assessed in entrance 

tests is found to be an even better predictor of later academic performance in 

mathematics courses (Eichler & Gradwohl, 2021; Greefrath et al., 2017; Halverscheid 

& Pustelnik, 2013; Rach & Ufer, 2020).  

In terms of such cognitive prerequisites, the differences between mathematics 

preservice teachers and majors are less evident: Blömeke (2009) found no differences 

in high school grade point average (HSGPA) between mathematics preservice teachers 

and mathematics majors, however, mathematics majors performed better in a 

mathematics test at study entrance than mathematics preservice teachers (Pustelnik & 

Halverscheid, 2016). To elaborate on these findings, we report on a study following the 

idea that differences in students’ mathematical interests (Ufer et al., 2017) might be 

mirrored in different types of mathematical knowledge. 

CONCEPTUAL AND PROCEDURAL MATHEMATICAL KNOWLEDGE  

In mathematics tests for beginning university mathematics students, mathematical 

knowledge is usually conceptualized and surveyed as a unidimensional construct. To 

investigate whether different types of mathematical knowledge, corresponding to the 

different mathematical interests of students (Ufer et al., 2017), can be empirically 

distinguished, we build on the subdivision of mathematical knowledge into conceptual 

knowledge, which is thought as a network of relationships connecting different pieces 

of information, and procedural knowledge, which comprises knowledge about 

algorithms or a series of steps for completing mathematics tasks (Hiebert, 1986). 

Although conceptual mathematical knowledge seems to be theoretically (Gray & Tall, 

1994; Gueudet & Thomas, 2020) as well as empirically (Hailikari et al., 2007; Rach & 

Ufer, 2020) more important for later academic success in mathematics at university, 

many of the mathematics tests used at study entrance rather measure procedural 

knowledge, such as basic arithmetic skills (Heinze et al., 2019). We do not know of any 

study that explicitly examines differences between mathematics preservice teachers 

and majors in terms of conceptual and procedural mathematical knowledge. We thus 

explore the following research questions: 

RQ 1: Can conceptual and procedural knowledge of mathematics students at study 

entrance be empirically distinguished? 

RQ 2: How do mathematics students of teacher and non-teacher study programs differ 

in their (mathematical) prerequisites at the beginning of their studies? 

METHODS 

To answer these questions, we refer to data from a medium-sized German University 

with 310 participants in a pre-university mathematics course in September 2021, about 

one month before the start of their studies. Participants can be subdivided into three 

groups (with regard of their different study programs): 
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 Group 1 (majors) consists of 15 mathematics and 70 computer science majors. 

 Group 2 (higher secondary teachers) consists of 55 preservice higher secondary 

mathematics teachers enrolled in a study program with joint mathematics 

courses with mathematics majors (Group 1). 

 Group 3 (primary & lower-secondary teachers) consists of 170 preservice 

primary and lower-secondary school mathematics teachers enrolled in a study 

program without joint mathematics courses with mathematics majors (Group 1). 

The participants self-reported their high school grade point average as well as their last 

math grade from school (1 = best, 6 = poorest) and worked for 60 minutes on an online 

mathematics test with 21 tasks (12 (complex-)multiple-choice items, 9 with open 

numerical input) of which 11 were classified as conceptual items and 10 as procedural 

items. Conceptual items comprised tasks that required connecting different pieces of 

information such as changing between different representations (e.g., relating terms 

and graphs, modelling) or using given information for argumentation (see Figure 1).  

 

 

 
 

Art in Amsterdam 
 

 

 

In Amsterdam you can find the work of art shown below. Maike had her picture taken in front 

of this work of art. 

 

  

 

 

Question: 

 

Maike is 1.80m tall. She wonders how long the pictured helix of the work of art actually is. 

Which of the formulas below is best suited to calculate the length of the helix as correctly as 

possible? Tick the only correct answer. 

 

 

Answer: 

 

 ! ∙ 0.90m	∙ 9 

 ! ∙ (0.90m)! ∙ 9 

 2 ∙ ! ∙ 0.90m	∙ 9 

 ! ∙ (1.80m)! ∙ 9 

 2 ∙ ! ∙ 1.80m	∙ 9 

 

 

 

 
 

Graph 
 

 

 

Given is a part of the graph of a quadratic function ! : 

 

 

 
 

 

Give a corresponding functional equation for the illustrated graph.  

 

 

Answer: 

 

! (#)	=  

 

 
 

 

Calculating with powers 
 

 
 

Given is the following number: 

 

! =	
10! + 10"

10#
 

 

 

Question: 

 

What is ! ? Tick the only correct answer. 

 

 

Answer: 

 

 ! = 	1 ∙ 10$  

 ! = 	1 ∙ 10% 

 ! = 	1 ∙ 10& 

 ! = 	1,1 ∙ 10' !  

 ! = 	1,1 ∙ 10!  

 

 

 
 

Equation 
 

 

 

Given is the equation below (with ! , # ∈ ℝ). 

 

 

 
 

 

Question: 

 

In the following, different statements about this equation are given. Decide for each of these 

statements whether it is true or not. Tick a box for each statement. 

 

 

Answer: 

 

The statement is true: yes no 

If ! > 0, then $ > 0.   

If ! = 0, then the equation has no solution.   

If ! < 0, then $ < 0.   

 

 

Item 1 Item 2

Item 3 Item 4
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Figure 1: Examples of test items. Items 1,2,3 conceptual items, Item 4 procedural item. 

Items translated from German by the authors (cf. Besser et al., 2020) 

Procedural items comprised tasks that required algorithms or a series of (calculation) 

steps to be completed. Examples of procedural items are e.g. calculating the derivative 

of              or simplifying the expression 
    

   
 
     

    
 for       and 

collecting the variables (Hochmuth et al., 2019) as well as Item 4 of Figure 1.  

Participants’ answers were coded dichotomously (0 = not correct, 1 = correct; missing 

answers were coded as not correct) and analyzed using the R-package “mirt” regarding 

a unidimensional 2-parameter logistic IRT model as well as a two-factor 2PL IRT 

model distinguishing conceptual and procedural items. Person scores were extracted 

and further analyzed using analyses of variance in SPSS. 

RESULTS 

Addressing RQ 1, both considered models show acceptable to good model fit statistics 

(cf. Table 1). Noteworthy, the two-factor model that distinguishes conceptual and 

procedural knowledge fits the data significantly better. 

 RMSEA TLI CFI AIC BIC   (5) p 

Unidimensional 0.044 0.941 0.947 7667.14 7824.07   

Two Factors 0.029 0.976 0.979 7621.56 7797.18 55.576 <.001 

Table 1: Fit statistics of the unidimensional and the two-factor (conceptual-procedural) 

IRT model 

The latent factor correlation of conceptual and procedural knowledge is r = .70, 

indicating that they measure different (yet correlated) constructs. Table 2 shows the 

bivariate correlations below the diagonal and reliability measures on the diagonal. 

Also, the bivariate correlation of conceptual and procedural knowledge indicates 

different (yet correlated) constructs with r = .51 for the IRT person scores. 

 1 2 3 4 5 

1. HSGPA -     

2. Math Grade .65* -    

3. Unidimensional Model (IRT Unidim) -.23* -.28* .83   

4. Conceptual Knowledge (IRT Concept) -.21* -.30* .87* .73  

5. Procedural Knowledge (IRT Proced) -.18* -.20* .86* .51* .74 

Table 2: Bivariate correlations of school grades and IRT person scores below the 

diagonal and empirical reliability measures on the diagonal. *p < .01 

Regarding RQ 2 we first give some descriptive statistics in Table 3. In the mean, 

students solved approximately half of the tasks. Means of Group 1 (mathematics 
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majors) are the highest for all measured variables, followed by Group 2 (preservice 

higher secondary teachers), while means of Group 3 are the lowest. 

 Full Sample Group 1 Group 2 Group 3 

 Min Max M SD M SD M SD M SD 

HSGPA 1.00 3.60 2.28 0.53 2.21 0.62 2.22 0.56 2.34 0.47 

Math Grade 1.00 5.00 2.32 0.91 2.04 1.00 2.18 0.84 2.51 0.85 

Sum Test 1.00 21.00 11.46 4.62 14.82 4.32 12.75 4.07 9.37 3.73 

Sum Concept  0.00 11.00 6.25 2.83 8.28 2.52 7.05 2.50 4.98 2.36 

Sum Proced  0.00 10.00 5.21 2.42 6.54 2.27 5.69 2.20 4.39 2.23 

IRT Unidim -2.23 2.21 0.00 0.91 0.68 0.90 0.25 0.81 -0.42 0.70 

IRT Concept -1.89 1.64 0.00 0.85 0.62 0.76 0.25 0.74 -0.39 0.70 

IRT Proced -1.97 1.95 -0.01 0.86 0.46 0.84 0.16 0.81 -0.30 0.77 

Table 3: Descriptive statistics. For HSGPA (high school grade point average) and 

Math Grade (1 = best and 6 = poorest). Sum Test = Sum of correctly solved items, Sum 

Concept = Sum of correctly solved conceptual items, Sum Proced = Sum of correctly 

solved procedural items. Group 1 = majors, Group 2 = higher secondary teachers, 

Group 3 = primary & lower-secondary teachers 

The results of the ANOVA (Table 4) show that the means of the three groups do not 

differ significantly regarding high school grade point average (HSGPA). Mean 

differences in the last mathematics grade are only between Group 1 (math majors) and 

Group 3 (preservice primary & lower-secondary school teachers) significant with 

medium effect size. Mean differences in the math test are higher, especially for 

conceptual knowledge and the total test, with medium effect sizes between Group 1 

and Group 2 (preservice higher secondary teachers) and (very) large between all other 

groups. Differences in procedural knowledge are somewhat smaller, with Group 3 

again performing significantly lower than the other two, with medium to large effect 

sizes. 

 F p                         

HSGPA 2.11 .123 .014 -0.01 -0.24 -0.25 

Math Grade 8.76 <.001 .054 -0.16 -0.53* -0.39 

IRT Unidim 59.84 <.001 .280 0.49* 1.42* 0.92* 

IRT Concept 59.04 <.001 .278 0.50* 1.45* 0.89* 

IRT Proced 27.04 <.001 .150 0.35 0.95* 0.59* 
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Table 4: Results of the ANOVA.       : Effect size (Cohen’s d) of the mean 

difference between Group i and Group j. *Differences are significant (post hoc tests 

with Bonferroni correction, p < 0.05) 

DISCUSSION 

The results show that conceptual and procedural knowledge of mathematics students at 

study entrance can be empirically distinguished and measured (RQ 1). Furthermore, 

they show that although differences between mathematics preservice teachers and 

majors are not significant for HSGPA and rather small regarding the last mathematics 

grade from school, they differ significantly with regard to the math test scores, with 

medium to very large effect sizes (RQ 2). Overall, these results suggest that students 

chose (have chosen) a study program that fits their mathematical abilities, as reflected 

in the mathematics test but not (barely) in their school grades: Preservice higher 

secondary mathematics teachers (Group 2) who attend joint mathematics lectures with 

mathematics majors (Group 1) are almost at the same level with their performance 

while preservice primary and lower secondary school teachers (Group 3) who attend 

mathematics lectures on a less advanced level start their study on a significantly lower 

mathematical knowledge base. Nevertheless, the mathematical prerequisites of the 

preservice higher secondary mathematics teachers (Group 2) are lower than those of 

the mathematics majors (Group 1) which might contribute to explanations of 

preservice teacher’ dissatisfaction with university mathematics contents (Gildehaus & 

Liebendörfer, 2021) as well as their slightly lower performance in mathematics exams 

compared to mathematics majors (Göller et al., 2022). 

Noteworthy, the differences in mathematics performance are higher in conceptual than 

in procedural mathematical knowledge. On the one hand, this is in line with preservice 

teachers interests who are in mean more interested in school mathematics (especially in 

using calculation techniques) and less interested in university mathematics (e.g., proof 

and formal representations) than mathematics majors (Ufer et al., 2017). On the other 

hand, this suggests that university pre- and bridging courses should focus (even) more 

on building conceptual knowledge in order to compensate for inequalities and to 

prevent frustrations or other difficulties accompanying the transition from school to 

university in mathematics (Göller & Gildehaus, 2021). 

When interpreting the results, the following limitations, to name but a few, should be 

taken into account: 21 Items of a one-hour test cannot capture overarching constructs 

such as mathematical, conceptual, or procedural knowledge in their entirety, which 

means that the results are of course influenced by the operationalization of the 

mathematics test used for this study. Since participation in the pre-course, in which the 

test was taken, was voluntary and test-taking was anonymous, and thus performance 

on the test had no consequences for the participants (apart from feedback for 

themselves), selection effects are possible, which are likely to be influenced in 

particular by the interest of the participants. In addition, the relatively small sample 

should be considered, which consists of students from only one university. 
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Accordingly, further research is desirable to better understand the (mathematical) 

prerequisites of university students and, based on this, to advance the teaching and 

learning of mathematics at the university. 
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In this report, we revise and connect our approaches to mathematics teacher noticing 

and to the classroom language of the teacher for content teaching in the attempt: 1) to 

articulate mathematics teacher education knowledge from research on noticing and on 

language around a newer notion of noticing languages for content teaching; and 2) to 

apply the articulated knowledge to the design of content-specific materials oriented 

towards enhancing the development of noticing processes with primary school student 

teachers in mathematics teacher training programmes. We propose processes of 

identification, interpretation and decision on languages for content teaching aimed at 

reducing school learning challenges, and developmental work at the levels of 

specialised word names and content-related explanatory and exemplifying sentences.   

PUTTING TWO APPROACHES TOGETHER  

Professional teacher noticing has gained notable traction in research (see, e.g., the 

ZDM issue by Dindyal et al., 2021), and its development is considered important in 

teacher training programmes (Jacobs & Spangler, 2017). Mathematics teacher noticing 

refers to what mathematics teachers attend to in classroom situations and how they 

interpret their observations in order to make instructional decisions. While the focus on 

noticing mathematical thinking of students is distinctive, we strategically shift the 

focus onto noticing classroom languages for content teaching. We propose this shift in 

the context of progress and expansion of mathematics education research on language 

and teacher preparation (e.g., Shure et al., 2021). This said, relatively few studies have 

examined language responsiveness in mathematics teacher education (MTE) through 

networked collaboration of researchers who think about mathematics learning and 

teaching from different theoretical traditions.  

In this report, we challenge and connect our respective approaches to mathematics 

teacher noticing and to the classroom language of the teacher for content teaching in 

the attempt: 1) to articulate MTE knowledge from research on noticing and on 

language around a newer notion of noticing languages for content teaching; and 2) to 

apply the articulated knowledge to the design of content-specific materials oriented 

towards enhancing the development of noticing processes with primary school student 

teachers in  mathematics teacher training programmes. Following this introduction, in 

the first section we summarize some crucial parts of the sources of knowledge we build 

on. In the second section, we present a number of decisions adopted during our 

collaboration regarding the practical understanding of language-and-learner 

responsiveness for mathematics content teaching. We finish with the discussion of 

what comes next. 
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NOTICING LANGUAGES FOR MATHEMATICS CONTENT TEACHING    

The development of noticing in teacher training programmes 

Sherin (2007) characterises teacher professional noticing as two groups of processes 

regarding: a) the selective attention to mathematics teaching and learning situations, 

and b) the knowledge-based reasoning allowing to make sense of what is attended to. 

In line with the decision processes introduced in Jacobs et al. (2010), we see teacher 

professional noticing as learning outcomes and related processes of: 1) identifying 

relevant aspects in mathematics teaching and learning situations; 2) interpreting these 

aspects according to knowledge of mathematics and mathematical pedagogies; and 3) 

taking teaching action decisions informed by the adopted interpretations. 

The survey work in Fernández and Choy (2020) outlines research conducted on the 

development of noticing in mathematics teacher training programmes. This latter study 

also reviews the production of design strategies and materials that have been shown to 

support student teachers on what and how to notice. Different names, which reflect 

distinct theoretical lenses, are used to imply the material resources or documents aimed 

at facilitating noticing processes in the work with student teachers. A widespread 

strategy, however, is to provide tasks that consist of theoretical materials completed 

with illustrations of practice (Ivars et al., 2019). The theoretical materials provide 

linked knowledge of mathematics and mathematical pedagogies informed by 

mathematics education research. In this way, they offer theoretical lenses that are 

generally represented in the form of classroom situations (e.g., transcripts of 

teacher-students interaction) in which student teachers are asked to identify, interpret 

and decide on selected aspects of mathematics teaching and learning. 

Language use for mathematics content teaching 

Research on approaches to language as a resource in MTE has documented various 

relevant aspects to focus on in the classroom languages of teachers for content teaching 

(Planas, 2019). Within the sociocultural framing in Halliday (1985), Planas (2021) 

presents content-specific developmental work with secondary school teachers at the 

word and sentence levels of language. Drawing on Halliday (1978, p. 195), where a 

register is “a set of meanings that is appropriate to a particular function of language, 

together with the words and structures which express these meanings”, and 

strengthening the emphases on words and sentences, and on school learning, we 

consider three interconnected tools or resources in language for content teaching: 

- Naming, or giving word names from content registers oriented towards 

reducing content learning challenges. 

- Lexicalisation, or giving sentences with encoded explanations of 

content-related meanings oriented towards reducing content learning 

challenges.  
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- Exemplification, or giving sentences with encoded variations of 

content-related elements oriented towards reducing content learning 

challenges. 

If we think of the common challenge of viewing fractions as numbers, at the level of 

words, the use in teacher talk of the name terms to refer to the numerator and the 

denominator, and of the name number to refer to fraction may be considered 

learner-responsive. These words can then be put into sentences with the potential 

function of explaining meanings in order to overcome the learning challenge, such as: 

Fractions are numbers expressed in the form of a relationship between two terms. 

From the perspective of variation theory (Marton et al., 2004), teacher talk can also 

produce sentences with the function of exemplifying variations, such as: The size of 

one quarter is two if the whole size is eight, but it is three if the whole size is twelve. 

This sentence would contribute to supporting the difficult understanding of the fraction 

size and the elements or facts that make it vary. Names, explanations and variations 

are, therefore, practical dimensions of naming, lexicalisation and exemplification. 

Their use in teaching can be approached as intersecting conditions of content 

languages oriented towards reducing specific learning challenges. 

Particularising a language-informed notion of noticing 

At the interplay of the two approaches presented above, we particularise a 

language-informed notion of mathematics teacher noticing: noticing languages for 

content teaching. Since the first author has researched the challenges faced by primary 

school students when learning fractions (e.g., González-Forte et al., 2020), we 

illustrate the theoretical and practical work around this newer notion specifically 

linked to this content. Considering the three processes in our approach to professional 

noticing, here illustrated for variations only, noticing languages for content teaching 

refers to: 

Identifying mathematically relevant names, explanations and variations in languages 

for content teaching. Given, e.g., the situation of a teacher who is talking about the 

division of the unit into equal-size parts while drawing different rectangle models on 

the board, we want student teachers to develop the ability to identify the importance, in 

the language-responsive teaching of fractions, of using sentences to exemplify 

variations of the shape of equal-size parts, alongside other resources like drawings.  

Interpreting names, explanations and variations in languages for content teaching 

with regard to their potential for reducing school learning challenges. Given the 

above-mentioned situation, we want student teachers to develop the ability to interpret 

the importance, in the language-and-learner responsive teaching of fractions, of 

variations of the shape of equal-size parts in order to help learners to challenge the 

frequent thinking of the equal-size parts of the continuous whole as always 

equal-shape.   

Deciding language-and-learner responsive names, explanations and variations in 

languages for content teaching. Given the same learning challenge and a similar 
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situation, now with a teacher who is talking about dividing the unit into equal-size parts 

and who draws one rectangle divided into equal-shape parts, we want student teachers 

to develop the ability to decide on the importance, in the language-and-learner 

responsive teaching of fractions, of alternative representations of rectangles based on 

variations of the shape of equal-size parts in order to challenge learners’ thinking.  

DESIGN OF MATERIALS TO ENHANCE PROCESSES OF NOTICING 

LANGUAGES FOR CONTENT TEACHING 

The ultimate objective in our collaboration is to enhance, in teacher training 

programmes, processes of noticing languages for content teaching aimed at resourcing 

school content learning. The consideration of appropriate materials and how to design 

them is thus key. On the one hand, we consider the design of preparatory theoretical 

documents that would guide student teachers in identifying relevant aspects of 

languages for content teaching, and in interpreting them in relation to knowledge of 

(school) mathematics and of learning challenges. On the other, we consider the design 

of representations of practice in the form of transcripts of either real or fictional 

languages of teachers in content teaching, together with prompting questions. The 

latter serve to identify, interpret, and take knowledge-based decisions as to which 

names, explanations and variations could improve the teaching languages in the 

transcripts. 

A preparatory theoretical document  

This document is designed to explain and illustrate the potential of language and some 

of their verbal tools for the teaching of fractions in the primary school. Operational 

definitions of naming (names or vocabulary within the school register of fractions), 

lexicalization (explanations of mathematical meanings regarding fractions) and 

exemplification (variations of elements related to fractions) are given with short 

instances of fictional languages for teaching fractions. Some of these instances 

intentionally miss opportunities of addressing learning challenges documented in the 

specialized literature. Table 1 reproduces two extracts that have been translated from 

the original document, one for naming (the names chosen are equal-size parts, 

numbers and fractions, and nonequal equivalent fractions), the other for 

exemplification (the chosen variations refer to the size of the parts, and the pairs of 

fractions to be compared). In each teaching situation, one instance is 

language-and-learner responsive (e.g., B2 or G2 are a model of more precise languages 

of fractions, which in turn respond to specific, well-documented and somehow 

predictable learning challenges), and the other instance (e.g., B1 or G1) is less 

responsive regarding the missed opportunities to situate the language within the 

content register more clearly and/or to address learning challenges. Moreover, each 

pair (e.g., B1 and B2) come with reflective questions on whether both instances would 

equally support school learners when facing the enunciated learning challenge.  



González-Forte, Planas, Fernández 

 

PME 45 – 2022 2 - 319 

 

 

 

Table 1: Extracts of a translated version of the theoretical document  

Short extracts of two fictional dialogues of one teacher with one primary school 

student each are included at the end of the preparatory document. These dialogues 

show the teaching of the equal-size condition of the parts in the part-whole 

relationship. The first teacher names the unit, the equal-size parts and the equitable 

sharing, amongst other specialised forms of vocabulary within the register, and gives 

explanations and mathematically relevant variations to help the student to overcome 

concrete learning challenges. The second dialogue serves to present a contrast. The 

teacher here misses several opportunities to use names, explanations and variations 

that support the learning of fractions. Although these dialogues are representations of 

practice, they are shown in the theoretical document to illustrate how names, 

explanations and variations represent intersecting tools in the classroom language of 

the teacher, rather than discrete elements working in isolation. Moreover, these 

dialogues situate words, words into sentences and sentences within the broader level of 

discourse.   

