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CONNECTING REPRESENTATIONS FOR COMMUTATIVITY: 

STUDENTS’ RICH DISCOVERIES IN A MULTI-

REPRESENTATION TOOL WITH NON-EXPLICIT 

ARTICULATIONS 

Malina Abraham1 and Susanne Prediger1,2  

1 TU Dortmund University, Germany, 

 2 IPN Leibniz Institute for Science and Mathematics Education, Berlin, Germany  

 

Although digital dynamic multi-representation tools have been shown to provide 

potential for developing understanding, little is known about the exact conditions 

under which they should be explored. This paper reports from a design research study 

on fifth graders’ exploration of a dynamic multi-representation tool on dot arrays for 

multiplication, seeking to deepen the understanding and justify the commutative 

property. The qualitative analysis of learning processes reveals that although various 

connections are discovered by different students, they articulate only some of them 

explicitly, so they are rarely combined to a justification. We conclude that for 

exploiting the potential of multi-representation tools in depth, more scaffolding for 

articulations is required, which can be realized by embedding the tool into a more 

comprehensive learning environment. 

Digital technology can have different characteristics and follow different purposes in 

mathematics education, ranging from highly scaffolded tutorial systems to digital tools 

designed for very open explorations. Whereas early research overviews list these 

different technologies separately (Lagrange et al., 2003), they have become 

increasingly combined in digital learning environments with different features and 

degrees of openness (Hillmayr et al., 2021). For developing conceptual understanding 

of mathematical concepts and operations, the potential of dynamic multi-

representation tools has often been identified qualitatively (Kaput 1986; Sacristan et 

al., 2010), while only moderate effect sizes were found in efficacy studies, with large 

variations across contexts and exact design features (Hillmayer et al., 2020). So, there 

is still a need to further disentangle the conditions under which dynamic multi-

representation tools can productively enhance students’ conceptual understanding 

(Lagrange et al., 2003; Drijvers et al., 2016). This research gap particularly exists for 

arithmetic content in early middle school which is less researched than functions and 

algebraic expressions and equations in later middle school (Drijvers et al., 2016). In 

our design research study, we focus on a dynamic multi-representation tool and 

investigate fifth graders’ collaborative explorations of the commutative property, 

pursuing the following research question: 

How do students work with a dynamically linked multi-representation tool to explore 

the commutative property and what connections of representations do they articulate?  



Abraham & Prediger 

2 - 4 PME 46 – 2023 

THEORETICAL BACKGROUND 

Potentials of multi-representation tools for connecting multiple representations  

Using multiple representations have been shown to bear potential for developing 

students’ conceptual understanding: While the treatments within one representation 

often correspond to procedural rules (e.g., symbolic manipulations as following the 

commutative property), conversions between representations can enhance students’ 

processes of constructing meanings (Kaput, 1986; Duval, 2006). For developing 

understanding for properties underlying the symbolic treatments, representation-based 

justifications (Schifter, 2009) convey meanings by conversions of treatments as will 

be exemplified.  

Already Kaput (1986) promoted the potentials of dynamically linked multi-

representation tools: “Information technology will have its greatest impact in … 

providing access to new forms of representation as well as providing simultaneous 

access to multiple, linked representations” (p. 5). Since then, many digital tools were 

constructed for functions and algebra in which multiple representations are not only 

simultaneously depicted, but dynamically varied, and the effects of variation can be 

explored. Case studies have confirmed Kaput’s (1986) early assumption that 

dynamically linking multiple representations can enhance students’ understanding 

(Sacristan et al., 2010). However, quantitative efficacy studies found only small to 

moderate effect sizes, with large variations across exact design features (Hillmayer et 

al., 2020). This calls for further in-depth analysis of conditions under which multi-

representation tools really enhance students’ processes of meaning construction.  

Empirical studies revealed a critical condition of success: Converting representations 

contribute best to constructing meanings if the connection between the representations 

is explicitly articulated, this involves addressing the relevant structure in all 

representations (Renkl et al., 2013). With respect to multi-representation tools, this 

raises the question how the automatic links really promote students’ mental 

construction of connections and their explicit articulation of the relevant structures in 

view.  

Topic in view: Commutative property and unit structures 

Whereas most research on multi-representation tools was conducted for algebra and 

functions, our topic in view, multiplication and the commutative property, has attracted 

much less attention (Drijvers et al., 2016). Sinclair et al. (2020) constructed an 

interesting multi-representation tool with TouchTimes, but given the irritations they 

reported from teachers with its unfamiliar representation, we focus on rectangular dot 

arrays. Arrays have been identified as powerful graphical representations for 

conveying meanings for multiplication, e.g., visualizing 2 x 4 as 2 rows of 4 in an array 

(Wittmann, 1998; Schifter, 2009). Many students, however, convert only superficially 

between arrays and expressions by only hinting to length and width or the total numbers 

(see Figure 1, left). For learning to understand multiplication as counting in composite 
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units, students need to mentally impose multiplicative unit structures onto the dot array 

(Götze & Baiker, 2021; Askew, 2019). This can be supported by multi-representation  

 

Figure 1. Meaning of multiplication in dot arrays requires structuring in composite 

units – Variation in multi-representation tools can support seeing structures 

tools by dynamically linking symbolical expressions such as 2 x 4, 3 x 4, to arrays that 

grow in rows (depicted in blue in Figure 1), while composite unit structures must be 

explicitly articulated by teachers (Askew, 2019) and students (Götze & Baiker, 2021).  

The commutative property allows for rule-based treatment of symbolic expressions 

(changing the order of factors from 2 x 4 to 4 x 2). For its representation-based 

justification, we convert one symbolic expression EA (2 x 4) into a structured array 

SA, conduct a treatment of representations (rotate the array) into SB and then convert 

it back to the second expression SB as in Figure 2 (Wittmann, 1998; Schifter, 2009). 

This justification fails short if the array is only converted without addressing the 

composite changing units (Strømskag & Valenta, 2017), and requires further prompts 

for generality. That is why we decided that our multi-representation tool should also 

engage students into examining variations (from SA to SA’, from SB to SB’), while 

developing structural connections for a general justification of the commutative 

property.  

 

Figure 2: Representation-based structural justification of commutative property in 

dynamically linked multiple representation (adapted from Tondorf & Prediger, 2022) 
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Figure 2 shows the three-dimensional complexity of processes that students are invited 

to first tacitless conduct and observe and then explicitly articulate for explaining the 

meaning of multiplication and for structurally justifying the commutative property. 

The figure includes vertical arrows for conversions from symbolic to graphical 

representations and horizontal arrows with treatments reflecting the commutative 

property, blue arrows signify dynamic changes conducted to focus students’ attention 

on the structure of composite units and on generality. In total, the representation-based 

justification of the commutativity is a conversion of treatments. Its articulation requires 

to explicitly address the composite unit structure of the structured arrays and the 

combined verbalization of the horizontal and vertical arrows in Figure 2.  

Design of the open exploration task with a multi-representation tool  

In our digital learning environment divomath, 

students first have extended learning 

opportunities for connecting representations for 

multiplication with composite unit structures. 

Like in Figure 1, students study the systematic 

variation of arrays and articulate their effect on 

the expressions and vice versa. A later task in the 

learning environment is the open exploration 

task in Figure 3 in which two students are 

invited to systematically vary an array and see 

two symbolic expressions, EA 5  7 and EB 

7  5, which they can understand as being 

connected to the array by structuring it in rows 

into the mentally structured figure SA or in columns in the mentally structured figure 

SB (see Figure 2). Both students can start structuring in rows, but as Student B looks 

from a 90-degree angle onto the iPad, this appears as columns for Student A and vice 

versa. Exchanging their ideas while systematically varying the array, students can 

discover rich relations, and explain different connections that can later be combined 

into the justification of the commutative property: 

 (already known) connection between their structured array and their expression 

looking at their rows, each (Student A: SA – EB, Student B: SB – EB, respectively) 

 the effect of the systematic variations of their array on their expression (SASA’ 

– EAEA’ or SBSB’ – EBEB’, respectively)  

 justification of commutativity in static arrays (EA–SA–SB–EB or vice versa) 

 consequences of varying an array in the context of commutativity (Figure 2).  

As the exploration of digital tools alone rarely guarantees that students construct the 

targeted knowledge unless the processes are suitably scaffolded, either by the teacher 

or by tasks structuring the exploration (Drijvers et al., 2016; Hillmayr et al. 2020). It is 

critical for our design to study the students’ processes and identify the potentials and 

limitations of this open exploration. This will later allow us to identify necessary task-

Figure 3: Exploring commutativity 

with a multi-representation tool 

from view A / B 
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specific structural and language-related scaffolds for finding, articulating and 

combining the rich connections listed above and visualized in Figure 2. 

METHODOLOGICAL FRAMEWORK 

Methods of data collection. The case study documented here belongs to a larger 

design research project that develops and investigates a comprehensive learning 

environment on multiplication and division in Grade 5, with the dual aim of (a) 

developing and optimizing a digital learning environment, and (b) generating deep 

insights into conditions of productive learning with the tools (Gravemeijer & Cobb, 

2006). In Cycle 1, design experiments were conducted with seven groups of 2-3 fifth 

graders (10/11 years old), in total about 300 minutes video or audio records and screen 

records per group. For pursuing the research question of this paper, we focus on their 

processes on the task in Figure 3 for which the video and audio material was partially 

transcribed.  

Methods of data analysis. For the qualitative analysis of the transcripts and screen 

recordings, students’ processes of interacting with the multi-representation tool and its 

automated links were coded with respect to the connections between representations 

that they addressed explicitly in their articulations (see Figure 2 that serves as deductive 

coding system, adapted from Tondorf & Prediger, 2022). We code EA – A when a 

match is simply stated and EA – SA – A when the unit structure is explicitly verbalized. 

The variation AA’ denotes verbalization on the array with focus on single dots, 

SASA’ the structured arrays with articulating the unit structure in rows or columns. 

When the conversion of treatments is addressed, it is denoted EA-EB – SA-SB.  

EMPIRICAL INSIGHTS 

Episode 1: Aylin and Lisa explain composite units and swapped expressions 

Aylin and Lisa work independently without a teacher. They first approach the task 

(from Figure 3) by checking that the given array and expressions fit (Turn 2) and then 

start changing the array (Turn 3). 

02 Aylin  [looks at one dot in the array and the double expression 1 x 1 = 1] Yes, that is 
correct. I think we need to go back. We have to do this. How are we doing 
this? 

03 Lisa  [starts reading the text] Change # [Aylin is changing the array representation] 
                                             # Wait, wait, wait. Ey, the task has changed! 

06 Aylin  [stops the array at four rows of five] We need to explain why they are connected. 
07 Lisa  Okaaayyy. That is a swapped expression. Because here, um, it is five times four 

and over here, it is four times five. Swapped expressions. 
08 Aylin  We have to explain why it is connected. It is connected because there are four 

rows and there are five dots in each row. Thus, the expression matches because 
four rows of five dots each equals 20. 

Lisa discovers that both expressions are “swapped”, a standardized term for tasks with 

changed order (Turn 07: EA–EB). But they do not follow up this new observation, but 

go back to the tasks that they had practiced before, explaining the connection EA–A. 

They explain it with two arguments, first by explicitly articulating the composite units 
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in the conversion “four rows and there are five dots in each row” (Turn 08b: EA–SA–

A), and second by the treatment and the total number as result “Thus, …, equals 20” 

(Turn 08c: EA-R-A). The swapped expression EB is not explicitly connected to the 

array A. After explaining the connection EA–SA–A, the students go on with the next 

task and don’t focus on changes through variation or relations of commutativity.  

Episode 2: Lena and Jenny qualitative consider changes without unit structures 

Lena and Jenny start manipulating the array several times and observe the changes in 

the expressions. The design experiment leader acts as teacher and tries to elicit a 

description of the changes ABAB’ – EAEA’ and EBEB’. 

09 Teacher And how exactly do they change? 
10 Lena  If you pull the array, the expressions change. 
11 Teacher But how do the expressions change? 
12 Jenny  When more dots are appearing. 
13 Teacher And are the expressions completely different calculations? 
14 Lena  No, here is six times seven and there is seven times six. 
15 Jenny  So, it is swapped. 
16 Lena  So, swapped. 

Their first descriptions of the changes are qualitative: The “expressions change” (Turn 

10), so far without specifying how they change and how the changes are related. Jenny 

articulates on ordinal description, the number of dots increases, also without relating 

to the unit structures (Turn 12: A<A’ – R<R’). Rather than eliciting an explicit 

articulation of more rows or more dots in a row, the teacher turns the focus to the two 

expressions (Turn 13). Again, the conversation stops here stating the swapped 

expressions (Turn 15/16: EA–EB), without exploring the intended richer connections. 

Overview on articulated connections and variations in all seven groups 

 

Figure 4: Analytic summary with all connections articulated by seven groups 

Unlike Aylin & Lina, the second pair Lena & Jenny uses the linked representations by 

varying the array and looks at the effects for the linked expressions. But again, they 

miss the rich opportunity to go deeper into the connections. Similar phenomena were 

found for other students, as the analytic summary in Figure 4 reveals. Most students 

focus on simple conversions and variations. They only address commutativity focusing 
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on the expressions and not on structured arrays. Group 6 and Group 7 try to justify 

commutativity but either they turn around the structured array instead of restructuring 

it or they include the result rather than the structures in their justification.  

CONCLUSION AND OUTLOOK 

The analysis of both episodes (and of the unprinted transcripts of five more groups) 

reveals that playing with a multi-representation tool with automated links of 

representations and systematic variation opportunities can indeed engage students in 

discovering various connections and variations (Kaput, 1986; Sacristan et al., 2010). 

This is visible in the analytic summary in Figure 4 in which for the first three steps of 

the learning pathway, each intended connection was discovered by at least one group 

of students. But by far, not all relevant connections were discovered and explicitly 

articulated by all students, like Aylin & Lisa in Episode 1 who did not really ask how 

the array changes with the expressions (systematic variation) and why the swapped 

expressions describe the same figure (justifying commutativity). Without the different 

connections being articulated, no complete justification can be combined out of them 

(Schifter, 2009). 

Although students discover and articulate different connections which might invite a 

conversation about differences, the analytic summary in Figure 4 further reveals that 

only a few groups address conversions or treatments when describing the variation and 

rotation of arrays and expressions, as the combination of ideas was not sufficiently 

supported. The theory section highlights that the variation of treatments targeting the 

commutative property involves a number of treatments and conversions that need to 

be taken into account while exploring and understanding the whole concept. This 

corresponds to the often identified need that teachers facilitate students’ rich processes 

in a more focused manner (Drijvers et al., 2016). Even in groups where teachers were 

present, however, their guidance was not always ideal to focus students’ attention to a 

particular connection and to support them combining the ideas.  

This case study supports the requirement not only to develop multi-representation 

tools, but to include scaffolds supporting students’ focus of attention and students’ 

articulations into the material itself. Rather than providing only tools for open 

exploration, a holistic learning environment is necessary to support teachers and 

students in successful and more focused learning processes. In our project divomath, 

the next design experiment cycle will experiment with a learning environment that 

includes focus questions and help for systematic explorations and explicit articulations, 

focusing the different connections to support students in exploring the conversion of 

treatments in commutative property. The support that should be included into the 

material must focus explicitly on the variation processes and its impact on the unit 

structures, with questions such as “What happens to the array if student 1 adds a row?” 

or “How does each expression change if student 2 adds a row? And how do you see 

that in the array from your point of view?”. 
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REVEALING COGNITIVE PROCESSES WHEN COMPARING 

BOX PLOTS USING EYE-TRACKING DATA—A PILOT STUDY 

Martin Abt, Frank Reinhold and Wim Van Dooren 

University of Education Freiburg, Germany & KU Leuven, Belgium 

 

Comparing data sets based on box plots is a challenging task. A typical error is due to 

a bias caused by thinking the box area is related proportionally to part of the sample, 

while it is inversely related to the density of the sample. How an area bias exactly 

affects different individuals, and what strategies individuals who are not affected by 

an area bias use, is not yet completely understood. We model different cognitive 

processes to make predictions for solution patterns in six item types, assign students to 

our a-priori defined patterns, and show that it is possible to validate our hypotheses 

for their underlying cognitive processes by analysing eye-movement gaze patterns. 

INTRODUCTION 

The box plot is a frequently used form of representation in descriptive statistics with a 

high content of information. Because of its compact representation of descriptive 

values, it is well suited for a comparison of several distributions (Kader & Perry, 1996). 

On the other hand, this compact representation makes it a complex and challenging 

subject to learn (Bakker et al., 2005; Edwards et al., 2017). One main reason for errors 

is the counterintuitive meaning of the box area (Lem et al., 2013): it is inversely related 

to distribution’s density, and thus not proportionally related to the represented part of 

the sample (Bakker et al., 2005). Still, the latter is a way of interpreting diagrams that 

students usually establish in mathematics lessons over several years (Ben-Zvi & 

Garfield, 2004). One plausible explanation for students’ struggles when handling box 

plots is the naïve concept ‘the more area, the higher the proportion of the sample’, 

derived from a strong curricular focus on other representations (i.e., bar and circle 

charts)—while the scientifically correct concept would be ‘the more area, the lower the 

density of the data points. Based on these assumptions, students that have not (yet) 

acquired the correct conceptual knowledge will be systematically biased by the area of 

the box—leading to a characteristic error pattern in specifically designed items: we call 

items that would consistently be answered correctly with recourse to an area bias area-

congruent; an area bias always leads to an incorrect answer in area-incongruent items 

(Fig. 1). This area bias was systematically investigated and reported by Lem et al. 

(2013). Besides this area bias (caused by the saliency of the box area), another specific 

error when comparing two data sets with box plots was recently discussed: If both 

medians are above or below the critical mark, a comparison of the medians is not 

meaningful with respect to the task. However, this does not prevent an inappropriate 

use of medians in these cases in terms of an overgeneralization of the median strategy 

(Abt et al., 2022). Considering this possible overgeneralization of the median in 

addition to the area bias, items can be area-incongruent and/or median-incongruent, 
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leading to (at least) six different types of items that can be assumed to be solved 

systematically correct or incorrect (Fig. 1). 

 

Figure 1. Congruency regarding area bias and median overgeneralization 

This classification of six item types was used to distinguish cognitive profiles, which 

differ in whether both, none, or only one strategy (in-between profiles) has been 

acquired. Behaviourally, each of these profiles can then be assigned a specific pattern 

of accuracy in the given answers, which indicate how different item types are 

systematically answered correctly or incorrectly (Abt et al., 2022, Fig. 2). 

Consequently, samples should fall into different profiles, which was recently shown 

(Abt et al., 2022). 
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Figure 2. Expected pattern in accuracy for the different profiles 

The present study 

Since now, the link between cognition and behaviour was solely made on the basis of 

solution rates; we aim at finding additional empirical evidence for the theoretically 

derived cognitive processes leading to different answer patterns. Therefore, we created 

an itemset according to the six item types (see Fig. 1). We firstly ask:  

RQ1: Do the distinctions between box and median items, area-congruency and median-

congruency largely explain the variance in item difficulty—validating the item 

generation process?  

Regarding this research question our first hypotheses is:  

Hyp. 1: The item type as well as item congruency has a significant effect on the items 

and explains variance to a large extent. Box items show higher solution rates than 

median items, congruent items show higher solution rates than incongruent items, 

median-incongruent items show higher solution rates than area-incongruent items. 

Using an additional person-centered rather than a sample-based statistical approach we 

then assign each student to a profile based on the patterns in accuracy (see Fig. 2). In a 

third step, we are interested in whether eye-tracking data can be used to validate the 

assignment based on the patterns in accuracy. In particular, we are interested in which 

salient elements of the box plot representation are used during the problem-solving-

process. Following the eye mind assumption we use eye-tracking data for this purpose 

(Strohmaier et al., 2020) to answer a second research question:   
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RQ2: Can we find evidence in the gaze data for the hypothesized profiles, in the sense 

that the gaze data show differences between groups of students—who were identified 

based on behavioural data—and that these differences indeed point in the expected 

directions (as reflected in the hypotheses)?  

Our hypotheses regarding the eye-tracking data in this pilot study focus on students’ 

gaze behaviour. We argue that: 

Hyp. 2a: Median strategy is manifest in longer focuses on the median on the one hand 

and the critical mark on the other. An increased number of saccades between these foci 

indicates the comparison of these parameters.   

Hyp 2b: Box strategy is manifest in longer focuses on the first quartile on the one hand 

and the critical mark on the other. An increased number of saccades between these foci 

indicates the comparison of these parameters.   

Hyp. 2c: Area bias is manifest in longer focuses on area above the critical mark. This 

area is mainly captured by a comparison of the third quartiles, which shows up in 

fixations on the third quartiles and saccades between these fixation points. 

METHOD 

Sample 

All participants (N = 27) were student teachers at the Freiburg University of Education 

who had taken a course in mathematics in the winter term 2022-23. Among the 

participants were 18 women and 9 men, aged 19 to 28 years. Students were between 

the 1st and 7th semester of study. 

Instrument 

For the study, 4 items were created for each of the 6 item types (cf., Fig. 1), i.e., a total 

of 24 items. When selecting the items, restrictions were applied in addition to those 

that are obligatory with respect to the task (the number of quartiles above the critical 

mark must not be identical in order to make a decision possible): For example, we 

focus on the area bias in this study, and the question of what influence different whisker 

lengths have on the decision process is not of interest in this study. Therefore, ranges 

e.g., were chosen identically in all items and all box plots. 

Eye-tracking assessment 

The Tobii Pro Spectrum eye-tracking device was used with Tobii Pro Lab software. 

First, all participants were shown an example box plot for a time of 10000 ms and then 

read the contextualization and the task. Then, the 24 items of the item set were 

answered, with each item visible for 5000 ms. Participants were informed beforehand 

of the time constraint. The answer was given during this time or immediately 

afterwards. No countdown timer was shown. The test leader noted down the 

participants’ answers (A or B) on a sheet. For the first n = 13 participants, we presented 

the stimulus vertically as given in Figure 1. This did not result in reliable eye-tracking 

data, which could be traced back to an issue of a holistic perception of the iconic box 
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plot representations when below each other: The authors of the paper could reliably 

estimate the ‘beginning and end’ of both boxes while forcing themselves to focus only 

on the median of the first box plot in several items. Therefore, we altered the stimulus 

(diagonal design, cf., Fig. 3) for the remaining n = 14 participants. 

Analysis of the data 

Regarding our first research question, we used a generalized linear mixed model to 

explain the variance in item difficulty. Regarding the second research question, we 

assigned students in a first step to one of the profiles given in Figure 2 based on their 

solution pattern. This gives us a valid and reliable idea of their applied strategy in each 

of the six item categories. In this pilot study, we focus on a qualitative analysis and 

comparison of the gaze patterns as a “proof of concept” to derive further hypothesis 

for eye-tracking analyses. For this purpose, we selected one participant from each of 

the previously identified and investigated one item from each of the 6 item categories 

for each participant. For the same reason of showing a “proof of concept”, we only 

used items where the participant’s answer was in line with the previously assigned 

profile (e.g., a participant assigned to the profile ‘area biased’ answers ‘area biased’). 

RESULTS 

Descriptive results regarding overall item difficulty 

We firstly estimated the effects of the item design (vertical vs. diagonal stimulus), item 

type (median vs. box item), area-congruency, and median-congruency on the estimated 

solution probability of our 24 box plot comparison items utilizing generalized linear 

mixed models; we allowed for random student and random item intercepts. In line with 

our hypothesis, a ‘Model 1’ with item characteristics fits the data significantly better 

than a ‘Model 0’ without item characteristics, X2(3) = 32.3, p < .001. It is noteworthy 

that we do not find a significant effect of the diagonal vs. the vertical presentation of 

the stimuli, yet this result needs to be interpreted with caution as it is a between-subject 

comparison. As expected, Box items were significantly easier to solve than Median 

items (Odds Ratio OR = 1.89*), and area-congruent items were significantly easier to 

solve than are-incongruent items (OR = 6.19*). Median-congruent items were easier 

to solve than median-incongruent items—in line with our hypothesis—but the effect 

did not yield significance in the present study (OR = 1.29). The proportion variance 

change in the random item intercept between the two models is 89.9%; the proportion 

variance change in the random student intercept is negligible (1.7%). This strongly 

supports our theoretically derived systematic variation of item characteristics (cf., 

Fig. 1). 

Inducing applied strategies from gaze behaviour patterns 

The central question for the current study was to what extent eye-tracking can validate 

the solution pattern previously assigned based on answer patterns. Our hypothesis was 

that students’ solution pattern in the six item categories relates to their (item-specific) 

gaze behaviour. For this analysis, we used the results of n = 14 participants who were 
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presented the stimulus diagonally to avoid a holistic perception of the area and force 

saccades and specific fixation areas during the estimation of the area above the critical 

mark. This approach led to reliable eye-tracking data, which we used for the following 

analysis. 

 

Figure 3. Gaze plots of three participants prior assigned to concept by their patterns 

in solution rates (download in higher resolution: https://bit.ly/3Qwvj4x) 

In a first step we used the answer patterns to assign participants to one of the 

hypothesized profiles (see Fig. 2). In total we assigned n = 2 participants to the 

proficient, n = 5 to the area biased, and n = 4 to the no median-strategy 1 profile. The 
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remaining 3 participants could not be clearly assigned. For this proof of concept-

approach, we did not evaluate all gaze plots qualitatively, but give an example for each 

identified profile and each of the six item types (Fig. 3) to show that gaze plots can be 

used for validation of the assigned profiles. 

In Hyp. 2a, we assumed, that the use of the median strategy leads to longer fixations 

on the median and the critical mark with a high number of saccades between both. 

According to the assumed profiles we only expect participant 16 (proficient) to be able 

to use the median strategy and therefore only this participant should show the 

hypothesized eye movement in median items. We found that this is true for participant 

16. Conversely and in line with the assigned profiles, this strategy is not apparent in 

box items, indicating the absence of a median bias. In contrast, participant 15 and 

participant 19 were assigned to profiles in which a non-existence of the median strategy 

is suspected. Their gaze behaviour is in line with this assumption, as can for example 

be seen in median items where both participants’ eye movements allow the conclusion 

that they focus on the area of the boxes. 

In Hyp. 2b we assumed that the box strategy is manifest in longer focuses on the first 

quartile on the one hand and the critical mark on the other, and in an increased number 

of saccades between these areas. According to the assumed profiles we only expect 

participants 15 and 16 (no median-strategy 1 & proficient) to be able to use the box 

strategy and therefore only this participant should show the hypothesized eye 

movement in box items. We found that this is true for both participants. In contrast, 

participant 19 here shows focuses on the third quartile as an indication of the presence 

of an area bias. 

In Hyp. 2c we assumed that the area bias is manifest in longer focuses on the area 

above the critical mark. This area is mainly captured by a comparison of the third 

quartiles, which should show up in fixations on the third quartiles and saccades 

between these fixation points. According to the assumed profiles we expect the area 

bias in all items for participant 19 (area biased), only in median-items for participant 

15 (area bias replaces the missing median strategy there) and in no items for participant 

16 (proficient). We found that this is true for all three participants. 

DISCUSSION AND FUTURE RESEARCH 

Comparing data distributions via box plots is a challenging task. The difficulties arise 

from various difficulty generating factors, such as area-congruency and median-

congruency. Our present study underlines that knowing about these factors explains 

most of the variance in item difficulty—and thus that these factors build a profound 

theoretical foundation for discussing box plot tasks both in research and in teaching 

scenarios.  

These difficulty generating factors are closely related to cognitive profiles of students 

and can provide insights in the problem-solving process when comparing data sets 

using box plots. Considering the gaze behaviour of the exemplary selected study 

participants, our hypotheses could be confirmed to a large extent: the present pilot 
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study provides first indications that eye movements in comparing two datasets using 

box plots differ systematically and therefore can validate the assignment to the naïve 

area-based, the proficient, and the various other in-between profiles as proposed in 

Figure 2 based on the answer patterns. To use this promising approach systematically 

for qualitative analysis, a coding scheme is required and has to be developed. This 

scheme can subsequently be a first step to define characterizing areas of interest and 

typical patterns of transitions for both box and median strategy, so that a quantitative 

approach is possible, too. 

It is noteworthy that we found that in a vertical alignment the area of both boxes could 

be perceived and compared without the need of additional eye movements (e.g., 

focusing on the third quartiles). Considering the eye mind assumption, this is a 

challenging result—not only for our study. This is where the interesting question arises 

whether a diagonal arrangement of the box plots only leads to changed eye movements 

or also influences the problem-solving process itself. On a more general level, we think 

that this result may also have relevance in a broader context of eye-tracking research 

in mathematics education—especially in studies where the perception of figures and 

shapes (and not symbolic representations of text or numbers) plays a crucial role. 
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WHAT DIFFERENCE DOES TEACHER KNOWLEDGE MAKE? A 

FEASIBILITY STUDY ON USING ELEMENTS OF 

COMPREHENSION AS INDICATORS FOR SCHOOL-RELATED 

CONTENT KNOWLEDGE 

Carina Albu  and Anke Lindmeier 

University of Jena, Germany 

It is assumed that school-related content knowledge, as knowledge about connections 

between academic and school mathematics, is necessary for high-quality mathematics 

teaching at secondary level. Nevertheless, research on how teachers use this 

knowledge in action is lacking. In this study, we investigate the use of elements of 

comprehension (EoCs) as an indicator of school-related content knowledge in teaching 

situations. As part of a feasibility study, we analyzed video sequences of three pre-

service mathematics teachers in short teaching simulations on the concept of limits of 

sequences. The occurrence of EoCs could be coded intersubjectively reliable, and the 

observations were in line with the participants’ knowledge assessed prior to the study. 

We discuss the further potential of the approach for research on teacher knowledge. 

MOTIVATION 

The theoretical, deductive structure of university mathematics differs substantially 

from the descriptive and mainly inductive approaches in school. Prospective 

secondary-level mathematics teachers in many countries, including Germany, usually 

study academic mathematics at university. The connections to school mathematics are 

rarely addressed, which creates a gap between the two kinds of mathematics. This 

problem leads to a broad discussion on what kind of content knowledge mathematics 

teachers need. The school-related content knowledge (SRCK) by Dreher et al. (2018) 

is suggested as a domain of mathematics teachers' professional content knowledge (cf., 

CK, PCK and PK according to Shulman, 1986) referring to the necessary knowledge 

about connections between school and academic mathematics. This knowledge is seen 

as relevant to enable mathematics teachers to provide high-quality mathematics 

instruction. For this reason, there is an increasing number of approaches to promote 

SRCK in teacher training through integrating specific learning opportunities (e.g., 

Fukawa-Connelly et al., 2020). However, so far, there is a lack of empirical evidence 

on how (future) teachers may use their SRCK in teaching situations and how this may 

affect the student’s cognitive activation as an aspect of high-quality teaching. 

Moreover, we also lack appropriate indicators to analyze the potential use of SRCK in 

teaching situations. Therefore, this study aims to identify and test possible indicators 

for an application of SRCK by (future) mathematics teachers in teaching situations and 

its potential for the cognitive activation of students. 
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THEORETICAL FRAMEWORK 

School-related content knowledge (SRCK) comprises the connection between school 

and academic mathematics by considering them in both directions, top-down and 

bottom-up (Dreher et al., 2018). The top-down relation of SRCK addresses how a 

mathematical idea can be reduced for the school context. For example, if we want 

students to discover that rational numbers are dense in ℝ, the academic approach (any 

real number is the limit of a sequence of rational numbers) is inappropriate. Teachers 

must hence reduce the idea and find an accessible yet conceptually honest 

(Bruner, 1999) approach, not referring to limits of sequences (e.g., find the smallest 

fraction greater than √2). In school mathematics, many underlying mathematical 

structures are only treated implicitly. Hence, teachers also need to know which 

mathematical definition, theorem or proof lies behind the school content, which is part 

of the bottom-up facet of SRCK. For example, when dealing with inverse functions, 

teachers should be aware that students may discover important mathematical ideas such 

as surjectivity or injectivity. These will be relevant later in the curriculum for 

investigations of the characteristics of functions (curve sketching, e.g., strictly 

de/increasing) and can be integrated well into the students' prior knowledge of the 

mathematical inverse. SRCK thus also includes a third facet, a meta-knowledge of the 

curriculum that comprises knowledge about the structure of school mathematics and 

its similarities and differences to the structure of the academic discipline 

(Dreher et al., 2018). If teachers introduce, for instance, the inverse function only as 

the reflection of the graph at the angle bisector or the concept of limits as “getting 

closer and closer” to a value, they not only miss an opportunity to prepare for future 

learning but, in the worst case, promote misconceptions. Several studies have shown 

the connection between teachers' knowledge and the potential to provide high-quality 

instruction, as well as the effect on student learning progress (e.g., COACTIV research 

program; Baumert & Kunter, 2013). Thus, SRCK, as part of teacher knowledge, is 

theoretically a prerequisite for high-quality mathematics teaching.  

Although instructional quality is not operationalized consistently (for an overview, see 

Praetorius & Charalambous, 2018; Mu et al., 2022), many approaches are based on the 

three basic dimensions according to Klieme et al. (2009): clear-structured classroom 

management, supportive & student-oriented classroom climate, and cognitive 

activation of students. In the past, these basic dimensions were often considered 

interdisciplinary. However, a growing number of researchers are assuming a subject-

specific perspective on instructional quality, which is especially relevant to the basic 

dimension of cognitive activation (Schlesinger et al., 2018). Since SRCK is also 

subject-specific and mainly addresses questions related to understanding mathematical 

concepts, this contribution focuses on the dimension of cognitive activation when 

investigating how SRCK may be used by teachers to provide high-quality instruction. 

Drollinger-Vetter (2011) suggested to assess the potential for cognitive activation of 

instructional situations in mathematics by focusing on elements of comprehension 

(EoCs) and their use in instruction. EoCs are ‘simple, interrelated sub-concepts/ 
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elements of a more complex concept that need to be understood in order to understand 

the whole, overarching concept’ (Drollinger-Vetter, 2011, p. 198). In the associated 

Pythagoras study, for example, the Pythagorean theorem was organized into nine 

EoCs, such as "the central figure is the triangle" and "it is about the lengths of the sides 

in the triangle" (Klieme et al., 2009). EoCs, however, are not a fragmentation of the 

concept into digestible parts and are thus neither disjunctive nor stand-alone. Instead, 

they are interrelated and only become meaningful when combined. Consequently, the 

teaching objective is not merely listing the single elements but making meaningful 

connections based on the student's prior knowledge. Regarding their use in instruction, 

Drollinger-Vetter (2011) investigated (among other criteria) the occurrence, intensity, 

and quality of the connections by using lesson videos of 9th grade. To sum up, under 

this perspective, instruction is considered to have the potential for cognitive activation 

and so contributes to high-quality instruction when they succeed in covering EoCs. 

RESEARCH QUESTIONS 

As illustrated, it is assumed that SRCK contributes to high-quality instruction and 

supports deep understanding of students. More precisely, it is assumed that teachers 

with high SRCK are able to teach mathematics cognitively activating and promote 

students’ mathematical learning, for instance, by building on prior knowledge or 

sustaining content-related discourse (Baumert & Kunter, 2013; Mu et al., 2022). To 

observe the use of SRCK in teaching situations concerning cognitive activation, we 

need suitable indicators that (a) represent established criteria for instructional quality, 

(b) are subject-specific, and (c) can capture aspects of school as well as academic 

mathematics. The latter condition rests on concepts of professional knowledge for 

teachers, involving both types of knowledge and, above all, the connections between 

them (SRCK). EoCs seem theoretically suitable, as they, firstly, have been used as 

subject- and concept-specific quality indicators for cognitive activation in mathematics 

education. Secondly, mathematical concepts may not always be treated identically in 

academic and school mathematics (see the density in ℝ), which can be captured by 

detailing EoCs that are part of the mathematical concepts under consideration. 

So far, EoCs have only been used in real lessons with in-service teachers. Whether the 

approach can also be transferred to teaching simulations in teacher training is unclear. 

In this feasibility study, we want to investigate the theoretical suitability of EoCs for 

assessing cognitive activation based on teachers' SRCK in teaching situations. For this 

purpose, we would like to answer the following questions exemplarily for the concept 

of limits of sequences: 

1. Is it possible to reliably identify EoCs in short teaching situations? 

2. Are EoCs suited to surface differences regarding the SRCK of pre-service 

teachers in short teaching simulations? 

3. How do differences in using EoCs in short teaching situations relate to the 

teachers’ prior SRCK knowledge? 
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METHODS 

In the first step, we determined EoCs for different mathematical topics through a 

theoretical analysis of the targeted mathematical concepts (this contribution exemplary 

presents the topic of the concept of limits). In a second step, we asked pre-service 

mathematics teachers to take part in short teaching simulations and analyzed their 

teaching with the EoCs. Additionally, the SRCK of the participants was assessed by a 

knowledge test and planning tasks administered prior to the teaching simulations. 

Elements of comprehension for the concept of limits of sequences 

For the development of EoCs, we investigated the question, 'which sub-elements of the 

concept of limits of sequences must be understood in order to understand the concept 

as a whole' (Drollinger-Vetter, 2011, p.186) from a school as well as an academic 

perspective. For this purpose, we conducted an in-depth content analysis of the concept 

of limits of sequences based on the curricula, five school textbooks and four academic 

textbooks. Furthermore, findings from mathematics education research were 

considered (e.g., concept images, or typical misconceptions; Greefrath et al., 2016, Tall 

& Vinner, 1981). We synthesized the identified EoCs into a joint framework, and the 

resulting eight EoCs for the concept of limit (see Table 1). The table also indicates 

whether each EoC occurs in the academic concept, is used in school, or both. 

Table 1: EoCs of the concept of limit of sequences 

academic mathematics  school mathematics 

It is about … 

1 … behavior of sequences in the infinite. 

2 … special sequences that converge to a value (convergent sequences), but other sequences 
do not tend towards a value (divergent sequences). 

3 The limit is represented as a dynamic process. 

4
a 

… the theorem on the boundedness of 
convergent sequences. 

 4
s 

… bounded sequences. 

5
a 

… the distance between the sequence 
elements and the limit becoming 
infinitely small from a certain 
sequence element onwards.  

 5
s 

…the distance between the 
sequence members and the 
limit becomes smaller and 
smaller. 

6
a 

… the existence and uniqueness of the 
limit of a sequence (object). 

 6
s 

…the question of whether the limit 
is reached. 

7
a 

… null sequences.    

8…the theorem of convergence of 
monotonous and bounded 

 8 … monotonous 
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EoCs that were related but not similar in both contexts are placed next to each other. 

Note that for our intended use in coding teaching situations, the frequency and 

combinations of EoCs were not relevant. 

Sample and data collection 

To create comparable conditions, we asked pre-service secondary mathematics 

teachers to teach the concept of limits of sequences in a standardized laboratory setting. 

The teaching simulation took place with a group of four simulated 10th-grade students 

represented by other teacher students that acted according to defined profiles (e.g., 

regarding prior knowledge) like 10th-grade students (see Kron et al., 2022 for a similar 

approach) for about 20 minutes. The participants of the feasibility study were three 

volunteering pre-service mathematics teachers (three males, 23-26 years old) at the end 

of their studies for secondary school. For preparation, the participants had access to the 

background information (prior knowledge of simulated students, an overview of the 

teaching sequence, etc.) as well as school and academic textbooks. To gain insights 

into the knowledge (SRCK) of the participants, they were asked to complete a pre-

structured planning document of the teaching simulation and SRCK test items (see 

Dreher et al., 2018 for examples). Among other things, we asked about the definition 

of the limit at academic and school levels, necessary prior knowledge of the students, 

and their concept images of limits (e.g., as an approximation/tends to (A), 

environment/ε-tube (E), and object (O)). The teaching simulation was videotaped. 

Data analysis 

The videos were analyzed with MaxQDA2022 by two independent raters for the 

occurrence and intensity (0 never, 1 short, 2 detailed) of the EoCs. In addition, the 

quality and linkage of the EoCs were assessed in terms of central sub-concepts that are 

particularly relevant for comprehension (see Table 1: EoCs 2, 4, 5, 6). For this purpose, 

a four-level coding scheme was developed for SRCK focusing on mathematical 

correctness (1- incorrect mathematical content, 2- incomplete mathematical content, 

3- correct and complete mathematical content but with formal deficiencies, and 4- both 

mathematical content and formally correct and complete). To enable students to gain 

a deeper understanding, we preliminary decided to consider that level 3 should be 

aimed at from a normative perspective in this feasibility study. In doing so, we were 

aware that this decision, as well as the suggestion to distinguish EoCs regarding their 

relevance, need validation in further research (e.g., via a study with external experts). 

RESULTS  

The coding of the occurrence and quality of the EoCs could be applied intersubjectively 

reliable to all three videos (RQ1). The interrater reliabilities are substantial (Cohens 

κ occurrence = .783, κ intensity = .715 and κ quality = .750). Table 2 shows which EoCs are used, 

the intensity (also distinguishing EoCs at academic and school levels) and the quality 

of the EoCs. We see differences between the participants in all three aspects (RQ2). In 

a sequences. s sequences. 
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this respect, the instrument seems suited to capture variance between the teaching 

sequences. There are differences in the approach to explaining the concept of limits 

from a school/academic perspective. While P1 and P3 primarily use EoCs at school 

level, P2 also uses academic approaches. 

 EoCs used intensity of EoCs (13 items, scale: 0-2) quality of the EoCs 

(4 items, Scale 1-4)  
detailed vs. 

(short) 

total (13) school (4) academic (5) 

 mean sd mean sd mean sd mean sd 

P1 (1, 2), 4s, 5s, 

(6a+s), (8s) 
.87 .72 1.50 .50 .33 .47 1.33 .47 

P2 1, 2, 3, (4s), 

5a+s, 6(a)+s, 

(7a), 8(a)+s 

1.47 .72 1.75 .43 .83 .69 2.67 .47 

P3 1, 2, (4s), 5s, 

6(a)+s, 8s 
1.07 .93 1.75 .43 .33 .47 2.00 .00 

Table 2: Occurrence, intensity, and quality of EoCs 

The results of the SRCK test (5 items, score 0-1), the participants' prior knowledge of 

the concept of limits, as well as an evaluation of the quality and implementation of the 

short teaching simulations, can be found in Table 3. We also find differences between 

the participants’ prior knowledge and the quality and implementation of EoCs (RQ3).  

Table 3: Prior knowledge vs. quality and implementation (AD-academic definition, 

P-prior knowledge, concept of A-approximation, E-environment, O-object) 

P1, in contrast to P2/P3, was not able to provide a correct definition of the limit value. 

For all participants, the concept image of approximation (tends to) dominates, whereas 

P2 and P3 also referred to the environment concept (ε-tube). In line, P1 could not 

provide a suitable (correct) explanation for the students. Only P2 was, in part, 

successful in transferring the academic definition to a school level (correct but 

incomplete). 

planning & knowledge items 

description of the observed quality and 

implementation of the EoCs 

SRCK Prior Knowledge 

mean AD P A E O 

P1 .30 -- x x -- -- Cannot provide a suitable explanation (incorrect and 

incomplete). Limit concept only via approximation. EoCs 

only at school level. 

P2 .50 x -- x -- x A formally incorrect but mathematically mostly correct but 

incomplete explanation was provided. Limit concept via 

approximation, object, and environment (𝜀-tube). More use 

of EoCs at an academic level. 

P3 .60 x x x -- x Cannot provide a suitable explanation (incorrect and 

incomplete). Limit concept via approximation and object. 

EoCs are mostly at school level. 
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DISCUSSION 

This contribution reported on a feasibility study to use EoCs for assessing the cognitive 

activation based on teachers' SRCK in short teaching situations led by (future) 

secondary teachers. Overall, the EoCs could be applied intersubjectively reliable to the 

videos and variations between the teaching situations were reflected by the coding. 

While only a few differences between the participants’ use of EoCs are visible at school 

level, they are more evident in the case of EoCs at the academic level. Due to the small 

sample size, it is not possible to analyze whether the differences are significant. Still, 

triangulating the coding with the pre-service teachers’ knowledge (SRCK) assessed 

prior to the teaching, the observed use of EoCs seems to be in line with the pre-service 

teachers’ knowledge. This indicates the potential suitability of the approach using 

EoCs for further investigating how teachers use their professional knowledge in 

teaching. However, the SRCK of the pre-service teachers, as well as the EoC-based 

evaluations of the instructional quality, show low values hinting at a floor effect. 

Similar effects were found in other studies on the SRCK (Hoth et al., 2020). 

Limitations and implications 

Altogether, the results of our feasibility study support that EoCs may not only be 

suitable for studying the subject-specific quality of instruction in real lessons but also 

in teaching simulations. However, the feasibility study only provides a first impression 

based on three teaching situations of three students as a convenience sample. More 

investigations to validate the approach are required, such as using larger samples, more 

teaching situations per person, or an expert validation of the EoCs. It also needs to be 

clarified whether the procedure is transferable and can be used with other mathematical 

concepts. These open questions are currently being investigated in further studies. In 

addition, other aspects associated with cognitive activation seem relevant but not 

captured by EoCs (e.g., use of cognitively activating questions, student activation, and 

use of representations). So, further studies should also consider whether additional 

indicators are needed to not miss relevant features of high-quality mathematics 

instruction. In conclusion, the approach of capturing subject-specific aspects of high-

quality teaching using EoCs is promising for future studies to investigate how (future) 

teachers use their SRCK in teaching situations and how this influences the 

effectiveness of learning opportunities. 
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This study describes the considerations and decisions of the adaptive engine in 

adjusting a learning trajectory for each student for the “Fraction my way" for the 4th 

grade digital environment. We examined and formulated the decisions of the adaptive 

engine from a didactic point of view, translating algorithmic processes into 

mathematics teaching processes and learning processes - as much as possible. The 

research findings show a change in the sequence of tasks, skipping back and forth for 

practicing and reinforcement of the topics, treating identified misconceptions while 

keeping the student challenged and not bored or frustrated. Most, but not all, of the 

algorithmic decisions were described from a didactical point of view, enabling a 

critical perspective on the modifications made in student’s learning trajectories. 

LITERATURE REVIEW 

The current settings of k-12 classrooms in terms of time limitations and student 

numbers, usually prevent teachers from providing student specific teaching and push 

teachers to teach according to the level of the average student. This strategy may leave 

struggling students behind, lead to a lack of interest for advanced students and 

improper time use (Vainas et al., 2019). The student centred approach, that sees the 

students as the center of the teaching and learning process and allowing each student 

to learn according to their own level, is difficult to implement under these conditions. 

Adaptive learning systems provide a possible solution for personalized learning and 

have the potential to allow teachers to adapt their teaching to each student or group of 

students with similar needs, as they can interpret the data presented to the teachers 

through dashboards at any stage of their student’s work. Utilization of technology can 

lead to an improvement in student achievement and can allow every student an equal 

opportunity to learn according to their appropriate level (Grant & Basye, 2014). One 

possible solution researchers proposed is the use of artificial intelligence technology 

that would offload some of the teacher’s decision-making process to provide each 

student with support or guidance that is personally adapted based on their previous 

work (Pai et al, 2020). Artificial intelligence assesses situations and makes 

personalized decisions for students based on the algorithmic training (Akerkar, 2014), 

while creating a unique learning process that relies on the performance and 

characteristics of students to accommodate different learning goals (Yaghmaie and 

Bahreininejad, 2011). 
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Adaptive learning gives learners control over the context, pace and scope of their 

learning experience (Martin & Whitmer, 2016). The adaptability of these systems 

stems from their ability to respond to each individual user according to the information 

that the system has processed and collected about him (Johanes, 2017). Teachers using 

an adaptive system for their students testified that when the system skipped tasks, the 

students interpreted it as positive reinforcement, which motivated them to learn, think 

and spend time before answering a task, so that their answer would be correct (Vainas 

et al., 2019). 

During lesson planning, many teachers emphasize the interaction with the curriculum 

and the various learning materials, while only a few teachers plan their lessons and 

make decisions based on the students' thinking (Lloyd & Behm, 2005). During the 

lesson, the teacher responds and makes different decisions according to the conduct of 

the lesson. This type of decision-making contrasts on many occasions with long-term 

decision-making (or planning) by teachers performed after school hours, when they are 

not interacting with students. Another teacher’s decision during the lesson is when 

choosing the next problem. This expertise requires not only knowledge of handling 

students' strategies and interpreting students' understandings, but also knowledge of 

student’s mathematical development. This understanding can help identify the next 

step so that it will be adapted to the students by choosing a problem that will be 

accessible but also challenging for the students (Childress & Benson, 2014). In 

adaptive systems such as the "fractions my way" learning environment (Biton et al., 

2022) that is studied in this report, the algorithm-based adaptive engine, rather than the 

teacher, determines the next task for each student. Yet the considerations of the engine 

are opaque for both teachers and students and are usually difficult to interpret and 

understand. This study investigates and describes the considerations of the adaptive 

engine in the learning environment "Fractions my way" for the 4th grade. The engine's 

decisions and the learning trajectories it created for students were coded for each of the 

mathematical sub-topics and were described from a pedagogical point of view. 

RESEARCH QUESTIONS 

How can considerations of the algorithm-based adaptive engine made while adapting 

student's personal learning trajectories be described from a didactic point of view? And 

what modifications are made in learning trajectories offered by the adaptive engine 

compared to a linear learning trajectory? 

METHODOLOGY 

Population  

In this study we examined data representing 12 learning trajectories of 4th grade 

students in Israel. The learning trajectories included 30 hours of study of fractions in 

the 4th grade. 
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Research Tools 

The “fractions my way” teaching and learning environment offers personal learning 

for the student based on an algorithmic model that builds each student's unique 

trajectory. The learning trajectory is constructed in real time and is constantly modified 

according to the student's personal achievements. These adjustments in the learning 

trajectory navigate the student to move back and forth in his personal learning space, 

so that he will be required to tackle tasks that the student is able to solve but will 

challenge him and he will have to invest time in thinking in order to succeed in solving 

these tasks. 

Data Sources 

The data consists several files generated from the digital platform: a file containing 

complete data on the linear learning trajectory, a file containing the twelve learning 

trajectories, a file containing the difficulty indices and a diagnosis index for all the 

tasks in the learning unit, and file that allows viewing various characteristics on all the 

trajectories passed in the system in 2021. 

Data Analysis 

In the first phase of the research, we used the file containing complete data on the linear 

learning trajectory in "Fractions My Way". This file included the sequence of tasks and 

topics; the mathematical skills for each of the tasks; The type of tasks - mandatory 

tasks, which the system is configured not to skip, additional practice tasks and 

enrichment tasks. Next, we created a focused file detailing the number of tasks in each 

subject and dividing them into different criteria. In the second stage, we used the file 

detailing the twelve learning trajectories representing students work within the 

environment, first, we coded three of the learning trajectories to examine the coding 

method, what can be learned from the data and validate the process. Next, we coded 

the rest of the trajectories. The coding was done relative to linear trajectory and 

described each learning trajectory individually. The description included the sequence 

of tasks completed, the answer for each task, correctness and characteristics of the task. 

In the third stage, we coded the modifications made by the engine in the 12 learning 

trajectories, so that each of the skipped tasks was coded according to several categories: 

the chapter in which the task is located, the type of task (mandatory, enrichment or 

practice), mathematical skill for that task, rate of success in the sequence of tasks that 

preceded this jump, the type of skip (forward or backward), the size of the skip as well 

as the tasks to which the engine returned to after significant progress in the sub-topic. 

In the fourth and last step, we examined the coded data from a didactic point of view 

and proposed different interpretations for each of the engine actions that were coded. 

The process involved trying to find several interpretations in order to distil the most 

appropriate interpretation with supporting data. When an extreme skip was detected, 

the student's answers and the characteristics of the tasks before and after the skip were 

coded in order to locate the reason, leading to insights about the engine’s ability to 
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locate and identify misconceptions among the students and respond within the means 

available. 

FINDINGS 

In this section we present the findings that emerged from the data analysis as an answer 

to the research questions through case studies. For each case study, we will present the 

changes made in the learning trajectory by the adaptive engine compared to the linear 

trajectory, and present the interpretation of the considerations of the adaptive engine 

for modifying a personal learning trajectory from a didactic point of view. 

In the first case, skipping tasks following success and significant jump back in the 

sequence of tasks were detected for tasks that the engine initially skipped. This case 

was identified in Track 4 on the topic "Fraction’s Comparison", in fraction comparison 

tasks. The student experienced two skips in their trajectory. The first, forward skips 

following success: the first skip after 100% success, while the next jump after 58% 

success (in previous 20 tasks). At this point the student reached task 408, completed it 

successfully and continued to task 409 (the displayed task number is according to the 

cyclic position of the task in the full linear learning trajectory). Task 409 (figure 1) 

presented two fractions that are equal to one another, but divided into a different 

number of parts (3 and 4 respectively). The student chose the fraction that would be 

represented by the largest number as bigger. From this we learn that the student 

possibly needs reinforcement in the meaning of the fraction and that the skipping does 

not fit his performance. 

 

  

 

 

 

 

Figure 1: Fraction comparison task (409). 

Examining the data from a didactic perspective suggests that to help the student, 

initially the engine skipped on tasks that he had a high likelihood to succeed in, based 

on his prior performance. Then, after making mistakes, the engine returned him to 

practice comparing fractions, task 207 (about two hundred tasks back) - comparing unit 

fractions, ninths versus tenths. Here too it can be seen that the student did not refer to 

the essence but chose the fraction in which the large number appeared, even though 

this number appeared in the denominator and represented a smaller part. The engine 

then returned the student to the task where the number of parts is the same - 3 parts in 

each of the fractions, and the denominators are different. That is, the student was shown 

the fractions three-fifths as opposed to three-sevenths. Here too the student repeated 
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the error. It is important to note that these tasks included a laboratory applets for the 

representation of the fractions in a visual manner (figure 2). If the student were to 

represent the fractions in the lab, he might have been able to visually identify the 

correct fraction and been able to better understand the meaning of this fraction. In this 

case study it can be seen that the system returns the student specifically to tasks that 

may help him overcome the difficulty and not to all the tasks he skipped, as there were 

other tasks related to the same subject but not suitable for this type of student error. 

 

 

 

 

 

 

 

 

Figure 2: Task 207 

In this case study, there are considerations regarding data that the engine developed      

and were not defined in advance. These skips were not only concerned with the type 

of task, but with the students' solution. significant jump across different sub-topics      

back in the learning trajectory, it was found that the engine was able to locate and 

identify misconceptions among students and respond to those perceptions with relevant 

tasks from the pool of tasks that the student did not complete. 

In the second case study, the topic "Fractions Questionnaire - Recognition and 

Actions". The student made a series of mistakes. From tracing his mistakes, we noticed 

that when the student encounters addition and subtraction tasks with equal 

denominators, he performs the mathematical operation on both the numerator and the 

denominator, which shows that he treats the fraction as two different groups: the 

numerator represents one group and the denominator represents another group. 

 

Figure 3: Change in the sequence of tasks. 
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In the task shown in figure 3, the student, after finding a common denominator, 

subtracted the numerator from the numerator and the denominator from the 

denominator. The student had 5 for the numerator and 0 in the denominator, and wrote 

"5 liters" as the answer. In the process of creating the common denominator, the notion 

that the numerator and the denominator receive the same operation did not interfere, 

since in expansion and contraction the same operation is performed on both the 

numerator and the denominator. The student may also apply this knowledge in addition 

and subtraction tasks in which he was challenged . 

The student acted in the same way in section b, as well as in other tasks, in this case 

the engine returned the student to addition tasks with equal denominators. The student 

was asked to add different fractions with the same denominator (given in advance) that 

would lead to two wholes and then to different results, as shown in figure 4. The engine 

jumped back to practice and refresh the material he learned. These tasks are  also 

supported with a fractions lab (interactive applet) with different shapes to represent the 

fractions and interact with them in the solution process. 

 

Figure 4: Task 544. 

Examining the engine's considerations from a didactic point of view, additional 

trajectories were found in which the students made mistakes in this task and even in a 

similar sequence of tasks. An examination of the mistakes the students made revealed 

that the solution they submitted and hence the type of error, was different, leading the 

response and adjustment of the tasks to be different. These findings reinforce the fact 

that the jump back was not arbitrary but based on a misconception, a sequence of errors, 

and a type of answer specific to that student. 

An additional phenomenon within these two case descriptions, as well as in various 

cases found in the learning trajectories, were two types of gradual skipping: skipping 

following correct answers and skipping following incorrect answers. Gradual skips are 

when the engine skips a sequence of tasks in a way that consists of a cluster of small 

skips and in which students are given individual tasks and some tasks are skipped. 

Examining the data from a didactic point of view indicates that the system keeps the 

student in the area where he is challenged, therefore when the student experiences a 

sequence of successes, it performs controlled jumps. The student does not get one skip 

over a large number of tasks at once, but gradually continues to practice and skip until 

the level where he is challenged enough to continue within the learning trajectory 
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without the need for skips. This also happens when the student experiences difficulties 

in order to keep the students at a level where they are challenged and not frustrated.  

DISCUSSION 

During the establishment of the learning environment and the data collection phase, 

thousands of users used “Fractions my way” in a full, linear trajectory to confirm the 

difficulty level. The algorithm-based engine accumulated large amounts of data 

helping to improve the decision-making of the algorithm based adaptive engine. This 

ongoing collection and analysis of the data, helps the engine to constructs connections 

and create new considerations that sometimes differ from the original rules coded into 

the algorithm. The adaptive learning engine updates and responds to students in real 

time by detecting correct or incorrect answers and responds accordingly. A student 

with high success rates skips easy tasks to stay challenged and not get bored, while a 

student with low success rates skips the enrichment episodes and gets a more gradual 

sequence of tasks, to prevent frustration. Even when the student has progressed in 

learning but it is evident that he needs additional reinforcements, the learning engine 

presents him with tasks he did not complete yet as part of a remedial practice treatment     

. It is difficult for a      teacher in the classroom to make and carry out these decisions 

in real time for each and every student in the classroom, since the situation requires the 

teacher to constantly analyze and connect specific situations to what he knows about 

the mathematical development of children (Frank, Kazemi, & Battey, 2007; Heaton, 

2000; Lampert, 2001). The adaptive learning engine identified recurring 

misconceptions among students and responded accordingly. In this way, the engine 

enables personal and precise, controlled and close attention to each of the students at 

any time on real-time performance as well as on past performance. 

The continuous collection of data at each stage of learning allows the learning engine 

to create an infinite number of different learning trajectories. However, the adaptive 

learning engine has limited features on adapting a learning trajectory      as well as 

limited information on the possible answers of the students. While many basic 

characteristics are coded for the adaptive engine such as the type of task     , the success 

threshold of a student for this task     , the type of answer, what is the correct answer 

and more, there are relevant characteristics that are not coded for it, for example, there 

are no recommendations for a possible response to a student who made a mistake in a 

certain task, or data about what is the sequence of tasks that establishes an 

understanding of a certain subject and to which it is recommended to return when 

necessary. Another disadvantage in adjusting the individual sequence of tasks for each 

student is the scope of the task pool in the adaptive environment. This database is 

limited so that the engine can only match a task from the existing activity database 

while maintaining a state      in which the student cannot perform the same task twice, 

so that when the student studies and needs to additional material on a certain sub-topic, 

it is possible that the environment would not be able to give the student a task that can 

match the student’s needs. In addition, misinterpretations of student difficulties might 

occur and lead to futile task sequences that are unrelated to the actual student needs. 



Alush, Olsher & Biton 

2 - 34 PME 46 – 2023 

It seems that the adaptive learning system provides a personal response to each student 

during learning, adjusting the sequence of tasks and keeping the student in a situation 

where he is challenged and leading the students to meaningful learning processes. But 

at the same time it is also limited in its abilities in various ways for example, affective 

considerations or other social aspects. From this study, it appears that a combination 

between an adaptive learning environment and a teacher that overlooks and intervenes 

at critical points could give a more comprehensive response to student’s needs in their 

learning process. 
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IS BEAUTIFUL ALSO TRANSPARENT? STUDENTS LEARN 

FROM GRAPHS ABOUT WATER POLLUTION 

Andrea Amico and Luca Doria 

Università del Piemonte Orientale, Italy 

 

Mathematical graphs are among one the most used tools to communicate data 

regarding environmental issues such as pollution. Traditionally, research in 

Mathematics Education has focused mostly on the features of graphs that make them 

accessible and understandable, introducing the construct of transparency. Moreover, 

teachers in school tend to approach the teaching of graphs not per se, but strongly 

connected with the context they represent. In this paper, we explore the potential of the 

aesthetics of graphs in relation to their transparency by looking at how a sample of 

undergraduate students in Environmental Sciences read and appreciate different 

graphs representing water and air pollution in textile factories in Italy. Our study 

reveals the relationships between a graph’s appearance and its transparency.  

INTRODUCTION 

Mathematical graphs are deemed to be an effective tool to convey information about, 

e.g., pollution issues, increasing temperatures, and climate change, by environmental 

scientists, especially when interacting with people outside the scientific community 

(Grainger, Mao & Buytaert, 2016). However, Ainley (2000) warns us about the fact 

that mathematical graphs are not always transparent for those who read them. This can 

have dramatic consequences when environmental issues need to be communicated 

through them: as Demeritt and Nobert (2014) observe, ineffectiveness of 

communication through graphs may prevent comprehension and, thus, create 

misunderstandings and inconsistencies or biased messages. 

These considerations hold also for young students in mathematical classes, who learn 

both how to read graphs and how to create them (Roth & McGinn, 1996), usually 

strongly connected with the real context they refer to (Ivanjek, Susac, Planinic & 

Andrasevic, 2016). If the context is environmental education, and the aim is to convey 

information about the evolution of pollution, sea water level increases, and the like, it 

becomes even more crucial to understand graphs. Moreover, Thielsch, Scharfen, 

Masoudi and Reuter (2019) observe that a fundamental feature of graphs is their 

aesthetics: “users not only feel better if they use aesthetically pleasant interfaces, but, 

on average, they also perform a little better as well” (p.208). Thus, in the context of a 

mathematical lesson about the effects of textile production on air and water pollution, 

involving students in an Environmental Science undergraduate course, the research 

aims at answering the following research question: what the relationship is, if any, 

between the perception of graphs as aesthetically pleasing and the one as transparent? 

Implications for students’ understanding is also focused on. 
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THEORETICAL FRAMEWORK 

Transparency, in a general sense, is the quality of being easy to perceive or detect. It is 

possible to apply this definition to a wide range of different contexts: someone is 

transparent when it is easy to understand his or her thoughts and intentions even if he 

or she doesn’t say so directly, an administration is transparent when every bureaucratic 

piece of paperwork or decision is available to be read and understood by each citizen. 

There is an object, definite and circumscribed, and a story that lies beyond that; the 

term transparency denotes how easy the user can access such hidden significance. Lave 

and Wenger (1991) describe transparency as the combination of two characteristics: 

invisibility and visibility. This dual nature is well represented by the metaphor of a 

window: the window is highly visible in contrast to the wall that contains it, but the 

hidden meanings, represented by what lies behind the window, is clear if the glass is 

transparent enough (Ainley, 2000, p. 366).  

It is possible to apply the definition of transparency even to the data that can be read 

from graphs; in this case the role of the window is played by the graph itself and the 

hidden significances are represented by data, upon which the graph has been created. 

The slope of the curve, the relationships between variables, the variation with time: 

these are some examples of the information ‘lying beyond’ a graph. For example, in 

their study, Berg and Smith (1994) asked a group of students to imagine walking across 

the room, and then re-presenting the imagined walk. Roth and Mcginn (1996) comment 

that in this case the relationship between the graph and the reality it shows is 

bidirectional “because it is assumed that a literate person can read the specifics of the 

walk from the graph or construct a graph after making (or imagining) a walk. However, 

there is evidence that this relationship must be constructed in the same way as the 

relationship between the word ‘cat’ and some furry creature that meows.” (p.96). In 

fact, during mathematics classes, students learn this way of creating and interpreting 

graphs, but graphing, defined by Ainley (2000) as “drawing graphs, reading graphs, 

selecting and customising graphs for particular purposes, and interpreting and using 

graphs as tools” (p.1), becomes a cognitive ability unbounded from the context (Roth 

& McGinn, 1996). This is not always an easy task: Ivanjek et al. (2016) investigate 

first-year students’ graph interpretation strategies and difficulties, finding that 

students’ reasoning regarding the proposed problems involving graphs is “often very 

much bound by the context and conventions of the disciplines in which their knowledge 

was acquired” (p.11). In their research, the same graph is used in three different 

contexts and the students resort to different strategies, depending on the subject relating 

to the problem, even if the question is similar (Ivanjek et al., 2016). On the one hand, 

it seems that graphs are strongly linked to both the context and the subject they emerge 

from, but at the same time their readability heavily depends on the cognitive ability of 

those who read and interpret them.  

Mathematical objects are accessible through representations such as graphs, and not in 

a direct way: understanding a concept hidden inside a chart is a cognitive act which 

relates the signifier (information) to its signified (the graph) (Duval, 2006). Roth states 
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that: “graphs as objects do not exist as independent entities, but are a complex network 

that integrates entities and processes” (p. 305). Improving these cognitive processes 

could therefore be a way to increase graph transparency. Furthermore, research in eye 

tracking found a strong correlation between fixations and cognitive processing of 

information (Latour, 1962; Volkman, 1976); we think that increasing the time students 

spend looking at a graph may have a beneficial effect on its readability. We conjecture 

that the time spent in looking at a graph may depend on its aesthetic features and a 

meta-analysis by Thielsch et al. (2019) on general graphical choices, found that visual 

aesthetics of websites, software and other interfaces have a positive effect on user 

performance, improving attention and focus. Also, in an educational context, graphs 

can translate complex concepts in a succinct manner and help comprehensibility: 

“Design and aesthetics have a profound impact on how users perceive information, 

learn, judge credibility and usability, and ultimately assign value to a product.” (David 

& Glore, 2010, p. 5). 

In this paper, we question whether transparency of graphs, understood in Ainley’s 

(2000) terms and having a dual nature depending on both the context and the student’s 

ability, can be improved by a focus on the aesthetic features of graphs. We recall that 

our hypothesis is that a graph that is characterised with a better aesthetic appearance 

invites the observer to look at it and this give it more attention and what it contains. 

This may, in turn, make it possible to better understand what the graph wishes to 

express, thus improving transparency. 

METHODOLOGY 

The study took place during a lecture in a class attended by first year students of an 

undergraduate course in Environmental Sciences. Participants came from different 

educational backgrounds, resulting in a good representation of the sample for both 

gender and mathematical knowledge. The lecture was aimed at improving graph 

comprehension by inviting the students to interpret or draw graphs on air and water 

pollution of textile factories in the territory of Biella, Italy. Examples of graphs used 

are shown in Figure 1. During the lecture, which lasted three hours, a presentation was 

shown to the students, and it consisted of four different graphs for each chemical 

component analysed. The difference in style and method of construction between the 

four graphs presented was intended to emphasise the different aesthetical features of 

graphs representing the same data. In Figure 1, a 3D vertical bar chart, a radar chart 

and a line chart can be seen as examples. 

Data collection consisted of a multiple-choice questionnaire made up of 15 questions 

related both to aesthetics and transparency and to the effective understanding of the 

graphs shown. For example, question 1 concerned four graphs (a vertical bar, a 3D 

vertical bar, an area and a line chart), for water toxicity of TEXMOL 400S, and the 

students were asked to indicate: (i) which graph they preferred (aesthetics) and (ii) 

which one better represented the data (transparency). After a second question about 

another pollutant, a question involving the comparison between the two was asked 

(understanding). 
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 Figure 1  left: water toxicity of acetic acid;  

 middle: time series from 2017 to 2020 of chrome emissions of the 

fabric (orange line) compared to European standards (blue line); 

 right: time series for nitrogen emissions of the fabric (blue line) 

compared to European standards (orange one).  

A first group of four questions concerned water toxicity (both fresh and saltwater) of 

certain chemical components used in wool finishing processes (see the graph to the left 

of Figure 1 as an example). A fifth, check-your-understanding question was also asked.  

A second group of 9 questions concerned time series of the discharges into the water 

of two textile companies and their comparison with the European standards (i.e., 

maximum limits). Figure 1 middle and right show examples of graphs used. Also for 

this group of questions a check-your-understanding one was inserted. The goal of these 

two groups of questions was to explore students’ appreciation and understanding of 

graphs representing pollution data. 

Data analysis aims to reveal any possible relationship between aesthetics and 

transparency through the comparison of the answers given by the students. The analysis 

was conducted by calculating the frequency of responses related to aesthetics and 

transparency and pointing out any correspondence between the responses of each 

respondent. This part of the work tries to highlight if respondents aesthetically 

appreciate the same chart that they recognise as the most transparent. 

The analysis of the two check-your-understanding questions aims at confirming 

whether the kind of graph that is perceived as the most beautiful/understandable really 

promotes students’ comprehension by looking at the proportion of correct answers. 

RESULTS 

The first four questions (i.e., Q1-Q4 in Table 1), referring to the toxicity of the waste 

from the textile companies, reveal a clear aesthetic preference for 3D graphs. When the 

3D graph is a bar chart, 22/35 (~63%) students chose the 3D charts in the first question, 

and 21/35 (60%) prefer it in the second one; speaking about the third question, where 

the one in 3D is the area chart, only 16/35 (~46%) like it the most among the others. 

When it appears among the four possible options, a 3D graph, regardless of being a bar 

or an area one, is aesthetically preferred, compared to the others. The check-your-

understanding question (not in Table 1) for this group of questions shows the bar chart 

again and it is designed to check its effective understanding through comparing two 

toxic wastes. It proves good understanding of bar charts with 71% of correct answers. 
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Table 1: Frequencies of the answers given by the students in each question (Q).  

  Bar charts Area charts Other charts 

Q   Simple 

vertical 

Simple 

horizontal 

3D 

vertical 

3D simple Point 

charts 

Radar 

chart 

Lines 

charts 

1 beautiful 2  22  2   9 

transparent 13  10  4   8 

2 beautiful 7 2 31    5  

transparent 14 16 5    0  

3 beautiful 6 1  16    12 

transparent 25 3  2    5 

4 beautiful 9   13  3  10 

transparent 12   4  2  17 

5 beautiful    9 3  10 13 

transparent    1 9  2 23 

6 beautiful 11    6 7  11 

transparent 17    4 0  14 

7 beautiful  10   7  10 8 

transparent  16   2  4 13 

8 beautiful 11 3  14    7 

transparent 17 8  1    9 

9 beautiful  8  14   6 7 

transparent  16  8   2 9 

10 beautiful 14 7   8   6 

transparent 17 5   4   9 

11 beautiful  5  17 4   9 

transparent  13  6 8   8 

12 beautiful 11    10  8 6 

transparent 20    7  3 5 

13 beautiful 8   13   8 6 

transparent 15   10   1 9 
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The mode for each row is in bold. The questions are numbered from 1 to 15 and each one is made 

of two sub-questions: one concerning the aesthetics and the other the transparency. The answers to 

the check-your-understanding questions are not reported. 

 

No evidence of a relation between transparency and graph aesthetics has been found 

until this point; but some interesting results start to appear when students are asked to 

compare the amount of toxic waste of the companies year by year (to recall, the 

questions of the second type, from Q5 to Q13 in Table 1). In this series of questions, 

with reference to consistency (i.e., the percentage of students considering the prettiest 

graph as the most transparent) grows from values between 14-20% in the first three 

questions, to 34-48% in the last ones. When it appears among the four possible options, 

a 3D graph, regardless of being a bar or an area one, is aesthetically preferred to the 

others. The tendency to consider bar charts as the more transparent also remains 

unchanged, with a special mention to the line charts, which are deemed as the second 

more readable. When the 3-D one is an area chart, although defined as the most 

aesthetically pleasing, it is never considered as the most transparent; in fact, in the 

seven cases where 3D area graphs appear as an option (questions 3-4-5-8-9-11-13), 

they are considered as the least readable in four cases (questions 3-5-8-11). Looking at 

consistency, the highest levels of coherence between aesthetics and transparency are 

detected in the bar charts, then in line ones, area charts and, finally, in the radar charts, 

considered bad both for readability and aesthetics. This is further confirmed by the 

second check-your-understanding question, aimed at comparing the amount of waste 

dissolved in the water of the two companies through a radar chart: 31% of students 

answered correctly, a percentage that is much less than the previous 71% of correct 

answers given when a bar chart was shown.  

DISCUSSION AND CONCLUSION 

To understand the relations between graph aesthetics and transparency, if any, it is 

essential to understand which charts seem to be more student-friendly: considering the 

readability, it's clear that students prefer the bar charts as the easiest to read, with no 

big difference between vertical and horizontal ones; instead, speaking about beauty, 

the most appreciated aesthetic feature is their three-dimensionality. This characteristic, 

however, does not show any facilitation in reading what is hidden inside a graph, if not 

associated with transparency: in fact, 3D charts are always deemed as the most 

beautiful, the 2D analogous are chosen as the most understandable, when both 3D and 

2D graphs of the same type are shown (see questions 1 and 2). High aesthetic 

appreciation of 3D area graphs, found to be opaque in Ainley’s (2000) terms, 

demonstrates that beauty alone is not enough to improve the readability of a graph, in 

fact, it seems to hinder the accessibility of hidden information. The window (recalling 

the metaphor of transparency) turns out to be a coloured stained-glass window, through 

which it is very difficult to look. 

When there isn’t any 3D chart (questions 6, 7, 10 and 11), the most appreciated graphs 

are bar charts, also considered the most transparent, and in these cases consistency 
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reaches the highest level. Moreover, the check-your-understanding questions confirm 

that a big amount of students answered correctly when asked to compare two bar charts. 

Considering the sub-case of 2D-only graphs, we can argue that there is a relationship 

between beauty and transparency, but the direction of the relation is not clear: is the 

greater transparency of bar charts that make them appear more pleasant or is their 

aesthetics that increases the readability? A future, qualitative study can contribute 

answering these open questions.  

Line charts come in second position for both consistency and transparency, but do not 

stand out for aesthetics. In this case their simplicity is able to make them appear very 

transparent, a feature which however is not enough for the students’ appreciation, in 

our data. As per radar charts, questions 7, 9 and 12 reveal that they are more appreciated 

than considered transparent. 

Generalising, we can say that the highest levels of consistency are achieved when there 

is a balance between transparency and aesthetics: the beauty of a graph alone does not 

guarantee that it will be transparent, just as a transparent chart does not ensure that it 

is also pleasant; it remains to see whether increasing the beauty of an already 

transparent graph might increase its understanding.  This will be part of a forthcoming 

research. 
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This paper investigates, with a commognitive perspective, the role of dynamic 

interactive mediators (DIMs) in promoting students’ discourse on indeterminate 

quantities. We analyze a case study of two high school students with a history of low 

achievement in mathematics, focusing on whether their discourse, developed in 

activities with DIMs, integrate the (meta)-arithmetical discourse. We show how words, 

narratives and visual mediators produced interacting with DIMs expand and compress 

the arithmetical discourse, shaping, in this way, the meta-arithmetical discourse. 

CONCEPTUAL BACKGROUND 

For more than three decades, research has shown how the teaching and learning of 

school algebra is a challenging issue, often source of difficulties for many students 

(e.g., Sfard & Linchevski, 1994; Kieran, 1992). More recently, a stream of studies 

focused on proposing characterizations of algebraic thinking, on studying the process 

involved in its formation, and on looking for forms of algebraic thinking in activities 

apparently distant from school algebra or that even precede it (e.g., Radford, 2014; 

Caspi & Sfard, 2012; Kaput et al., 2008). Radford (2014) characterizes thinking as 

algebraic when it deals with indeterminate quantities as if they were known. Kieran 

(2022) frames three dimensions – analytic, structural, functional - of early algebraic 

thinking, and defines as analytic the thinking dimension related to the dealing with 

unknows as if they were knowns. In this view, thinking algebraically is not necessarily 

related to the use of algebraic symbolism: unknows and variables can be represented 

with symbols, everyday language, gestures and different signs. 

In this paper, we focus on the development of algebraic thinking, specifically regarding 

the use of indeterminate quantities, of low-achieving high school students. This study 

is part of a funded research project on the learning of high school students with a long 

history of failure, with support of digital environments.  

We adopt the commognitive framework (Sfard, 2008) where doing mathematics is seen 

as to engage in an established discourse, learning mathematics consists in becoming 

able to participate in this discourse and to study students’ mathematical learning means 

to analyze their mathematical discourse. The term discourse applies to a form of 

communication characterized by specific words (e.g. “equation”, “variable”, 

“function”), visual mediators (perceptually accessible objects pre-existing to the 

discourse or artefacts produced for communicative purposes), narratives (descriptions 

of objects, of relations between objects and of activities with them) and routines 

(repetitive patterns characteristic of the given discourse).  
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Multilevel structure of algebraic thinking 

In the framework of Commognition, mathematical objects are neither extra-discursive 

nor pre-existing entities. Rather, they constitute part of the discourse itself, they are 

discursive constructs (Sfard, 2008, p. 129). The process of object construction is called 

objectification. It may be achieved in three ways (saming, encapsulating, reification) 

that develop with the use of a noun which will be employed in depersonalized 

narratives. In these narratives, the human subject disappears, as if the referent of the 

noun exists independently of it. In this way, the discursive construct becomes an object 

of mathematical exploration and then new mathematical narratives can emerge. 

Therefore, mathematical discourse develops by addition of new discursive layers, any 

of which subsumes a previous discourse. In this perspective, elementary algebra can 

be described as “metaarithmetic, or more precisely, as the unification of arithmetic 

with its own metadiscourse” (Sfard, 2008, p. 120), that is the mathematical discourse 

on arithmetical relations and processes (Caspi & Sfard, 2012).  

The development of discourse can be described in terms of alternating expansions and 

compressions (Sfard, 2008, pp. 119-123). The increase in the amount and complexity 

of routines and of new discourses leads to a discursive expansion, while the 

compression reduces the complexity of the discourse through the rise to the metalevel. 

Dynamic interactive mediators 

Following the distinction between static and dynamic mediators (Ng, 2016), some 

studies (Baccaglini-Frank, 2021; Antonini et al., 2020) have formulated the notion of 

dynamic interactive mediators (DIMs), mediators that are dynamic and that respond to 

a person’s manipulations. Examples of DIMs are digital manipulable objects 

constructed within technological environments. In our study, we are interested in 

studying how the arithmetical and meta-arithmetical discourses are shaped by the 

discourses emerging from the interaction with DIMs consisting in digital 

representation of the balance model. The balance model is a common metaphor in 

teaching linear equations, for conceptualizing the equal sign and promoting strategies 

to deal with unknowns. Gains and pitfalls of this model are discussed in the literature 

(for a review, Otten et al., 2019). 

The DIMs we have designed and that we analyze in this paper consist in different 

versions of two-pan balances. A first DIM consists of a two-pan balance with weights 

that are known and are represented as colored shapes with a number inside, while some 

weights are indeterminate and are represented by white shapes (Fig. 2,3). The user can 

insert one value for the white weights in an input field. By the key “Let’s try!”, one can 

interact with the balance which will move depending on whether the total weight on 

the right pan is less than, greater than or equal to the total weight on the left pan (Fig. 

1b), where the white shapes are worth the value inserted in the input field. We call 

DIMTB this DIM, where TB stands for “test-balance”. It models linear dependency 

between quantities, as its position depends on the input.  
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To model an equation, we design a visual mediator of a two-pan balance with, on its 

pans, known weights, colored and with reference to their values, and unknown weights 

(the balance on the left in Fig. 1a, 4a). This is a fixed, not interactive, balance that we 

denote by VMFB, where VM stands for “visual mediator” and FB for “fixed balance”. 

Finally, we call DIM(FB,TB) the DIM embedding the DIMTB and VMFB (Fig. 1a), where 

the DIMTB is a version of the VMFB in which the unknown weights are white (Fig. 1a). 

In DIM(FB,TB), the fixed balance is unmovable since every weight has fixed value, even 

if unknown, while the test-balance can assume different positions according to the 

value given to the white weights. They correspond to two different ways of thinking 

about a relation between two algebraic expressions. For example, one can think about 

3+2x=11 as an equality between two quantities where x is one unknown number 

(VMFB), or as a relation that can be true or false depending on x (DIMTB). 

Research questions 

This study is part of a wider research project investigating the impact of DIM-based 

teaching interventions with second year high school students with a history of low 

achievement in mathematics. Under the hypothesis that the discourse about DIM can 

foster students’ participation in mathematical discourse (Baccaglini-Frank, 2021; 

Antonini et al., 2020), we are interested in investigating the role of the discourse 

emerging from the interaction with DIMs (hereon DIMs-discourse) in promoting 

students’ mathematical discourse. To guide the study, we ask the following questions: 

how do the DIM(FB,TB)- and DIMTB–discourses integrate the arithmetical and meta-

arithmetical discourses of students with a history of low achievement? How can these 

DIMs-discourses shape the production of a discourse on indeterminate quantities?  

METHOD 

Participants were 12 students of 10th grade from three Italian high schools, selected by 

their teacher for their history of severe and persistent difficulties in mathematics and 

on voluntary participation. The sequence consisted in 4 or 5 sessions of two hours each, 

which took place in an out-of-school center. Students worked in pairs under the 

guidance of an expert and were provided with touch-screen tablets for the activities. 

This paper focuses on a pair of students engaged in activities with DIMTB and 

DIM(FB,TB) during the first two sessions. Data consist of audio-video recordings, 

students’ written productions, and screen recordings of the tablets used for the 

activities. In tune with the Commognition, the analysis will focus on the use of words, 

narratives and visual mediators related to dealing with indeterminate quantities.  

A CASE STUDY 

We present three episodes from the case study of Andrea and Hugo, two students 

coming from a professional high school. During a preliminary individual interview, 

both students showed difficulties in dealing with indeterminate quantities. For 

example, in looking for a solution of 13 – a = 13 + 11, Andrea said “I don’t remember 

how to do it” and Hugo wrote “a = 13 + 11 = 24”. His discourse appears purely 

ritualistic, focused on performing (meaningless) procedures. 
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Episode 1 

Andrea and Hugo are asked to find out the weights of the triangle, knowing that the 

balance with the colored shapes (Fig. 1a) is balanced off. Hugo immediately answers:  

  

 Figure 1: (a) DIM(FB,TB), with VMFB  (left) and DIMTB (right); 

(b) DIMTB with number 7 in the input field.   

1 Hugo:  ... 4. Because here on one side is 3 […] here [he points to one of the white 
triangles] you put a weight is worth 4, this one is 4, 4+4, 8, +3, 11 [4+4=8 
and 8+3=11]. If you put 5, the balance tends to dangle that way, […] To 
make it dangle on the right you have to put a number […] smaller than 4 
[…] if you put 3, here is 9 while here is 11.  

2 Int:  If we wanted to describe all this thing, in general terms, this balance, how 
could I say it? […] Let’s make a summary.  

3   Hugo: To keep the balance… balanced off, the number, here a triangle is worth 4, 
to make it dangle to the left you have to find a number greater than 4, while 
to make it dangle to the right you have to find a number smaller than 4. 

The discourse on numbers (e.g., “4, 4+4, 8, +3, 11”, “here is 9”) is intertwined with the 

DIMTB-discourse, especially with the narrations on the interaction (of the subject) with 

DIMTB (“here you put a weight”, “if you put 5”, “you have to put a number”, “if you 

put 3”). Students use the verb “to put” as a signifier of the action of inserting the 

number inside the white triangle (Hugo points to one white triangle but their discourse 

shows that they consider that the same number is put in every white triangle). However, 

the action of putting numbers into the shapes cannot actually happen. DIMTB allows to 

put numbers only in the input field and, in fact, Hugo uses the verb “to put” as a 

metaphor. In [3] we can also observe a depersonalized narrative (“a triangle is worth 

4”) without a subject who “puts” numbers.  

Episode 2 

Observing the DIMTB (Fig. 2), Andrea says that on the right there is “more space 

[where to] put […] the weights”. He then justifies the choice of number 3 to balance 

off the balance summing the numbers in both pans (“I made 5 plus 5, 10, plus 3, 13, 

plus 3, 16 [5+5+3+3=16]) saying “I made also […] the spaces and it comes out 16, 3 

plus 3”. The calculation with specific numbers [“3 plus 3”] is an arithmetical discourse 
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while the sentence used to talk about this calculation (“I made also the spaces”) can be 

used for whatever number (“the weights” in the “spaces”) and therefore is a meta-

arithmetical narrative. In summary, the use of “space” allows the construction of 

discourses about indeterminate quantities that can be considered as known quantities 

(even if Andrea produces a discourse on determinate quantities). 

 

Figure 2:  DIMTB of the episode 2. 

Episode 3 

Andrea and Hugo are asked to identify the weights of the shapes that make the balance 

hang to the right, to the left or balanced off (Fig. 3). They find the couples of numbers 

(6,3) and (9,6) to balance off the balance. Then they summarize: 

 

Figure 3: DIMTB with two indeterminate weights and two input fields (episode 3).  

4  Andrea: … to every weight [of the square] you add 3 [to get triangle’s weight] […] 

5 Hugo:  It’s enough that you take off 9 from the weight of the square with respect 
to the weight of the triangle […] it’s enough that the weight of the square… 

The problem is resumed during the next session: 

6  Hugo: The triangle should be a square plus 3 […] because it is as if… you take off 
[…] three squares you can tell that a triangle is a square plus 3 […] If you 
take off both sides three squares [he makes a sketch, Fig. 4b] here you are 
left with a triangle and you know that the triangle is a square plus 3.  

The narrative in [4] is a meta-arithmetical summary of how the students have 

determined the numbers to balance off the DIMTB. The object of the discourse is the 

human action (“you add 3”) to add 3 to “every weight”. In [5], Hugo still talks of a 

human action (“take off”) but now the infinite actions, one for “every weight”, are 

expressed as a single action on one weight (“the weight of the square”). The numbers 

3 and 6 previously identified (as well as any other numbers) are here replaced by the 

single signifier “the weight”, and then, this objectification can be considered as a 
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process of saming. In [6], the human subject disappears, the “weight of the 

square/triangle” collapses into “the square” and “the triangle”, in the singular form, 

and the new narrative, completely depersonalized, is about their relation (“the triangle 

is a square plus 3”). In summary, the transition from the plural to singular form, the 

saming, and the depersonalization are the indicators of the process of objectification 

developing from infinite actions to one action, and from one action to the relations 

between objects. In table 1, from top to bottom, we can read this process. 

Table 1: The development of the students’ discourse on indeterminate quantities.  

Narrative Signifier 

(Math object) 

Human action 

“To every weight      you 

add 3” [4] 

Every weight 

(Every specific number) 

Infinite actions, one for 

every weight of the square. 

Every action is on a specific 

number 

“It’s enough that you 

take off 9 from the 

weight of the square…” 

[5] 

The weight of the square 

(An indeterminate quantity) 

 

An action on one 

indeterminate quantity 

“it’s enough that the 

weight of the square…” 

[5] 

The weight of the square  

(An indeterminate quantity) 

No human subjects 

 

“The triangle should be a 

square plus three” [6] 

The square, the triangle 

(Two indeterminate 

quantities) 

No human subjects 

 

 

The process described before is also visible in the drawing (Fig. 4b) that the students 

use to endorse their narrative “the triangle is a square plus 3”. This drawing is similar 

to the one made in a previous task (Fig. 4a) with the digital pen on VMFB where the 

weight of the squares and triangles are 2 and 3 respectively and the circle has a (one), 

now unknow, specific weight. In the drawing produced in episode 3 (Fig. 4b), the signs 

are the same, but this time on white weights, where it is possible to “put” any number. 

Therefore, the process of saming described before, which allowed the compression of 

infinite discourses about numbers through the words “triangle” and “square”, expanded 

the discourse too.  

  

Figure 4: Hugo’s drawings in solving tasks with (a) DIM(FB,TB); (b) DIMTB. 
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DISCUSSION AND CONCLUSIONS 

In response to the research questions, the conducted analysis sheds some light on how 

the DIMs-discourse (DIM(FB,TB) and DIMTB) promoted the students’ discourse on 

indeterminate quantities. The two students have generated words, narratives, and visual 

mediators linked to the DIMs and to their interaction with them. The continuous 

interaction with DIMs modifies the students’ discourse. It intertwines with, and then 

expand, the arithmetical discourse, fostering the production of words, narratives and 

visual mediators that compress arithmetical discourses, shaping, in this way, the meta-

arithmetical discourse. Several elements of the DIMs-discourse expanded. The use of 

the verb “to put” extends metaphorically to the assignment of numerical values to the 

“white shapes”. The names of the shapes, firstly used for given or unknown but specific 

weights, extend to a variable value, and finally are used at singular as signifiers of 

objects that can be manipulated and studied (Table 1). The use of an encapsulated 

couple, where the objects were numbers (known or unknown), expands into a discourse 

on indeterminate quantities (Fig. 4a-b). The narrative “the triangle is a square plus 3” 

arises from a discourse compression accompanied by an objectification. This narrative, 

in which different numbers could substitute for “triangle” and “square”, compresses 

(potentially infinite) narratives on numbers, reducing the complexity of the discourse. 

The words “triangle” and “square” allow to make a discourse on indeterminate 

quantities and to deal with them as they were known numbers. In this way the discourse 

moves on a meta-arithmetical (algebraic) level.  

The case analysis shows how Andrea and Hugo, two high school students with school 

experience with algebra and a history of low achievement in mathematics, were able 

to participate to an algebraic discourse. Andrea and Hugo’s discourse can be regarded 

still as informal. However, according to Kieran (2022), Radford (2014) and Caspi & 

Sfard (2012), thinking algebraically is not necessarily related to the use of algebraic 

symbolism and this can be considered a step towards the formal algebraic discourse. 

This is in line with Nachlieli & Tabach (2012, p. 24), who, in a study on functions, 

state that an informal mathematical discourse can be considered as a “solid foundation” 

for the students’ “future discourse”. 

Furthermore, the analysis presented in this paper confirms previous studies involving 

low-achieving students that show, in different mathematical fields, how DIM can foster 

students’ participation in mathematical discourse (e.g., Baccaglini-Frank, 2021). 

Finally, this study has reported an example of development of informal algebraic 

discourse after the introduction of school algebra for low-achievers. Similar results are 

presented by Caspi & Sfard (2012) in a study about the emergence of informal 

algebraic discourses before the teaching of school algebra. These similarities underline 

the importance of investigating the relationship between informal and formal algebraic 

discourses during the long process of learning algebra.  
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This study broadens the notion of Interpretative Knowledge (IK) into Semiotic 

Interpretative Knowledge (SIK) by considering the role of semiotic systems in 

mathematical thinking and learning. We analyse the relationship between SIK and 

feedback structured in four categories according to the semiotic functions involved. 

Based on quantitative and qualitative data we scrutinize the SIK and feedback 

deployed by prospective primary school teachers. Although connected with teachers’ 

mathematical knowledge, SIK is a specialized knowledge that requires specific 

training.  

INTRODUCTION 

Starting from research related to the conceptualization of mathematical knowledge for 

teaching (MKT) (Ball et al., 2008), Ribeiro and co-authors (2013) introduce the notion 

of interpretative knowledge (IK) as the part of the mathematical knowledge “that 

allows teachers to give sense to pupils’ non-standard answers (i.e., adequate answers 

that differ from the ones teachers would give or expect) or to answers containing 

errors” (Ribeiro et al., 2016, p. 9). Being IK a kind of knowledge related to problem-

solving strategies and errors, it is a piece of typically conceptual or strategic knowledge 

and does not consider explicitly the semiotic aspects related to signs and sign use in 

mathematical activity. As highlighted by Duval, conceptualization cannot be 

accomplished without an adequate competence of what Ernest (2006) calls patterns of 

sign use and production. As research shows (e.g., Duval, 2017; Ferretti et al., 2022), 

interpreting students behavior requires a strong semiotic competence.  

In Asenova et al. (2023) the notion of semiotic interpretative knowledge (SIK) is 

introduced, broadening the seminal notion of IK proposed in the literature (Mellone et 

al., 2020; Ribeiro et al., 2013, 2016). This study undergoes a further step analysing 

prospective teachers’ spontaneous use of SIK in interpreting students’ responses and 

in providing feedback. In this sense, the approach on feedback based on the 

development of a suitable IK, proposed by Galleguillos & Ribeiro (2019), is extended 

by considerations related to SIK with the aim to show that SIK represents a theoretical 

tool able to further deepen the nature of teachers’ feedback. 

THEORETICAL FRAMEWORK 

Ball and co-authors (2008) introduced the construct of mathematical content for 

teaching (MKT) as the mathematical knowledge needed by teachers to perform the 

usual tasks related to teaching mathematics. MKT is made of subject matter knowledge 
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(SMK), related to the specificities of mathematics, and pedagogical content knowledge 

(PCK), related to the specificities of teaching and learning of mathematics. Two 

subcategories of SMK are common content knowledge (CCK) and of specialized 

content knowledge (SCK), while two subcategories of PCK are knowledge of content 

and students (KCS) and knowledge of content and teaching (KCT). While CCK is a 

MKT independent of the teaching-learning context, SCK is a SMK specific to it. 

Rooted in Ball and colleagues’ notion of MKT, Ribeiro et al. (2013) introduced the 

construct of interpretative knowledge (IK) as a kind of SMK “in the intersection 

between the common content knowledge and the specialized content knowledge” (p. 

4). Di Martino et al. (2019) derive the characterization of IK as belonging to SCK, but 

as strongly related to the CCK, from the conclusion that a strong CCK is necessary but 

not sufficient to develop a good level of IK, but at the same time, teachers with a strong 

CCK have difficulties in accepting unusual strategies that differ from their own 

(Asenova, 2022). Beside the conceptual, strategic and affective aspects (Di Martino et 

al., 2016) investigated in research on IK, the semiotic aspects of IK are still little 

explored. A strong semiotic competence is indispensable for a cognitively meaningful 

mathematical activity, but semiotic is not a MKT, as for instance geometry or algebra. 

It might be for this reason that IK does not consider the intrinsically semiotic nature of 

mathematical cognitive functioning. According to Duval (2017), in mathematics, 

ostensive references are impossible, as we cannot directly access mathematical objects 

through our senses. We can say that conceptualisation itself, in mathematics, is 

identified with this complex coordination of several semiotic systems (Duval, 2017; 

Ernest, 2006), rooted in semiotic transformations within the same semiotic system 

(treatments) and semiotic transformations between different semiotic systems 

(conversions). D’Amore (2003) identifies conceptualisation with the following 

semiotic functions, specific to mathematics: (1) choice of the distinctive features of a 

mathematical object; (2) treatment in the same semiotic system; (3) conversion 

between semiotic systems. The management of such semiotic complexity, within the 

structure of semiotic systems and the processing of semiotic functions, comes up 

against Duval’s famous cognitive paradox (Duval, 2017): On the one hand we know 

abstract mathematical objects only through the semiotic activity mentioned above; on 

the other hand, such a semiotic activity requires the conceptual knowledge of the 

mathematical objects on the part of the student.  

Taking into account the intrinsically semiotic nature of mathematical thinking, in 

Asenova et al. (2023) the theoretical construct of SIK is introduced as “the knowledge 

needed by teachers in order to interpret students’ answers (be they standard or non-

standard), as well as students’ behavior, and to give an appropriate feedback to them, 

when conceptual knowledge is hindered, and thus remains hidden behind difficulties 

related to patterns of sign use and production, including individual creativity in sign 

use” (p. 11). SIK lies at the crossover of SMK and PCK because the control of semiotic 

functions is intertwined both with mathematical knowledge (noesis and semiosis are 

overlapped) and their implementation in the teaching-learning activity driven by the 

teacher (KCS, KCT). We show that besides a mere conceptual IK, in the context of 
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students with special educational needs, a strong SIK seems to be necessary to provide 

effective feedback.  

Feedback is defined by Hattie and Timperly (2007) as “information provided by an 

agent (e.g., teacher, peer, book, parent, self, experience) regarding aspects of one’s 

performance or understanding” (p. 81). These authors distinguish, among others, 

between feedback about the task (FT) and feedback about the processing of the task 

(FP). FT and FP can be more or less elaborated and can go from simple 

correct/incorrect information to more constructive feedback related to additional 

information on content and strategies to be used. In teacher training, it is important to 

provide prospective teachers with the skills needed for a wide range of possible 

feedbacks and to foster the IK needed to give FT. Galegiullos and Ribeiro (2019) 

investigate prospective teachers’ ability to use IK in giving FT: Teachers were asked 

to work in groups and first solve a task and then provide feedback to some solutions 

given by students to the same task. These authors classify the provided feedback into 

four categories: (a) Feedback on how to solve the problem; (b) Confusing feedback: 

When the feedback seems to be correct, but it can be confusing for the student; (c) 

Counterexample as feedback; (d) Superficial feedback: The content of such feedback 

was insufficient (too broad or inconsistent) to allow the solver to understand its 

meaning. In this paper we develop the kinds of feedback, introduced by Galegiullos 

and Ribeiro, consistently with the notion of SIK; FT is elaborated according to the 

implementation of the semiotic functions. We have outlined four main categories of 

feedback: type (i) - no mention of semiotic functions, which is framed by Galegiullos 

and Ribeiro’s categories; type (ii) - use of semiotic representations confined to the 

recognition of  the distinctive traits; type (iii) - use of distinctive traits and treatments; 

type (iv) - use of distinctive traits, treatments, and conversions. The semiotic 

categorization of feedback does not provide a level of effectiveness per se but filling 

the gap “between what is understood and what is aimed to be understood” (Hattie & 

Timperley, 2007, p. 82) is specific to the context. Feedback is intertwined with the 

nature of the task, the student’s specificities, and the learning environment. In this 

paper, the accomplishment of SIK on the part of prospective teachers and its benefit 

for unfolding their feedback effectiveness is investigated, showing how it can be used 

to further deepen the understanding on the relations between prospective teachers’ 

(S)IK and their ability to provide FT. 

METHODOLOGY OF RESEARCH 

In our investigation, we first focus on the classification and analysis of the answers 

given by 180 primary school prospective mathematics teachers (PPTs) attending an 

Italian University to a questionnaire related to the interpretation of the incorrect 

answers given by students to four math tasks and to the feedback they would give to 

the student. Then we focus on the way PPTs use SIK to support their answers to the 

questionnaire in a follow up interview. We use the PPT’s answers to the questionnaire 

to classify the IK used to interpret the student’s answer for themselves and the IK used 

to provide FT, adopting the following categories: (0) does not respond or the answer is 
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not classifiable; (1) Conceptual IK: The PPT does not mention representations but only 

concepts, strategies; (2) SIK-R: The PPT mention only semiotic representations 

without reference to semiotic transformations; (3) SIK-T: The PPT refers to treatments 

in the same semiotic system; (4) SIK-C: The PPT refers to conversions between 

different systems.  

The 180 PPTs were in the first year of the 10-semester master’s degree-course in 

primary education and 21 gave their permission to be interviewed after completing the 

questionnaire. In the following, we discuss and analyse the interview of a PPT. 

In elaborating the tasks we took our cue from the methodology used in Ribeiro et al. 

(2013) but instead of asking the PPTs to first solve the problem and then to give 

feedback to student’s solutions, we presented immediately the student’s solution and 

then asked the PPTs to first interpret the solution and then to provide feedback. We 

chose this approach because our focus was not on the development of the teachers’ IK, 

but on the kind of IK used spontaneously by the PPTs in giving feedback.  

Here we focus on the first two tasks of the questionnaire (Figure 1 and 2). 

Figure 1: Task 1 (with the kind permission of prof. Cristina Sabena, inspired by prof. 

Elisabetta Robotti’s research on teaching-learning of fractions) 

 

Figure 2: Task 2 (used by the authors in teacher training courses) 

 

Task 1 was chosen because it drives the use of semiotic functions (conversions 

involving symbolic language, natural language and figural representations). Task 2 was 

chosen because the implementation of the network of semiotic functions is not 

immediate and our conjecture is that the students would focus more on conceptual IK 

and treatments confined to algorithms (calculation and confront of percentages). 

RESULTS AND DISCUSSION 

Regarding Task 1, the quantitative data shows that most of the PPTs opt for IK both in 

the interpretation of the solution (52,2%) and in the feedback (34,4%). There was a 
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high percentage of invalid answers to Question 1.1 (22,2 %) and Question 1.2 (33,3%) 

that can be traced back to a lack of CCK and SCK that hinders IK and the ensuing 

feedback. A high percentage (22%) of the PPTs provide type (iv) feedback based on 

the implementation of the three semiotic functions even if only almost a third (7,8%) 

display SIK-C in the interpretation of the data. This case testifies that when PPTs 

possess suitable semiotic competences, which lie at the crossover of SCK and PCK, 

they set out SIK-C and feel the need to ground their feedback in the networking of 

different semiotic systems for higher effectiveness and clarity.  

In Task 2, we notice a prevalence of invalid interpretations and feedback (Question 

2.1: 40%, Question 2.2: 68,9%). There is a high percentage of PPTs who resort to IK 

in the interpretation (33%) but a lower percentage of PPTs who are able to give type 

(i) feedback (20,5%). A significative percentage (26,7%) of PPTs resorted to SIK-T 

for the interpretation but only 10,5% provided a type (iii) feedback. To make sense of 

this result we must consider that the task was challenging for the PPTs in that it was 

difficult for them to unravel the mathematical knowledge (percentages) in terms of 

CCK and SCK, and the ensuing KCS and KCT. Thus, on the one hand the IK was not 

backed by CCK and SCK to carry out an appropriate interpretation of the solution and 

provide effective feedback. On the other hand, it was difficult for the PPTs displaying 

semiotic activity at the crossover of SCK and PCK in the interpretation and feedback. 

Indeed, the SIK-T does not amount to a true semiotic interpretation but to meaningless 

calculations carried out in symbolic language. They testify the identification of the 

mathematical object with the semiotic representations accountable to the cognitive 

paradox.  

Sara’s Interview 

In order to operationalize our theoretical lens for interpretating tasks and providing 

feedback, we present an excerpt from the interview of Sara concerning Task 1. Sara 

interprets the solution with SIK-T explaining that the solution does not correctly 

consider the meaning of the denominators for the ordering of the fractions. She 

provides a type (iii) feedback based on the ordering of the fractions in the arithmetic 

symbolic system. The researcher asks Sara to explain her feedback and to make her 

feedback more effective. She spontaneously performs treatments and conversions that 

also involve Montessori materials she uses at school with her students. After 

transforming via treatment all the fractions to 6 as common denominator she grabs the 

Montessori-rod (Figure 3a).  