A document for professional practice 

This paired material contains three fraction comparison classroom situations which are 

represented through transcripts of interactions (dialogues) between one primary school 

teacher (Carlos, Patricia and Raquel) and one student each (David, Roberto and Lucía). 

The student teachers have the basic information at their disposal in the theoretical 

document and this allows them to engage in the three intended noticing processes. In 

that preparatory document, instances regarding fraction comparison are illustrated with 

respect to language-and-learner responsive names, explanations and variations, 

anticipating content knowledge and knowledge of school learning challenges.    

The teachers’ languages are designed to show different emphases on the use of names, 

explanations and variations. Carlos uses relevant names and explanations but does not 
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offer variations that could challenge David’s reasoning, which is biased by natural 

number thinking. Patricia uses relevant explanations and variations but does not offer 

names that could challenge Roberto’s reasoning based on the difference between 

numerator and denominator. Raquel uses relevant names and variations but does not 

offer explanations that could challenge Lucía’s reasoning based on choosing the 

fraction with the smaller denominator as the larger fraction. The student teachers have 

to read each dialogue and answer five questions focused on our noticing processes: Q1) 

Identify. What mathematically relevant names, explanations, and variations are used 

by the teacher? Q2. Interpret. What learning challenges may this talk help to reduce by 

means of these… names? (Q2.1) explanations? (Q2.2.) variations? (Q2.3.) Decide. 

Drawing on your answers, what other names, explanations or variations would support 

the learning of fractions? Choose a teacher intervention and propose a change.  

Below we reproduce an English version of the dialogue between Carlos and David. 

Instead of two thirds, e.g., we write 2/3 because the teacher and the learner are 

supposed to say the names and to write them symbolically on the board. For clarity in 

this report, we mark the content-relevant names (except for names of fraction 

representatives such as two thirds) in bold and underline the explanations in teacher 

talk. In our design of this dialogue, the variations intentionally fail to support David 

when interrogating the validity of his reasoning. The natural number thinking bias here 

is the situated reference for the identification and interpretation of names, explanations 

and variations, whether explicit or absent, that would increase language-and-learner 

responsiveness in the teacher talk. Carlos misses the opportunity to introduce 

variations of the numerators and denominators of the fractions to be compared that 

would allow to question the understanding of these terms as natural numbers.    

Carlos: I propose a challenge. I give you pairs of fractions and you compare the fraction 

size. Let’s take 2/3 and 7/9. Which fraction is larger? 

David: 7/9! 

Carlos: All right, David. 7/9 is larger than 2/3. How did you come to it so quickly? 

David: It’s very clear. I didn’t calculate anything. 

Carlos: What did you know? Can you explain? 

David: Yes. I saw the numbers. I mean, I know it because of the numbers. 

Carlos: What numbers are you referring to? 

David: Well, I am referring to numbers two and three, and numbers seven and nine. I 

always look at the two numbers... if they are bigger. Since seven is larger than 

two, and nine is larger than three, I know that 7/9 is larger. 

Carlos: But you have to remember that a fraction is a number, not two numbers 

separated by a slash. When you say numbers, you are actually referring to terms, 

the numerator and the denominator. So, if we have numbers 1/4 and 5/9, 

which fraction is larger? 

David: Now 5/9 is larger. 

Carlos: How do you know? 

David: Same reason. Numbers five and nine are larger, so that is the largest fraction.  
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Carlos: Could you make a graphical representation of both fractions? Remember that we 

must represent fractions using the same whole for them to be comparable. 

Otherwise, they are not comparable. 

David: Yes. Here they are.  

 
Carlos: So, was your comparison right? Is 5/9 larger than 1/4? 

David: Yes, it is clear that 5/9 is larger. The larger the numbers, the larger the fraction. 

Carlos: Remember that a fraction is a number that expresses a relationship between two 

terms, the numerator and the denominator. These terms are not comparable 

like natural numbers. Which fraction is largest depends on the quantity of equal 

size parts dividing the whole, but also on the quantity of parts taken. 

LOOKING FORWARD THE NEXT COLLABORATIVE STEPS    

We reported here the results of our collaborative study which seeks to theorise and 

prepare materials for developmental work on processes of noticing languages for 

content teaching in MTE settings. We anticipate that the introduction of the types of 

materials presented, covering a range of mathematical contents, will provide student 

teachers with basic professional knowledge and allow them to understand how the use 

of language can play an essential role in their teaching of mathematics. We expect 

mathematics teacher educators other than ourselves will use the material outputs of our 

study in their teaching. It is therefore important to initiate the implementation and 

evaluation of the materials in our contexts so as to explore the learning opportunities 

and challenges generated in MTE practice. Empirical insights stemming from the 

implementation of the materials in university classes will help to improve the 

materials, and to continue refining the theoretical tools and design processes.   

We may have seemed to assume that mathematics teachers from other contexts will 

simply reuse the tasks we provided. On the one hand, the documents will need a careful 

meaning-responsive specialised translation if they are to be redesigned in a language 

other than the original. On the other, while student teachers may have developed basic 

knowledge of the mathematical contents, they may not be accustomed to producing 

explanations and reflecting on variations. While the preparatory document introduces 

explanations and variations, and hence involves some indirect teaching of them, it is 

not primarily designed to promote student teachers’ learning or practising of the 

discursive practices embedded. Developing the ability to respond to critical uses and 

omissions of mathematically relevant explanations and variations in teachers’ content 

languages may therefore become problematic. At some point in the collaboration, the 

studying and working with language tools at the levels of words and sentences will 

require specific attention and training in order to sequence explanations and variations 

at the level of classroom discourse and mathematical discourse practices. Further 

directions of work can still be planned within the granular levels of words and 
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sentences. In the dialogue with Carlos and David, we foresee the potential of studying 

tools in language for giving sentences with encoded interrogations of content meaning. 
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The need for high-quality remote learning experiences has been illustrated by the 

COVID-19 pandemic. As such, there is a need to explore instructional videos that go 

beyond expert exposition as the main pedagogical approach. An emerging body of 

research has begun to investigate instructional videos that feature dialogue. However, 

this body of research has focused primarily on whether such videos are effective. In 

contrast, the purpose of our study is to investigate the dialogic learning processes 

involved as students viewing dialogic videos develop mathematical meaning. We 

employed a Bakhtinian perspective to analyse the learning of a pair of Grade 9 

students who engaged with dialogic instructional videos. The results focus on 

ventriloquation as a learning process. 

BACKGROUND AND PURPOSE 

The explosive growth in the number of online mathematics videos and the dramatic 

need for such videos during the COVID-19 pandemic has allowed educators to 

reimagine how students can learn mathematics. However, the effort to increase access 

to high-quality learning experiences through online videos has been limited by their 

uniformity in expository presentation, emphasis on procedural skills, limited attention 

to mathematical argumentation, and missed opportunities to address common student 

difficulties (Bowers, Passentino, & Connors, 2012). 

In response, our research team created online math videos featuring the dialogue of 

secondary school students. Alrø and Skovsmose (2004) define dialogue as a 

conversation that involves the quality of inquiry, referring to an interaction that aims to 

generate new meanings or ways of comprehending. Our videos are unscripted to 

capture authentic student confusion and resolution of dilemmas. Each video shows a 

pair of students (called the talent) next to their mathematical inscriptions (Figure 1), 

which allows other students viewing the videos (called vicarious learners, or VLs) to 

see both the talent and their work. “Vicarious” refers to indirect participation in the 

dialogue of others (Chi, Roy, & Hausmann, 2008). A teacher guides the talent and can 

be heard but is not seen, so that the focus remains on the talent’s reasoning. The videos 

also feature annotations of the talent’s work and occasional voice-overs that highlight 

key mathematical ideas the talent have voiced. 

Dialogic videos have been used in a small body of interdisciplinary research, much of 

which has focused on quantitative studies of the effectiveness of learning vicariously 

(e.g., Muldner, Lam, & Chi, 2014). Much less work has sought to understand how this 

learning occurs. Observing the voicing of common misconceptions seems to play an 
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important role (Muller, Sharma, & Reimann, 2008), as does the inclusion of an 

authentic learner who displays confusion and asks questions (Chi, Kang, & 

Yaghmourian, 2017). The purpose of our study is to contribute to this work by 

investigating the dialogic learning processes involved as VLs develop mathematical 

meaning. 

 

Figure 1: Screenshot for an online dialogic mathematics video 

THEORETICAL FRAMEWORK 

To investigate the learning processes as the two VLs engaged with the dialogue of the 

videos, we turned to Bakhtin’s (1981) theory of dialogism. According to Bakhtin, the 

origin of our personal ways of reasoning is others' expressed thoughts, what he calls 

voices. Specifically, voices are words or actions and their associated meanings 

(Kolikant & Pollack, 2015; Silserth, 2012). As learners express their own voices, 

Bakhtin (1981) would suggest the words they use are only partly their own. “The word 

in language is half someone else’s. It becomes, ‘one’s own’ only when the speaker 

populates it with his own intention, his own accent, when he appropriates the word, 

adapting it to his own semantic and expressive intention” (p. 293). As this quote 

suggests, Bakhtin's claim is not simply that learners mimic the words and phrases of 

others, though at times this can occur. Rather, learners appropriate another's voice, 

including the meanings associated with that voice, for their own purposes. In this way, 

this voice influences their thinking. 

The learning process in which a learner appropriates a voice is called ventriloquation. 

We are particularly interested in instances of ventriloquation when learners go beyond 

a simply repeating the words or actions of others, but when the voices of others begin 

to influence the learner’s thinking. In these instances, the learner needs to integrate the 

new voice with their collection of previously internalized voices—those that already 

influence their thinking. This collection of voices forms the learner’s personal 

narrative. 

The process of integrating a new voice with the voices in a learner’s personal narrative 

is not always straightforward. Learners may resist a new voice. For example, Taylor 
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(2003) illustrated resistance during a math methods class for preservice elementary 

teachers, in which she had been trying to shift the focus of the class from memorizing 

procedures to proving and justifying. She recounted how a student, Lee, who did not 

yet see the purpose of or need for proving flouted the teacher’s request for a proof and 

instead responded with a sarcastic remark.  The student’s demeanour, facial 

expressions and tone indicated resistance to the integration of “proving” with the 

voices forming her personal narrative around the nature of mathematics. 

METHODS 

We investigated the ventriloquation process as two grade 9 students (14-15 years old) 

watched dialogic instructional videos we created. The two VLs recruited for this study, 

Desiree and Belinda, had participated in a previous study, which focused on the range 

of orientations that a larger group of students (26 students) had towards these video 

lessons. In the previous study, Desiree and Belinda had made good mathematical 

progress with the first lesson, suggesting they would be good candidates to the 

continue on with the lessons. They were recruited from an ethnically diverse school in 

the United States. In their regular Algebra 1 class, they were earning grades in the B to 

D range. Both were fluent in English and Spanish. 

The videos the VLs watched were part of a 10-lesson instructional unit on parabolas. 

The overarching goal of the video unit was to support the derivation of the vertex form 

of a general parabola as     
      

  
   . The unit began with the talent being given 

the geometric definition of a parabola, which is the set of points that are equal distance 

from a fixed point (called the focus) and a fixed line (called the directrix). Over the 

course of the 10 lessons, the talent used this definition to first, find the equation for the 

family of parabolas with vertex at the origin, namely y = x
2
/(4p), where p is the 

distance from the vertex to the focus, and then leverage this equation to derive the 

general equation of a parabola, with vertex at (h, k). A major focus of the unit was on 

quantitative reasoning, where a quantity is one’s conception of a measurable attribute 

of an object (Thompson, 2011). In particular, the quantitative meanings of the 

variables and parameters in the derived equations as distances were emphasized in 

these lessons. 

The VLs participated in 9 research sessions, which occurred after school in a 

classroom at the VLs’ school. Each session lasted 75-90 minutes. In these research 

sessions the VLs were asked to engage in mathematical tasks that mirrored those given 

to the talent in the instructional videos. When the talent’s task was complex, the same 

task was given to the VLs. In other instances, similar tasks were given (e.g. some 

numerical values were changed) to ensure a high level of problem solving for the VLs. 

Two researchers participated in these sessions. One operated two camcorders, one 

focused on the VLs’ written work and one focused on the VLs as they interacted with 

each other. The other researcher interacted with the VLs. She sat on the other side of 

the room from the VLs while they worked on the math tasks and watched videos, but 
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would come over when they were finished or stuck so the VLs could explain their 

thinking. The researcher’s purpose was to understand the VLs’ reasoning as they 

engaged with the dialogic instructional videos, rather than to provide new information. 

As such, she left many areas of confusion unresolved. 

Analysis began with the creation of descriptive accounts of the 9 research sessions 

(Miles & Huberman, 1994). From these descriptive accounts, we identified 9 candidate 

topics where the VLs showed progress in their understanding. We selected the VLs' 

meaning for the parameter p in the equation y = x
2
/(4p), because it is complex for 

learners and is also important mathematically. We focused our analysis on Research 

Session 6, because it was during this session that the VLs were able to articulate the 

meaning for p as the distance between the origin and the focus. Prior to this, the VLs 

had used p as they derived the equation y = x
2
/(4p), but not with this quantitative 

meaning. Instead, they managed other meanings for p, such as a particular number 

used in the calculations when finding the equation for a specific parabola or the y value 

of the focus. 

In Research Session 6, the VLs were given two p values, p = 1.5 and p = 2.5, and were 

asked to graph the parabola, write its equation, and label p, the focus and the directrix. 

This tasked mirrored a task that was given to the talent in the instructional videos, 

though the talent were given p = ¼ and p = ½. In the previous research session, the VLs 

had derived the general equation for a parabola with vertex at the origin, y = x
2
/(4p). 

We analysed the VLs' learning process using a Bakhtinian lens. In particular, we 

identified the voices that the VLs used as they worked on the task. We also coded for 

aspects of ventriloquation from the literature, such as repetition, resistance, and 

integration. 

RESULTS 

In this section, we will present evidence to support the claim that the VLs came to 

understand the p-value of a parabola as a distance by ventriloquating a voice of "p as a 

distance" from a dialogic instructional video. However, this process was not simple. It 

only happened after they had watched the video twice. The first time they watched the 

video they were unable to engage with the voice "p as a distance," as they said the 

video was too confusing. We will provide evidence that they were eventually able to 

make use of the voice after watching the video a second time, but only after initially 

resisting the voice and relying on their personal narrative, repeating the voice, and 

finally integrating it with their personal narrative.  

Description of voices in the dialogic instructional video 

In the video that the VLs watched, the talent grappled with a task similar to the one 

given to the VLs, in which they were to place the focus of a parabola with p = 1/4. 

Initially, the talent were confused about how to do this, but they eventually decided 

that the focus should be placed at (0, 1/4), since this is 1/4 units away from the vertex at 

(0,0) and p = 1/4. The idea that p is the distance from the vertex to the focus was then 
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reemphasized in a voice-over and with an annotation over the talent's work. In the 

video, the talent expressed two voices that the VLs eventually repeated. The first is 

"once you know the p value, you know the focus’s location" and the second is "p as a 

distance." The talent expressed both voices as they determined the location of the 

focus. 

Resisting the voice "p as a distance" and relying on personal narrative 

After the VLs finished watching the video the second time, the researcher asked them 

what they noticed about p, the focus, and the directrix. Desiree responded, “It’s getting 

harder, intense.” Then, instead of engaging with p, the VLs graphed the parabola with 

p = 1.5 using point substitution. They did so by finding the equation for the parabola by 

plugging 1.5 into the general equation y = x
2
/(4p) for p, which yielded y = x

2
/6. They 

then used this equation to generate a table of x and y values that satisfied the equation 

and then plotted the points. This systematic process to graph the parabola was a 

significant detour from locating p, taking about 5 mins and 30 seconds to complete.  

We see this departure from engaging with p as an instance of resistance in that the VLs 

set aside the voice expressed in the video of "p as a distance," in favour of a voice that 

appeared to already be a part of their personal narrative, that of "graphing a parabola by 

point substitution." Notably, graphing the parabola did not help them locate p. 

However, it was a familiar voice, unlike the voice "p as a distance." 

Repetition of two voices related to p 

Once the parabola was graphed, the VLs read the task prompt again, which asked them 

to mark in p, the focus, and directrix. In response to the task, Desiree suggested that the 

focus would be at (0, 1.5), justifying the location by saying "because it’s 1.5," 

presumably in reference to the p value. She then labelled the point (0, 1.5) as the focus 

and drew in a line at y = -1.5, which she labelled the directrix. However, the VLs had 

not yet marked in p, as the task requested. At this point they explained their reasoning 

to the researcher, recounting their point substitution method. The researcher noted that 

they were able to find the equation and graphed the parabola, but asked where p would 

be in their graph. 

Researcher: Where is p? 

Belinda: This [sweeping gesture from the origin to directrix] and this [sweeping 

gesture from origin to focus]. 

Researcher:  Can you label those [the p values]? 

Desiree:  You do that [hands Belinda the pen]. 

Belinda:  This is p [draws and labels line segment from origin to line y=-1.5] and this 

is p [draws a labels line segment from origin to focus at (0,1.5)]. 

The researcher then asked what they had learned and Belinda explained why knowing 

p is useful, claiming “when you’re given p, you know the focus and directrix”. 
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In this episode, the VLs began to engage with p as they repeated two voices from the 

video. The first is "once you know the p value, you know the focus’s location." This 

voice was expressed by Desiree when she justified the placement of their focus at (0, 

1.5) and by Belinda when she said "when you’re given p, you know the focus and 

directrix." They then further engaged with p as they repeated the action associated with 

the voice of "p as a distance" when they drew in segments from the origin to the focus 

and from the origin to the directrix to indicate p, which are similar to the annotations in 

the video. However, while the voice of p as a distance was beginning to emerge, the 

VLs were still struggling to articulate verbally that p is a distance. 

Integrating the voice "p as a distance" with the VLs' personal narratives 

The VLs then moved on to another task, where p = 1/2. In contrast to their previous 

method, they seemed to use p immediately to find the focus and directrix. In response 

to the task, Belinda promptly drew in the directrix at y = -0.5 and labelled the segment 

between the directrix and vertex as p. Similarly, she then drew in the focus at (0,0.5) 

and labelled the segment between the focus and vertex as p. Meanwhile, Desiree 

started to create the graph using the point substitution method.  Belinda then described 

their work to the researcher.  

Belinda:  Since we know that p is the distance between the focus [and vertex] and 

directrix [and vertex] we put .5, because ½=.5. 

In this episode the VLs clearly articulated the voice of p as a distance. Belinda said "p 

is the distance..." and marked in and labelled the extents between the focus and the 

vertex and between the directrix and vertex as p. While the VLs made similar 

inscriptions while working on the previous task, they made the inscriptions more 

quickly in this episode. Furthermore, not only are the VLs able to describe p as a 

distance, but this meaning for p seemed to influence their thinking. Belinda explained 

that knowing p allows one to efficiently locate the focus and directrix. Instead of first 

needing to graph the parabola with a point substitution method, they quickly mark in 

the focus and directrix, using the fact that p = .5. At same time, however, they did not 

abandon the point substitution method, as Desiree continued to use it create a graph. 

Rather, these voices were integrated together as the VLs used both to engage in the 

task. As such, we claim this voice was integrated with their personal narrative, not only 

because it became influential in their thinking, but also because it was coordinated with 

another voice that was already part of their personal narratives. 

DISCUSSION 

The results of this study illustrate the complexities of the ventriloquation process. 

Rather than simply adopting a voice as it was presented in the videos, the VLs first 

resisted the new voice. However, unlike in Taylor’s (2003) example, the VLs in this 

study did not seem to be actively antagonistic towards the voice expressed in the video. 

Rather, they seemed confused by the voice and were unable to make use of it until they 

invoked their personal narrative. By evoking voices in their personal narratives, they 
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made space that allowed them to integrate the voice of “p as a distance” with those. We 

see personal narratives as a tapestry of voices, meaning learners need to understand 

how the voices in the personal narratives relate to one another. By using the point 

substitution method to create a graph alongside the voice “p as a distance,” the VLs had 

the opportunity to begin to explore the connections between the equation, the graph, 

the focus, the directrix, and p. 

IMPLICATION 

As video developers create dialogic instructional videos, they should consider how to 

support VLs in ventriloquation. VLs need opportunities to integrate new voices into 

their existing personal narratives. The results from this study suggest that this may 

mean they need opportunities to evoke voices in their personal narratives and explore 

the connections between these voices and those presented in the videos. One support 

for the VLs in this study to explore these connections seems to have been the 

opportunity to explain their thinking to a partner. We suggest that VLs be given 

opportunities to discuss with other students, whether in-person or virtually, how they 

are reasoning about tasks related to those explored in the video and the connections 

between how they are reasoning and the ways of reasoning presented in the videos. 
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Teacher telling can support but also hinder learning. In inquiry activities, telling that 

removes productive struggle may be problematic. In this study, different aged students 

experimented in a digital learning environment to build rules for a balance beam. We 

examined how the amount of teacher telling vary according to students’ age and the 

sophistication level of the rule. We collected video data from 21 pre-service teachers 

when each of them guided eight, 10, and 12 year old students. We found that the amount 

of teacher telling generally was not related to students’ age. However, when 

considering teacher guidance for more sophisticated rules, teacher telling was related 

to students’ age. Thus, the focus of the guidance is an essential factor affecting telling 

and teachers may have pressure for guiding students towards a high-level product. 

INTRODUCTION 

There seems to be consensus that students need some support or guidance in inquiry 

activities (Lazonder & Harmsen, 2016). One essential dimension in guidance is the 

degree of students’ autonomy (Vorholzer & von Aufschnaiter, 2019). On one hand, 

detailed instructions in performing something may remove student autonomy. On the 

other hand, sometimes non-specific guidance such as open or general questions do not 

offer enough help for students. Olsson and Granberg (2019) presented evidence that 

students are more able to perform an inquiry activity when having detailed instructions 

than those who received more open task. However, they also found that the learning 

results were more durable for those who were able to perform the open task.   

One type of detailed guidance is teacher telling, in which the teacher provides full 

information or explanation to some issue leaving no autonomy for students in 

examining or working on this issue. Teaching mathematics solely through telling is 

against many recommendations (e.g., NCTM, 2000) and, particularly in inquiry 

activities, it hinders the underlying idea of students investigating mathematics. 

However, also completely avoiding telling is problematic. Smith (1996) suggests that 

avoiding telling may affect negatively on teachers sense of efficacy. Furthermore, 

Chazan and Ball (1999) point out several instances in which teachers may need to tell. 

Indeed, Baxter and Williams (2010) found that two teachers’ teaching aligned with 

reform mathematics in many ways and the teachers at times strategically engaged in 

telling. Furthermore, Ding and Li (2014) suggest the need to flexibly use both direct 

guidance and facilitating guidance.  

Thus, the literature suggests that productivity of telling depends on the context 

including the students, the mathematical issue, the purpose of telling and the point in 
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time. Productive struggle is a concept that may help to consider telling. According to 

Hiebert and Grouws (2007), in productive struggle, students expend effort to make 

sense of mathematics. Thus, we can consider whether telling increases or decreases 

productive struggle. In an inquiry activity, telling may increase productive struggle, for 

example, if the teacher tells the meaning of a mathematical concept and students ponder 

how to apply the concept. On the contrary, telling may decrease or even remove 

productive struggle, if the teacher tells the steps how to achieve a particular result.  

Finally, Lobato et al. (2005) suggest considering the function of telling instead of the 

form of telling. The teacher may introduce information in the form of questions or in 

the form of declarative statements. For example, a series of questions can introduce an 

idea to students. 

An underexamined issue in teacher guidance seem to be the relation between guidance 

and students’ age. In their review of studies of inquiry-based learning in mathematics 

and science, Lazonder and Harmsen (2016) cautiously note that younger students may 

benefit from more specific guidance. They call for more studies in teacher guidance of 

different aged students, particularly when a same task is used with students of different 

age. Songer et al. (2013) found that while some kind of guidance was used similarly 

with younger and older students, more specific guidance (e.g., turning an open-ended 

question into a few multiple-choice options) was used with younger students. As there 

exists suggestions that more specific guidance might be suitable for younger students, 

it may be that teacher telling is used differently depending on students’ age. In this 

study, we focus on this issue taking into account Lazonder and Harmsen’s (2016) 

recommendation of using the same task with students of different age. 

In this study, the same inquiry activity was used in grades 2 (8 year old), 4 (10 year 

old), and 6 (12 year old). In the activity, the students experimented in a digital learning 

environment to build rules that describes an equilibrium state for a balance beam. As 

several rules of different sophistication level are possible, the activity is suitable for 

the different grades and teachers may need to guide students differently. In this paper, 

we focus on teacher telling that decreases productive struggle by removing student 

autonomy in considering a particular rule as we hypothesize that this may happen more 

often with younger students and with more sophisticated rules. The following research 

questions guided the analysis: 

 How does the amount of teacher telling vary according to students’ age? 

 How does the amount of teacher telling vary according to sophistication level 

of the rule with different aged students? 

METHODS 

Context 

We developed a digital learning environment involving dynamic representations. In 

this environment, students work to construct a rule or several rules that can be used to 

find an equilibrium state for a balance beam. Using dynamic representations made with 
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GeoGebra, students can experiment with a balance beam where two birds with varying 

weights can be placed on different sides of the fulcrum at different distances from the 

fulcrum (Fig. 1). The environment contained a laboratory where students could explore 

rules in an open setting and tasks in which they were supposed to use their rules. 

Usually, students first build less sophisticated rules such as ‘same weights and same 

distances’ before more sophisticated rules such as ‘the product of the weight and the 

distance on both sides are equal’. 

 

Fig. 1: The dynamic representation for exploring the rule for balance 

The students worked in groups of three students for 40 minutes. Each group had one 

pre-service primary school teacher guiding their work. Each pre-service teacher guided 

one second grade, one fourth grade and one sixth grade group at different times. The 

pre-service teachers participated in a course in which they were prepared to guide 

students. For example, they used the same environment as students and discussed 

various kinds of rules for balance that are possible to build. Discussion also included 

pedagogical ideas, such as building on students’ thinking even though the students 

would not be heading towards the most sophisticated rule. 

Data collection 

Altogether 21 pre-service teachers (hereafter shortly teachers) participated the study. 

Thus, data was collected from 21 second grade, 21 fourth grade, and 21 sixth grade 

groups that had three students in each group. 

The screen of each student group’s laptop was recorded using screen capture software. 

The software also captured audio from the laptop microphone and video from the 

laptop webcam in sync with screen capture. In addition, a small action video camera 

recorded the group from the side to enable the recognition of gestures and the person 

who is talking. All these data sources from each group were synchronized in one video 

file. 
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Data analysis 

Data was transcribed, and the data analysis used transcript and video in parallel. First, 

we identified episodes in which students either tried to balance the beam or reflected 

on the result of trying to balance the beam. For each episode we coded whether the rule 

was expressed (partially or completely) or not. We further coded the sophistication 

level of the expressed rule as presented in Table 1. 

 

 Description Examples 

Proportional 

rule 

The rule consists of a correct 

relation between the proportion 

of masses and proportion of 

distances expressed in any form 

with or without symbols or 

variables. 

Weight times distance equals on 

both sides. 

The weight is halved, and the 

distance is doubled. 

9 kg / 3 kg = 3 and 6 m / 2 m = 3 

Other rule The rule consists of correct 

qualitative properties or the rule 

consists of non-generalizable 

relations between the variables. 

The heavier bird is closer, and the 

lighter bird is further away from 

the fulcrum. 

If the weight is doubled, the 

distance between the birds is 

increased by one. 

Table 1: Codes for the sophistication level of the rules for balance 

Then, we selected episodes in which a rule was expressed and the teacher guided the 

students in building or using the rule. Thus, we omitted other kinds of guidance that 

could relate to, for example, use of the environment. If an episode contained teacher 

guidance related to a rule, we coded whether the guidance included telling that removes 

student autonomy related to building or using the rule (Table 2). 

The reliability was tested with two coders. In all the dimensions (episodes, expression 

of rule, rule type, autonomy level), Cohen’s kappa coefficient was above 0.80, which 

indicate that the reliability is very good. 

 Description Examples 

Telling The teacher guidance leaves no 

choices for the students in 

building or using the rule. The 

teacher lays out the essential 

components of the rule. 

Instead of adding, you can divide 

these two and these two. 

Series of questions: What could 

you do to these numbers? Could 

you multiply them? Then, what 

about these numbers? 
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Guiding 

without 

telling 

The teacher guides building or 

using of the rule but leaves some 

choices for the students. The 

students produce at least some 

essential component of the rule. 

Revoicing a rule that the students 

expressed. 

Why did it stay in balance? 

Does the same rule work here? 

Table 2: Codes for teacher telling that removes student autonomy 

RESULTS 

Table 3 gives the frequencies and percentages of the episodes in which the teacher 

guided with telling or without telling and the guidance was related to any kind of rule. 

Table 3 also includes episodes in which the rule was not eventually expressed. A chi-

square test of independence showed no statistically significant relation between 

students’ grade and the amount of teacher telling, X2(2, N = 752) = 2.449, p = 0.294. 

In all the grades, less than 1/5 of the episodes contained telling. In addition, the number 

of episodes in which teachers guided the students was about the same across the grades, 

which indicates equal amount of guidance in all the grades.  

 Telling Guiding without telling 

 f % f % 

2nd grade 35 16 181 84 

4th grade 30 13 202 87 

6th grade 35 12 269 89 

Table 3: Episodes of teacher telling or guiding without telling related to any rule 

To examine if the sophistication level of the rule affected telling, we examined 

separately episodes in which proportional rules were expressed and episodes in which 

other rules were expressed. Table 4 gives the frequencies and percentages of the 

episodes in which the teacher guided with telling or without telling students related to 

proportional rules. A chi-square test of independence showed statistically significant 

relation between students’ grade and teacher telling, X2(2, N = 140) = 8.138, p = 0.017. 

In case of proportional rules, telling existed more often in second grade. Half of the 

episodes in second grade contained telling. In addition, the total amount of episodes 

differed across the grades, which indicate that younger students less often considered 

proportional rules. 

 Telling Guiding without telling 

 f % f % 

2nd grade 7 50 7 50 

4th grade 5 17 25 83 

6th grade 17 18 79 82 
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Table 4: Episodes of teacher telling or guiding without telling related to proportional 

rules 

Table 5 gives the frequencies and percentages of the episodes in which the teacher 

guided with telling or without telling students related to other rules. A chi-square test 

of independence showed no statistically significant relation between students’ grade 

and teacher telling, X2(2, N = 387) = 2.797, p = 0.247.  

 Telling Guiding without telling 

 f % f % 

2nd grade 27 21 104 79 

4th grade 23 16 123 84 

6th grade 14 13 96 87 

Table 5: Episodes of teacher telling or guiding without telling related to other rules 

Based on tables 4 and 5, teacher telling with 2nd grade students was more common in 

proportional rules than in other rules. 

For example, in the following excerpt a teacher tells second grade students the 

proportional rule in one case when the students have balanced the beam with 12 kg in 

1 m distance on the left side and 6 kg in 2 m distance on the right side.  

Teacher:  Good, yes. Why did it stay in balance? Let’s write this down. Juliana, would 

you write this? 

Juliana:  Yes. 

Teacher:  So, why do you think that it stayed in balance? 

Alex:  Well, because the other was six, and then because 6 + 6 is 12 (inaudible) it 

was like half. 

Teacher:  Really good observation. 

Alex:  And 2 meters. 

Teacher:  So 6 + 6 is 12 and 1 + 1 is 2. [Points the screen.] Thus, this is two times the 

weight of this one and this is two times the distance of this one. Isn’t it? 

Really good. You solved it. 

The student noticed the proportion of weights being 1/2 but did not yet connect this to 

distances. Directly after this, the teacher introduced the proportional rule that included 

both variables and thus, removed the opportunity for productive struggle related to this 

rule. After this, the group continued balancing the beam without mentioning the 

proportional rule. 

DISCUSSION 

In this study, we examined how the amount of teacher telling varies when the same 

teachers use the same inquiry activity in different grades. We found that the amount of 
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teacher telling generally was not related to students’ age. However, when considering 

teacher guidance for more sophisticated proportional rules, teacher telling was related 

to students’ age. Thus, it is important to consider the focus of telling when examining 

telling. As Lazonder and Harmsen (2016) pondered, researchers may accommodate the 

inquiry tasks to the capabilities of the age group, which hinders the possibilities of 

noticing age-related differences in guidance. In this study, the task was the same across 

the grades, which allowed noticing that age-related differences existed when the 

teachers focused on more advanced issues.  

The finding that telling is used more often with second grade students when focusing 

on the proportional rule, may be an indication of the teachers’ pressure to reach the 

high-level rule. The teachers were introduced to various kinds of rules and were 

instructed to build on students’ thinking even though the students would not be heading 

towards the most sophisticated rule. Nevertheless, the teachers were aware of the 

proportional rule and may have felted the need to guide students towards that. When 

the students have major difficulties, it is challenging to help students but still leave 

space for productive struggle. If only avoiding telling, the teacher may do nothing to 

assist the students (Chazan & Ball, 1999) or just asks general questions that do not help 

students (Hähkiöniemi & Francisco, 2019). However, in case of open problems, that 

have multiple correct solutions, there is also an option of focusing on less advanced 

solutions. Similarly, Hähkiöniemi et al. (2013) reported that in an open problem, a 

teacher directed students to consider an easier subproblem to support student 

reasoning. In the context of the activity used in this study, teachers could focus on less 

sophisticated rules if the proportional rule is too challenging for the students. This 

would still allow the students to engage in the inquiry activity in meaningful way and 

have productive struggle in building lower-level rules. 

Finally, we emphasize that telling can also support inquiry, for example, by reminding 

students of previous knowledge or by introducing standard notation for students’ ideas. 

We only question the productivity of telling that removes productive struggle from 

students inquiry. Afterall, the inquiry process is more important than the outcome of 

the inquiry.  
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A DESIGNATED PROFESSIONAL DEVELOPMENT PROGRAM 

FOR PROMOTING MATHEMATICAL MODELLING 

COMPETENCY AMONG LEADING TEACHERS 

Hadas Handelman, Zehavit Kohen  
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Mathematical modelling is an important component of STEM education in the 21
st
 

century. This study examines how a designated professional development program 

impacts teachers' perceptions of mathematical modelling instruction and their 

mathematical modelling competency. The perceptions were assessed by a pre-post 

questionnaire and their modelling competency was measured by their solutions to 

modelling tasks, over three different timepoints. The results show a positive change in 

teachers' perceptions of modelling instruction and a positive trend in their competency 

to apply certain stages of the mathematical modelling cycle. In the study, 

methodological and practical contributions are discussed with respect to promoting 

and assessing mathematical modelling competence among mathematical teachers. 

INTRODUCTION 

Mathematics is considered as the foundation of all the STEM fields, yet studies 

indicate that there is a gap between the relevance of mathematics as taught in classes, 

compared to the applicability of mathematics in real-life, particularly in STEM-related 

fields (Blum, 2015; Kaiser, 2017; Kohen & Orenstein, 2021; Verschaffel et al., 2020). 

The use of mathematical modelling (MM) provides a method for demonstrating 

students the applicability of mathematics, as it reflects a transition from a real situation 

to a mathematical model. MM is a cyclic process that begins and ends with real-world 

situations unrelated to mathematics, in which a translation is made from the real-world 

context into mathematical terms toward a mathematical solution to the real-world 

situation (Blum & Leiß, 2007; Kaiser, 2017; Perrenet et al., 2012). Yet, students face a 

variety of challenges when it comes to MM, as they are faced with questions that arise 

from the reality, which they must apply mathematical knowledge to (Ferri, 2017). MM 

instruction, particularly when it involves a STEM-related context is a significant 

challenge for mathematics teachers as well. As teachers, they are required to deal with 

the difficulties of their students who are unfamiliar with modelling as part of formal 

math lessons (Verschaffel et al., 2020), as well as deal with the same difficulties 

themselves in applying modelling skills in solving modelling problems with different 

contexts (Kramarski & Kohen, 2017). Also, since this sort of instruction is not often 

addressed in formal math classes, it is important that teachers have positive perceptions 

towards MM instruction (Kohen, Orenstein, & Nitzan, 2019). It is therefore imperative 

that teachers be trained to have these skills, both as learners and as teachers, through a 
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Figure 1. The modelling cycle 

(Blum & Leiβ, 2007) 

Figure 2. PISA’s Mathematical 

literacy model (OECD,2018) 

supportive professional development (PD) environment (Darling-Hammond et al., 

2017). 

THEORETICAL FRAMEWORK – MATHEMATICAL MODELLING 

Blum and Leiß (2007) presented an MM cycle which consists of seven stages that 

reflect the transition from reality and mathematics (see Figure 1). This model describes 

the actions that a solver must perform in order to solve a real-world problem using 

mathematical methods. The modelling cycle suggested by Blum and Kaiser's has four 

main steps. The first two steps involve idealizing of a real-life situation and making it 

into a realistic model. Mathematization that is the third step is the transition from 

reality to the mathematical world upon choosing a mathematical model to solve the 

real-world model, and involves investigating of the mathematical model through the 

use of mathematical algorithms, routines, and procedures. The last three steps involve 

ensuring that the results of the model are comparable with reality by interpreting them. 

The MM cycle closely resembles PISA's mathematical literacy cycle. PISA defines 

mathematical literacy as the ability to think mathematically in order to solve problems 

in a variety of real-world contexts (OECD, 2018) (see Figure 2). In terms of the PISA 

conceptual framework, mathematical literacy includes three main stages that fit to the 

MM cycle: Formulate, Employ, and Interpret. These matches to PISA’s cycle are 

visualized in figure 1 as follows: formulate related stages are marked with orange 

frame, employ related stages are shown in blue frame, and whereas interpret related 

stages are shown in green frame. 

 

 

 

 

 

 

 

 

 

 

The modelling tasks applied in this study reflect the narrowed modelling cycle. 

However, as these tasks are suited for formal school mathematics (Kohen & Orenstein, 

2021), the idealizing stage that takes place within the reality is explicitly provided in 

the task, thus reflecting a more constrained type of a modelling problem. With that, 

these modelling tasks have much similarity with the PISA framework, which led us to 

use the PISA conceptual framework to represent the MM stages.  

This research is based on MM tasks with a real-world context, that is retrieved from 

technology and engineering authentic applications, and an example of that is the 'Iron 

Dome' task. 'Iron Dome' is an advanced defence radar system that can detect the 

trajectory of rockets and can calculate the expected impact zone. As soon as the rocket 
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enters the free fall stage, the Iron Dome system uses the information it receives to trace 

its trajectory, by using mathematical calculations that are based on a quadratic 

equation. In accordance with the MM processes, formulating is realized in this task 

with the use of a main question that reflects the transition from reality to the 

mathematical world: 'How can the rocket trajectory be predicted?' Then, the employing 

stage involves applying mathematical procedures and graphic representations, to 

derive the mathematical solution, that is based on the identification of three points in 

the rocket trajectory and calculating a quadradic equation. In the interpretation stage, 

based on the mathematical solution and the predicted landing area, students can 

estimate whether or not the Iron Dome will intercept the rocket. 

The purpose of this study is to explore the impact of a designated PD program on the 

advancement of teachers’ MM competencies, as well as teachers’ perceptions toward 

modelling-based instruction. The research question is: What are the changes (if any) in 

teachers’: a) perceptions towards MM instruction, and b) MM competencies? 

METHODOLOGY 

The context of the study - a PD program for modelling-based instruction. 

The current study was conducted as part of a designated 60-hour PD program for 

leading mathematics teachers, which is held for the goal of training teachers to apply 

modelling-based instruction. During the PD program meetings, the coaches introduced 

the modelling framework, and its correspondence to the PISA's framework, introduced 

modelling tasks with real-world technology or engineering context, and discussed 

pedagogical content to support the adaptation of modelling-based instruction. 

Participants were about 40 math leading teachers who took part in the PD program. 

Some of the teachers are math coordinators, instructors, or hold key positions in the 

Ministry of Education in Israel. The teachers have varied teaching experience, with 

most of them having more than seven years of experience in the education system.  

Research Tools and analysis. 

The study uses two main tools. The first tool was a pre-post self-reported questionnaire 

for measuring teachers’ perceptions toward MM instruction, on a six-level Likert scale 

(1, not true at all, and up to 6 - almost always true). The questionnaire aimed to assess 

teachers’ perceptions toward the application of the various modelling processes, i.e., 

formulate, employ, and interpret in their instruction during math lessons. The 

questionnaire was distributed to participants at the beginning and the end of the PD 

program. The second tool was a solution to a modelling problem, which aimed to 

assess the teachers' MM competency. The teachers were asked to explicitly write all 

the phases of their solution. Below is an example of a MM problem, that was retrieved 

from the 'Iron Dome' task (see Figure 3). 

The teachers were asked to solve three modelling tasks throughout the PD program in 

three different time points. The Iron Dome task described above was applied at the 

beginning of the program as a starting point. Four months later, the teachers solved a 



Handelman, Kohen 

 

2 - 342 PME 45 – 2022 

  

problem retrieved from the 'Autonomous Car' modelling task, which involves using 

ultrasonic sensor technology, that is based on sound speed, and is related to a motion 

problem where the distance equals time multiplied by speed. Towards the end of the 

program, the teachers were asked to solve a problem retrieved from the GPS modelling 

task which deals with how satellite signals are received and analysed in order to 

determine a GPS receiver's location, which solution is based on a motion problem 

followed by a Pythagorean theorem. 

 

Figure 3. An example for a MM problem, retrieved from the 'Iron dome' task 

DATA ANALYSIS 

Quantitative data retrieved from the questionnaires was analysed using dependent 

T-test to determine changes over time. Further, for assessing the teachers' MM 

competency, we analysed their solutions to the modelling tasks, and graded them in a 

3-level process as described below. We then conducted One-Way ANOVA with 

repeated measures to evaluate the change over time in teachers’ modelling 

competency, as measured referring to the three investigated modelling tasks. We 

demonstrate the analysis process, based on the modelling problem that was retrieved 

from the iron dome task, and is presented in figure 4. 

Phase 1 – Assessing the level of the various modelling components of the task. 

This phase was conducted prior to the tasks being responded to by the participants and 

was designed to objectively evaluate the modelling competencies the tasks require. 

Based on a valid rubric (Kohen & Gerrah-Badran, in press) for assessing an authentic 

MM task, each task was evaluated. This rubric allows to determine the MM 

competency that are summoned in modelling tasks, referring separately to each of the 

modelling processes, which is given a grade on a scale of 1 (low level of modelling 

competency) to 3 (high level of modelling competency). 

For the 'Iron Dome' task, the coding was as following. Formulating was assigned to 

level 2 (medium) since the problem requires working efficiently with two 

representations (graphic and algebraic), while taking assumptions, such as “falling in 

an open area” means no interception, so there must be a cut point with axis X. 

However, there is no requirement to create a new representation, but to work with a 

familiar one, so the level is medium and not high. Employing was assigned to level 3 
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(high) since the problem requires planning strategies for a solution while reasoning the 

mathematical solution such as choosing the cut point on axis X and then finding the 

quadratic equation. Finally, interpreting was assigned to level 2 (medium) since the 

problem requires reasoning to provide justification and adaptation to a representation 

of a situation in the real world, such as the selection of the appropriate point for 

interception. As there is no requirement to explain the process of drawing conclusions, 

the level of this stage is medium. 

Phase 2 – Using indicators for recognizing modelling components in teachers' 

solutions. 

This phase is based on evaluating the teachers’ responses to the various tasks. An 

indicator (0/1) was given for each component of the modelling process that was 

recognized in teachers' solutions, based on an indicator that was developed for each 

task specifically. The indicator development included a validation process performed 

by math-education experts. It should be noted that the formulating component of the 

modelling process is a component without which the employing cannot be reached. 

Therefore, even if the formulating process is not expressed in the written answer, but 

the employing process was carried out correctly, it was assumed that the teacher went 

through the formulating process while thinking about the solution. The following 

example demonstrates the solution of Michael (pseudo) to the iron dome task, and the 

indicators that were given for this solution, referring to each of the modelling 

components: “After finding the equation of the function (by placing it in the vertex 

representation 18,25) it is possible to select a point whose X-rate is for example 15 that 

will need interception as it enters a built-up area (24.55, 15)”. 

In this solution, Michael goes directly to the mathematical procedures and explain 

what procedures should be performed to solve the mathematical aspect of the question. 

Thus, an indicator of 1 was given to the employing component. In this case, it can be 

assumed that the formulating process was conducted within his mind, thus this 

component was also marked with indicator ‘1’. Then, there is a reference in his 

solution of returning to the real-world context of the task, but it seems as if Michael did 

not fully understand the question (the determination weather the Iron Dome system 

will or won't intercept the rocket, based on its expected fall location). Thus, an 

indicator of ‘0’ was given to the interpreting component as he reached a mathematical 

solution but failed to draw conclusions out of it. 

Phase 3- Determining a grade for the teacher's MM competency. 

In this phase, a merge of the two previous phases was conducted to determine the 

modelling competency of the teachers that was reflected in each of the investigated 

tasks. For each component of the modelling process, we multiplied the objective grade 

that was given to each modelling component on phase1 by the indicator that was given 

to teachers’ solutions on phase 2. Then we summed up the results and divided it by the 

sum of grades from phase 1 for the purpose of normalizing the score, so the grades 
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ranged between 0 to 1. Table 1 presents the assessment of Michael’s MM competency, 

as was determined based on the problem retrieved from the Iron Dome task. 