Sara: If I want to represent 
1

2
 which is halfway the length of the rod, three 

coloured rectangles on one side and three on the other. I consider three of 

the coloured rectangles [she scrolls the small red rectangle over the rod and 

counts 1, 2, 3 (Figure 3b)]. The same holds for 5/6 [she scrolls the red 

rectangle counting 1, 2, 3, 4, 5]. 

Researcher: How would you represent 
8

6
 with Montessori-rods? 
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Sara: The only thing I can think of is to take … [she grabs a rod with 6 colored 

rectangles and a rod with 2 colored rectangles (Figure 3c)]. One represents 

the number 6 and the other represents the number 2, the 6-rod represents 

quantity 6 and the 2-rod represents quantity 2. I jump in quantity because I 

start with the number 1, this red one. When I count I do so 1, 2, 3 ... [scrolls 

the 1-rod over the 6-rod counting 1, 2, 3, 4, 5]. This is the useful step to 

take, this is the 6-rod but I consider 1, 2, 3, 4, 5 [referring to 
5

6
]. If I consider 

this [the 2-rectangles colored rod] it means I consider 8 parts, it means I 

consider 8 units and I’m on the wrong path, I’m somewhere else like this. 

I no longer have the base and that’s it, but I have the base plus two and it 

comes 8 as a whole. I mess up the student’s understanding. So to do 
8

6
 it’s 

easier to use pie charts, where I consider all the quantities. The half divides 

me into two parts, because these wedges are made equal. I have the 
1

2
 and 

1

2
 

and it gives me the whole, then I have the 
2

4
, 

3

4
 and so on. It’s all divided in 

this fashion [drawing on a sheet of paper (Figure 4)] 1, 2, 3, 4, [counting 

the wedges on the pie chart] up to 6. So, I take another pie chart divided in 

six wedges and I consider this and this and this 8 times [writing 
1

6
 on each 

of the 8 slices she is pointing to (Figure 4)]. 

Figure 3:  The Montessori-rods used by Sara to represent the fractions 

 a.  b.  c. 

Figure 4:  Sara’s drawing of the pie charts used to represent the fractions 

 

The protocol shows Sara possesses SIK-T that allows her to interpret the solution and 

provide basic type (iii) feedback. When prompted by the researcher to explain the 

feedback she would share with the students she feels the need to include other semiotic 

systems via conversion transformations. Sara is aware that tapping into a network of 

semiotic transformations, which involve more semiotic systems, empowers the 

efficacy of the feedback she can provide. Nevertheless, Sara’s interview highlights the 

lack of appropriate SIK that lies at the crossover of CCK, SCK and KCS and KCT. In 

fact, SIK as a specific MKT requires solid subject content knowledge (CCK and SCK) 

combined with PCK in order to implement patterns of sign use and production coherent 

with the mathematics at stake an effective to the student’s learning. When Sara crosses 

the borders of treatment transformations in the arithmetic language to include 

Montessori- rods and pie charts, she loses control of the meaning of fractions and 

undermines the efficacy of her type (iv) feedback providing confusing information. 

Indeed, she mixes the meaning of the colored rectangles of the rods, without 
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recognizing the distinctive traits of the semiotic representation. On the one hand the 

rectangles represent the unitary fraction 
1

6
, on the other hand they represent an integer 

quantity, the number of parts in which the whole is divided, 6 parts in the rod with six 

rectangles.  When she wants to represent 
8

6
, she is puzzled because “if I consider this 

(the 2-rectangles colored rod) it means I consider 8 parts, it means I consider 8 units 

and I’m on the wrong path”. She means that she is not considering 
1

6
 as unitary fraction 

but 
1

8
. With the pie charts she recollects the correct meaning of the fraction because the 

pie has no fixed unit. She claims that: “The half divides me into two parts, because 

these graphs are made equal. I have the 
1

2
 and 

1

2
 and it gives me the whole, then I have 

the 
2

4
, 

3

4
 and so on. It’s all divided in this fashion.” So, each pie is the whole divided in 

6 parts and each part is 
1

6
. She then considers 8 parts that represent 

8

6
. Sara has not yet 

reached an appropriate competence in semiotics that allows her to handle conversions 

in the context of fractions, thus developing an appropriate SIK. 

CONCLUSIONS 

The aim of the research was to investigate the spontaneous use of SIK by prospective 

primary school teachers, prior to specific training in mathematics specialized 

knowledge. We also analysed the impact of SIK on feedback categorized according to 

semiotic parameters. The quantitative data show that SIK does not belong to 

prospective teachers as a consequence of their subject matter knowledge. When 

prospective teachers recur to SIK they deploy the network of semiotic functions 

especially when providing feedback. Their need to provide effective information is 

characterized by a type (iv) feedback. Although SIK is not a spontaneous consequence 

of subject matter knowledge, we can infer that it is a necessary condition to trigger SIK 

because “there is no noesis without semiosis” (Duval, 2017, p. 23). Sara’s protocol 

shows a spontaneous use of SIK-T both in the interpretation and the feedback but her 

need for further clarity and efficacy is backed by type (iv) feedback that requires the 

interplay of all the semiotic functions. Sara’s type (iv) feedback clashes against the 

lack of semiotic competences that would allow her to position her SIK at the crossover 

of SMK and PCK. We can conclude that SIK is an important instrument in the hands 

of the teacher to interpret students’ behavior and give effective feedback. The 

interiorization of SIK requires specific training in prospective teachers’ professional 

development. Further research is required to design appropriate training programs that 

include SIK and validate its effectiveness in providing feedback able to improve 

students’ mathematical learning. 

REFERENCES 

Asenova, M. (2022). Non-Classical Approaches to Logic and Quantification as a Means for 

Analysis of Classroom Argumentation and Proof in Mathematics Education Research. 

Acta Scientiae, 24(5):404–428. https://doi.org/10.17648/acta.scientiae.7405 



Asenova, Del Zozzo & Santi 

2 - 58 PME 46 – 2023 

Asenova, M., Del Zozzo, A., & Santi, G. (2023). Unfolding Teachers’ Interpretative 

Knowledge into Semiotic Interpretative Knowledge to Understand and Improve 

Mathematical Learning in an Inclusive Perspective. Education Sciences, 13(1), 65. 

https://doi.org/10.3390/educsci13010065 

Ball, D.L., Thames, M.H., & Phelps, G. (2008). Content knowledge for teaching: What makes 

it special? Journal for Teacher Education, 59, 389–408. 

D’Amore, B. (2003). La complexité de la noétique en mathématiques ou les raisons de la 

dévolution manquée. For the Learning of Mathematics, 23, 47–51. 

Di Martino, P., Mellone, M., & Ribeiro, M. (2019). Interpretative Knowledge. In S. Lerman 

(2019). Encyclopedia of Mathematics Education (). Springer. https://doi.org/10.1007/978-

3-319-77487-9_100019-1. 

Duval, R. (2017). Understanding the Mathematical Way of Thinking: The Registers of 

Semiotic Representations. Springer. 

Ernest, P. (2006). A semiotic perspective of mathematical activity: The case of number. 

Educational Studies in Mathematics, 61, 67–101. 

Ferretti, F., Bolondi, G., & Santi, G. (2022). Interpreting difficulties in the learning of 

algebraic inequalities, as an emerging macrophenomenon in Large Scale Assessment. 

Research in Mathematics Education, 1–23. 

Galleguillos, J., & Ribeiro, M. (2019). Prospective mathematics teachers’ interpretative 

knowledge: Focus on the provided feedback. In U. T. Jankvist, M. Van den Heuvel-

Panhuizen, & M. Veldhuis (Eds.), Proceedings of CERME11, February 6 – 10, 2019,  

Utrecht (pp. 3281–3288). Freudenthal Group & Freudenthal Institute, Utrecht University 

and ERME. 

Hattie, J., & Timperley, H. (2007). The Power of Feedback. Review of Educational Research, 

77(1), 81–112. https://doi.org/10.3102/003465430298487 

Mellone, M., Ribeiro, C.M., Jakobsen, A., Carotenuto, G., Romano, P., & Pacelli, T. (2020). 

Mathematics teachers’ interpretative knowledge of students’ errors and non-standard 

reasoning. Research in Mathematics Education, 22, 154–167. 

https://doi.org/10.1080/14794802.2019.1710557. 

Ribeiro, C., Mellone, M. & Jakobsen, A. (2013). Characterizing Prospective teachers’ 

knowledge in/for giving sense to students’ productions. In A. Lindmeier & A. Heinze 

(Eds.), Proceedings of the 37th Conference of the International Group for the Psychology 

of Mathematics Education (Vol. 4, pp. 89–96). PME.  

Ribeiro, C.M., Mellone, M., & Jakobsen, A. (2016). Interpreting students’ non-standard 

reasoning: Insights for mathematics teacher education. For the Learning of Mathematics, 

36, 8–13.



 

2023. In M. Ayalon, B. Koichu, R. Leikin, L. Rubel & M. Tabach (Eds.). Proceedings of the 46th Conference of 

the International Group for the Psychology of Mathematics Education (Vol. 2, pp. 59-66). PME 46. 

ALGEBRAIC DISCOURSE DEVELOPMENT IN A SPREADSHEET 

ENVIRONMENT AND DISCURSIVE-COMPUTER ROUTINES 

Tamar Aviram1, Michal Tabach1 and Einat Heyd-Metzuyanim2 

1Tel Aviv University, Israel 

2Technion - Israel Institute of Technology, Israel 

 

The current study aims at understanding the mechanism by which beginning algebra 

students learn in a spreadsheet environment. To this end we analysed the work of two 

seventh-grade students while working on purposefully designed activities in a 

spreadsheet environment. Adopting the commognitive theory, we identified the 

routines that the students enacted, and defined a new type of routine, relevant while 

working in a technological environment: a computer-discursive routine. Findings 

suggest that the bondedness between this routine and a discursive routine that is 

enacted at the same time is getting stronger, which is evidence of a de-ritualization 

process that characterizes learning. 

INTRODUCTION AND LITERATURE REVIEW 

The transition from arithmetic learned in primary school to algebra learned in middle 

school and high school is difficult for many students, especially for students who have 

not fully mastered elementary arithmetic (Rojano, 2002). Studies have shown that the 

use of spreadsheets facilitates the gradual transition from arithmetic to algebra and 

helps students to become independent (Tabach et al., 2013). Yet, a question arises - 

while learning in a spreadsheet environment, what is the mechanism that facilitates 

algebra learning? Our aim is to answer this question. To this end, we analysed the 

discourse of two seventh-grade students, Maya and Noa (pseudonyms), while working 

on purposefully designed activities in a spreadsheet environment. The analysis was 

conducted within the framework of the commognitive theory (Sfard, 2008), with a 

focus on routines. 

The commognitive theory 

The commognitive theory (Sfard, 2008) views mathematics as a discourse, and 

learning mathematics as a process by which the learner becomes part of the mathematic 

discourse community. Learning manifests itself in a change in one or more of the four 

features of the mathematic discourse: Words and the ways they are used, visual 

mediators, narratives, and routines. In this research, we focused on routines that the 

two seventh-grade students performed. Routine is a repetitive pattern of actions and is 

defined as a task and procedure pair (Lavie et al., 2019). The task is the task as the 

performer of the routine sees it in a given situation, and the procedure is the set of 

actions that the performer enacts to fulfill the task. Routines can be process-oriented or 

product-oriented. The purpose of a process-oriented routine is the procedure itself, how 

to perform the routine, whatever its outcome is. Process-oriented routines are 
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performed according to an expert's expectations and for social purposes. The performer 

of the routine is not required to make independent decisions and she fully depends on 

the expert's approval. The purpose of a product-oriented routine is its outcome, and 

there can be many procedures to get to that outcome. The performer of the routine is 

required to make independent decisions while doing the routine. Process-oriented and 

product-oriented routines are on a continuum and most of them are not merely process-

oriented or merely product-oriented. When a learner enters a new discourse, her 

routines tend to be process-oriented (ritual), and as the learning proceed and she 

becomes more independent participant in the discourse, her routines turn to be more 

product-oriented. This is a de-ritualization process.  

One characteristic of a product-oriented routine is bondedness. A routine is bonded if 

one step of the procedure is connected to the next step. Product-oriented routines are 

inherently bonded because every step leads to the next step until the product is reached. 

In contrast, process-oriented routines can include steps that are not bonded to each 

other (Lavie et al, 2019).  

A new type of routines: computer-discursive routines 

Routines can also be classified according to what they achieve in the world, namely 

whether they are practical or discursive (Lavie et al, 2019). Practical routines are 

geared towards creation or changing concrete objects in the world. Discursive routines 

are aimed towards changing or manipulating discursive objects. In this work, we 

suggest a new type of routine, which is a hybrid of practical and discursive routines, 

and is relevant while working in a technological environment. We call this type a 

computer-discursive routine, and we demonstrate it in a spreadsheet environment. 

When writing an expression in a spreadsheet cell that makes use of a number in another 

cell (see Figure 1a) and pressing the "enter" key, a new number appears (see Figure 

1b). When "dragging" this expression down a column, new numbers are created (see 

Figure 2).  

 

a 

 

b 

 

      

Figure 1a&b: writing an expression    Figure 2: "dragging" cell B1 in a spreadsheet 

 

A learner writes an expression in a cell and the computer "answers" her with a new 

number created in that cell. The learner drags the expression down a column and the 

computer "answers" her with new numbers in that column. In that sense, the learner 

operates on things in the world (pixels), but also "communicates" with the computer. 

Due to this hybridity of practical and discursive operations, and the uniqueness of the 
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“answering” feature, we claim such routines deserve a different name, which we term 

“computer-discursive routine”. Notably, at the same time when working in a 

spreadsheet environment, a discursive routine may also be enacted: for example, by 

talking with the person you work with or making a mathematical calculation in one's 

head. We suggest to refer to computer-discursive routines and discursive routine, that 

occur sequentially and are performed to achieve a single task, as one routine, and call 

it a compounded-computer routine. 

With the aid of these new conceptual tools, we can now re-formulate our research 

question: What are the changes in the compounded-computer routine along a serious 

of purposefully designed activities?  

METHODOLOGY 

Participants and tools  

This study is part of a project that is aimed at understand in what ways can spreadsheet-

based activities help students who did not fully master elementary arithmetic. Two 

seventh-grade mathematics students, Maya and Noa (pseudonyms), participated in this 

study. They were chosen according to their previous achievements and their teacher's 

recommendation. They met with the first author 10 times, once every two weeks in an 

out-of-school setting, to perform purposefully designed activities in a spreadsheet 

environment. Each meeting lasted about one hour. The activities were in accordance 

with the seventh-grade mathematics curriculum. The researcher did not intervene while 

the students worked unless they were stuck and did not know how to continue. Each 

meeting was recorded and transcribed verbatim.  

Data analysis 

The data was analysed according to the commognitive theory. We focused on the 

routines the students enacted while doing the activities, and looked for evidence of de-

ritualization process. We looked at the first activity, to see the initial state of the 

routines, and continued to the second activity, where we found a change in the routines. 

This sub-set of transcripts were chosen in order to follow that change.   

We recognized computer-discursive routines and discursive routines in the students' 

work, and classified them to process-oriented or product-oriented routines. We looked 

for changes in the relations between those routine, and in the way the students 

performed the same routine along the different activities. 

FINDINGS 

In this section, we present the learning process of Maya and Noa as it manifests itself 

in the compounded-computer routines they enacted.  

Beginning of the learning process – activity 1 

The first compounded-computer routine we present is taken from activity 1, where the 

students were asked to calculate the prices of bottles of water. The price of one bottle 

of water in the shopping mall was nine shekels and the question presented to the 
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students was: "There was a sale at the shopping mall – for every bottle of water you 

buy, you pay only two thirds of its price. Add a column with the new prices." Episode 

1 presents the routine (The figures in episode 1 have been recreated from the original 

data for purpose of translation). 

Episode 1 – calculating two thirds of the price of a bottle of water  

854 Noa: two thirds of its price. In the mall it costs 9, two thirds, 

855 Maya: it is 3, 6. 

856 Noa:  6 because every third is divide by 3, so 6. So you pay 6. 

… 

863 Maya: How do we do two thirds (In the spreadsheet environment)? 

864 Noa: What do we do now? 

 … 

909 Noa: 9 (from cell C2)  

910 Maya: and then divide 

… 

918 Maya: by 2… 

919 Noa: (clicks C2, writes ‘/2’ and presses the 
"enter" key. When she sees the number 
4.5 in cell F2, she happily exclaims:) 
Boom boom boom! (Then tries to drag 
the cell down the column) 

920 Maya: yes (confirms the dragging)  

921 Noa: yes (drags the expression down the 
column. When the students see the 
numbers created through the dragging, 
they both clap their hands.) 

The first part of the compounded-computer routine in episode 1 is a discursive routine 

in which the task of the students was to calculate how much is two thirds of nine [854]. 

The procedure they performed was to calculate how much is one third and then two 

thirds. Maya said "3, 6" [855] and Noa explained the procedure [856]. The students 

authored the narrative that two thirds of nine is six. They referred to one third as a 

mathematical object and knew how to perform arithmetic operations with this object. 

We can thus say that the students performed a discursive routine that was product-

oriented. 

The second part is a computer-discursive routine, that had two sub-routines: (a) writing 

an expression in the first cell. The students’ task in this routine was to write an 

expression for the computation of two thirds of a number in the first cell in the 

spreadsheet [863], and the procedure they enacted was to write the expression "C2/2" 

[909-918] and pressing the "enter" key [919]. The outcome of sub-routine (a) was the 

number 4.5 (in cell F2). This number is different from the outcome of the discursive 

routine (the number 6), but the students did not notice this difference and did not 
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change the expression they wrote. Instead, they continued to sub-routine (b) - 

"dragging" the expression down the column F [921]. They were pleased to see the 

numbers they got and clapped their hands [921]. 

There was a disconnection between the computer-discursive routine and the discursive 

routine in episode 1, meaning the bondedness of the compounded-computer routine is 

weak, since the output of one step in the routine (the discursive routine) did not serve 

as the input of the next step (the computer-discursive routine). Thus, although both the 

discursive routine (multiplying 9*2/3) and the computer-discursive routine (enter 

formula and drag) were both product oriented, the compounded-computer routine was 

ritual, since there was no bonding between the sub-routines. 

A change begins – activity 1 

The next question posed to the students was to compute the prices of the bottles in the 

marketplace (each bottle costs three shekels), when a commission of three shekels was 

added to each purchase, regardless of how many bottles were bought. The 

compounded-computer routine is presented in episode 2.  

Episode 2 – looking for an expression in the spreadsheet for the new price in the 
marketplace 

1004   Maya: (Maya writes "=3*" in cell G2 (the commission) 
and says to Noa:) press the marketplace (meaning 
the cell A2, where the original price of one bottle 
in the marketplace is written – three shekels) 

1005   Noa:  why? 

1006   Maya: press it. 

1007 Noa: but why? (And then presses cell A2 which creates the expression in the 
figure)  

The computer-discursive routine in episode 2 is combined from the same two sub-

routines as found in episode 1. Whereas sub-routine (b) of dragging was practically the 

same, a change could be seen in sub-routine (a) – writing an expression in the first cell. 

The procedure Maya enacted was writing the expression "=3*A2", when the number 

in cell A2 is the original price in the marketplace. Maya wrote the same type of 

expression as they wrote before (a number multiplied by "the cell", which in this case 

is incorrect). We do not have evidence the students knew what number to expect after 

they would press the "enter" key, but Noa was not satisfied with the first part of the 

computer-discursive routine (entering the formula), as evidenced by her questioning of 

Maya’s actions [1005, 1007]. This means that for her, it may be that this part is 

becoming product-oriented, whereas for Maya, it is still just “enter some kind of 

formula and drag”. One possible explanation why this part became more product-

oriented for Noa, is that Noa aims for the formula itself to make sense (for the “=3*A2”, 

for example, to be linked to the story of the marketplace). This is the beginning of a 

change in the compounded-computer routine for Noa, where its bondedness is getting 

stronger. This is a start of de-ritualization process. 
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The change continues – activity 2 

The next routine we present is taken from activity 2 that occurred two weeks after 

activity 1. In activity 2, the students were asked to write expressions for the weekly 

allowance of four children. One of them is Dina, whose allowance was given in a table 

format (see Figure 3). The routine is presented in episode 3. 

 

Figure 3: Dina’s allowance  

Episode 3 – Dina’s allowance 

40 Maya: in the first week Dina had… 

41 Noa: 7 shekels.  
… 

63 Noa: (reads) how much money did each child have after 3 weeks, ok, here 21 
(for Dina) 

For the discursive routine in Episode 3 the task was to determine the amount of money 

Dina gets after one week and after three weeks [40, 63]. The procedure was reading 

the numbers from the table [41, 63]. After that, the students were asked to create the 

table of allowances in the spreadsheet. The compounded-computer routine for creating 

the column for Dina's allowance is presented in episode 4. 

Episode 4 – creating a column in the spreadsheet for Dina's allowance 

219 Noa:  in one week, 

220 Maya: plus 7, its equal 8 (writes =A2+7, and presses the 
"enter" key) and then what do we do,  

221 Noa:  you should mark the 8 (meaning B2, for dragging)  

222 Maya: Exactly (after dragging the expression) 

223 Noa: no, but how does this help you? 8,9,10,11,12. It should 
be in jumps of 8. 

224 Maya: of 7. 

225 Noa: right, 7. and it’s not in jumps of 7. 

226 Maya: sure it is. In the second week? 2+7? 9. Third week, 3+7. Do you understand? 

227 Noa:  OK  

For sub-routine (a) of the compounded-computer routine, the task was to create an 

expression for the first week [219]. The procedure was to write the expression 

"=A2+7". The students pressed the "enter" key and saw the outcome of their expression 

– the number 8. They did not compare this number to the results of the discursive 

routine in episode 3, where they concluded Dina got 7 shekels in the first week, rather, 
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they enacted sub-routine (b) straight away. The task of sub-routine (b) was to create 

column of numbers for Dina's allowance and the procedure was dragging the 

expression to the whole column. Maya was pleased with the result [222], although the 

number eight for the first week and the number ten for the third week were not the 

number they decided on in the discursive routine in episode 3 (numbers 7 and 21, [41], 

[63]). For her, the computer-discursive routine was process-oriented, which meant the 

procedure was important and not its outcome. Here, too, like in episode 2, Noa was 

questioning the outcome [223]. For her, the computer-discursive routine was started to 

be linked to the discursive routine and the compounded-computer routine became more 

bonded. However, Maya convinced Noa that the numbers they got were fine. But, what 

Maya’s argument related to was the calculations of the computer, meaning that its 

computation is according to the expression, and not that the expression is appropriate 

according to the discursive routine [226]. 

The students continued, but then Maya stopped and said that the first number in the 

column of Dina's allowance should be 7 and not 8. They tried to fix it. The 

compounded-computer routine for fixing Dina's expression is presented in episode 5.  

Episode 5 – fixing the column in the spreadsheet for Dina's allowance 

261 Maya: Dina gets every week 7 shekels, she doesn't get 8 
shekels. OK, we do…OK (writes the expression 
"=6+A2"). Now what do we do (drags the expression 
down the column).  

..  
263 Noa: (When she sees the numbers in the column) no, what 

are you doing? It is exactly the same as before. 

264 Maya: right. (Deletes the numbers in the column, except the 
number 7 in the first cell) 

It can be seen in episode 5 that the compounded-computer routine has become bonded 

for Maya too. She said "Dina gets every week 7 shekels, she doesn't get 8 shekels", and 

she wrote an expression that gave the number 7 [261]. After they dragged the 

expression down the column, Noa said "no…it is exactly the same as before." [263], 

Maya agreed and deleted the numbers [264]. This time Maya compared the numbers 

in the column to the result of their discursive routine and she agreed that those are 

wrong numbers. The compounded-computer routine became bonded for her too. 

DISCUSION 

We showed a learning process of two seventh-grade students, Noa and Maya, who 

worked on purposefully designed activities in a spreadsheet environment, and focused 

on the routines enacted by the students. The contribution of the study lies firstly in the 

theoretical-methodological contribution. We defined a new type of routine, relevant 

while working in a technological environment: a computer-discursive routine, that is 

different from a discursive routine. We showed how computer-discursive routines can 

be linked to discursive routines and defined the linkage between these two types of 

routine as compounded-computer routine. This new conceptualization enabled us to 
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show, in micro-detail, a process of learning (or de-ritualization) that happens in a 

computer mediated environment.  

The effectiveness of computer mediated learning environments, in general, and 

spreadsheet-based activities, in particular, for the learning of mathematics has been 

demonstrated in multiple studies (for example, Tabach et al., 2013). However, less is 

known about the processes of learning that occur in these environments. 

Commognition has been shown to be highly effective for describing processes of 

learning in non-computerized environments, yet its power has been harnessed less in 

computerized environments (as an exception, see Baccaglini-Frank, 2021). The 

conceptualization and analysis offered in this paper present a first step in this direction, 

that invites further development.  
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In this paper, we aim to investigate undergraduate students’ second-order 

covariational reasoning. For this purpose, we designed a teaching sequence 

concerning the characterization of paraboloids and involving the use of two combined 

digital tools, GeoGebra AR and GeoGebra 3D, to help students develop covariational 

reasoning. The teaching sequence was experimented with 30 undergraduate students 

in mathematics. The research data were collected over two collective discussions and 

consisted of audio and video recordings. The data analysis was based on a descriptive 

coding of the emerging forms of covariational reasoning. Findings revealed that the 

adopted digital tools supported students’ covariational reasoning when 

conceptualizing paraboloids.  

INTRODUCTION  

This paper focuses on the importance of covariational reasoning for Mathematics 

undergraduate students learning two-variable functions, three-dimensional surfaces, 

and related level curves while using digital tools such as GeoGebra 3D and GeoGebra 

AR. 

The main motivation for this study was the difficulties students encountered in 

conceptualizing mathematical objects. One of the difficulties in learning mathematics 

arises due to the impossibility of conceptualization based on meanings referring to a 

concrete reality. On the one hand, every mathematical concept requires representations 

because there are no “objects” to exhibit, that is, conceptualization needs to go through 

representative registers; on the other hand, the management of representations is 

difficult because of the lack of concrete objects to relate the representations themselves, 

both in terms of their production and in terms of transformations. Some of these 

difficulties can also be found in many students attending university courses, where 

certain gaps and misconceptions remain (Eisenberg, 2002). For instance, university 

students often identify curves with functions of one real variable and surfaces with 

functions of two real variables. In particular, the difficulty of recognizing the graphical 

representation of a surface from its analytical representation persists, and students often 

do not recognize the graph of a surface from its level curves and vice versa (Tall, 1993).  

Literature in Mathematics Education remarks the importance of a covariational 

approach for a deep understanding of functional thinking, including both one- and two-

variable functions (Carlson et al., 2002; Thompson & Carlson, 2017). Covariational 
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reasoning is usually intended as “the cognitive activities involved in coordinating two 

varying quantities while attending to how they change in relation to each other” 

(Carlson et al., 2002, p. 354). Moreover, recent studies have highlighted how activities 

involving digital tools can help students to develop the multiple meanings of 

covariational reasoning. For example, Swidan et al. (2019) discussed the use of 

augmented reality (AR), Swidan et al. (2022) investigated the benefit of some digital 

GeoGebra applets, and Johnson et al. (2017) studied the use of some dynamic computer 

environments. In addition, recently, the construct of second-order covariation has been 

introduced by Arzarello (2019) and further explored by Bagossi (2022). Second-order 

covariation is intended as the ability to envision a family of functions and its 

characteristic parameters varying simultaneously.  

In this study, the GeoGebra 3D experience is enriched with a new element with the AR 

functionality, that is the possibility of exploring mathematical objects generated by a 

computer placed in real-world environments. This should engage learners in exploring 

and interacting with mathematical objects resulting in a deeper understanding of the 

content. The great benefit of GeoGebra AR is that it solves the 3D navigation problem 

in a very intuitive way. In order to get users to explore 3D function graphs using 

GeoGebra AR, students can explore the surface from the front or any side; looking 

from above, it shows a cross-section of the graph walk around the object and explore 

it from different perspectives. 

This contribution aims to refine the characterization of the second-order covariation 

construct by analyzing data from a teaching sequence involving undergraduate students 

engaged in purely mathematical activities about two-variable functions and three-

dimensional surfaces. The data analysis revealed qualitative or quantitative forms of 

second-order covariational reasoning that the students developed throughout the 

different phases.  

THEORETICAL FRAMEWORK  

Learning two-variable functions with a covariational approach has been recognized as 

extremely important in the literature (Thompson & Carlson, 2017). To better frame the 

complex forms of covariational reasoning that can emerge when dealing with 

functions, we will adopt an enlarged theoretical framework about covariational 

reasoning, recently introduced, which considers covariation as a wider form of 

mathematical reasoning between mathematical objects rather than only variables.   

First-order covariation, that is covariational reasoning as it is traditionally known in 

the Mathematics Education literature, is defined as the ability to envision how two 

quantities’ values vary simultaneously. Six cognitive levels describing a person’s 

capacity to reason covariationally have been identified (Thompson & Carlson, 2017). 

can reason covariationally in a “chunky and continuous” way when envisioning 

changes in the two quantities referring to intervals of a fixed size, or in a “smooth and 

continuous” way when students envision the two quantities as varying simultaneously 

through intervals in a smooth and continuous way.  
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Second-order covariational reasoning (COV 2) is the ability to envision a family of 

functions and its characteristic parameters varying simultaneously (Arzarello, 2019; 

Bagossi, 2022). Even if a rigorous cognitive characterization of COV 2 has not yet 

been initiated, some findings in this direction have already been presented. For 

example, data from learning experiments with high school students revealed that 

students could succeed in making explicit the direction of change of both the parameter 

and the related graph to condense the relationship between the quantities involved in a 

parametric equation (Bagossi, 2022; Swidan et al., 2022).  

This study aims to highlight how students can be supported in developing second-order 

covariational reasoning using digital tools (GeoGebra AR and GeoGebra 3D) to 

conceptualize and characterize paraboloids. The research question we try to answer in 

the following is: Which characterizations of second-order covariational reasoning 

emerge in undergraduate students when conceptualizing paraboloids using digital 

tools? 

METHODS  

Context and participants 

This work is part of ongoing research on the use of digital tools to improve 

mathematical conceptualization processes in students. The teaching sequence 

presented here was designed and implemented by exploiting the potential of joint use 

of GeoGebra AR and GeoGebra 3D, allowing students to visualize and manipulate 3D 

mathematical objects in the real world. Our teaching sequence was designed assuming 

that using these two digital tools could facilitate students in the characterization of 

several 3D surfaces through suitable manipulations of these mathematical objects 

involved and supporting the development of students’ covariational reasoning. A class 

of 30 Italian undergraduate Mathematics students was involved in the teaching 

sequence on conceptualizing paraboloids based on the joint use of the two digital tools.   

Teaching sequence 

The teaching sequence consisted of three activities designed to foster students’ 

development of covariational reasoning through GeoGebra AR supported by 

GeoGebra 3D in the processes of conceptualization of the mathematical object 

involved (Capone et al., to appear). Collective discussions led by the professor 

followed phases of small group work.  

During the first activity, students were asked to vary the values of a parameter k via a 

slider and to observe and describe what these variations caused on the two worksheets 

in GeoGebra AR and GeoGebra 3D. The activity aimed to guide students in 

characterizing the curves in the 2D plane as the level curves generated by the 

intersection of the surface and the plane z=k in the 3D plane. During the second 

activity, students were asked to find a relationship between the level curves and the 

surface of the first activity concerning their analytical representations. Specifically, 

students were asked to find the equation of the 3D surface by comparing the different 
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level curves corresponding to different values of parameter k (Fig. 1). The 

mathematical purpose of this activity was for the students to conceptualize that as 

parameter k varies, the level curves are circumferences with the center in the origin and 

radius, √𝑘 and consequently, they have equation x2+y2=k. Moreover, to identify the 

equation of the 3D surface, students should observe that the dependence of  the variable 

z on parameter k disappears.  

 

Figure 1: GeoGebra 3D and GeoGebra AR worksheets during the second activity. 

Finally, in the third activity, students were provided with a new worksheet in GeoGebra 

AR and GeoGebra 3D. They were asked to consider the equation of a family of 

paraboloids in the form z=ax2+by2, to vary first separately and simultaneously the 

parameters a and b with the two associated sliders in both the worksheets and to 

observe and describe what these variations (Fig. 2). The mathematical purpose of this 

activity was to describe the characteristics of the different families of surfaces obtained 

from the variations of parameters a and b with the sliders, highlighting how both the 

surface obtained and their corresponding level curves generated by the intersection of 

the surface under consideration and the plane of equation z=k varied when changing 

the value of the slider k. 

 

Figure 2: GeoGebra 3D and GeoGebra AR worksheets during the third activity. 

Data collection and data analysis 

All the activities, working group sessions and collective discussions were video-

recorded, transcribed, and translated into English. The data were analyzed with the 

enlarged theoretical framework about second-order covariation. In this qualitative 

study, we adopt an interpretative approach based on a descriptive coding of second-



Bagossi, Capone & Mennuni 

PME 46 – 2023 2 - 71 

order covariational reasoning (Saldana, 2015). After having selected episodes 

revealing COV 2, students’ reasoning was analyzed by describing the objects involved 

(variables, parameters, or functions) and their features (qualitative or quantitative 

forms of reasoning). Special attention was devoted to the chosen mathematical 

representations (graphical, symbolic, or verbal) and the features of GeoGebra AR and 

GeoGebra 3D that most supported students in developing their covariational reasoning. 

RESULTS 

In this section, we report the analysis of three episodes selected from collective 

discussions and revealing second-order covariational reasoning. Specifically, episode 

1 is from the discussion conducted after the second activity, while episodes 2 and 3 are 

from the discussion held after the third activity. In the following, the professor leading 

the discussion is denoted with T, while the students are denoted as Si. The episodes are 

reported in chronological order.  

Episode 1  

This episode belongs to the discussion after the second activity. S1 is replying to the 

T’s question about their answer to the activity “By comparing two curves obtained for 

specific values of slider k, can you get information about the surface in red? Can you 

describe its analytical representation with the available tools? Justify your answer”. 

The worksheets students were provided with enabled them to observe that the variation 

of the slider k causes both the variation of level curves and the variation of the position 

of the plane z=k that cuts the 3D red surface (Fig. 1). 

1 S1:  We have observed that for 𝑘 = 1  the equation of the circumference, that 

is obtained by intersecting the red surface with the blue plane 𝑧 = 1 is 

𝑥2 + 𝑦2 = 1; on the other hand, for  𝑘 = 2 we get 𝑥2 + 𝑦2 = 2, and so 

on... So, we can generalize and say that we get 

 𝑥2 + 𝑦2 = 𝑘, depending on the k we chose… If this is the equation of the 

intersecting curve, then we can deduce that the surface in red has equation 

𝑥2 + 𝑦2 = 𝑧, representing an elliptical paraboloid. 

In this excerpt, S1 elaborates on the coordination of the numerical values of the slider 

k with the level curves, which are circumferences expressed in the analytical register. 

Even if it is not stated explicitly, it seems clear that in S1’s understanding, the chosen 

values of k are increasing, and so are the level curves whose dependence on k is 

encapsulated in the radius. Hence, S1’s reasoning was coded as a quantitative form of 

COV 2: the direction of change of the numerical values parameter and level curves is 

present even if in an implicit form.  

Episode 2 

In this episode, from the discussion after the third activity, students  elaborate on the 

answer to the question in which they were asked to reflect on the level curves of each 

paraboloids’ surface according to the values of parameter a.  



Bagossi, Capone & Mennuni 

2 - 72 PME 46 – 2023 

2 S2:     And therefore for 𝑘 = 0. Then the level curves for elliptic paraboloids, that 

is when a is greater than 1, are precisely ellipses of the equations 𝑎𝑥2 +
𝑦2 = 𝑘 [T moves the slider 𝑘 and makes the level curve appear from 

above]. So, it is fixed 𝑏 and, therefore, what would be the minor semi-axis, 

because a is greater than 1 and therefore exceeds 𝑏 and, therefore, it is the 

major semi-axis that always increases; therefore, the level curves are 

ellipses. And the last case is when a is negative, and so for hyperbolic 

paraboloids, we have hyperbolas as level curves. If I’m not mistaken, we 

should also have asymptotes as level curves, I say. But I don’t know if the 

boundary case has been reached. [T moves the slider 𝑘].  

In the first part of this episode, a covariation between parameter a and the level curves 

can be recognized. First, S2 recognizes the dependence of the level curves on parameter 

a and encapsulates this dependence in an analytical formula. Then, S2 specifies that 

the case analyzed is a greater than 1, which means it is the major semi-axis and always 

increases [2]. In this form of COV 2, the direction of change of parameter a is explicit 

(“always increases” [2]), and the covariation with the level curves is recognized, but 

how the level curves vary is not outlined. We coded this form of COV 2 as qualitative, 

absence of reference to the numerical values, and only the direction of change of the 

parameter is stated. S2 also claims “when a is negative, and so for hyperbolic 

paraboloids, we have hyperbolas as level curves” [2]: the student expresses the 

previously acquired knowledge by naming the resulting curve without mentioning how 

the curves change by varying the parameter. This sentence reveals the recognition of 

COV 2.  

Episode 3  

In this episode, from the discussion after the third activity, students keep elaborating 

on the paraboloid surface, varying the values of both parameters a and b.  

3  T: So… [T shows the surface on the GeoGebra and starts according to S3’s 

instructions to change the position of the values on the sliders]. 

4 S3:  In the first case where 𝑎 = 𝑏 = 0, we have the plane 𝑧 = 0. Instead, we get 

an elliptic paraboloid if we take 𝑎 greater than 0 and 𝑏 greater than 0. 

  [...] 

5 T:  If 𝑎 is equal to 𝑏 instead?  

6 S3:  Paraboloid, and that’s it. We get the same thing with 𝑎 and 𝑏 both less than 

0 and not equal. 

7 S4:  But with concavity downward. 

8 S3:  Instead, a different case is when we take 𝑎 and 𝑏 as discordant. We always 

get a hyperbolic paraboloid; however, if 𝑎 is greater than 0 and 𝑏 is less 

than 0, and vice versa, we obtain the y-axis or the x-axis. 

9 S4:  However, we observed that it is only a 90° rotation of the figure depending 

on the choice of 𝑎 and 𝑏. 
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S3 identifies a second-order covariation between the parameters’ values and the 

resulting surface [4-6]. S4 introduces a new feature of the paraboloid by referring to its 

concavity that becomes downward [7] when a and b are both negative. Eventually, S4 

refers to a 90° rotation [9]: the shape of the surface is always the same, but its position 

in space changes depending on the parameters’ values, and this tells how the 

parameters influence the family of surfaces. Hence, S3’s understanding reveals a 

qualitative form of COV 2 in which a change in the values of the parameters determines 

a change in the concavity of the paraboloids. At the same time, S4 succeeds in 

recognizing an invariant relationship between the generated paraboloids consisting of 

a 90° rotation [9]. 

FINAL REMARKS 

The preliminary results previously discussed suggest that the teaching sequence 

exploiting the two digital tools, GeoGebra 3D and GeoGebra AR, supported the 

emergence of forms of COV 2. Indeed, in the three analyzed episodes, we could detect 

these forms of second-order covariation: i) a recognition of COV 2 when students do 

not elaborate on how the curves are changing simultaneously with varying the 

parameter, but they recognize the simultaneous change (episode 2); ii) a qualitative 

form of COV 2, absence of reference to the numerical values, in which only the 

direction of change of the parameter is stated (episode 2); iii) a qualitative form of 

COV 2 in which a simultaneous change in the parameters determines a change in the 

shape of the paraboloids (a change of concavity or even an invariant relationship 

between the generated paraboloids, a 90° rotation  - episode 3); iv) a quantitative form 

of COV 2 in which the direction of change of the numerical values of the parameter 

and level curves, expressed in an analytical representation, is present even if in an 

implicit form (episode 1).  

We could not detect an evolution in the forms of second-order covariational reasoning: 

they seem to be intertwined throughout the two collective discussions. We also 

observed that often students focused on the elaboration of formal classification of the 

surfaces (elliptic paraboloid [4], hyperbolic paraboloid [8]) rather than envisioning its 

variation; the discrete values provided by the sliders associated with the parameters 

may also lead students to think in terms of discrete values [1] rather than as a quantity 

varying continuously. The teaching sequence’s benefits and limitations for supporting 

covariational reasoning deserve a deeper analysis and reflection.    
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AUGMENTED REALITY ENVIRONMENT 
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This study examines how using a specific augmented reality design may prompt 

students to ask questions, and how these questions may prompt the meaning-making of 

mathematical concepts. The phenomenological perspective, which considers meaning-

making a process of disclosure, guided this study. Drawing on the case study 

methodology, we focus on a triad of 15-year-old students and analyze how the 

questions posed by the students help them to make meaning of the mathematics 

concepts embedded in a dynamic phenomenon. Three layers of disclosure were found, 

and the kinds of questions posed by the students were identified. The relationship 

between the questions posed and the layers of disclosure is also discussed. 

INTRODUCTION  

Posing questions by students is one of the key practices in the teaching and learning of 

mathematics, which may enrich the students’ experience of mathematics. To 

emphasize the importance of the students’ posing good mathematical questions, Mason 

argued that “it must be every competent teacher’s dream that students will ask ‘good’ 

mathematical questions” (Mason, 2020, p. 710). Despite this recognized importance, 

research in mathematics education has focused mostly on the teacher’s questioning as 

an instructional strategy but rarely on the students’ questioning (Mason, 2020).      

Understanding mathematical concepts and developing mathematical thinking require 

a significant investment of time and effort. Questions that students confront (and ask), 

the tools they use, and the social interactions between the students themselves and with 

the teacher, play a crucial role in developing mathematical thinking and understanding. 

Recently, Swidan et al. (2020) found that students who used a dynamic digital tool, 

whose display shows two graphs, one of a function and the other of its antiderivatives 

in two-linked Cartesian systems for learning calculus concepts in small groups, posed 

several types of questions. Answering those questions helped the students disclose the 

mathematical meanings of the graphs in the digital tool.  

Following these insights, we conjecture that an augmented reality (AR) environment 

that collects real-time data of a dynamic phenomenon, while simultaneously 

augmenting the students’ experience with mathematical representations of the dynamic 

phenomenon itself, can foster student engagement in the processes of questioning and 

answering sequentially. Furthermore, these questioning processes play an important 

role in disclosing the mathematical relationship embedded in the dynamic 

phenomenon. Specifically, in this study, we aim to examine how students make sense 

of mathematical concepts through questioning processes in an AR environment. In 



Bagossi, Kovarsky Boev, & Swidan 

2 - 76 PME 46 – 2023 

particular, we aim to examine how the use of AR technology may prompt students to 

ask questions, which, in turn, may prompt the meaning-making of mathematical 

objects. 

THEORETICAL FRAMEWORK 

Phenomenological perspective 

To describe the meaning-making of mathematical objects, we refer in this study to the 

phenomenological perspective as elaborated by Rota (1991). Rota stated that there is 

“no such thing as true seeing,” but “there is only seeing as” (1991, p. 239). According 

to Rota, this process is referred to as disclosure, a Husserlian concept whereby refers 

to the process by which people make sense of and interpret the world around them and 

various situations in the world. The disclosure process is far from natural. Students 

should be educated to make sense of what they disclose when they meet with 

mathematical objects (Radford, 2010). This is, of course, dependent on the students’ 

background and age. Moreover, a given mathematical situation may evoke different 

contexts and lead to different sense-making. According to Rota, rather than being 

isolated, these different contexts are instead layered upon one another, and the layers 

can generate different meanings over time. To illustrate the idea of disclosure, let us 

imagine an increasing and decreasing continuous graph in a Cartesian plane. Young 

students may see the graph as the picture of a mountain; other students with a wider 

mathematical background may perceive the same graph as a function. Seeing the 

mathematical meanings (e.g., the graph of a mathematical function) that are in an object 

(e.g., the drawing) is a lengthy and delicate process. 

Questioning process 

Processes of questioning and answering sequentially are central to the teaching and 

learning of mathematics. Questions may direct students’ attention to some 

mathematical features that characterize the phenomena that the students should 

disclose (Mason, 2008). In addition, having the students themselves engage in posing 

questions is generally considered “a useful process in their pursuit of learning, in that 

questioning is one of the most important ways students can support their own learning 

to become literate, well-educated people” (Boaler & Humphreys, 2005, p. 72).  

In this study, we adapted Mason’s classification of the questions that can be asked in 

mathematical classes (Mason, 2000): attention focus, testing, and enquiry. Attention 

focus questions aim at drawing the learner’s attention to something that the asker is 

already aware of and would like the respondent to notice as well. Testing questions aim 

at emphasizing something that is already known to the respondent in order to ascertain 

something, or to establish control and dominance of the situation. Enquiry questions 

aim at getting the respondent to wonder what the possible answer (or answers) might 

be. There are no expectations for a certain output of the learner. The enquiry question 

may not necessarily require an answer. 
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METHOD 

Augmented reality environment 

The technological tool we used in this study is a specific design of AR that collects 

real-time data of a dynamic phenomenon during a physical experiment (Fig. 1a). In 

this experiment, a cube is moving along an inclined plane and real-time data of time 

and distance are collected by sensors and analyzed. The AR headset shows two 

mathematical representations, a table of values and a discrete distance-time graph, 

created simultaneously while performing the experiment. The students were able to 

observe both the real-world experiment and the mathematical representations of the 

dynamic object immediately in real-time (Fig. 1b). 

 

Figure 1: (a) Student uses the AR headset to collect real-time data; 

 (b) The mathematical representations of the dynamic object the student sees  

using the AR headset. 

Participants and tasks  

The study presented here is a small part of a larger project that aims to understand the 

integration of AR technology into mathematics classes. The present study reports on 

the case study about the interaction processes of three 15-year-old students from Israel, 

Shilat, Ori, and Shahar. At the time of the experiment, the students had already learned 

the concepts of linear function and quadratic function. The students worked together 

and spent 1.15 hours on the various tasks designed for the study (Fig. 2). 

The experiment concerned the motion of a ball rolling along an inclined plane, the so-

called Galileo experiment. Students were instructed through some guidelines provided 

on a worksheet (Fig. 2). First, students were asked to let a cube slide down along the 

plane and interpret what they could observe through the AR headset. They were asked 

to write some observations on their own and then to discuss those conjectures as a 

working group. In the second phase, students were requested to guess what would 

happen when changing the inclination of the plane. Hence, they were requested to 

conduct the experiment with a different inclination, to write some observations on their 

own, and then to discuss their findings together.  
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Figure 2: Task worksheet given to the students translated into English. 

Data collection and analysis  

To collect the data, the learning experiment was recorded using two video cameras. 

One camera was located behind the students to capture their interactions. The second 

was set in an AR headset to record what the students see. To analyze the data, we 

repeatedly watched the video and then split it into episodes. Next, we analyzed each 

episode, distinguishing the kinds of questions asked by the students and the layers of 

meaning. Moreover, in order to focus on the role of the AR learning environment, we 

also analyzed the actions performed by the students distinguishing between actions 

with real objects (e.g., releasing the cube, changing the plane inclination) and with 

virtual objects (e.g., gestures reproducing the trend of the virtual graph). In the last 

round of analysis, we organized the data in a timeline as done in Swidan et al. (2020) 

to learn about the relationships between the kinds of questions and the disclosure 

processes. In the timeline, time is not distributed equally; each cell corresponds to a 

different interval of time functional for analysis purposes.  

RESULTS 

In this section, we present the results regarding the layers of disclosure and the type of 

questions. We found three layers of disclosure: local layer, properties layer, and 

relationship layer. In the local layer, the students disclosed a specific representation 

such as the graph that models the cube’s movement or the real experiment itself. For 

example, they said “here is the graph!” or “the cube moved quickly.” In the properties 

layer, the students disclosed the features and properties of a specific representation. 

For example, they said “first, the graph goes up, then it goes down” or “the numbers in 

the table are increasing” In the relationship layer, students disclosed relationships 

between and within the representations, for example, a relationship between the cube’s 

movement and the graph, the relationship between cube speed and plane inclination, 
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or the relationship between the graph and the table of values. Regarding the questions 

asked by the students during the experiment, in total the students asked 19 questions: 

10 were attention focus questions, seven were testing questions, and two were enquiry 

questions. 

 

Figure 3: The timeline analysis of the learning experiment. Each color corresponds to 

a different student as described in the legend. 

The timeline analysis (Fig. 3) shows the evolution and the relationships between the 

questions asked by the students, the layers of disclosure, and the actions performed by 

the students throughout the entire learning experiment. We observe that at the 

beginning of the experiment, the attention focus questions were dominant (the students 

asked nine attention focus questions versus three testing questions), whereas as the 

experiment progressed, the testing questions became dominant (the students asked four 

testing questions versus one focus attention question). It is worth mentioning that the 

students disclosed the properties of the graphs after they asked the testing and attention 

focus questions. In addition, we found that the virtual mathematical representations 

juxtaposing the real objects invited the students to interact with them through gestures. 

Following these gestural movements, the students disclosed the properties of the graph. 

This finding suggests that the mathematical representations juxtaposing the real objects 

served the students as embodied objects that could be touched and described, and hence 

helped the students to disclose the properties of the graphs.      

In the two excerpts described below, we will illustrate the relationships between the 

questions asked, the actions taken, and the disclosures that were achieved. Specifically, 

we will focus on how the questions emerged and helped the students disclose 

mathematical relationships. 

Excerpt 1 

In this excerpt, the students explored the relationship between plane inclination and 

cube speed. In doing so, the students carried out several experiments each time with a 

different inclination. One of the students, Shilat, was in charge of releasing the cube 

from the top of the inclined plane, and the other two students, Shahar and Ori, traced 

the cube using the AR headset (Fig. 4a). The students referred to the graph and said: 

1  Shahar: Wow, how different it is. 
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2 Ori:  Yeah, (cube is) very fast (reproducing the trend of the graph with her finger 
as in Fig. 4b). 

3 Shahar:  It’s like this... I don’t even know what it looks like (gesture simulating the 
shape of the graph as shown in Fig. 4c).  

4   Ori: Should we draw it? (She draws the graph). 

5 Shahar: When the inclination is greater, the speed (of the cube) is faster. 

 

Figure 4: (a) Shilat released the cube from the top of the inclined plane; Shahar and 

Ori traced the cube using the AR headset; (b) Ori reproduced the trend of the virtual 

graph with her finger; (c) Shahar made the same gesture. 

Shahar compared the graph she obtained upon releasing the cube with the graphs she 

had obtained in a previous experiment when the plane inclination was less steep [1]. 

Ori confirmed that the graphs were different and also referred to the cube speed [2]. 

Initially, Shahar’s claim suggests that she had locally disclosed the graph [1], while 

Ori’s statement [2] suggests that she had disclosed the properties of the graph while 

describing it through gestures (Fig. 4b). Shahar also disclosed the properties of the 

graph [3] while reproducing with her hands how the graph looked like (Fig. 4c). It 

seems that Shahar’s difficulties in verbally describing the graph motivated Ori to ask a 

focus attention question [4], possibly because Shahar had disclosed aspects of the graph 

on which she wanted to focus her attention. Then, Shahar disclosed the relationship 

between two real elements, plane inclination and cube speed [5].  

It seems that the disclosure process of the two objects in isolation – the virtual graphs 

and the cube speed – is fundamental for disclosing the relationship between virtual 

objects and real objects, as we will show in the next excerpt.  

Excerpt 2 

After the previous excerpt, the students realized that each of them had obtained a 

different graph representing the distance-time function of the moving cube – this is a 

feature of AR technology since each student captures the cube movement from a 

different position. Afterward, they drew the graphs they had obtained. The students 

looked through their classmate’s headset (Fig. 5a). Ori disclosed that the graphs were 

different, while Shahar disclosed that although the graphs were different, they had 

some similarities. At this moment, Shahar suggested decreasing the plane inclination 

and examining how the graph would change consequently. Shahar began by asking an 

enquiry question that invited the students to conduct a new experiment. 
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6  Shahar: What would happen if you decreased the plane inclination? (Shahar 
changes the plane inclination). 

7 Ori:  Now it is clear. 

8 Shilat:  Mine is almost the same.  

9   Shahar: Mine has a large amount of points on a straight line (gestures with her hand 
the many points as in Fig. 5b). 

10 Shilat: Mine is also like this. Afterward, I have some points going up (gesture in 
Fig. 5c). 

11 Shahar: Finally, we have a common conclusion. 

12  Researcher: And it is? 

13 Shilat: We all have a straight line and then some points that go up. We understand 
the straight line, it is when the cube slides down the inclined plane, and the 
points go up when the cube leaves the inclined plane. 

 

Figure 5: (a) The students looked through their classmate’s headset; (b) Shahar 

gestured with her hand the large amount of points; (c) Shilat pointed to the points 

going up. 

This excerpt starts out with an enquiry question posed by Shahar [6], possibly because 

she hypothesized that the slower the motion of the cube, the better the graph would 

have been displayed on the AR headset. Statements [7-8] suggest that Ori and Shilat 

locally disclosed the graph without describing its properties. Then Shahar disclosed the 

properties of the virtual graph that was present in front of her [9]. Her gestures suggest 

that she interacted with the virtual graph (Fig. 5b), and this interaction seems to help 

her in disclosing the graph properties. The same disclosure process happened with 

Shilat [10] who also used a gesture to disclose the properties of the graph. Shilat’s 

response [12] to the researcher’s question [11] suggests that she disclosed another layer 

of meaning which is the relationship between the virtual graph and the cube’s 

movement, even though the conclusion she reached was not mathematically correct. 

FINAL REMARKS 

In this paper, we focused on the questions the students pose as they use AR technology. 

Our findings showed that the students mainly asked focus attention questions, which 

helped them to disclose layers of meaning that we called local, properties, and 

relationship. Following the testing questions, the students mainly disclosed the 

relationship between virtual objects (graph) and real objects (cube, inclined plane). 

Regarding the enquiry questions, we found only two of them posed by the students 

(Fig. 3). After the first question [6], the students disclosed the relationship between the 
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virtual objects and the physical objects; after the second enquiry question, the students 

disclosed the relationship between the graph and the table of values. We consider this 

layer of disclosure to be more sophisticated since the students tried to interpret the 

cube’s motion by disclosing the relationship to the mathematical representation. 
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For early mathematics learning, adaptive strategy use by students at different levels of 

mathematical achievement is of central importance. For several mathematical tasks, 

there is evidence that high-achieving students are more able to use strategies 

adaptively, but not yet for pattern-recognition tasks. This paper presents results from 

an empirical study investigating whether students with and without risk of developing 

mathematical difficulties use pattern-recognition strategies adaptively for patterns 

with different units of repeat. Pattern-recognition strategies of 74 first-grade students 

were analyzed using eye-tracking. The results reveal that predominantly the first 

graders without risk of developing mathematical difficulties show an adaptive use of 

pattern-recognition strategies.  

INTRODUCTION 

The ability to use strategy adaptively, that is, consciously or unconsciously selecting 

the most appropriate strategy on a given task (Verschaffel et al. 2007), enables learners 

to solve mathematical tasks efficiently and correctly and is a key component of 

mathematical achievement (Heinze et al., 2009). Research on primary school students 

indicated that higher achieving students, in contrast to weaker students, are able to 

adapt their strategies, for example, for number line estimation (Van’t Noordende et al., 

2016) or arithmetic sums such as 8 + 7 (Torbeyns et al., 2005).  

Another mathematical area that has become a focus of early mathematics learning 

research in the past decade is awareness of structures and patterns (Mulligan et al., 

2020). This includes, for example, the ability to expand repeating patterns such as ● ● 

● ● ● ● ● ●. While there is research on strategies first graders use in extending such 

repeating-pattern tasks (Baumanns et al., 2022; Lüken & Sauzet, 2021; Papic et al., 

2011), there is lack of research on whether first graders show adaptive strategy use and 

whether students with and without risk of developing mathematical difficulties differ 

in adaptive strategy use in solving repeating-pattern tasks. 

The aim of this study is to investigate whether first graders show adaptive strategy use 

and whether students with and without risk of developing mathematical difficulties 

differ in adaptive strategy use. To analyze the pattern-recognition strategies, we use 

eye-tracking which has been shown to be useful for investigating pattern-recognition 

strategies of children at early primary level (Baumanns et al., 2022). 
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THEORETICAL BACKGROUND 

Risk of developing mathematical difficulties in early mathematics learning 

Mathematical difficulties are manifested through difficulties students have with 

number sense, place value and base-10 number system, and arithmetic operations 

(Moser Opitz et al., 2016). As children transition from kindergarten to primary school, 

they may not yet exhibit mathematical difficulties but may be at risk of developing 

them. Standardized tests identifying students at risk of developing mathematical 

difficulties investigate mainly students’ number sense. In recent years, there has been 

an increasing focus on students’ awareness of patterns, in addition to their number 

sense, as factors associated with mathematical achievement and future success in 

mathematics (Mulligan et al., 2020). The ability to identify and understand patterns has 

been identified as a good predictor of future mathematical achievement (Rittle-Johnson 

et al., 2019). 

Adaptive strategy use in early mathematics learning 

Hereafter, the term strategy refers to general processes or approaches to solve a task. 

Verschaffel et al. (2007) define adaptive strategy use as the “conscious or unconscious 

selection and use of the most appropriate solution strategy on a given mathematical 

item or problem, for a given individual, in a given sociocultural context” (p. 19). This 

study focuses on first graders’ adaptive strategy use in pattern-recognition tasks. To 

conceptualize adaptive strategy use more precisely, we draw on Lemaire and Siegler’s 

(1995) model of strategy change consisting of four dimensions: (1) Strategy repertoire 

refers to the set of strategies a person uses to solve a task. (2) Strategy distribution 

refers to the frequency at which each strategy is used. (3) Strategy effectiveness refers 

to the speed and accuracy with which each strategy is used. (4) Strategy selection refers 

to the flexibility or adaptivity with which each strategy is chosen. In this study, adaptive 

strategy use is investigated considering mainly dimensions (2) and (4) by assessing 

flexible or adaptive strategy use through investigating the frequency at which pattern-

recognition strategies are observed for different kinds of tasks (see below). 

Several studies investigated primary school students’ adaptive use of strategies for 

students at different levels of mathematical achievement. Van’t Noordende et al. 

(2016) found that 9–11-year-old students with mathematical difficulties did not differ 

in their use of the strategies for number line estimation compared to students without 

difficulties. Studies in which students were asked to solve addition and subtraction 

tasks to 30 revealed that students with mathematical difficulties, compared to students 

without difficulties, use the same strategy for different addition and subtraction tasks 

(Torbeyns et al., 2005). In summary, there is evidence that students at risk of 

developing mathematical difficulties tend not to adapt their strategy to the respective 

task.  
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Repeating patterns and pattern-recognition strategies 

In early mathematics learning, pattern skills are addressed, for example, through 

repeating patterns (Mulligan et al., 2020) which are sequences with a unit of repeat 

(e.g., AB) that continuously recurs (e.g., ABABAB). They differ along three 

dimensions:  

(1) Representation: The patterns ABABAB (alphabetical), 1 2 1 2 1 2 (numerical), 

and ● ● ● ● ● ● ● ● ● (color) are isomorphic with a different representation.  

(2) Length of unit of repeat: The unit of repeat of the pattern ABABAB has length 

two, while the unit of repeat of the pattern ABCABCABC has length three.  

(3) Number of distinct elements: The unit of repeat of ABBABBABB has two 

distinct elements and the unit of repeat of ABCABCABC has three distinct 

elements. 

Recognizing different lengths and number of distinct elements of the unit of repeat and 

recognizing isomorphic patterns are emphasized by NCTM Standards as the early 

introduction of algebra (NCTM, 2000). 

Studies examining pattern-recognition strategies in preschoolers and first graders 

(Lüken & Sauzet, 2021) found that children use more sophisticated strategies with less 

difficult patterns (i.e., identifying and using the unit of repeat or focusing on the 

succession of elements on the unit of repeat). They also use more sophisticated 

strategies as they get older. Baumanns et al. (2022) identified four pattern-recognition 

strategies using eye-tracking and found that the use of these four strategies differs 

significantly between patterns with different units of repeat. However, there is no 

research on the adaptive strategy use for repeating-pattern tasks. In addition, because 

adaptive strategy use is a key component of mathematical achievement, the focus on 

first-grade students with and without risk of developing mathematical difficulties is of 

interest. 

Based on the three dimensions of repeating patterns and the state of research regarding 

the adaptive use of pattern-recognition strategies, we pursue the following research 

question: Do first-grade students show adaptive strategy use in solving repeating-

pattern tasks? Do first graders with and without risk of developing mathematical 

difficulties differ in adaptive strategy use in solving repeating-pattern tasks? Adaptive 

strategy use in repeating pattern tasks is investigated with respect to the following three 

dimensions: (1) representation of the unit of repeat, (2) length of the unit of repeat, and 

(3) number of distinct elements of the unit of repeat. 

METHODS 

Participants, procedure, and tasks 

The present study had a sample of 224 first-grade students, comprising 102 students 

from three primary schools in Germany and 122 students from three primary schools 

in Cyprus. All students did the standardized mathematics test ZAREKI-K, which was 

used to assess students’ mathematical performance level during the transition from 
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kindergarten to primary school (Aster et al., 2009). We used the adapted version by 

Walter (2020), which considers 6 instead of 18 subtests, reducing drastically the time 

required for the test while maintaining high accuracy for identifying students with and 

without risk of developing mathematical difficulties. The ZAREKI-K indicated that 37 

students were at risk of developing mathematical difficulties (RMD students). Thus, 

the group of first graders who were not at risk of developing mathematical difficulties 

(¬RMD students) is disproportionately larger than the group of RMD students. For our 

analyses and investigating group differences, we included the 37 RMD students, i.e., 

the students with the lowest scores in ZAREKI-K, and the corresponding 37 ¬RMD 

students with the highest scores in ZAREKI-K, to avoid the analyses for the ¬RMD 

group to be overpowered in the statistical analyses.  

In total, 12 repeating-pattern tasks were given to the students. Six were represented 

using numbers, and six using colors. One task each had the unit of repeat AB, ABC, 

AABB, AAB, AABC, and ABAC. Figure 1 shows all numerical and color patterns 

used in the study with their respective length of repeat and number of distinct elements. 

The students worked individually on the pattern-recognition tasks. Before the first 

numerical and the first color pattern task, the students worked on a sample task, to 

ensure that they understood the task correctly. The students answered by saying aloud 

the number or color they thought was behind the white blob. The students did not 

receive feedback and incorrect answers were not corrected. 

 

Figure 1: Numerical and color repeating-pattern tasks used in the study 

Eye tracking 

In the study, students’ eye movements were recorded using the Tobii Pro X3-120, an 

infrared binocular eye tracker with a sampling rate of 120 Hz. The tasks were displayed 

on a 24" monitor and the students were positioned about 60–65 cm away from it. The 

eye-tracking data had an average accuracy of 0.98° (SD = 0.88°), which corresponds 

to an error of about 1 cm on the screen. Before the tasks were shown, a 5-point 

calibration and a 4-point validation were performed. 

Qualitative analysis of eye-tracking data 

Raw gaze-overlaid videos provided by Tobii Pro Lab software were used to analyze 

students’ pattern-recognition strategies. For all gaze-overlaid videos, pattern-

recognition strategies were coded by the first author using the coding manual illustrated 
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in Figure 2. More detailed descriptions of the gazes of each pattern-recognition strategy 

can be found in Baumanns et al. (2022). Twelve out of the 74 first-grade students 

(~16.2%) were analyzed independently by the penultimate author of this paper. The 

interrater agreement was calculated using Cohen’s Kappa. With κ = 0.95 (95% CI 

[0.90, 0.99]), the interrater agreement is almost perfect (Landis & Koch, 1977). 

 

Figure 2: Pattern-recognition strategies coded in this study.  

Quantitative statistical analysis 

For statistical analyses, only correct answers were considered to make sure that in all 

cases, the students tried to solve the given tasks rather than just guessed. To determine 

adaptive strategy use for students with and without RMD for patterns with different 

units of repeat, twelve chi-square tests were conducted: First, chi-square tests were 

conducted for the six units of repeat (AB, ABC, AABB, AAB, AABC, ABAC; number 

and color patterns combined) for all students, then only RMD students, and finally only 

¬RMD students. Afterwards, the same was done for the three dimensions of the unit 

of repeat ((1) representation, (2) length of unit of repeat, (3) number of distinct 

elements). Due to multiple testing of the present data, the alpha levels were adjusted 

using Bonferroni correction. Chi-square test is used to determine whether there is a 

significant difference between the observed and the expected pattern-recognition 

strategies used by the students. If the chi-square test indicates that there is a significant 

difference, it suggests that the students used the pattern-recognition strategies 

adaptively regarding strategy distribution (Lemaire & Siegler, 1995). To reveal 

separately for all chi-square tests which pattern-recognition strategies were observed 

significantly more often or less often than others, we analyzed adjusted standardized 

residuals (Sharpe, 2015). Adjusted standardized residuals were also adjusted using 

Bonferroni correction. 

RESULTS 

Figure 3 shows the distribution of pattern-recognition strategies for all tasks. Table 1 

summarizes the results of the chi-square tests. Strategy (4), unsystematic jumping over 

the pattern, did not provide any correct answers and was excluded from the analyses. 

All patterns: For the total sample, chi-square test indicates adaptive strategy use across 

all patterns with the same unit of repeat. If the ¬RMD and RMD groups are considered 

separately, the chi-square test reveals that only the ¬RMD students show adaptive 

strategy use across all patterns. Analyzing the adjusted standardized residuals reveals 
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that strategy (1), identifying one unit of repeat, was observed significantly more often 

for the unit of repeat AB and significantly less often for the unit of repeat ABAC than 

for the other patterns. Strategy (2), identifying one unit of repeat and 

validating/applying it, was observed significantly more often for the unit of repeat 

ABAC. 

 

Figure 3: Distribution of the pattern-recognition strategies for all patterns and the 

three dimensions of the unit of repeat for RMD students and ¬RMD students 

(a) Representations: The total sample shows adaptive strategy use for patterns with 

different representations (i.e., numbers and colors). Both ¬RMD and RMD students 

show adaptive strategy use. Analyzing the adjusted standardized residuals reveals that 

for both ¬RMD and RMD students, strategy (3), looking at each element, was observed 

significantly more often for number patterns than color patterns.  

 Group N χ2  Df  p V (effect size) 

All patterns 

Total sample 614 35.11 10 < .01 0.17 (medium) 

RMD 261 13.22  = .21  

¬RMD 353 31.50  < .01 0.21 (medium) 

(a) Representation 

Total sample 614 38.32 2 < .001 0.25 (medium) 

RMD 261 12.27  < .05 0.22 (medium) 

¬RMD 353 27.05  < .001 0.28 (medium) 

(b) Length of the  

unit of repeat 

Total sample 614 19.87 4 < .01 0.13 (small) 

RMD 261 5.03  = .28  

¬RMD 353 17.05  < .05 0.16 (medium) 

(c) Number of distinct  

elements  

Total sample 614 15.00 2 < .01 0.16 (small) 

RMD 261 0.55  = .76  

¬RMD 353 21.86  < .001 0.25 (medium) 

Table 1: Results of chi-square tests for all patterns and three dimensions of unit of 

repeat for the total sample, only RMD, and only ¬RMD students (N is number of 

tasks) 

(b) Length of the unit of repeat: The total sample shows adaptive strategy use for 

patterns with different length of the unit of repeat (i.e., length of two, three, or four). 

Chi-square test reveals that only the ¬RMD students show adaptive strategy use, but 

the RMD students do not. Analyzing the adjusted standardized residuals reveals that 
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for ¬RMD students, strategy (1), identifying one unit of repeat, was observed 

significantly more often for patterns with the length of two units of repeat and 

significantly less often for patterns with the length of four units of repeat.  

(c) Number of distinct elements: The total sample shows adaptive strategy use for 

patterns with different numbers of distinct elements. Again, the chi-square test reveals 

that only the ¬RMD students show adaptive strategy use. Analyzing the adjusted 

standardized residuals reveal that for ¬RMD students, pattern-recognition strategy (1), 

identifying one unit of repeat, was observed significantly more often for patterns with 

a unit of repeat of two distinct elements and pattern-recognition strategy (2), 

identifying one unit of repeat and validating/applying it, was observed significantly 

more often for patterns with a unit of repeat of three distinct elements. 

DISCUSSION AND CONCLUSION 

The aim of this study was to investigate whether first graders show adaptive strategy 

use and whether students with and without risk of developing mathematical difficulties 

differ in adaptive strategy use in solving repeating-pattern tasks. Our results provide 

supporting evidence that ¬RMD students tend to show more adaptive strategy use in 

repeating pattern tasks compared to RMD students. This holds across the six patterns 

examined (AB, ABC, AABB, AAB, AABC, ABAC), as well as the three dimensions 

in which repeating patterns differ (representations, length of unit of repeat, and number 

of distinct elements). In general, ¬RMD students use a more efficient pattern-

recognition strategy (i.e., (1) identifying a repeating unit) for simpler patterns (i.e., 

length of and number of distinct elements of unit of repeat is two) and more time-

consuming strategies (i.e., (2) identifying one unit of repeat and validating/applying it 

and (3) looking at each element) for more challenging patterns (i.e., numbers as 

representations and number of distinct elements of unit of repeat is three). Students 

with RMD show adaptive strategy use in this study exclusively between different 

representations (numbers vs. colors). Thus, these results relate to other studies that also 

showed that for arithmetic tasks high-achieving first graders tend to show adaptive 

strategy use compared to weaker first graders (Torbeyns et al., 2005). 

Regarding the dimensions of adaptive strategy use (Lemaire & Siegler, 1995), the 

present study is limited primarily to strategy distribution. Since strategy use and 

distribution depends on students’ strategy repertoire, that is, the available strategies 

for solving pattern-recognition tasks, the strategy repertoire should also be investigated 

in future studies. For future research, it would further be useful to examine to what 

extent the analysis of adaptive strategy use in repeating patterns can be valuable to 

identify first-grade students at risk of developing mathematical difficulties. In addition, 

these findings can be used to develop materials that facilitate the development of 

adaptive strategy use in repeating patterns to help weaker students develop their 

mathematical competencies. 
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PROSPECTIVE UNIVERSITY STUDENTS IN MATHEMATICS 

REFLECTING ON UNCERTAINTY: RESULTS AND 

COMPARISONS 

Francesco Beccuti 

Università di Pavia 

 

This paper investigates the written reflections of prospective undergraduate students 

in mathematics on a simple problem involving coin tosses. I analyze these in terms of 

recency and equiprobability effects understood non-normatively, observing in 

particular a major tendency of this type of students to equiprobability answers. The 

comparison of the present results with analogous results obtained in previous studies 

points to the fact that the influence of a university education in mathematics on the 

equiprobability effect is overall limited. It thus follows that the tendency to 

equiprobability answers of university students in mathematics is most likely acquired 

during previous compulsory education.  

INTRODUCTION 

The study of the recency and equiprobability effects constitutes a common ground of 

research for the psychology of mathematics and for mathematics education. These 

effects have been usually problematized when the respondents’ answers to 

questionnaires or problems were deemed to be undesirable or wrong and thus often 

termed “biases” or “fallacies” (cf., e.g., Morsanyi et al., 2009; Chernoff & Sriraman, 

2020; Batanero, 2020). For instance, in a seminal paper, Fischbein and Schnarch 

considered the following question. 

When tossing a coin, there are two possible outcomes: either heads or tails. Ronni flipped 

a coin three times and in all cases heads came up. Ronni intends to flip the coin again. 

What is the chance of getting heads the fourth time? (Fischbein & Schnarch, 1997, p. 98) 

These authors regarded the answer “equal to the chance of getting tails” to be correct. 

They further regarded the answer “smaller than the chance of getting tails” to be 

evidence of a negative recency bias, while they deemed the answer “greater than the 

chance of getting tails” to be evidence of a positive recency bias. As Beccuti and 

Robutti noticed, however,  

nothing in the statement of Fischbein and Schnarch’s word problem as reported suggests 

that the hypothetical coin tossed by Ronni has to be considered a fair coin or that the way 

in which Ronni tosses the coin is not biased towards heads. As Gigerenzer (1991, 1996) 

has argued, probabilistic word-problems usually do not have only one correct answer over 

which there exists unquestioned consensus. It is true that often people’s answers deviate 

problematically from the generally accepted norm. However, this discrepancy could be 

caused by the respondents’ divergent interpretation of the situation presented to them 

(Chiesi & Primi, 2009, p. 152). (Beccuti & Robutti, 2022, pp. 1-2, emphasis in the original) 
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Indeed, among others, Sharma (2008) already evidenced the crucial role of the wording 

of these types of problems as well as the connected plausibility of students’ realistic 

considerations when discussing them. In view of this, Beccuti and Robutti, building on 

Rubel (2007), evidenced the need to go beyond usual research methods based on 

multiple-choice questionnaires when investigating recency and equiprobability. They 

thus suggested a method to classify people’s reflections which allows to understand 

possible divergent interpretations of such problems as well as to evidence the 

problematicity of answers which are usually deemed to be normatively correct. In order 

to do this, these authors pointed out the need to employ the following non-normative 

definitions of recency and equiprobability. 

The positive recency effect is the tendency to interpret the manifestation of some event as 

evidence that the same event is likely to happen again in the future. On the other hand, the 

negative recency effect is the tendency to interpret the manifestation of some event as 

evidence that the same event is less likely to happen again in the future. Moreover, the 

equiprobability effect is the tendency to judge a set of events as all equally likely to happen. 

(Beccuti & Robutti, 2022, p. 1, emphasis in the original) 

Notice that these definitions deviate from the usual definitions of these effects given 

by researchers solely in the fact that they do not depend on whether the behaviors they 

describe are at odds with the usual normative interpretation of the involved problems: 

i.e., these definitions are non-normative. Hence, they are simply more general than the 

usual normative definitions, in the sense that the category of phenomena or behaviors 

they subsume includes as a subgroup the category of phenomena usually subsumed by 

normative definitions (cf., e.g., Chiesi & Primi, 2009; Gauvrit & Morsanyi, 2014; 

Morsanyi & Szucs, 2014).  

These non-normative definitions were employed by Beccuti and Robutti to analyze the 

reflections of master’s students in mathematics on a problem involving coin tosses 

analogous to the one employed Fischbein and Schnarch. In the present paper, I will 

thus employ the same methodology in order to analyze the reflections of a comparable 

population of prospective undergraduate students in mathematics on the same problem. 

I thus aim at investigating the following first research question with respect to such 

problem: how do prospective undergraduate students in mathematics reason about 

uncertainty? Moreover, a comparison of the results of the present study with those 

obtained by Beccuti and Robutti will also allow me to investigate the following related 

second research question: what is the influence of a university education in 

mathematics on students’ reasoning about uncertainty? 

SUMMARY OF PREVIOUS RESEARCH  

Batanero and colleagues (1996) tested secondary school students with problems 

involving the throw of dice and spinners, finding that non-normative equiprobability 

answers are given less by younger students, while normative equiprobability answers 

are given more by older children. These authors argued that their results could be 

related to the participants’ exposure to formal education. The aforementioned study of 

Fischbein and Schnarch found that the negative recency bias decreases with age (and 
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thus with degree of formal education), while overall the positive recency bias is almost 

negligible after a certain age. Furthermore, these authors observed an increase with age 

of the equiprobability bias, which they conjectured could be explained by increased 

exposure to formal education in probability. Rubel (2007) investigated secondary 

students’ responses on problems involving coin tosses and further analysed the 

participants’ justifications for their answers. She did not observe a correlation between 

age and the equiprobability bias or the recency biases. This fact, together with the fact 

that the students involved in her study were subjected only to a limited exposure to 

instruction in probability, appears to evidence that the prevalence of equiprobability 

answers is caused by formal education in probability rather than age. 

Chiesi and Primi (2009) found (testing a problem involving drawing from a bag with 

replacement on primary school children and on undergraduate university students) that 

the positive recency bias decreases with age whereas they found no age-related 

differences for the negative recency bias. As to university students in particular, Chiesi 

and Primi observed a noteworthy manifestation of the negative recency bias as well as 

a less prominent manifestation of the equiprobability bias. A seminal cross-educational 

and cross-national study (concerning the answers of university students on various 

problems involving uncertainty) by Morsanyi and colleagues (2009) established a 

correlation between the equiprobability bias and formal education in probability and 

statistics. More recently, as mentioned, Beccuti and Robutti (2022) studied the 

reflections of master’s students in mathematics on a problem involving coin tosses. By 

employing the non-normative definitions quoted in the previous section, these authors 

found manifestations of the positive recency effect while they observed an almost 

negligible negative recency effect. Most importantly, they observed a remarkable 

predominance of the equiprobability effect (which they further nuanced according to 

whether their participants problematized equiprobability or assumed it without 

questioning). These authors also argued that their participants’ answers were connected 

to their formal education in probability and statistics. 

The present study thus aims to extend the research on the equiprobability and recency 

effects on a type of students which appears to not have been studied before by previous 

literature: prospective undergraduate students in mathematics (first research question). 

Furthermore, the present study aims to put the results evidenced by Beccuti and Robutti 

under a new light and establish by comparison whether these were ascribable to their 

participants’ university education in mathematics (second research question).  

THE PRESENT STUDY 

Participants 

The participants of the present study are one cohort of 81 students (38 males and 43 

females of median age 19) enrolled in the course “Introduction to mathematics” at the 

Department of Mathematics of the University of Turin, Italy (i.e., the same university 

and department where the aforementioned study of Beccuti and Robutti took place). 

The course is a preliminary non-compulsory course (which was lectured in presence 
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by the author of the present paper) taking place before the formal beginning of the 

undergraduate program in pure and applied mathematics. The course aims at reviewing 

basic mathematical concepts and techniques that are deemed by the faculty to be 

important to be mastered by the students before entering the program. Typically, the 

students had just completed their secondary education and were thus enrolled for the 

first time in a university degree. 

Procedure 

The following experiment was performed by testing the students with a procedure 

involving a short computer-based questionnaire administered in the first day of the 

course. The questionnaire was divided into two tasks which the students were 

instructed to address individually as part of a larger written assignment which included 

a selection of mathematical problems and tasks (aimed to evaluate the students’ 

preliminary mathematical competences). As to the present questionnaire, each 

participant was presented with the following multiple-choice question.  

Task 1. Sara tosses for ten times a coin and for ten times she obtains heads. Sara then asks 

Luca to bet on the outcome of the next toss. Luca bets on the next toss resulting in heads 

again. Do you agree with Luca’s choice?   

[Possible answers: ] Yes; No; In part; I am not sure. 

As soon as the students submitted their answers to the first task, the following related 

second task was immediately presented to them. 

Task 2. Explain your reasoning. 

To complete this task, the students could type in the computer a text possibly 

containing mathematical symbols. 

Explanation of the choices  

Following Beccuti and Robutti (2022), I concentrate here on the students’ written 

responses to Task 2, leaving an analysis of the responses to Task 1 (and of the relations 

between answers to Task 1 and 2) to a subsequent article. Except from minor details 

(e.g., the names of the characters of the fictional situation presented in Task 1), the 

wording of the tasks, the mode of administration as well as the procedure of analysis 

were chosen to be identical to that of Beccuti and Robutti (2022), in order to favor 

comparison in view of the second research question. Following these authors, the 

wordings of both tasks were selected in order to stimulate in the students the possibility 

of ample articulation of their reflections, in view of the first research question. In 

particular, as to Task 1, the range of possibilities of answers presented to the 

participants were selected with the aim to stimulate reflection over a decision problem 

rather than simply to confine the participants within the limited constraints of a yes/no 

or most-likely/least-likely answer (cf. Rubel, 2007). Similarly, the wording of Task 2 

(and, crucially, the possibility to answer by submitting an open text) was chosen in 

order to give to the participants the amplest possibility to express their view over the 

fictional situation presented to them.  
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Method of analysis  

The submitted answers to Task 2 were classified according to the deductive coding 

procedure (cf. Braun & Clarke, 2006) elaborated by Beccuti and Robutti (2022). 

Indeed, in view of the aforementioned definitions of recency and equiprobability, I 

classified each of the participants’ submitted texts in relation to the conclusion of the 

argument that these texts presented as connected to the possibility of predicting the 

outcome of a hypothetical 11th coin toss in the fictional situation presented. 

More specifically, a submitted text was classified as Equiprobable tout court (Group 

A) if it argued that the possible outcomes of a further hypothetical coin toss are 

equiprobable without any explicit doubt or reservation. Moreover, a text was classified 

as Equiprobable with reservation (Group B) if it argued that the outcomes are 

equiprobable but explicitly contained some form of doubt or reservation about this fact. 

Furthermore, a text was classified as Heads is more likely (Group C) or Tails is more 

likely (Group D) if it argued that outcome of an 11th coin toss is more probable or 

likely to result in heads or tails respectively. Finally, a text was classified as Mixed 

(Group E), if the text was not unilaterally classifiable within any of the above groups 

(because it contained contrasting remarks without favoring any explicit conclusion). 

RESULTS  

Table 1 summarizes the participants’ answers to Task 1 and Task 2. 

 Group A Group B Group C Group D Group E Empty Total 

Yes 2 1 5 0 2 2 12 

No 12 13 0 4 0 0 29 

In part 14 13 4 1 4 0 36 

Not sure 0 3 1 0 0 0 4 

Total 28 30 10 5 6 2 81 

Table 1: Summary of the participants’ answers to Task 1 and Task 2. 

As said, I concentrate in the present paper on the students’ answers to Task 2 (shown 

in the last row of Table 1). In the following subsections, I thus present a summary of 

each of the aforementioned groups of answers to Task 2 together with exemplifying 

extracts from the students’ texts (translated as literally as possible from Italian). 

Group A 

Many of the students (28 participants) either simply affirm that heads or tails are 

equiprobable without doubt or reservation, or else they care to specify that the results 

of the previous tosses do not affect the outcome of the next toss.  

The coin landed 10 times on heads […] but this fact does not change the fact that, by 

performing a new toss, the coin may land on tails, since the probability is always 0.5. 
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Logically speaking, the independence of the events of heads and tails is assumed by 

these participants as the starting point of their reasoning. This is argued with reference 

to typical descriptions of sample spaces of idealized games involving coin tosses, or 

else it is simply stated as an unquestioned assumption. 

Group B 

A slightly more numerous group of students (30 participants) affirms the same 

conclusion of the previous group, but at the same time cares to specify that such 

conclusion depends on an unproven assumption: that the coin or the game is not biased 

or rigged. 

Getting tails or getting head should be the same […] if the coin is not biased. 

Group C 

Some of the students (10 participants) state that heads is more likely or probable in 

relation to the fact that there is evidence for deeming the coin to be loaded or the game 

to be unfair. 

Since the flip resulted ten times in heads, then probably Sara is cheating. 

Group D 

Few students (5 participants) argue that tails is more likely to be the outcome of a 

further hypothetical coin toss. These students argue by referring to mathematical 

principles (e.g., the law of large numbers) or else to arguments of a mathematical form 

(ultimately unsound).  

Tails is more probable, since the coin landed ten times on heads […] the law of large 

numbers make it so that at some point the coin has to land on tails.  

Group E 

A small number of students’ answers (6 participants) were uncategorizable because 

they contained mixed conflicting statements and did not reach a conclusive decision 

on the fictional situation presented. 2 of these texts also contained reference to unsound 

mathematical arguments.  

DISCUSSION 

Overall, a comparatively small number of students manifests the positive recency 

effect (Group C), and an even smaller amount manifests negative recency (Group D). 

The largest portion of the participants manifests the equiprobability effect (Group A 

and Group B). With respect to Group A, in particular, unquestioned equiprobability 

answers appear to be stated in a similar fashion as those found in textbooks’ formal 

presentations of idealized games involving idealized coins. Such answers can be 

deemed to be problematic and at odds with a full understanding of situations or decision 

problems in conditions of uncertainty (cf. Batanero, 2020, p. 685). 

Beccuti and Robutti (2022), by using the same mode of administration and procedure 

of analysis of responses to Task 2, obtained comparable results from 84 master’s 
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students in mathematics enrolled at the same university (all holding a bachelor’s degree 

in mathematics comprising at least a course in probability and statistics). These are 

reported in terms of percentages in Table 2 together with the present results (already 

appearing in terms of absolute numbers in the last row of Table 1). 

 Group A Group B Group C Group D Group E Empty 

prospective 

bachelor’s students 

(present study) 

34.57% 37.04% 12.35% 6.17% 7.41% 2.47% 

master’s students 

(Beccuti & Robutti, 

2022) 

40.48% 35.71% 13.10% 3.57% 5.95% 1.19% 

Table 2: Comparison of the results of Task 2 in the present study with those obtained 

by Beccuti and Robutti (2022, p. 5). 

As we can see from Table 2, older and more mathematically-educated students are 

overall slightly more subject to the equiprobability effect. In particular, answers of 

equiprobability without reservation are more prevalent in older students, while 

equiprobability answers without reservation are slightly less prevalent. We can further 

observe a very small relative difference in positive recency answers and a relatively 

consistent difference in negative recency answers (as well as in mixed or empty 

answers).  

Globally, however, the present results are not substantially dissimilar from those found 

by Beccuti and Robutti, especially in terms of the overall prevalence of the 

equiprobability effect. This points to the fact that the tendency to equiprobability 

answers is likely not acquired during a university education in mathematics but 

possibly during previous compulsory education. Nevertheless, the equiprobability 

effect (in its unrestricted form) may possibly be slightly exacerbated by a university 

education in mathematics. Similarly, this type of education appears to reduce the 

negative recency effect, while positive recency appears to remain almost unaffected. 

Further studies involving different types of students as well as involving the same type 

of students tested with different problems (or with the same problem presented in 

altered situations) may serve to further elucidate the relationship of recency and 

equiprobability with previous education and thus contribute both to mathematics 

education research as well as to research in the psychology of mathematics. 
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Adaptive teaching is necessary to support students individually. Adaptive teaching 

considers students’ individual needs (student focus) and is directed towards a specific 

learning goal (goal focus). Research has not systematically explored the role of student 

focus and goal focus in (pre-service) teachers’ adaptive teaching practices. We used 

text-based vignettes to investigate to what extent N = 48 pre-service mathematics 

teachers selected adaptive teacher responses (those with high student and goal focus) 

to incorrect student solutions on fraction problems. Participants chose the most 

adaptive response in only about half of the vignettes. There were large individual 

differences between participants. Our study contributes to a better understanding of 

pre-teachers’ abilities and provides some guidance for teacher education. 

THEORETICAL BACKGROUND 

Good teaching considers the individual learning needs of the students and offers 

adaptive support (Hardy et al., 2019; Parsons et al., 2018). This adaptive support can 

be implemented at a macro level and at a micro level of teaching. Macro-adaptions 

tend to represent large-scale adjustments in instruction, informed by formal 

assessments. Micro-adaptive teaching, which is the focus of the present study, can be 

defined as a teacher response to stimuli supporting students’ needs in a moment-to-

moment teacher-student interaction, for example in a verbal teacher response to a 

student’s solution of a mathematical task (Gallagher et al., 2020; Hardy et al., 2022). 

Other than research on macro-adaptive teaching, most studies on micro-adaptive 

teaching have not considered the dimension of content goal. For example, the review 

of Gallagher and colleagues (2020) included 23 studies on micro-adaptive teaching in 

mathematics education, but only three of them briefly mentioned teachers' reflections 

on content goals. Prediger et al. (2022) addressed this research gap, illustrating in a 

case study with fractions how adaptive teaching can vary along the dimensions of 

student focus and goal focus. They conceptualized micro-adaptivity as teachers’ 

strategies on a micro-level to achieve a high student focus and a high goal focus. 

Student focus includes teachers’ adjustments to students’ individual learning needs, 

and goal focus refers to teachers’ deliberate steering towards the content goals 

(Prediger et al., 2022). For example, a teacher response with a high goal focus but a 

low student focus might be reflected in a teacher response presenting a correct solution 

or a new strategy to solve a certain task, without taking up the student’s initial solution. 

A low student focus is problematic because the student may not be able to link the 

teachers’ response to his or her own approach. 
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In order to achieve micro-adaptive teaching with a high student and a high goal focus, 

mathematics teachers have to diagnose students' mathematical thinking and adapt their 

response to it. A common situation for mathematics teachers is, for example, to 

diagnose students’ mathematical thinking in students' task solutions and to respond 

adaptively in order to support the students. Perceiving students’ mathematical thinking 

and providing an adaptive response is particularly relevant when there are incorrect 

students’ solutions that indicate misconceptions. Misconceptions are students’ 

individual knowledge structures that are mathematically inaccurate and that could 

cause incorrect answers in certain mathematical tasks (e.g., Holmes et al., 2013). In the 

present study, we focus on misconceptions in the content-area of fractions, because 

proficiency with fractions is highly predictive of later mathematical achievement (e.g., 

Booth & Newton, 2012; Torbeyns et al., 2014) and students’ typical misconceptions 

and faulty strategies are well documented (e.g., Clarke & Roche, 2009; Obersteiner et 

al., 2018; Siegler & Lortie-Forgues, 2017). 

Empirical studies have shown that it is difficult, especially for pre-service mathematics 

teachers, to consider all information of students’ solutions, and to distinguish between 

relevant and irrelevant information in order to make diagnoses and respond adaptively 

(Kellman & Massey, 2013; Levin et al., 2009). For example, Kuntze and Dreher (2015) 

used a vignette-based design and investigated pre-service mathematics teachers’ ability 

to analyze teaching situations; they found that pre-service mathematics teachers often 

focus on information about students' learning motivation, ignoring other information 

relevant for understanding student thinking. Also using a vignette-based design, Wirth 

et al. (2022) confirmed these findings and found that pre-service mathematics teachers 

often used situational information for diagnostic decisions that are not relevant to the 

diagnostic goal. These findings suggest that strongly focusing on information that is 

less relevant for the diagnostic goal could distract people from student focus and goal 

focus, both important from the perspective of micro-adaptive teaching. There is yet a 

lack of empirical studies investigating to what extent mathematics teacher are able to 

consider a high student as well as a high goal focus in teaching situations requiring 

micro-adaptive interactions. Investigating this issue is relevant in pre-service 

mathematics teachers, as they may have difficulties in considering all relevant 

information simultaneously, and may need targeted support during their teacher 

education. 

OBJECTIVE 

The goal of the present study was to investigate quantitatively how strongly pre-service 

mathematics teachers consider a high student focus or a goal focus in micro-adaptive 

teaching. Specifically, the research question was to what extent pre-service 

mathematics teachers would choose adaptive teacher responses with a high student 

focus and a high goal focus, or to what extent they would prefer responses with less 

relevant aspects, such as purely motivational aspects. We used text-based vignettes in 

which we varied systematically the student focus and goal focus in teacher responses. 
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METHODS 

A total of N = 48 pre-service mathematics teachers (mean age = 24.77, SD = 1.82, 67 

% female) participated in this study. The participants were recruited at a university in 

Germany. All participants had received instruction about teaching of fractions during 

their regular courses at university. In order to assess adaptive teaching in an authentic 

teaching situation, we used a vignette-based design. Such designs are suitable for our 

purpose because they allow representing authentically teaching situations without 

confronting pre-service teachers with the full complexity and immediacy of a real 

classroom situation. Furthermore, vignettes allow the development of teaching 

situations with regard to specific hypotheses that can be tested experimentally.  

We developed ten text-picture vignettes that addressed the content domain of fractions. 

Each vignette includes three components (see Figure 1): 1) a short introduction to the 

lesson content and the fictitious students' prior knowledge of the specific content 

presented in the vignette; 2) incorrect student solutions to fraction problems (fraction 

addition, subtraction, or fraction comparison), and 3) three possible teacher responses 

consisting of a short text with a fictitious teachers’ verbal explanation and a 

visualization. 

The incorrect student solutions presented in the vignettes represented the most common 

misconceptions in the areas of fraction addition, fraction subtraction and fraction 

comparison, according to empirical studies (e.g., Clarke & Roche, 2009; Obersteiner 

et al., 2018; Siegler & Lortie-Forgues, 2017). For example, the following mistakes 

were presented in the vignettes: students add or subtract the numerators and 

denominators of two fractions as separate whole numbers; students fail to convert 

fractions to a common, equivalent denominator before adding or subtracting them and 

instead using the larger of the two denominators in the answer; students add or subtract 

a whole number to or from a fraction, ignoring the denominator of the whole number 

and only add or subtract the whole number to or from the numerator of the fraction 

(e.g., Clarke & Roche, 2009; Obersteiner et al., 2018; Siegler & Lortie-Forgues, 2017). 

In the tasks on comparing fractions, students consider two fractions to be of an equal 

size when both fractions are missing one piece to the whole; students compare the 

fractions’ numerators and denominators separately, or students focus on the number of 

parts (numerator) without considering their size (denominator) (e.g., Clarke & Roche, 

2009; Obersteiner et al., 2018; Siegler & Lortie-Forgues, 2017) 

Participants were asked to select the one out of the three teacher responses that they 

considered to be most suitable. A closed format was chosen for the selection of the 

three teacher responses in order to be able to systematically vary the degree of student 

focus and goal focus in these responses. While some responses in the vignettes had 

high goal focus or high student focus, others strongly focused on situational 

information, which can be considered less relevant for students’ learning. Situational 

information included, for example, motivational aspects (e.g., a kangaroo jumping 

along a number line to illustrate fraction addition, see Fig. 1). The vignettes were 
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provided on a computer using E-Prime software, and participants’ responses were 

recorded by the computer. 

 

Figure 1: Sample vignette. 

Figure 1 illustrates a sample vignette. The first teacher response (left) is characterized 

by a high student focus and a high goal focus. It takes up Finn’s misconception and 

supports the development of conceptual understanding trough the explanation and the 

visualization. In the second teacher response (middle in Fig. 1), there is a high student 

focus, because the response addresses Finn’s misconception. However, there is a low 

goal focus because the response could encourage Finn’s misconception; this is because 

the focus of the explanation is only on the first pizza and not on the whole visualization. 
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The third teacher response (right in Fig. 1) represents a low student focus because 

Finn’s misconception is not addressed. The explanation and the visualization are not 

appropriate to support Finn’s learning process, hence representing a low goal focus as 

well. Going back on the number line could enhance conceptual understanding of 

subtraction, which would be a high goal focus, but the specific representation does not 

fit well to the initial subtraction task, which includes an improper fraction. In both the 

second and third teacher response, the visualizations consider situational information 

that may attract attention and distract from the student and the goal focus. 

RESULTS 

We investigated quantitatively to what extent participants selected adaptive teacher 

responses with a high student focus and a high goal focus. These responses were always 

considered the best choice from a theoretical point of view. The results show that, 

overall, in 53.7 % cases (N = 480), participants selected the teacher responses with a 

high student focus and a high goal focus. The frequencies of selecting the teacher 

responses with a high student focus and a high goal focus differ strongly between the 

vignettes, ranging from 23.9 % to 78.3 % (see Table 1, column 2). In 46.3 % cases, the 

selected response was based on motivational aspects, with a low student focus and low 

goal focus. 

Table 1: Frequencies of selecting the teacher responses with a high student focus and 

a high goal focus. 

Vignette 

number 

Frequencies of selecting the 

teacher response with a high 

student and goal focus 

1 29.5 % 

2 70.2 % 

3 78.3 % 

4 75.0 % 

5 54.2 % 

6 41.7 % 

7 68.1 % 

8 69.6 % 

9 23.9 % 

10 27.3 % 
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Analyzing the selection of the most adaptive teacher responses separately by 

participants, we found high individual differences. The average number of times one 

participant selected the most adaptive teacher response was M = 5.28 (SD = 1.83), 

ranging from one to nine selections out of ten vignettes. 

DISCUSSION  

The purpose of the present study was to investigate to what extent pre-service 

mathematics teachers are able to choose the most adaptive teacher responses to 

individual students’ solutions of mathematical tasks. We considered teacher responses 

with a high student focus and a high goal focus as the most adaptive.  

The results indicate that the pre-service mathematics teachers selected the adaptive 

response with a high student and a high goal focus in only half of the teaching situations 

provided in the vignettes. There was substantial variation of adaptive selections 

between vignettes as well as between participants. On the one hand, these results 

confirm the results of previous studies that found that pre-service teachers often focus 

on motivational aspects and do not always focus on aspects most relevant for their 

diagnosis (e.g., Kuntze & Dreher, 2015; Wirth et al., 2022). On the other hand, the 

results suggest that teaching situations vary in how readily pre-service mathematics 

teachers can assess them, and how straightforward it is for them to focus on the most 

relevant information. Furthermore, the variances between the participants indicate that 

aspects such as knowledge or experience could be influencing factors on micro-

adaptive teaching. 

To better understand the source of individual differences, we are currently analyzing 

participants’ verbal justifications of their selection, which was recorded after they 

selected a teacher response (not reported here). We also assessed participants’ 

pedagogical content knowledge (PCK) of fractions, so that we can analyze how 

participants’ PCK is related to their selection of teacher responses. These analyses will 

be available by the time of the conference. 

Overall, the results support the argument that pre-service teachers need support for 

acquiring micro-adaptive teaching skills during their teacher education program. 

Further research should more systematically develop effective support methods. 
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There is much research on the role of theory in mathematics education research, at 

least from more overarching or theoretical perspectives. Micro analyses of the role of 

theory in particular research studies are rarer. We contribute by analysing one 

empirical study to allow for in-depth analyses and discussions around the role of 

theory in a specific case, concerning relationships between mathematics and reading. 

Our results show that studies that do not use an explicit theoretical model can still be 

strongly influenced by implicit theoretical assumptions. We conclude that it is 

important to identify existing theoretical assumptions in an empirical research study 

and try to convey them as clearly as possible, and we discuss specific issues concerning 

research on relationships between mathematics and reading. 

INTRODUCTION 

Theory is often considered to play an important, and sometimes crucial, role in 

mathematics education research. For example, it is sometimes described that theory 

should influence all parts of the research process. For example, this is done in the 

description of characteristics of a high quality JRME manuscript (NCTM, 2021), 

concerning influence of theory on “the study’s design; its instrumentation, data 

collection, and data analysis; and the interpretation of its findings.” However, there are 

also researchers that question whether theory should be so influential as described by 

NCTM. For example, Lester (2005) describes some shortcomings in relation to the use 

of theoretical frameworks and suggests that the use of conceptual frameworks is more 

suitable for mathematics education research. Furthermore, Niss (2019, p. 2) is critical 

towards an “ideal-typical research paper”, which JRME (NCTM, 2021) can be said to 

describe, since this “represents a far too narrow and rigid understanding of mathematics 

education research”. He describes different aspects of this “ideal-typical research 

paper”, where theory is a key component. 

We agree with critics concerning a type of over-reliance on theory in mathematics 

education research and a purpose with this paper is therefore to contribute to the 

discussion about the role of theory. We do this by analysing and discussing if and how 

certain aspects of theory have a role in certain parts of specific empirical research. We 

do not presume that theory is always needed in all parts of all types of empirical 

research, but we address this issue from an empirical standpoint, by examining the 

(potential) role of theory in specific research studies. We choose to focus on a specific 

research study, since much has been written about the role of theory in mathematics 
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education research from more overarching or theoretical perspectives, as discussed 

more below, while less work has been done concerning more micro analyses of the role 

of theory in research studies. 

THE CONCEPT OF THEORY AND ITS ROLE IN EMPIRICAL RESEARCH 

The notions of “theory” and “theoretical” are used in different ways and can be 

considered vague and ill-defined (cf. Niss, 2019). In addition, it can often be unclear if 

and how theory actually has been used in a research study, “when some theoretical 

framework is being referred to in the beginning or at the end of the publication with-

out having any presence in between” (Niss, 2007b, p. 1309). Therefore, we need to 

clarify both the meaning of “theory”, or similar notions, such as “framework”, and the 

potential roles of theory in empirical research. This work has been initiated by some 

researchers. Niss (2007a) has suggested a type of definition of “theory”, as consisting 

of an organized network of concepts and claims, where the concepts are linked in a 

connected hierarchy. He also presents different roles theory can have in research, for 

example, to predict or explain phenomena, to organize observations and interpretations 

into a coherent whole, and to give a methodology for empirical studies. Radford (2008) 

also suggests a definition of “theory”, which has much in common with the definition 

from Niss, but he also stresses that the use of theory does not only include explicitly 

formulated theoretical perspectives, but also “implicit views” (Radford, 2008, p. 320). 

Lester (2005) presents different types of research frameworks; theoretical, practical, 

and conceptual, and discusses their different roles in research, in relation to some 

general purposes of using a research framework; to give structure to a research study, 

to make sense of data, to come further than common sense, and in order not to be 

limited to finding answers to local problems. 

These above perspectives on issues of theories show a complexity concerning 

relationships between theory and empirical research. There are different types of 

theories/frameworks that can function in different ways in relation to empirical 

research; there are different parts of theories, such as concepts, claims, and 

methodology, which can be more or less prominent (or explicit) in empirical research; 

and there are different parts of empirical research, such as purpose and research 

questions, and collection and interpretation of data, which can be affected by explicit 

or implicit theory in different ways. Therefore, when we want to discuss and analyse 

the role of theory in empirical research more specifically, we need to specify what type 

of theory and what parts of theory are addressed in relation to what parts of empirical 

research. In this paper, we focus on the implicit use of theoretical aspects in this 

situation. 

PREVIOUS EMPIRICAL RESEARCH ON THE ROLE OF THEORY 

Above, we discuss research that concerns the concept of theory and role of theory in 

empirical research on a general level, without addressing specific theories or specific 

empirical research. This type of research is important, but we also need more 

empirically based research on the role of theory in empirical research. 
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Most relevant for this paper is empirical research that analyses how theory is used (or 

not used) in specific empirical studies, which is the type of research presented in the 

present paper. Some studies highlight how different parts of empirical studies are 

dependent on which theory is chosen. For example, Gellert (2008) focuses on empirical 

data of students’ collaborative problem solving where he shows how two different 

theoretical perspectives lead to different interpretations. A similar conclusion is drawn 

by Bergsten (2008) when he focuses on three empirical studies on limits of functions, 

in an analysis of how the use of different frameworks relate to the questions, methods, 

evidence, conclusions, and implications within these studies. Despite this type of 

conclusion, both authors address a potential of, but also a difficulty in, combining 

results from studies on the same topic that use different theories. 