Modelling stage Phase 1 Phase 2 Phase 3 Grade 

Formulating 2 1       
     

 
      Employing 3 1       

Interpreting 2 0       

Table 1. The assessmnet of Michael's MM competency 

FINDINGS 

Findings revealed no significant difference in teachers’ perceptions toward 

modelling-based instruction, with respect to all modelling components, -1.91<t<-1.05, 

p>.05. Yet, post-hoc analysis according to Cohen's d effect size indicated that the 

teachers demonstrated more positive perceptions toward modelling instruction that is 

based on the formulate (d = 0.36) and employ (d = 0.42) modelling processes, and 

particularly with respect to modelling instruction that is based on the application of the 

interpret process (d = 0.67). As Graph 1 below demonstrates, there is a positive trend in 

teachers' perceptions before and after participating in the program. 

 

Graph 1. Teacheres’ Perceptions towards modelling-based instruction, before and after 

participating in a PD program 

Graph 2 below presents the change over time in the teachers’ modelling competency. 

Findings revealed a significant multivariate effect for the three latent variables as a 

group in relation to three times of measures, indicating higher modelling competency 

toward solving the third modelling task, F (3,40) = 10.83; p<.0001, η
2
=.619. Simple 

main effect tests with Bonferroni adjustment indicated that teachers’ competency of 

formulate and interpret during solving the third task was significantly higher that the 

competency they demonstrated during solving the first task, and the second task (with 

respect to merely the formulate competency). For the employ competency, they 

demonstrated an improvement of this competency during the second task, which 

decreased during solving the third task. 
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Graph 2. The change in teachers’ MM competency 

CONCLUSION AND CONTRIBUTIONS OF THE STUDY 

The study findings indicate an improvement in both teachers’ modelling competency 

and their perceptions toward instruction-based modelling. Based on previous studies 

conducted on the field with the aim of improving the MM capabilities of students, Niss 

(2001) concluded that applications and modelling capabilities can be learned. Teachers 

play an essential role in promoting modelling competency among their students (Doerr 

& English, 2003). However, for learning to occur, teachers must devote time and effort 

to implementing modelling tasks. Thus, their positive perceptions towards 

modelling-based instruction, as well as their own modelling competencies are 

significant in promoting MM among their students. 

The most significant improvement in teachers’ modelling competency was detected in 

the formulating and interpreting stages of the process. These two stages represent the 

main difference between a standard mathematical word problem and a MM one, as 

they reflect the transition from the real world to the mathematical one (Ferri, 2017; 

Kaiser, 2017; Perrenet et al., 2012). This finding reinforces the importance of 

supporting teachers’ modelling competency as leaners, through PD programs. 

However, it remains to be seen whether the employing stage is directly impacted by the 

PD program or if it is primarily influenced by teachers’ previous knowledge that is 

required to solve the MM task during the employing stage.   

An effective PD program allows teachers to progress professionally and changes the 

way they apply new or improved methods of instruction (Darling-Hammond et al., 

2017). The practical contribution of this study is reflected in the presented designated 

PD program that was found to be effective in enhancing the participating teachers' MM 

competencies and their perceptions toward modelling-based instruction. In terms of 

the study's methodological contribution, we produced a tool for measuring teachers' 

modelling competency, which can be also valuable as a practical tool for teachers and 

other researchers.  
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FOCUSING ON NUMERICAL ORDER IN PRESCHOOL 

PREDICTS MATHEMATICAL ACHIEVEMENT SIX YEARS 

LATER  

Heidi Harju, Erno Lehtinen, Minna Hannula-Sormunen 
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The development of numerical ordering of number symbols, unlike numerical ordering 

of other stimuli, such as sets of everyday items, has recently gained growing research 

interest. Here, we report a nine-year follow-up study with 36 three-year-old children. 

We investigated how children’s focusing on numerical order develops alongside 

number sequence production and cardinality recognition skills. Results showed large 

individual and developmental differences in children’s focusing on numerical order 

from the ages of 3 to 6 years. Preschool focusing on numerical order and spontaneous 

focusing on numerosity predicted curriculum-based math achievement at 12 years of 

age.  

INTRODUCTION 

Children learn many important mathematical skills at preschool age. At around 3 years 

of age, they already practice reciting number word sequence and start to recognize 

cardinal values for small sets of items by subitizing (Fuson, 1988). Next, at roughly 3.5 

years of age, children begin to learn to recognize the numbers of items by counting 

(Wynn, 1990). Counting skills develop gradually, and there are many subskills 

involved (Fuson, 1988; Sarnecka et al., 2015). It has been well established that these 

early mathematical skills predict later academic achievement (Duncan et al., 2007), 

and a great number of studies have described how early mathematical skills develop 

(Clements & Sarama, 2007).  

Children’s tendencies to spontaneously focus their attention on mathematical aspects 

have drawn increasing research interest (Verschaffel et al., 2020), following research 

on spontaneous focusing on numerosity (SFON) (Hannula & Lehtinen, 2005). 

Numerous studies show developmentally significant and domain-specific individual 

differences in children’s tendency to focus on exact numerosity in situations that are 

not explicitly mathematical, even if they have the mathematical skills to do so (for a 

review, see McMullen et al., 2019). Children with a higher SFON tendency have been 

shown to have an advantage in the development of early and later mathematical skills 

in elementary school (for a review, see Verschaffel et al., 2020).  

Studies of numerical order development have found that children who are better at 

deciding whether three numbers are in numerical order or not have better arithmetic 

skills later in life (Malone et al., 2021; Attout & Majerus, 2018; Lyons et al., 2014). 

Children’s ability to process numerical order is a unique predictor of later arithmetic 

skills, and the predictive force seems to increase from Grade 1 to Grade 6, exceeding 
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cardinal skills as a predictor of arithmetic skills (Lyons et al., 2014). However, studies 

regarding numerical order have mainly focused on the order of number symbols; only a 

few studies have used non-symbolic stimuli (Spaepen et al., 2018), and even rarer are 

studies using play-based methods with sets of toys.  

Numerical order is not just some artificial order related to number symbols. It is a 

consequence of the corresponding cardinal values, which have the order of each 

cardinal value being exactly one more than the previous one (Spaepen et al., 2018). 

Recent studies have shown that even if children acquire counting and cardinal skills, 

they still lack the generalized knowledge of how counting up the number sequence is 

related to cardinal value increasing by one (Spaepen et al., 2018; Cheung et al., 2017), 

which is the mechanism of how all natural numbers are constructed. Understanding 

how cardinal and ordinal aspects of numbers are integrated during early development 

is a question that has yet to be answered. 

THE PRESENT STUDY 

A developmentally important aspect of numeracy has been neglected in previous 

studies: the recognition of the numerical order of nonsymbolic items. Here, we report 

longitudinal data on a novel task that was developed for measuring children’s focusing 

on numerical order in the context of a three-year longitudinal study on early numeracy 

(Hannula & Lehtinen, 2005) with a follow-up study that took place nine years after the 

first testing. The data sought to emphasize that the use of numerical order in action first 

requires focusing on the exact numerosity of items in sub-sets, followed by 

recognizing the number of items in the sub-sets, only after which can the focusing on 

and recognition of numerical order of sub-sets take place. Focusing on numerical order 

may thus require well-integrated cardinal and ordinal aspects of numbers (Anderson & 

Cordes, 2013), and it may thus appear only after children have learned to fluently 

recognize the cardinality of a set by counting. The research questions are as follows: 

1) How does focusing on numerical order develop from the age of 3 to 6 years? 

2) How do preschool mathematical skills, such as spontaneous focusing on 

numerosity, focusing on numerical order, number sequence production, and 

subitizing-based enumeration, predict math achievement at 12 years of age? 

METHOD 

Participants 

Thirty-six Finnish children (18 girls and 18 boys) with no developmental delays from 

Finnish-speaking families in daycare participated in this study. The mean age of the 

children was 3.0 years (SD = 1.5 months) at the start of the first data collection.  

Procedure and tasks 

Preschool data collection took place at the ages of 3, 4, 5, and 6 years. Children were 

tested for their focusing on numerical order, number sequence production, and 

cardinality recognition skills at every time point. In addition, the children were tested 
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for their subitizing-based enumeration skills at the age of 5 and their SFON tendency at 

the age of 6 years. A follow-up was conducted at the age of 12 years, where the 

children were tested for their curriculum-based math achievement. 

Children’s focusing on numerical order was assessed with a novel, previously 

unreported caterpillar ordering task. In this video-recorded task, the child was shown 

similar boxes. Each box contained a caterpillar with a unique number of legs and a 

picture of a matching number of socks (see Figure 1). At the ages of 3 and 4 the child 

was shown five boxes (1–5 legs) and seven boxes (1–7 legs) at the ages of 5 and 6. 

First, the experimenter helped the child notice that each caterpillar had its own box of 

socks with as many socks as the caterpillar needed (Figure 1a.). The boxes were placed 

on the table and the caterpillars next to their own boxes. Then, the experimenter took 

the caterpillars away from their boxes and said, “Let’s organize these boxes of socks 

like this. Every box has its own place.” With the socks being visible, the experimenter 

organized the boxes in a vertical row in an increasing numerical order (Figure 1b.), and 

the child was asked to remember where each box was. The child was left to notice 

themselves that the boxes were in numerical order. Then, the experimenter closed the 

boxes, handed the caterpillars in front of the child, and asked the child to show each 

caterpillar where its own box of socks was (Figure 1c.). The highest number of 

caterpillars in the correct order was recorded and regarded as the score in the task.  

 

Figure 1: Caterpillar ordering task used to measure children’s focusing on numerical 

order. 

Children’s SFON tendency was measured at the age of 6 years with a sum score of 

Imitation, Model, and Finding tasks (for details, see Hannula & Lehtinen, 2001; 2005) 

in which it was assessed how frequently the child noticed and used exact number of 

items spontaneously, i.e. without any guidance or explicit task instructions. 

Cardinality recognition skills were assessed at the ages of 3 and 4 with the caterpillar 

task (“Bring the caterpillar as many socks as it needs”, max 10 [see Hannula & 

Lehtinen, 2001; 2005]) and at the ages of 5 and 6 years with an object counting task 

(“Count aloud how many ‘turtles’ there are on the table”, max 23 [see Hannula & 

Lehtinen, 2005]). In the number sequence production task, children were asked to 

count as far as they could, or until fifty, where they were stopped (for details, see 

Hannula & Lehtinen, 2005). Children’s subitizing-based enumeration skills were 

measured with a computer-based test, in which the child was asked to identify which of 

the four groups with different numbers of dwarves had stolen the groups of objects that 

c. b. a. 
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had earlier been flashed on the laptop for 120 ms (see Hannula et al., 2007). 

Curriculum-based math achievement was measured using the Finnish standardized 

RMAT test (Räsänen, 2004), which includes 56 items of multi-digit arithmetic and 

simple algebra. 

RESULTS 

The results in Table 1 show large individual differences and how children’s focusing 

on numerical order developed from 3 to 6 years, where most participants did not really 

understand the task at 3 years old to almost all of them mastering it at 6 years old in the 

caterpillar ordering task.  

 Highest number of correct order produced 

Age 0 1 2 3 4 5 6* 7* 

3 years 87 10 3 0 0 0   

4 years 44 18 13 3 0 23   

5 years* 10 18 8 5 5 0 0 54 

6 years* 0 2 8 10 0 0 0 80 

Note. * The total number of boxes used was five at the ages of 3 and 4, and seven at the 

ages of 5 and 6. 

Table 1: The highest number up to which the boxes were numerically correctly ordered 

in percentages of the sample (N = 36).  

Figure 2 demonstrates the differing ranges for children in number sequence 

production, cardinality recognition (or object counting), and focusing on numerical 

order. Importantly, this is only indicative of children’s number ranges in real life due to 

the task maximums differing in various measures. However, a closer look at the 

individual children’s developmental data indicates that the developmental order of the 

skills followed the same pattern. First, children learned to recite a list of number words, 

then to recognize small numbers of items and develop object counting skills for the 

first three or four numbers; only then did they start to notice the numerical order of 

items. The differences in the numerical ranges of the children’s skills mirrored the 

developmental order of the skills as well.  

Next, we explored the associations between preschool mathematical skills (number 

sequence production, subitizing-based enumeration, and focusing on numerical order 

at the age of 5, and SFON tendency at the age of 6) and math achievement at 12 years 

old. We found significant correlations within preschool mathematical abilities, and 

also between all preschool mathematical abilities except for subitizing-based 

enumeration and general mathematical abilities at 12 years (Table 2). 

We further investigated whether preschool mathematical skills predict mathematical 

skills at the age of 12 by means of multiple linear regression analysis. We included 
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number sequence production, subitizing-based enumeration, focusing on numerical 

order at 5 years, and SFON tendency at 6 years as predictors in the model. The results 

presented in Table 3 indicate that there was a collective significant effect between 

preschool mathematical skills and general math achievement by the age of 12. A closer 

look at the predictors indicates that only focusing on numerical order at 5 years and 

SFON tendency at 6 years were significant predictors of general mathematical 

abilities, unlike number sequence production at 5 years or subitizing-based 

enumeration at 5 years old. 

 

 

Figure 2: Children’s accurate number ranges in number sequence production, 

cardinality recognition/object counting, and focusing on numerical order. 

Variable M SD (2) (3) (4) (5) 

(1) Number sequence 

production at 5 years 
23.42 6.53 .47** .53*** .46** .39* 

(2) Subitizing-based 

enumeration at 5 years 
2.64 1.38 -- .39* .40** .09 

(3) Focusing on 

numerical order at 5 

years 

4.61 2.84  -- .51** .54*** 

(4) SFON tendency at 6 

years 
2.58 1.76   -- .54*** 

(5) Math achievement at 

12 years 
36.03 6.53    -- 

Note. * p < .05, ** p < .01, *** p < .001. 

Table 2: Descriptive statistics and correlations between preschool mathematical skills 

and general math achievement at the age of 12 years (N = 36). 
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Variable β (SE) 95% CI 

Number sequence production at 5 years .14 (.08) [-.12 – .28] 

Subitizing based enumeration at 5 years -.27 (.75) [-2.81 – .23] 

Focusing on numerical order at 5 years .36* (.39) [.04 – 1.64] 

SFON tendency at 6 years .40* (.61) [.23 – 2.71] 

Total R
2 
= .44***   

Note. * p < .05, ** p < .01, *** p < .001 (N = 36) 

Table 3: Regression analyses predicting math achievement at 12 years. 

CONCLUSION AND DISCUSSION 

The current study investigated the three-year development of children’s focusing on 

numerical order and its predictive effect on general mathematical abilities. We found 

evidence that children have individual differences in focusing on numerical order as 

well as an increase in focusing on numerical order from 3 to 6 years of age. Our finding 

seems to be in line with an earlier study that showed that cardinal recognition skills 

develop before the ability to order sets numerically (Spaepen et al., 2018). In fact, 

Cheung et al. (2017) have suggested that only after acquiring cardinal skills can 

children place sets of objects in correspondence with the number sequence, which is 

also reflected in our data. 

Next, we found that focusing on numerical order and SFON tendency were significant 

predictors of children’s math achievement, even after controlling for number sequence 

production and subitizing-based enumeration skills at preschool age. This indicates 

that focusing on numerical order might be an important aspect of early mathematical 

skills. Interestingly, number sequence production, which many studies have reported 

to be a strong early predictor of mathematical skills (Koponen et al. 2016), did not 

significantly predict later mathematical skills when the two numerical focusing 

tendencies were included in the model.  

These results may indicate a similar reciprocal development between early 

mathematical skills and focusing on numerical order, as was reported in earlier studies 

of SFON (Hannula & Lehtinen, 2005). Initial number skills enable the spontaneous use 

of these skills in various situations, in this case noticing and making use of numerical 

order, which subsequently leads to enhanced mathematical skills. In this study, the 

caterpillar ordering task had hints toward the numerical nature of the task, so the task 

did not yet measure children’s spontaneous focusing on numerical order. In addition, 

our sample was small, and the numerical order focusing task had only one test item. 

Thus, our results need to be treated as suggestive. Future studies with larger samples 

and more tasks should investigate whether focusing on numerical order could be 

another member of the “spontaneous mathematical focusing tendencies” (McMullen et 

al., 2019), called Spontaneous Focusing On Numerical Order (SFONO).  
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THE PROCESS OF MODELLING-RELATED PROBLEM POSING 

– A CASE STUDY WITH PRESERVICE TEACHERS 

Luisa-Marie Hartmann, Janina Krawitz, & Stanislaw Schukajlow  

University of Münster 

 

In real life, problems emerge from situations and often need to be posed before they 

can be solved. Despite the ongoing emphasis on the processes involved in solving 

modelling problems, little is known about the process of problem posing. To help fill 

this gap, the current study examined (1) what activities are involved in 

modelling-related problem posing and (2) the sequence in which they occur. For this 

purpose, we invited seven preservice teachers to pose a problem based on given 

real-world situations and analyzed their problem-posing activities. We identified the 

five most frequent activities that occurred in the sequence: understanding–exploring– 

generating–problem solving–evaluating. These results contribute to the uncovering of 

important activities and contribute to theories of modelling and problem posing. 

INTRODUCTION 

In mathematics classrooms, the ability to solve problems in the real world (i.e., 

mathematical modelling) is a key competency that needs to be learned to be able to 

function as a responsible citizen in society (Niss & Blum, 2020, p. 2). However, in the 

real world, problems often need to be identified and posed first before they can be 

solved. Therefore, posing problems in given real-world situations (i.e., 

modelling-related problem posing) is an important competency. In the past, a great 

deal of research has been conducted on mathematical modelling (Schukajlow et al., 

2021). However, only a few studies have analyzed modelling-related problem posing. 

Posing one’s own problems is a demanding process that has to be learned (Cai & 

Hwang, 2002). To improve the teaching and learning of problem posing, knowledge 

about the activities involved in the process is needed (Cai et al., 2015). Research on the 

activities involved in posing problems based on given real-world situations has largely 

been missing so far. To help fill this gap, we aimed to analyze the activities involved in 

modelling-related problem posing from a cognitive perspective.  

THEORETICAL BACKGROUND 

Problem Posing 

Research in mathematics education has been focusing more on problem posing in 

recent years as it can be gainfully used for teaching and learning mathematics (Cai et 

al., 2015). Problem posing can be defined as the generation of new problems and the 

reformulation of given problems that can take place before, during, or after problem 

solving (Silver, 1994). Stoyanova (1997) differentiated between structured problem 

posing, which is based on an initial problem, and unstructured problem posing, which 

is less restricted and is based on a holistic description of a situation. The connection to 
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reality of the given stimuli is another important characteristic of problem posing. 

Based on the classification of problems with and without a connection to reality (Blum 

& Niss, 1991), the stimuli given for problem posing can be intramathematical 

descriptions or real-world situations. The focus of the present study is on problem 

posing as the generation of new problems based on given real-world situations before 

solving them. In the following, we will refer to this type of problem posing as 

modelling-related problem posing. An exemplary real-world situation that can be used 

as a stimulus for modelling-related problem posing is presented in Figure 1. 

 

Figure 1: The real-world Cable Car situation 

Problem-Posing Activities 

Based on the given real-world situation, a variety of real-world problems can be posed 

(Galbraith et al., 2010; Hartmann et al., 2021). An exemplary problem that can be 

posed using the given real-world situation in Figure 1 is: What is the best way to 

reconstruct the cable car? To pose such a problem, creative thinking is necessary 

(Bonotto & Santo, 2015). Wallas (1926) used a four-phase model consisting of the 

phases preparation (exploration), incubation, illumination, and verification to 

describe creative mathematical thinking process.  

Some studies analyzed the activities that occur when a problem is posed (Baumanns & 

Rott, 2021; Christou et al., 2005; Pelczer & Gamboa, 2009). First, the situation has to 

be explored with respect to possible problems that can be posed in the given situation. 

This activity is called editing, selecting by Christou et al. (2005), transformation by 

Pelczer and Gamboa (2009), or analysis, variation by Baumanns and Rott (2021). 

Second, problems can be generated by formulating them. This activity is called 

translating (Christou et al., 2005), formulation (Pelczer & Gamboa, 2009), or 

generation (Baumanns & Rott, 2021). Third, the posed problems can be evaluated with 

respect to individual criteria (e.g., solvability or appropriateness) (Baumanns & Rott, 

2021; Pelczer & Gamboa, 2009). Previous studies indicated that the sequence of posed 

problems was typically guided by the employed problem-solving strategies (Cai & 

Hwang, 2002). Therefore, thinking about a possible solution might already be part of 
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problem posing. Moreover, some students might develop a possible solution plan 

while problem posing (Baumanns & Rott, 2021). Overall, it can be assumed that the 

problem-posing process consists of exploring, generating, and evaluating activities 

and might already involve problem solving. However, the studies revealed that the 

activities involved are by no means linear and that the process is instead characterized 

by jumping back and forth between the individual activities (Baumanns & Rott, 2021; 

Pelczer & Gamboa, 2009). Prior studies on problem posing used unstructured problem 

posing with intramathematical stimuli (i.e., graphs, tables, equations, and dressed-up 

stories) (e.g., Christou et al., 2005) or  structured problem posing with 

intramathematical and dressed-up word problems (e.g., Baumanns & Rott, 2021; 

Pelczer & Gamboa, 2009). Regarding modelling-related problem posing, only a little is 

known about the activities that take place when posing problems based on given 

real-world situations. In problem posing based on real-world situations, students 

should understand and explore the situations, generate possible problems, and evaluate 

the problems regarding their solvability (Bonotto & Santo, 2015). However, these 

theoretical considerations have yet to be empirically evaluated. 

RESEARCH QUESTIONS 

The goal of the present study was to examine the modelling-related problem-posing 

process by investigating the activities involved in posing problems based on given 

real-world situations. For this purpose, we asked the following research questions: 

1) What activities are involved when preservice teachers pose problems based on 

given descriptions of real-world situations, and how can these activities be 

described? 

2) In which sequences do the problem-posing activities occur? 

METHOD 

Sample 

Seven preservice mathematics teachers between the ages of 20 and 26 (M = 22.86, SD 

= 1.95) from a large COUNTRY/REGION university participated in our study (4 

women). To select the sample, we used heterogeneity sampling regarding different 

mathematics performance levels, experience in problem posing and modelling, and 

participation in different university programs. Two of the participants studied in a 

middle-track secondary school teacher program and five of them in a higher track 

secondary school teacher program. All participants were experienced in solving 

modelling problems and six of them in posing problems. The study was approved by 

the ethics committee of the faculty. 