Other studies also highlight differences between theories in empirical research but at 

the same time see a potential of “translating” between these theories, which gives 

evidence that theories sometimes do not necessarily have a strong influence on (some 

parts of) empirical research. For example, Rodríguez et al. (2008) focus on empirical 

research on issues of metacognition in relation to problem solving. Their analyses show 

that it was not possible to do a “simple translation” of concepts concerning 

metacognition from one perspective to another. Instead, the problematic question that 

was the origin in one perspective could be “reformulable” in terms used in another 

perspective, which was also the case for some key aspects of metacognition (such as 

monitoring and self-regulation). Österholm (2011) comes to a similar conclusion when 

he compares two empirical studies about beliefs, where a main difference between 

these studies, concerning some specific aspects of theory, can be seen as a change of 

wording. 

In summary, it is important to scrutinize the use of theories, including implicit 

assumptions regarding theoretical aspects, in empirical research. There is also a need 

for further studies of the relation between particular theoretical aspects and specific 

empirical studies, to understand how these can be related. 

PURPOSE AND METHOD 

The main purpose of this study is to deepen the scientific understanding of the role of 

theory in mathematics education research. We contribute to the line of research that 

analyse the role of theory in specific empirical studies, in particular when the theory is 

implicit. We analyse one empirical study (Caponera et al., 2016) that examines 

relationships between students’ achievements in mathematics and reading, without 

explicitly relying on a theory or theoretical framework regarding the central concepts. 

We delimit our analyses to this study to allow for more in-depth analyses and 

discussions around the role of theory in a specific case, in particular, concerning if and 

how more implicit theoretical aspects can be of relevance in empirical research. The 

results can be added to previous similar type of research and allow for comparisons 

and cumulation of research results. However, as part of our analyses of this one study, 
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we also relate to other studies concerning the issues that come up from the analysis, 

concerning relations between achievements in mathematics and reading. 

In line with the argumentation presented above, our analysis first focuses on identifying 

the implicit aspects of theory used in the article. These aspects concern the central 

concepts used and the claims about relationships between these concepts (cf. Niss, 

2007a). Since the theoretic perspective is implicit, we will base our claims on how data 

is interpreted and how conclusions are drawn (cf. Radford, 2008). The implicit theory 

used in the study will be compared to other (implicit) theoretical perspectives used in 

research in the same area. We will also discuss the consequences of the chosen 

theoretical perspectives. 

ANALYSIS OF THE EMPIRICAL STUDY 

The article we primarily analyse is “The influence of reading literacy on mathematics 

and science achievement” by Caponera, Sestito, and Russo (2016), which has the aim 

“to evaluate the influence of students’ reading literacy, measured by the PIRLS 

(Progress in International Reading Literacy Study) test, on their performance in the 

TIMSS (Trends in International Mathematics and Science Study) mathematics and 

science tests” (p. 197). Below we focus only on reading and mathematics, since 

mathematics and science are treated similarly. The article analyses correlations 

between students’ achievements in reading and mathematics for 4,125 Italian students 

in Grade 4. The correlations between achievements were high and the authors conclude 

that the students’ reading literacy influenced their mathematics achievement. Caponera 

et al. (2016) do not present a theoretical model or explicit definitions of the central 

notions of reading and mathematics and do not state explicit assumptions regarding the 

relationships between these notions. However, the study relies on implicit assumptions 

about the concepts and their relation, namely that reading and mathematics have 

nothing in common, as we specify in the following. 

First, Caponera et al. (2016), as many others, interpret the correlation between 

mathematics achievement and reading literacy as a causal relation, since they state that 

“results confirmed the influence of reading literacy on mathematics achievement” (p. 

197). Here, it is the word “influence” that signals causality. The authors do not 

(explicitly) consider that the influence could exist in the other direction, which is 

another possible conclusion. For example, such a conclusion has been drawn in another 

empirical study, where "mathematical performance predicted subsequent reading 

comprehension during the first year rather than vice versa" (Lerkkanen et al., 2005, p. 

121). Furthermore, Caponera et al. do not consider that the correlation could be created 

by a common feature of these variables (e.g., when there is a third confounding 

variable). If a correlation implies that one variable influences the other, there is an 

underlying assumption that the variables have nothing in common, except what has 

been controlled for. In this case, it is assumed that achievements in mathematics and 

reading have nothing in common, except that both depend on students’ socioeconomic 

status, which is controlled for in the study. 
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Second, the analyses by Caponera et al. (2016) show that good readers in general per-

form better than not so good readers on mathematics tasks. Based on this, the authors 

draw the conclusion that a “good reader had some advantages [...] independently on 

their mathematics ability” (Caponera et al., 2016, p. 202). The study does not control 

for mathematics ability in the analysis of the effect of reading ability, and therefore this 

conclusion is based on an implicit assumption that an effect of reading ability on ma-

thematics performance cannot at the same time be an effect of mathematics ability. 

That is, any connection between reading ability and results on mathematics tasks is 

interpreted as saying something only about the influence of reading. The implicit 

assumption is that reading ability and mathematics ability have nothing in common, 

and therefore any connection to reading ability is interpreted as only an effect of 

reading ability. 

Third, in the final statement of the article by Caponera et al. (2016), the authors make 

a connection between level of readability and validity of mathematics (and science) 

tests: “Our study seemed to indicate that the readability level of the mathematics and 

science test is a crucial aspect to consider to correctly assess mathematics and science 

achievement” (Caponera et al., 2016, p. 203, emphasis added). In the study, tasks with 

low and high reading demand are analysed, and a result is that “bad readers performed 

better on the mathematics low reading demanding scale than on the mathematics high 

reading demand scale” (Caponera et al., 2016, p. 201). Therefore, the authors’ 

conclusion implies the implicit assumption that mathematics tasks with high reading 

demand do not “correctly” assess mathematics achievement. This is only reasonable if 

reading and mathematics have nothing in common, because then any effects of reading 

demands of tasks on students’ performance on these tasks would be interpreted as a 

sign of lower validity for these tasks. 

 

Figure 1: Two basic models of relationships between 

mathematics ability and reading ability. 

We conclude that the study relies on an implicit theoretical model where mathematics 

and reading are separated. This includes a separation between mathematics ability and 

reading ability as well as between measures of achievement in mathematics and 

reading. We here suggest a simple theoretical model (see Figure 1a) that could be the 

current basis for conclusions by Caponera et al. (2016). Based on this model, any 

connection to issues of reading when focusing on mathematics tasks is unwanted, since 

reading ability has nothing in common with mathematics ability. 
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DIFFERENT THEORETICAL ASSUMPTIONS IN RELATED RESEARCH 

Much research in mathematics education, as seen in different frameworks describing 

school mathematics, convey another theoretical model of the relation between 

mathematics and reading. For example, the framework of PISA (OECD, 2016) 

includes aspects of communication as important parts of mathematics. Mathematics 

performance is then not just influenced by reading ability but reading and interpreting 

mathematics text is one relevant and central aspect or part of mathematics ability. Such 

theoretical perspectives would better be illustrated using Figure 1b. 

The second model is a slightly more complex model for the relationship between 

mathematics and reading ability. Here, the two circles of mathematics and reading 

ability are overlapping (see Figure 1b). The overlap symbolizes not merely the 

empirical results showing correlations between achievements in mathematics and 

reading, but also signifies that the two subjects have much in common by definition. 

This model is still quite simple but makes analyses a bit more complex. Any empirical 

connection between achievements in mathematics and reading (e.g., through 

correlation analyses) could be unwanted, if the result reflects an effect of the area in 

Figure 1b that lies outside mathematics but inside reading. At the same time, such a 

connection could also be highly relevant and nothing to avoid, if the result reflects an 

effect of the overlapping area in Figure 1b, which is part of both mathematics and 

reading.  

For example, nominalizations are often described as making texts more difficult to 

read. Therefore, one would expect mathematics tasks with more nominalizations to 

have stronger connection to reading ability, so that students with lower reading ability 

would perform worse on such tasks compared to tasks without nominalizations. 

Caponera et al. (2016), as well as other studies, interpret this type of empirical result 

as a sign of lower validity for such mathematics tasks. However, nominalizations are 

not just surface features of a text that can be avoided without changing the meaning of 

the text, since “a nominalisation, by transforming a process into an object, opens up 

the possibility of a higher complexity of generalization” (Morgan, 2006, p. 233). For 

example, by transforming the process of adding into the object of addition, it becomes 

possible to talk about more advanced properties of addition, including that addition is 

commutative and that subtraction is the inverse operation to addition. Thus, tasks with 

more nominalizations could very well be more difficult to solve, since the language is 

used to describe more complex mathematics, in which case they also should be more 

difficult. Of course, there could as well be uses of nominalizations that are unnecessary 

and make the text more difficult to read without being part of mathematics. 

DISCUSSION AND CONCLUSIONS 

The present study aims to contribute to the scientific understanding of the role of theory 

in mathematics education research, in particular regarding the role of implicit theory 

in empirical studies. The article we have analyzed as a case (Caponera et al., 2016) has 

no explicit theory, but has implicit assumptions regarding the theoretical relation 
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between mathematics and reading, and these assumptions differ from what is assumed 

in other research in the same area. Our analyses show that studies that do not use an 

explicit theoretical model can still be strongly influenced by implicit theoretical 

assumptions. As mentioned in the background, we argue that it is not necessary to 

always use a theory in all parts of empirical research, which is also supported by 

previous empirical research (e.g., Rodríguez et al., 2008; Österholm, 2011). Therefore, 

it is important to identify which theoretical assumptions that are essential for the 

analyses in empirical studies and try to convey these assumptions as clearly as possible. 

In particular, empirical studies on relationships between achievements in mathematics 

and reading should be explicit about assumptions regarding the relationship between 

these domains. Without relating to any theoretical model, it is difficult to compare and 

combine conclusions from different studies. For example, it is difficult to decide how 

to combine a conclusion that achievement in reading influences achievement in 

mathematics (from Caponera et al., 2016) with a conclusion that achievement in 

mathematics influences achievement in reading (from Lerkkanen et al., 2005). 

Since connections between mathematics and reading can be relevant and wanted but 

can also be irrelevant and unwanted, we cannot rely on too simplistic models for 

analyses of these issues. It can make us draw unfounded conclusions and lead us to 

practical recommendations that are not helpful. For example, let us say that we have a 

study showing a correlation between the number of nominalizations in mathematics 

tasks and task difficulty, and the study is based on a model that separates reading from 

mathematics (Figure 1a). The authors of this study might then recommend teachers and 

other task creators to avoid nominalizations, perhaps primarily for students with lower 

reading ability. That recommendation could lead to fewer opportunities for these 

students to become familiar with objectifications in mathematics, which would be 

negative for their learning of mathematics. Therefore, we suggest that a theoretical 

model takes the overlap between reading and mathematics into account (Figure 1b), 

that is, assumes that some part of reading ability is also a part of mathematics ability, 

by definition. 

Furthermore, studies only focusing on associations between the existence of certain 

linguistic features of mathematics tasks and students’ results on these tasks are not 

relevant since these studies are not informative. It is not possible to draw any 

meaningful conclusions based only on such an association, since it is not possible to 

know if the association is relevant or irrelevant, as described above. We encourage 

literature reviews of empirical studies to examine what types of conclusions and 

recommendations that have been made that are not valid when placed within a more 

relevant model. 

REFERENCES 

Bergsten, C. (2008). On the influence of theory on research in mathematics education: The 

case of teaching and learning limits of functions. ZDM - the International Journal on 

Mathematics Education, 40, 189–199.  



Bergqvist and Österholm 

2 - 114 PME 46 – 2023 

Caponera, E., Sestito, P., & Russo, P. M. (2016). The influence of reading literacy on 

mathematics and science achievement. The Journal of Educational Research, 109(2), 197-

204.  

Gellert, U. (2008). Validity and relevance: Comparing and combining two sociological 

perspectives on mathematics classroom practice. ZDM - the International Journal on 

Mathematics Education, 40, 215-225.  

Lerkkanen, M.-K., Raska-Puttonen, H., Aunola, K., & Nurmi, J.-E. (2005). Mathematical 

performance predicts progress in reading comprehension among 7-year olds. European 

Journal of Psychology of Education, 20(2), 121-137.  

Lester, F. K. (2005). On the theoretical, conceptual, and philosophical foundations for 

research in mathematics education. ZDM - the International Journal on Mathematics 

Education, 37(6), 457-467.  

Morgan, C. (2006). What does social semiotics have to offer mathematics education research? 

Educational Studies in Mathematics, 61, 219-245.  

NCTM. (2021). Characteristics of a High Quality JRME Manuscript. Retrieved September 

21, 2021 from https://www.nctm.org/publications/write-review-referee/journals/  

Characteristics-of-a-High-Quality-JRME-Manuscript/ 

Niss, M. (2007a). The concept and role of theory in mathematics education. In C. Bergsten, 

B. Grevholm, H. Måsøval, & F. Rønning (Eds.), Relating practice and research in 

mathematics education: Proceedings of Norma 05, Fourth Nordic Conference on 

Mathematics Education (pp. 97-110). Tapir Academic Press.  

Niss, M. (2007b). Reflections on the state of and trends in research of mathematics teaching 

and learning: From here to Utopia. In F. K. Lester (Ed.), Second handbook of research on 

mathematics teaching and learning (Vol. 2, pp. 1293-1312). Information Age Publishing.  

Niss, M. (2019). The very multi-faceted nature of mathematics education research. For the 

Learning of Mathematics, 39(2), 2-7.  

OECD. (2016). PISA 2015 Assessment and Analytical Framework: Science, Reading, 

Mathematic and Financial Literacy. OECD Publishing.  

Österholm, M. (2011). To translate between different perspectives in belief research: A 

comparison between two studies. Nordic Studies in Mathematics Education, 16(1-2), 57-

76. 

Radford, L. (2008). Connecting theories in mathematics education: Challenges and 

possibilities. ZDM - the International Journal on Mathematics Education, 40, 317–327.  

Rodríguez, E., Bosch, M., & Gascón, J. (2008). A networking method to compare theories: 

Metacognition in problem solving reformulated within the Anthropological Theory of the 

Didactic. ZDM - the International Journal on Mathematics Education, 40, 287–301.  

 



 

2023. In M. Ayalon, B. Koichu, R. Leikin, L. Rubel & M. Tabach (Eds.). Proceedings of the 46th Conference of 

the International Group for the Psychology of Mathematics Education (Vol. 2, pp. 115-122). PME 46. 

TO JOIN SEEING AND DOING: CREATING A FORMULA WITH 

A VIRTUAL AND A PHYSICAL 3D-PUZZLE 

Angelika Bikner-Ahsbahs1, Marit Hvalsøe Schou 2 

1Faculty 3 of Mathematics and Computer Science, Bremen University, Germany; 

Western Norway University of Applied Sciences, Bergen, Norway  

2Department of Mathematics and Computer Science, University of Southern 

Denmark 

 

We focus on the role of artefacts when students are expected to set up a geometric 

formula. For that, we employ the lately created concept of ‘views on formula’ in a case 

study design situated in a social constructivist approach, and explore how a pair of 

students in upper secondary creates a formula for a pyramid using two artefacts, a 

virtual and a physical 3D-puzzle, which share the same structure of six pyramids 

building a cube. Our aim is to characterize the contributions of the two artefacts on 

the students’ way of setting-up the formula. Main results are that the transparency of 

the virtual puzzle shows that the six pyramids fit together while the physical artefact is 

not transparent but allows embodied arguing for the formula. Joining viewing and 

doing through both artefacts fosters an in-depth understanding of creating the formula.  

RATIONALE, A BRIEF REVIEW AND THE RESEARCH QUESTION 

In many math classes all over the world students struggle when using algebraic 

expressions (Arzarello et al. 2001; Kieran, 2020; McNeil et al., 2006). This holds 

specifically for formulas, an area that is widely under researched. One exception is a 

recent study from Schou and Bikner-Ahsbahs (2022) about geometric formulas. In line 

with this study, we consider a formula to be an algebraic representation of an equality 

relating measures of a solid. Students’ difficulty with formulas partly depends on how 

they view them. E.g., the view Shape foregrounds strings of signs and therefore takes 

the two versions of a volume formula of a cylinder tube 𝑉 =  𝜋 ∙  ℎ (𝑟1
2 − 𝑟2

2) and 𝑉 =
 𝜋𝑟1

2 ℎ − 𝜋𝑟2
2ℎ as distinct. In the second version, it is much easier to make sense of its 

parts, i.e., by the view Reading. One relevant view on formula is Blueprint. This view 

makes the students see a formula as a blueprint for a building plan. It develops when 

students create formulas. In the case of the volume formula of the cylinder tube the 

first step is the concrete experience of taking a small cylinder out of a big one and then 

stepwise translating this action into a symbolic expression.  

We have identified Blueprint in situations where students were expected to set up a 

formula from a single artefact, a prototype solid. However, recent research has stressed 

the relevance of using complementary artefacts for learning. Soury-Lavergne (2021) 

elaborates the concept of duo of artefacts as a system of artefacts designed to foster 

joined instrumental genesis (Trouche, 2020). Mariotti and Montone (2020) point to the 

potential of synergy of a duo of artefacts highlighting the synthesis of their semiotic 
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potentials. Maffia and Maracci (2019) have coined the notion of semiotic inference for 

mutual effects transcending cross-references when using various artefacts. Connecting 

several artefacts for learning has also raised questions of benefits and pitfalls in the 

transitions between artefacts, e.g., Rich (2022) investigates how teachers orchestrate 

such transitions and Panorkou et al. (2022) investigate the “messiness” of transitions 

taking students’ perspectives seriously. From all this research, we infer that a collection 

of complementary artefacts that share a mathematical structure may foster an in-depth 

creation of a formula but it is not exactly clear how. By focusing on the views students 

have on formula, in particular the view Blueprint, the complexity of setting-up a 

formula becomes evident. In a new research path, we unpack this complexity for such 

a pair of artefacts by asking: How does the duo of artefacts support the students' 

setting-up of a formula by activating their views, particularly Blueprint? 

THEORETICAL FRAMEWORK: THEORIZING VIEWS ON FORMULA 

We adopt a socio-constructivist approach (Krummheurer, 2007) building on an object-

related adaptation of symbolic interactionism. According to Blumer (1969), students 

make sense of objects (e.g., formulas) based on the meanings these objects have to 

them. They gain these meanings through social interaction as result of mutual 

interpretation of the sayings and the doings with their peers related to these objects. In 

these processes, students modify and adapt their interpretations taking into account 

their peers’ expressed expectations and construal, specifically of the object. When 

faced with a task addressing a formula in social interactions, students activate various 

views (Schou & Bikner-Ahsbahs, 2022) as part of a conceptual frame. A conceptual 

frame (Arzarello et al, 2001) is an “organised set of knowledge and possible 

behaviours” (p. 68), which shape their interpretations and expectations in social 

interaction when they handle formulas related to a piece of knowledge. Within this 

frame, students may handle a formula showing a “locally coherent pattern” (Scherr & 

Hammer, 2009, p. 151) of repeated mathematical behaviour, where “coherent” means 

that “the pattern holds together for some length of time and ‘local’ in that the coherence 

may be particular to the moment or context” (p. 151). Views on formula are observable 

by such patterns. As Schou and Bikner-Ahsbahs (2022) have empirically identified and 

characterized eight ‘views on formula’, we can now use these views as scientific tools 

for investigating students’ creation of formulas with pairs of artefacts. 

METHODOLOGY: TASKS, TOOLS, AND METHODS 

 

Figure 1: 3D-puzzle folding a cube with six pyramids (using www.GeoGebra.org) 

To answer the research question, we use data from an upper secondary classroom 

study. The data stem from the implementation of a task to set up a formula for the 

volume of a pyramid based on a transparent digital 3D-puzzle, in which the students 
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can drag sliders to build a cube of six pyramids by folding it (Figure 1). As a 

complementary physical artefact, the students were provided with an opaque 3D-print 

of a cube that can also be composed of six pyramids, but by hand (Figure 2). When 

building a cube, the underlying structure of the two artefacts is the same, but the 

affordances when arguing are very different. Although they fulfil the conditions for a 

“duo of artefacts” (Soury-Lavergne, 2021), we abstain in this paper from investigating 

the students’ instrumental geneses in favour of foregrounding our concept of object-

related social interaction that will allow us to take the students’ views on formula 

seriously.  

The students were asked to follow a task sequence consisting of recalling the formula 

of the pyramid volume 𝑉 =
1

3
𝐵 ∙ ℎ, considering the measure of the volume of a 

pyramid as 
1

3
 of the volume of a box in which it precisely fits, interpreting the volume 

formula by the use of the 3D-print (Figure 2), and interpreting the volume formula of 

the pyramid by the use of the virtual 3D-puzzle (Figure 1). The task sequence was 

implemented in ordinary teaching of an upper secondary classroom in Denmark where 

the work of one focus group was video recorded, and all the material all students 

produced in class was collected for comparison. We transcribed the video recordings 

verbatim and translated them into English. Next, we have used the concept of ‘views 

on formula’ to the guide data analysis, thereby reconstructing the views in play during 

the social interaction of the students mediated by the tools. Based on our theoretical 

approach, we conducted an interpretative turn-by-turn analyses (see Krummheuer, 

2013) of the students’ sayings and their doings. This allowed us to identify how the 

students interpreted the way their peers worked with the artefacts related to the goal of 

setting-up a formula for one pyramid, and how they proceeded. We traced the 

reconstructed views and their relations in the course of solving the task, focusing 

particularly on transition phases between artefacts in the duo.  

SOME DATA, DATA ANALYSES AND A SUMMARY OF THE RESULTS 

We evidence our results by analysing three episodes extracted from a much longer 

transcript. The sequence of individual expressions is kept, [….] marks lines left out.  

Blueprinting sub-artefacts 

In the first episode, we focus on the students’ exploring of the physical 3D-puzzle and 

how the puzzle can be composed into a box.  

120 S:  S: but it is double as tall, remember that, as the pyramid. There are two 
pyramids on top of each other [gesturing thumb and index finger for the 
two pyramids] 

122 K:  yes, and so it will be also be one six when you calculate it, yes   

The students are mainly concerned with how to compose the 3D-print. Going back to 

the six pyramids, due to the previous task they see a box–not yet a cube–and two 

pyramids on top of each other (#120), a justification of the fact that the box “is double 

as tall” as one pyramid. They add “one sixth” (#122). In the minutes they take the parts 
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together to form the expression 
1 

6
𝑠2 ∙ 2ℎ, which is typical for Blueprint, where this 

would usually be followed by ‘=V’. We do not observe one complete blueprint but 

various blueprints of sub-artefacts that appeared by comparing pyramids with the box:  

s2 for the base, 2h for “double as tall as the box”, 
1

6
 for considering one out of six 

pyramids. The terms are put together to get the “formula” 
1 

6
𝑠2 ∙ 2ℎ (Figure 3). 

Preparing the complete blueprint by seeing how the cube is folded virtually 

In the second episode, the students turn to the virtual 3D-puzzle. K tries out the sliders.  

185      S:  What are you saying? It’s just, you just fold, you fold up the top to 90 
degrees, and then you fold up all the others to 90 degrees. And then it 
becomes a nice box. 

207 S:  right, .... What on earth are you doing [K works with the animation] 

208 K:  I pull the figure here [twists and turns it on the screen]. Look, it is a cross! 

209 S:  it is actually a nice cross. But it is difficult not to make a cross, if it has to 
fit … yeah, you could NOT make a cross but it would be confusing.  

The students are engaged in how the box–not yet the cube–is built by folding. Their 

focus is the cross, but not translating their actions into symbolic expressions. 

Blueprinting by doing and arguing how the pyramids fit to build the cube 

After having explored the virtual 3D-puzzle, the students return to the 3D-print in the 

third episode, and this time put up as a cross like in the virtual case.  

218  K:  say, if we now for instance say [inaudible, takes the model apart and places 
it as a cross in the same way as in the animation when unfolded] Then this 
side, that is the height [slides her index finger back and forth along the 
bottom edge of one pyramid] (Figure 2) 

By aligning the 3D-print as was done in the virtual case, K merges the two artefacts 

conceptually and immediately begins to interact bodily with the 3D-print to argue. 

223 K:  and these there are two of (the horizontal distance from vertex to the edge 
of the base) [shows the distance with two index fingers] because this is 
[erects her right pyramid so it forms one side in the cube] two times the 
height [points along the same (now) vertical edge of the bottom of the 
pyramid starting at the table and ending at the upper end and back again] 

229 K:  and there we also have [shows the same distance by pointing with her index 
finger at the middle of the edge of the pyramid placed on the grey basis, … 
She erects some of the other pyramids and almost have a cube] (Figure 2)  
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Figure 2: Physical 3D-puzzle (left: showing the height of the box as the length of the 

bottom edge of a pyramid, right: showing half the side length of the box) 

233 S:  so, actually it is a squared, squared square [they look at each other for a 
long time] It is a square (≈ cube). That is what I am trying to say.  

235 K:  It is a squared, squared square and we only use one sixth of the square (≈ 
cube) when we want a pyramid [places the pyramids in the cross shape 
again.] I don’t know how to explain  

238 S:  I don’t know how to explain it differently 

239 K:  Precisely. [Takes the computer and looks at the animation] we can see that 
there are six of them, and then we can fold them together. … but here we 
have a lid, right? [places the last pyramid vertically … to form the ”lid”]. 

244 S:  You must do it synchronous [takes the computer, while she folds the lid to 
make a cube on the screen, K does the same thing with the material cube]  

247 S and K: wooouw [they laugh]  

248 S:  that was a bit crazy [laughs] 

249 K:  …. [Now seriously, looks at the screen that shows the folded cube] This 
side, right, it is two height, [let her finger slide up one of the vertical bases 
of the assembled model, still looking at the screen]. 

253 S:  What? 

254 K:  this side [let her finger slide up and down] it is two height.  

255 S:  That means that we have side times side times side because it is a squared 
quadrangle  

257 K:  [looks puzzled] yes … okay, so it is side times side times side and that is 
just s to the power of three, (pause) no? 

262 S:  yes 

263 K:  s to the power of three divided by one third 

264 S:  yes … because s to the power of three just means s times s times s 

266 K:  so it is just s to the power of three divided by one sixth [S writes] why do I 
say divided by one sixth? I should say divided by six or multiplied with one 
sixth, yes 

For the first time K expresses verbally that the box must be a cube (a squared, squared 

square) (#233/235). The students infer that only ‘one sixth’ is needed for a pyramid 

(#235). They align both artefacts by synchronous folding (#239/244). Then the 

students produce a hybrid translation ‘side∙side∙side’ (#255/257). They read it as a 

“squared quadrangle”, used as a justification. The hybrid translation “s to the power of 

3” (#257) is followed by “divided by one third” (#257). Next, the students symbolize 

𝑠 ∙ 𝑠 ∙ 𝑠 (#264) verbally and change this into ‘s to the power of 3 divided by 6’ (after 

one correction (#266)). In the minutes, we find the “formula” s3 ∙
1

6
 as the result of 

blueprinting. 

Expressed by five stepwise translations, the students blueprint (Figure 3). At the same 

time, they add two kinds of actions: (1) argumentations (using finger sliding to 
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measure the sides of the pyramids; comparing the heights of the pyramids with the 

height of the box by a distance gestures; repeating this for the other pyramids, Figure 

2) and (2) coordinating both artefacts (erecting side pyramids after comparing heights; 

repeating this for other pyramids; folding both artefacts synchronously). 

 

Figure 3: The three episodes with transitions, blueprints and shapes 

Figure 3 summarizes our results. First, the students achieve a formula by putting 

blueprints of sub-artefacts together. There is no transition within the 3D-print. The 

transition to the virtual artefact is initiated by the task. The virtual animation is 

transparent, so that the students could see through the cube that the six pyramids seem 

to fit together, but with the artefact they could not check it. Thus, they changed into the 

physical world when building a cross and thereby coordinating the two artefacts and 

folding them synchronously. The transition seems to be initiated by a need for 

arguments (Kidron et.al., 2011). The haptic nature of the 3D-print allowed to fulfil this 

need, resulting in transitions through a pattern of five translations, i.e., Blueprinting. 

DISCUSSION, CONCLUSION AND A TAKE AWAY 

When the students use the two artefacts, blueprinting is not a straightforward process 

of a sequence of translations as in other cases, even though the artefacts share a 

common structure. The digital artefact shows transparently how the cube can be folded, 

making the students look through it from all sides, thus seeing that the six pyramids fit 

perfectly together. The students were much engaged in the folding procedure and its 

strictness; but as there was no embodied interaction possible with the virtual artefact, 

the students could not test conjectures. They had to take what they see. 

This is different with the 3D-print, where we immediately observe the students begin 

to measure and compare lengths by measuring-gestures. These were used to argue for 

why the box is double as tall as the pyramid–considered from different sides. Thus, 

they could infer that the box was in fact a cube. The students had used the 3D-print 

already earlier, before they explored the virtual puzzle, but with trial and error and 

based on what they could see. That the box is a cube, was not taken into account. 

Making a cross came from seeing the virtual folding of the cube: it provided a 

systematic procedure, an offer to overcome trial and error. As the fit cannot be seen in 

the 3D-print, a need for arguments emerged, which itself necessitated to measure and 

compare. In contrast to the virtual artefact, the concrete 3D-print could fulfil the need 

for arguments. An argumentation about how the pyramids fit was the only way to be 

sure that the pyramids fit–symmetrically. In addition, the 3D-print allowed to 

coordinate the folding of both artefacts synchronously, substantiating that the artefacts 

share the same structure. Remarkably, S reflected in the end: “we have realized that 

the formula for the pyramid also [referring to  
1 

3
𝐵 ∙ ℎ(=

1 

6
𝑠2 ∙ 2ℎ) ] can be explained 
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as one sixth of s to the power of three [
1 

6
𝑠3] as it is a square [meaning a cube]”. She 

then convincingly cited the reason, that both artefacts follow “the same principle”. 

Thus, they read the same principle in the two different formula shapes.  

Neither of the two artefacts alone led to the complete blueprinting, both were needed. 

The strength of the virtual artefact to see through the cube however lacked certainty 

initiating a change from folding one to synchronous folding of both artefacts. The 

strengths of the 3D-print allowed the students to expand their ways of acting including 

argumentation and coordination. Data analyses have shown that seeing the common 

structure of the two artefacts was not enough for creating the formula, the students 

needed to do the aligning of folding both artefacts to make the same structure 

procedurally visible and hence, justify what they saw. Seeing and doing were jointly 

intertwined in the blueprinting of the third episode. 

Therefore, joining ‘seeing and doing’ initiated by composing ‘virtual and physical’ 

artefacts seems to be a promising principle for task design to foster an in-depth 

conceptual understanding of a geometric formula that–in our empirical case of setting 

up a formula–enabled the students to see, in the course of blueprinting, two shapes of 

the formula expressing the same “principle”. Further research is needed to underpin 

the relevance of this design principle and thereby the relevance of joining seeing and 

doing by design. 
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This paper presents the results of the qualitative study MatheMat. It aims to analyse 

primary school children’s actions on comparable digital and analogue materials to 

reconstruct their mathematical interpretation from a semiotic perspective on learning 

mathematics. For this purpose, a semiotic adapted qualitative analysis is applied to 

analyse the actions of two third graders in a geometrical learning situation to 

reconstruct their interpretation of the diagram realised with various materials. The 

comparison of the results shows that sometimes learners make the same interpretations 

of the digital and analogue material arrangements despite different actions because 

they recognise and interpret the same mathematical relationships as relevant to their 

actions. 

MATHEMATICS LEARNING WITH DIGITAL AND ANALOGUE 

MATERIAL  

Material is of great importance for mathematical learning processes and is often 

investigated in mathematics education research. However, the focus is often on the 

digital or analogue material itself rather than what learners do with it. For example, 

Larkin et al. (2019) use the Artifact Centric Activity Theory (ACAT) for evaluating 

digital materials to help teachers navigate the wide range of digital materials and 

understand their potential for mathematical learning. Such an instrumental approach, 

“[...] which is often used for research on technology learning settings, fails to attain 

insight into the epistemic process in all its aspects.” (Behrens & Bikner-Ahsbahs, 2017, 

p. 2721). Therefore, the paper focuses on the results of the qualitative study MatheMat 

– Mathematical Learning with Materials, which aims to investigate learners’ actions 

and their usage of the material. For the empirical investigation of learners’ 

interpretations as they act on various materials a semiotic perspective on mathematical 

learning according to C. S. Peirce (1931-35) is adopted, which defines the actions on 

diagrams as the core of doing math (Dörfler, 2006). Specifically, this paper considers 

two cases in which the actions of two third-grade learners (9-year-olds) on comparable 

digital and analogue diagrams to solve a geometrical problem are analysed in order to 

reconstruct their mathematical interpretations. These interpretations are then compared 

to identify whether the learners make the same diagram interpretations in similarly 

designed digital and analogue learning situations and, thus, gain the same mathematical 

insights. The results of the comparison can be used to exploit the possibilities of the 

different materials for practice in mathematics teaching.  
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THEORETISCAL FRAMEWORK 

Semiotic Perspective on Learning Mathematics  

Diagrams can be considered as relationally connected signs, namely, complex signs 

whose main function is to represent relationships (e.g. Wille, 2020). By this definition, 

a diagram is manifold: it can be a table, a function graph, a geometrical drawing, an 

arrangement of materials (digital or analogue), or an argument, as long as it is about 

the representation of the relationships. However, diagrams do not have a fixed 

reference that determines their meaning or significance (Dörfler, 2006). Instead, the 

activities on the complex signs ground them and make them meaningful (Roth & 

Bowen, 2001). According to Peirce (NEM IV), a diagram has certain features that 

would always belong to it, even if its non-essential features could be changed.  

To illustrate this, Dörfler (2016) makes an everyday example: the same card can have 

different meanings due to the different activities in various card games. Thus, the 

meaning of a card is inseparable from its use and the rules and relationships that are 

recognised and established in the actions. If these are changed, the meaning of the cards 

also changes as they are among the essential features of the diagram. The cards’ 

appearance, however, can be changed and is one of the non-essential features. In this 

sense, recognising and observing the relationships between the signs are constitutive 

of the activities on the diagram and require interpretations by the actor. 

MATHEMATICAL INTERPRETATION FROM A SEMIOTIC POINT OF VIEW 

In order to be able to examine learners’ interpretation of complex signs more precisely, 

it is useful to consider the Peircean definition of a sign in more detail. Here, a sign is 

something that stands for someone in some respect or quality and consists of a triadic 

structure that includes the representamen, the object, and the interpretant of the sign 

(CP 2.228). By using the word representamen, Peirce means the outwardly perceptible 

sign that stands for something meant; he calls it its object. The perceptible sign triggers 

in the mind of the sign reader an interpretation called the interpretant. This interpretant 

can be an “equivalent sign, or perhaps a more developed sign” (CP 2.228) of the 

perceptible sign. Looking at communication (with oneself and others), the sign reader’s 

interpretant can be expressed in a reaction to the sign, a new representamen, and thus 

there is a continuous translation into new signs (Maffia & Maracci, 2019). The new 

representamen produced by the sign reader in communication can be, for instance, an 

action, a gesture, or a phonetic utterance. 

Peirce distinguishes between three different types of interpretants: an emotional, an 

energetic, and a logical interpretant. He describes the emotional interpretant as the first 

effect evoked by a sign and describes this effect as a feeling (CP 5.475). It arises in the 

sign-reading person but does not have to be expressed as a perceptible sign. The 

energetic interpretant, on the other hand, can be seen as a spontaneous action that the 

sign-reader performs as an effect on the sign, which involves an effort on the part of 

the sign-reading person; this effort can be physical as well as mental (CP 5.475). 

However, the energetic interpretant is not an action that the sign-reading person has 
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already repeated many times and that has become a habit with a specific goal. When it 

becomes habitual it is called the logical interpretant (CP 5.486).  

The description of the different interpretants is important for the analysis of the data 

described in this paper, as they are used to reconstruct the mathematical interpretations 

that the learners make during their actions on the digital and analogue material. Based 

on the logical interpretant, an interpretant based on research is formulated, which can 

be described as the habitual reaction of experts in a community to a complex sign. The 

research-based interpretant describes relationships between the signs and the resulting 

rule-based actions that are necessary to establish these relationships. As Peirce 

highlights, the action must be described with specifications of the motive (CP 5.491). 

Therefore, in the description of the research-based interpretant, only the relationships 

and manipulations that are important regarding the task are dealt with. This research-

based interpretant is compared with the learners’ energetic interpretant. Through this 

comparison, it is possible to reconstruct which relationships between the signs the 

learners may have recognised and used to express their interpretant. In this way, it can 

be determined whether the learners working with digital material may recognise and 

focus on different relationships than those working with analogue material, even 

though they are working on comparable diagrams. 

RESEARCH FOCUS 

From the theoretical considerations, the objective of the MatheMat study is to 

reconstruct the learners’ mathematical interpretation by analysing the actions on 

comparable diagrams realised with digitally and analogue represented signs. By 

comparing the reconstructed interpretations, it will be investigated whether the learners 

make the same interpretations even though they work with different materials. 

Geometrical and statistical learning situations with digital and analogue material were 

examined, which were developed especially for this study. The learning situations were 

designed so that, based on the same mathematical tasks and the same mathematics 

education considerations, the same mathematical relationships between the different 

materialised signs could be recognised. Following Dörfler (2016), diagrams that have 

the same mathematical structure and relationships are expected to enable the same 

mathematical engagement with them, so that the different materials should not interfere 

with this. This allows for comparison of material as the learners engage mathematically 

with the same diagrams of a different materiality. 

This paper focuses on a geometrical example, where two third-grade learners 

investigate the relationship between the area and perimeter of similar squares digitally 

using GeoGebra (Hohenwarter, 2001) and analogue using an adaptation of the 

OrbiMath material (Huber, 1972) (see Figure 1). For the analysis, one part of Nils’s 

and Marleen’s work on the geometrical problem is considered, in which they create 

squares of different sizes with the material provided. These squares are the basis for 

completing various sub-tasks, which they have to solve.  
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Considering the geometrical example, the following research question is addressed: 

Which mathematical interpretations of Nils and Marleen can be reconstructed from the 

actions on the digital or analogue geometrical diagrams, and which possible differences 

can be described between the reconstructed interpretations of the two learners?  

METHOD AND DESIGN 

Method of Data Generation  

For data collection, 

material-based interviews 

were conducted in the 

summer of 2019 at two 

German primary schools 

with 16 learners at the end 

of grade 4 (10-11 year-

olds) and with 16 learners 

at the beginning of grade 3 

(8-9 year-olds). Each 

learner worked in a pair on 

two learning situations, 

once with digital and once 

with analogue material. In 

addition, each learner 

worked on a geometrical 

and statistical task. 

Working on the learning situations the learners themselves could choose which sub-

tasks they worked on in which order (Billion, 2021). In this way, the learners could 

decide at which mathematical level they wanted to work and could put difficult sub-

tasks aside first and work on them later after having dealt with other sub-tasks. 

METHOD OF DATA PREPARATION AND DATA ANALYSIS  

The learners’ processing was recorded with two cameras. One camera focused on the 

actions and gestures made on the digital and analogue material, the other recorded the 

whole scene. In the learning situations with the digital material, the manipulations on 

the screen were also recorded with a screencast. In the videos, passages are sought in 

which the learners work on the same sub-task and these are transcribed for analysis. 

For the reconstruction of the learners’ mathematical interpretations, a semiotic 

adaptation of the qualitative context analysis according to Mayring (2014) and Vogel 

(2017) is provided. As already described, the learners’ energetic interpretant is 

compared with the research-based interpretant in order to reconstruct which 

relationships between the signs the learners have recognised, interpreted, and used. In 

the first step, an energetic interpretant (i.e. a spontaneous action) of the learner is 

selected from the transcribed passage. Then, in the second step, the research-based 

interpretant is developed for this selected spontaneous action and is compared with it. 

Figure 1: Geometrical learning situation 
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This is where the first reconstruction of the learner’s mathematical interpretation takes 

place, which he or she does at this point for acting on the diagram. In the third step, the 

narrow context analysis (Mayring, 2014), all the same, and similar energetic 

interpretants of the learner that can be found in the transcript are compared with the 

research-based interpretant formulated in the second step. Depending on whether the 

learner’s energetic interpretants are actions on other diagrams, the research-based 

interpretant needs to be adjusted for the comparison of interpretants. The 

reconstruction of the learner’s mathematical interpretation at further passages in the 

transcript can confirm, extend or discard the one already reconstructed. In the fourth 

step, the broad context analysis, all the same, and similar energetic interpretants to the 

first energetic interpretant from the entire videotaped processing are added. These are 

in turn compared with the (possibly adapted) research-based interpretant for further 

reconstruction. In this way, the reconstructed mathematical interpretation can be 

described across the advancing sign process. In the final step, the reconstructed 

mathematical interpretations of the learner are presented in summary. 

Given the passages selected for analysis from Nils’s and Marleen’s treatment of the 

geometrical problem, the focus of the research-based interpretant is on the relationships 

necessary for the construction of a square. The two important relationships to consider 

in the actions on the digital and the analogue material are listed in Fig. 2. 

 

Figure 2: Research-based interpretant 

RESULTS  

Analysis of the Actions on Digital Material 

The focus is on the analysis excerpt where Nils sets the scrollbar depth and breadth to 

length 2. Therefore, he guides his finger towards the screen (see Fig. 3, Panel A), which 

shows a square with side lengths 1 (see Fig. 4, Panel A). Then he performs drag 

movements over the scrollbar depth (see Fig. 3, Panel B). Ultimately, the slider of this 

scrollbar changes to position 2, resulting automatically in a rectangle with a breadth of 

1 and a depth of 2 (see Fig. 4, Panel B). Meanwhile, he utters “two\”. Subsequently, 

Nils touches and makes drag movements over the scrollbar breadth (see Fig. 3, Panels 

C-D). Nils’s actions move the slider to position 2, creating a square with side length 2 

(see Fig. 4, Panel C). Nils then releases his finger from the screen (see Fig. 3, Panel E). 
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Figure 3: Nils’s actions on the digital material 

 

Figure 4: Manipulations in GeoGebra triggered by Nils’s actions  

By comparing the research-based interpretant (see Fig. 2) with Nils’s actions, it can be 

reconstructed that he wants to establish an equal relationship between the lengths of 

the sides. Initially, Nils makes drag movements over the scrollbar depth to set the 

scrollbar depth to length 2. His phonetic utterance confirms this intention. His further 

actions suggest that he wants to make a square, as he also sets the scrollbar breadth to 

length 2. Since Nils withdraws his hand from the screen after he has set the second 

scrollbar, he is most likely finished with his action. He probably recognises that the 

relationships between the lengths of the sides are established, but it remains open 

whether he recognises the relationships between the connections of the sides, since 

these are already present in the material. Overall, Nils can interpret the parts of the 

material arrangement as a diagram, since he establishes new relationships in his actions 

and uses the relationships already implemented in the material to construct a square. 

ANALYSIS OF THE ACTIONS ON ANALOGUE MATERIAL 

The focus is on the analysis excerpt in which Marleen selects four rods of length 4 and 

joins them together to form a square. Initially, Marleen chooses three rods of length 4 

and places them in the workspace in front of her (see Fig. 5, Panels A-B). She then 

selects another rod of length 4 and lays it alongside the others (see Fig. 5, Panel C). 

 

Figure 5: Marleen selects four rods of length 4  
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Subsequently, she joins them together with the right-angled corner connectors to form 

a square (see Fig. 6, Panels A-E). Meanwhile, Marleen talks about her classmates. The 

spoken language does not refer to the mathematical content and will be neglected. 

 

Figure 6: Marleen joins the four rods together to form a square 

Comparing the research-based (see Fig. 2) and Marleen’s energetic interpretant, it can 

be reconstructed that Marleen probably realises that she needs four rods of equal length 

to form a square. She uses the right-angled corner connections to put the selected four 

rods together. In her actions, she only establishes the relationship between the lengths 

of the rods; for the relationship between the connections of two sides, she uses the 

relationship already present in the material. The analysis of her actions does not reveal 

whether she is interpreting the relationship that is already visible in the material. She 

establishes the relationship between the lengths exclusively through her actions and 

does not refer to it linguistically. Overall, it can be reconstructed that Marleen interprets 

the material arrangement as a diagram by recognising relationships to create a square. 

COMPARISON OF THE ANALYSES OF THE ACTIONS ON THE VARIOUS 

MATERIAL  

Comparing the extracts from the analysis results reveals that both learners interpret the 

material arrangement as a diagram. It can be assumed that Nils and Marleen interpret 

the relationship between the side lengths of the square in the same way and perform 

actions that correspond to the relationship.  However, it is noticeable that they perform 

different actions to do so. Furthermore, it becomes clear that they both use the 

relationship between the connections of two sides that is present in the material 

arrangement, but it cannot be reconstructed whether they explicitly interpret it.  

DISCUSSION AND OUTLOOK 

Concerning the research question, the same mathematical interpretations can be 

reconstructed for Nils and Marleen, since they establish the same relationship despite 

different actions on different materials. Thus, the haptic of the action does not influence 

the mathematical interpretation, so the learners are likely to gain the same 

mathematical insights when working with digital and analogue material. Not only the 

appearance of the signs is insignificant to the meaning of a diagram (e.g. Dörfler, 

2016), but also the appearance of the actions when the same relationship is established 

in these. Further results of the MatheMat study show that there are passages in the data 

where the digital material functions as a tool (by abbreviating actions and relationships 
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to be established) and, thus, different mathematical interpretations can be reconstructed 

based on the actions on the digital and analogue materials (Billion, 2022). 
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Dotplots can increase students’ reasoning about variability and distribution in 

statistics education but literature shows mixed results. To better understand students’ 

strategies when interpreting non-stacked dotplots, we examine how and how well 

upper secondary school students estimate and compare means of dotplots. We used 

two item types: single dotplots requiring estimation of the mean and double ones 

requiring comparison of means. Gaze data of students solving six items were 

triangulated with data from stimulated recall. Most students correctly estimated means 

from single dotplots; results for comparison were mixed. A possible implication is that 

single, non-stacked dotplots can be seen as a step towards teaching students to 

interpret univariate graphs but further research is needed for comparing graphs.  

THEORETICAL AND EMPIRICAL BACKGROUND 

The ability to interpret graphs is an important educational goal. For instance, graphs 

can reveal patterns in data that may not be noticed when looking purely at 

computational measures (such as means or correlations). In this paper, we will focus 

on graphs that are used to represent the distribution of a single variable. The 

distribution of a variable is one of the key concepts of statistics, and a prerequisite for 

understanding more complex distributions. Research has started to investigate what 

role various graphical representations (histograms, boxplots, and dotplots) have on the 

reasoning about the distribution of a variable (e.g., Lem et al., 2013a). More 

specifically, it has revealed a range of strategies and possible misinterpretations of each 

graphical representation.  

In recent years, such strategies and misinterpretations are being investigated by means 

of eye-tracking data, that can yield a unique insight in strategies students use when 

interpreting the graphs and drawing conclusions. A recent review (Boels et al., 2019a) 

revealed a range of difficulties when interpreting histograms, and eye-tracking data 

have shown that students tend to interpret them as if these were case-value plots (Boels 

et al., 2022). Also for boxplots, various misinterpretations have been documented (Lem 

et al., 2013b), and currently, attempts are made to reveal these by eye-tracking data. 

The current paper focusses on strategies used on the third graph type, i.e., dotplots.  

According to a local instruction theory on developing students’ statistical literacy 

(Bakker, 2004), dotplots can increase students’ understanding of variability in data 

(delMas & Liu, 2005), support students’ reasoning about distribution (Bakker & 

Gravemeijer, 2004; Garfield & Ben-Zvi, 2008) and scaffold students’ interpretation of 
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histograms (Lyford & Boels, 2022). However, the literature on students’ dotplot 

interpretations showed mixed results. For example, Lem et al. (2013a) demonstrated 

that first-year university students tended to employ a local view on the distribution of 

a variable when interpreting dotplots, thereby focusing on individual observations 

rather than the distribution as a whole, more often than with the other representations. 

Moreover, they found that students had more difficulties comparing means, medians, 

and variation of data presented in dotplots when distributions were asymmetric 

compared to symmetric distributions. In addition, students used heights of dotplots to 

compare skewness of distributions, similar to what they applied to histograms. Lyford 

(2017) showed that in several cases students interpreted dotplots better than 

histograms. For example, although various students used stack heights in stacked 

dotplots, they did so less often than in histograms. However, when students compared 

‘bumpy’ and ‘spaced uniform’ graphs, students answered correctly significantly more 

often for histograms than for dotplots. Therefore, also for dotplots, we want to achieve 

a better understanding of students’ strategies when interpreting them, thereby relying 

in part on eye-tracking data. The current study addresses the research question: how 

and how well do upper secondary school students estimate and compare arithmetic 

means of dotplots?  

 

Figure 1: Item13, 15 and 18 of the original data collection for which students were 

asked to estimate the arithmetic mean from each dotplot. For item 13, for example, 

the actual mean is 2.7 (Table 1) and the range for correct answers was [1.6 – 3.8]. 

METHOD 

We present answers and gaze data of five Grades 10–11 secondary school students. 

The students followed a pre-university track. They solved a total of six dotplot items. 

We designed two item types: open ended questions requiring estimation of the mean 

(Figure 1) and multiple choice items requiring comparison of means (e.g. Item 17, 

Figure 2). Note that our students had never seen a dotplot before in their education, but 

are familiar with case-value plots (where the height of each bar is the measured value) 

and histograms (where the position of each bar indicates the range of measured values). 

For each item type we designed three items. Gaze data were triangulated with verbal 

data from stimulated recall (cued retrospective thinking aloud) for which students’ own 

eye movements were used as a cue (Van Gog et al., 2005). Data triangulation is needed 

because there is no straightforward relation between students’ solution strategies and 
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gaze patterns (Schindler & Lilienthal, 2019). The data presented in this article stem 

from a larger data collection with 50 upper secondary students solving 25 items with 

various statistical graphs (e.g., histograms, case-value plots). In line with 

recommendations of Orquin and Holmqvist (2017), stimuli differed systematically on 

relevant features (e.g., positions of dots) but were kept similar for irrelevant features 

(e.g., color of dots, weight scales).  

A Tobii Pro X2-60 eye-tracker with a 60 Hz sampling rate was used, mounted on a HP 

ProBook 6360b laptop with a 13-inch display (refresh rate: 59 Hz). The Tobii Pro 

Studio 3.4.5 software (n.d.) recorded in real time where people were looking on the 

screen using harmless infrared light to detect the gaze. A chin rest was used for better 

gaze data quality. Mean accuracy was acceptable (1.16°) with highest accuracy on the 

for this research most relevant graph area (0.27°; considered good); average precision 

(0.58°; RMS-S2S; Holmqvist et al., 2022) is considered good (see Boels et al., 2022 

for more details). 

  

Figure 2: Example of a double dotplot item. Students were asked to compare 

arithmetic means, with three answer options: higher mean on the left, higher mean on 

the right, or approximately the same means. Here, the higher mean is on the right. 

MAIN RESULTS 

Regarding how well students interpret dotplots: four of the five students correctly 

estimated the mean from all single dotplot items (Table 1). One student (L03) 

overestimated the mean for the first dotplot item (Figure 1). However, for comparing 

means, results were more mixed, and only one of the students consistently gave a 

correct answer (Table 2). 

For length reasons, the elaboration on how students interpreted the dotplots is restricted 

to the single dotplot items. Interpretations of double dotplot items will be presented 

during the PME 46 conference. We found four different strategies for single dotplots. 

The most common strategy is a strategy that we previously called a histogram 

(interpretation) strategy (Boels et al., 2019b): Students estimate the mean by finding 

the ‘balance’ point of the graph, or a ‘clump’ of dots. When students apply this strategy, 

a vertical scanpath pattern is visible in their gaze data.  
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Table 1: Characteristics of students and students’ estimations of means from single 

dotplots items. Answer ranges were set to actual means [m= …] +/- 1.1. Correct 

answers in bold. Item numbers refer to their placement in the original item sequence.  

Student Age Grade Sex Answers 

    Item13 

[m=2.7] 

Item15 

[m=5.7] 

Item18 

[m=6.4] 

L01 16 11 M 3 5 7 

L02 18 11 M 2 5 6.5 

L03 16 10 F 4 6 7 

L04 17 11 F 2 6 6.5 

L05 15 10 F 2
𝟏

𝟑
 6 5.5 

 

Table 2: Students’ answers for comparing means from double dotplots items. Correct 

answers in bold. 

Student Answers 

 Item14 Item16 Item17 

L01 Frans Same Noori 

L02 Sam

e 

Same Noori 

L03 Frans Mustafa Noori 

L04 Sam

e 

Mustafa Noori 

L05 Sam

e 

Ilse Same 

 

Figure 3. Heatmaps of Item13. Left: case-value plot strategy (L01). Middle: 

histogram strategy (L02). Right: computational strategy (L05). The colours indicate 

where students’ gaze was less (green), medium (yellow) and most (red). 
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In a computational strategy, students add the measured values (positions of dots). An 

indication for this strategy is long fixations on each stack or number along the axis. 

Surprisingly, as shown in Figure 3, student L01 seemed to have used a strategy that 

incorrectly used the heights of the dotplots, instead of their horizontal positions. In 

such strategy, the dots are equally spread out along the horizontal axis. The height of 

the resulting stack is then estimated. We previously (Boels et al., 2019b) called this a 

case-value plot (interpretation) strategy. The difference between this strategy (Figure 

3, left) and a histogram strategy (Figure 3, middle) is clearly visible in the heatmaps 

by the difference in horizontal spread-outness of gazes. The verbal data of student L01 

do not substantiate this claim, but we think that is most likely due to this student 

switching to a correct strategy for later items and only reporting the latter for all items. 

 

Figure 4. Gaze pattern of student L04 for Item13: heatmap and gazeplot . 

Table 3: Students’ strategies for single dotplot items. Correct strategies in bold. 

Student Strategy 

 Item13 Item15 Item18 

L01 Case-value plot strategy Histogram strategy Histogram strategy 

L02 Histogram strategy Histogram strategy Histogram strategy 

L03 Unclear strategy Histogram strategy Histogram strategy 

L04 Histogram strategy Histogram strategy Histogram strategy 

L05 Computational 

strategy 

Histogram strategy Histogram strategy 

Eye-tracking data showed that initially students did not know quite how to approach 

the first dotplot item. This is also visible, for example, in Table 3 where for Item13 

four different strategies were found for these five students, compared to one strategy 

for Item15 and Item17. In addition, from the video of the eye movements we inferred 

that some students switched strategies. For example, the video of L04 for Item13 

showed at the start long fixations around the numbers 0, 1 and 2 and the corresponding 

stacks of dots, and a longer fixation on the top half of the highest stack. Such long 

fixations might indicate thinking, which is necessary for a computational strategy. 

However, for a full computational strategy we would expect long fixations around all 

numbers and stacks along the horizontal scale (Figure 3, right). Instead, there are much 
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fewer and much shorter fixations on the dots at the higher numbers. These shorter 

fixations seem to indicate that the shape and location are looked at and that ultimately 

no computations were performed. As these shorter fixations occurred toward the end 

of the trial, shortly before the answer 2 was given, it appeared that this student switched 

strategy. The verbal data confirm the computational start and strategy switch: 

L04:  And then I saw that a lot of them had a weight of between zero and one and 

because of that I could work out that [this] was a pretty low mean. And 

then I did an approximate estimate. 

Researcher1:  Yes, okay. And I had the idea that you were also going to count here 

[started with counting] is that possible? 

L04:  No[t] with this one […] With this one I first thought I'll count. So I had 

already started counting but then I thought that's too much counting work 

and then I just started making an estimate because then I saw that, I guess 

so much was [in the left part] relative to the right. 

The computational strategy that student L04 used at the start cannot be clearly inferred 

from the heatmap and gazeplot (Figure 4), although the heatmap shows that this student 

focused on the stacks with lower numbers. However, the video of the gazes does show 

a gaze pattern—at the start—that belonged to a computational strategy. 

 

 

Figure 5. Gazeplots (top) and heatmaps (bottom) of correct strategies for estimating 

the mean, applied to Item15 by student L02 (left), L03 (middle), and L04 (right). 

Both from the videos of the gaze data and Table 3 it became clear that students settled 

their strategy for single dotplot items (Figure 5) after Item13. 



Boels & Van Dooren 

PME 46 – 2023 2 - 137 

CONCLUSIONS AND DISCUSSION 

From our study it appears that students are quite capable of estimating means from 

single dotplots, although they never learned about dotplots in school. For comparing 

means of dotplots, students answers suggest mixed results. Of course, we need to 

consider that this paper has the limitation that we involved a small number of students, 

and that graphs were presented in a fixed order due to technical restrictions. 

Contributing to the local theory of interpreting statistical graphs, our study suggests 

that single non-stacked dotplots are well understood by upper secondary school 

students who never encountered these graphs in their curriculum. A possible 

implication is that single non-stacked dotplots can be seen as a step towards teaching 

students to interpret univariate graphs (e.g., histograms, boxplots, stem-and-leaf plots). 

However, for comparing distributions, students’ variation in answers are in line with 

the mixed results Lyford (2017) found for undergraduate students. Therefore, further 

research is needed to investigate when and how students correctly compare dotplots.  

This study is the first to reveal by means of eye-tracking the kind of strategies that 

students employ when interpreting dotplots. This is the major methodological 

advantage of eye-tracking data in this context: It reveals more details about students’ 

thinking processes compared to concurrent thinking aloud (Van Gog et al., 2005). 

Concurrent thinking aloud may affect the actual thinking process and thereby not 

provide valid measures. In that sense, eye-tracking may even be seen as a—for research 

purposes—less obtrusive investigation method. The eye-tracking data may also reveal 

the entire range of strategies employed by students (both correct and incorrect 

strategies), and even show that students switch from one strategy to another while 

solving a specific problem. Such data are not only useful for research; they may also 

be relevant for educational practice. For instance, teachers can use a selected number 

of gaze patterns to draw students’ attention to correct and incorrect interpretations of 

dotplots.  
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Integrating Education for Sustainable Development (ESD) into the classroom is a 

declared goal worldwide. Teacher professional research is a desideratum in this 

regard. The intervention study presented here, which has been running for one and a 

half years, aims to alleviate this desideratum. Several cohorts of pre-service math 

teachers (PSMTs) took a semester-long an ESD-modelling seminar developed by the 

authors. Results of two cohorts are reported. The results, including questionnaires 

before and after the seminar, show the enormous challenges for teachers, because 

knowledge about ESD is initially or almost non-existent. After the seminar, knowledge 

and competence development became evident. Teaching ESD through modelling 

problems, as a practical part of the seminar, is a success factor. 

INTRODUCTION AND RESEARCH QUESTIONS 

With the 2030 Agenda for Sustainable Development (United Nations, 2015) as a global 

framework, 193 countries have also agreed to the conception of sustainability strategies 

as a basis for local, national as well as international learning and design processes in 

terms of sustainability. The 17 Sustainable Goals (SDGs) form the basis and orientation 

of sustainable development with an equal weighting and equal ranking of ecological, 

economic and social impacts as well as compliance with intra- and intergenerational 

justice of existing and future development processes. Subgoal 4.7 shows international 

agreement that education should be cross-cutting in the process of "Transforming our 

World" (United Nations, 2015). In order for Education for Sustainable Development 

(ESD) to be taught in the future and necessarily continuously as well as integratively 

and interdisciplinarily from mathematics lessons, well-trained teachers on the one hand 

and suitable tasks formats on the other hand are needed in the areas mentioned. The 

knowledge of mathematics teachers necessary to fulfil SDG 4.7 cannot be assumed, 

but must be taught as part of mathematics teacher education. In Germany, there is a 

lack of such mathematics education training courses in which the necessary specialised 

knowledge in the field of sustainable development and explicitly the SDGs is taught 

and in which the focus is also put on a mathematical or interdisciplinary 

interrelationship. However, teacher professional research in the field of ESD and 

mathematics education, especially in the field of secondary school teachers, is also very 

rare internationally (Firth & Winter, 2007). Based on this, the motivation of the two 

authors arose to reorient a mathematical modelling seminar to an ESD-modelling 

seminar using the interdisciplinary nature of mathematical modelling already known 

from integrative STEM learning (Borromeo Ferri & Mousoulides, 2017; English, 
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2009). This ESD-modelling seminar for pre-service secondary mathematics teachers 

(PSMTs) at the University of Kassel (Germany) has already been conducted for one 

and a half years as an intervention study investigating different research foci. In this 

paper, we will report on two cohorts of PSMTs who provided a self-assessment of 

knowledge about the SDGs and ESD in a pre- and post-questionnaire. In addition, 

PSMTs' self-assessments were also asked about how they rate ESD/SDGs as 

opportunities to connect with mathematics and embed them in the mathematics 

classroom. Since there are no intervention studies of PSMTs to date that examine the 

above-mentioned aspects over a semester, we will focus on the following questions 

from our research agenda in this contribution: 

1. How highly do the PSMTs rate their knowledge of SDGs and ESD before and after 

the seminar? 

2. How highly do the PSMTs rate mathematical modelling for understanding the topics 

of environment, globalisation, democracy, everyday life phaenomenon and 

sustainability before and after the seminar? 

This study draws attention to both the challenges and the successes of teaching and 

learning ESD (Vare & Scott, 2007). We will present also a case study of one such 

success here. 

THEORETICAL BACKGROUND 

According to de Haan (2002), teaching topics must fulfil certain ESD criteria in order 

to be able to teach sustainable thinking and action. Consequently, to this, an ESD topic 

must be a central, local and/or global topic for sustainable development processes, with 

longer-term significance, an interdisciplinary knowledge claim and action potential. 

ESD thus aims at developing visions and providing creative solutions, under the 

requirement of a participatory, inter- and transdisciplinary teaching and school culture. 

The core themes of ESD include development and environmental issues as well as the 

complex economic, environmental and social causes and solutions to these problems. 

Thus, the focus of ESD goes beyond isolated subject knowledge to thinking in contexts 

and in age natives, to systemic and transformative thinking. The mathematical ways of 

thinking and working contribute to such a knowledge of world systems, an 

understanding of nature, values, democracy and the One World, and provide data for 

critical reflection and risk assessment, as well as confronting the learner with conflicts 

of interest and target dilemmas in a data-based manner.  

Teacher professional research on ESD in mathematics education 

Although ESD is of high educational policy importance and knowledge about the 

SDGs and ESD forms the basis for practical teaching in schools, it is not yet naturally 

anchored in teacher education and training worldwide (Dahl, 2019). Furthermore, 

research desiderata exist on the necessary knowledge and competence areas for 

successful teaching of ESD through mathematical content, especially with a focus on 

the mathematics education perspective and on PSMTs. Even though there are some 
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studies that report on successful longer ESD training programmes for practising 

teachers, e.g. investigating teachers' self-efficacy regarding ESD during the 

implementation phase in the classroom (Boeve-de Pauw et al., 2022), there are hardly 

any evidence-based best-practice examples for mathematics teacher education. In the 

Helliwell and Ng (2022) study, although PSMTs are introduced by the researchers to 

the critical study of teaching and learning mathematics for a sustainable future, it was 

not clear in this study what specific background the PSMTs received on SDG/ESD and 

how these were concretely, integratively linked to mathematical problems. There is 

also a lack of intervention studies that illustrate knowledge and competence 

development of PSMTs for teaching ESD, including the relevant research instruments. 

Vásquez et al. (2020), in their qualitative study of ESD-beliefs of early childhood and 

primary PSMTs, found that of the 136 respondents, 78% answered “no” when asked if 

they felt well prepared to teach ESD. In this paper, we therefore focus on the domain 

of knowledge (Alexander, 1992) regarding SDG/ESD in the context of teaching 

mathematics of secondary school PSMTs, among others.  

Teaching and learning ESD ‘concrete’ – through mathematical modelling  

For teachers to teach the most integrated and interdisciplinary learning approach 

(Hobbs et al., 2017) of ESD, we believe that ESD should be taught and learned through 

real-world problems and task formats that incorporate also age-related mathematical 

content. Appropriate interventions by the teachers can thus succeed in encouraging the 

learners to critically reflect on real contexts by applying mathematical ways of working 

and thinking. Mathematical modelling, briefly described as the translation of a real 

problem into mathematics and the translation of the result back into reality (Pollak, 

2007), offers an excellent opportunity to experience the sustainability goals in an 

interdisciplinary and integrative way. This is ultimately also reflected in the successes 

of the PSMTs in our study, who recognised on the possibilities of ESD, especially 

through the development of an ESD-modelling problem and its teaching at school. 

Fundamental to this was, among other things, the examination of the content and 

methodology of the Sustainable Development Goals Report 2020 and 2021 (United 

Nations, 2021) as part of the seminar. In addition to an intensive insight into the 

contents of the SDGs, the teachers also gained an idea of the importance and 

possibilities of mathematical modelling in the context of sustainable development. 

METHODOLOGY OF THE STUDY 

The intervention study on PSMTs' knowledge and competences for teaching and 

learning ESD through modelling activities is based on a mixed-methods design 

(Buchholtz, 2019). Qualitatively, the written reports of the PSMTs to be submitted 

after the seminar are a survey instrument, which are not the focus of this paper. Here 

we report on parts of the questionnaire developed by the authors, focusing on selected 

scales and show results from two cohorts. We report on two seminars with a total of 

26 participants. The PSMTs, aged 19-21, were all in their second year of study. The 

modelling seminar by Borromeo Ferri (2018), which was developed on the four 
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dimensions of theory, task, instructional and diagnostic dimension, has been extended 

by SDG/ESD content with an integrative approach. Within the 14-hour ESD-modelling 

seminar divided into four temporal blocks, the PSMTs develop ESD-modelling 

problems with the help of the two seminar leaders, the authors of the paper, among 

others. For this purpose, the PSMTs design the associated lesson planning and held the 

lesson in the school between the 3rd or 4th session or afterwards. Without being able 

to go into detail about the seminar here, the required self-organised and 

interdisciplinary way of working of the PSMTs in the ESD learning arrangements 

should be emphasised at this point. The aim was the individual and cooperative 

acquisition of knowledge on and the examination of concrete case studies on non-

sustainable development processes:  

 To Know, describe and be able to relate the 17 SDGs as the core of the 2030 

Agenda and the sustainability strategies. 

 To Know the genesis, content and meaning of ESD. 

 To Know the possibilities of mathematical ways of thinking and working for the 

screening of (non)sustainable development processes. 

 Be able to describe the importance of mathematical modelling in the context of 

ESD. 

In our opinion, this knowledge base enables a meaningful and comprehensible link to 

concrete contents and the development of ESD-modelling problems. 

DESIGN OF THE STUDY AND QUESTIONNAIRE 

In order to investigate the knowledge and the competence development of the PSMTs, 

a questionnaire was developed and used at the beginning and end of the seminar. The 

questionnaire on "Knowledge of Mathematical Modelling in the Context of Education 

for Sustainable Development (ESD)" consists of three parts, A through C. We will only 

present parts of A here. Before part A, the following questions were asked as initial 

questions (EF): (1) "I have not yet dealt with the topic of Education for Sustainable 

Development (ESD) at all. "(2) "I have already dealt with the topic of Education for 

Sustainable Development (ESD)." 

In Part A, a 4-point Likert scale (from (1) 'strongly disagree' to (4) 'strongly agree') is 

used in a first part with the following items to ask for self-assessment regarding the 

knowledge domain (KD) SDG/ESD: “I can explain the following terms: - the 17 

Sustainable Development Goals, - SDGs, - sustainable development, - the 2030 

Agenda, - education for sustainable development.” The PSMTs' subjective views, if 

mathematical modelling is helpful for understanding local and global development 

processes in terms of the 2030 Agenda are asked in another part of Part A (SMM): “In 

my opinion, mathematical modelling can contribute to the understanding of the 

following topics: - Environment, - Globalisation, - Democracy, - everyday phenomena, 

- Sustainability.” The terms used here are representative of the criteria and dimensions 

of education for sustainable development. 
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RESULTS OF THE STUDY 

Results are presented here, focusing on mentioned parts (EF), (KD) and (SMM) of the 

questionnaire. For this purpose, the data of both cohorts were combined and 

descriptively analysed in order to clarify differences before and after the intervention, 

which includes not only the seminar but also PSMTs’ task development and their 

teaching. Rank sum tests were used for the mean comparisons, the medians, standard 

deviation and statistical outliers can also be seen within the below shown boxplots 

created for the scales KD and SMM. A psychometric analysis of the data is still being 

carried out as part of the further data analysis of the study. 

Regarding (EF), only 2 of the 26 PSMTs had stated that they had already dealt with 

the ESD topic before the seminar. The lack of knowledge becomes even clearer through 

the PSMTs' further self-assessment with the Knowledge Domain (KD) scale at the 

beginning of the seminar, which leads to the answer to the first research question. 

Before the seminar, the mean score was 1.535 and afterwards 3.432 (the numbers 1-4 

in Fig. 1 and 2 on the y-axis is the 4-point Likert scale). Thus, the mean value has 

increased by 1.89 points, which corresponds to a knowledge growth of about 45%. 

               

Fig. 1: ESD/SDG Knowledge Domain              Fig. 2: Subjective view: Modelling and ESD 

The background to mathematical modelling and the development of an ESD-modelling 

problem during the seminar and finally teaching the problem also changed the 

subjective view of the PSMTs before and after the seminar (Fig. 2), which leads to the 

answer of the second research question. The mean differences of 3.1 to 3.5 and thus 

with a growth of nearly 10% show that the PSMTs experienced modelling as an activity 

that enables them and the learners to capture the dimensions of sustainability in a task-

based manner. The results therefore make clear that knowledge of SDG/ESD cannot 

be expected. It is a great challenge for PSMTs and certainly for practising teachers to 

teach ESD in an integrative and interdisciplinary way without specific training. 

Knowledge and skills increase over time and in particular the development and 

teaching of the ESD-modelling problem with a subsequent reflection is a factor for 

success. As an example, we present a PSMT (Tessa) to show that challenges at least 

over a semester lead to success. Tessa specifically used mathematical modelling to 

enter into a current social discussion in a fact-based way. In the following, it will be 

made clear how Tessa succeeds with her ESD-modelling problem not only in 
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considering the actuality and the closeness of learners to everyday life, but also in 

covering a large part of the ESD criteria of a topic at the same time. 

Exemplary case study of success in learning and teaching ESD with modelling 

Tessa developed the following ESD-modelling problem to raise awareness of energy 

consumption quantities and to thematise renewable energies, in line with the 2022 

FIFA World Cup in Qatar: 

"Model how much energy is consumed for the air conditioning of the Al Bayt soccer 

stadium in Qatar during a 90-minute World Cup match. Consider under which conditions 

Qatar can still meet the claim of a climate-neutral World Cup. "  

At the time the ESD-modelling problem was developed, neither data on the energy 

consumption of the air-conditioning systems nor on the exact dimensions of the soccer 

stadiums in Qatar were available on the internet. But Tessa wanted to design a problem 

specifically for this, "because on the one hand the World Cup in Qatar was already 

very controversial (especially human rights in this country) and [...] this energy 

consumption aspect (especially in times of an energy crisis) also provides/can provide 

an enormous amount of need for discussion". So, Tessa modelled the size of the Al 

Bayt football stadium using Google Maps and the energy consumption using the 

energy consumption data of German soccer stadiums. In the end, it is only standard 

calculations that lead to the conclusion that this amount of energy can supply about 

140 German households for a year. "The mathematical result can then be related back 

to the ESD topic and provides a good basis for raising awareness of ESD-related 

problems, discussions about them and possible further modelling addressing the 

achievement of the Sustainable Development Goals (SDGs)". The implementation of 

the lesson confirmed Tessa's intention, as the learners discussed the result, questioned 

it due to the higher outdoor temperature in Qatar and also related it to their everyday 

life (energy crisis). As a suggestion for a climate-neutral World Cup, reference was 

made to the use of photovoltaic systems, which is probably particularly suitable in 

Qatar. 

Tessa was one of the few PSMTs who already had a basic knowledge of the SDGs and 

the guiding idea of sustainable development before the seminar. Nevertheless, she 

describes the seminar as instructive and profitable, because it changed her view of her 

future role: 

"Mathematics teachers can also make an important contribution to promoting education 

for sustainable development. Before dealing with ESD in mathematics lessons, I tended to 

place this educational task in other subjects. [...] I consider the raising of awareness of the 

current way of life of people on the environment, society and the economy to be essential, 

which should also be the goal of mathematics teaching, as mathematical modelling is 

particularly suitable for illustrating, raising awareness of the dimensions and modelling a 

more sustainable way of life." 

In addition, Tessa mentioned the particularly current application reference as further 

important aspects to promote the motivation and cognitive activation of the learners, 
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as well as the hope that such problems will create an impulse to live more sustainably 

in a private context as well.    

SUMMARY AND OUTLOOK 

In this paper, challenges and successes of PSMTs in teaching and learning ESD were 

illustrated through a one-and-a-half-year study so far. We argued that the SDG/ESD 

knowledge domain is central to promote an integrative teaching-learning approach for 

teacher education, because only then teachers concretely can link SDG and ESD goals 

to content or tasks, in our study mathematical modelling problems. PSMT's self-

assessed increase in knowledge of ESD/SDG over a semester could be shown 

statistically on the one hand and, as a consequence, also qualitatively on the basis of a 

case study. In Tessa's case, it was clear that she was able to transfer her knowledge into 

action, engaging learners in critical thinking discussions and decision dilemmas to 

think about sustainability issues.  

Limitations are given in the study with regard to the small sample. However, this is 

also due to the fact that, in contrast to other studies, we are not recording the status quo 

of the knowledge and competences of PSMTs, but are investigating the process over a 

semester. The many contents in the seminar regarding modelling, SDG/ESD, task 

development and teaching are central aspects that require time and thus allow the 

results to be interpreted accordingly. Learning and teaching ESD does not happen 

overnight, so we see our study as a start for ESD modules in teacher professionalism 

in mathematics education, especially in the context of mathematical modelling. In a 

further study, learners in secondary school are currently being surveyed before and 

after the PSMTs lesson on their beliefs and knowledge regarding ESD/SDG and the 

interdisciplinarity of mathematics. In this way we are creating a bridge and a transfer 

of knowledge on ESD from the PSMTs to the learners in school. 
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CULTURAL ASPECTS IN THE CONCEPTUALIZATION OF 

ACTIVE, BODILY EXPERIENCE MATHEMATICS LEARNING 

ACTIVITIES. 

Alessandra Boscolo 

University of Genoa (Italy) 

 

An essential first step to investigating the implementation of a mathematics education 

research finding is to characterize within the research field the innovation being 

studied. The conceptualization and characteristics of the object under investigation 

may include aspects related to the mathematical culture of the explored specific 

context. Therefore, analysing the research perspectives of different cultural contexts 

may be relevant to bring out these features that would otherwise remain hidden. To 

this end, researchers in mathematics education can be pivotal enablers. This report 

presents cultural aspects in conceptualizing active, bodily experience mathematics 

learning activities that emerge from interviews with a selected group of Italian and 

Australian researchers. 

INTRODUCTION 

The relevance of body and movement in the mathematics teaching-learning process 

finds general agreement, although research perspectives that consider this aspect have 

different roots. Over the years, many research findings, both experimental and 

theoretical, have emphasized, on the one hand, the importance of actively engaging 

students in experiential activities and, on the other hand, the role played by perception 

and movement in mathematics teaching-learning processes. According to the embodied 

cognition theories (Lakoff & Núñez, 2000; Varela et al., 1991), some relevant 

examples are the enactivist pedagogy (Abrahamson et al., 2022), the inclusive 

materialism (de Freitas & Sinclair, 2014), and the multimodal approaches (Radford et 

al., 2017). However, we do not possess specific information on how and to what extent 

this idea influences school practice, i.e. the nature and scope of educational proposals 

in schools that are aligned with what is indicated by research in this regard. To 

investigate primary and secondary school teachers’ prospects in integrating activities 

consistent with the enactive-embodied perspective in their teaching practice, the first 

step is to characterize these activities searching for common ground within the different 

research perspectives. Setting aside the theoretical differences, we identified an 

operational construct that could be clear and easily accessible to teachers, to be the 

object of our research on implementation. Thus, the terminology active, bodily 

experience mathematics learning activities, abbreviated hereafter in ABM activities, 

refers to activities designed according to the perspective of enactive-embodied learning 

or, more generally, to activities in which students are actively engaged in exploring 

mathematical concepts using manipulatives, tools (virtual or physical), or whole-body 

movements. This construct encapsulates two main components: the students’ active 
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engagement in mathematical exploration and their perceptual motor involvement. 

Looking at the implementation, we inscribe our research in the methodological 

framework of the Implementation Research (IR) in Mathematics Education (ME) 

(Jankvist et al., 2017). According to the model emergent from the work of Century and 

Cassata (2016), the first essential step is to clarify the components and to shape the 

attributes, possible declinations, and adaptations in different contexts of the operational 

construct under investigation. In other words, the elements that can characterize ABM 

activities and their implementation. To this end, in addition to reviewing the direction 

of research findings and official guidelines at national and international level, we 

conducted an exploratory study with researchers in the field of mathematics education. 

Indeed, they hold a privileged position to pursue such a goal because, from a research 

perspective, they are in continuous dialogue with school contexts and prospective 

teachers, representing a trait d'union between research and school. Thus, they play a 

significant role in recognizing the core elements and expected outcomes of the ABM 

activities, and to classify determinant factors in and for their implementation. 

Moreover, their participation allowed a contextual characterization, drawing 

interpretive lines on possible differences in implementation related to the specific 

structural characteristics of the school system and the culture, both mathematical and 

educational, in which students and teachers are immersed. As Clarke (2017) pointed 

out, the educational system is, at the same time, produced and constituted by the culture 

of the context, which is composed of an amalgam of innovations and educational 

traditions. Therefore, how the possibility to innovate and implement is profoundly 

limited within these cultural boundaries. According to Huang and colleagues (2020), 

the comparison of contexts with dissimilar teaching cultures, such as Italy and 

Australia, can lead to a better understanding of the activities being studied and their 

current implementation, revealing the presence of both features of contextual 

specificity, which may find reason in the specific cultures, and shared characteristics, 

which cross cultural boundaries. In particular, it may allow us to consider possible 

differences in the characterization of ABM activities depending on the context’s 

culture. Thus, in this contribution we focus on the following research question: 

considering the two groups of selected Italian and Australian researchers, are there any 

cultural differences in their conceptualization and characterization of ABM activities?  

METHODOLOGY 

Participants 

The involved experts in mathematics education were selected based on experience 

alongside teachers, for their research expertise in implementing innovation at school, 

and for research interests, which were akin to our research topic. The selection process 

consists in contacting experts who possess the aforementioned characteristics; the 

researchers in the sample are the ones that, after an email invitation asking them to 

contribute to the research, joined the project voluntarily. The six experts in Australia 

are academics, belonging to MERGA (Mathematics Education Research Group of 

Australasia) and three of them are also former secondary school teachers. Australian 
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experts’ research interests range from initial and professional teacher education to 

inquiry-based learning; from the use of technology in mathematics education to 

mathematical Literacy and Numeracy; and from implementing teaching innovations in 

elementary schools to reforms in curriculum and assessment. They all have experience 

in teacher education and in implementing research findings in schools. In Italy, we 

have selected and interviewed 9 researchers in mathematics education. They are 7 

accomplished academics and two teacher-researchers, who have a wide range of 

different research interests: mathematics difficulties and the use of representations, 

teachers’ beliefs and problem-solving, teacher education, semiotic mediation, cultural 

transposition, multimodal approaches and gestures, Montessori method education. All 

of them have experience in teachers’ professional development courses and empirical 

research in classrooms, and they are familiar with the topic. Seven of them are members 

of the National association of research in mathematics education (AIRDM). 

Interview protocol 

To collect the academic experts’ opinions, we conducted individual semi-structured 

interviews via Zoom, approximately one hour long, in the period between May 2021 

and December 2021. The interview prompts were designed to assess the researchers’ 

views on key aspects of implementing ABM activities at school, especially in relation 

to teaching practices. The first goal of the interviews was to gather the researchers’ 

opinions on the terminology and prototypical examples that might be commonly 

known and recognized by teachers, at different school levels, to identify ABM 

activities. Furthermore, the interviews helped shape the characterization of ABM 

activities and their implementation from the researchers’ perspective. The prompts for 

the interviews are listed in the box below (Tab.1). 

Table 1. Prompts for mathematics education researchers’ interviews. 

I  Whether and why is it important to implement ABM activities at school? 

II What are the beliefs that should guide teachers in proposing them?  

III  Which levels of awareness and knowledge should accompany teaching when implementing 

ABM activities? 

IV  Which characteristics concerning the implementation of ABM activities at school 

determine their teaching effectiveness? 

V What are the main limitations of the use of ABM activities in daily teaching practice?  

What are factors that could hinder/favour their implementation at school? 

DATA ANALYSIS 

The narrative material, manually transcribed in Jeffersonian simplified style, was 

analysed via MAXQDA. Interviews were analysed according to the Qualitative 

Content Analysis method, using an inductive category formation procedure (Mayring, 

2015). The so-called open coding in Grounded Theory was used in the first instance to 
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refine the results with focused, axial coding (Cohen et al., 2017). Concept maps were 

used as a tool to represent the conceptual framework of the academic experts’ 

perspective that emerged from the data gathered on each theme. The main themes 

addressed by the interviewees in response to the protocol prompts were coded and 

grouped into categories. The system of codes and sub-codes generated represent the 

core of the analysis and the interpretation of the results. It was conducted by making 

use of concept maps for each macro-category, in which the nodes consist of the codes’ 

labels. Each code represents a natural unit of meaning, that is, a relevant theme that 

emerged in the narratives, and the codes are organized according to the categories and 

subcategories. In the procedure, we adopted a hermeneutic approach to refine the 

system of emerging categories and codes, based on criteria of interpretive clarity and 

informational accuracy by rereading and cross-analysing the narrative materials in 

several cycles. Proceeding hermeneutically could ensure the stability of the analysis, 

however, it does not guarantee that the codes assigned to the text units will be 

reassigned in the same way by another independent coder. In order to get a measure of 

the trustworthiness, we made use of investigator triangulation (Denzin, 2009). In the 

research presented here, a reliability process was planned, as outlined by Syed and 

Nelson (2015). We involved two external researchers in a refinement phase, for partial 

analyses of significant coding patterns, and two coders whose task was to conduct a 

final validation of inter-rater agreement, analysing the 20 percent of the total narrative 

material. The percentile agreement index shows that the analysis is sufficiently reliable 

(iagreements(Cod.1,Cod.2) = 83% > 80%). In addition, the accuracy indexes of both 

external coders are quite good, respectively iaccuracy (Cod.1) = 85% and 

iaccuracy (Cod.2)  = 96%. We also attempted to limit the risk of the researcher’s 

autonomy in creating the coding system, by inductively eliciting analysis from text 

units and reverting to coding narrative texts based on code and category systems, 

questioning fidelity and interpretive clarity reshaping coding systems until no more 

inconsistencies or ambiguities were found. Finally, to further ensure reliability, we 

returned the entire interview transcript to each interviewee. 

FINDINGS AND DISCUSSION 

The analysis of the interviews revealed the presence of common elements and 

characteristics that distinguish the opinions of the two groups of researchers, Italians 

and Australians. We report below an overview of some indications provided by the 

researchers to observe differences that emerged concerning the two investigated 

contexts. The examples of data and findings reported here come from a reading of the 

materials organized into two macro-narratives, expressing the totality of the Italian 

contributions, on the one hand, and the Australian ones, on the other. A more extensive 

discussion of the results of the explorative study may be found in (Boscolo, 2022a). 

We will report the experts' contributions by indicating the name, in the Italian case, or 

a pseudonym (e.g., Au_Expert 1), in the Australian case, followed by the citation 

paragraph number. This difference in the treatment of direct quotations is a 

consequence of the different guidelines of the research ethics committees that 
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evaluated the project in the two countries. Further, the Italian contributions are 

translated by the author. 

From the analysis of the researchers’ interviews, a significant cultural difference was 

particularly evident. For Australian academics, ABM activities represent an instrument 

for investigating and interpreting the world, e.g., “to visualise, [..] envision 

mathematics in the world” (Au_Expert 2, p. 38-42), and they tend to consider these as 

a way of bringing mathematics closer to students, as shown in the following paragraph:  

I think math could be taught in a very abstract way and if - particularly for younger 

children- if you want them to engage and enjoy maths I think it's gonna be practical and 

real, and using manipulatives just helps them to see this being something real. (Au_Expert 

1, p.28) 

Otherwise, the Italian ones mainly related them with the possibility, for a greater 

number of students, to access a deeper and more relational understanding of 

mathematics (Skemp, 1976), through a meaningful construction of knowledge that also 

considers its history and evolution. For instance, the Italian expert M. Mellone, 

addressing the first prompt, stressed to what extent ABM activities promote 

meaningful learning of mathematics, giving students the possibility to be actively 

engaged in the construction of mathematical meaning:  

[In these activities there is] the possibility of more meaningful learning, where students 

are actually active protagonists in the construction of their knowledge […] allowing for a 

multifaceted approach to mathematical meanings. (p.30)  

Furthermore, the expert F. Arzarello emphasized that in such activities clearly emerge 

“what role the body plays in the solution [of mathematics task] and thus the 

multimodality with which we relate to mathematics, which is fundamental”(p.21). The 

multimodality, as an essential aspect of ABM activities particularly aiming at allowing 

broader access to mathematics, is also emphasized by the Italian expert A. Baccaglini-

Frank. In the following, she focuses on the beliefs that a teacher should possess when 

implementing ABM activities: 

[she has to believe that their integration is relevant for] opening up the [teaching-learning] 

proposal on multiple channels and having the belief that this actually facilitates more 

students to follow the teacher in the construction of knowledge, which is crucial. (p.32)  

The different characterization, evident throughout the interviews, clearly emerges 

when analysing the examples of the ABM activities proposed by the experts, both in 

terms of the content areas concerned and the typologies of materials and tools involved. 

The Italian researchers showed a greater interest in more traditional mathematical 

disciplines (e.g., activities from the geometrical tradition) with an emphasis mostly on 

the conceptual and theoretical construction of knowledge. For instance, as emphasized 

by M.G. Bartolini Bussi, among ABM activities, the integration of activities related to 

the history of mathematics is considered especially significant: 

[It is relevant to include] examples that relate to the history of mathematics, because the 

mathematics that we know today has been mainly developed from these examples. And 

thus, by the way, not always consciously. (p.30) 
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On the other hand, Australian academics cited many examples of mathematical 

modeling and real-world problems or activities related to the area of probability and 

statistics, which are completely absent in the Italian context. In addition, Australian 

academics quite commonly referred to examples in interdisciplinary areas, unlike 

Italian researchers. In the Italian context, ABM activities are instead much more often 

conceptualized as ends for the discipline itself. Evidence of this is the many references 

to the history and development of mathematical ideas that emerged repeatedly from 

their narratives, involving references to examples with classical tools that have 

characterized the evolution of mathematics (such as the abacus, the ruler and compass, 

or mathematical machines). Finally, Australian academics gave much less space to 

examples that recalled the use of a specific material designed for instructional 

purposes, for the conceptual learning of mathematics, preferring materials related to 

everyday life and contexts. Beyond the examples, this characteristic emerges cross-

categorially in the researchers' contributions. For instance, as illustrated in the 

conceptual map below (Fig. 1), showing the indications regarding the knowledge a 

teacher should possess to implement ABM activities, although most of the indications 

are in common, the Italian researchers stressed the importance of knowing the history 

and development of mathematical ideas: e.g., 

Teachers need to know the epistemology, the philosophy, and, nonetheless, the history of 

mathematics: how humans first came to certain concepts can be a fairly natural way to 

present them to children. Thus, it is necessary to know mathematics and, furthermore, 

some ancient mathematics. (B. Scoppola, p. 63). 

Meanwhile, Australian academics highlight the need for specific knowledge to link 

formal mathematics to the experience of reality, as emphasized in the followings: 

It requires more experience in the teacher to be able to envision the mathematics in the 

world […] They have to see the mathematical ideas that are at play. And I think for most 

teachers- both primary and secondary, they don't have that experience. So they don't yet 

know how to make the links. They might know the mathematics but they haven't linked it. 

(Au_Expert 2, p.42)  

 

The number on each link indicates the occurrences within the contributions of each group of researchers 

(Italian or Australian) of each unit of meaning (indicated in the corresponding box). 

Figure 1. Concept Map: Necessary teachers’ knowledge for implementing ABM 

activities (Realized with XMap, MAXQDA Analytics Pro 2022). 
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CONCLUDING REMARKS 

In this report, the opinions of experienced mathematics education researchers regarding 

ABM activities are presented, comparing respondents according to the context to 

which they refer. It allowed us to identify contextual and cultural factors possibly 

determining the characterization of this proposal and its implementation in Italian and 

Australian schools. These activities are conceptualized as promoting access to a deep 

understanding of mathematical concepts by the interviewed Italian researchers. This 

aspect emerges in the arguments answering the specific interview prompts, as well as 

in the proposed examples. Indeed, they leaned toward activities that refer to strictly 

disciplinary content and classical and historical examples. Moreover, in these 

examples, didactical materials specifically designed for mathematics or tools used in 

mathematical practice are expected to be used to access conceptual aspects of 

mathematics, rather than looking at applications or envisioning mathematics in the 

world. In contrast, for Australian experts, the proposal for this activity is more 

explicitly aimed at linking mathematical knowledge to the real world, favouring 

modeling activities, representing phenomena, and dealing with real-world problems. 

Answering the interview prompts, they emphasized the relevance of linking 

mathematical contents and the real world. Furthermore, they proposed examples that 

refer to content areas belonging to applied mathematics and to exploratory tasks 

concerning the reality in which the students are immersed. From the perspective of  IR 

in ME, if, as an initial step, it is essential to identify at the research level the 

characteristics of the innovation under study, search for the cultural aspects of this 

conceptualization seems also pivotal for investigating the implementation taking into 

account the culture of the context (e.g., the country). To this end, involving researchers 

in mathematics education which refer to different countries, with diverse mathematical 

and educational cultures, could be a helpful instrument to become conscious of these 

cultural features. In our case, the comparison between the conceptualizations of the 

two groups of researchers, Italian and Australian, emerging from interviews, allowed 

us to outline the research directions for the exploratory study conducted with teachers 

in Italy and Australia (Boscolo, 2022b). Comparing the opinions of diverse groups of 

experts, or experts from other different countries, the conceptual framework that 

emerges may highlight still further differences. Furthermore, it seems essential to 

further analyse if emerged features in the conceptualization could be traced in the 

curricular trends and mathematics education cultural traditions of the two contexts. 
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Developing equitable outcomes for all students in mathematics has been an ongoing 

focus in both research and policy. In New Zealand, a professional learning and 

development (PLD) initiative, Developing Mathematical Inquiry Communities, 

supports teachers to use culturally-sustaining mathematics pedagogy with 

marginalised students. The study presented in this paper investigates student 

mathematical wellbeing (MWB) in schools undertaking this PLD. We focus on 

students’ MWB across the number of years of school participation in the PLD and 

following the PLD completion in the fourth year and beyond. Findings showed higher 

student MWB in schools that had completed the PLD. Implications for PLD 

programmes in mathematics education are discussed.  

INTRODUCTION 

Both within New Zealand and internationally, an ongoing challenge has been persistent 

inequity in a range of outcomes related to mathematics education for marginalised 

groups of students. New Zealand schools, similar to many other Western countries, 

have a changing student demographic including a large number of Indigenous Māori 

students and increasing numbers of students of Pacific descent. People of Pacific 

descent are a diverse heterogeneous group of people with heritage to the Pacific nations 

such as Samoa, Tonga, the Cook Islands, Niue, Tokelau, and Fiji. Research studies 

illustrate teachers’ deficit perceptions in relation to marginalised students’ capability 

in mathematics and others show deficit beliefs are highly resistant to change (e.g., 

Louie, 2017; Turner et al., 2015). Both deficit teacher perceptions and the ongoing 

documented challenge of achieving equitable outcomes for Māori and Pacific students 

(Allen & Trinick, 2021; Hunter & Hunter, 2018) have the potential to influence 

students’ MWB.  

When students’ values are fulfilled in the mathematics classroom they feel good, are 

more engaged, and become more resilient to challenge and adversity – that is, they 

have high MWB. Conversely, because wellbeing is value dependent, cultural 

mismatches in the mathematics classroom (i.e., teachers or pedagogical values 

incongruent with students’ cultural values) can contribute to anxieties, disengagement, 

or poor achievement (Stephens et al., 2012; Hill et al., 2021) – all indicators of ill-

being. In New Zealand, Māori and Pacific students experience a cultural mismatch 

between the values of a Eurocentric educational system and their own cultural values 
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and often believe mathematical success is possible only when they suspend their own 

cultural identity and values (Hunter & Hunter, 2018).  Milne (2013) describes this as 

‘white space’ - or when marginalised students assume the mindset of the dominant 

culture. This cultural identity flipping reinforces deficit beliefs; degrades student 

autonomy, and agency; impacts on students’ motivation to learn; and ultimately 

undermines their wellbeing (Ryan & Deci, 2000). We argue shifting marginalised 

students' mindsets so they can begin to embody and celebrate their cultural values in 

the mathematics classroom requires a sustained, dedicated, and long term approach. 

Culturally responsive/sustaining mathematics pedagogy (CSMP) is a means of 

responding to cultural mismatches and addressing challenges in relation to equitable 

outcomes for marginalised students (Gay, 2010; Paris, 2012). In New Zealand, a three-

year professional learning and developmental initiative called Developing 

Mathematical Inquiry and Communities or DMIC (see following section) focuses on 

CSMP and aims to counteract deficit theorising, support teacher practices for 

inclusivity and enactment of lessons of higher intellectual quality; and support student 

MWB through cultural value alignment. This study reports on students’ responses to a 

survey measuring their MWB. Specifically, we investigate the difference in MWB for 

students attending schools engaged in the first, second or third year of DMIC PLD or 

those students’ attending schools which have completed the PLD and are working to 

sustain the practices that align with the PLD. 

DMIC PROFESSIONAL LEARNING AND DEVELOPMENT INITIATIVE 

The DMIC model is a research-based professional development and pedagogical 

change initiative. A key component is the construction of collaborative learning 

communities across schools, with groups of teachers, and in individual schools and 

classrooms. The PLD is set within the central tenets of a culturally sustaining model 

(Paris, 2012) as well as supporting teachers to create, plan and enact ambitious 

mathematics pedagogy to raise mathematics achievement (Kazemi et al., 2009). New 

Zealand schools serving marginalized Pacific communities are prioritised for inclusion 

in the initiative, which is funded by the New Zealand Ministry of Education. Many of 

these schools also have significant numbers of students of Indigenous Māori heritage.  

The DMIC PLD takes a whole-school approach predominantly working with teachers 

from primary and middle schools (Year One to Year Eight) with some involvement in 

lower secondary schools (Year Nine and Year Ten). Over the three-year period it 

involves two complementary forms of PLD, out-of-class PLD sessions and in-class 

mentoring. In the third year, a lesson-study process (Hunter & Back, 2011) is 

introduced to develop sustainability. The out-of-class PLD offers opportunities for 

exploration, discussion, and reflection on pedagogical practices aligned with CSMP 

and ambitious pedagogy. This includes identifying and building on student funds of 

knowledge and cultural values, using challenging tasks, implementing mathematical 

practices with students, and noticing and responding to students’ mathematical 

thinking. During the in-class mentoring, the mentor and teacher work together to co-
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construct mathematics lessons and critically reflect on and shift pedagogical practices. 

This includes explicitly noticing student strengths and creating a classroom 

environment for respectful social interactions. A key focus in working with teachers is 

to support them to engage students in a range of mathematical practices such as 

explanation, justification, and generalisation while also considering the cultural values 

and beliefs of the students (Hill et al., 2019; Hunter & Hunter, 2018). Following the 

third year of the professional development, schools move to independently sustaining 

the pedagogical practices with support when necessary in the form of out-of-class PLD 

sessions and in-class mentoring only for new teachers at the school. Aligning the 

teachers’ pedagogical values with students’ values underpins DMIC with the aim of 

promoting positive learning outcomes like enjoyment, interest achievement, and 

engagement – all components of MWB. 

THEORETICAL FRAMEWORK & BACKGROUND 

Here we define MWB as feeling good and functioning well (Huppert & So, 2013) 

accompanied by a positive state of functioning from students’ experiences in the 

classroom aligning with their personal, or cultural values (Tiberius, 2018). We explore 

MWB according to seven dimensions previously identified in the literature (see review 

by Hill et al., 2022): accomplishments, cognitions, engagement, meaning, 

perseverance, positive emotions, and relationships. In this study we also include 

cultural identity as an eighth dimension because of links to Pacific and Māori wellbeing 

(Matika et al., 2021). Pacific and Māori people embrace collectivist cultural values like 

respect, relationships, family, belonging, and inclusion. Studies indicate cultural 

identity, language, and the ability to live in accordance with values, are closely tied 

with positive wellbeing for Pacific and Māori people (Matika et al., 2021). Applied to 

the classroom, Pacific and Māori students who feel a sense of cultural pride, cultural 

belongingness, connectedness, and have their cultural norms/values embraced (e.g., 

community, love, reciprocity) would likely experience higher wellbeing. These eight 

dimensions are interconnected rather than being mutually exclusive, e.g., feeling 

accomplished is often accompanied by positive feelings.    

METHODS 

In this study, students self-reported their MWB using an 11-point likert scale with 21 

questions covering eight MWB dimensions (Hill et al., 2022). This survey was 

developed from existing wellbeing surveys (e.g., the PERMA wellbeing profiler with 

23 survey questions, Butler & Kern, 2016) however, here we adapted the survey 

questions to reflect mathematics education.  For example, survey questions included: 

In my maths class I have friends that support me when I need it (relationship 

dimension); Maths is an important part of my culture (cultural identity dimension); or 

When I am doing maths I feel happy (positive emotion dimension). Cronbach’s alpha 

showed an acceptable internal consistency across each of the eight wellbeing 

dimensions (0.68 <  > 0.93).   
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Participants included 4218 students (50% male) across New Zealand, including 

students from Years 3 to 10 (aged 7 to 15). Students were culturally diverse, self-

identifying as Pakeha/European (n = 2502), Māori (1014), Pacific (384), Asian (291), 

or unspecified (27). Students attended schools that were either in their first year 

(students n = 1101; schools n = 13), second year (1752; 27), third year (1174; 12), or 

post PLD (191; 4). Students completed the survey in 2021 at the start of Term 1, thus 

Year 1 were schools right before they had started the PLD (i.e., a baseline group), Year 

2 was after a full year of DMIC (and into the second year) and similarly with Year 3. 

Post PLD were students from schools who had finished the three-year DMIC PLD and 

were working on sustaining the pedagogical practices aligned with the PLD.  

Survey data were imported into SPSS 28, with univariate ANOVA (using post-hoc 

Tukey tests) assessing statistically significant main effects in students’ ratings of MWB 

across each year schools had participated in the DMIC initiative. Thus, our Year 1 

group (shown in Figure 1) included students from multiple Year levels and schools and 

likewise with the second, third, and post DMIC PLD groupings.  

RESULTS 

The mean ratings for overall MWB (dotted line) and for each of the eight dimensions 

(solid colored lines) are displayed in Figure 1. 

 

Figure 1: Mean MWB scores across length of time in DMIC PLD. 

As shown in Figure 1 students across all years in the DMIC initiative tended to rate 

relationships (green line) the highest and positive emotions (red line) the lowest, except 

for the post DMIC period where positive emotions rapidly improved relative to the 
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other MWB dimensions in the same period.  Statistically significant main effects were 

found for overall student MWB F(3, 4227) = 5.5, p < .001, attributed to students having 

significantly higher overall MWB post DMIC (see Figure 1 for all mean values) 

compared to both the first and third, but not the second years of DMIC. Concerning the 

eight MWB dimensions, main effects were found for all dimensions except 

engagement (accomplishment F(3, 227) = 5, p = .017; cognitions F(3, 4227) = 2.61, p 

= .05; culture F(3, 4203) = 4.12, p = .006; meaning F(3, 4227) = 3.4, p = .017; 

perseverance F(3, 4226) = 3.88, p = .009; positive emotions F(3, 4226) = 7.39, p < 

.001; and relationships F(3, 4227) = 3.36, p = .018). These effects were predominantly 

because students rated relationships, positive emotions, accomplishment, and 

perseverance significantly higher in the post DMIC period compared to first and third 

years of DMIC; positive emotions were rated higher in the post DMIC period compared 

to all other years; meaning was rated significantly higher only in the second compared 

to third year; cultural identity higher only in the post DMIC period compared to the 

third year. Taken together the DMIC PLD programme appears to enhance students 

MWB broadly and across multiple MWB dimensions from the post PLD period.  

DISCUSSION AND CONCLUSION 

Our findings demonstrate a positive association between schools participating in the 

DMIC PLD with higher student MWB, with improvements in students’ MWB more 

likely when they attend schools who have completed the 3-year PLD initiative and are 

sustaining the pedagogical practices (i.e., the post PLD period). This is an important 

finding because it demonstrates improvements to student MWB can be sustained even 

after the PLD has concluded. Key aspects of the DMIC PLD include a focus on CSMP 

and the introduction of ambitious pedagogy and mathematical practices in ways that 

align with marginalised students’ cultural values. For example, to align with values of 

respect and collaboration teachers introduce mathematical argumentation as “friendly 

arguing” and teach students how to disagree with a mathematical idea in a polite way 

while positioning this both as a respectful action (i.e., it is respectful to show that you 

have thought deeply about a peer’s idea) and an action to collaboratively support others 

(i.e., through sharing and constructing mathematical ideas). Introducing these high 

leverage practices in ways that draw on value alignment/fulfillment may in part explain 

why students’ MWB continued to improve post PLD. Additionally, we conjecture that 

the schools which were working on sustaining the pedagogy post the PLD may have 

implemented the pedagogical practices with high fidelity (e.g., aligning pedagogical 

values with students values) over an extended period of time.  