Procedure and Instruments 

To identify the cognitive processes and to gain deep insights into the processes of 

problem posing, we used a qualitative study that included thinking aloud and the 

stimulated recall method. The preservice teachers were instructed to first pose a 

problem based on the given real-world situations, and after posing each problem, to 
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solve it. For both posing and solving, they were instructed to think aloud during all 

activities. All responses were videotaped. The videos included their voice, gestures, 

writing, and facial expressions. To initiate problem posing, we used three real-world 

situations as they are described in modelling problems and enriched them by adding 

further authentic information to allow a variety of problems to be posed. An example 

of a real-world situation is presented in ¡Error! No se encuentra el origen de la 

referencia.. 

Data Analysis 

To analyze the recorded videos, we first transcribed the material from the 

problem-posing process and the subsequent stimulated recall with regard to 

content-bearing semantic elements and then analyzed them using Mayring’s (2015) 

content analysis. The coding scheme is based on the theoretically assumed 

problem-posing activities (exploring, generating, evaluating, problem solving) 

described in the literature and was extended inductively on the basis of the given 

material by using subsumption. 

Transcripts were coded by the first author. To test for interrater reliability (measured as 

Cohen’s kappa), over 50% were coded by a well-trained second rater. Cohen’s kappa 

was at least moderate ranging from κ = .81 to κ = .95 (Cohen, 1960). To gain an overall 

picture of the activities involved in modelling-related problem posing, we analyzed the 

data with respect to the realization of the individual activities, and then for the second 

research question (sequence of activities), we focused on the number and frequency of 

changes in activity. 

RESEARCH FINDINGS 

With regard to our first research question, which was aimed at describing the activities 

that take place when learners engage in modelling-related problem posing, the analysis 

revealed the involvement of the five activities understanding, exploring, generating, 

problem solving, and evaluating. ¡Error! No se encuentra el origen de la referencia. 

gives an overview of the observed activities.  

 

Figure 2: Activities involved in modelling-related problem posing 

In the following, we focus on the realization of the individual activities:  

Understanding involved building an understanding of the situation. Thereby, students 

read the given situation, summarized information, asked comprehension questions, and 
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Figure 3: 

Lisa’s drawing 

related the given information to their personal experiences. Exemplarily, Lisa 

questioned her understanding of the horizontal distance in the following excerpt. 

Um theoretically, I'm wondering right now if the horizontal distance really means that it's 

sort of between the valley station and the top station. 

Exploring involved exploring the given situation for possible problems that could be 

posed. This included identifying relevant, irrelevant, and missing information, 

organizing the identified relevant information, and expanding the context with further 

information. In the following excerpt, Lisa identified relevant information (height of 

the mountain and valley station, horizontal difference) and linked them by making a 

drawing of the situation (see Figure 3). 

So, I'm sort of making a drawing for this because I know that I have here, 

let's say the (draws in a first point), the um top ah the valley 

station and the valley station here (draws in a second point). 

And I know that the height here at the valley station 

(labels one point) is 1933 m, and the top station (labels the 

other point) is 2214.2 m. 

Generating was aimed at posing and writing down a problem. Thereby, possible 

problems were posed. From these, one question was then selected, formulated, and 

written down. In the following excerpt, Theo generated an idea for a possible problem 

based on the information he considered to be relevant. 

The goal of the project is to avoid long waiting times, seated transportation with an 

optimal view. Ok there you can perhaps consider how many people can 

realistically fit into such a cabin, so that each person sits at the window and 

has an optimal view and then consider whether you are exceeding the 

weight of a full cabin or not.  

Evaluating included an assessment of the posed problems and referred to the 

assessment of appropriateness, solvability, and formulation. For example, Lea 

evaluated the appropriateness of her question as the following: 

So, you could somehow ask something about the weight in any case. But then the 

information is not relevant for whether we need a new one.  

Problem Solving included solution plans for the self-generated problems. Thereby, 

mathematical operations or possible solution steps were identified. In the following 

excerpt, Max described a rather less detailed plan for solving the problem. 

You have to work through different steps bit by bit in order to solve it because I don't 

think you can come up with the solution directly in a calculation.  

To find out more about the sequences in which the activities occurred (RQ 2), we 

analyzed the changes in activities (Table 1). All activities except understanding by 

evaluating followed each other at least once. 

Followed by Under- Exploring Generating Evaluating Problem 
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standing Solving 

Understanding - *36 [73%] 5 [10%] 0 [0%] 2 [4%] 

Exploring 18 [20%] - 53 [58%] 7 [8%] 6 [7%] 

Generating 1 [1%] 22 [19%] - 59 [52%] 6 [5%] 

Evaluating 2 [3%] 16 [20%] 38 [48%] - 12 [15%] 

Problem 
Solving 

1 [3%] 6 [20%] 3 [10%] 12 [40%] 
- 

Table 1: Overview of the number of activity changes (Note: *Understanding was 

followed by exploring in 36 sequences, 73% of all understanding sequences.) 

Regarding frequencies, understanding was predominantly followed by exploring and 

rather rarely by generating and problem solving. Exploring occurred frequently before 

generating but less frequently before exploring, evaluating, and problem solving. 

Generating was predominantly followed by evaluating, less frequently by exploring, 

and rather rarely by problem solving and understanding. Evaluating primarily occurred 

before generating, less frequently before exploring and problem solving, and rather 

rarely before understanding. Problem solving was followed most frequently by 

evaluating, less frequently by exploring, and rather rarely by generating and 

understanding. If we consider only the activities that follow one another most 

frequently, the idealized process model of a problem-posing route emerges (Figure 4). 

It presents a hypothesized process model for describing the idealized process of 

modelling-related problem posing. Importantly, the sequences of the activities while 

posing a specific problem by an individual (called individual problem-posing routes) 

are not linear and vary significantly (i.e., switching between different activities in the 

process model). 

 

Figure 4: Hypothesized process model for modelling-related problem posing 

DISCUSSION 

Modelling-related problem posing included the activities understanding, exploring, 

generating, evaluating, and problem solving. These findings are partly in line with the 

activities found in prior studies on intramathematical problems and word problems 

(Baumanns & Rott, 2021; Christou et al., 2005; Pelczer & Gamboa, 2009). The 

activities of exploring, generating, and evaluating were observed in this and other 

studies. This finding indicates the commonalities between modelling-related problem 

posing and other problem-posing processes. In addition, the analyzed processes 

involved an activity in which possible solution steps are planned, similar to a study on 



Hartmann, Krawitz, Schukajlow 

 

PME 45 – 2022 2 - 361 

 

structured problem posing based on a given word problem (Baumanns & Rott, 2021). 

This finding supports Cai and Hwang’s (2002) assumption that problem posers are 

already thinking about a possible solution when posing a problem. However, 

modelling-related problem-posing activities differ in some ways from the activities 

found in prior studies. First, we were not able to identify the activities transformation 

and variation as described in studies on structured problem posing (Baumanns & Rott, 

2021; Pelczer & Gamboa, 2009). A possible explanation is that stimuli had a different 

structure. As modelling-related problem posing is not based on a given initial problem, 

it is not necessary to transform the given problem. Second, we identified the activity 

understanding as being a part of problem posing. Understanding is an essential activity 

in the well-established models of the solution process of modelling problems, and it is 

important for problem posing as well (Niss & Blum, 2020, p. 17). However, prior 

studies on structured problem posing did not identify the activity understanding. A 

possible explanation could be that structured problem posing begins with the solution 

of the initial problem, and students already understand the initial problem before 

problem posing. In our study, two activities—exploring and evaluating—which were 

described in Wallas’ (1926) model of creative mathematical thinking, were observed. 

Consequently, problem posing was revealed to be a creative process (Bonotto & Santo, 

2015). However, we were not able to observe the activities incubation and 

illumination, probably because these processes are described as occurring 

subconsciously (Wallas, 1926), and hence, we were not able to capture them with our 

research method. Future research with methods such as eye-tracking or narrative 

interviews are needed to find out whether problem posing involves incubation and 

illumination. 

Due to the design we chose, our study has some limitations. We used a qualitative 

research approach with a small sample to identify the process of modelling-related 

problem posing. The aim was to uncover problem-posing activities and develop an 

idealized hypothetical model of modelling-related problem posing. These findings 

must be verified in future studies. Additionally, limitations result from using specific 

real-world situations. Overall, our study contributes to research on problem posing 

from a cognitive modelling perspective. Our findings can be used to improve the 

teaching and learning of modelling-related problem posing by taking into account 

problem-posing activities and their ideal sequence.   
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Solving addition and subtraction problems efficiently is an important goal of 

elementary school mathematics education. However, after the introduction of written 

algorithms, many students exclusively use these procedures to solve arithmetic 

problems, even if they are inefficient and error-prone. We explore the assumption that 

the dominance of written algorithms is due to the fact that students already previously 

had only used a very limited repertoire of strategies, which was then replaced by the 

written algorithms. We used data from a study of 222 German third graders. Sixty 

students received a brief training on computational strategies at the start of the school 

year and showed a broader strategy repertoire than their peers before the introduction 

of written algorithms. After learning the algorithms, the trained students still used a 

broader strategy repertoire (including short-cut strategies). We assume that students 

can succeed in flexibly using a broad strategy repertoire even after the introduction of 

the algorithms if they are supported in doing so from the beginning. 

 

INTRODUCTION AND THEORETICAL BACKGROUND 

One central goal of arithmetic education in the elementary school is the acquisition of 

computation skills. Meanwhile, arithmetic curricula in many countries also address 

number-based computational strategies (e.g., stepwise strategy, split strategy, 

compensation strategy, indirect addition), although the digit-based written algorithms 

continue to play an important role (Mullis et al., 2016). Skills in flexible use of 

strategies should help students to solve arithmetic problems efficiently with an 

appropriate strategy instead of using the same strategy for all problems. At the same 

time, learning different strategies is considered to promote conceptual understanding 

of numbers (e.g., Baroody, 2003; Verschaffel et al., 2007) and internalized 

computation strategies can be helpful to solve specific types of multi-digit arithmetic 

problems by purely mental calculation without paper-and-pencil computations. 

In this report, we focus on strategies for multi-digit addition and subtraction problems. 

As mentioned before, these strategies can be categorized as digit-based (standard) 

written algorithms and number-based strategies. The latter can be further divided into 

universal number-based strategies, which are suitable for all addition and subtraction 

problems (stepwise: 462 + 299 via 462 + 200 = 662, 662 + 90 = 752, 752 + 9 = 761; 
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split: 462 + 299 via 400 + 200= 600, 60 + 90 = 150, 2 + 9 = 11, 600 + 150 + 11 = 761), 

and short-cut strategies, which are very efficient for specific problem types 

(compensation strategy: 462 + 299 via 462 + 300 = 762, 762 - 1 = 761; simplifying 

strategy: 462 + 299 = 461 + 300 = 761; indirect addition: 702 - 697 via 697 + 5 = 702). 

Sometimes, students mix different strategies and if they have some routine they might 

also use short versions of the universal number-based strategies stepwise and split by 

combining sub-steps (e.g., 462 + 299 via 462 + 200 = 662, 662 + 99 = 761). 

Although different computation strategies have already been implemented in curricula 

and textbooks in several countries for about 20 years, elementary school students show 

a low variation in applying different strategies and especially in applying short-cut 

strategies (e.g., Csíkos, 2016; Heinze et al., 2009; Hickendorff, 2020; Torbeyns & 

Verschaffel, 2016; Torbeyns et al., 2017). This indicates that acquiring skills in the 

flexible use of strategies is challenging for students. However, empirical research also 

suggests that these skills can be promoted through instruction (Hickendorff, 2020; 

Heinze et al., 2018; Nehmet et al., 2019; Sievert et al., 2019; Torbeyns et al., 2017).  

Students’ strategy use after the introduction of the written algorithms 

Studies examining the development of students' strategy use in regular elementary 

school mathematics classes revealed that the use of number-based strategies decreased 

substantially after the written algorithms were introduced (e.g., Hickendorff, 2020; 

Nehmet et al., 2019; Selter, 2001; Torbeyns & Verschaffel, 2016; Torbeyns et al., 

2017). Many students used the written algorithms almost exclusively to solve addition 

and subtraction problems, and there was little variation in the use of the strategies 

across the problems. Different possible explanations for this observation can be derived 

from empirical studies in the research literature. This research report takes a closer look 

at two of them which might apply to different groups of students. 

A first possible explanation is that most students have used only a few strategies 

already before the introduction of the written algorithms. Empirical results suggest that 

there is a high proportion of students who initially use only one or two universal 

number-based strategies, like the stepwise and/or split strategy (e.g., Csíkos, 2016; 

Heinze et al., 2009; Torbeyns et al., 2017). Thus, there is also little flexible use of 

strategies before students learn the written algorithms. After the introduction of the 

written algorithms, the exclusively used universal number-based strategies are then 

replaced by the universal digit-based written algorithms. As a result, these students 

always use those universally applicable strategies that they learned last. 

A second possible explanation is that students' skills in using strategies flexibly is not 

stable. Some students may have learned various number-based strategies (including 

short-cut strategies) in mathematics class before the introduction of the written 

algorithms. Then the written algorithms were explicitly introduced by the teacher and 

practiced intensively by the students for a longer period of time. Afterwards, on the 

one hand, students’ knowledge and skills about the number-based strategies may have 

decreased again and, on the other hand, the algorithms may have gained a great 
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importance in the students' perception. The findings of Nehmet et al. (2019) can be 

interpreted in this direction. They taught one group of students in the usual way, that 

is, the number-based strategies first and then the written algorithms. A second group 

of students learned all strategies interleaved. After the intervention the written 

algorithms were used significantly less and the short-cut strategies significantly more 

often in the second group than in the first group. Thus, if students spend long periods 

of time working exclusively on written algorithms, they may lose skills in other 

strategies.  

PRESENT STUDY AND RESEARCH QUESTIONS 

To examine the previously mentioned explanations, we use existing data from the 

intervention study of Heinze et al. (2018). This study monitored students of several 

school classes over the course of grade 3. A subsample of students was trained on 

number-based strategies and their flexible use at the start of the school year. In the 

second half of the school year, the written algorithms were introduced by the teachers 

in the regular mathematics class. Thus, the dataset covers two subsamples of third-

graders. One subsample of students which participated only in the regular mathematics 

classroom and one subsample from the same classes which were briefly trained at the 

start of the school year. The latter showed better knowledge and skills of short-cut 

strategies and their flexible use than their peers before the introduction of the written 

algorithms. 

Using data from this study, we explored the following research questions: 

RQ1: What strategies do third-graders from a regular German mathematics classroom 

use before and after the introduction of the written algorithms? 

RQ2: What strategies do third-graders use before and after the introduction of the 

written algorithms if they possess advanced knowledge and skills of short-cut strategies 

and their flexible use? 

RQ3: What impact does more frequent use of short-cut strategies by students before 

and after the introduction of written algorithms have on the performance in addition 

and subtraction (in the sense of correct solutions)? 

The third research question provides information on whether the two groups of students 

show a comparable arithmetic performance before the introduction of written 

algorithms. Further, we obtain information about whether the different use of strategies 

affects the solution rates. 

METHODS 

To investigate the research questions, we use data from Heinze et al. (2018) for a 

secondary analysis. In Heinze et al. (2018), 17 Grade 3 classes from Germany were 

considered. We selected those students who participated in all three tests we needed 

for our analysis. The sample comprised 222 third-graders (9-10 years old) from 15 

classes, 162 of whom participated only in regular mathematics instruction, while 60 
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students received an additional training for the flexible use of computational strategies. 

The design on the study is presented in Figure 1.  

 

Figure 1: Design of the study, data collection at T1, T2 and T3 by test  

 

According to the German Grade 3 curriculum, the number domain is extended up to 

1000 and students learn addition and subtraction strategies for three-digit numbers. In 

the second half of grade 3, the standard written algorithms are introduced. The one-

week training during the fall break was advertised in several schools. Students from 

each of the 15 classes participated voluntarily. They were taught five strategies 

(stepwise, split, compensation, simplifying, indirect addition). In the original study in 

Heinze et al. (2018), two instructional approaches were compared. Because their 

effectiveness did not differ, they are not distinguished in the current analysis here.  

Data for strategy use was collected by trained university assistants in all 15 classes with 

a first test at the start of the school year (T1), a test 3 months after the training, but 

before the introduction of the written algorithms (T2), and a test at the end of the school 

year after students had learned the written algorithms (T3). Each test consisted of 8 

multi-digit addition and subtraction tasks suggesting especially the short-cut strategies 

as efficient solutions. A core of 4 items was part of all tests (403-396, 1000-991, 

398+441, 502+399). The item solutions were analyzed two times: firstly as correct or 

incorrect, and secondly by categorizing the applied strategies for the given task. For 

the latter, a bottom-up procedure to develop a category system with 21 strategy 

categories was applied (e.g., the ideal-typical strategies, as well as observed short 

versions and mixtures of these strategies). The assignment of a strategy to a category 

was judged independently by two persons with an acceptable inter-rater reliability ( 

> .70). In case of different coding a consensual agreement was achieved after a 

discussion. In this report, we present a coarser category system in which the 21 

categories have been combined into 5 categories (Table 1). We used ²-homogeneity 

tests to analyze the data for research questions 1 and 2, and a t-test as well as 

ANCOVAs for research question 3. 

RESULTS 

Table 1 presents the strategies the students used in the three tests. A comparison of 

columns No. 1 and 2 in Table 1 indicate that there was no significant difference in 

strategy use between the students of the training group and their peers at the start of 
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the school year. The significant effects of the one-week training in October becomes 

apparent at T2 in January (columns No. 3 and 4): the trained group used much more 

short-cut strategies and less universal strategies than their peers. 

 

Column No. 1 2 3 4 5 6 

 

 

T1 - start of  

school year 

T2 - before 

introduction written 

algorithms (midterm) 

T3 - after 

introduction written 

algorithms (end of 

school year) 

Regular 

class 

Regular 

class  & 

training 

Regular 

class 

Regular 

class  & 

training 

Regular 

class 

Regular 

class  & 

training 

Written algorithm 
42 

(3.4%) a 

23 

(5.0%) 

168 

(13.4%) 

31 

(6.5%) 

583 

(45.5%) 

179 

(37.8%) 

Number-based 

universal strategies 

692 

(56.0%) 

251 

(54.7%) 

558 

(44.5%) 

169 

(35.5%) 

280 

(21.8%) 

76 

(16.1%) 

Short version of 

number-based 

universal strategies 

248 

(20.1%) 

79 

(17.2%) 

252 

(20.1%) 

57 

(12.0%) 

193 

(15.1%) 

29 

(6.1%) 

Number-based 

short-cut strategies 

118 

(9.6%) 

57 

(12.4%) 

221 

(17.6%) 

211 

(44.3%) 

213 

(16.6%) 

185 

(39.1%) 

Not assignable  
135 

(10.9%) 

49 

(10.7%) 

56 

(4.5%) 

8 

(1.7%) 

13 

(1.0%) 

4 

(0.8%) 

Totalb 
1235 

(100%) 

459 

(100%) 

1255 

(100%) 

476 

(100%) 

1282 

(100%) 

473 

(100%) 

² 
²(4, N = 1694)  

= 6.47 

²(4, N = 1731)  

= 139.41 

²(4, N = 1755)  

= 109.28 

p .166 < .001 < .001 

Cramér’s V c .06 .28 .25 

a Percentages are column percentages, b Different total numbers due to a few missing 

solutions; theoretical maximum number of solutions was 1296 for regular class and 480 

for regular class & training, c Interpretation of Cramér’s V: weak association: < .20, 

moderate association: .20-.50 and strong association: > .50 

Table 1: Number of applied strategy types for students in regular class and in regular 

class with additional training at start, midterm and end of school year  
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To analyze research question 1, we compared columns No. 3 and 5 which show the 

strategy use of the 162 untrained students before and after the introduction of the 

written algorithms. As expected, the use of the written algorithms drastically increased 

whereas the use of the number-based universal strategies decreased. The small amount 

of short-cut strategies remains stable (17.6% to 16.6%). For research question 2, we 

compared columns No. 4 and 6 and found a similar development for the trained 

students: strong increase of written algorithms, decrease of number-based universal 

strategies, and the amount of short-cut strategies remains more or less stable (44.3% to 

39.1%). However, the difference to the untrained students is that the trained students 

used much more short-cut strategies before the introduction of written algorithms 

(44.3% to 17.6%) and the use of these strategies remains stable at T3 (39.1%). 

For research question 3, we considered the test scores of the students (1 point for each 

correct solution). Table 2 presents the results for the different tests as well as the 

reliabilities. The t-test revealed no significant difference at T1, the start of the school 

year (t(220) = 1.9, p = .066, d = 0.27), despite the trained students (M = 5.10,  

SD = 2.41) showing higher scores than the untrained students (M = 4.51, SD = 1.99). 

 

Accuracy  

strategy use  

(max 8 points) 

T1 - start of school 

year 

T2 - before 

introduction written 

algorithms (midterm) 

T3 - after introduction 

written algorithms 

(end of school year) 

M (SD) M (SD) M (SD) 

Regular class 4.51 (1.99) 4.98 (2.17) 5.44 (1.91) 

Regular class  & 

training 
5.10 (2.41) 5.53 (2.18) 6.02 (1.81) 

Total 4.67 (2.12) 5.13 (2.18) 5.60 (1.90) 

Cronbach’s  .70 .74 .66 

Table 2: Accuracy of applied strategies (mean values and standard deviations for 

correct solutions) for trained students and their peers at T1-T3 

We ran two analyses of covariance with T1 as covariate and T2 as well as T3 as 

dependent variable. Neither at T2 (F(1, 219) = 0.66, p = .417, part. ² = .003), nor at 

T3 (F(1, 219) = 1.84, p = .176, part. ² = .008) significant effects occurred. 

DISCUSSION 

The results in Table 1 (columns No. 1 and 3) are consistent with previous findings that 

students without a specific support use only few strategies and, in particular, hardly 

use any short-cut strategies (e.g., Csíkos, 2016; Heinze et al., 2009; Hickendorff, 2020; 

Torbeyns & Verschaffel, 2016; Torbeyns et al., 2017). Table 1 (column No. 5) 

replicates findings that the written algorithms are dominant after their introduction 
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(e.g., Hickendorff, 2020; Nehmet et al., 2019; Selter, 2001; Torbeyns & Verschaffel, 

2016; Torbeyns et al., 2017). Regarding the previously mentioned two possible 

explanations for the dominance of the written algorithms, our findings support the first 

explanation. In the untrained group, mostly universal number-based strategies were 

used, which were then replaced by the written algorithms (Table 1, columns No. 3 and 

5). The second possible explanation for the dominance of the written algorithms cannot 

be supported. The training group had used a high proportion of short-cut strategies 

before the introduction of the written algorithms (Table 1, column No. 4). This 

proportion remained essentially stable after the introduction of the written algorithms 

(Table 1, columns No. 4 and 6). Thus, it can be assumed that if students show skills to 

use short-cut strategies, this kind of strategy use will be maintained and short-cut 

strategies will not be replaced by written algorithms. Finally, we could show that the 

use of a variety of strategies (including short-cut strategies) is not at the expense of the 

correctness of the solutions. 