Our findings suggest improving students’ MWB may not be a quick process, thus a 

long-term approach to mathematics PLD, to ensure changes in teacher practices and 

beliefs is required. Earlier research (e.g., Horn, 2010) highlighted the extended time 

and incremental process for teachers to enact new pedagogies. As teachers see the 

results of their actions in classrooms impacting student outcomes, the evidence 

promotes a shift in deficit beliefs and affirms the pedagogical actions, leading to more 

sustained classroom practices. However, because student outcomes are often delayed 
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following PLD enactment, as acknowledged in a review of educational PLD (Kennedy, 

2016), teachers may doubt the efficacy of their actions resulting in a premature 

reversion to initial practices. This phenomenon may be contributing to the results 

shown here in our study where MWB across a range of dimensions decreased slightly 

(though not significantly) between the second and third year of the DMIC PLD. 

Alternatively, we conjecture that this may be related to the timeframe in which these 

schools began the DMIC PLD in 2020. The PLD delivery in 2020 was significantly 

disrupted due to COVID-19 lockdowns and school closures in the first part of the 

school year and middle of the year. We will continue to examine this as part of the 

longitudinal data collection in future to see whether the dip in MWB is consistent in 

the third year of the PLD.  

Our earlier study (Hill et al., 2022) demonstrated a decline in MWB as students 

progressed through school. Follow-up studies will also investigate how the year level 

of students interacts with the length of time in the PLD in relation to student MWB. 

The ultimate effects of PLD on student MWB and other outcomes are likely not 

completely visible until towards the end of the period of professional learning. Our 

results support an argument that mathematics PLD evaluation should take a long-term 

view (Kennedy, 2016) in studying both teacher practices and student outcomes beyond 

the end of the PLD and as schools themselves sustain the changes in practice.  

Notably, our findings point to the positive emotion MWB dimension showing the most 

change from beginning to post DMIC PLD period (a 0.7 point increase), followed by 

relationships, and perseverance (both 0.5 point increases). Across many countries, a 

significant challenge of mathematics education is the negative feelings, dislike, and 

anxieties students hold towards mathematics, and once developed, these negative 

feelings often carry through well into adulthood (Grootenboer & Marshman, 2015). 

Key components of the DMIC PLD focus on elements which potentially improve 

positive emotions towards mathematics by shifting student perceptions of what it 

means to do mathematics. For example, a previous qualitative study (Hunter et al., 

2019) focused on the changes in Pacific and Māori student perceptions of mathematics 

after the first year of the DMIC PLD, responses shifted from the majority of students 

describing learning mathematics as number and calculations at the beginning of the 

PLD, to students predominantly describing learning mathematics as participatory 

practices and problem solving.      

The DMIC PLD advocates teacher pedagogical practices that align with key 

collectivist Pacific values such as relationships and collaboration. The strong 

improvement in students’ ratings of the relationship and cultural identity dimensions 

suggests the PLD is supporting teachers to use practices that fulfill students’ cultural 

values by promoting closer relationships and allowing students to embrace their 

cultural identity thus counteracting the ‘white space’ mindset (Milne, 2013). Similarly, 

the increase in students’ ratings of perseverance is encouraging because students who 

persevere are more likely to recognise their strengths and attempt to persist for a greater 
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length of time with challenging mathematics tasks. This in turn raises the potential for 

student achievement and higher accomplishment MWB.  

We acknowledge the need for further studies that also draw upon qualitative data to 

examine and identify both teacher and students’ perspectives in relation to the reasons 

for the shifts in MWB. Additionally, further research should focus on the relationship 

between teacher actions in the mathematics classroom and student MWB. It would also 

be beneficial to interrogate longitudinal matched data on student MWB from the same 

schools to provide a more robust view of the changes in student MWB over time point 

data. These areas will be the foci of future studies which are currently in progress.  

To conclude, we have shown the potential of developing more positive student MWB 

through the use of PLD which addresses both CSMP and ambitious pedagogy. We note 

the importance of recognising and building upon cultural values to ensure values 

alignment and fulfillment. We also illustrate the importance of both a long-term 

approach to mathematics education PLD and longitudinal data collection related to 

student outcomes following PLD. 
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Bayesian reasoning is a way of thinking in situations of uncertainty that is crucial for 

experts such as physicians or lawyers but also for lay people. Bayesian reasoning 

could be understood to calculate specific conditional probabilities, but also to be able 

to estimate the result of a change of independent variables on dependent variables, i. 

e. to judge covariation in the context of Bayesian reasoning. Research yields that 

(expert and lay) people struggle with calculation in a Bayesian situation, but also 

yields strategies to improve Bayesian reasoning, e.g. by using natural frequencies and 

visualisations. In this paper we refer to the effect of different visualisations on people’s 

performance regarding covariation. We found a supremacy of visualisations such as a 

2x2-table and a unit square over a well-known visualisation such as a tree diagram. 

THEORETICAL BACKGROUND 

Bayesian reasoning is understood as “the process of combining conditional probability 

information and base rate information to update a posterior probability” (Reani et al., 

2018, p. 63). For example, a person receives a positive medical test result concerning 

a specific disease and uses this information to update the knowledge about his or her 

condition of health. Before getting this information about the test result (𝐼), the person’s 

hypothetical knowledge about his or her condition of health concerning the specific 

disease (𝐻) may (without additional information) be represented by the base rate 

(sometimes also referred to as prevalence) for this specific disease in the population 

(𝑃(𝐻)). With this base rate and additional knowledge about characteristics of the 

medical test, a Bayesian situation, i.e. a situation in which applying Bayes’ formula is 

appropriate (Büchter, Eichler, et al., 2022), is given (Fig. 1). 

The probability that a person in a certain population has the specific disease (𝐻) is 

10% (base rate, 𝑃(𝐻)). 

If a person has the disease, he or she will have a positive result in the medical 

diagnostic test (𝐼) with a probability of 80% (sensitivity of the test, 𝑃(𝐼|𝐻)). 

If a person does not have the disease, he or she will nonetheless receive a positive 

test result in the medical diagnostic test with a probability of 10% (false-positive rate 

of the test, 𝑃(𝐼|�̅�)). 

Figure 1: A Bayesian situation concerning a fictitious disease 

By processing the data with Bayes’ formula the so-called positive predictive value 

(PPV) as the probability of having the disease given a positive test result can be 
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calculated: 𝑃(𝐻|𝐼) =
𝑃(𝐼|𝐻)∙𝑃(𝐻)

𝑃(𝐼|𝐻)∙𝑃(𝐻)+𝑃(𝐼|�̅�)∙𝑃(�̅�)
=

0.8∙0.1

0.8∙0.1+0.1∙0.9
≈ 0.47. The PPV is the update of 

the base rate and, thus, an improved information of a person’s condition of health.  

Similarly, the so-called negative predictive value (NPV) is the probability of not having 

the disease given a negative test result, 𝑃(𝐻|𝐼) =
𝑃(𝐼|̅�̅�)⋅𝑃(𝐻)

𝑃(𝐼|̅�̅�)⋅𝑃(𝐻)+𝑃(𝐼|̅𝐻)⋅𝑃(𝐻)
=

0.9⋅0.9

0.9⋅0.9+0.1⋅0.2
≈

0.98. Bayesian reasoning is important among disciplines, such as medicine (Ashby, 

2006) or law (Lindsey et al., 2003), but also for lay-people within the general society 

when judging risks (Spiegelhalter et al., 2011). 

However, for the aspect of calculation referring to the PPV a meta-analysis of 

McDowell and Jacobs (2017) showed that only about 5% of people are able to calculate 

a PPV in a Bayesian situation as given in Fig. 1 without further support. This is 

particularly concerning, as the performance is even similarly low among experts, who 

require Bayesian reasoning professionally, such as medical practitioners (Hoffrage & 

Gigerenzer, 1998) and legal experts (Lindsey et al., 2003). A bias which is often 

mentioned as the cause for the low performance of calculation is the so-called base rate 

neglect (Kahneman & Tversky, 1982), by which people tend to overlook the influence 

of the base rate. However, research in psychology and mathematics education 

consistently showed that it is possible to improve people’s Bayesian reasoning by using 

natural frequencies instead of probabilities as the format of data in a Bayesian situation 

(McDowell & Jacobs, 2017). The medical situation with the information in the format 

of probabilities which is given above is given with natural frequencies in Fig. 2. 

100 out of 1000 persons in a certain population have a specific disease (𝐻). 

80 out of 100 persons having the disease will have a positive result in a medical 

diagnostic test (𝐼). 

90 out of 900 persons not having the disease will have a positive test result in the 

medical diagnostic test nonetheless (𝐼). 

Figure 2: Bayesian situation of a fictitious disease with natural frequencies  

In this case the PPV, that is 𝑃(𝐻|𝐼) =
8

8+9
= 0.47, can be computed by dividing natural 

numbers. Following the meta-analysis of McDowell and Jacobs, using natural 

frequencies increase the proportion of correct calculation of the PPV from about 5% to 

about 25%.  

Visualisation of the data in a Bayesian situation is found to be a second strategy for 

improving the performance of calculation as part of Bayesian reasoning (e.g. Binder et 

al., 2015; Böcherer-Linder & Eichler, 2019; Brase, 2009), particularly if they are 

combined with the natural frequency strategy (Binder et al., 2015). With appropriate 

visualisations, the proportion of calculating the correct PPV in Bayesian situations 

increases from about 25% (with natural frequencies and no visualization) to about 60-

70% with double-trees, unit squares or 2x2-tables (as displayed in Fig. 3) combined 

with natural frequencies (Böcherer-Linder & Eichler, 2019). A well-known tree 
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diagram was found to be also supportive, but significantly less supportive compared to 

the three visualizations mentioned before (e.g. Böcherer-Linder & Eichler, 2019). 

Tree diagram Double-tree Unit square 2×2 table 

   

 

Figure 3: Visualization for supporting Bayesian reasoning 

However, an in-depth understanding of probability and Bayesian situations goes 

beyond only calculating a conditional probability such as the PPV in a Bayesian 

situation, but also entails to be able to evaluate the “influence of variation of input 

parameters on the result” (Borovcnik, 2012, p. 21; cf. also Kazak & Pratt, 2021). For 

example, a variation of the base rate in a Bayesian situation involves a variation of the 

PPV as well. By regarding Bayes’ formula as a function, we rely on Thompson and 

Carlson (2017) to understand a function (in our case Bayes’ formula) covariationally 

when variations of two quantities (in our case probabilities or proportions) are 

conceived simultaneously. We further regard covariation as an additional aspect of 

Bayesian reasoning which builds on calculation (Büchter, Eichler, et al., 2022). 

Covariation has hardly been investigated in the field of Bayesian reasoning so far. Yet, 

Büchter, Steib, et al. (2022) argue that double-trees and unit squares can both be used 

to support covariation in Bayesian situations. This may be based on their structural 

characteristics on the one hand but on the other hand also on their superiority over the 

simple tree diagram regarding calculation. We are not aware of any empirical studies 

comparing the effects of different visualization for covariation apart from the 

comparison of unit square and simple tree diagram in Böcherer-Linder et al. (2017). 

Additionally, it has been shown that the parameter of the Bayesian situation which is 

varied affects covariation (Steib et al., under review). However, we are not aware of 

studies comparing the judgements on different dependent variables when one 

independent variable is varied. For this reason, our study refers to people’s 

performance of covariation, that is to judge the influence of varied parameters in a 

Bayesian situation on an independent variable such as the PPV, as part of Bayesian 

reasoning supported by four different visualisations combined with natural frequencies 

(Fig. 3). In this regard, we investigate two questions.  

First, we investigate, which visualisation is appropriate to support judgements about 

covariation in a Bayesian situation. For this, our hypothesis (H1a) is that a simple tree 

diagram should be least supportive and the double-tree and unit square should be better 

as they both outperform the simple tree diagram regarding calculation (Böcherer-

Linder & Eichler, 2019) and also regarding covariation at least for the unit square 

(Böcherer-Linder et al., 2017). Additionally, the area-proportionality could be 
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particularly supportive for covariation (compare Büchter, Steib, et al., 2022). For this 

reason, a superiority of the unit square over the 2x2-table may be expected. However, 

since Böcherer-Linder and Eichler (2019) found a significant superiority of the 2×2 

table over the unit square for calculation, we explore differences between a unit square 

and a 2x2-table (H1b) for covariation without a directed hypothesis.  

Secondly, in Böcherer-Linder et al. (2017) people’s performance of covariation varied 

descriptively regarding the affected variables when the base rate was varied. The 

descriptive results yielded the best performance for estimating changes of the PPV. 

However, the differences were not explored statistically. Therefore, our second 

research question investigates, if the performance of covariation varies when different 

dependent variables of a function, that is the PPV or other probabilities of a Bayesian 

situation are analysed. We hypothesize (H2) that the performance should be higher for 

estimating changes of the PPV than for changes of other variables (i.e. sensitivity or 

NPV) when varying the base rate.   

STUDY DESIGN AND METHOD 

The sample consists of 221 undergraduates at the University of Kassel (Germany) who 

were enrolled in a course of mathematics education for primary schools. This course 

does neither include the four visualizations (Fig. 3) nor Bayes’ rule in the curriculum. 

The students worked on two Bayesian contexts with two tasks each. One of these 

contexts is the fictitious medical context given in Fig. 2. In the first tasks the students 

were asked to calculate the PPV in the Bayesian situation. In the second task which is 

the main focus in this paper, the students answered the three items about covariation 

given in Fig. 4. Each Bayesian context was visualized with one of the visualizations 

and the same visualization was used in both contexts (cf. Böcherer-Linder et al., 2019).  

In another population the proportion of people who have the disease among the 

1000 people is higher. Indicate the correct proposition: 

Item 1:  The proportion of the negatively tested people among those people who 

have the disease  

is higher   is lower  remains the same  

Item 2:  The proportion of people having the disease among the positively tested 

people 

 is higher   is lower  remains the same 

Item 3:  The proportion of people not having the disease among the negatively 

tested people 

 is higher   is lower  remains the same 

Figure 4: Second task on covariation with three items in one of the Bayesian contexts  

Item 1 refers to a change of the sensitivity, item 2 refers to a change of the PPV and 

item 3 refers to a change of the NPV each based on the change of the base rate. For 
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item 1, the third option is the correct answer (remains the same), for item 2, the first 

option is the correct answer (is higher) and for item 3, the second option is the correct 

answer (is lower). 

To introduce the visualizations for students, we gave a brief description of the 

visualizations on the front pages of the questionnaires (cf. Böcherer-Linder & Eichler, 

2019). In addition to the introduction, we had no further intervention.  

For analysing the data, we estimated a generalized linear mixed regression model with 

a maximum-likelihood method (Hilbert et al., 2019). To test hypotheses H1a and H1b 

about the impact of the visualization and also H2 about the impact of the items, we 

defined the visualizations and the items as fixed factors and the participants and the 

context as random factors. We used the free software package R for the analysis. 

RESULTS 

On a descriptive level, our results are shown in Fig. 5, where the proportions of correct 

and incorrect answers are given for each item and each visualization. 

   

Figure 5: proportions of (in)correct solutions for each item and each visualization 

A linear mixed model compares different subgroups of the whole sample to a reference 

group. As our hypotheses H1a and H1b both address comparisons with the unit square 

and H2 states that performance should be best for Item 2 (about the PPV), we set the 

reference group of the linear mixed regression model to the given answers with a unit 

square about Item 2 (the PPV). Then, all other visualizations (double-tree, tree diagram 

and 2×2 table) as well as the other items (Item 1 about the sensitivity and Item 3 about 

the NPV) are implemented as fixed effects. The interactions of the effects are also 

investigated. Results for the main effects are shown in Tab. 1.  
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Table 1: Estimation of the main effects in a generalized linear mixed model  

Fixed effects     

 Estimate Std. error z-value P(>|z|) 

Tree diagram -0.61 0.32 -1.90 0.057 

Double tree -0.31 0.33 -0.95 0.341 

2x2-table 0.35 0.35 1.00 0.316 

Item 1 (Sensitivity)  -1.71 0.31 -5.45 <0.001 

Item 3 (NPV) -1.05 0.30 -3.46 <0.001 

All interactions show no effect. The probability for the comparison of a unit square and 

a tree diagram regarding performance of covariation in Item 2 is slightly above .05. 

Thus, the unit square tends to outperform the tree diagram referring to covariation. 

With the interactions not being significant this can also be assumed for the comparison 

of unit square and tree diagram for Items 1 and 3. The comparison between a double-

tree and a unit square does not show a significant difference for Item 2, but the negative 

estimate for the regression coefficient indicates a descriptively lower performance of 

the double-tree compared to the unit square. Therefore, we ran a post-hoc Chi-squared 

test for the comparison of double tree and tree diagram, which did not yield a 

significant result. For this reason, hypothesis H1a is partially confirmed regarding the 

unit square, but cannot be confirmed regarding the double-tree. Regarding H1b, we did 

not find a significant difference between a unit square and a 2x2-table although the 

results yield a descriptive advantage for the 2x2-table. Yet, a post-hoc Chi-squared test 

is significant, suggesting a superiority of the 2×2 table over the tree diagram.  

Finally, people working with the unit square struggled significantly more, if the 

influence of the base rate on the sensitivity or the NPV is regarded compared to the 

influence of the base rate on the PPV, which is provided by the significant estimates 

for these fixed effects. Further, the non-significant interactions suggest that this 

different performance between the items is similar among all other visualizations. It is 

noteworthy, that people were able to solve item 2 significantly better than by guessing 

(by guessing a proportion of 1/3 is expected), whereas there is no significant difference 

between the observed performance for item 1 and guessing. 

DISCUSSION 

First of all, hypothesis 1a about the unit square was partially confirmed. The constraint 

refers to the p-value concerning the difference between a tree diagram and a unit square 

that is slightly above .05. However, the results imply in addition to the study of 

Böcherer-Linder and Eichler (2017) a supremacy a 2x2-table over tree diagrams. This 

result could be interpreted as a supremacy of a style of visualisation, i.e. the nested 

style (2x2-table, unit square; Khan et al., 2015), over an alternative style of 

visualisation, i.e. the branch style (tree diagram; Khan et al., 2015). However, a double-
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tree diagram seems to have characteristics, e.g. the amount of numerical information, 

which may balance the differences between a nested style and a branch style, as the 

descriptive advantage of the double-tree over the simple tree diagram may suggest even 

though this difference is not significant. 

We did not find a supremacy of the unit square over a 2x2-table, although a plausible 

hypothesis is that the area-proportionality of the unit square may have an effect on 

people’s covariational reasoning. By contrast, on a descriptive level, a 2x2-table 

supported people’s covariational reasoning more effectively than a unit square. We 

assume two reasons for this phenomenon. First, a 2x2-table is a common visualisation 

in school and university (e.g., Veaux et al., 2012; cf. Büchter, Eichler et al., 2022). 

Thus, the familiarity with a visualisation may impact people’s ability to reason on the 

basis of a visualisation. Further, it may be based on the difference of performance 

regarding calculation with a 2x2-table, as people’s ability to calculate a PPV was found 

to be higher with a 2×2 table compared to people who used a unit square (Böcherer-

Linder & Eichler, 2019). Also, the ability to calculate a PPV in a Bayesian situation 

could be a predictor for people’s ability to judge covariation, particularly concerning 

the PPV.  However, both suggestions must be further investigated. 

Finally, people’s performance of covariation seems to be strongly impacted by the 

specific variable that should be investigated with variations of the base rate in a 

Bayesian situation. Thus, not only the particular supportive strategy but also the 

situational characteristics of the specific tasks in a Bayesian situation strongly impact 

people’ performance of covariation (also compare Johnson & Tubau, 2015 for a similar 

observation regarding calculation). For this reason, covariation in Bayesian situation 

could be a field for further research. 
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This paper reports an investigation into what 13 pre-service teachers (PTs) enrolled 

in a secondary mathematics methods unit in one university noticed when providing 

written feedback on peers’ lesson plans. Drawing on the first two elements of the 

curricular noticing framework (Dietiker et al., 2018), we identify aspects of the lesson 

plans the PTs comment upon in their feedback (attending) and how they make sense of 

those aspects (interpreting). Results highlight three main themes of PT noticing from 

the lesson plans: the pedagogical approach, the nature of tasks, and the learning 

intentions. We discuss how the context of the methods unit and the design of the activity 

impacted the PTs’ feedback. 

INTRODUCTION 

Recent years have seen a growing interest in research about mathematics teacher 

noticing. In part, this is because the ability to notice salient features of a lesson and 

make instructional decisions based on what is noticed is regarded as an indicator of 

quality teaching (Bastian et al., 2022). The focus on teacher noticing also recognises 

the complexity of teachers’ work, particularly deciding if, when, and how to attend, 

interpret and respond to students’ mathematical thinking amid the multi-dimensional 

interactions that occur in classroom settings (Sherin & Star, 2011). There is also 

general agreement among researchers that teachers can be taught to improve their 

noticing ability (van Es & Sherin, 2008). Studies have investigated the role of, for 

example, learning tasks (Ivars et al., 2019), interviews (Lesseig et al., 2016), video (van 

Es & Sherin, 2008), and student work samples (Simpson & Haltiwanger, 2017) in 

developing teachers’ noticing skills. 

Jacobs and Spangler (2017) differentiate three approaches to conceptualising noticing: 

a sole focus on how teachers attend to incidents or ideas (e.g., Star et al., 2011); others 

combine teachers’ attending to how they also interpret what they notice (e.g., van Es, 

2011), though most researchers also include teachers’ responses through their decisions 

or reasoning about what is noticed and interpreted (e.g., Kaiser et al., 2015; Lee, 2021). 

So, although teacher noticing has been described in a variety of diverse ways, the 

conceptions typically include “attention to and interpretation of students’ thinking, 

resulting pedagogical decisions, and the relation between those interpretations and 

broader principles of teaching and learning” (Amador et al., 2021, p. 1). 

Conceptualisations of noticing have also moved beyond classroom interactions to 

include other teaching-related contexts (Dindyal et al., 2021) such as planning (Lee & 

Choy, 2017) and reflecting on a lesson (Choy et al., 2017). Consequently, there has 

also been an expansion of the actions and materials which are the focus of research 
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studies of teacher noticing. These include, for example, professional noticing of 

children’s mathematical thinking (Jacobs et al., 2010), curricular noticing, which 

includes how teachers interpret lesson objectives (Dietiker et al., 2018), and productive 

noticing when teachers design tasks as part of lesson planning (Choy, 2016). 

PT NOTICING 

It is generally recognised that experienced teachers and novice PTs notice aspects of 

classroom instruction differently (Bragelman et al., 2021) since PTs often fail to 

discern the most relevant and significant aspects of a learning situation being distracted 

by superficial details (van Driel et al., 2021). For example, Lee and Choy (2017) report 

that during the planning stage of a Lesson Study, PTs often focus on aspects of 

classroom management and organisation rather than examining the mathematical 

content or the pedagogical approaches of the lesson. 

Even when PTs attend to meaningful incidents, they can struggle to interpret them, so 

teacher educators must help PTs learn to notice (Earnest & Amador, 2019) through 

authentic activities that reflect teachers’ work (Dindyal et al., 2021). Lee (2021) 

cautions that using videos of PTs’ or other teachers’ lessons, or of task-based student 

interviews, might be too complex for PTs and make it more difficult for them to 

selectively attend to noteworthy elements. Instead, Lee recommends reducing 

background distractions to foster PTs’ ability to notice from videos. 

One way to achieve a more controlled situation is through what Grossman et al. (2009) 

describe as ‘decompositions of practice’. These break down complex practices so that 

PTs can more effectively recognise and enact elements of practice. An example of a 

decomposition of practice for PTs which Grossman and colleagues identify is focusing 

on the elements of lesson planning. Lesson planning is what Gueudet and Trouche 

(2009) refer to as an authentic task of ‘teachers’ documentation work’ which they 

describe as “looking for resources, selecting/designing mathematical tasks, planning 

their succession and the associated time management, etc.” (p. 201). 

CURRICULAR NOTICING FRAMEWORK 

It is important for teachers to capitalise on the affordances of recent curricular reforms 

by applying the principles of teacher noticing. Dietiker et al. (2018) refer to this work 

as curricular noticing which they describe in terms of three “strategic and purposeful 

professional practices that must be learned and developed (p. 524). Curricular 

attending concerns teachers’ skills in reading information contained in curriculum 

materials to inform teaching, where curriculum materials can take a variety of forms 

such as lesson activities, mathematical content, and teaching advice. For the purposes 

of our research, we contend that a prepared lesson plan can also be regarded as a 

curriculum document. This is also consistent with Earnest and Amador (2019) who 

describe curriculum materials as physical or digital resources for the purposes of 

guiding instruction.  
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Curricular interpreting is a sense-making activity whereby teachers connect the 

curriculum information to their own content and pedagogical knowledge for teaching. 

Teachers’ interpreting skill draws on their prior experience, their knowledge of their 

students, and how they understand the rationale for the design of the materials. 

Curricular responding relates to teachers’ decision making that occurs in response to 

their interpretation of the curricular materials. It includes not only how teachers decide 

to respond, but also how they enact that in the classroom. In doing so, teachers take 

account of the affordances of the curriculum and consider any alignment between the 

curriculum and the kinds of learning experiences they want for their students. 

This paper reports an investigation into what pre-service teachers (PTs) notice when 

providing written feedback on peers’ lesson plans. Drawing on the first two elements 

of the curricular noticing framework (Dietiker et al., 2018), we identify aspects of the 

lesson plans the PTs comment upon in their feedback (attending) and how they make 

sense of those aspects (interpreting). 

METHOD 

Participants and context 

The participants for this research were 13 PTs in a two-year, full-time equivalent 

Master of Teaching (MTeach) degree for secondary teachers at a large, metropolitan 

university in Sydney, Australia. Entrants to the MTeach hold a bachelor's degree with 

relevant subject content knowledge for their nominated teaching areas. The participants 

were all intending to teach secondary mathematics and were undertaking the third and 

final mathematics methods unit in the first semester of their last year of study. All three 

mathematics methods units were taught by the first author and adopted a reform-

oriented approach based on constructivist learning principles. 

Data collection 

The final assignment for the mathematics methods unit, called a Joint Lesson Plan 

(JLP), was a group task based on a modified Lesson Study. PTs worked in three groups 

of three and one group of four to collaboratively plan a lesson on a given topic from 

the Australian secondary curriculum. The topics allocated were Networks (Shortest 

Paths) (JLP1), Networks (Critical Path Analysis) (JLP2), Bivariate Data Analysis 

(JLP3), and Introduction to Vectors (JLP4). A 500-word ‘background section’ was also 

included to provide a description of the target class (real or hypothetical), information 

about the students’ prior knowledge for the topic, the key concepts, skills and attitudes 

to be developed in the lesson, a rationale for the pedagogical approach taken and how 

this met the learning needs of the target class, and likely student misconceptions and 

how the lesson addressed these. The completed JLPs (background sections, lesson 

plans and accompanying materials such as worksheets) were uploaded to the university 

learning management system where three or four PT peers were randomly assigned as 

reactors. Their task was to individually critique another group’s JLP and write a 500-

word response for them to provide useful and constructive feedback on their JLP along 
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with suggestions for improvement. The reactor feedback commentaries from the 13 

PTs are the data for the present study. 

Data analysis 

All commentaries were uploaded into NVivo for analysis and we applied an emerging 

coding scheme to the data. We independently read the 13 reactor commentaries, noting 

aspects the PTs attended to and how they made sense of them. We then met to discuss 

the unit of analysis and our coding notes. After reaching consensus, we coded one 

commentary together and revised our coding scheme. We applied constant comparative 

analysis, using consensus coding to code all data and kept refining our views until we 

agreed on the code. For example, one author coded a statement as ‘attention to 

coherence’ when the other coded it as ‘alignment’. After clarification, we agreed on 

‘alignment’ to signify how the activities addressed the learning intentions set up at the 

beginning of the lesson plans or how the intentions addressed curriculum outcomes. 

After emergent coding was done, we applied axial coding to group the codes into 

themes. For example, the codes related to the approaches used in the lesson plans and 

the specific ways PTs introduced and developed specific understanding were grouped 

into ‘pedagogy’ as they refer to how to teach mathematics. Based on the frequency of 

the codes and themes, we report here on the items that describe what PTs noticed when 

reading their peers’ lesson plans and how they interpreted them. Given the limited 

space of this paper, we present the three main themes that emerged from our analysis. 

RESULTS 

The first main theme that emerged from the data analysis was pedagogy (39 instances). 

This theme relates to the ways the PTs focused on how the teaching approaches (e.g., 

constructivist, inquiry-based) (10 instances) were adopted in the lesson plan and the 

specific approach of teaching those topics, including students’ misconceptions and 

difficulties when learning the topics (12 instances), the choice of representation models 

and sequencing of the tasks in the lesson (10 instances), and specialised content 

knowledge (5 instances). For example, JLP3 Andy wrote, 

It [the justification] could be stated why a constructivist/social constructivist approach 

suits the topic ... because it can engage higher-order thinking which may result in better 

conceptual understanding. 

Andy focused on the approaches that can help develop higher-order thinking without 

saying specifically how the approaches were used in the lesson. In contrast, JLP1 Eva 

reacted, 

The abstract model used … is much larger than previously seen networks, which could be 

too large a leap. Could it be just as effective with more vertices or more edges, still 

illustrating the point desired that an algorithm is useful? There would also be less set up in 

the concrete model required by students, saving time. There would be opportunity to 

increase the size of the network diagram in the following lesson, also on shortest paths. 
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Eva commented on how the approach to helping students develop an understanding of 

shortest paths with the specific selection of the number of edges or vertices that will 

not create “too large a leap” for students. 

PTs comments on the nature of tasks used in the lesson plan were prominent (36 

instances). PTs focused on how engaging the tasks were (16 instances) and if they 

included real-life or practical contexts (11 instances). For example, JLP1 Gina wrote, 

Your lesson on Shortest Paths is … engaging, practical, hands-on, and relevant to real life. 

I particularly admire your use of public transportation, as this is accessible to students of 

all socio-economic status and relevant to their age demographic. This real-life application 

will drive the mathematical literacy of the students. 

The PTs focused on the use of contexts that are relevant to students, which might keep 

them engaged and help develop their mathematical literacy. In some instances, the PTs 

commented on purpose and utility of tasks, which help students see why they need to 

learn the topic (5 instances). For instance, JLP2 Susan wrote, 

The warm-up activity can be more related to the topic introduced. For example, it can be 

modified to help students recall certain prior knowledge needed for the new topic. One 

way is to present a question on finding the shortest path, which they have learned recently. 

It can also be related to the purpose of critical path analysis. 

Although acknowledging the excellent ideas of the warm-up activity, JLP2 Susan 

suggested that the task should be designed more on purpose to lead to the learning 

goals of critical path analysis by bringing students’ attention to their prior knowledge 

that links to the current topic. Some others focused on details and thoughts about how 

to implement the tasks in classrooms. 

PTs noticed the learning intentions of the lesson when reading their peers’ lesson plans 

(24 instances). This theme relates to how PTs commented on the alignment of the 

learning intentions with the tasks as well as how they address curriculum outcomes. 

JLP1 Gina commented, 

I also think it’s important to consider how the learning intentions are used. Whilst they are 

valuable for both students and teachers to direct the focus of the lesson, this is only if they 

are addressed later. In the mathematics lessons I have observed and taught, it is best if the 

learning intentions are used like a checklist which the teacher refers to at the end of the 

lesson, so the students can see their success (visible learning). 

Here Gina focused on whether the learning intentions are used for both teachers and 

students to direct the lesson flow. In other instances, the PTs noticed the nature of the 

learning intentions, especially higher-order thinking. For example, JLP4 Roger 

commented on the critical and analytical skills addressed in the lesson. 

Working in groups can help motivate and encourage students to learn the content more 

effectively together and be on the same page when later doing individual questions. Group 

work can also help develop critical and analytical thinking skills whilst helping struggling 

students reduce the strain and stress when tackling difficult mathematical problem. 
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DISCUSSION 

This study examined what PTs notice from their peers’ lesson plans. The results 

highlight three main themes they attended to and made sense of: the pedagogical 

approach, the nature of tasks, and the learning intentions. Interestingly, pedagogical 

approaches used in lesson plans received more attention from PTs than issues about 

classroom management and organisation reported in previous studies (Lee & Choy, 

2017). The difference might be explained by the inclusion of the background section 

in the JLPs, where the groups provided information about their target class and justified 

their teaching approaches. This writing might have stimulated PTs’ attention to 

pedagogical aspects of the lesson. 

PTs’ noticed and commented on the nature of tasks, especially on their practicality, 

real-life contexts, and whether the tasks were engaging. This result can be partly 

explained by the assigned topics which were chosen for their potential link to real-life 

contexts (e.g., networks, statistics). Also, a major focus of the mathematics curriculum 

units was to make mathematics more engaging for school students. Research has also 

highlighted the crucial role of tasks in student learning (e.g., Stein & Lane, 1996). 

PTs’ feedback also focused on the learning intentions, especially the comprehension 

of the intentions, how they were aligned with the mandated curriculum, and their 

coherence with the learning tasks and activities used in the lesson. This focus of 

noticing is encouraging as is suggests PTs were aware of explicitly identifying learning 

intentions for students and using them to guide lesson planning. This reinforces the 

research interest in learning intentions as a focus (cf. Spitzer & Phelps-Gregory, 2017) 

of teacher noticing. 

This study contributes to research on PT noticing by shifting the object of noticing 

from more commonly used sources such as videos and student work samples to lesson 

plans. We think that lesson plans provide an authentic decomposition of practice 

(Grossman et al., 2009) for PTs while avoiding the diversions that often beguile PTs 

in classroom settings. Lesson plans can also be viewed multiple times but without the 

distractions that videos can sometimes hold for PTs (Lee, 2021). Peer lesson plans 

might also allow PTs more scope for noticing and critique since the work of their peers 

is more accessible and open to suggestion than that derived from experienced 

colleagues or in published curriculum materials. 

CONCLUSION 

The results of our study suggest that lesson plans, particularly created by peers, can be 

a fruitful source of curriculum noticing for PTs through attending and interpreting 

(Dietiker et al., 2018); responding, though not reported here, is also evidenced in PTs’ 

suggested improvements for the lesson. In the JLP assignment, PTs were co-creators 

of lesson plans and reactors to their peers’ plans, and we intend to investigate if 

adopting these dual roles might impact what PTs choose to focus on in their feedback. 

We surmise that their concurrent experience of planning might encourage them to be 

more thoughtful in their reactor comments to provide feedback commensurate with 
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what they would want themselves. Future research could also compare how PTs notice 

peers’ lesson plans with and without doing their own lesson planning. 
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PROSPECTIVE MATHEMATICS TEACHERS’ LEARNING 

THROUGH GENERATIVE METAPHORS 

Olive Chapman 

University of Calgary 

 

Generative metaphors are useful to support meaningful changes in teachers’ thinking 

and practice. This paper reports on a qualitative study that explored whether 

prospective secondary mathematics teachers held pre-existing metaphors or could 

create metaphors for mathematics that are generative or potentially generative to 

support their learning of inquiry-based mathematics pedagogy. Findings indicated that 

while they did not hold pre-existing metaphors for mathematics, they were able to 

create descriptive metaphors with potential to be generative if they are helped to identi-

fy and explore meaningful attributes of the metaphor domains in teacher education.  

 

This paper builds on the idea that metaphors can play an important role in teachers’ 

development or growth and in framing their practice (Chapman, 2017; Tobin, 1990). 

Tobin explained that metaphors can help teachers make sense of their beliefs and 

encourage reflection which can lead to improvements in their practice. He suggested 

that "significant changes in classroom practice are possible if teachers are assisted to 

understand their teaching roles in terms of new metaphors" (p. 123). Generative 

metaphors in particular are considered useful to support meaningful shifts in teachers’ 

thinking depending on the metaphor. Schön (1979) explained that we hold certain 

pervasive, tacit generative metaphors and we ought to become critically aware of them. 

Thus, if prospective mathematics teachers [PMTs] hold metaphors on entering teacher 

education, understanding them from a generative perspective could provide a basis to 

support their learning through them. This paper reports on a study that explored the 

initial metaphors secondary school PMTs held or created for mathematics and the 

potential of the metaphors to be generative of a perspective of mathematics that aligns 

with an inquiry-based perspective of teaching. It considers the nature of the metaphors’ 

target domains, relationship between mathematics and the target domains, the 

generative perspective of the metaphors, and implications for teacher education. 

USE OF METAPHORS IN RESEARCH AND TEACHER EDUCATION 

Metaphors have been used in a variety of ways in studies of teachers and teacher 

education. Saban (2006) identified ten of these ways consisting of metaphor as: a 

blueprint of professional thinking; an archetype of professional identity; a pedagogical 

device; a medium of reflection; a tool for evaluation; a research tool; a curriculum 

theory; a mental model; an instrument of discovery; and a springboard for change. 

These ways are related to the perspective that metaphors provide useful windows into 

teachers’ professional thinking and cognition. Teachers' knowledge, when expressed 
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metaphorically, could communicate meaning that is difficult to access through literal 

language (Carter, 1990). Research on prospective teachers have indicated that the use 

of metaphors offers opportunities for them to articulate, explore, examine, gain insight 

into, and understand their education-related pre-conceptions, beliefs, experiences, and 

emerging professional identities (e.g., Buchanan, 2015; Casebeer, 2015; Eren & 

Tekinarslan, 2013; Lynch & Fisher-Ari, 2017).  Metaphor creation and analysis could 

help them to frame and deeply understand their own ideas about teaching and learning 

(Massengill & Mahlios, 2008; Saban, 2010).  

The few studies specific to PMTs have used metaphors as a tool for examining 

preservice elementary teachers’ beliefs about mathematics teaching and learning 

(Reeder et al., 2009); in mathematics teacher preparation (Noyes, 2006); to investigate 

PMTs’ thinking about mathematics (Erdogan et al., 2014; Güler et al., 2012) and to 

address mathematical identity (Latterell & Wilson, 2017). So studies on PMTs have 

not addressed the generative aspects of metaphors, which is the focus in this paper. 

GENERATIVE METAPHORS 

Generative metaphors (Schön, 1979/1993) or structural metaphors (Lakoff & Johnson, 

2003) facilitate a process by which we gain new perspectives on the world: a process 

that involves generating or structuring one domain in terms of another. According to 

Schön, a generative metaphor is characterized by the mapping of frames or 

perspectives from one domain to another and allows for frame re-structuring when 

conflict exists. It uses experiences directly appropriate for one domain as a lens for 

seeing another, that is, seeing domain A as domain B where A and B had previously 

seemed to be different things, which requires a restructuring of perception to see A as 

B. Thus, a generative metaphor generates perceptions or explanations of new features 

of a domain or give rise to a new view of it. But Schön explains that not all metaphors 

are generative. Some simply capitalize on existing ways of seeing things. In this paper 

these will be considered as descriptive metaphors. 

Given the nature of generative metaphors, they have the potential to help in changing 

beliefs about mathematics to impact practice positively. There is a lack of information 

regarding PMTs’ ability to construct generative metaphors, to which this study 

contributes. The study focused on creating generative metaphors for mathematics since 

it is well established that there is a direct relationship between beliefs about 

mathematics and teaching mathematics and these beliefs could be difficult to change. 

Generative metaphors have the potential to help PMTs to make changes to their beliefs 

about mathematics in a way that could support inquiry-based teaching depending on 

the attributes of the metaphors. For example, by relating mathematics (the base 

domain) to attributes of a target domain, they could explore the meaning of 

mathematics in new ways. This would require them to choose a target and attributes of 

the target domain, which must include at least one attribute that is different for them 

regarding the relationship to mathematics and prompts exploration of attributes of 

mathematics that could result in a shift in perspective about mathematics.  
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RESEARCH METHODS 

This initial stage of a project that investigates supporting PMTs’ learning through 

metaphors addressed the research question: Do PMTs hold pre-existing metaphors for 

mathematics or can they create initial metaphors for mathematics that are generative 

or have the potential to be generative in relation to framing inquiry-based practice?  

Participants were 65 secondary school PMTs enrolled in a post-degree Bachelor of 

Education program. Most of them had a degree in mathematics, while the others had 

an engineering or physics degree with the minimum requirement of mathematics 

courses for the program. They were in semester 2 of the 4-semester two-year program. 

Data collection was conducted at the beginning of the first class of the PMTs’ first 

mathematics education course to obtain a baseline of what they were able to do. 

Participants were first asked to think about how they viewed mathematics as a 

discipline and to respond to: (1) What is mathematics to you? (2) What view of 

mathematics do you want your (future) students to have at the end of your (secondary 

school) mathematics courses?  They were then asked to respond to: Mathematics is 

like _[something]_ because _____. They were told that the something could be any-

thing that made sense to them and the because should explain what about it and mathe-

matics were considered and how they were related. They were also asked to indicate 

whether they already had a metaphor and to briefly describe their experience in creating 

one including whether it allowed them to think differently about mathematics. In this 

paper, the focus is only on the metaphors and experience in creating them.  

Data analysis included: (1) Identifying and categorizing the targets (i.e., what math is 

compared to) of the metaphors, which produced seven  categories that showed the 

diversity of the metaphors and the PMTs’ thinking. (2) Identifying attributes of the 

base domain (mathematics) and the target domains for each metaphor. This involved 

examining the explanations or descriptions of the domains (i.e., their “because …”) for 

attributes of the domains. For example, attributes for the target domain of “skyscraper” 

were “solid foundation” and “different levels” and for the mathematics domain 

“everything builds on the previous concept.” The attributes were highlighted and 

compared for patterns across the metaphors. This resulted in the metaphors being  

grouped into four categories based on whether the attributes focused mostly on: the 

mathematics domain, the target domain, mapping of both domains, or solving 

problems. Each group was then interpreted from a generative perspective, e.g., whether 

the attributes for each domain were explicitly mapped to each other,  the attributes for 

mathematics aligned with inquiry-based teaching/learning, and the targets had 

potential to generate an inquiry-based perspective of mathematics, e.g., mathematics 

as a way of thinking (mathematical thinking, inquiry, problem solving), as conceptual 

structure (e.g., patterns and relationships), and as authentic real-world applications. (3) 

Examining the PMTs’ written responses of their experience creating the metaphors to 

determine pre-existing metaphors, shifts they perceived in their thinking about 

mathematics that related to generativity of the metaphors, and learning from the task.  
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FINDINGS 

From the PMTs’ perspective, they did not have a pre-existing metaphor for 

mathematics, which suggested that they did not hold their conception of mathematics 

as a metaphor. This was the first time they were asked to think of one, which many 

found to be challenging because it was also the first time they had to explicitly consider 

what is mathematics. Creating the metaphor allowed them to think about what they 

knew about mathematics based on how they experienced it, particularly at the school 

level, and then to try and relate it to something (the target). This process did not 

generate a shift in their perspective of mathematics but awareness of some aspects of 

their view of it that stood out for them. Thus, their metaphors were mostly descriptive 

than generative and suggested what they were able to do in creating them and their 

thinking about mathematics prior to taking any mathematics education courses. As 

presented next, there were limitations in their identification of attributes and interpreta-

tions of the domains of the metaphors, which affected their meaningfulness to generate 

a perspective of mathematics that aligns with inquiry-based mathematics pedagogy.    

Target domains  

While the PMTs did not have pre-existing metaphors for mathematics, all, but one, of 

them were able to create a metaphor with base domain (mathematics) and a target 

domain. Based on their explanations of the domains, the targets were grouped in seven 

categories: object (largest group), place, the arts, activity, person, language, and 

miscellaneous. The following are examples of the targets for each category. 

 Object: wrench, Swiss army knife, house, tree, heart, book, road map, car 

 Place: foreign country, river, mountain, staircase 

 The Arts: art, work of art, music 

 Activity: a puzzle, dancing, cooking, baking, riding a bike, hockey 

 Person (real/imagined): hockey dad, ghost, bogeyman 

 Language: language, spoken language, alphabet  

 Miscellaneous: journey, epiphany, new day, never ending 

These targets show the diversity and personal orientation of the PMTs’ thinking. Many 

of these targets could provide a basis to create generative metaphors for viewing 

mathematics by identifying attributes of them that could be used to explore the nature 

of mathematics. However, the PMTs’ use of these targets in their metaphors lacked 

meaningful attributes as reflected in their explanations of the two domains of the 

metaphor and relationships between them.  

Attributes and Relationships of Domains 

The PMTs’ explanations of the meaning of the metaphors (i.e., their “because”) were 

effective in conveying their pre-existing ways of thinking about mathematics, but they 

did not consider or address attributes of the targets in a way for the metaphors to be 

generative. The following four categories of examples of the targets and explanations 

of the domains highlight some of the limitations in relation to generativity for math.   
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Category 1 –  focus on mathematics domain, e.g., mathematics is related to: 

 Journey because as a teacher you can use mathematics to explore history, to 

look into the future or to examine the present. 

 Art because how [math] flows when it works. An example would be proving 

a theorem. Every line flows beautifully and every term is connected. 

 Dancing because you can really get into [math] with your mind, body, and 

spirit and let it lead you to new conclusions. 

 Music because portions of math are indeed very strict and logical and some 

areas are more “open to interpretation” and different approaches. 

 Spoken language because [math] is an abstract language that is used to define 

and express ideas about reality. 

 A book because [math] contains knowledge that had been built up over 

centuries by hundreds of thousands of individuals. You can use it when 

needed, but rely on it too much and you may miss other valuable perspectives. 

This category consists of metaphors with explanations that focused more on describing 

the mathematics domain than the target domain. Attributes of the target domain are not 

explicitly or meaningfully considered, which is important for generativity. The 

metaphors also seemed unnecessary since the description of mathematics could stand 

by itself without the target. The metaphors have potential to be generative with clearer 

and deeper exploring of attributes of the target domains to prompt further exploration 

of their understanding of the mathematics domain regarding the usefulness of mathe-

matics and doing mathematics that seem to be the underlying focus of their thinking. 

Category 2 – focus on target domain, e.g., mathematics is related to: 

 A tree because it grows from common roots but has many branches. 

 Wrench because it is a tool which holds all other bits tightly in place. 

 Work of Art because there is beauty that exists, but it can take a lot of 

understanding and contemplation to see it.  

 Swiss army knife because it is really useful once you know how to use the 

different parts. 

 Hockey dad because he never fails to answer a question, organize anything 

that’s out of order and explain the number of wins and losses. 

This category consists of metaphors with explanations that focused more on the target 

domain than the mathematics domain. They explicitly addressed at least one attribute 

of the target domain (e.g., for tree, roots and branches; for wrench, tool and holds in 

place; for art, beauty). However, the implied mapping with mathematics is ambiguous 

regarding whether it has identical attributes since no explicit or appropriate meaning 

for mathematics is considered. More clarity of the mapping of the mathematics domain 

to the target domain attributes is important for generativity. Thus, these metaphors have 

potential to be generative with deeper explorations of the attributes of the target 

domains and particularly the mathematics domain regarding the nature of mathematics, 

its utility, and doing mathematics that seem to be the underlying focus of their thinking.   
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Category 3 - focus on mathematics and target domains, e.g., mathematics is related to 

1. Music because music notes have sound and symbol. When combined they form 

rhythm, structure and a type of completeness. Similar to math, if a phrase or 

calculation is missing, the piece or theory may fail as a coherent 

composition or provable theory. 

 Language because it defines an alphabet, namely, numbers, rules of grammar, 

for example, algebra is used to relay or express information. The information 

is based in fact, that is, were the information not based in fact, the information 

could not be used in building larger concepts without greatly putting the 

integrity of that information at risk. 

 A skyscraper because we start with a solid foundation and build different 

levels from there as in math. Each level in math represents a new concept or 

idea. Everything builds on the previous concept. Everything is interrelated and 

depends on the previous level. 

This category consists of metaphors with explanations that explicitly address both math 

and target domains. They explicitly state attributes of the target domain (e.g., for music, 

sound, symbol, rhythm; for language, alphabet, grammar; for skyscraper, foundation 

and levels). There is explicit mapping to mathematics through specific ways of viewing 

it that demonstrated limitations or misconceptions in their understanding of it and lack 

of generativity. But the metaphors have the potential to be generative depending on the 

choice of attributes, e.g., structure is an attribute for all three of the examples that could 

generate exploration of mathematical structure in considering nature of mathematics. 

Category 4 –  focus on solving problems, e.g., mathematics is related to: 

 Road map because there are so many different directions one can go when 

trying to solve a problem. There are many different paths to get to a location, 

some being more direct than others. Sometimes new roads and paths can be 

accidentally created or discovered. 

Alphabet because you need to be able to have basic skills before you can form 

a sentence or solve a problem. You need to be able to hold a pen, write letters, 

compose words and so forth until you can finally write a sentence or story. In 

math you need to be able to read a problem, understand what the numbers and 

symbols represent and the steps involved before you can solve it. 

Cooking/baking because you must learn the concepts, and then you can repeat 

the process by applying them to other questions (like recipes). Although you 

may follow the steps or directions, the answer (final product) is not always 

what you expect or right.   

Puzzle because you have to piece together the right information, tools, and 

knowledge to solve a problem  

 Staircase because it is filled with steps to get to your answer (or in the case of 

stairs, a door of your destination). 

This category consists of metaphors with explanations that directly or indirectly 
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address attributes of the target domains that are related to solving problems mostly as 

an algorithmic activity in mathematics. Except for road map that suggests alternative 

approaches to a solution, the other targets are tailored to an algorithmic view of 

problem solving and are unlikely to be generative regarding a view of problem solving 

or mathematics from an inquiry-based or mathematical thinking perspective.   

CONCLUSIONS 

The findings suggest that PMTs may not hold pre-existing metaphors for mathematics 

or may not able to access them because, as Schön (1979/93) suggested, they could be 

tacit and thus not easily accessible. The participants were able to create descriptive 

metaphors (ones that capitalize on existing ways of seeing things) that provided a 

snapshot of their thinking about mathematics. The metaphors presented a view of math-

ematics that did not align with an inquiry-based perspective of learning/teaching it.  

While creating the metaphors allowed the PMTs to think about something that stood 

out for them in how they viewed mathematics, it did not allow for the metaphors to be 

generative mainly because of lack of depth in considering attributes or meanings of 

attributes of the domains. As Ashton (1994) stated, an “essential feature of metaphor 

is that it demands the interpreter becomes actively involved in searching for meaning. 

This is done by seeking for [attributes] that the two parts of the metaphor have in 

common in order to share insight” (p. 358). The PMTs did not demonstrate this level 

of engagement in searching for meaning and seeking attributes to share insights. They 

chose attributes of the target that allowed them to express or map a traditional class-

room view of mathematics they already held. This suggests the need for intervention 

to support their creation and use of generative metaphors. Many of their metaphors 

have the potential to be generative if they are helped to consider attributes and 

meanings of them that will require them to search for new meanings of mathematics.    

The study suggests that mathematics teacher education could benefit from engaging 

PMTs in creating metaphors to support reflection on and  shifting perspective of mathe-

matics and mathematics pedagogy. For example, their initial metaphors could be used 

to (i) articulate and reflect on their initial thinking of mathematics; (ii) form a base line 

for their learning that they could return to during a course to critique and revise in terms 

of the domain attributes as they learn more about the nature of mathematics; and (iii) 

be the basis of intentional intervention to make them generative by exploring other 

attributes of the target domain and the mathematics domain as in my ongoing project.  

The paper provides examples of metaphors that other PMTs could critique and revise 

to support their learning. It also offers categories of the metaphors that could form the 

basis of a framework for use in working with PMTs or in designing future research. 

Future research could explore PMTs’ end-of-course or program metaphors and the 

impact on their actual future teaching. It could investigate practicing teachers’ 

metaphors to identify those that generate inquiry-based teaching that could be used as 

examples in PMTs’ education/learning and practicing teachers’ development.  
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UNDERGRADUATE STUDENTS' UNDERSTANDING OF THE 

CONCEPT OF DERIVATIVES IN MULTIVARIABLE CALCULUS 

Hangyun Cho and Oh Nam Kwon 

Seoul National University 

 

In this study, we interviewed 8 undergraduate students about their understanding of 

the concepts of derivatives in multivariable calculus. Students used single-variable 

functions, multivariable functions, and multivariable vector-valued functions as 

process-object layers and showed geometric, symbolic, verbal, and linear approximate 

representations. Also, students related, formed, and extended their understanding 

within a representation by generalizing it along the process-object layer. We observed 

that the clearer the generalizing actions were, the more students showed a structural 

understanding in the context of the concept of derivatives in multivariable calculus. 

These results contribute to college calculus education. 

INTRODUCTION 

The importance of the concept of derivatives is not only limited to single-variable 

calculus but also applies to multivariable calculus. From pure mathematics to natural 

and social science, the concept of derivatives for multivariable calculus is essential 

when dealing with continuum and rate of change with plural variables. Therefore, we 

can say that examining the understanding of the concepts for multivariable derivatives 

of undergraduate students who need to study mathematics in their major, becomes a 

major goal of college mathematics education. The concept of derivatives in 

multivariable functions learned in college calculus courses, is a generalized extension 

of that in single-variable functions, but students struggle with learning such contents 

(Trigueros, & Martinez-Planell, 2010). 

In this paper, we explore the process of how undergraduate students represent and 

construct the meaning of the concepts of derivatives in multivariable calculus. And 

based on the research about the understanding of the concept of derivatives in single-

variable calculus, we intend to analyze that in multivariable calculus in respect of the 

representational contexts and generalizing actions seen by students. As a result, this 

paper tries to offer a theoretical framework for how undergraduate students understand 

the concept of derivatives in multivariable calculus. 

THEORETICAL BACKGROUND 

Understanding of the concept of derivative in single-variable function 

The concept of derivatives requires a comprehensive understanding as they are 

interrelated with the instantaneous rate of change, tangents, slopes, and limit concepts, 

while students’ understanding of the concept of derivatives is mainly concentrated on 

a calculation of differential coefficients and slopes (Orton, 1983; Sahin, Yenmez, & 

Erbas, 2015). 
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Zandieh (2000) identified that students’ understanding of the concept of derivatives 

consists of a ‘ratio-limit-function’ process-object layer, which is both an operational 

process and a structural object at the same time. And based on the interview responses 

from students taking AP Calculus BC, Zandieh (2000) classified the following 

representations or contexts about the understanding of the concept of derivatives; 

Graphical, Verbal, Physical, and Symbolic. Table 1 below is the two-dimensional 

framework corresponding to process-object layers and representational contexts. 

Process-Object 

Layer 

Graphical Verbal Physical Symbolic 

Slope Rate Velocity Difference 

Quotient 

Ratio     

Limit     

Function     

Table 1: Zandieh’s framework for the understanding of derivatives 

Many studies have used Zandieh’s framework as a fundamental theoretical background 

for integrated analysis of students’ understanding of derivatives, and modified in their 

way maintaining the two core dimensions; representation and process-object structural 

understanding (Jones & Watson, 2018; Roundy, Dray, Mangue, Wagner, Webber, 

2015). The concept of ‘pseudo structural’ understanding is about when students 

understand the concepts only as an object and do not recognize that as a structural 

process (Sfard, 1991). Zandieh argued that the concept of derivatives should be 

understood structurally in each representation, not pseudo-structurally, and the 

process-object structural understanding that occurs in one representation should be 

linked to another. 

Generalization 

Generalization is one of the most important components of mathematical thinking 

(Lannin, 2005), and generalizing action is a core of mathematical activity and a major 

means to construct new concepts in mathematics (Ellis, 2011). Ellis, Lockwood, 

Tillema, and Moore (2022) developed a comprehensive framework of generalizing 

activity called the Relating-Forming-Extending (RFE) framework by researching 

which aspects of mathematical activity become productive in more diverse and 

challenging areas of mathematical generalization. Relating is the identification of 

similarities across situations, problems, or strategies that the learner perceives as 

distinct contexts. Forming is the development of an initial, sometimes tentative 

generalization, and extending is the use of that generalization, sometimes to a broader 

domain (Ellis et al., 2022, p. 362). The authors said that the RFE framework has been 

successfully applied widely in middle school through college in the domains of algebra, 

advanced algebra, trigonometry/pre-calculus, and combinatorics, especially when the 

concepts extend their range. 
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The concepts learned in single-variable functions extend to those in multivariable 

functions and again, to those in multivariable vector-valued functions, which students 

have difficulty understanding it. Kabael (2011) and Reed (2018) analyzed the 

generalizing process of students when extending the function space in multivariable 

calculus and real analysis, respectively. And it is found that students generalized the 

concept of the average rate of change, domains-ranges, and the graphs of function for 

multivariable functions from those for single-variable functions by relating objects 

expanding and modifying previous understanding (Dorko, 2015; Dorko, Lockwood, 

2016; Dorko, Weber, 2014). In addition, researchers claimed that generalization is a 

useful framework for exploring students’ understanding of the concepts in 

multivariable calculus. 

METHODOLOGY 

Participants and data collection  

We selected voluntary 8 undergraduate students for a semi-structural interview for 

about an hour and a half. All students were enrolled in first-year multivariable calculus 

at a university in Seoul, South Korea. They learned about the concepts of derivatives 

in multivariable functions and multivariable vector-valued functions through the 

course. Students were legitimately compensated for their participation. To discuss 

multivariable calculus, the participants need to understand well of high school-level 

calculus. All of the participants in the study understood school mathematics very well 

enough. They could explain what derivatives mean and how to calculate differential 

coefficients in single-variable functions with their own mathematical representations, 

and could smoothly solve various problems by combining structural understanding. 

In the semi-structured face-to-face interview, a series of mathematical problems were 

given that asked to calculate and explain the meaning of derivatives in several single-

variable functions, multivariable functions, and multivariable vector-valued functions 

in order. Then participants were asked to solve them over time and explain them to the 

researcher along with the description. In this task-based semi-structured interview, the 

responses of the students were suitable for identifying similarities from specific cases, 

forming general rules, or expanding reasoning from previous knowledge. We recorded 

the video with the consent of the participants. Through the recorded videos, it was able 

to identify the nonverbal responses like gestures and dynamic meanings in their 

responses. 

Analysis 

We observed how the structural understanding shown in the interview is based on the 

process-concept layer of Zandieh (2000)’s framework from the students’ responses. In 

addition, the contexts of expressions and representations shown by students while 

explaining the tasks were classified. In other words, from the students’ responses, the 

comprehensive understanding of the concept of derivatives in multivariable calculus 

was analyzed concerning the process-object layer and representations. In this process, 

we focus on the reasoning in which students’ understanding of mathematical concepts 
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such as linear approximations, tangent lines, tangent planes, slopes, gradient vectors, 

the instantaneous rate of change, Jacobian matrices, and the context in which the 

answers are connected. We divided the students’ responses by representations and 

process-object layer into 3 levels: structural understanding, pseudo-structural 

understanding, and lack of understanding. 

And we applied the RFE framework of Ellis et al. (2022) to identify the generalizing 

actions of students during the interview. Following the actor-oriented data collection 

methodology (Ellis, 2007), we paid attention to the similarity and commonality of the 

representation in the responses, regardless of the mathematical or logical accuracy. We 

observed the contexts in which the process-object layer of the generalizing actions 

shown by students was made and apply it to Zandieh (2000)’s framework. Through 

this, the relationship between structural understanding and mathematical 

generalizations for each representation was derived. 

RESULT 

From the interviews, we observed that students recognize single-variable functions, 

multivariable functions, and multivariable vector-valued functions as both structural 

objects and operative processes concurrently in multivariable calculus. For example, 

the concept of derivatives in multivariable vector-valued functions does not only mean 

the acquisition of the consequential object. It is also obtained through the process of 

associating it with the derivatives of the functions through partial differentiation of 

each component of the multivariable function. Thus according to Sfard (1991), the 

understanding of the concept of derivatives in multivariable calculus is of a 'single-

variable functions - multivariable functions - multivariable vector-valued functions' 

process-object layered structure. 

 We classified students’ responses by substituting them into newly obtained process-

object layers. As a result, students showed the following four representations or 

contexts for the concept of derivatives in multivariable calculus; (1) Geometric 

representations: contexts related to graphic or geometric objects of the functions like 

tangent lines, tangent planes, or linear mappings by matrices. (2) Symbolic 

representations: contexts of algebraic expressions and computations like differential 

coefficients, gradient vectors, or Jacobian matrices. (3) Verbal representations: 

contexts of the instantaneous rate of change for each component or infinitesimal rate 

of change of volume, and (4) Linear approximate representations: contexts that 

combine the above contexts into the concept of local linearity and linear approximation 

functions. 

Graphic, symbolic, and verbal representations in previous studies were also identified 

in the context of the responses, but due to the limitations of calculus textbooks for 

freshmen, physical representations were not come out from students' answers. 

Meanwhile, the term 'geometric' was used instead of 'graphic' because multivariable 

vector-valued functions cannot be expressed in a general image of graphs. And since 

linear approximations require the algebraic calculation of the geometric objects and 
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have to explain the numerical degree of the instantaneous rate of change verbally, the 

linear approximate representation was classified into a separate category rather than 

falling into any existing ones. 

 

Process-Object 

Layer 

Representations / Contexts 

Geometric Symbolic Verbal Linear 

Approximate 

Single-variable 

functions 

tangent line of 

the graph of 

the functions, 

slope of the 

tangent line 

existence and 

value of 

derivative 

instantaneous 

rate of change 

local linearity, 

well 

approximated 

by a linear 

function 

 ↓ ↓ ↓ ↓ 

Generalizing 

actions 

RCB, FAF, EC RCB, FAO, 

EC, ET 

RCB, RT, 

FAO, FAF, EC 

RCB, FAO, EC 

 ↓ ↓ ↓ ↓ 

Multivariable 

functions 

tangent plane 

of the graph 

of the 

functions, 

slope of the 

tangent plane 

existence and 

value of 

gradient 

vector 

instantaneous 

rate of change 

by 

components, 

including 

directions 

local linearity, 

well 

approximated 

by a linear 

function 

  ↓ ↓ ↓ 

Generalizing 

actions 

 RCB, FAO, 

ERP 

RCB, RRE, RT RCB, RRE, RT 

 

  ↓ ↓ ↓ 

Multivariable 

vector-valued 

functions 

linear 

mapping by 

the Jacobian 

matrix 

existence and 

value of the 

Jacobian 

matrix 

infinitesimal 

rate of change 

of volume, the 

absolute value 

of Jacobian 

local linearity, 

well 

approximated 

by a linear 

function 

Table 2: a framework for the understanding of derivatives in multivariable calculus 

and generalizing actions used by the students 

Students related, formed, and extended their understanding within a representation by 

generalizing it along the process-object layer. In Ellis et al. (2022)'s RFE framework, 

the generalizations students shown in the process of solving and answering interview 

problems of the concept of derivatives were the following; Connecting back (RCB): 

forming a connection between a current and previous problem or situation, Recursive 
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embedding (RRE): embedding a previous situation into a new one as a key component 

of the new task, Transfer (RT): influence of a prior context or task is evident in a 

student's current operating, Associating operative objects (FAO): associating objects 

by isolating a similar property or structure, Associating figurative objects (FAF): 

associating objects by isolating similarity in form, Continuing (EC): continuing an 

existing pattern or regularity to a new case, instance, situation, or scenario beyond the 

one in which the generalization was developed, Transforming (ET): extending a 

generalization by changing the generalization to be extended, and Removing 

particulars (ERP): extending a specific relationship, pattern, or regularity by removing 

particular details to express the relationship more generally. 

Table 2 below is the framework outline and rationale of representations along with the 

process-object layer of students' understanding of the concept of derivatives in 

multivariable calculus. The framework also includes the generalizing actions used in 

each context and the process-object layer that students used during the interviewFor 

instance, the following Figure 1 and extract are part of one of the student’s responses 

about the concept of derivatives in multivariable functions. 

 

Figure 1: Student’s written answer about the derivatives in multivariable function 

Student 5: There was an expression I learned last semester, but I couldn't remember 

exactly. So I induced it from the equations of the tangent line I know (Write 

down the right part of Figure 1). Then you can write down a similar 

expression, and if you make it easier to understand, this line comes out 

(Write down the left part of Figure 1). It's still zero even if you divide it by 

limit zero. 

Researcher: Is there any word to describe this? 

Student 5:  Approximation. 

In this case, answering the concept of derivatives in multivariable functions, the student 

related it to what he understood in single-variable functions and connect it back with 

the tangent situation (RCB). Then he formed expressions of similar structures, which 

are operative objects that can be associated (FAO). Finally, he extended the domain 

and continued the previous concepts into a new one (EC). Through these generalizing 

actions, this student showed a structural understanding of the concept of derivatives in 

the multivariable function process-object layer in the linear approximate 

representation.  
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DISCUSSION 

In this study, the representations and process-target layers of Zandieh (2000)'s 

framework were newly classified, modified, and extended so that to figure out how 

undergraduate students understand the concept of derivatives in multivariable calculus. 

Undergraduate students understood the concept of derivatives in the representational 

context of geometric, symbolic, verbal, and linear approximate along the process-

object layers from the single-variable function to the multivariable function, and from 

the multivariable function to the multivariable vector-valued function. In Ellis (2007)'s 

actor-oriented perspective, students' mathematical thinking and actions while they 

showed during the interview could be identified as generalizing actions from Ellis et 

al. (2022)'s RFE framework. 

When students strongly used generalizing actions as behavior and description, we 

observed that students take the conceptual objects from the previous layer as an 

operative process so that they could reach a structural understanding of the derivatives. 

If generalizing actions occurred weakly or did not occur, they could only reach a 

pseudo-structural understanding or failed to understand it. Based on the research 

results, we combined the process of mathematical generalization into a framework for 

the understanding of the concept of derivatives extended to multivariable calculus. This 

study emphasized the importance of the representational contexts in the research of 

concepts of derivatives in multivariable calculus. Adding to that, the conclusion about 

the importance of structural understanding through process-object layers with each 

representation in a single-variable function, claimed by Zandieh (2000) and the 

subsequent researchers, is also presented in a further area. In addition, it was observed 

that generalizing action influenced the structural understanding through process-object 

layers. The plural process-object layers were related, formed, and extended so that the 

flexible structural thinking of conceptual objects and operative process aspects of 

derivatives occurs at the same time. 
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Primary mathematics leaders are middle leaders working between both school 

leadership and classroom teachers. They influence teacher development and 

classroom practice with strategic direction, developing shared goals with teachers. 

There can be challenges to their role due to the absence of clear guidelines, and the 

contextual needs within schools. This paper reports on one aspect of a research project 

examining how primary mathematics leadership is conceptualised and experienced. It 

discusses interview findings regarding the expectations primary mathematics leaders 

have of teachers, and teachers’ understandings of those expectations. 

INTRODUCTION 

Primary Mathematics leaders have a formal and significant responsibility for 

improving student learning, working between, and with, both school leaders and 

teachers, positioning them as middle leaders (Copping, 2022). A positive relationship 

has been found between the work that middle (curriculum) leaders carry out and 

student achievement where curriculum leaders augment school leadership through 

regular, direct contact with teachers and students (Leithwood, 2016). In Australian 

primary schools, where teachers are generalists, and middle leaders often also have a 

teaching aspect to their role, their time both in their own classroom and in the 

classrooms of other teachers can have a significant impact on classroom practices and 

educational outcomes (Grootenboer et al., 2015). As such, middle leaders are key to 

the successful implementation of improved practices in mathematics because they are 

critical in connecting the vision of the school to the enacted curriculum at the classroom 

level (Jorgensen, 2016). This reflects the transferral in role from manager/coordinator 

to leader, shifting the role to a more strategic leadership focus instead of administrative 

(De Nobile, 2017). Lipscombe et al. (2020) believe the role of middle leaders across 

Australia lacks clarity. There are no clear policies, hours, expectations, titles, training, 

or support. While contexts influence the role of the primary mathematics leader in each 

school, there are challenges as a result of this lack of clarity.   

LITERATURE REVIEW 

Explorations of the different aspects of the role of middle leaders identify common 

practices of successful leaders. This includes: a focus on student learning; having and 

building a clear vision or strategic direction; developing a culture of shared 

responsibility and trust; fostering teacher learning; and having high expectations of 

themselves and others (Gurr & Drysdale, 2013; De Nobile, 2017). Dinham (2007) 

concurred that it was important to foster a constructive and committed team, who 

would work collaboratively, with a common purpose. Successful curriculum leaders in 



Copping, Ziebell & Seah 

2 - 196 PME 46 – 2023 

schools with exceptional student outcomes sought the input of team members to 

develop common and shared goals. The team members had ownership of these goals 

as they had contributed to the development of them. Although there were particular 

expectations, the team members still felt they had input and control over the shared 

goals and purpose and had a high level of perceived self-efficacy.  

Successful middle leaders have a clear vision and set high expectations for themselves, 

for teachers and for the students (Gurr & Drysdale, 2013). To achieve their vision, they 

set clear objectives, provide guidance, and are consistent in their expectations and 

actions. They model their expectations and create a sense of the importance and worth 

of their subject area for others (Dinham, 2007). This is supported by Balka et al. who 

say that mathematics leaders work with teachers to develop a vision for what 

mathematics will look like in their school. They have a common purpose of what 

effective mathematics teaching looks like in their school and know what is needed to 

achieve this vision. The work with the teachers and are committed to the shared goals 

(2010). And more importantly for this vision for improving mathematics, that it is 

explicit and understood by all (Bezzina, 2007). The ability to influence and impact 

student learning and teacher development through those shared goals can be 

challenging for primary mathematics leaders (Millett & Johnson, 2004; Sexton & 

Downton, 2014). 

Leading is not an isolated practice, done by one person. Improved student learning is 

a shared responsibility of staff and students within schools (Grootenboer et al., 2015). 

Therefore, it is important that all involved have a shared understanding of the school’s 

goals and their role in supporting the enactment of that vision. Expectations from 

school leadership of middle leaders was studied in NZ secondary schools (Bassett, 

2016). Expectations for the middle leaders’ role were found to focus on three areas. 

Firstly, student learning through curriculum leadership, such as developing the 

curriculum, planning learning programs, meeting government curriculum 

requirements, assessment, assessment moderation, and improving student learning 

outcomes. The second expectation was Teacher development, consisting of 

professional development of staff, mentoring, coaching, improving teacher practice, 

offering guidance for example in report writing, and understanding the pastoral care 

needs of the staff. The final expectation focused on administration, tracking and 

recording assessment and student achievement, managing budgets and resourcing, and 

compliance. The study also examined an interesting tension that middle leaders were 

simultaneously responsible for developing teachers professionally, but also 

supervising and monitoring their performance. This could undermine the relational 

trust they were building with teachers (Bassett, 2016). Yet, as the literature review 

reveals, the expectations primary mathematics leaders have of teachers, and whether 

these are shared by teachers, has not been previously explored. 
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METHODOLOGY 

This study uses a representative case study model (Yin, 2017). Research questions for 

the study are: 

 How do mathematics education stakeholders conceptualise primary 

mathematics leadership? 

 What formal and informal structures are available in primary mathematics 

leadership and what are the affordances and challenges associated with them? 

 What are the experiences of the roles and responsibilities that primary 

mathematics leaders are expected to fulfil? 

Individuals from a range of contexts were interviewed to provide insight into how 

primary mathematics leadership is conceptualised and experienced. Semi-structured 

interviews were conducted with a targeted, stratified sample representing a range of 

demographics in eight primary schools within Victoria. Within each school the primary 

mathematics leader (PM leader) was interviewed, and where possible, a member of 

school leadership, and two teachers (with different levels of teaching experience) were 

also interviewed. The schools included State, Catholic and Independent sectors in 

metropolitan, regional and rural settings. The schools were diverse in size; Index of 

Community Socio-Educational Advantage (ICSEA), an Australian national ranking of 

educational advantage; and levels of English as an Additional Language (EAL). This 

is summarised in Table 1 below for the schools with quotes included in this report, 

with the school names being pseudonyms. 

Table 1: School demographics 

School Wattle Tree 

Primary School 

Banksia Gardens 

Primary School 

Sundew Patch 

Primary School 

Acacia Grove 

School 

Type F-6 Government F-6 Catholic F-6 Government F-12 Independent 

Location Metropolitan Metropolitan Regional Metropolitan 

Student 

enrolment 

Medium       200-

400  

Large            500-

1000 

Large            500-

1000 

Very Large 

>1000 

EAL >90% 20-30% <10% 30-40% 

ICSEA Well below 

average 

Well above 

average 

Above average Well above 

average 

Time 

allocation 

for roles 

0.6 PM leader 

0.4 classroom 

teacher 

1.0 PM leader 

No classroom 

allocation 

0.5 PM leader 

0.5 classroom 

teacher 

0.2 PM leader 

0.8 classroom 

teacher 

 

Only one aspect of the interviews will be focused on in this paper, that is, from the 

primary mathematics leader and teacher interviewees from four schools. Responses 

from school leaders have not been included. Primary Mathematics leaders were asked, 
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“What do you expect from the teachers at your school?” and the teachers were asked, 

“What does the primary Mathematics Leader expect of you as a mathematics teacher?” 

Qualitative analysis of the interview data was undertaken using an inductive approach 

to determine emerging themes (Thomas, 2006). NVivo software was used to organise 

the data and support analysis. Themes and categories were created, and then 

summarised, refined and modified based on subsequent analyses (Thomas, 2006). 

Pseudonyms have been used for all participants in this report. 

RESULTS AND DISCUSSION 

Examination of the data revealed that most schools had shared expectations for 

mathematics across several areas. Each school had shared expectations which were 

clear, explicit and understood across the school (Bezzina, 2007). These were largely 

related to student learning of mathematics, such as the instructional model, planning, 

assessment, or catering for diverse learning needs (Bassett, 2016). Also evident were 

expectations around teacher development of content knowledge, or pedagogical 

content knowledge. A shared expectation associated with student learning is included 

from Wattle Tree. Two primary mathematics leaders and two teachers were all 

consistent in the expectations of the use of a particular instructional model for the 

teaching of mathematics.  

Zara [F-2 PM leader]: I think that the main goal is really just that, um staff understand 

how to, you know, they understand the basics in relation to teaching maths, 

they understand, I mean the, the PD [professional development] that Mei 

and I have done this term has been all around, um, the instructional model 

and what the different parts of the instruction model mean. 

Mei [3-6 PM leader]: Um, first of all, we have our numeracy instructional model let's 

say, that's the structure that our school is doing, and I would expect every 

single teacher to, to follow that instructional model. 

Justin [early career teacher]: Well they would expect the consistency across, across the 

classrooms. And knowledge is the focus 

Anna [experienced teacher]: Um, there is an instructional model in place, in terms of how 

the mathematical, mathematics is expected to run 

Zara explained there had been specific training of teachers in the model and Mei 

reinforced the expectation for every teacher to be implementing the model, which Anna 

explicitly referenced. While Justin did not mention the model, he discussed consistency 

across classrooms. This demonstrates in this school a very clear model for mathematics 

teaching, that has been well communicated (Balka et al., 2010). The primary 

mathematics leaders have focused on student learning with a consistent instructional 

model (Gurr & Drysdale, 2013). The time allocation for the leadership roles for both 

Zara and Mei has provided opportunity to embed the instructional model and impact 

mathematics teaching across the school. As classroom teachers, they are also 

implementing the same instructional model and leading practice through their own 

teaching (Grootenboer et al., 2015) 
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Banksia Gardens also had shared expectations for student learning as well as another 

on high expectations, which no other school shared.  

Michelle [PM leader]: Um, I have high expectations, probably too high, and I’ve got to 

bite my lip quite a few times… I'm trying to lift the cognitive load of the 

actual lesson, so it caters to more kids and those rich discussions happen. 

Genevieve [early career teacher]: Um, she's got quite high expectations, I think. Um, 

which is good. Uh, she, um, is expecting, I guess, …that we're like, you 

know, using, um like language to deepen the children's understanding…. 

Because sometimes I know she'll give us tasks, we're like, Oh, my 

goodness! Like, are they going to be able to do this? But they can. So, I 

guess her having those high expectations of us then transfers, to us, having 

high expectations of the children.  

Carmen [experienced teacher]: …and not sort of like pigeonhole kids, but to really open 

it up and see how far they can go with maths and with their thinking, and 

really challenge them, but also to support them.  

Although Michelle is concerned that she is setting her expectations too high, the impact 

of those expectations on teachers and students, can be seen in the responses from the 

teachers, particularly the early career teacher. Genevieve explains how the high 

expectations of her have extended to the students in her classroom.  The example set 

by Michelle, creates a sense of the elevated expectation for student learning (Gurr & 

Drysdale, 2013). Students are required to be able to think deeply about mathematics 

and all staff are expected to support this initiative. The primary mathematics leader has 

high expectations of not just the teachers, but the students too. Michelle’s role as a full-

time leader has allowed her to influence the teacher’s perceptions and effect a change 

in teaching approach within classrooms (Millett & Johnson, 2004).  

While there were similarities across all schools, there were some interesting 

differences. At two schools there were no common themes in which all interviewees 

agreed. At each of these schools there were shared expectations between the leader and 

the experienced teacher, but the graduate teacher (i.e. at the beginning stage of their 

teaching career) did not share these understandings. These shared expectations were 

focused on student learning and teacher development, similar to other schools. For 

example, at Sundew Patch coaching for teacher development was an expectation which 

both the leader and experienced teacher shared. 

Michael [PM leader]: My next priority is around coaching… Um, so, I’d come in and do 

a bit of an observation. I don’t like to sit down the back, I’m not the kind 

of coach who would sit down the back with a pen and paper, and kind of 

take notes. It was more like, oh I'll come in, and …we’d work together on 

something. You know, it’d be a bit of responsive teaching.  

Laura [experienced teacher]:  Um, the expectation that I’m still learning all the time, and 

also that, um, he always talks about when he comes in, in that coaching 

role, he never wants to be like up the front, us watching, and him, or the 

opposite, him watching and writing about it. He always wants it to be a bit 
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of a joint effort… So, I guess it's an expectation is that we are learning 

together. 

While Michael and Laura both see the coaching as a partnership and have a shared 

understanding of the expectation that they need to work together (Bassett, 2016), this 

was not clear to the graduate teacher in the school. Although she mentioned coaching, 

it was not in the context of a partnership, and she found it difficult to articulate the 

expectations that Michael had of her. Instead, Rachel appeared to have personal goals 

that she was working towards. Not having shared goals is a recognised challenge for 

mathematics leaders (Millett & Johnson, 2004). 

Rachel [graduate teacher]: I suppose… well I don’t know. I suppose from our working 

together, so the sort of coaching piece, um, the expectations, was around 

the goals we set, …and I guess the expectation, the expectation would be 

to have fun, because that's what I suppose my biggest goal was. I wanted 

to loosen up and have fun. So I suppose that it was that expectation that I 

was able to have fun. Um… To be honest, I don't… I could put words out 

there, but I don't know I haven't asked. I assume… Um… But no, I… 

[shrugs shoulders] 

Michael was new to the role of primary mathematics leader this year. His time 

allocation for the leadership role was 0.5. He identified time as a challenge, particularly 

with his additional classroom teaching role. Providing the support needed to graduate 

or new teachers within a school can be challenging due to their lack of knowledge and 

practices for teaching mathematics (Sexton & Downton, 2014). Rachel’s perspective 

as a graduate teacher is focused on her personal goals around improving classroom 

practice. Michael has supported her to create a personal goal which builds on the 

individual needs of that teacher for the mathematics classroom (Koellner et al., 2011). 

Amongst some schools, while there were shared expectations, there were also other 

instances where the primary mathematics leader had an expectation that was not shared 

by the teachers, and similarly teachers identified expectations that the leader had not. 

For example at Acacia Grove, one expectation that the primary mathematics leader had 

of the teachers went beyond student learning, encouraging an understanding of the 

value of the subject area. 

Christine [PM leader]: I guess that they're positive about maths, and that they provide 

their kids with a love for maths to the best of their ability. 

This expectation was not noted by either of the teachers at the school. In this case, this 

was not a shared expectation that could be articulated by the teachers (Bezzina, 2007). 

While at this school there was some shared understanding of the instructional model 

and expectations around planning, there was less correlation between responses. Again, 

Christine was new to the role and had limited time to work with a large staff across 

multiple campuses. The mathematics leadership role was nominally 0.1, but this was 

taken as six release sessions throughout the week, rather than as one day. Christine also 

had a full-time classroom teaching role. Time and the working environment provided 

a challenge in ensuring the goal was communicated effectively and clearly (Lamb et 
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al., 2015). This can be seen through Ethan’s response to his understanding of the 

expectations.  

Ethan [graduate teacher]: um I would say that we are, that we are teaching the, the 

concepts, teaching each of the concepts to our students each week. On top 

of that, to ensure that we are… improving the students’ automaticity and, 

and fluency of maths, maths number facts to regularly refresh their, or 

regularly, refresh their memories of previously taught concepts. 

While this is a localised response it reflected that Ethan’s focus was the teaching of 

mathematics in his classroom. He was supported in his access to planning documents 

and resources provided by Christine. The planning outlined the concepts for each week 

and the documentation for this was consistent throughout the school. The 

implementation of a whole-school approach had been coordinated by Christine to 

support all staff in planning and teaching (Bassett, 2016).  

CONCLUSION AND IMPLICATIONS 

Primary mathematics leaders in Australia have some shared expectations with teachers 

to support the strategic directions within their respective schools. Although there were 

areas which demonstrated correlation between expectations, these were primarily 

related to student learning and teacher development. Most primary mathematics leaders 

demonstrated they had explicitly shared expectations for student learning, particularly 

for classroom instruction. Primary mathematics leaders also had expectations beyond 

this, which were less likely to be understood and shared by teachers. This was more 

evident for those with a lower time allocation for their leadership role. Graduate 

teachers frequently revealed a more localised focus, sometimes not understanding the 

shared expectations of more experienced teachers. There were factors that influenced 

or challenged the success of the effective communication and understanding of primary 

mathematics leaders’ expectations. These included time allocation for the role and 

teachers’ experience. Implications indicate that time allocation impacts the ability of 

primary mathematics leaders to fulfill their role and there is a need to ensure that there 

is adequate time for the size and context of the school. It is also important for primary 

mathematics leaders to be aware of the needs of graduate and early career teachers, to 

ensure that expectations are explicitly communicated, and where needed, extra support 

and guidance is provided. 
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Teacher identity significantly shapes how teachers enact their role in the classroom. 

An underdeveloped math teacher identity can manifest in actions detrimental to student 

outcomes, thus exploration of teacher identity within math education and to support its 

development is essential. We explored five Ghanian teachers’ math teacher identity 

development across participation in year-long instructional coaching. Findings 

support the notion that teachers’ identity development trajectories are unique to the 

teacher and that teachers’ general professional identity is distinct from their math 

teacher identity. Additionally, the factors that underlay their perceptions of themselves 

as math teachers align with Carlone and Johnson’s (2007) tri-partite conception of 

identity involving competence, performance and recognition.  

INTRODUCTION  

Teacher identity can be defined as “teachers’ understandings of themselves as teachers, 

shaped through ongoing processes of interpretation and re-interpretation of personal 

and professional experiences embedded in multilayered social [historical] contexts” 

(Author, 2020, p. 208). Teacher identity is dynamic, develops over time, and 

continuously evolves (Watson, 2006). It is thought to influence how teachers define 

their purpose and commitment to the profession; thus, identity shapes how teachers 

enact their role in the classroom (Day et al., 2006). Given the connection between a 

teacher’s identity and their instructional practices, exploration of teachers’ math 

identity has gained traction within the last two decades (Brown & McNamara, 2011; 

Kaasila, 2007; Lutovac & Kaasila, 2011).  

Elementary teachers often struggle to identify as math teachers due to how they are 

educated as teachers (Author, 2018). They are considered generalists; thus, teacher 

education programs focus on developing skills across four core disciplines. An 

underdeveloped math teacher identity can manifest in actions that are detrimental to 

student outcomes (Author, 2020; 2022). Hence, identifying effective approaches to 

supporting teachers in developing robust professional identities is essential. 

Instructional coaching has emerged as an effective means of improving teachers’ 

practices (Kraft et al., 2018), but less is known about how coaching influences identity 

development.  This study addresses this gap. Situated within the context of elementary 

classrooms in Ghana, we focused on answering the following question, in what ways 

do professional identities of Ghanaian elementary teachers of math shift through 

participation in individualized instructional coaching?  
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MATH TEACHER IDENTITY 

Conceptualizations of teachers’ professional identity development in the field of 

education vary (Beijaard et al, 2002). However, a common thread across these framings 

is the understanding, or conception, of self or self-image in the development of identity 

(e.g., Kelchtermans, 2005). Teachers’ identity development is situated within a context 

(e.g., the Ghanaian education system, a specific classroom, or a subject area), and to 

make sense of the development of this identity, one must explore both the perceptions 

a teacher has of themselves and the ways in which their teaching context influences 

these perceptions. Professional identity captures an individual’s attributes, beliefs, 

values, experience, knowledge, and skills required in a specific professional role (Park 

et al., 2018). Individuals use identity to “justify, explain and make sense of themselves 

in relation to others” (McKeon & Harrison, 2010, p. 27). They have to negotiate this 

conception of themselves with the values and standards of the broader professional 

community and their local context (Pillen et al., 2013).  

In considering how math teacher identity develops, we draw on the framework 

proposed by Carlone and Johnson (2007). They proposed a model which 

conceptualizes science identity as a process of interaction between the interrelated 

dimensions of competence (i.e., one’s knowledge and understanding of content), 

performance (i.e., one’s ability to communicate and use tools in the ways accepted in 

the discipline) and recognition (i.e., acknowledgement as a legitimate participant in the 

field by self and others). The study examined different ways participants’ identities 

developed over time and suggested that there is potential for supporting shifts in 

identity through interventions targeting an individual’s experiences of competence, 

performance and/or recognition. This model was developed to define and explore 

science identity, but acts as a useful framework to understand math teachers’ identity 

as these components capture one narrating their identity through foregrounding 

credibility (Authors, 2018).  

With respect to elementary teachers, the degree to which their conceptions of their own 

identities align with being a math teacher is influenced by a variety of contextual 

factors. The institutional discourses around math (i.e., when a system emphasizes 

student achievement or a society values formal education in higher math) as well as 

experiences teachers have had in math throughout their lives contribute to how a 

teacher’s self-image as a math teacher is formed (Neimayer-Depiper, 2013).  Willis et 

al. (2021) explored math teacher identity and found that sense of belonging to a 

mathematical community, self-efficacy in teaching math, and enthusiasm for teaching 

math were positively correlated with a strong self-image as a teacher of math. Further, 

Yeigh et al. (2022) found that having a strong professional identity was fundamental 

to teachers’ well-being. In sum, research on math teacher identity suggests that 

teachers’ self-efficacy and enthusiasm related to math teaching are central aspects of 

their professional identities as math teachers, and that developing a robust identity 

bodes well for student learning and professional well-being. The question then 
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becomes, how can we support teachers in developing robust professional identities as 

math teachers? 

Teacher identity development research focuses less on in-service teachers, and domain-

specific identity development. In addition, given its effectiveness as professional 

development approach, the field needs to better understand the role instructional 

coaching plays in teacher’s identity development (see Kraft et al., 2018). Thus, we 

focus on investigating the ways in which the math teacher identity of Ghanaian 

elementary teachers change through participation in a model of instructional coaching 

- Holistic Individualized Coaching (HIC). 

METHODOLOGY 

This study was conducted within a larger project focused on supporting Ghanaian 

elementary teachers in advancing their math knowledge and instructional practices as 

called for in a nationwide math education reform initiative.  

Participants 

Five elementary teachers working across two different schools within the same district 

participated in this study. All teachers had taught for at least three years, identified as 

teachers, and all (except Fabian) had a longer-term vision of being a teacher. Table 1 

shows teachers’ demographic characteristics. 

Table 1. Participants’ Demographics 

Teacher Gender Grade Level 

David Male 6th 

Rainy Female 4th 

Rachel Female 2nd 

Coby Male 6th 

Fabian Male 6th 

Participants were involved in a professional development program over the course of 

a year that incorporated an instructional coaching model - Holistic Individualized 

Coaching (HIC) developed by the first author.  

Holistic Individualized Coaching (HIC) 

This coaching model considers teachers to be individuals and professional learners. It 

focuses on their holistic development by attending to their emotions, beliefs, identity, 

knowledge and current instructional practices (Author, 2019). In other words, if centres 

the psycho-social-emotional aspects of teaching as they strongly influence teachers’ 

instructional decision-making and wellbeing. HIC involves six steps. First, the coach 

develops a general teacher profile from information about teachers’ emotions, beliefs, 

identity, mathematical knowledge for teaching and instructional practices. These 

interviews also serve to initiate the development of  trust and rapport. Second, each 

teacher has a conversation with the coach (pre-coaching conversations) before teaching 

the lesson. These conversations allow the coach to gain an insight into the teacher’s 
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history with, feelings about, and understanding of the content. Third, the coach uses 

the information from the conversations to determine the nature of pre-lesson support. 

Fourth, the coach collaboratively works with the teacher on the lesson design. Fifth, 

teachers teach the lesson; the coach does not co-teach but remains present as a means 

of support and guidance. This allowed teachers to maintain ownership of their 

instructional decisions, which validates their professional identity. All the lessons 

taught were videotaped. As the last step, the teacher and coach each watch the video, 

select clips which provided insight into student thinking and instruction (post-coaching 

conversations), then discuss the clips together. Teachers completes 4-5 rounds of HIC. 

Data Source and Analysis 

To determine teachers’ math identity, we adapted McDonald et al. (2019)’s single item 

measure to capture a “snapshot” of the teacher’s identity at a particular moment (Fig. 

1). Teachers were asked to respond to the prompt (Fig. 1) at the start and end of the 

coaching experience [1 = no overlap (do not identify as a math teacher) and 7 = near 

complete overlap (closely identify as a math teacher)]. Teachers were also asked to 

justify the reasoning of their choice using an open-ended prompt.  

 

Figure 1: Single Item Measure (adapted from McDonald et al., 2019) 

We entered teachers’ image selections in a table, then notated the change. Then we 

read through all the reasons teachers provided and summarized the reasons using 

phrases capturing the essential meanings (Fig. 2). This process revealed three major 

themes that helped us understand the reasons underlying the participants’ conceptions 

of themselves as math teachers and shifts in these conceptions: pedagogical content 

knowledge, instructional practices, and validation by others. In what follows, we 

describe these themes in further detail. 

FINDINGS 

There were no consistent patterns in the nature or degree of teachers’ identity change. 

Specifically, there was no shift for one teacher, three more closely identified as math 

teachers, and one identified less as a math teacher. Teachers’ identities related to 

math were closely connected to their feelings of efficacy and competence in relation 

to knowledge of math, and their performance as math teachers. 
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Pedagogical Content Knowledge 

David identified fully as a math teacher prior to and after he participated in the HIC 

cycles. His identity as a math teacher was grounded in his strong knowledge of math, 

and flexibility with the content such that he was able to utilize multiple 

representations and explain concepts in multiple ways. He stated, “The picture I have 

painted about myself as a math teacher is so because of my understanding of the 

concepts and the way I utilize multiple ways to represent and explain and apply and 

use math skills and concepts”. 

 

Figure 2. Teachers’ Math Identity Shifts 

In his post-responses, he referred to his strong math knowledge in more nuanced ways. 

He also alluded to the ways in which his accumulated experiences in teaching reified 

his identity as a math teacher.  

I always say, over the years’ experience, I built on my experience as a math teacher. And 

these experience actually had made me to grow…I am a maths teacher because I know my 

content. I know what to do to achieve results. I know what to do to make my students or 

learners achieve results. I know what to do to make my lesson fun, my lesson interesting. 

I know how to solve problems, mathematical problems for my students 

At the end of the year, David seemed to be expanding on the content knowledge to 

include the skills he used to get students to achieve, he knows how to make math 

engaging, and he knows how to solve the problems he gives to his students. 

Rachel also referred to her math knowledge as an influential factor in math her teacher 

identity. In contrast to David, whose identity appeared to be stable over the year, 

Rachel initially selected an image indicating medium overlap. She described that “This 

is because there are some topics in Maths that I understand with ease after solving few 

questions but with the others, I really find it difficult when it becomes complicated”. 
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Due to this content-based struggle with some math topics, she did not fully identify as 

a math teacher. However, we noticed shifts after working with the coach over the 

course of a year. She reported an increased interest in math as she identified areas of 

growth in her teaching and worked on those with the coach’s assistance. Her 

interactions with the coach helped her begin to accept herself as a math teacher.  

The [coach’s] lessons and interview has also brought about some improvement and love 

for maths because there are some mistakes I do and since she [the coach] started to pinpoint 

them I'm improving gradually in this subject but not fully. 

Instructional Practices 

Some teachers emphasized their instructional practices as the core reference for 

thinking about how they conceptualized their math teacher identity. Cobe, Fabian, and 

Rainy pointed out the ways their confidence in the effectiveness of their math teaching 

was connected to their identity. Rainy more strongly identified as a math teacher at the 

end of the year, selecting image 6, and stated, 

… now I have so much confidence when it comes to maths. I come up with my own ideas 

when it comes to a particular topic for the kids to get prepared, to make them think where 

they talk more, the teacher talks less, the kids are able to answer more questions.  

In the post interview, she seemed to have greater confidence in her ability to draw on 

her own ideas to prepare students to learn and in in orchestrating discussions which 

encouraged students to talk more in comparison to her explaining the ideas.   

In his post-response, Cobe expressed confidence in his understanding of math concepts 

and how his students learned but indicated that he needed to “improve on my 

facilitation”. He was the only teacher who identified less as a math teacher at the end 

of year. It appeared that he developed greater awareness of the role high-quality 

teaching plays in being a math teacher, resulting in a greater perceived gap between 

his current self-image and what he saw as an ideal math teacher.  

Initially Fabian identified minimally as a math teacher. He described a lack of 

confidence in his ability to teach math due to the minimal teacher training he had. 

Having not “majored in math at the university” he believed “I still lack some major 

techniques needed to teach math.” In his pre-response, he selected image 3 indicating 

the low level identification as a math teacher.  

Validation by Others 

Fabian and Rachel described the ways working with the coach and being identified as 

a math teacher by her supported them in strengthening their professional self-images. 

Fabian mentioned that although students recognized him as a math teacher, it was not 

until his skills were recognized by the coach (an expert), that he was able to embrace 

his identity as a math teacher. He explained  

And then the comments I get about math is just from some students I've taught, and they 

still remember how you used to teach them math. So I think maybe this remark is just 

coming from the children. But they are not well-versed in that area. Then you came in and 
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then you study what I'm doing. We discuss and then the comments you pass, "Okay, well 

whatever the children were saying, now you are saying that from the professional now. So 

okay, that means that whatever they were saying was right." So it shifted my self- 

confidence from that level to the level that I chose right now, that's number five… 

Rachel also identified her interactions with the coach as integral to expanding both her 

love and interest in math. Thus, indicating the role that individualized support from an 

expert can play to helping teachers negotiate shifts in their identities.  

DISCUSSION 

The government reform mandate (broader societal context), and participation in the 

HIC cycles (local context), encouraged teachers to reconceptualize their role in the 

classroom and how they engaged with students. We observed that at the start of the 

year the participants’ images of themselves as math teachers varied, and over the course 

of the year the direction and degree of their identity shifts were distinct. These findings 

align with current literature showing that teacher identity evolves over time based on 

teachers’ experiences within multilayered contexts (Author, 2020; Hong, 2010), and 

their identity development trajectories are unique based on interpretations of their 

professional experiences (Author, 2020; Day et al., 2006).  

The participants’ reasons for the conceptions of themselves as teachers were captured 

by three themes: pedagogical content knowledge, instructional practices, and 

validation by others. These themes are synonymous with Carlone and Johnson’s (2007) 

interrelated dimensions of identity: competence, performance and recognition. In this 

regard, the participants’ identities were grounded in their feelings of competence about 

their math knowledge relevant to teaching (i.e. David, Rachel), how effective their 

instructional practices were in supporting student learning (i.e.,Cobe, Fabian, Rainy), 

and the extent to which they were acknowledged as a math teacher by an expert (i.e., 

Fabian, Rachel). Thus, math teacher identity development is deeply content-based, 

distinct from a generalized teacher identity, and is strongly integrated with two 

components of teacher efficacy – personal efficacy and knowledge efficacy (c.f., 

Roberts & Henson, 2000). We also observed that in the cases where participants more 

strongly identified as math teachers, they identified experiences in the HIC cycles as 

contributing to this shift. Further, the cases where there was no shift, or a downward 

shift, there was greater awareness of their own math-related competence and 

performance as reflected in their nuanced descriptions. We note the potential of 

instructional coaching that is individualized and designed to be responsive to teachers’ 

developing identities and other psycho-social-emotional needs. 

Our findings contribute to the identity literature in the following ways. They showed 

that in-service teachers’ math teacher identities are distinct from their general teacher 

identity. Also, teachers’ math identity trajectories vary and can make positive shifts 

when engaged in interventions targeting their experiences of competence, performance 

and/or recognition. We encourage the development of interventions with in-service 

teachers that directly attend their identities and that acknowledge the nuanced approach 

needed to attend to content-specific identities. 
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PROSPECTIVE TEACHERS’ DEVELOPMENT OF GOAL 

STATEMENTS AND ALIGNMENT TO A TECHNOLOGY-

INFUSED LESSON 

Jon D. Davis 

Western Michigan University 

 

This study investigated the nature of prospective teachers’ (PTs) goal statements and 

the nature of alignment between goal statements and lessons involving technology by 

a group of 13 PTs across three time points. Only two PTs were able to construct a goal 

addressing medium or high level conceptual knowledge on the initial lesson, but by the 

final lesson this had increased to seven PTs. There was a gradual improvement in 

alignments between lesson and goal statement with one during the initial lesson, five 

during the field experience, and six during the final lesson. Despite the positive results 

some PTs struggled in constructing medium or high level conceptual goal statements 

and aligning goal statements with lessons. The implications of these results for the 

design of technology methods classes are discussed. 

BACKGROUND  

Tyler (1950) first emphasized the importance of setting objectives (hereafter referred 

to as goals) in developing curriculum and in doing so brought educators’ attentions to 

this foundational idea. Hattie’s (2009) synthesis of meta-analyses shows clear evidence 

linking the setting of challenging goals to increased student achievement. 

Consequently, professional mathematics teaching organizations in the U.S. (e.g., 

National Council of Teachers of Mathematics [NCTM], 2014) and elsewhere 

(https://www.aitsl.edu.au/standards) have highlighted the importance of setting goals 

in developing school mathematics lessons. Indeed, NCTM lists establishing 

mathematics goals to focus learning as the first of its mathematics teaching practices. 

Additionally, conceptual knowledge is one of the three foundations upon which the de 

facto U.S. national standards rests. We also know that conceptual knowledge is an 

important foundation upon which procedural knowledge and procedural fluency is 

built (Fuson, Kalchman, & Bransford, 2005). Moreover, as Nilsson (2020) has pointed 

out both procedural knowledge and conceptual knowledge can be learned at different 

levels of complexity. Thus, due to the importance of conceptual knowledge and the 

importance of setting goals this study focuses on prospective teachers’ (PTs) 

development of conceptually oriented goal statements or COGs. 

Morris, Hiebert, and Spitzer (2009) have argued that instead of producing 

accomplished teachers at the end of their teacher preparation programs educational 

institutions should instead provide teachers with the skills they need to learn from 

teaching. Hiebert, Morris, and Glass (2003) suggest that these skills consist of 

identifying student learning goals, examining the alignment between instruction and 

goals, and examining evidence of student learning to revise subsequent instruction. 

https://www.aitsl.edu.au/standards
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Research by Morris and colleagues suggests that prospective elementary teachers 

(PSETs) struggle to unpack a concept into its underlying sub-concepts. Drake, Land, 

and Tyminski (2014) argue that educative curriculum materials (textbook materials 

designed to help teachers learn important content knowledge and teaching skills) can 

be leveraged to help teachers develop the skills identified by Hiebert and colleagues. 

Indeed, early empirical work by Land and Drake (2014) suggests that PSETs can 

identify, unpack, and extend the learning goals appearing in educative curriculum 

materials. While no research currently exists regarding the presence of educative 

curriculum materials in U.S. public schools, the most recent research at the primary 

and secondary levels suggests that conventional curriculum materials continue to 

dominate the U.S. textbook market (Banilower et al., 2018). This research study differs 

from previous work as it focuses on the development of goal statements by PSETs and 

prospective secondary mathematics teachers (PSTs) in lesson plans where 

mathematical action technology has been infused into more conventional U.S. 

beginning algebra mathematics textbooks. Throughout the remainder of the paper, I 

will use the acronym PTs to refer to both PSETs and PSTs. Additionally, I use lesson 

plan and lesson interchangeably throughout the paper. This study was designed to 

answer two research questions. 

1) How does the nature of goal statements created by PSETs and PSTs change across 

three time points during a technology methods course? 

2) What is the nature of the alignment between a goal statement and a technologically 

infused mathematics lesson created at three different time points? 

FRAMEWORK  

For ease of communication, I use the terminology mathematical idea to encompass 

elements that students are expected to learn in school mathematics and consist of 

mathematical definitions, proofs, procedural knowledge, conceptual knowledge, etc. 