Limitations 

There are several limitations of the study. The analysis is based on tests consisting of 

only eight items, which in turn all suggested short-cut strategies. A longer test would 

be desirable, including items where short-cut strategies did not provide an efficient 

solution. Second, the items were the unit for analysis in Table 1; an analysis with the 

students as the unit will still be conducted. Third, there is no information about the 

mathematics instruction in the 15 classes. Given the weak results for the untrained 

students, we assume that there was not a strong emphasis on short-cut strategies. 

Fourth, the trained students participated voluntarily in the training during fall break. It 

might be the case that these students are more interested in mathematics. However, the 

data we presented above does not indicate that these students are only high-achieving 

students. Finally, there may be other possible explanations for why the written 

algorithms become dominant. For example, socio-mathematical norms perceived by 

the students could also play a role. 

Educational practice and further research 

Despite the limitations, suggestions for teaching practice can be derived from our 

study. For example, we found that promoting the use of different strategies (including 

short-cut strategies) before the introduction of the written algorithms leads to the 

retention and further use of these strategies after the learning of the written algorithms. 

We assume that the flexible use of different strategies can be further increased if it is 

addressed again after the introduction of the written algorithms. An appropriate range 

of tasks in textbooks could have impact on teacher action (Sievert et al., 2019). Such 

an approach and also approaches of interleaved learning of strategies (Nehmet et al., 

2019) should be investigated in further studies. 
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CHALLENGING DISCOURSES OF LOW ATTAINMENT: USING 

THEY POEMS TO REVEAL POSITIONING STORIES AND 

SHIFTING IDENTITIES 

Rachel Helme 

University of Bristol 

 

Mathematical identity work is defined as the way a person self-positions in relation to 

the domain of mathematics as well as how others position them. The stories that 

another chooses to share about a student labelled as low prior attaining (LPA) are 

influential voices that create an ascribed mathematical identity. However, identity 

work is malleable and fluid and hence the positioning stories of others can shift. This 

study focuses on the positioning stories told by one teacher about a student who was 

labelled as LPA in mathematics in order to consider a possible counternarrative to the 

dominant negative discourses. By introducing the poetic structure of a ‘They poem’ 

into the Listening Guide process of analysis, I was able to identify voices that indicate 

a positive positioning within the stories and shiftings in the teacher’s narrative data.  

INTRODUCTION 

In the United Kingdom (UK), it is common practice for schools and colleges to group 

students into separate classes based on attainment levels. For students who are labelled 

as low prior attaining (LPA), this grouping can lead to an ascribed mathematical 

identity, with learners who obtain a low score becoming categorised as students who 

are low attaining, the acquired label becomes the inherent state, which can lead to a 

homogeneous perception of their classroom identity work. This research report arises 

from a broader study that aimed to find a counternarrative to the dominant discourses 

around students labelled as LPA, through foregrounding the voices of those influential 

in a student’s identity work, the student themselves and their teacher. Focusing on the 

teacher’s positioning of a student labelled as LPA, I introduce the use of a novel 

structure called a ‘They poem’ into the Listening Guide method (Gilligan et al., 2006) 

to highlight the voices that told positioning stories including historic shifts and shifting 

in the moment. 

MATHEMATICAL IDENTITY WORK 

The concept of identity can be viewed from two standpoints, as an acquisition, 

something one has, or as an action, something one does (Darragh, 2016). However, in 

the domain specific discussions around mathematical identity, the field is maturing 

towards a dominant view of identity, or identity work, as an action within the 

socio-cultural perspective (Graven & Heyd-Metzuyanim, 2019). This perspective 

considers mathematical identity work as multi-voiced, socially situated, and domain 

specific as well as ambiguous, fluid, and unstable (Gee, 2000; Hand & Gresalfi, 2015; 

Verhoeven et al., 2019). Self-positioning within Mathematical identity work is found 
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in the way a person talks, acts, and thinks about themselves, the stories being told, in 

relation to mathematics (Bishop, 2012). Sfard and Prusak (2005) go further in stating 

rather than stories as describing identity work, the stories themselves are identity 

work, the work of identity is happening in the story telling process. However, 

alongside the self-positioning stories about and as identity work, the stories that an 

influential other (for example a teacher) tells about a student co-authors the joint 

accomplishment of identity work and therefore should be seen as significant 

(Gutiérrez, 2013; Hand & Gresalfi, 2015). For students who are labelled as LPA, their 

enacted mathematical identity work, the way they talk and act in the classroom, is often 

ascribed, that is they are positioned as kinds of people (Gee, 2000) through dominant 

discourses of passivity and disengagement. Some authors highlight that the positioning 

other can use a deficit lens when viewing students labelled as LPA which can lead to a 

restricted pedagogy (see for example Alderton & Gifford, 2018; Marks, 2014). Other 

authors consider the overlooked potential of students labelled as LPA and the impact 

on the positioning by the teacher, often in relation to an innovation in teaching practice 

(see for example Coles & Brown, 2021; Watson, 2002). For students who have to 

continue to study mathematics in their post-16 education in England, due to not 

gaining a good pass in their General Certificate of Secondary Education (GCSE), there 

is some contemporary research that highlights shifts in identity work, although this 

relates to the self-positioning voice of the student rather than that of the teacher who 

positions them (see for example Bellamy, 2017; Boli, 2020; Hough et al., 2017). There 

is less research into the shifts and shifting in the teacher’s positioning stories about a 

student in a ‘business as usual’ situation, that is where there seems to have been no 

change in practice or intervention on the part of the teacher. The study from which 

these findings are drawn intends to deepen conversations in this infrequently studied 

area of identity work research.  

METHODOLOGY 

The data described in this paper was part of a broader project into identity work in the 

context of low prior attainment. The participants were a student who attended a post-16 

college, for whom I use the pseudonym Claire, and her classroom teacher. Before 

attending the college, Claire had been allocated a grade 3 by her previous school in her 

GCSE, the summative examination taken at age 16 in England. (In the summer of 

2020, due to Covid-19 restrictions, students had been allocated a grade by their 

schools, rather than physically sitting the examinations). The grading system goes 

from grade 1 to grade 9, with grade 9 being the highest, and if a student has a grade 1, 2 

or 3 they are considered to have not gained a good pass in their GCSE and must 

continue to study mathematics at college in order to improve their grade. In November 

2020, Claire was able to sit the examination whilst at college but achieved a grade 3. 

The teacher had been teaching the class in which Claire was a student since September 

of 2020, at times either face-to-face or online, depending on the changing guidance 

from the UK government. The teacher and I met online on three occasions over the 

time period of December 2020 to July 2021. In these peer-to-peer conversations, called 
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a teacher-researcher partnership, we discussed the teacher’s observations of Claire, 

both from the classroom and wider college life, reflected on her work in the November 

external examination and internal examinations (set by the college in March 2021), as 

well as my analysis of the data I had collected from Claire’s email interviews. 

Research questions 

There were two research questions in the study, that are addressed in this report by 

focusing on the teacher participant only: 

RQ1: What stories are shared about/as enactments of identity in the context of low 

prior attainment in mathematics? 

RQ2: What patterns of identity are evident when attention is given to the 

(self)positioning of students, through the work of a teacher-researcher partnership? 

The Listening Guide method 

The teacher’s narrative data was analysed using an extension of the Listening Guide 

(Gilligan et al., 2006). This voice-relational analysis method considers listening to 

(rather than reading) data as an entry point into the inner world of another, foreground 

the voice of the narrator over that of the researcher. The method is a four-stage process 

that focuses the listener onto a person’s ways of speaking, highlighting the different 

voices that coexist in a person’s narrative. Having listened for the overall plot in the 

first stage, within the second stage the researcher creates an ‘I poem’, a found poem 

from the narrative, by identifying and extracting the use the first-person pronoun, that 

is how the narrator talks about themselves. During the pilot work for the main study, I 

extended the Listening Guide method by introducing a ‘They poem’ into the method, 

allowing me to focus on the way another talks about, and hence positions, the 

protagonist, in this case how the teacher talked about Claire (Helme, 2021a). The 

construction of the They poem started with inspecting the narrative and underlining 

wordstrings that used the relevant pronoun for the protagonist (as well as proper nouns 

that were replaced with the pronoun), along with the verbs and any other seemingly 

important words, as can be seen in this extract: 

Teacher: i am halfway through [the explanation] and she’s interrupted the chat and 

said ‘can i get on the work now’{pause}that’s the first time she’s kinda 

pushed it where it is almost like she’s like ‘i can do this now i want to move 

on’ but instead of having say more manners than anything else {pause} 

because normally she would wait until i finished speaking 

The underlined wordstrings were extracted and placed in an ordered list, to create an 

interim structure called a long phrase form: 

she’s interrupted the chat 

that’s the first time she’s kinda pushed it 

it is almost like she’s like ‘i can do this now’ 

normally she would wait until i had finished 
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The long phrase form acted as a reference point, enabling me to stay as close as 

possible to the original meaning without the noise of the whole transcript. For the final 

iteration, using the long phrase form, I focused specifically on the pronoun, 

accompanying verbs, and other seemingly important words (for a more detailed 

account of this process and guidance used to create the form of the final structure 

below, see Helme, 2021b). Hence, I created the final aligned They poem below: 

                            she     ’s interrupted 

                    she     ’s kinda pushed it 

                    she     ’s like ‘i can do…’ 

normally      she     would wait 

The extract here is small portion of the full poetic structure, shown as an example of the 

construction process, however using the complete They poem, I then began to identify 

the different coexisting voices that were evident in the poem. This process involved 

reading and rereading the They poem, identifying which verbs seemed to work 

together to create tones of voice by attending to cadences and rhythms, shifts in 

meaning, and associated streams of consciousness that were present.  

In the final two stages of the Listening Guide, I used the voices identified in the They 

poem to return to the full narrative, for the first time in relation to the research 

questions. I began to identify possible markers for each voice, listening and relistening 

to hear the different layers of positioning voices and stories, as well as what was 

unspoken. Finally, all the separate listenings were brought back together to compose 

the final analysis.  

ANALYSING THE DATA 

Focusing first on RQ1, when listening for the overall plot, I noted that the teacher used 

a positive tone when talking about Claire, seemingly emphasizing success over failure, 

with a repeated refrain that she was good at algebra and geometry. This positivity was 

echoed in the They poem, where it was evident that verbs were predominantly used in 

their positive form, rather than negate with a “not”. Moving to the They poem, I 

identified the presence of two different voices. Firstly, the teacher spoke about what 

Claire did, a doer of mathematics, using phrases that implied levels of proficiency, 

such as “knows”, “strong”, “really good”, “struggle”, and “misunderstood”. However, 

he also talked about the inner thinker: 

              i don’t know whether    she      said 

        or whether     she      reflected 

        she     ’s really really reflective 

                              that’s how      she     was thinking 

in this extract, the use of the verbs “reflected” and “thinking” indicate they thought of 

Claire as a contemplative student. There are other examples used in the poem such as 

“beliefs”, “confidence”, “pleased”, “enjoy”, “happy” as well as “concerned”, 

“confused”, “crumbling”, and “falling apart”. It seemed that they saw more than 
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observable actions, Claire the doer but also Claire the thinker, a holistic view of a 

learner of mathematics.  

The second voice I identified arose from the use of verbs that indicated effort: 

          how much effort      she      ’s put into 

                               she      ’s still working 

         she      ’s got about 

                                     which       she      ’s cracked on with 

the use of the word “effort” itself and other related phrases such as “still working”, 

“cracking on with”, and “having a stab” indicate that the teacher saw Claire as a hard 

worker. Returning to the full narrative, it was evident that the teacher wished to draw 

attention to Claire’s work ethic: 

Teacher: we looked at common areas for development which she cracked on with 

yesterday and completed that and then I gave her intervention work on the 

stuff I thought she could do better but hadn’t in the paper and again so there 

you go look over an hour’s worth of work there and completed them both 

In this extract the teacher was describing Claire’s willingness to engage and work on 

improving in a timely fashion. However, they also used the phrase “there you go look” 

which suggested that they particularly wanted to highlight to the listener her attitude to 

work. There was a tone of voice that demonstrated pride through the repeated use of 

variations on the phrases “there you go” and “look at this”. As the teacher reflected on 

Claire’s work, pleasure in her successes was evident: 

Teacher: she knows that if 40% was 56 she then knew that 10% was 14 so she scaled 

it up and fair play to her you know that’s lovely, what she’s done there is 

nice 

In the full narrative, the holistic voice and the proud voices intertwined as the teacher 

described Claire in terms of her capability, talking what she was able to do but also 

sharing their own emotional responses to these successes. 

As I began to trace the voices in the full narrative, I identified a third voice that had not 

be evident in the first listenings. When the teacher was telling stories of Claire’s less 

successful attempts at mathematical work, they would often offer a mitigation: 

 Teacher: she’s struggling with the drawing tools and stuff again I don’t worry about 

that because when they do graphs on paper they can draw them 

the reason given for Claire not being successful on a question was attributed to 

difficulties using the online software tools rather than her own a lack of understanding. 

The teacher also commented on poorly worded questions, inconsistencies in the 

marking examination papers, and curriculum content that had not been taught yet. 

Furthermore, the teacher used language that suggested that they saw unsuccessful 

attempts as a minor issue, using the phrase “simple mistake” to suggest that the 

miscalculation did not present a global difficulty but minor error that could be easily 

corrected. There are other examples where the teacher used the phrases “not quite”, “a 
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little bit”, “not a huge error”, “some gaps” and “partial strength” as well as “everyone 

in the class”, “a recognised thing” and “caught lots of people out”. The voice mitigated 

within the stories of Claire’s less successful attempts at mathematics work by framing 

in terms of small issues that were downplayed and could be easily overcome, common 

issues, or barriers that were outside of Claire’s control.  

Shifting stories 

Moving on to RQ2, what patterns of identity emerge, I reviewed the narrative for shifts 

in the way the teacher positioned Claire. I identified two types of stories that recounted 

shifts in historic thinking. The first type of story related to the positioning of Claire’s 

behaviour in the classroom: 

Teacher: she would disrupt the take up time by shouting out an answer so and it was 

trying to get her to recognise you know discreetly about the behaviour for 

learning and everyone gets a voice etc and then slowly she started to get 

used to that and then I knew once she started to get used to that I knew if 

she doesn’t understand something I could then probe her to find out what 

you know her level of understanding  

the teacher had observed changes in Claire’s behaviour which in turn impacted their 

own conduct in the classroom. They went on to tell stories about shifts in her 

self-efficacy saying that “she’s evolved” in a way that they believed would impact her 

wider college and personal life. 

The second type of story related to the teacher’s own assumptions about Claire: 

Teacher: you know when you see somebody who is quite weak with number that’s 

why I thought you know perhaps she has been over graded but no she 

backed it up with her algebra stuff so I was quite happy with that  

the teacher reflected on their own previous assumptions about a possible misallocation 

of her GCSE grade by her school. They used versions of the phrases “over graded” and 

“I did not believe she was a grade 3” alongside “I misjudged her” and “I got her wrong” 

repeatedly during our discussions to highlight that their initial assumptions had shifted. 

The teacher’s positioning stories about Claire had changed over time, and it seemed 

that they felt these were important stories to tell. 

However, alongside the teacher own stories of shifts, there was evidence of shiftings 

happening during the teacher-researcher discussions, as can be seen in the example 

below: 

Teacher: if its non-monetary she’s got no problems at all but well there’s a common 

theme I think and I’m seeing it more now as we go through the mock that 

you know when we’re doing the you know with money we’re doing the 

ratio with money she hadn’t got {pause} and I think that money is the crux 

of it here yeah that’s me discovering it this afternoon  

as we reviewed Claire’s work together, the teacher experienced shiftings in knowledge 

and assumptions about Claire. In other examples they talked about seeing her errors in 
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new ways, that is an issue with processing information rather than of misreading, and 

realising that she may have previously followed a more advanced curriculum 

compared to what she was being offered at college. The teacher also acknowledged 

that they would have interpreted Claire’s found image of two pathways, that she had 

chosen to represent her current experiences of mathematics, as indecision rather than 

as two opportunities, both of which Claire saw as positive choices.  

CONCLUSION 

The aim of this paper is to introduce a poetic structure called a They poem into the 

Listening Guide as a means to identify the positioning voices and stories of one teacher 

about a student labelled as LPA. Using the novel structure, I was able to identify a 

counternarrative of positive positioning by the teacher, as well as evidence of shifts 

and shiftings in the teacher’s stories which suggested that they were willing to 

challenge their own assumptions. The findings highlight that as teachers and 

researchers we should carefully reflect on the lens through which we view the identity 

work of students labelled as LPA and consider a counternarrative of hard work, 

constructive attitude, and positive affect. Although literature discusses the impact of 

the significant other in identity work, the findings suggest the positioning stories of the 

other are themselves influenced by the self-positioning of identity workers within the 

complex melee that is identity work. Students are not passive vessels that should be 

labelled, sorted, and filled with new knowledge, but active agents in their mathematical 

identity work with a capacity to both be transformed, and transform others, and as such 

as teachers and researchers we should also be open to change by recognising and 

challenging our own assumption driven positioning stories.  
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Globally, many students experience low mathematical wellbeing, defined here as the 

fulfilment of one’s core values, accompanied by positive feelings and functioning in the 

mathematics classroom. To increase positive feelings about and engagement in 

mathematics, there is a need to better understand students’ values and align practices 

to supporting these values. We report on a scoping review of 40 mathematics 

education publications. Student values in mathematics education could be categorised 

into seven wellbeing dimensions, namely accomplishment, cognitions, engagement, 

meaning, perseverance, positive emotions, and relationships. The resulting 

seven-dimensional mathematical wellbeing model points to target areas to build 

student mathematical wellbeing. 

INTRODUCTION 

Mathematics promotes human flourishing through greater educational and career 

opportunities, and more informed decisions regarding health, wellbeing, and 

socioenvironmental issues (Su, 2020). Unfortunately, Australian students’ 

achievement relative to other countries is declining, with a lower proportion of 

students selecting advanced mathematics courses in upper secondary school (Kirkham, 

Chapman, & Wildy, 2020; Thomson et al., 2019). These declines have occurred 

despite the introduction of various policies, curricula, teacher training, and classroom 

practices over the past several decades to support mathematics performance (Su, 

2020). But less attention has been paid to students’ subjective experiences in the 

classroom. For many students, mathematics education is far from a positive 

experience. Studies indicate that students value social learning, caring relationships, 

and engaging and meaningful pedagogies (e.g., Hill, Kern, Seah, & van Driel, 2021), 

but these values are not being fulfilled within mathematics education for many 

students, resulting in disengagement, anxiety, and boredom being commonly reported 

by students (Attard, 2013). That is, many students are experiencing low wellbeing in 

mathematics. 

Wellbeing in mathematics education – or ‘mathematical wellbeing’ (MWB) – is 

defined here as the fulfilment of core values (Tiberius, 2018) within the learning 

process, accompanied by positive feelings (e.g., enjoyment) and functioning (e.g., 

engagement, accomplishment) in mathematics. That is, MWB is not only feeling and 

functioning well (Huppert & So, 2013), but is a positive state of functioning that results 

from students’ experiences in the classroom aligning with their personal values. For 

example, a mathematics student who values enjoyment, personalised learning support, 
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and solving challenging mathematical problems will likely feel good and engage more 

with the subject when they enjoy their learning, experience one-to-one teacher support 

and are given challenging tasks. In contrast, that student might feel unwell and 

disengage from learning when the learning is perceived as boring and they lack 

personal teacher support. 

For many students, mathematics is a challenging school subject. Students with high 

MWB are more likely to see the challenge as doable and engaging, whereas students 

with low MWB are more likely to be overwhelmed by the challenge, further 

contributing to low MWB. That is, the challenge of the subject is less of an issue than 

incorporating pedagogies that help students value their learning and thrive through that 

challenge. We suggest that to improve students’ experiences at school, we must attend 

to their MWB, beginning with understanding and attending to what students value in 

mathematics education.  

To support understanding of these values, we undertook a scoping review focusing on 

literature documenting student values in mathematics education, exploring conditions 

associated with positive learning experiences and aligning these with wellbeing 

dimension proposed in the literature. We defined values in mathematics education as 

the aspects students consider to be important in the process of teaching and learning 

mathematics (Hill et al., 2021). Across the 40 publications included in our review (see 

Hill, 2022), we discovered students’ mathematics values aligned with seven wellbeing 

dimensions. These dimensions were also observed to transcend different student 

ethnicities and grade levels.  

BACKGROUND AND THEORETICAL FRAMEWORK 

The concept of wellbeing has many uses and conceptualisations across different 

disciplines (Chia et al., 2020). Here we focus on students’ subjective experiences of 

feeling and functioning across different dimensions (e.g., cognitive, emotional, and 

social). Various models of subjective wellbeing have been proposed. For example, 

Seligman (2011) proposed five wellbeing dimensions: positive emotions, engagement, 

relationships, meaning, and accomplishment (PERMA). Kern and colleagues (2016) 

proposed the EPOCH model of adolescent wellbeing, which includes engagement, 

perseverance, optimism, connectedness, and happiness dimensions.  

The value fulfilment theory (VFT) of wellbeing (Tiberius, 2018) asserts that 

individuals’ experiences of wellbeing depend on their values, which can differ across 

personal, cultural, and contextual conditions (Alexandrova, 2017). For instance, what a 

student values in mathematics likely differs to what they value in physical education or 

arts, and thus wellbeing looks different across these subjects. Values are hierarchal. At 

the highest level, ‘ultimate values’ are core values that are valued for their own sake. 

At the next level, ‘instrumental values’ are the things that are valued to achieve more 

ultimate values (Tiberius, 2018).  
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To our knowledge, only two publications have explicitly investigated wellbeing 

specific to mathematics education. Clarkson and colleagues (2010) proposed a 

three-dimension MWB model (i.e., cognitive, affective, and emotions), arguing that 

high MWB was achieved through development in all three dimensions. Part (2012) 

explored adult learners’ MWB in terms of capabilities (valued doing or beings) and 

functioning (valued outcomes). According to Part, high MWB encompasses students 

feeling both capable and believing they hold the skills to function well. While these 

two models are a helpful starting point, both models ignore the important social aspects 

of mathematics learning and lack corresponding measures. Both were derived from 

mostly Western ethnic backgrounds. They are also theoretically based rather than 

incorporating students’ perspectives. Yet considering MWB is subjective, students’ 

perspectives are important and necessary. Attending to the criticisms of current MWB 

models helped inform our search strategy.  