Following Anderson et al. (2001) I define procedural knowledge and conceptual 

knowledge in the following ways. Procedural knowledge consists of knowledge of 

procedures, methods, or ways of calculating. Conceptual knowledge consists of 

knowledge of classifications, structures, and principles. Knowledge type goal 

statements were broken down into procedural knowledge oriented goal statements 

(POGs) and conceptual knowledge oriented goal statements (COGs). There were two 

levels associated with procedural knowledge (low and high) and three levels for 

conceptual knowledge (low, medium, and high). I used the following acronyms to refer 

to goal statement knowledge type and level: POG-L (low procedural knowledge); 

POG-H (high procedural knowledge); COG-L (low conceptual knowledge); COG-M 

(medium conceptual knowledge); and COG-H (high conceptual knowledge). The 

initial lesson and final lesson (discussed in more detail in the methods section below) 

involved transformations of linear and absolute value functions, respectively. Field 

experience lessons involved different types of content depending on the grade where 

PTs were placed for their field experience. 
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Following Nilsson (2020), I categorized different levels of conceptual knowledge 

based upon an increasing presence of justifications. Conceptual-low knowledge entails 

making a connection across two representations. For instance, students who can 

identify the change to the equation representation of the function f(x) when it is changed 

by k as a vertical translation of the graphical representation of the function would be 

considered as exhibiting a low level of conceptual knowledge. Here the student is 

making a connection between the equation representation and the graphical 

representation of the function. Conceptual-medium knowledge involves knowing that 

the reason why adding k to a function causes the function to translate vertically is that 

it is affecting the output values of the function. Conceptual-high involves knowing why 

as defined under conceptual-medium, but also knowing that the reason the y-values are 

affected is because we can write the equation as f(x) + k and because the output values 

are represented by f(x), the addition of k affects the y-coordinates while leaving the x-

coordinates untouched. Like previous research I have conducted in this area (Davis & 

Witt, 2022), I considered procedural-low knowledge to consist of graphing a 

transformed function point by point using a table. Procedural-high knowledge 

consisted of graphing a transformed function as one object moving by the amount 

represented by the parameter.  It was possible for PT goal statements to address 

different types (procedural and conceptual) and levels of knowledge and in these cases 

both codes were applied. Each goal statement was coded for the highest level of 

procedural knowledge or conceptual knowledge appearing.  

METHODS  

A total of 13 PTs (seven seeking to become elementary school teachers or PSETs and 

six seeking to become secondary mathematics teachers or PSTs) participated in the 

study during the spring 2022 semester with the site being a teaching mathematics with 

technology course in a large university in the midwestern portion of the U.S. PTs were 

asked to create a lesson plan involving a goal statement focused on COG-H involving 

linear function transformations during the first week of instruction (initial lesson). At 

various time points during the semester, PTs created a lesson plan with a COG-H for a 

lesson involving mathematical action technology that they taught in a nearby primary 

or secondary school. The first of these lessons occurred during the third week of 

instruction and the last occurred during the 12th week of instruction (field experience 

lesson). At the end of the semester, PTs crafted a lesson with a COG-H involving 

transformations of absolute value functions (final lesson). If I was not able to determine 

the knowledge type from the goal statement it was given the code unable to code. A 

lesson plan was defined as the materials needed by a teacher to implement the lesson 

(e.g., goal statement) as well as the activity for students to complete. All final lessons 

used Desmos Activity Builder for the student activity. All PTs created a Word 

document that contained other components of their lesson such as the goal statement. 

The technology methods course consisted of four components intended to improve 

PTs’ construction of COG-M and COG-H. First, to construct a COG-H that described 

a rich conceptual knowledge of a mathematical idea, PTs had to first develop that 
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knowledge. PTs did this by working individually and with their peers during the 

rehearsal of field experience lessons in our technology methods course that involved 

rich conceptual knowledge of a variety of ideas. Second, PTs engaged in a D-F-R cycle 

multiple times individually and when working in small cooperative groups. These 

cycles consisted of the Development of a COG-H, receiving Feedback on that COG 

from their peers or the instructor of the class, and Revising that COG using peer and 

instructor feedback. Third, my earlier research (Davis & Witt, 2022) suggests that PTs 

who engage in a field experience involving content associated with the initial lesson 

and final lesson were more likely to create a final lesson focusing on high level 

conceptual knowledge. Thus, during the 10th week of class all PTs worked with their 

peers in small collaborative groups to develop lessons involving why the parameter c 

causes a vertical translation of a quadratic function and to construct a COG-H involving 

understanding why the parameter c has this effect. The fourth component of the course 

involved the experience of rehearsing and teaching a lesson focusing on high level 

conceptual understanding and reflecting on that lesson. The COG for Donald’s field 

experience lesson was created by the instructor and therefore led to a rating of not 

applicable so that it would not be considered in analyses. 

Analyses of the alignment of the student activity (hereafter referred to as activity) and 

goal statement led to the creation of seven codes: alignment; mismatchA; mismatchG; 

mismatchB; mismatchT; content; and indeterminate. Alignment occurred if there was 

an exact match between the activity and the goal statement regardless of its knowledge 

type and level focus. A mismatchA code was assigned if the activity provided students 

with opportunities to learn all the mathematical ideas appearing in the goal statement 

as well as others that were not listed in that goal statement. That is, the goal statement 

was underspecified. A mismatchG code was given if all the mathematical ideas 

appearing in the activity were contained within the goal statement and the goal 

statement contained other mathematical ideas that did not appear in the activity.  A 

mismatchB code indicated that there were mathematical ideas common to both the 

activity and goal statement, but there were learning opportunities in the activity that 

did not appear in the goal statement and the goal statement contained mathematical 

ideas that did not appear in the activity. This was considered a bi-directional mismatch. 

A mismatchT code was assigned if there were no common mathematical ideas between 

the activity and goal statement. A content code was assigned if there were any 

mathematical inaccuracies in the goal statement or the activity. Mathematics educators 

agree that goals should have a high degree of specificity (Hiebert et al., 2007; Stein & 

Meikle, 2017). An indeterminate code was assigned if a lack of specificity in the goal 

statement did not permit alignment to be measured. This lack of specificity might have 

occurred due to the use of one or more words that were not defined, not elaborated 

upon in the goal statement, or that I did not understand as a result of reading the goal 

statement. There were two cases (Todd and Donald) where the lack of specificity did 

not permit the determination of a knowledge type and level for the goal statement. The 

frequency of each of these codes was noted across the three lesson plans for each PT, 

broken down by group (PSTs and PSETs), and were examined for patterns across and 
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within the three lessons. In the case of Donald, as the instructor created his COG for 

the field experience, the alignment was given the code not applicable. 

RESULTS 

The goal statements by knowledge type and level for PSTs and PSETs are seen in Table 

1. Despite the school mathematics background of many PTs in the U.S. focusing on 

procedural knowledge due to their school mathematics experiences (National Research 

Council, 2001), only four PTs initial lessons contained POGs. On the final lesson only 

one PSET (Kevin) created a goal statement that involved procedural knowledge. This 

certainly may have been due to the requirement that PTs create an initial lesson 

involving the use of mathematical action technology. Many PTs offloaded the graphing 

of the transformed function to the technology as an amplification of student skills and 

as a result this opened space for a focus on the effects of a change of the equation on 

the graphical representation an example of low conceptual knowledge. 

Table 1 shows that one PST (Julie) and one PSET (Anne) made a transition from 

crafting a goal statement targeting procedural knowledge to targeting conceptual 

knowledge which I considered a positive effect of the technology methods course. An 

additional important effect of the course appeared to be the transition from the 

construction of lower level COGs to higher level COGs or staying at a medium/high 

conceptual level. This movement occurred for a total of seven out of 13 participants.  

The alignment between the lesson and the goal statement for the three lessons are 

shown in Table 1 in the second/third row for each PT. There is a gradual increase in 

alignment from the initial lessons with only one alignment, to the field experience with 

five aligned lessons, and the final lesson with a total of six alignments. These numbers 

show that while PTs made progress in developing lessons that aligned with their goal 

statement, most of the PTs still struggled with this skill at the end of the course. There 

were also twice as many alignments (8 vs. 4) overall among the PSETs than among the 

PSTs. The next highest frequency code after alignment was mismatchA. This code only 

occurred once in the initial lesson, five times for the field experience lesson, and three 

times during the final lesson. PTs struggled with specificity in their goal statements for 

eight total lessons as seen by the appearance of the indeterminate code. Most 

indeterminate codes occurred during the initial lesson with one occurring during the 

field experience and two occurring the final lesson. Another frequently occurring code 

regarding alignment was content. Specifically, more PSETs than PSTs struggled with 

mathematical accuracy, but this was primarily during the construction of the initial 

lesson plan. There were no content issues in the field experience lesson and only two 

during the final lesson – one by Matt (PST) and the other by Cathy (PSET). 
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Table 1: Goal Statement Categorization and Lesson-Goal Alignment 

PT Initial Field Experience Final 

PSTs 

Jerry POG-L, COG-L 

Indeterminate 

COG-L 

MismatchA 

COG-M 

MismatchA 

Julie POG-L 

MismatchT 

COG-L, POG-L 

MismatchA 

COG-L 

Indeterminate 

Matt COG-L 

Alignment 

POG-L, COG-L 

MismatchA 

COG-H 

Content 

Paula COG-M 

MismatchG 

COG-M 

Alignment 

COG-H 

Alignment 

Joseph COG-L 

Content MismatchB 

COG-H 

MismatchA 

COG-M 

Alignment 

Todd Unable to code 

MismatchA 

Indeterminate 

COG-L 

MismatchG
 

COG-M 

MismatchB 

PSETs 

Donald Unable to code 

Indeterminate 

Not applicable 

Not applicable 

COG-L 

MismatchA 

Kevin POG-L 

Content 

COG-L 

Alignment 

POG-L 

Alignment 

Rebecca COG-M 

Content 

Indeterminate 

COG-M 

Alignment 

COG-H 

Alignment 

Maria COG-L 

MismatchB 

COG-L 

Alignment 

COG-L 

Alignment 

Anne POG-L 

Content 

POG-L 

Indeterminate 

COG-L 

Indeterminate 

Cathy COG-L 

Content 

COG-L 

Alignment 

COG-L 

Content MismatchA 

Phillip COG-L 

MismatchT 

COG-L 

MismatchA 

COG-M 

Alignment 

DISCUSSION 

The work that PTs experienced during the technology methods class around crafting 

COG-H paid off in several different ways. First, there was an increase in the number 

of goal statements that were characterized as high level conceptual knowledge from 

the initial lesson to the final lesson. Second, the lack of specificity in goal statements 

that others have noted among teachers (Stein & Meikle, 2017) decreased from the 
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initial lesson to the final lesson. While the PTs increased in their ability to construct 

higher level COGs, their ability to construct an activity that aligned with their goal 

statements also increased. If one adopts a preservice teacher instructional model 

described by Hiebert et al. (2007) this is an important finding as it suggests that these 

future teachers are better positioned to learn from their teaching. Despite these positive 

results, six PTs still struggled to construct a medium or high level COG on the final 

lesson. Most of these individuals, however, were PSETs suggesting that while the focus 

of the content was at the upper middle school level (ages 13-14), this content may have 

been too advanced for these individuals. Consequently, one implication of this study is 

to use content for the initial and final lesson that is more aligned with lower-level 

middle school content for this group of participants.   

To evaluate the impact of a lesson on student understanding it is not only important to 

have a clearly specified and articulated goal statement, but also align that goal 

statement to a lesson plan (Hiebert et al., 2007). The participants clearly made progress 

in this area as there was only one alignment on the initial lesson while the final lesson 

had a total of six alignments. Especially important was the fact that of these six 

alignments, four involved either a COG-M or COG-H. The final lesson also illustrated 

some of the problems that PTs experienced in alignment. Namely, issues with goal 

specificity as seen in the appearance of indeterminate codes. Also, several PTs created 

a student activity that involved more mathematical content than the goal statement 

associated with it as seen in the mismatchA code. This was especially problematic 

during the field experience lesson with this code occurring five times out of 13 lessons. 

This finding implies that PTs need specific assistance in the construction of a goal 

statement that aligns with an activity instead of working solely on the construction of 

an activity, which is typically what happens during this component of the class. These 

findings have led to modifications of the teaching with technology course for the 

current semester; the effects of which I intend to investigate in the future. 
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The discussion on the identity of the research in mathematics education has often 

underlined the distinction between mathematics education and many other fields of 

research. On the other hand, this discussion also highlighted how mathematics 

education research has traditionally drawn and still draws on other disciplines. 

Several studies in mathematics education referred to anthropological approaches and 

constructs over the last decades. This contribution is the result of a dialogue between 

a mathematics educator and an anthropologist: analyzing the use of the rite of passage 

model for describing the tertiary transition in mathematics, possible developments of 

this research are discussed, as well as the potential of a continuous dialogue between 

specialists in the two fields of research.           

INTRODUCTION 

In the last three decades, many scholars debated the nature of the research in 

mathematics education (Sierpinska et al., 1993; Schoenfeld, 2000; Presmeg, 2008). 

The distinction from other disciplines such as mathematics, psychology, sociology, 

anthropology, philosophy, epistemology, neuroscience, semiotics, etc. but, at the same 

time, the relationship with these disciplines were the main issues in this discussion. On 

the one hand, mathematics educators wanted to clarify what research in mathematics 

education and its results are, their specificities. On the other hand, the need for drawing 

upon the established knowledge bases and methodologies of other consolidated fields 

of research for understanding the complex process of teaching and learning 

mathematics has always been evident:  

The central focus is, of course, the teaching and learning of mathematics, and thus the 

nature of mathematical activity and thinking are a crucial focus for study in the field. The 

nature of mathematical activity and thinking have to be studied using those fields, 

psychology, sociology, anthropology, philosophy, and so on. (Dreyfuss, 2014, p. 65). 

In line with Romberg’s work (1992), we can recognize four phases of the research 

process (see Fig. 1). 

 

Fig. 1: the four phases of the research process 
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If the identification of the research problem and the development of the research (and, 

in particular, the interpretation of data) appear to be characteristic of research in 

mathematics education, in some sense defining it (Sierpisnka & al., 1993), the second 

phase is where interaction with other disciplines is most evident:  

why do we need psychology, sociology, and so on – even linguistics? I am convinced that 

the lenses of research methods used in these fields of the humanities are essential tools for 

mathematics education researchers to have at their disposal. The reason is simply because 

mathematics education involves people, with all their complexities. (Presmeg, 2014, p. 

47). 

Within the lenses mentioned by Presmeg, the anthropological point of view had and 

still has special relevance for the interest in developing a cultural perspective on 

mathematics education (Bishop, 1988), and for the recognition of the role of socio-

cultural factors in the teaching-learning process (Presmeg, 2009). 

In this frame, Chevallard (1992) developed the Anthropological Theory of Didactic 

(ATD) assuming that praxeologies underlying all human activities are strongly affected 

by cultural and environmental factors, and Cobb (1989) underlined the significance of 

the anthropological perspectives in mathematics education research. The main purpose 

of this anthropological perspective is the identification and analysis of regularities in 

the interaction between teachers and students, seen as “members of a classroom 

community with its own microculture” (Cobb, 1989, p. 33). This purpose requires 

appropriate research methods and, in this perspective, Eisenhart (1988) proposed the 

ethnographic approach in mathematics education, a significant approach for the typical 

anthropological interest of understanding the lifestyle of exotic groups from the 

native’s point of view. As Presmeg underlined:  

the ethnographic methodology of anthropological research is peculiarly facilitative of the 

kinds of interpreted knowledge that are valuable to mathematics education researchers and 

practitioners. After all, each mathematics classroom may be considered to have its own 

culture. (Presmeg, 2009, p. 134). 

The union of mathematics education and anthropology within phase 2 in Romberg’s 

model (Fig. 1) is not limited to the choice of methods: some theoretical models 

originally developed in anthropology were adapted to phenomena of interest to 

mathematics education. 

On the other hand, as Connors warned:  

such “borrowings” are often not successful; a researcher in one field is not always aware 

of the issues surrounding, or the current status of, a particular paradigm in another. Every 

discipline is dynamic (…) Unless the “borrower” is aware of this disciplinary debate, the 

result can be the application of an outmoded idea to a new field, where it may very well 

be accepted, and perpetuated, by naive readers. (Connors, 1990, p. 462). 

For this reason, we strongly believe in the need of a retrospective comparison between 

mathematics educators and the specialists of the field where the used theoretical 

models or methods were originally developed (anthropology in our case).  
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In this paper, we will develop this retrospective analysis focusing on tertiary transition 

in mathematics and in particular, critically analysing the use of the theoretical model 

of the rite of passage to describe the phenomenon. 

THE TERTIARY TRANSITION IN MATHEMATICS AS A RITE OF PASSAGE 

Tinto described the generic transition from school to university as a modern rite of 

passage, making explicit reference to the rite of passage model (see Fig. 2) introduced 

by the anthropologist van Gennep (1909):  

the problem of becoming a new member of a community that concerned van Gennep is 

conceptually similar to that of becoming a student in college, it follows that we may also 

conceive of the process of institutional persistence as consisting of three major stages or 

passages – separation, transition, and incorporation – through which students typically 

must pass in order to complete their degree programs. (Tinto, 1988, p. 442). 

Clark and Lovric (2008), underlying how the existing body of research on the tertiary 

transition in mathematics was substantially characterized by the absence of a 

theoretical model, adapted the model of the rite of passage to fill this gap. They 

described the tertiary transition in mathematics as a modern-day rite of passage for 

students composed of three stages: separation (from secondary school), liminal (from 

secondary school to university) and incorporation (into university).  

Fig. 2: The three stages of the rites of passage  

 

How showed by a recent literature review (Di Martino et al., 2022a), the introduction 

and use of the rite of passage model has inspired much subsequent research on tertiary 

transition in mathematics, including those conducted by the first author of this report 

(Di Martino & Gregorio, 2019; Di Martino et al., 2022b).  

The adoption of the rite of passage model permitted researchers to highlight some 

crucial issues in the research on students’ difficulties in tertiary transition, until then 

characterized by a purely cognitive approach. 

First, the rite of passage is always related to specific cultural routines, therefore 

sociocultural aspects cannot be neglected in the study of tertiary transition in 

mathematics. This means we should be extremely cautious about generalizing results 

across different university contexts and we need to develop more cross-cultural studies.  

Second, the transition shock is inevitable: no passage and no incorporation in the new 

community are possible without putting into crisis the individual’s routines and 

identity. These kinds of crisis are related to the emergence of strong affective reactions: 

in particular, feelings of inadequacy often emerge. Therefore, the rite of passage model 

also highlights the role of the affective component in the tertiary transition in 

mathematics and the consequent need of considering affective aspects for 

understanding students’ difficulties in this transition. 
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The adoption of the rite of passage model has therefore led to an emphasis on the need 

to adopt a more holistic approach in tertiary transition research. Moreover, the rite of 

passage model points out that the actions for smoothing tertiary transition in 

mathematics cannot prevent students’ crisis if we want the transition to be successful, 

their main goal should be to prepare students for the crisis and for dealing with it.  

On the other hand, are we sure that the rite of passage model – originated in another 

field to describe different phenomena from a different era – has been used 

appropriately?  

According to Connor (1990), the answer to this question cannot be given from an inner 

perspective (the perspective of mathematics education), but we need the answer from 

the perspective of an anthropologist.  

THE ANTHROPOLOGICAL POINT OF VIEW: THE PARS DESTRUENS  

Time, culture, and context are obviously crucial aspects of anthropological research 

and its interpretation of ethnographic data. van Gennep develops the theory of rites of 

passage at the beginning of the last century and he refers to simple societies, 

characterized by predictable life trajectories of its members, where deviations from the 

shared idea of normality are practically absent. In these realities, the transient moments 

can be ceremonially accompanied by the community and the ritual language is highly 

formalized and repetitive.  

Cultural frames and practices for transitional phases are present also in the so-called 

complex societies of our era: anthropology recognizes that discontinuities and 

transitions are universal conditions of the individual life trajectories (Benedict, 1938), 

what changes is the meaning given to these transitions and the way they are overcome 

through rituals. The definitions and meanings attributed to the ritual category have 

changed over time: in this discussion we are adopting a generic definition of ritual as 

a shared cultural practice that symbolically accompanies moments in the calendar of 

people’s and groups’ lives. 

In this frame, two main issues appear to be the particularly critical in the use of the rite 

of passage model for tertiary transition in mathematics.  

First, the cultural worlds considered by van Gennep for developing his model are 

historically and culturally very far from the tertiary transition contexts studied in 

mathematics education and, from an anthropological point of view, this cultural-

historical distance does not appear to be sufficiently problematized in the use of the 

rite-of-passage model for tertiary transition made in mathematics education.  

A second and more critical issue, the model is abstractly applied to a social unit 

considered indistinguishable (in some sense unique) and internally homogeneous 

(whose members have similar characteristics, living the discontinuities in similar 

ways): the mathematics class of the first year of undergraduate education. Both the 

assumptions are strongly questionable from an anthropological point of view. Members 

of any university cohort show differences relative to gender, generation, social class, 
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political horizon, background, schooling, socialization, etc. In her very famous book 

Coming of age in Samoa, Margareth Mead (1928) focused on the perception of 

adolescence in Samoan and U.S. girls, showing how a critical transitional phase in a 

culture (the adolescence in U.S.) cannot be perceived as critical in a different cultural 

context. This shows how the cultural contexts – in our case, the different universities 

in different countries – play a crucial role in identifying, defining and living the 

transitions. Therefore, it is important to identify the stages of growth in the different 

considered contexts for recognizing their cyclicities and, consequently, the stages of 

transition and status change. Cyclicity is a needed precondition of any ritual form, 

enabling individuals and groups to predict transitions. 

The anthropological literature shows how various ritual forms exist in contemporary 

schooling systems (Segalen, 1998). Not all these ritual forms follow the logic of van 

Gennep's tripartite sequences, however, all of them are recognizable as ritual forms, 

even by external observers.   

In this frame, the main questions we need to reply are: are we sure that the entrance to 

the university – in particular, in a Mathematics degree – is externally recognized as a 

moment of passage? If the answer to that first question is yes, what is the status 

transition cyclically produced by the ritual? 

The answers to these questions are not obvious. It would be interesting to experiment 

new interdisciplinary research paths in order to find solid answers. This reflection is 

the right introduction for the pars construens. 

THE ANTHROPOLOGICAL POINT OF VIEW: THE PARS CONSTRUENS  

The critical study of the social and cultural phenomena through the connection between 

the emic perspectives (from inside the studied group) and the external perspectives is 

characteristic of anthropology. In our view, this characteristic represents the added 

value that anthropology can offer to the research in mathematics education for realizing 

the social turn evoked by Lerman (2000). This approach can be particularly significant 

for the understanding of the tertiary transition in mathematics, offering the main 

argument for the pars construens of our reflection. 

As we said, the rite of passage cannot be considered an abstract model applicable to 

any transition: in particular, the tertiary transition in mathematics appears to be neither 

socially recognized as a passage nor ritually characterized.  

Surely, it represents a critical phase of strong discontinuity for freshmen (Di Martino 

& Gregorio, 2019; Di Martino, Gregorio & Iannone, 2022b), but we need to know if 

and how much this is specific of the transition in mathematics. Comparisons with other 

kinds of tertiary transition would allow the recognition and distinction between the 

identifying elements of the transition in mathematics and those common to the different 

university transitions.  

The identified elements (difficulties, trials, and coping strategies experienced in the 

first year) of the tertiary transition in mathematics could be interpreted as a form of 
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initiation into a specific community of initiands, representing the liminal stage within 

the van Gennep’s sequential logics in a perspective that recognizes the cyclic nature of 

the rite of passage from freshmen to graduate. In this frame, the crisis – what Turner 

(1982) calls the social drama – would extend throughout the college period: the 

university enrolment would represent the separation stage and the graduation would 

represent the incorporation stage with the social recognition of the new status.  

In this way, this phenomenon is recognizable as a rite of passage even outside the 

considered community (the undergraduate students in mathematics) and this external 

recognition is crucial to investigate any subcultural specificities of the transition in 

mathematics. Such perspective would allow for an in-depth study considering several 

crucial elements: the factors affecting the choice of the degree in mathematics, the 

social representations of mathematics, the students’ expectations and experiences 

noted year by year. It would also allow for the collection and interpretation of 

quantitative and qualitative data on the mathematics cohort concerning the internal 

differences of gender, social membership, background, etc. 

CONCLUSIONS 

Our reflections bring to conclusions on two different levels.  

Concerning the specific focus on the tertiary transition in mathematics, the discussion 

in the pars costruens paragraph offers ideas for developing a new research program, 

starting with the critical issues reported in the pars destruens paragraph: what 

characterizes a rite of passage? Which elements to consider for identifying the first-

year mathematics class and its possible subculture from an internal and an external 

perspective? What are the elements connecting this subculture to other subcultures? 

The interdisciplinary dialogue highlighted the limitations of the transposition of the 

rite of passage model and is therefore essential to take a step forward. However, the 

“naïve” use of the rite of passage in the research on the tertiary transition in 

mathematics was not at all useless: on the one hand, the result obtained are however 

significant having a crucial role in the development of research toward a more holistic 

approach, on the other hand, the critical analysis of these naïve use of the model 

suggests new and interesting directions of research. 

In line with Connor’s conclusion: “as mathematics educators become more familiar 

with the field of anthropology, their borrowing will become more sophisticated” 

(Connors, 1990, p. 467), this research program should necessarily be characterized by 

strong interdisciplinarity between mathematics education and anthropology, not 

limited to the phase 2 of Romberg’s model (see Fig.1) but including the identification 

of the problématique (phase 1) and the interpretation and discussion of the results 

(phase 3). 

At a more general level, we want to emphasize the significance of developing a 

retrospective dialogue when we conduct research based on constructs borrowed from 

other disciplines.  
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This interdisciplinary dialogue involves some evident difficulties related to the 

differences in language, communication styles, jargon, and modes of argumentation 

between our field of research and a different field such as anthropology. However, once 

this diversity is mutually understood and accepted, it is possible to create the basis for 

designing original and significant research without abdicating our respective 

disciplinary specificities. 

Research in mathematics education and research in anthropology are particularly well 

suited for this kind of dialogue and contamination: they have proven it in the past and 

they will be able to continue to do so, with greater awareness, in the future. 
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EXAMINING THE ROLE OF FACILITATORS IN THE CONTEXT 

OF PLANNING AN INQUIRY-BASED MATHEMATICS LESSON 
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This paper presents categories and codes of an analytical framework that combines 

both Knowledge Quartet and Mentoring Strategies to understand the role of 

facilitators in collaborative learning community through lesson study. The data is from 

a Norwegian lesson study involved three facilitators and six elementary teachers 

working together on an inquiry-based lesson. The new categories reported in this 

paper contributes to build a robust analytical tool to explore and discuss the role of 

facilitators in a future large-scale international study including several countries and 

all three phases of lesson study. 

INTRODUCTION  

The role of facilitators in collaborative work with teachers has been identified as central 

to the professional development of mathematics teachers (e.g. Borko & Potari, 2021). 

A difficult task is how to conceptualize the contribution of facilitators in such 

collaborative settings. For instance, Shulman’s pedagogical content knowledge (PCK) 

(Shulman, 1986) could be used to understand the difference of knowing something for 

oneself and being able to help others to know it. Yet, it is difficult to use PCK to 

interpret the differences we (Skott & Ding, 2022) found in how facilitators talked with 

teachers and what content-related aspects they talked about in mathematics lesson 

study (LS) in Denmark and China. This is not only because of the fact that LS is new 

in Denmark, but also because of cultural, social and power-related aspects of the 

different roles of facilitators in the two cultural settings.  

Based on this previous study, we will in the present study further develop categories 

and codes to describe, understand and interpret the tacit and abstract nature of how 

facilitators interacted with teachers and what content-related aspects they talked about 

in a mathematics LS in Norway that targeted inquiry-based learning (IBL) in 

elementary school. Our goal is to build a robust analytical tool to explore and discuss 

the role of facilitators in a large-scale international study including several countries 

and all three phases of LS (i.e. planning a research lesson, conducting the research 

lesson and observing student activities, reflecting on the lesson based on observations). 

Our research question in this paper is: how do facilitators interact with a group of 

elementary school teachers to learn to plan an inquiry-based mathematics lesson?  

THE ROLE OF FACILITATORS IN TEACHERS PROFESSIONAL 

DEVELOPMENT 

There has been a growing recognition of the significant role of facilitators in supporting 

teachers’ professional development through collaborative work related to classroom 
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practices in general and in LS in particular. Nevertheless, the research into the nature 

of the facilitators’ interactions with teachers in LS is scare (Skott, 2022). Thus, there 

is a need to develop a new analytical tool to describe, understand and interpret the 

complicated role of facilitators in teachers’ professional development. Gu and Gu 

(2016) developed an analytical tool based on empirical data to conceptualize how 

teaching research specialists (facilitators) mentor teachers during post-lesson LS-

debriefs based on more than 100 hours of videos of 50 facilitators in China. They 

developed a two-dimensional framework for analysing the mentoring activity: the first 

dimension is of the mentoring strategies, which encompass the dynamic between the 

facilitators and the teachers; the second dimension is the knowledge that mentors pay 

attention to (i.e. mathematical, pedagogical and practical knowledge). Regarding the 

mentoring strategies, Gu and Gu found that “the conversations between [the 

facilitators] and teachers were … monologues rather than dialogic in nature”, with the 

facilitators paying most attention to “what they know and what they anticipated, rather 

than … what teachers were concerned about in their teaching” (p. 451). Regarding the 

knowledge, the facilitators focused on practical knowledge, helping teachers to analyse 

concrete cases that embraced mathematical and pedagogical ideas. Ding and Jones 

(2018) propose that there is a dual nature of Chinese facilitators’ expertise in Chinese 

LS. The first nature is scaffolding the teachers to learn concurrently the act of the 

multiple theoretical ideas (i.e. teaching with variation) through the LS. The second 

nature is scaffolding the teachers to learn to reflect on their own beliefs about the 

subject, pedagogical thinking and action, and to develop their identity as mathematics 

teachers.  

Recent studies have showed that the different qualities of facilitators’ mentoring may 

promote alternative aspects of teachers professional development in special contexts. 

In a previous comparative study (Skott & Ding, 2022), we found big differences in the 

ways that the facilitators in Denmark and China interacted with the teachers. While the 

facilitators in the Danish LS rarely talked more than 2 minutes and interacted in a 

dialogic-relational mode with teachers during LS meetings (about 60 min), the Chinese 

facilitator dominated the conversation in a seemingly authoritative way in LS meetings 

(45 min). An important result of this study is that “cultural, social, and power related 

issues at the interactional level as well as at a broader level have high influences on 

their [the facilitators] engagement” (p. 8). An analytical tool should to some extent be 

able to take into account such issues. Comparing two mentoring strategies in a two-

year large-scale study in Germany, Richter et al. (2013) conclude that constructivist-

oriented mentoring (i.e.; when mentors initiate inquiry stances towards teaching) 

supports new mathematics teachers more appropriately than transmissive-oriented 

mentoring (i.e.; when mentors convey their own teaching ideas and often focus on 

technical skills). The authors further suggest that the quality of mentoring rather than 

its frequency and close guidance explains successful career paths. Their conclusions 

are based on teachers’ self-reported experiences of (among other things) self-efficacy 

and teaching enthusiasm. Skott (2022) investigates what happens in lesson study 

beyond its initial adaptation in countries outside East Asia with no use of external 
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support (facilitators). Based on a comprehensive Danish case, the study suggests that 

external support (or other external knowledge sources) are crucial at the mature stages 

of adaptation too. Skott (2022) highlights that compared with LS in Japan and China, 

two activities are new for the external support in the Danish context: 1) prevent 

teachers’ use of artefacts and actions from transforming into rote procedures. 2) 

identify problems to be analysed during reflection and challenge teachers’ views.  

THEORETICAL APPROACH 

Given the research question of this paper, two analytical tools are referred to in the 

initial data analysis: the Knowledge Quartet (KQ) (Rowland, 2013) and the Mentoring 

Strategies (MS) (Gu & Gu, 2016). The KQ is an empirically based conceptual 

framework developed particularly for the analysis of the relation of mathematics 

content with teaching in classrooms. We refer to the KQ rather than other frameworks, 

because it enables us to largely focus on the classification of situations of the 

collaborative learning and working between facilitators and teachers in which the 

subject matter is related to teaching. The KQ includes four components: (1) 

Foundation, about knowledge ‘possessed’, meaning the teacher’s theoretical 

background and beliefs in terms of what they learned at school and teacher education 

etc. The other three components are about knowledge-in-action, as they refer to ways 

and contexts in which knowledge is brought to bear on the preparation and conduct of 

teaching” (p. 200). (2) Transformation, about the capacity to transform the content 

knowledge one possesses into forms that are pedagogically powerful. (3) Connection, 

about the coherence and mathematical connections in mathematics pedagogy. (4) 

Contingency, about responses to classroom events that were not anticipated. 

Here, we wish to make clear two points of the KQ that enable us to develop further 

reflection on the categories for accounting for the ways facilitators interact with 

teachers in our study. First, the strength of the KQ is to enable researchers to focus on 

the relations between content-aspects and teaching situations. Second, we are aware of 

the differences between transformation and the capacity of a facilitator to enable other 

teachers not only to learn about, but also to agree on how to make transformation in 

their classes. We are thus open to the data to enrich the description of this category in 

our analysis. Nevertheless, the social and affective aspects are not less important in 

teachers’ learning and working in collaboration (Skott & Ding, 2022). This is what the 

second analytical tool of mentoring strategies enables us to examine, namely the 

complex relations between more cognitive aspects and affective and social aspects of 

the ways facilitators contribute to the social interactions in our study. 

Gu and Gu (2016) identify four types of mentoring strategies in their study of Chinese 

facilitators: (1) General comments, what teachers should know and do in classroom 

teaching in general; (2) Comments on anticipated problems, that teachers may 

encounter and advice on how to deal with them; (3) Responses to teachers’ questions, 

raised and related to the issues in the class taught; (4) Dialogues with teachers, 

discussing problems that occurred in class. 
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Based on the Danish data, Skott and Ding (2022) showed that Gu and Gu’s four types 

proved to be insufficient to capture all the strategies used by the facilitators, thus adding 

three new types: (1) Encouraging comments, such as emotional recognition of 

teachers’ ideas and suggestions; (2) Challenging comments, such as disagreeing with 

teachers’ proposals and understandings; (3) Building on or reformulating teachers’ 

ideas that are expressed in the conversation. The three new codes are also examined in 

our analysis of the Norwegian lesson study.  

THE INQUIRY-BASED MATHEMATICS LESSON STUDY IN NORWAY 

The context of the Norwegian lesson study  

The project involved two schools in the outskirts of a city in central Norway. The goal 

was to enhance the use of inquiry-based pedagogies in mathematics and science 

teaching by engaging teachers in lesson study. Explicitly, the goals were being defined 

in the project as focusing on inquiring activities (i.e. open tasks with multiple solutions 

or solution strategies) to develop such as students’ engagement, critical thinking, 

asking questions; cooperation and communication, etc.  

In the IBL LS meeting discussed in this paper, three teacher educators and researchers 

(called facilitators in the rest of the paper) participated. One of the facilitators DS (all 

anonymous) was a mathematics teacher educator while DR and DJ were natural 

science teacher educators. Six teachers participated: 1) TM2 (the school principal), 2) 

TR (1st grade classroom teacher), 3) TI (1st grade classroom teacher), 4) TM1 (special 

education teacher with specialization in mathematics and Norwegian), 5) TT (2nd grade 

classroom teacher), 6) TS (2nd grade classroom teacher). TM2 and TM1 do not do 

classroom teaching. The school had previously participated, with the facilitators, in 

two projects focused on IBL, but of the teachers only TM2 had been actively involved 

in those previous projects. 

Given the research question of this paper, we concentrate on the planning meeting of 

the first lesson. The teachers had talked briefly about the meeting in advance, and 

agreed that the first lesson is on mathematics, and partly spurred by TS, that the 

mathematical goal should be related to functions (one task of her mooc education was 

on the learning of functions). In the initial analysis, we focus on the first meeting (2 

hours). Using Microsoft Word, the words in the transcript (in Norwegian) were counted 

as follows: teachers uttered 14843 words and facilitators uttered 3843 words.  

Data analysis strategy and procedure 

In this section, we describe how we have developed our strategies for the data analysis 

and interpretation according to the two analytical tools presented above: KQ (Rowland, 

2013) and MS (Gu & Gu, 2016; Skott & Ding, 2022). All three authors analyzed the 

transcriptions individually (see Table 1 for an example of coding data in the analysis). 

We then validated our interpretations and use of the codes in digital meetings. In the 

same way we analyzed and discussed our use of MS codes (see Table 2). 
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Table 1: The use of KQ categories and codes in the data analysis  

Categories Codes of KQ (Rowland, 2013) Example of data 

Foundation 

(F)  

F1. awareness of purpose; F3. overt 

subject knowledge; F4. 

theoretical underpinning of 

pedagogy; F5. use of 

terminology. 

DS:  mathematics is about recognising patterns 

and do generalisations and such, and you 

can say that with functions it is also about 

finding expressions or formulas for it  

Table 2: The use of MS categories and codes in the data analysis  

Categories Codes of MS (Gu & Gu, 2016) Example of data 

Dialogues 

with teachers 

Gu 4. Facilitators and teachers 

dynamically and dialogically 

discuss and share their own 

opinions  

TR: Maybe the task could be to find different 

ways to continue the pattern. 

DR: Or if you first start the way you were 

thinking, how do you think the next one 

will look like, and then you can say that 

there are at least three ways to do it, can 

you find them.  

TM2: More advanced, more creative. 

TR: I think that was very smart. 

 

In this paper, we examine the facilitators’ interactions with teachers to gain new insight 

into the differences between the components of the KQ and the capacity of a facilitator 

in collaborative working with teachers in the LS. That is, it is necessary to address 

analytical vs. holistic ways of thinking (Ding & Jones, 2021) to develop a relational 

understanding of the key codes. For instance, two questions were largely discussed in 

the planning meeting regarding the IBL LS: (1) Is the mathematics goal clear? (2)  Does 

the plan offer students’ enough space to inquire, explore, discuss and cooperate?  In 

the next section, we describe our identification of one new strategy of MS and two new 

codes of one new category of KQ.  

FINDINGS 

The first episode (see Table 3) illustrates the identification of the new strategy and one 

new code of the new category of KQ. The analysis of DS’ utterances, in the first twenty 

minutes, showed how DS played an important role in facilitating LS, namely seeking 

and actively listening to feedback from teachers towards promoting a collaborative 

learning and working culture of being open, honest and constructive (new category of 

MS). In so doing, the facilitators played a significant role towards developing a shared 

mathematical knowledge foundation for planning and teaching the IBL lesson. 
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Table 3. Data analysis in the first episode. 

Facilitating LS, and seeking 

and actively listening to 

feedback from teachers 

towards promoting a learning 

process of open, honest, 

constructive. 

DS: … and we can see the importance of planning, but 

reflection after the first lesson is also very important, so we 

don’t have a perfect lesson planned even if we are several 

people now spending hours at planning. […] It is also 

important to know what we are looking at in the first 

lesson so the discussion afterwards becomes productive … 

Probing and understanding 

what knowledge and thoughts 

teachers actually have about 

functions (F1, F3, F6). 

DS: Maybe you could say more about that task and what kind 

of literature that is relevant. 

After having sought and 

actively listened to feedback 

from teachers, DS responded to 

teachers’ expression of lack in 

F3 and F4. And he also tried to 

extend teachers’ mathematical 

knowledge about functions in 

general to establish a shared 

mathematical knowledge 

foundation for planning and 

teaching at grade 1.  

DS: It is about discerning patterns and relations. E.g. that a 

triangle has three edges and that the number of edges and 

vertices are related, and how it is in a quadrilateral: a 

quadrilateral has four edges and four vertices. And this are 

words and concepts and figures that are also relevant at 

grade 1.  

TS: Absolutely. 

DS: And I am thinking, at grade 1 we are looking for simple 

connections, and it is important to discuss connections 

already at grade 1, since it lays the foundation for further 

development, as mathematics is about finding patterns and 

make generalisations. 

In the second episode, the analysis of DS’ utterances in the main part of the meeting 

(16:39-1:00:33) could be largely coded as Building on or reformulating teachers’ ideas 

towards establishing shared goals of the LS (e.g., generalization). Here, DS tried to 

support teachers’ knowledge-in-action (i.e. C20 (contingency of KQ) in Table 4) and 

enhancing their awareness of the relationship between teachers’ role in teaching and 

students’ role in learning mathematics (students’ situation, individual differences) (see 

Table 4).  

Trying to focus on the theme-

the learning goal, not time (at 

this moment). (Facilitating 

LS) 

Focus on learning goal (F1, 

F3). 

Gu4, pointing to 

generalisation (F1, F3). 

Teachers openly expressed 

their feelings to the 

facilitator’s shared 

mathematical knowledge for 

16:39  - 28:38  

DS: I believe it is important that we don’t spend much time 

discussing how long things take but rather discuss the theme 

for the lesson.  

TI: What we are supposed to do. 

DS: Yes, and what the learning goal is. What are the students 

supposed to learn from the lesson. 

DS: Yes, then you have a simple start and several possible paths 

ahead. How do you think figure number 20 will look like? Then 

you are approaching generalization, … 

TS: Yes, so that is interesting, what will number 20 be. And then 
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establishing the shared 

learning goal. 

building on that …  

TR: That would be fun. 

TI: Yes, really fun. 

After having sought and 

actively listened to feedback 

from teachers, the facilitator, 

for instance, responded to 

teacher insight (C20), to 

highlight the role of teacher 

and teaching for helping 

pupils to move on in learning 

mathematics. (Building on or 

reformulating teachers’ 

ideas). 

40:04 - 1:00:33  

TT: But do you understand the difference. … if you think as a 

teacher, the process is important, that they sit there reflecting, right, 

that they are reflecting together and are able to launch lots of ideas. 

That is the important part. Whether I get to know all those 

reflections is maybe not so important.  

… 

DS: The first thing we have to do is to discuss how do you think the 

next figure will look like, and if they think it is only one more, it is 

clear what number 13 will be, but if they take one, two, one, two, 

there needs to be some kind of reasoning, so there can be different 

solutions.  

Table 4. Data analysis in the second episode. 

DISCUSSION  

In this paper, we have identified a new category of mentoring strategy (MS) and two 

new codes of a new category of KQ of the communication and collaboration in the 

lesson study community, to contribute to the existing study of the role of facilitators 

(i.e. Skott & Ding, 2022; Gu & Gu, 2016; Richter et al., 2013). The new category of 

mentoring strategy is: Seek and actively listen to feedback from teachers towards 

promoting a collaborative learning and working culture of being open, honest and 

constructive. The new category of KQ is an effort to address the relational 

understanding of the components of KQ (Rowland, 2013) in our collaborative learning 

and working LS community in the context of real-world work. The first code of this 

new category is: Trying to establish a shared mathematical knowledge foundation for 

planning and teaching the IBL lesson (tackling the conflict between the facilitators’ 

mathematical knowledge foundation and the teachers’ lack of mathematical 

knowledge). The second code is: Towards establishing shared goals of teaching 

mathematics (e.g., generalization) (a need to construct together about a foundation of 

knowledge-in-action of both the facilitators and teachers). 

As the analysis shows, the number of teachers’ words (14843) in the planning meeting 

was almost four times than of the three facilitators (3843). Also, the strategy Building 

on or reformulating teachers’ ideas was common in both the Norwegian LS as well as 

in the Danish LS. Apparently, teachers are provided much space in communications 

with facilitators in the context of Norwegian and Danish LS. In Chinese LS (i.e. Gu & 

Gu, 2016; Ding & Jones, 2018; Skott & Ding, 2022), the facilitator appeared to give 

more respect and space to openly talk in the post-lesson debrief meetings. Further study 
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is needed to understand in depth of the different role played by facilitators regarding 

building up an open, honest and constructive learning and working community at real-

world work. Given the different respects and space given to LS participants to talk in 

the different cultural settings of LS (e.g., China, Denmark, Norway in our study), it is 

necessary to reconstruct the oversimplified dichotomy between a constructivist-

oriented vs. a transmission-oriented learning (Richter et al., 2013) in the context of 

teachers’ professional collaborative learning and working. Noticeably, Richter et al. 

(2013) highlighted the importance to reduce attrition that particularly happened to 

beginning teachers in the context of Germany school teacher professional field by 

support them to adjust to their new work environment, reduce stress levels and enhance 

job satisfaction. In China (and likely in other east Asian countries), attrition is not 

largely reported as a major problem for teacher professional development. Thus, as 

pointed in Skott and Ding (2022), future study needs to take into account the cultural 

social and power related issues particularly regarding the value-oriented pedagogy in 

teacher professional development, in order to make high influences on the participants 

[i.e. facilitators and teachers] engagement in collaborative learning and working. Our 

future research also needs to deal with further extending the tool by using it in the other 

phases of LS that have not yet been investigated in our study, and by using it with more 

LS cases. We also aim to test it against data from possibly new countries.   
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APPLYING A CONSTRUCTIVIST PROGRESSION TO CHINESE 

STUDENTS: DO EARLY ERRORS INDICATE LATER 

REASONING? 
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Using a multiplicative reasoning progression rooted in a constructivist units-and-

operations model, we addressed a twofold problem: To what extent is the model 

applicable to Chinese primary students’ reasoning – using the second, Same-Unit 

Coordination (SUC) and third, Unit Differentiation and Selection (UDS) schemes in 

the progression – and how may their errors on SUC tasks be related to strategies they 

used to solve more advanced, UDS tasks? We found that ~50% of the Chinese students 

(grades 3-6, n=545) made errors in solving SUC tasks, of which nearly half were 

totaling errors – and that those errors correlated significantly with the less advanced 

strategy (total-first) in solving UDS tasks. We discuss implications of these findings in 

terms of lessened opportunities for students to learn ways of reasoning multiplicatively. 

INTRODUCTION AND CONCEPTUAL FRAMEWORK 

A problem of interest to the PME community that we examined in this study is to what 

extent models about mathematics learning, developed through research programs in 

one culture, may provide an applicable tool to explain, and study, related phenomena 

in other cultures. Here, we focus on the extent to which a western-born, constructivist 

model of conceptual progressions in students’ multiplicative reasoning, in terms of 

units and operations a learner brings forth and uses to solve tasks (Steffe, 1992), can 

help address questions about aspects of Chinese primary students’ strategies for solving 

such tasks. Specifically, we examine how errors they make in solving tasks that require 

less advanced conceptualization may link with their solutions to more advanced tasks.  

Studying the applicability of such a model seems strategic, as researchers agree that 

multiplicative reasoning is a conceptual leap from additive reasoning (Kamii & Clark, 

1996; Lamon, 2007). When reasoning additively, the units operated on and the 

resulting units are all of one type (e.g., 5 slices + 6 slices = 11 slices). When reasoning 

multiplicatively, one operates on two types of units and the unit resulting from 

coordinating those are of a different type (e.g., 5 pizzas x 6 slices/pizza = 30 slices).  

Tzur et al. (2013) elaborated on prior constructivist works to distinguish a 6-scheme 

progression. The second scheme, termed same-unit coordination (SUC), entails being 

cognizant of equal-size sets of composite units as being composed of 1s while 

operating additively on the number of composite units in each set. For example, a task 

may involve 9 pagodas with 3 floors each (9P3) and 4 pagodas with 3 floors each (4P3). 

Correct SUC-sum reasoning yields 13 pagodas (13P3) and SUC-difference yields 5 

pagodas (5P3). A common error type we found among Chinese primary students (Ding 
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et al., 2022), termed totaling error, leads them to find the total of 1s (here, floors) in 

each set (27 and 12), then add or subtract those totals accordingly (e.g., 39 or 15, 

respectively). Figure 1 illustrates Chinese students’ totaling error in finding the sum. 

 

Fig 1. A sample of Chinese students’ totaling error on SUC-sum tasks. 

The third scheme in the progression, termed unit differentiation and selection (UDS), 

involves finding the difference (or sum) of 1s in two given sets of composite units. 

Consider this task: “Store A has 198 packs of Coca-Cola; Store B has 201 packs; each 

of those packs has 6 cans. How many more Coca-Cola cans does Store B have than 

Store A?” Researchers (Tzur et al., 2013; Wei, 2022) identified two strategies students 

may use to solve such tasks, a total-first and a difference-first. A total-first strategy 

involves finding how many 1s are in each set and then subtracting (e.g., 198x6=1188 

and 201x6=1206; 1206-1188=18). A difference-first strategy involves finding the 

difference in composite units and then multiplying only that difference by the unit rate 

(e.g., 201-198=3; 3x6=18). The difference-first strategy is more advanced as it 

involves selecting the sets of composite units to operate on first (additively, as in SUC) 

and only then on the 1s in the resulting difference, whereas in total-first strategy all 

units are first changed to 1s (multiplication) and then subtracted as 1s. As our example 

shows, the difference-first strategy can improve efficiency and reduce computational 

errors. Critically, coordinating total- and difference-first is a necessary conceptual 

foundation for mindfully using the distributive property of multiplication over addition 

(e.g., [201-198]x6 = 201x6 – 198x6; see McClintock et al., 2011). As totaling errors 

on SUC tasks involve a total-first strategy for UDS tasks, our research questions were: 

1. Using SUC and UDS as a lens, what solution strategies, and errors, can be 

identified in Chinese primary school students’ solutions to SUC and UDS tasks? 

2. Are Chinese students’ totaling errors related to their UDS solving strategies? 

METHODOLOGY 

We present the sample, instrument, and data collection and analysis used for this study, 

which was part of a larger, Chinese-USA research project, Primary School Students’ 

Performance on Multiplicative Reasoning Assessment. 

Sample  

Following local procedures for human subjects, all students (N = 545) in third (n=124), 

fourth (n=127), fifth (n=155), and sixth (n=139) grades at one school in a mid-size city 

in northeast China participated in this study (~50-50 gender split). These students took 

a new 31-item assessment developed and validated in the USA and China. For this 
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study, we extracted data from their solutions to six SUC tasks (3 SUC-diff and 3 SUC-

sum) and to 4 UDS tasks. 

Instrument 

Due to space limitations, in Table 1 we present only key information of the 10 tasks 

used for this study. In the student’s written assessment, each item appeared in full 

language on a separate page, with space and request to show their work. Two cycles of 

feedback from experts in multiplicative reasoning, followed by three cycles of back-

translation process (English to Chinese to English) ratified construct validity. Then, we 

also used Rasch analysis. The Cronbach’s alpha (0.93), the eigenvalue of variance 

explained by the measure (21.0) accounted for 40.4% of the observed variance 

(expected=40.1%), all eigenvalues of unexplained contrasts being less than 1.8, and 

satisfied criteria for reliability and unidimensionality (Brentari & Golia, 2007) of this 

assessment of multiplicative reasoning.  

Task Composites / 1s Set A Set B Answer 

2.1 SUC-diff Shelves / Boxes 23 / 10 23-9 / 10 16 shelves 

2.2 SUC-diff Boxes / Cookies 17 in all / 5 17-11 / 5 6 boxes 

2.3a  SUC-sum Bags / Candies 4 / 3 9 / 3 13 bags 

2.3b  SUC-diff Bags / Candies 4 / 3 9 / 3 5 bags 

2.4 SUC-sum Rows / Chairs 18 / 7 23 / 7 41 rows 

2.5 SUC-sum Boxes / Tomatoes 15 / 6 7 / 6 22 boxes 

3.1 UDS Teams / Players 7 / 5 10 / 5 15 players 

3.2 UDS Pizzas / Slices 6 / 4 15-6 / 4 12 slices 

3.3 UDS Packs / Cans 198 / 6 201 / 6 18 cans 

3.4 UDS Bunches / Balloons 16 / 7 19 / 7 21 balloons 

Table 1: Key information of SUC and UDS tasks used in the assessment. 

Data Collection and Analysis 

Graduate research assistants (GRA) administered the assessment to all classes during 

a regular math lesson, guiding all students to show their work. For the error type on 

SUC tasks (none, totaling, other), and UDS strategy (difference-first, total-first 

strategy, other), a GRA entered codes after Kappa statistic showed they reached 0.90 

interrater reliability. We used a t-test and ANOVA to analyse mean differences and 

Cramer’s V to test the association between totaling error and UDS strategies. 

RESULTS 

Table 2 shows students’ performance on SUC and UDS tasks. Students in grade 6 

scored highest on both SUC and UDS tasks (4.41 and 2.87, respectively); students in 

grades 3 (2.44) and 4 (2.78) scored lowest on SUC tasks; students in grade 3 scored 

lowest on UDS tasks (1.69). By showing the gradual growth in reasoning about and 

solving SUC and UDS tasks, these data lend support to our claim that the conceptual 

progression in multiplicative reasoning, at least for these two schemes, may be 
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applicable for students in cultures (e.g., China) other than in western cultures where it 

was initially studied and established. 

Grades 3 4 5 6 All F Post Hoc 

N 124 127 155 139 545   

SUC  

(max=6) 

2.44 

(1.98) 

2.78 

(1.98) 

3.64 

(1.96) 

4.41 

(1.64) 

3.36 

(2.03) 
29.00*** 6>5>4,3 

SUC-sum 

(max=3) 

0.98 

(1.12) 

1.17 

(1.13) 

1.64 

(1.17) 

2.13 

(1.02) 

1.50 

(1.20) 
35.45*** 6>5>4,3 

SUC-diff 

(max=3) 

1.47 

(1.05) 

1.61 

(1.07) 

2.00 

(0.99) 

2.28 

(0.83) 

1.86 

(1.03) 
18.68*** 6>5>4,3 

UDS  

(max=4) 

1.69 

(1.22) 

2.48 

(1.12) 

2.64 

(0.99) 

2.87 

(0.95) 

2.44 

(1.15) 
30.16*** 

6>4 

5,4>3 

*** Between-grade ANOVA (F-value) is significant at p < .001; a Bonferroni post-hoc analysis 

shows all grades’ contribution to this difference. 

Table 2: Students’ mean performance scores (with SD) on SUC and UDS tasks. 

To further examine these data, we first focus on students’ scores on SUC and UDS 

tasks and then on how their totaling errors correlate with scores on UDS tasks. We note 

that, as hypothesized, overall students’ scores on SUC and UDS tasks had statistically 

significant correlation (r = 0.55, p < .001). 

Students’ Performance on SUC Tasks  

Students performed better on SUC-diff tasks than on SUC-sum tasks (mean = 1.86 vs. 

1.50; t = 9.07, p < .01). Figure 2 shows percentages of their correct responses, totaling 

errors, and other errors on each SUC task. Overall, students made errors on 35% of 

SUC tasks, of which 51% are totaling errors. The percentage of totaling errors on SUC-

sum tasks (65%) is higher than on SUC-diff tasks (37%), indicating a possible impact 

of the Chinese instructional focus on mastery of multiplication facts.  

We divided all students’ responses to the six SUC tasks into four categories: correct/no-

error (n = 146, 27%), totaling error (3 or more, n=66, 12%), partial totaling error (1-2 

errors, n=212, 39%), and other (n = 117, 22%). ANOVA of these categories shows 

statistically significant differences in students’ scores on SUC tasks (F = 92.0, p < .01). 

Bonferroni post hoc analysis shows that the gap between students in the “no error” 

category (M=5.11, Std.=1.64) and students in the “totaling error” category (M=1.35, 

Std.=1.02) contributed the most to this F-value, while the “partial totaling error” and 

“other error” categories were somewhere in between (M=2.94, Std.=1.69; M=3.14, 

Std.=1.88). 
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Figure 2. Students’ responses to SUC tasks (percentages). 

Students’ Performance on UDS Tasks 

Figure 3 illustrates three common strategies used in solving the UDS-3.2 task: (3a) first 

finding the difference in composite units between the two compilations, or (3b) first 

finding the total of 1s in each compilation, or (3c) finding the total of 1s in an UDS 

task, which requires the difference (3c). Figure 4 summarizes these statistically.  

   

a. Difference-First b. Total-First c. Other 

Figure 3. Examples of student responses to UDS tasks. 

The data in Figure 4 further indicate that most participating students are accustomed to 

using the total-first strategy in UDS tasks (UDS-3.1, UDS-3.3 and UDS-3.4), while 

more students (47.4%) used the difference-first strategy for UDS-3.2. A plausible 

reason for this could be the complicated information given in UDS-3.2, as it includes 

the total number of pizzas for two children, the number of one child’s pizzas, and the 

number of slices in each pizza. These givens may be taken by more students as a basis 

for first operating on the composite units. Also, the numbers in UDS-3.3 are larger than 

in the other tasks (201 packs and 198 packs, 6 cans in each pack). A student’s choice 

to use a difference-first strategy makes it quite easy whereas the total-first calculation 

can be time-consuming and error-prone. Yet, most participating students (62.9%) used 

the total-first strategy. 

To quantify levels of UDS, we focused on their responses to the two items that were 

most likely to be solved using a difference-first strategy. Our choice to focus on just 

two items intended to be strict with our results because students’ choice to use total-

first on the other two items could be attributed more to the task characteristics. We 

remind the reader that to establish a UDS scheme it would be necessary to construct 
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and coordinate the two solution strategies, with difference-first being more advanced 

conceptually (Wei, 2022). We thus categorized responses as “no UDS” if students 

 

Figure 4. Students’ strategies in solving each UDS task (percentages). 

used neither difference-first nor total-first strategy, “Partial (diff+)” if they used 

difference-first for one of the two likely items, “Partial (total+)” if they used totaling 

for one or both items (but not difference-first), and “Diff-first” if they used difference-

first for both items. Table 3 shows that ~13% had Diff-first, 41% had partial (diff+), 

~35% had partial (total+), and ~12% had no UDS. Considering all results above, we 

next analyzed correlations between them. 

UDS scheme Diff-first Partial (diff+) Partial (total+) No UDS 

N 70 221 188 175 

Percentage 12.9% 41% 34.6 11.9% 

Table 3: Students’ UDS strategy-levels (percentages). 

Correlating students’ UDS strategy-levels with their error types on SUC 

ANOVA of students’ error types in SUC shows statistically significant differences 

among the four categories (F = 6.31, p < .01; see Table 4). We thus analysed association 

between students’ error-type on SUC items and their level of performance on the two 

UDS tasks as explained above. Figure 5 shows that 24% of students in the SUC “no-

error” category indicated having the UDS scheme (Diff-first) as opposed to only 9.0% 

of students in the partial totaling error category and 9.1% of students in totaling error 

category. A Cramer’s V test shows that this difference is statistically significant 

(Cramer’s V = 0.144, p < .001). 

Taken together, the results presented in this section support our hypothesis that 

participating Chinese student responses to SUC items are correlated with their UDS 

strategy-levels. This correlation, considered through a units-and-operations model of 

progression in multiplicative reasoning, suggests that participating Chinese students’ 

solutions to SUC and UDS tasks may be explained by this model. Importantly, our 
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results shed light on the needed attention to the kind of errors students (here, Chinese) 

may make in solving SUC and UDS tasks – particularly totaling errors. 

Table 4: ANOVA of different error groups performance on UDC tasks. 

 Group N Mean Std. F p 

UDS (max=4) No error 146 2.70 1.06 6.31 0.00 

 Partial totaling error 212 2.50 1.11   

 Totaling error 66 2.35 1.03   

 Other error 117 2.10 1.30   

 

 

Figure 5. Students’ UDS levels per SUC error-type categories. 

DISCUSSION 

Keeping in mind that a theory is needed to explain correlation among variables, our 

findings support three claims. Our first claim is that, seen through the model of 

conceptual progression from SUC to UDS, the correlation between totaling errors on 

SUC tasks and UDS strategy-levels indicate the former may serve as an indicator of 

the latter. Our second claim is that primary school Chinese students who made a 

totaling error (SUC) are more likely to use a total-first strategy to solve UDS tasks. 

Whereas a total-first strategy clearly enables to solve any UDS task, it may constrain 

the student’s development of the more conceptually advanced, difference-first strategy. 

Taken together, these two claims imply that students who are making a totaling error 

are less likely to construct a coordinated UDS scheme (i.e., total- and difference-first), 

which is the conceptual basis for the distributive property of multiplication over 

addition (McClintock et al., 2011). They also imply to pay close attention to students’ 

reasoning particularly when instructional practices (e.g., in China) seem to stress 

speedy and accurate use of multiplication facts, to which totaling errors seem related. 



Ding, Tzur & Wei 

2 - 242 PME 46 – 2023 

Our third claim is that this study lends support to a line of research looking to examine 

possible cross-culture models of conceptual development. Specifically, the western-

born, conceptual progression in multiplicative reasoning that is rooted in a 

constructivist model of units-and-operations (Steffe, 1992) seemed applicable to 

students in a rather different culture (China). Our study of linkages among students’ 

solutions to SUC and UDS tasks adds to a prior study of the totaling error in relation 

to the first scheme of multiplicative reasoning (Ding et al., 2022). Between that study 

and the present one, we begin to see how the first three (of six) schemes in the 

conceptual progression model may also help explain Chinese students’ development. 

Thus, in a future study, we will focus on their development of the fourth scheme in the 

progression, which underlies mindful operations in a place value, base ten system. 
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WORD PROBLEMS THROUGH DRAWINGS 
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Research has shown that preschool children can make sense of multiplication and 

division situations. However, researchers suggest that sharing is the most intuitive way 

for young children to solve division problems using manipulatives. Starting from the 

hypothesis that drawing might be another means by which young children can 

represent division situations, we conducted a task-based interview with a small group 

of Australian and Italian 6-year-olds about measurement and partitive division 

situations. Results indicate that the children could interpret both types of division and 

their drawings and gestures captured the strategies used. We contend that children’s 

drawings capture their thinking more effectively than their use of manipulatives. 

INTRODUCTION 

Research has highlighted that children can represent multiplicative situations prior to 

commencing formal schooling (Bakker et al., 2014; Vanluydt et al., 2022). For 

instance, Bakker and colleagues (2014) found that first graders (6-7 year olds) could 

solve multiplicative word problems even when still unaware of how it is formally 

represented. Others reported that kindergarten children could detect a multiplicative 

relation (the ratio) in proportionality problems (Vanluydt et al., 2022) and after specific 

instruction could solve multiplication and division problem by modelling the situation 

with tally marks, counting, or recall of facts (Carpenter et al., 1993). Although the 

children in Carpenter et al.’s study were permitted to use counters or pencil and paper 

to help them solve the problems, many used counters only while modelling division 

problems. 

We wondered if these findings indicate that preschool children can model division 

problems only with manipulative materials, or if drawings may be another means of 

representation for division situations. The study presented in this report explored this 

idea, as several authors consider drawing as a powerful tool for problem solving (e.g., 

Soundy & Drucker, 2009). 

THEORETICAL FRAMEWORK 

Young children’s drawing in mathematics  

Carruthers and Worthington (2006) investigated the development of young children’s 

(3 to 8 year-olds) mathematical graphics. They defined graphics as the full range of 

marks children make when exploring mathematical ideas. These included dynamic, 

pictographic, iconic, written, and symbolic marks. They claimed that exploring 

mathematics through their own intuitive marks helps young children to make sense of 

standard symbols and bridges the gap between informal mathematics and the abstract 
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mathematics of school. Also, children’s drawings, and narrative about them, are a 

“window into the mind of child” (Woleck, 2001, p. 215) allowing teachers and 

researchers insight into children’s mathematical thinking. 

Young children’s drawings generally serve two purposes in the mathematics 

classroom. Drawings may support the process of mathematical work and/or represent 

the product of mathematical work (e.g. Smith, 2003). Smith (2003) described these 

purposes as drawing as problem solving and drawing of problem-solving. Similarly, 

MacDonald (2013) argued that drawings are “not just a procedure by which children 

record their knowledge about a concept; it is also a process through which 

understandings can be constructed, re-considered and applied in new ways” (p. 72). 

Furthermore, Woleck (2001) identified that first graders used drawings in 

mathematical problem solving “as if they were manipulatives” (p. 216) to carry out the 

steps of organising and counting, that supported their problem-solving efforts. She also 

reported that children might use drawings as a prewriting tool to communicate their 

mathematical thinking to others.  

In the context of multiplication and division, Mulligan (2002) found that children’s 

drawings and their explanations of the drawings could be used to identify how they 

notice multiplicative structures. She reported that the images drawn by low attaining 

children in the primary years tended to lack structure and were poorly organised. This 

was attributed to an underlying lack of awareness of the equal groups structure and a 

reliance on using counting by ones when solving problems.   

Division of integers 

While it is acknowledged that division is more than just sharing (Squire & Bryant, 

2002), the physical act of sharing a quantity equally is division, in that to share a 

quantity successfully one divides a dividend into equal quotients. Previous research 

has found that young children (4 to 5-year-olds) can share out quantities using one-to-

one correspondence, and model division problems using concrete materials long before 

any formal introduction to division (Carpenter et al. 1993; Frydman & Bryant, 1988). 

Furthermore, these initial strategies tend to reflect the action described in the problem 

(Marton, 1996). These findings led many to suggest that sharing is the schema for 

action from which an understanding of division develops (e.g. Correa et al., 1998; 

Squire & Bryant, 2002). Frydman and Bryant (1988) found that although most 4-year-

olds in their study could share items equally between two groups, only half of the 

children (10 out of 24) were able to infer the number of items in each set. This suggests 

that these children have an understanding of the numerical significance of sharing. It 

also suggests the developmental nature of this concept. 

Division word problems can be interpreted and represented in two different ways, 

namely division by the multiplier (partition division) and division by the multiplicand 

(quotitive or measurement division) (e.g., Correa et al., 1998; Greer, 1992; Verschaffel 

et al., 2007). According to Greer (1992, p. 276): 
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Dividing the total by the number of groups to find the number in each group is called 

partitive division, which corresponds to the familiar practice of equal sharing […]. 

Dividing the total by the number in each group to find the number of groups is called 

quotitive division (sometimes termed measurement division, reflecting its conceptual links 

with the operation of measurement). 

The difference between quotition and partition problems relates to the textual structure 

of the problem (Nesher, 1988). For example, the expression 12 ÷ 4 could be interpreted 

as a partitive problem, such as: Twelve lollies are shared equally among 4 children. 

How many did they each receive? In solving the problem the action is one of sharing 

or distributing the twelve lollies equally between the four children. Interpreted as a 

quotitive problem, using the same context: There are 12 lollies and each child receives 

4. How many children will receive lollies? While the quotient is the same for each, the 

model is quite different, so is the action. Rather than an action of sharing it is a grouping 

or count of the twelve lollies into groups of fours. 

In summary, critical ideas for students to construct are: that collections/objects can be 

divided into equal groups; division involves part-whole relations that include three 

elements: the size of the whole, number of parts, and size of the parts; there is a 

relationship between three values represented by the dividend, divisor, and quotient; 

and that division is the inverse of multiplication, in which case multiplication can be 

used to solve division problems.  

Our focus in this report is on four division problems (two measurement and two 

partitive) (see Table 1), which are part of an interview in our larger study.  

Measurement division Partitive division 

P1. Tad fished 12 tadpoles. He put 

4 tadpoles in each jar. How 

many jars did Tad put tadpoles 

in? 

P3. Mr. Gomez had 12 cookies. He put the 

cookies into 3 boxes so there was the same 

number of cookies in each box. How many 

cookies did Mr. Gomez put in each box? 

P2. John had 6 crayons. He put 2 

crayons in each box. How 

many boxes did John need? 

P4. You have 12 marbles and you give the same 

amount of marbles to three friends. How 

many marbles do they each get? 

Table 1: Division problems used in the interviews. 

In the context of using manipulatives, Carpenter et al. (1993) noted that young children 

enact different solution strategies when solving a division problem. When solving 

measurement division of the type M:N, some children counted M items and then 

arranged them in sets of N items each (measuring M in terms of Ns). Others made sets 

of N items until they reached a total of M items and then counted the number of sets. 

Some students counted by Ns (double count according to Kouba, 1989). In the context 

of partitive division A:B, children arranged A in B sets with the same number of 

counters in each set (grouping). Some children distributed the counters one by one into 
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the B sets (sharing). Others put a number of items in each B set then adjusted the 

number in each (trial-and-error strategy) or used known or derived facts. 

METHODS 

Since we were interested in understanding how children represent division situations 

using drawings, we needed suitable methods. In particular, we wanted to identify the 

elements that allow understanding if the situation is modelled as expected, that means 

if a measurement or partitive division is modelled as such. We needed to distinguish 

between drawing-as-problem-solving and drawing-of-problem-solving (Smith, 2003). 

We expected some of the strategies described by Carpenter et al. (1993) in the context 

of manipulatives to appear in the context of drawings as well. 

Research shows how children can produce drawings together with other means of 

communication like talk, writing, movement, and sound (Soundy & Drucker, 2009). 

With the aim of taking into consideration all the possible means of communication 

involved in the production of the drawings – including gestures, spoken words, and the 

use of manipulatives – we decided to adopt a multimodal semiotic approach by 

referring to the construct of a semiotic bundle as presented by Arzarello et al. (2009). 

A semiotic bundle is: 

a system of signs […] that is produced by one or more interacting subjects and that evolves 

in time. Typically, a semiotic bundle is made of the signs that are produced by a student 

or by a group of students while solving a problem and/or discussing a mathematical 

question. (Arzarello et al., 2009, p. 100) 

In particular, the synchronic and diachronic analysis of the semiotic bundle may give 

hints about how the children represent the proposed situations, what are the relations 

between the different representations and how such representations (do or do not) help 

the child during the process. The diachronic analysis focuses on the evolution of signs 

over time, and the transformation of their relationships; the synchronic analysis, 

instead, focuses on the relations among the signs used in a certain moment. In 

particular, we will speak of genetic conversion (Arzarello, 2006) when the conversion 

rules between semiotic sets have a genetic nature, namely, one semiotic set is generated 

by another one, so enlarging the bundle. Our research questions can be then rephrased: 

Do the same strategies observed for manipulatives appear in the case of graphics? How 

do the different components of the semiotic bundle correspond with preschool 

children’s mathematical graphics of the division situations? 

We conducted our research in countries with different languages (Australia and Italy, 

so English and Italian languages). In particular, these two languages differ in the way 

in which multiplication is verbally represented. In English (as in many other languages) 

the word ‘times’ is used to read multiplications (like expressions such as 3×4. This is 

not the case in Italian, where the symbol × is read ‘per’ is unrelated to the word ‘volte’ 

(‘times’ in Italian) but refers only to the name of the symbol itself. In the Australian 

context, children start preschool (kindergarten) when they are 4 year-olds; from there 
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they transition to their first year of primary school at the age of 5. In Italy children 

move directly from kindergarten to primary at the age 6.  

Prior to commencing the main study, the interview tasks and recording sheet were 

trialled, following which refinements were made to the language and the number range. 

We interviewed Australian children during their Foundation year, while Italian 

children were interviewed at the very beginning of first grade. Our sample consisted of 

19 children with an average age of 6 (6 males and 4 females were Australian; 5 females 

and 4 males were Italian). The researcher interviewed the children individually using 

an interview script to ensure consistency. The task could be repeated as many times as 

needed. Each interview took for approximately 15 minutes. Each interview was video 

recorded with parent consent. Video recordings were transcribed verbatim, and the 

transcript was enriched with images of gestures and drawings to describe the semiotic 

bundle (Radford & Sabena, 2015). 

RESULTS 

The interview data were categorized in terms of strategies used for measurement or 

partitive division situations. The video analysis took into account the different 

modalities of representations, not only the drawing, but also the relations between the 

different signs both synchronically and diachronically, exemplified below. Table 2 

includes the strategies we observed in the children’s drawings, which correspond to 

those observed by Carpenter et al. (1993) when children used manipulatives (see 

Theoretical Framework section).  

Table 2: Occurrences of each strategy for addressing the proposed division situations 

 Measurement division Partitive division 

 P1 (tadpoles) P2 (crayons) P3 (cookies) P4 

(marbles) 

measuring      

double count     

grouping     

sharing     

trial-and-error      

known/derived facts     

The diachronic analysis of the process of drawing (including speech and gestures) 

allowed us to distinguish between the different categories. For instance, Figure 1 shows 

the final graphics from two different children. The graphics depict P1 (the tadpole’s 

problem) and in both cases it is possible to see a human character and three jars, each 

containing four tadpoles. However, the processes behind these two drawings are 

completely different and, we contend, highlight two different strategies of 

interpretation of this measurement division situation. The Italian child started by 

drawing one jar with four tadpoles inside (Figure 1a). In contrast, the Australian child 

drew a long fishing pole and the twelve tadpoles; the jars (represented by C-like lines) 
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were added as last element (Figure 1b). He is measuring the number of tadpoles (12) 

in terms of the number of tadpoles-per-jar (4) We noticed that this second procedure 

follows the same order of appearance of the information in the verbal presentation of 

the situation: the character first, then the number of tadpoles, and finally the number of 

tadpoles per jar. The first procedure did not present, at least initially, the information 

about the total number of fished tadpoles while the sequence of drawing appears as a 

genetic conversion of the sentence ‘He put 4 tadpoles in each jar’. The character was 

added as last element. 

 

Figure 1: Two children’s mathematical graphics of the tadpoles’ problem (P1).  

Indeed, after drawing the first jar, the child whose graphic is depicted in Figure 1a, 

drew a second jar with four tadpoles inside (Figure 2a). Then, she counted the drawn 

tadpoles pointing to them one by one (Figure 2b) After realizing there were eight 

tadpoles, she stated that another jar was needed and drew the last jar (Figure 2c). We 

can see that she is using a double count: she is keeping the count of the number of 

tadpoles-per-jar in each jar and, at the same time, checking that the total amount of 

tadpoles reaches the expected quantity of twelve. 

 

Figure 2: Video screenshots of the process of generation of the graphic in Figure 1a.  

DISCUSSION AND CONCLUSION 

Our results show that when young children represent division situations through 

drawings, they adopt solution strategies similar to those who used manipulatives in 

earlier studies (Carpenter et al., 1993). A key finding from this study is that drawing 

may be an efficient tool not just in the sense of drawing of problem-solving but as 

problem solving (Smith, 2003) as well. Through the diachronic analysis of the semiotic 

bundle, we were able to exemplify how different processes involved in the creation of 

mathematical graphics may correspond to different strategies. Also, that some of these 

strategies only appear as genetic conversion of the words used to present the situation 

into inscriptions.   

Our results suggest that drawing can be an efficient tool for problem solving in 

preschool as much as the use of manipulatives. We contend that our analysis allows us 
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to argue that drawings may help researchers (and possibly teachers) capture children’s 

thinking more effectively than manipulatives. Indeed, the diachronic analysis of the 

relationships between the different inscriptions clearly shows the model of division 

adopted by the child while allowing the researchers to distinguish the presence of those 

that we have called the critical ideas related to division (see Theoretical Framework 

section). Observing the sequence of each child’s drawings and gestures they used 

enabled us to notice whether the child had a sense of the equal group structure and or 

relied on counting by ones to solve the problems, as observed by Mulligan (2002). 

Also, we observed grouping strategies for both partitive, and measurement division 

situations. This result contradicts the commonly held view that sharing is the schema 

for action from which an understanding of division develops (e.g., Correa et al., 1998; 

Frydman & Bryant, 1988; Squire & Bryant, 2002).  

It is possible that through the production of mathematical graphics that children are 

able to adopt such strategies: while drawing they produce a permanent record of their 

previous thinking which may allow them to reconsider it or reason about it – by 

themselves or with the scaffolding of an adult. Also, symbols like connection-lines and 

arrows may help in re-tracing the enacted processes of moving, grouping, or sharing. 

Such strategies are not possible with manipulatives, as only the final product of the 

process remains visible.  

We acknowledge further research is needed to provide large-scale evidence for these 

speculations. In particular, the study presented in this research report was explorative 

in its nature and involved a very small sample. The fact that the sample was constituted 

of children with different schooling experiences and different languages supports the 

possibility of generalization of the obtained results. In the future, we plan to repeat the 

same study on a larger scale to support our conjecture. 
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In this report, we present an initial analysis from a study that is developing an 

instrument to assess community college instructors’ mathematical knowledge for 

teaching college algebra. This instrument contains multiple-choice items that are 

organized around two types of tasks of teaching, understanding student work and 

choosing problems, and covers topics in linear, rational, and exponential functions. 

The instrument is being administered to instructors teaching at a nationally 

representative and stratified sample of community colleges in the United States. Using 

the current partial sample of 289 instructor responses from 184 institutions, we 

describe item characteristics and preliminary patterns in the responses.  

Substantial work has been performed to understand the nature and composition of 

mathematical knowledge for teaching. Foundational work by several scholars (Ball et 

al., 2008; Rowland et al., 2005) has indicated that there is a strong relationship between 

teachers’ knowledge about mathematics and its teaching, and the quality of their work 

in the classroom. Furthermore, the quality of instruction has been shown to have a 

positive impact on student learning. Ball and colleagues (2008) hypothesized five 

components building upon Shulman’s (1986) distinction between content and 

pedagogical knowledge but failed to empirically show their hypothesized 

multidimensionality of the construct with their instrument (Hill, 2010). On the other 

hand, Ko and Herbst (2020), theorizing about knowledge needed to perform two 

specific tasks of teaching instead, identified a two-dimensional structure in the context 

of high-school geometry teaching, one dimension related to the knowledge needed to 

choose givens for a problem and the other dimension related to the knowledge needed 

to understand students’ work. We build upon this work, hypothesizing a two-dimension 

construct for the knowledge based on two different tasks of teaching college algebra, 

one related to the knowledge needed to understand students’ work, and the other related 

to the knowledge needed to choose problems for teaching a mathematical concept, 

differently from Hill and colleague’s work, and from Ko and Herbst, we focus on topics 

usually taught in a college algebra course—linear functions, rational functions, and 

exponential functions. 
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THEORETICAL FRAMING 

We grounded item design in the theoretical work on mathematical knowledge for 

teaching and in the context of community colleges.1 We adopted the approach of 

studying tasks of teaching related to the instructional situation of presenting concepts 

to students via examples. Tasks of teaching refers to tasks that arise when teaching, for 

example “planning for … lessons, evaluating students’ work, writing and grading 

assessments, explaining the classwork to parents, making and managing homework, 

attending to concerns for equity, and dealing with the building principal who has strong 

views about the math curriculum” (Ball et al., 2008, p. 395). In an instructional 

situation, instructors need to manage the interactions between students and content; 

they have the responsibility (and obligation) to offer students work that will be directly 

related to learning a piece of mathematics and of analysing the mathematics evident in 

students’ utterances or in their written work produced while learning mathematics. 

Community college instructors typically use examples to anchor the presentation of the 

material and solve them collaboratively with students (Mesa & Herbst, 2011). This is 

an ideal instructional situation that showcases the two types of hypothesized 

knowledge as teachers need to both be able to choose problems that exemplify specific 

key ideas of the content and be able to understand students’ work (approaches or 

mistakes) when solving those problems. We posit that the knowledge needed in each 

case is of different nature.  

College algebra at community colleges in the United States encompasses many algebra 

topics with great variation across institutions and textbooks used to teach the topics. 

To make the instrument manageable, we narrowed the content to address linear, 

rational, and exponential functions, as related concepts (e.g., covariation, function 

transformation, algebra of functions, rate of change, behaviour of a function over a 

whole domain, etc.) are essential for building a conceptual understanding of ideas that 

are needed for courses within a calculus sequence—a sequence required for many 

students interested in pursuing a degree in science, technology, engineering, or 

mathematics (VMQI-AI@CC 2.0 Team, 2021; Watkins et al., 2016). The 

Mathematical Knowledge for Teaching Community College Algebra (MKT-CCA) 

instrument that we developed includes items within the two organizers, tasks of 

teaching and topics, resulting in a proposed knowledge structure with six dimensions 

(Figure 1). 

                                                           

1 Community colleges are tertiary-type B institutions that offer courses in the first two years of post-secondary 

education (OECD, 2017). 
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Figure 1: Blueprint for the development of the MKT-CCA instrument. 

In earlier work, using responses from an instrument developed to assess mathematical 

knowledge for teaching high-school algebra (Phelps et al., 2014), we identified a 

positive connection between the types of courses that community college instructors 

had taught and their scores in the instrument. Specifically, those instructors who had 

taught advanced algebra courses performed better than community college instructors 

who have not (Ko et al., 2021). As we are only about halfway through our data 

collection process (we are targeting a sample of 600 respondents), we decided to 

examine participants’ performance at an item and an average of the item-level rather 

than at a construct level that may require testing dimensionality with a larger sample 

size. However, and for the same reason, we investigated participants selecting the 

options that we deemed correct with respect to their teaching experience specifically, 

years of full-time equivalent mathematics teaching experience and number of times 

they taught various types of courses. We answer the following question: What is the 

relationship between instructors’ teaching experience (reports of years of full-time 

equivalent mathematics teaching and courses taught) and the proportion of correct item 

responses?  

METHODS  

Participants 

We used random and census approaches to recruit participants. We first used the 

National Center for Education Statistics to select a stratified random sample of 799 

public colleges in the United States that primarily grant associate’s degrees (out of 

1374 institutions). The sample was representative of two-year institutions in terms of 

region in the country, size of the student body, setting (e.g., city, rural, suburban), and 

student racial diversity. We then recruited instructor participants by emailing full- and 

part-time instructors in our sample who teach at those institutions. We also sent email 

invitations to instructors who are members of the American Mathematical Association 

of Two-Year Colleges and to all full- and part-time faculty at minority-serving two-

year institutions. This report is based on the responses from 289 community college 

instructors, about halfway from our target of 600. 
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Instruments  

We use two instruments: an MKT-CCA instrument assessing the knowledge and a 

Background Characteristics survey. The MKT-CCA instrument consists of balanced 

sets of items assessing the knowledge used in choosing a problem and understanding 

student work across three types of functions (see Figure 2 for an example of an item 

on exponential functions and understanding student work).2 The MKT-CCA 

instrument has 27 multiple-choice items and seven testlets (an item with a common 

stem and four options each of which can be either correct or incorrect). The 

Background Characteristics instrument contains 22 questions, including four questions 

inquiring about participants’ gender, age, race, and ethnic backgrounds and four about 

their teaching experience: the total number years of full-time-equivalent teaching 

experience in mathematics (FTE_MT), and the number of times they have taught (a) 

mathematics courses before college algebra (B_CA), (b) college algebra (CA), and (c) 

courses that follow college algebra (A_CA) (the options Never, Less than 5 times, More 

than 5 times and less than 10 times, More than 10 times apply to these four questions). 

The instruments are distributed via Qualtrics. The MKT-CCA items are presented in 

the same order to all the test-takers, with five items per page, and they are not timed. 

Respondents are asked not to use any additional resources to answer the items and 

encouraged to complete all in a single session.  

Analysis 

To answer our research question, this proposal used item difficulty, each participant’s 

average proportion of correct answers, and their teaching background variables. Item 

difficulty is calculated as the percentage of respondents who chose the option deemed 

as correct; thus, the higher the value in item difficulty, the easier the question. 

According to Lord (1952), for a four-response multiple-choice item, the ideal difficulty 

would be 74, or 74% of respondents choosing the correct response. We used four 

variables related to teaching background: the reported FTE_MT (continuous) and three 

categorical variables regarding the number of times they taught college algebra (CA), 

and courses below (B_CA) or above it (A_CA). Using SPSS (IBM, 2020), we tested 

the correlation between each participant’s proportion of correct answers and their 

FTE_MT and performed chi-square tests to identify an association between whether 

participants choose a correct or an incorrect answer per item and their CA, B_CA, and 

A_CA. In addition to check how teaching experience was related to responses to 

individual items we used a non-parametric test, the Mann-Whitney U, to test the 

difference in responses of choosing a correct or an incorrect answer per item with 

teaching experience. The responses from 289 participants who responded to all 

assessment items as of 1 January 2023, constitutes our analytical sample. They 

represent 184 different institutions, 44% of which are in the West, 30% in the South, 

19% in the Midwest, and 7% in the Northeast of the United States. About 51% of the 

                                                           
2 We are sharing items that are not part of the instrument as the data collection is ongoing. The 

presentation of the item is modified to fit the template requirements. 
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institutions are in urban cities, 27% in the suburbs, 12% in cities without suburbs, and 

9% in rural areas. Fifty-two percent of the institutions have between 5,000-19,999 

students, 26% have 20,000 or more, and 22% have less than 5,000 students. About 

45% of the participants identified as female and 51% identified as male; about 76% 

identified as Caucasian, 10% as Asian, and 7% as Black or African American. On 

average, the participants reported having 16 years of full-time mathematics teaching 

experience (SD = 9 years); regarding the number of times that participants reported 

teaching (a) courses before college algebra, (b) college algebra, (c) courses that follow 

college algebra, and (d) courses not related to a college algebra sequence a relatively 

high percentage indicated reporting the courses 10 times or more (59%, 64%, 53%, and 

43% respectively); while a small percentage of teachers reported never teaching 

courses before college algebra, college algebra, or courses not related to a college 

algebra sequence, almost one fifth of the participants (18%) indicated not having taught 

courses that follow college algebra. 

 

Figure 2: Sample item of understanding student work on exponential functions 

Limitations  

The results of our preliminary analysis are impacted by two limitations. First, to ensure 

that the instrument reaches faculty in various parts of the country and that they answer 

it at a time when it is convenient for them, we administered the instrument online and 

did not proctor it. While this strategy increases response rates, a negative impact is that 

while we request respondents not refer to outside resources, we do not know that this 

is the case. Second, to reduce the number of pages a respondent must go through, and 

the potential fatigue created by answering a multiple-page instrument, we presented 
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five items per page. This way of presenting items makes it impossible to determine 

how much time on average each item takes, which is a consideration when assessing 

item quality. At the same time, we can reach more faculty across the nation and from 

different institutions, which enriches our data set. 

FINDINGS  

Because we do not yet have a sizable sample of respondents to perform an analysis of 

the dimensionality of the measure, and for space reasons, we report only on the 

percentage of correct answers of the 27 multiple-choice items (most respondents 

selected the expected options in the seven testlets). The average percentage of correct 

responses for the multiple-choice items varied from 20% to 79%, with an average of 

57.23% correct (and a standard deviation of 13.86%). The item that had only 20% of 

respondents selecting the correct answer is an exponential function item on 

understanding student work (see Figure 2 for a comparable item). Figure 3 shows the 

distribution of the average of correct responses per item across the 289 respondents. 

The distribution suggests that the respondents are choosing the answers that we have 

identified as correct within a reasonable range.  

 

     Figure 3: Distribution of item difficulty  

(percentage of participants who answer an item correctly) 

No items are extremely difficult or easy, and on average, the item difficulty is closer 

to 60%. The distribution of the percentage of correct responses per item is skewed 

towards the right, suggesting that the items are within the ideal difficulty of 74% (Lord, 

1952). We found a positive and significant association between participants’ average 

proportion of correct answers and their number of years of teaching experience (r = 

0.164, p < .027). Mann-Whitney U tests for six individual items (3-rational, 2-linear, 

and 1-exponential) suggest that instructors with more full-time mathematics teaching 

experience more frequently chose the correct answers on these items than instructors 

with less teaching experience (U ranges from 6575.5 to 11947.5, 0.001 < p < 0.05; and 

an average effect size of 0.132). Chi-squared tests indicate that in 12 items (6-rational, 
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4-linear, and 2 exponential), instructors who had taught college courses more than 10 

times tended to select the correct option more frequently than instructors who had 

taught college courses less than 10 times. This was true for instructors who indicated 

teaching college algebra or college-level courses that build on college algebra skills 

more than 10 times. We were unable to identify a pattern in these items that related to 

tasks of teaching, function type, or other aspects of the items (e.g., graphs, tables, 

context information). 

DISCUSSION AND NEXT STEPS 

The positive correlation between years of full-time equivalent mathematics teaching 

and choosing a correct answer on items designed to assess mathematical knowledge 

for teaching college algebra suggests that the items might be related to some construct 

of teacher knowledge. This finding is promising, and if the analysis with the full sample 

confirms such a pattern, our work would be aligned with current literature. Equally 

promising is that for a sizable number of items, more instructors who have taught 

college algebra, or courses below or above it more than 10 times, selected the assigned 

correct answer more frequently than instructors who taught less. If confirmed with the 

larger sample, we would be corroborating prior work that indicates that teachers who 

have specific teaching experience in related content perform better in instruments that 

assess mathematical knowledge for teaching algebra. As we progress in our data 

collection, we are working at making sure that the sample of institutions reflect the 

stratification scheme by region, location, and size (we have larger proportions than 

national estimates of institutions in the West, institutions that are medium size, and 

institutions in urban areas). Additionally, we will be recruiting a sample of students 

who are competent in the mathematics content assessed by the items but who have no 

college teaching experience, to ascertain that the instrument indeed captures 

knowledge needed for teaching rather than mathematical content knowledge.  
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This paper reports on results from the CoSTAMM project. A modelling unit was 

implemented in 2022 at a public university in South Africa in a first-year engineering 

mathematics class, with 112 students following an independency-oriented teaching 

approach and 89 students following a teacher-directive approach. The same unit, with 

the same two teaching designs, had been implemented in 2019, with 150 first-year 

engineering students. The unit consists of a diagnostic test, a pre-test, five lessons with 

ten tasks, and a post-test. Linear mixed regression models were used to evaluate and 

compare the results. In both years the teaching designs yielded interesting effects on 

the development of students’ modelling competency. 

THE COSTAMM PROJECT 

Various empirical studies have shown that solving modelling problems is cognitively 

challenging for students at all levels (for an overview see Niss & Blum, 2020, chapter 

6). Hence, an important goal of research is to explore which teaching methods are 

effective for teaching mathematical modelling, where “effective” is measured by how 

far the goals for teaching modelling are reached. One essential goal is to advance 

students’ modelling competency (Niss & Hojgaard, 2019), that is their ability to solve 

real-world problems by means of mathematics. What is particularly needed in research 

are comparative studies into the effects of different teaching methods on students’ 

acquisition of modelling competency (Cevikbas et al., 2022; Schukajlow et al., 2018). 

One such project where teaching methods for modelling were compared is the German 

DISUM project (which was the basis for our CoSTAMM project on which we report 

in this paper; for the conception and the results of DISUM see Blum, 2011; Blum & 

Schukajlow, 2018; Schukajlow et al., 2012). The global research question in DISUM 

was: How can students’ mathematical modelling competency be advanced effectively 

in everyday teaching practice? The focus was on the lower secondary level, and quality 

teaching (König et al., 2021; Kunter et al., 2013; Schoenfeld, 2014; Schlesinger et al., 

2018) was the conceptual frame. In DISUM, five dimensions of quality teaching were 

distinguished: effective classroom management, student orientation, cognitive 

activation, meta-cognitive activation, and demanding orchestration of topics (see 

Blum, 2015, for details). 

In the DISUM main study, three teaching designs for a ten-lesson mathematical 

modelling unit were compared concerning their effects on students’ achievement and 

attitudes: an independence-oriented design called “operative-strategic” teaching, a 

teacher-directed design called “directive” teaching, and a blend of both designs called 

“method-integrative” teaching, with a classical pre-post-test research design. 
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The guiding principles of the independence-oriented design were: a permanent balance 

between students’ independent work and teacher’s guidance, with adaptive teacher 

interventions, encouraging individual solutions; a systematic change between students’ 

independent work in groups and whole-class activities; and a “Solution Plan” (see 

Schukajlow et al., 2015), that is a four-step modelling cycle, as the basis of the 

teacher’s diagnoses and interventions (not in students’ hands). 

The guiding principles of the teacher-directive design were: The development of 

common solution patterns guided by the teacher; and a systematic change between 

whole-class teaching, oriented towards “the average student”, and students’ individual 

work on exercises. 

The third design resulted from a comparison of the effects of the first and the second 

design, which led to the so-called method-integrative design which means the 

independence-oriented design with some directive elements (in particular, the teacher 

as a “model” who shows once in the beginning how to solve modelling tasks along the 

Solution Plan), and with the Solution Plan as a meta-cognitive tool in students’ hands. 

In addition, all three designs were oriented towards some basic criteria of quality 

teaching (especially effective classroom management). 

The essential results of these comparisons were: There was significant progress in 

mathematics for all three designs, but significant progress in modelling only for the 

two independence-oriented designs, and here the progress for the method-integrative 

design was substantially higher than for the operative-strategic design. 

An interesting question was: Will similar effects be visible also in other environments? 

In October 2018 the idea arose to form a South African/German research team 

(consisting of the three authors), to conceive and carry out research studies similar to 

DISUM at the tertiary level, and to compare these studies with analogous studies at the 

secondary level. This was the beginning of the CoSTAMM project (“Comparative 

Studies into Teaching Approaches for Mathematical Modelling”). Our studies were so 

far (for details see the following sections): 

 In 2019 a comparison of the method-integrative and the teacher-directive design 

for first year engineering students from an extended curriculum programme in 

South Africa (see Durandt et al., 2022a). 

 Parallel studies for South African engineering students, conceived for 2020 and 

2021, both cancelled due to the Covid-19 measures in South Africa at that time. 

 In 2022 a parallel study with the same two teaching designs for South African 

engineering students from a normal curriculum programme (the results will be 

presented in this paper), a parallel study for German grade 9 students (the results 

will be presented at ICTMA-21), and a method-integrative study for South African 

analytical chemistry students (the results have been presented at ICTMA-20). 
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DESIGN OF THE COSTAMM STUDIES (2019 & 2022) 

The CoSTAMM studies at the tertiary level mentioned in section 1 follow a classical 

design of an entrance test, a pre-test, a treatment, and a post-test. 

 The entrance test (90 minutes) focusses on six content areas (algebra, geometry, 

functions, trigonometry, calculus, and modelling) and is used as a diagnosis of 

basic mathematical competencies which are taught at school. Details regarding 

this test are documented in Durandt et al. (2021a). 

 The treatment consists of a modelling unit with ten tasks, organised in five 

lessons (45 minutes each) and embedded in the topic area of functions. This unit 

is presented in detail in Durandt et al. (2022b).  

 The pre- and post-test (45 minutes each) are aligned with each other and with 

the treatment, and consist of three sections each: Section A with open modelling 

tasks, Section B with mathematical tasks, and Section C with multiple choice 

modelling tasks (taken from Haines et al., 2001). Both tests are administered in 

two versions with parallel items, following a rotation design, randomly and 

equally distributed to groups, which allow also for comparing pre- and post-test 

results. Further details on these achievement tests (e.g. with regard to evaluation 

objectivity, internal consistency of the scales, etc.) are documented in Durandt 

et al. (2022a) and Table 1. 

The study in 2019 was conducted from February to April at the University of 

Johannesburg. The participants were randomly divided in three equal groups (approx. 

50 per group) according to the university timetable. One group was exposed to the 

method-integrative (MI) teaching design, while the two other groups were exposed to 

the teacher-directive (TD) design. Both the MI and one TD group (TD1) had the same 

lecturer. The main research question was: How do the modelling competency and the 

mathematical competency of students develop through the modelling unit, depending 

on the teaching designs? The study also included an attitudinal component, but we do 

not deal with that component in this paper.  

To examine the effects of the teaching intervention (development of students’ 

achievement), linear mixed regression models with dummy-coded predictors were 

estimated for the three test sections and for the overall test score as dependent variables 

using the statistical software R (R Core Team, 2022) and additional packages such as 

“lme4” (Bates et al., 2015). In these models the longitudinal data structure nested by 

participants was considered, the different teaching designs (groups) were directly 

compared (for details see Hilbert et al., 2019), and the total score of the entrance test 

was included in the model as a (global) covariate. The results from the 2019 study were 

presented at ICTMA-19 (see Durandt et al., 2021b). The essential result was that all 

groups had a significant learning progress, so both the MI and the TD teaching design 

had effects, and the MI group had the biggest competency growth, particularly for 

mathematical modelling. 
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To compare the results with another sample, the study was repeated with the same unit 

and the same test instruments at the same university from February to April 2022 with 

201 first-year engineering students from the mainstream programme studying towards 

a qualification in either mechanical or industrial engineering. Students were divided in 

two unequal groups based on their official university tutorial timetable; 112 students 

followed the method-integrative approach (group MI) and 89 students followed the 

teacher-directive approach (group TD). The modelling unit was again implemented 

during the mathematics tutorial classes. The question was whether the TD and MI 

approaches will show similar effects as in 2019. Both groups in 2022 had the same 

lecturer as the MI and TD1 groups in 2019. The 2022 study did not include an 

attitudinal component. 

RESULTS OF THE ENGINEERING STUDY IN 2022 (AGAINST THE 

BACKGROUND OF 2019) 

The same test instruments were used in 2022 as in 2019, so the results of the two studies 

are directly comparable. The internal consistencies of the scales were estimated using 

the reliability indicator McDonald’s Omega (McDonald, 1999) and are similar to those 

in 2019 (Durandt et al., 2022a). They are sufficient overall for the diagnostic test, the 

pre-test and the post-test, but low for the individual sections, as expected, given the 

small number and the different contextual focus of the items (Table 1). The respective 

sum values can nevertheless be interpreted as performance indicators (Bühner, 2011). 

In the scale of test section C (multiple-choice modelling tasks), one item each had a 

negative part-whole corrected item-total correlation in the pre-test and in the post-test 

(in both versions), which is why both items (like 2019) were removed from the scale 

in both the pre- and the post-test. The two test versions of Section C differ significantly 

in the pre-test (t(199) = 3.74, p < .01), but not in the post-test (t(199) = 0.07, p = .94). 

The equivalence of the items of Haines et al. (2001) must thus be questioned (as already 

in 2019), but any differences average out in further analyses due to the (almost) 

balanced, randomised distribution of the versions in the pre-test and post-test. 

As shown in Table 1, the MI group performed significantly better on average in the 

diagnostic test than the TD group. This was tested using a t-test for independent 

samples (t(199) = -3.79, p < .01). Therefore, performance on the diagnostic test is 

included as a covariate in all further analyses (as in 2019) to control for differences 

between samples. Initial descriptive comparisons between the results of the groups TD 

and MI in the pre- and post-test reveal overall and in two of the three test sections (B 

and C) tendencies towards higher mean values for the group TD in the pre-test. In 

addition, increases in achievement are visible for both groups TD and MI in all sections 

and overall between pre-test and post-test. The mean achievement of group MI is 

slightly higher than that of group TD in all sections in the post-test (see Table 1). 

Linear mixed regression models with dummy-coded predictors were estimated to 

check whether the achievement gains of group MI were significantly bigger than those 

of group TD. The achievement growth of group TD was modelled as reference and the 
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achievement change of group MI was compared to it. The difference in the 

achievement development of both groups is represented by the interaction effect. 

Table 1: Internal consistencies (McDonald’s Omega) per test (section), means and 

standard deviations per group and test (section). 

Test 

(section) 
Number of 

items 

Internal 

consistency 

Teacher directive 

(N = 89) 

Method integrative 

(N = 112) 

  Omega (ω) M (SD) M (SD) 

Diagnostic test  31 .76 12.24 (6.09) 15.42 (5.77) 

Pre-test (total) 11 .50 8.55 (2.81) 8.21 (2.46) 

A: Modelling tasks 2 .16 0.57 (1.12) 0.62 (0.95) 

B: Mathematical tasks  6 .56 4.37 (1.63) 4.26 (1.47) 

C: Multiple-choice tasks  3 .22 3.61 (1.40) 3.34 (1.67) 

Post-test (total) 11 .56 9.49 (3.31) 10.24 (3.32) 

A: Modelling tasks 2 .20 1.20 (1.49) 1.48 (1.77) 

B: Mathematical tasks  6 .57 4.91 (1.54) 5.27 (1.60) 

C: Multiple-choice tasks 3 .44 3.38 (1.75) 3.49 (1.54) 

Note. ω = McDonald’s Omega; M = mean; SD = standard deviation. The evaluation objectivity of the 

tests (interrater reliability) was already checked in a previous study (Durandt et al., 2022a) and 

is satisfactory (Cohen's κ ≥ .72). 

As Table 2a illustrates, group TD shows significant achievement gains in test sections 

A (open modelling tasks) and B (mathematical tasks) between pre- and post-test. The 

achievement development of group MI does not deviate significantly from this, but at 

least tends to be somewhat higher than that of group TD (bGroup x Time, A = .17; bGroup x 

Time, B = .29). 

 Table 2a: Linear mixed regression model for test section A (open modelling tasks) 

and test section B (mathematical tasks) 

 Model A Model B 

N | Obs. | ICC 201 402 22.3% 201 402 18.1% 

Fixed effects b SE df T p b SE df t p 

Intercept -0.28 0.10 360.64 -2.69 0.01 -0.15 0.10 374.53 -1.47 0.14 

Diagnostic test score 0.04 0.06 199.85 0.71 0.48 0.21 0.05 196.35 3.89 <0.01 

Group 0.01 0.14 361.37 0.09 0.93 -0.18 0.14 374.59 -1.29 0.20 

Time 0.44 0.12 202.30 3.69 <0.01 0.33 0.12 198.97 2.68 0.01 

Group x Time 0.17 0.16 202.30 1.04 0.30 0.29 0.17 198.97 1.74 0.08 

marg. R2 | cond. R2 .08 .37 .11 .31 

Note: N = sample size; Obs. = number of observations; ICC = intraclass correlation; b = 

(standardized) regression coefficient; SE = standard error; df = degrees of freedom; t = t-value; 

p = probability of committing a Type I error; R2: coefficient of determination.  

In section C, the achievement development of both groups is not significant (but 

comparatively positive for group MI: bGroup x Time, C = .24; Table 2). As in 2019, this 
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result is at least partly due to the shortening of the scale and should therefore be 

interpreted with caution. In Model D for the overall test result, not only does the TD 

group show a significant development in achievement, but that of the MI group is 

significantly higher (bGroup x Time, D = .35; Table 2). 

Table 2b: Linear mixed regression model for test section C (multiple choice 

modelling tasks) and the complete test 

 Model C Model D 

N | Obs. | ICC 201 402 31.5% 201 402 30.3% 

Fixed effects b SE df t p b SE df t p 

Intercept 0.10 0.11 358.66 0.95 0.34 -0.15 0.10 343.77 -1.49 0.14 

Diagnostic test score 0.00 0.06 197.84 0.03 0.97 0.13 0.06 197.07 2.21 0.03 

Group -0.17 0.15 359.48 -1.18 0.24 -0.17 0.14 345.54 -1.25 0.21 

Time -0.14 0.12 200.28 -1.13 0.26 0.31 0.11 199.38 2.71 0.01 

Group x Time 0.24 0.17 200.28 1.42 0.16 0.35 0.15 199.38 2.32 0.02 

marg. R2 | cond. R2 <.01 .32 .09 .44 

Note: N = sample size; Obs. = number of observations; ICC = intraclass correlation; b = 

(standardized) regression coefficient; SE = standard error; df = degrees of freedom; t = t-value; 

p = probability of committing a Type I error; R2: coefficient of determination.  

The results of the 2022 replication study show that the MI group overall had the biggest 

competency growth, similar to 2019. In sections A and B, however, the differences are 

smaller than in 2019, but still tend to be in favour of the MI group. This is possibly due 

to the already higher entrance performance of both groups in 2022 (both in the entrance 

test and in the pre-test; cf. Durandt et al., 2022a), which reduces the absolute effects 

regarding the overall achievement increase (TD: d2019, total (TD1) = 1.09, d2022, total = 0.31; 

MI: d2019, total = 1.37, d2022, total = 0.70; effect size d according to Cohen, 1992). As in 

2019, the multiple-choice modelling tasks did not prove useful for measuring 

achievement progress. 

DISCUSSION AND CONCLUSION 

The CoSTAMM studies are a continuation of the DISUM study with a focus on the 

principles of quality teaching. These studies followed a similar design to DISUM at a 

different educational level with a different mathematical content. A modelling unit 

consisting of five lessons with ten tasks, a diagnostic test, a pre-test, and a post-test 

were implemented, and students were exposed to either an independency-oriented or a 

teacher-directed teaching approach. 

Results from the engineering study in 2019 show that all groups had significant 

learning progress, so both the method-integrative and the directive teaching had 

effects. The method-integrative group had the biggest achievement growth, 

particularly for mathematical modelling. 
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The replication study from 2022 showed very similar results. Again, both teaching 

approaches led to significant competency growth, with advantages for the MI group 

for modelling and overall. 

In conclusion, results from the CoSTAMM studies may encourage first-year lecturers 

to consider innovative teaching approaches in their classrooms, linked with the 

principles of quality teaching. Further ideas are to improve the modelling unit (e.g. 

including more examples in more lessons) and to test the study on larger samples in 

other context also including again an attitudinal component similar to 2019.  To include 

the lecturers’ professional competencies as a variable in future studies may also be a 

promising idea (Casinillo, 2023; König et al., 2021; Kunter et al., 2013). 
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Transnumeration, the ability to reason with and transition between multiple 

representational forms, has unique pedagogical affordances. Technological 

advancements can provide novices with more extensive transnumeration experiences. 

However, much is yet to be discovered about the software’s mediational role, 

especially when representing stochastic behaviour. We present a case study of two 

prospective primary school teachers' participation in a learning sequence inspired by 

the practice of statistical modeling that calls for representing sources for systematic 

and stochastic variation. The affordances and hindrances of their use of TinkerPlots 

software are discussed, explaining how, although initially lost in transnumeration, they 

were ultimately found. 

BACKGROUND 

Transitioning between different representations and learning mathematics 

Mathematical objects are abstract, intangible constructions. Any form of mathematical 

engagement therefore necessitates the use of representations for these abstract notions 

(Duval, 2006). While representations are instrumental, a single representation can only 

symbolize certain aspects of the mathematical object, and often conceals others. 

Developing learners' reasoning with mathematical objects thus requires to mediate 

multiple representations, to support their gradual construction of the meaning of each, 

as well as establishing relations between them (Duval, 2006). Nurturing learners’ 

‘representational fluency’, the ability to transition between different representations, 

can support their transferring knowledge from one representation to another as well as 

develop new insight through this engagement (Zbiek et al., 2007).  

In the context of learning statistics, Wild and Pfannkuch (1999) introduced the term 

‘transnumeration’, defined as changing representations to engender understanding, as 

one of the types of thinking that is fundamental to experts' statistical thinking. 

Transnumerations accompany each step of statistical data investigations, from 

identifying variables to measure in the data collection stage, using graphical 

representations to explore the data, applying different statistical models in the analysis 

of the data, to communicating the resulting findings via different representations (Wild 

& Pfannkuch, 1999). Because transnumeration is omnipresent in most statistical 

practices, many of the currently explored pedagogies in statistics education engage 

learners with various forms of it, often facilitated by educational technologies. 
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Statistics educational technologies for transumeration  

While supporting learners to manually invent their own representations has been 

proven beneficial for deepening conceptual understanding (diSessa et al., 1991), 

technological advances allow them to generate representations more quickly and 

automatically. Thus, learners can more feasibly explore and transition between these 

different forms, and develop an appreciation of the different purposes they are well-

suited for (Biehler et al., 2013). TinkerPlots (Konold & Miller, 2015) is a widely used 

dynamic statistics education software that embodies these affordances (Biehler et al., 

2013).  

Despite the pedagogical potential of engaging novices with technologically-mediated 

transnumeration, dealing with different, simultaneously presented representations as 

part of a statistical task can be challenging. For instance, young learners sometimes 

prioritize one representation without considering others (Schnell & Prediger, 2014), 

and require support to consider additional representations to nurture more mature 

perspectives. Instructors likewise might overly rely on very few representations, and 

fail to make explicit the relations between different representational forms (e.g., Lee at 

al., 2016). Additional challenges are implied, such as associating different purposes for 

a computerized representation (Dvir & Ben-Zvi, 2022). Furthermore, the underlying 

stochastic nature of the process of creating the data that is represented is often not 

reflected in a statistic data depiction, even if explored through various representational 

forms (Dvir & Ben-Zvi, 2021). Therefore, in light of the proliferation of new 

technological tools, it is necessary to further elucidate the pedagogical affordances and 

hindrances of computerized representations of stochastic notions (Pfannkuch, 2018). 

To attend to this lacuna, we focus on the practice of statistical modeling to engage 

learners with representing stochastic aspects of the data generation process (Dvir & 

Ben-Zvi, 2021).  

Informal statistical modeling and transnumeration 

A model is a representation that offers a simplified depiction of a phenomenon with a 

descriptive, explanatory, or predictive purpose (Hesse, 1962). Offering only a partial 

depiction, a model can be found to be ill-suited for the purpose it was intended to fulfill. 

Therefore, the modeling process – the process of constructing and using a model – 

consists of constant evaluation of the model, in light of its intended purpose, and 

transforming the representation it offers to better attend to its goal (Dvir & Ben-Zvi, 

2021).  

In the context of statistics, transnumeration is particularly abundant in novices' 

engagement with activities based on statistical modeling, as their modeling process 

often includes two separate, yet not independent, sub-modeling processes: (1) data 

modeling, modeling what can be seen in the data (e.g., drawing an ellipse 

circumventing a cloud of cases that seems to be gradually ascending); and (2) 

conjecture modeling, creating and refining a representation for an abstract generalized 

conjecture (e.g., representing a linear positive relation through an ascending line) (Dvir 
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& Ben-Zvi, 2021). Expert statisticians have a ready-made toolkit of models and 

representational forms, and would thus likely focus on evaluating the fit of one or more 

of them to the data. Novices, however, need to concurrently develop such generalizable 

tools to represent their initial and changing conjectures. These may vary greatly from 

the formal models that experts might consider suitable representations. The result is 

that novices often hold two concurrent, often rivaling, data and conjecture models. 

Comparing the two rivaling models to notice discrepancies between them is a central 

action that promotes shifts in either model or both. The Reasoning with Informal 

Statistical Models (RISM) framework summarizes these key entities and offers a 

means to describe and analyze novices' informal statistical modeling process (Dvir & 

Ben-Zvi, 2021). The dual modeling process offers plentiful opportunities for novices 

to create, refine and transform various representations. Thus it is rich with 

transnumerational actions.  

Furthermore, the informal statistical models that the students create (as opposed to 

mathematical models, English & Watters, 2004) are specifically intended to represent 

sources of systematic variation, the signal in the data (e.g., a line to describe the 

ascending tendency of a cloud of cases), but also its nonsystematic sources, the noise 

(e.g., the extent to which the data vary from the line, as a result of natural variation or 

sampling variation, Dvir & Ben-Zvi, 2021). Thus, much of the novices' 

transnumerational actions focus on representing stochastic behavior. Therefore, we 

chose to engage novice pre-service teachers (PSTs) in informal statistical modeling 

activities, and examined: (1) What forms of representations or models did the students 

create and reason with; (2) How did the students transition from one representational 

form to another; and (3) How did the students' use of TinkerPlots facilitate these 

transitions?  

DESIGN OF THE STUDY AND METHODOLOGICAL CONSIDERATIONS 

With the purpose of providing a detailed in-depth account for a phenomenon that has 

not yet been deeply explored, we adopted a qualitative approach and provide a case 

study of a pair of PSTs for primary school, Cora and Tim. The pair participated in an 

online semester-long seminar on informal statistical modeling pedagogies taught by 

the authors. We focus on one activity sequence that was particularly rich with 

transnumerational actions, and the pair was chosen as their written documentation was 

extensive, and concentrated primarily on representing stochastic aspects.  

Activity sequence  

We focus on an activity that the students engaged with, in pairs, over the span of 

sessions 2 to 5, primarily as part of their homework assignments. Overall, the task 

followed the Integrated Modeling Approach (Manor & Ben-Zvi, 2017), starting with 

the PSTs’ exploration of a sample size of 60 of real-world data collected by primary 

students. The PSTs formulated research questions and conjectures, organized and 

analysed their data in multiple ways with TinkerPlots, made informal inferences about 

a larger population, and articulated uncertainty regarding the representativeness of a 
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sample size 60. To explore these concerns, the PSTs were asked to conduct a 

probability-modeling activity that began with their constructing a dynamic 

computerized model based on their conjectured population with the Sampler option in 

TinkerPlots. The Sampler enables creating and running probability simulations and 

drawing simulated samples from a conjectured population. After designing the Sampler 

model, the PSTs were asked to generate and compare multiple random simulated 

samples from it. Lastly, to further explore sampling variation, the PSTs chose a statistic 

(e.g., the mean or relative percentages of some of the cases) they wished to track over 

100 simulated samples, and, using TinkerPlots, created a sampling distribution for it.  

Data collection and analysis 

The data corpus consisted of recordings of the ten four-hour sessions of the seminar, 

along with all the electronic artefacts that the students created throughout their 

participation, including written documentation of assignments given during and after 

the course. Cora and Tim’s written assignment on the presented learning activity 

included their responses to 24 questions. The unit of analysis was the PSTs’ response 

to a single question. These were sequentially microgenetically analysed (Siegler, 2006) 

to identify any representation implied in each statement, along with visualizations that 

the PSTs provided. If the representation was purposeful (e.g., the learners allocated a 

specific meaning to some aspect of a graph) it was labelled as a model. Using the RISM 

framework, each model was either classified as a data or conjecture model, and other 

elements of the framework were interpreted when possible. Any changes made to one 

or both of the models elicited a new RISM snapshot and additional interpretations for 

the other RISM elements. The result was a series of seven snapshots that together 

describe the students' modeling process. Reviewing these snapshots, the role of the 

students' use of TinkerPlots for any representational shift was identified. 

FINDINGS 

Cora and Tim chose to examine “Is there a correlation between the flexibility of 

children and their time spent exercising?” and offered an initial conjecture: “We 

assume that the more time a child spends exercising and training their body, their 

flexibility will increase”. Throughout the activities, the PSTs made use of two main 

representational forms: (1) The grid: each attribute as the x-axis or y-axis, divided into 

bins (Fig. 1); and (2) Columns: showing the distribution of a single attribute, divided 

into bins (Fig. 2). The students began with expressing a clear preference to the grid 

representational form (Fig. 1), as it was more “detailed”. Despite this, their initial 

description of their expected data, if their conjecture were true, indicated imagined 

columns (e.g., the left column would have many cases on the top and few or non in its 

bottom). The grid display, however, sufficiently convinced them to abandon this initial 

(column-based) conjecture. It also allowed the pair to begin to account for the non-

systematic variation they observed (referred to as “no connection”) and gradually 

refine a model for it that was more row-based (e.g., “There are many children who 

exercise more than two hours per day but they are not necessarily more flexible 
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compared to others who do not exercise this much”). Furthermore, while their initial 

column-based depictions were fully deterministic, the row-based accounts, mediated 

by the grid representation, were more stochastic (e.g., "not necessarily").  

 

Figure 1: Grid representation of the real-world sample (left) and of the first simulated 

sample (right); Y-axis is for flexibility, x-axis is for time for sport  

To initiate their exploration of sampling variation, the PSTs were asked to design a 

Sampler model that offered visualization tools that differed from those utilized earlier 

to form the grid representation. As a result, they returned to their earlier column-based 

representational form, and designed the Sampler model based on it (Fig. 2 middle). 

 

Figure 2: The column-based representation of the first Sampler (middle) based on 

same representation of the real data for flexibility (right) and time for sports (left)  

The first simulated sample generated from the Sampler model was again displayed in 

their preferred representational grid form (Fig. 1 right). This lead the PSTs to 

emergently compare the two similar representations: the simulated and the real-world 

sample (Fig. 1). By doing so, the PSTs were conducting a non-endorsed comparison of 

samples generated by two different populations (one real, one imagined). The learning 

activity intended to focus the PSTs on the comparison between the simulated sample 

and the population it was generated from (i.e., the Sampler model). To do so, the 

learners had to compare the two different representational forms, the column-based 

Sampler (Fig. 2), and the grid (viewed in a more row-based form, Fig. 1). However, 

the students compared between two incomparable aspects of the two forms: the 

percentages of entire columns in the Sampler model, with percentages of only single 
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bins in the grid. Furthermore, the students reverted back to expressing much more naïve 

deterministic expectations (e.g., “the simulated sample does not reflect the original 

percentage”).  

Generating a second simulated sample, the PSTs again chose to organize it in their 

preferred grid representational form (as in Fig. 1), and used it to compare the new 

sample to the first simulated sample. At this stage, the PSTs engaged in an endorsed 

comparison, but also in an endorsed manner (through comparable aspects). The result 

was a more stochastically mature conclusion (e.g., “Even though there are some 

differences between our 2 representations, we think that the overall trend is similar”). 

 

Figure 3: The grid-inspired Sampler design (right, recreation) based on real-world 

data (upper left); Column-based sampling distribution of the percentages in the 

bottom left bin in the grid, across 100 samples (bottom left) 

Before continuing the activity, inspired by another pair that introduced their work in 

class, the PSTs chose to redesign their Sampler model. While earlier they relied on 

column-based data representations, they seemed to have found a way to utilize the 

Sampler tools to reflect the grid representational form of the real-world data (Fig. 3, 

right). This allowed them to become fully engage in endorsed comparisons, focusing 

on the bottom left bin (Fig. 3, upper left; cases with little exercise time and high 

flexibility), which they had already addressed in their first analysis of the real sample 

as not fitting to their expected data. Furthermore, they chose its percentages as the 

statistic they tracked across additional 100 simulated samples. To represent the 

sampling distribution they created, being a single attribute, they returned to the 

column-based form (Fig. 3 bottom left). At this stage, however, they accompanied its 

use with much more stochastically mature accounts of sampling variation: “In the 

original sample population the percentage of flexible students who don’t exercise is 

32%. The average in our imagined population is between 31,5% and 33%...We are 

definitely more confident that a small sample can represent the population, however, 
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we would not say that we are 100% certain as there are still some variances within our 

sampler history”. 

DISCUSSION  

This study set out to explore what forms of representations of stochastic behaviour 

PSTs create, how they transition from one representational form to another, and the 

role that the TinkerPlots software plays in these transitions. Despite the multiple 

options TinkerPlots affords, our pair primarily used two representational forms, and 

showed a clear preference to one. This is in-line with prior depictions of both students' 

and teachers' tendency to prioritize one or few representations (Schnell & Prediger, 

2014; Lee et al., 2016). While both forms were used to represent a shared phenomenon 

which the PSTs referred to as “no connection”, each form seemed to mediate different 

views of the stochastic behaviour the PSTs were modeling: The column-based 

representational form seemed to initially highlight (in the eyes of the PSTs) the more 

systematic variation they initially expected, and was accompanied with relatively 

deterministic expectations. The grid representational form seemed to provide the PSTs 

with a more “detailed” view that allowed them to better account for the non-systemic 

variation. After developing a more mature appreciation for these stochastic sources, 

the PSTs ultimately returned to the initial column-based representational form, which 

mediated even more mature accounts of sampling variation. This illustrates how 

providing learners with the freedom to design their own representations and explore 

their preferred visualization can be beneficial in supporting their sense-making of the 

representation itself, and their utilization of it to gain broader insight on the represented 

idea (Zbiek et al., 2007; diSessa et al., 1991).  

The role of the technological tool, along with the design of each activity, was 

particularly consequential. First, it afforded the learners’ gradual construction of a 

complex representation of stochastic behaviour that was understandable and accessible 

to them, and allowed them to explore sampling variation more deeply. Second, the 

PSTs reverted to the column-based form only when challenged with the different 

representational tools offered by the Sampler. In this regard the tools served as 

hindrances, and mediated more naïve, deterministic views. Furthermore, the students 

were somewhat lost in this transnumeration, resulting in their assigning similar 

meanings to aspects that were incomparable between the two representational forms. 

However, when the students discovered a way to re-design the Sampler model to 

become aligned with the grid form, they became fully emerged in endorsed 

comparisons and, when returning to the column-based sampling distributions, 

ultimately expressed relatively mature views of sampling variation and 

representativeness (as in Dvir & Ben-Zvi, 2021). In this regard, despite initially being 

lost in transnumeration, they ultimately were found.  
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THE BODY PROBABLY UNDERSTANDS 
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Learning probability can pose difficulties for students at all levels. Based on studies 

indicating that conducting probability experiments with concrete means can 

encourage students to develop an understanding of probability we tested the feasibility 

of learning abstract concepts in complex mathematics by applying embodied learning 

through movement-based games. Following a careful analysis of probabilistic 

concepts, a stratified movement class was structured according to the graded 

construction of the concepts. These were studied as metaphorical images for concrete 

situations experienced in the body. The findings of the study confirm the hypothesis 

that the achievements of middle school and high school students who learn probability 

through one movement lesson, will meet the requirement of a standard achievement 

test. 

BACKGROUND AND THEORETICAL FRAMEWORK 

Questioning the feasibility of learning abstract concepts in mathematics in middle 

school and high school was based on the complexity of the concept of probability and 

the limited achievements of the teachers to teach it by conventional means. The basic 

premise was derived from embodiment theory developed by Johnson and Lakoff in 

1980, which implies that all learning begins with the body, from the theory of multiple 

intelligences, which emphasizes that one intelligence can be used to learn concepts in 

the field of another intelligence, and from the constructivist theory which states that an 

accurate level of teaching of concepts ensures optimal teaching. These theories explain 

complex processes that occur during the cultivation and refinement of neuronal 

networks in the brain. 

Difficulties in teaching probability 

Learning probability is based on familiarity with complex concepts, such as: variation, 

randomness, independence, inability to predict and uncertainty, but also chance, 

likelihood, or risk. These abstract terms do not have unequivocal definitions that can 

be explained in simple language or through an illustration, so dealing with creating 

meaning is not trivial and can only be reached after a continuous learning process. 

Heitele (1975) points to the intuitive dimension in teaching mathematics and 

probability. In the case of randomness, he emphasizes, it is necessary to strengthen the 

intuitive understanding towards the formal teaching of the subject. Kuperman (2007) 

suggests teaching probability through discovery rather than as a formal set of rules. and 

offers diverse teaching methods for teaching probability, such as: translating problems 

from the real world into mathematical language, building mathematical models, 

discussing, and analysing results, discovering analogies, presenting paradoxes related 
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to probability and developing probabilistic and combinatorial intuition. Batanero & 

Diaz (2012) attribute the reasons why the teaching of probability is difficult for 

mathematics teachers in that the specific training for teaching probability is far from 

sufficient.  

It is evident, therefore, that there are inherent difficulties in teaching probability. These 

difficulties stem mainly from the formalistic teaching method that disconnect 

probability from everyday reality and ignore intuitive knowledge. To overcome these 

difficulties, one must first understand what alternatives can be offered. 

Embodied Learning as a possible solution 

The theory of embodiment is based on the premise that cognition is anchored in the 

body and depends on its physical experiences. This theory rejects the philosophical 

separation between the body and the soul/consciousness/intelligence. According to this 

approach, the mind is an activity based on the relationship between the body, the 

environment, society, and culture. 

Research in the field of embodied cognition indicates that there is a strong correlation 

between physical movement and learning. That is, through perceptual processing and 

muscle control, the sensorimotor system can find solutions in the physical environment 

and understand specific learning tasks. Many studies have revealed that increased 

physical involvement during the learning process has the potential to positively affect 

cognitive ability, memory, and academic achievements. 

Cope & Kalantzis (2004) state that embodied learning focuses on the knowledge that 

students acquire when they use the body as a tool to build it. When referring to "body" 

in this context, they include the entire learner - the physical body, the senses, the soul, 

and the mind. Lindgren & Johnson-Glenberg (2013) describe this as the sensorimotor 

activity relevant to the subject to be reproduced and the emotional involvement of the 

participant in the whole process. Shapiro & Stolz (2019) argue that the emerging 

research agenda of embodied cognition can greatly contribute to educators, 

researchers, and policy makers. Research in the field of embodied cognition provides 

thought-provoking recommendations on how to improve educational practice and lead 

to more effective learning. Their claims quote Nathan's (2012) position regarding the 

common mistake that control at the level of representations, in a specific knowledge 

domain, is necessary before it can be applied. Such a view, they claim, tends to 

reinforce a way of thinking rooted in dualistic views of knowledge that wrongly link 

intellectual work to the "mind" and practical work to the "body." A study by Glenberg 

(2008) examined these aspects in the teaching of mathematics and reading 

comprehension supporting the integrative approach to learning and emphasizing the 

importance of physical manipulation and abstract manipulation. In these two areas, the 

importance of the physical-tangible manipulation is evident before the importance of 

the abstract manipulation, because it is based on abstract symbols, i.e., letters and 

mathematical symbols. 
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Metaphors can act as a bridge to understanding 

Lakoff & Johnson's (1980) conceptual metaphor theory deals with abstract concepts, 

how they are constructed and how they are formed, through the mapping of a structure 

from one concrete or sensory-motor domain to a more abstract domain. They claimed 

that many central cognitive processes, such as those concerning space and time, are 

expressed, and influenced by metaphors, and that many metaphors reflect the embodied 

experience of beings moving in the world. Most metaphors are a mapping of a concrete 

concept, that is, a description of an abstract concept using a clear concrete concept that 

lends its properties to the abstract concept. Conceptual metaphors rely on 'cross-

domain mappings'. They carry the inferential structure of the first domain into the 

second domain and make it possible to understand. The goal domain is often more 

abstract and unclear. In terms of the field of origin, it becomes more precise and clearer. 

In education, metaphors can provide a powerful tool for teaching abstract concepts in 

terms of concrete models. 

Metaphors, claims Duit (1991), are of central importance in the learning of conceptual 

change because they may help rebuild existing memory and prepare for new 

information. They may open new perspectives and even help to observe the familiar in 

entirely new ways. This "generative power" of metaphors makes them potentially 

valuable tools in learning conceptual change. They facilitate the reconstruction of the 

known and familiar. The use of exceptions and cognitive conflict, which is widely 

discussed in educational psychology, has great value as part of a conceptual change, 

which metaphors can produce and provoke. Metaphors usually involve a degree of 

imagination that helps to visualize abstract ideas and it seems that metaphors also link 

thinking and emotions and therefore may bridge the gap between the cognitive and 

emotional domains of learning. 

In the field of mathematical education, there has been a growing recognition that 

metaphors are powerful cognitive tools that help to grasp or construct new 

mathematical concepts, as well as in solving problems effectively. Lakoff & Núñez 

(2000) view metaphors as an essential part of mathematical thinking; not just as 

auxiliary mechanisms used to visualize or facilitate understanding. When the full 

metaphorical nature of mathematical concepts is revealed, confusion and paradoxes 

disappear. Chiu (2000) determines that students can construct new mathematical 

concepts by metaphorical thinking that makes use of their intuitive knowledge. Also, 

students may use metaphorical reasoning to connect mathematical ideas, remember 

them, understand mathematical representations, and perform calculations. 

According to this concept, it can be assumed that movement/dance activity which 

structures a concrete concept as a metaphor for complex concepts in probability may 

prevent the confusion in studying probability and establish a layer of information that 

can be relied on in the development of probabilistic literacy.  
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Research Hypothesis – An Embodied Learning lesson can improve probability 

comprehension. 

The hypothesis of the study was that the achievements of middle school and high 

school students who learn probability through one movement lesson (2 academic 

hours), will meet the requirement of a standard achievement test. The evaluation of the 

students' achievements was carried out through an online multiple-choice test that 

included ten questions. The questions were collected from study materials approved by 

the Israeli Ministry of Education and validated matriculation questionnaires. The 

students answered the test questionnaire before the intervention, and at the end they 

were asked to answer it again. The difference between the scores before and after the 

intervention can be regarded as evidence of an improvement in the knowledge of the 

studied concepts 

METHODOLOGY 

The mathematics curriculum recommends teaching the chapter on probability in grades 

8-9 in middle school. In practice, there are schools that give up probability studies 

altogether or those where the subject is taught through textbooks rich in tables into 

which data is poured, without understanding or connection to life and everyday 

contexts of probability calculations. 

We distilled probabilistic concepts in the sequential order of learning as recommended 

by standard textbooks. Following conversations with math teachers, a preliminary 

stage of categorization and differentiation by properties was added. Seemingly simple, 

yet tricky, as students find it difficult to understand that an object may carry more than 

one property, which may pose an obstacle in the comprehension of probabilistic 

abstract concepts.  

In this study, 38 students from three semi-private schools took part in one lesson 

composed of:  

1. A conventional test delivered in schools that teach probability through an online test 

2. Practical activities in movement:  

A. Probability Concept studied - Categorization capabilities - (what is inside the group 

and what is outside the group) - perfecting the ability to categorize as a basis for model 

thinking. First part of the lesson used for "Breaking the ice" and creating a comfortable 

space for movement. 

In a circle, the students were asked to preform free movement accompanied by music, 

in a circle. Next, they were asked to mirror a leader, isolating body parts – i.e., using 

only one body part (hand, leg, head etc.). The next stage was mirroring a leader moving 

in different directions – up, down, forward, sideways, diagonally. The following was 

mirroring an emotion conveyed by the leader (fear, disgust, happiness etc.) 

In pairs students were asked to analyse a partner's gestures assembling two and then 

three of the categories. After that, verbally instructing the partner while assembling 
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two and then three categories. This phase assists the comprehension of the transition 

between concrete and verbal questions in math. 

Summation of first part in a group game, making sure that everybody had a chance to 

experience categorization and adding a surprise dimension with a 'Simon Says' game 

raising focus level, having to determine whether to act on the leader's instructions (if 

he says 'Simon Says' or not). 

B. Probability Concepts studied - Certainty, randomness, impossibility, and 

introduction of sample space.  

The class was divided into groups of 3 students. Each member was asked to conceive 

a simple movement and teach the others, repeating each movement 5 times. Following 

this the students were asked to perform the movements, following leader no. 1 and then 

no.2. This phase represents a certainty on the part of the followers, as opposed to 

randomness. No. 3 leaders were called aside and asked to perform a different 

movement than the one previously practiced. This caused confusion and 

embarrassment, a predicted emotional response, which was later defined as uncertainty 

and randomness. 

 As the activity evolved, a sample space of 3 movements and later 4 was defined. The 

students were then asked to take turns leading a sequence of their choice of the 4 

movements accumulated in each group. Each student was asked what the chances are 

of seeing one of his movements. 

The final part of this section was a class circle game, learning accumulatively all of the 

groups' first 3 movements and realizing that as the sample space was enlarged, the 

chances of seeing each individual's movement decreased.  

A short edit of this activity (subtitled in Hebrew, English to follow), click here.  

C. Probability Concepts studied - Parallel independent events, complementary events.  

The class practiced 4 different movements derived from an Israeli children's' chant: 

hands up, on the head, on the shoulders, clap. The whole class then practiced playing 

'red light, green light' for which the stopping positions were one of the 4 practiced 

positions.  

The class was divided into groups of 4, movements were limited to 2, one student was 

on the finish line, one was acting as a reviewer and 2 students were playing. The 

reviewer's role was to record the actions of the players (according to a simple structured 

index). The students were then handed a 2*2 table representing the different possible 

variations and probabilities. Later, the 3rd and 4th movements were added and   

respective tables of 3*3 and 4*4.  

The tables that accompany the physical experience visually clarifies the many 

possibilities that exist in the body and enables a link to a concrete experience. A gap is 

revealed between the actual observation and the findings of the table. This gap allows 

https://youtu.be/Diz7hgmrViE
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for a discussion of the difference between reality and mathematical calculation. While 

discussing the results, the concept of complimentary events was introduced. 

3. Repetition of the conventional test from the beginning of the lesson. 

DISCUSSION  

In this study, we tested the feasibility of teaching an abstract and complex concept in 

statistical mathematics through teaching a structured program that included movement 

games and dance. The research question was whether it would be possible to achieve 

significant achievements by teaching a program of eight consecutive sessions. At the 

cliff of times (covid and closures) we had to shorten the experience that came to test 

whether it is possible to assimilate the abstract concepts: randomness, probability, 

certainty, uncertainty, sample space, event, independent probability, and conditional 

probability in a single meeting, built with great care and layered according to a graded 

construction of the concepts studied. 

The existing research evidence for the construction of linguistic and quantitative 

concepts at an early age, based on movement and experience in the learner's living 

environment (Piaget, Montessori, Luria, Vygotsky, Dewey), is numerous. The 

questioning about the feasibility of learning abstract concepts in mathematics in middle 

school and high school was based on the complexity of the concept of probability and 

the limited achievements of the teachers to teach it by conventional means. The 

confidence in determining the research question stemmed from the knowledge of the 

theory of embodied learning, of conceptual development through metaphors, of the 

theory of multiple intelligences and the constructivist idea that new material will not 

be learned unless there is previous material that ensures its assimilation into the 

existing information networks. 

The research hypothesis was that the achievements of students in the 8th grade, who 

learn probability through one movement lesson (2 academic hours), would meet the 

standard probability literacy test requirement. Due to logistical difficulties, students 

from higher and lower grades also participated in the study. 

Findings indicate contribution of embodied learning activity to understanding of 

probability concepts  

The assessment of the students' achievements was carried out through an online 

multiple-choice test, which included ten probability questions. The questions at the 

different age levels were taken from valid study materials and matriculation 

questionnaires. At the end of the activity, the students were asked to answer the same 

questionnaire again. The test checked students' achievements after participating in the 

workshop. The test scores were calculated by 10 points for each correct answer, for a 

total of 100 possible points. A complete data analysis was conducted for the results of 

16 students: 8 11th grade students from a school in Zichron Yaakov and 8 10th-11th 

grade students from a school in Ashkelon. 
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The results were analysed twice, once using the t test, which assumes that the 

observations were sampled from a normal distribution, and a second time using the 

Wilcoxon test which does not assume this.  

Assuming the test results reflect the level of experience of the students in 

physical/movement practices, an ANOVA test was performed, which due to the small 

number of observations did not yield unequivocal results and therefore a test 

comparing averages was conducted. The results indicate a lower starting point for 

students with a dance and movement background and a more noticeable improvement 

than the higher starting point for students without a dance and movement background, 

whose improvement in their achievements is less significant. These results confirm 

another premise that the embodied learning method is more suitable for students who 

have previous experience in dance and who feel comfortable moving freely in class. 

Figure 1: a- the average grades of 

the two classes increased between 

the first and second tests, scores are 

higher on average by 18 points out 

of 100; b- a noticeable difference 

between the two classes; c -a more 

pronounced improvement trend 

among students with a dance and 

movement background compared 

to students without it. 

The results confirm the hypothesis that teaching based on a careful analysis of the 

studied concept allows learners to experiment with assimilating embodied learning and 

guarantees effective results in a short time. The selected movement games allowed the 

students to experience directly, the "wondering" associated with uncertainty, the 

difficulty of observing randomness and the imaginary scanning of the sample space. 

The somatic experience anchored in the muscles and sensory systems allowed the 

construction of new connections in the neurological network and ensured the ability to 

transfer what was learned and to apply acquired knowledge. 

The didactic strategy was adapted to deal with intuitive models and was built on the 

basis of the experience of students who discover that what seems obvious to them, is 

not true. The cognitive dilemma was resolved by connecting the students' intuitive 

knowledge (concrete physical actions) to abstract concepts, based on the gap between 

probabilistic calculations and the realization of random situations. This recognition of 

perceptions and feelings created learning. 

RECOMMENDATIONS FOR FUTURE RESEARCH 

The focus of this study was to help students learn the concepts of theoretical and 

experimental probabilities using a structured context of play and movement. The 

research findings point to the advantages of this method, therefore it is appropriate that 

it be investigated in depth, to test how consistent and useful the findings of the research 

a b c 
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experience may be in diverse contexts. It is recommended to examine in future studies 

whether it is possible to use embodied learning as an alternative in various highly 

abstract areas of knowledge such as mathematics, physics, and science. 
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Algebra is an important pre-requisite for almost any advanced mathematical topic. 

The importance of learning this new topic entails the need to monitor students’ 

advancement. In this work, we harness the commognitive theory of learning to analyze 

students’ participation in algebraic discourse and asses their algebraic objects 

construction. We demonstrate the construction of a Realizations Mapping Tool (RMT) 

to map students’ realizations of algebraic objects and visualize to which discourse they 

belong and the links between them. This paper exemplifies the affordances of the RMT 

by presenting the analysis of objectification of one seventh grade student, as he solves 

an algebraic task, and juxtaposes it with a second student’s RMT representing the 

objectification of his discourse when solving the same task. 

Algebra is one of the important domains studied in school, and mastering it is a critical 

requirement for success in advanced mathematics in high school and higher education. 

The significant part that algebra plays during an individual's mathematical life has led 

to the need for a careful diagnosis of students’ performance as they learn algebra (e.g., 

Radford, Bardino & Sabena, 2007). While many studies have focused on examining 

specific skills in algebra (e.g., Humberstone & Reeve, 2008), this work focuses on the 

more general emergence of algebraic discourse when students begin learning algebra.  

For this goal we adopt commognition, which is a comprehensive theory that enables a 

micro-analytic scrutiny of students’ performance while learning.  

THEORETICAL BACKGROUND 

A main concept of the socio-cultural theory of commognition is discourse, which is a 

form of communication with characteristics specific to a particular community (Sfard, 

2008). Participation in a discourse reflects the proficiency of a person in that specific 

form of communication, and therefore, one can detect learning in the change of a 

student’s discourse.  

Commognition identifies mathematics as an autopoietic system, i.e., its objects are 

created by means of communication and the discourse revolves around them (Sfard, 

2008). A historical growth of mathematical discourse begins when the meta-discourse 

of the present discourse itself develops. For example, the meta-arithmetic discourse 

emerges from the arithmetic discourse when, instead of communicating about specific 

numbers (five) and specific operation (2×4), we communicate about the general 

characteristics of numbers and operations (e.g., “when we multiply two even numbers, 

we get an even number”). The school algebraic discourse is the formalization and 

symbolization of the meta-arithmetic discourse (Sfard, 2008). Therefore, when 

examining its evolvement with students, it is expected to find characteristics of 
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arithmetic, meta-arithmetic, and symbolic discourses that together incorporate the 

students’ algebraic discourse (Caspi, 2014).  This growth of mathematical discourses 

is further characterized by the emergence of new mathematical objects (objectification) 

via three main routes: reification, saming, and encapsulation (Sfard, 2008). Reification 

occurs when interlocutors move from communicating about processes using verbs 

(e.g., I multiply 5 and 6) to communicating about an object using nouns (e.g., the 

product of 5 and 6). The transformation from process to object is sometimes initiated 

when alienation occurs. This means that actions are performed with no performer (e.g., 

5 times 6). In addition to the transformation from process to object, new objects may 

emerge via saming, when 5×6, 2×15 and 30 are recognized as the same mathematical 

entity. In this case we denote 5×6, 2×15 and 30 as realizations (discursive expressions) 

of one mathematical object, and one of these realizations (in this case 30) is denoted as 

the signifier of this specific object. The third route, encapsulation, occurs when 

interlocutors move from communicating about nouns in plural, to communicating 

about a singular noun (e.g., from (1,1), (2,4), etc. to f(x)=x2).   

Adopting commognitve terminology, in this work we are interested in mapping the 

students’ extent of objectification, i.e., what algebraic realizations are present in their 

discourse, and what evidence can be found for the occurrence of reification, saming 

and encapsulation.  

Since our aim is to characterize the objectification of algebraic realizations in the 

discourse of seventh graders, and since these students are yet in the early stages of 

participation in algebraic discourse, we expect to find that the students’ algebraic 

discourse is not fully objectified (Caspi, 2014). Therefore, our analysis should be 

sensitive enough to reveal various intermediate stages of objectification.  

To this end, we follow previous commognitive studies that generated a visual analytical 

tool for the purpose of mapping either discourses (Wallach, 2022) or the realizations 

of a single object in a whole class discussion (Weingarden, Heyd-Metzuyanim & 

Nachlieli, 2019). We aim to generate a visual analytical tool for mapping a single 

student’s extent of objectification while identifying and characterizing the realizations 

of various objects in her algebraic discourse and the possible links between them 

(reification, saming, and encapsulation). This tool is called hereafter RMT 

(Realizations Mapping Tool). This leads us to the following research question: How 

can students’ objectification, while participating in algebraic discourse, be mapped by 

an RMT and what does this mapping afford?  

METHOD 

The data for this work include think aloud interviews with 10 Hebrew speaking 

students from different schools and various achievement levels. To exemplify the 

objectification of students’ algebraic discourse, we analyze the part of the interview 

where each student solved a specific task.  The chosen task is taken from a protocol of 

tasks based on the Israeli curriculum of seventh grade mathematics, as follows: “I 

thought of a specific number. If I multiply it by seven and subtract from the 
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product fifty-four, I will get the number I was thinking of. What is the number?”. 

This task was selected since it is communicated mostly within the meta-arithmetic 

component of algebraic discourse, and therefore it calls for solutions within arithmetic, 

meta-arithmetic, or symbolic discourse. 

A-priori stage of RMT construction 

We developed the RMT (Realizations Mapping Tool) with two dimensions: horizontal 

and vertical. The horizontal dimension is unique to the task we focus on and includes 

the algebraic objects relevant for its solution. In this case, the objects relevant for the 

specific problem presented above, are unknown, algebraic expression, sign of equality 

and equation. The vertical dimension describes the sub-discourses that form the basis 

for the algebraic discourse: arithmetic discourse, meta-arithmetic discourse, and 

symbolic discourse. Since our participating students are novice to the algebraic 

discourse and may therefore use mostly processual and non-alienated talk (Caspi, 

2014), we distinguish between alienated and non-alienated realizations for each of the 

vertical components. 

RMT construction for each student  

The transcripts and written documentation of the students’ solutions were meticulously 

read while marking realizations of mathematical objects present in them. Each 

realization is framed according to the following: When the realization is in line with a 

possible canonical (correct) task solution, then it is framed in a continuous line. 

Otherwise, if the realization is part of a non-canonical solution for the task it is framed 

in a dashed line. Each framed realization is placed in the appropriate row and column, 

characterizing what sort of object it is a realization of, and to which sub-discourse it 

belongs. 

After placing the frames, the text is scrutinized for links between different realizations 

which are added to the RMT according to the following: Saming – continuous black 

line, reification - dashed black line, and encapsulation – dotted black line. When a link 

is mediated by the interviewer, the line is gray. Each link in the RMT is numbered 

according to the line in transcript it relies on.  

RMTs are exemplified in figures 1 and 2. Note that the figures contain legends 

according to all the possible codes of an RMT, although not all of these codes appear 

in the specific RMTs presented herein. 

To answer our research question and demonstrate the construction and affordances of 

this tool, we selected two of the ten students (Alon and Gil), that both correctly solved 

the same task. Yet, the analysis of the extent of their objectification while solving the 

task yielded two very different RMTs.   

FINDINGS 

Following is an exemplification of the analysis that led to the construction of Alon’s 

RMT according to his written and spoken discourse.  
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Alon’s transcript 

1  Alon: ((Alon reads the question silently and writes)) 

2 Alon:   
  

 
 
 

 

3 Alon:  The number is nine. 

4 Int. Okay, can you explain it?  

5 Alon Yes…mmm…I gave the number an unknown which is x,  

6 Alon (I) multiplied it (x) by seven, seven x, 

7 Alon and then I subtract from the product fifty-four  

8 Alon and it says we get the number itself. 

9 Int. Okay 

10 Alon So, I made it (the number) is x, 

11 Alon now I did… seven x…to move it (the x on the right side) to here (to the left 
side) 

12 Alon so that’s minus x and so it’s six x, and then it is moved to here (fifty-four 
from left to right), 

13 Alon so it’s fifty-four. 

14 Alon Six x equals fifty-four. 

15 Alon I reduced both (nominator and denominator) by six  

16 Alon and then it (the number) turned out nine 

Alon started with silently reading the task, writing the appropriate equation, and 

solving it (turns 1-3). He arrived at the correct solution operating mostly within the 

symbolic discourse. His spoken discourse followed the written solution at the request 

of the interviewer (turns 5-16) and enabled unveiling the links between the written and 

spoken realizations in his discourse. The realizations and links are embedded in Alon’s 

RMT in figure 1. In turns 5-7, Alon samed several meta-arithmetic realizations such as 

“the product”, or “the number”, presented in the task, with their symbolic realizations 

“7x” and “x” respectively. Therefore, these realizations were framed and located in the 

appropriate coordination in the RMT. Thus “the product” was located in row “meta-

arithmetic/alienated” and column “algebraic expression”; “the number” was located in 

row “meta-arithmetic/alienated” and column “unknown”; “7x” and “x” were located 

in the same columns respectively and in row “symbolic discourse/alienated”. 
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Figure 1: Alon’s RMT 

In addition, links of saming were drawn between “the product” and “7x” and “the 

number” and “x”.  Alon also demonstrated reification when he moved in the same 

sentence from saying “I multiplied it (x) by seven” and expressing the product as 

“seven x” (turn 6). This is apparent in the RMT when these two realizations (“I 

multiplied it (x) by seven” and “seven x” are linked with a reification link. In addition, 

we should notice that “equality” is articulated in the task and in Alon’s meta-arithmetic 

discourse as an invitation to calculate (“I will get”) and is reified (turns 8-10) by Alon 

to an equivalence of algebraic expressions. This stage enabled Alon to eventually same 

and reify the whole meta-arithmetic processual realization of an equation presented in 

the task with its symbolic equivalence of an equation (see turns 5-8). Furthermore, 

Alon moved from one realization of the equation to another (e.g., from 7𝑥 − 54 = 𝑥 

to 6𝑥 = 54) and finally found its solution. Yet, in his discourse we did not find any 

expressions representing the equivalence/sameness of the various realizations of the 

equation. Therefore, no links were drawn between the frames that represent the 

different equations. The above analysis exemplified how Alon’s extent of 

objectification while solving a specific task can be presented in the RMT.  

We now turn to describing what can be “read off” an RMT to demonstrate its 

affordances when it stands alone as in image representing the student’s talk. For this 

purpose, we present the RMT of Gil who is a student at the same grade level, solving 
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the same task. Gil’s RMT (Figure 2) was generated from the transcript of his solution 

following the same procedure that generated Alon’s RMT.  

In general, Gil first tried to reverse the given instructions and present this procedure in 

an algebraic expression, yet this did not lead him to a solution. Then he made some 

educated choices of arithmetic calculations that helped him figure out that the number 

nine is the solution of the task. 

 

Figure 2: Gil’s RMT 

From the thirteen realizations in Gil’s RMT four are in the meta-arithmetic discourse, 

only two are located in the symbolic discourse and all the rest are located in the 

arithmetic discourse. Moreover, when we focus on the links, we may notice that there 

are only three links that cross discourses (vertical lines). Two of them are links between 

meta-arithmetic and symbolic realizations (x and 
𝑥+54

7
 which are linked to meta-

arithmetic realizations). These symbolic realizations are “left hanging” and are not 

connected to the solution of the task (the number 9). The third cross-discursive link is 

a saming link (turn13) connecting a meta-arithmetic realization of an “unknown” with 

the number “9” which is the solution of the task. There are three additional horizontal 

links, two of which are saming arithmetic realizations and the third is saming meta-

arithmetic realizations. Thus, we see that most of Gil’s solution is within the arithmetic 

discourse. Although there are links connecting meta-arithmetic realizations and 

symbolic realizations they are not developed into a solution of the task. 
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When comparing Alon’s and Gil’s RMTs, we conclude that Alon's algebraic discourse 

around this task is more objectified than that of Gil since most of his realizations were 

in the symbolic discourse and included multiple saming and reification-links between 

symbolic and meta-arithmetic realizations. In contrast, in Gil's discourse, most of the 

realizations were in the arithmetic and meta-arithmetic discourses and included only a 

few links mainly between arithmetic realizations and between arithmetic and meta-

arithmetic realizations.  

DISCUSSION 

This work was led by the question: How can students’ objectification, while 

participating in algebraic discourse, be mapped by a Realizations Mapping Tool and 

what does this mapping afford? We exemplified how the RMT is constructed, and how 

it illustrates qualitatively the extent of the students’ objectification by mapping the 

students’ realizations of the four algebraic objects, relevant for the task, to the sub-

discourse they belong to (arithmetic, meta-arithmetic and symbolic), and marking the 

links between them. Furthermore, we juxtaposed two students’ RMTs and inferred the 

similarities and differences in the extent of objectification of their participation in 

algebraic discourse for the purpose of solving the same specific task. 

The limitations of this study mainly stem from its confinement to ten students and one 

task. Since this is a novel suggestion, further research is needed to learn about its 

limitations and affordances.   

The possibility to compress one student’s extent of objectification of a solution of a 

certain task into a single diagram (RMT) has several promising strands that can be 

followed. Firstly, the mapping of one student solving one task can be expanded to 

include mappings of the same student’s solutions of various tasks. This will provide a 

more comprehensive picture of his extent of objectification while participating in 

algebraic discourse, and its dominant components. Secondly, since this work relies on 

previous commognitive research that harnessed various forms of diagrams for mapping 

purposes (Weingarden et al., 2019; Wallach, 2022), we now may learn the benefits of 

this kind of mappings from their recent evolvement. From Weingarden and Heyd-

Metzuyanim (2023), we learn that realization trees that map the realizations of one 

mathematical object within a whole class discussion can be quantified via cluster 

analysis and enables comparisons of different groups of lessons. In a similar manner, 

RMTs representing the extent of objectification of groups of students (e.g., from 

different grade levels or classrooms) can be compared. In this way we may contribute 

to unveiling the complexity of the process of object construction in the early stages of 

students’ learning algebra and thus may be helpful in suggesting appropriate 

interventions.  
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The concept of accumulation, while central for integration and potentially significant, 

is often difficult for students to grasp. We examined the role of different contexts in 

expressing accumulative thinking. Initial results provide evidence that extra 

mathematical contexts facilitate students’ thinking of accumulation and offers an 

opportunity to express their accumulative thinking. It seems that certain extra 

mathematical contexts are more helpful in this sense than others. 

BACKGROUND AND RATIONALE 

Integration as accumulation is at the core of understanding many ideas and 

applications. The accumulation function has the potential to serve as a model for 

various situations in continuous real-life processes, and in reverse, many continuous 

real-life processes have the potential to demonstrate accumulation.  

According to Thompson and Silverman (2008), the concept of accumulation is central 

to the idea of integration. It goes hand in hand with a coherent understanding of rate of 

change (Thompson, 1994; Carlson et al., 2003): "When something changes, something 

accumulates" (Thompson & Silverman, 2008, p. 49). Although the concept of 

accumulation is familiar to students from everyday life, they have difficulty grasping 

the 'bits' accumulating (Thompson & Silverman, 2008). Thompson (2013) argues that 

a significant reason for this is a lack of reference to meaning in teaching and research. 

Considering this, it has been suggested to teach integration with an approach that places 

the concept of accumulation at the centre (Kouropatov & Dreyfus, 2013).  

Researchers have shown that using extra mathematical context in the learning of 

mathematics may be helpful in different ways. Rubel & McCloskey (2021) studied 

what they called "contextualization of mathematics", which denotes a teacher's 

discursive turn that does not consist exclusively of mathematical objects. Among the 

rationales to contextualize mathematics, they state that it supports the learning of 

mathematics, claiming that familiar situations may act as "foundations" on which 

"mathematical skyscrapers" can be built, with scaffolding supplied by teachers 

(Carraher & Schliemann, 2002, also cited in Rubel & McCloskey, 2021). 

Lakoff & Núñez (2000) speak of "grounding metaphors" which relate a target domain 

within mathematics to a source domain outside it, creating a conceptual relationship 

between a (familiar) initial domain and a (new or abstract) target domain. 

Accumulation specifically has been found to be a concept which may be taught through 

extra mathematical contexts. Carlson et al. (2003) developed curricular materials 

aiming to promote students’ understandings and reasoning abilities regarding the 

fundamental theorem of calculus, including tasks given in an extra mathematical 
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context. The results showed that most students developed a strong understanding of the 

aspects regarding accumulation. 

In this study we examined students' facility of expressing ideas related to accumulation 

in different intra- and extra mathematical contexts. We ask: In what contexts do 

students think of accumulation and express that accumulative thinking? What role does 

the context have in the process? 

METHODOLOGY 

This study is part of a larger project, in which we examine students’ personal meanings 

for basic concepts of calculus. As part of the project, we developed various tasks, 

including one in which students are presented with a split-domain rate-of-change 

function, constant and positive in each subdomain, and then asked about its 

accumulation function (see Figure 1 below). The task was designed so that there is no 

need for technical work, but rather for understanding that if you know how fast a 

quantity is changing at every moment, you can know how much of that quantity has 

accumulated at every moment. The quantity accumulates continuously, and because of 

the positive rate of change, the accumulation function is monotonously increasing. 

For examining the role of context, we designed 4 parallel versions of the task, based on 

different intra- and extra mathematical contexts: (1) Formal mathematical; (2) Area; 

(3) Motion; and (4) Pool. We present (4) in detail (Figure 1). 

The accompanying sketch shows the graph of the function 𝑓(𝑥), which represents the flow 

of water into a pool. The flow is measured in 

units of litres per second. The pool was 

empty at the beginning. 

Alona said that using these data it is possible 

to sketch the graph of the function 𝑔(𝑥) =

∫ 𝑓(𝑡)𝑑𝑡
𝑥

0
, 𝑥 ≥ 0 which represents the 

amount of water in the pool at time 𝑥. The 

students discussed the meaning of her 

statement to them.  

Figure 1: The pool context version of the task. The vertical axis of the graph is 

labelled: "𝑓(𝑥) [𝑙𝑖𝑡𝑟𝑒𝑠 𝑝𝑒𝑟 𝑠𝑒𝑐𝑜𝑛𝑑]"; the horizontal axis is labelled  "𝑥 [𝑠𝑒𝑐𝑜𝑛𝑑𝑠]".  

Table 2 (below) demonstrates the differences between the different contexts. Following 

Alona's claim, each version of the task presents five statements regarding the situation, 

supposedly made by five imaginary students discussing the meaning of Alona’s claim. 

Each statement expresses a way of thinking about accumulation. In this report, we 

focus on the statement made by Paula: ‘For me, 𝑔(𝑥) is an accumulation function. 

Since there is a jump in 𝑓(𝑥), one needs to relate to the accumulation separately in 

each domain. That is, the accumulation restarts at 𝑥 = 4  and therefore also the graph 

of 𝑔(𝑥) also starts to rise again from 0 at 𝑥 = 4.’ Paula's statement contradicts the 
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continuity of the accumulating quantity. Accumulative thinking implies that the 

accumulation continues, albeit at a different rate, rather than restarts at 𝑥 = 4. 

Context 𝑓(𝑥) 𝑔(𝑥) Alona said that using these data 

it is possible to sketch the graph 

of 

Formal 

mathematical 

Function Integral of 𝑓(𝑥) the function 𝑔(𝑥) = ∫ 𝑓(𝑡)𝑑𝑡
𝑥

0
, 𝑥 ≥

0. 

Area Function The area that 

accumulated 

between the graph 

of 𝑓(𝑥) and the 𝑥-

axis starting from 

𝑥 = 0 

the function 𝑔(𝑥) = ∫ 𝑓(𝑡)𝑑𝑡
𝑥

0
, 𝑥 ≥

0 which represents the area that 

accumulated betwen the graph of 

𝑓(𝑥) and the 𝑥-axis starting from 𝑥 =

0 up to 𝑥 = 7. 

Motion The speed of a 

tortoise (meters per 

second) 

The distance the 

tortoise passed at 

time 𝑥 

the function 𝑔(𝑥) = ∫ 𝑓(𝑡)𝑑𝑡
𝑥

0
, 𝑥 ≥

0 which represents the distance the 

tortoise passed as a function of the 

time 𝑥. 

Pool The rate of flow of 

water into a pool 

(litres per second) 

The amount of 

water accumulated 

in the pool at time 

𝑥 

the function 𝑔(𝑥) = ∫ 𝑓(𝑡)𝑑𝑡
𝑥

0
, 𝑥 ≥

0 which represents the amount of 

water in the pool at time 𝑥. 

Table 1: The different versions of the task 

Population and interview methodology 

Twenty four high-school students learning advanced track mathematics in grades 11 

or 12 were interviewed, after having learned about integration, 6 on each version of the 

task. Interviewees were asked to rate to what extent they identified with each of the 

five statements, including Paula's, on a scale of 1 to 4. They were asked to do this in 

writing before the conversation with the interviewer started. An additional interview 

using the motion context version was held with a student who was familiar with the 

pool context; more details about this student will be given below. 

The students were told that the interviewer was not interested in right or wrong answers 

but was interested in their ways of thinking. The interviewer’s instructions were to 

discuss the students’ responses to the questionnaire with them, with the aim of 

clarifying the meanings they hold: The interviewer should ask about how the student 

interprets the statements in the questionnaire. The interviewer should note if there are 

inconsistencies between how students react to different statements and such 

inconsistencies should be addressed. The interviews were audio-recorded and 

transcribed. When analysing the interviews, we used the following criteria to identify 

utterances that are indicative of the interviewee's personal meanings: 
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1. Distinct language – the utterance contains concepts and language specific to 

the learner, which have not been used by the interviewer or in the task.  

2. Repetition – the utterance contains concepts that repeat themselves. 

3. Reasoning – the utterance is intended to explain or justify the mathematical 

concepts. 

4. Unexpectedness - the utterance is surprising or unexpected to the researcher. 

5. Statement of opinion – the utterance is explicitly qualified by the interviewee 

as their own belief, opinion, or interpretation. This includes, for example, 

utterances containing phrases such as “to me”, “in my opinion”. 

FINDINGS 

In this section we present the results of the interviews, according to the context. 

Formal mathematical context 

Four of the six interviewees stated that they do not understand Paula's statement since 

they don’t know what an accumulation function is, and another one said he agrees with 

Paula. Only Thomas, expressed some accumulative thinking: 

Thomas: "Yes, like I somehow, my initial thought of the function 𝑔(𝑥) was of a function 

that keeps going up. Continuous. When I started reading all their opinions, I understood 

that maybe it's not continuous, that there is some gap at 𝑥 = 4 […] Because again, it's an 

accumulation function so like not at every point… okay, I'll rephrase it to myself, at every 

point on 𝑔(𝑥) the area, like doesn't matter if I start to count it from 0 or 4, the area will be 

bigger than 0." 

While Thomas’ answer points to aspects of accumulation, he seems confused. While 

there was no mention of area accumulating, Thomas mentions area. This may be due 

to the close link between integral and area made in many Israeli high school classes. 

Area 

Two of the 6 students said that Paula is correct, and one said she doesn't know. The 

other three students expressed little accumulative thinking: 

Gal: "I'm saying that it's correct, you need to divide it into two accumulation segments. 

[…]" The interviewer says: "I repeat what she's saying, up to the point 4 the graph rises, 

and then you start with zero area." Gal replies: "No, […] the graph doesn't reset, from her 

point of view you sum until 4, and then again from 4 to 7." 

Einat: "All the rest was correct except 'and thus the graph of the area 𝑔(𝑥) begins to rise 

again from 0 at 𝑥 = 4.' Because it doesn't rise from 0. […] Like a graph that continues 

differently, okay, but it doesn't begin from 0." 

Later in the interview Einat said something that sounded contradictive and was asked about 

it. She replied: "If I look at it as an accumulation integral at this point specifically, at the 

first point of 𝑓(𝑥) I do think it starts at 0. […] I'm looking at area and at this [(4,1)] point 

specifically I don't have any area because nothing has accumulated." 

Tom: "The claim is completely incorrect, although I don't know what an accumulation 

graph is, the graph of 𝑔 doesn't re-rise again from 0." 
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Of the six students, only Tom made a correct statement but did not explain it. Gal was 

able to say that the accumulation function doesn't reset, but his attention stayed on 

working on two sub-domains. Einat sounded sure of herself when referring to Paula, 

but then changed her mind. 

Motion 

Three students tended to agree with Paula, three others corrected Paula’s thinking: 

Tori: "Paula was precise in the domain of each of them, and that it starts to rise at 0." Later: 

"I would change it… […] what I said about Paula. […] I don't think that the distance just 

rises from 0, because he [the tortoise] continues on the same course." 

Alan: "It's actually a count that starts over from the beginning, but it doesn't start over 

actually you need to add […] I just count like… count one speed, the quantity of meters 

he passed and then I just add the meters at the other speed." 

Niky: "I don't think so because the distance, he goes some distance, and the 𝑔(𝑥) represents 

distance, but it's not true that he goes back to the starting point and starts again from 0. He 

has gone some distance and from that distance he simply continues at a different speed. 

Maybe the slope will be smaller, but because he's moving slower, but it's incorrect to say 

that the distance is 0 again." 

Alan, Tori and Niky reject Paula’s claim that the accumulation restarts at 𝑥 = 4 

(although Tori first agrees with Paula, she later corrects herself). Two of them (Tori 

and Niky) talk about the figure continuing to walk. It seems that they use the walking 

figure as a tool to think about the continuity of the accumulation. 

Pool 

Five of the six interviewees disagreed with Paula and explained in their own words: 

Ron: "It's incorrect to do it like that. The water in the pool... like the pool isn't filled twice, 

it's filled once." 

Donna: "She says that it restarts again from zero so that like contradicts the whole point of 

accumulation. […] [The fact] that they changed the… the rate of the flow so they still… 

[…] Like you continue to fill it, only differently. So, I think it needs to be a line that 

continues with no…. with no holes." 

Tami: "I agree with her that the accumulation is the amount of water. … don't agree with 

her that much with the issue of the graph. […] She calculates the amount of water 

separately […] but it's not something that I thought of. Because it's the same pool." 

Amir: "The accumulation doesn't start over, there's an amount of water in the pool, only 

the flow change changes." 

Omri: "It's an amount of water, it can't reset… it's not that they empty the pool." 

In the pool context, five of the six students reject Paula’s claim that the accumulation 

restarts at 𝑥 = 4, most of them referring to the pool not being emptied at any point. 

The pool context enables the students to see the accumulation process as continuous. 
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Bonus interview: Mike 

Mike was interviewed on the motion context version (in addition to the six above 

students). We present Mike’s interview separately since his relevant mathematical 

background is unique. His high-school mathematics teacher is a researcher who studies 

developing accumulative thinking as an introduction to learning integral calculus. She 

designed a learning activity, based on a pool context. Her 11th grade class (Mike's class) 

carried out that activity as an introduction to integration (Falach, 2023).  

During the interview, several weeks after the learning activity, Mike referred to 

accumulation before discussing Paula's statement, and said: "Like the accumulation 

function was presented to me, a certain quantity of water accumulates. In this case [the 

motion context] it's not… it's accumulating distance, the distance that he passed. Then, 

after 4 minutes he changes speed so his accumulation rate of the water, or in this case 

distance, is different. He basically changed speed." Later, when asked about the 

comparison to what he learned in the pool context he replied: "With the water, and here 

also, there is a quantity of accumulation, that's how I treat it. In the case of water, you 

accumulate water, for example in a pool, and in this case, he accumulates distance." 

When asked about Paula's statement, Mike replied: "It's very correct and very close [to 

how I think]. Now that I read it again, it's exactly the way I think…I interpret it in the 

simplest way possible. She divides it, like I said before about the accumulation in the 

pool, into one part in which water accumulates in a pool, and a second part in which 

water accumulates.... In each part, there was a different quantity of accumulation."  

Later in the interview, Mike referred to the graph of the accumulation function being 

continuous, in what may seem a contradiction to his agreement with Paula: "indeed he 

changed his rate, but he began from the same point […] I treat this change as the slope 

of the graph, not as a detachment of the point." 

The main finding of this interview is that Mike fluently transfers what he learned in the 

pool context to the motion context. He makes the parallel between quantity of water 

and distance as well as between flow rate and speed. Although Mike agrees with Paula 

and identifies with her, he sees accumulation as a continuous process. The fact that he 

identifies with Paula demonstrates the fragility of his accumulative thinking. It is 

interesting that he uses the pool context to explain his thoughts, rather than the current 

motion context. This may be interpreted as more evidence to how intuitive it feels to 

talk about accumulation of water, even more than about distance in a motion context. 

DISCUSSION 

Students were presented with parallel tasks about accumulation in four different 

contexts. The context had a considerable influence on their ability to express 

accumulative thinking. Extra mathematical contexts typically facilitated accumulative 

thinking, especially the pool context. The area context facilitated accumulative 

thinking less than the motion and pool contexts but more than the formal mathematical 

context.  
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Some students used the extra mathematical pool or motion context as "foundations" to 

reason about the continuity of the process. For example, Niky says: "He has gone some 

distance and from that distance he simply continues at a different speed"; or Amir says: 

"The accumulation doesn't start over, there's an amount of water in the pool, only the 

flow change changes"; or Omri: "It's an amount of water, it can't reset… it's not that 

they empty the pool." 

The language students use in the pool context is casual ("the pool isn't filled twice, it's 

filled once", "you continue to fill it, only differently", "it's the same pool"). The casual 

language suggests the reasoning using the pool is intuitive, and that filling a pool is a 

natural 'grounding metaphor' for accumulation. In Mike's interview we see that the pool 

context supports thinking in terms of accumulation, but his interview also demonstrates 

the difficulty and complexity of the accumulation concept. The pool context assisted 

Mike in expressing his thoughts but his exposure to the pool example did not prevent 

him from identifying with Paula. 

In conclusion, we see evidence that certain contexts assist students to think about 

accumulation and to express their thoughts on it. Some contexts are more helpful in 

this sense than others. The continuance of the accumulation process was more evident 

in the pool context, than the motion context, and more in the motion context than in 

the area context. We highlight characteristics of the contexts which we think made 

them more (or less) helpful in this sense: 

1. In the pool and motion contexts, the independent variable is time. This 

gives an inherent intuitive sense of what comes before what and connects 

to the smooth continuous conception of time. It is natural to perceive that 

filling a pool is a one-way process: Time will only go forward, and if you 

fill the pool, and do not empty it, the amount of water is going to grow. 

2. In the pool context, the 'bits' that accumulate are visible. One can take a 

picture of them and mark the change in the picture. It is tangible. It is 

something that the change (described by the rate of change) created in the 

sense that it did not physically exist before the change: for motion – one 

can visualize the road and the current position of the tortoise, but one 

cannot see and touch the accumulated distance. This makes the 

accumulated change more approachable in the pool context than in the 

motion context, and in motion context more so than in the area context, 

which is theoretical (not from every-day life). 

An interesting observation that might warrant further research is that in the extra 

mathematical contexts the students relate to the rate of change function in their 

answers:" I just count like…  count one speed, the quantity of meters he passed and 

then I just add the meters at the other speed"; "Maybe the slope will be smaller, but 

because he's moving slower"; "they changed the… the rate of the flow"; "only the flow 

change changes". This demonstrates that the rate of change at which a quantity 

accumulates may be more approachable in extra mathematical contexts. This is of 

importance, since, as stated, the concept of accumulation goes hand in hand with a 
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coherent understanding of rate of change. This, and other findings, also call for future 

research in more directions: (1) Examine whether and how other extra mathematical 

contexts facilitate students’ accumulative thinking; (2) Research students’ processes of 

constructing knowledge about accumulation in a pool context; (3) Examine students' 

facility to express their thoughts about rate of change and derivative, in different intra- 

and extra mathematical contexts. 
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CROSS-COMMUNITY COLLABORATIVE TASK DESIGN  

Adi Eraky, Ronnie Karsenty, and Alon Pinto 

Weizmann Institute of Science 

This study investigates processes of collaborative task design within a diverse group 

of stakeholders: elementary and secondary mathematics teachers, mathematics 

education researchers, teacher educators, and policymakers. Data were collected 

throughout one year out of a long-term research project, focusing on developing 

inquiry-based tasks for the elementary level under the pedagogical model of flipped-

classrooms. In this paper, we explore how different focal points, raised by various 

stakeholders, may shape design decision-making processes. We focus on one 

particular decision and use an utterance map to represent the rich and complex 

interactions around this decision and the tensions between two central focal points: 

the discipline of mathematics, and the students. We discuss the potential and 

challenges of cross-community collaborative task design.  

BACKGROUND, RATIONALE, AND RESEARCH QUESTIONS 

In recent years we have witnessed dramatic changes in learning environments, as a 

result of the COVID-19 pandemic, which among other things forced – for considerable 

periods of time – a shift from classroom-based to home-based learning. These changes 

and the great challenges they posed for students, teachers, parents and the mathematics 

education community at large, urge the need to explore learning environments that go 

beyond the physical classroom, to serve both in future crises and in times of stability. 

In the ZEN-Math project (Zooming into Environments for Nurturing Mathematics), 

initiated in 2021 at the Weizmann Institute of Science, we aim to support greater 

flexibility in mathematical teaching and learning environments at the elementary 

school level. Specifically, the project draws on an adaptation of the emerging 

pedagogical model of the “flipped classroom” (FC). In this adapted model, students 

prepare for class by engaging in inquiry-based tasks designed for independent learning. 

This is then followed (in the classroom or remotely) by a teacher-facilitated inquiry 

into the material, grounded in students' prior work rather than in teacher presentations 

(Cevikbas & Kaiser, 2020). 

A central premise of ZEN-Math is that the design, enactment, and dissemination of a 

hybrid pedagogy, integrating independent student learning with teacher-facilitated 

communal inquiry, requires multifaceted knowledge and expertise that does not lie 

within the confines of any sole stakeholder in mathematics education. It requires a 

productive collaboration between different stakeholders, such as researchers, teachers, 

teacher educators, and policy makers, who may have different aims and agendas that 

could be pertinent to the design (Margolinas et al., 2013). Thus, a key aspect of the 

ZEN-Math project is cross-community collaborative task design (Jones & Pepin, 

2016): a diverse group of experts, representing different communities in mathematics 

education, jointly develop, test and refine inquiry-oriented FC tasks. 
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Cross-community collaborative task design is far from being straightforward. A 

diverse design team brings not only multifaceted expertise but also different 

perspectives and values regarding the teaching and learning of mathematics. 

Differences may lead to conflicting opinions and to tensions that could hinder task 

design processes, thus preventing such teams from functioning as more than the ‘sum 

of their parts’ in developing novel ideas and insights (Pinto & Cooper, 2017, 2019). 

Research on cross-community collaborative task design is quite limited, particularly in 

relation to the questions of how a design team may draw on its multifaceted expertise, 

and how this multifaceted expertise may influence the resulting tasks. The study 

reported here addresses this gap by investigating the complex and layered dialogues 

among the different stakeholders in the ZEN-Math design team, in an attempt to 

understand how various perspectives and goals interrelate during the collaborative task 

design. For this, we employ an adapted version of the practical rationality framework 

(Herbst & Chazan, 2012, 2020), as discussed in the next section. Our investigation is 

guided by the following research question: What characterizes dialogues among 

different stakeholders in the process of collaborative task design? 

THEORETICAL FRAMEWORK  

Herbst and Chazan (2012, 2020) introduced the notion of practical rationality for 

studying the collective dispositions, norms and commitments underlying mathematics 

teaching, and possible tensions between them. They presented four professional 

obligations for mathematics teachers, which they named the disciplinary, individual, 

interpersonal, and institutional obligations. In broad terms, the disciplinary obligation 

implies that school mathematics needs to be a valid representation of the knowledge, 

practices, and applications of the discipline of mathematics. The individual obligation 

refers to students’ wellbeing and personal identity, taking into account diverse 

behavioral, cognitive, emotional, or social traits and needs, which a mathematics 

teacher may not ignore. The interpersonal obligation signifies the teacher’s need to 

ensure a socially and culturally appropriate distribution of resources such as time, 

physical space, and symbolic space. Finally, the institutional obligation refers to the 

various ways by which teachers respond to their mathematics department, school, 

district, professional associations and unions, etc. When designing tasks and 

envisioning how these tasks may be enacted in practice, designers need to be attentive 

to these different teacher obligations. Moreover, designers’ practical rationality may 

include parallel forms of obligations, for example for the wellbeing of individual 

teachers, or for policies and agendas of the Ministry of Education. Different 

stakeholders may identify different obligations in similar instructional settings and may 

feel less or more committed to them (Herbst & Chazan, 2020). 

METHOD  

Participants, setting, and data collection 
The study focused on nine stakeholders, constituting the design team: three 

mathematics teachers, three mathematics teacher educators, two mathematics 
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education researchers, and one mathematics pre-service teacher (the latter was absent 

from the meeting analyzed in this report). We denote the teachers as T1, T2 and T3, 

teaching in elementary, middle and high schools, respectively. TE1, TE2 and TE3 

denote the teacher educators (TE1 is a chief instructor and a policymaker in the 

Ministry of Education, TE2 and TE3 teach in a teacher education program). R1 and 

R2 denote the researchers. The team met face to face or via Zoom every three weeks, 

for four academic hours, throughout one year. Data for the study consisted of the 

recordings of all sessions; key episodes were transcribed.  

The mathematical task and design dilemmas selected for this report   
Out of the three tasks designed by the team, we focus here on a geometrical task for 

upper elementary students. In the independent part of the task, students are requested 

to use two line segments drawn on transparencies, to be considered as diagonals of 

quadrilaterals, and position them in various orientations to construct different 

quadrilaterals. Then, they are asked to sort the quadrilaterals into groups, according to 

characteristics of their choice. The aim of this task is to set the grounds for a teacher-

facilitated inquiry into characterizations of quadrilaterals based on their diagonals. Two 

of the dilemmas discussed along the design process were the following: (1) should 

students be given only same-length diagonals or also different-length ones? (2) should 

students be given a thumbtack to be used as a hinge point around which the diagonals 

pivot? The seemingly minor detail in dilemma (2) turned out to entail tensions between 

different perspectives (as we show below), thus we selected the dialogue around it as 

the center of this report.        

Data analysis  
As a preliminary step for understanding the “thumbtack dialogue”, we performed an 

exhaustive mathematical analysis to systematize all the possible solutions for the task 

(in the case of same-length diagonals). Then, we conducted a content analysis of the 

dialogue transcript. Firstly, we segmented the transcript into units of analysis, with 

each unit including consecutive utterances of the same speaker. Secondly, to identify 

the “designers’ practical rationality” of different stakeholders, we coded the units 

according to six codes, inspired by the professional obligations discussed by Herbst 

and Chazan (2012, 2020). Rather than identifying obligations, we examined focal 

points, i.e., what designers are attentive to along the design process. Thus, our three 

first codes were the focal points of the discipline, the students (as individuals or as a 

whole class), and the institution (e.g., the school, the curriculum). To this we added the 

focal points of teachers/teaching and task design (e.g., making a design suggestion). 

Lastly, we added a code referring to speakers inviting discussion. The coding was 

validated by comparing codes obtained separately by the three authors, and discussing 

discrepancies until agreement was reached. In the final third step of analysis, we 

created an “utterance map” (Nurick, 2015), i.e., a visual representation of the different 

focal points in the dialogue.  
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FINDINGS 

Figure 1 shows 12 different groups of quadrilaterals with same-length diagonals, 

obtained as solutions to the task, and arranged according to the diagonals’ mutual 

relations. As can be seen, 4 of the groups consist of concave quadrilaterals whereas the 

other 8 consist of convex quadrilaterals. This distinction is central to our analysis: if 

students are requested to use a thumbtack when positioning the diagonals, the 

underlying premise is that the diagonals intersect, thus the concave quadrilaterals are a 

priory excluded from the inquiry. 

We now turn to the analysis of the “thumbtack dialogue”. Figure 2 (below) presents 

the utterance map of this 

 

 

 dialogue, showing the coding of units by speakers (color legend included). Each 

rectangle represents a unit or consecutive units of the same speaker, with the notation 

of the speaker and the unit numbers. Longer units are represented by longer horizontal 

sides (without accurate proportionality), and the arrows indicate a response of a speaker 

to previous speakers (e.g., elaborating, opposing to, or supporting ideas raised earlier). 

The dialogue starts at the top right-hand side of the map, with TE1 repeating the 

dilemma (“should we have students use a thumbtack when positioning the diagonals 

to create quadrilaterals?”, unit 25), raised earlier in the meeting within a small group 

discussion. Then, the map progresses downwards when speakers refer to this dilemma.  

As an example of the coding represented in the map, we present below some of the 

utterances of T3 (part of the sequence of units 31-36) and their ensuing coding (by 

color):  

 

Intersecting Not intersecting  

Mutually 
bisecting 

Only one 
bisects the 
other 

Mutual division 
with proportion 
(other than 1:1) 

No 
proportional 
divide   

One’s extension 
bisects the 
other 

Not 
bisecting  

 

 

  

 

  

Perpendicular 

  

 

 

 

 

Not 
perpendicular 

Figure 1: Different groups of quadrilaterals with same-length diagonals 
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T3 I raised this issue as a [design] question, it has a disadvantage and an 

advantage.  

T3 The advantage is that it fixes the diagonals’ intersection point, thus allowing a 

certain dynamic look […] so it creates a kind of dynamic geometry of some 

sort.  

T3 […] Pedagogically, it allows [participation] of young children, who are 

inexperienced with higher concepts. 

T3 [...] If the thumbtack is not in the midpoint of the diagonals, and the diagonals 

are correspondingly positioned […] then this center actually divides them 

proportionally […] and then when I move them I keep getting the same type 

of shapes and you can arrive at some conclusions. […] [It’s different] to tack it 

in the middle because then I actually get rectangles, not equilateral trapezoids. 

T3 […] The disadvantage is that […] pedagogically it fixates thinking […] and 

doesn’t allow them to just throw the diagonals [as they wish], to liberate their 
creativity.   

Another example, to demonstrate the links represented by arrows, is the response of 

T1 to both T3’s and TE1’s earlier utterances (part of the sequence of units 50-57):  

T1 We can give [students] the thumbtack and ask, is it always possible to use it? 

Can you explain the reason why?  

Here T1 answers TE1’s query (unit 25) by suggesting to include a question in the 

design.    

31 

32 

33 

34 

35 

51 

Figure 2: The utterance map illustrating the “thumbtack dialogue” 
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T1 […] It can stir [students’] thinking. In my opinion it’s really a lovely activity, 

this issue of the thumbtack […] [with] guiding requests to explain the course 

of action, so that they can come to many conclusions. I really like this. 

T1 I would however ask more open-ended questions about the thumbtack. You 

got a thumbtack […], do you need it? Does it add something? Give them 

thought-provoking questions. You have the thumbtack – you decide whether 

you use it.  

In unit 52, T1 responds to T3’s concern that using a thumbtack can “fixate thinking” 

(unit 35). She proposes that, on the contrary, it can provoke students’ thinking. In unit 

56 she elaborates guiding questions that may be incorporated in the design for 

achieving this.   

What can be learned from the map? Firstly, it clearly shows that the conversation was 

collaborative and multifaceted. This is evident from the observations that (a) all eight 

team members present at the meeting were involved in the discussion; (b) the dialogue 

was   interactive, as shown by the many arrows, i.e., speakers constantly responded to 

each other and were not simply presenting individual isolated ideas; and (c) the 

discussion branched out into three substantial directions, the upper branch (units 31-

47), the middle branch (units 50-64), and the lower branch (units 70-99). Although not 

seen in the map, additional information about the content of these branches reveals that 

all of them developed the issue of the thumbtack: in the first one, advantages and 

drawbacks of using the thumbtack were discussed; in the second one the focus was on 

students' potential use of the thumbtack within their inquiry; and the third one centered 

on balancing the different goals of the task.  

Secondly, the map shows that the prominent focal points of the participants in this 

dialogue were the discipline and the students, as evident from the dominance of 

the yellow and blue colors (appearing 13 times each). There was less reference to 

teachers/teaching (6 appearances), and no explicit references to the institutional 

focal point (we note however that it was found in other dialogues we analyzed). 

Another finding is that different stakeholders are not readily identified in the map 

by the color of their utterances.  Not only did different stakeholders (e.g., T1, T2, 

T3, R1, R2, TE1) repeatedly refer to various focal points, but also different focal 

points were interweaved in a single unit. Thus, the dialogue can be characterized 

as complex in the sense that it is an intricate process in which each speaker 

simultaneously holds several perspectives.  

The complexity of the process, however, goes beyond what is seen in the utterances 

map. A key characteristic of the dialogue concerns the tension between considerations 

focused on the nature of the mathematical inquiry, and considerations focused on the 

students’ experiences. One instance of this tension can be seen in units 32-35 of T3, 

cited earlier, where there is a clear tension between orienting the design towards a rich, 

yet structured inquiry (e.g., recognizing the difference between the properties of 

diagonals in rectangles vs. equilateral trapezoids, unit 34), and orienting the design 

52 

56 
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towards a more open inquiry that appeals to students’ creativity (unit 35). Such free 

inquiry may end up with students not reaching clear conclusions about properties of 

diagonals in various quadrilaterals, yet it gives students more agency over how the 

inquiry evolves and may invite questions or observations unanticipated by the 

designers. Additionally, a larger and more diverse corpus of student solutions may give 

teachers more flexibility in the follow-up lesson, allowing them to decide on which 

direction to pursue (e.g., convex or concave shapes).  

Aspects of this tension were present in utterances by various stakeholders throughout 

the dialogue, for instance, “one drawback of the thumbtack is that definitely the option 

of the diagonals not meeting will not rise” (R1, unit 42); “if we want to focus on just 

the family of parallelograms, then the thumbtack can be actually very helpful” (TE2, 

unit 70); “in the most narrow case [equal-length diagonals, with a thumbtack] the 

inquiry can still yield 8 different families […], it clearly limits creativity, but we need 

to find a balance” (R2, unit 72); “do we want more inquiry and play, discovery work, 

or do we want an activity that builds the knowledge in the curriculum? [this decision] 

directs us if to use a thumbtack or not, equal diagonals or not” (T2, unit 96). Notably, 

although several design suggestions were brought up along the way, the conversation 

did not converge to concrete design decisions regarding both issues, the thumbtack and 

the same/different lengths of diagonals. 

DISCUSSION 

In this report we examined a dialogue among various stakeholders within a cross-

community collaborative design team. Prior research points to the advantages of 

diversified teams, having multifaceted expertise in issues of mathematics education. 

However, existing literature does not clarify how the expertise of different stakeholders 

may become a resource in collaborative task design processes. Pinto and Cooper (2019) 

suggest that one common model of cross-community collaborative work is based on 

splitting the team into less diverse sub-teams to address particular issues, drawing on 

individual fields of expertise separately. Our findings suggest that when stakeholders 

are not confined to preconceived roles, their expressed designers’ practical rationality 

goes beyond their zone of expertise. The resulting dialogues may thus become highly 

complex, as illustrated in the utterance map. Specifically, our findings highlight three 

characteristics of complex cross-community dialogues. First, they constantly revolve 

around various focal points. Second,  different stakeholders refer to multiple focal 

points, demonstrating that they are not “flat characters”, committed to their expected 

interests (e.g., the teacher is committed to students, the teacher educator - to teachers). 

Third, stakeholders respond to, and build on, suggestions and arguments of other 

stakeholders.  

One consequence of highly complex dialogues is the rise of tensions between different 

perspectives. In the “thumbtack dialogue” we identified a tension between different 

modes of inquiry, which can be seen as representing broader agendas in mathematics 

education, for example about allowing students leeway to “play”, vs. the commitment 
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to cover the curriculum; or about how important is it that students exhaust all the 

mathematical possibilities afforded in a certain topic. The tension we identified also 

touches upon questions of inclusiveness (e.g., a design that takes into account students’ 

differential abilities), and professional power (e.g., how rigid or flexible should the 

design be, in order for teachers to use it effectively). Importantly, tensions may become 

a valuable resource or an insurmountable obstacle. On the one hand, addressing 

perspectives and values of different stakeholders from early stages of the design may 

increase the likelihood that the designed products are better aligned with diverse 

interests within the system, thus simplifying implantation and dissemination. On the 

other hand, addressing and resolving tensions comes with various costs and in extreme 

cases may even derail collaborations (Pinto & Cooper, 2017). A future direction for 

research is to investigate what allows for tensions to become productive in cross-

community collaborative task design. One aspect of productiveness is the convergence 

of design processes into solid decisions. In this study, the “thumbtack dialogue” did 

not converge to a design decision, yet it did prepare the grounds to a consensus that 

represents a balance between different focal points, in a process of negotiation that will 

be reported elsewhere. Finally, we propose that the tool of the utterance map can assist 

in further exploring the practical rationality of diverse design teams, as well as other 

aspects of cross-community collaborative task design.   
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Scholars theorize that professional well-being is essential for teachers' personal-

professional growth. However, teacher professional development programs (TPDPs) 

primarily focus on promoting student achievement and only partially and indirectly 

address teachers' professional well-being. The purpose of this study was to compare 

science and mathematics teachers' perceptions of their professional well-being needs 

with actual practices in effective TPDPs. Twenty interviews with expert teachers were 

conducted to identify well-being components (competence, relatedness, autonomy, and 

aspirations). The findings show that aspirations, emphasized by teachers as most 

important, were totally ignored in TPDPs. This finding may have practical and 

theoretical implications for designing and assessing TPDPs' effectiveness.  

INTRODUCTION  

Professional Development (PD) represents an essential part of teachers' professional 

lives, where their craft knowledge and professional orientation can be reached, guided, 

and moulded. Nonetheless, teacher professional development programs (TPDPs) 

primarily reflect policymakers' focus on the teacher's critical impact on student 

achievement while neglecting the role that the person plays in the profession (Intrator 

& Kunzman, 2007). Unsurprisingly, in their recent survey, Darling-Hammond et al. 

(2017) reveal an emphasis of educational systems on "effective programs" that lead to 

improved student achievement. They describe effective TPDPs as primarily aimed at 

promoting the quality of teaching, emphasizing relevance to the teaching content and 

the teacher's needs in this regard. Teachers are regarded as implementers expected to 

align their instruction with external and pre-determined goals and practices (Lindvall 

& Ryve, 2019). Moreover, TPDPs tend to overlook teachers' changing individual 

professional needs at various stages of their teaching careers and designate the same 

programs for all teachers (Huberman, 1995). Well-rooted in the general approach of 

holding teachers accountable for student achievement, TPDPs fail to address teachers' 

personality and do not regard teaching as a profession and teachers as specialists 

(Tucker, 2014). Despite a proliferation of effective TPDPs, this approach to teachers' 

PD turns out to be limited and insufficient, given teachers' dissatisfaction with their 

personal-professional growth (Santoro, 2021).  
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Scholars have theoretically asserted that professional well-being (PWB), comprised of 

teachers' competence, relatedness, autonomy, and aspirations (Ryan et al., 2013), is an 

essential facet of teachers' personal-professional growth (Rubin & Brown, 2019). It has 

been argued that to advance education, one must move on to a model that maintains 

teachers' vocational vitality and emphasizes the development of teachers as individuals 

practicing professionals (Intrator & Kunzman, 2007), instead of just holding teachers 

accountable for their students' performance in exams (Tucker 2014). Despite these 

arguments, the literature on effective TPDPs does not intentionally address teachers' 

PWB (Lindvall & Ryve, 2019). Noticing that teachers' voices are absent from this 

discourse, this study aims at revealing how teachers perceive their PWB. The findings 

may redirect and improve PD beyond just enriching teaching quality (i.e., craft, 

content, and pedagogical knowledge) and contribute to teachers' professional growth 

by adding teachers' PWB to other desired TPDPs' effectiveness characteristics.  

Specifically, addressing the case of expert Science and Mathematics (ESM) teachers, 

this study aimed to collect empirical evidence about the importance these teachers 

attribute to well-being in their professional lives. By confronting ESM teachers' 

perceptions about their well-being needs with how actual practices                                         

in effective TPDPs address these needs, we aimed to establish well-being (namely 

competence, relatedness, autonomy, and aspirations) as an additional factor that should 

be considered when assessing TPDPs' effectiveness. To this end, we formulated the 

following research question:   

Whether and how are PWB components (competence, relatedness, autonomy, and 

aspirations) reflected in ESM teachers' perceptions of their personal-professional 

growth? 

THEORETICAL BACKGROUND  

Recent research, based on substantial evidence that among contented employees, who 

feel meaningfully engaged and connected to their profession, retention is higher, 

especially as career opportunities emerge (Hall, 2002; Ryan et al., 2013), has identified 

teacher PWB as a critical aspect of teachers' professional needs (Rubin & Brown, 

2019). Consequently, our research focuses on teachers' PWB as determining teachers' 

professional needs.  

What is Professional Well-Being (PWB)? 

Humanistic theories (Maslow, 1970) assert that aside from physiological needs, safety 

needs, intimacy needs, and the need for status and esteem, there exist self-actualization 

needs that include the desire to become the most that one can be professionally. Self-

Determination Theory point out that balancing four basic needs, namely competence, 

relatedness, autonomy, and aspirations, can foster PWB (Ryan et al., 2013). These four 

components determine the individual's sense of well-being and provide necessary 

conditions for growth in various areas of life in general and at work in particular 

(Koivu, 2013). 
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Competence refers to individuals' ability to influence and manage their internal and 

external environment, cope efficiently with problems, act in unfamiliar surroundings, 

and achieve accomplishments (Reeve, 2002; Ryan et al., 2013). Relatedness is 

concerned with the emotional needs of the individual, such as the need to belong, the 

need for affiliation, the need for acceptance, esteem, and approval (Vignoles et al., 

2006). Autonomy refers to individuals' feelings and actions that relate to the extent to 

which they can exhibit independent, wilful, and consensual behaviour driven by a sense 

of free choice rather than by control and authority. In the context of PWB, autonomy 

is manifested in the person's participation in informed decision-making, organizational 

justice, and relations with superiors (Koivu, 2013).  Aspirations refer to the level of 

motivation to advance oneself, to realize internal needs such as personal-professional 

growth, health, wealth, fame, image, and power. Consequently, an obvious question 

would be whether and to what extent do effective TPDPs support personal-professional 

growth and encompass PWB components?  

Do Effective Science and Mathematics TPDPs Encompass PWB?  

Attempting to characterize qualitative TPDPs, Darling-Hammond et al. (2017) defined 

teacher effective professional development as "structured professional learning that 

results in changes to teacher knowledge and practices and improvements in student 

learning outcomes". They identified seven characteristics of an effective TPDP: (1) is 

content focused on what is taught in class, (2) incorporates active learning and directly 

involves teachers in their instructional practices, (3) supports collaborative learning 

through various professional interactions, (4) uses models of effective practice that 

have proved to be efficient, (5) provides coaching and expert support by focusing 

directly on the personal instructional needs of teachers, (6) offers feedback and 

reflection towards the development of a more professional vision of instructional 

practices, and (7) Ensures a continuous and effective learning process.  

We observed that these seven TPDP effectiveness characteristics, outlining most of the 

recent TPDPs, emphasize relevance to teaching content and the teachers' needs for 

promoting teaching quality (Darling-Hammond et al., 2017), but do not directly 

address teachers as persons in the profession (cf. Intrator & Kunzman, 2007). 

Consequently, the effectiveness characteristics mentioned above do not encompass all 

the characteristics that should be considered when designing effective PD programs. 

Alongside providing teachers with productive and applicable teaching tools that can 

enrich their teaching experience, efficient TPDPs should find sensitive ways to address 

various aspects of teachers' professional needs (Tucker, 2014).  

To exemplify whether and to what extent do effective TPDPs address teachers' well-

being needs, we focus on the literature describing two science and mathematics related 

TPDPs that, according to Darling-Hammond et al. (2017), demonstrate all seven 

effectiveness characteristics: 1. STeLLA (Science Teachers Learning from Lesson 

Analysis) (Roth et al., 2011; Taylor et al., 2017); 2. A biology TPDP integrating 

academic literacy and instruction (Greenleaf et al., 2011). 
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In both examples, searching for the four well-being components revealed that although 

Darling-Hammond et al. (2017) did not directly refer to teachers' well-being, three out 

of the four well-being components, namely competence, relatedness, and autonomy, 

were explicitly identified or could just be inferred from the text describing the seven 

characteristics of effective TPDPs. However, as a rule, the fourth component, namely 

aspirations, was missing and could not be inferred throughout our review. One could 

now ask whether there is a need at all for science and mathematics TPDPs to address 

teachers' PWB. Perhaps the current situation entirely provides the ESM teachers with 

their professional needs and makes any extra attention unnecessary? By pursuing this 

question, this study aims at gathering empirical evidence as to the necessity and 

importance that ESM teachers attach to their PWB for their personal-professional 

growth.  

METHODOLOGY 

Research Design 

Intending to explore how PWB needs are reflected in ESM teachers' perceptions of 

their personal-professional growth, a qualitative case study methodology (Yin, 2014) 

was employed. A collective instrumental case study design was applied with individual 

ESM teachers from various secondary schools in Israel (Stake, 1995).  

Research Participants 

The participants in our study were twenty ESM teachers from six secondary schools in 

Israel. Participants were purposefully selected for their seniority in vocational 

education and academic training in science and mathematics teaching, with an 

experience ranging from 15 to 31 years. The participants provided a diverse group of 

teachers regarding gender and subjects taught: Mathematics, Physics, Chemistry, 

Biology and Computer-Science (CS).  

Data Collection and Analysis 

A semi-structured in-depth interview format involving the use of a carefully considered 

interview agenda (Willig, 2013) was employed within the present study. The 

interviews were conducted to reflect the teachers' perceptions regarding their PWB. 

Participants were interviewed about their professional lives and asked to relate to 

various aspects of their professional careers. We asked general questions about 

teachers' professional strengths, weaknesses, opportunities, and threats (SWOT), 

without explicitly addressing neither PWB nor any other aspects of teachers' 

professional lives (especially not PD). Therefore, interviewees could relate and 

elaborate on various issues on their agenda freely and unrestrictedly. The interviews 

were recorded and transcribed shortly after. The transcripts were used for thematic 

analysis, conducted vertically (for each interviewee) and horizontally (across the 

participants) to compare and contrast each interview. 
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RESULTS  

All four well-being components were identified as basic teachers' professional needs 

in the analysis of the 20 interviews with ESM teachers (see excerpts in Table 1). Results 

are reported and detailed according to the four well-being components: competence, 

relatedness, autonomy, and aspirations. As expected from ESM teachers, they 

disclosed a high sense of teaching self-efficacy and competence. However, teachers 

expressed a professional need to sustain their competence, to learn, to be exposed to 

current and relevant scientific trends, to become aware of a variety of scientific and 

technological instructional approaches, and so to expand their craft knowledge. These 

feelings were sometimes accompanied by feelings of unrelatedness and professional 

loneliness, as some teachers seemed to lack the company of other expert colleagues in 

their school. In some science subjects, such as physics and chemistry, professional 

loneliness was embedded in school situations involving only very few professional 

teachers. In these cases, the professional loneliness seemed to have its own advantages, 

as some teachers felt a sense of freedom being responsible for themselves. This finding 

is in line with the autonomy component of PWB, asserting that an individual's wilful 

behaviour stems from a sense of free choice as opposed to control and authority (Ryan 

et al., 2013). However, the sense of independence described above is illusive, because 

it is not related to professional academic freedom, i.e., the freedom to choose and 

change the contents of teaching, the freedom to decide what is right, appropriate, and 

up to date to teach. ESM teachers asserted that curricula are dictated by the educational 

system, limiting the freedom to choose what to do. This is mostly because teachers are 

held accountable for students’ achievements and they have to go through a lot of 

material. Teachers added that often curricular changes and cutbacks in teaching hours 

make things even worse. In computer science, teachers feel there is a special need to 

update the curriculum with new innovations in the field, so that learning does not 

become obsolete and meets outside daily used developments. In mathematics 

education, the subject coordinator usually structures a detailed yearly work plan for the 

mathematics team out of the current curriculum. Although this work-plan is meant to 

assist teaching, it further reduces academic freedom. In contrast to the three 

components of well-being, namely competence, relatedness, and autonomy, that were 

identified in the statements of some of the participants, the component of professional 

aspirations was indicated by all the 20 interviewed ESM teachers. All teachers 

highlighted the importance they attributed to the fulfilment of their professional 

aspirations, i.e., their internal need for personal-professional growth (Ryff & Keyes, 

1995). Concurrently, they noted that ESM teachers are challenged in finding suitable 

direction for their personal-professional growth. Teachers have their own professional 

aspirations and blame Israeli educational reforms for putting an unbreakable glass 

ceiling above teachers’ professional horizon. The limited opportunities for realizing 

teachers’ aspirations are reflected by feelings of deep frustration and burnout resulting 

in a desire to elude confinement and restraint. 

Table 1: Excerpts from the interviews 
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 Exemplifying Excerpts 
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“…the only thing I take pleasure in is closing the door and delivering a good lesson… it is all about 

my experience and my disciplinary knowledge” (Rachel, Biology) 

“…even with a rag and a chalk I do well…” (Shifi, Mathematics and CS). 

“…As a high school physics teacher, I feel that I am not expert enough to use a variety of teaching 

approaches…” (Zigi, Physics).  

“…A teacher should be a polymath. I should be a person who knows a lot and learns a lot. I should 

also be an intellectual… to do so I must see different worlds, draw from them, and make syntheses…” 

(Kelly, Chemistry). 

R
el

at
ed

n
es

s 

“…The mathematics professional coordinator is very energetic and work-oriented, the team is very 

professional, but there is very little collaboration and teamwork…” (Shifi, Mathematics and CS) 

“…There are many problems here with the professional weaknesses of each of the team 

members… I really don't have much of a team to work with and I have to figure out how to 

minimize damages…” (Zigi, Physics) 

“…As the only physics teacher in my school, I'm busy over my head and I only enter 

the teachers’ lounge maybe twice a month… When I look around, I find that I don’t know 

about 80 percent of the teachers, so, if you ask what happens in school, I'm a loner. I've 

always been…” (Alex, Physics) 

A
u
to

n
o
m

y
 

“…I do what I want. I know I'm appreciated and trusted by one hundred percent. I mean, I get total 

freedom. They do not check on me and do not criticize me… I don’t like to be dictated…” (Barry, 

Physics). 

“…when you're responsible for preparing students for the matriculation exams, you don't have much 

freedom…” (Moti, Mathematics and CS). 

“…I think it's very depressing that you're told exactly what to do every day. Even on the level of 

which exercise to do in class and which to do at home… it really doesn't let you develop any 

creativity… more freedom should be given to teachers in structuring their own teaching and 

professionalism…” (Libi, Mathematics) 

''..This [limited freedom] is also true for professional development programs that do not correspond 

to my experience level, but still try to teach me how handle my class… Instead of empowering me 

according to my own level, I feel they just waste my time, and I don’t learn anything new…" (Libi, 

Mathematics) 
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“The development horizon for STEM teachers is very limited… this it is a critical point, the 

professional horizon… math and physics teachers are people who mostly don't go into management 

roles... a different way must be found. Things like doing some research, experiments” (Miri, Physics)  

“…To do something beyond teaching... do things that promote... trying to do something to improve 

teaching methods and ways of thinking that are important to me... to go out to colleges, become a 

lecturer, or even head of department, these options are all very interesting… I would also like to do 

some research besides teaching the same subjects and chapters over and over again… this could 

offer an opportunity for me as a teacher…  but there are no real opportunities…” (Paula, Biology) 

"…The main threat is that I'll get fed up … I'm getting a little tired of explaining the same thing… a 

little impatient from doing the same things over and over again… it's hard, going over and over the 

same lessons several times… Math teachers do not have many opportunities. Taking myself as an 

example, thanks to ICT, I found myself in a different place. Had I not found an opportunity to 

integrate ICT in mathematics teaching, I would not have been a teacher any more…" (Igor, 

Mathematics) 

To conclude, although ESM teachers generally expressed an uncompromising need for 

the presence of the four well-being components in their professional lives, they 

particularly emphasized the need to realize their professional aspirations. Aspirations 

was precisely the well-being component that we found as missing from the 

effectiveness characteristics of TPDPs reviewed by Darling-Hammond et al. (2017). 

DISCUSSION AND CONCLUSIONS  

This research substantiates PWB as an additional and essential component in 

considering TPDPs' effectiveness (Rubin & Brown, 2019). Specifically focused on 

ESM teachers, this study captures teachers' views on the importance they place on 

their PWB. Regarding ESM teachers' aspirations, we found a controversy. On the one 

hand, teachers regard their professional development and the realization of their 

aspirations as most important. However, teachers' aspirations represent the only well-

being component that effective TPDPs lack. Research participants substantiated that 

the oblivion of aspirations may have severe implications on ESM teachers' perception 

of their personal-professional growth. Consequently, TPDP designers should consider 

teachers' PWB, including aspirations for personal-professional growth. Observing PD 

through this extended prism may contribute to teachers perceiving their professional 

lives as meaningful, inspiring, and rewarding. However, this study has limitations 

concerning the small number of participants and the particular stage of their careers. 

REFERENCES 

Darling-Hammond, L., Hyler, M. E., & Gardner, M. (2017). Effective Teacher Professional 

Development. Research Brief. Learning Policy Institute. 

Greenleaf, C. L., Litman, C., Hanson, T. L., Rosen, R., Boscardin, C. K., Herman, J., & Jones, 

B. (2011). Integrating literacy and science in biology: Teaching and learning impacts of 

reading apprenticeship professional development. American Educational Research 

Journal, 48(3), 647-717. 

Hall, D. T. (2002). Careers in and out of organizations. Sage. 



Even-Zahav & Widder 

2 - 314 PME 46 – 2023 

Huberman, M. (1995). Networks that alter teaching: Conceptualizations, exchanges and 

experiments. Teachers and teaching, 1(2), 193-211.  

Intrator, S. M., & Kunzman, R. (2007, March). The person in the profession: Renewing 

teacher vitality through professional development. In The educational forum (Vol. 71, No. 

1, pp. 16-32). Taylor & Francis Group. 

Koivu, A. (2013). Clinical supervision and well-being at work: a four-year follow-up study 

on female hospital nurses. Itä-Suomen yliopisto.  

Lindvall, J., & Ryve, A. (2019). Coherence and the positioning of teachers in professional 

development programs. A systematic review. Educational Research Review, 27, 140-154. 

Maslow, A. H. (1970). Motivation and personality (2nd edn.) New York: Harper& Row. 

Reeve, J. (2002). Self-determination theory applied to educational settings. Handbook of self-

determination research, 2, 183-204.  

Roth, K. J., Garnier, H. E., Chen, C., Lemmens, M., Schwille, K., & Wickler, N. I. (2011). 

Videobased lesson analysis: Effective science PD for teacher and student learning. Journal 

of Research in Science Teaching, 48(2), 117-148.  

Rubin, A., & Brown, A. (2019). Unlocking the future of learning by redesigning educator 

learning. In Sustainability, Human Well-Being, and the Future of Education (pp. 235-268). 

Palgrave Macmillan, Cham. 

Ryan, R. M., Huta, V., & Deci, E. L. (2013). Living well: A self-determination theory 

perspective on eudaimonia. In The exploration of happiness (pp. 117-139). Springer 

Netherlands. 

Ryff, C. D., & Keyes, C. L. M. (1995). The structure of psychological well-being revisited. 

Journal of personality and social psychology, 69(4), 719–727.  

Santoro, D. A. (2021). Demoralized: Why teachers leave the profession they love and how 

they can stay. Harvard Education Press.  

Stake, R. E. (1995). The art of case study research. Sage.  

Taylor, J. A., Roth, K., Wilson, C. D., Stuhlsatz, M. A., & Tipton, E. (2017). The effect of an 

analysis-of-practice, videocase-based, teacher professional development program on 

elementary students' science achievement. Journal of Research on Educational 

Effectiveness, 10(2), 241-271.  

Tucker, M. S. (2014). Fixing Our National Accountability System. National Center on 

Education and the Economy. 

Vignoles, V. L., Regalia, C., Manzi, C., Golledge, J., & Scabini, E. (2006). Beyond self-

esteem: influence of multiple motives on identity construction. Journal of personality and 

social psychology, 90(2), 308.  

Willig, C. (2013). EBOOK: introducing qualitative research in psychology. McGraw-Hill 

education (UK).  

Yin, R. K. (2009). Case study research: Design and methods (Vol. 5). Thousand Oaks: AGE 

Publications.



 

2023. In M. Ayalon, B. Koichu, R. Leikin, L. Rubel., & M. Tabach (Eds.). Proceedings of the 46th Conference of 

the International Group for the Psychology of Mathematics Education (Vol. 2, pp. 315-322). PME 46. 

‘LESS THAN NOTHING’ – A STUDY ON STUDENT’S LEXICAL 

MEANS FOR NEGATIVE NUMBERS 

Melina Fabian 

University of Potsdam, Germany 

This paper presents a qualitative study that analyzes lexical means used by 7th grade 

students when explaining the concept of negative numbers. For this purpose, 15 texts, 

that were written by students, were content-analyzed and the collected lexical means 

were contrasted with the vocabulary from various German mathematics textbooks. In 

total, three linguistic phenomena could be observed, which allowed conclusions to be 

drawn about possible mental representations that students might have about the 

concept of negative numbers. One of these linguistic phenomena – the use of relational 

interpretations in relation to the reference mark ‘nothing’ or with a missing reference 

marker – will be presented in this paper. 

INTRODUCTION 

The introduction of negative numbers is associated with great cognitive challenges for 

learners: On the one hand, established mental representations of the natural numbers 

need to be modified and, on the other hand, new sustainable conceptions of the negative 

numbers need to be built (Malle, 2007; vom Hofe & Hattermann, 2014). The cognitive 

activities are, on a linguistic level, accompanied by a complex and specific language 

vocabulary that learners need to draw on. The discourse practice of explaining the 

meaning of concepts and operations represents an important learning medium here 

because it unfolds so-called ‘epistemic power’. What is meant by this is that when 

explaining the mathematical concept of negative numbers – for example by giving 

constitutive properties or possible contexts in which they are being used – students also 

make the contents cognitively accessible to themselves. At the same time, explaining 

meanings of concepts and operations can also serve as a medium for teachers to get an 

‘access’ to students’ understanding of the concept of negative numbers, i.e., students’ 

individual conceptions (and potentially misconceptions). The study presented in this 

paper builds on this connection between language and thinking: The aim of it was to 

collect lexical means that 7th grade students use when explaining the concept of 

negative numbers and, via these means, to interpret students’ individual mental 

representations of negative numbers. 