METHODS 

A scoping review of the mathematics values literature was undertaken guided by 

Arksey and O’Malley’s (2005) scoping review framework. Our guiding research 

questions were: (RQ1) What types of values are espoused by primary and secondary 

students in mathematics education that positively impact on their mathematics leaning 

experiences? (RQ2) To what extent do students’ values in mathematics education align 

with wellbeing dimensions proposed in philosophy, positive psychology, and 

mathematics education research? And (RQ3), what might be an updated model of 

MWB that addresses some of the limitations of existing models? 

Five databases were searched: Academic Search Complete, Education Research 

Complete, Education Resources Information Centre (ERIC), ProQuest, and 

PsycINFO. Our inclusion criteria were that the article was published between 2011 and 

2021 (corresponding to the period in which the majority of values research in 

mathematics education was published); that it focused specifically on mathematics 

education; that primary or secondary student cohorts were involved; and that students 

specifically reported their values.  

In total, 2,252 publications were exported into Covidence, a review management 

software. Titles and abstracts were screened as per the inclusion criteria leaving 135 

publications. Full texts were then read leaving 40 values publications to be analysed. 

These 40 publications were then imported into NVivo12 and thematically analysed 

using a combined inductive/deductive strategy (Braun & Clarke, 2006). We began 

with a bottom up (inductive) approach to generate data-driven themes (RQ1) with 

subsequent theoretically driven top down (deductive) analysis to categorise these 

themes according to the wellbeing literature (RQ2). For RQ1, initial codes were 

inductively generated. For example, qualitative methodologies were coded from 

student quotes. Quantitative (survey) methodologies were coded from students’ 

highest ranked values. For RQ2, using a deductive strategy, we aligned the emergent 

value themes (from RQ1) with seven welbeing dimensions from the literature 
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categorising the values (identified for RQ1) into one of the seven dimensions, rather 

than including values across multiple dimensions. Finally, we present an updated 

model based on the  

Table 1: Deductive themes, descriptors and accompanying indictive value themes. 

PERMA: Seligman, 2011; EPOCH: Kern et al., 2016; MWB: Clarkson et al., 2010. 

dimensions that aligned between the values and wellbeing literature (RQ3), identifying 

the percentage that each dimension was mentioned, overall and separated across 

demographic characteristics (age and jurisdiction). 

RESULTS 

We found 90 unique emergent value themes which could be deductively categorised 

according to seven wellbeing dimensions. Table 1 presents the final MWB model, with 

Deductive WB 

Themes (RQ2) 
Description  

Dimension 

Source  

Example Inductive 

Value Themes (RQ1) 

Accomplishment Valuing achievement, reaching 

goals, confidence or mastery 

completing mathematical tasks 

and tests 

PERMA Accuracy, high marks, 

goals, confidence 

Cognitions Valuing knowledge, skills, 

and/or understanding required to 

do mathematics at school   

MWB Efficiency, recall, prior 

knowledge, 

understanding 

Engagement Valuing concentration, 

absorption, deep intertest, or 

focus when learning/doing 

mathematics  

PERMA, 

EPOCH 

Attention, interesting 

work, novel learning, 

autonomy 

Meaning Valuing direction in 

mathematics; feeling 

mathematics is valuable, useful, 

worthwhile or has a purpose  

PERMA Maths agency, real 

world links, utility, task 

value 

Perseverance Valuing drive, grit, or working 

hard towards completing a 

mathematical task or goal 

EPOCH Challenging maths, 

perseverance, practice 

& hard work 

Positive 

Emotions 

Valuing positive emotions when 

learning/doing mathematics 

e.g., enjoyment, happiness, or 

pride 

PERMA, 

EPOCH, 

MWB 

Minimal anxiety, fun, 

safe climate, pride 

Relationships  Valuing supportive 

relationships; feeling valued, 

respected and cared for; 

connected with others; or 

supporting peers in mathematics 

PERMA, 

EPOCH 

Belonging, group work, 

family support, teacher 

explanations, teacher 

warmth & care, peer 

support 



Hill, Kern, Seah, van Driel 

 

 

PME 45 – 2022 2 - 383 

 

the deductively identified themes (column 1), descriptions identified from the 

literature (column 2), and sources for the deductive model (column 3), along with 

example value themes identified within the 40 publications included in the scoping 

review (column 4; see Hill (2022) for full set of coded themes). Across all publications, 

the most frequent value themes (RQ1) were mathematical understandings (12% of 

total value theme count); practice, hard work and effort (12%); meaningful and 

relevant learning (12%); sharing ideas and peer explanations (10%); and teacher 

explanations (9%).  

Table 2: Student demographics, % of value theme mentions by each row/demographic, 

and total theme count across each row. Note. Acc = Accomplishment, Cog = 

Cognition, Eng = Engagement, Mean = Meaning, Pers = Perseverance, PosE = Positive 

emotions, Rel = Relationships 

 Table 2 summarises the percentage of themes identified in the 40 studies across the 

seven themes overall and by age and jurisdiction. We found relationships was reported 

most frequently (19% of total count), followed by cognitions (18%) and meaning 

(15%). Positive emotions were mentioned least frequently (10%). Some differences by 

age and jurisdiction did occur. For instance, meaning and perseverance were 

mentioned more by younger than older students. Across ethnicities, notable differences 

included Europeans valuing accomplishments less often than other ethnicities, Asian 

and African students reported greater cognitive values than other ethnicities, Africans 

valued perseverance most, South Americans did not value meaning to a great extent, 

and positive emotions were rarely mentioned by African students. 

Demographic characteristics Acc Cog Eng Mean Pers PosE Rel Value 

Theme # 

Overall (n = 40 publications) 13% 18% 11% 15% 14% 10% 19% 189 

Primary students (7) 11% 17% 11% 17% 17% 8% 19% 36  

Secondary students (21) 12% 16% 14% 14% 12% 11% 19% 97 

Primary & Secondary (12) 16% 21% 5% 14% 16% 7% 20% 56 

Europe (8) 8% 16% 13% 18% 16% 13% 16% 38 

Australia/NZ (13) 15% 17% 13% 15% 10% 8% 22% 60 

Asia (8) 15% 24% 3% 12% 18% 6% 21% 33 

Africa (5) 14% 23% 5% 18% 23% 0% 18% 22 

North America (3) 11% 11% 17% 17% 11% 17% 17% 18 

South America (2) 17% 17% 17% 8% 8% 17% 17% 12 

Mixed countries (1) 17% 17% 17% 0% 17% 17% 17% 6 
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DISCUSSION 

Here we undertook a scoping review of the mathematics values literature, thematically 

coding for emergent value themes. Based on VFT, if student wellbeing is about the 

fulfilment of values, we interpret these mathematics values as conditions or 

experiences that support student wellbeing in mathematics education. We discovered 

90 unique mathematics values themes which aligned with seven wellbeing dimensions 

proposed in the literature (Clarkson et al., 2010; Kern et al. 2016; Seligman, 2011). 

Values relating to relationships in mathematics were mentioned most frequently, 

which included references to teachers, peers, and families, as well as general 

belonginess and support. This aligns with research showing students mostly refer to 

teacher and peer relationships when describing factors supporting their wellbeing in 

mathematics (Hill et al., 2021). Also, relationships and feelings of connectedness are 

central to students’ conceptions of their own wellbeing (Powell et al., 2018). 

Cognitions were mentioned second most frequently; this included values relating to 

mathematical skills and understandings. Students associated cognitions with both 

positive and negative emotions, suggesting some overlap across the dimensions. For 

instance, misunderstandings often contributed to anxieties and disliking of 

mathematics (e.g., Larkin & Jorgensen, 2016). Successful problem solving, and 

accuracy contributed to pride and enjoyment (e.g., Martínez-Sierra & González, 2014). 

The progressive yet linear nature of most mathematics teaching and learning can 

contribute to fear or anxieties about being left behind in a fast-paced curriculum 

(Gesist, 2010). The cognitive dimension is absent from generalised wellbeing models 

and was sourced from Clarkson et al. (2010) MWB model. This suggests a generalised 

approach to student wellbeing might overlook crucial subject specific variations, 

speaking to the need for greater subject specificity for wellbeing models.      

Because wellbeing is value dependent (Tiberius, 2018), how wellbeing is experienced 

likely differs across student demographics. This was somewhat confirmed in our data. 

These differences likely reflect students’ cultural values. For example, the valuing of 

perseverance by African students may reflect the high social inequities in Africa and 

working hard may help transcend these adversities. Yet all seven dimensions, with one 

exception (i.e., Africans’ valuing of positive emotions), were cited by students across 

cultures and grades. What this implies is that these seven dimensions are still likely 

important for culturally diverse student cohorts.  

A limitation of our review is that we categorised values into one of the seven 

dimensions. Yet, values often reflect multiple wellbeing dimensions. For instance, 

valuing hand-on, and practical mathematics learning might align with cognitions (e.g., 

practical tasks facilitate better understanding), engagement (e.g., they are interesting) 

or positive emotions (e.g., they are enjoyable). To determine the best category, we 

would pose the question, what is the true purpose this value serves for this student? 

This was often not possible for survey responses; however, for literal student quotes it 

generally involved exploring the wider context of the students’ experiences. Evidence 
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suggests wellbeing dimensions are interconnected and complementary (Kern, 2021). 

For example, feeling accomplished or having meaningful experiences are also 

generally enjoyable. Similarly, a single value might serve multiple purposes, the same 

value differently enhancing wellbeing across different life domains. Future reviews 

might consider what emerges when values are allocated across multiple categories. 

CONCLUSION AND IMPLICATIONS  

Guided by VFT, our review revealed seven dimensions associated with MWB. This 

model provides a practical solution to explore and potentially build student MWB. 

Teachers often struggle describing and implementing wellbeing strategies in 

individual subjects (Waters, 2021). This MWB model might provide teachers with 

tangible and measurable dimensions which they can apply in their mathematics 

teaching. For example, they might consider how to foster positive emotions during 

mathematics or consider ways to enhance teacher-student relationships. Future studies 

will look to quantify MWB through surveys guided by this model.  

For many students, mathematics learning is far from a positive experience, and often, it 

is the negative aspects of mathematics that students (and teachers) focus on. This study 

offers a more positive approach to mathematics learning by focusing on what 

experiences might enable students to thrive in the study of the subject, rather than the 

source of their failings. 
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In recent years, there has been an increasing focus on student wellbeing in schooling. 

Despite evidence of disengagement and anxiety related to mathematics, how wellbeing 

is experienced in individual subjects is vastly under researched. This research paper 

presents the findings of a study which explores the ‘mathematical wellbeing’ of 1281 

grade 3 to 8 New Zealand students participating in their first of a multiyear 

mathematics teacher learning and development intervention programme. Findings 

indicate a decline in reported wellbeing as student grade level increases as well as 

examining both the strengths and weaknesses of students’ mathematical wellbeing. 

The study highlights the importance of exploring subject-specific wellbeing and 

provides an eight-dimensional model to measure wellbeing specific to mathematics. 

INTRODUCTION  

For many students, mathematics education is potentially a negative experience with 

high incidences of disengagement, boredom, and mathematical anxiety (e.g., OECD, 

2013). Further challenges are faced by diverse groups of students from marginalized 

communities given the perpetuation of negative stereotypes in relation to beliefs about 

mathematics ability and who has the potential to achieve highly. For instance, in New 

Zealand, Māori and Pacific Islander (Pāsifika) students often experience lower teacher 

academic expectations, and themselves underachieve in mathematics compared to 

students of other ethnicities (Rubie-Davis & Peterson, 2016). These negative 

experiences point to a poor sense of student wellbeing in many mathematics 

classrooms – or ‘mathematical wellbeing’ (MWB).  

Despite student wellbeing emerging as a priority for educational institutions around the 

world (Water, 2021), particularly following the COVID-19 pandemic, subject-specific 

wellbeing is vastly under-researched. Given wellbeing is context-specific, persons, 

cultures, or organisations, may espouse different values (Tiberius, 2018). Applied to 

school education, what a student values in mathematics potentially differs to what they 

value in history or visual arts. Thus, varied conditions across school subjects could be 

necessary for maximising student wellbeing and alternatively generalisation of 

wellbeing across all subjects masks important individual subject variations. This calls 

for a greater investigation into subject specificity for student wellbeing. 

It appears there has been limited research related to student wellbeing in individual 

subjects including mathematics education. In this paper, we investigate the MWB of 

students participating in their first of a multi-year teacher learning and development 

intervention programme called Developing Mathematical Inquiry Communities 
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(DMIC). An aim of DMIC is to, ultimately, both improve students’ achievement and 

MWB, in part through enhanced support with mathematics learning and by teachers 

aligning pedagogy with and fulfilling students’ values.  

DMIC PROFESSIONAL LEARNING AND DEVELOPMENT INITIATIVE 

DMIC is a whole-school formative professional learning and development (PLD) 

initiative focused on supporting teachers to develop ambitious mathematics pedagogy 

(Kazemi Franke & Lampert, 2009) and culturally responsive/sustaining teaching 

aligning with cultural values (Gay, 2010). This work is implemented in schools across 

New Zealand with a particular focus on schools serving marginalized Māori and 

Pāsifika communities. Key aspects of DMIC PLD include the use of mathematical 

tasks which draw on the funds of knowledge of students, their families, and 

communities; instructional practices that align with students’ cultural values and 

support respectful social interactions; and the development of key mathematical 

practices like questioning, explaining, and justifying (Hill, Hunter & Hunter, 2019). 

The pedagogical process requires shifts in both teachers and students’ roles. 

Specifically, students are required to participate and engage in ways of learning that 

privilege different forms of knowledge and interaction. Aligning the teachers’ 

pedagogical values with students’ values underpins DMIC with the aim of promoting 

positive learning outcomes like achievement, and engagement. We conjecture that in 

schools where the pedagogical practices advocated in the DMIC PLD are implemented 

with high fidelity over time, students’ MWB will potentially be enhanced.  

THEORETICAL FRAMEWORK 

Conceptualisations of subjective wellbeing often centre around two distinct, yet 

related, constructs – hedonism and eudemonism. Hedonism equates wellbeing with 

maximum pleasure (or happiness) and minimal distress (Waterman, 1993).  

Eudemonia, coined by Aristotle, is a life lived in accordance with our daimon or true 

self, full of meaning, virtue, and personal growth (Waterman, 1993). Dual wellbeing 

models (combining hedonia and eudemonia) are currently the most widely accepted 

(e.g., Huppert & So, 2013; Kern et al., 2016) and often simplified to “feeling good and 

functioning well” (Huppert & So, 2013, p. 839) across multiple life domains. Example 

dual models include Seligman’s (2011) PERMA: positive emotions, engagement, 

relationship, meaning and accomplishment. Also, Kern et al., (2016) adolescent 

wellbeing model: engagement, perseverance, optimism, connectedness, and happiness 

(EPOCH). Despite wellbeing models proposing different conditions of wellbeing, each 

model makes assumptions concerning what is important for wellbeing and thus is 

dependent upon values. The value fulfilment theory of wellbeing (Tiberius, 2018, p. 

34) asserts that wellbeing is “the extent that we pursue, and fulfill or realize, our 

appropriate values...when we succeed in terms of what matters to us emotionally, 

reflectively, and over the long term”. For instance, if we value enjoyment, 

relationships, and accomplishments then our life goes well when we enjoy what we are 

doing, have close relationships, and experience ‘success’.  
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Applied to mathematics education, we define MWB as the fulfilment of students’ 

values (Tiberius, 2018) within the learning process accompanied by positive feelings 

(e.g., fun) and functioning’s (e.g., engagement) (Huppert & So, 2013) in mathematics. 

Previously, values have been shown to support and align with student wellbeing in 

mathematics education (Hill, Kern, Seah & van Driel, 2021).  

Wellbeing is enhanced when someone’s values are congruent with the values 

prevailing in their environment, or between persons. In contrast, illbeing occurs when 

one’s values conflict with his/her environment (Sirgy; 2021). For instance, subjective 

wellbeing is enhanced when tertiary students’ align their values with their course 

values or with peers; when employees values align with their organisation or 

co-workers (Sirgy; 2021). Similarity for mathematics education, teachers aligning 

their personal or pedagogical values to align with their students’ values may enhance 

student MWB.  

A thematic analysis of the mathematics education values literature revealed seven 

conditions (or dimensions) supporting student MWB (Hill, Seah, Kern, & van Driel, 

2022) described in Table 1: accomplishment, cognitions, engagement, meaning, 

perseverance, positive emotions, and relationships (Table 1). These dimensions were 

tested and confirmed with Australian (Hill, Kern, Seah & van Driel, 2021) and Chinese 

(Seah & Hill, 2021) students. Because wellbeing is value dependent, to be relevant for 

culturally diverse and minority students like New Zealand Māori and Pāsifika we 

propose an eighth dimension – cultural wellbeing – for the current study. 

METHODS 

Whilst our larger study explores changes in students’ MWB across multiple years in 

DMIC, here we report on students’ MWB during their first year of DMIC, in 2020, 

providing a baseline of MWB at the beginning of the PLD. Our research question asks: 

What is the MWB of students during their first year of the DMIC PLD?  

Participants included 1281 students (50% female/male) in grade 3 (n = 127), grade 4 

(214), grade 5 (266), grade 6 (256), grade 7 (99), grade 8 (85), or grade unknown (234), 

and attending one of 11 schools ranging from low sociodemographic (deciles 1 – 3, n = 

874), medium sociodemographic (deciles 4 – 6, n = 109) or unknown school 

demographic (n = 298) and located throughout New Zealand.  

We designed an online survey consisting of 20 Likert style questions covering the eight 

wellbeing dimensions (ranging from 0 for low to 4 for high MWB). Question wording 

was mostly based on general wellbeing surveys (e.g., Kern et al., 2016) with 

amendments specifying mathematics education. For example, I finish whatever I begin 

(p. 591, Kern et al., 2016) was changed to In maths, I finish what I begin.  

Survey responses were imported into SPSS 27 for statistical analysis. To determine 

which dimensions were rated the highest and lowest across all students, one-way 

repeated measure ANOVA (using Greenhouse-Geisser corrections if needed) with 

Bonferroni post hoc tests were used. Univariate ANOVA with post hoc Tukey tests 
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determined if individual MWB dimensions were rated significantly higher or lower by 

certain groups of students (genders, grades, and school decile/demographics). 

Table 1: Eight dimensions of mathematical wellbeing  

RESULTS 

Figure 1 summarises the mean scores across the MWB dimensions also the grand mean 

or total MWB score. Overall student mean scores significantly differed across the eight 

MWB dimensions (F(6.3, 7931.46) = 24.76, p < 0.001). The relationship dimension 

had the highest mean score, followed by accomplishment, meaning and perseverance  

with mean scores displayed within the boxes in Figure 1. These four dimensions did 

not significantly differ from one another, however, they were each significantly higher 

than the four lowest rated dimensions, positive emotions, engagement, cognitions, and 

culture. The engagement dimension had the lowest mean score and was rated 

significantly lower than relationships, meaning, accomplishment and perseverance 

dimensions.  

For the MWB difference between student genders, only relationships differed 

significantly (F(1, 1173) = 13.41, p < 0.001) with girls (M = 3.15, SD = 0.04) rating the 

relationship dimension higher than boys (M = 2.95, SD = 0.04). Across school 

Dimension Description Example survey 

questions 

Accomplishment
 

A sense of achievement, reaching 

goals, or mastery completing 

mathematical tasks/tests 

I feel like I am making 

progress towards my goals 

in maths 

Cognitions
 

Having the skills, and understanding 

to undertake mathematics  

I have the maths skills to 

complete my maths work 

Cultural  Acknowledging and respecting one’s 

cultural identity in mathematics 

In our maths lesson it feels 

good to be [culture] 

Engagement
 

Concentration, absorption, deep 

interest, or focus when learning/doing 

mathematics 

When I am doing maths I 

get completely absorbed 

in what I’m doing 

Meaning
 

A sense of direction, feeling 

mathematics is valuable, worthwhile 

or has a purpose 

I feel my maths learning 

has a purpose and is 

meaningful to me 

Perseverance
 

Drive, grit, or working hard towards 

completing a mathematical task/goal 

In maths I finish what I 

begin 

Positive 

Emotions
 

Positive emotions in mathematics e.g., 

fun, gratitude, enjoyment 

When I am doing maths I 

have a lot of fun 

Relationships  Supportive relationships, feeling 

valued/cared for, connected with 

others, or supporting peers in 

mathematics 

I have help and support 

from my maths 

[teacher/peers] when I 

need it 
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demographics (or decile), significant differences were found for positive emotions 

only (F(1, 979) = 6.13, p = 0.01) with students from lower school deciles reporting 

more positive emotions than medium decile schools (low M = 2.9, SD =0.04; med M = 

2.64, SD = 0.1). Notably, the greatest differences in mean scores were found across 

student grade levels with all eight dimensions and total MWB F(5, 1036) > 4.49, p < 

0.001 showing a statistically significant downward trajectory, particularly from grades 

3 to 5 then grades 6 to 7 shown in Figure 2. Positive emotions showed the greatest 

mean score decrease (M = - 0.97 from grades 3 to 8) compared to all other dimensions. 

Between grades 5 and 6 the mean ratings for most dimensions improved slightly, 

however, none of these were statistically significant. Then from grades 7 and 8 the 

mean ratings for culture, engagement and relationships dimensions also improved 

however again none reached statistical significance.  

 

 

 

 

 

 

 

 

 

 

 

 

DISCUSSION 

Despite student wellbeing increasingly becoming a priority across schools and in many 

countries, there have been few studies that have specifically explored wellbeing within 

specific subjects, including mathematics. This study attends to this gap by surveying 

1281 New Zealand students from grades 3 to 8 to explore their MWB during their first 

of a multiyear DMIC programme. Using an eight-dimensional model of MWB we 

found, on average, that students reported a ‘normal flourishing’ range for all 

dimensions, with each reported mean value between 2.8 to 3.06 as aligned with the 

PERMA survey cut off values (Kern, 2017).  

Students flourished most in terms of their relationships, sense of accomplishment, 

meaningful learning experiences, and mathematical perseverance positively enhancing 

students’ overall MWB. Culturally diverse students often cite relationships as most 

important for their MWB (Hill, Kern, van Driel & Seah, 2021). Accomplishments are a 

Figure 2: Mean MWB scores across grades 
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core aim of education and often highly valued by students in mathematics (e.g., Hill, 

Kern, Seah & van Driel, 2021). Meaningful, relevant, useful, or real-world tasks are 

often engaging and interesting for students (Attard, 2013). Additionally, many students 

equate mathematical success with perseverance and effort (Hill, Hunter & Hunter, 

2019).  

Students rated engagement, cultural wellbeing, and positive emotions significantly 

lower than the highest four dimensions. Globally, over a third of fifteen years old’s feel 

helpless or anxious in mathematics (OECD, 2013). Student boredom in mathematics is 

widespread (Larkin & Jorgensen, 2016) and linked to surface learning strategies, poor 

achievement (Ahmed et al., 2013), and unpleasant emotions (Larkin & Jorgensen, 

2016). Acknowledging students’ cultural values particularly for minority students 

supports students’ relationships, their cultural identities, and engagement with 

mathematics (Hill, Hunter & Hunter, 2019). These four lowest rated dimensions are 

potential MWB weaknesses and point to target areas to improve students overall 

MWB.   

Relationships were rated significantly more positively by females than males reflecting 

patterns from other general wellbeing surveys (Bulter & Kern, 2016). Emotions 

towards mathematics were rated more positively across lower decile schools 

contrasting with earlier studies asserting higher student demographics generally 

experience more positive attitudes and less anxiety in mathematics (Grootenboer & 

Marshman, 2016).  

Notably, there was a significant decline in MWB across all grades and wellbeing 

dimensions with the sharpest decline between grades 6 to 7. This coincides with the 

typically stressful primary to secondary school transition. Much research attests to the 

sliding mathematics affective response particularly over middle school from years 5 to 

8 (e.g., Grootenboer & Marshman, 2016). Increasing pressures to achieve, overreliance 

on textbooks, out of field teachers in secondary classes, and less opportunities for peer 

collaboration are potential sources of this affective and wellbeing slide in mathematics 

education.    

FUTURE DIRECTIONS AND IMPLICATIONS  

Here we present preliminary findings exploring student MWB in New Zealand 

providing a baseline to measure subsequent changes in MWB coinciding with 

longitudinal experience of the DMIC programme. Future investigations will explore 

ethnic variations, MWB at the individual level, also broaden the sample to include all 

grades and school deciles. The eight-dimensional model proposed here provides 

discrete measurable entities to measure MWB, pointing to both strengths and 

challenges to students’ MWB whilst highlighting target areas to improve students’ 

experiences in mathematics. Teachers are increasingly tasked with supporting student 

wellbeing, particularly during the COVID-19 pandemic, yet many struggle to 

contextualise wellbeing principles to specific subjects (Waters, 2021). Using this 
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eight-dimensional model as a framework teachers might feel better prepared to 

recognise and communicate about student wellbeing specific to mathematics.  

References 

Ahmed, W., van der Werf, G., Kuyper, H., & Minnaert, A. (2013). Emotions, Self-Regulated 

Learning, and Achievement in Mathematics: A Growth Curve Analysis. Journal of 

Educational Psychology, 105(1 PG-150–161), 150–161.  

Attard, C. (2013). “If I had to pick any subject, it wouldn’t be maths”: foundations for 

engagement with mathematics during the middle years. Mathematics Education Research 

Journal, 25(4), 569–587.  

Butler, J., & Kern, M. L. (2016). The PERMA-Profiler: A brief multidimensional measure of 

flourishing. International Journal of Wellbeing, 6(3), 1–48.  

Gay, G. (2010). Culturally responsive teaching: Theory, research, and practice. Teacher’s 

College Press.  

Grootenboer, P., & Marshman, M. (2015). Mathematics, affect and learning: Middle school 

students’ beliefs and attitudes about mathematics education. Springer. 

Hill, J., Hunter, J., & Hunter, R. (2019). What do Pasifika students in New Zealand value most 

for their mathematical learning? In P. Clarkson, W. T. Seah, & J. Pang (Eds.), Values and 

valuing in mathematics education: Scanning and scoping the territory (pp. 103–114). 

Springer. 

Hill, J. L., Kern, M. L., Seah, W. T., & van Driel, J. (2021). Feeling good and functioning well 

in mathematics education: Exploring students’ conceptions of mathematical wellbeing and 

values. ECNU Review of Education, 4(2), 349-375.  

Hill, J., Kern, M. L., van Driel, J., & Seah, W. T. (2021). The importance of positive 

classroom relationships for diverse students’ well-being in mathematics education. 

Mathematics Education for Sustainable Economic Growth and Job Creation, (pp. 76–89). 

Routledge 

Hill, J., Seah, W. T., Kern, M., & van Driel, J. (2022). A model of mathematical wellbeing 

through a thematic analysis of the literature. Manuscript Submitted for Publication. 

Hunter, R., & Anthony, G. (2011). Forging mathematical relationships in inquiry-based 

classrooms with Pasifika students. Journal of Urban Mathematics Education, 4(1), 

98-119.  

Huppert, F., & So, T. (2013). Flourishing across Europe: Application of a new conceptual 

framework for defining flourishing across Europe. Social Indicators Research, 110(3), 

837–861. 

Kazemi, E., Franke, M., & Lampert, M. (2009). Developing pedagogies in teacher education 

to support novice teachers' ability to enact ambitious instruction. In R. Hunter, B. Bicknell 

& T. Burgess (Eds.), Proc. 32
nd

 conference of the Mathematics Educational Research 

Group of Australasia (pp. 11-29). MERGA. 

Kern, M., Benson, L., Steinberg, E., & Steinberg, L. (2016). The EPOCH measure of 

adolescent well-being. Psychological Assessment, 28(5), 586. 



Hill, Bowmar. Hunter 

 

 

2 - 394 PME 45 – 2022 

  

Kern, M. (2017). Questionnaire overview. www.peggykern.org/questionnaires.html 

Larkin, K., & Jorgensen, R. (2016). ‘I Hate Maths: Why Do We Need to Do Maths?’ Using 

iPad Video Diaries to Investigate Attitudes and Emotions Towards Mathematics in Year 3 

and Year 6 Students. International Journal of Science and Mathematics Education, 14(5), 

925–944.  

Organisation for Economic Co-operation & Development [OECD] (2013). Mathematics 

self-beliefs and participation in mathematics-related activities, in PISA 2012 results: 

Ready to learn. In Students’ Engagement, Drive and Self-Beliefs. OECD Publishing 

Rubie-Davies, C., & Peterson, E. (2016). Relations between teachers’ achievement, over-and 

underestimation, and students’ beliefs for Māori and Pākehā students. Contemporary 

Educational Psychology, 47, 72–83. 

Seah, W. T., & Hill, J. L. (2021). Dimensions of mathematical wellbeing and values: 

Impressions from a study in China. Manuscript Submitted for Publication. 

Seligman, M. (2011). Flourish. William Heinemann. 

Sirgy, M. J. (2021). Effects of beliefs and values on wellbeing. The psychology of quality of 

life. Springer. 

Tiberius, V. (2018). Well-being as value fulfillment: How we can help each other to live well. 

Oxford University Press. 

Waterman, A. S. (1993). Two conceptions of happiness: Contrasts of personal expressiveness 

(eudaimonia) and hedonic enjoyment. Journal of Personality and Social Psychology, 

64(4), 678–691. 

Waters, L. (2021). Positive education pedagogy: Shifting teacher mindsets, practice, and 

language to make wellbeing visible in classrooms. In M. Kern & M. Wehmeyer (Eds.), 

The Palgrave handbook of positive education (pp. 137–164). Palgrave Macmillan. 

 



 

  2 - 395  
2022. In C. Fernández, S. Llinares, A. Gutiérrez, & N. Planas (Eds.), Proceedings of the 45th Conference of the 
International Group for the Psychology of Mathematics Education (Vol. 2, pp. 395-402). PME. 

THE CONNECTION BETWEEN MATHEMATICS AND OTHER 

FIELDS: MATHEMATICIANS’ AND TEACHERS’ VIEWS 

Anna Hoffmann and Ruhama Even 

Weizmann Institute of Science 

 

This study investigated: (1) what secondary school teachers, who participated in an 

academic program that included applied mathematics, learned about the connections 

between mathematics and other fields, and how this knowledge contributed to their 

teaching, and (2) what mathematicians, who taught in that program, wanted to teach 

teachers about those connections. Data source included interviews with five research 

mathematicians and 14 teachers. Analysis revealed that the mathematicians wished to 

teach teachers about the contribution of mathematics to other fields as well as the 

reciprocal contribution of other fields to mathematics. Yet, the teachers enriched their 

knowledge only about the former, and used their new knowledge to raise students’ 

interest and motivation to learn mathematics, but not for doing mathematical work. 

INTRODUCTION 

Applied mathematics, which links between mathematics and other fields (e.g., physics, 

computer science, engineering, economics and biology) is an integral and essential part 

of the discipline of mathematics. Its central role in the discipline is reflected in the 

growing number of areas of applied mathematics research conducted by 

mathematicians at prominent research universities around the world (e.g., Department 

of Mathematics at ETH Zurich, 2022; Einstein Institute of Mathematics, The Hebrew 

University of Jerusalem, 2022; School of Mathematical Sciences of Fudan University, 

2016; University of California, Berkeley, n.d.). These include, for example, spectral 

and dynamical problems of quantum mechanics, population genetics, image 

processing and medical imaging, mathematical finance and quantitative risk 

management. 

An important characteristic of applied mathematics is that the interactions between 

mathematics and other fields are often bi-directional. One direction is from 

mathematics to other fields, denoting the contribution of mathematics to solving 

problems in various fields; the other direction is from other fields to mathematics, 

denoting the contribution of other fields to the development of mathematics, as 

explained in the following: “This interaction is often bi-directional: mathematical 

concepts and techniques are used to model and solve concrete problems in other fields. 

Reciprocally, scientific progress raises new mathematical problems, and motivates the 

development of new mathematical concepts and tools” (Einstein Institute of 

Mathematics, The Hebrew University of Jerusalem, 2022). 

In contrast to the central role that applied mathematics has in the discipline of 

mathematics, the professional education and development of mathematics teachers 
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rarely include opportunities to learn about this key aspect of the discipline (Cai et al., 

2014; Greefrath & Vorhölter, 2016; Novotná, 2019; Schmidt et al., 2008). For 

example, Schmidt et al. (2008), who examined the structure of secondary mathematics 

teacher preparation programs in six countries from three continents (Bulgaria, Taiwan, 

Germany, South Korea, Mexico, and the US), found that applied mathematics courses 

were not included in the academic mathematics content courses that prospective 

teachers were required to study. Novotná (2019) reported similar results regarding the 

Czech Republic, and Greefrath & Vorhölter (2016) revealed that mathematical 

modelling is not a compulsory content in teacher education programmes at universities 

in German-speaking countries.  

With the current broad consensus regarding the importance of promoting applications 

and mathematical modelling in schools (e.g., Galbraith et al., 2007; Kaiser, 2020), the 

vast attention given to mathematical literacy and the relevance of mathematics to real 

life (e.g., COMAP & SIAM, 2019; PISA, 2018), and the growing interest in STEM 

education (e.g., Li et al., 2020; Maass et al., 2019), the need to attend to this deficiency 

in the professional education and development of mathematics teachers is further 

enhanced.  

Our study addresses this issue by examining what secondary mathematics teachers 

may learn about the connections between mathematics and other fields in an academic 

program that comprises a focus on applied mathematics. Furthermore, as learning is 

shaped by teaching, we also examine what mathematicians that teach in such a 

program wish to teach teachers about these connections. The research questions are: 

1. What mathematicians, who teach in an academic program for secondary 

teachers that includes applied mathematics, want to teach teachers about the 

connections between mathematics and other fields? 

2. What teachers, who participate in an academic program that includes applied 

mathematics, learn about the connections between mathematics and other fields 

and how this knowledge contributes to their teaching? 

METHODS 

Setting and Participants 

The study was situated in a unique master’s program for practicing secondary school 

mathematics teachers, in which academic-level mathematics and research in 

mathematics education are the main components. The mathematics component 

comprised eight courses, designed and taught by research mathematicians. Four of 

these courses dealt with topics in the school curriculum at an advanced level: algebra, 

analysis, geometry, and probability and statistics. Three courses dealt with topics in 

applied mathematics, presenting modern use and application of mathematics in 

computer science, natural sciences, social sciences and everyday technologies. One 

course appraised the history and philosophy of mathematics. In addition, a final project 

was carried out under the guidance of a mathematician.  
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Five of the seven mathematicians who taught in the program participated in the study 

(M1, M2 … M5). They taught all the mathematics courses in the program but two: 

algebra and the use of mathematics in computer science. All were prominent research 

mathematicians. The research interests of three of them involved applied mathematics. 

The teachers participating in the study were 14 program graduates (T1, T2 … T14). All 

held a bachelor’s degree in mathematics or in a mathematics-related field before 

starting the program. Their teaching experience ranged from 5 to 23 years. 

Data Source and Analysis 

The main data source included individual semi-structured in-depth interviews with the 

mathematicians and the teachers. These interviews were conducted as part of a 

comprehensive research program that examine the relevance and contribution of 

academic mathematics studies to secondary school mathematics teachers’ knowledge 

about the discipline of mathematics, and how that knowledge contribute to their 

teaching (Hoffmann & Even, 2021, 2018). The mathematicians were asked about their 

teaching goals in the program, first in general and then specifically regarding what 

mathematics is. Correspondingly, the teachers were asked whether they learned 

something new about what mathematics is from their mathematical studies in the 

program, and if they did, whether that knowledge contributed to their teaching. 

Additionally, the teachers were presented with eight phrases that appear in the 

literature in relation to characteristics of the discipline of mathematics (e.g., 

mathematical definitions, thinking in mathematics, formal presentation in 

mathematics, the connection between mathematics and other disciplines), and were 

asked to choose three for which their mathematical studies in the program enriched 

their knowledge, and to describe what they learned.  

For the purpose of this study, the interviews were analyzed qualitatively in an iterative 

and comparative process, aiming to identify what, if at all, the mathematicians wished 

to teach teachers about the connections between mathematics and other fields, what the 

teachers learned, and how this new knowledge contributed to their teaching.  

FINDINGS 

Mathematicians 

All five participating mathematicians expressed in their interviews a wish to enrich 

teachers’ knowledge about the connections between mathematics and other 

disciplines. No differences were found in this regard between the two mathematicians 

who taught applied mathematics courses and the three that taught the other 

mathematics courses. For example (interviewer denoted by I): 

5  I: I’d be happy if you could elaborate on your goals. You say that you sat 
down and thought about what this program should be. Could you elaborate? 

6 M1 …we, at least I and some of my colleagues, felt that there is a need to show 
the connection between mathematics and other disciplines and everyday 
world. 
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The mathematicians referred to the connection between mathematics and other 

disciplines as bi-directional, reciprocal contributions. One direction is from 

mathematics to other fields, when mathematics is used to solve problems in other 

fields. The other direction is from other fields to mathematics, when work on solving 

problems in other fields raises new mathematical problems which then promotes the 

development of mathematical concepts and methods and thus advance mathematics.  

When referring to the contribution of mathematics to other fields, the mathematicians 

stressed that they wished to expand teachers’ knowledge about the practical worth of 

mathematics. At times they associated it with what they viewed as deficiencies in the 

contents of the high-school curriculum. For example, 

One of the things that... bothers me very much in high school mathematics... is that the 

mathematics that is taught in high school is not related to life at all. It usually viewed by 

students as an annoying exercise that is meant to upset them, and it doesn’t look like 

something that has any value... That is, they teach students calculus, for example, for no 

reason... That is, why is there a derivative? and why is there an integral?... Where on earth 

did it come from? …And why did they develop it?... Quite a few of the mathematics 

teachers... don’t know that a derivative is related to speed, that is, acceleration... there is a 

kind of thinking here that mathematics is a philosophical field that has nothing to do with 

science, and nothing to do with technology, and nothing to do with anything... I think that it 

is simply unacceptable that they would talk about derivatives and wouldn’t know why 

Newton developed it. (M4) 

The mathematicians emphasized that they would like to show teachers that 

mathematics is not just a theoretical science with no connection to reality. Instead, it 

can be used to develop the world. For example,  

Mathematics is a tool to describe the world around us... Moreover, you can use it too. What 

does it mean? After describing the world, it can be used to make a better world. (M3) 

They explained that the usefulness of mathematics is conveyed through its contribution 

to solving problems in various disciplines and diverse areas of life, such as physics, 

medicine, economics, biology, engineering, geography, computer science, 

communication, navigation, etc. Often, they drew on examples from their own 

teaching in the program. For example, M5 reported that he presents in his course 

contemporary uses of mathematics, such as, GPS, search engines, encryption, robotic 

movements; and M4 described the emphasis she puts in her course on the power of 

mathematical models in solving problems from different disciplines: 

I start the discussion with an applied problem, and in fact, I also define for them this field 

of applied mathematics, which is building models. How to build a mathematical model for 

a problem... So, I think it gives them this beautiful connection that I keep emphasizing in 

the course, that mathematical language is a language that can be used to describe lots and 

lots of different problems in the same language. Once you have the mathematical tools, 

then you can answer questions from different disciplines. (M4) 
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When referring to the contribution of other fields to mathematics, the mathematicians 

associated it with the idea that the development of the discipline of mathematics lies in 

mathematical work related to questions. They stressed that questions may originate in 

mathematics as well as in other disciplines. Referring to mathematical work on 

questions originated in other disciplines, the mathematicians emphasized that work on 

such questions is central not only to the development of other disciplines, but also to 

the development of the discipline of mathematics itself: 

A great many of the developments in mathematics had real motivation... questions from 

life, not from mathematics, and the mathematical way helped solve them, and then they 

developed mathematics [emphasis added]. (M4) 

Exemplifying the contribution of work on such questions to the development of 

mathematics, the mathematicians mentioned, for instance: calculating area and volume 

that contributed to the development of calculus; navigation that accelerated the 

development of geometry and trigonometry; and computer science, electricity, and 

electronics that promoted the development of graph theory. For example, 

Graph theory is an example of a mathematical field that has developed on its own, from… 

mathematical questions... but also from practical questions of applied mathematics. 

Because graph theory is the internet, graph theory plays a role more or less in all fields of 

science today. So, graph theory has very much developed in recent years. (M4) 

The mathematicians further stressed the dialectic relationship between the 

development of the discipline of mathematics and that of other disciplines: 

This cycle that there is a problem that starts with something real and then goes through 

many degrees of abstraction and becomes something completely theoretical, and at the 

end, it goes back to something real, happens a lot in mathematics. (M1) 

Teachers 

Twelve of the 14 participating teachers reported in their interviews that academic 

mathematics studies contributed to their knowledge about the connection between 

mathematics and other disciplines; 10 specifically chose the phrase “the connection 

between mathematics and other disciplines” when asked to select topics for which their 

mathematical studies in the program enriched their knowledge. For example, T12 

picked up the card with this phrase and repeated things she mentioned before: 

The connection between mathematics and other disciplines. In this regard this program 

gave me a lot. Physics, philosophy, in computers... as I said, nature, science... It enabled 

me to see that everything in nature can be organized in a mathematical way… (T12)   

All 12 teachers connected their new knowledge regarding the connection between 

mathematics and other disciplines to two of the applied mathematics courses: 

mathematical applications in natural sciences, and mathematical applications in social 

sciences and everyday technologies. Three other mathematics courses – probability 

and statistics, application of mathematics in computer science, and the history and 
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philosophy of mathematics – as well as the final project were also mentioned by some 

teachers. 

In contrast to the mathematicians, none of the teachers referred to the connection 

between mathematics and other fields as bi-directional. Instead, they described a 

uni-directional contribution only: from mathematics to other fields. For example,  

The mathematical applications course was an eye-opening course… Image compression, 

how it is expressed mathematically... I have never seen how there is at all a connection 

between mathematics and these things... Google search, how it works… and a medical 

problem that you can find how to model it mathematically. And how mathematics can help 

not only to develop thinking and the mind and to enjoy mathematics but… to discover its 

use. And I tell about it to my students as a motivation. (T7) 

Similarly, T2 described how the course in probability and statistics enriched her 

knowledge regarding daily life usage of mathematics. 

Let me give you an example, say, [lecturer’s] probability course. I remember his first two 

lessons. He sent us home to look in the paper for all sorts of things of probability... say, 

what the poverty index is in the country, how they are calculated, and to check their 

correctness… I felt that it was ... something that is very connected to us. Like, where in our 

lives we find this connection to mathematics… 

Last year I gave it to the 11
th

 grade, middle-level track. I asked them to look for all kinds of 

statistics and how they were obtained. And they brought it to class. After that, I talked with 

them about the role of statistics in our lives… At the middle-level track, there is always this 

question: “What does it give me?” and "Where does it accompany me in my life?” (T2) 

Nine teachers of the 12 teachers who reported on new knowledge regarding the 

contribution of mathematics to other disciplines, reported also that this new knowledge 

was relevant to their teaching work. All explained that it helped them increase 

students’ interest and raise their motivation to learn mathematics, as was illustrated 

above in T7’s and T2’s quotations.  

CONCLUSION 

Applied mathematics, a key aspect of the discipline of mathematics, entails 

bi-directional interactions between mathematics and other fields (Einstein Institute of 

Mathematics, The Hebrew University of Jerusalem, 2022). One direction is from 

mathematics to other fields, when mathematics is used to answer questions in other 

fields. The other direction is from other fields to mathematics when work on problems 

in other fields promotes the development of new mathematical concepts, tools, 

questions and theories.  

The literature suggests that the professional education and development of 

mathematics teachers rarely include opportunities to learn about applied mathematics 

(Cai et al., 2014; Greefrath & Vorhölter, 2016; Novotná, 2019; Schmidt et al., 2008). 

Situated in a professional development program for practicing secondary school 

mathematics teachers that comprises a focus on applied mathematics, our study 
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provides important information regarding the potential contribution of such programs 

to teacher knowledge and practice related to the connections between mathematics and 

other fields. 

Our findings suggest that the participating mathematicians aimed to enrich teachers’ 

knowledge about the connection between mathematics and other disciplines, and the 

participating teachers considerably advanced their knowledge on one aspect of this 

connection, namely, the contribution of mathematics to other fields. Correspondingly, 

the teachers acquired a rich repertoire of contemporary examples of authentic use of 

mathematics to solve important problems in various areas of life, which they then used 

in their teaching to raise students’ interest and motivation to learn mathematics. Yet, 

such use in teaching mainly involved informing students about fascinating uses of 

mathematics in the real world without actually doing any mathematical work. This 

result might be connected to factors, such as, not having teaching materials on which 

the teachers could draw in order to incorporate their newly acquired knowledge with 

the school mathematics curriculum, lack of support from their work environment for 

doing so, and more.  

Additionally, in contrast to the participating mathematicians’ wish for teachers to learn 

about the bi-directional connection between mathematics and other fields, the teachers 

did not mention in their interviews the contribution of other fields to mathematics. This 

result appears to be in line with the way applied mathematics is often dealt with in 

mathematics education, emphasizing the use of mathematics for solving problems in 

real-world contexts (e.g., Cai et al., 2014; Kaiser, 2020). As the other direction has 

been central to the development of mathematics, and continues to be so today, a 

question then arises whether this aspect needs to be more explicitly incorporated into 

the professional education and preparation of mathematics teachers.  
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