THEORETICAL BACKGROUND 

The theoretical foundation of this paper is the approach of intertwining lexical and 

conceptual learning trajectories. It is an integrated, mathematics-specific approach that 

fosters the successive acquiring of vocabulary for developing conceptual 

understanding based on the cognitive demands of a given mathematical topic (Pöhler 

& Prediger, 2015). To investigate how content-related and lexical demands interact, it 

could be helpful to, following Reich (1989), adopt a functional perspective on 

language, which Prediger (2020) specifies for mathematics education as follows: Based 
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on the content-related learning goals for a mathematical topic, relevant discourse 

practices for the mathematics classroom and the lexical means required for 

participating in discourse practices can be determined. In mathematics classrooms 

some of the most important discourse practices can be found in reporting on 

procedures, arguing about the validity of a claim and explaining the meaning of 

concepts and operations (Pöhler & Prediger, 2015). Various studies show that 

explaining the meaning of concepts and operations in particular is closely linked to the 

conceptual understanding needed to grasp a specific mathematical topic (e.g., Erath et 

al., 2018; Dohle & Prediger, 2020). And because it is the students’ conceptual 

understanding of negative numbers (or rather their individual mental representations 

thereof) that will be investigated in this paper, the focus here will be on the discourse 

practice of explaining the meaning of concepts and operations. On the one hand, 

explaining meanings fosters and enhances (mathematical) knowledge and, on the other 

hand, unfolds ‘epistemic power’ (Morek et al., 2017). What is meant by this is that 

when explaining mathematical concepts and patterns, students also make these 

concepts and patterns cognitively ‘accessible’ to themselves. In turn, if a student is not 

able to explain the concept of negative numbers, the apparent difficulties may indicate 

a lack of conceptual understanding of negative numbers. This correlation relates to the 

role of language as a learning medium since language at the same time operates as a 

medium of communication and as a tool for thinking (Morek & Heller, 2012; Pimm, 

1987).  

For explaining the meaning of concepts and operations, specific lexical means are 

required. Prediger (2017) refers to lexical means as words, sentence components, 

syntactical constructions and graphical representations that need to be known – need 

to be mastered – to participate in discourse practices. These necessary lexical means 

comprise, on the one hand, topic-independent phrases for generally marking a 

discourse competence (e.g., syntactical structures as final clauses or causal clauses for 

explaining) and, on the other hand, topic-specific phrases linked to the concrete 

mathematical topic (e.g., formal technical vocabulary). The aim of the study presented 

in this paper was to collect lexical means that learners use when verbalizing their 

conceptions of negative numbers. Fabian (2022) already inventoried lexical means 

used to introduce negative numbers by drawing on the introductory chapters from four 

schoolbooks, that are frequently used in Berlin and Brandenburg (Germany) and 

analyzed them qualitatively. Some of these lexical means, namely the meaning-related 

vocabulary, are listed in Table 1 (translated from German to English by the author 

of this paper). 

 

 

Table 1:  Excerpt from the basic meaning-related vocabulary for the introduction of 

negative numbers 
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Mental representations 

(Grundvorstellungen) for the 

introduction of negative 

numbers 

Basic meaning-related vocabulary 

States ● ‘numbers with a minus sign as prefix’ 

● ‘they are marked with a minus sign as 

prefix’  

State changes  

 

● ‘transition to a lower state (falling)’ 

● ‘transition to a higher state (rising)’ 

Movements along the number 

line 

 

Relative numbers regarding a 

fixed reference mark 

● ‘move 3 to the right’ 

● ‘steps in positive/negative direction’ 

 

● ‘to the left/right of the zero’ 

● ‘states below/above a fixed normal state’ 

● ‘3 units left/right of the zero point’ 

● ‘below/above zero’ 

● ‘before/behind zero’ 

● ‘closer to zero’ 

Now it is precisely this meaning-related vocabulary used to introduce negative 

numbers, that is required to ‘perform’ the discourse practice of explaining the meaning 

of concepts and operations. The lexical means shown in Table 1 construct meanings 

for the concept of negative numbers and make it possible to communicate about them. 

In the table, the lexical means are assigned to the crucial mental representations 

(Grundvorstellungen) for the introduction of negative numbers in a way that using the 

respective lexical means can enhance the particular crucial mental representation. The 

inventoried vocabulary from the textbooks serves as a basis for comparison within the 

scope of this study. Thereby, the formal language demands (textbooks) can be 

contrasted with the lexical resources enabled by the students in order to answer this 

paper’s research question. It can be formulated as follows: Which similarities and 

differences occur between the lexical means that students use when explaining the 

concept of negative numbers and those lexical means that schoolbooks use to introduce 

the concept? 

METHODICAL APPROACH 

To get an access to students’ individual mental representations of the concept of 

negative numbers, the learners’ vocabulary was analyzed. With the aim of collecting 

lexical means that students use when explaining the concept of negative numbers, 15 

texts written by 7th grade monolingual German students (aged 13-14) were content-

analyzed. (In Germany negative numbers are usually introduced in the 7th grade.) The 

students were requested to explain in writing what they understand by the term 

‘negative numbers’ and to give examples and possible contexts in which these numbers 
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are being used. Thus, the students were externally induced to perform the discourse 

practice of explaining the meaning of concepts and operations; the lexical means the 

students used to realise the discourse practice represent the object of the study. 

Examining learners’ written language is insightful in this context, since it requires the 

mental sorting of thoughts in advance. According to Pimm (1987) thoughts – and along 

with it underlying conceptions, about which the use of language can provide clues – 

become more tangible in written form than in oral form. Since the interest of the study 

lies primarily in the conceptual understanding of the learners, the work assignment 

deliberately refrained from focusing the explanation on mathematical procedures. 10 

texts were written by students attending a grammar school (Gymnasium) while the 

remaining 5 were written by students attending a comprehensive school. The 

assignment was digitally handwritten by the students on iPads. Subsequently, the 

resulting products were converted into typewritten texts and analyzed in three steps. 

First, the lexical means used by the students were collected in a content-analytical 

procedure. In a second step, the found lexical means were compared with the 

inventoried vocabulary for introducing the concept of negative numbers from chapters 

of four mathematics schoolbooks frequently used in Berlin and Brandenburg 

(Germany). For this purpose, the findings of a study by Fabian (2022) were used. The 

comparison with lexical means appearing in the textbooks is legitimate insofar as the 

analyzed textbooks are devised for the 7th grade. To contrast them with the lexical 

means used by the students, they almost function as ‘representatives’ of the formal 

vocabulary. In this process, lexical means ‘colliding’ with the textbooks’ vocabulary 

were identified – be it due to differing from it or because they expressed mathematical 

topic-specific mistakes. Thereby, three linguistic phenomena in learners’ language 

could be identified, one of which will be presented in more detail in this paper. In order 

to explore the observed phenomena further, the third and last step of analysis consisted 

in applying the functional method (Luhmann, 1995; in the context of mathematics 

education research: Lensing, 2021) to the found linguistic phenomena. The functional 

method explores phenomena with problematic character by not assuming it being a 

problem but re-defining it being a solution. It then asks which problem might be solved 

by the phenomenon.  

(AN EXCERPT OF THE) RESEARCH RESULTS 

The empirically obtained results of the research consist in the collected lexical means 

that 7th grade students use when explaining the concept of negative numbers. The 

comparison with the inventoried lexical means used in mathematics textbook chapters 

introducing the concept made it possible to identify a total of three linguistic 

phenomena. These phenomena were heterogeneously distributed across the entire 

sample, regardless of the school type. Due to the limited scope of this paper, only one 

of these linguistic phenomena will be presented in detail below. Subsequently, I will 

try to find explanations for the occurrence of the observed phenomena and, using the 

functional method, try to get access to the underlying conceptions and mental 

representations of the students. 
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Relational interpretations  

When analyzing the texts, it is noticeable that the students often use lexical means that 

suggest a relational interpretation of the negative numbers in relation to a certain 

reference mark. The occurring lexical means differ in the type of the named reference 

marker to which the negative numbers are relationally related. In some explanations, 

for instance, we find lexical means that express a relational interpretation in relation to 

the reference mark ‘zero’ (e.g., ‘negative numbers are always below zero’, ‘numbers 

that come after zero’) – a reference mark that also finds application in the analyzed 

textbook chapters. For other relational interpretations, no equivalent can be found in 

the textbooks. Among these is the use of lexical means that express a relational 

interpretation using ‘nothing’ as a reference mark. I would like to give some examples 

of this phenomenon from the students’ texts – translated from German into English – 

which make use of the reference mark ‘nothing’: 

● ‘negative numbers are less than nothing’  (1) 

● ‘so that you can name or specify this less than nothing’ (2) 

● ‘they indicate the quantities beyond nothingness’ (3) 

In all three examples, an attempt is made to characterize the concept of negative 

numbers by giving constitutive property – namely the positional relation to a reference 

mark. The reference mark itself, which in a relational interpretation of negative 

numbers is always chosen arbitrarily but fixed (e.g., ‘zero’ for intramathematical 

interpretations; ‘0 °C’ or ‘sea level’ for further contexts), is denoted by ‘nothing’. In 

examples (1) and (2) the indefinite pronoun ‘nothing’ is used for this purpose, which 

refers to a relative reference quantity that is uncountable, i.e., whose cardinality cannot 

be precisely determined. (For clarification: Countable reference quantities, on the other 

hand, can be referred to e.g., by the indefinite pronouns ‘a few’, ‘several’, or ‘many’). 

In example (3) ‘nothing’ occurs as a determined nominal phrase (‘nothingness’) and 

can most likely be interpreted as ‘general indefiniteness’. That the fixed reference mark 

to which the negative numbers are related is represented by an indefinite quantity in 

the above examples, generates a cognitive contradiction. 

Some of the lexical means used in the students’ texts express a relational interpretation 

of the negative numbers without specifying any reference marker in the relational 

determination: 

● ‘you need them to specify when something is less’ (4) 

● ‘numbers stating that something is not enough’ (5) 

While in the examples (4) and (5) a relation is determined (‘less’, ‘not enough’), the 

wording leaves room for interpretation, which is not filled in the explanatory context 

(‘less [than?]’, ‘not enough [compared to?]’). Both attempts of explanation fail to 

specify the explanatory object ‘negative numbers’ because of these remaining blanks. 

At this point, no assumption can be made as to whether the reference mark in (4) and 

(5) is ‘implicitly’ thought of or possibly cannot be specified at all. 
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DISCUSSION AND CONCLUSION  

The observed linguistic phenomenon presented in examples (1) – (5) calls for further 

investigation since the documented lexical means do not match the vocabulary used in 

the mathematics textbook chapters for the introduction of negative numbers. This 

‘deviation’ from content-related language norms should, for the following 

consideration, not be approached as a problem. Instead, in line with the functional 

method, a change of perspective shall allow us to re-define the lexical means (1) – (5) 

as a solution for a problem. Thus, to find explanations for the observed phenomenon, 

the following questions should be considered: For which problem may the used lexical 

means provide a viable solution from a student’s point of view? Why would a student 

use these lexical means and not others – for instance, those offered by the textbooks – 

to solve the problem at hand? In other words: what function do the lexical means fulfill 

that the use of alternative means cannot or not optimally fulfill? One possible answer 

to these questions might be: That students use relational lexical means referring to the 

reference mark ‘nothing’ or to no reference mark at all indicates, that they hold on to 

the cardinal aspect as a conceptual basis. Thereby, students solve the ‘problem of 

objectification’, a problem that will now be discussed in more detail to conclude this 

paper. 

The ‘problem of objectification’ 

With the introduction of negative numbers, learners are confronted with the fact that 

previously established mental representations about the concept of numbers turn out 

not to be sustainable any longer and that well-known strategies lose their validity. In 

contrast to the natural numbers “non-positive integers are not representable concretely 

as manipulable objects” (Davidson, 1987, p. 431). To still be able to operate with the 

negative numbers, learners turn to the conceptions and mental representations of the 

natural numbers they have internalized so far, transferring them to the negative number 

range in order to solve the problem of objectification (on the difficulties of objectifying 

the concept of negative numbers in more detail: Malle, 1988). By this, they try to 

compensate for the “lack of a tangible, concrete, or realistic interpretation for 

negative numbers” (Pierson Bishop et al., 2010, p. 698). De Cruz (2006) describes the 

concept of negative numbers as “counterintuitive because they violate ontological 

expectations“ (p. 317). To overcome this irritation, learners must understand that 

negative numbers are theoretical mathematical objects – an understanding for which 

they have to let go of the concept of cardinality. 

The collected students’ lexical means indicate that the idea of cardinality is a concept 

that still seems to be strongly anchored in the students’ conceptual understanding. In 

contrast to the textbooks’ meaning-related vocabulary, that enhances the mental 

representation of relative numbers regarding a fixed reference mark referring to the 

concept of negative numbers as being a theoretical one (e.g., ‘left of the zero point’, 

‘below zero’), the students’ language is rather of an empirical character. Some lexical 
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means even include an explicit verbalization of cardinality (‘they indicate the 

quantities beyond nothingness’). The use of these lexical means may serve us as an 

indication that the learners are making a ‘cognitive compromise’ when dealing with 

negative numbers: While explaining the concept, they take up the relational 

interpretation of negative numbers, however, via the lexical mean ‘nothing’ they 

simultaneously refer to a reference quantity and hence activate an idea that is only 

viable when dealing with natural numbers (counting numbers, comparing the 

cardinality of quantities). Furthermore, the absence of the reference mark in examples 

(4) and (5) can be read as an indication that the concept of negative numbers has not 

yet been (sufficiently) objectified. In the learners’ conceptual understanding the 

negative numbers then appear as ‘old numbers in special use’. 

Due to the limited scope of this paper, the presentation of the research results will be 

concluded at this point and further observed linguistic phenomena along with the 

derived conclusions regarding students’ conceptions of negative numbers cannot be 

touched upon. Despite its brevity, the analysis presented in this paper exemplified how 

to access to learners’ presumable mental representations via their use of lexical means. 

Conversely, making students aware of relevant topic-specific vocabulary may help 

them overcome mental challenges and build viable conceptions. Even if the number of 

investigated students is still too small to generalize, the study complies with the “call 

for taking into account the epistemic function of language in the processes of 

knowledge constitution as a medium of thinking” (Erath et al., 2018, p. 162) in the 

context of mathematics education research. And although the study is restricted to the 

specific mathematical topic of negative numbers, it demonstrates a way to use language 

as a diagnostic tool for mathematical understanding processes. Especially when 

constructing meaning for mathematical concepts and communicating about those 

concepts requires a particularly extensive and complex vocabulary – as it is the case 

with negative numbers (Fabian, 2022) – “the discursive practice of explaining should 

be a more explicit learning goal in mathematics classrooms“ (Erath et al., 2018, p. 177).   
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Accumulation is central to integration, and learning the integral concept based on the 

idea of accumulation has been found to be beneficial. In this study a learning activity 

on accumulation was designed using the context of a pool being filled, with the purpose 

of giving students opportunities to develop ways of thinking that support later studies 

of integration. Three pairs of 11th grade students carried out the activity. Our analysis 

shows which ways of thinking they developed, and how. 

INTRODUCTION  

Many students have difficulties with the integral concept (e.g., Bressoud, 2009; Orton, 

1983; Rösken & Rolka, 2007). Researchers stress the significance of understanding 

integration through accumulation (e.g., Jones, 2015; Kouropatov, 2016; Thompson & 

Silverman, 2008). The idea of accumulation allows to naturally combine the concepts 

of the definite and indefinite integrals, as well as to lead to the Fundamental Theorem 

of Calculus (Kouropatov & Dreyfus, 2013). Constructing the integral concept based 

on the idea of accumulation has been shown to be beneficial (Carlson, et al., 2003; 

Kouropatov, 2016). Here we investigate an activity for students, who have not yet 

learned integration. The activity offers opportunities to develop Accumulative 

Thinking, that is ways of thinking useful for studying integration via an accumulation 

approach. Our research questions are: 1. What is the structure of Accumulative 

Thinking? 2. How do students construct the elements of Accumulative Thinking?  

THEORETICAL BACKGROUND 

The accumulation approach to integration is closely connected to Riemann’s definition 

of the integral as the limit of a sum of products; if the variable of integration is time, 

the products are of the form time interval × rate of change (below: RoC) in that interval 

and give the ‘bits’ that accumulate. Hence, accumulation can be seen as derived from 

RoC. “When something changes, something accumulates. When something 

accumulates, it accumulates at some rate” (Thompson & Silverman, 2008, p. 49). And 

so, the amount added by a bit derives from the RoC in this bit.   

According to Gravemeijer & Doorman (1999), context problems are problems that the 

student experiences as real. An everyday context enables students to act and reason in 

a meaningful way. 

Abstraction in Context (AiC) is a theoretical framework proposed by Hershkowitz et 

al. (2001) for studying learners’ construction of new (to them) abstract mathematical 

knowledge. The knowledge intended by the designer or teacher to be constructed is 

analysed a priori into knowledge elements that include concepts, procedures, and 

strategies. A posteriori, learners’ processes of construction of these knowledge 
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elements is analysed by means of three observable epistemic actions: Recognizing (R) 

– the learner identifies a previous construct as relevant to the task at hand; Building-

With (B) – the learner uses a recognized construct for achieving a local goal, and 

Constructing (C) – a new construct emerges for the learner by recognizing and 

building-with previous constructs. As R-actions are nested in B-actions and R- and B-

actions are nested in C-actions, Hershkowitz et al. (2001) proposed the name 

“dynamically nested RBC-model”.  

In this research, we define Accumulative Thinking as (i) the knowledge elements 

related to the accumulation of bits (described in detail below); (ii) the dynamic nature 

of the accumulation process; and (iii) the ability to apply (i) and (ii). 

METHODOLOGY 

Our research tool is a learning activity designed with the purpose of developing 

Accumulative Thinking before learning integration. The activity consists of context 

problems set in the everyday context of a pool being filled with water. The activity 

presents three types of RoC in three consecutive parts: constant RoC, RoC constant in 

segments, and linear-decreasing RoC. The activity introduces students to 

Accumulative Thinking by considering bits of water that accumulate in the pool, and 

the effect the RoC function has on the corresponding accumulation function. The pool 

context was chosen as there is evidence that it helps students grasp RoC in an intuitive 

way (Elias et al., 2023), enabling them to act and reason meaningfully.  

The a-priori analysis resulted in a list of 16 knowledge elements intended to be 

constructed by the students; together, these elements constitute Accumulative 

Thinking. Each of them has been given an operative definition, allowing the researcher 

to assess whether a student has constructed the knowledge element. In addition, we 

identified 15 preliminary knowledge elements, assumed to have been constructed 

earlier. For lack of space, we only present an overview of the relevant knowledge 

elements, followed by an example of a knowledge element with its operative definition. 

In the case of a constant RoC, bits have a multiplicative nature since the amount added 

in a time interval is the product of the time interval by the rate at which the quantity 

accumulates (knowledge element M_nr: Multiplicativity - numeric representation). 

The ratio of the amounts of water flowing in two different time intervals equals the 

ratio of the lengths of the time intervals (preliminary knowledge element P6). When 

the RoC is constant, bits with the same time duration have the same amounts added 

(EB:  Equal Bits); hence the accumulation function graph is a straight line whose slope 

equals the numeric value of the RoC (AFCSL: Accumulation Function of a Constant 

RoC is a Straight-Line function). Summing up consecutive bits within a given time 

interval results in the amount accumulated in that entire time interval (S: Summing 

consecutive bits). Conversely, the amount that accumulates in a time-interval can be 

split into tiny bits by splitting the time interval into small sub-intervals (TB_r: Tiny Bit 

reduction). In the case of a linear and decreasing RoC, the multiplicative connection 

rate × time does not give the exact amount added. The idea of instantaneous RoC is not 
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relevant for students at this stage of learning. Therefore, it becomes imperative to use 

the area under the graph as representing the amount added (A_dl: Area – decreasing 

and linear RoC). The bits that accumulate are graphically represented by the trapezoids, 

formed by the graph and the time axis within a given time interval. As time varies, the 

amounts added (the bits) with the same time duration are getting smaller (DB: 

Decreasing Bits). Hence, as the RoC decreases, the accumulation function in this case 

is concave downward (AFDL: Accumulation Function of a Decreasing Linear RoC). 

We present one example of an operative definition, namely the one for S (Summing 

consecutive bits): 

 We will say that students have constructed S if they express that the quantity of 

water added in a time interval equals the sum of the quantities added in its 

consecutive time sub-intervals; in case such sub-intervals are not given, this 

implies that they first split the given time interval into consecutive sub-intervals. 

The participants were three pairs of grade 11 students studying mathematics at the 

advanced level: Roy and Don, Ana and Zoe, and Tim and Nic; the pairs of students 

were asked to carry out the learning activity in the presence of a researcher (the first 

author). The researcher moderately acted as interviewer, presenting questions to the 

students only in order to clarify their utterances and their mathematical meanings 

behind the course of action they took. At the time the interviews were conducted the 

students had learned the topic of differentiation but not yet the topic of integration. The 

pairs of students were audio-recorded during the learning activity. The interviews were 

transcribed and analysed using the RBC-model. 

FINDINGS AND DISCUSSION 

In this section, we present empirical evidence for 5 cases of students’ construction 

processes that contribute to Accumulative Thinking. These cases are presented in 

chronological order. 

Case 1 

The first part of the activity deals with a pool that is being filled with water at the 

constant rate of 30 litres per minute. The students are asked: 

Danny knows the rate at which a pool is being filled. He used the amount of water that 

accumulated until minute 1.4 to find the amount of water accumulated until minute 

1.43. How do you think he did it? Write down the calculation.  

At this point, the students have already calculated the amount of water that was 

accumulated up to a various given points in time, including 1.4. Roy says:  

Roy:  …he did 1.4 times 30 plus 0.03 times 30.  

Roy and Don don’t use the accumulated amount up to minute 1.4, which they have 

already found, but rather calculate this amount again by multiplying the time duration 

1.4 minutes by the rate, which expresses the use of a previously constructed knowledge 

element (M_nr: Multiplicativity - numeric representation); to this amount, they add the 
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amount obtained by multiplying the time duration 0.03 by the rate. Splitting the time 

into 2 consecutive sub-intervals of duration of 1.4 and 0.03 and summing the amounts 

added in each to get the total amount accumulated expresses the construction of both 

TB_r and S.  

At this point in time, Ana and Zoe haven’t constructed M_nr yet. In order to find the 

amount added in the time interval of duration 0.03, they use quantity proportion (P6) 

(see Figure 1), thus bypassing the need for M_nr. Then they sum of the amount 

accumulated up to minute 1.4, which they have already calculated in the previous 

question, and the amount added during the 0.03 minutes, thus expressing the 

construction of S and TB_r but by using P6 rather than M_nr. 

 

In summary, these two pairs constructed knowledge elements that contribute to the 

first component of Accumulative Thinking, namely, knowledge elements related to 

the accumulation of bits.  

Case 2 

The third part of the activity deals with a pool being filled with water at a linear and 

decreasing rate (Figure 2). 

 

Students were asked: What can be said about the amounts that are being added to the 

pool from the beginning until minute 5? How can this be seen from the given graph? 

Roy and Don answer that the amounts added are getting smaller, and that this can be 

seen from the graph since the rate is decreasing. When asked again, Don said: 

Don:  By the area of the graph at any moment. In the first minute, the area 

is the largest and, in the 2nd minute the area starts to get smaller. 

Figure 1. Ana's solution using quantities proportion (P6). 

Figure 2. The rate of flow in the third part of the activity. 
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In summary, Don expresses that the area represents the amount added in each bit (A_dl) 

and that the amounts are getting smaller since the areas are getting smaller (DB), which 

expresses an aspect of the second component of Accumulative Thinking, the dynamic 

nature of the process. 

Case 3 

The students were asked to draw the accumulation function for the given rate of flow 

graph, which is linear and decreasing (Figure 2). At this stage the students had already 

drawn the accumulation function for a RoC which is constant in segments (in the 

second part of the activity) by splitting the time interval into bits of time duration that 

correspond with the time interval of each segment, then calculating the amount added 

by each bit and summing up the bits to get the accumulated amounts. When the students 

discussed how to draw the accumulation function of a linear and decreasing RoC that 

is given graphically (Figure 2), Zoe and Don (the partners of Ana and Roy, 

respectively) referred to the rate in each bit of 1 minute duration as if the rate was 

constant and suggested to multiply the rate at the left border of the bit by the duration 

of 1 minute. However, Ana and Roy corrected their partners and said that this way was 

not applicable since the rate is not constant. The third pair (Tim and Nic) found the 

average rate of the rates at the beginning and at the end of each bit, calculating the 

amount in each bit by multiplying the average rate with time duration of 1 minute each. 

Here, several students consider the accumulation process in a chunky manner, meaning 

they look at the bits that accumulate as chunks according to the time segmentation.  

Case 4 

Students also used another way to graph the accumulation function of a linear and 

decreasing RoC (Figure 2) by using an unexpected construct.  

Ana  So you need to find the equation of the graph that describes the filling rate 

of the pool. If I know that this graph describes the slope at that point in the 

graph of the accumulation function, then I can determine that it is its 

derivative and then go from the filling rate graph equation, which is the 

derivative of the original function that is the accumulation, investigate it 

and draw it accordingly. 

Here Ana expresses a new construct, namely that the given RoC is the derivative of the 

accumulation function. Ana previously constructed AFCSL (Accumulation Function 

of a Constant RoC is a Straight-Line function), and more specifically, that the slope of 

the accumulation function equals the numeric value of the RoC. Here Ana applies 

AFCSL to a linear and decreasing RoC. To actually draw the accumulation function, 

Ana first finds the algebraic expression 50 − 10𝑥 of the given RoC; next she finds an 

algebraic representation of a function whose derivative is 50 − 10𝑥; and then she 

draws the accumulation function by plotting 3 points and connecting them. Roy and 

Don have also expressed the same unexpected new construct; however, they did not 

follow up this approach.  
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In summary, Ana applied her strong connection between slope and derivative in the 

present situation, which is new to her: a RoC that is not piecewise constant. In doing 

so, she in fact overgeneralizes AFCSL but does succeed to obtain the correct answer. 

Ana solved the problem in a manner that was unexpected.  

Case 5 

After Ana and Zoe drew the accumulation function as described in case 4, the 

interviewer asked if they could do it in a different way. They used the area under the 

graph as representing the amount added in case of a linear and decreasing RoC. They 

first split the time into 1-minute intervals (S); to get the amount added in each bit, they 

calculated the area of the corresponding trapezoid (A_dl); to get the accumulated 

amounts, they then summed the amounts (S), marked the points in the empty coordinate 

system provided, and connected them (Figure 3).  

 

After drawing the accumulation function for a linear and decreasing RoC, the students 

were asked to explain why the graph they drew is concave. Ana and Zoe answered that 

the amounts that are added (the bits) are gradually decreasing.  

In summary, the students expressed knowledge about the bits, which were previously 

constructed (first component of Accumulative Thinking), described the accumulation 

process in a dynamic manner (second component of Accumulative Thinking) and 

applied these components in order to draw the graph of the accumulation function 

(third component of Accumulative Thinking). 

CONCLUDING REMARKS 

The activity in this research was designed as an introduction to integration via 

accumulation prior to studying integration. The everyday context of the pool allowed 

the students to act and reason in a meaningful way that helped them to develop 

strategies that are context dependant and to generalize from them (Gravemeijer and 

Doorman, 1999). 

In the Findings section, we showed that the activity offered opportunities to the 

students for developing Accumulative Thinking, which possibly supports later studies 

Figure 3. Ana's calculation and drawing. 
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of integration. The students were able to use previously constructed knowledge 

elements to construct new knowledge elements. In the case of a constant RoC and a 

RoC constant in segments (not reported in this article), the students could multiply the 

constant rate and the time duration to get the accumulated amount. In the case of a 

linear and decreasing RoC, this way is not applicable; therefore, the students needed to 

overcome their chunky way of solving and construct the new knowledge element A_dl. 

Thus, students constructed knowledge about the elements of accumulation including 

bits, why these bits are changing the way they do, and how they accumulate by being 

summed up (cases 1, 4, 5). Grasping the accumulation process as dynamic (cases 2, 5) 

can help the student later when considering the bits that are accumulated as 

infinitesimal, resulting in a smooth graph of the accumulation function. According to 

Thompson and Silverman (2008), understanding covariation is necessary for 

understanding accumulation. The dynamic nature of the process of accumulation 

expressed by the students goes in that direction, in the sense that as time changes, the 

RoC changes and affects the accumulating bits, and the accumulation function changes 

accordingly.  

Our research suggests but does not show that the approach used here may help students 

to apply their knowledge in other contexts as well, thus bypassing the difficulty of 

students, reported by researchers (e.g., Jones, 2015), in applying mathematical 

knowledge in different contexts. Further research, on a larger scale, should be 

conducted in order to investigate the ability of students to apply in other contexts 

Accumulative Thinking acquired in a pool context, also in other contexts. Similarly, 

the effect of an introductory learning activity such as the one used here on students 

learning processes about integration is an important issue for further research.   

ACKNOWLEDGEMENT 

This research has been partially supported by the Israel Science Foundation under grant 

number 1743/19. 

REFERENCES 

Bressoud, D. M. (2009). Restore the integral to the fundamental theorem of calculus. 

http://www.maa.org/external_archive/columns/launchings/launchings_05_09.html 

Carlson, M. P., Smith, N., & Persson, J. (2003). Developing and Connecting Calculus 

Students' Notions of Rate-of Change and Accumulation: The Fundamental Theorem of 

Calculus. In N. A. Pateman, B. J. Dougherty., & J. T. Zilliox (Eds.), Proceedings of the 

27th conference of the International Group for the Psychology of Mathematics Education, 

(Vol. 2, pp. 165-172). Honolulu: PME. 

Elias, D., Dreyfus, T., Kouropatov, A., & Noah-Sella, L. (2023). Contexts for Accumulation. 

Technical report, Tel Aviv University. 

Gravemeijer, K., & Doorman, M. (1999). Context problems in realistic mathematics 

education: A calculus course as an example. Educational Studies in Mathematics, 39(1), 

111-129. 

http://www.maa.org/external_archive/columns/launchings/launchings_05_09.html


Falach, Kouropatov   & Dreyfus 

2 - 330 PME 46 – 2023 

Hershkowitz, R., Schwarz, B. B., & Dreyfus, T. (2001). Abstraction in context: Epistemic 

actions. Journal for Research in Mathematics Education, 32(2), 195-222. 

Jones, S. R. (2015). Areas, anti-derivatives, and adding up pieces: Definite integrals in pure 

mathematics and applied science contexts. The Journal of Mathematical Behavior, 38, 9-

28. 

Kouropatov, A. (2016). The Integral Concept in High School: Constructing Knowledge about 

Accumulation. Unpublished PhD thesis. Tel Aviv University. 

Kouropatov, A., & Dreyfus, T. (2013). Constructing the integral concept on the basis of the 

idea of accumulation: Suggestion for a high school curriculum. International Journal of 

Mathematical Education in Science and Technology, 44(5), 641-651. 

Orton, A. (1983). Students' understanding of integration. Educational Studies in Mathematics, 

14(1), 1-18. 

Rösken, B., & Rolka, K. (2007). Integrating intuition: The role of concept image and concept 

definition for students’ learning of integral calculus. The Montana Mathematics 

Enthusiast, 3, 181-204. 

Thompson, P. W., & Silverman, J. (2008). The concept of accumulation in calculus. In M. 

Carlson & C. Rasmussen (Eds.), Making the connection: Research and teaching in 

undergraduate mathematics (pp. 43-52). Washington, DC: Mathematical Association of 

America.



 

2023. In M. Ayalon, B. Koichu, R. Leikin, L. Rubel & M. Tabach (Eds.). Proceedings of the 46th Conference of 

the International Group for the Psychology of Mathematics Education (Vol. 2, pp. 331-338). PME 46. 

WHAT DO STUDENTS LEARN ABOUT THE DISCIPLINE OF 

MATHEMATICS IN UPPER-SECONDARY CLASSES? 

Patrick Fesser, Niklas Hergeselle, and Stefanie Rach 

Otto-von-Guericke-University Magdeburg, Germany 

 

To acquire knowledge about the discipline of mathematics is an important goal of 

mathematics classes in upper-secondary schools. However, we do not know to what 

extent students achieve this goal. Therefore, in this study, we measure students’ 

knowledge about the discipline of mathematics with a validated test in a paper-and-

pencil-format and analyse which other students’ characteristics and learning 

opportunities relate to this knowledge facet. In total, 116 upper-secondary school 

students participated in the study. The results show that knowledge about the discipline 

of mathematics depends on the kind of mathematics courses and extracurricular 

activities taken by students. These findings could contribute to a better understanding 

of how to foster students’ knowledge about the discipline of mathematics. 

INTRODUCTION 

Knowledge about the discipline of mathematics (what we call meta-scientific 

knowledge) is an important component of mathematics education in upper-secondary 

schools. However, we have only limited insights into what upper-secondary school 

graduates know about the discipline of mathematics. One starting point for answering 

this question is to analyse meta-scientific knowledge of university students. For 

example, Ziegler (2012) complaints that beginning university students lack knowledge 

about what mathematics is and what it means to practice mathematics. 

Research concerning meta-scientific knowledge about mathematics is multifaceted. 

The existing literature reports (1) on epistemological/meta-mathematical knowledge of 

teachers (e.g., Hoffmann & Even, 2021; Rott, 2021; Zazkis & Leikin, 2010) or (2) on 

epistemological beliefs of students and/or teachers (e.g., Schoenfeld, 1989; Xie & Cai, 

2021) but there are only few studies that focus on students’ meta-scientific knowledge 

about mathematics. 

To contribute to this gap, the present paper proposes a framework for the theoretical 

conceptualisation of meta-scientific knowledge about mathematics. Our 

conceptualisation consists of students’ knowledge about concepts to build up a 

mathematical theory (e.g., definitions, theorems, proofs) and practices (e.g., defining, 

proving) focussing mathematics as a deductive structure discipline. To learn more 

about this knowledge facet, we analyse which students’ characteristics relate to this 

knowledge facet and analyse how learning opportunities are connected to this 

knowledge facet. 
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THEORETICAL BACKGROUND 

A framework for meta-scientific knowledge about mathematics 

As mentioned above, meta-scientific knowledge about the discipline of mathematics is 

one goal of mathematics courses in upper-secondary schools because it is an important 

learning prerequisite for mathematics-related study programs as well as participating 

as a person of age in a scientific-oriented society. We understand meta-scientific 

knowledge about mathematics as knowledge “that refer[s] to cross-cutting themes that 

may appear within any mathematical content” (Zazkis & Leikin, 2010, p. 274). 

Therefore, it contains (epistemological) knowledge about concepts and practices, 

which is not bound to a specific content (e.g., algebra, geometry). For example, meta-

scientific knowledge about concepts in mathematics contains knowledge about 

concepts like definitions, theorems, and proofs, and meta-scientific knowledge about 

mathematical practices contains knowledge about mathematical ways of thinking and 

working like defining objects or proving theorems. This differentiation between 

concepts (or products of mathematics) and practices (or processes in mathematics) is 

not new but known as the “dual nature of mathematical constructs” (Sfard, 1991, p. 5). 

When conceptualizing and operationalizing meta-scientific knowledge of 

mathematics, we consider both of these perspectives (see figure 1). 

Meta-scientific knowledge about the discipline of mathematics 

Product-oriented perspective  Process-oriented perspective 

 Knowledge about concepts and structures of 

the discipline mathematics (e.g., definition-

theorem-proof structure) 

 Knowledge about principles of generating or 

validating mathematical findings 

 Developing useful definitions and theorems 

 Understanding or constructing mathematical 

proofs 

 Evaluating definitions or proofs 

Figure 1: Framework for students’ meta-scientific knowledge about mathematics. 

From a product-oriented perspective, knowledge about concepts, structures, and 

principles of mathematics can be seen as one important aspect of meta-scientific 

knowledge. It is essential to get an insight into the mathematical culture consisting of 

a specific, formal language and logical rules (Leviatan, 2008). That this knowledge is 

important for STEM (science, technology, engineering, mathematics) students is 

underlined by the study of Deeken et al. (2020). They investigated what university 

STEM educators expect from beginning STEM students. From their perspective, it is 

important that students have knowledge about features of mathematical definitions and 

proofs and their role for generating mathematical evidence.  

Whereas the product-oriented perspective consists of knowledge about concepts of the 

discipline of mathematics, the process-oriented perspective focusses more on 

knowledge about the processes of how mathematics is done. For example, processes 

that play a key role in the discipline of mathematics are defining objects, generalizing, 

deducing, and proving (Leviatan, 2008). 
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Relationship between meta-scientific knowledge, learning opportunities, and 

students’ characteristics 

As previously mentioned, the acquisition of meta-scientific knowledge about 

mathematics is a primary goal of upper-secondary schools (school grades 11 and 12). 

In Germany, upper-secondary school students have to choose between studying 

mathematics on advanced (A) or basis (B) level. Both courses aim at a profound 

understanding of central concepts of Analysis, Analytical Geometry, and Stochastic – 

as the A-level course provides five hours per week and the B-level course three hours, 

the A-level course deepens the contents, e.g., the B-level course only deals with the 

product rule of derivation whereas the A-level course also deals with the chain rule of 

derivation. Therefore, meta-scientific knowledge is a more prominent learning aim in 

A-level courses than in B-level courses. Another opportunity to get to know 

mathematics as a deductive discipline are extracurricular activities like taking part in 

elective courses in mathematics or in mathematics competitions (e.g., International 

Mathematical Olympiad). 

From the literature, we know that mathematical knowledge relates to cognitive 

variables like prior achievement in mathematics (e.g., Rach & Ufer, 2020) as well as 

to affective variables like interest and self-concept in mathematics (e.g., Marsh et al., 

2005). Whereas the reported correlations between mathematical knowledge and other 

cognitive variables are on a rather high level, the reported results concerning the 

relation between mathematical knowledge and affective variables seems to differ quite 

a lot. Since there is only little research literature on meta-scientific knowledge about 

mathematics, it is yet unclear if the results between knowledge and other students’ 

characteristics hold for meta-scientific knowledge as well.  

RESEARCH QUESTIONS 

The research questions for this study are as follows: 

(RQ1) To what extent do students’ characteristics predict meta-scientific knowledge 

about mathematics? 

(RQ2) To what extent do learning opportunities predict meta-scientific knowledge 

about mathematics? 

METHODS 

Sample 

We conducted a study with 116 students (53.4% female, mean age: 17.3 years, grade 

12) from two different upper-secondary schools in Germany. Out of all 116 students, 

61 students (52.6%) took mathematics at A-level and 55 students (47.4%) took 

mathematics at B-level. The sample was collected via convenience sampling, and 

participation was voluntary and anonymous. 
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Data collection and data analysis 

To measure meta-scientific knowledge about mathematics, we used a self-developed 

test instrument consisting of 26 multiple-choice items. Figure 2 shows an example item 

which focusses on the concept of conjecture. This item was one of the easiest items 

with a solving rate of 76.7%. 

A conjecture is... □ ...a valid statement which does not need to be proved. 

□ ...a statement which is not proven to be true nor false. 

□ ...a statement in which something is presented as a fact. 

□ ...the assumption about the validity of an axiom. 

Note: For this presentation, the original item was translated into English. 

Figure 2: Example item “conjecture”. 

The given instrument was validated in prior studies with beginning university students 

(Fesser & Rach, 2022). We assume that we can apply this instrument in this context 

because beginning university students and upper-secondary school students of grade 

12 can be regarded as quite similar. Whereas the content validity was checked by a 

group discussion with university mathematicians, psychometric measures (e.g., item 

difficulties, reliability) were investigated in a quantitative study with over 300 

university students (Fesser & Rach, 2022). To investigate the reliability of the scale in 

this study, we checked how the test items are correlated to the sum score of the 

knowledge scale. We found that one item was negatively correlated with the 

knowledge scale resulting in deleting the item. Therefore, the scale measuring meta-

scientific knowledge about mathematics consists of 25 items. Having a look on 

Cronbach’s α = .50, one can assume that meta-scientific knowledge is a formative 

construct rather than a reflective one. According to Stadler et al. (2021), an instrument 

measuring a formative construct often has a small Cronbach’s α. 

Besides the knowledge test, students were also asked to fill out a questionnaire 

concerning other students’ cognitive and affective characteristics. The last grade in 

mathematics (ranging from 0 (worst) to 15 Points (best)) was collected as an indicator 

for academic achievement in mathematics. To analyse the validity of the instrument, 

we also collected students’ last grade in German. Because German as a school subject 

seems to differ quite a lot from mathematics, we expect that the knowledge scale and 

the last grade in German do not relate with each other. As proving is an important 

practice for the deductive discipline mathematics, we decided to collect data about 

interest and self-concept concerning proving. We used four items to measure interest 

in proving tasks (Ufer et al., 2017, Cronbach’s α = .80) and three items to measure self-

concept in proving tasks (Rach et al., 2017, Cronbach’s α = .77). Students rated all 

items on a 4-point-likert scale (from 1 = disagree to 4 = agree). The descriptive analysis 

does not give hints for floor and ceiling effects, and the correlations between the 

analysed students’ characteristics are small to moderate (see table 1). 
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Table 1: Descriptive statistics and correlations between students’ characteristics. 

Variable M SD Math German Interest SC CL 

Last grade in mathematics (1 item) 9.23 3.61      

Last grade in German (1 item) 8.41 2.74 .36**     

Interest (4 items) 2.19 0.68 .44** -.08**    

Self-concept (SC, 3 items) 2.60 0.64 .57** -.04** .56**   

Course level (CL, 1 item) 0.53 0.50 .24** -.02 .36** .45**  

Extracurricular activities (4 items) 0.72 0.70 .36** -.12** .40** .36** .21* 

Note: ** p < .01, * p < .05. Last grade in mathematics and German ranging from 0 (worst) to 15 points 

(best), interest and self-concept assessed with items on a likert-scale from 1 (disagree) to 4 (agree), course 

level 0 = B-level, 1 = A-level, extracurricular activities from 0 to 4. 

The course level was measured with one item and the extracurricular activities with 

four items concerning participation in various extracurricular activities (e.g., 

mathematics competitions). We used the sum score that indicates the number of 

activities in which the students had participated. We also used the sum score for the 

knowledge scale resulting from the 25 test items and arithmetic means for the interest 

and self-concept scales. To answer the research questions, we used a multiple linear 

regression. All computations were performed by using R (version 4.2.0). 

RESULTS 

Descriptive statistics for the knowledge scale 

Table 2 shows the descriptive statistics for the scale knowledge about the discipline of 

mathematics. Both the skewness and the kurtosis of the scale are close to zero 

suggesting that the distribution is normally distributed. 

Table 2: Descriptive statistics for the knowledge scale. 

Scale M SD Skewness Kurtosis 

Meta-scientific knowledge 11.51 3.11 0.33 -0.37 

Note: Possible values ranged from 0 to 25. 

The mean values are similar to students at the beginning of their study program. 

Noticeable is that the students have high solving rates when answering items 

concerning concepts and structures of the discipline mathematics as well as items 

concerning principles of generating or validating mathematical findings. However, 

there is one exception, which is the concept “axiom”. Students seem to have difficulties 

with items including the concept “axiom” resulting in rather low solving rates. In 

addition, students have difficulties evaluating definitions of mathematical objects. 

For answering both research questions, we computed a multi linear regression (method 

blockwise). Model 1 consists of the achievement measures (in mathematics and 
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German), in model 2, we add the affective variables and finally model 3 additionally 

considers the learning opportunities. The results of the analyses can be seen in table 3.  

Table 3: Multiple linear regression with knowledge as dependent variable. 

Variable 
model 1 model 2 model 3 

β SE β SE β SE 

Last grade in mathematics .33** .08 .08** .10 .01** .09 

Last grade in German .03** .11 .09** .10 .16** .10 

Interest in proving tasks   .30** .46 .20** .45 

Self-concept in proving tasks   .16** .55 .05** .54 

Course levela     .26** .55 

Extracurricular activities     .25** .41 

R2 .11** .23** .33** 

Note: ** p < .01, * p < .05. a 0 = B-level, 1 = A-level.    

(RQ1) Relationship between meta-scientific knowledge and other characteristics 

Model 1 shows that the last grade in mathematics is a significant predictor of meta-

scientific knowledge whereas the last grade in German does not seem to be relevant. 

The inclusion of the affective variables (while the last grades are still controlled) 

increases the explained variance slightly (R2 = .23). In addition, it reveals a significant 

relation between interest in proving tasks and meta-scientific knowledge (β = .30). 

(RQ2) Relationship between meta-scientific knowledge and learning 

opportunities 

To check whether learning opportunities can explain differences in meta-scientific 

knowledge between students, we add the two variables in the regression analysis 

(model 3). The results show that the course level (β = .26) as well as extracurricular 

activities (β = .25) are significant predictors of the meta-scientific knowledge (while 

the individual characteristics are controlled). In total, 33% of the variance in meta-

scientific knowledge is explained by model 3. 

DISCUSSION AND OUTLOOK 

Meta-scientific knowledge is an important aim of mathematics classes but there are 

only few approaches to conceptualize and operationalize this construct. The shortly 

presented theoretical framework and the test are one possibility to analyse which 

knowledge students have and which learning opportunities relate to this knowledge.  

With the first research question, we investigated the relationship between meta-

scientific knowledge and other students’ characteristics. First, model 1 indicates that 

meta-scientific knowledge is a mathematics specific construct as it mainly relates to 

the last grade in mathematics. Model 2 suggested that only interest in proving tasks 

seems to have a significant impact on students’ meta-scientific knowledge about 
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mathematics but contrary to prior studies (Marsh et al., 2005; Rach & Ufer, 2020), 

there are no hints that achievement in mathematics and self-concept predict meta-

scientific knowledge besides interest. A possible explanation is that the achievement 

in mathematics (operationalized by the last grade in mathematics) does not measure 

how well students are acquainted with mathematics as a deductive discipline. That may 

be true because mathematics classes often focusses on the applicative side of 

mathematics whereas the deductive and proving side of the discipline seems to be 

neglected (see Sporn et al., 2022). Following this consideration, it would be interesting 

to investigate how both sides of the discipline can be made equivalently visible and 

accessible in mathematics classrooms. The second research question focusses on the 

relationship between learning opportunities and meta-scientific knowledge. In line 

with our expectation, we found that extracurricular activities as well as the course level 

are significant predictors of meta-scientific knowledge about mathematics besides 

individual characteristics. This result indicates that students in A-level courses get a 

better insight in the deductive nature of mathematics. It could be interesting to 

investigate what design principles of the learning opportunities lead to higher meta-

scientific knowledge. This highlights the need for a design-based research approach 

(1) to identify important design principles for fostering students’ meta-scientific 

knowledge about mathematics and (2) to implement those design principles. 

Despite the interesting results, this study has its limitations. One limiting factor is the 

sample regarding its size and its collection. Another limiting aspect might be the used 

instrument for measuring meta-scientific knowledge about mathematics. As the 

instrument is validated for beginning university students (Fesser & Rach, 2022), it can 

be questioned whether the instrument can be applied to upper-secondary school 

students. Thus, future studies should investigate whether all items work for different 

samples (upper-secondary school vs. beginning university students). 

Our findings suggest that the conceptual framework is valuable to measure meta-

scientific knowledge about mathematics. However, this study can only be regarded as 

a first step towards research concerning meta-scientific knowledge about mathematics. 

For future research, it is important to expand this framework. In this regard, ideas like 

integrating (1) mathematics as an applicative discipline in the framework as well as (2) 

the ability to reflect on mathematics on a meta-scientific level can be put forward.  
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The reversal error is a common and resilient error when constructing symbolic 

representations. It has been widely studied for older students and adults. Various 

explanations have been proposed and tested with inconsistent results. Since no relevant 

experience is yet available for the primary school age, an exploratory interview study 

on the reversal error was conducted with 28 fourth graders. It demonstrated that under 

certain conditions the reversal error occurred only very rarely, which is probably due 

to the intensive examination of examples. 

INTRODUCTION 

Algebra is not only an essential part of mathematics, it is also of great importance for 

mathematics education, especially in higher grades. This is justified by the importance 

of algebraic competencies in many professions or in postsecondary education (National 

Council of Teachers of Mathematics, 2000). Therefore, the difficulties that many 

students have with algebraic content, as demonstrated in numerous studies (e.g., 

Carraher & Schliemann, 2007; Kieran, 2007) are serious. Related to this, algebra also 

seen as a “gatekeeper”, the mastery of algebraic requirements decides to a considerable 

extent on the overall success in mathematics education at secondary schools (Cai & 

Knuth, 2005). 

Mathematical modelling is seen as one of the most powerful applications of algebra 

(González-Calero et al., 2015). However, the use of symbolic representations is also 

considered particularly demanding, especially for younger students. For example, 

Kieran (2004, p. 40) describes “a focus on both representing and solving a problem 

rather than on merely solving it” as an important and challenging transition to be 

mastered on the way into algebra. On this basis, it seems interesting to explore the 

extent to which students at the end of primary school are already able to symbolically 

represent relationships between and properties of numbers and quantities. This is the 

context of an interview study described in this article that focuses on the so-called 

reversal error, a difficulty that is frequently observed in higher grades and even in 

adulthood, but for which no experience is yet available for primary school age. Detailed 

analyses of primary school students’ ways of thinking and proceeding relevant tasks 

will be used to find out whether and how the reversal error also arises at this school 

age, and if so, how the students succeed in avoiding it. The results of this and similar 

studies could, among other things, provide valuable information on the fostering of 

early algebraic abilities in mathematics teaching. 
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THE REVERSAL ERROR – SOME THEORETICAL CONSIDERATIONS 

For at least 40 years, the so-called reversal error has been studied again and again with 

older students and adults, for example using the now probably classic student-professor 

task: 

Write an equation for the following statement: “There are six times as many students as 

professors at this university.” Use S for the number of students and P for the number of 

professors. (Clement et al., 1981, p. 288; Rosnick & Clement, 1980, p. 4) 

More generally, the task is to describe the relationship between two unknown quantities 

symbolically. If a reverse equation is written down for this purpose, e.g. 6𝑆 = 𝑃, this 

is called a reversal error. In numerous studies in various countries with professionals 

and students from secondary school up to university, different but always 

comparatively high prevalence rates were found for the reversal error. Furthermore, it 

has been shown that it cannot be easily overcome. The high prevalence in different 

populations around the world and its resilience indicates deep cognitive roots of the 

reversal error (Jankvist & Niss, 2021). 

Various hypotheses have been developed to explain the reversal error. Some studies 

suggested a “word order matching approach”, in which the equation is created by 

replacing the key words with algebraic symbols in the order in which they appear in 

the problem text. However, such a “syntactic translation” (MacGregor & Stacey, 1993) 

may not be the only cause, as the reversal error also occurs with other word orders or 

pictorial inputs (Jankvist & Niss, 2021). 

In the “static comparison approach”, one does not proceed purely syntactically, but 

rather a situation model is developed. Two groups of objects (“students” and 

“professors”) are related or compared to each other. The comparison of two groups, 

more generally of two quantities, is also called an “imagistic approach” (Goldin & 

Kaput, 1996), possibly encouraged by the easy imaginability of the quantities involved. 

The comparison result is noted as a “pseudo-algebraic equation” (Kaput & Sims-

Knight, 1983), 6𝑆 = 𝑃 then means something like “6 students correspond to one 

professor”. Accordingly, the equals sign does not stand for numerical equivalence, 𝑆 

and 𝑃 do not stand for numbers, but are identifiers or abbreviated names or units. The 

number 6 is noted next to the identifier belonging to the larger group and is used rather 

attributively. The strong influence of natural language is seen as an important reason 

for this approach (Kaput, 1987). 

In contrast, a correct equation can be obtained with the “operational approach”. In 

this approach, described groups or quantities are no longer compared, but rather an 

operation is constructed or hypothetically executed that leads to a numerical 

equivalence. The result is written down as an equation. 6𝑃 = 𝑆 then means something 

like “If you were to multiply the number of professors by six, it would be equal to the 

number of students.” Among other things, this verbalisation indicates the particular 

demanding nature of the operational approach. 
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In their recent review of previous studies, Jankvist and Niss (2021, p. 201) state, “whilst 

some of the linguistic, syntactic and semantic explanations of the sources of the 

reversal error offered by researchers seems to be valid for some students in some 

contexts, they do not suffice for all students in all contexts and situations.” While there 

are inconsistent results for older students and adults, there is so far no experience for 

the primary school age. This research gap will be worked on with a first interview 

study. This will investigate the extent to which fourth graders succeed in formulating 

equations with two unknowns for corresponding situations, how they proceed in doing 

so and what role the reversal error plays thereby. 

DESIGN AND IMPLEMENTATION OF AN INTERVIEW STUDY 

For primary school, there is hardly any experience with the occurrence of reversal 

error. Therefore, an exploratory study was planned in which fourth graders were asked 

to carry out several relevant tasks within the framework of semi-standardised clinical 

interviews (Hunting, 1997). The aim was to explore, to what extent students of this 

school age succeed in symbolically representing a textually described relation between 

two unknown quantities by means of an equation and how they approach 

corresponding tasks. 

In the introductory phase of the interview, students should interpret given equations or 

“computations” such as 3 + 5 = 8, 4 ∙ 𝑥 = 8 or 4 + 𝑎 = 𝑏 and formulate similar 

equations themselves. Subsequently, the students were asked to write down a “suitable 

computation” for various short texts presented on worksheets, whereby four texts 

described relations between two unknown numbers: 

T1: The number 𝑎 is equal to the triple of the number 𝑏. 

T2: The number 𝑥 is 12 less than the number 𝑦. 

T3: There are six times as many chickens as geese on a farm. 

T4: There are more girls than boys in a school class. The number of girls is 4 

more than the number of boys. 

In the texts T1 to T4 various aspects were varied which, according to earlier studies 

and explanations in the previous section, could have an influence on the difficulty and 

on the occurrence of the reversal error (cf. MacGregor & Stacey, 1993): 

 An additive (T2, T4) or a multiplicative relationship is described (T1, T3). 

 Numbers are used for this description (T2, T4) or it is less explicitly (T1, T3) 

formulated. In addition to the concrete arithmetic relationship, in T4 is 

explicitly stated that there are more girls than boys in the class. 

 The (unknown) quantities are named in conformal (T1) or non-conformal 

order (T2, T3, T4) for the arithmetic operation suggested by the text. 

 An arithmetic relation is described context-free (T1, T2) or as a simple 

factual situation (T3, T4) described. 

 Related to this, unknowns and knowns can be numbers of the same kind (T1, 

T2). Otherwise, the unknowns are numbers of objects named in the text and 
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the knowns describe relations between or properties of these objects (T3, 

T4). 

 The fact that in the second case symbolic representations are sought for the 

numbers (and not, for instance, for the objects themselves), makes T4 

explicit, T3 does not. 

 Both factual situations are easy to visualize. In T3 however, an assignment 

of objects (e.g. 1 goose ↔ 6 chickens) seems more obvious than in T4. 

Based on this, students might find it particularly difficult to formulate a suitable 

equation for T3, which corresponds to the classic student-professor task. 

Twenty-eight fourth graders with good to very good school performance in 

mathematics from ten classes in four schools took part in the study. The interviews 

were conducted and videotaped at the end of the school year in rooms of the respective 

school. Transcripts and worksheets were analyzed using qualitative content analysis 

based on deductive-inductive obtained categories (Mayring, 2014). 

Since symbolic representation is considered very demanding and there is hardly any 

experience so far for primary school age, this first study focused on mathematically 

high-performing students (in terms of school grades and teachers’ assessments). This 

must of course be considered in interpreting the results. 

IMPORTANT RESULTS 

The following table shows the types of solution and their frequency for the 28 

participating students and the texts T1 to T4. 

Type of solution T1 T2 T3 T4 

No processing of the text 1  1 1 

No equation with two unknowns 8 8 10 10 

False equation with two unknowns, 

without reverse error 

5 9 4 3 

False equation with reverse error 10 4 1  

Correct equation 4 7 12 14 

Table 1: Results of the 28 participating fourth graders 

Equations with unknowns and the algebraic representation of situations with unknown 

quantities or of relationships between them by symbolic terms play practically no role 

in primary school mathematics teaching in Germany. Nevertheless, depending on the 

text, up to half of the students succeed in writing down a correct equation with two 

unknowns. Even if these are rather high-achieving students, these results indicate that 

algebraic representations of this kind are already accessible in principle at this school 

age.  

In addition, it is noticeable that the 26 correct equations for T3 and T4 are opposed by 
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only one equation with a reversal error. The student who makes this mistake writes 

down a correct equation for T2 and T4; the equation for T1 is wrong, but without 

reversal error. Accordingly, it is not a systematic error by the student. In total, only 4 

of the 28 students make the reversal error twice; for all the other students it occurs at 

most once.  

Another remarkable finding is the comparatively frequent occurrence of the reversal 

error for T1, despite the fact, that quantities, equal sign und less explicitly the operation 

are mentioned in conformal order in the text. Three of the four students with reversal 

errors for T1 and T2 are able to write down correct equations for T3 and T4. The fourth 

student at least notes a suitable equation for T4.  

Overall, the fourth graders are obviously much more successful in correctly 

symbolically representing relationships between context-related unknown numbers 

(T3, T4). 

Based on this quantitative data, it seems particularly interesting to explore how students 

find a symbolic representation of the relations described in the texts and what could be 

reasons for the frequent occurrence of the reversal error for T1. 

Based on the qualitative analyses of the interview data, the various students’ 

approaches that go beyond individual cases and finally lead to an equation with two 

unknowns are outlined below. These procedures of the students differ in particular in 

the use of and the handling of example solutions. Some of the cognitive approaches 

described above are embedded in them. 

Student S2 looks at the worksheet for about 8 seconds, after which the following 

dialogue emerges (transcripts shortened): 

1  S2: Mathematically speaking, you couldn’t calculate that because you don’t 

know how many geese there are. … 

2 I: Can you write down a calculation like that again? I refers to the previous 

worksheet. Something like that? 

3 S2: S2 thinks for about 5 seconds So could I write now, geese times six equals 

that many chickens, or is that not possible? 

6 I: Well, yes, write it down. 

7: S2: I’ll write a G for geese now. 

  Within about 15 seconds, S2 writes down an equation (see Fig. 1, left). She 

first writes down G. Then she hesitates for several seconds before writing 

down the rest from left to right. 

8: I: Explain how you arrive at that. 

9: S2: Well, because... there are six times as many chickens as geese. So now I 

have G times six. So, six geese, no, geese times six equals six, uh, chickens. 
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Without any recognizable prior involvement with examples, the student writes down a 

correct equation after thinking about it for several seconds. This procedure can be 

characterized as algebraization based on the description of the situation. It occurred 

very rarely in the study group.  

Apparently, S2 quickly realizes that the number of geese and chickens cannot be 

calculated. She then formulates the idea of an equation, but may be unsure whether this 

corresponds to the interviewer’s question formulated in 2. “Geese times 6” seems to 

refer to the animals, but it continues with “equals that many chickens”, thus referring 

to a numerical equivalence and the number of chickens. Statement 9 indicates the 

“operative approach”, although it seems that the interpretation of 6 as a factor is not 

yet entirely certain. 

 

 
 

Fig. 1: Results by S2 (left), S26 (middle) and S9 (right) 

S26 proceeds differently. After 8 seconds she notes the example 24: 6 = 4. 

1  I: What have you been thinking about? 

2 S26: Ehm that there are twenty-four chickens and then six geese. So, twenty-four 

would be six times four and that’s why, yes. … 

3 I: And, ehm, is that the only possibility? 

4 S26: No, you could also, for example In the next few seconds, S26 writes down 

two more examples. So, you could write down the whole 6 times table. 

5 I: ... could you also write it down somehow with letters? 

6 S26: Within 12 seconds, S26 writes down an equation (see Fig. 1, middle). H and 

G should still be written here. H is equal to chicken ... and G is equal to 

goose. And then you write here H divided by six is equal to G. 

Examples obviously play a major role in the approach of S26; by dealing with them 

she succeeds in the operative approach. Overall, an algebraization based on example 

solutions takes place.  

In 4, S26 calculates and notes down several examples. She is aware that these are 

possibilities and that there are many more. The calculation procedure, which is used 

several times, is then formulated for the unknown numbers G and H and noted in the 

form of the equation. However, the letters are introduced as abbreviations. 

However, example solutions are not always used successfully, as the result of S9 on 

T2 shows (see Fig. 1, right). S9 first determines with (12,24) a suitable example. When 

asked, an equation is written down that is correct for the concrete example, but is 
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neither linked to the given text nor to the determination of the example solution.  

Based on this, the procedure of S9 could be described as formalization of (random) 

arithmetic properties of example solutions. 

Based on the analysis of the students’ working processes on T1, the use of number 

examples seems also to be a cause for the frequent occurrence of the reversal error for 

this text. The following example of S9 who makes the reversal error only on T1, 

demonstrates this: 

1  S9: I could now take, for example, the (3sec pause) 2 and then the 6. ... So, a is 

2 and b is the 6. ... 

2 I: Is that the only option? 

3 S9: (The student shakes his head) I could also say three times three is nine or 

six times three or one times three. 

Because the unknown a comes first in T1, many students as S9 first choose a number 

as an example for a (often the number 3) and then formalize the triple by 3∙a. The 

sequence of unknown numbers, equals sign and operation in T1, which seems 

advantageous for a symbolic representation, thus proves to be unfavorable for 

example-based processing. 

DISCUSSION AND OUTLOOK 

Conducting an interview study has proven to be successful. On the one hand, the 

interviewer was able to use introductory tasks to gradually guide the students to work 

on the challenging texts T1 to T4. On the other hand, not only results but also working 

processes of the students can be accessed in this study design. 

The presented results of this first exploratory study suggest that a stronger involvement 

of examples and their determination could facilitate the construction of a symbolic 

representation. Within the approach we called algebraization based on example 

solutions, many students succeed in the operational processing and the formulation of 

a correct equation. However, a step-by-step construction of the example solution along 

the descriptive text also involves risks, as the results for T1 suggest. Based on this, it 

could be worthwhile to explicitly address in this context the search for and use of 

example solutions in mathematics lessons. 

In general, the results indicate that symbolic representations of relations between two 

unknown quantities are already attainable at a younger school age and therefore further, 

more detailed studies on this topic could be interesting. 

In the study presented, T1 was chosen as the first text because of the solution-

conforming order of its elements; furthermore, the challenging text T3 should be 

processed later in the interview. This could be changed or varied in a further study to 

test order effects. Whether representations of additive relations are easier to find than 

those of multiplicative relations cannot be decided on the basis of the available data. 
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This and, for example, the possible significance of the contextual reference, which is 

indicated in the presented results, could be investigated in larger studies. 

In the fifth grade in Germany, equations and variables already play a greater role, so a 

corresponding interview study with fifth graders will be conducted this school year. 
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Over the past decades research has highlighted many difficulties in the domain of 

algebra teaching and learning, especially for low achieving students. With the advent 

of new technologies, findings have highlighted ways of using technological tools to 

overcome some of such difficulties. This study, part of a greater research project, 

explores the case of Gioele, a low achieving student who participated to our 

intervention and developed meaningful narratives when using the Dynamic Interactive 

Mediators (DIMs) in the context of equations and inequalities. In particular, through 

a commognitive lens, we analyze how he attempts to incorporate his previously learned 

“solve it” ritual, into his DIM-based discourse on equations and their solutions.  

INTRODUCTION 

Over the past decades research has highlighted many difficulties in the domain of 

school algebra teaching and learning, that include giving meaning to algebraic 

symbols, unknown and variables; viewing the equal sign not necessarily as a signal to 

compute an answer but also as a relational symbol of equivalence, overcoming the 

transition to the letter-symbolic form of equations for which students need to interpret 

algebraic expressions as mathematical objects as well as computational processes, and 

accept unclosed expressions such as 2x+5 as valid responses, without thinking that they 

should do something with them (e.g., Kieran, 2020; Arcavi et al., 2017). For low 

achieving students, algebra can be particularly daunting (Xin et al., 2022). 

Research findings suggest that with appropriately designed tasks, digital means turn 

out to be particularly helpful to students with a history of low achievement in 

mathematics or “with special educational needs” (e.g., Baccaglini-Frank, 2021; Palmas 

et al., 2020). This study is part of a greater funded research project that, through a 

design-based methodology, is conducting case studies of second year high school 

students with a history of low achievement in mathematics. These students, 

volunteering from different Italian high schools, participate to an intervention 

conducted by researchers during which they engage in a set of newly designed digital 

activities in the context of algebra. In this study we explore the case of Gioele, a low 

achieving student who during the proposed activities developed meaningful narratives 

in the context of equations and inequalities, and that the researcher tried to push to 

incorporate his previously learned “solve it” ritual (for equations), into his new 

meaningful discourse on equations and their solutions. 
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THEORETICAL FRAMEWORK AND RESEARCH QUESTIONS 

We will take a commognitive perspective to mathematics teaching-learning (Sfard, 

2008) and refer to the digital tools used by participants in their discourse as Dynamic 

Interactive Mediators (DIMs) (Baccaglini-Frank, 2021; Antonini et al., 2020). 

Previous studies have shown how DIMs can support secondary students’ learning, if 

appropriately integrated into the teaching-learning of high school algebra, by offering 

“protagonists” for the development of meaningful narratives, specifically in the 

contexts of equations and inequalities (Baccaglini-Frank, 2021) and of functions and 

variables (Lisarelli, 2022; Antonini et al., 2020). In such studies, the discursive, or 

commognitive, approach allowed to capture sense-making processes through a fine-

grained analysis of students’ discourses, with particular attention to their routines.  

A routine is composed of a task – as understood by a person in a given task situation 

(any setting in which a person considers herself bound to do something), is the set of 

all the characteristics of the precedent events (all that happened in a precedent task 

situation) that she considers as requiring replication – and a procedure – i.e., all the 

features of what was done in a previous task situation that the person believes should 

be replicated (Baccaglini-Frank, 2021; Lavie et al., 2019). Students’ participation in 

mathematical discourse can be ritualistic if it consists mainly in the implementation of 

memorized routines for the sake of themselves, with the performer never attending to 

any product of this performance that could later be used independently of the procedure 

that produced it; or explorative, if it is aimed at constructing a meaningful narrative 

about abstract objects, in order to make sense of a particular task situation (Sfard, 

2008). In discourse an abstract object is expressed through different realizations (e.g., 

an algebraic expression can be read as an indeterminate number or as a function). On 

the other hand, unrealized symbols are concrete objects that appear in the discourse 

alone and can only be manipulated in well-defined ways (Baccaglini-Frank, 2021). In 

the analyses we use these elements to capture the student’s sense-making. 

In this study we designed 3 digital artifacts (dynagraphs, two-pan balances with 

expressions, two-pan balances with weights – see Figure 1) that, for an expert, can be 

considered realizations of equations and inequalities, as well as their solutions. Used 

in students’ discourse, these DIMs are designed to foster transitions between what an 

expert sees as different realizations of the same mathematical object; hence, they 

should foster students’ construction of the mathematical objects equation, inequality 

and solution or set of solutions. We focus on the case of Gioele (pseudonym), who 

during the initial interview spoke of “solving” (an equation) and performed a(n 

incorrect) ritual involving symbolic manipulation of letters and numbers, and whom 

the researcher proposing the intervention (second author) tried to push to incorporate 

such ritual in the meaningful discourse he had developed in the context of the DIMs. 

To guide Gioele’ s case study, we ask the following questions: 

 RQ1: What are the characteristics of Gioele’s discourse in the initial 

interview? 
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 RQ2: What are the characteristics of Gioele’s DIM-based discourse by the 

end of the teaching intervention?  

 RQ3: How does Gioele’s discourse come to include the “solving an equation” 

routine recalled by the interviewer during the intervention? 

METHODOLOGY 

Gioele volunteered as a participant for the study, recognizing himself as a low 

achieving (in mathematics) student in 10th grade (15 years old). He was enrolled at a 

technical-professional high school and agreed to come to our research center 5 times 

in 2 months. During the first meeting he was interviewed by one of the researchers for 

45 minutes. During the activity sessions he worked with two other researchers. He 

worked individually with the researchers in a quiet room with non-invasive recording 

devices. During the interview, Gioele had at his disposal a tablet where he could write, 

as with paper and pencil, and a computer displaying the questions as the interviewer 

asked them. During the activity sessions, Gioele had at his disposal one or two tablets 

showing the different digital artifacts and another tablet for writing. Since Gioele uses 

such digital artifacts as mediators of his discourse we will, for brevity, refer to them 

hereon as DIMs (Figure 1). DIMA is a dynagraph with three arrows that realizes an 

independent and two dependent variables. The tick at the end of arrow x on the number 

line realizes the value “x” appearing in the expressions above and can be directly 

manipulated by dragging. The two arrows above realize the two expressions depending 

on x, and they move indirectly. DIMB consists of a two-pan balance with expressions 

that “weigh” as much as the value of the draggable x-tick (“x=2” in Figure 1a,b). DIMC 

has no symbolic inscriptions and it consists of a two-pan balance with weights (some 

known and some unknown, the triangles in Figure 1c) together with a dynagraph 

through which values can be assigned to the unknown weights.  

a)  b)  

c)  

Figure 1: realizations of the inequality 6 + 𝑥 > 𝑥 + 1 + 𝑥 with  

a) dynagraphs, b) two-pan balance with expressions (for the value 𝑥 = 2), and  

c) two-pan balance with weights and associated dynagraphs (for the value 𝑥 = 1.5). 
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In the activity we analyze Gioele uses a DIM that we call DIM(A,B) because it embeds 

DIMA and DIMB  and later he also uses DIMC . We note that the tick at the end of each 

arrow is not labeled, because we were interested in words students would use to speak 

of what for an expert is a “value of the unknown”, “variable” or, in some positions, 

“solution”. The symbols “x=2” and “8>5” in DIMB change as the value of x changes 

and they change color (and the inequality changes to an equality) when the two-pan 

balance is balanced off. 

During the activity sessions Gioele always had access to at least one DIM and he was 

asked to make predictions about when one expression would be greater, less than or 

equal to another, and then to manipulate the DIMs and explain his observations 

confirming or disproving his conjectures. The researcher sometimes would ask 

additional questions on-the-fly to gather more information about the student’s 

reasoning. In the case of Gioele such questions often asked for more predictions related 

to changes of x’s position, after an initial prediction and manipulation. The recordings 

of Gioele and the researcher were merged with the recordings of the screens of the 

tablets. They were then anonymized and transcribed by members of the research team. 

The analyses make use of the theoretical constructs introduced to reach answers to our 

RQS.  

ANALYSIS OF SELECTED EXCERPTS AND ANSWERS TO THE RQS 

Excerpt 1 - interview. This excerpt exemplifies Gioele’s approach to solving 

equations during the interview before the activity sessions. 

7 Int: What comes to mind if you see this, what would you do? [Shows the 
equation 13–A=13+11].  

8 Stud: First I would find the A  

[…]   

12 Stud:  It would occur to me to do… first group all the numbers together and then 
afterwards do like… do in parentheses… 13 minus 13 plus 11. In 
parentheses, A. [He writes on the tablet the expression (13–3+11)A] 

13 Int:  Ok.  

14 Stud: And do everything, so 13 minus 13, zero, plus 11, 11 and that the result of 
that would be 11A. [He writes 11A] 

15 Int:  Ok, so if I ask do that have any solutions?  

16 Stud: In my opinion yes, 11A.  

17 Int: So, what can they be? 11A. Now the question is still the same, just change 
the writing. Three plus A equals A plus 3. Does it have any solutions? If 
any, what are they?  

18 Stud: Yes, I mean, you have to group the numbers and on the other side group the 
letters, so... 3... 3... 3 plus 3, is equal to A plus A. And the result would be 
this. Although, being 3 plus 3, you could do like… Add 3 plus 3, that is 6, 
and A plus A raise it to the second power. [He writes 3+3=A+A. Then he 
writes in the line below 6=A2] 

19 Int: So, would the solution be 6=A2? 

20 Stud: Yes 
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Gioele’s discourse here seems to be purely ritualistic, focused on performing 

(meaningless) procedures for their own sake. In this excerpt he performs his “find the 

A” ritual (in other excerpts he says “solve it” so we refer to this as his “solve it” ritual) 

twice. So, in front of the equation, without being asked to solve anything, he recognizes 

a familiar task situation, to which he responds to satisfy the interviewer. He uses verbs 

and impersonal forms like “do” (in [12] where it recurs 3 times, [14] where it seems to 

be synonym of “add up”, [18] where it seems a synonym of “raise to the second 

power”), “group” (in [12], and “you have to” in [18]), “add” (in [18]). The objects of 

the discourse are mainly “numbers” and “letters” (in [12], [18]) and “A” ([8]) but there 

are no references to other realizations of these (concrete) objects, which therefore 

remain unrealized symbols. The only signifier that Gioele connects with different 

realizations is “result” (in [14], [18]), realized by 11A (in [16]) and 6=A2 (in [19]). 

Gioele performs manipulations solely to please the interviewer, without any apparent 

aim of creating meaningful (to him) stories. Moreover, Gioele’s symbolic manipulation 

shows that he has no expectation about the outcome: he talks about “grouping” ([12], 

[18]) in the procedures he applies for both tasks, even if the two outcomes he obtained, 

for an expert, refer to two different mathematical objects, a literal expression and an 

equation. The “result” for Gioele thus seems to be whatever he finds at the end of his 

“solve it” ritual.  

To answer RQ1, Gioele seems to recognize a familiar task concerning solving an 

equation; his discourse is characterized by ritualist manipulations of unrealized 

symbols; there are no references to other realizations of these objects and thus no 

transitions between realizations. In general, there is no evidence of sense-making 

concerning the “solution of an equation” in Gioele’s discurse in the initial interview. 

Excerpt 2 - last activity session. During this session Gioele’s discourse always 

involves DIMs and the construction of meaningful narratives. In this excerpt, the 

interviewer asks Gioele to use a file with DIM(A,B) and to set the two-pan balance with 

the expressions 5+x on the left and 2x+1 on the right (the default value of x is 2). 

39 Int:  Ok. So now before you [...] imagine you put x on 4 – don’t do that, wait a 
minute – and try to tell me everything that’s going to change in this figure 
when you do that 

40 Stud:  So, x plus 5 will change, which will be 4 plus 5 so 9, and 2 times 1... 2x... 2 
times 4 so 8 plus 1 

41 Int:  Yes 

42 Stud:  9 and 9 

43 Int:  Uh, ok 

44 Stud:  So putting it [he refers to the arrow “x”] on 4 it should be in balance 

[…] 

47 Int:  Great, what about these [pointing to the arrows in DIMA] What do you think 
will change about these things here? If anything changes 

48 Stud:  They will stretch, because x will stretch further by 5 
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In excerpt 2, Gioele’s discourse includes DIM-based narratives, such as “putting it on 

4 it should be in balance” in [44] referring to balance in DIMB and “They will stretch” 

in [45] referring to arrows in DIMA. Gioele also expresses narratives about objects, 

such as “x” or expressions involving x, such as “x will stretch” in [48] and “x plus 5 

which will be 4 plus 5” in [40].  

Excerpt 3 - last activity session. In one of the next tasks, the interviewer asks Gioele 

to reconstruct in a DIM(A,B) the two-pan balance shown in a DIMC (realizing the 

inequality 7+2+x>3x). Gioele solves the task rapidly and explains: 

Looking here [pointing to DIMC], since there are blanks I have to add them. Like on 

7+2+x, I mean, the blank one [pointing to the white triangle under the “weights” 7 and 

2], and instead here there is 3, 3 blanks, and therefore 3 unknowns, 3x.    

Now Gioele has linked the object “x” to at least 3 different realizations, namely the 

symbol “x”, the “blank”, and the term “unknown”.   

In response to RQ2, excerpts 2 and 3 show that Gioele’s DIM-based discourse is 

characterized by objects (perhaps in the DIMs themselves) and by meaningful 

narratives around these objects. Indeed, these narratives make sense with respect to the 

new task situation Gioele has learned to make sense of. There are also several 

realizations of objects such as “x” (the arrow, the “blank” triangle and the “unknown”). 

These are indicators of an ongoing sense-making process related to mathematical 

objects “unknown” and “solution of an equation”, albeit still in DIM-based contexts.  

Excerpt 4 - last activity session. Since Gioele had come to set up what looked like 

equations using the expressions in DIMB, the researcher decides to intervene, 

reminding him of the correct ritual for solving an equation through symbolic 

manipulation, so that he could “make better predictions of what x might work”. Then 

she asks him to set up a DIM(A,B) with the expressions 6+x and x+1+x, and to try to 

predict what value of x will balance it off. Gioele correctly sets up the balance and 

makes a prediction that the solution will be 4, then without checking it on the DIMs he 

writes down x=4, the equation 6+x=x+1+x, and carries out the solution procedure, 

obtaining 5=x.  

129 Int.:  So, you had imagined x=4, here you obtained x=5, ok? So, who do you 
think is right, let’s say, this prediction of yours or your calculations [...]? 

130 Stud.:  calculations 

131 Int.:  calculations 

132 Stud.:   Because the calculations, I mean… here they are saying a different thing 
from what I am saying 

[…] 

143 Int:  Okay...but what do you think x=5 meant? 

144 Stud:  That x… I don’t know. 

[…] 
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146 Int: So, you predicted x=4 [and] actually still it didn’t work, and instead 
calculations gave you x equals 5 [she points to the inscription “5=x”] 

147 Stud:  Ah, maybe it could be 5 then! 

148 Int:  Mm, how come? 

149 Stud:  Because here I did all this and it tells me that it is so  

Gioele opens a new text file, starts writing 6+x again, then writes x=5 above, and 

completes the equality with 6+x=x+1+x, then solves it exactly as before. 

155 Int: Excuse me, how come you wrote up here at the top your initial idea? 

156 Stud:  x equals 5? 

157 Int:  uhm 

158 Stud:  I mean, x=5 I wrote it here to remind me here that x equals 5  

159 Int:  Ah, and so like you wanted to “think it first” before you got it from here 

160 Stud:  Yeah, it’s like… I mean, that is like, how can I say, test everything out 

Now the object “x”, previously the protagonist of meaningful DIM-based narratives, 

seems to return to being an unrealized symbol, like “A” in the initial interview – see in 

[144] when Gioele states that he does not know what x=5 means. The inscription “5=x” 

for Gioele now has an unclear relationship with his initial narrative “x=4”, a conjecture 

about the balance position. Although he seems to be trying to make sense of it: in [132] 

he states “calculations […] are saying a different thing from what I am saying” 

However, Gioele does not conclude that the value of the unknown should be 5. “5=x” 

seems to just falsify his initial conjecture, as a test that failed (in [160]). Moreover, 

Gioele spontaneously constructs a narrative about “x” (“it could be 5 then!” in [147]) 

and performs the same procedure again (“all this [...] tells me that it is so” in [149]), 

constructing a new (for him) narrative for the hypothesis “x=5”.  

In response to RQ3, there is no evidence in Gioele’s discourse indicating that the 

symbol “x” involved in the procedure recalled by the interviewer was recognized as a 

different realization of the object he was talking about in the interaction with DIMs. 

For Gioele, the inscriptions “x=4” and “x=5” seem to be meaningful narratives about x 

only in his DIM-discourse, but not when he is performing the “solve it” ritual. He 

seems to relate the symbolic equations he writes (invited by the researcher) to the 

situations realized by the two-pan balances, but not the output of the “solve it” ritual 

applied to such equations. The only element that may indicate a possible seed of a 

meaningful link that eventually could be established might be when he says “all this 

[...] tells me that it is so” in reference to the symbolic manipulation ending with “5=x”. 

CONCLUSION 

Gioele’s case highlights some still-problematic issues to be considered when teaching 

with DIMs such as the ones proposed in this study. Gioele’s discourse on equations 

starts off as purely ritualistic, with no evidence that he has constructed the meaning of 

abstract objects such as “equation” or “solution of an equation”. With the DIM-based 

activities he constructs meaningful narratives about “x” and the DIMs themselves, as 
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protagonists of the discourse, confirming previous findings (Baccaglini-Frank, 2021). 

However, this brief session of activities with DIMs was not sufficient for the 

researcher’s attempt to meaningfully incorporate his previously learned “solve it” ritual 

into his DIM-based discourse on equations and their solutions to succeed. This finding 

points to obstacles to the eventually necessary transition from DIM-based discourse to 

formal mathematical discourse, especially when students have constructed extremely 

strong rituals detached from mathematical objects, and from any meaning. In Gioele’s 

case, the researcher’s attempt actually led him to interpret his revisited “solve it” ritual 

as a “test”: the attempt to re-incorporate the symbolic manipulation into meaningful 

discourse led to a distortion from its endorsed use.  
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ADDITIVE WORD PROBLEMS IN GERMAN 1ST AND 2ND GRADE 

TEXTBOOKS 

Laura Gabler, Felicitas von Damnitz and Stefan Ufer 
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Primary school students’ performance varies strongly between different types of 

additive word problems. One explanation is an imbalanced representation of different 

word problem types in textbooks, as it was observed in countries other than Germany. 

To investigate if this imbalance also occurs in German textbooks, all N = 652 additive 

word problems in German 1st and 2nd grade textbooks from five different series were 

analyzed. The imbalance regarding the semantic structure and the unknown set 

corresponds to other analyses. However, a balanced ratio of consistent and 

inconsistent word problems was unexpected. In addition, the imbalanced 

representation of additive and subtractive wording is reported and discussed. 

 

Solving additive word problems is difficult for many primary school students. Additive 

word problems are mathematical problems embedded in a verbally described situation 

that can be solved with an arithmetic operation (addition or subtraction) and do not 

contain irrelevant information (Verschaffel & De Corte, 1997). Depending on student 

characteristics (e.g., language skills or basic arithmetic skills), there is interindividual 

variation in students’ skills to solve additive word problems (Daroczy et al., 2015). On 

the other side, also task features influence the solution process. For example, many 

studies have found that features of the situation structure influence a problem’s 

difficulty (e.g., Gabler & Ufer, 2021). 

If students are exposed to different types of word problems to a different degree, this 

may explain the relation between students’ different solution rates and the features. 

How often these types occur in textbooks is a frequently discussed indicator in this 

context (e.g., Vicente et al., 2022). However, previous textbook analyses have mostly 

focused on a restricted range of task features, and evidence from Germany is missing. 

This paper aims to fill this gap. First, we describe features of the situation structure that 

characterize different word problem types and report empirical findings how they 

influence the problems’ difficulty. Based on prior studies, we argue that textbooks may 

influence students’ learning. We report on studies that have examined the frequency of 

additive word problems in textbooks in other countries. Finally, we present our analysis 

of German textbooks to gain information on the frequency of different additive word 

problems in German textbooks. 
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PRIOR RESEARCH AND FRAMING 

Features of the situation structure and the difficulty of word-problem types 

One feature of the situation structure in word problems is the semantic structure of the 

depicted problem. Additive word problems can describe situations referring to the 

increase or decrease of a set (change), the combination of two sets (combine), or the 

comparison of two sets (compare). In equalize problems, a less common type, two sets 

are introduced: “Susi has 3 marbles. Max has 8 marbles.” The question is then, how 

one set can be changed, so that its cardinality is equivalent to the second set (e.g., 

adding 5 marbles to Susi’s set): “How many marbles does Susi have to buy to have as 

many marbles as Max has?”. Combine or change problems have been found to be easier 

than compare problems (Gabler & Ufer, 2021; Stern, 1993). One reason may be that 

for compare problems, numbers do not only describe concrete sets, but also the 

difference between the two concrete sets (Stern, 1993). Current models on number 

concept acquisition allocate compare structures in later phases of arithmetic 

development than combine structures, for instance (“relational number concept”; Fritz 

et al., 2018). Since equalize problems are addressed infrequently in studies, only few 

empirical data are available. While a prior study reported very high solution rates for 

this semantic structure for first graders (96 %, Stern, 1994), a more recent study reports 

rather moderate solution rates for second graders (71 %, Gabler & Ufer, 2021). 

The difficulty of an additive word problem also varies depending on the unknown set: 

For combine problems, either one of the two parts can be unknown, or the whole set, 

which is formed by the parts. For change problems, either the start set, change set, or 

result set can be unknown. For compare problems, either one of the two quantities 

(reference set or compare set), or the difference between these two quantities can be 

unknown (difference set). For equalize problems, either one of the two quantities (start 

set or result set), or the change set can be unknown. In particular, compare problems 

with an unknown reference set, but also change problems with an unknown start set or 

combine problems with an unknown part are known as difficult word problem types 

(Gabler & Ufer, 2021; Stern, 1993).  

A third feature of the situation structure is the additive/subtractive wording (a/s 

wording), which emphasizes different perspectives on a mathematical situation. For 

dynamic semantic structures, such as change and equalize problems, this can be 

expressed by action verbs referring to an increase (additive wording, e.g., “to get”) or 

a decrease of a set (subtractive wording, e.g., “to give away”). For compare problems, 

a/s wording is expressed by relational terms (e.g., additive, “more than”; subtractive 

wording, “less than”). There is no variation of a/s wording for combine problems. From 

a linguistic perspective (Clark, 1969), additive relational terms (so-called “unmarked” 

terms) may be easier accessible than subtractive relational terms (“marked” terms), 

since unmarked terms are stored in memory in a less complex and more accessible 

form than their marked opposites. It is unclear yet if this is also relevant for additive 

and subtractive action verbs. Empirical findings on the difficulty depending on a/s 
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wording are inconsistent. While Hegarty et al. (1992) report that children need more 

time to solve word problems with subtractive wording, Gabler and Ufer (2021) could 

not identify an influence of a/s wording on task difficulty. 

The a/s wording’s influence on a problem’s difficulty is also discussed together with 

the unknown set. The unknown set determines the mathematical structure of a word 

problem. A word problem is called consistent if it can be solved by adding the two 

numbers in the word problem and the wording is additive, or if it can be solved by 

subtracting the numbers and the wording is subtractive (e.g., “Susi has 8 marbles. Max 

has 3 marbles less. How many marbles does Max have?”; unknown result set). 

Otherwise, it is called inconsistent (e.g., “Susi has 8 marbles. She has 3 marbles less 

than Max. How many marbles does Max have?”; unknown reference set). Inconsistent 

word problems were found to be more difficult than consistent problems (e.g., Gabler 

& Ufer, 2021). This can be explained, for example, by the use of key word strategies: 

Using the a/s wording as a surface indicator to identify the required mathematical 

operation (e.g., “less than” as an indicator for subtraction) is only successful for 

consistent, but not for inconsistent word problems. 

In summary, the difficulty of a word problem varies based on features of the situation 

structure presented in the problem text. It can be assumed that textbook authors take 

these effects into account to a certain extent, when they select or construct word 

problems. On the other hand, preferring or neglecting different types may also 

influence students’ opportunities to gather experience with the corresponding types. 

The influence of textbooks on students’ performance 

Teachers’ use of textbooks for their lessons influences students’ opportunities to learn 

in the classroom (e.g., Hiebert et al., 2003). There is empirical evidence that textbooks 

indirectly influence students’ performance. For instance, Törnroos (2005) reports that 

students’ performance was higher for topics, which are addressed more intensively in 

textbooks than those, which are addressed infrequently. Sievert et al. (2021) and Van 

den Ham and Heinze (2018) found that learning opportunities in textbooks predict 

students’ learning gain, for example regarding knowledge of arithmetic concepts, or 

their understanding of compare problems. Furthermore, learners seem to benefit more 

from textbooks that encourage interleaved practice (different kinds of problems mixed 

within a unit) instead of dealing with blocks of problems addressing the same topic 

(Rohrer et al., 2020). Finally, an imbalance of task types may promote surface 

strategies, such as key word strategies for word problems (Siegler et al., 2020). 

Prior textbook analyses focusing on additive word problems 

Vicente et al. (2022) state that textbooks from high-performing countries (e.g., 

Singapore) contain a balanced and diversified distribution of additive word problems. 

Also textbooks from China (Xin, 2007), the Soviet Union (Stigler et al., 1986), and the 

USA (since the Common Core initiative 2010, Schoen et al., 2020) are named as 

positive examples. The total number of additive word problems in these textbooks is 

also higher than in other countries (Vicente et al., 2022). In contrast, textbooks from 
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Belgium (De Corte et al., 1985), Spain (Tárraga-Mínguez et al., 2021; Vicente et al., 

2022), and older textbooks from the USA (Stigler et al., 1986) have been criticized for 

addressing only a limited range of word problem types, with an imbalance towards 

easier semantic structures (change, combination) and easier unknown sets (e.g., the 

result set). Inconsistent word problems rarely occur in these textbooks (Tárraga-

Mínguez et al., 2021; Xin, 2007). The a/s wording has not been the focus of these 

studies, however. Moreover, we know of no similar analysis of German textbooks yet. 

AIMS AND RESEARCH QUESTIONS 

The main goal of this analysis was to investigate if the reported imbalances towards 

easier types of additive word problems also shows for German textbooks. Moreover, 

we intended to also consider a/s wording. We posed the following research questions: 

RQ1: How frequent are different features of the situation structure of additive word 

problems in German textbooks? To what extent do these textbooks address empirically 

difficult word problem types? 

Based on prior textbook analyses, we were particularly interested if textbooks would 

address more difficult types of additive word problems less frequently than easier 

types. Concerning the a/s wording, additive and subtractive wording could occur 

comparably often (due to their similar difficulty, Gabler & Ufer, 2021). It is also 

possible that the preference for unmarked terms also applies to word problem authors, 

which may show in a higher proportion of word problems with additive wording. 

RQ2: How are the different semantic structures of additive word problems distributed 

over the span of grades 1 and 2, until the introduction of multiplication? 

We expected that easier word problem types would occur earlier than harder ones. 

Regarding temporal distribution, we had no further hypotheses. We aimed to explore 

if single problem types would occur at discrete time points (a sign of blocked practice), 

or if they are distributed over longer periods (interleaved practice, Rohrer et al., 2020). 

METHOD 

We selected five common German textbook series and identified all additive word 

problems occurring in the 1st or 2nd grade editions until (excluding) the introduction of 

multiplication (around halftime of the second grade). Open word problems, which 

allow different interpretations of the semantic structure, were excluded, since no 

distinct situation structure could be assigned to such problems. To extend the sample, 

also word problems requiring more than one calculation were included and divided 

into their single parts. For example, “Maria buys chocolate for 3 €, apples for 2 €, and 

bread for 1 €. How much money did she spend?” counted as two combine problems 

with the whole set unknown. This resulted in N = 652 additive word problems.  

All word problems were coded according to features of the situation structure 

(semantic structure, unknown set, a/s wording). Moreover, we recorded grade level, 

textbook series, and page number (relative to the number of pages of the book). 
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RESULTS 

Regarding RQ1, the analyses revealed substantial differences in frequency of additive 

word problems between the different textbook series (49-128 additive word problems 

per textbook series). However, since open word problems were not considered for this 

analysis, this observation has to be interpreted cautiously. 

Over all textbook series, we found a similar pattern for the frequency of semantic 

structures as in Spanish textbook analyses (e.g., Tárraga-Mínguez et al., 2021; Vicente 

et al., 2022). The most frequent semantic structure was the combination of sets, 

followed by change (see Fig. 1). As expected, comparison was scarce and equalization 

occurred even less frequent. 

 

Fig. 1: Frequency of semantic structures and span for the different textbook series 

For the unknown set, our findings match older analyses from the US and from Belgium, 

and newer analyses from Spain (e.g., De Corte et al., 1985; Stigler et al., 1986; Vicente 

et al., 2022). Difficult word problem types, such as combine problems with one part 

unknown (5 % of all word problems), change problems with unknown start (3 %) or 

change set (5 %), or compare problems with unknown reference set (1 %) were less 

frequent than other types (e.g., combine problems with the whole set unknown: 54 %). 

In almost all equalize problems, the change set was unknown (2 %) – the result set was 

unknown once, the start set was never unknown. 

For the a/s wording, combine problems were excluded. In line with the assumption that 

authors prefer unmarked terms, additive wording is more frequent (59 % of all word 

problems) in the analysed textbooks than subtractive wording. Since unmarked 

relational terms are considered easier to understand, this also speaks for a bias towards 

more simple tasks. However, the a/s wording is not only expressed by relational terms, 

but also by actions verbs in change and equalize problems. Thus, we also analysed the 

a/s wording for each semantic structure. While additive wording occurs more 

frequently for compare and equalize problems (69 % for each), the a/s wording is more 

balanced for change problems (53 % additive wording). This suggests that the 
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preference for unmarked relational terms cannot completely be transferred to dynamic 

word problems. 

Finally, we analysed if German textbooks also provide a balance of consistent and 

inconsistent word problems. Contrary to prior findings, almost half of the analysed 

word problems were inconsistent (45 %, combine problems excluded). To investigate 

this finding further, we examined how many of the word problems with additive or 

subtractive wording were inconsistent. Of the additively worded word problems, 70 % 

were inconsistent, while it was 9 % for subtractive wording. One possible explanation 

is that additive wording is favoured in general (59 % in our analysis; see also Clark, 

1969). 

To answer RQ2, we first examined the frequency of semantic structures for each grade. 

While the frequency of change problems declines from first to second grade, difficult 

semantic structures (compare, equalize) occur more often in second grade. However, 

also combine problems are addressed more often in second grade than in first grade. 

For a more detailed analysis, we divided the textbooks into ten consecutive sections 

per grade. Change problems are mostly addressed at specific times, with a peak in the 

middle to end of the first grade, and also in the middle of second grade. Combine 

problems peak towards the end of first grade and the middle of second grade. Compare 

and equalize problems are more equally distributed over the sections. All investigated 

textbooks contained blocks of problems addressing the combination of sets. For 

instance, there were whole pages focusing on the same context (e.g., purchase of 

tickets, etc.) and addressing almost exclusively combine problems. The observation 

that combine and change problems concentrate at specific times may also be due to 

their occurrence in word problems with more than one calculation step. Easier combine 

or change situations might be more frequent in such word problems than compare or 

equalize situations. Indeed, 76 % of the combine problems are part of word problems 

with more than one calculation step (change problems: 21 %). 

DISCUSSION 

In summary, our results are closer to prior results on textbooks that were criticized for 

addressing word problem types in an imbalanced way (e.g., Stigler et al., 1986; 

Tárraga-Mínguez et al., 2021; Vicente et al., 2022). Studies such as from Schoen et al. 

(2020) show that attempts to resolve this imbalance in response to empirical findings 

have been successful, for example in current US textbooks. Similar attempts might be 

fruitful in future revisions of German textbooks. Beyond only increasing the number 

of more difficult types, an explicit treatment of the corresponding semantic structures 

in the textbooks would be promising as well (Sievert et al., 2021). 

With a focus on a/s wording and consistent vs. inconsistent problems, our study 

contributes a new perspective that was not covered in prior studies. The data indicate 

that word problems with additive wording are often inconsistent, while word problems 

with subtractive wording are mostly consistent. In future studies, it could be 
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investigated, which criteria textbook authors use to write or select additive word 

problems, and which problem features they focus on (e.g., unmarked or marked terms). 

Concerning RQ2, it seems beneficial that difficult semantic structures occur 

continuously (as a sign of interleaved practice, Rohrer et al., 2020), and do not 

cumulate at single time points. Easier semantic structures are often addressed in blocks, 

but occur quite frequently. More balance combined with interleaved practice may 

improve the quality of the textbooks. It is unclear yet, if it makes sense that more 

difficult semantic structures are addressed later in accordance with models of number 

concept acquisition (Fritz et al., 2018) or if, for example, certain compare problem 

types could also be introduced earlier. It would also be of interest, when difficult task 

features (e.g., inconsistent problems) occur for the first time. 

We excluded open word problems in our study, which may distort the analyses. These 

open tasks also offer learning opportunities concerning the situation structures of 

additive word problems. Also including word problems requiring more than one step 

has influenced the findings, since this raised the amount of combine problems 

substantially. Furthermore, the differences between the selected textbooks require 

further attention. Finally, we treated the frequency of word problems as one indicator 

for learning opportunities. Addressing situation structures explicitly can provide 

further learning opportunities, such as introducing compare situations (e.g., tasks on 

decomposed numbers with a missing part, the complementarity of addition and 

subtraction, or subtraction as a difference between numbers, Sievert et al., 2021). 

In summary, this analysis adds to analyses showing an imbalance of different word 

problem types in textbooks. The US American textbooks indicate that this imbalance 

can indeed be resolved to a certain extent. It remains an important question in this 

context, how authors create and select word problems. Future studies may investigate 

this to understand why textbooks show this task distribution that seems suboptimal at 

first sight. 
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Mathematical modelling is a key competence but students are often less interested in 

modelling tasks than in other mathematical tasks. In a quantitative study with 82 tenth-

grade students, we analysed students’ interest in conducting experiments, in modelling 

processes that follow hands-on experiments, and in modelling processes without 

experiments, involving exponential functions. The results indicate that high achieving 

students are more interested in modelling processes without experiments than in the 

ones with experiments and in conducting experiments. In contrast, low achieving 

students are more interested in conducting experiments than in modelling processes 

afterwards or in modelling processes without experiments. Thus, it is questionable 

whether involving experiments is suitable to foster students’ interest in modelling tasks. 

INTRODUCTION 

Modelling is considered a mathematical key competence with great relevance for other 

scientific disciplines, everyday life, and the society (Niss, 1994). Thus, modelling finds 

its place in many curricular documents as well as in the PISA framework (OECD, 

2017). While modelling is undisputed important, it is also challenging for students as 

well as for teachers (Blum & Leiss, 2007).  

Prior research indicates that many students do not value modelling tasks and are less 

interested in modelling tasks than in other mathematics tasks (e.g., Krawitz & 

Schukajlow, 2018). Thus, fostering students’ interest in modelling tasks is a valuable 

educational goal. Our approach to foster students’ interest is to combine modelling 

tasks with scientific hands-on experiments. In the reported study, we analyse which 

students profit from this approach.  

THEORETICAL BACKGROUND 

Mathematical Modelling 

Mathematical modelling describes the whole process of solving real-world problems 

by transferring a real-world situation into a mathematical model. Contemporary 

conceptualisations usually describe modelling as a cyclical process. Following Blum 

and Leiss (2007), an idealized modelling process consists of seven steps (Figure 1). 

A specific kind of modelling tasks are those combined with experiments. According to 

Halverscheid (2008, p. 226) “experiments related to mathematics find their natural 

place in the framework of mathematical modelling because they represent the ‘rest of 

the world’ for which mathematical models are built.” Performing this kind of tasks, 

students first conduct hands-on experiments (e.g., physical experiments) and collect 
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experimental data. In the second step, students use their own experimental data for a 

subsequent modelling of the real situation that was represented by the experiment and 

solve a real problem based on the experimental data and their model. 

 

Figure 1: Modelling-Cycle following Blum & Leiß (2007) 

Interest 

Interest as a motivational variable is considered to play an important role in learning. 

Following the conceptualisation of Krapp (2007), interest is characterized as a special 

relationship between a person and an (abstract) idea, topic, etc. Interest comprises a 

feeling-related (feeling of joy) as well as a value-related valence (allocating a 

subjective high esteem to the object of interest) (Krapp, 2007). 

Most conceptualisations distinguish between individual and situational interest. 

Individual interest is a longer lasting dispositional trait whereas situational interest is a 

fluctuating state that is mainly dependent on the interestingness of a specific (learning) 

situation. The frequent occurrence of situational interest in similar situations can lead 

to an internalization resulting in a stable individual interest (Krapp, 2007). As 

situational interest may influence individual interest and can be influenced by features 

of the learning situations, we analyse if a specific feature, in this case conducting 

experiments, influences students’ situational interest in modelling processes. 

Interest in modelling processes and in modelling processes with experiments 

Theoretically, modelling tasks could enhance students’ interest because students’ 

interest in the real-world context may support students’ interest in the mathematical 

task, which is embedded in the context (Schulze Elfringhoff & Schukajlow, 2021). 

Nevertheless, empirical studies report inconsistent results concerning students’ 

motivation towards modelling tasks. A study by Parhizgar and Liljedahl (2019) 

revealed that students report slightly less engagement when working on modelling task 

than on mathematics tasks without a real-world context. However, the same study 

showed that an intervention with modelling tasks can lead to more positive attitudes 

towards mathematics in general. Krawitz and Schukajlow (2018) reported that students 

value modelling tasks less than other mathematical tasks. Likewise, students’ state less 
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situational interest in modelling tasks than in other mathematical tasks (Krug & 

Schukajlow, 2013). 

Given these results, previous studies tried to identify which features of learning 

situations are suitable to foster students’ interest in modelling processes. Besides task 

characteristics, like the mathematical topic as well as the concrete real-world contexts 

(Krawitz & Schukajlow, 2018; Schulze Elfringhoff & Schukajlow, 2021), it is assumed 

that modelling tasks in combination with experiments are suitable to foster students’ 

motivation (e.g., Ludwig & Oldenburg, 2007). Ganter (2013) showed in an 

intervention study that lessons involving experiments lead to more students’ interest in 

mathematics than traditional lessons taught with textbooks. Likewise, students report 

a high situational interest in modelling tasks with experiments (Beumann, 2016; 

Carreira & Baioa, 2018). Geisler and Rach (in press) found that students experience 

higher situational interest in modelling tasks combined with experiments than in 

modelling tasks without experiments. 

THE CURENT STUDY 

The current study is part of the research project Mathematical Modelling with 

Experiments (MaMEx). The objectives of MaMEx are to design modelling tasks with 

experiments and to analyse the effects of these tasks on students’ modelling 

competencies and their motivation. Within a first pilot study, explorative insights into 

students’ validation processes when modelling with experiments (Geisler, 2021) and 

first results concerning motivational effects were gained (Geisler & Rach, in press). 

The current study enables a closer look on the effects on students’ situational interest. 

Research Questions 

Prior studies indicate that students report high situational interest when working on 

modelling tasks combined with experiments (Beumann, 2016; Geisler & Rach, in 

press). However, it is yet unclear if students’ interest refers to the whole modelling task 

with experiment (and especially the modelling process itself) or if students are mainly 

interested in conducting the experiment while the subsequent modelling process is less 

interesting. Thus, we differentiate between two learning situations constituting a 

modelling task combined with experiment: i) the conduction of experiments and ii) the 

subsequent modelling process with one’s own experimental data. We compare these 

two situations to iii) the modelling process completely without experiment. In addition, 

we want to investigate if students’ interests in these three learning situations depend 

on students’ prior achievement in mathematics to adaptively support students in their 

learning process. In particular, we aim to answer the following questions: 

1. Are there differences in students’ situational interest between the following 

learning situations: i) conduction of experiment, ii) subsequent modelling 

process with experimental data, iii) modelling process without experiment? 

2. Is students’ situational interest in the aforementioned situations related to their 

prior achievement in mathematics? 
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METHODS 

Sample 

In order to answer the research questions, a quantitative study with 82 upper secondary 

students from three grammar schools (grade 10, M(age)=16, 51% girls) was conducted. 

In the study, modelling tasks (see next section) were used that involve exponential 

functions. Students had worked with exponential functions before and were familiar 

with characteristics of exponential growth and decrease. 

Used Modelling Tasks 

Two modelling tasks that both can be solved using exponential functions have been 

designed. Both tasks have the same structure and exist in one version combined with 

experiment and one version without experiment. The task “Cold Coffee” uses the 

context of cooling off a cup of coffee. The versions combined with and without 

experiment both begin with the same introduction of the context: 

After brewing coffee needs some time to cool off in order to be 

conveniently drinkable. The desired drinking temperature differs from 

person to person. Model the temperature decrease and evaluate at 

which time the coffee can be delightfully drunken.  

In the version combined with experiment, students were asked to state a hypothesis 

concerning the temperature development and then conducted an experiment (following 

a given experimental guide) by measuring the temperature of freshly brewed coffee for 

10 minutes. In the version without experiment, students were given a table with pre-

existing data. In both versions, students were asked to model the cooling process using 

a function. However, no hint was given which type of function would be suitable. 

In the equally structured task “Stale Beer” students model the decay of beer froth (for 

more information on the tasks, see Geisler, 2021). 

Design and Instruments  

During a 90 minutes lesson, all students worked on one modelling task combined with 

experiment (consisted of learning situations i) and ii)) and one modelling task without 

experiment (consisted of learning situation iii)). After each learning situation, students 

were asked to rate their situational interest on a short questionnaire using adapted items 

from Willems (2011) – 4 items, Cronbach’s  = .85, for example “I liked conducting 

this experiment” for learning situation i). All items were structured in the same way 

for the three learning situations and students answered them on a six-point likert-scale 

(1=totally disagree, 6=totally agree). Furthermore, students’ demographic data and 

their prior mathematics grade have been assessed.  

To prevent effects of the order, type of task (combined with experiment and without 

experiment) and context (cooling of coffee and decay of beer froth) were permutated 

resulting in four versions. Students in version 1 started with working on the task “Cold 

Coffee” in combination with an experiment, following the task “Stale Beer” without 
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experiment whereas students in version 2 started with the task “Cold Coffee” without 

experiment, following the task “Stale Beer” in combination with experiment. The other 

two groups worked on the tasks in the opposite order (see Figure 2).  

 

Figure 2: Design of the study 

With regard to research question 2, students were divided in three groups based on 

their prior grade in mathematics: high achieving students (n=27, prior mark: 1=very 

good or 2=good), medium achieving students (n=27, prior mark: 3=satisfactory) and 

low achieving students (n=28, prior mark: 4=sufficient, 5=deficient and 

6=insufficient). We used a mixed ANOVA with the factors learning situation and prior 

achievement to analyse students’ data.  

RESULTS 

Descriptive data concerning situational interest in the three learning situations of the 

whole sample and the groups (divided by prior achievement) can be found in table 1. 

Furthermore, results for the different achievement groups are visualized in Figure 3. 

 Learning Situations 

 

Modelling task combined with 

experiment 

Modelling task without 

experiment 

Sample 

i) Conduction of 

experiments 

ii) Modelling 

process with 

experimental data  

iii) Modelling process 

without experiment 

Whole sample (N=82) 3.78 (1.14) 3.46 (1.24) 3.73 (1.26) 

High Achievers (n=27) 3.57 (1.27) 3.89 (1.25) 4.32 (1.17) 

Medium Achievers (n=27) 4.02 (0.88) 3.44 (1.26) 3.51 (1.25) 

Low Achievers (n=28) 3.79 (1.22) 2.97 (1.07) 3.34 (1.18) 

Table 1: Situational interest (means and standard deviations) in the different learning 

situations, ratings from 1=totally disagree to 6=totally agree. 

Research question 1 deals with students’ interests in the different learning situations. 

As visualized in table 1, data give us no hints that the modelling process after 
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experiment (M = 3.46) in the whole sample is more interesting than the modelling 

without experiment (M = 3.73). Surprising is that conducting experiments is similar 

interesting for students as the modelling process without experiment (M = 3.78). 

Research question 2 yields at differences in interest between the learning situations 

dependent on students’ prior mathematics achievement. The mixed ANOVA reveals 

no significant main effect of the factor prior achievement (F(2,79)=3.83, p>.05, 

²=.06) and no main effect of the factor learning situation (F(2,79)=1.54, p>.20, 

²=.05) but a significant interaction between achievement and learning situation with 

large effect size (F(2,79)=5.60, p<.01, ²=.17). Indeed, in Figure 3 different interest 

patterns of the three groups of students can be seen. 

 

Figure 3: Interest patterns of the different achievement groups  

(ratings from 1=totally disagree to 6=totally agree) 

Within the three learning situations, high achieving students report the least interest in 

conducting experiments while they rate the subsequent modelling process with their 

experimental data as slightly more interesting and state most situational interest in the 

modelling process without experiments. In contrast, medium and low achieving 

students rate the conduction of experiments as the most interesting learning situation, 

while both modelling processes are less appealing to them. The low achieving students 

report even lower interest in the modelling process with their own experimental data 

than in the modelling process without experiments.  

DISCUSSION 

In this study, we focused on the potential of modelling tasks in combination with 

experiments to foster students’ situational interest. Our results go beyond those of 

previous studies (e.g., Beumann, 2016; Geisler & Rach, in press) because we did not 

only compare the modelling process combined with and without experiments but 

enabled a more differentiated perspective by further distinguishing two learning 

situations that constitute modelling tasks combined with experiments: the conduction 

of the experiment and the subsequent modelling process with one’s experimental data. 
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In contrast to the results of Beumann (2016), Ganter (2013) as well as Geisler and Rach 

(in press), we did not find a positive effect of experiments on students’ interest in the 

modelling process in the whole sample. Students were similar interested in conducting 

the experiments as in the modelling process without experiments and slightly less 

interested in the modelling process with their own experimental data. 

Besides results for the whole group, our study provides insights in the situational 

interest of three groups of students, which are homogenized according to their prior 

achievement in mathematics. High achieving students were least interested in 

conducting the experiments and most interested in the modelling process without 

experiments – even more than in the modelling process with their experimental data. 

It seems that in this case, experiments were neither necessary nor helpful to foster 

interest in the modelling process. While medium and low achieving students were most 

interested in conducting experiments, they were less interested in both modelling 

processes. Thus, their interest in the experiments was not helpful to induce interest in 

the subsequent modelling process with experimental data. Low achieving students 

were even less interested in the modelling process with experimental data than in the 

modelling process without experiments. It seems that experiments can even hinder the 

interest of low achieving students. One reason for this result could be that the modelling 

process with experimental data is more challenging for these students because the data 

contain measurement errors and irregularities (e.g., Geisler, 2021) and students’ 

situational interest in modelling tasks is related to their experience of competence 

(Schulze Elfringhoff & Schukajlow, 2021). Although experiments are often promoted 

(e.g., Beumann, 2016; Ludwig & Oldenburg, 2007), our results indicate that not all 

students profit from experiments with regard to their interest in modelling activities.  

A limitation of our study lies in the rather small sample. Instead of using a control 

group, all students in our sample worked on a modelling task combined with 

experiment and a similar task without experiment. Therefore, the results should be 

confirmed within a larger study with control group design. Furthermore, we only used 

modelling tasks and related experiments from the topic of exponential functions. As 

Krawitz and Schukajlow (2018) have shown that students’ interest in modelling is also 

dependent on the mathematical topic, it remains an open question whether modelling 

tasks with experiments related to other mathematical topics are more suitable to foster 

students’ situational interest. 

Funding: The study was funded by Deutsche-Telekom-Stiftung under grant 03 02821. 
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REPLICATION OF A POSITIVE PSYCHOLOGY INTERVENTION 

TO REDUCE MATHEMATICS RELATED SHAME 

Lara Gildehaus and Lars Jenßen 

Paderborn University & Humboldt Universität Berlin 

 

Shame is an unpleasant and activating emotion that may affect mathematics learners' 

achievement, motivation, and identity development. Specifically, preservice primary 

teachers often experience shame in mathematics, which may impact their future 

teaching and their students' development of unpleasant emotions. In the current study, 

we investigated an intervention adapted from positive psychology to reduce preservice 

primary teachers' shame in mathematics during university education. Within a 

controlled experimental setting, the interventions' efficacy was analysed, and 

compared to a qualified control group. Findings suggest a positive effect of the adapted 

intervention on shame reduction. Practical implications are being discussed. 

PRESERVICE PRIMARY TEACHERS’ EMOTIONS IN MATHEMATICS 

Mathematics learning is highly related to learners' emotions (Hannula, 2019). Several 

mathematic situations and contents can trigger pleasant or unpleasant emotions for 

mathematics learners, which can impact their achievement, motivation, and identity 

development (Göller & Gildehaus, 2021; Lutovac & Kaasila, 2014; Pekrun, 2006, 

2021). 

Preservice primary teachers, who often conceptualize themselves as learners more than 

teachers during their university education (Chen, 2017), are often confronted with 

unpleasant emotions during their studies, specifically in mathematics. In most 

countries, preservice primary teachers are trained as generalists, and their interest is 

more in the overall teaching aspect than specific subjects (Blömeke et al., 2012). 

However, at least some mathematics courses are obligatory for most of them and many 

are also obligated to later teach mathematics. Most of the preservice teachers' 

unpleasant emotions during their university education are often based on unpleasant 

emotions they experienced during their school education (Hodgen & Askew, 2007). 

Leaving university with unpleasant emotions towards mathematics is known to later 

affect their teaching. For example, Beilock et al. (2010) demonstrated that teachers 

with high mathematics anxiety could transmit their stereotypes to their students. 

However, Lutovac & Kaasila (2014) discussed that negative experiences with 

mathematics during school years may not in general prevent students from a successful 

identity work towards mathematics and the main reasons for different developments 

are pedagogical practices in mathematics courses. Similarly, Hodgen & Askew (2007) 

argued that emotional relationships with mathematics show both individual and social 

elements.  
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Concretizing those different aspects around unpleasant emotions towards mathematics, 

many different operationalizations can be found in recent research. While many studies 

focus on anxiety as the primary unpleasant emotion, studies on other unpleasant 

emotions, such as frustration, hopelessness or shame are rare. Following the findings 

above, some recent research specifically focused on shame as an unpleasant emotion 

towards mathematics because it is usually emerging within a social context, based on 

upward comparison to others. According to control-value theory (Pekrun, 2006), 

shame can be seen as an unpleasant and activating emotion which is experienced after 

learning and achievement situations. 

Shame in mathematics 

Shame is experienced when difficulties in mathematics are subjectively attributed to a 

deficiency in one's general ability (e.g., "I am stupid"; Holm et al., 2017). Following 

Pekrun (2006), besides low control appraisals the extent to which an individual values 

mathematics is thus related to the intensity of shame that one may feel. Only when an 

individual highly values achievement in mathematics, mathematics in general as an 

important domain or when social values are perceived, they experience shame when 

not meeting mathematical requirements. In case of preservice primary teachers, it can 

be assumed that domain value is high because of the importance of mathematics 

knowledge for the acquisition of mathematics didactics knowledge in teacher 

education (Agathangelou & Charalambous, 2020). Furthermore, German preservice 

primary teachers especially might perceive their prospective responsibility for 

students’ relative low achievement in mathematics at school in Germany. 

Because shame "reflects the personal implication of the outcome of an event" (Turner 

et al., 2002, p.82), shame is referred to as a self-conscious emotion (Lewis, 2003). Thus, 

shame cannot be regulated easily, showing a strong connection to the self, with possible 

vicious cycles: Putting much effort into mathematics prior to experiencing failure, 

which is attributed to the self as an indicator of lack of ability, shame, and damage to 

self-worth are high (Turner et al., 2002). Individuals then tend to avoid further 

experiences of failure to protect the self, which may cause a lack of ability, e.g., within 

mathematics. In line with this, shame may disrupt students' self-regulation of learning 

processes and is strongly related to low-ability self-concept (Jenßen, 2021) 

Additionally, preservice teachers often experience mathematics courses at universities 

as non-discursive places, where participation is almost impossible if one does not 

understand (Gildehaus & Liebendörfer, 2021). Such an environment may create 

various situations with low control appraisal for preservice teachers. Failures may thus 

be attributed to the self directly. In line with this, preservice primary teachers 

experience shame more often and intensely regarding mathematics than other subjects 

(Jenßen et al., 2021).  

Recent studies revealed that preservice primary teachers’ shame in mathematics shows 

a variety of negative effects: It affects their subject choices at university as they avoid 

mathematics courses (Jenßen, Möller, et al., 2022), it goes along with less achievement 
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in mathematics (Jenßen, Roesken-Winter, et al., 2022) and it negatively affects their 

intention to teach mathematics later at school (Jenßen, Roesken-Winter, et al., 2022). 

In light of these negative consequences of preservice primary teachers’ shame in 

mathematics, Jenßen (resubmitted) developed an intervention to reduce shame during 

teacher education. The current study tries to replicate those findings by comparing the 

effects of the developed intervention to a similar but inherently different intervention. 

THE “NAME THREE GOOD THINGS ABOUT YOURSELF IN 

MATHEMATICS” – INTERVENTION TO REDUCE SHAME 

Focusing on the regulation of unpleasant emotions, as well as strengthening pleasant 

emotions, a variety of so-called positive psychology interventions (PPI in the 

following) have been developed and applied to the educational context (Carr et al., 

2021; Seligman et al., 2005). A common PPI is the three good things technique that 

requests a systematic reflection from participants on three pleasant things they 

experienced during a specific time interval (Seligman et al., 2005). During the 

intervention, participants usually put greater conscious attention on possible positive 

situations, and thus during the PPI, their positive perception is being promoted and 

triggering cognitive change, strengthening the individual's resistance to unpleasant 

experiences (Seligman et al., 2005). Furthermore, increased effectiveness can be 

observed when the technique is performed over a longer period. Usually, the PPI is 

developed for general experiences in daily life, but it can be easily adapted to other 

context such as mathematics.  

Jenßen (resubmitted) adapted the three good things technique to mathematics and 

preservice primary teachers as this intervention appears as economical, feasible, and 

able to be continued over a longer period and thus, may be easily implemented during 

teacher education at university. One main aim was to not address shame directly to 

minimize the risk of re-shaming but to focus on resources to increase resilience to 

shame experiences. Although, as discussed above, shame as an emotion is closely 

linked to the self, the intervention was developed to focus on concrete positive aspects 

of the self in mathematics situations. Thus, the following exercise has been formulated 

as central part of the intervention:  

Name three good things you like about yourself in mathematics. For example, reflect 

on positive experiences in mathematics that you have personally brought about in the 

past few days. Name as many different things as possible over the time for this exercise. 

Findings from the original study by Jenßen (resubmitted) revealed a small positive 

effect (Cohen’s d = 0.36) regarding the reduction of preservice primary teachers’ 

shame in mathematics when they participated twice a week over a period of five weeks. 

Duration of the intervention and dose per week has not been manipulated in this study 

although meta-analyses regarding PPIs revealed that these variables may affect the 

effectiveness of the intervention (Carr et al., 2021). 
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Evaluating the effectiveness of this exercise in an experimental setting (randomized 

controlled trial), participants were randomly assigned to either the intervention group 

or a control group.  

Research Questions 

The purpose of the current study was to replicate the findings by Jenßen (resubmitted) 

regarding the effectiveness of the developed PPI to reduce preservice primary teachers’ 

shame in mathematics. Furthermore, the aim was not only to replicate the findings but 

to examine the effectiveness of the intervention in a different context: Not only did we 

implement the intervention to a different university, where the students of the course 

were more heterogenic, the focused lecture was in mathematics rather than in 

mathematics education and duration and dose of the intervention were also different to 

the design of the study by Jenßen (resubmitted). Accordingly, we pose the following 

research questions:  

RQ1: Does participation in the PPI also reduce preservice primary teachers’ shame in 

mathematics when the given context differs from that in the previous study?  

RQ2: Does participation in the PPI reduce preservice primary teachers’ shame in 

mathematics more effectively than in a control group?  

METHODS 

A total of n=99 students took part in the study. The exercise was integrated into a 

university education setting with 83 preservice primary teachers, 14 preservice teachers 

for special education, 2 without specification, at a medium-sized German university. 

Of these participants, 87 reported being female, 11 male, 0 non-binary, 1 without 

specification and 63 of them were in the last year of their master's program, 21 had just 

started their master's, 14 were in the last year of their bachelor's degree and 1without 

specification.  

At the surveyed university, mathematics was obligatory for preservice primary 

teachers. However, they could voluntarily intensify courses in mathematics (8.2% 

reported to have chosen this option). The surveyed course was called Elements of 

Mathematics, which focused on basic ideas of formal mathematics, such as logic and 

(generic) proofs. It is usually connected with unpleasant feelings for some preservice 

teachers and is referred to as "the most challenging mathematics lecture" of their 

studies. Lectures and tutorials each took place once a week, and voluntarily, additional 

support was offered weekly in a learning support center. To participate in the exam at 

the end of the semester, students had to reach 50% of points in weekly homework 

(usually four short exercises). After the third week of the semester, one homework 

exercise was replaced either with the intervention or the control group exercise. 

Student's participation in the intervention was thus obligatory to be able to participate 

in the exam and complete the course. Within the intervention group, they worked on 

the exercise above weekly over a period of ten weeks (two times longer than in the 

study by Jenßen (resubmitted)) and once a week (compared to twice a week within the 
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previous intervention study). The control group worked on a content-based exercise 

("Summarize the lecture's content in at least three sentences") weekly during the same 

time.  

To assess preservice primary teachers' shame in mathematics, the SHAME-Q was used 

(Jenßen, Roesken-Winter, et al., 2022). The questionnaire showed good reliability in 

recent studies and the current one (Cronbach’s α = .93 at both time points) and was 

also comprehensively validated, making sure it is distinguishable from other 

unpleasant emotions, such as anxiety (Jenßen, Roesken-Winter, et al., 2022). The 

SHAME-Q used a 5-point-likert-scale from 1 (= strongly disagree) to 5 (= strongly 

agree), and was integrated into a wider questionnaire, thus the experimental setting was 

not too obvious for the students. The questionnaires were completed online during 

lecture time in the week before the intervention started (the third week of the semester) 

and the week after the intervention finished (11 weeks later). During the intervention 

students did not know, that they participated in an intervention, but they were informed 

afterwards.  

To examine Research Question 1, a paired t-test was performed. A mixed ANOVA 

was applied to examine Research Question 2. Assumptions of these statistical 

techniques were analysed a priori. All analyses were done by using SPSS 29.0. 

RESULTS 

Means and standard deviations (in brackets) are shown in Table 1 differentiated for 

both intervention group and control group and also for T1 (pre-test) and T2 (post-test).  

RQ1: Change in Intervention Group. A paired t-test was performed. There were no 

outliers in the data. The differences between the pre- and post-scores of the SHAME-

Q were normally distributed, as assessed by the Shapiro-Wilk test (p = .052). SHAME-

Q scores were significantly lower after the intervention, t(50) = 3.85, p < .001. The 

difference was M = 2.18 (SD = 4.03) with a medium effect size (Cohen’s d = 0.54). 

Group T1 T2 

Intervention (n=51)  15.00 (5.73) 12.82 (5.11) 

Control (n=48) 14.35 (6.13) 13.83 (6.24) 

Table 1: Descriptive results: means and standard deviations in brackets 

RQ 2: Comparison of Intervention Group and Control Group. At T1 no outliers were 

in the date, at T2 three outliers were found for the intervention group. These remained 

in the analysis as they reflected theoretically possible values. SHAME-Q scores were 

only normally distributed for the intervention group at T1 as assessed by Shapiro-Wilk 

test (p = .163). However, mixed ANOVAs lead to robust results when violating this 

assumption as long the sample size is greater than 30 which was the case in the current 

application (Glass et al., 1972). There was homogeneity of the error variances, as 

assessed by Levene’s test (p < .05). There was also homogeneity of covariances, as 

assessed by Box’s test (p = .356). There was a statistically significant interaction 
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between time and group F(1, 97) = 4.75, p = .032. The effect size was medium with 

partial η2 = .05. 

 

Figure 1: Change in means over time 

DISCUSSION 

The results showed a significant reduction in preservice primary teachers' shame in 

mathematics for those who participated in the intervention, with a medium-sized effect. 

We were able to replicate findings of the previous study regarding the effectiveness of 

the intervention. Furthermore, the PPI developed by Jenßen (resubmitted) was thus 

also effective in reducing preservice primary teachers' shame in mathematics when the 

context was slightly different (duration was set longer, dose was less frequent, students 

were more heterogenous, lecture content was mathematics). Compared to the previous 

study effect sizes were even greater. This validates findings from meta-analyses that 

duration and dose may affect the effectiveness of PPIs (Carr et al., 2021). A longer 

duration may show greater effects in this case. Furthermore, the different contents the 

students learned within the different settings may have had an influence as well. A 

formal mathematics learning environment may provide more challenging situations for 

shame, but also more opportunities to experience positive situations, one can attribute 

to the self. Compared to a mathematics education lecture the preservice primary 

teachers attended in the other setting, positive experiences may have also been more 

intense within the formal mathematics course. 

Moreover, the PPI also occurred as effective in reducing preservice primary teachers’ 

shame in mathematics compared to a control group. In comparison to the study by 

Jenßen (resubmitted) where controls were requested to name three good things about 

mathematics in general, we chose a more common control intervention as university 

students are usually assumed to summarize lecture’s content at the end of the course. 

Nevertheless, the current study highlights once more the effectiveness of the developed 

PPI compared to a non-usual control group where no participation in any intervention 

is required. 

This indicates that even though we successfully replicated the intervention, its efficacy 

seems closely connected to a specific social context and further research seems 
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desirable to investigate specific relations within different settings, e.g., settings in 

school as well as other mathematics study programs. Similarly, the discussed relations 

of shame with motivation, identity, and achievement need further investigation. To 

better understand shame in the context of individual identity-development qualitative 

insights about the individual's reflection during the intervention are desirable.  

Unlike other interventions, such as expressive writing against performance anxiety in 

mathematics (Maloney et al, 2013), this intervention did not focus on a specific 

situation but on a general change within the self. Follow-up studies are needed to 

investigate this further, but it seems likely, that a longer-term effect could have been 

achieved. 
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MATHEMATICS-SPECIFIC MOTIVATIONS FOR CHOOSING A 

MATHEMATICS TEACHING DEGREE STUDY PROGRAMME 

Robin Göller 

Leuphana University Lüneburg 

 

The transition from school to university in mathematics is accompanied by more 

abstract and formal modes of mathematical thinking, a focus on deductive proof and 

for many preservice teachers also by demotivation and frustration towards this kind of 

mathematics. The present study qualitatively analyses 13 preservice teachers’ 

mathematics-specific motivation for choosing a mathematics teaching degree study 

programme before the beginning of their study. The results show that many preservice 

teachers enjoy schematic aspects of mathematics, which rather does not correspond to 

the type of mathematics taught at universities. These findings contribute to explaining 

demotivation and frustration of preservice teachers with the mathematical content of 

their university studies, what is discussed in more detail. 

THE TRANSITION FROM SCHOOL TO UNIVERSITY IN MATHEMATICS 

The transition from school to university in mathematics is associated with several well 

documented difficulties, comprising in particular the required more abstract and formal 

modes of mathematical thinking at university, the focus of deductive proof, as well as 

different institutional cultures regarding the teaching and learning of mathematics (e.g., 

Gueudet & Thomas, 2020). Upper secondary preservice teachers with mathematics as 

a subject, who in Germany typically attend courses on abstract university mathematics 

together with mathematics majors, often question the relevance of university 

mathematics (Gildehaus & Liebendörfer, 2021), feel frustrated (Göller & Gildehaus, 

2021), report a higher interest in school mathematics and a lower interest in university 

mathematics as well as in proof and formal representations than mathematics majors 

(Ufer et al., 2017). Such an interest profile predicts study demotivation and 

dissatisfaction (Kosiol et al., 2019). 

To better understand such interest profiles and preservice teachers’ affect towards 

mathematics, the present paper aims at providing a qualitative insight into their 

mathematics-specific motivation for choosing a mathematics teaching degree study 

programme and especially into the intrinsic values they associate with mathematics. 

THEORY 

Study and career choice motivations of future teachers 

Across disciplines, study and career choice motivations of future teachers have been 

frequently studied in recent years and are mostly categorised on the basis of an 

expectancy-value theory of motivation (Eccles & Wigfield, 2002; Watt et al., 2012), 

or distinguished in intrinsic, extrinsic, or altruistic motivations (Fray & Gore, 2018). 

Expectancy-value theory posits that students’ motivation for an upcoming task or here 
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study choice can be explained by their expectancy how well they will do on the tasks, 

their perceived enjoyment (intrinsic value), personal importance (attainment value), 

and usefulness for other goals (utility value) of the task as well as by perceived negative 

aspects (cost) associated with the task (Eccles & Wigfield, 2002). Table 1 shows 

typical study and career choice motivations identified and investigated this way. 

Categorisation based 

on expectancy-value 

theory 

Examples of typical study and  

career choice motivations  

(Fray & Gore, 2018; Watt et al., 2012) 

Categorisation as 

intrinsic, extrinsic, or 

altruistic motivations 

Expectancy Perceived personal abilities (regarding  

study subject or teaching abilities) 

- 

Intrinsic value Subject-specific interest, 

Pedagogical interest 

Intrinsic 

Attainment value Make social contribution, 

Help other people 

Altruistic 

Utility value High or secure salary, 

Time for family 

Extrinsic 

Cost low difficulty of study, 

social influences (advice from others) 

- 

Table 1: Examples of typical study and career choice motivations of future teachers 

and their motivation-theoretical categorisation (cf. Göller & Besser, 2021). 

Such study and career choice motivations of future teachers have proven to be an 

important predictor for individual success in university studies and profession: In 

particular intrinsic study and career choice motivations were found to correlate 

significantly with higher study strategy use, study satisfaction, learning goal 

orientation, career optimism, pedagogical knowledge, teaching quality, professional 

satisfaction, and with lower burnout symptoms (Hanfstingl & Mayr, 2007; König et 

al., 2018; McLean et al., 2019; Wach et al., 2016).  

Mathematical world views 

The before mentioned study and career choice motivations for a teaching degree 

programme apply to all study subjects and are not specific to mathematics. In the 

following, possible study and career choice motivations which take the specific nature 

of mathematics more strongly into account shall be identified. To do so, mathematical 

world views according to Grigutsch & Törner (2002) are introduced in more detail. 

They identified the following four aspects as central for peoples view and 

understanding of the nature of mathematics: 

● The process aspect emphasises the constructive character of mathematics. 

Mathematics is understood as an active process of discovery, 

experimentation, and thinking about problems. 
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● The application aspect highlights the applicability and practical use of 

mathematics for society and everyday life. 

● The formalism aspect identifies rigour, exactness, and precision as well as 

logical and objective thinking as essential for mathematics. 

● The schema aspect identifies mathematics as a “toolbox” and set of formulas 

for solving tasks. 

Process and application aspect are understood as dynamic view of mathematics. They 

identify mathematics as a problem-related discovery and understanding process 

associated to reality and real-world applications through which mathematical 

knowledge is constructed. Formalism and schema aspect are understood as static view 

of mathematics, in which mathematics is rather seen as a collection of existing 

knowledge and procedures. 

Research questions 

The present study aims at identifying mathematics-specific study and career choice 

motivations of future mathematics teachers, first focusing on possibly replicating and 

further elaborating general study choice motivations as shown in Table 1:   

● RQ1: Which mathematics-specific study and career choice motivations do 

future mathematics teachers have at the start of their university studies? 

For a deeper understanding of the specificity of mathematics, the intrinsic 

mathematics-related motivations shall be further elaborated with regard to the 

mathematical world views presented (Grigutsch & Törner, 2002): 

● RQ2: To which characteristics of mathematics respectively to which 

mathematical world views do intrinsic study choice motivations refer?  

METHODS 

To answer these questions, interview data of 13 upper secondary preservice teachers 

(11 female, 2 male) were analysed, who were interviewed about three weeks before the 

beginning of their university studies. For this study answers referring to the following 

two questions were analysed: (1) How come you decided to study for a mathematics 

teaching degree? (2) Why mathematics, what do you like about it? The data were 

analysed mixing a concept-driven (deductive) and data-driven (inductive) coding 

approach (Kuckartz, 2019). As concept-driven categories, the study choice motivations 

listed in Table 1 as well as the four presented mathematical world views (process, 

application, formalism, schema aspect) were considered. Process aspect was coded for 

passages where interviewees stated they like mathematics when discovering new 

things and puzzling over problems, application aspect when interviewees stated they 

like mathematics for its real-world applications. Formalism aspect was coded when 

interviewees stated that they like mathematics because or when it is “logic” (for them) 

and precise e.g., in the sense that there is no discussion whether a solution is right or 

wrong, schema aspect when interviewees stated they like performing calculations and 

mathematical procedures. The deductive categories of study choice motivations were 

further refined inductively considering the specifics of mathematics. 
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RESULTS 

Results for RQ1 

Regarding the motivation for choosing mathematics as study subject, all but one 

interviewed preservice teacher named their perceived mathematical abilities. These 

perceived mathematical abilities were based on good school grades, on social 

comparisons with classmates, as well as on the sense of achievement when solving 

mathematical problems (see Table 2). Sense of achievement has been shown to be an 

important basis for the enjoyment (intrinsic value) of mathematics (see next section 

and quotation in Table 2). 

Category Example quotations 

Perceived mathe-

matical abilities 

And I chose maths because, as I said, I didn’t have any problems 

with maths at some point anymore. 

- Good grades Maths and sports were always the subjects where I always got the 

best grades. And then I thought, why don’t you just study those 

subjects? 

- Social 

comparisons 

I was the only one in the class who got it and explained it to the 

others. 

- Sense of 

achievement 

The principle that you have so many experiences of achievement. 

That’s quite appealing. The school grade, I think, also plays a role. 

That was decisive for me, I’d say. 

Intrinsic value of 

mathematics 

I’ve always liked doing mathematics. 

Maths has actually been my favourite subject since grade 11. 

Utility value: Math 

teacher shortage 

I checked, what are shortage subjects? 

Maths is also in high demand. 

Cost:  

No rote learning 

With other subjects it’s just that you learn something by rote or 

follow some theories, and maths is just logical. It can be done just 

like that. 

Perceived peda-

gogical abilities  

my friends never complained when they didn’t understand maths 

and I tutored them 

Intrinsic value of 

teaching 

(mathematics) 

I do private tutoring in maths and English, and I have to say that 

maths is twice, three times, five times the fun of English, because 

you can see success right away, and that’s what I think is so 

enjoyable about it. 

Attainment value: 

help other people 

I like to impart my knowledge to other people. Especially when in 

maths, because many people find that difficult. 

Table 2: Categories and example quotations of mathematics specific expectancies and 

values motivating the choice of a mathematics teaching degree study programme. 



Göller 

PME 46 – 2023 2 - 383 

Besides mathematics-specific intrinsic values, which were mentioned by all 

interviewees, and which are elaborated in more detail in the following section, math 

teacher shortage (utility value) and the perceived absence of rote learning (low cost) 

were mentioned sporadically as mathematics-specific study choice motivations. 

Regarding the motivation for choosing a teaching degree programme all but one 

interviewee named intrinsic or attainment values such as enjoying explaining, 

imparting one’s knowledge, doing private tutoring, working with children, helping 

others, or taking responsibility for the development of learners. These are often 

mentioned in relation to mathematics however, the mathematics-specific 

characteristics are often not directly apparent. Nevertheless, there are statements in 

which the specificity of mathematics becomes more evident: For example, that 

successes are seen more immediately when teaching mathematics, or that mathematics 

teaching is attributed a special value because of learners’ difficulties with mathematics 

(see Table 2). Perceived ability seems to play a lesser role for choosing a teaching 

degree programme than for choosing mathematics as a study subject. In the following 

interview excerpt the perceived ability for teaching takes a rather prominent role in 

comparison to other interviewees. It illustrates the interplay of working with children 

(intrinsic value), perceived mathematical abilities, perceived teaching abilities, and 

advice from others which motivated choosing a mathematics teaching programme:  

And I just notice that I enjoy working with children, also in maths, because I was always 

good at it at school. And my friends never complained when they didn’t understand maths 

and I tutored them for a short time, they always said: “Wow, you explain so well, so I 

understand everything”. And at some point, during my final year, I heard from various 

people who told me that my manner and my character, the way I am, might make me a 

good teacher. [...] And I’m the kind of person who, if I think something is great, I can get 

people excited about it. So to speak, I can promote it. Then I thought, I’ll promote maths.  

Results for RQ2 

As mentioned before, the characteristics of mathematics and the mathematical world 

views associated with intrinsic study choice motivations were closely related to 

interviewed preservice teachers’ sense of achievement. The following interview 

excerpt illustrates this close relation, in this case associated with the schema aspect 

indicated e.g., by “I like calculating”:   

I’ve always liked doing it [mathematics]. As I said, only when I understood it. Because 

when I don’t understand it, I’m always very frustrated and then I get a bit angry, and then 

I don’t like it anymore. But as soon as I understand it again, I enjoy it again. […] when I 

know I can do it and I’m calculating the tasks without having any big problems, then I 

enjoy it, I like calculating. Yes, and that’s how I ended up in the maths teaching 

programme. I just liked doing it [mathematics]. 

The schema aspect was found to be dominant in 7 of the 13 preservice teachers 

mathematical world views. Figure 1 gives an impression of the interviewees’ 

mathematical world views coded in the data, depending on whether their personal 

intrinsic value of mathematics was rather related to calculating or to puzzling (schema 
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– process aspect, vertical axis), or rather to real-world applications of mathematics or 

to precise, logic inner-mathematics relationships with unambiguous right and wrong 

(application – formalism aspect, horizontal axis). 

 

Figure 1: Illustration and example quotations of the 13 preservice teacher’s 

mathematical world views. Vertical axis: schema – process aspect,  

horizontal axis: application – formalism aspect. 

The close relation of preservice teachers’ sense of achievement with their intrinsic 

values of mathematics is also reflected in the other aspects: For the process aspect, this 

is expressed, for example, through the “aha moment” in the quotation at the top left of 

Figure 1. For formalism aspect this relation is indicated by something being perceived 

as logical and thus comprehensible and controllable:  

I like its [mathematics] logic. If something is logical, then I find it nice. [...] when 

everything is so clear and you can somehow handle it really well in your head, even though 

it is so abstract, then I find that somehow a good feeling. I mean, when I understand it. 

And if you can apply it to something real, then it’s even more interesting.  

Interestingly, while “abstract” is positively connoted here by its reference to sense of 

achievement, it was often rather negatively connoted e. g., as being hard to understand 

in contrast to well understood procedures or to well imaginable mathematics content. 

DISCUSSION 

The paper gives a qualitative insight into preservice teachers’ mathematics-specific 

motivation for choosing a mathematics teaching degree study programme. While 

general study and career choice motivations of preservice teachers, as investigated in 

other studies, were replicated, the present study additionally identifies mathematics-

specific study choice motivations, such as sense of achievement, more visible success 

Schema 

aspect

Process 

aspect

Formalism 

aspect

Application 

aspect

Just what I said earlier that somehow you 

always have to puzzle, you sit and try to 

solve it. And maybe it doesn’t work right 

away, but at some point, you have this “aha”

moment. And I think that’s somehow 

exciting. [...] I think mathematics is simply 

fascinating. What kind of things there are, 

what new things you can discover.

Mathematics is actually everywhere. You 

can really apply it everywhere or to 

many things, and I’ve always been 

interested in it, and it wasn’t that difficult 

for me, so I said, “Why not maths?”

I need to know what is 

required from me, how 

I have to write it 

down. Then I can do 

it. And this was the 

beauty. Because in 

maths you know how 

an equation needs to 

be written down, you 

know how it is 

modified, with which 

rules you want to do it. 

And if it says “plus” 

that means plus. For 

me, maths is precise.

I liked everything 

where I could calculate. 

I liked that more than 

things where you only 

thought something 

through theoretically.

There were more tricky tasks. Not those 

where you just have to calculate something, 

but rather those tasks where you really have 

to puzzle. I liked those better.

maths is just 

logical

I’m interested in how you can solve tasks 

and then also find out about ways or 

methods of calculating. 
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when teaching or math teacher shortage (RQ1). All interviewees report intrinsic values 

of mathematics as a central study choice motivation, which was then examined in more 

detail (RQ2). Thereby, mathematical world views according to Grigutsch & Törner 

(2002) were found to be well suited for describing different mathematics-specific 

intrinsic values mentioned by preservice teachers.  

It is noticeable how many preservice teachers enjoyed the schema aspect of 

mathematics. Process and formalism aspects were represented rather rarely, whereby 

the formalism aspect rather occurred here in the sense of mathematics being “logic” 

(for them), with unambiguous right and wrong, since the at the time of the interview 

preservice teachers did not yet experience axiomatic mathematics. Considering the 

characteristics of university mathematics as being abstract, formal and proof-based 

(Gueudet & Thomas, 2020) such findings can contribute to explaining demotivation 

(Gildehaus & Liebendörfer, 2021; Kosiol et al., 2019) and frustration (Göller & 

Gildehaus, 2021) of preservice teachers at the beginning of their studies: For many 

preservice teachers, the aspects they have enjoyed about mathematics in school and 

because of which they have chosen their study programme are likely to be less 

emphasised at university. Accordingly, for a positive appraisal of university 

mathematics, many students have to adapt their intrinsic values or develop new ones.  

The found importance of the sense of achievement is likely to complicate the situation. 

Sense of achievement was closely linked here, e. g., with knowing what or how to 

calculate (schema aspect), or with experiencing something as logical (formalism 

aspect). Given the well-known difficulties in the transition from school to university 

(Gueudet & Thomas, 2020), it is to be expected that moments associated with a sense 

of achievement will rather decrease. Preservice teachers’ mathematics-specific 

intrinsic values and the importance of sense of achievement should be considered when 

designing university mathematics courses to support students learning on as many 

levels as possible.  

When interpreting the results, the small qualitative sample of preservice teachers from 

only one university must be taken into account. Accordingly, further studies are 

desirable that examine mathematics-specific study and career choice motivations and 

their significance for the further course of studies in more detail. 
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SELECTING DIGITAL TECHNOLGY: A REVIEW OF TPACK 

INSTRUMENTS 
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In this article, we present the results of a systematic literature review (n=196 articles) 

regarding instruments that address the digital competence of pre-service teachers. 

More precisely, we focus on existing instruments published during the time period of 

2017 to 2022, pertaining to the TPACK framework and pre-service teachers and the 

skill of “selecting digital technology”. The analysis shows, first, that the TPACK 

framework is frequently used across the world and teaching subjects for assessing 

digital competence. Second, three validated self-assessment instruments and two 

rubrics are predominantly used. The skill “selecting digital technology” is included in 

all, but one of them. Third, it can be conjectured that the distinction between skill and 

performance in assessments, less essential is as results are not reported individually. 

INTRODUCTION 

Digital technology (dT) and dT competence are important for educators, because of the 

prominence of dT in today’s society (Teo et al., 2021) and because of the affordances 

of dT in (mathematics) education (Bakker et al., 2021). Thus, it is imperative to develop 

the digital competence of educators (Tabach & Trgalová, 2020); and it is important to 

have objective and reliable instruments to measure that competence, for example to 

evaluate development processes of pre-service teachers. To provide researchers with 

an overview of such instruments, it is our goal to conduct a systematic review of the 

recent literature. For this review, we used the following three specifications. 

(1) As the frequently used TPACK (Technological Pedagogical And Content 

Knowledge) framework by Mishra and Koehler (2006) has become nearly synonymous 

with dT competence (McCulloch et al., 2021), we focus on studies specifically 

referring to TPACK. (2) Even though dT competence is important for both pre- and in-

service teachers, we concentrate this review on pre-service teachers, as their 

developmental processes are distinct from in-service teachers (Tondeur et al., 2017, p. 

3). (3) We also—because of the rapid development of dT and the number of dT 

available to educators (Handal et al., 2022, p. 200)—put an emphasis in the review on 

the skill of “selecting digital technology” (Gonscherowski & Rott, 2022). 

With these specifications in mind, we pose the following two research questions: 

RQ1: What are the current instruments, which utilize the TPACK framework, assessing 

the digital competence of pre-service teachers? 

RQ2: How do existing instruments, that use the TPACK framework, assess the skill of 

pre-services teachers to “select digital technology for an instructional setting and 

specific learning content”?  
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THEORY 

Digital competence entails knowledge, skills, beliefs or attitudes, and performance, or 

actions (OECD, 2003, p. 4). The TPACK framework by Mishra and Koehler (2006) is 

one of the frameworks—despite being a knowledge framework—which is used in 

instruments for assessing educators’ digital knowledge, performance, and skills, and 

thus digital competence. The framework is also used in self-assessment instruments, 

assessing the self-efficacy of educators digital-competence, -knowledge, -performance 

and skill. 

TPACK Framework 

The framework by Mishra and Koehler (2006) has expanded the seminal work by 

Shulman (1986) by adding the dimension of technological knowledge (TK) to the 

existing dimensions of content knowledge (CK) and pedagogical knowledge (PK). 

Thereby creating the overlapping dimensions of technological content knowledge 

(TCK), technological pedagogical knowledge (TPK), and technological pedagogical 

content knowledge (TPCK) which are described by the authors as follows. 

 “TK is knowledge about standard technologies, such as books, chalk and 

blackboard, and more advanced technologies, such as the Internet and digital 

video...” (Mishra & Koehler, 2006, pp. 1027–1028) 

 “TCK is knowledge about the manner in which technology and content are 

reciprocally related. Although technology constrains the kinds of 

representations possible, newer technologies often afford newer and more 

varied representations and greater flexibility in navigating across these 

representations...” (ibid., p 1028)  

 “TPK is knowledge of the existence, components, and capabilities of various 

technologies as they are used in teaching and learning settings, and 

conversely, knowing how teaching might change as the result of using 

particular technologies...” (ibid., p. 1028)  

 “TPCK[...]is the basis of good teaching with technology and requires an 

understanding of the representation of concepts using technologies; 

pedagogical techniques that use technologies in constructive ways to teach 

content...” (ibid., p. 1028-1029) 

For the definition of the other dimensions we refer to Mishra and Kohler (2006, p. 

1026-1027). Since its introduction, the framework has been further refined by adding 

the aspect of context. In addition, Mishra and Warr (2021) recently stated that more 

than just knowledge of tools, and instead knowledge, attitude, and skill (KAS) are 

required to successfully integrate technology in teaching, without providing further 

differentiating definitions of knowledge, skill, and attitude.  

The notion of KAS is also embraced in the competence definition by Blömeke et al. 

(2015) suggesting that dispositions, such as cognition and affect/motivation, and actual 

performance are mediated by situation-specific skills. Performance is defined as actual 

observable in-situ behavior and situation-specific skills are the amalgamation of 
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interpretation and decision making. The latter does not necessarily require actual in-

situ observable behavior, whereas the former does. Blömeke et al. (2015) further 

outline that for practical reasons a combination of assessment instruments—for 

example, knowledge-assessments in form of single/multiple choice, skill assessments 

using open-text in addition to video vignettes requiring interpretation and decision 

making—are needed to predict and develop real life in-situ observable behavior and, 

thus, competence.  

METHODOLOGY 

This systematic literature review extends the work of Scott (2021); following Scott’s 

approach, we used the search terms (“tpck”, “tpack”, “technological pedagogical 

content knowledge”). Given our focus on pre-service teachers, we added specific 

search terms (“pre-service teachers”, “teacher candidates”, “preservice teachers”, 

and/or “student teachers”) as second condition. We limited the review to the time 

period from 2017 to October 2022, because there are existing reviews covering earlier 

time periods (Scott, 2021) and because of the changing nature of dT, which requires 

recent topicality (Teo et al., 2021; Valtonen et al., 2020). As data sources we used 

ERIC (n=447), eJournals (n=152) and PSYNDEX Literature with PSYNDEX Tests 

(n=2) within EBSCO, in addition to the dataset from Scott (2021) (n=45) and the 

RR/PP/OC of the PME proceedings (n=22 of 2003). We included in the review 

qualitative, quantitative and mix-methods studies not limited by teaching subject.  

Of the qualifying records (n=668), we excluded dissertations (n=36) and records we 

could not retrieve (n=32). The remaining records (n=600) were reviewed; of those, 

records that did not include an instrument (n=194) or which solely focused on in-

service teachers/teacher educators (n=146) were excluded, as were some records for 

other reasons (n=64). The remaining records (n=196) are the basis of the analysis. 

We have grouped the studies based on the notion of KAS (Mishra & Warr, 2021) and 

the competence definition by Blömeke et al. (2015) as described in the previous 

section, into instruments which assess performances, skills, and knowledge, as well as 

self-assessment instruments of performances, skills, knowledge, and instruments 

assessing beliefs in context of TPACK.  

 (P): Performance instruments, are assessments which evaluate real-life/in-situ 

behavior of participants. 

 (S): Skill instruments, are assessments which require the interpretation of situations 

and involve decision making. These can be assessed by evaluating video-vignettes 

or text-based tasks using open-text answers or situational descriptive multiple-

choice questions. 

 (KN): Knowledge instruments, are assessments using single choice formats. 

Whereas the above definitions describe external-assessments, the following definitions 

describe self-assessments.  

 (SA): Self-assessment, requiring participants to assess their own level of proficien-

cy. This can be self-assessment of skills, knowledge, performances, or competence. 
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 (B): Beliefs instruments, are assessments of attitude towards technology, content, 

curriculum, or pedagogical strategy—teacher or learner centric. 

RESULTS 

Overview 

Figure 1 gives an overview of the records by publication date and study sample size. 

Each bubble represents one record, its size is proportional to the sample size of the 

study. Studies with a sample size greater 500 are depicted with the abbreviation for the 

assessment type—P, S, KN, B and SA and combination thereof. Please note that there 

is a time lag between the publication date and the time of the data collection in a study.  

 

Figure 1: Distribution of the TPACK studies from 2017-2022, by sample size, 

publication date and self-, skill-, knowledge- and performance assessment 

Following, we provide some descriptive perspectives of the dataset. Studies including 

a TPACK SA-instrument present the majority (n=134; 68.4%), followed by studies 

with S-assessment instruments (n=57; 29.1%) and studies with B-instruments (n=38; 

19.3%). Studies with TPACK performance-assessments (n=21; 10.7%), and KN-

assessment instruments (n=7; 3.6%) occur least frequently in the dataset. Some of the 

studies assessed digital S/KN/SA/P/B using multiple instruments for validation or to 

investigate educational variables—and thus the total number of applied instruments 

(n=257) is greater than the total number of records in the dataset (n=196). A slight 

upward trend year over year in the number of TPACK studies can be observed. Studies 

with SA-instruments have the largest sample-size (between 3 and 3530; median 179.5), 

and smaller sample sizes are seen in studies with S-assessments (between 2 and 1530; 

median 32), and studies with P-instruments have the smallest sample size (ranging 

from 1 to 74; median 18). The sample size of studies with B- (between 2 and 688; 

median 85.5) and with KN-instruments (between 4 and 117; median 49) are again small 

compared to studies with SA instruments. 
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The review has not been limited by the teaching subject; instruments were used in 

context of fourteen individual teaching subjects, whereby STEM pre-service teachers 

are included in more than half of the studies (n=122; 62.2%), and mathematics pre-

service teachers being the largest subset (n=79; 40.3%). Although the great majority of 

the studies (n=102; 52.1%) do not report the school level of the pre-service teachers, 

instruments are used for pre-service teachers of different school levels. Pre-service 

teachers for secondary schools present the largest portion of the studies (n=47; 24%), 

followed by studies with pre-service teachers for primary schools (n=36; 18.4%), and 

pre-service teachers for early-childhood education (n=8; 4.1%). Instruments using the 

TPACK framework are implemented worldwide in the assessment of pre-service 

teachers, with a prominence in Turkey (n=68; 34.7%), the USA (n=26; 13.3%), and 

Indonesia (n=13; 6.6%). Eight of the studies are country comparison studies and one 

of them being categorized as world-wide, with participants from sixteen different 

countries. The number and the sample sizes of the TPACK studies highlight its 

popularity for the assessment of digital competence of pre-service teachers—especially 

STEM and mathematics. This is aligned with the frequent use of TPACK in the 

development processes of pre-service teachers (McCulloch et al., 2021). 

Of the reviewed studies, the majority (n=134) used SA Likert-scale based TPACK 

instruments. In those studies, 39 different instruments could be identified, whereby the 

instrument by Schmidt et al. (2009) is the most frequently used (n=42), followed by 

the instruments by Kabakci Yurdakul et al. (2012) (n=14), and Sahin (2011) (n=7). Of 

the 39 different SA instruments only nine were developed in the review time period, 

and even some of those instruments refer for parts of their items, to the TPACK SA 

instrument by Schmidt et al. (2009). The studies with S-assessments (n=57) can be 

grouped by studies evaluating lesson plans (n=21), evaluating teaching artifacts 

(n=14), and studies using multiple-choice/open-text items (n=22). For the latter seven 

have published the items and the others refer to local standards or do not report their 

items. For the evaluation of lesson plans, the majority uses self-developed rubrics 

(n=12) and otherwise the rubric by Harris et al. (2010) is used multiple times (n=6) in 

addition to the rubric by Niess et al. (2009) (n=3). The latter two assess TPCK 

unidimensional on multiple performance levels. TPACK P-instruments for assessing 

microteaching activities and observations of pre-service teachers’ interactions were 

used in only a few studies (n=21). These studies predominantly used research-specific 

rubrics (n=10). The rubric by Niess et al. (2009) and the instrument by Schmidt et al. 

(2009) were adapted for the assessment of TPACK performance in one study each. 

Of the 196 studies, 53 used multiple instruments. The combination of SA&B presents 

the largest portion (n=17), and the combination of SA&S the next largest (n=15), and 

P&S assessments (n=9) the smallest sizeable group. The remaining studies (n=12) are 

various other combinations. The combination of P&S instruments, is of particular 

interest to us, because of the distinction of skill / performance, and competence 

(Blömeke et al., 2015; Tabach & Trgalová, 2020). The analysis of the nine P&S studies 

shows first, that four studies didn’t report out different assessment results for the 
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evaluation of micro-teaching (P) and lesson plans (S). Second, three studies reported 

out separate assessment results but didn’t analyze or reported out any findings in 

relation of the two. Third, one study reported separate assessment results for P&S and 

saw a positive correlation and another study had different research aims. To 

summarize, for the assessment of microteaching (P) and lesson plan evaluation (S) in 

this dataset a large portion of studies does not make a distinction between skill and 

performance, when assessing the digital-competence of pre-service teachers. This 

further supports the guidance by Blömeke et al. (2015) and Tabach and Trgalová 

(2020) as described in the beginning section of this paper. Instead of looking for 

distinct definitions of skill / performance, for the assessment of digital-competence, 

multiple instruments (and methodologies) in the development of pre-service teachers’ 

digital competence should be applied.  

Results regarding RQ2: How do existing instruments, that use the TPACK 

framework, assess the skill of pre-services teachers to “select digital technology 

for an instructional setting and specific learning content”? 

For addressing RQ2, we focused on the most frequently used instruments and rubrics 

identified in RQ1. We considered all items and definitions in the instruments and  

AX-Type Instrument/Rubric TK TCK TPK TPCK 

Self 

Schmidt et al. (2009) N N Y Y 

Sahin, (2011) N N Y Y 

Kabakci Yurdakul et al. (2012 N N N N 

Skill 
Harris et al. (2010) NA NA NA Y 

Niess et al. (2009) NA NA NA Y 

Table 1: Instruments assessing “selecting dT” by type and TPACK dimension 

rubrics which contained statements like, “I can identify” or “I can select” or “I can 

choose” in combination with technology/tool for this skill. Table 1 gives an overview 

of the instruments by assessment (AX) type. Since for performance assessments no 

particular rubric was used more than once, we did not include them in this overview. 

Table 1 shows that all but one of the frequently used SA-instruments and all of the 

frequently used S-assessment rubrics address the skill of “selecting dT”. For the SA 

instruments, it is peculiar that none of them include the skill in the TCK dimension, 

which would address the selection of dT pertaining specific to a teaching subject 

(Mishra & Koehler, 2006, p. 1028). Instead, the selection of dT pertaining to learning 

content is part of the TPCK dimension. 

CONCLUSION 

Our results show first that the TPACK framework, despite being criticized for its lack 

of specificity, is frequently used for the assessment of digital knowledge, skills, 

performance, and the self-efficacy thereof across the world and teaching subjects. 

Second, under the label of TPACK, knowledge, skill and performance of pre-service 
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teachers are assessed, although TPACK nominally only addresses knowledge. Thus we 

can conjecture that in the research community TPACK stands synonymous for digital 

competence. Third, the self-efficacy of pre-service teachers TPACK knowledge/ skill/ 

performance is most frequently assessed using validated instruments by Kabakci 

Yurdakul et al. (2012); Sahin (2011) and Schmidt et al. (2009) and for S-assessments 

the rubrics by Harris et al. (2010) and Niess et al. (2009) next to localized and subject 

specific self-developed rubrics. Fourth, the skill of “selecting dT” is not consistently 

addressed in all the instruments, but it is included in all the major instruments and thus 

the majority of the studies within the dataset. 

A limitation of the literature review stems inherently from the data sources used and 

the focus on TPACK as a framework for assessing digital competence, since there are 

other frameworks for assessing digital competence of pre-service teachers. A literature 

review and the results as presented here, are a summation and an abstraction of the 

complex and rich content provided in the reviewed studies. Lastly, we focused in RQ2 

on the skill—selecting digital technology—which however important, is only one of 

the skills (pre-service) teachers require. 
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Rational number density has been investigated through open-ended question tasks and 

multiple-choice tasks or by asking to interpolate a number between two numbers. 

However, students’ responses to these three types of tasks were not directly compared.  

The objective is to look for relationships between the three types of tasks in order to 

identify differences regarding students’ density understanding depending on the type 

of knowledge elicited. Participants were 791 primary and secondary school students. 

Results show that most of the students believed that rational numbers are discrete. 

Differences between the modes of representation are also found. Finally, interpolating 

a number between two pseudo-consecutive ones is neither a necessary nor a sufficient 

condition for students to answer that there are infinitely many intermediate numbers. 

THEORETICAL AND EMPIRICAL BACKGROUND 

Understanding the density of rational numbers is considered a stumbling block for 

primary and secondary school students (Merenluoto & Lehtinen, 2004; Vamvakoussi 

& Vosniadou, 2004), and even for undergraduates (Tirosh et al., 1999). Most of the 

difficulties have been attributed to the interference of the natural number based prior 

knowledge (Alibali & Sidney, 2015; Smith et al., 2005). While the natural number set 

is discrete (between two numbers there is a finite -possibly zero- number of numbers), 

the rational number set is dense (there is an infinite number of numbers between any 

two rational numbers). 

Ample studies showed that the idea of discreteness is a “fundamental presupposition 

which constrains students’ understanding of the structure of the set of rational 

numbers” (Vamvakoussi & Vosniadou, 2004, p. 457). Students believe that between 

two rational numbers there is only a finite (including zero) number of intermediate 

numbers. For instance, students believe that between the “pseudo-consecutive” 

fractions 5/7 and 6/7 there are no numbers, or that between 1/2 and 1/4 there is only 

one number, 1/3 (Merenluoto & Lehtinen, 2004). In decimal numbers, students think 

that there are no numbers between the “pseudo-consecutive” numbers 0.59 and 0.60, 

or that only 1.23 is between 1.22 and 1.24 (Moss & Case, 1999). Furthermore, students 

sometimes treat fractions and decimals numbers as unrelated sets of numbers, rather 

than as interchangeable representations of the same number (Khoury & Zazkis, 1994). 

Vamvakoussi and Vosniadou (2010) showed that some students believe that there are 
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only decimals numbers between two decimals numbers and fractions between two 

fractions. 

Previous studies by Vamvakoussi and Vosniadou have identified intermediate stages 

in secondary school students’ density understanding. Some of these studies used open-

ended question items (e.g., Vamvakoussi & Vosniadou, 2004). This type of task taps 

on students’ available resources, at least the ones that they employ spontaneously (i.e., 

without any guidance). For instance, students who rely heavily on natural number 

knowledge might treat the given numbers as endpoints of a segment of the natural 

number sequence (responding that there is no other number between 2.1 and 2.2, or 

only three numbers between 2.1 and 2.5), or students might be able to interpolate more 

numbers, using transformation strategies, such as converting 2.1 and 2.2 to 2.10 and 

2.20, respectively and they might or might not realize that this process is repeatable, 

thereby coming to understand density. It is also possible that some students have some 

experience with similar tasks and recall the correct answer (“there are infinitely many 

numbers in between”). Other studies used multiple-choice items (e.g., Vamvakoussi & 

Vosniadou, 2010). This type of task is typically facilitating for students, because they 

present the correct answer among a number of “naïve” and “less naïve” answers. This 

might prompt students to think of more sophisticated strategies or recall the correct 

answer. Finally, other studies asked students to interpolate (write) a number between 

two “pseudo-consecutive” numbers (e.g., Van Hoof et al., 2015). Such items require 

students to show whether they do have a strategy available to produce one number 

between two “pseudo-consecutive” numbers, if specifically asked to. Such strategies 

arguably constitute a possible necessary first step in the process of understanding the 

infinity of intermediates in an interval.  

Although all these three types of tasks have been used to investigate students’ 

understanding of density, to the best of our knowledge, no study has directly compared 

students’ responses across tasks. This is the purpose of this study: We aimed at 

investigating whether the task format (open-ended or multiple-choice) makes a 

difference in students’ responses; and whether being able to interpolate one number 

between two (pseudo-consecutive) ones is indeed a necessary condition for students to 

answer that there are infinitely many intermediates in an interval. 

Identifying various ways of (not or not completely) understanding density  

The current research aims at identifying differences in density understanding, by using 

the aforementioned variety of task types. It is part of a larger quantitative study with 

953 Spanish primary and secondary school students.  

The students in our sample answered a paper-and-pencil test composed of 13 items 

(González-Forte et al., 2022): three write items, six question items, and four multiple-

choice items. In write items students had to write a number between two given rational 

numbers (between 3.49 and 3.50; 1/3 and 2/3; 1/8 and 1/9). In question items students 

had to answer the question how many numbers there are between two given rational 

numbers (1.42 and 1.43; 1.9 and 1.40; 2.3 and 2.6; 2/5 and 3/5; 2/5 and 4/5; 5/9 and 
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5/6). In multiple-choice items students had to answer the question how many numbers 

there are between two given rational numbers (3.72 and 3.73; 0.7 and 0.9; 1/3 and 2/3; 

1/6 and 4/6), choosing one out of the seven answers offered, including the correct 

answer. Multiple-choice items were always at the end of each test since the word 

“infinite” appears and can help them to correctly solve the other items  

Since the three types of tasks may elicit different response profiles in students, a cluster 

analysis per task was performed (González-Forte et al., 2022). In the write items, six 

profiles were identified: Students who considered that it was impossible to write a 

number between two pseudo-consecutive numbers (called Naïve). Students who 

considered that it was impossible to write a number between two pseudo-consecutive 

decimal numbers, but in fractions answered in a naïve consecutive way (i.e., 1/4 is 

between 1/3 and 2/3) (Fraction consecutive). Students who correctly wrote a number 

between two pseudo-consecutive decimals, and in fractions i) considered that it was 

impossible to write a number between two pseudo-consecutive fractions (Correct 

decimals fraction naïve); ii) answered in a naïve consecutive way (Correct decimals 

fraction consecutive); iii) correctly wrote a number between two pseudo-consecutive 

fractions with the same denominator, but in fractions with the same numerator, they 

considered that it was impossible to write a number (Almost correct). Students who 

correctly wrote a number between two pseudo-consecutive numbers (Correct). 

In the question items, seven profiles were identified: Students who considered that 

there was no other number between two pseudo-consecutive numbers, and that there 

was a finite number of numbers between two non-pseudo-consecutive numbers 

(Naïve). Students who considered that there was no other number between two pseudo-

consecutive fractions, and between two pseudo and non-pseudo-consecutive decimals 

i) considered that there was a finite number of numbers (Decimal finiters), ii) 

calculated the difference (Decimal differencers), iii) considered that there was an 

infinite number of numbers (Correct decimals fraction naïve). Students who 

considered that there was a finite number of numbers between two pseudo and non-

pseudo-consecutive decimals and fractions (Finiters). Students who considered that 

there was an infinite number of numbers between two different fractions and two 

different decimals (Correct). Students with a generally low performance in all items 

who provided answers without any pattern (Rest). 

In the multiple-choice items, nine profiles were identified: Students who considered 

that there were no numbers between two pseudo-consecutive numbers, and that there 

was a finite number of numbers between two non-pseudo-consecutive numbers 

(Naïve). Students who considered that there were no numbers between two pseudo-

consecutive decimals, and a finite number of decimals between two non-pseudo-

consecutive decimals, but in fractions considered that there was a finite number of 

fractions between two different fractions (Decimal naïve fraction finiters). Students 

who considered that there was a finite number of numbers between two different 

fractions and two different decimal numbers (Finiters). Students who considered that 

there was an infinite number of decimals between two different decimal numbers, and 
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between two different fractions i) considered that there were no numbers between two 

pseudo-consecutive fractions, and a finite number of fractions between two non-

pseudo-consecutive fractions (Decimal infiniters fraction naïve), ii) considered that 

there was an infinite number of decimals (Decimal infiniters), iii) considered that there 

was an infinite number of fractions (Infiniters), iv) considered that there was an infinite 

number of numbers that could be represented by several different representations, such 

as decimals and fractions (Decimal infiniters correct fractions). Students who 

considered that between two different fractions and two different decimals there was 

an infinite number of numbers that can be represented by several different 

representations, such as decimals and fractions (Correct). Students with a generally 

low performance in all items who provided answers without any pattern (Rest). 

RESEARCH GOAL 

The three types of tasks elicit different knowledge about density: actively producing 

the statement that “there are infinite numbers” (question items), recognizing the correct 

answer (multiple-choice items) and having procedures to find an intermediate number 

(perhaps while knowing that there are infinitely many) (write items). However, so far 

students’ responses to these three types of tasks were not directly compared. Therefore, 

the aim of this study is to look for relationships between the three types of tasks in 

order to identify differences regarding students’ density understanding depending on 

the type of knowledge elicited. 

METHOD 

The final sample on which this study is based consists of 791 primary (5th and 6th grade) 

and secondary school students (from 7th to 10th grade). We did not include the 162 

students who belonged to the “Rest” profile in question items (see above), as they 

performed so low in these items and their responses lacked any pattern, which made us 

conclude that it would be difficult and not meaningful to identify relationships with 

respect their performance on the other item types.  

To compare among tasks, we categorized the profiles in broader categories looking for 

common characteristics (see Table 1). First, we categorized the profiles obtained in 

question and multiple-choice items looking at students’ consistency in providing 

“infinitely many intermediates” or “a finite number, possibly zero, of intermediates” 

answers across items. Four categories were identified: FIN: students who consistently 

answered that there is a finite number (possibly zero) of intermediate numbers within 

task. D-INF/F-FIN: students who consistently answered that there are infinitely many 

intermediates between decimals, but a finite number between fractions. FIN/INF: 

students who provided “finite” and “infinite” responses within task, without following 

any recognizable pattern with respect to the type of the endpoints (i.e., decimals, or 

fractions). INF: students who consistently responded that there are infinitely many 

intermediates within task.  

As far as the write items is concerned, we categorized profiles in four possible 

categories: D & F correct: to correctly interpolate a number between decimals as well 
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as fractions. Only D correct: to correctly interpolate a number only between decimals. 

Only F correct: to correctly interpolate a number only between fractions. This 

alternative was not present in our findings. D & F none or incorrect: to incorrectly 

interpolate a number, or not to be able to interpolate at all (by answering "impossible"), 

for decimals as well as for fractions. 

Item Profile Category 

Q
u
es

ti
o
n

 

Naïve  

Decimal differencers 
FIN 

Decimal finiters 

Finiters  

Correct decimals fraction naïve D-INF/F-FIN 

Correct INF 

M
u
lt

ip
le

-c
h
o
ic

e 

Naïve  

Decimal naïve fraction finiters FIN 

Finiters  

Decimal infiniters fraction naïve D-INF/F-FIN 

Rest FIN/INF 

Infiniters 

INF Decimal infiniters 

Decimal infiniters correct fractions 

Correct  

W
ri

te
 

Naïve 
D & F none or incorrect 

Fraction consecutive 

Correct decimals fraction naïve 

Only D correct Correct decimals fraction consecutive 

Almost correct 

Correct D & F correct 

Table 1: Broader categories identified 

RESULTS 

Table 2 presents the four general groups identified.  

Table 2: Summary of the four general groups identified 
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Item 
Group 

1 2 3 4 

Question  FIN FIN D-INF, F-FIN INF 

Multiple-

choice 

 FIN FIN/INF FIN/INF INF 

Write D & F correct 4 (1.62%) 8 (2.95%) 2 (2.56%) 56 (28.72%) 

Only D 

correct 

72 (29.15%) 127 (46.86%) 71 (91.03%) 131 (67.18%) 

D & F none 

or incorrect 

171 (69.23%) 136 (50.18%) 5 (6.41%) 8 (4.10%) 

 Total 247 271 78 195 

Group 1: Naïve (n = 247, 31.2%): Students who provided FIN answers consistently 

across multiple-choice and question items. The great majority of students in this group 

could not interpolate a number, neither between decimals nor between fractions. About 

one third of the students correctly interpolated a number between decimals; and four 

students correctly interpolated a number between decimals and fractions.  

Group 2: Question items-Finiters (n = 271, 34.3%): Students who consistently 

provided FIN answers in question items and provided some “infinitely many 

intermediates” answers in some, but not all multiple-choice items. This group was 

better in interpolating (at least between decimals) than Group 1 students – still half of 

them were not able to interpolate neither between decimals, nor between fractions. 

Group 3:  Question items-Decimal Infiniters (n = 78, 9.9%): Students who gave INF 

answers for decimals but FIN answers for fractions in question items. Some of these 

students retained this response pattern in multiple-choice items, while others provided 

a mixture of FIN and INF answers. The great majority of Group 3 students were able 

to interpolate a number between decimals, but not between fractions.   

Group 4: Advanced (n = 195, 24.6%): Students who provided INF answers in 

question items, and the majority of students (n = 178) also gave INF answers in all 

multiple-choice items. Within this (advanced) group, there are two interesting 

subgroups depending on how they solved the write items: 

 Group 4.1: Write items-Infiniters (n = 56): Students who provided correct 

answers both in question and write items. These students answered that there are 

infinitely many numbers between two different fractions and two different 

decimal numbers and were able to correctly interpolate a number between them. 

 Group 4.2: Write items-Decimal infiniters (n = 139): Students who provided 

correct answers in question items, but in write items, the majority (n = 131) could 

interpolate a number only between decimals. There are 8 students who, despite 

answering consistently that there are “infinitely many intermediates” in question 

as well as multiple-choice items, answered “impossible” in the write items. 
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DISCUSSION AND CONCLUSIONS 

Comparing students’ responses across three different tasks has provided some 

interesting findings beyond those found through assigning students to different profiles 

per task (González-Forte et al., 2022). Firstly, we could induce the existence of four 

different groups of students according to the way they have answered the three different 

tasks. A first major finding when looking at these groups’ characteristics, is that the 

great majority of students consistently provided FIN answers in question items (Groups 

1 and 2: n = 518). That is, when being asked in an open question how many numbers 

there are between two different fractions or decimals numbers, most of the primary and 

secondary school students answered that there is a finite (possibly zero) number of 

intermediates. There was a big group of students (Group 1, n = 247) who retained this 

response pattern also in the multiple-choice items, indicating that they were confident 

enough with their response to ignore the presence of more sophisticated options. A 

somewhat larger group (Group 2, n = 271) provided (some) “infinitely many 

intermediates” answers in the multiple-choice task, indicating that they recognized or 

recalled the correct answer.  Group 1 and Group 2 students performed generally poorly 

in the write task. Still about one third and half of the students in Group 1 and 2, 

respectively, were able to interpolate a number between decimals, apparently without 

realizing that this process is repeatable, which could give them the insight about 

density. 

It should be noted that being more competent with interpolating a number between 

decimals than between fractions was present across groups.  This is clearly evident for   

Group 3 (n = 78). Interestingly, these students consistently answered “infinitely many 

intermediates” for decimals, but “a finite number or intermediates” for fractions in 

question items. Half of them persisted in answering the same in the multiple-choice 

task, despite having the correct answer as an option. It is possible that some students 

of Group 3 had realized that the process of interpolation can be repeated ad infinitum 

for decimals. In any case, these students had not realized that decimals and fractions 

are different representations of the same numbers, rather than different numbers 

(Vamvakoussi & Vosniadou, 2010).   

Finally, students in Group 4 (n = 195) consistently answered that “there are infinitely 

many intermediates” in question and multiple-choice tasks and they also performed 

better in the write tasks, compared to all previous groups. Still, only a subgroup of 

these students (Group 4.1, n = 56) was able to interpolate a number between decimals 

as well as fractions.  

It thus appears that the competence to interpolate one number between two given 

(pseudo-consecutive) ones is neither a necessary nor a sufficient condition for students 

to answer that there are infinitely many intermediate numbers (or choose this answer). 

The latter is not surprising, since interpolating one number does not lead to the 

realization that there are, in fact, infinitely many numbers, unless one also realizes that 

this process is repeatable. The interesting finding is that students may provide 
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“infinitely many” answers and still not have the necessary competencies to produce 

intermediate numbers. This could indicate that they merely recall (in open-ended tasks) 

or recognize (in multiple-choice tasks) the correct answer. Therefore, we should not 

overinterpret what learners really understand about density if they respond correctly to 

multiple-choice items or question items (items often used in previous research), as in 

other types of items that elicit other knowledge, they still show a lack of understanding. 
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“THIS IS CLEARLY INCORRECT, WHY DOES IT WORK?”:  

ON DIVISION OF FRACTIONS AND CONTINGENCY 

Canan Güneş, Andrew Kercher snd Rina Zazkis 

Simon Fraser University 

 

This paper reports a breaching experiment conducted to examine a teacher’s 

spontaneous response to a hypothetical student’s non-traditional solution strategy for 

dividing fractions. The student’s work was presented to the teacher during a semi-

structured interview. The teacher’s response was analysed by drawing on components 

of the Knowledge Quartet. The findings suggest additional refinement of the framework 

in considering correct but unexpected solutions. 

INTRODUCTION 

Mathematical problems can be solved in different ways and curriculum documents 

often encourage teachers to promote students’ use of multiple strategies. However, it 

is unclear how teachers follow this guidance when student-generated methods are 

unfamiliar to them. Researchers (e.g., Son & Crespo, 2009) highlight the importance 

of investigating this question. We continue this line of investigation by exploring how 

teachers respond to a student’s alternative algorithm for dividing fractions. 

There are various ways to carry out division by a fraction. In a common algorithm, 

division is replaced by multiplication and the divisor is replaced by its reciprocal. This 

strategy is often introduced to learners without a proper explanation (Borko et al., 

1992) despite the fact that several justifications exist (see Son & Crespo, 2009, for a 

partial list). However, even when an explanation is provided, what remains in one’s 

memory is the “invert and multiply” strategy, not the reason or explanation for it. As a 

result, this strategy is often perceived by learners only as a rule that must be followed. 

However, division of fractions can also be carried out by dividing numerators and 

denominators separately, that is, 

𝑎

𝑏
÷

𝑐

𝑑
 = 

𝑎 ÷ 𝑐

𝑏 ÷ 𝑑
 

This alternative method for division of fractions (AMDF), while easily verified as 

correct computationally and algebraically, often leaves people with a sense of disbelief. 

When the AMDF was first presented to prospective teachers, a majority of respondents 

incorrectly considered it to be an error (Tirosh, 2000). Even when this misconception 

was addressed via instructional interventions, participants still expressed a strong 

preference towards the “standard” algorithm. Further, Son and Crespo (2009) invited 

prospective teachers to respond to a scenario related to teaching division of fractions. 

In this scenario, the AMDF was presented by a student, but then rejected by another 

student on the grounds that it was not the way “we are supposed to divide fractions”. 

The authors investigated how “teachers reason and respond to a particular student’s 
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non-traditional strategy for division of fractions,” (p. 243) by analysing teachers’ 

written responses related to the validity and generality of the AMDF. 

We agree that responding to a teaching-scenario task might simulate “how 

mathematical work arises in the context of teaching” (Son & Crespo, 2009, p. 243). 

However, we anticipated that the teachers’ written responses to prompts may not have 

captured elements of the teachers’ spontaneous reaction. Therefore, we introduced the 

AMDF to an in-service teacher during an interview to elicit the teacher’s spontaneous 

response to a student work. 

THEORETICAL FRAMING: KNOWLEDGE QUARTET 

Our analysis was guided by the Knowledge Quartet framework (Rowland et al., 2005) 

that categorizes the ways a teacher brings mathematical subject knowledge into play. 

The Knowledge Quartet (KQ) includes four elements: foundation, transformation, 

connection, and contingency. Foundational knowledge refers to a teacher’s 

knowledge-in-possession, while the other elements refer to a teacher’s knowledge-in-

action—the specific ways in which teachers may leverage their foundational 

knowledge to prepare for and conduct teaching. Transformation and connection are a 

teachers’ planned actions, contemplated prior to the lesson. In contrast, contingency 

refers to a teachers’ spontaneous actions in response to an unexpected situation that 

concerns the teaching and learning of mathematics. These latter three elements of the 

KQ are especially relevant to our work and are elaborated upon below. 

Contingency could be triggered by either students or by the teachers themselves 

(Rowland et al.,2015). Students’ unexpected responses to a mathematical question or 

activity could require spontaneous teacher actions. Teachers might also deviate from 

their lesson plans when they realize that something in their instruction requires a 

change, for example, when they realize that a student’s response that they initially 

evaluated as correct is actually wrong. According to  Rowland et al. (2015), teachers 

may respond to an unexpected student response in three ways: (1) by ignoring the 

student response or by dismissing it as “wrong” immediately; (2) by attending to the 

student’s work, but doing so in such a way that no clear conclusion about its validity 

can be made; (3) by integrating the student’s idea into the main mathematical activity 

so that other students can also incorporate that idea into their mathematical knowledge. 

Connection is revealed in teachers’ practice when they aim for coherence within a 

lesson or across a series of lessons. Connection is demonstrated through linking 

different meanings, descriptions, and representations of mathematical concepts or 

procedures; anticipating the cognitive demand, complexity, or appropriateness of a 

concept; and ordering tasks and exercises to sequence instructions within and between 

lessons. 

Transformation concerns the ways teachers make their own foundational knowledge 

accessible to students. This is often accomplished through explaining concepts, 

demonstrating procedures, confronting and resolving misconceptions, justifying or 

refuting mathematical conjectures, and engaging students with exercise/practice. 
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Transformation is revealed in teachers’ deliberate choice and use of examples, 

analogies, and/or representations. 

While the elements of the KQ are described separately, a specific teacher action may 

relate to more than one element. For example, while responding to a contingent event, 

a teacher can make a connection between the student’s ideas and the previous topics. 

Considering this relationship, our investigation addressed the following research 

questions: In a teacher’s encounter with an unfamiliar algorithm, what triggers 

contingency? How does the teacher respond? 

METHODS 

Breaching Experiment 

A breaching experiment (Garfinkel & Sacks, 1986) is an ethnomethodological 

approach for making explicit the underlying norms of everyday social settings. In a 

breaching experiment, an individual engages in behaviors contrary to the anticipated 

norms of a particular setting in order to observe and analyse the reactions of affected 

social actors.  

In teacher education, this method has been used to breach proving norms (Herbst et al., 

2016) and solution methods of a linear equation (Chazan et al., 2018). Our study is a 

breaching experiment in that the AMDF is not a normative algorithm for solving 

fraction division. By presenting the AMDF to a teacher as part of a hypothetical 

students’ work, we aimed to explore the teacher’s spontaneous response to the 

unfamiliar non-traditional student strategy. 

Participant and Interview Protocol 

As part of a larger study, in this report we focus on a semi-structured interview with 

Valeria (pseudonym), an elementary school teacher with over five years of teaching 

experience. During the interview, the teacher was shown the same student’s work at 

two different points in time. First, the student was depicted using only the AMDF to 

solve the 2nd, 5th and 6th problems (Fig. 1a). Valeria was asked how she would 

respond to this work, after teaching multiplication and division of fractions. Then, the 

student was shown using the standard algorithm on problem 1 (Fig. 1b). Valeria was 

asked again to explain her response to the student’s work. Our aim in presenting these 

two situations was to explore how a teacher responds to the same student’s work when 

additional information becomes available. Initially it is unclear whether the student 

knows the standard algorithm. Then student is depicted as knowing both the standard 

and the alternative algorithm. 
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(a) 

    

(b) 

Figure 1: Pages from a hypothetical student’s notebook 

Data Analysis 

We read the transcribed interview several times, separately coded the teacher’s 

responses by drawing on the elements of the KQ, and compared our codes until full 

agreement was reached. 

Based on Rowland et al. (2015), we identified contingency as an unsettling event 

preventing a teacher from “making a surefooted and confident response at a time” (p. 

76). To identify contingency, we focused on Valeria’s explicit and implicit references 

to her experience of an unpredictable incident. For example, her statements that 

included words like “surprise” or that referred to her unfamiliarity were identified as 

evidence of a contingent situation. Valeria’s evaluation of the algorithm first as wrong 

and then as right, or her reflections on her own thinking about fraction division, as well 

as long pauses and certain exclamations, also helped us identify Valeria’s experience 

of contingency. 

FINDINGS 

This section presents the shift in the teacher’s responses to a hypothetical student’s 

work. We first highlight the trigger of contingency and then explicate how the 

transformation and connection dimensions of the KQ are revealed in the teachers’ 

response to the contingent event. 

At the beginning of the interview, Valeria interprets the student’s work (Fig. 1a) as a 

misconception related to the meaning of fraction. According to her, the fact that “they 

just basically divide the top number by the top number and then bottom number by the 
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bottom number” is evidence that the student perceives fractions as two separate whole 

numbers which do not have a relationship. In response, Valeria plans on reteaching the 

meaning of fraction rather than focusing on division: 

I feel that, in this case, I would feel it would be too soon for that student, developmentally, 

to learn about division of fractions. Let alone – I feel like they're not even ready to do 

operations with fractions of any kind. Because they lack conceptual understanding of what 

a fraction is. So, I would go to the very beginning, and I would try to distinguish between 

a whole number and I would try to – just, explaining to students what fraction is, is already 

quite difficult. 

In this episode, we did not identify any unsettling incident experienced by the teacher 

upon encountering the student’s work. The teacher seems to be surefooted in her 

interpretation of the student’s work and her choice of appropriate teacher moves. 

Therefore, this initial response—disregarding the student’s algorithm as a product of 

misconception—did not reveal contingency. 

After seeing the subsequent student work (Fig. 1b) Valeria initially attributes the 

student’s work to the memorization of the standard algorithm and its application 

without understanding. Immediately after, her account indicates an insight about a 

different interpretation of the student work that she quickly disregards: 

1 V: Although... now that I'm thinking. Maybe actually it is the other way 
around. Maybe... [long pause]. Um. Nope. I think that's pretty much what 
it is. They've memorized the algorithm and they are good with multiplying 
whole numbers, so that's what they did. 

After the interviewer prompts her to unpack her insight and solve the second division 

problem by using the standard algorithm, she concludes that the AMDF provides a 

correct result: 

2 I: You also said that now I'm thinking that maybe this is the way around. What 
were you thinking when you said that? What made you think...? 

3 V: For a quick second I wanted to double check that, is it possible that this 
student already knows the invert and multiply algorithm and just is applying 
it skipping a step? 

4 I: Can you show it? 

  […]  

5 V: That would be 60, and 32 times 3…Oh, did I say sixty...? [mumbling, long 
pause] Oh! Oh, what's going on here? [pause] I don't understand. This is 
clearly incorrect, why does it work? [pause] 

6 I:  Is there a relationship between this one [the AMDF] and this one [the 
standard algorithm] here? 

7 V:  Well, judging by the results—yes! […] if I invert and multiply here that 
would be 15 times 4. So I just uninvert? Is that's what's happening? 

While examining the student’s work, Valeria suspects that there is a relationship 

between the AMDF and the standard algorithm. She discovers that the AMDF, which 

she initially interpreted as a misconception, actually “works”. This discovery puzzles 
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her. The long pauses, the questions she asks and her exclamatory reactions [line 5 and 

7] suggest that Valeria experiences an unexpected and unsettling incident. The 

presented algorithm challenges her knowledge about fraction division, triggering a 

situation of contingency. The trigger seems to be the teacher’s awareness that 

something she thought was wrong is actually correct. 

This new algorithm also challenges her previous response to the student work. Valeria 

continues by questioning her conventional approach. 

If I saw a kid trying to do this, I would stop them! I would say, wait wait wait wait wait. 

You don't want to do that, you're just dividing whole numbers. You need to divide the 

whole fraction. But then again, it works! So why would I want to stop them? Why would 

I want to teach them an extra step that is completely unnecessary, that utilizes a different 

operation that I'm not even interested in teaching? I want to teach division, not 

multiplication right now. So why would I want to distract them from the division, into 

multiplication, when division works!? AUGH. 

The questions in this excerpt indicate Valeria’s uncertainty about how to respond to 

the AMDF. In her reflections, she first considers rejecting the student’s response and 

teaching the standard algorithm. Immediately after, she problematizes her traditional 

approach to fraction division. This lack of confidence seems to be related to the 

coherence of her instruction. For her, the focus should be only on division while 

teaching division. Therefore, introducing another operation, multiplication, would be 

not only unnecessary but also inappropriate as it may distract the student’s attention 

from the focus of the instruction. Thus, her account reveals a recognition of conceptual 

appropriateness which is an element of connection in the KQ. 

After questioning the need for the standard algorithm, Valeria solves problem 1 using 

the AMDF. In doing so, Valeria confirms that the AMDF produces correct solutions. 

She also notices that, when the numerators or denominators are not divisible by each 

other, applying the AMDF can be more difficult than the standard algorithm. Then the 

interviewer asks Valeria what she would think if she saw a student using both methods, 

as in Fig. 1b. Her response indicates her intention to incorporate the student’s response 

into her lesson and to dismiss the standard algorithm: 

I want to throw away the invert and multiply algorithm. Why do we need it at all? …If 

there is a reason of the way and the algorithm is just to save time, at the expense of 

understanding, why do we need it? Instead of giving them a worksheet of 20 questions, 

just work with this one [the first problem]. […] There's a whole lot of patterning happening 

here. I could probably spend an hour trying to figure out why this is so and this is that and 

where the connections and where the relationships and it would be a worthwhile lesson 

just to do that. Look at the relationships, look at the connections. Why is this, why is that 

and who needs the algorithm. 

Valeria’s response to the unexpected student work reveals two elements of the KQ: 

transformation and connection. We identified the element of connection in Valeria’s 

attempt to prompt students to explore the relationship between the standard algorithm 

and the AMDF.  We identified the element of transformation in Valeria’s rethinking of 
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her instruction by changing the amount, content, and purpose of the examples she 

would introduce to students. Instead of assigning numerous division questions to 

students through a worksheet as individual practice, she intends to incorporate one 

specific question into the classroom discussion to help students relate the two 

algorithms to each other. Through this connection, she seems to justify the conjecture 

she poses [lines 3 and 7]: the standard algorithm and the AMDF are the same, the 

former showing extra steps. At the end, she refers back to her question about the need 

for using the standard algorithm indicating its dismissal once more. 

DISCUSSION, CONTRIBUTIONS AND CONCLUSIONS 

The findings demonstrate that Valeria’s realization that the AMDF is correct triggered 

contingency. Then, her response to the contingent event revealed transformation and 

connection. Even though at the time of the interview Valeria did not explicitly explain 

the relationship between the standard algorithm and the AMDF, the specific ways she 

planned to integrate the AMDF into her teaching have potential to engage students with 

a meaningful mathematical activity which may eventually result in the discovery of the 

mathematical relationship. 

This study contributes to the literature in three ways. Firstly, we expand the 

applicability of the KQ. Rowland et al. (2005, 2015) used this framework to analyse 

classroom events which unfold based on teachers’ prior planning. We used it in the 

analysis of a teacher’s potential teaching which spontaneously emerged as she 

described it an interview. Secondly, we expand Rowland et al.’s (2015) categorizations 

of triggers of contingency. Thirdly, we provide a further refinement related to teachers’ 

responses to unexpected incidents. The last two contributions address the remark made 

in Rowland et al. (2015) that the provided categorization is not complete and thus has 

potential to be expanded. 

Our findings show that Valeria’s awareness that a student’s work is actually correct 

unsettled her, challenged her previous response to the AMDF and triggered 

contingency. This type of trigger is different from Rowland et al. (2015), where the 

contingency resulted from teachers’ awareness that a student’s work was actually 

wrong. However, if Valeria had not seen the student work in Fig 1b, she may have not 

had such an insight. Therefore, we argue that Valeria’s unfamiliarity with the AMDF, 

the extent of information she can access about student thinking, and this new type of 

teacher insight all together played a role in triggering contingency. 

Valeria’s realization of her initial misevaluation of the algorithm might be interpreted 

as the teacher’s identification of a mistake about her teaching as in Rowland et al. 

(2015). However, we argue that it is important to distinguish the types of mistakes that 

trigger contingency. In Rowland et al. (2015), the teacher’s mistake was agreeing with 

a mathematically wrong statement. In our findings, the mistake was disagreeing with 

a mathematically correct statement. 

Valeria’s specific response to the contingent event also illustrates a nuance in Rowland 

et al.’s (2015) categorization of teacher responses which included ignoring, putting 



Güneş, Kercher & Zazkis 

2 - 410 PME 46 – 2023 

aside, and incorporating. Similar to the move of incorporating, Valeria considered 

integrating the unexpected student answer into her instruction; yet in doing so, she also 

dismissed teaching the standard algorithm. This finding is in discord with Tirosh 

(2000), which showed pre-service teachers’ tendency to prefer the standard algorithm 

over the AMDF. This difference may be explained by the fact that teachers’ 

professional obligations might influence their instructional decisions (Herbst et al., 

2016), but this requires further investigation. Future research will focus on the role of 

teachers’ knowledge and professional obligations in their responses to unexpected 

student work. We believe that the categorization of teachers’ responses to student-

triggered contingent events has potential to expand further according to the teachers’ 

professional positions. 
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INTRODUCTION 

Intuitive conceptions refer to knowledge that is acquired with little or no effort, no 

teaching and which is not necessarily aligned with the culturally and scientifically 

accepted notions (Carey, 2000; Fischbein, 1987; Shtulman, 2017; Vosniadou, 2017). 

They can be entry points for acquiring new knowledge, but they also act as constraints 

that impose their entailments in newly encountered situations leading to errors 

(Hofstadter & Sander, 2013). In the current study, we explore how robust intuitive 

conceptions are, among adults and high-school teachers. By extensively documenting, 

through all four arithmetic operations, the scope to which intuitive conceptions are 

influential among the adult and teacher population valuable information can be 

provided for developing teacher training programs and school interventions that foster 

conceptual change among students. 

Intuitive conceptions of elementary arithmetic operations 

Even though mathematics constitutes a coherent body of scientific knowledge, it 

remains an essentially human activity in which formal mathematics can be 

distinguished from intuitive mathematics (Fischbein, 1993): some tacit models 

substitute for a complex, abstract notion, imposing their properties and constraints 

(Fischbein, 1989). Namely, when there is a conflict between intuitive and formal 

components, an epistemological obstacle emerges leading to misconceptions and 

systematic mistakes (Hofstadter & Sander, 2013; Shtulman, 2017).  

Both Fischbein (1989) in his theory of tacit models and Lakoff and Núñez (2000) in 

their conceptual metaphor approach identify the prominent intuitive conception of 

subtraction as taking away. This can hinder young students when solving a problem 

such as  ‘4 + ? = 17’, because they will perceive it as a situation in which one can find 

the answer by looking for a missing addend and will not use a subtraction (De Corte & 

Verschaffel, 1996; Selter, et al., 2012; Usiskin, 2008; Brissiaud & Sander, 2010).  

As for addition, the grounding metaphors of arithmetic proposed by Lakoff and Núñez 

(2000) entail an intuitive conception of addition as putting together. Yet, this 

conception of addition does not lead to appropriate inferences in all additive situations 

(Sophian, 2008; Usiskin, 2008). For instance, the word problems such as “Joe had some 

marbles. Then Tom gave him 5 more marbles. Now Joe has 8 marbles. How many 

marbles did Joe have in the beginning?”, whose answer should be found by using an 

addition, is particularly hard for students at the beginning of primary school. Indeed, 
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when manipulating objects, it is only 28% of first grade students who succeed in 

solving such a problem (Riley et al., 1983) 

The intuitive conception of multiplication as a repeated addition (Fischbein, 1987). 

This entails that intuitively multiplication is considered to ‘make bigger’. Yet, when 

one multiplies with a decimal number smaller than one, then multiplication actually 

makes the initial quantity smaller. If one therefore sticks to the intuitive conception, 

multiplication involving a decimal smaller than one or a negative number has no 

intuitive meaning. It also constrains the possibility of multiplication to be understood 

as a commutative operation (Bell et al., 1981; Fischbein et al. 1985).  

As for division, Fischbein et al. (1985) identified sharing as an intuitive conception, 

which considers that division splits an object into equal parts and what needs to be 

found is the size of each part. This partitive conception of division sees division as 

‘making smaller’ since each fragment would be smaller than the initial quantity. If 

dividing is assimilated with partitioning, it entails that the divisor must be smaller than 

the dividend and must be a whole number, and that the result must be smaller than the 

dividend. However, the latter is not the case if the divisor is a positive number smaller 

than one. 

Persistence of intuitive conceptions 

Educational interventions should strive to take intuitive conceptions into account and 

achieve a conceptual change (Vosniadou, 2017). Interestingly, they continue to be 

influential across various domains among adults (Shtulman & Valcarel, 2012). When 

it comes to arithmetic operations, even adults can be influenced by the inferences 

entailed by the intuitive conceptions.  

For instance, in one study, adults were presented with mathematical statements and 

their outcomes, either true (e.g. “5+2x can be greater than 5”), or false (e.g. “1+10t is 

always greater than 1”) (Vamvakoussi et al., 2013). What was manipulated 

experimentally was the congruency of the response with the assumed intuitive 

conception. The statement “5+2x can be greater than 5” was considered congruent 

since the response based on the intuition that addition makes bigger would lead to a 

correct judgment of the statement being true, while the statement “1+10t is always 

greater than 1” was considered incongruent since the same intuition would lead to an 

incorrect judgment of the statement being true. The results showed that adults made 

fewer correct judgments on incongruent statements (75%-81%) than congruent 

statements (98%-99%), but also among the correct responses, participants took longer 

to make this correct judgment.   

Another study presented pre-service teachers with quotative and partitive division 

word problems (Tirosh & Graeber, 1991). Half of the problems contained numerical 

values that respected the constraints imposed by the intuitive conception. The other 

half of the problems violated the constraint. Additionally, participants were presented 

with four numerical division statements (e.g. 6 ÷ 3), half of which violated the 

constraints of the intuitive conception (e.g. 2 ÷ 6). On average, pre-service teachers 
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had significantly higher performance when solving problems congruent with the 

intuitive conception (80.62%) than problems incongruent with the intuitive conception 

(56.5%), and overall they also had significantly more success on problems whose 

numerical values did not challenge the intuitive models (85.87%) than on problems 

that violated the constraint (51%). What is particularly concerning is that intuitive 

conceptions impact even teachers’ diagnostic competence (Gvozdic & Sander, 2018). 

Indeed, when teachers are asked to explain the strategies students use to solve 

subtraction word problems, they can overlook certain empirically assessed difficulties 

on problems congruent with the intuitive conception.  

Current study 

The current study was conducted in order to provide insight into the extent to which 

intuitive conceptions prevail among adults and high-school teachers, including 

mathematics teachers. We propose that the usual performance tasks involving reaction 

times and solving procedures do not capture how robust intuitive conceptions are 

among the adult population. Indeed, production tasks have been used in categorization 

research as a way for participants to freely express their views and to the most prevalent 

conceptions (Rosch, 1978). They are gaining interest as a more ecological way of 

examining the conceptions spontaneously solicited by participants (Raynal, 2020; 

Dunbar & Blanchette, 2001). This therefore calls for a new methodological approach 

to capture the prevalence of intuitive conceptions long after the school notions have 

been acquired. 

We studied the intuitive conceptions of the four elementary arithmetic operations, since 

they are among the first and crucial school notions taught in mathematics instruction. 

To create the conditions that would be suitable for assessing the robust persistence of 

intuitive conceptions, we gave participants problem posing tasks. Both problem 

solving and problem posing are widely used activities that promote conceptual 

understanding in students (Cai, et al. 2015). However, problem posing is an activity 

that requires solvers to go beyond problem solving procedures and reflect on the deeper 

conceptual structure on the goal of the task (Cai, J. et al. 2016). Furthermore, the 

semantic characteristics of word problems make it possible to determine if the 

problems posed by the participants are congruent or incongruent with the intuitive 

conception of the target notion. 

We expect that when participants are asked to make up a word problem, for each 

arithmetic operation, there will be one dominant semantic category of problems that 

are posed, the one congruent with the intuitive conception. Furthermore, we expect that 

when participants are explicitly asked to transgress the entailments of the intuitive 

conception, participants will struggle to create problems because that will be 

incongruent with their intuitive conception. 

METHOD 

Participants. A total of 356 participants (mean age = 33.21, SD = 8.13, 204 female) 

took part in the study: 131 bachelor students and 225 high-school teachers. 57 of the 
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high-school teachers have already taught math in high-school. Participants were 

recruited from university classes in educational sciences as part of course credit.  

Materials. The study contained two tasks. A free problem posing task consisted of 4 

items, one regarding each arithmetic operation. The items consisted of an instruction 

for problem posing. For example, for subtraction the item stated: “Come up with a 

subtraction word problem that can be solved using the operation 8-5=3.”. The 

numerical values were controlled and counterbalanced. 

The second task was a problem posing under constraint task consisting of 4 items 

as well, one regarding each arithmetic operation. On each item, we first asked 

participants if it was possible to come up with an arithmetic word problem that is 

incongruent with the entailments based on the intuitive conception of the arithmetic 

operation: 

 “Is it possible to come up with a subtraction word problem statement whose 

solution is found using a one-step subtraction and THAT DESCRIBES AN 

INCRESE/WIN/GAIN?” 

 “Is it possible to come up with an addition word problem statement whose 

solution is obtained by one and only one addition operation and THAT 

DESCRIBES A LOSS?” 

 “Is it possible to come up with a multiplication word problem whose solution is 

found using a one-step multiplication and WHICH MAKES IT SMALLER?” 

 “Is it possible to come up with a division word problem whose solution is found 

using a one-step division and THAT MAKES IT BIGGER?” 

If the participants responded that it was possible to pose such a problem, they were 

asked to come up with it, and if not, to justify their answer. 

Coding. We first categorized the problems into semantic categories. For subtraction 

and addition, the problems were categorized into the widely used typology introduced 

by Riley et al. (1983). For multiplication, the word problems were categorized into 

those which depicted elements that solicit a repeated addition or those that solicit a 

product of the elements. For division, the problems were categorized into partitive or 

quotative problems. The second author proceeded with the coding of the data. A quarter 

of the data was then randomly selected and double-coded by the first author. The inter-

rater reliability reached a perfect level of agreement. 

We then coded if the semantic category was congruent or incongruent with the intuitive 

conception. For subtraction, the change problem with the unknown quantity bearing 

on the remainder (Change 2) was coded as congruent with the intuitive conception. For 

addition, Combine 1 and Change 1 problems were coded as congruent. For 

multiplication it was repeated addition that was coded as congruent with the intuitive 

conception. For division, partitive division was coded as congruent with the intuitive 

conception. The rest of the categories were coded as incongruent. 
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Procedure. The participants took part in the study online, on the Qualtrics platform. 

In the first task, each participant saw all four items with only one type of numerical 

value. After finishing the first task, the participants passed on to the second task. Items 

in both tasks were presented sequentially, in a random order. 

RESULTS  

Task 1: free problem posing. Table 1 presents 

the distribution of the overall coding of the 

results. Among the problems that it was possible 

to categorize based on the established coding, 

the results of the responses to the free problem 

posing task revealed that, 88.93% were problems 

congruent with the intuitive conception of the 

arithmetic operation. A Khi² comparison 

confirmed that the difference between congruent 

and incongruent problems was significant (χ2(1, 

N = 356) = 739.75, p < .01). The results in which 

participants’ responses were not categorized into 

congruent vs. incongruent were not included in 

the further analysis. 

When looking at the performance 

among both populations, the same 

pattern of responses was observed 

(Table 2). The difference between 

congruent and incongruent word 

problems was significant both among 

bachelor student (χ2(1, N = 131) = 

314.56, p < .01) and high-school 

teachers (χ2(1, N = 225) = 425.58, p < .01). While there were no significant differences 

between the two populations in their overall responses (χ2(1, N = 356) = 425.58, p > 

.01). Even among the math teachers, 89.34% of them proposed a problem congruent 

with the intuitive conception (χ2(1, N = 57) = 121.95, p < .01). 

We further explored the 

performance by taking the four 

arithmetic operations into 

consideration (Table 3). The 

difference between congruent 

and incongruent problems was 

significant when taking into 

account all four arithmetic 

operations (χ2(3, N = 356) = 

88.66, p < 0.01). 
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Task 2: problem posing with constraint. 

We first looked at the distribution of participants’ 

responses whether or not it is possible to make up 

a word problem which respects the given 

constraints, incongruent with the arithmetic 

operation in question. Four participants did not 

respond to the second task. Overall, 67.47% of the 

participants responded initially that it was 

possible to pose such a problem. However, the 

problems subsequently posed by the participants 

were coded following the same coding schema as 

in the first task. This revealed that it was only 

34.63% of the time that participants did actually 

succeed to pose a problem compatible with the 

constraints and incongruent with the intuitive 

conception. Table 4 provides an overview of the 

distribution of the overall performance on the 

second task.  

The results reveal that it was only 23.37% of the time that participants were able to 

actually propose a problem incongruent with the intuitive conception even when 

explicitly requested to do so.  

Among bachelor students 25.97% 

manage to succeed to do so, and 

21.86% of the high-school 

teachers (Table 5), with no 

significant difference among the 

two populations (χ21, N = 350) = 

88.66, p > 0.05). Among the math 

teachers, it was only 31.28% who 

proposed a problem incongruent with the intuitive conception on the second task after 

responding that it was indeed possible. 

DISCUSSION 

Findings from the current study revealed that intuitive conceptions of elementary 

arithmetic operations remain very robust late after instruction, among university 

students (about half of which are even future elementary school teachers), high-school 

teachers and even mathematics teachers. Previous findings using different 

investigation methods have suggested that intuitive conceptions persist in adults, but 

just how widespread they are has not been documented. The vast majority 

spontaneously of the participants posed problems congruent with intuitive conceptions. 

Moreover, the entailments of intuitive conceptions impaired the ability to find 

examples of situations that transgress these implicit rules. Participants were even 
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explicitly given the conditions to think of examples that are incongruent with the 

intuitive conception, the vast majority did not manage to succeed. These findings were 

consistently observed among all four arithmetic operations.  

A particularly striking finding is the prevalence of intuitive conceptions even among 

high-school mathematics teachers. Infact, expertise is considered to make it possible 

for experts to rely on abstract principles or “deep structures” (Chi, Feltovich, & Glaser, 

1981), this should aid teachers expert in the subject-matter to provide more diverse 

examples on problem posing tasks, especially when there are asked to provide 

incongruent problems. Our study of course does not question the mathematics expertise 

of the teachers, but it does go to show the persistence and robustness of intuitive 

conceptions even among experts. Furthermore, our findings inform lines of research 

which are interested in how teachers’ own knowledge about the task impacts their 

diagnostic competencies of student performance. Indeed, highly proficient content 

knowledge teachers are subject to the expert blind spot leading them to overlook the 

difficulties certain content can pose for students (Nathan, Koedinger, & Alibali, 2001). 

On the other hand, when problems are congruent with the intuitive conception, a study 

has put forward that teachers consider them to be easier for children, just like non-

teachers do, even when this diagnostic judgment about student performance is incorrect 

(Gvozdic & Sander, 2018). Thus, in a parallel way to the expert blind spot, teachers’ 

PCK is overridden when the intuitive conception was involved – by their intuitive blind 

spot. The robustness of our findings therefore suggest that such a phenomenon can 

occur among teachers because of the great prevalence of intuitive conceptions among 

them.  

These findings have important entailments for teacher trainings and provide insight 

into pedagogical phenomena observed among teachers. First, it stresses the importance 

of educating teachers about the shortcomings of intuitive conceptions and their 

development, not with the objective of eradicating them, but to favor knowledge 

acquisition principles that are aligned with students’ conceptual development and 

propose activities that foster a conceptual change. For example, working on examples 

congruent with the intuitive conception can help highlight the limits of intuitive 

conception, and later attain a conceptual change through working with examples 

incongruent with the intuitive conception so that the students can apply the school 

notion in situations incongruent with it (Gvozdic & Sander, 2020; Scheibling-Seve et 

al. 2022). 
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